
DEEP LEARNING FOR ATROPHY 
QUANTIFICATION IN BRAIN MAGNETIC 

RESONANCE IMAGING 

Jose Bernal Moyano 

Per citar o enllaçar aquest document:  
Para citar o enlazar este documento: 
Use this url to cite or link to this publication: 
http://hdl.handle.net/10803/671699

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets 
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs. 

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los 
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en 
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto 
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización 
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá 
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se 
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación 
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una 
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como 
a sus resúmenes e índices. 

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It 
can be used for reference or private study, as well as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes.

http://hdl.handle.net/10803/671699


DOCTORAL THESIS

2020

Jose Bernal Moyano

Deep learning for atrophy quantification in 
brain magnetic resonance imaging











A mi familia por su apoyo incondicional.



Acknowledgments

This doctoral thesis reflects my accomplishments over the last three years...perhaps
many more since this life plan started long ago. Evidently, I would not have gotten
here should I have not had all those people who contributed, in a way or another,
to the successful completion of this work. Foremost, I would like to express my
immense gratitude to my supervisors, Dr Xavier Lladó and Dr Arnau Oliver, for the
opportunity to work with them in such a fascinating topic, guiding me throughout
this whole learning process, and their dedication and continuous support regardless
of some of my decisions. This work would not have been possible without their help.

My sincere gratefulness goes to Dr Sergi Valverde who also mentored me during
this doctoral thesis. His ideas, insights, and advice helped me to grow as a researcher.

I would like to thank my friends who helped me to achieve this goal with their
advice, suggestions, endless discussions, friendship, and support during the past
three years (or more). In particular, I thank Deisy, Claudia, Kaisar, and Oleksii. I
am thankful for having you all by my side during this part of my life.

My deepest appreciation goes to my mother for her hard effort, my brother for
being always by my side, my family for supporting and believing in me, Mauro for
his company. I cannot wait to see what comes after this!





Research activities

Main research outcomes

The following research works are the pillars of the presented thesis:

• Bernal, J., Valverde, S., Oliver, A., & Lladó, X. (2020). Deep learning for
quantifying longitudinal cerebral atrophy in brain magnetic resonance imaging.
Under preparation.

• Bernal, J., Kushibar, K., Clèrigues, A., Oliver, A., & Lladó, X. (2020).
Deep learning for medical imaging. In: Bacciu D., Lisboa P.J.G., Vellido A.,
eds. Deep Learning in Biology and Medicine. Singapore: World Scientific
Publishing. Under review.

• Bernal, J., Valverde, S., Kushibar, K., Oliver, A., & Lladó, X. (2019). Gen-
erating controlled atrophy change evaluation environments on brain MR using
convolutional neural networks and segmentation priors. Under review in
Neuroinformatics. Quality index: [JCR IF 5.127, Q1(9/106)]

• Bernal, J., Kushibar, K., Cabezas, M., Valverde, S., Oliver, A., & Lladó,
X. (2019). Quantitative analysis of patch-based fully convolutional neural
networks for tissue segmentation on brain magnetic resonance imaging. IEEE
Access, 7, 89986-90002. Quality index: [JCR IF 4.098, Q1(23/155)]

• Bernal, J., Kushibar, K., Asfaw, D. S., Valverde, S., Oliver, A., Martí, R., &
Lladó, X. (2019). Deep convolutional neural networks for brain image analysis
on magnetic resonance imaging: a review. Artificial Intelligence in Medicine,
95, 64-81. Quality index: [JCR IF 3.574, Q1(5/26)]

Related journal publications

Other journal publications related to this PhD are as follows:



iv

• Clèrigues, A., Valverde, S., Bernal, J., Freixenet, J., Oliver, A., & Lladó,
X. (2020). Acute and sub-acute stroke lesion segmentation from multimodal
MRI. Computer Methods and Programs in Biomedicine, 194, 105521. Quality
index: [JCR IF 3.424, Q1(6/26)]

• Kushibar, K., Valverde, S., González-Villà, S., Bernal, J., Cabezas, M.,
Oliver, A., & Lladó, X. (2019). Supervised domain adaptation for automatic
sub-cortical brain structure segmentation with minimal user interaction. Sci-
entific reports, 9(1), 6742. Quality index: [JCR IF 4.011, Q1(15/69)]

• Clèrigues, A., Valverde, S., Bernal, J., Freixenet, J., Oliver, A., & Lladó,
X. (2019). Acute ischemic stroke lesion core segmentation in CT perfusion
images using fully convolutional neural networks. Computers in Biology and
Medicine, 115, 103487. Quality index: [JCR IF 2.286, Q1(52/106)]

• Kushibar, K., Valverde, S., González-Villà, S., Bernal, J., Cabezas, M.,
Oliver, A., & Lladó, X. (2018). Automated sub-cortical brain structure seg-
mentation combining spatial and deep convolutional features. Medical Image
Analysis, 48, 177-186. Quality index: [JCR IF 8.880, Q1(5/134)]

Conference participation

Works presented in national and major international conferences as oral or poster
presentations:

• Bernal, J., Kushibar, K., Salem, M., Clèrigues, A., Valverde, S., Cabezas,
M., Salvi, J., Oliver, A. & Lladó, X. A hybrid multi-atlas and convolutional
neural network based framework for six-month infant brain magnetic resonance
image tissue segmentation. MICCAI Grand Challenge on infant brain MRI
segmentation. MICCAI 2019. Shenzhen, China. 2019.

• Cabezas, M., Valverde, S., Clèrigues, A., Salem, M., Kushibar K., Bernal, J.,
Oliver, A., Salvi, J., Lladó, X. Brain tumour segmentation and prediction via
CNNs. MICCAI Grand Challenge on multimodal brain tumor segmentation
challenge. MICCAI 2019. Shenzhen, China. 2019.

• Valverde, S., Cabezas, M., Salem, M., Kushibar, K., Clèrigues, A., Bernal,
J., Salvi, J., Oliver, A., Llaló, X.. Big Data, Intel·ligència Artificial, Machine
Learning, etc. Què és què?. Jornades d’Esclerosis Múltiple del Mediterrani.
Girona, Spain. 2019.



v

• Bernal, J., Kushibar, K., Salem, M., Clèrigues, A., Valverde, S., Cabezas,
M., Salvi, J., Oliver, A. & Lladó, X. A hybrid multi-atlas and convolutional
neural network based framework for six-month infant brain magnetic resonance
image tissue segmentation. MICCAI Grand Challenge on infant brain MRI
segmentation. MICCAI 2019. Shenzhen, China. 2019.

• Bernal, J., Salem, M., Kushibar, K., Clèrigues, A., Valverde, S., Cabezas,
M., Gonzáles-Villà, S., Salvi, J., Oliver, A. & Lladó, X. MR brain segmenta-
tion using an ensemble of multi-path u-shaped convolutional neural networks
and tissue segmentation priors. MICCAI Grand Challenge on MR brain seg-
mentation. MICCAI 2018. Granada, Spain. 2018.

• Clèrigues, A., Valverde, S., Bernal, J., Kushibar, K., Cabezas, M., Oliver,
A. & Lladó, X. Cascade of convolutional neural networks for acute stroke
anatomy differentiation. MICCAI Grand Challenge on ischaemic stroke lesion
segmentation in medical imaging. MICCAI 2018. Granada, Spain. 2018.

• Cabezas M., Valverde S., González-Villà S., Clèrigues, A., Salem, M., Kushibar,
K., Bernal, J., Oliver, A. & Lladó, X. Survival prediction using ensemble tu-
mor segmentation and transfer learning. MICCAI Grand Challenge on multi-
modal brain tumor segmentation challenge 2018 in medical imaging. MICCAI
2018. Granada, Spain. 2018.

• Clerigues, A., Valverde, S., Bernal, J., Pareto, D., Vilanova, J. C., Ramio-
Torrenta, L., Rovira, A., Oliver, A. & Llado, X. (2018). A quantitative anal-
ysis of deep learning methods for multiple sclerosis white matter lesion seg-
mentation. Multiple Sclerosis, 24, 637-638. Quality index: [JCR IF 5.280,
Q1(22/197)]

• Bernal, J., Kushibar, K., Valverde, S., Cabezas, M., Gonzáles-Villà, S.,
Salem, M., Salvi, J., Oliver, A. & Lladó, X.. Six-month infant brain tis-
sue segmentation using three dimensional fully convolutional neural networks
and pseudo-labelling. MICCAI Grand Challenge on infant brain MRI segmen-
tation. MICCAI 2017. Quebec, Canada. 2017

• Valverde S., Cabezas M., Bernal J., Kushibar, K., González-Villà, S., Salem,
M., Salvi, J., Oliver, A. & Lladó X. White matter hyperintensities segmenta-
tion using a cascade of three convolutional neural networks. MICCAI Grand
Challenge on White Matter Hyperintensities Segmentation. MICCAI 2017.
Quebec, Canada. 2017.

• Lladó, X., Valverde, S., Cabezas, M., González-Villa, S., Salem, M., Kushibar,
K., Bernal, J., Freixenet, J., Salvi, J., Oliver, A. Neuroimatge de la Neurode-



vi

generació: situació actual i futur. Jornades d’Esclerosis Múltiple del Mediter-
rani. Girona, Spain. 2017.

Teaching experience

• Medical image segmentation and applications course of the Erasmus Mundus
Master in Medical Imaging and Applications (Sept 2017 - Jan 2018). Course
organisers: Xavier Lladó and Robert Martí.



Acronyms

θflip Flip angle
ADNI Alzheimer’s Disease Neuroimaging Initiative
AD Alzheimer’s disease
ANTs Advanced Normalization Tools
ASD Average surface distance
BET Brain extraction tool
BEaST Brain extraction based on nonlocal segmentation technique
CGAN Conditional generative adversarial network
CNN Convolutional neural network
CSF Cerebrospinal fluid
CT Computed tomography
DF Deformation field
DSC Dice similarity coefficient
ELU Exponential linear units
FAST FMRIB’s Automated Segmentation Tool
FCNN Fully convolutional neural network
FC Fully connected
FIRST
FLAIR Fluid attenuated inversion recovery
FLIRT FMRIB’s Linear Image Registration Tool
FNIRT FMRIB’s Non-linear Image Registration Tool
FSL FMRIB Software Library
GAN Generative adversarial network
GM Grey matter
GT Ground truth
IBSR Internet brain segmentation repository
LABEL Learning algorithm for brain extraction and labeling
MAE Median absolute error
MHD Modified Hausdorff distance
MICCAI2012 MICCAI multi-atlas labeling challenge
MICCAI Medical Image Computing and Computer-Assisted Intervention



viii

MNI Montreal Neurological Institute
MRBrainS18 MR brain segmentation challenge 2018
MRI Magnetic resonance imaging
MSE Mean square error
MS Multiple sclerosis
MS Multiple sclerosis
NMR Nuclear magnetic resonance
OASIS Open Access Series of Imaging Studies
PBVC Percentage of brain volume change
PD Proton density
PET Positron-emission tomography
PReLU Parametric rectified linear units
RAVEL Removal of artificial voxel effect by linear regression
ROBEX Robust brain extraction
ROI Region of interest
RWMSE Region-wise mean square error
ReLU Rectified linear units
SIENA Structural image evaluation, using normalisation, of atrophy
SPM Statistical parametric mapping
SSIM Structural similarity coefficient
TE Echo time
TR Repetition time
WM White matter
iSeg2017 Six-month infant brain MRI segmentation challenge 2017
iSeg2019 Six-month infant brain MRI segmentation challenge 2019



Contents

List of figures xiii

List of tables xvii

Abstract xix

Resumen xxi

Resum xxiii

1 Introduction 1

1.1 Cerebral atrophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 What is cerebral atrophy? . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Brain pathologies causing cerebral atrophy . . . . . . . . . . . 2

1.2 Brain image analysis in cerebral atrophy . . . . . . . . . . . . . . . . 4
1.2.1 Brain magnetic resonance imaging . . . . . . . . . . . . . . . . 4
1.2.2 Visual clinical ratings and their pitfalls . . . . . . . . . . . . . 6
1.2.3 Computational approaches and their pitfalls . . . . . . . . . . 7

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Theoretical background 13

2.1 Brain volumetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.1 Cross-sectional brain tissue segmentation . . . . . . . . . . . . 14



x Contents

2.1.2 Longitudinal cerebral atrophy quantification . . . . . . . . . . 15
2.2 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Convolution layer . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Non-linearity layer . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Pooling layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Fully connected layer . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.5 Regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.6 Output layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.7 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Deep learning for brain image analysis 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Taxonomy of deep learning strategies for medical image analysis . . . 26

3.2.1 Input dimensionality . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Output dimensionality . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Input sources and modalities . . . . . . . . . . . . . . . . . . . 28
3.2.4 Parallel and series data processing . . . . . . . . . . . . . . . . 28
3.2.5 Contextual information . . . . . . . . . . . . . . . . . . . . . . 30
3.2.6 Generative adversarial networks . . . . . . . . . . . . . . . . . 30
3.2.7 Application strategy . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Applications in brain image analysis . . . . . . . . . . . . . . . . . . . 32
3.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Processing tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Challenges and future directions . . . . . . . . . . . . . . . . . . . . . 42
3.4.1 Imaging challenges . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 Deep learning challenges . . . . . . . . . . . . . . . . . . . . . 43

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Benchmarking brain tissue segmentation methods 47



Contents xi

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Fully convolutional neural networks for brain MRI segmenta-
tion tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.2 Aspects to evaluate . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 Considered datasets . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Evaluation measurements . . . . . . . . . . . . . . . . . . . . 57
4.3.3 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Participation in international tissue segmentation challenges . . . . . 72

4.5.1 Six-month old infant brain MRI tissue segmentation 2017 . . . 72
4.5.2 MR brain segmentation 2018 . . . . . . . . . . . . . . . . . . . 73
4.5.3 Six-month old infant brain MRI tissue segmentation 2019 . . . 75

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Generating longitudinal atrophy evaluation datasets 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Processing pipeline . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.2 Generation architecture . . . . . . . . . . . . . . . . . . . . . 85
5.2.3 Region-wise loss function . . . . . . . . . . . . . . . . . . . . . 88
5.2.4 Generating controlled evaluation environments . . . . . . . . . 88
5.2.5 Implementation details . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.1 Considered datasets . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.3 Architectural directives and loss functions . . . . . . . . . . . 93
5.3.4 Generation quality (same dataset) . . . . . . . . . . . . . . . . 97
5.3.5 Generation quality (cross-dataset) . . . . . . . . . . . . . . . . 97



xii Contents

5.3.6 Assessing induced changes with volumetry methods . . . . . . 98
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Deep learning for quantifying longitudinal brain atrophy 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.2 Non-linear registration network . . . . . . . . . . . . . . . . . 107
6.2.3 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.4 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.1 Training dataset . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.2 Test datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.3 Network training . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.4 Network testing . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.5 Assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.6 Comparison against the state of the art . . . . . . . . . . . . . 114
6.3.7 Software and hardware . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.4.1 Ablation test . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.4.2 Comparison against the state-of-the-art . . . . . . . . . . . . . 118

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 Conclusions 127

7.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2.1 Short-term proposal improvements . . . . . . . . . . . . . . . 132
7.2.2 Future research lines . . . . . . . . . . . . . . . . . . . . . . . 133



Contents xiii

Appendices 135

A Benchmarking brain tissue segmentation methods 137
A.1 Segmentation accuracy values . . . . . . . . . . . . . . . . . . . . . . 137
A.2 Considered ADNI cases . . . . . . . . . . . . . . . . . . . . . . . . . . 143
A.3 ADNI cases considered in Chapter 6 for testing . . . . . . . . . . . . 143

A.3.1 Alzheimer’s disease patients . . . . . . . . . . . . . . . . . . . 143
A.3.2 Control subjects . . . . . . . . . . . . . . . . . . . . . . . . . . 144





List of Figures

1.1 High-level scheme of a human brain . . . . . . . . . . . . . . . . . . . 2
1.2 Brain atrophy in control and Alzheimer’s disease subjects . . . . . . . 3
1.3 Figures of dementia worldwide . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Figures of multiple sclerosis worldwide . . . . . . . . . . . . . . . . . 5
1.5 Examples of magnetic resonance imaging sequences . . . . . . . . . . 7
1.6 Wahlund scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Figures of deep learning in medical imaging . . . . . . . . . . . . . . 9
1.8 Cross-sectional and longitudinal assessments . . . . . . . . . . . . . . 11

2.1 Histogram of intensities as a mixture of components . . . . . . . . . . 15
2.2 Jacobian determinant as measure of atrophy . . . . . . . . . . . . . . 16
2.3 Building blocks of convolutional neural networks . . . . . . . . . . . . 18
2.4 Optimising a neural network . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Example of a 3D U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Parallel and series processing . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Explicit contextual information . . . . . . . . . . . . . . . . . . . . . 31
3.4 Transfer learning and domain adaptation . . . . . . . . . . . . . . . . 32
3.5 Use of preprocessing strategies for brain image analysis . . . . . . . . 33

4.1 Benchmarked networks . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Sampling strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Segmentation with overlapping sampling . . . . . . . . . . . . . . . . 53
4.4 Performance of considered networks using overlapping sampling . . . 60



xvi List of Figures

4.5 Single vs multiple modalities . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 Effect of input and output size on performance . . . . . . . . . . . . . 64
4.7 Effect of dimensionality on performance . . . . . . . . . . . . . . . . . 66
4.8 Segmentation results for eight models . . . . . . . . . . . . . . . . . . 67
4.9 Performance of convolutional neural networks vs conventional tissue

segmentation methods . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.10 Proposed approach for the MRBrainS18 challenge . . . . . . . . . . . 74
4.11 Performance of our ensemble of U-Nets on the MRBrainS18 challenge 75
4.12 Processing pipeline considered for the iSeg2019 challenge . . . . . . . 77
4.13 Performance on the training dataset of the iSeg2019 . . . . . . . . . . 78

5.1 Proposed framework for inducing controlled tissue variations . . . . . 84
5.2 High level design of the proposed generation network . . . . . . . . . 87
5.3 Generating controlled evaluation environments . . . . . . . . . . . . . 89
5.4 Distribution of relative CSF enlargement on the OASIS and ADNI

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Example of scans generated with different architectures and loss func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6 Cross-dataset generation examples . . . . . . . . . . . . . . . . . . . . 98
5.7 Real versus fitted values obtained using five cross-sectional and lon-

gitudinal atrophy quantification methods. . . . . . . . . . . . . . . . . 100

6.1 Deep learning based framework for quantifying longitudinal cerebral
atrophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Proposed longitudinal atrophy quantification network . . . . . . . . . 109
6.3 Generating intermediate atrophy extents using our data generator . . 111
6.4 Scan-rescan error yielded by VoxelMorph-based models . . . . . . . . 115
6.5 Brain volume change obtained with three longitudinal atrophy quan-

tification methods based on VoxelMorph on three cohorts . . . . . . . 117
6.6 Example of Jacobian of deformation fields computed with Voxel-

Morph models in OASIS . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.7 Brain volume change detected by our proposal and state-of-the-art

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.8 Correlation between longitudinal atrophy quantification results . . . . 122



List of Tables

3.1 Journal articles in brain MR image analysis . . . . . . . . . . . . . . 35

4.1 Details of implemented architectures . . . . . . . . . . . . . . . . . . 54
4.2 Relevant information of IBSR18, MICCAI 2012, and iSeg2017 . . . . 57
4.3 Number of patches and average processing time for training, validat-

ing and testing each model in IBSR18, MICCAI 2012, and iSeg2017. . 59
4.4 Implemented architectures to test patch size influence . . . . . . . . . 63

5.1 Relevant information from ADNI and OASIS . . . . . . . . . . . . . . 91
5.2 Generation quality scores obtained with four different strategies . . . 94
5.3 Comparison between generated and actual volumes concerning inten-

sity, segmentation, and atrophy dissimilarities . . . . . . . . . . . . . 97

6.1 Relevant information from ADNI, OASIS, and BiomarkEM . . . . . . 112
6.2 Effect size obtained for each VoxelMorph model on three cohorts of

patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3 Scan-rescan error yielded by two state-of-the-art atrophy quantifica-

tion methods and our proposal . . . . . . . . . . . . . . . . . . . . . . 119
6.4 Effect size obtained by our proposal, SIENA, and SIENA and the

Jacobian integration method using deformation fields provided by
ANTs for ADNI, OASIS, and BiomarkEM . . . . . . . . . . . . . . . 121





Abstract

Cerebral atrophy is a neuroimaging feature of ageing and diverse brain pathologies
that indicate of loss of neurons and their connections. Its quantification plays a
fundamental role in neuroinformatics since it permits studying brain development,
diagnosing brain diseases, assessing their progression, and determining the effective-
ness of novel treatments to counteract these brain diseases. However, this is still an
open and challenging problem in medical image analysis.

In this doctoral thesis, we question whether deep learning methods can be used
for better estimating cerebral atrophy from magnetic resonance images at both cross-
sectional and longitudinal levels. To fulfil this goal, we initially reviewed the liter-
ature on deep learning for brain medical image analysis to discover potential lines
to explore. Our revision revealed that a direct comparison cannot be established
between methods due to potential overfitting and there are no longitudinal atrophy
quantification strategies using deep learning.

Overfitting to challenge data hinders comparing architectures. To overcome this
issue, we built a framework for evaluating methods for brain tissue segmentation
quantitatively using the same evaluation dataset, metrics, tasks, and pre- and post-
processing. Our results suggest that deep learning can achieve state-of-the-art results
in cross-sectional tissue segmentation and that certain design directives are experi-
mentally better than others. Based on our analysis, we devised three proposals for
three Challenges of the Conference in Medical Image Computing and Computer-
Assisted Intervention between 2017 and 2019. In all three events, we achieved a
compelling performance.

The lack of annotated longitudinal atrophy datasets prevents determining whether
a certain method is accurate, and also training deep learning methods for detecting
brain changes. To cope with this issue, we crafted a deep learning method for im-
age synthesis allowing generating a plethora of scans for which the induced changes
would be known. We provided our model with baseline scans and real follow-up
segmentation maps and observed that our framework produced synthetically similar
outputs, even when training and testing on different but harmonised domains. More-
over, our proposal induced changes that were detected by validated cross-sectional
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and longitudinal methods.
Finally, we presented an application of our data generator for training a deep

learning method for atrophy quantification with many more samples. Our lon-
gitudinal atrophy quantification proposal involved data harmonisation, non-linear
registration through deep learning, and estimation of brain edge displacement as
a surrogate measure of brain atrophy through integrating the Jacobian of the re-
sulting deformation fields. We tested our method on three cohorts of patients with
Alzheimer’s disease, dementia, and multiple sclerosis and compared its performance
against relevant methods. We trained our method on a single domain and tested
it on the same and other two domains. Our proposal worked well in these datasets
and was particularly suitable for discerning between multiple sclerosis patients and
control subjects.

This PhD thesis forms part of multiple projects carried out by our research group.
To enable reproducibility and work continuation, we have released our development
to the public. We believe that the proposed cross-sectional and longitudinal methods
can be beneficial for the research and clinical community.



Resumen

La atrofia cerebral es una consecuencia de la pérdida de neuronas y sus conexiones
debido al envejecimiento y a diversas patologías cerebrales. Su cuantificación en
neuroimágenes juega un papel fundamental en la neuroinformática ya que permite
estudiar el desarrollo del cerebro, diagnosticar enfermedades cerebrales, evaluar su
progresión y determinar la eficacia de nuevos tratamientos para contrarrestarlas.
Sin embargo, obtener una cuantificación precisa sigue siendo un problema y un reto
abierto en el análisis de imágenes médicas.

En esta tesis doctoral, cuestionamos si los métodos de aprendizaje profundo
(Deep Learning) pueden utilizarse para estimar mejor la atrofia cerebral a partir
de imágenes de resonancia magnética tanto a nivel transversal como longitudinal.
Para cumplir este objetivo, inicialmente revisamos el estado del arte en aprendizaje
profundo aplicado al análisis de imágenes médicas cerebrales con el fin de descubrir
potenciales líneas de investigación. Nuestra revisión reveló que no se podía establecer
una comparación directa entre los métodos disponibles en la literatura debido al
sobreajuste y a que no existían estrategias de cuantificación de la atrofia longitudinal
que utilicen el aprendizaje profundo.

Para solucionar el problema del sobreajuste a los datos de entrenamiento pro-
pusimos y construimos un marco de referencia común para evaluar cuantitativa-
mente métodos de segmentación de tejido cerebral utilizando el mismo conjunto de
datos de evaluación, mismas métricas, mismas aplicaciones y mismo pre- y post-
procesamientos. Los resultados obtenidos sugieren que el aprendizaje profundo
puede lograr resultados de vanguardia en la segmentación transversal de tejidos y,
también, que ciertas directivas de diseño son experimentalmente mejores que otras.
Basándonos en nuestro análisis, ideamos tres propuestas para tres competencias in-
ternacionales de la Medical Image Computing and Computer Assisted Intervention
(MICCAI, por sus siglas en inglés) entre 2017 y 2019. En los tres eventos, obtuvimos
resultados competitivos.

Por otra parte, la falta de conjuntos de datos de atrofia longitudinal con anota-
ciones manuales impide realizar estudios cuantitativos, así como entrenar métodos
de aprendizaje profundo para detectar cambios en el tejido cerebral. Para hacer
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frente a este problema, desarrollamos un método de aprendizaje profundo para la
síntesis de imágenes que permite generar multiples imágenes de resonancia mag-
nética cuyos cambios son inducidos y conocidos de antemano. Proporcionamos a
nuestro modelo imágenes de referencia y mapas de segmentación de seguimientos
reales, observando que producía resultados sintéticamente similares a los reales, in-
cluso al entrenar y probar la generación en dominios diferentes pero armonizados.
Además, nuestra propuesta permite generar cambios que pueden ser detectados por
métodos transversales y longitudinales validados.

Finalmente, presentamos una aplicación directa de nuestro generador de datos
para entrenar un método de aprendizaje profundo para la cuantificación de la atrofia
cerebral en estudios longitudinales. Nuestra propuesta de cuantificación de la atrofia
longitudinal se basa en la armonización de datos, el registro no lineal por medio del
aprendizaje profundo y la estimación del desplazamiento de los contornos del cere-
bro como medida de atrofia cerebral, realizado por medio de la integración de los
Jacobianos de los campos de deformación resultantes del registro. Este método se
evaluó en tres cohortes de pacientes con Alzheimer, demencia y esclerosis múltiple,
comparando su rendimiento con métodos relevantes del estado del arte. Los resulta-
dos obtenidos por nuestra propuesta en estos conjuntos de datos son prometedores,
siendo particularmente útil para discernir entre los pacientes de esclerosis múltiple
y los sujetos de control.

Esta tesis doctoral forma parte de los múltiples proyectos llevados a cabo por
el grupo de investigación VICOROB. Para permitir la reproducibilidad y la contin-
uación de la investigación realizada, nuestros desarrollos se han hecho públicos en
el repositorio del grupo. Creemos que los métodos transversales y longitudinales
propuestos pueden ser beneficiosos para la comunidad investigadora y clínica.



Resum

L’atròfia cerebral és una conseqüència de la pèrdua de neurones i de les seves connex-
ions a causa de l’envelliment i a diverses patologies cerebrals. La seva quantificació
en neuroimatge juga un paper fonamental en la neuroinformàtica, ja que permet
estudiar el desenvolupament del cervell, diagnosticar malalties cerebrals, avaluar la
seva progressió i determinar l’eficàcia de nous tractaments per a contrarestar-les.
No obstant això, obtenir una quantificació acurada continua sent un problema i un
repte obert en l’anàlisi d’imatges mèdiques.

En aquesta tesi doctoral qüestionem si els mètodes d’aprenentatge profund (Deep
Learning) es poden utilitzar per estimar millor l’atròfia a partir d’imatges de ressonàn-
cia magnètica, tant en estudis transversals com en estudis longitudinals. Per complir
aquest objectiu, inicialment vam revisar l’estat de l’art sobre l’aprenentatge profund
aplicat a l’anàlisi d’imatges mèdiques cerebrals, amb l’objectiu de descobrir poten-
cials línies de recerca. La nostra revisió va revelar que no es podia establir una
comparació directa entre els mètodes disponibles a la literatura degut al sobre-
ajustament a les dades experimentals (overfitting) i que no existien estratègies de
quantificació de l’atròfia longitudinal que utilitzessin l’aprenentatge profund.

Per solucionar el problema del sobre-ajustament a les dades d’entrenament,
doncs, vam proposar i construir un marc de referència comú per tal de poder avaluar
quantitativament els mètodes de segmentació de teixit cerebral, utilitzant el mateix
conjunt de dades d’avaluació i les mateixes mètriques, aplicacions i pre- i post-
processaments. Els resultats obtinguts suggereixen que l’aprenentatge profund pot
aconseguir resultats d’avantguarda en la segmentació transversal de teixits i, també,
que certes directives de disseny són experimentalment millors que d’altres. Basant-
nos en aquestes anàlisis, vam idear tres propostes diferents per a tres competicions
internacionals lligades a la Conferència Medical Image Computing and Computer
Assisted Intervention (MICCAI, per les sigles en anglès) entre 2017 i 2019. En els
tres esdeveniments, vam aconseguir obtenir resultats competitius.

D’altra banda, la manca de conjunts de dades d’atròfia longitudinal amb anota-
cions manuals impedeix realitzar-ne estudis quantitatius, i també entrenar mètodes
d’aprenentatge profund per a la detecció de canvis en el teixit cerebral. Per fer front
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a aquest problema, vam elaborar un mètode d’aprenentatge profund per a la síntesi
d’imatges que permet generar múltiples imatges de ressonància magnètica on els
canvis són induïts i coneguts per endavant. Proporcionem al nostre model imatges
de referència i mapes de segmentació d’estudis longitudinals reals, i obtenim resul-
tats sintètics similars als reals, fins i tot a l’entrenar i provar la generació en dominis
diferents però harmonitzats. A més, la nostra proposta permet generar canvis que
poden ser detectats pels mètodes transversals i longitudinals validats.

Finalment, presentem una aplicació directe del nostre generador de dades sin-
tètiques per a l’entrenament d’un mètode d’aprenentatge profund capaç de quan-
tificar l’atròfia cerebral en anàlisis longitudinals. Aquesta proposta es basa en una
harmonització de dades, un registre no lineal per mitjà de l’aprenentatge profund i
la subseqüent estimació del desplaçament de les contorns del cervell com a mesura
de l’atròfia cerebral, fet que es realitza mitjançant la integració dels Jacobians dels
camps de deformació resultants del registre. Aquest mètode s’ha avaluat en cohorts
de pacients amb Alzheimer, demència i esclerosi múltiple, comparant el seu rendi-
ment amb mètodes rellevants de l’estat de l’art. Els resultats obtinguts per la nostra
proposta en aquests conjunts de dades són prometedors, essent particularment útil
per a discernir entre pacients d’esclerosi múltiple i subjectes de control.

Aquesta tesi doctoral forma part de múltiples projectes duts a terme pel grup de
recerca ViCOROB. Per permetre la reproductibilitat i la continuació de la recerca
feta, els nostres desenvolupaments s’han fet públics en el repositori del grup. Creiem
que els mètodes transversals i longitudinals proposats poden ser beneficiosos per a
la comunitat investigadora i clínica.



Chapter 1

Introduction

In this chapter, we introduce the reader to the research context, present the main
thesis goals and specific steps to reach them, and summarise the main structure of
the present thesis.

1.1 Cerebral atrophy

1.1.1 What is cerebral atrophy?

The human brain is an organ located inside the cranium that forms part of the
central nervous system. The brain consists of two tissues: grey matter – neuronal
cell bodies – and white matter – mainly myelinated axon tracts [1]. This organ is
surrounded by cerebrospinal fluid, which provides it with mechanical protection [1]
and helps it to drain toxins and waste [2]. A high-level scheme of a human brain is
depicted in Fig. 1.1.

The loss of neurons and their connections and, therefore, a reduction in the
volume of the grey and white matter, is referred to as cerebral atrophy. Because
the total volume of the brain tissue, cerebrospinal fluid, and intracranial blood
is fixed in adult brains, according to the Monro-Kellie hypothesis [3], cerebrospinal
fluid volume increases as brain tissue volume declines as a mechanism for maintaining
a normal intracranial pressure. Although brain tissue loss is thought to be a direct
consequence of the normal ageing process [4], it is also a common neuroimaging
feature of multiple disorders affecting the brain, as shown in Fig. 1.2.

Cerebral atrophy can be focal and rapid as a result of a head injury [5], radio-
therapy [6], and stroke [7]; or diffuse and slow as a result of ageing, cerebral small
vessel disease [8], schizophrenia [9,10], Alzheimer’s disease [11], and multiple sclero-
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Figure 1.1: High-level scheme of a human brain. The brain is formed by the
grey matter, which contains neuronal cell bodies, and white matter, which con-
tains mainly myelinated axon tracts. The brain is surrounded by the cerebrospinal
fluid.

sis [12,13], among other pathologies affecting brain tissues. Hence, providing medical
doctors with accurate and precise cerebral atrophy measurements at cross-sectional
(one time point) and longitudinal (variations over time) levels is fundamental for
shedding light into their relationship with neurological diseases, monitoring their
progression, and assessing treatment effectiveness [14–20].

1.1.2 Brain pathologies causing cerebral atrophy

Dementia

Dementia is an umbrella term in including cognitive decline, physical frailty, onset
depression, and dependency that, ultimately, limits daily life. At a global scale, de-
mentia is the 7th leading cause of death, approximately 50M people suffer from it,
10M new cases appear every year (a new case every three seconds), costs about 818
billion dollars (to carers mostly), affects both patients and their families, and, unset-
tlingly enough, these figures are expected to triple by 2050 [21]. The distribution of
cases of dementia worldwide are depicted in Fig. 1.3. Multiple pathological processes
and injuries compromising the optimal functioning of the brain result in dementia:
endothelial dysfunction may lead to up to 45% of dementias [8], Alzheimer’s disease
contributes to 60-70% of the cases [21], and strokes double dementia risk [22]. De-
spite being a worldwide matter, little is known about its causes since much of it is
clinically silent and late, and there is no clear way to treat it nowadays. However,
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(a) Axial (b) Sagittal (c) Coronal

Figure 1.2: Brain atrophy in control (top) and Alzheimer’s disease (bottom) subjects
in their 70s. In the three orthogonal views, note the enlargement of the lateral
ventricles and widening of sulci in the patient with Alzheimer’s disease compared to
that of the control subject. Red arrows point to the lateral ventricles in the three
views. In coronal view, note the atrophy on the medial temporal lobes (blue circles).
These scans were skull stripped and co-registered for enhancing visualisation.

cerebral atrophy is a feature of dementia [23–26] and its progress in middle-aged sub-
jects may be associated with the future development of dementia [25]. Therefore,
efforts for quantifying brain tissue loss and understanding the causes leading to such
volume decline may lead to better characterisation and monitoring of dementia.

Multiple sclerosis

Multiple sclerosis is a common chronic immune-mediated neurological disease of the
central nervous system [28,29], characterised by the formation of lesions or plaques
that damage the myelin sheaths present in nerve cells in the central nervous system –
brain and spinal chord. This demyelineation process hampers axonal transmissions
and clinically manifests in cognitive decline and physical disability [30, 31]. The
distribution of cases of multiple sclerosis worldwide is depicted in Fig. 1.4. Accord-
ing to the Multiple Sclerosis International Federation, the number of people with
MS worldwide are approximately 2.2M [32]. Genetic predisposition, biological sex,
and geographical location are etiological factors of multiple sclerosis [33]. Although
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Figure 1.3: Figures of dementia worldwide according to the World Health Organi-
sation [21, 27]. Approximately 50% of the cases of dementia worldwide are in Asia,
40% split between America and Europe, and less than 10% in Africa.

there are various treatment options, side effects and limited effectiveness result in
poor treatment adherence [33]. Brain volume measurements are a key part in stud-
ies of this neurodegenerative disease as they appear in all patients, are associated
with clinical risk factors, and predict disease evolution [34–37]. Therefore, accu-
rate and reliable brain atrophy quantification methods may help to monitor disease
progression and assess the effectiveness of new treatments for controlling it.

1.2 Brain image analysis in cerebral atrophy

1.2.1 Brain magnetic resonance imaging

Medical imaging comprises a wide range of medical techniques which allow visualis-
ing internal body structures. They are preferred over biopsies as imaging methods
reduce collateral risks surgical procedures may involve. Some of these imaging tech-
niques require the body to receive low doses of radiation (e.g. x-ray or computed
tomography scans) which may not be prejudicial – in principle – but should be
reduced as much as possible [39]. Unlike these technologies, magnetic resonance
imaging (MRI) does not require exposing the body to ionic radiation. Instead, mag-
netic waves stimulate hydrogen atoms in molecules present in the body using the
property of nuclear magnetic resonance (NMR). NMR is the phenomenon in which
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Figure 1.4: Figures of multiple sclerosis worldwide according to the Multiple Sclero-
sis (MS) International Federation [38]. Multiple sclerosis is more frequent in North
America, Europe, and Oceania compared to Asia (except for Russia), South Amer-
ica, and Africa, where it is unusual.

magnetic nuclei in a magnetic field absorbs and re-emits electromagnetic radiation
at a specific resonance frequency. The radiation energy depends on the magnetic
field and atom properties.

MRI relies on the magnetic properties of hydrogen atoms present in water molecu-
les in the body to produce images. Water molecules contain two hydrogen atoms
with one electron and one proton. The protons spin around their axes in random
directions. When the body is placed in a strong magnetic field, the axes of the
protons align up in the direction of the field (longitudinal magnetisation). A radio-
frequency pulse source is used to deflect the average magnetic vector of the protons,
i.e. the average magnetic momentum vector turns θflip degrees away from the mag-
netic field vector (traverse magnetisation). At this point, the protons spin together
in resonance with the radio-frequency. When the radio-frequency source is switched
off, the magnetic vectors realign to the initial magnetic field in which the body is
immersed. The time from which the average momentum goes from θflip degrees to
0 degrees is called the relaxation time. During this relaxation time, protons release
energy in the form of radio frequency signals which is subsequently acquired by re-
ceiver coils to generate the MR image [40, 41]. The overall magnetisation process
is repeated by successively applying radio-frequency pulse sequences with a delay
between them and measuring the transverse relaxation with a recess between them,
referred to as repetition time (TR) and echo time (TE), respectively.
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The relaxation can be seen as two stages: T1 and T2 relaxations. As the radio-
frequency is gradually eliminated, the transverse magnitude decays and the protons
stop being in resonance. This process is known as spin-spin or T2 relaxation. Then,
the protons move from a high energy state to a low energy one restoring the lon-
gitudinal magnetisation and, at the same time, liberating energy. This process is
called spin-lattice or T1 relaxation. These two relaxation times vary from one tissue
to another and, thus, are key elements of the imaging process [42].

Different acquisition sequences are determined by emphasising on T1 or T2 re-
laxations and varying the values for TR and TE. In T1-weighted (T1-w) acquisition
sequences, differences in spin-lattice relaxation time are accentuated and both TR

and TE are short (TR < 1000ms, TE > 30ms). T1-w acquired scans offer contrast
between grey matter from white matter and are often used in brain tissue seg-
mentation when only one modality is used (monospectral). In T2-weighted (T2-w)
acquisition sequences, differences in spin-spin relaxation time are accentuated and
both the TR and TE are long (TR > 2000ms, TE > 80ms). The transverse mag-
netisation still exists in fluids after a long TE – fluids appear hyperintense –, but it
does not in fatty tissues and, thus, the former appear hyperintense while the latter
hypointense. T2-w scans permit distinguishing between normal-appearing tissues
and regions of abnormal fluid content and, thus, area suitable for detecting brain
lesions. More advanced acquisition methods are being used nowadays such as fluid
attenuated inversion recovery (FLAIR) [43] in which fluids are suppressed from the
image. This imaging modality has been widely used to classify periventricular hy-
perintense lesions, such as multiple sclerosis plaques [44]. An illustrative example of
the appearance of T1-w, T2-w and FLAIR scans is shown in Fig. 1.5.

1.2.2 Visual clinical ratings and their pitfalls

Pioneer works in the field contemplated devising qualitative clinical ratings to dis-
cern between normal and abnormal brain atrophy [4,45–47]. The process consisted of
visually inspecting anatomical landmarks, such as cerebrospinal fluid spaces [4, 45],
frontal and parietal cortex [45], and medial temporal lobes [45–47], and grading
their appearance based on prior anatomical knowledge or against reference tem-
plates [4, 48] using a discrete rating scale. For example, the Wahlund visual rating
scale [4] consisted of identifying four standard axial slices from an incoming scan, as
shown in Fig. 1.6, examining cerebrospinal fluid spaces in six regions (lateral ventri-
cles, inter-hemispheric fissure anterior to the corpus callosum, left and right Sylvian
fissures, occipital sulci, frontal sulci, and parietal sulci), and rating each of them
based on their appearance compared to the normal case shown in Fig. 1.6 using a
five-point scale (0 - normal size; 1 - normal, slightly enlarged; 2 - larger than normal;
2.5 - considerably larger than normal; 3 - extremely larger than normal). Note that
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T1-w T2-w FLAIR

Figure 1.5: Magnetic resonance imaging sequences on a multiple sclerosis patient
(top row) and a control subject (bottom row). The patient with multiple scleroris ex-
hibits periventricular white matter hyperintensities (red arrows). Fluids and lesions
appear hypointense in T1-w and hyperintense in T2-w and FLAIR.

the process requires serious training to select these references slices appropriately,
recognise these anatomical regions unequivocally, and discern between “normal” and
“abnormal”.

Visual clinical ratings are relatively fast as raters make these assessments based
on a few standard slices, a crucial factor in emergencies, and are resilient to data
quality as a radiologist can holistically provide an estimate of the brain tissue loss
even when reference points are not clearly visible. Nonetheless, their reliability de-
pends on the expertise of the radiologists and their physical limitations: fatigued
and inexperienced raters may exhibit lower diagnostic performance [49, 50]. More-
over, the development of these ratings target specific populations (patients with
schizophrenia [45] or Alzheimer’s disease [46]) and, hence, may not be useful to
other samples and are limited by “flooring” or “ceiling” effects due to their discrete
nature [51].

1.2.3 Computational approaches and their pitfalls

A plethora of computational approaches have been proposed throughout the years
to quantify automatically brain volume at cross-sectional and longitudinal levels and
overcome the aforementioned limitations of visual ratings [12].

Cross-sectional studies carry out brain volumetry at a specific time-point, i.e.
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(a) (b) (c) (d)

Figure 1.6: Four standard slices used for grading cerebral atrophy according to
the Wahlund scale [4]. These four axial slices show cerebrospinal fluid spaces in
six regions: inter-hemispheric fissure anterior to the corpus callosum (blue arrow),
lateral ventricles (red arrows), Sylvian fissures (white arrows), occipital sulci (green
arrows), frontal sulci (orange arrow), parietal sulci (yellow arrow). Images extracted
from the original paper [4].

they do not incorporate temporal information. For that, intracranial regions are
segmented into cerebrospinal fluid, grey matter, and white matter prior to esti-
mating their volume. Developing traditional tissue segmentation methods required
analysing and understanding the problem at hand and the images to deal with
carefully, laying down assumptions about the data, and, finally, engineering an algo-
rithm that would use such information to segment the regions of interest. For exam-
ple, algorithms would assume brain tissues present “distinct” intensity profiles, are
consistent among patients, and could be modelled through Gaussian mixtures [52]
that would be equipped with spatial information in the form of neighbourhood
constraints [53–55] or population-specific probabilistic atlases [56] to increase their
robustness against intrinsic and extrinsic imaging factors. Cross-sectional brain vol-
umetry can be conducted using validated segmentation tools, such as FAST [57],
FIRST [58], SPM [56], and FreeSurfer [59], or whole-brain atrophy quantification
algorithms, such as SIENAX [60]. Although they are still being used in clinical
research due to their robustness and adaptability [61], preprocessing mistakes (e.g.
poor skull stripping) [62,63], the presence of brain lesions (e.g. white matter hyper-
intensities or tumours) [64–66], the lack of contrast between tissues [67], intensity
inhomogeneity [63], imaging differences (acquisition protocol, scanner vendor and
version) [68], and the large differences between training and testing sets [69] com-
promised their performance.

Longitudinal studies scrutinise changes between two – or more – scans, possibly
acquired in different sessions [11]. Cerebral atrophy may be described through surro-
gate measurements given by brain parenchymal fraction [70] or brain tissue boundary
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Figure 1.7: Number of peer reviewed publications per year according to Google
Scholar using deep learning in medical imaging. Search keywords: “deep learning”
and “medical imaging”. Search interval: between 2012 and 2020. (Queried: May
7th, 2020).

displacement [60,71–73]. Longitudinal atrophy quantification can be conducted us-
ing tools, such as any cross-sectional tissue segmentation strategy, SIENA [57], and
the Jacobian method [71]. In all cases, data harmonisation errors or presence of
brain lesions may compromise the subsequent evaluation [62,66,74].

1.3 Motivation

Machine learning has become part of our daily basis: from intelligent systems recom-
mending products and services [75] to complex natural language processors installed
in smartphones capable of understanding questions and answering them accord-
ingly [76]. In the medical domain, these intelligent systems permit supporting and
easing medical decision making in sensible, intricate, and time-consuming tasks, pri-
marily diagnostics [77], which not so long ago were unaddressable, such as automatic
breast cancer screening [78], skin lesion classification [79], cardiac structure segmen-
tation and diagnosis [80], segmentation and identification of retinal landmark and
pathologies [81], histopathology image analysis [82], brain segmentation [83].

A branch of machine learning, referred to as deep learning, has become a hot
topic in the last couple of years due to its astonishing performance in a myriad of
computer vision applications [84–88]. Although early applications of deep learning
in medical image analysis date back to the 1990s [89–91], the lack of sufficient and
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correctly labelled data, computational power limitations, and reduced interpretabil-
ity discouraged researchers to continue developing deep learning techniques. With
the arrival of graphic processing units [92], improvements in imaging, and efforts for
collecting and processing vast amounts of data, this research area has rekindled and
expanded considerably during the last couple of years, as depicted in Fig. 1.7.

Convolutional neural networks (CNN), an outstanding branch of deep learning
applications to visual purposes, have become the state of the art in research medical
imaging and have performed similarly to especially trained personnel in sensitive
medical applications [79]. CNNs could be used to avoid defining ad-hoc spatial
and intensity features explicitly as they learn mapping functions (input→output)
based on the training data. In a nutshell, the process consists of optimising a set
of convolutional kernels that permit extracting relevant hierachical features out of
the input data and a set of units to mine the resulting characteristics to understand
the content of the input and produce a response that matches the expected output
accordingly. We hypothesise deep learning can improve brain tissue segmentation
and atrophy quantification in cross-sectional and longitudinal studies, respectively.
Both tasks are illustrated in Fig. 1.8.

1.4 Objectives

The main objective of this thesis is to:

develop deep learning methods for segmenting brain tissues
and quantifying their temporal variations from magnetic res-
onance images.

We consider the following specific objectives to reach the aforementioned goal:

1. Review the state of the art in deep learning for brain image analysis.
We review relevant literature on brain image analysis using deep learning to
understand the needs from the medical point of view, study current trends
and applications; analyse pipelines, strengths, weaknesses, and limitations;
and general challenges that need to be addressed in the field.

2. Compare quantitatively approximations relevant to cross-sectional
brain MRI tissue segmentation in healthy and unhealthy subjects.
Based on our literature review, we implement and compare applicable brain
MRI tissue segmentation algorithms quantitatively under the same evaluation
framework to understand their practical strengths and weaknesses.
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Figure 1.8: Cross-sectional tissue segmentation and longitudinal atrophy quantifica-
tion. The goal of tissue segmentation is to classify all voxels within the intracranial
volume into cerebrospinal fluid, grey matter, and white matter for measuring brain
volume afterwards. The goal of longitudinal atrophy quantification is to detect and
quantify brain differences over time given a baseline and a follow-up scan. CNN:
convolutional neural network. CSF: cerebrospinal fluid. GM: grey matter. WM:
white matter

3. Propose a convolutional neural network for generating controlled
atrophy change evaluation datasets. Although there are a plethora of
publicly available longitudinal brain MRI datasets, the lack of a ground truth
prevents deep learning approaches from being used for quantifying temporal
tissue changes. In light of that limitation, we propose a framework for generat-
ing longitudinal atrophy datasets, allowing evaluating the accuracy of atrophy
quantification methods and training deep learning methods for performing
such a task.

4. Propose deep learning framework for quantifying longitudinal brain
atrophy in healthy and unhealthy subjects. To show one of the pos-
sible applications of our data augmentation network, we propose the first
registration-based deep learning method for quantifying brain tissue changes
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over time and assess its suitability versus validated tools in three cohorts of
patients ongoing Alzheimer’s disease, dementia, and multiple sclerosis.

1.5 Document structure

The rest of the thesis is structured as follows. Notions of tissue segmentation, atro-
phy quantification, and deep learning are presented in Chapter 2. The outcomes of
our literature review on deep learning for medical imaging are described in Chap-
ter 3. Details about the methodology and corresponding results and observations
of our quantitative comparison of relevant methods for tissue segmentation in brain
MRI are condensed in Chapter 4. Based on our bechmark, we proposed the process-
ing approaches discussed in Chapter 4 for cross-sectional tissue segmentation that we
submitted to various Grand Challenges of the International Conference on Medical
Image Computer and Computer-Assisted Interventions. Our proposals for longitu-
dinal atrophy generation and atrophy quantification are presented and evaluated in
Chapter 5. We use our data generation framework as data augmentation strategy
for training our deep learning based atrophy quantification proposal in Chapter 6.
Final remarks of the overall work and future directions are outlined in Chapter 7.



Chapter 2

Theoretical background

This chapter contains the essentials of brain volumetry and deep learning. We
published part of the theoretical background in the following paper:

Paper published in the Artificial Intelligence in Medicine
Volume: 95, Pages: 64-81, Published: April 2019
DOI: 10.1016/j.artmed.2018.08.008
JCR IF: 3.574 Q1(5/26)
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2.1 Brain volumetry

2.1.1 Cross-sectional brain tissue segmentation

Brain tissue segmentation consists of classifying each voxel in an MRI acquisition
into one of three regions: cerebrospinal fluid, grey matter, and white matter. Before
the deep learning era, widespread tissue segmentation approaches were intensity
based and assumed that intensities were a result of a mixture of these three regions
of interest [93], as illustrated in Fig. 2.1, and, thus, the probability of a voxel Xi to
have a certain intensity value x could be determined as follows

P (Xi = x) =
K∑

k=1
P (Zi = k)P (Xi = x|Zi = k), (2.1)

where K = 3 the number of regions of interest and Zi a latent variable indicat-
ing what region of interest Xi came from. In particular, intensity-based meth-
ods assumed intensities could be modelled through a mixture of Gaussian distribu-
tions [52], i.e.

P (Xi = x) =
K∑

k=1
πk · N (x; μk, σk), (2.2)

where P (Zi = k) = πk represents the weight of each component at the voxel Xi

and μk and σk the mean and standard deviation of the k-th component. The seg-
mentation process consisted of estimating the model latent variables Zi using the
expectation maximisation algorithm [94]. The segmentation performance of these
types of methods varies depending on the image quality: images with low contrast,
noise, and intensity inhomogeneity would produce unsatisfactory results as tissue
distributions would overlap more.

Intensity-based tissue segmentation methods were later equipped with spatial in-
formation [94–97] to cope with the aforementioned issues. Four main strategies were
distinguished in the literature: (i) impose local contextual constraints using Markov
Random Fields [57], (ii) include penalty terms accounting for neighbourhood sim-
ilarity in clustering objective functions [54], (iii) use Gibbs prior to model spatial
characteristics of the brain [55], and (iv) introduce spatial information using prob-
abilistic atlases [56]. Of note, some of these methods, like FAST [57] and SPM [56],
are still being used in medical centres due to their robustness and adaptability [61].

Cross-sectional brain volume and atrophy measurements could be easily obtained
after tissue segmentation by normalising the total volume of brain tissues or cere-
brospinal fluid regions by the intracranial volume [60,70,98].
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Figure 2.1: Histogram of intensities as a mixture of components. The multimodal
distribution in grey represents the histogram of all tissues. The red, green, and
blue distributions correspond to those of cerebrospinal fluid, grey matter, and white
matter, respectively.

2.1.2 Longitudinal cerebral atrophy quantification

In longitudinal studies of cerebral atrophy, the assessments consists of examining
brain tissue variations over time based on two input MRI scans, a baseline and a
follow-up acquisition.

The examination of brain atrophy can be carried out taking advantage of the
cross-sectional approach by segmenting brain tissues on both scans, computing the
corresponding percentages of cerebrospinal fluid in the intracranial volume, and
calculating the relative volume change [70, 98]. Although this approach does not
necessarily involve registering input scans and is relatively simple to compute, its
application might be limited by the accuracy of skull stripping and tissue segmen-
tation steps [99]. Moreover, the method dispenses with spatial information and,
hence, it does not provide any information about potential atrophied regions.

Alternatively, longitudinal cerebral atrophy can be studied by analysing brain
tissue boundary displacement over time [60, 71–73]. A popular segmentation-based
approach named SIENA (Structural Image Evaluation, using Normalization, of At-
rophy) tool in the FSL package evaluates brain tissue displacement by co-registering
baseline and follow-up scans, segmenting tissues in both, and calculating brain edge
displacement following the normal of the brain boundary [57]. Such an approach
provides local atrophy information since local brain boundary displacements indi-
cate local atrophy. However, the accuracy of this approximation is conditioned by
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(a) Baseline (b) Follow-up (c) Jacobian

Figure 2.2: Jacobian determinant as surrogate measure of atrophy. From left to
right, axial view of baseline and follow-up scans and their corresponding Jacobian
determinant. In the Jacobian determinant images, blue and red indicate contraction
and expansion, in that order. The red arrows point to obvious changes between input
scans, such as new lesions (top row) and ventricle widening (bottom row).

the accuracy of the registration, skull stripping, and tissue segmentation. Subtle
inaccuracies in each one of these steps may result in significant errors in the final
brain volume change values [74].

Recently, a registration-based method referred to as the Jacobian integration
method has been proposed to cope with these issues [71]. The approach uses the in-
formation contained in deformation vectors obtained through non-linear registration
as a surrogate measure of cerebral atrophy, as depicted in Fig. 2.2. The Jacobian
determinant of the deformation vectors indicates the magnitude and direction of the
change: the farther the magnitude from one, the higher the variation between base-
line and follow-up; a positive direction indicates expansion while a negative direction
contraction. Consequently, the integral of Jacobian determinants over the region of
interest expresses the total brain change over time (longitudinal atrophy). Like in
SIENA, the Jacobian method encodes the local displacement of the brain boundary
and its also limited by the accuracy of the linear and non-linear registrations, skull
stripping and the segmentation. However, unlike SIENA, segmentation is only done
to the follow-up scan, reducing potential computation errors.
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2.2 Deep learning

For years, conventional machine-learning techniques were built using automatic
learning techniques and well-engineered algorithms as explained in the previous
sections. The approach consisted in taking the raw data, describing its content with
low-dimensional feature vectors – using specific prior knowledge of the addressed
scenario – and inputting the vectors to a trainable classifier. While the classifier
was certainly useful for other purposes, the ad-hoc features were not necessarily.
Indeed, the overall accuracy of the method would depend on how appropriately
designed were the heuristics [100].

Representation learning appears as an alternative to this drawback: discover
automatically detection- and classification-suitable representations from the input
data. One of the first successful attempts using this strategy took place in 1989
when LeCun et al. [101] presented a 5-layer fully-adaptive architecture for address-
ing handwritten digit recognition. Despite its accuracy results (1% error rate and
9% reject rate from a dataset of around 1000 samples), the authors were able to
apply neural networks on a real world task. From thereon, several strategies consid-
ering much deeper and complex – yet trainable – networks have been successfully
implemented not only on computer vision tasks, such as image segmentation and
understanding; but also on natural language processing and sentiment analysis [102].

One of the most widely adopted approaches of deep neural networks is the con-
volutional neural networks (CNN) in which are able to process array-like data [102].
From a high-level perspective, the idea behind CNN is to identify compositional
hierarchy features which objects from the real world exhibit: low level features (e.g.
edges) form patterns and these specific patterns form high level ones (e.g. shapes,
textures). Further information of the building blocks of CNN is provided in following
sections. Fig. 2.3 depicts a CNN and its principal modules.

2.2.1 Convolution layer

CNNs are networks that share parameters across space. The convolution layer is
one of its essential building blocks. From a general point of view, the convolutions
are stack one after the other and, hence, a convolutional pyramid is created. This
pyramid representation allows to take the spatial information given in the input
layer and turn it into a semantic representation. Each convolutional layer contains
a set of filters which are learnt during training. Each one of these kernels is slid over
the entire input image to extract local dependencies and produce a feature map.
This feature map, also referred as activation map, varies in complexity according to
the depth at which it is calculated: shallow layers extract simple features whereas
deep ones represent more complex and high-level structures [103]. The number of
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Convolution Non-linearity Pooling Fully connected
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Figure 2.3: Building blocks of convolutional neural networks: convolutional, non-
linear, pooling, and fully connected layers. The convolutional layers extract local
dependencies and produce feature maps. Non-linearity layers ensure that the rep-
resentation in the input space is mapped to a sparse one. Pooling layers summarise
the information extracted by convolutional layers. Fully connected layers mine the
feature maps extracted by the feature extractor part of the network (convolutional,
non-linear, and pooling layers).

kernels in each layer (or depth), and their dimensions are design decisions.

2.2.2 Non-linearity layer

The above convolutional layer is usually followed by non-linearity operations. Non-
linearity is achieved using a specific family of functions called activation functions.
These activation functions ensure that the representation in the input space is
mapped to a sparse one, hence achieving a certain invariance to data variability
and a computationally efficient representation [104]. The former situation refers to
the fact that sparse representations are more resilient to slight modifications than
dense ones.

In the past, sigmoid and hyperbolic tangent functions were commonly used for
this purpose. However, for large-scale image recognition, novel activation functions
are being continuously proposed. We categorise them into three broad families.

Rectified linear units and variants

Rectified linear units (ReLU) can be expressed in general as follows

f (zxy
lk ) =

⎧⎨
⎩

max (zxy
lk , 0) if zxy

lk > 0,

min (α · zxy
lk , 0) if zxy

lk ≤ 0,
(2.3)
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where zxy
lk is the input value at position (x, y) on the kth feature map at the lth layer

and α is the slope of the negative linear function. There are five special cases de-
pending on α. First, if α = 0, the expression results in the so-called ReLU [84,105]
which is one of the most commonly used activation functions [102]. Despite being
computationally efficient, this activation scheme presents problems concerning gra-
dient discontinuity [86,106]. Second, if α is a small constant, the variant is referred
as Leaky ReLU (LReLU) [107]. This approximation enables to cope with the prob-
lem of zero gradient. Third, if α is tuned up in the training process along with other
parameters using back-propagation, the approach is referred to as Parametric ReLU
(PReLU) [106]. Fourth, Xu et al. [108] sampled α from a uniform distribution for
each input sample. Such an approach is called Randomised ReLU (RReLU). Fifth,
Jin et al. [109] proposed an activation function, called S-shaped ReLU (SReLU),
which considers a piecewise function composed of three linear functions, i.e.

f (zxy
lk ) =

⎧⎪⎪⎨
⎪⎪⎩

tr + ar · (zxy
lk − tr) if zxy

lk ≥ tr,

zxy
lk if tr > zxy

lk > tl,

tl + al · (zxy
lk − tl) if zxy

lk ≤ tl,

(2.4)

where ar, al, tr and tl are learnable parameters. Although there are insights on
theoretical advantages and disadvantages of each one, their suitability is commonly
assessed experimentally [108].

Maxout and variants

Maxout activation functions [110] were proposed to improve the optimisation and
overall performance of dropout networks. The approach consists of computing the
maximum across K feature maps, i.e.

f (zxy
lk ) = max

k∈[1,K]
(zxy

lk ) . (2.5)

A major drawback of this technique is that the number of trainable weights in
each layer increases by a factor of K. A workaround to this situation was proposed
by Springenberg et al. [111] in which a probabilistic sampling procedure was consid-
ered to compute the output feature maps. This activation function called probout
empirically matched or improved the performance of maxout.

Exponential Linear Units (ELU) and variants:

Exponential Linear Units (ELU) [112] are similar to ReLU variants as they employ
an identity for positive inputs. However, unlike them, ELUs provide saturated out-
put for negative inputs. The saturation in the negative regions was found beneficial
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for expediting learning and improving the performance of very deep CNNs. They
are defined as

f (zxy
lk ) = max (zxy

lk , 0) + α · min (exp(zxy
lk ) − 1, 0) . (2.6)

Trottier et al. [113] defined parameters controlling different aspects of the ELU
function and proposed learning them with gradient descent during training. This
parametric ELU (PELU) further improved the speed and performance of training
deep networks. Using off-the-shelf ResNet [85], PELU performed better than ELU
and ReLU in image classification tasks on MNIST, CIFAR-10/100 and ImageNet
datasets [113].

2.2.3 Pooling layer

Convolutional modules typically consists of three steps. First, the layer performs
several convolutions to produce feature maps. Second, non-linear activation func-
tions are used on the resulting maps. Third, the output is modified by the pooling
layer before reaching the next convolutional layer. The idea of a pooling function
is to summarise the information extracted in different non-overlapping neighbour-
hoods – usually – to reduce the number of parameters in the following layers, (ii)
control over-fitting, and achieve slight translation invariance [114]. Among several
pooling options, max pooling [115] is the most common approach due to its em-
pirically demonstrated performance [116]. In the work of Springenberg et al. [117],
convolutional layers with increase stride were used instead of max pooling operations
without compromising the overall performance of the network.

2.2.4 Fully connected layer

Unlike the convolutional layer, the fully connected (FC) layer has full connection
to all the units in the previous layer. Essentially, the main task of the FC layer
is to mine the incoming features to extract information about the content of the
input image. The process usually consists in flattening the feature maps coming
from convolutional layers, to achieve a one dimension feature vector representation,
and, then, inputting it into the FC layer. The output of this layer could either
be network’s response or used by another FC layer (consecutive FC layers can be
stacked together).

Implementing FC layers usually require a large number of parameters – compared
to other layers – since each neuron is fully connected to all elements in the previous
layer. Additionally, networks using FC layers produce a single output per input and
only accept fixed-size inputs. The former situation is computationally inconvenient
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if the CNN is used for segmentation and not classification. The latter issue implies
that either input images are scaled to fit the requirements of the network or the
network is re-factorised to be able to process the new data. FC layers can be
converted to convolutional layers of 1 × 1 kernels [118] to solve this problem. In this
way, the model keeps the fully connected functionality while accepting arbitrary
input size image and making dense predictions.

2.2.5 Regularisation

We observed the appealing performance of deep CNN methods in different domains,
although they use enormous numbers of parameters. Unless trained on a large,
labelled training datasets, proper regularisation should be employed to mitigate
over-fitting. There are several regularisation methods widely used in the community,
such as L1 or L2 regularisation approaches encouraging sparsity and small weight
magnitude; early stopping [114] forcing the training to stop when there is a sign of
over-fitting; batch normalisation [88] in which each batch is preprocessed to achieve
mean equal to zero and standard deviation equal to one; and dropout [119] in which
some feature map units are skipped. This last approach being the dominant since it
is computational inexpensive and prevents co-adaptation among feature map units.

2.2.6 Output layer

CNNs are well-known for their ability to extract discriminative features using learned
weights in each layer. The learning process is reinforced by employing appropriate
loss functions. Loss functions are designed to encourage intra-class similarity and
inter-class separability. In image classification tasks, most CNNs employ softmax
loss, which is a combination of the softmax function and cross-entropy loss, mainly
because of its simplicity and the probabilistic interpretation of softmax classifiers.

2.2.7 Optimisation

A CNN learns a mapping function between input training cases and correspond-
ing expected responses. This function is learnt by adapting each of its trainable
parameter values through backpropagation [120]. In principle, one could think of
randomly perturbing one of the weights and examine whether such a variation led
to improvement or not. However, it is practically inefficient since the number of
parameters in CNNs is high. Alternatively, the backpropagation algorithm adjusts
automatically the weight of these parameters by focusing on the error with respect
to the desired output and not on the desired state of each network element: the
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Figure 2.4: Optimising a neural network using backpropagation. In (a), the network
transforms the inputs xi into the output z. The loss function L computes the error
between the output and the expected result. In (b), the error is backpropagated
to update weights accordingly. The weight adjustment consists of calculating the
partial derivatives of the cost function with respect to each of the output and hidden
nodes and, then, modifying the weights using the gradient descent algorithm [121].

higher the distance between the expected output and the obtained one, the more
the weights have to be adjusted. The weight adjustment consists of calculating the
partial derivatives of the cost function with respect to each of the output and hidden
nodes and, then, modifying the weights using the gradient descent algorithm [121],
as illustrated in Fig. 2.4.

The parameter update depends on the loss function, its value at a certain point,
and the learning rate. First, the loss function can be evaluated for a single training
case, a small subset, or the whole training set, referred in the literature as stochastic,
mini-batch and batch gradient descent, respectively [122]. Updating values using
the whole training set can be computationally expensive and, hence, mini-batch
gradient descent is commonly considered in the community, leading to smoother pa-
rameter updating and more stable convergence than the stochastic approximation.
Second, loss functions are typically non-convex and, thus, they may contain several



2.3. Summary 23

local minima and saddle points in which gradient descent methods could get trapped
easily [123–126]. The concepts of momentum and the Nesterov accelerated gradient
descent [127, 128] were introduced to avoid oscillation around the local optima and
fasten the optimisation process by accounting for previous gradients: if they have
been on the same direction as the current one, speed up (increase) the update; and
slow it down otherwise. Third, a major concern of momentum-based optimisation
methods is to select an adequate learning rate, a parameter determining how sub-
stantial a change in the update should be made. This parameter is commonly set
globally to be equal for all settings. Much work has been carried out on tuning
the global learning rate adaptively based on the gradient of each parameter. For
example, the learning rate of each parameter could be scaled according to the all
past gradients [129], by a certain extent of past gradients [130, 131], or by jointly
optimising momentum and learning rate [132].

2.3 Summary

In this chapter, we discussed the theoretical background of topics covered in this
thesis: brain volumetry and deep learning. The goal of brain volumetry is to quantify
brain tissue volume at cross-sectional levels and scrutinising diffuse and focal volume
variations or boundary displacement at a longitudinal levels. Prior to the deep
learning era, these methods required studying the problem at hand beforehand,
selecting a set of representative features that help to discern between brain regions,
and engineering a classifier that could use that information to produce accurate
measurements. Nowadays, deep learning learns a suitable mapping function between
input and output directly from the training data by iteratively adapting its trainable
weights.

In the next chapter, we analyse different deep learning strategies that have been
proposed in the literature for processing brain magnetic resonance images for various
tasks in the medical domain, their processing pipelines, and potential advantages
and disadvantages.
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Deep learning for brain image
analysis

Deep learning has attracted the attention of researchers in the last few years due
to their impressive performance on a plethora of computer vision tasks, medical
image analysis is no exception. In this chapter, we discuss general deep learning
strategies that have been considered in medical imaging; widespread preprocessing,
processing, and postprocessing schemes; their targets and applications; and discuss
key challenges to address in the future for easing their applicability for clinical
practice. We published the outcome of this work in a journal paper and, recently,
submitted an updated version as part of a book chapter. Details as follows:

Paper published in the Artificial Intelligence in Medicine
Volume: 95, Pages: 64-81, Published: April 2019
DOI: 10.1016/j.artmed.2018.08.008
JCR IF: 3.574 Q1(5/26)

Invited book chapter submitted to World Scientific Publishing
Book title: Deep learning for medical imaging
Editors: Bacciu D., Lisboa P.J.G., and Vellido A.
Expected publication year: 2021

SUBMITTED CHAPTER . EMBARGO UNTIL PUBLICATION DATE





Chapter 4

Benchmarking brain tissue
segmentation methods

In this chapter, we compare patch-based fully convolutional neural networks for tis-
sue segmentation on brain magnetic resonance imaging quantitatively to understand
experimental strengths and weaknesses. Additionally, we propose cross-sectional
methods for segmenting brain tissues in babies and adults. We published part of
our work in the following paper:

Paper published in IEEE Access Volume: 7, Pages: 89986-90002, Published: July
2019
DOI: 10.1109/ACCESS.2019.2926697
JCR IF 4.098, Q1(23/155)

Moreover, based on the benchmark findings, we devised proposals to participate
in three Grand Challenges of the Medical Image Computing and Computer-Assisted
Intervention Conference

• Six-month old infant brain MRI tissue segmentation 2017

• MR brain segmentation 2018

• Six-month old infant brain MRI tissue segmentation 2019
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4.1 Introduction

Several public brain MR datasets are available to the community, especially those
organised by Medical Image Computing and Computer-Assisted Intervention (MIC-
CAI) society1, actively encouraging research and publications in the field. Each one
of these evaluation frameworks has been proposed to quantitatively compare seg-
mentation algorithms under the same directives: common training and testing data
sets and evaluation metrics. Although they have indeed carried out their mission
successfully, the algorithms are generally tweaked to perform the best. Hence, it is
possible that the top-performing algorithm on a specific dataset does not achieve
excellent scores on another one using the same pipeline (i.e. pre-processing, data
preparation, and post-processing). Moreover, a direct comparison of architectures
cannot be set up as each pipeline varies. Thus, hindering understanding the under-
lying properties of the different networks.

In this chapter, we compare quantitatively 4 × 2 fully convolutional neural net-
works (FCNN) architectures for tissue segmentation on brain MRI. We assess them
more fairly by fixing training and test sets, processing pipeline (e.g. skull stripping,
data normalisation, and reconstruction), training and optimisation schemes (e.g.
epochs, early stopping policy, loss function, learning rate, optimiser, hardware), and
performance evaluation metrics. The considered networks, comprising 2D and 3D
implementations, are inspired in four recent works [103, 148, 152, 159]. The mod-
els are tested on three well-known datasets of infant and adult brain scans, with
different spatial resolution, voxel spacing, and image modalities. In this work, we
(i) compare different FCNN strategies for tissue segmentation; (ii) quantitatively
analyse the effect of network dimensionality (2D or 3D) and the impact of fusing
information from single or multiple modalities; (iii) study the influence of patch
size on the segmentation performance; and (iv) investigate the effects of extracting
patches with a certain degree of overlap as a sampling strategy in both training and
testing. We made the repository available to the public as to provide a ready-to-use
framework for exploring various state-of-the-art methods, valuable for newcomers to
the topic. As all architectures are part of a standard pipeline, a direct comparison
can be established, allowing us to understand the advantages and disadvantages of
one architecture over another.

1http://www.miccai.org/
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4.2 Methodology

4.2.1 Fully convolutional neural networks for brain MRI
segmentation tasks

From the papers using fully convolutional neural networks indexed in Table 3.1, we
built four multi-path architectures inspired by the works of Kamnitsas et al. [152],
Dolz et al. [103], Çiçek et al. [148], and Guerrero et al. [159] (i.e. two convolution-
only and two u-shaped architectures). The networks were implemented in 2D and
3D to investigate the effect of the network dimensionality on tissue segmentation.
All these architectures were implemented from scratch following the architectural
details given in the original work and are publicly available at our research website2.
Although we made slight architectural changes, we retained the core idea of the
original proposals. More details of the networks are given in the following sections.

Networks incorporating multi-resolution information

Kamnitsas et al. [152], proposed a two-path 3D FCNN for brain lesion segmenta-
tion. This approach achieved top performance on two public benchmarks, BRATS
2015 and ISLES 2015. By processing information of the targeted area from two
different scales simultaneously, the network incorporated local and larger contextual
information, providing a more accurate response [171]. A high-level scheme of the
architecture is depicted in Fig. 4.1a. Initially, two independent feature extractor
modules extracted maps from patches from normal and downscaled versions of an
input volume. Each module consisted of eight 3 × 3 × 3 convolutional layers using
between 30 and 50 kernels. Afterwards, two intermediate 1 × 1 × 1 convolutional
layers with 150 kernels fused and mined resulting features maps. Finally, a clas-
sification layer (another 1 × 1 × 1 convolutional layer) produced the segmentation
prediction using a softmax activation.

Dolz et al. [103] presented a multi-resolution 3D FCNN architecture for sub-
cortical structure segmentation. A general illustration of the architecture is shown
in Fig. 4.1b. The network consisted of 13 convolutional layers: nine 3 × 3 × 3, and
four 1 × 1 × 1. Each one of these layers was immediately followed by a Parametric
Rectified Linear Unit (PReLU) layer, except for the output layer which activation
was softmax. Multi-resolution information was integrated into this architecture by
concatenating feature maps from shallower layers to the ones resulting from the last
3 × 3 × 3 convolutional layer. As explained by Hariharan et al. [320], these kinds of
connections grant networks to learn semantic – coming from deeper layers – as well
as fine-grained localisation information – coming from superficial layers.

2http://github.com/NIC-VICOROB/tissue_segmentation_comparison
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U-shaped networks

In the u-shaped network construction scheme, feature maps from higher resolution
layers are commonly merged to the ones on deconvolved maps to keep localisa-
tion information. Merging has been addressed in the literature through concatena-
tion [148, 150] and addition [159, 166, 321]. In this chapter, we consider networks
using both approaches. A general scheme of our implementations inspired in both
works is displayed in Fig. 4.1c.

Çiçek et al. [148] proposed a 3D u-shaped FCNN, known as 3D u-net. The net-
work is formed by four convolution-pooling layers and four deconvolution-convolution
layers. The number of kernels ranged from 32 in its bottommost layers to 256 in
its topmost ones. In this design, maps from higher resolutions were concatenated to
upsampled maps. Each convolution was immediately followed by a Rectified Linear
Unit (ReLU) activation function.

Guerrero et al. [159] designed a 2D u-shaped residual architecture for lesion seg-
mentation, referred as u-ResNet. The building block of this network was the residual
module which (i) added feature maps produced by 3×3- and 1×1-kernel convolution
layers, (ii) normalised resulting features using batchnorm, and, finally, (iii) used a
ReLU activation. The network consisted of three residual modules with 32, 64 and
128 kernels, each one followed by a 2 × 2 max pooling operation. Then, a single
residual module with 256 kernels was applied. Afterwards, successive deconvolution-
and-residual-module pairs were employed to enlarge the networks’ output size. The
number of filters went from 256 to 32 in the layer before the prediction one. Maps
from higher resolutions were merged with deconvolved maps through addition.

From here on, our implementations of [103, 148, 152, 159] are denoted by DM ,
KK, UN and URN , respectively.

4.2.2 Aspects to evaluate

We analyse (i) overlapping patch extraction in training and testing, (ii) single and
multi-modality architectures, (iii) patch size, and (iv) 2D and 3D strategies. Details
on these four evaluation cornerstones are discussed in the following sections.

Overlapping sampling in training and testing

A drawback of networks performing dense-inference is that, under similar conditions,
the number of parameters increases. This issue implies that more samples should
be used during training to obtain acceptable results. A common approach consists
of augmenting the input data through transformations – e.g. translation, rotation,
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Figure 4.2: Patch extraction with null, medium and high overlap. Yellow and blue
areas corresponds to the first and second blocks to consider. When there is overlap
among patches, voxels are seen in different neighbourhoods each time.

scaling. However, if the output dimension is not equal to the input size, other
options can be considered. Although the main advantage of patch-based FCNNs is
their dense prediction, a single pass on a particular area may produce inaccurate
outputs as (i) block boundary artefacts may appear – direct consequence of tiling
volumes up – and (ii) patches may not contain sufficient information to produce an
accurate verdict – e.g. on the boundaries of the input. For instance, patches can
be extracted from the input volumes with a certain extent of overlap and, thus, the
same voxel would be seen several times surrounded by different neighbourhoods. As
each patch contains a specific part of the region of interest, each voxel would be
classified according to the information it contains. An example of patch extraction
with three extents of overlap is depicted in Fig. 4.2. In such a way, more information
would be taken into account to produce a more consented and smoother response.
Summarising, the strategy is beneficial as (i) more samples are gathered, and (ii)
networks are provided with information that may improve spatial consistency as
illustrated in Fig. 4.3. Of note, the overlap degree is determined by the overlap
between adjacent output patches and not input ones.

The sampling strategy aforementioned can be enhanced by overlaying predic-
tions, i.e. obtain a consented prediction per voxel from the segmentation of different
overlapping patches. Unlike sophisticated post-processing techniques, the network
itself is used to improve its segmentation. As depicted in Fig. 4.3 (e-h), the leading
property of this post-processing technique is that small segmentation errors – e.g.
holes and block boundary artefacts – are corrected. The consensus among outputs
can be addressed through majority voting, for instance.

Input modalities

Depending on the number of modalities available in a dataset, approaches can be
either single- or multi-modality. If many modalities were acquired, networks could
be adapted to process them all at the same time either using different channels or
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T1-w Ground truth No overlap Overlap

DSC=0.945 DSC=0.951

DSC=0.940 DSC=0.942

Figure 4.3: Segmentation using overlapping sampling in training (top row) and
testing (bottom row). From left to right, T1-w volume, ground truth, segmen-
tation without overlap, and with overlap. The basal ganglia area (inside the red
box) depicts notable changes between strategies. Results obtained with overlapping
sampling appear more similar to the ground truth. Colours for cerebrospinal fluid,
grey matter, and white matter are red, blue, and green, respectively. DSC: Dice
similarity coefficient.

various processing paths – also referred in the literature as early and late fusion
schemes [167], respectively. Naturally, the former strategy is desirable regarding
computational resources, but the latter may extract more valuable features. In this
work, we consider the early fusion only. Regardless of the fusion scheme, merging
different sources of information may provide models with complementary features
and, hence, lead to enhanced outputs [67].

Patch size

A pivotal hyperparameter of CNNs is the input patch size. Experiments in this
regard have shown that the larger the input patch, the more contextual information
the network can mine to produce the final response. Nevertheless, the greater the
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Table 4.1: Details of implemented architectures. The items into consideration ap-
pear on the first column. DM, KK, UN, and URN refer to the networks inspired by
the works of Dolz et al. [103], Kamnitsas et al. [152], Çiçek et al. [148], Guerrero
et al. [159], respectively. The subindex indicates the network dimensionality. Note
that there are two inputs for KK as the network has two processing branches.

Item DM2D DM3D KK2D KK3D UN2D UN3D URN2D URN3D

G
en

er
al Input size 27 × 27 27 × 27 × 27 32 × 3220 × 20 32×32×32

20×20×20 32 × 32 32 × 32 × 32 32 × 32 32 × 32 × 32

Output size 9 × 9 9 × 9 × 9 16 × 16 16×16×16 32 × 32 32 × 32 × 32 32 × 32 32 × 32 × 32
Number of parameters 547 278 3 333 270 569 678 7 101 038 1 931 620 5 606 308 995 108 2 623 844

N
o.

co
m

po
ne

nt
s Convolutional 13 13 19 19 18 18 18 18

Batchnorm 0 0 0 0 18 18 9 9
Max pooling 0 0 0 0 3 3 3 3
Deconvolution 0 0 1 1 3 3 3 3
Residual connections 0 0 0 0 0 0 12 12
Concatenations 1 1 1 1 3 3 0 0

patch, the more resources needed to train the network successfully and the more
parameters to be optimised during training. Thus, a trade-off between these factors
is needed to obtain the best response.

Network dimensionality

There are two main streams of FCNN regarding its input dimensionality: 2D and
3D. On the one hand, 2D architectures are fast, flexible, and scalable; however, they
ignore completely data from neighbouring slices, i.e. implicit information is reduced
compared to 3D approaches. On the other hand, 3D networks acquire valuable
implicit contextual information from orthogonal planes. Even though labelling is
carried out slice-by-slice, these strategies tend to lead to better performance than
2D. Nevertheless, they are computationally demanding due to the exponential in-
crease in parameters and resource consumption and may require larger training sets.
Therefore, depending on the data itself, one approach would be more suitable than
the other.

4.2.3 Implementation details

General pipeline

General tissue segmentation pipelines contemplate four essential components: pre-
processing, data preparation, classification, and post-processing. Specific implemen-
tations of each one of these elements can be plugged and unplugged as required to
achieve the best performance. First, pre-processing is carried out by (i) removing
skull, and (ii) normalising intensities between scans. We use the ground truth masks
to address the former tasks and standardise our data to have zero mean and unit



4.2. Methodology 55

variance. Second, data is prepared by extracting useful and overlapping patches –
containing information from one of the three tissues. Third, each patch is classified.
Fourth, no post-processing is considered.

Network training

The steps to train a model on a given dataset are as follows. First, for each dataset,
the training set is split into training and validation at random (80% and 20% of the
volumes, respectively). Both training and validation sets are fixed for all networks
to ensure they were trained under similar conditions. Second, the networks are
trained in batches of 32 elements for a maximum of 20 epochs. In this particular
case, we observed experimentally that the loss function of all networks converged to
their lowest values for both training and validation collections within 20 epochs and
overfitted afterwards. Third, at the end of each epoch, the loss function value on
the validation set is computed. The training stopping criterion is no improvement
in validation accuracy after n epochs, which is monitored using an early stopping
policy with patience n equal to 2. We adopted this strategy to guarantee that
all deep networks were trained in the best way possible while avoiding over-fitting
to the training set and increasing the chances of achieving the best performance
on unknown collections. The models are optimised for the categorical cross-entropy
loss function using the Adam [132] optimisation method with an initial learning rate
of 1 × 10−3, a decay of 0.0, β1 = 0.9, and β2 = 0.999 (i.e. default parameter values,
as suggested in the original paper). Of note, we considered this particular optimiser
as it showed empirically improved performance in comparison to other stochastic
optimisation methods and favourable performance in problems with noisy gradients
and, also, we used its default hyperparameter values since the authors found that
little tuning was needed to reach acceptable results in most of the cases. All voxels
laying on the background region are given a weight of zero to avoid considering
them in the optimisation process. This decision was taken as non-brain regions
were removed during pre-processing.

Network testing

The steps to test a trained model on a given input MR volume are as follows. First,
the whole volume is divided into patches. These patches are extracted from the
entire input and not from specific regions. Second, the different patches are passed
through the network to obtain a segmentation. Third, as there might be a degree of
overlap between output probability maps, the final segmentation is provided through
means of majority voting. The mode of the votes for each voxel is selected as
consensed classification value. Convolutional-only networks classify only a subset of
voxels. Commonly, networks dispense with outermost voxels and predict centermost
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ones only. For instance, the DM2D model receives a 27 × 27 patch and outputs
classification values for voxels within a 9×9 rectangular region delimited by (9, 9)−
(9, 18) − (18, 18) − (18, 9). Thus, patches must be extracted with a step in between
them of at most the output size of the network to be able to produce a valid whole
brain segmentation, i.e. an incoming MR volume is tiled up so that the resulting
output maps are adjacent to each other. Once patches are extracted from the scan,
they are passed through the network and rearranged to reconstruct the segmentation
volume.

Software and hardware

All the architectures were implemented from scratch in Python, using the Keras
library. Relevant information per architecture is summarised in Table 4.1. All the
experiments were run on a GNU/Linux machine box running Ubuntu 16.04, with
128GB RAM. CNN training and testing were carried out using a single TITAN-
X PASCAL GPU (NVIDIA corp., United States) with 8GB RAM. The developed
framework for this work is currently available to download at our research website.
The source code includes architecture implementation and experimental evaluation
scripts.

4.3 Experimental results

4.3.1 Considered datasets

We consider one publicly available repository and two challenges: Internet Brain Seg-
mentation Repository 18 (IBSR18)3, MICCAI Multi-Atlas Labeling challenge 2012
(MICCAI 2012)4 and 6-month infant brain MRI segmentation (iSeg2017) [322]5,
respectively. The datasets were chosen since they have been widely used in the liter-
ature to compare different methods and, also, they contain infants and adults data,
with different voxel spacing and a different number of scans. We believe that these
two factors allow us to see how robust, general, and useful in different scenarios can
be the algorithms. The organisers of the MICCAI 2012 challenge split the data into
training and testing (10 and 13 volumes, respectively). To be consistent with the
challenge and allow comparison with other strategies, we followed the same eval-
uation procedure. To use annotations of MICCAI 2012, we mapped all the labels
to form the three tissue classes. Specific details of these datasets are presented in

3http://www.nitrc.org/projects/ibsr
4http://masi.vuse.vanderbilt.edu/workshop2012
5http://iseg2017.web.unc.edu
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Table 4.2: Relevant information from the considered datasets. In the table, the
elements to be considered are presented in the first column and the corresponding
information from IBSR18, MICCAI 2012 and iSeg2017 are detailed in the following
ones. In the row related to the number of scans (with GT), the number of training
and test volumes is separated by a + sign. For both IBSR18 and iSeg2017, the
evaluation is carried out using leave-one-out cross-validation.

Item IBSR18 MICCAI 2012 iSeg2017
Target Adult Adult Infant
Number of scans 18 15 + 20 10
Bias-field corrected Yes Yes Yes
Intensity corrected No Yes No
Skull stripped No No Yes

Voxel spacing
0.8×0.8×1.5
0.9×0.9×1.5
1.0×1.0×1.5

0.5 × 0.5 × 0.5 1.0 × 1.0 × 1.0

Modalities T1-w T1-w T1-w, T2-w

Table 4.2.

4.3.2 Evaluation measurements

We used the Dice similarity coefficient (DSC) [323,324] and the modified Hausdorff
distance [325] to compare segmentation outputs against the ground truths. The
DSC is used to determine the extent of overlap between a given segmentation and
the ground truth. Given an input volume V , its corresponding ground truth G =
{g1, g2, ..., gn}, n ∈ Z and obtained segmentation output S = {s1, s2, ..., sm}, m ∈ Z

the DSC is mathematically expressed as

DSC (G, S) = 2 |G ∩ S|
|G| + |S| , (4.1)

where | · | represents the cardinality of the set. The values for DSC lay within
[0, 1], where the interval extremes correspond to null or exact similarity between the
compared surfaces, respectively.

The MHD evaluates the distance between the sets of points forming the seg-
mented and ground truth surfaces. Using the same notation as in Eq. 4.1, the MDH
is calculated as follows

MHD (G, S) = max
{95

Kth
gi∈Gd(gi, S), 95

Kth
si∈Sd(si, G)

}
, (4.2)

where d(a, B) corresponds to the minimum Euclidean distance between the point a
and all the points in set B and x

Kth
b∈B represents the K-th ranked distance such that
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K/|B| = x% [325]. For example, x = 50 corresponds to the median of the distances.
We use the 95-th percentile MHD calculation over the original HD (x = 100) as
the former is more robust to outliers in the segmentation. The values for MHD are
positive decimal numbers greater or equal to zero, where zero indicates that the two
surfaces exactly coincide – neglecting eccentric observations.

We consider the Wilcoxon signed-rank test to assess and report the statistical
differences among architectures.

4.3.3 Evaluation results

The evaluation we conducted is four-fold. First, we investigate the effect of overlap-
ping patches in both training and testing stages. Second, we assess the improvement
of multi-modality architectures over single-modality ones. Third, we study whether
patch size has any influence on the performance. Fourth, we compare the differ-
ent models on the three considered datasets. Note that, for the sake of simplicity,
the network’ dimensionality is shown as a subscript (e.g. URN2D denotes the 2D
version of the URN architecture). The exact evaluation results are attached in the
Appendix A.1.

Overlapping

To evaluate the effect of extracting overlapping patches in training and testing,
we ran all the architectures on the three datasets contemplating three levels: null,
medium and high (approximately 0%, 50% and 90%, respectively). On IBSR18
and iSeg2017, we carried out the evaluation using a leave-one-out cross-validation
scheme. On MICCAI2012, we used the given training and testing sets.

The number of patches and average processing times for training, validating and
testing each architecture in MICCAI2012, IBSR18, and iSeg2017 are condensed in
Table 4.3. The average response time per voxel for DM2D, DM3D, KK2D, KK3D,
UN2D, UN3D, URN2D, and URN3D was 0.14μs, 0.11μs, 0.16μs, 0.09μs, 1.70μs,
0.81μs, 0.79μs, and 0.48μs, respectively. On the one hand, 3D architectures output
more voxels at a time and, hence, their voxel-wise classification response time is lower
than their 2D analogues. On the other hand, the latter set of networks provides a
considerably faster whole volume segmentation compared to their counterpart, in
accordance with the literature [122]. Additionally, the fact that the overlapping
policy led to a vast amount of training patches could explain why the networks
converged in a few epochs: the more the patches, the longer the epochs, but the
more the information provided to the network in a single pass.

The first test consisted of quantifying improvement between networks trained
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Table 4.3: Number of patches and average processing time for training, validating
and testing each model in each dataset. The values for training and validation are
of each one of the epochs and the ones for testing are of each volume. DM, KK, UN,
and URN refer to the networks inspired by the works of Dolz et al. [103], Kamnitsas
et al. [152], Çiçek et al. [148], Guerrero et al. [159], respectively. The subindex
indicates the network dimensionality.

Overlap Item DM2D DM3D KK2D KK3D UN2D UN3D URN2D URN3D

M
IC

C
A

I2
01

2

Tr
ai

ni
ng

Null (0%) Patches 2 666 496 291 648 835 584 52 224 196 608 6 144 196 608 6 144
Time (s) 176 360 104 170 21 29 19 31

Intermediate (50%) Patches 8 930 304 1 779 084 3 440 640 430 080 835 584 52 224 835 584 52 224
Time (s) 591 2 195 428 1 397 90 244 79 267

High (90%) Patches 56 229 888 28 114 944 56 229 888 28 114 944 13 959 168 3 489 792 13 959 168 3 489 792
Time (s) 3 720 34 684 7 000 91 356 1 504 16 335 1 316 17 820

Va
lid

at
io

n Null (0%) Patches 666 624 72 912 208 896 13 056 49 152 1 536 49 152 1 536
Time (s) 44 90 26 42 5 7 5 8

Intermediate (50%) Patches 2 232 576 444 771 860 160 107 520 208 896 13 056 208 896 13 056
Time (s) 148 549 107 349 23 61 20 67

High (90%) Patches 14 057 472 7 028 736 14 057 472 7 028 736 3 489 792 872 448 3 489 792 872 448
Time (s) 930 8 671 1 750 22 839 376 4 084 329 4 455

Te
st

in
g

Null (0%) Patches 222 208 24 304 69 632 4 352 16 384 512 16 384 512
Time (s) 15 30 9 14 2 2 2 3

Intermediate (50%) Patches 744 192 148 257 286 720 35 840 69 632 4 352 69 632 4 352
Time (s) 49 183 36 116 8 20 7 22

High (90%) Patches 4 685 824 2 342 912 4 685 824 2 342 912 1 163 264 290 816 1 163 264 290 816
Time (s) 310 2 890 583 7 613 125 1 361 110 1 485

IB
SR

18

Tr
ai

ni
ng

Null (0%) Patches 1 304 576 142 688 425 984 26 624 106 496 3 328 106 496 3 328
Time (s) 86 176 53 87 11 16 10 17

Intermediate (50%) Patches 4 243 200 845 325 1 703 936 212 992 425 984 26 624 425 984 26 624
Time (s) 281 1 043 212 692 46 125 40 136

High (90%) Patches 27 262 976 13 631 488 27 262 976 13 631 488 6 815 744 1 703 936 6 815 744 1 703 936
Time (s) 1 804 16 817 3 394 44 294 734 7 976 642 8 701

Va
lid

at
io

n Null (0%) Patches 401 408 43 904 131 072 8 192 32 768 1 024 32 768 1 024
Time (s) 27 54 16 27 4 5 3 5

Intermediate (50%) Patches 1 305 600 260 100 524 288 65 536 131 072 8 192 131 072 8 192
Time (s) 86 321 65 213 14 38 12 42

High (90%) Patches 8 388 608 4 194 304 8 388 608 4 194 304 2 097 152 524 288 2 097 152 524 288
Time (s) 555 5 174 1 044 13 629 226 2 454 198 2 677

Te
st

in
g

Null (0%) Patches 100 352 10 976 32 768 2 048 8 192 256 8 192 256
Time (s) 7 14 4 7 1 1 1 1

Intermediate (50%) Patches 326 400 65 025 131 072 16 384 32 768 2 048 32 768 2 048
Time (s) 22 80 16 53 4 10 3 10

High (90%) Patches 2 097 152 1 048 576 2 097 152 1 048 576 524 288 131 072 524 288 131 072
Time (s) 139 1 294 261 3 407 56 614 49 669

iS
eg

20
17

Tr
ai

ni
ng

Null (0%) Patches 602 112 65 856 193 536 12 096 43 008 1 344 43 008 1 344
Time (s) 40 81 24 39 5 6 4 7

Intermediate (50%) Patches 1 906 688 379 848 774 144 96 768 193 536 12 096 193 536 12 096
Time (s) 126 469 96 314 21 57 18 62

High (90%) Patches 12 386 304 6 193 152 12 386 304 6 193 152 3 096 576 774 144 3 096 576 774 144
Time (s) 820 7 640 1 542 20 124 334 3 624 292 3 953

Va
lid

at
io

n Null (0%) Patches 172 032 18 816 55 296 3 456 12 288 384 12 288 384
Time (s) 11 23 7 11 1 2 1 2

Intermediate (50%) Patches 544 768 108 528 221 184 27 648 55 296 3 456 55 296 3 456
Time (s) 36 134 28 90 6 16 5 18

High (90%) Patches 3 538 944 1 769 472 3 538 944 1 769 472 884 736 221 184 884 736 221 184
Time (s) 234 2 183 441 5 750 95 1 035 83 1 129

Te
st

in
g

Null (0%) Patches 75 264 8 232 24 192 1 512 5 376 168 5 376 168
Time (s) 5 10 3 5 1 1 1 1

Intermediate (50%) Patches 238 336 47 481 96 768 12 096 24 192 1 512 24 192 1 512
Time (s) 16 59 12 39 3 7 2 8

High (90%) Patches 1 548 288 774 144 1 548 288 774 144 387 072 96 768 387 072 96 768
Time (s) 102 955 193 2 515 42 453 36 494
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Figure 4.4: DSC (left column) and MHD (right column) values obtained using the
null and high overlapping sampling in training. The suffix “-NO” on the name of the
method means that the architecture was not trained using the sampling strategy.
From top to bottom, boxplots for MICCAI2012, IBSR18, and iSeg2017, respectively.
Differences between both versions of the same baseline architecture are highlighted
with NS, *, and ** indicating a p-value > 0.1, < 0.05 and < 0.01, respectively. DM,
KK, UN, and URN refer to the networks inspired by the works of Dolz et al. [103],
Kamnitsas et al. [152], Çiçek et al. [148], Guerrero et al. [159], respectively. The
subindex indicates the network dimensionality. CSF: cerebrospinal fluid. GM: grey
matter. WM: white matter.
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with either null or high degrees of overlap on training. The distribution of segmen-
tation scores obtained on the three datasets is depicted in Fig. 4.4. In general, the
models trained with patches extracted with a high extent of overlap yielded higher
DSC and lower MHD values compared to when they were not. On the one hand,
the sampling technique led to significantly higher DSC scores (p-value < 0.05) in
58 out of the 72 comparisons. On the other hand, overall, the precision of the
method (measured in terms of inter-quartile range) regarding MHD increases but
improvements were not significant in most of the cases (p-value > 0.05 in 51 out
of 71 comparisons). Of note, there are enhancements in the boundaries but with-
out taking into account most eccentric observations, MHD values are fairly similar.
These three observations imply that the methods improve their segmentation, are
more precise, but, in general, the borders of the segmentation masks do not change
dramatically. In IBSR18, most of the models exhibited low DSC and notably high
MHD scores when segmenting CSF. This outcome might be a consequence of the
reduced number of samples available for this class (only the ventricular region).
For iSeg2017, although the models trained with the overlapping sampling strategy
yielded high DSC scores for the three classes, the MHD values show that the models
had problems with delineating the limits between GM and WM accurately. The two
groups of architectures exhibited opposite behaviours. U-shaped networks exhibited
topmost improvements. This outcome is related to the fact that non-overlap may
mean not enough samples. Instead, convolutional-only models evidenced the least
increase. Since output patches are smaller, additional data can be extracted and
used during training. Therefore, they can provide already accurate results. This
fact is illustrated by the results of DM2D and KK2D.

The second test contemplated quantifying the improvement of extracting patches
using combinations of the three considered degrees of overlap during training and
testing. As mentioned previously, results were fused using a majority voting tech-
nique. We noted that the general trend was that the difference between results
using null and high extends of overlap on testing time was not significant (p-values
> 0.05). Also, the interquartile range remained similar regardless of the method or
dataset. Nevertheless, the general trend was an improvement of mean DSC of at
least 1% in the overlapping cases. Another important observation from our exper-
iments is that zero impact or slight degradation of the DSC and MHD values was
noted when training with null overlap and testing with high overlap. Naturally, this
situation is a consequence of merging predictions of a poorly trained classifier.

Medium level of overlap patch extraction, in both training and testing, led to
improvement with respect to null degree cases but yielded lower values than when
using a considerable extent of overlap. The general trend is: the more the extent
of overlap, the higher the overall performance of the method. The price to pay for
using further levels of overlap is computational time and power since the number
of samples to process increases exponentially. For example, given an input volume
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with dimensions 256×256×256 and a network producing output size of 32×32×32,
the number of possible patches to be extracted following the null, medium and high
overlap policies are 512, 3 375 and 185 193, respectively.

As overlapping sampling proved useful, the results showed in following sections
correspond to the ones obtained using a high overlap in both training and testing.

Single and multiple modalities

We performed leave-one-out cross-validation on the iSeg2017 dataset using the im-
plemented 2D and 3D architectures to assess the effect of single and multiple imaging
sequences on the final segmentation. The results of this experiment are shown in
Fig. 4.5. Overall, the more the input modalities, the better the segmentation. In this
case, two modalities not only allowed the network to achieve higher mean but also
to reduce the IQR, i.e. networks are more accurate and precise. This behaviour was
evidenced regardless of architectural design or tissue type. For instance, while the
best single modality strategy scored 0.937±0.011, 0.891±0.010 and 0.868±0.016 for
CSF, GM and WM, respectively; its multi-modality analogue yielded 0.944 ± 0.008,
0.906 ± 0.008 and 0.887 ± 0.017 for the same classes. Furthermore, in most of the
cases, the strategies using both T1-w and T2-w obtained significantly higher DSC
and lower MHD values compared to their single-modality counterparts. These re-
sults imply that multi-modality architectures obtained enhanced segmentation maps
similar to the ground truth compared to the single-modality analogues as a direct
consequence of providing the network with additional tissue contrast information
(e.g. DSC increased and MHD decreases for CSF due to the contrast between this
class and the other two in T2-w).

Effect of patch size

The effect of patch size in the overall performance has been investigated previ-
ously [326–329] and the overall trend has been that the larger the patch size, the
more the contextual information provided to the network and, thus, the more en-
hanced the segmentation per se. Nonetheless, this particular experiment has not
been carried out on 2D and 3D networks for tissue segmentation to the knowledge
of the authors. We modified the baseline architectures by changing the input – and,
consequently, output – patch size to study this matter. The size of the patches
was selected in light of computational requirements (namely, the larger the patch,
the more resources needed) and conditions imposed by the architectures (e.g. u-
shaped networks may require input patch dimensions to be multiple of two due to
max pooling modules). Information regarding the resulting designs is condensed in
Table 4.4.
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Figure 4.5: DSC (left) and MHD (right) values obtained using single and multiple
input modalities. DM, KK, UN, and URN refer to the networks inspired by the
works of Dolz et al. [103], Kamnitsas et al. [152], Çiçek et al. [148], Guerrero et
al. [159], respectively. The subindex indicates the network dimensionality. The suffix
“-S” on the name of the method means that the architecture was single modality.
Differences between both versions of the same baseline architecture are highlighted
with NS, *, and ** indicating a p-value > 0.1, < 0.05 and < 0.01, respectively. CSF:
cerebrospinal fluid. GM: grey matter. WM: white matter.

Table 4.4: Implemented architectures to test patch size influence. The items into
consideration appear on the first column. DM, KK, UN, and URN refer to the
networks inspired by the works of Dolz et al. [103], Kamnitsas et al. [152], Çiçek
et al. [148], Guerrero et al. [159], respectively. The subindex indicates the network
dimensionality. Note that there are two inputs for KK as the network has two
processing branches.

Item DM2D DM3D KK2D KK3D UN2D UN3D URN2D URN3D

Sm
al

l Input size 23 × 23 23 × 23 × 23 28 × 28
22 × 22

28×28×28
22×22×22 8 × 8 8 × 8 × 8 8 × 8 8 × 8 × 8

Output size 5 × 5 5 × 5 × 5 14 × 14 14×14×14 8 × 8 8 × 8 × 8 8 × 8 8 × 8 × 8
Number of parameters 458 254 1 835 654 466 830 4 345 966 1 931 620 5 606 308 995 108 2 623 844

M
ed

iu
m Input size 27 × 27 27 × 27 × 27 32 × 32

20 × 20
32×32×32
20×20×20 16 × 16 16 × 16 × 16 16 × 16 16 × 16 × 16

Output size 9 × 9 9 × 9 × 9 16 × 16 16×16×16 16 × 16 16 × 16 × 16 16 × 16 16 × 16 × 16
Number of parameters 547 278 3 333 270 569 678 7 101 038 1 931 620 5 606 308 995 108 2 623 844

La
rg

e Input size 37 × 37 37 × 37 × 37 36 × 36
26 × 26

36×36×36
26×26×26 32 × 32 32 × 32 × 32 32 × 32 32 × 32 × 32

Output size 19 × 19 19 × 19 × 19 20 × 20 20×20×20 32 × 32 32 × 32 × 32 32 × 32 32 × 32 × 32
Number of parameters 938 398 13 773 790 695 054 11 116 014 1 931 620 5 606 308 995 108 2 623 844
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Figure 4.6: DSC (left) and MHD (right) values obtained by three variations of
the baseline architectures concerning input and output patch size on the iSeg2017
dataset. Displayed results correspond to the average of scores obtained per class.
DM, KK, UN, and URN refer to the networks inspired by the works of Dolz et
al. [103], Kamnitsas et al. [152], Çiçek et al. [148], Guerrero et al. [159], respectively.
The suffix indicates the input block dimensions. Differences between variations
of the same baseline architecture are highlighted with ****, ***, **, *, and NS
indicating a p-value < 0.0001, < 0.001, < 0.01, < 0.05, and > 0.10, respectively.

We performed a leave-one-out cross-validation on the iSeg2017 dataset using
the various architectures to study the effect of patch size. The averaged DSC and
MHD results of this trial are displayed in Fig. 4.6. On the one hand, the large u-
shape architectures performed better than their medium-size counterpart (improved
DSC and MHD mean and, in some cases, standard deviation as well) and signif-
icantly better than their small analogues (p-value < 0.05). On the other hand,
convolutional-only networks did not exhibit the same pattern. In some cases, the
small DM and KK architectures outperformed their medium and large versions,
but improvements were not statistically significant. In some other cases, the medium
variants led to the best segmentation outcomes. Overall, the large convolutional-
only architectures led to inferior performance. This situation might have to do with
the fact that the number of trainable parameters increases substantially between
network adaptations. For instance, there is an increase in the number of parame-
ters of approximately 256% between the smallest and the largest implementations
of KK3D. Consequently, these sizeable networks require more training samples to
surpass their tinier versions.

We opted for using the largest u-shaped designs (i.e. patch dimensions equal to
32) and the intermediate convolutional-only networks (i.e. patch dimensions equal
to 27 for DM and 32-20 for KK).
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Comparison between 2D and 3D FCNN architectures

The eight architectures were evaluated using their best parameters according to
the previous sections on the three different datasets: MICCAI2012, IBSR18, and
iSeg2017. The distribution of segmentation scores for DSC and MHD is shown in
Fig 4.7. The observations for each dataset vary. In MICCAI2012, the difference
between 2D and 3D methods can be mostly perceived in the distance between data
points, forming the CSF segmentation masks. In IBSR18, 3D algorithms yielded
similar or lower performance than their 2D analogues. Taking into account the
information in Table 4.2, 3D architectures might be slightly more affected by he-
terogeneity in voxel spacing. One of the reasons explaining this outcome is the
lack of sufficient data which prevents 3D networks from understanding spacing and
resolution variations, i.e. 3D networks might lack enough information to generalise
properly. In iSeg2017, the 2D architectures displayed lower performance than their
3D counterparts, mostly concerning DSC. The networks performing the best on
MICCAI2012, IBSR18, and iSeg2017 were UN3D, URN2D and UN2D, and DM3D,
respectively.

Segmentation outputs obtained by the different methods on one of the volumes
of the IBSR18 dataset are displayed in Fig. 4.8. Note that architectures using 2D
information were trained with axial slices. Since 2D networks process each slice
independently, the final segmentation is not necessarily accurate nor consistent: (i)
subcortical structures exhibit unexpected shapes and holes, and (ii) sulci and gyri
are not segmented finely. Thus, even if segmentation was carried out slice-by-slice,
3D approaches exhibit a smoother segmentation presumably as they exploit the 3D
nature of the MR volumes directly.

Another thing to note in Fig. 4.8f is that segmentation provided by KK3D seems
worse than the rest – even than its 2D analogue. The problem does not appear to
be related to the number of parameters since KK3D has less trainable elements com-
pared to DM3D and UN3D, according to Table 4.1. This issue might be a consequence
of the architectural design itself. Anisotropic voxels and heterogeneous spacing may
be affecting the low-resolution path of the network considerably. Hence, the overall
performance is degraded.

Comparison with the state of the art and conventional methods

We compared our best results for each dataset against two commonly used methods:
SPM and FAST. In testing time, SPM, FAST and our models could reach a whole
brain segmentation within 6 min. More importantly, SPM and FAST did not require
GPUs as deep learning methods do. The results are shown in Fig. 4.9. Overall, SPM
and FAST led to significantly lower segmentation results compared to our best model
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Figure 4.7: DSC (left column) and MHD (right column) values obtained using
2D and 3D versions of the same architecture. From top to bottom, boxplots for
MICCAI2012, IBSR18, and iSeg2017, respectively. DM, KK, UN, and URN refer to
the networks inspired by the works of Dolz et al. [103], Kamnitsas et al. [152], Çiçek
et al. [148], Guerrero et al. [159], respectively. The subindex indicates the network
dimensionality. Differences between both versions of the same baseline architecture
are highlighted with NS, *, and ** indicating a p-value > 0.1, < 0.05 and < 0.01,
respectively. CSF: cerebrospinal fluid. GM: grey matter. WM: white matter.
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(a) Original (c) DM2D (d) DM3D (e) KK2D (f) KK3D

(b) Ground truth (g) URN2D (h) URN3D (i) UN2D (j) UN3D

Figure 4.8: Segmentation output of the eight considered methods. The ground truth
is displayed in (a) and the corresponding segmentation in (b-i). DM, KK, UN, and
URN refer to the networks inspired by the works of Dolz et al. [103], Kamnitsas et
al. [152], Çiçek et al. [148], Guerrero et al. [159], respectively. The subindex indicates
the network dimensionality. The colours for cerebrospinal fluid, grey matter and
white matter, are red, blue and green, respectively. White arrows point out areas,
where differences compared to the ground truth, are more noticeable. Architectures
using 2D information were trained with axial slices.
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Figure 4.9: DSC (left column) and MHD (right column) values obtained by fully
convolutional networks and SPM and FAST. From top to bottom, boxplots for
MICCAI2012, IBSR18, and iSeg2017, respectively. DM, KK, UN, and URN refer to
the networks inspired by the works of Dolz et al. [103], Kamnitsas et al. [152], Çiçek
et al. [148], Guerrero et al. [159], respectively. The subindex indicates the network
dimensionality. CSF: cerebrospinal fluid. GM: grey matter. WM: white matter.
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(p-value < 0.001). Nonetheless, it is essential to understand the pros and cons of each
strategy. On the one hand, conventional methods are suitable for many domains,
but noise, intensity inhomogeneities [94–97], overlap between tissue distributions,
and variations in shape (baby brain vs adult brain) and labelling protocols, hinder
obtaining accurate outputs. On the other hand, the accuracy of CNN methods tends
to decrease when the distribution of the test set differs significantly from one of the
training set due to variations in imaging and labelling protocols. For example, a
network trained on one of the datasets would not yield top results if tested on
any of the other two since the voxel spacing, image quality and delineation of the
different tissues would be different; a workaround would be to adapt the weights of
the network to the new domain through transfer learning or, in a practical scenario,
to map all the volumes to a standard template (e.g. MNI). We believe that fusing
different approaches into a single framework (e.g., convolutional neural networks
with tissue segmentation priors [18, 330]) is a promising area to explore to reach
robustness.

In comparison with the state of the art, our methods showed similar or enhanced
performance. First, the best DSC scores for IBSR18 were collected by Valverde et
al. [94]. The highest values for CSF, GM and WM were 0.83 ± 0.08, 0.88 ± 0.04 and
0.81±0.07; while our 2D U-Net model scored 0.90±0.03, 0.96±0.01 and 0.93±0.02,
for the same classes. Second, the best-known values for tissue segmentation using
the MICCAI 2012 dataset, were reported by Moeskops et al. [171]. Their strategy
– a multi-path CNN – obtained 0.85 ± 0.04 and 0.94 ± 0.01 for CSF and WM,
respectively; while our 3D U-Net model yielded 0.92 ± 0.03 and 0.96 ± 0.01. In this
case, we cannot establish a direct comparison of GM scores since in Moeskops’ case,
this class was subdivided into (a) cortical GM and (b) basal ganglia and thalami.

4.4 Discussion

We analysed quantitatively eight FCNN architectures inspired by the literature of
brain segmentation related tasks. The networks were assessed through three ex-
periments studying the importance of (i) overlapping patch extraction, (ii) multiple
modalities, and (iii) network dimensionality. To ensure that all networks were eval-
uated under similar and favourable conditions, we used exactly the same pipeline
(i.e. pre-processing, data preparation, segmentation, and post-processing), same
optimiser, and same training and validation collections, and controlled overfitting
by monitoring the network performance on the validation sets.

Our first experiment evaluated the impact of overlapping as sampling strategy at
training and testing stages. This overlapping sampling is explored as a workaround
to the commonly used data augmentation techniques in medical image tasks. This
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procedure can be used in this case as none of these networks processes a whole volume
at a time, but patches of it. Based on our results, the technique proved beneficial as
most of the strategies obtained significantly higher values than when not considered.
In particular, the four u-shaped architectures exhibited a remarkable influence of
this approach, presumably since more samples are used during training and the
same area is seen with different neighbouring regions, enforcing spatial consistency.
Overlapping sampling in testing acted as a denoising technique. We observed that
this already-incorporated tool led to better performance than when absent as it
helped filling small holes in areas expected homogeneous. The improvement was
found to be at least 1%. Naturally, the main drawback of this technique was the
expertise of the classifier itself, since it could produce undesired outputs when poorly
trained.

Our second experiment assessed the effect of single and multiple imaging se-
quences on the final segmentation. We observed that regardless of the segmentation
network, the inclusion of various modalities led to significantly better segmentations
that when using a single imaging sequence. This situation may be a consequence of
networks being able to extract valuable contrast information. Improvements were
noted concerning the mean as well as the dispersion of the values yielded by the
methods. Although this outcome is aligned with the literature [67], further trials
on more datasets should be carried out to draw stronger conclusions. Future work
should consider evaluating tissue segmentation in the presence of pathologies and
using more imaging sequences such as FLAIR and PD.

Our third experiment examined the influence of patch size on the final segmen-
tation. Although the literature reports that the larger the patch size, the better the
segmentation due to additional contextual information [326–329], we observed that
this trend is only followed when there are enough training samples to train such a
larger network. This outcome is expected as the number of parameters increases
substantially as the input patch dimensions augment. Unexpectedly, small-scale
versions of the u-shaped networks were able to distinguish between classes and even
though the performance was significantly lower than the large variants, the median
DSC and MHD values were above 80% and below 2.50 pixels, respectively. However,
it is crucial to recognise that this outcome might not hold on other tasks where tis-
sues are split into sub-classes (e.g. whole brain parcellation or subcortical structure
segmentation) as more contextual information might be needed to distinguish one
class from another.

Our fourth experiment evaluated significant differences between 2D and 3D meth-
ods on the three considered datasets. Although 3D architectures tend to outperform
their 2D analogues, the differences may not be significant. Moreover, in one of our
datasets, IBSR18, 2D versions of the same baseline architecture could reach better
segmentation scores than their 3D analogues. This outcome is a consequence of the
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heterogeneity of the data in IBSR18, i.e. 2D methods seem to be more resilient to is-
sues regarding voxel spacing than 3D ones. Naturally, the immediate workaround to
this issue is to re-sample during pre-processing. Additionally, the situation is likely
to worsen when processing highly anisotropic volumes as there is less information in
the third dimension.

According to our evaluation results, the segmentation performance is not strictly
conditioned by the number of trainable parameters. For example, in IBSR18, 2D
networks performed better than 3D networks due to issues of 3D networks to adapt
to voxel spacing variations and image quality; in MICCAI2012, the differences be-
tween the performance of 2D networks in comparison to 3D networks were not
significant overall; in MICCAI2012 and IBSR18, DM3D performed almost similar
or worse than u-shaped networks even though it has at least 120% additional pa-
rameters. These outcomes suggest that some inherent architectural weaknesses and
strengths define the overall performance of a network. Instead, we noted that spe-
cific modules allowed some networks to outperform some others. First, we observed
that models using information from shallower layers in deeper ones achieved higher
performance than those using multi-resolution information directly from the input
volume, namely KK2D and KK3D. The difference was far more evident in datasets
with heterogeneous volumes, e.g. in IBSR18 where scans vary in voxel spacing and
image quality, where the latter strategy performed worse on average. This situa-
tion underlines the relevance of internal connections (e.g. residual connections and
concatenation) for fusing multi-resolution information to segment more accurately.
Second, we observed that concatenation and residual layers are present in all of the
state-of-the-art networks. This might be related to the fact that these types of con-
nections help in dealing with the degradation problem (i.e. deep networks tend to
saturate and degrade rapidly) [85]. As the residual layers reduce the number of pa-
rameters to optimise, they should be preferred over concatenation modules. In fact,
our experiments showed that two similar u-shaped networks using both approaches
achieved similar results. Third, although u-shaped networks tended to outperform
convolutional-only networks, no significant/remarkable difference was seen between
both design patterns, except for processing times. In both training and testing,
u-shaped networks segmented faster than convolutional-only networks: u-shaped
models require extracting less number of patches and provide a more prominent
output at a time.

Regarding general performance, two methods, DM3D and UN3D, obtained the
best results. Of note, our specific implementation of the latter architecture required
30% fewer parameters to be set than the former and classified ≈ 32K voxels more
at a time and completed a whole volume segmentation in half of the time or less.
Although URN networks use slightly fewer parameters than UN architectures, both
of them have comparable response times. In general, should the priority be overall
processing time (training and testing), u-shaped networks are a suitable and rec-



72 Chapter 4. Benchmarking brain tissue segmentation methods

ommended approach to address tissue segmentation instead of convolutional-only
approaches.

4.5 Participation in international tissue segmen-
tation challenges

During the development of this doctoral thesis, we proposed networks for cross-
sectional tissue segmentation that we submitted to three Grand Challenges of the
International Conference on Medical Image Computer and Computer-Assisted In-
terventions (2017-2019). Our proposals reflect different time points of our work: we
started with Dolz Multi in 2017 and shifted towards U-Nets based on the findings
of our quantitative comparison.

4.5.1 Six-month old infant brain MRI tissue segmentation
2017

The aim of the Grand Challenge on six-month old infant brain MRI tissue seg-
mentation at MICCAI 2017 (iSeg2017) was to provide a platform for comparing
tissue segmentation algorithms on baby brains during their isointense phase. In this
phase, brains go through a maturation and myelination process which results in an
inverted signal between white and grey matter [331] and a reduced contrast between
these two brain tissues [322]. The dataset consisted of T1-w and T2-w scans from
23 subjects which were acquired using the same imaging protocol. The challenge
organisers segmented brain tissues automatically and edited them subsequently to
correct segmentation errors. All 23 pairs of T1-w and T2-w scans were released to
the public, 10 of them included the ground truth segmentation and the remaining
13 were used for testing.

For this challenge, we addressed the problem using a fully automatic pipeline
consisting of four steps: pre-processing, data preparation, classification, and post-
processing. First, we normalised intensities of all training volumes using the z-
score approach (i.e. zero mean and unit standard deviation). Second, we extracted
overlapping patches of 27×27×27 from all the pre-processed training volumes along
with their corresponding labels (central 9×9×9 block). Third, using the patches and
the labels, we trained our 3D multi-sequence multi-path FCNN based on the DM3D

network [103]. We used this specific architecture since it worked well for segmenting
tissues in baby brains according to our tests in Section 4.3. We trained our network
with 75% of the volumes and the remaining 25% for validation. Fourth, for each
case in the test set, we standardised intensities using the mean and the standard



4.5. Participation in international tissue segmentation challenges 73

deviation calculated in Step 1, extracted overlapping patches, and classified. Fifth,
once we processed all patches, we reconstructed the segmentation.

We performed a leave-one-out cross-validation process on the training set and
obtained DSC values of 0.973 ± 0.010, 0.917 ± 0.012, 0.887 ± 0.018 for CSF, GM,
and WM, respectively. We used the resulting model to segment testing cases and
submitted our results to the challenge organisers obtaining DSC values of 0.951 ±
0.005, 0.910 ± 0.008, 0.885 ± 0.015 for the same classes and achieving top-5 (out of
21) performance in 6 out of 9 performance metrics6.

4.5.2 MR brain segmentation 2018

The goal of the Grand Challenge on MR Brain Segmentation at MICCAI 2018 (MR-
BrainS18) was to evaluate the robustness of different tissue segmentation methods
against brain lesions (particularly, white matter hyperintensities and infarctions).
The dataset consisted of T1-w, T1-IR, and FLAIR scans from 30 subjects which
were acquired using the same imaging protocols. The challenge organisers seg-
mented regions of interest into cortical and deep grey matter, white matter, white
matter hyperintensities, sulcal and ventricular cerebrospinal fluid, cerebellum, brain
stem, and infarction. Only data from seven subjects were released to the public
while the rest were used for testing (23).

For this challenge, we addressed the problem using a fully automatic pipeline
consisting of four steps: pre-processing, data preparation, classification, and post-
processing. Pre-processing consisted of skull stripping with ROBEX [208], and tissue
segmentation using SPM [56] and FAST [57]. First, we removed non-brain areas us-
ing the preprocessed T1-w. Second, we input the obtained volume into the two
segmentation algorithms. Note that ROBEX removes vessels and non-brain struc-
tures (e.g. cerebral falx and choroid plexus) which are labelled in the challenge
dataset as CSF. Thus, we solely considered this mask as guide of the brain area.
Data preparation corresponded to tiling volumes up and selecting relevant blocks.
For both training and testing, blocks were extracted with 50% overlap. For training
only, patches were considered if their brain content corresponded to at least 30%
of the whole block. Data were extracted from nine sources: T1-w, FLAIR, brain
mask, and three tissue segmentation outputs obtain with both FAST and SPM. We
segmented incoming volumes using an ensemble of multi-path u-shaped networks
where each network was composed of two u-shaped paths inspired by the work of
Guerrero et al. [159]. We resorted to use U-Nets as baseline since we needed to make
fast tests in short time and they were the best option according to our experimental
results in Section 4.3. Unlike the original work, 3D volumes were processed directly,
PReLU activations were used instead of ReLU, and activations were used after every

6URL: http://iseg2017.web.unc.edu/rules/results/. Team name “nic_vicorob”
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Figure 4.10: High-level scheme of each network in the ensemble of U-Nets. Our
proposal for addressing the MRBrainS18 challenge consisted of an ensemble of seven
U-Nets using tissue segmentation priors obtained through validated cross-sectional
tissue segmentation tools: FAST and SPM. Each network was formed by two U-
Nets, both of them using the information provided by T1-w, FLAIR, and brain
mask. We gave FAST segmentations to one of the paths, and SPM segmentations
to the other one. The outputs of both paths were fused in a late fusion fashion.
Similarly, the outputs of each network within the ensemble were combined in the
same way to provide a final verdict.

addition module. The two paths were input with T1-w, FLAIR and brain mask,
as illustrated in Fig. 4.10. While one path was provided with FAST segmentation,
the other one was given the ones of SPM. The outputs of both paths were fused in
a late fusion fashion. Similarly, the outputs of each network within the ensemble
were combined in the same way to provide a final verdict. Postprocessing consisted
of reconstructing the segmented volume by overlaying neighbouring predictions. As
output patches overlap, we provided voxel labels through majority voting.

As there are seven training cases in the MRBrainS18 challenge, we trained seven
different multi-path u-nets using a leave-one-out cross-validation strategy and put
them together to achieve a robust segmentation outcome. We trained all networks
for a maximum of 100 epochs using an early stopping policy with patience equal to
10. We submitted the ensemble as a Docker to the challenge and ranked 7 among
22 groups, as shown in Fig. 4.117.

7URL: https://mrbrains18.isi.uu.nl/results/eight-label-segmentation-results/.
Team name “nic_vicorob”
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Figure 4.11: Performance of our ensemble of U-Nets on the MRBrainS18 challenge.
Results extracted from the MRBrainS18 challenge webpage.

4.5.3 Six-month old infant brain MRI tissue segmentation
2019

The aim of the Grand Challenge on six-month old infant brain MRI tissue seg-
mentation at MICCAI 2019 (iSeg2019) was to evaluate the robustness of different
methods to variations in the acquisitions (different sites, scanners and imaging pro-
tocols). Like the iSeg2017, these baby brains exhibited the low contrast and inverted
signal between brain tissues. The dataset consisted of T1-w and T2-w scans from
39 subjects which were acquired using three different imaging protocols from three
different sites. The challenge organisers segmented brain tissues automatically and
edited them subsequently to correct segmentation errors. All 39 pairs of T1-w and
T2-w scans were released to the public, 10 of them included the ground truth seg-
mentation, the remaining 19 were used for testing.

Despite the outstanding performance of deep learning in many fields [122], do-
main shift (e.g. intensity range variations) continues being a challenge for these
kinds of techniques [198]. Thus, for this challenge, we resorted to using a hybrid
approximation leveraging convolutional neural networks and multi-atlas segmenta-
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tion to segment brain tissues. Our processing pipeline consisted of two main steps:
coarse segmentation, and refinement. We illustrate them in Fig. 4.12. First, we
applied the multi-atlas segmentation with joint label fusion [332] to obtain a coarse
segmentation of the grey and white matter and cerebrospinal fluid spaces. We regis-
tered the ten training atlases to each volume in the validation and the test sets using
rigid, affine, and deformable transformations, in that order, and, subsequently, prop-
agated and fused the corresponding labels to get a coarse response. We used this
technique on both T1w and T2w since we found multi-modal information to be ben-
eficial [19]. Thus, we obtained two segmentation probability maps for each subject,
one per modality. Second, we used a u-shaped fully convolutional neural network
based on the implementation of Guerrero et al. [159] to refine these segmentation
maps to produce a smoother/enhanced response (similar to the network devised for
MRBrainS18 in Section 4.3). We used U-Nets as baseline since we needed to make
fast tests in short time and they were the best option according to our experimental
results in Section 4.3 and Section 4.5.2. In such a way, the network did not face
intensity variation problems per se as probability maps are already “normalised”.

The goal of the network was to learn the errors the multi-atlas segmentation
approach makes and compensate for them [18, 333]. The training process consisted
of the following steps. First, we split the given training dataset into training, val-
idation, and testing (80%, 10%, 10%). Second, we registered both training and
validation sets to the test case and segmented tissues to obtain the correspond-
ing probability maps. Third, we tiled up each volume in each set into overlapping
blocks. Fourth, we used them along with the corresponding segmentation labels to
train the network. We used batches of 5 for a maximum of 500 epochs. At the end
of each epoch, we computed the performance on the validation set. The training
phase stopped after 20 consecutive epochs of no improvement and we kept the model
leading to the lowest loss function value. We considered random offsets, flips, and
permutations for data augmentation during training.

The steps to test a trained model on a given input MR volume are as follows.
First, we divide the baseline input volume into overlapping blocks. Second, we input
the patches to the network to obtain refined segmentation maps. Third, as there is
overlap between output blocks, we provide the final segmentation through means of
averaging. We rearrange all patches to reconstruct the corresponding segmentation
volume.

We performed a leave-one-out cross-validation process on the training set to ver-
ify whether the segmentation improved after refining as hypothesised. The results
we obtained are shown in Fig. 4.13. We noticed that in most cases the performance
of the hybrid framework was significantly superior to that of obtained through the
atlas-based segmentation method. We segmented the test set cases and submitted
our results to the challenge organisers obtaining the following Dice similarity co-
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(a) Coarse segmentation

(b) Segmentation refinement

Figure 4.12: Processing pipeline considered for the iSeg2019 challenge. First, we ap-
plied the multi-atlas segmentation with joint label fusion [332] to obtain a coarse seg-
mentation of the cerebrospinal fluid, grey matter, and white matter. Second, we used
a u-shaped fully convolutional neural network based on the implementation of Guer-
rero et al. [159] to refine these segmentation maps to produce a smoother/enhanced
response.
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Figure 4.13: Leave-one-out cross-validation performance obtained using the multi-
atlas segmentation method only (pink) and our proposed hybrid multi-atlas and
convolutional neural network based framework (blue). We tested for differences in
the performance of the methods using the Wilcoxon signed-rank test. DICE: Dice
similarity coefficient. MHD: modified Hausdorff distance. ASD: average surface
distance. CSF: cerebrospinal fluid. GM: grey matter. WM: white matter.
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efficient (DSC), modified Hausdorff distance (MHD), and average surface distance
(ASD): DSC - CSF: 0.778±0.035, DSC - GM: 0.751±0.025, DSC - WM: 0.749±0.034;
MHD - CSF: 13.604±1.232, MHD - GM: 8.522±2.126, MHD - WM: 10.507±1.145;
ASD - CSF: 0.789 ± 0.168, ASD - GM: 0.791 ± 0.032, ASD - WM: 1.037 ± 0.0738.

4.6 Summary

In this chapter, we studied the relevance of patch sampling, multiple modalities,
and dimensionality on the performance of the network. We implemented literature-
inspired fully convolutional neural networks for tissue segmentation on brain MRI.
The networks were compared under a common evaluation framework to establish a
direct comparison between the different methods and, consequently, understand the
underlying properties of the various architecture directives.

In general, we observed that extracting patches with a certain degree of overlap
among themselves, processing multiple sources of information (e.g. multiple modal-
ities) and at multiple scales, and larger patch size led to improved segmentation
performance. Although 3D networks tended to outperform their 2D counterparts,
they were more more affected by variations in image resolution and voxel spacing.
U-shaped networks reached higher DSC and lower MHD values than convolutional-
only architectures overall and had the best response time. Therefore, we concluded
that U-Nets are particularly suitable for brain MRI tissue segmentation.

We achieved compelling performance for IBSR18, MICCAI2012, iSeg2017, MR-
BrainS18, and iSeg2019 with our implemented and proposed approaches. Two im-
portant things to note in this Chapter. First, we did not tweak any of these net-
works; a common processing pipeline has been used. Hence, it was possible to
compare them under similar conditions. Approaches expressly tuned for challenges
may win, but it does not imply they will work identically – using the same set-up –
on real-life scenarios. Second, although these strategies showed acceptable results,
the performance of these networks might be compromised due to the domain shift
problem. However, recent advances in domain adaptation and transfer learning have
demonstrated that a trained convolutional network can be fine-tuned successfully to
a new domain as long as there are a few training cases from it [198,199].

Evaluating the performance of cross-sectional tissue segmentation methods can
be carried out without complication since there are various publicly available and
well-annotated datasets. However, to our knowledge, there is no annotated dataset
for evaluating the accuracy of longitudinal methods. In the next chapter, we propose
a framework for generating longitudinal atrophy datasets and allowing evaluating

8URL: http://iseg2019.web.unc.edu/evaluation-results. Team name “nic_vicorob”
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the accuracy of atrophy quantification methods and training deep learning methods
for performing such a task.



Chapter 5

Generating longitudinal atrophy
evaluation datasets

In this chapter, we propose and validate a framework for generating longitudinal
cerebral atrophy datasets. This work has been submitted to Neuroinformatics,
where it is now under second revision.

Paper under second revision in Neuroinformatics Submitted: April 2020

JCR IF 5.127, Q1(9/106)
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5.1 Introduction

Now that we have seen that deep learning for cross-sectional tissue segmentation
and brain volumetry works, we dig into how can it be used for longitudinal atro-
phy quantification. Although some longitudinal brain MRI datasets are available to
the public1, accuracy is rarely assessed since manual segmentation is tedious, time-
consuming, and error-prone, and conventional automatic segmentation tools exhibit
inaccuracies [334]. Instead, the evaluation is carried out at the level of scan-rescan
error and statistical power. To examine the former aspect, patients are scanned mul-
tiple times in different scanners in short periods of time, to ensure minimal brain
changes, and brain volumetry methods are judged based on their precision. The
latter aspect aims to determine whether these approximations can discern between
patients undergoing different treatments/pathologies. Commonly, the exercise con-
sists of examining how well can algorithms discern between populations ongoing
different treatments/diseases (e.g. dementia versus control). Nonetheless, such an
evaluation does not reflect the accuracy of the methods. Synthetic image generation
could be used to generate controlled evaluation environments where ground truth is
available and known beforehand.

In medical image analysis, image generation approaches have been applied to
assess registration, estimate and correct bias in longitudinal atrophy analyses, gen-
erate absent modalities and augment training sets [169, 170, 191, 335–342]. The
techniques range from transformation models mimicking brain tissue loss to adver-
sarial/generative networks with problem-specific loss functions. Karaçali et al. [335]
devised a method for deforming MRI scans such that the atrophy extent corre-
sponded to the requested one2. The downfall of such an approach is that resulting
deformation patterns cannot be controlled locally and follow a topology-preserving
strategy which might not permit mimicking multiple pathologies. Roy et al. [337]
used patch-based dictionary learning to estimate a mapping function between two
imaging sequences or image acquisition protocols3, e.g. making it appealing in ret-
rospective harmonisation pipelines. However, its direct usage for atrophy generation
might not be feasible since the technique does not deform the brain but finds match-
ing intensity values between imaging modalities. Chartsias et al. [169] proposed a
framework to synthesise MR modalities from others using encoder-decoder CNNs
and modality-invariant latent spaces4. Apart from the modality synthesis, the au-
thors showed the potential of the framework to in-paint white matter hyperintensi-
ties onto normal-appearing tissue and the usage of multiple losses to achieve realistic
synthesis. Inspired by their work, Salem et al. [170] devised a proposal to generate

1See http://freesurfer.net/fswiki/LongitudinalData
2Available at http://web.iyte.edu.tr/~bilgekaracali/VoxelVolumeMatching.tar.gz
3Available at https://www.nitrc.org/projects/image_synthesis/
4Available at https://github.com/agis85/multimodal_brain_synthesis.
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synthetic yet realistic MS lesions as an image augmentation strategy5. Evidently, a
similar principle could be considered for generating atrophy. Shin et al. [191] devel-
oped a proposal in which realistic MRI scans were generated from brain anatomy
and tumour segmentation masks using conditional generative adversarial networks
(CGAN). The authors showed that their approach could be used for dealing with
the lack of diverse, sufficient, and correctly annotated data. Although their code is
not available in principle, their proposal is inspired by the image-to-image transla-
tion with CGAN [343]6. Up to our knowledge, these types of architectures have not
been considered for longitudinal data generation, but they can be extended for this
purpose by giving the network the baseline scan and the segmentation map of the
follow-up acquisition.

In this chapter, we use a cascaded U-Net trained with our own region-wise loss
function to deform a given T1-w scan based on the information provided through
tissue probability maps. This setting allows building longitudinal collections for
assessing atrophy quantification methods as the tissue loss between original and
generated scans is controlled, induced, and known beforehand. Note that our aim is
not to predict the atrophy that a patient will suffer in a certain amount of time, but
a prediction of what would be the brain appearance given a tissue change (segmen-
tation). The relevance of this work is two-fold. First, our proposal allows comparing
atrophy quantification tools quantitatively. Second, it can serve as ground truth for
training deep learning approaches for atrophy quantification.

5.2 Methods

Our proposed atrophy generation framework is depicted in Fig. 5.1. Given a baseline
T1-w scan and its modified tissue probability maps, the goal of our framework is to
alter the input such that brain tissues are altered as requested. In such a way the
atrophy between the baseline and generated images is known in advance. We take
a T1-w scan, segment its regions using conventional tissue segmentation tools, alter
its segmentation probability maps manually or automatically, and plug both the
baseline T1-w scan and the resulting probability maps into the generation network
to create a synthetic volume.

Note that the way the framework has been structured is advantageous as a
plethora of scans can be generated by modifying the input tissue segmentation maps
(e.g. manually, using morphological operations, or pathology-related deformation
fields [344]). We apply real deformation fields to alter the original segmentation
probability maps. Further details of the approach are discussed in the following

5Available at https://github.com/NIC-VICOROB/MS_Lesions_Generator
6Available at https://github.com/phillipi/pix2pix
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sections.

5.2.1 Processing pipeline

Our processing pipeline contemplates four essential components: pre-processing,
data preparation, processing, and reconstruction.

Pre-processing consists of (i) skull stripping with ROBEX [208], (ii) histogram
matching [345] to fix voxel values to a common range, and (iii) registration to the
MNI space as harmonising step. The first step allows discarding non-relevant areas
that may affect the generation process as they are commonly hyperintense in T1-w.
We chose ROBEX since it is an unsupervised method that delivered consistent and
robust results when compared to conventional methods. The second step allows
mapping voxel intensities to a reference range. This procedure is essential to reduce
issues regarding generalisability due to intensity shifts [74]. The third step permits
using the same network on various datasets as reducing the heterogeneity of voxel
spacing may enhance the overall performance [19].

Data preparation consists of splitting input volumes into patches. For both
training and testing, we extract overlapping blocks to gather more samples, reduce
block boundary artefacts, and enforce spatial consistency [19]. Additionally, we
discard empty or partially empty training patches to prevent building background-
biased generators. We set the minimum content rate and overlap extent to 30% and
50%, respectively. Both values were favourable experimentally.

In the processing step, we pass each tuple of patches extracted from the baseline
scan and modified probability maps through the network in batches of 32 elements
at a time. We did not increase this parameter due to hardware constraints.

We overlay neighbouring predictions to reconstruct the synthetic volume and
provide voxel-wise responses through averaging. We run histogram matching on the
reconstructed volume to ensure intensity range similarity. No further post-processing
is required.

5.2.2 Generation architecture

Our proposed network follows a cascaded U-Net construction scheme, as illustrated
in Fig. 5.2(a). First, we input the baseline scan and its modified tissue probability
maps into three networks arranged in parallel. Each one of these networks accounts
separately for changes in cerebrospinal fluid (CSF), grey matter (GM), and white
matter (WM). Second, we append and pass the resulting individual latent represen-
tations to another u-shaped network which merges them effectively to produce the
final output. In our implementation, the input and output patches have the same
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height, width and depth, 32 voxels in each dimension. The overall cascaded network
is trained end-to-end, i.e. none of the sub-nets is trained independently.

Each U-Net module comprises a contracting path, performing consecutive con-
volution and down-sampling operations, and an expansive path, carrying successive
up-sampling and convolutions. In this way, it is possible to output a patch with the
same dimensions as the input while reducing response times. The architecture is
illustrated in Fig. 5.2(b). The network consists of 8 × 2 + 1 convolutional layers –
eight pairs occur in parallel, as shown in the lower right corner of Fig. 5.2(b) – three
down-sampling modules and three backward strided convolutions. The number of
kernels doubles per contracting path layer from 24, in its shallowest, to 27, in its
latent space, and afterwards halves per expansive path layer until the kernels are
24, in its deepest level. Strides for down-sampling and up-convolutions are set to
2 × 2 × 2.

The U-Nets are equipped with filter banks of varied sizes in a Network-in-Network
(NIN) resembling scheme [140,147]. These modules, implemented as 1×1×1-kernel
layers, act similar to embedded multi-layer perceptrons which enhance the discrim-
inant and representation power of the overall model. These processing components
are referred to as core elements in Fig. 5.2(b).

Each sub-module uses residual connections to merge feature maps from higher-
resolution layers with de-convolved maps to preserve localisation details and improve
back-propagation [85]. Moreover, each sub-module combines feature maps by adding
them and not concatenating them as widespread [148,150]. This option is preferred
to reduce the cardinality of the trainable parameter set. Note the different channels
are processed in an early fusion fashion [167].

The design of the sub-modules is inspired by the work of [159]. The main dif-
ferences are the dimensionality of the network, the downsampling approach, and
the type and location of non-linear activation layers. First, the network is ex-
tended to process 3D data directly. This strategy is considered instead of a slice-
by-slice approach to exploit the nature of MRI, incorporate contextual information
from the three orthogonal planes, and produce more consistent results. Second,
strided convolutions are used instead of max-pooling layers [117] to achieve im-
proved performance. Third, the Rectified Linear Unit (ReLU) layers used in the
original work are exchanged for Parametric ReLU (PReLU) [113]. This asset helps
the model to cope with issues regarding the gradient update and empirical perfor-
mance [86, 106, 122]. Fourth, these rectifier layers are used after every addition of
feature maps. This choice promotes sparsity within the network, i.e. a more resilient
representation [104].
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Figure 5.2: High level design of the proposed generation network. In (a), the model
receives four inputs: a baseline T1-w acquisition and three tissue probability maps.
This information is processed by three u-shaped networks, as illustrated in (b), each
one specialised in generating cerebrospinal fluid, grey matter and white matter areas,
and then merged by a fourth U-Net (U-Net Brain in (a)) to produced smooth re-
constructions. Our specific implementation requires optimising approximately 10M
parameters. CSF: cerebrospinal fluid. GM: grey matter. WM: white matter.
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5.2.3 Region-wise loss function

Atrophy quantification algorithms perform tissue segmentation and/or linear and
non-linear registration. These widespread practices impose three constraints on
the generation: (i) tissue contrast should be sufficiently high to be segmentation-
feasible, (ii) synthesised volumes should appear visually similar to the actual scans
at intensity level, and (iii) brain boundaries should be well-defined. We propose a
four-objective loss function to fulfil these needs and train the whole model properly.
Each objective evaluates the similarity between the expected and synthesised vol-
ume in the CSF, GW, WM, and whole intracranial volume. Given a real scan, y,
its corresponding tissue probability maps, sCSF , sGM , and sW M , and an approxima-
tion obtained with our model, ỹ, the region-wise mean square error (RWMSE) loss
function is defined as follows

L(y, ỹ) = L(y, ỹ;
∑
ROI

sROI)
︸ ︷︷ ︸

Combined

+
∑
ROI

L(y, ỹ; sROI)
︸ ︷︷ ︸

Individual

, (5.1)

L(y, ỹ; s) = 1
M · N · P

M ·N ·P∑
v=1

H(s(v)) · ||yv − ỹv||1, (5.2)

where H(a) is the discrete heaviside step function. While the loss for overall recon-
struction is back-propagated from the last layer of the network, the others affect the
parallel U-Nets disjointly – i.e. one loss per path. Hence, the parallel sub-modules
are in charge of generating tissue changes and the merging network of combining
them smoothly.

This loss function requires segmentation priors of the follow-up volume, si in
Eq. 5.1. This information is passed to the network to provide notions of the CSF,
GM, and WM regions and specialise each path of the network towards generating
realistic T1-w scans. This input can be obtained using a ground truth if available,
validated segmentation tools (FAST or SPM) or cross-sectional deep learning mod-
els fine tuned to the incoming data. In our case, we use FAST to obtain tissue
probability maps as it does not require any retraining.

5.2.4 Generating controlled evaluation environments

Once the network is trained using real baseline and follow-up acquisitions, we use
it to generate controlled atrophy change evaluation environments, as illustrated
in Fig. 5.1. The process consists of gradually increasing the overall tissue loss to
establish whether our tool can generate various extents of deformation accurately.
Segmentation maps can be altered in various ways. For instance, they could be
dilated or eroded using morphological operations. However, this will not mimic
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Baseline 20% change 50% change 75% change Follow-up
(Real) (Real) (Real) (Real) (Real)

Figure 5.3: Examples of intermediate atrophy extents generated using real deforma-
tion fields.

pathological processes altering brain tissue as atrophy changes are not necessarily
even in all brain regions. Alternatively, real atrophy deformation fields could be
used to modify the segmentation maps. We compute real deformation fields, using
FNIRT [346], from patients exhibiting the largest tissue loss and use them to alter
baseline tissue segmentation maps. We multiply the resulting deformation vectors
by scalars to obtain intermediate stages, as depicted in Fig. 5.3.

5.2.5 Implementation details

Network training

The steps to train our model on a given dataset are as follows. First, we split the
training set into training and validation at random – 70% and 30% of the volumes,
respectively. Second, we train the network in batches of 32 (default parameter
value) for a maximum of 100 epochs. At the end of each epoch, we compute the
performance on the validation set. The training phase stops after 10 consecutive
epochs without improvement. We retain the model leading to the lowest loss function
value. We optimise the models using the Adam [132] optimisation method with an
initial learning rate of 1 × 10−3, a decay of 0, β1 = 0.9, and β2 = 0.999 (i.e. default
parameter values, as suggested in the original paper).

Network testing

The steps to test a trained model on a given input MR volume are as follows. First,
we divide the baseline input volume and the modified probability segmentation maps
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into patches. We extract these patches from the entire input and not from specific
regions. Second, we input the patches to the network to obtain synthetic blocks.
Third, as there is overlap between output blocks, we provide the final segmentation
through means of averaging. We rearrange all synthetic patches to reconstruct the
corresponding synthetic volume.

Software and hardware

We implement all the architectures from scratch in Python, using the Keras library.
We run all the experiments on a GNU/Linux machine box running Ubuntu 16.04,
with 128GB RAM. We train and test our models using a single GeForce GTX
1080-TI GPU (NVIDIA Corp., United States) with 11GB RAM. The developed
framework is available to download at our research website7.

5.3 Experiments and results

In this section, we describe the considered datasets, performance evaluation mea-
surements, implementation details, and experiments evaluating our proposed model
and corresponding results. The experiments assess loss function and architecture
selection, image generation quality, and whether induced changes are detectable by
conventional brain volumetry methods. Further details of each experiment and the
outcomes are described in the following sections.

5.3.1 Considered datasets

We considered two publicly available longitudinal MRI repositories: the Open Access
Series of Imaging Studies (OASIS) [347] and the Alzheimer’s Disease Neuroimaging
Initiative (ADNI)8. Relevant information of each dataset is presented in Table 5.1.
The OASIS2 dataset was split, for easing downloading, into two sets. We refer to
those as O1 and O2 from hereon. The former set contains 169 pairs of baseline
follow-up cases and the second one 126. The ADNI collection contains a plethora
of longitudinal cases and, hence, we opted to filter some cases. We used only cases
of ADNI2 subjects with Alzheimer’s disease which scans were bias field corrected

7https://github.com/NIC-VICOROB/atrophy_generation
8adni.loni.usc.edu. The ADNI was launched in 2003 as a public-private partnership, led

by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-
to-date information, see www.adni-info.org.
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Table 5.1: Relevant information from the two considered datasets. The items to de-
scribe each dataset are listed in the first column. Although the average reconstruc-
tion matrix of the ADNI dataset is the one indicated below, the actual dimensions
vary. Pairs refer to tuples of baseline and follow-up acquisitions.

Item OASIS2 ADNI
No. of pairs 295 289
No. of time-points (max.) 5 5
Voxel spacing 1.0 × 1.0 × 1.3 1.2 × 1.0 × 1.0
Reconstruction matrix 256 × 256 × 128 196 × 256 × 256
Bias-field corrected No Yes
Intensity standardised No No
Skull stripped No No
Sets and no. of pairs O1 : 169, O2 : 126 A1 : 153, A2 : 136

and coregistered correctly using FLIRT [348, 349]. Unlike in the OASIS2 case, the
database was not divided in principle. Thus, we split it into two sets, A1 and A2,
with 153 and 136 pairs of cases, respectively. For the sake of reproducibility, we
attach the list of selected cases in Appendix A.2.

The distribution of relative CSF change between baseline and follow-up scans for
OASIS and ADNI2 is illustrated in Fig. 5.4. The majority of cases were concentrated
within [0.45, 0.55] for the OASIS2 dataset and [0.30, 0.50] for the ADNI2 dataset,
but ADNI contained more cases with values above 1.00.

5.3.2 Evaluation metrics

Our generation framework should produce synthetic scans of such a quality that they
resemble real ones. In this work, we scrutinised generation quality by comparing
real and synthetic scans in terms of their perceptual properties and their tissue
segmentation and cerebral atrophy quantification results.

Image quality

We assessed the quality of our generations with respect to that of real scans locally
and globally. Locally, we measured voxel-wise intensity differences between a real
scan, y, and its approximation, ỹ, using the following expression

MAE(y, ỹ) = median |y − ỹ|. (5.3)

The MAE approaches zero as voxel-wise differences between y and ỹ decrease. Glob-
ally, we quantified similarity between images through the structural similarity index
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Figure 5.4: Distribution of relative cerebrospinal fluid enlargement among pairs of
baseline and follow-up volumes on the OASIS and ADNI datasets. Of note, these
values may be affected by skull stripping results. CSF: cerebrospinal fluid.

(SSIM) [350] as it has been found correlated with the quality of perception of the
human visual system [351] and accounts jointly for variations in luminance, contrast,
and structure (correlation):

SSIM(y, ỹ) = 2μyμỹ + c1

μ2
yμ2

ỹ + c1︸ ︷︷ ︸
Luminance

· 2σyσỹ + c2

σ2
yσ2

ỹ + c2︸ ︷︷ ︸
Contrast

· cov(y, ỹ) + c3

σyσỹ + c3︸ ︷︷ ︸
Structure

, (5.4)

where μ and σ denote the mean and standard deviation values of the luminance
of the images, cov(y, ỹ) the covariance between y and ỹ, and ci constants to avoid
a null denominator [351]. The SSIM values range within zero and one, where the
former indicates null similarity while the latter implies that y and ỹ are equal. We
expected our framework to produce synthetic scans of such perceptual quality that
MAE and SSIM values tended to zero and one, respectively.

Segmentation agreement

Segmentation-based atrophy quantification algorithms segment brain tissues and
measure volumetric differences [70, 98] or brain boundary shifts [60, 71–73]. This
situation requires our framework to produce synthetic brain scans in which tissue
contrast is good enough for algorithms to detect grey matter, white matter, and
cerebrospinal fluid. For that, we segmented brain tissues in both real and gener-
ated scans using FAST [57] and measured their agreement using the Dice similarity
coefficient (DSC) [323, 324]. With the DSC, we determine the extent of overlap
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between a given segmentation and the ground truth. Given binary tissue segmenta-
tion masks for a real scan, mCSF , mGM , and mW M , and those for its corresponding
approximation, m̃CSF , m̃GM , and m̃W M , the DSC is mathematically expressed as

DSCROI (s, s̃) = 2
∑

v∈ROI mv · m̃v∑
v∈ROI mv · ∑

v∈ROI m̃v

. (5.5)

The values for DSC range from zero to one, where zero indicates null similarity
between segmentation masks and one exact agreement. We expected our framework
to produce synthetic scans such that their segmentations are comparable to those
used for generating them in the first place, i.e. DSC values close to one.

Cerebral atrophy

As the ultimate goal of our generation framework is to predict the appearance of
a baseline T1-w scan after being altered as requested, we studied whether induced
variations matched the request. We considered two atrophy quantification meth-
ods for assessing this aspect: SIENA [60] and the Jacobian determinant integra-
tion method [71] – segmentation-based and registration-based methods, respectively.
Once our model deformed the baseline scan according to the input probability maps,
we used these two tools to quantify potential atrophy variations between the gener-
ated and real scans. Ideally, the percentage of whole-brain volume change (PBVC)
yielded by SIENA and the integral of Jacobian determinants yielded by the Jaco-
bian method should be close to zero and one, respectively. Since these two methods
address atrophy quantification from two different perspectives, they allow us to ver-
ify whether tissue variations were induced effectively and whether brain boundaries
were well-defined.

Statistical differences

We used the Wilcoxon signed-rank test to assess statistical significance of differences
among methods. We considered p-values below 0.01 to be statistically significant.

5.3.3 Architectural directives and loss functions

The first experiment compared the generation quality of four strategies: two of them
inspired by state-of-the-art data generation strategies and our network optimised
with two different loss functions. Some details as follows:

• 3D CGAN - MSE: A network inspired by the work of Shin et al. [191],
consisting of a U-Net generating three brain regions and a discriminator de-
termining whether the generated scan is realistic enough or not. We optimised
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Table 5.2: Generation quality scores obtained with four different strategies. The
results were obtained from training on O2 and testing on O1 (O2 → O1) and vice
versa (O1 → O2). The variable n represents the number of test cases. The values
in bold are significantly higher (p-value < 0.01) than the ones yielded by the other
three approaches. MAE: median absolute error. SSIM: structural similarity. DSC:
Dice similarity coefficient. CSF: cerebrospinal fluid. GM: grey matter. WM: white
matter. PBVC: percentage of brain volume change. CGAN: conditional generative
adversarial network. MSE: mean square error. RWMSE: region-wise mean square
error.

n Approach Intensity Segmentation Atrophy
MAE SSIM DSC - CSF DSC - GM DSC - WM PBVC Jacobian Int

O
2

→
O

1

126

3D CGAN - MSE 0.03 ± 0.01 0.95 ± 0.02 0.83 ± 0.16 0.69 ± 0.21 0.78 ± 0.20 2.19 ± 5.70 0.99 ± 0.01
Baseline - MSE 0.08 ± 0.04 0.90 ± 0.04 0.92 ± 0.02 0.87 ± 0.03 0.90 ± 0.02 2.60 ± 1.01 1.13 ± 0.06
Cascaded - MSE 0.05 ± 0.03 0.96 ± 0.01 0.93 ± 0.02 0.87 ± 0.05 0.91 ± 0.04 0.33 ± 0.25 1.16 ± 0.06

Cascaded - RWMSE 0.02 ± 0.01 0.99 ± 0.01 0.96 ± 0.01 0.94 ± 0.03 0.95 ± 0.02 0.27 ± 0.16 1.14 ± 0.05

O
1

→
O

2

169

3D CGAN - MSE 0.03 ± 0.01 0.95 ± 0.01 0.80 ± 0.15 0.71 ± 0.20 0.79 ± 0.21 2.19 ± 5.70 1.00 ± 0.02
Baseline - MSE 0.15 ± 0.05 0.87 ± 0.08 0.92 ± 0.03 0.88 ± 0.02 0.91 ± 0.01 2.73 ± 0.43 1.12 ± 0.05
Cascaded - MSE 0.11 ± 0.03 0.95 ± 0.02 0.94 ± 0.02 0.90 ± 0.02 0.91 ± 0.03 0.21 ± 0.16 1.14 ± 0.05

Cascaded - RWMSE 0.01 ± 0.01 0.99 ± 0.01 0.96 ± 0.02 0.94 ± 0.02 0.95 ± 0.01 0.19 ± 0.14 1.14 ± 0.05

such networks using the mean square error (generator) and the categorical
cross-entropy (discriminator).

• Baseline U-Net - MSE: A network inspired by the work of Chartsias et
al. [169] and Salem et al. [170], consisting of three parallel U-Nets generating
three brain regions separately and a final addition module to merging them into
a single T1-w scan. Each u-shaped subnetwork resembles the design illustrated
in Fig. 3 in [170]. We optimised such a network using a mean square error
loss as in the original papers.

• Cascaded U-Nets - MSE: Our proposed network, as depicted in Fig. 5.2,
consisting of three parallel U-Nets generating three brain regions separately
and a final U-Net merging them into a single T1-w scan. We optimised this
network using a mean square error loss.

• Cascaded U-Nets - RWMSE: Our proposed network, as above, optimised
using our proposed region-wise mean square error, described in Eq. 5.1.

We implemented the aforementioned strategies and compared their generation
quality. We provided the networks with baseline volumes and actual follow-up tis-
sue segmentation probability maps and evaluated the similarity between the actual
follow-up and the approximated one. We trained all networks using the same scheme,
i.e. same optimiser, training data, training stopping policy, and machine. Data were
taken from the O2 collection and tested on the O1 set and vice versa. The results
of this trial are presented in Table 5.2.
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The cascaded U-Net trained with the mean square error loss performed signifi-
cantly better than its baseline in most cases (n = 295; Cascaded-MSE vs Baseline-
MSE, p-value; MAE: 0.08 ± 0.04 vs 0.12 ± 0.06, p < 0.01; SSIM: 0.95 ± 0.02 vs
0.88 ± 0.07, p < 0.01; DSC-CSF: 0.94 ± 0.02 vs 0.92 ± 0.03, p < 0.01; DSC-GM:
0.89 ± 0.04 vs 0.88 ± 0.03, p < 0.01; PBVC: 0.26 ± 0.21 vs 2.68 ± 0.74, p < 0.01), ex-
cept in terms of the segmentation of white matter, where they both obtained similar
Dice scores (DSC-WM: 0.91 ± 0.04 vs 0.91 ± 0.02, p = 1.00), and Jacobian integral,
where the latter outperformed the former (Jacobian Int: 1.15 ± 0.06 vs 1.12 ± 0.6,
p < 0.01). This outcome suggested that scans generated with the cascaded U-Nets
trained with the mean square error appear more similar to real follow-up acquisitions
and exhibit better tissue contrast than those generated with the baseline U-Net, but
brain edges are more blurred.

The use of the region-wise mean square error resulted in significantly improved
performance compared to that obtained using the original mean square error (n =
295; Cascaded-RWMSE vs Cascaded-MSE, p-value; MAE: 0.01±0.01 vs 0.08±0.04,
p < 0.01; SSIM: 0.99 ± 0.01 vs 0.95 ± 0.02, p < 0.01; DSC-CSF: 0.96 ± 0.02 vs
0.94 ± 0.02, p < 0.01; DSC-GM: 0.94 ± 0.03 vs 0.89 ± 0.04, p < 0.01; DSC-WM:
0.95 ± 0.01 vs 0.91 ± 0.04, p < 0.01; PBVC: 0.22 ± 0.15 vs 0.26 ± 0.21, p < 0.01),
except for the Jacobian integral, where the difference between their scores was not
significant (Jacobian Int: 1.14 ± 0.05 vs 1.15 ± 0.06, p > 0.01). These results
suggest that the proposed loss function allows the network to generate more faithful
reconstructions versus the accustomed loss. However, the proposed loss did not seem
to help to sharpen brain edges.

Notably, the image-to-image translation conditional adversarial network inspired
by the work of Isola et al. [343] and Shin et al. [191] obtained Jacobian integration
values close to one (1.00 ± 0.02), i.e. brain edges were delineated almost perfectly
according to this metric. In this regard, this network outperformed all other ap-
proaches significantly (p < 0.01). Nevertheless, its performance according to the
rest of the metrics was significantly lower than our cascaded U-Net trained with the
region-wise mean square loss function (n = 295; Cascaded-RWMSE vs 3D CGAN-
MSE, p-value; MAE: 0.01 ± 0.01 vs 0.03 ± 0.01, p < 0.01; SSIM: 0.99 ± 0.01 vs
0.95 ± 0.01, p < 0.01; DSC-CSF: 0.96 ± 0.02 vs 0.81 ± 0.15, p < 0.01; DSC-GM:
0.94 ± 0.03 vs 0.70 ± 0.20, p < 0.01; DSC-WM: 0.95 ± 0.01 vs 0.79 ± 0.21, p < 0.01;
PBVC: 0.22 ± 0.15 vs 2.19 ± 5.70, p < 0.01). Compared to the rest of the models,
scans generated using the adversarial model presented lower tissue contrast that
prevented them from being segmented properly.

An example of generated scans using the five strategies is presented in Fig. 5.5.
We displayed the generation on the case 157 of the OASIS2 dataset as it exhibited
the maximum relative CSF change in this dataset and, thus, generation issues were
visually evident. Qualitatively speaking, literature inspired strategies did not lead to
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Figure 5.5: Example of scans generated with different architectures and loss func-
tions. The first and second column correspond to the real baseline and follow-up
scans. From the third to the sixth column, scans generated with the conditional
generative adversarial network trained using the mean square error loss, with the
baseline U-Net trained using the mean square error loss, with our proposed design
trained with a mean square error, and with our proposed architecture optimised
with our region-wise mean square error. CGAN: conditional generative adversarial
network. MSE: mean square error. RWMSE: region-wise mean square error.

appealing results. The conditional adversarial network generated scans with sharp
yet noisy edges and inaccuracies in the lateral ventricles that appear as if the model
laid the ground truth over the baseline and failed at amalgamating intensities ac-
curately. The baseline U-Net learnt identity mapping as the only visual differences
are in terms of the noise, reduced in synthetic scans. Scans generated using our
cascaded U-Nets trained with the mean square error exhibited artefacts; the recon-
structions provided by each branch seem to be merged in an uncoordinated way as
tissues seem superimposed. On the contrary, both axial slices generated using our
proposed RWMSE loss function appear similar to the expected follow-up scan as
tissues were altered as expected. Our proposal reduced speckle noise and delineated
better some structures (e.g. sub-cortical structures) compared to the real follow-up
scans, i.e. the contrast of the image was enhanced.

Taking the aforementioned information into account, our proposed cascaded U-
Net model optimised with the region-wise loss function evidenced improved perfor-
mance both qualitatively and quantitatively. Henceforth, we computed our results
using such a model.
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Table 5.3: Comparison between generated and actual volumes concerning intensity,
segmentation, and atrophy dissimilarities. The column n shows the cardinality of
test set. The segmentation scores correspond to the DSC values computed using
FAST masks. MAE: median absolute error. SSIM: structural similarity. DSC:
Dice similarity coefficient. CSF: cerebrospinal fluid. GM: grey matter. WM: white
matter. PBVC: percentage of brain volume change.

Train → Test n Intensity Segmentation Atrophy
MAE SSIM DSC - CSF DSC - GM DSC - WM PBVC Jacobian Int

O2 → O1 169 0.02 ± 0.01 0.99 ± 0.01 0.96 ± 0.01 0.94 ± 0.03 0.95 ± 0.02 0.27 ± 0.16 1.14 ± 0.05
O1 → O2 126 0.01 ± 0.01 0.99 ± 0.01 0.96 ± 0.02 0.94 ± 0.02 0.95 ± 0.01 0.19 ± 0.14 1.14 ± 0.05
A2 → A1 153 0.03 ± 0.03 0.97 ± 0.02 0.95 ± 0.02 0.92 ± 0.02 0.96 ± 0.01 0.24 ± 0.18 1.11 ± 0.05
A1 → A2 136 0.04 ± 0.03 0.98 ± 0.01 0.95 ± 0.02 0.93 ± 0.03 0.96 ± 0.01 0.23 ± 0.16 1.13 ± 0.03

OASIS → ADNI 289 0.03 ± 0.01 0.97 ± 0.02 0.96 ± 0.01 0.94 ± 0.03 0.96 ± 0.01 0.15 ± 0.15 1.12 ± 0.04
ADNI → OASIS 295 0.02 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.94 ± 0.02 0.95 ± 0.02 0.22 ± 0.35 1.15 ± 0.06

5.3.4 Generation quality (same dataset)

We ran a second experiment to evaluate the quality of the generation of our tool.
We assessed generation when synthesising a scan from a baseline, i.e. we provide
the network with a baseline T1-w volume and three tissue probability maps of the
corresponding follow-up T1-w acquisition.

The results obtained by our proposal on the considered datasets are displayed
in Table 5.3. Our model generated volumes that were quantitatively similar to the
actual follow-up scans at intensity, segmentation and atrophy levels. Regarding in-
tensity, our method yielded MAE values below 0.11 and SSIM values above 0.90.
Concerning segmentation, our tool produced images with tissue masks comparable
to the ones of the actual volumes as all DSC values are above 0.80. Nevertheless, the
obtained segmentation errors were within the FAST accuracy and reproducibility
ranges [334]. Regarding the volume change detected by atrophy quantification algo-
rithms, our method reported low values overall and within reproducibility rates [11].

Our method yielded better results intensity-wise on the OASIS set than on the
ADNI one. This might be a consequence of increased lousy skull stripping of ROBEX
on the latter set in comparison to the former. If a synthetic scan is compared to
a follow-up volume which skull has not been entirely removed, the scores for MAE
and SSIM will be lower than when non-brain areas have been completely masked
out. The error might also be caused by the atrophy levels in ADNI, which are higher
than in OASIS.

5.3.5 Generation quality (cross-dataset)

The third experiment consisted of evaluating the performance of the proposal when
training on a certain dataset and testing on a different one (OASIS→ADNI and
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ADNI→OASIS OASIS→ADNI
Baseline Follow-up Generated Baseline Follow-up Generated

Figure 5.6: Cross-dataset generation examples: OASIS follow-up scans using a net-
work trained on ADNI (left) and ADNI follow-up scans using a network trained on
OASIS (right).

ADNI→OASIS). The results are shown in Table 5.3 and two cases depicted in
Fig. 5.6. The generation per se did not seem significantly affected as none of the in-
tensity, segmentation, or atrophy values differed significantly from the performance
measurements obtained when training and testing on the same dataset. This out-
come makes our proposal appealing as it shows that by pre-processing the incoming
data (e.g. harmonisation by registering to a common space and matching intensity
histograms), the network might be used in a different domain without requiring
retraining.

5.3.6 Assessing induced changes with volumetry methods

The fourth experiment consisted of exploring whether induced tissue variations could
be detected by atrophy quantification algorithms. We created the dataset as follows.
Initially, we selected ADNI subjects which exhibited the maximum atrophy over
time. The atrophy was measured as relative enlargement of the CSF region. We
computed the deformation field between the baseline and latest follow-up scans.
Then, we multiplied the resulting deformation vectors by scalars between zero and
one to obtain intermediate scans. We considered five scalars: 0%, 25%, 50%, 75%,
and 100%. Of note, this is an approximation to the pathological process as we
would assume that atrophy change varies spatially at the same time in all directions.
Afterwards, we ran FAST on the baseline scans to segment each tissue and altered
the resulting tissue probability maps using the various deformation fields. Finally, we
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input each pair of baseline volume and modified tissue maps to generate a synthetic
scan. In total, we generated 216 synthetic scans.

We evaluated the capacity of our framework to generate detectable tissue varia-
tions using four methods: three atrophy quantification algorithms, SIENA, SIENAX,
and the Jacobian determinant integration method, and two tissue segmentation algo-
rithms, FAST and SPM. We computed a robust multiple linear regression model [352]
using relative absolute volumetric differences, tissue-wise average symmetric surface
changes [353], and Dice coefficients (as surrogate measures for tissue displacement)
as predictor variables and detected or observed brain volume change as a response
variable. The results are shown in Fig. 5.7. Overall, our induced tissue variations
correlated well with the detected volume change (adjusted correlation coefficient R2

above 0.86). For SPM, the linear model was close to x = y as R2 ≈ 1 and y-intercept
≈ 0. This outcome implies that the induced tissue variations were detected correctly
by conventional cross-sectional and longitudinal atrophy quantification tools.

5.4 Discussion

In this chapter, we proposed a CNN-based framework for creating longitudinal eval-
uation environments given a set of T1-w baseline scans and follow-up tissue proba-
bility maps. Our pipeline contemplates four stages: preprocessing, data preparation,
generation and postprocessing. Initially, we skull-stripped, intensity corrected and
registered all volumes to a common space. Then, we tiled up the baseline and al-
tered tissue probability maps into overlapping blocks and passed them through our
network, a cascaded u-shaped network. Finally, once all blocks had been processed,
we reconstructed and intensity corrected the resulting synthetic volume.

The network consisted of four processing modules: one dedicated to generating
changes on each class (namely, CSF, GM, and WM) and the last one in charge of
fusing them. We optimised all components end-to-end using a region-aware multi-
objective loss function. We followed state-of-the-art design patterns to devise our
network. Overall, the devised framework showed being capable of producing accu-
rate synthetic scans in terms of intensity, segmentation and tissue volume similarity.
The proposal was assessed through four experiments exploring architecture direc-
tives and loss functions, generation quality when training the network on a particular
dataset and testing on the same or different one, and the ability of our framework
to generate acceptable and detectable changes.

The first experiment compared our proposal against literature-inspired networks
and tested the efficacy of the proposed region-wise loss function versus the conven-
tional mean square error loss. The two literature-inspired networks were based on
the work on latent space representations using U-Nets of Chartsias et al. [169] and
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(c) Jacobian integral (Adj. R2 = 0.866)
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(d) FAST (Adj. R2 = 0.973)
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(e) SPM (Adj. R2 = 0.957)

Figure 5.7: Real versus fitted values obtained using robust linear regression models
for the five different methods. The models were built using the average symmetric
surface distance, the relative absolute volumetric difference, and Dice coefficients
between original and deformed tissue maps as predictor variables and detected vol-
ume change as response variable. Data points and regression lines are represented
by empty circles and red lines, respectively.
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Salem et al. [170] and the label-to-image translation conditional generative adver-
sarial network described by Shin et al. [191]. We generated 295 follow-up scans using
baseline data and real follow-up tissue segmentation maps. We observed that our
proposed network outperformed both state-of-the-art approximations and that the
region-wise mean square error objective function led to superior performance.

The second experiment gauged the capacity of our proposal to generate synthetic
follow-up scans which were similar to the actual images when training and testing
on the same domain. The similarity was evaluated regarding intensity using MAE
and SSIM, tissue segmentation mask overlap using FAST and DSC, and atrophy
change using SIENA and the Jacobian integration method. The experiment con-
sidered four collections: two from the OASIS and two from the ADNI. In all of
them, our proposal yielded high similarity scores. We observed that skull stripping
errors resulted in increased dissimilarity scores, as indicated previously in the litera-
ture [62]. Nonetheless, all the values were within the reproducibility ranges reported
in the literature.

The third experiment explored whether the framework could be used in unseen
and different data collections. We trained our network on a particular selection
(e.g. OASIS2) and tested on another one (e.g. ADNI) and vice versa to determine
how robust was the entire framework to these sort of variations. Our preliminary
results showed that our framework may cope with this situation without affecting its
performance considerably and without requiring additional adjustments, but further
testing in this regard is needed. Evidently, this outcome is appealing as our ultimate
goal is to apply our pipeline to datasets with possibly varying acquisition parameters.

The fourth experiment examined whether conventional tools detected syntheti-
cally induced changes. This is key in this research as our primary goal is to create
high-quality synthetic scans for which tissue variations (loss) with respect to the
baseline scans are known beforehand. We used real tissue displacement vectors
to alter baseline segmentation masks, input them into our framework, and gauged
changes using SIENA, SIENAX, the Jacobian integration method, SPM, and FAST.
All changes detected by these five tools highly correlate with our induced changes
(Adj. R2 values above 0.86), showing common tissue segmentation and volumetry
methods can detect brain alterations generated by our proposal. Note that even
algorithms that were not used at any point within our framework correlated with
the induced changes.

A direct and fair comparison with other works in the area is not straightforward
as inputs and generation mechanisms vary. For example, in [335], the tool is provided
with an MR scan and a number indicating the desired level of expected tissue loss and
the tool outputs another scan in which the brain volume has been altered to match
the requested value. The deformation of the volume follows the topology of the brain
rather than a pathology-oriented pattern per se. Khanal et al. [339] proposed a tool
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for prescribing local atrophy changes given segmentation and atrophy maps, in which
the user indicates modifiable and not modifiable regions and the expected degree
of atrophy, respectively. We did not compare to their work since we would need
to build both maps appropriately and accurately. Thus, we compared our proposal
against networks inspired by previous works on image and lesion synthesis [169,170]
and data augmentation [191] since their code was either publicly available and/or
used established and well-known strategies.

The motivation behind our proposal is two-fold. First, we aim to generate con-
trolled environments to evaluate atrophy quantification strategies. Following the ur-
gent challenges in GM atrophy measurement exposed by Amiri et al. [13], pipelines
could be compared under the same settings, and their pros and cons could be ade-
quately analysed using our tool. This would be a way to extend the clinical validation
of existing tools. Second, we target using the deep learning power to craft a more
precise and accurate method for measuring tissue loss. As it is well-known in the
literature, deep learning has outperformed traditional machine learning methods in
scenarios where lots of data are available. Thus, we could train networks to achieve
improved measurements using our tool.

Our proposal exhibits limitations regarding segmentation, model assumptions,
domain dependence, and bias. First, it is well-known that the segmentation per-
formance of FAST in basal ganglia is not accurate enough. Although we did not
observed problems in this regard (see Fig. 5.5 and Fig. 5.6), better segmentation
strategies need to be considered. Second, unlike model-based proposals [335], there
are no assumptions on how tissues are altered to match the input segmentation
maps. On the one hand, this favours the flexibility of the generation scheme. On
the other hand, it does not follow a specific pathology-oriented deformation strategy.
Third, the core network may produce undesired outcomes when the intensity range
of an input scan differs considerably from the training intensity interval. Nonethe-
less, this issue was mitigated by performing intensity standardisation and registering
input scans to the training space. Fourth, the current strategy for generating con-
trolled environments requires image segmentation and registration, i.e. generation
is biased towards them. Nonetheless, we observed that our method could gener-
ate tissue changes that were highly correlated with SPM, a method that was not
considered in the training pipeline.

5.5 Summary

The lack of a ground truth prevents testing the accuracy of longitudinal atrophy
quantification methods and training deep learning methods to perform these types
of assessments. In this chapter, we proposed a deep learning framework to generate
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controlled evaluation environments as a way for addressing this problem. Our frame-
work deformed T1-w brain MRI scans as requested through segmentation maps. Ex-
perimental results showed that our framework could produce synthetic scans that
resemble real ones, that induced changes highly correlated with measurements de-
tected by validated cross-sectional and longitudinal segmentation algorithms, and
that its performance was significantly superior to that of two literature-inspired
works overall. Moreover, our experiments on harmonised datasets evince the po-
tential of our framework to be applied to various data collections without further
adjustment.

In the next chapter, we show an application of our generation framework as data
augmentation strategy for training a deep learning based method for assessing lon-
gitudinal cerebral atrophy and determining its suitability in patients with multiple
sclerosis and dementia.





Chapter 6

Deep learning for quantifying
longitudinal brain atrophy

In this chapter, we present a deep learning based framework for quantifying longi-
tudinal brain atrophy from baseline and follow-up T1-w brain magnetic resonance 
imaging scans using the longitudinal data generation approach proposed in Chap-
ter 5.
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Chapter 7

Conclusions

7.1 Thesis summary

Cerebral brain atrophy corresponds to the loss of neurons and their connections as
a result of the ageing process or brain pathologies, such as dementia and multiple
sclerosis. Therefore, their accurate quantification may help medical doctors to diag-
nose these brain diseases more timely, monitor their progression, and evaluate the
effectiveness of novel treatments.

Qualitative and quantitative methods were developed prior to the deep learning
era. Qualitative clinical ratings were devised to rate cerebral atrophy into normal
or abnormal based on prior anatomical knowledge. However, the rating process is
subjective, requires serious training, may not generalise to various cohorts, and is
limited by its discrete nature. Quantitative methods reduced the subjectivity of the
assessment. Nonetheless, their performance was compromised by their assumptions,
the craftsmanship of the image analyst at engineering the methods, the presence of
brain lesions or unseen cases, and extrinsic and intrinsic imaging variations. Due
to the astonishing performance of deep learning in applications involving image
processing, we questioned whether deep learning could be used for evaluating brain
tissue volumes at cross-sectional levels and their variations over time at longitudinal
levels using brain MRI scans from both healthy subjects and patients.

To accomplish our primary goal, we reviewed relevant works on deep learning for
brain medical image analysis to get familiar with the topic at hand; understand the
needs from the medical perspective; study trends, processing pipelines, and applica-
tions for which deep learning had been used; analyse their potential strengths and
pitfalls; and comprehend general challenges that needed to be addressed in the field.
We noticed that more than two thirds of the works targeted either segmentation
or classification, potentially due to the availability of popular competitions in these
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regards. On the one hand, these types of events permit demonstrating how capable
– or not – is each method when evaluated under the same evaluation framework
(dataset, metrics, task). On the other hand, a top-performing method may have
been overfit to a certain evaluation framework and data and, hence, it might not
be able to generalise well to unseen data or may involve a series of steps limiting or
making them impractical in real-life scenarios. Moreover, these types of challenges
does not allow determining whether certain design patterns are more beneficial than
others.

In light of the aforementioned limitations, we benchmarked applicable deep
learning methods for brain tissue segmentation using not only the same evalua-
tion framework (dataset, metrics, and tasks) but also the same processing pipeline
(i.e. pre-processing, data preparation, segmentation, and post-processing). In such
a way, we ensured all models were being evaluated under similar yet favourable
conditions. Moreover, this setup allowed us to compare deep learning architectures
themselves and determine whether specific design directives explained their perfor-
mance. Overall, we observed that deep learning could be used for cross-sectional
tissue segmentation and could produce state-of-the-art results compared to tradi-
tional computational methods when trained and tested on the same domain. Further
development in regards to transfer learning and domain adaptation may enable their
use in cross-dataset scenarios and, perhaps more importantly, in clinical scenarios.
Other relevant findings were:

• Overlapping patch sampling seemed beneficial as they allow extracting more
training cases and enforcing spatial consistency.

• Networks performed their best when provided with various modalities due to
the complementary data that various information sources supply.

• The larger the patch size, the more the contextual information the network
uses and, hence, the better the segmentation performance.

• Architectures exploiting the 3D nature of the MRI scans tend to outperform
their 2D analogues. However, differences may not be statistically significant.
Also, the former group of networks is less resilient to heterogeneity in voxel
spacing than the latter.

• The number of trainable parameters does not automatically translate into
segmentation performance, but it does explain processing times as networks
with more parameters take more time during training and testing.

• U-Nets are suitable for brain MRI tissue segmentation due to their balance
between performance and processing speed.
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Based on the findings of our quantitative comparison, we developed three dif-
ferent deep learning based methods for segmenting brain tissues cross-sectionally in
three international challenges: iSeg2017, MRBrainS18, and iSeg2019. In these three
events, we processed scans from six-month-old babies acquired with the same and
varied scanning protocols and adult brains with brain lesions (white matter hyper-
intensities and/or brain infarcts). Our proposals incorporated densely connected
networks (iSeg2017), ensemble of U-Nets using tissue segmentation priors computed
with validated tissue segmentation tools (MRBrainS18), and hybrid approximation
leveraging U-Nets and multi-atlas segmentation (iSeg2019). In all three challenges,
we achieved compelling performance, suggesting that our benchmark was useful for
creating appropriate models for this particular task.

In contrast to the almost ideal scenario for cross-sectional tissue segmentation,
longitudinal brain atrophy quantification proposals are difficult to devise and val-
idate due to the lack of publicly available datasets with ground truth. This issue
prevents assessing the accuracy of any development (deep learning based or not) and
training any deep learning approach to specifically detect brain changes over time.
To overcome this limitation, we proposed a deep learning based method for gener-
ating longitudinal datasets by deforming a baseline T1-w scan as requested through
segmentation maps. Our proposal incorporated a cascaded three-path U-Net which
synthesised a rough generation (first U-Net) and a refined one (second U-Net). We
optimised our model using a multi-objective mean square error loss function to
force each path to produce a cerebrospinal fluid, grey matter, and white matter
accurately. We tested the capacity of our framework to synthesise scans that looked
realistic and to produce changes that were detected by validated tissue segmentation
and atrophy quantification tools. First, we provided our model with baseline scans
and real follow-up segmentation maps from two longitudinal datasets of patients
with Alzheimer’s disease and dementia and observed that our framework could pro-
duce synthetic follow-up scans that matched the real ones regarding their perceptual
properties (luminance, contrast, and structure), segmentation, and cerebral atrophy.
Our preliminary cross-dataset results suggest that the performance was consistent
even when training and testing on different but harmonised datasets. Compared to
two relevant works generating brain lesions using U-Nets and conditional generative
adversarial networks, our proposal outperformed them significantly in most cases,
except in the delineation of brain edges where the generative network took the lead.
Second, we examined whether changes induced with our framework were detected
by FAST, SPM, SIENAX, SIENA, and the Jacobian integration method. In all
cases, we noticed that induced and detected changes were highly correlated.

We used our generation framework as data augmentation strategy for training a
deep learning based method for longitudinal atrophy quantification. Our proposal
incorporated recent advances in deep learning for non-linear registration (namely,
VoxelMorph) to produce deformation fields and the Jacobian integration method to
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convert deformation vectors into measures of atrophy. We compared our proposal
against validated tools: SIENA and the Jacobian integration method using ANTs
for non-linear registration. Moreover, we compared our work against a pre-trained
VoxelMorph and a model trained on the original training dataset to show the effect
of training on harmonised data and using our data augmentation proposal. We
consider evaluating brain changes around edges between brain regions where atrophy
is likely to happen and not on grey matter as accustomed in the literature. This
approach allowed us to measure changes in both healthy and pathological regions
of the brain simultaneously. We assessed the suitability of our proposal based on
the scan-rescan error and its ability to produce different atrophy measurements
for subjects ongoing different pathologies. In scan-rescan assessments, we observed
that the error yielded by our proposal was comparable to those of ANTs and the
pretrained VoxelMorph and lower than that SIENA. In longitudinal assessments,
we noted that of SIENA discerned better between Alzheimer’s disease patients vs
control and dementia patients vs control, but our proposal was particularly suitable
for multiple sclerosis vs control subjects. From our analysis, we concluded that deep
learning shows promising results for longitudinal atrophy quantification, but further
testing needs to be carried out to determine a suitable approximation for demented
patients.

7.1.1 Contributions

The aim of this thesis was to develop deep learning methods for quantifying brain at-
rophy, at cross-sectional and longitudinal levels from brain MRI, to provide medical
doctors with accurate and precise cerebral atrophy measurements. This work has the
potential to shed light into the relationship between brain atrophy and neurological
diseases, monitoring disease progression, and assessing treatment effectiveness.

The principal contributions of this thesis for both the scientific and medical
community are:

• An extensive review of deep learning based strategies for brain medical image
analysis in which we discussed common architectures, tasks in which they have
been applied, common processing pipelines, and current challenges that need
to be addressed in the field.

– Bernal, J., Kushibar, K., Clèrigues, A., Oliver, A., & Lladó, X. (2020).
Deep learning for medical imaging. In: Bacciu D., Lisboa P.J.G., Vellido
A., eds. Deep Learning in Biology and Medicine. Singapore: World
Scientific Publishing. Under review.

– Bernal, J., Kushibar, K., Asfaw, D. S., Valverde, S., Oliver, A., Martí,
R., & Lladó, X. (2019). Deep convolutional neural networks for brain
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image analysis on magnetic resonance imaging: a review. Artificial intel-
ligence in medicine, 95, 64-81. Quality index: [JCR IF 3.574, Q1(5/26)].

• A quantitative comparison of unsupervised and supervised state-of-the-art for
tissue segmentation in brain MRI to establish a direct comparison between
them and understand their experimental strengths and weaknesses based on
their segmentation performance on three relevant datasets (IBSR18, MIC-
CAI2012, and iSeg2019).

– Bernal, J., Kushibar, K., Cabezas, M., Valverde, S., Oliver, A., & Lladó,
X. (2019). Quantitative analysis of patch-based fully convolutional neural
networks for tissue segmentation on brain magnetic resonance imaging.
IEEE Access, 7, 89986-90002. Quality index: [JCR IF 4.098, Q1(23/155)]

• Three deep learning based methods developed based on our experimental find-
ings to segment brain tissues cross-sectionally in six-month-old subjects and
diabetic, demented, and control adult subjects as part of Grand Challenges of
the Medical Image Computing and Computer Assisted Intervention Confer-
ence 2017-2019.

• A fully automatic deep learning based framework for generating controlled
longitudinal cerebral atrophy on brain MRI to cope with the lack of ground
truth and a dataset containing 216 scans for evaluating longitudinal cerebral
atrophy in brain MRI.

– Bernal, J., Valverde, S., Kushibar, K., Oliver, A., & Lladó, X. (2019).
Generating controlled atrophy change evaluation environments on brain
MR using convolutional neural networks and segmentation priors. Un-
der review in Neuroinformatics. Quality index: [JCR IF 5.127,
Q1(9/106)]

• A fully automatic deep learning based framework for quantifying longitudi-
nal cerebral atrophy in healthy subjects and multiple sclerosis and dementia
patients.

– Bernal, J., Oliver, A., & Lladó, X. (2020). Deep learning for quantifying
longitudinal cerebral atrophy in brain magnetic resonance imaging. To
be submitted.

• A prototype of a toolbox for segmenting brain tissues using state-of-the-art
deep learning methods, generating longitudinal cerebral atrophy datasets, and
quantifying longitudinal cerebral atrophy, partially available in our GitHub
repository github.com/NIC-VICOROB.
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7.2 Future work

The cross-sectional and longitudinal quantification of cerebral atrophy using deep
learning is a complex topic involving multiple aspects and many research lines.
This thesis is a clear example of the multidisciplinary mixture of medicine, medical
physics, computer science, computer vision, statistics, among other disciplines, that
are involved in this process. In this thesis, we showed how deep learning could be
applied to segment brain tissues in babies and adults and in healthy and unhealthy
subjects, and to quantify longitudinal brain atrophy in both control subjects and
Alzheimer’s disease, dementia, and multiple sclerosis patients. Nonetheless, these
strategies can be extrapolated to other tasks taking advantage of MRI and other
pathologies/treatments.

In this section, we discuss those aspects concerning the work presented in this
work that need to be addressed in short-term and relevant challenges and research
lines that have not been investigated during this thesis and could be further explored.

7.2.1 Short-term proposal improvements

In Chapter 4, we did not study the performance of these networks when trained on
a specific domain and tested on another one. Due to the substantial heterogeneity
presented in the datasets and the well-known domain shift problem of deep learning
methods caused by variations during acquisition (e.g. different scanner and imaging
protocol), we do not expect them to perform well. However, transfer learning or
domain adaptation strategies could be explored for adapting cross-sectional tissue
segmentation methods to other unseen domains. We think that this is a vital step
that should be carried out in the future to evaluate the deployability of deep learn-
ing solutions to clinical practice and determine whether certain architectures adapt
better than others.

In Chapter 5, we mentioned that our approach for inducing tissue variations does
not reflect the atrophy patterns that brain diseases exhibit. In the future, we plan
to use deep learning to learn pathology specific tissue deformations using a condi-
tional generative network and add this module to our framework. This will open
the doors to develop novel tools that can be later used in investigating atrophy-
related pathologies. Recently, Amiri et al. [13] discussed current challenges in grey
matter atrophy quantification: lack of public and well-annotated reference datasets,
lesion-sensitive processing pipelines, data heterogeneity, and lack of research inves-
tigating the effect of abnormalities in current processing pipelines. We could use
our generation framework to target the first challenge, i.e. generate cross-sectional
and longitudinal atrophy quantification benchmarks, allowing us to develop novel
atrophy quantification algorithms and establish their pros and cons and, ultimately,



7.2. Future work 133

extend the clinical validation of existing tools.
In Chapter 6, we showed that deep learning could be used for atrophy quan-

tification strategy and demonstrated that it could compete with the state-of-the-
art. To further validate our proposal, we need to compare against other relevant
segmentation-based and registration-based methods. Despite being criticised be-
cause of its vulnerability against imaging variations, SIENA continues being a suit-
able method for measuring brain atrophy. To improve our proposal, we could scru-
tinise small regions of interest, particularly those damaged by the pathology under
examination; process positive and negative values separately to account for enlarge-
ment and shrinkage brain processes independently; use other alternative statistics
to reflect the possibly multimodal nature of the atrophy; and carry out a two-way
inspection (baseline to follow-up and vice versa) to account for potential regression
of abnormal tissues. We could use the approach presented in Section 4.5.3 where we
used a deep learning method for correcting errors made by another tool, SIENA in
this case.

Cerebral atrophy is one of many neuroimaging features of brain diseases. There-
fore, the tools developed in this thesis should be integrated with others developed by
our group. In such a way, we would create a system which would examine the brain
and produce holistic measures of brain status that might help medical doctors to
understand better the mechanisms of these brain diseases, predict diseases, patient
outcome, assess treatment effectiveness and treatment response.

7.2.2 Future research lines

As discussed in our literature review, there are general issues that need to be
addressed prior to deploying any deep learning based method for routine clinical
practice regarding data harmonisation, data availability, generalisation, and inter-
pretability. In the long term, there are various research lines our research group
could study.

Magnetic resonance imaging is prone to imaging artefacts because of intrinsic
and extrinsic factors, such as scanner instability, truncation and motion artefacts,
aliasing, among others [309–312]. These issues manifest in visual artefacts which
may compromise any subsequent assessment and, in severe cases, may even result in
useless data. In this thesis, we observed that data harmonisation could help models
to generalise better to unseen cases. Testing of current image enhancement and
image standardisation techniques or development of new ones could ease domain
shift problems [196]. Moreover, deep learning could be used for reducing these
imaging artefacts [313–317,366].

According to our literature revision and our own experience, deep learning can
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achieve outstanding results as long as there are enough manually annotated cases.
Models do not necessarily need to be trained from scratch, instead legacy models
can be fine-tuned to process new data [200, 201]. Even a single case can allow pre-
trained models to perform similar to fully trained ones on another domain [198,199].
However, these approaches are not yet widespread in the literature nor are cross-
dataset evaluations. In some tasks such as classification and segmentation, it might
be about time we, researchers, move from showing how capable deep learning is and
concentrate on how practical or deployable are our deep learning based solutions.

Part of the generalisability problem that deep learning based methods experience
in the medical domain is that large, heterogeneous, and well-labelled datasets are
scarce. Although valuable datasets have been released in recent years, more publicly
available datasets are needed not only for training networks in such a way they
generalise better but also for the sake of reproducibility. In this thesis, we showed
that image generation could be used to generate controlled evaluation environments
and train a deep learning model better. Further development on image synthesis
or data augmentation could help to overcome these limitations. Additionally, more
frameworks for testing generalisability blindly are needed. Up to now, only a few
challenges, such as the Medical Image Segmentation Decathlon and the six-month
infant brain MRI segmentation challenge, allow assessing the generalisability and
robustness to imaging variations and processing tasks.

The lack of interpretability in deep learning models may prevent their application
in medical practice as medical doctors and patients need to understand the decision-
making process. However, this task is not trivial in deep learning as models contain
thousands of parameters. Efforts for interpreting how and why the network reaches
specific verdicts have been made [316,318], but further development in this regard is
needed. Additionally, the quantification of uncertainty of the decision may help to
improve their reliability and accuracy [267]. Furthermore, uncertainty quantification
can help to understand what a deep learning model does not know, a fundamental
asset for designing robust models [319].
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Appendix A

Benchmarking brain tissue
segmentation methods

A.1 Segmentation accuracy values

Supplementary table 1. DSC and MHD statistics scored by each one
of the considered methods in IBSR18, MICCAI2012, and iSeg2017.

Method Dataset ROI DSC MHD
Mean Std Mean Std

DM2D IBSR18 CSF 0.87 0.05 6.36 9.22
DM2D IBSR18 GM 0.96 0.01 1.32 0.3
DM2D IBSR18 WM 0.92 0.02 1.53 0.4

DM2D-NO IBSR18 CSF 0.78 0.1 16.02 17.71
DM2D-NO IBSR18 GM 0.94 0.01 1.76 0.44
DM2D-NO IBSR18 WM 0.91 0.02 1.97 0.67

DM3D IBSR18 CSF 0.86 0.07 9.49 10.78
DM3D IBSR18 GM 0.96 0.01 1.78 0.39
DM3D IBSR18 WM 0.93 0.02 2.01 0.59

DM3D-NO IBSR18 CSF 0.69 0.25 11.71 12.95
DM3D-NO IBSR18 GM 0.93 0.02 1.79 0.4
DM3D-NO IBSR18 WM 0.89 0.03 2.12 0.59

FAST IBSR18 CSF 0.47 0.18 35.04 5.54
FAST IBSR18 GM 0.88 0.01 2.01 0.34
FAST IBSR18 WM 0.89 0.02 1.06 0.21
KK2D IBSR18 CSF 0.88 0.04 4.62 3.2
KK2D IBSR18 GM 0.96 0.01 1.52 0.27
KK2D IBSR18 WM 0.92 0.02 1.61 0.38
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KK2D-NO IBSR18 CSF 0.77 0.08 8.04 8.55
KK2D-NO IBSR18 GM 0.93 0.01 1.57 0.28
KK2D-NO IBSR18 WM 0.9 0.02 1.69 0.42

KK3D IBSR18 CSF 0.8 0.2 15.13 10.85
KK3D IBSR18 GM 0.96 0.01 1.8 0.26
KK3D IBSR18 WM 0.92 0.02 1.98 0.39

KK3D-NO IBSR18 CSF 0.71 0.17 10.47 12.38
KK3D-NO IBSR18 GM 0.92 0.01 1.65 0.28
KK3D-NO IBSR18 WM 0.9 0.02 1.83 0.42

SPM IBSR18 CSF 0.77 0.08 3.55 1.35
SPM IBSR18 GM 0.91 0.01 4.84 0.45
SPM IBSR18 WM 0.88 0.01 2.13 0.23

UN2D IBSR18 CSF 0.9 0.03 2.37 1.72
UN2D IBSR18 GM 0.96 0.01 1.44 0.38
UN2D IBSR18 WM 0.93 0.02 1.54 0.46

UN2D-NO IBSR18 CSF 0.62 0.14 4.93 8.99
UN2D-NO IBSR18 GM 0.92 0.01 1.48 0.37
UN2D-NO IBSR18 WM 0.88 0.02 1.6 0.52

UN3D IBSR18 CSF 0.88 0.05 30.56 12.09
UN3D IBSR18 GM 0.96 0.01 4 1.87
UN3D IBSR18 WM 0.93 0.02 5.21 3.5

UN3D-NO IBSR18 CSF 0.08 0.15 29.93 11.39
UN3D-NO IBSR18 GM 0.41 0.31 4.59 2.61
UN3D-NO IBSR18 WM 0.42 0.23 5.22 3.73
URN2D IBSR18 CSF 0.89 0.04 2.77 2.39
URN2D IBSR18 GM 0.96 0.01 1.43 0.41
URN2D IBSR18 WM 0.92 0.02 1.58 0.46

URN2D-NO IBSR18 CSF 0.68 0.14 3.05 2.47
URN2D-NO IBSR18 GM 0.92 0.01 1.47 0.4
URN2D-NO IBSR18 WM 0.88 0.02 1.6 0.45

URN3D IBSR18 CSF 0.9 0.04 4.91 6.41
URN3D IBSR18 GM 0.96 0.01 1.43 0.32
URN3D IBSR18 WM 0.93 0.02 1.46 0.33

URN3D-NO IBSR18 CSF 0.05 0.06 40.23 12
URN3D-NO IBSR18 GM 0.69 0.31 1.48 0.36
URN3D-NO IBSR18 WM 0.45 0.28 1.5 0.41

DM2D iSeg2017 CSF 0.91 0.01 1 0.13
DM2D iSeg2017 GM 0.87 0.01 1.5 0.27
DM2D iSeg2017 WM 0.86 0.01 1.33 0.17

DM2D-NO iSeg2017 CSF 0.91 0.01 1.04 0
DM2D-NO iSeg2017 GM 0.87 0.01 1.53 0.2
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DM2D-NO iSeg2017 WM 0.84 0.02 1.33 0.17
DM2D-S iSeg2017 CSF 0.91 0.01 1.04 0.13
DM2D-S iSeg2017 GM 0.85 0.01 2.02 0.38
DM2D-S iSeg2017 WM 0.81 0.02 1.5 0.2
DM3D iSeg2017 CSF 0.94 0.01 1 0
DM3D iSeg2017 GM 0.91 0.01 1.27 0.33
DM3D iSeg2017 WM 0.89 0.02 1.04 0.13

DM3D-NO iSeg2017 CSF 0.92 0.01 1.04 0.13
DM3D-NO iSeg2017 GM 0.88 0.01 1.35 0.3
DM3D-NO iSeg2017 WM 0.86 0.02 1.08 0.17
DM3D-S iSeg2017 CSF 0.94 0.01 1 0
DM3D-S iSeg2017 GM 0.89 0.01 1.5 0.2
DM3D-S iSeg2017 WM 0.87 0.02 1.12 0.2

FAST iSeg2017 CSF 0.76 0.03 3 1.52
FAST iSeg2017 GM 0.65 0.04 2.42 0.17
FAST iSeg2017 WM 0.58 0.37 3.49 0.38
KK2D iSeg2017 CSF 0.91 0.01 1.04 0.13
KK2D iSeg2017 GM 0.87 0.01 1.56 0.27
KK2D iSeg2017 WM 0.85 0.02 1.25 0.21

KK2D-NO iSeg2017 CSF 0.91 0.01 1.04 0.13
KK2D-NO iSeg2017 GM 0.87 0.01 1.56 0.27
KK2D-NO iSeg2017 WM 0.84 0.01 1.29 0.2
KK2D-S iSeg2017 CSF 0.91 0.01 1.12 0.2
KK2D-S iSeg2017 GM 0.85 0.01 2.04 0.22
KK2D-S iSeg2017 WM 0.81 0.02 1.48 0.13
KK3D iSeg2017 CSF 0.94 0.01 1 0
KK3D iSeg2017 GM 0.9 0.01 1.51 0.15
KK3D iSeg2017 WM 0.88 0.02 1.12 0.2

KK3D-NO iSeg2017 CSF 0.9 0.03 1.04 0.13
KK3D-NO iSeg2017 GM 0.83 0.07 1.51 0.15
KK3D-NO iSeg2017 WM 0.8 0.07 1.12 0.2
KK3D-S iSeg2017 CSF 0.94 0.01 1.04 0.13
KK3D-S iSeg2017 GM 0.88 0.01 1.54 0.21
KK3D-S iSeg2017 WM 0.86 0.01 1.25 0.21

SPM iSeg2017 CSF 0.78 0.03 3.12 0.56
SPM iSeg2017 GM 0.77 0.02 2.89 0.2
SPM iSeg2017 WM 0.64 0.03 6.42 0.93

UN2D iSeg2017 CSF 0.92 0.01 1.04 0.13
UN2D iSeg2017 GM 0.88 0.01 1.55 0.31
UN2D iSeg2017 WM 0.86 0.02 1.25 0.21

UN2D-NO iSeg2017 CSF 0.9 0.01 1.04 0.13
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UN2D-NO iSeg2017 GM 0.84 0.01 1.62 0.28
UN2D-NO iSeg2017 WM 0.8 0.01 1.33 0.17
UN2D-S iSeg2017 CSF 0.92 0.01 1 0
UN2D-S iSeg2017 GM 0.88 0.01 1.86 0.23
UN2D-S iSeg2017 WM 0.86 0.02 1.41 0
UN3D iSeg2017 CSF 0.93 0.01 1.14 0.46
UN3D iSeg2017 GM 0.9 0.01 1.58 0.74
UN3D iSeg2017 WM 0.88 0.01 1.29 0.39

UN3D-NO iSeg2017 CSF 0.43 0.12 12 10.34
UN3D-NO iSeg2017 GM 0.02 0.03 21.53 15.23
UN3D-NO iSeg2017 WM 0.3 0.16 15.43 5.02
UN3D-S iSeg2017 CSF 0.93 0.01 1 0
UN3D-S iSeg2017 GM 0.89 0.01 1.65 0.32
UN3D-S iSeg2017 WM 0.87 0.02 1.21 0.22
URN2D iSeg2017 CSF 0.91 0.01 1.04 0.13
URN2D iSeg2017 GM 0.87 0.01 1.55 0.3
URN2D iSeg2017 WM 0.85 0.01 1.25 0.17

URN2D-NO iSeg2017 CSF 0.9 0.01 1.04 0.13
URN2D-NO iSeg2017 GM 0.84 0.01 1.62 0.34
URN2D-NO iSeg2017 WM 0.8 0.02 1.33 0
URN2D-S iSeg2017 CSF 0.91 0.01 1.04 0.13
URN2D-S iSeg2017 GM 0.85 0.01 2.23 0.62
URN2D-S iSeg2017 WM 0.8 0.02 1.51 0.15
URN3D iSeg2017 CSF 0.93 0.01 1 0
URN3D iSeg2017 GM 0.89 0.01 1.54 0.21
URN3D iSeg2017 WM 0.87 0.02 1.17 0.21

URN3D-NO iSeg2017 CSF 0.43 0.15 11.34 13.12
URN3D-NO iSeg2017 GM 0.07 0.21 25.34 12.53
URN3D-NO iSeg2017 WM 0.22 0.24 17.24 5.34
URN3D-S iSeg2017 CSF 0.92 0.03 1.57 1.81
URN3D-S iSeg2017 GM 0.87 0.01 2.03 0.66
URN3D-S iSeg2017 WM 0.83 0.04 1.45 0.3

DM2D MICCAI2012 CSF 0.89 0.05 1.66 0.69
DM2D MICCAI2012 GM 0.93 0.03 1.49 0.74
DM2D MICCAI2012 WM 0.95 0.02 1.32 0.57

DM2D-NO MICCAI2012 CSF 0.88 0.05 1.72 0.91
DM2D-NO MICCAI2012 GM 0.93 0.03 1.52 0.78
DM2D-NO MICCAI2012 WM 0.96 0.02 1.33 0.58

DM3D MICCAI2012 CSF 0.92 0.03 1.22 0.36
DM3D MICCAI2012 GM 0.94 0.02 1.15 0.42
DM3D MICCAI2012 WM 0.97 0.01 1.14 0.52
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DM3D-NO MICCAI2012 CSF 0.89 0.05 1.21 0.3
DM3D-NO MICCAI2012 GM 0.93 0.03 1.24 0.47
DM3D-NO MICCAI2012 WM 0.95 0.02 1.19 0.54

FAST MICCAI2012 CSF 0.16 0.13 39.62 2.69
FAST MICCAI2012 GM 0.91 0.02 5.84 0.45
FAST MICCAI2012 WM 0.66 0.08 5.16 0.24
KK2D MICCAI2012 CSF 0.91 0.03 1.41 0.49
KK2D MICCAI2012 GM 0.94 0.02 1.23 0.53
KK2D MICCAI2012 WM 0.96 0.01 1.46 0.2

KK2D-NO MICCAI2012 CSF 0.9 0.03 1.44 0.5
KK2D-NO MICCAI2012 GM 0.93 0.02 1.27 0.53
KK2D-NO MICCAI2012 WM 0.96 0.01 1.18 0.27

KK3D MICCAI2012 CSF 0.91 0.04 1.12 0.28
KK3D MICCAI2012 GM 0.94 0.02 2.04 0.43
KK3D MICCAI2012 WM 0.96 0.01 1.48 0.45

KK3D-NO MICCAI2012 CSF 0.86 0.08 1.18 0.24
KK3D-NO MICCAI2012 GM 0.93 0.02 1.21 0.44
KK3D-NO MICCAI2012 WM 0.96 0.02 1.12 0.45

SPM MICCAI2012 CSF 0.39 0.29 38.87 4.56
SPM MICCAI2012 GM 0.63 0.38 7.91 0.52
SPM MICCAI2012 WM 0.62 0.37 5.17 0.16

UN2D MICCAI2012 CSF 0.91 0.03 1.19 0.21
UN2D MICCAI2012 GM 0.94 0.02 1.27 0.51
UN2D MICCAI2012 WM 0.96 0.02 1.2 0.52

UN2D-NO MICCAI2012 CSF 0.87 0.06 1.37 0.29
UN2D-NO MICCAI2012 GM 0.92 0.02 1.33 0.54
UN2D-NO MICCAI2012 WM 0.95 0.02 1.24 0.52

UN3D MICCAI2012 CSF 0.92 0.03 1.76 0.86
UN3D MICCAI2012 GM 0.94 0.02 1.37 0.54
UN3D MICCAI2012 WM 0.96 0.01 1.2 0.52

UN3D-NO MICCAI2012 CSF 0.04 0.02 30.05 18.24
UN3D-NO MICCAI2012 GM 0 0 24.92 16.35
UN3D-NO MICCAI2012 WM 0.67 0.01 5.35 5.18
URN2D MICCAI2012 CSF 0.91 0.03 1.95 1.5
URN2D MICCAI2012 GM 0.94 0.03 1.27 0.55
URN2D MICCAI2012 WM 0.96 0.02 1.21 0.55

URN2D-NO MICCAI2012 CSF 0.58 0.13 4.77 4.51
URN2D-NO MICCAI2012 GM 0.91 0.03 1.41 0.65
URN2D-NO MICCAI2012 WM 0.94 0.02 1.25 0.55

URN3D MICCAI2012 CSF 0.9 0.05 1.79 1.13
URN3D MICCAI2012 GM 0.95 0.02 1.18 0.46
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URN3D MICCAI2012 WM 0.97 0.01 1.15 0.49
URN3D-NO MICCAI2012 CSF 0.07 0.1 18.37 11.38
URN3D-NO MICCAI2012 GM 0.78 0.09 8.35 4.95
URN3D-NO MICCAI2012 WM 0.87 0.04 7.46 5

DM2D-(23,23) iSeg2017 CSF 0.9 0.02 1.04 0.12
DM2D-(23,23) iSeg2017 GM 0.86 0.01 1.41 0
DM2D-(23,23) iSeg2017 WM 0.84 0.02 1.77 0.3
DM2D-(37,37) iSeg2017 CSF 0.91 0.02 1.04 0.12
DM2D-(37,37) iSeg2017 GM 0.85 0.02 1.48 0.13
DM2D-(37,37) iSeg2017 WM 0.81 0.02 2.11 0.22

DM3D-(23,23,23) iSeg2017 CSF 0.94 0.01 1 0
DM3D-(23,23,23) iSeg2017 GM 0.89 0.01 1.08 0.17
DM3D-(23,23,23) iSeg2017 WM 0.87 0.01 1.42 0.28
DM3D-(37,37,37) iSeg2017 CSF 0.94 0.02 1 0
DM3D-(37,37,37) iSeg2017 GM 0.89 0.02 1.17 0.2
DM3D-(37,37,37) iSeg2017 WM 0.87 0.02 1.42 0.28

KK2D-(28,28) iSeg2017 CSF 0.86 0.02 1.41 0
KK2D-(28,28) iSeg2017 GM 0.88 0.02 1.41 0
KK2D-(28,28) iSeg2017 WM 0.84 0.02 1.88 0.28
KK2D-(36,36) iSeg2017 CSF 0.86 0.02 1.41 0
KK2D-(36,36) iSeg2017 GM 0.87 0.02 1.5 0.19
KK2D-(36,36) iSeg2017 WM 0.83 0.02 2.18 0.26

KK3D-(28,28,28) iSeg2017 CSF 0.91 0.03 1.04 0.12
KK3D-(28,28,28) iSeg2017 GM 0.85 0.05 1.52 0.29
KK3D-(28,28,28) iSeg2017 WM 0.81 0.05 1.97 0.55
KK3D-(36,36,36) iSeg2017 CSF 0.88 0.03 1.71 0.88
KK3D-(36,36,36) iSeg2017 GM 0.77 0.05 2.13 0.6
KK3D-(36,36,36) iSeg2017 WM 0.65 0.18 3.73 2.17

UN2D-(08,08) iSeg2017 CSF 0.86 0.02 1.41 0
UN2D-(08,08) iSeg2017 GM 0.77 0.05 2.29 0.38
UN2D-(08,08) iSeg2017 WM 0.68 0.08 3.11 0.39
UN2D-(16,16) iSeg2017 CSF 0.9 0.02 1.08 0.17
UN2D-(16,16) iSeg2017 GM 0.84 0.05 1.5 0.19
UN2D-(16,16) iSeg2017 WM 0.81 0.04 2.05 0.54

UN3D-(08,08,08) iSeg2017 CSF 0.84 0.04 2.41 1.48
UN3D-(08,08,08) iSeg2017 GM 0.71 0.09 2.3 0.47
UN3D-(08,08,08) iSeg2017 WM 0.65 0.11 3.21 0.69
UN3D-(16,16,16) iSeg2017 CSF 0.91 0.02 1.1 0.3
UN3D-(16,16,16) iSeg2017 GM 0.84 0.08 1.45 0.29
UN3D-(16,16,16) iSeg2017 WM 0.82 0.05 1.96 0.65
URN2D-(08,08) iSeg2017 CSF 0.85 0.03 1.55 0.55
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URN2D-(08,08) iSeg2017 GM 0.73 0.13 2.34 0.56
URN2D-(08,08) iSeg2017 WM 0.68 0.1 3.24 0.83
URN2D-(16,16) iSeg2017 CSF 0.9 0.02 1.07 0.22
URN2D-(16,16) iSeg2017 GM 0.8 0.12 1.76 0.56
URN2D-(16,16) iSeg2017 WM 0.77 0.06 2.41 0.53

URN3D-(08,08,08) iSeg2017 CSF 0.87 0.03 1.31 0.3
URN3D-(08,08,08) iSeg2017 GM 0.76 0.07 2.01 0.23
URN3D-(08,08,08) iSeg2017 WM 0.71 0.07 2.92 0.55
URN3D-(16,16,16) iSeg2017 CSF 0.91 0.02 1 0
URN3D-(16,16,16) iSeg2017 GM 0.81 0.16 1.69 0.81
URN3D-(16,16,16) iSeg2017 WM 0.81 0.06 1.96 0.67

A.2 Considered ADNI cases

002_5018, 003_4136, 003_4152, 003_4373, 003_4892, 003_5165, 003_5187, 005_4707, 005_4910, 005_5038,

005_5119, 006_4546, 006_4867, 007_4911, 007_5196, 009_5027, 009_5037, 009_5224, 009_5252, 011_4827,

011_4845, 011_4906, 011_4912, 011_4949, 013_5071, 014_4615, 016_4353, 016_4583, 016_4887, 016_5032,

016_5057, 018_4696, 018_4733, 018_5074, 018_5240, 019_4549, 019_5012, 019_5019, 021_4718, 021_4924,

023_5120, 023_5241, 024_4223, 024_4280, 024_4905, 024_5054, 027_4801, 027_4802, 027_4938, 027_4962,

027_4964, 029_4307, 031_4024, 032_4755, 033_5013, 033_5017, 033_5087, 035_4783, 036_4820, 036_5063,

036_5149, 036_5210, 037_4001, 037_4770, 037_4879, 037_5162, 051_4980, 051_5005, 052_4959, 052_5062,

053_5070, 053_5208, 067_4728, 067_5205, 068_4859, 068_4968, 068_5146, 070_4692, 070_4719, 073_4853,

073_5090, 082_5029, 082_5184, 094_4282, 094_4737, 098_4201, 099_4994, 109_4378, 114_4379, 116_4209,

116_4338, 116_4537, 116_4732, 126_4686, 127_4749, 127_4940, 127_4992, 127_5028, 127_5056, 127_5058,

127_5067, 127_5095, 128_4772, 128_4774, 128_4792, 128_5123, 130_4589, 130_4730, 130_4971, 130_4982,

130_4984, 130_4990, 130_4997, 130_5006, 130_5059, 130_5231, 131_5138, 135_4863, 135_4954, 135_5015,

136_4993, 137_4756

A.3 ADNI cases considered in Chapter 6 for test-
ing

A.3.1 Alzheimer’s disease patients

006_4153, 006_4192, 007_4568, 014_4039, 016_4009, 016_4591, 019_4252, 019_4477, 023_4501, 094_4089,

098_4215, 116_4195, 116_4625, 123_4526, 126_4494, 127_4500, 130_4641, 130_4660, 135_4657, 135_4676,

137_4211, 137_4258, 137_4672, 153_4172
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A.3.2 Control subjects

002_4262, 003_4288, 007_4516, 009_4612, 023_4448, 029_4384, 029_4385, 029_4585, 035_4464, 053_4578,

094_4503, 094_4560, 099_4104, 116_4483, 128_4832, 129_4369, 129_4371, 129_4422, 941_4292
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