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Abstract

This thesis encompasses a set of different subjects related to metocean variables but
studied from different perspectives. The metocean variables are mainly significant wave
heights and wind velocities and, to a lesser extent, wave periods. The extreme value
theory is used to probabilistically characterized the metocean variables by means of the
generalized extreme value distribution (GEV). The effect of seasonality is included by
considering monthly maxima and using harmonic and subharmonic functions (i.e., time
dependency in the GEV model is incorporated). Although Mexican information was not
available to this study, the studies are considered applicable to Mexican coasts in the
Gulf of Mexico and the Pacific, since available public information from U.S. buoys
located in the Atlantic and Pacific oceans relatively close to the Mexican coasts is
employed. For the Pacific region, the GEV model accounting for seasonality is applied to
data from a buoy (this is reported in an article in the appendix and summarized as a book
chapter in the compendium of publications) and comparisons are carried out versus
analogous results for buoys in the Gulf of Mexico obtained in a previous study (included
also in the appendix). In other part of the thesis (another book chapter in the
compendium), but also for the buoy in the Pacific Ocean, a study is carried out to assess
the impact of including or excluding an atypical wave height in the seasonality and in
future projections (i.e., wave heights associated with given return periods), since an
atypically large significant wave heigh was observed for the considered buoy. One more
study (an article in the compendium) introduces the wind velocity as a Metocean
variable to be characterized with the time-dependent GEV model from data of a buoy in
the Gulf of Mexico. This wind velocity is not for monthly maxima, but for the recorded
wind velocity which simultaneously occurred with the maximum significant wave
heights, thus it is also referred to as companion wind in this work. It is pointed out that
the level of resolution is within that corresponding to the National Oceanic and
Atmospheric Administration (NOAA) from US, where the significant wave height and
wind speeds are denoted as WVHT and WSPD, respectively. The wind velocity is
averaged over an eight-minute period recorded at 3.6 m above sea level and the significant
wave height (the average of the highest one-third of all of the wave heights) over a 20-
minute period. For the scope of this study, these metocean variables are used as directly
given in the NOAA data. It is acknowledged that there may be a slight time lag between

the occurrence of one measurement and the other (since the averaging sampling periods



differ) but the difference is not considered significant for practical purposes; besides, we
are limited to the resolution of the available data. Nevertheless, the uncertainty and
impact of these different sampling periods in the projections are recommended as future
research subjects. This allowed to propose a simplified approach to determined
concurrent significant wave heights and associated wind velocities for given return
periods, while accounting for seasonality and quantitatively establishing the uncertainty
in the correlated metocean variables in question. This proposal can be potentially used
for design and engineering purposes, if the metocean are considered as hazards which
imposed demands on coastal (and structural) engineering systems. Additionally, the
effect of varying the considered time window for the extreme projections is explored. In
a final study (also an article in the compendium), an introduction to the reliability of
coastal (and also structural) engineering systems is presented; a breakwater is used as
case-study. The coastal structure is subjected to the action of wave heights with different
wave periods, for which the joint Longuet-Higgins distribution is used, and the
overtopping probability of failure is computed by using classical and revisited reliability
approaches. Future studies could combine the characterization of metocean variables as
time-dependent GEV models and the used reliability approaches to further investigate

the reliability of coastal and offshore systems.



Resumen

Esta tesis abarca diferentes temas relacionados con variables meteoceanograficas
(metocean) pero estudiadas desde diversas perspectivas. Estas variables son
principalmente el oleaje significativo y la velocidad de viento, y en menor medida el
periodo de oleaje. Se emplea la teoria de valores extremos para caracterizar
probabilisticamente las variables meteoceanograficas mediante el uso de la distribucion
de extremos generalizada (GEV, por sus siglas en inglés), incluyendo el efecto de la
estacionalidad al considerar valores maximos mensuales, asi como funciones armonicas
y subarmonicas, lo que significa que el modelo GEV es funcion del tiempo. Aunque no se
contd con informacion mexicana para el presente trabajo, se considera que lo
desarrollado aqui puede aplicarse a las costas mexicanas, ya que se usaron datos de boyas
estadounidenses situadas en los océanos Atlantico y Pacifico y relativamente cercanas a
costas mexicanas. Para la region del Pacifico se aplica el modelo GEV a una boya (esto se
describe en un articulo en el apéndice y resumido como capitulo de libro en el compendio
de publicaciones) y los resultados se comparan con resultados analogos de un estudio
previo, pero para boyas localizadas en el Golfo de México (dicho estudio también esta
contenido en el apéndice). En otra parte de la tesis, pero también parala boya del Pacifico
(otro capitulo de libro en el compendio), mediante un estudio se estima el impacto de
incluir o excluir un dato atipico de la altura de oleaje en la estacionalidad y proyecciones
a futuro (i.e., las alturas de oleaje asociadas a periodos de retorno dados), ya que se
observo una ola atipicamente alta para la boya considerada. Un estudio mas (un articulo
del compendio) incorpora a las velocidades de viento como variable mete-oceanografica
para también caracterizarla como un modelo GEV que depende del tiempo, con datos de
una boya situada en el Golfo de México. Estas velocidades de viento no corresponden a
las maximas reportadas en cada mes, sino a aquellas que ocurrieron simultaneamente con
las maximas alturas significativas generadas por oleaje, por lo tanto, en este trabajo
también se le denota como viento acompanante (companion wind). Cabe resaltar que el
nivel de resolucion empleado es el correspondiente al de la Administracion Nacional
Oceanica y Atmosférica (NOAA por sus siglas en inglés), donde la altura de ola
significativa y las velocidades de viento se denotan como WVHT y WSPD,
respectivamente. La velocidad de viento se promedia para un periodo de 8 minutos y se
registra a 3.6 m sobre el nivel del mary la altura de ola significativa (el promedio del tercio

superior de todas las alturas de ola) para un periodo de 20 minutos. Para los alcances de



este estudio, estas variables meteoceanograficas se toman directamente como estan
reportadas en los datos de la NOAA. Se reconoce que puede haber un ligero desfase de
tiempo entre las mediciones de una variable y la otra (ya que los tiempos de muestreo
para el promedio son distintos) pero no se considera que esta diferencia sea significativa
para fines practicos; ademas, estamos limitados a la resolucion de los datos disponibles.
No obstante, la incertidumbre y el impacto de estos diferentes periodos de muestreo en
las proyecciones son consideradas como materias de investigacion para futuros
proyectos. Esto conllevo a proponer un método simplificado para determinar alturas de
oleaje significativo concurrentes con los vientos asociados a la misma boya y tiempo y
para un periodo de retorno dado, y al mismo tiempo incorporando efectos de
estacionalidad y estableciendo de manera cuantitativa la incertidumbre para las variables
correlacionadas mencionadas. Esta propuesta es potencialmente util para propositos de
diseno e ingenieriles, si las variables meteoceanograficas se consideran como peligros que
imponen demandas a sistemas de ingenieria costeros (y estructurales). Adicionalmente,
se explora el efecto de utilizar diferentes ventanas de tiempo en las proyecciones de
valores extremos. En un estudio final (también un articulo del compendio) se presenta
una introduccion a la confiabilidad de sistemas de ingenieria costera (y también
estructural), usando un rompeolas como caso de estudio. La estructura costera se somete
a la accion de oleaje con diferentes periodos, mediante el uso de la distribucion de
Longuet-Higgins, y se calculan las probabilidades de falla por rebase aplicando métodos
de confiabilidad clasicos, y otros métodos consultados en retrospectiva y reconsiderados
prospectivamente. Estudios futuros podrian combinar el uso de modelos GEV como
funcion del tiempo para caracterizar variables meteoceanograficas con el uso de métodos
de confiabilidad, para investigar mas a fondo la confiabilidad de sistemas costeros y costa

afuera.
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1. Introduction

Metocean variables as the wave height, wave period, the wind velocity which occurs
simultaneously with the previous variables, among others, should be
probabilistically characterized if they are to be used for the design and operation of
coastal and marine infrastructure and for other engineering applications. The
seasonal variation of extreme values for such metocean variables also affects the
planning, design, construction, operation and maintenance of shore and offshore
structures such as breakwaters, ports, oil facilities, etc. Moreover, values of
metocean variables should be oft associated with return periods usually employed
in codified design for practical applications. Furthermore, these seasonal wave
heights and wind velocities act together, as adding demands, over maritime and
structural systems which capacities must withstand the effects imposed by these

uncertain metocean variables.

Other aspects as the possible influence of atypical large values in the estimation of
extreme values, differences dependent on the considered region and even on the
considered site (for example at two different oceans as the Pacific and the Atlantic,
or two different locations within the same ocean), and the consideration of different
time windows in the extreme value projections for given return periods can also be

of interest to the researchers and designers.

Therefore, an adequate probabilistic characterization of the metocean variables, not
only as single demands but also as concurrent demands, is important for research
and practical purposes. For instance, the demands represented as probability
distributions could be used, together with the capacity of coastal structures ad
systems (which can be deterministic or probabilistic), to compute the probability of

failure of such structures and systems. This is important for codified design.
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1.1 Motivation

In general, metocean variables are related to phenomena relevant to researchers of
several fields. Specifically, wind together with waves are metocean variables
capable of substantially impact ports, maritime structures and offshore facilities,
among other systems. The influen ce of these metocean variables is of great interest
to researchers, engineers and decision makers, because they influence the planning,
design, building, operation, maintenance and even decommission of important
projects. This is the case for ultimate limit states but also for serviceability limit
states. The former are important to prevent major failures of the above referred
systems and the latter to keep the systems functional. These limit states are usually
included in standards and guidelines, where also design criteria and acceptable

safety and functionality limits are established.

Since the metocean variables can be considered as random demands imposed to
systems which capacities must withstand such demands, for prescribed acceptable
levels contained in codes and regulations, it is desirable to characterize such
variables probabilistically. Also, operability and maintenance, among other issues,
could depend on the seasonality of metocean variables. Moreover, these variables
often do not act as single demands, but they act simultaneously on offshore facilities,
coastal structures and other engineering systems, that are designed for extreme
values associated to return periods. Consequently, it is of interest to inspect the
correlation of variables as wave height and wind velocity associated with a
prescribed return period. Extreme value theory is a key tool to investigate metocean
variables associated with given return periods, and classic probabilistic techniques
as regression and residual analysis can be also very useful tools. Among the
probability distributions contained within the extreme value theory, the generalized
extreme value distribution (GEV) is a powerful alternative since it encompasses the
three well-known extreme value distributions in a single mathematical expression.
Other aspects that could also be of interest for research and engineering purposes
include, but are not limited to, the influence of the atypical values and considered
time windows in extreme value projections, as well as regional and site to site
differences in extrapolation of extreme values useful for design. The previous issues

encourage the probabilistic characterization of metocean variables as, both, single
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and concurrent acting random phenomena considering seasonality and using
extreme value theory. Furthermore, this characterization could be used to compute

the probability of failure of costal systems by using reliability theory.
1.2 Objectives

The objectives of the present study are to probabilistically characterize individual
metocean variables (significant wave height and wind velocity) by using a GEV
model and considering seasonality, also to develop a simple approach for
determining concurrent metocean variables with seasonal variation (significant
wave height and wind velocity) associated with given return periods by combining
GEV models and classical regression and to inspect the influence of atypical values,
considered time windows and a selected site in the projections of extreme values.
Other objective is to introduce the use of reliability theory to compute the

probability of failure of coastal structures.
1.3 Outline

This thesis is structured in two parts. First, the Thesis body, which summarises the
thesis work. Second, the Compendium of papers, which provides the details of the

study.

The background information is given in Section 2. Sub-section 2.1 describes the
probability methods developed and employed, and Sub-section 2.2 outlines the
lineal regression, correlation and residual analysis. In Sub-section 2.3 reliability
theory is briefly summarized, and the overall discussion and general conclusions are

given the section 4.

The compendium of papers is composed by two papers (Paper A and Paper B) and
two book chapters (Book chapter 1 and Book chapter 2). The two papers are already
published in international peer-reviewed journals. Other two papers are not part of
the main body of the Thesis (Paper C and Paper D), but they are included in an
appendix since they provide support to the work. All of them are listed below and

enclosed after the Thesis Body.

Paper A. Correlation of Concurrent Extreme Metocean Hazards Considering

Seasonality. Applied Sciences. Appl. Sci. 2020, 10,4794; doi:10.3390/app10144794.
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[Felicitas Calderdn-Vega, Adrian-David Garcia-Soto and César Mosso]

Paper B. Revisiting Two Simulation-Based Reliability Approaches for Coastal and
Structural Engineering Applications. Applied Sciences. Appl. Sci. 2020, 10, 8176;
doi:10.3390/app10228176

[Adridn-David Garcia-Soto, Felicitas Calder6n-Vega, César Mdsso, Jesus-Gerardo

Valdés-Vazquez and Alejandro Hernandez-Martinez]

Book Chapter 1. Emerging Issues in Science and Technology Vol. 1. Chapter 11,
Influence of an Atypical Value in the Extreme Wave Analysis Using Non-Stationary
GEV Models. Print ISBN: 978-93-89562-66-8, eBook ISBN: 978-93-89562-67-5. DOI:
10.9734 /bpi/eist/vl

[F. Calderén-Vega, C. M6sso and A. D. Garcia-Soto]

Book Chapter 2. New Ideas Concerning Science and Technology. Describing the
Summary of Single Site Extreme Wave Analysis in the Pacific Ocean Comparing
Stationary and Non-Stationary GEV Models DOLI:
https://doi.org/10.9734/bpi/nicst/v4/2310E [F. Calderén-Vega, C. Mosso, A. D.
Garcia-Soto and E. Delgadillo-Ruiz]

Paper C. Single Site Extreme Wave Analysis in the Pacific Ocean Comparing
Stationary and Non-stationary GEV Models. Curr ent Journal of Applied Science and
Technology. 32(6): 1-12,2019; Article no. CJAST.47420 [F. Calder6n-Vega, C. M6sso,
A. D. Garcia-Soto and E. Delgadillo-Ruiz]

Paper D. Analysis of extreme waves with seasonal variation in the Gulf of Mexico
using a time-dependent GEV model. Ocean Engineering. Ocean Engineering 73

(2013) 68-82 [F.Calderon-Vega, A.0.Vazquez-Hernandez, A.D.Garcia-Soto]
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2. Background

In this section, the used methodologies in this work are briefly described as
background. First, the development of extreme value theory and associated
probability distributions are briefly mentioned (GEV model). These subjects are
based on the articles included in the appendix. Then, the classic techniques of linear
regression, correlation and residual analysis are presented. Finally, the reliability
theory is described based on information in the literature. These approaches are the

basis to achieve the objectives stated above.

2.1 Characterization of Metocean Variables with Time-Dependent GEV
Models
2.1.1 Extreme Value Theory

Extreme value theory can be employed to project values of a random variable to
return periods of interest. These projected values are useful for engineering
applications to designing structures subjected to the effects of environmental
phenomena for a life cycle, e.g., a port which must withstand the effect of the extreme
expected environmental effects during its lifetime. This means that the design is
conditioned by the maximum expected effects (e.g., wave height) likely to occur in

the lifetime of the port (or other system of interest).

From the analysis of extreme value data, the extreme value theory is derived. This
subject encompasses a set of tools and techniques to model and quantify the

stochastic behaviour, in terms of magnitude and frequency, of the extreme events.

If asymptotic theory is postulated, the maximum values can be represented with the
generalized extreme value distributions first presented by Fisher and Tippet, and
further developed by Gumbel (Chakrabarti, 2001). It is reported that several issues
can affect the assessment of the extreme values when a probability model is used,
as the amount of available data recordings, selection and exclusion of information,

among other aspects (e.g., Prpic-0rsi¢, 2007, Martucci, 2010).

Several models have been proposed to characterize metocean behavior, including
models which accounts for site conditions (e.g., [Isaacson and Mackenzie, 1981; Muir

and ElShaarawi, 1986; Prevosto and al., 2000; Stansell, 2005; Tayfun and Fedele
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2007; Jensen, et al,, 2011; Mazas and Hamm, 2011; Muraleedharan, et al., 2012;
Solari and Losada, 2012; Soares and Carvalho, 2012). Not so many studies include
the seasonality; some early studies as that by Mietus (1998) considered the
seasonal variation applied to the wind speed in the Baltic Sea; also Jonsson et al.
(2002) indicated the large seasonal variation in a metocean variable (wave height)
for the Baltic Sea. It is reported that non-stationary models for wave variables lead
to smaller bias and variance as those from stationary models. It was also proven that
estimates from discrete seasonal models tend to be highly biased. Rdamet and
Soomere (2010) estimated the seasonal variation in wave climate in the Baltic Sea

using a high-resolution version of a wave model.
2.1.2 Extreme Time-Dependent GEV Distribution

The GEV distribution for maximum values in a block of time is used to modeling the
seasonality of significant wave heights (e.g. Leadbetter et al., 1983). The GEV has the
ability of covering the three families of well-known extreme value CDFs (the so-

called Gumbel, Weibull and Frechet probability distributions) as (Coles, 2001)

G(x) = exp {— [1 +¢ (x ; “)]_1/5}

* (1)
-&+0
62 = en{-exn[- (52} -
=0

The corresponding PDF is expressed as

900 = %{1 v (x - M)]‘(1+1/€) exp {_ [1

v
+€(x;u>];1/€} SE%0 2
a0 = en (Z5 e -5 =
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where [a]+ denotes max (a, 0), - oo < <oo denotes the location parameter, > 0
denotes the scale parameter and ¢ denotes the shape parameter; the shape
parameter defines which of the three well-known PDFs is represented. If € # 0, it
corresponds to the Fréchet PDF when &> 0 and corresponds to the Weibull PDF
when § <0; when € - 0 the Gumbel PDF is more suitable for the considered data.
The Fisher-Tippet theorem defines a distinct behavior for every type of distribution
in the tail region. The tail of the Weibull distribution is bounded, whereas it is heavy
or light, if the Frechet or Gumbel distributions are considered, respectively. A
feature of the Gumbel distribution is the exponential decay of the tail. In contrast,
the decay as a function of a power is characteristic of the Fréchet distribution. Only
one of the three well-known extreme value distributions is adopted to approximate
the behavior of the random variable.

In subsequent chapters, a time-dependent GEV model considering seasonal
behavior is described. It assumes that monthly maximum values, zi, observed at
times t;, are independent. Adoption of monthly maxima captures important features
of the upper tail of the distribution (Katz et al., 2002).

The parameters assessment is affected by the reduced data when a time window
below one year is used; this should be kept in mind, because some seasons may not
have recorded data in the used series; a minimum of data per month should
preferably be stipulated, for instance rejecting the maximum monthly events with

less than 60% of recorded values (Mendez et al., 2007).
2.1.3 Inclusion of Seasonality

Cyclical changes along a given year define the seasonality of a random variable. The
variation within a year for extreme wave heights has been modeled by using
extreme value theory (Morton et al. ,1997; Carter and Challenor, 1981). Patterns of
wave intensity and the probability distribution associated with different wave
heights, accounting for seasonality, has also been adequately reproduced (Radmet
and Soomere, 2010). Seasonal weather patterns are commonly associated with a
recurrent yearly behaviour that can be represented by sinusoidal expressions. In
general terms, this can be considered as a winter-summer variation, including other

systematic weather patterns linked to climatic phenomena (e.g., hurricanes and cold
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fronts). By observing such patterns, to represent the seasonal variability as a

superposition of harmonic functions seems reasonable.

Among the several possibilities to represent this non-stationary behaviour in the
GEV models, harmonic functions can be adopted, and their parameters determined
by regression. In the studies included in this thesis the following expressions are

used (Mendez et al., 2008; Menéndez et al., 2009)

u(t) = By + By cos(2mt) + B, sin(2mt) + P cos(4mt) + B, sin(4nt)  (3)
0 =3Y(t) = ay + a; cos(2mt) + a, sin(2nt) + a; cos(4nt) + a, sin(4nt)
E(t) = yo + 4 cos(2mt) + y, sin(2mt) + y5 cos(4nt) + y, sin(4mt)

Where tis in years and ¥ (t > 0); 8 includes the location, scale and shape (u(t),
Y(t) and &(t)) parameters, respectively; By, a, and y, denote mathematical
expectation; the amplitudes of the harmonics are represented by S;, @; and y; (i=1

or i=2) and those of the subharmonics by f;, @; andy; (i=3 or i=4).
2.1.4 Fitting technique

Among the available approaches to determine coefficients of the model by
regression, and to fit the data to known probability distributions, the maximum
likelihood method is a powerful alternative. This approach is used for several of the
studies contained in the Thesis, since it leads to an adequate fitting, less bias and, in
general, more efficient estimators for long return periods and not very large data
sets, as stated by Lettenmaier and Burges (1982). The so-called maximum likelihood
method estimates parameters of a L function, so that the probability of observing
the sample set {xi,..xn} is maximum. The following expression can be used to
represent L (Benjamin and Cornell, 1970)

. (4)
L(H;xl,xz,...,xn)=f(x1,...xn;9)=1_[ f(xi;6)
i=1

where L(6; x4, x5, ..., x,,) defines the joint density function associated with all initial
extreme values and is known as the likelihood function, which initial extreme values
are selected from a given distribution family. The maximum compatibility between

the sample of maxima Xj,...Xn, and density function f(x,,...x,;0) is searched;

17



0 denotes the parameter vector for the probability distribution function. Usual
assumptions include that the samples are independent and identically distributed.
Instead of L, its natural logarithm is often considered, and it is known as the log-

likelihood function, /, given below

L 5
l(H;xl,xz,...,xn)=Zlog [f(x1,...%5; 0)] ©)

By minimizing the previous equation, maximum likelihood estimators, 8 , are
deemed as the parameter values with the maximum likelihood, for which the

following set of equations must be solved (for j=1,...r):

o 0 (6)
Za— 9Lf Geayevo 0 0)] = 0

If this is applied to the GEV distribution, the log-likelihood function yields

; AR N D
'(XMAX?ﬂ’W’§)=—N|ng—(1+lj.zlog(1+§_xi “j_z(lﬂgxi ,UJ :
é: =1 v i v

where the N observations of maximum monthly values are defined as xi,...,Xn.
2.1.5 Assessment of the Uncertainty

The Fisher method is used to incorporate the uncertainty in the models. For such a
purpose, the maximum value of the log-likelihood function is obtained for certain
parameter estimators(@) and used, so that the more likely compatibility between
the observed set of extreme data and the theoretical model is reached. Therefore,
I(x;0) is a measure of the adequacy of the sample when the population parameters

have a given value 6=0.

If I(x;0) undergoes significant variations when 0 changes, it can be considered that
the data sample and 6 are strongly related, which can be quantitatively determined
with @ = al/ae evaluated at 8. The variance evaluated in 8 is required to assess h

with respect to each unknown parameter.
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By assessing the variance, the hessian matrix of the negative value of [(x;0),
evaluated at 8, can then be determined and it is frequently referred to as the

observed information matrix, Iy given by

921(0) 921(0)]
76,2 56,00,
. . 021(6) .
. 00196, _ ®
921(d)
96,06,
921(0) 921(8)
i aepael aepZ |

where p denotes the number of estimated parameters for the probability
distribution considered. The observed information matrix is equivalent to the Fisher
information matrix (asymptotically, and not with the estimators but with the real
parameter values). It can be shown that 8 is normally distributed. The Ip matrix is
used to obtain the standard deviations of 91. e, ép, the so-called standard errors of

the obtained punctual estimators,
se(8;) = \/J; 9)

This is possible by recognizing that for the inverse of this matrix, ] = I;*, the square
roots of the diagonal elements correspond to the standard deviations. In other
words, the Iy matrix represents the surface curvature of the approximated log-
likelihood function.

To compute confidence intervals for the estimators, the normality property of the
maximum likelihood estimators at level (1-a) leads to

ci(6;) = 6; + z,/,5€e(6;) (10)

where z,/, is the quantil (1- a /2) of the standard normal distribution function.

Alternatively, other techniques like Bootstrap methods are reported by Chavez-
Demoulin and Davidson (2005) to quantify uncertainties. For this thesis, the

previous methodology (Coles, 2001) is employed.
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2.1.6 Selection of the Model

The optimal model to represent the non-stationary behavior of the studied
metocean variables is pursued by a parameterization with two sinusoidal harmonics
(Pu=2, Py=2 y P¢=2). Simple models like the Gumbel homogeneous distribution given
by 01 = (Byao), or complex models given by 60 =
(ﬁo,ﬁl,ﬁz,ﬁ3,ﬁ4,a0,al,az,a3,a4,y0,y1,,y2,,y3,y4,), can be chosen. In several of the
articles contained in the compendium and the appendix, the genetic algorithms
nomenclature (Goldberg, 1989) is followed. A binary codification is considered. This
leads to code the model as a binary chromosome c=[gig2.g3g4.85.86g87] where g;
denotes binary genes representing the factors of interest. Each gene can have only a
couple of outcomes, i.e., gi=1 when the ith factor is turned on, or gi=0 when it is not.
The gene g1(B;,B,) is use to model the annual cycle for the location parameter,
whereas g2(B;,3,) to model the semi-annual cycle for the location parameter;
likewise g3(a,, a,)is used to model the annual cycle for the scale parameter,
whereas g4(as, a,) to model the semi-annual cycle for the scale parameter; finally,
g5 is a gene used to model a constant o zero shape parameter (y,), whereas

g6(y1,7,) to model the scale parameter (Goldberg, 1989)

A search selective methodology known as Stepwise, which in turn combines a couple
of techniques denoted as Forward Selection and Backward Elimination, is
performed as a mean to encounter the most suitable model. Every time that a gene
is turned on in the Forward Selection, the Backward Elimination checks whether the
gene must be kept or not. This leads to code the model as a 7-gene chromosome
c=[gl,g2,83,84,5,6,87] , where every gene will have zero or unity values
(Menéndez et al., 2007).

The Akaike Information Criteria (AIC) (Akaike, 1973), given by

AIC = =21(8) + 2p (11)

where p is the number of parameters and [() is the maximum of the log-likelihood
computed from each model, is used as criterion to discriminate between competing
models, and it also represents a compromise between goodness-of-fit and

simplicity.
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2.1.7 Verification of the Model

The adequacy of the model to represent the metocean variables, is verified by means
of quantile-quantile plots (QQ) and probability plots. Note also that, since for
extreme value distributions special interest is focused on the tail of the distribution,
a very convenient standardization for the extreme metocean variables can be
achieved transforming the empirical model distribution into a Gumbel distribution,
so that a quantitative description of the goodness-of-fit is represented. This variable

change is denoted as W and is given by

X — ﬁ(ﬂ)l (12)
P(t)

W(t) = é(lt) log ll + &(t) (

where the maximum monthly N observations {xi,....xn} happen at times {ty,...,tn}.

When the metocean variable of interest is adequately modeled, the resulting
statistics correspond to a standardized Gumbel variable. The W(t) statistics given as
a function of time, are a measure of the stationarity in the metocean variable. The

probability of the Gumbel distribution for the W(t) statistic is computed using
Pr{iW < x} = exp(—e™) (13)

The probability values for the extreme data samples,{F (x(i))}, and the evaluated

probabilities by using the W(t) statistic, are compared in the probability plots.

The QQ plots are determined by sorting the sample values and the quantiles
computed with the assumed theoretical distribution are plotted as well. This leads
to model quantiles given by W(i)=W(x(i), t(i)), and the associated logarithmic
transformation must be applied to the direct sample data, so that they can be scaled

to Gumbel by means of

{~tog (~10g (F(x))). Weo) (1)

2.1.8 Return Periods

Return period values for the metocean variables are given by
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w)-YOh loga-g®) it e@)=0

&)
Xq(t,0)= X (), v (1), £()= (15)
#(t) — (1) log[- log(1- 0)] if  £()=0

where q is the exceedance probability defined from G t(x)=1-q (the time-dependent
GEV distribution function equated to 1-q), and the estimated quantil Xq(t,0), is the

time dependent value of the metocean variable for the return period R=1/q.

The following chapter presents the classic probability techniques of linear
regression, correlation and analysis of residuals, which are used in one of the papers
in the compendium. The concepts are based on what is reported in the literature

(Benjamin and Cornell, 1970; Jordaan, 2004; Kottegoda and Rosso, 2008).

2.2 Lineal Regression, Correlation and Residuals

The linear regression can be used to study the linear relationship of two metocean
variables, as it was carried out for significant wave heights and wind velocities in
one of the papers in the compendium (see Figure 1 extracted from Paper A). In
Figure 1 it is shown that a linear relationship can represent scatter data about a
mean regression line, by considering wind velocities (Vw; y variable) and significant
wave heights (Hs; x variable). If Hs is considered as the independent variable, and Vw
the dependent one, it can be considered that Vy is conditioned on a given value of

Hs.
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Figure 1. Regression analysis of wind velocities and significant wave heights by using
(a) nonlinear and (b) linear models (after Paper A). Residuals in (c) correspond to
regression in (a) and residuals in (d) correspond to regression in (b) (after Paper A in
the compendium).

If we go back to the common use of x and y as the independent and dependent
variables, respectively, and a normal distribution about a straight line with constant

variance for all the x values is assumed, a given y value, y;defined as

y; =a+bx; +e¢; (16)
will deviate from the line by the amount & which is sampled from a normal
distribution function with variance o2.

The regression line can be estimated using the least squares method. If A and B are
denoted as random variables, it is possible to obtain two estimators for a and b,
denoted as 4 and b , respectively. It is then desired to minimize the errors (in fact,
the sums of the squares of the errors), equal to Y ; e? ; in other words, the following

minimization is pursued
n
Min (z [y, — (a + bxl-)]2> (18)
i=1

which can be solved by differentiation, looking for the parameters of interest a and

b, which leads to the simultaneous equations

Zé_ —2(yi—a—bx;) =0 (19)

Zfl_ [-2y:(vi —a —bx)] =0 (20)

which yield the desired estimators d and b when solving

n n
na+b E X = E Vi (21)
i=1 i=1

and

n n n
&Z x; + BZ xf = z XY (22)
i=1 i=1 i=1

By eliminating @ and solving for b
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n iz %y — Uiy %) Xi1 yi (23)

b=
nz?=1xi2 — (XL, x)?

Equation 21 can then be stated as

na + bnx = ny, or y (24)
= a+ bx
where
a=y—bx (25)

Note that sometimes the variables x and y are not related by a linear relationship,
but if other kind of (non-linear) relationship holds, and it can be transformed into a
linearized space, the method described above still can be used. This is the case of
Figure 1b, where Vw and Hs were linearized by taking natural logarithms before the

regression line was computed.

In Figure 1a and 1b the uncertainty in the model parameters is represented by
intervals for mean and future values (inner and outer dashed lines, respectively).
The obtaining of these intervals is not described in detail here, but they can be
obtained by using the t-distribution. Alternatively, the intervals for mean and future
values can be closely approximated with simplified equations proposed in Paper A

of the compendium.

It is also noted that if it is of interest, the correlation (correlation coefficient) can
also be determined with the quantities computed during the regression, but not
described here. Moreover, the analysis of residuals can be used as a tool to verify if
the assumptions made to perform the regression are met. Neither this is described
in detail herein, but Figure 1c and 1d show an example of the residual analyses for

the cases in Figure 1a and 1b, respectively (Paper A of the compendium).

In the next chapter the basic concepts of the reliability theory are introduced, since
they are used in one of the articles in the compendium to compute the probability of

failure of coastal structures.
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2.3 Basic Concepts or Reliability Theory

The concepts in this chapter are the basis of reliability theory and the background
used to develop Paper B in the compendium. They were originally developed to
compute the probability of failure (or its complement, the reliability) of structures
and structural systems, but they have been extended to other fields. In this thesis
the reliability of coastal systems is introduced in Paper B using these basic concepts
and other techniques reported in the literature. Some reliability approaches are
found in the specialized literature (as the ones cited in Paper B in the compendium)
and the basic concepts reported below are based on Hong (2008) and other
references (e.g., Madsen etal,, 1986), and in turn in the references contained in those

works.
2.3.1 Reliability Analysis

A general formulation for the reliability of a system element can be established by

considering the limit state function Z expressed as

Z=9(X)=R-L (26)

where, broadly speaking, R and L can be considered as the capacity and demand of
the element, respectively. If fz(r) and f;(l) represent the probability density
function (PDF) of the independent random variables R and L , then Fi(r) and F; (1)
correspond to their cumulative distribution functions (CDF). Besides, F;(z) is
considered as the PDF of Z. Therefore, the probability of failure P; can be expressed

as

Pr=P(R—L<0)=P(Z<0) (27)
If the probability of failure is represented by an integral the following equation is

given

b=p@<0= | RO .

It can be shown that the previous equation can be simplified as the following single

integral
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br=pz<0) = [ GO0~ FCax

or alternatively as

0]

b= FaCofCodx

(29)

(30)

This can be represented in a simple and schematical way as shown in Figure 2 below.

PDF ‘

Z=R- L Demand L Capacity R

I
|
I
I
|
Probability :
of failure : \
P(z<0) : \
I
/ : \‘s
/ | ‘\
1 »
|
0 m, m, mg R L Z

Figure 2. Schematic representation of the PDFs of capacity, demand, Z and the probability

of failure

Unfortunately, closed form analytical expressions to compute the probability of

failure are only available for a few special cases.

The reliability of an engineering system, Py is related to its probability of failure

through the following relation

Pr=P(R-L>0)=P(Z>0)=1-P(Z<0)=1-P; (31)
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In realistic engineering systems, which are usually more complex, more than two
random variables are involved in the reliability analysis. If the performance of a
system depends on several random variables expressed in a vector format as X, and
the joint probability density function of the vector variables is f,(X) , then Z can
denote the limit state function (LSF), which represents the performance of the
system, which can correspond to the following states: z=g(x)>0 for safety, z=g(x)=0
right on the limit state surface and z=g(x)<0 for failure. Likewise, the probability of

failure involving several random variables can be stated as

P, =P(Z>0) = P(g(X) < 0= f fe(x)dx = ffx(x)dx (32)
nf

z=g(x)<0

except that in this case the integration symbol should be understood as a
multidimensional integration. In practical applications this integral does not have a
close-form analytical solution. Alternatives, from numerical integration and
simulation methods, to more recent approaches (e.g., see references in Paper B of
the compendium), can be used, although they may be computationally intensive and
time-consuming. In the following, classical solutions are presented since they are

the basis of more complex and current methodologies.
2.3.2 Cornell Reliability Index

If for the LSF, Z, defined in Equation (26), both variables are uncorrelated and

normally distributed , the so-called Cornell reliability index, . is obtained as

_mp Ty (33)
Pe = —=—
\Og + 0}
where mg, or, m; and op are the mean and standard deviation of the capacity and

demand, respectively. The reliability index, £, and the probability of failure referred

to above are related through the following expression

B = _q’_l(Pf) (34)
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Where ®(+) denotes the inverse of the standardized normal distribution function.

If the LSF is a linear function of the several random variables, sometimes referred to
as a hyperplane, then
= (35)
Z=gX) =a0+2aiXi =ay+a’X

=1

Where ap and a; are coefficients, and the Cornell reliability index can be extended to

ap+ Xi-a;m; _agt+a’my (36)

ﬁc = -
T
\[Z?zlzyzlaia,axi,xj) Ja'Cya

where Cx denotes the covariance matrix.

If Z is not a linear function of X, the use of the first two probabilistic moments of Z
do not suffice to carry out the reliability analysis. Therefore, a definition of the

reliability index covering LSFs with nonlinear relationships is required.
2.3.3 First-Order Second-Moment Reliability Index

The LSF may not be unique. As an example, let R and L be positive defined random
variables (e.g., lognormal variables). An alternative representation of Equation (26)

is

Z =g(R,L) = In(R/L) (37)

Consequently, fis obtained as

E(In(R/L)) (38)
JVar(In(R/L))

where E and Var stands for expectation and variance, respectively. This formulation

Bre =

was proposed by Rosenblueth and Esteva in 1972.

When Z is not a linear function of R and L, the problem can be solved by linearizing
the LSF around the mean values of R and L. If Taylor series are used, such linearized

Z, denoted as Zro, is represented by

R—mp L—m; (39)
Z~Zpy=1 -1 -
ro = In(mg) — In(my) + — m,
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and Bry can be computed with

_ lnmR - lnmL (4‘0)

BFO -
JVi +v?

This reliability index is not unique, as explained by Ditlevsen (e.g., Madesen et al.,
1986). If the linearization of the LFS is carried out around a point x, this leads to the

linear limit state function Zy, as

99’ (41)
Zpo=9(x) + Z %)Ex) X; — x;)
And now B, is given by
9@ + 37,220 o (42)

axl-

Bro =

0g'(x)ag'(x
j ’?=1Z}?=1—‘%£i )—‘%95]_ )C(Xl-,xj)

Which is the so-called first-order second-moment reliability index. If the
linearization is performed around the mean values, the reliability index is then
referred to as a mean-value first-order second-moment (MVFOSM) reliability index.
The Hasofer and Lind reliability index overcomes the problem of the dependency of

[ro on the linearization point.
2.3.4 The Hasofer and Lind Reliability Index

For the Hasofer and Lind reliability index the random variables are mapped into
standard and uncorrelated Y variables with mean zero and the covariance matrix of

Y being Cy=I. This transformation is represented by the following equation

Y=AX-EX)) (43)

where A is linked to the covariance matrix of X, Cx, by the relation ACxAT=I

By considering the mapping from the standpoint of failure surfaces, the failure
surface Sy in x-space is mapped into the corresponding failure surface Sy in y-space.

The distance to the failure surface in y-space can be measured by
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B(x) = [(x— ECO) Cr (x — EX))] /2, x € S, (44)
from which the Hasofer and Lind reliability index is proposed as
Bi = min{(x — E(X))"Cy(x — E(X))} /2 (45)

The point of the solution is denoted design point. The Hasofer and Lind reliability

index Sy has the advantage that it is invariant by using an equivalent LSF.

An iterative procedure to calculate the Sy, , by considering the standardized
variables Y can be implemented by letting y; be i-th iteration point. Then, the LSF is

expanded at this point, as

9Wir1) = 9y + Vg Wis1 — i) (46)
where

r_ (99(y) 0g(y)  9g(¥) (47)
W00 = (5 Ty oy, )

The point yi.; leads to the shortest distance from the hyperplane to the origin and

should meet the requirement

Yit1 =4 (48)

VgNT)-9)
NZIEDRZED)

It is pointed out that is equivalent to the reliability index, if the

expansion at point y; is considered. If

_ 900~ (Vg O (49)
Vg Vgl)
and
__ Va(vi) (50)
NIZEDRZIED)

Vi+1 can be reformulated as

g(i) _ (51)
L
VgDV )
The design point is the limit of the set {y;} calculated as per Equation (49).

Vier = Bi; or  yiq = (@) y)a; +
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2.3.5 First Order Reliability Method (FORM)

For practical engineering problems, the probability of failure is subjected to the
issue of a distribution tail sensitive problem. In these cases, the first order reliability
method (FORM) is adequate. It is similar to the Hasofer and Lind reliability
approach, in the sense that the limit state function in the transformed space is
approximated by a first-order approximation of the hyperplane. However, the
transformation is based on the approximation to the actual PDF, so that the

distribution tail sensitive problem can be considered.

Once again, we assume that the random variables, X, of the LSF are independent. If
fri(x;) represents the PDF of X;, and ®(e) and ¢(e) are the standard normal
distribution and normal PDF respectively, a normal variate can be employed to
approximate the actual random variable to look for a solution point, x;, equivalent

to the one searched for in the original problem. This is expressed as

@ (xi ; Hi) = Fyi(x;) (52)
and
S0 () = (53)

which solution yields

s; = O(D (Fee(x)))/ fri (x2) (54)
and
pi = x; — 5; 7 (Fyy (%) (55)
If y; is considered as the standardized variable defined by
Vi (xi — #t) (56)
Si

The mean and the standard deviation of X; in terms of the transformed random

variable Y; are

E(X)) = E(u; + s;yi) = 1 (57)

and
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g; = §; (58)
Sometimes referred to as the equivalent first two probabilistic moments in the

transformed space. At the design point of interest, x;, Taylor series can be used to

approximate the LSF as

n a ’ ]
Z=g(x)+ Z %Sj) (X; = (%))

The mean value of Z, E(Z)is

09’ (%)) (59)
E@) = 90o) + ) =5 EX— ()
i=1
n
09’ (%))
= g0 + ) =5 G = ()
i=1 ‘
and its standard deviation is
(60)
z ' axi i
=1
Given that X; are uncorrelated
Xj+1 = Wj + B;S;a; (61)
and the desired reliability index is
T
5, — 90 + (V809)) @y~ %)) _EQ@) (62)
= =
T 0.
J(Vg(xj)) Cxj (Ve (%)) ’
B 5Ve(x) (63)
C‘Cj = —
T
\/(Vg(xj)) C.j(Vg(x))
Oy

where §; is a matrix with standard deviations with non-zero elements only for

S =)
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Note that if the random variables are not uncorrelated (i.e., if they are dependent)
the Jacobian, J, and its inverse is required to restated the random variables in the
transformed space as a set of non-dependent random variables. This is
mathematically represented, for a set of jointly distributed random variables xi (zi
in the normalized space) and for the case of the inverse of the Jacobian (a lower-

triangular matrix determined often numerically), as (Madsen et al., 1986)

0, i <j
fi(xilxl' ""xi—l)
. ¢ () = (64)
Y 0x; oF, ’
L a_x'i(xllxl’ ""xi—l) l >]
¢(Zi) ’

where ¢ (z) is the PDF of a normal (standardized) random variable, and fi and F;

denote the PDF and CDF for the variable i, respectively.

Even though the FORM is a powerful and versatile option, when non-derivable,
highly non-linear and complex problems are to be faced, it may not be a feasible
option to cope with such problems. In such cases the Monte Carlo simulation (MCS)

may be more suitable. This approach in briefly described in the next section.
2.3.6 Monte Carlo Simulation

Monte Carlo simulation is a very powerful approach that can be used to assess the
reliability of engineering systems. The method is relatively straightforward but
computationally intensive. First, it is required to generate n sets values of the
random variables for a given LSF. Then, the n sets of data are employed to evaluate
the LSF n times. Finally, the probability of failure is simply computed as the ratio of
the number of times that the LSF fell on the failure region over the whole set of
simulations. If it is desired to express the reliability in terms of the reliability index,

Equation (36) can be used.

To generate the random samples of the random variables, random numbers are
required (based on a uniformly distributed random variable, U, between 0 and 1).

This is achieved by denoting R as a random variable that is a function of U as given

by
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R=a+(b-a)l (65)

It can be proved that the following relations hold

Fr(r) = Fy(w) or r=Fz'(Fy(w) (66)

and

1 1
fulr) = 7= fuu) = 7— (©7)

where F;1(0) is the inverse distribution function of R.

After some considerations, it can be stated that a value of random variable R, 7, is
obtained by equating its CDF to the CDF of U evaluated at u;, or
rr=a+ (b—a)y; (68)

A schematic representation of the preceding procedure, known as inverse
transformation method, for a random variable X and given PDF is shown in Figure

3,
and the mathematical expression is

x = Fg* (Fy(w) (69)

FU(u) FX(x)

1 S E 1.0

U;

Figure 3. Inverse transformation method

When generating jointly distributed random numbers is of interest, the MCS can also
be used, but some further aspects require to be addressed. This is briefly described
here. When a set of x; variables are not uncorrelated, its joint PDF can be expressed

as
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fx Q0) = fi1 (1) fira (x2121) s fien (| x4, oo, X021) (70)

and its CDF as

Fy(x) = Fy1 (1) Fyp(x2121) oo Fypy (|24, o0, X5 1) (71)

Furthermore, if a set of values U generated from n independent standard
uniformly distributed random variables is considered, the corresponding set of

dependent random variables can be obtained with

(X1 = Fx_ll(ul)
x; = F' (up]x,)

) Z (72)

\ Xn = EZ (Un|Xg, ey Xpm1)

where F-1(¢) denotes the inverse of the cumulative distribution. The obtaining of
this inverse of the CDF can prove to be challenging for non-common PDFs, for
instance for the Longuet-Higgins distribution employed in Paper B of the

compendium, where a numerical procedure is warranted.

Other techniques like importance sampling and surrogate models can be used to
improve the efficiency of simulation methods. In this thesis, instead of these
currently used approaches, other not so common techniques are revisited. The

reader is referred to Paper B of the compendium for details.

3. Overall Discussion and General Conclusions

3.1 Conclusions

In this work metocean variables are probabilistically characterized as both, single
and concurrent, random variables using extreme value theory. A variation of the so-
called generalized extreme value (GEV) distribution to account for seasonal effects
is used and applied to data from buoys located relatively close to Mexican coasts.
The reliability of coastal systems is introduced by using methods that are common

in structural engineering applications.
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First an introduction is presented, followed by some theoretical background and
finally the compendium of publications is included. The overall discussion and
conclusions in this section are also based on the studies in the compendium and the

appendix.

The specific description of the time-dependent GEV model and results by applying
it to significant wave heights from buoys in the Gulf of Mexico, also used for
comparison versus a buoy in the Pacific and other metocean variable (wind velocity)
and other issues, includes that seasonality is introduced by using the harmonic
functions to represent the annual and semiannual cycles of the extreme wave
heights and that the scale, location and shape parameters in the GEV model vary
from month to month. It is proved that the wave heights are seasonal, with the
largest peaks in two seasons, the hurricanes and the cold fronts seasons. Seasonal
significant wave heights can be projected to values associated with given return
periods using the GEV model. In studies contained within this work, it is shown the
ability of the time-dependent GEV model to capture the seasonal effects by

comparing it against the limitations of its stationary counterpart.

The stationary and non-stationary GEV models are also applied to significant wave
heights from a buoy in the Pacific and compared with the above-mentioned results
for the Gulf of Mexico. The comparison of the stationary and non-stationary GEV
models shows that the latter leads to a better representation of this meteocean
variable, and it also leads to larger projected return period values than the former
for winter season, as in the case for the Gulf of Mexico. Therefore, it is concluded that
seasonality effects are also present in the Pacific Ocean, but they differ quantitatively

from those in the Gulf of Mexico.

The results for significant wave height in the Pacific are also used to study the impact
of including or excluding an atypically large significant wave height (due to an
extraordinary hurricane). It was found that the stationary model is adequately
modeled by a Frechet distribution (which can be inferred from the parameters of
the GEV), and that excluding the atypical significant wave height impacts
substantially in the average value and projected return period values. However, the
other model parameters are somewhat unaffected in the stationary model. In

contrast, by using the non-stationary GEV model, it is concluded that excluding or
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including the atypical significant wave height may not affect the overall qualitative
trend of the values associated with given return periods, but it does affect
substantially from a quantitative standpoint. Nevertheless, excluding the atypical

value may lead to a better fitting.

The used of the non-stationary GEV model is then extended to other metocean
variable (wind velocity), together with the use of the classical regression technique
described in the background, to investigate the correlation of maximum significant
wave heights and companion wind velocities (i.e., the wind which was recorded
simultaneously with the wave heights in a given buoy at the Gulf of Mexico). The
time-dependent GEV models of the metocean variables are used to assess the
adequacy of a proposed method to predict the wind velocity as a function of
significant wave height, for a given return period. Besides, it is also explored how
the time window selected to estimate return period values of metocean variables
can affect the predicted return levels for some seasons. It is found that the selected
time window (e.g., the first 20 years of recorded data, the whole set of data or the
last 20 years of recorded data) does have an impact on projected extreme values.
Nevertheless, this aspect is preliminary and it should not be categorically concluded
that this is attributed to the climate change, but the time window selection for the
fitting will have certainly an impact for design and engineering purposes (since the
projected values change importantly). A main conclusion of this study is that
correlation of significant weight height and companion wind velocity can be
adequately represented by linear or power equations for given seasons (with
different parameters but using the same mathematical expression), which are
amenable to designers. It is also concluded that the uncertainty in the predicted
associated wind velocities as a function of significant wave height is adequately
evaluated by using the root mean squared error from the regression analysis.
Simplified equations to very closely obtain the 95% confidence intervals of future
values are proposed, which besides are also adequate to envelope the uncertainty
estimated from the GEV models, for certain return period values by using an
adequate value of a parameter. The proposed method is a straightforward, but
effective, approach to obtain correlated metocean hazards for selected return

periods. These hazards can be translated into demands imposed to a system, so that
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the response can be computed for design purposes, with the additional advantage

that the uncertainty is also defined.

As afinal stage of this work, reliability methods developed in the 1990s are revisited
and improved, using as case studies coastal and structural engineering applications.
The methods are based on Monte Carlo simulations (MCS). It is mathematically
defined how accurate the reliability index and other parameters are, when the
number of required MCS are reduced. One method fits normality polynomials to the
MCS to obtain the so-called reliability index (a measure of the probability of failure
of the system), and the other method approximates the linearized limit state surface
(by also using MCS) at the design point using multi-linear regression. Itis concluded
that a power law is adequate to represent the mean and standard deviation of the
error for the probability of failure (expressed with the reliability index) as a function
of the number of simulations. It allows to select a precision level, whereas reducing
the number of required simulations The normality polynomial approach has also
the advantage that a reliability index is always computed, regardless the number of
simulations (unlike the case of the MCS); although the deviation from the exact
probability of failure is important for few simulations, an intermediate level of
simulations (perhaps in the order of 103 to 10°) leads to smaller errors than the MCS.
The multi-linear regression approach is found to be very effective to compute
accurately the reliability index, provided enough MCS are carried out, while also
allowing to estimate adequately the sensitivity factors and design points (from the
first order reliability method, FORM, standpoint), which are normally not
determined when MCS are performed. Additionally, if the tolerance in the multi-
linear regression method is increased, the MCS can be reduced. It general, it is shown
that the reliability methods revisited, and the additional information developed for
guidance, can be successfully applied for coastal engineering structures, as for the

case of the breakwater studied.

As final remarks, the findings reported in this work can be very relevant for practical
applications, for instance for coastal and offshore structures, for planning, design,
maintenance and other engineering activities. The selection of adequate models as
those reported herein (for instance to account for seasonality) is important, since it

has implications from the standpoint of designing coastal structures, management
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tasks, reliability and risk assessments, as well as sustainability related issues, among
others. Extending the presented studies to more buoys and other regions is
recommended in order to probabilistically characterized extreme metocean
activity, so that the design and management of coasts and ports by including
seasonality can be improved, but also by accounting for correlated phenomena. The
impact of selecting different models, for example stationary, non-stationary,
different correlation schemes among the metocean variables, other metocean
variables, etc.,, is also recommended as future research, since this could be also
useful for issues as the sustainability of coasts and coast infrastructure. The
proposed methods and expressions are considered adequate for practical purposes
and amenable to designers, while also incorporating the seasonality effects and
uncertainties in a simple way. It is also believed that further studies combining the
characterization of metocean variables as time-dependent GEV models and the use
of reliability approaches is a promising field of research, with an important potential
to cope with practical problems related to coast and port engineering for Mexico and

for other regions of the world.
3.2 Future research

The contents within the compendium of studies reported in this work can be
extended and studied in more detail in different directions. Therefore, further

research is recommended for (but not limited to) the following subjects:

- Extreme value analysis considering not only seasonality effects but also other
effects (sometimes referred to as covariates in the literature), e.g,
directionality effects.

- Explore interpolation techniques to extend the study to sites where data is
unavailable (e.g., where there are no buoys), and also other approaches to
account for effects for sites near the coast, where other variables as the fetch,
swell, etc., may play a key role.

- Comparisons of the results using buoys data versus results that could be
obtained by means of simulation techniques, global ocean wave prediction
models, or other available approaches.

- The study on concurrent metocean hazards can be also extended to other

variables as wave period, sea level, temperature, etc., to more than two
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variables (using multiple regression), to other sites and regions, and
comparisons with other techniques as environmental contours, other
probabilistic models, etc., could be included in future studies.

The employment of reliability theory to compute the probability of failure of
coastal structures can be further investigated using different probabilistic
characterizations of the metocean variables (including those developed in
this work), as well as the capacity of coastal and maritime systems
considered as random variables and including the use of other reliability
techniques. In fact, it could be investigated the reliability of other types of
coastal and marine systems, not only from the ultimate limit states
standpoint but also from the serviceability standpoint. The reliability
dependent on seasonality or other covariates can also be a subject of future
research.

Since the topics investigated in this work can have a significant impact or
relevance in issues like environment, climate change, sustainability, coast
management, planning and mitigation strategies, among many others, all

these aspects are potentially future exploitable subjects to investigate.
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Abstract: Simultaneous occurrence of metocean variables can present a multihazard to maritime systems.
However, simplified design approaches to assess simultaneous significant wave heights and wind
velocities are lacking, especially if seasonality is considered. This is addressed in this study by using
extreme significant wave heights and companion wind velocities recorded in the Gulf of Mexico.
Time-dependent, generalized extreme value (GEV) models and classical regression are the basis to
propose a simplified approach to estimate correlated extreme significant wave heights and wind velocities
associated with given return periods, accounting for seasonality and including measures of uncertainty.
It is found that the proposed approach is a new but simple method to adequately characterize the
concurrent extreme metocean variables and their uncertainty. It is concluded that the method is an
effective probabilistic design tool to determine simultaneous extreme significant wave heights and
companion wind velocities for desired return periods and seasonality.

Keywords: metocean variables; seasonality effects; multihazard; time-dependent GEV model

1. Introduction

Maritime structures, such as offshore facilities, breakwaters and other systems, are subjected to the
effect of metocean variables, including extreme waves and extreme winds. These metocean variables can
be considered as hazards that impose demands to these systems. Metocean variables can be characterized
with a probability density function (PDF) frequently adopted from extreme value theory [1]. Among the
metocean variables, extreme waves and winds can impact offshore facilities [2]; correlation of these two
variables is important for design because they can occur simultaneously [3].

Recent studies on extreme waves and winds include the assessment of significant wave heights in the
South China Sea using hindcast data [4], wind models to simulate waves in the South China Sea and the East
China Sea [5], the use of radar images to estimate significant wave height [6], wave height forecasting during
extreme events [7], assessment of wave heights by using generalized Pareto and Gumbel distributions [8],
uncertainty assessment in extreme significant wave height by using different techniques [9] and a review
on available wind-wave models and their limitations [10]. Additionally, hindcast for wind-wave for
several decades was calculated and compared with observed data for estimating wave climate change and
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for risk analysis [11,12]. Regarding studies on generalized extreme value (GEV) distribution, they are used
lately to model different variables. For instance, GEV distributions resulted in a very adequate model of
precipitation and evapotranspiration in India [13], and are also implemented in software to model annual
maximum precipitation [14]; some variants of the method that consider nonstationarity are also found in
the literature applied to river water levels [15]. The use of GEV for modeling extreme typhoon heading
directions [16], joint PDFs for wave height and period [17] and for modeling extreme wave heights in the
Mediterranean and at Portuguese locations [18,19] are also reported in recent literature. This shows that
GEV models are a tool used currently to effectively characterize metocean and other variables. Nevertheless,
no single study in recent literature on GEV reports a proposal like the one contained in the present study.

Studies regarding correlation of metocean variables are also available in the literature. Contour maps
and joint distribution of environmental variables are used for marine and coastal design. Currentapproaches
are summarized in [20], where nonparametric methods, copula models, hierarchical conditional models
and conditional extremes models are used to compute contour maps for joint occurrence of significant wave
height and wave period. Some of the important highlights reported in [20] include: that joint probabilities
are important for reliability analysis as stipulated in guidelines and standards, that simultaneous occurrence
of extreme events at prescribed return periods is of interest, that the values associated with such return
periods are not uniquely defined (except by independent or perfectly correlated cases), that the problem
may need to be studied in a case-by-case basis, that different techniques may be more suitable than others
depending on the problem to be addressed, among other issues.

Studies on correlated metocean variables accounting for seasonality are also found in the literature.
For instance, Vanem [21] develops weekly contour maps for wave height and wave period using selected
return periods. The season-specific variability of simultaneous metocean variables can be important for
planning [21]. In [21], a proposal is based on normalizing the data using the mean and standard deviation
to remove seasonality, which can be added back later; it is argued that the whole set of data (i.e., from
all the seasons) can be taken advantage of, opposite to fitting the data into separate bins, which results
in a decrease in the fitted data. Nevertheless, the use of separate bins to fit the data is also used as an
alternative to account for seasonality of metocean variables [22-25].

In the literature review, the use of hindcast data, consideration of seasonality and the use of different
PDFs are found. However, most studies are based on complex or time-consuming methodologies.
Nonetheless, Bitner-Gregersen [26] reports a summary of simplified expressions of practical applicability
contained in guidelines, which will be useful later in this study. The study of concurrent metocean variables
at different locations is important, since specific features of metocean climate depend not only on the
region but also on the specific location [26]. Simple techniques to assess simultaneous significant wave
heights and companion wind velocities are lacking, especially to account for seasonality.

The main objective of this study is to develop a simple approach to correlate extreme significant
wave height and companion wind velocity for given return periods and accounting for seasonality.
Time-dependent GEV models and classical regression applied to data from a buoy located in the Gulf of
Mexico are used as the basis of this study. The results can be useful for design projects on multihazards of
maritime systems, since extreme waves and companion winds can translate into simultaneous demands
imposed on these systems.

2. Significant Wave Height and Wind Velocity Data Used

The significant wave heights and wind velocities are obtained from a buoy in the Gulf of Mexico
operated by the National Data Buoy Center (NDBC, www.ndbc.noaa.gov). It is in the Gulf of Mexico
at 25.942° N 89.657° W, denoted as buoy 42,001 [27]; its data were used in a previous study [28]. It is
selected to illustrate the proposed approach because of its location at open sea and because it has recorded
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simultaneous information of metocean variables since 1975, but the method can be readily extended
to other buoys at open sea in the Gulf of Mexico or anywhere else. For the scope of the present study,
the maximum monthly significant wave heights, Hs, recorded at buoy 42,001 are used, together with
the wind velocity, Vy, recorded and listed in [27] within the same time bin. It is pointed out that V7, is
not necessarily the monthly maximum wind speed, but the one which occurred simultaneously with the
monthly maximum significant wave height (level of resolution within [27]); thus it is also referred to as
companion wind. The significant wave height and wind speeds used are those defined in [27], denoted as
WVHT and WSPD [27], respectively. The wind velocity is averaged over an eight-minute period and is
recorded at 3.6 m above sea level [27]. For the scope of this study, the data are used as directly given
in [27]. Both metocean variables, Hs and V,, are to be probabilistically characterized with a model that can
represent seasonality effects, as described in the following sections.

3. Extreme Value Analysis Considering Seasonality

In this section the method to perform the extreme value analysis considering seasonality is briefly
summarized, since details are described in a previous study [28]. In the next section, the model is to be
first applied separately to the significant wave height and wind velocities.

The model employs the generalized extreme value (GEV) family of distributions [29]. Instead of
characterizing a random variable with the Gumbel, Weibull or Frechet PDF or cumulative functions (CDF),
a single mathematical expression can be used, since it can represent the three. This is the GEV model used
here and given by:

G(x) = eXp{—[1 + E(%)]:} R 1)

6 = exp-exp| ()]} = £ =0
or given by:

00 = 1+ (" Y exp{ v ()] e 0

@)
g(x) = %exp(—x%)exp[— eXp(—x_TH)]SlE =0

if the PDF is to be used. In Equations (1) and (2), [2]+ implies the max (2,0), —c0 < u < o0 is the location
parameter, 1 > 0 is the scale parameter and & the shape parameter; ¢ leads to the Gumbel distribution
when equal to zero, and to the Frechet and Weibull distributions when £ > 0 and & < 0, respectively.

For the GEV models of Hs and V,, the block maxima concept is used. The monthly maximum Hs
values are considered as the samples for the extreme value analysis, while for the samples of V, they
do not necessarily correspond to the maximum, but to the companion wind velocities recorded when Hs
occurred. The seasonality is a cyclic behavior linked to climatic patterns, which behave in a sinusoidal
way every year. The common stationary model for extreme value analysis is extended to include time
dependency. It is assumed that monthly maxima and companion values are independent random variables.
Furthermore, it is assumed that the maximum (or companion) monthly values Z; of observed Hs and V,
in month ¢ follows the GEV distribution referred to above, which location p(t) > 0, scale 1(t) > 0 and shape
& (t) parameters are a function of time.

The CDF of Z; is given by:
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Fi(z) = {exp{—[l + 5(15)(2;%(; )]j__(t)} €)

expl-exp| (547
where [a]+ = max [4,0].

The GEV parameters account for nonstationarity with the following expression:

=

p(t) = Bo + B1 cos(2mt) + Basin(2mt) + B3 cos(4mt) + Basin(4mt)
0 ={ Y(t) = apg + ay cos(2mt) + apsin(2mt) + az cos(4nt) + aysin(4nt) 4)
E(t) = yo + y1 cos(2mt) + yosin(2mt) + y3 cos(4mt) + yasin(4nt)

where mean values are denoted with Sy, @p and yp, harmonic amplitudes by f;, a; and y; (for i = 1, 2)
and subharmonic amplitudes by 8;, a; and y; (for i = 3, 4); t is given in years. The maximum likelihood
estimators for the location (1, scale ¢ and shape & parameters vary during the year; the regression coefficients
and the probability distribution parameters are determined through the method of maximum likelihood
(MML), in which the likelihood function for the GEV model is given by:

m

1(0ltix;) = —;{1og¢(ti+(1 + %)log[l +é(ti)()q;(—tz()m)]+ + [1 *atf)(ﬂ;(—i()m)]?} ©

As previously noted, the location p(t) > 0, scale i(t) > 0 and shape & (t) parameters are expressed in
terms of harmonic functions, whose amplitudes are regression parameters to be mathematically estimated.

The selective search methodology known as stepwise approach is used to find the best model,
which encompasses the forward selection and backward elimination methods, which are described
elsewhere [30]. The uncertainty of the selected model is accounted for by standard errors and confidence
intervals [30]. The present study proposes an approach to compute concurrent metocean variables (Hs and
Vw) associated with given return periods, for which the individual values associated with each variable
are required. The values associated with return periods for each variable considered separately can be
obtained with the following equation:

u(t) - G2{1 - [1og(1-g) W} if &) #0
Xy(t,0) = Xy (u(t), w(1), £(1)) = ®)
u(t) —(t) log[-log(1 - q)] if &t)=0

where g corresponds to the exceedance probability as defined by G (x) = 1 — q and the estimated quantile,
and Xq4(t,0) corresponds to the time-dependent value associated with the return period T.,, = 1/q for a
metocean variable of interest.

The model described in this section is applied to Hs and V, in the following sections; first, for each
individual variable, and then subsequently, the approach to correlate both metocean variables is presented.

4. Correlating Extreme Metocean Variables

4.1. Nonstationary Models Considered Separately

The time-dependent GEV model described in the previous section is first applied separately to each
of the metocean variables. The significant wave height Hs and wind velocity V3, described before are
employed. Recall that while for the GEV analysis of Hs the monthly maxima from buoy 42,001 are used,
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the V, data do not necessarily correspond to the monthly maximum recorded values, but to the companion
wind velocities that occurred simultaneously with the monthly maximum Hs.

Figure 1 shows the maximum Hs recorded monthly (depicted with dots) and the 30 yr return period
values, T-39, estimated with the GEV model (depicted with a solid line). As in a previous study [28],
clear peaks approximately around the seasons of December—February and August-October, associated
with cold fronts and hurricanes, respectively, are observed in Figure 1.
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Figure 1. Monthly maximum and 30-yr return period values of Hs using different time ranges.

To inspect whether a difference using the updated information in the present study (i.e., with data
up to 2019) and that from the previous study [28] (with data up to 2012) exists, the T-39 values reported
in [28] are also depicted in Figure 1 (dashed lines). It can be observed that inclusion of recent data points
in the analysis does have an effect in the projected values, leading to a decrease in the peak Hs values for
hurricane and cold front seasons—more noticeable for the former—and an increase at midyear months.

To further investigate the impact of selecting different time windows in the assessment of projected
values associated with a given return period, two more lines are shown in Figure 1, which were computed
using the oldest (dotted line) and the newest (dashed—dotted line) maximum 20 available recorded monthly
data per year; selection of at least a 20 years range for the analysis is recommended to properly characterize
metocean variables probabilistically [3]. There is a noticeable impact of using these different time windows
to assess the Hs values for T_3.

Determining if this could be attributed to climate change is feasible, since studies in the literature [31]
report that higher or lower metocean variables could be attributed to climate change, which depends
on region and location, although it is important to acknowledge uncertainty in claiming any categorical
trend [31]. This potential variation in wave climate could importantly impact maritime structures [31].
Future studies are desirable to further investigate this topic; nevertheless, it can be concluded that selection
of different time ranges does have an impact in the projected return values of Hs (and other metocean
variables). Moreover, it is accepted that using more metocean data leads to more reliable extreme value
analyses [2,3], but the use of less data and more recent data could lead to a higher projected return period
value for some months. Consequently, future research and discussion on this issue is recommended.
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Figure 2 is analog to Figure 1, except that V;, values are shown. Less accentuated peaks can be
observed for hurricane and cold front seasons in Figure 2, perhaps because not the maximum, but the
companion values are employed, even though the trends are similar, at least for the updated (solid line)
and previously used [28] time ranges (dashed lines).
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Figure 2. Monthly companion and 30-yr return period values of Vy, using different time ranges.

For the scope of this study, only models corresponding to the solid lines in Figures 1 and 2 are used
(i.e., the whole set of available data at buoy 42,001 is considered), although projected metocean variables
for other return periods are also used. The values for other return periods, used later in this study, for each
month are listed in Appendix A in Tables Al and A2 for Hs and V7, respectively. No details in this
study are given about the parameters of the GEV models as were provided in previous studies (e.g., [28]),
since attention is focused on proposing a simplified approach to correlate extreme Hs data and their
companion V7, data associated with given T., values. This is developed in the following section.

4.2. Simplified Approach for Return Period Correlated Values

The proposal to estimate the simultaneous occurrence of extreme metocean variables is based on a
modified version of the classical linear regression technique. This consists in including estimated values
from the time-dependent GEV models in the previous section—together with the simultaneously observed
monthly data for maximum Hs and companion Vy—in the regression analysis, to assess how adequate is
the use of the return period value of the explanatory variable (in the regression analysis sense) to predict the
return period value of the other variable and its uncertainty. This is to be carried out for each month of the
year to estimate seasonal extreme (and companion) values associated with given return periods, so that they
can be considered as a demand which is applied simultaneously to a maritime system (or other system).
From this standpoint, significant wave heights and wind velocities can be considered as concurrent extreme
metocean hazards accounting for seasonality, since they can be translated into load effects affecting a given
maritime structure at the same time, at any desired season of the year. Moreover, such demands are usually
related to given return periods for design purposes; consequently, it is convenient to establish them in
terms of return periods. This is also the case for using contour maps in ocean engineering [20].
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Before proceeding to introduce the proposal, the classical regression analysis using Hs as the
explanatory variable and V7, as the variable to be predicted is described as follows by using the observed
data only. Buoy 42,001 is used to illustrate the procedure, but this can be extended to any buoy with
simultaneous recorded metocean data. Hs is selected as the explanatory variable because it was used
in a previous study [28] to investigate maxima. As noted before, V;, is not necessarily the maximum,
but the wind velocity observed simultaneously with the monthly maximum Hs. Naturally, it could be
considered otherwise, e.g., maximum V, and associated simultaneously recorded companion Hs, but also
other pairs of concurrent values of Hs and V;, could be selected. This aspect is discussed later. From a
designer perspective, it can be thought of as selecting an Hs value and using it to predict a V;, value that
is expected to occur simultaneously; then, both can be used to estimate the imposed (adding) effects of
both metocean variables acting over a system, which capacity is to be designed to withstand such demand.
Since both metocean variables are random, this can be expressed in mathematical terms [32,33] as:

E[VylHs = hs] = b+ a hs )

where the expected value of Vy, given that Hs = ks, is a linear function of ks; b and « are constants to
be determined by linear regression analysis. However, guideline expressions that relate wind velocities
and wave heights, as well as fitted functions found in the literature [26], commonly have the following
mathematical form:

Vw = bH{ )]

which can be linearized by taking the natural logarithm, leading to:
InVy, =B +alnH, )

where 8 = In b; the notation in terms of the expected value is skipped for simplicity. Equations (7) and (9)
are used in the linear regression analysis. For using Equation (9), the wind velocities and significant wave
heights are first transformed into logarithmic space [33].

Figure 3a,b shows the linear regression analysis by using the nonlinear model (i.e., Equation (9)) and
the linear model (i.e., Equation (7)), respectively, for October (around hurricane season); the residuals
versus the fitted values of In V7, (Figure 3c) and V,, (Figure 3d) are also shown.

Figure 3. Regression and residual analysis by using (a) nonlinear (Equation (9)) and (b) linear (Equation (7))
models for October. Residuals using (c¢) Equation (9) and (d) Equation (7).
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As mentioned before, the regression is first performed by using only the historical observed data,
shown by circles in Figure 3a,b. It can be observed that the regression line (solid line) in both cases
(i.e., Equations (9) and (7)) predicts increasing V, for increasing Hs. This is consistent with what is reported
in the literature. The 95% confidence intervals, which are measures of uncertainty for mean and future
values of V;, [33,34], are also shown in Figure 3a,b (inner and outer dashed lines for mean and future
values, respectively). Analysis of residuals versus predicted values indicates that the nonlinear model
leads to a better scattering of the data along the horizontal axis (i.e., the model is uncorrelated) and better
symmetry in the vertical axis (i.e., the zero mean assumption), indicating that the nonlinear model is
better for the values observed in October. Both models roughly exhibit a normal distribution behavior
in the residuals, as can be observed in Figure 4a for the model in logarithmic space and 4b for the linear
model, where the normal probability papers are plotted using the cumulative probability given by i/(n + 1),
where 7 is the number of samples (i.e., the number of residuals) and i corresponds to the number of a
datapoint (a residual) in ascending order.

Figure 4. Normal probability papers for residuals. October: (a) nonlinear model and (b) linear model.
February: (c) nonlinear model and (d) linear model.

Figure 5 is analogous to Figure 3, except that February instead of October is considered (i.e., around
cold front season). Opposite to what occurs in the regression analysis for October, the analysis for February
is better represented using the linear model (Figure 5b), rather than by using the linearized model in
the natural logarithmic space (Figure 5a); this can be inspected in the residuals and normal probability
papers in Figure 5¢,d and Figure 4c,d, for Equations (9) and (7), respectively. It is found in this study that
correlation of significant weight height and wind velocity can be better represented (in terms of classic
linear regression) by linear (Equation (7)) or power (Equation (9)) expressions, depending on the month of
the year (e.g., hurricane season, cold front season or others). This is not clearly stated in other studies.

Nevertheless, it can be observed that both the linear or the nonlinear regression analysis lead to a
fairly normal behavior of the residuals, and to a relatively uniform distribution of the variance around
the mean, which could be associated with a homoscedastic behavior [33], although this varies depending
on the month and type of regression considered (i.e., on using Equation (7) or Equation (9)). The error
2 is an indication of the uncertainty in the regression, and its squared root is known as the
root mean squared error (RMSE). Overall, the residual analyses for all months indicate that the usual

variance, 0,

assumptions in the regression approach are met [34], and that Equation (7) and Equation (9) can be suitable
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alternatives. Although Equation (8) is frequently encountered in codified design and the literature [26] as
indicated above, functional forms like those of Equation (7) are also found, as in the standard of the North
Atlantic Treaty Organization, Standardized Wave and Wind Environments and Shipboard Reporting of
Sea Conditions (NATO-STANAG 4194, see [26]), which can be expressed as:

Vw =0b+ aHs (10)

where the nomenclature used in the present study applies (for the NATO-STANAG 4194, b =0 and a = 3.2).
Equations with the functional form of Equations (8) and (10) are used for open sea and coastal waters;
those employed for coastal waters are also linked to the fetch as an important variable [26]. In the present
study, the fetch is not considered since the buoy used is located in open sea.

Figure 5. Regression and residual analysis by using (a) nonlinear (Equation (9)) and (b) linear (Equation (7))
models for February. Residuals using (c) Equation (9) and (d) Equation (7).

As shown in Figures 3 and 5, the data are approximately contained within the confidence intervals for
future values in all cases. It is noticed that the confidence intervals for future values can be simplified by
using Equation (11a,b), for the lower and upper interval, respectively.

Vwlow = b+ aHs — 60, (11a)
Vwupp = b+ aHs + 60, (11b)

where o, = \/é is the so-called RMSE which—advantageously—is part of the information that can be
obtained when a regression analysis is performed; 6 is a constant value to be discussed. If Equation (8) is to
be considered to derive simplified expressions for the confidence intervals, expressions like Equation (11)
can be written by including +6 times the RMSE in Equation (9), except that the RMSE corresponds to the
regression in logarithmic space. If the equation in the original space is to be used to compute the expected
value (i.e., Equation (8)), it can be shown with some algebraic manipulations that the 95% confidence
intervals for future values can be approximated by using Equation (12a,b):

1
Vislow = bH?(eéoe) (12a)
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Viupp = bH{ (6666) (12b)

The value of 6 is adequate to represent the 95% confidence intervals (denoted simply as confidence
intervals from now on) for future values by adopting constant values approximately between 1.9 and 2.3,
depending on the season considered and for both sets of equations (i.e., Equations (11) or (12)).

Exact confidence intervals (dashed lines) and approximated confidence intervals (Equations (11) or
(12); dotted lines) are shown in Figure 6a—d for the four cases depicted in Figure 3a,b and Figure 5a,b,
respectively; the original instead of the logarithmic scale is used for the cases corresponding to Equations (8)
and (12). A value of 6 equal to 2.3 is used for October (Figure 6a,b), while 6 = 2.2 is employed for February
(Figure 6¢,d). It can be observed that Equations (11) and (12) are reasonable alternatives to represent the
uncertainty in a simplified (practical) way. Even though simple, as far as the authors know, Equations (11)
and (12) are not reported in the literature for extreme values accounting for seasonality; therefore, they are
an important contribution of this study that include the uncertainty in correlated metocean variables for
design purposes.

(mf/s)

\'"

(m/s)

Vv

Figure 6. Comparison of exact and approximated (Equations (11) and (12)) 95% confidence intervals,
considering October (upper row; (a) and (b) for non-linear and linear cases, respectively) and February
(lower row; (c) and (d) for non-linear and linear cases, respectively).

The proposed approach to estimate concurrent metocean variables (Hs and V7, in this case), is based
on using the time-dependent GEV model for Hs obtained in the previous section, to compute a Hs value
associated with a selected return period in years, T-, (the subscript is used to denote the selected return
period, e.g., T_39 corresponds to a 30-yr return period); the Hs for a given T_,, can then be used as input for
Equations (8) and (10)—(12), to determine the corresponding expected companion Vy, for the same T.y,,
including an uncertainty measure (i.e., the confidence intervals).

To investigate whether the previous proposal is consistent with both time-dependent GEV models
in the previous section, estimated values of Hs and V', associated with T.»9, T_39, T-59, T-75 and T 3¢9 are
included in the scattergrams and regression analyses as can be observed in Figure 7, where the T, values
for October are indicated by black filled circles with embedded perpendicular lines (lines to be explained
below). Selection of these return periods is somewhat arbitrary but based on the usage of such return
periods for design.
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Figure 7. Regression lines and confidence intervals including (solid and dashed lines, respectively) and
excluding (dashed-dotted and dotted lines, respectively) T.,, values for October; (a) and (b) for logarithmic
space and linear space, respectively. Filled circles are given by T, values with embedded perpendicular
lines indicating confidence intervals from GEV models.

Figure 7a,b correspond to the logarithmic and linear cases as before, with the regression line depicted
with a solid line and confidence intervals with dashed lines (it is emphasized once more that they are
derived by including the set of T, values from the GEV models in the regression). In fact, the regression
lines and confidence intervals previously obtained (i.e., without including the black filled circles in the
regression) are also plotted in Figure 7a,b using dashed—dotted and dotted lines, respectively. It can be
observed that the regression lines are almost coincidental, that the estimated T_y, values are very near or
over the regression line (especially for Figure 7b), and that the inclusion of T, values in the regression
slightly decreases the uncertainty in terms of confidence intervals (i.e., the previously computed intervals
are wider), which applies to both, Figure 7a,b.

Additionally, the amplitude between the lower and upper limits of the 95% confidence intervals
from the GEV models for Hs and V;, are depicted with the perpendicular embedded lines in the T,
values (i.e., embedded lines in the black filled circles) in Figure 7; vertical and horizontal embedded lines
correspond to the confidence intervals for V;, and Hs, respectively. The confidence intervals from the
GEV models (the embedded lines in Figure 7) are obtained by using return period values (Equation (6))
and their variance, linked to the variance—covariance matrix and obtained through the delta method [29].
It can be observed in Figure 7a,b that confidence intervals from the GEV models surpass the limits of
the confidence intervals for mean values (inner dashed and dotted lines) but are contained within the
boundaries of those corresponding to future values (outer dashed and dotted lines) from the regression
analysis; it can also be observed that intervals for Hs are wider than for V. If it were of interest to delimit
in a simplified way the confidence intervals from the GEV models for a given T.y,, Equations (11) and (12)
could be an option by providing a suitable 6 value. Neither this comparison between the uncertainty of
the GEV models and the uncertainty from the linear regression, nor the idea of using Equations (11) and
(12) to relate both uncertainties, are found in the literature. Therefore, this can be also considered as a
contribution of the present study.

Figure 8 shows the residuals and normal probability papers by including the T.,, values in the
regression, where the residuals of T., values lie very close to or on the zero-mean line, and the probability
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papers preserve roughly similar trends than without considering the Ty, values and follow an approximately
normal distribution.

Figure 8. Residuals and normal probability papers including T., values in the regression: (a,c) for the
logarithmic case and (b,d) for the linear case.

Figure 9a,b is analogous to Figure 6a,b and they are comparable, as can be observed in these figures,
with slightly less wider confidence intervals in Figure 9; as in Figure 6 for October, 6 = 2.3 is also used
in Figure 9. For illustration purposes, the expression of Pierson-Moskowitz (PM), the one from the
International Towing Tank Conference (ITTC) recommendations and a fitted equation for West Shetland at
a North Atlantic location, are shown in Figure 9a, and the equations recommended by the NATO-STANAG
4194 and the 2013 Interim Guidelines proposed in MEPC 232 (65) are shown in Figure 9b; all these equations
are retrieved from [26], where details and proper citation can be found. Some of these equations are
given as a function of V, instead of Hs [26]; in such cases, equations are solved for V, as a function of
Hs. The PM, ITTC and West Shetland expressions have the functional form of Equation (8) with values of
b equal to 6.376, 4.636 and 5.31, respectively, and values of a equal to 0.5, 0.709 and 0.603, respectively.
Likewise, for the NATO-STANAG and 2013 Interim Guidelines, the corresponding functional form is
given by Equation (10) with parameters b equal to 0 and 6.9 and « equal to 3.2 and 2.2, respectively. For the
previous expressions Hs is given in m and V7, in m/s. Note that the NATO-STANAG and 2013 Interim
Guidelines equations are developed for coastal waters but included in Figure 9b for comparison. Figure 9
shows that the ITTC and the 2013 Interim Guidelines equations are similar in shape to those developed
in this study, but under- or overestimating the predicted values for October the former and the latter,
respectively. The other equations lead to not so dissimilar results as those reported here, and they are
roughly in between the confidence intervals for future values.

To inspect how the proposed approach varies when considering seasonality, and how results compare
with respect to the equations reported in [26] for other seasons, results like those shown in Figure 7 are
also shown in Figures 10 and 11, but for the months of February and August, when the highest predicted
Ty values are obtained at cold front and hurricane seasons, respectively; in addition, results like those in
Figure 9 are plotted in Figures 12 and 13. Unlike Figure 9, 6 = 2.0 is used in Figures 12 and 13, since it leads
to a better approximation of the exact confidence intervals. As mentioned before, 6 can be varied to better
represent the exact confidence intervals; nevertheless, the range of values is not large and 6 can be roughly
set between 1.9 and 2.3.
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Figure 9. Exact and approximated 95% confidence intervals for October considering the T.,, values:
regression (a) in logarithmic space and (b) in linear space. Legends indicate expressions referred in [28].

Figure 10. Regression lines and confidence intervals including (solid and dashed lines, respectively) and
excluding (dashed—-dotted and dotted lines, respectively) T-,, values for February; (a) and (b) for logarithmic
space and linear space, respectively. Filled circles represent T, values with embedded perpendicular lines
indicating confidence intervals from GEV models.

It can be observed from Figures 7, 10 and 11 that expected V, values as function of Hs depend on
the season and month considered, that the uncertainty also varies for each case and that the regression
is relatively irrespective of the selected scheme (linear or logarithmic space) for October and February,
but it does vary when August is considered. Figure 11 for August corresponds to the largest estimated T.y,
values for Hs (hurricane season) and, as shown in Figure 11, the regression line predicts better estimates
when the regression is performed in the logarithmic space; in fact, when the T, values are included in the
regression (solid line), there is not significant deviation from the regression with the observed data only
(dashed—dotted line); conversely, an important change in the slope of the regression line is observed for
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Figure 11b, implying better estimates of correlated values for given T, if the regression is carried out in
the logarithmic space.

Figure 11. Regression lines and confidence intervals including (solid and dashed lines, respectively) and
excluding (dashed-dotted and dotted lines, respectively) T.,, values for August; (a) and (b) for logarithmic
space and linear space, respectively. Filled circles represent T, values with embedded perpendicular lines
indicating confidence intervals from GEV models.

Figure 12. Exact and approximated 95% confidence intervals for February considering the T., values:
regression (a) in logarithmic space and (b) in in linear space. Legends indicate expressions referred in [28].

Figures 9, 12 and 13 show that a single equation cannot capture the seasonality of correlated metocean
variables, because it can overestimate or underestimate the correlated values when comparing against the
equations compiled in [26], at least for the case of V, and Hs and buoy 42001, but it is possibly the case
for other metocean variables and buoys, in the Gulf of Mexico or anywhere else. Therefore, suitable sets
of region-specific and site-specific equations should be developed to take into account seasonal effects.
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Nonetheless, it is interesting to note that the equation developed in [26] for West Shetland is practically
coincident with the regression line in Figure 13a at hurricane season.

Figure 13. Exact and approximated 95% confidence intervals for August considering the Tyr values:
regression (a) in logarithmic space and (b) in in linear space. Legends indicate expressions referred in [28].

For values associated with T, levels in Figure 11a (or in other figures), the uncertainty from the
GEV models for each Ty, (i.e., the embedded perpendicular lines in the black filled circles) are a sort of
envelope roughly covered by the confidence intervals for mean values in Figure 11a. Furthermore, such an
envelope can be covered by using Equation (12) and a smaller value of 6 (e.g., 0 = 1) than that used for
the confidence intervals of future values. Therefore, Equations (8) and (10) can be considered as possible
design aids—simple expressions for design—Ilike those contained in guidelines [26], but also accounting
for the uncertainty in a simplified way (Equations (11) and (12)), either based on simplified confidence
intervals for future values or confidence intervals within which the GEV uncertainty is confined. Since sets
of such equations can be obtained for any desired season, the proposal here represents a simpler alternative
than the more complex models reported in the introduction; consequently, they could be more attractive
for designers since they are consistent with expressions recommended in guidelines.

Results for other months (not shown before) are reported in Figures A1-A9 in Appendix B. By observing
Figures 7, 10 and 11 and Figures A1-A9, it can be concluded that the regression in the logarithmic or linear
space could be both alternatives, with better results depending on the month considered. An exception is
shown by Figure A8 for November, where neither a good fit is obtained for the logarithmic case (Figure A8a)
nor for the linear one (Figure A8b) (also see Table 1). This is attributed to atypical simultaneous occurrence
of larger Hs and smaller V, values, as can be observed in Figure A8, but also to a large dispersion of the
data along the whole range of Hs values, leading to a regression line somewhat horizontal (and roughly
around 12 m/s), implying no correlation of Hs and V;, for November. It would be interesting to investigate
in the future why this behavior is found specifically for November at buoy 42,001 in the Gulf of Mexico.
For all the residual analyses shown in Figures 7, 10 and 11, and Figures A1-A9 for the observed data,
mean values of these residuals are listed in Table A3 of Appendix C. In general, it can be observed in
Table A3 that the zero mean assumption is met.
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Table 1. Fitted parameters of regression analysis for buoy 42,001 in this study considering seasonality.

For Equations (8) and (12) For Equations (10) and (11)
Month
1p o Oe ey(%) b p? 0, ey(%)
January 6.3130 0.5050 0.1323 12.6 6.0266 1.6565 1.8380 9.4

February 4.6311 0.7332 0.1448 0.48 4.4597 2.0891 1.7735 0.73
March 6.2270 0.5223 0.1692 6.92 6.5585 1.5731 2.0592 5.87

April 4.7280 0.7117 0.1757 0.16 3.914 2.1898 1.7927 0.44
May 4.6922 0.6616 0.4018 9.5 5.0670 1.5891 2.7234 13.1
June 6.3611 0.4104 0.3205 16.1 5.2639 1.7290 2.5623 42
July 6.0159 0.5132 0.4005 5.7 4.3002 2.3281 2.9474 18.5
August 5.5229 0.5648 0.3529 8.7 3.8972 2.1768 2.6075 9.3
September  4.6209 0.7596 0.2295 54 2.7402 2.6259 2.607 11.2
October 5.1243 0.6823 0.1626 4.7 3.8933 2.3476 2.0973 0.03
November 10.3253 0.1050 0.1742 34.0 10.5871 0.3736 1.9726 31.7
December  4.6688 0.6860 0.1899 10.1 3.3722 2.2109 2.2703 55

1 b = exp(p), where § is the intercept obtained from the regression in the logarithmic space.

Results of the regression are listed for each month in Table 1 for buoy 42,001. Table 1 includes the
regression parameters using only the observed data and the two approaches described above, i.e., the direct
linear regression and the regression in the logarithmic space. It also includes o, and relative errors of the
predicted correlated V, in relation to those obtained from the GEV model for a selected return period
(50 years) using:

Viench — Vest
Vbench
where the relative error is given in percentage, Vi, is the computed T.5y value of V, using the GEV
model and V., is obtained as proposed in this study, i.e., by using Hs for T 5y obtained from the GEV
model as input value of Equations (8) and (10) (with regression parameters estimated from observed data
only). Selection of T_59 is somewhat arbitrary and used to compare deviations of V;, estimated with the
GEV model with respect to this study’s proposal, but any other T, could be considered. For a more
detailed inspection of these deviations, Figures 7, 10 and 11 and those in the Appendix B can be used.
Errors in Table 1 are an additional aid to compare which regression scheme leads to better results for any

given month.

The proposal in this study can be summarized in the following steps:

x 100 (13)

v =|

(1)  Select an Hs value associated with a T.,, and month of interest (e.g., see Table Al in Appendix A) as
input for Equations (8) or (10).

(2) Select the season (month) for which the correlated values are desired, and the corresponding
parameters (Table 1) to be also plugged into Equation (8) or (10), and compute V7.

(3) Use Hsinstep (1) and Vy, in step (2) as simultaneous demands associated with the selected T, and
month acting over a maritime system to be designed.

(4) If uncertainty is to be used by the designer, the corresponding o, together with Equations (11) or
(12) can be used to establish upper (or lower) limits by using a 6 value (e.g., 6 = 2 could be used to
approximate the 95% confidence intervals for future values).

5. Discussion

For the proposal briefly outlined in the four steps of the previous section, it is noted that for step (1)
the T.y, values of Hs are related to the GEV model, but any projected return level of the significant wave
height available to the designer could be useful, at least as an approximation. Also, since for any given
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month selected, two options are available in step (2), namely, Equation (8) or Equation (10), the decision
for the more suitable option can be based on the ¢y reported in Table 1, as well as on Figures 7, 10 and 11
and Figures A1-A9. Justification for considering Hs and V7, for T.y, in step (3) as simultaneously occurring
metocean variables is based not only on the correlation of recorded (observed) data, but also in checking
that the correlation of projected Hs and V7, for T.y,, obtained from the time-dependent GEV models, are
consistent with the trend of the observed data. Finally, the uncertainty obtained as per Equations (11)
or (12) in step (4) approximately delimits all data points if 6 = 2 is used (confidence intervals for future
values); if the uncertainty from the GEV models is to be employed as reference (perhaps considering
the perpendicular embedded lines as an envelope), lower 6 values could be used, for instance 6 = 1.5,
which would be a conservative value to delimit the uncertainty given by the GEV models. Use of Equations
(11) or (12) using 6 values could be seen as factored demands like the ones used in codified design.

The proposed method allows the possibility of using other metocean variables, data from other buoys
and hindcast data. It could use other probabilistic models. More than two variables could be considered
if multilinear regression analysis is implemented. If additional recorded data becomes available for any
month, the matrix approach in [35] can be implemented to update the parameters in Table 1.

Since the maximum Hs and companion V, may not yield the maximum demand in a given system—like
the points in an environmental contour associated with a Ty, may not lead to the maximum demand in the
system [20]—other pairs of simultaneously recorded data could be considered; one obvious combination is
using maximum monthly V;, and companion Hs, but also other data pairs could be used, for instance
the second largest monthly Hs and companion V7, the second largest V, and companion Hs, the third
largest monthly Hs and companion V, and so on. Each of the previous combinations would lead to
pairs of T.;, values to which a system could be subjected to for estimating load effects, and the maximum
demand could be used for design (in fact, different pairs of T., values could be more critical to different
elements of the system). It could be investigated whether these pairs of T, values correspond to points of
environmental contours proposed by other authors. Nonetheless, the idea is consistent with the approach
of using multiple points from the contours to evaluate a system [20].

6. Conclusions

In this study, a simplified methodology to compute maximum significant wave heights and companion
wind velocities associated with given return periods, accounting for seasonality, is presented. Simultaneous
data from a buoy in the Gulf of Mexico are used. The approach is developed from projected return levels
of significant wave heights based on a time-dependent GEV model and classical regression of the two
metocean variables. A time-dependent GEV model for the companion wind velocities is also developed,
to assess the adequacy of the method to predict the wind velocity as a function of significant wave height
for a given return period.

It is found that the time window selected to estimate return period values of metocean variables can
have an important impact in the predicted return levels for some seasons.

It is concluded that correlation of significant weight height and companion wind velocity can be
adequately represented by linear or power equations, which could be easily implemented for design
purposes, with different parameters to account for seasonality, but with the same functional form.
Results are not very dissimilar with predictions from simplified equations in the literature or guidelines;
however, it is found that a single equation with given parameters cannot capture the seasonality effects.

It is also found that the uncertainty in the predicted companion wind velocities as a function of
significant wave height can be determined in a simplified way by using the root mean squared error from
the regression analysis, expressed as a set of proposed equations to determine approximately (but closely)
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the 95% confidence intervals of future values. These same equations can be used to represent the envelope
of the uncertainty estimated from the GEV models for different return periods.

It is considered that the proposed approach is a simple but adequate method to determine concurrent
metocean hazards associated with given return periods, which could be imposed on a system to estimate
the demand for design purposes, while also providing measures of uncertainty. The proposed expressions
do not differ substantially to those provided in guidelines; thus, they could be amenable to designers,
while also incorporating the seasonality effects in a simpler way as compared to other methods available in
the literature. To the authors” knowledge, some of the findings in the present study—like the simplified
proposal to include the uncertainty in the correlated metocean variables—are not reported elsewhere.
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Appendix A

Table A1. Selected return period values for Hs in each month.

Hs (m)

Month\Tr (yr) 20 30 50 75 100
January 6.08 6.34 6.62 6.83 6.97
February 6.09 6.36 6.68 6.91 7.06
March 5.65 5.94 6.29 6.55 6.73
April 4.78 5.08 5.46 5.76 5.97
May 3.92 4.25 4.71 5.09 5.38
June 4.03 4.53 5.25 5.88 6.36
July 5.03 5.81 6.92 7.93 8.73
August 5.99 6.87 8.13 9.27 10.16
September 6.17 6.84 7.77 8.57 9.18
October 5.90 6.33 6.88 7.34 7.67
November 5.76 6.05 6.41 6.69 6.88
December 5.89 6.14 6.43 6.64 6.78

Table A2. Selected return period values for Vy, in each month.

Vw (m/s)

Month\Tr (yr) 20 30 50 75 100
January 17.39 18.03 18.76 19.29 19.64
February 17.36 17.92 18.55 19.00 19.29
March 16.41 16.92 17.48 17.88 18.14
April 14.77 15.25 15.80 16.20 16.46
May 13.23 13.79 14.45 14.93 15.26
June 13.30 14.06 14.97 15.66 16.14
July 14.88 15.92 17.22 18.23 18.95
August 16.88 18.14 19.75 21.03 21.95
September 17.98 19.22 20.81 22.09 23.01
October 17.71 18.74 20.05 21.09 21.83
November 17.15 17.99 19.01 19.81 20.37

December 17.08 17.79 18.62 19.25 19.68
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Appendix B

Figure A1. Regression lines and confidence intervals including (solid and dashed lines, respectively) and
excluding (dashed-dotted and dotted lines, respectively) T.y, values for January; (a) and (b) for logarithmic
space and linear space, respectively. Filled circles represent T, values with embedded perpendicular lines
indicating confidence intervals from GEV models.

Figure A2. Regression lines and confidence intervals including (solid and dashed lines, respectively) and
excluding (dashed-dotted and dotted lines, respectively) T.y, values for March; (a) and (b) for logarithmic
space and linear space, respectively. Filled circles represent T, values with embedded perpendicular lines
indicating confidence intervals from GEV models.
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Figure A3. Regression lines and confidence intervals including (solid and dashed lines, respectively) and
excluding (dashed-dotted and dotted lines, respectively) T.,, values for April; (a) and (b) for logarithmic
space and linear space, respectively. Filled circles represent T, values with embedded perpendicular lines
indicating confidence intervals from GEV models.

Figure A4. Regression lines and confidence intervals including (solid and dashed lines, respectively) and
excluding (dashed-dotted and dotted lines, respectively) T., values for May; (a) and (b) for logarithmic
space and linear space, respectively. Filled circles represent Toyr values with embedded perpendicular lines
indicating confidence intervals from GEV models.
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Figure A5. Regression lines and confidence intervals including (solid and dashed lines, respectively) and
excluding (dashed-dotted and dotted lines, respectively) T.y» values for June; (a) and (b) for logarithmic
space and linear space, respectively. Filled circles represent T, values with embedded perpendicular lines
indicating confidence intervals from GEV models.

Figure A6. Regression lines and confidence intervals including (solid and dashed lines, respectively) and
excluding (dashed-dotted and dotted lines, respectively) T.y, values for July; (a) and (b) for logarithmic
space and linear space, respectively. Filled circles represent T, values with embedded perpendicular lines
indicating confidence intervals from GEV models.
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Figure A7. Regression lines and confidence intervals including (solid and dashed lines, respectively)
and excluding (dashed—dotted and dotted lines, respectively) T., values for September; (a) and (b) for
logarithmic space and linear space, respectively. Filled circles represent T.,, values with embedded
perpendicular lines indicating confidence intervals from GEV models.

Figure A8. Regression lines and confidence intervals including (solid and dashed lines, respectively)
and excluding (dashed-dotted and dotted lines, respectively) T., values for November; (a) and (b) for
logarithmic space and linear space, respectively. Filled circles represent T.,, values with embedded
perpendicular lines indicating confidence intervals from GEV models.
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Figure A9. Regression lines and confidence intervals including (solid and dashed lines, respectively)
and excluding (dashed—-dotted and dotted lines, respectively) T.; values for December; (a) and (b) for
logarithmic space and linear space, respectively. Filled circles represent T.,, values with embedded

perpendicular lines indicating confidence intervals from GEV models.

Appendix C
Table A3. Mean values of residuals for each month and regression scheme.
Month Log. Space Lin. Space
January 7.8 x 10717 -45x 10716
February 3.4 x 10716 1.9x 1071
March -5.1x 1076 1.4 x 10715
April 1.8 x 1071 1.4x 1071
May -33x 10716 9.1x 1077
June 48 %1017 -13x10715
July 1.4 x 10716 8.9 x 10716
August 43x 10716 -32x10715
September 4.4 x 10716 9.5 x 10716
October 0.0 8.9 x 10716
November 99 x 107 -14x10°1
December -5.6x%x 107 2.4 %1076
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Featured Application: Normality polynomials can be used to compute reliabilities for coastal and
structural engineering applications, including the assessment of uncertainty in the estimated
reliability index. Additionally, multi-linear regression can be applied to the simulated results to
determine design points and sensitivity factors. These applications can be potentially extended
to different engineering (or other) fields and to system reliability (e.g., for reinforced concrete
frame buildings).

Abstract: The normality polynomial and multi-linear regression approaches are revisited for
estimating the reliability index, its precision, and other reliability-related values for coastal and
structural engineering applications. In previous studies, neither the error in the reliability estimation
is mathematically defined nor the adequacy of varying the tolerance is investigated. This is
addressed in the present study. First, sets of given numbers of Monte Carlo simulations are obtained
for three limit state functions and probabilities of failure are computed. Then, the normality
polynomial approach is applied to each set and mean errors in estimating the reliability index are
obtained, together with its associated uncertainty; this is defined mathematically. The data is also
used to derive design points and sensitivity factors by multi-linear regression analysis for given
tolerances. Results indicate that power laws define the mean error of the reliability index and its
standard deviation as a function of the number of simulations for the normality polynomial
approach. Results also indicate that the multi-linear regression approach accurately predicts
reliability-related values if enough simulations are performed for a given tolerance. It is concluded
that the revisited approaches are a valuable option to compute reliability-associated values with
reduced simulations, by accepting a quantitative precision level.

Keywords: reliability index error; power law; normality polynomial; multi-linear regression;
sensitivity factors; coastal engineering; structural engineering
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1. Introduction

Simulations are often used to estimate the probability of failure of structural elements and
systems because they are a very versatile option which is not restricted by complex and implicit limit
state functions (LSF), the use of sophisticated methods (e.g., finite element method), and/or highly
non-linear structural behavior. However, millions of crude Monte Carlo simulations (MCS) could be
required to adequately estimate structural probabilities of failure, which may not be feasible; also,
the results could differ from a set of simulations to another. To cope with this issue, modified versions
of the crude simulation approach, surrogate modeling, subset simulation, and other techniques have
emerged and been used in the last decades not only for structural engineering but also in other fields.
To mention only a few studies which employ some of these techniques, optimization using surrogate
modeling, reliability analysis of deteriorating structural systems and the reliability assessment of a
structure affected by chloride attack are reported in the studies by [1-3], respectively. Importance
sampling has also been used to estimate the system reliability of deteriorating pipelines [4]. Other
kind of approaches are also reported in the literature to compute reliabilities [5]. The different
reliability methods can be applied not only to different fields in structural and geotechnical
engineering, as for the case of sudden column removal in reinforced concrete buildings and rockfall
protection structures [6-8], but also to many other research and engineering fields, for instance to
artic oil and gas facilities [9] and to coastal engineering applications [10]. This last case is used in the
present study to show the applicability of two revisited methods to obtain the reliability of coastal
structures.

Other simulation-based reliability methods have not been given so much attention. In this study
a couple of these alternatives are revisited to inspect their feasibility and adequacy to estimate
reliability indices. One of them employs polynomial transformations of a nonnormal variable to a
normal one by fitting simulated data with fractile constraints and can be referred to as normality
polynomial approach [11]. The second approach was developed to derive the design point and
sensitivity factors (in the FORM, first order reliability method, perspective) from simulated data [12]
and it is referred to as the multi-linear regression approach in this study. A similar approach to the
normality polynomial method was previously developed by Hong and Lind [13] and named normal
polynomial approach (note that the names are slightly different); unlike the normality polynomial
approach, the normal polynomial approach has been paid much more attention (judging by number
of citations), even very recently (e.g., [14]). Both methods are based on the fact [15,16] that a fractile
of a random variable can be expressed as polynomial of a fractile of a standard normal variable
(normal polynomial), and that a fractile of a standard normal variable can be expressed as a
polynomial of a fractile of a random variable (normality polynomial). Although the normal
polynomial approach [13] is not considered in the present study (we prefer to focus in the less
explored alternative), the findings here could be extended to do so.

To inspect the adequacy of the normality polynomial approach and the multi-linear regression
approach (the methods revisited in the present study), three LSFs are considered. One is based on a
very simple classical case; other one is based on a structural application from a previous study and
the last one is related to the reliability of a coastal structure. Extensive simulations are performed to
estimate the error level by using the normality polynomial approach and its associated uncertainty;
neither of these was thoroughly carried out in previous studies, nor the application to coastal
engineering. The design point and sensitivity factors (also the reliability index) obtained from
simulated data are compared with those obtained from FORM,; they are derived from a multi-linear
regression of the simulated data. It is worth to mention that these methods, and others developed in
the 1990s, used to state that a large number of simulations were not feasible; nevertheless, the
computer power has increased substantially in the last decades, and the limitations of those days may
not be as restrictive as before and thus the applicability could be currently extended. Furthermore,
the commercial software available nowadays for engineering applications normally includes
amenable built-in functions for linear and multi-linear regression analysis which simplifies the
programming.
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The main objective of this study is to define the error statistics in the reliability index by using
normality polynomials and to reassess the feasibility and adequacy of this method and the multi-
linear regression approach for estimating the reliability of structural and coastal engineering systems
including the determination of sensitivity factors.

This study is of significance to the coastal and structural engineering fields because the number
of simulations required to compute reliabilities can be reduced by accepting defined error levels
when using normality polynomials, which was not established in previous studies. This is possible
because the error in the estimation of the reliability index is mathematically defined as a function of
the number of simulations for the cases investigated. Additionally, other contribution is the use of
multi-linear regression applied to simulated results as a mean to determine sensitivity factors, design
points and the probability of failure; not only a slightly modified (improved) version of the multi-
linear regression approach but also the number of simulations and tolerances required to achieve
adequate results are provided for guidance.

2. Methods Revisited

2.1. Normality Polynomial
In this section the normality polynomial proposed in [11] is described. The mathematical form
is given by

T

Zp = Z a; (yv)j 1)

j=0

where z, denotes p-fractile of a standard normal variable Z with probability density function (PDF),
®(z), and cumulative distribution function (CDEF), ®(z); y» denotes p-fractile of a random variable Y
with PDF, fr(y), and CDF, Fx(y); aj, j = 1, 2, ..., 1, are the coefficients of a rth-order polynomial
determined by fractile fitting. The fractile fitting is based on considering the following fractile
constraints from a set of independent random observations of Y (i.e., y1, 2, ... ¥i, ... ys) arranged in
ascending order

i
; D)= (yi—— | = 2
GuFON = (o), i=12em @
These fractile constraints can be mapped into a normal space by using
z;=0YF(y)), i=12..n 3)

where @-1(®) denotes the inverse of the standardized normal distribution function. The rth-order
polynomial (Equation (1)) with 7 + 1 <# is used to model the distribution of the transformed random
variable Y. By considering the constraints in Equation (2), the coefficients 4; in Equation (1) can be
determined using the least square method by minimizing the error & given by

it = i <z,. - Z a (yf)"> 4)
i=0

j=1

where m is the number of constraints. The probability P (Y < yo) is given by the CDF, i.e., F(y0), and
can be computed with

F(yo) = ®(zp) 6)

where z is obtained by substituting yo instead of y» in Equation (1). If Y is the resulting random
variable of the LSF, the probability of failure, py, is

vy = F(0) = ®(ao) (6)
and the reliability index is [17]
B=—>"(py) )
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From Equation (7), it can be inferred that the reliability index can be readily obtained once the
coefficients g; are determined (i.e., § =—ao). This is so, because a0 has a similar meaning to the so-called
generalized reliability index [11]. It is noted that the roots of the polynomial are not required [11]
(unlike in the method in [13]). In the applications shown later, a third-order normality polynomial is
used [11].

It is pointed out that although the mathematical background of the normality polynomials is not
thoroughly described here, it is based on sound grounds [11], like the advance theory of statistics
[15,16] and the fact that fractile constraints hold by a combinatorial argument [18,19].

Before going to the applications, the second revisited approach in this study is described in the
following section.

2.2. Design Point and Sensitivity Factors from Simulations

The obtaining of the design point and sensitivity factors (from the FORM standpoint) based on
a previous study [12] is described herein. The basic idea is that simulated data close to the limit state
surface (within a prescribed tolerance, ¢) can be retrieved, as well as their associated sampled values
for each or the random variables given by the LSF (input values combinations considered as a point
in the hyperspace), and a multi-linear regression is performed to approximate the linearized limit
state surface at the design point. Before the multi-linear regression is performed to fit the hyperplane,
the considered points are mapped into a standard normal space. Such hyperplane is an
approximation of the LSF, g, and is used to assess the design point and sensitivity factors. The
mathematical formulation is given below.

A set of n independent random variables is denoted by X = (x1, x2, ..., xn). Xi defines the j-th
randomly generated value of X. For a given number of crude Monte Carlo simulations, s, Xjs which
satisfy the criterion below (slightly changed from the original formulation in [12]) are selected

[0 —g(X")| < e (8)

where X* in the LSF is included to emphasize that it is a function of a set of random variables. Hong
and Nessim [12] used e =0.05 (i.e., 5%) in their study (instead of e: in Equation (8) and defined below).
However, it was noticed that this value could be inadequate depending on the units and magnitude
of the considered random variables. Therefore, the distance between zero and the smallest simulated
value of g in absolute terms (liw) is used to set the tolerance as the fraction given by liw multiplied by
e (i.e., e=e x low is used instead of e in Equation (8)). The selected values of X* based on the described
criterion are then mapped into a standard normal space [17] using

Z = (21,25, ...,2,) = [P (F (1)), @H(F2 (x), oo, @7 2(Fy (x)] )

where Z is the image of X in standard normal space, ® is the normal standard CDF and F;, [=1, 2, ...,
n, are the CDFs of the random variables xi. In the standard normal space, a linear function is fitted to
the set of selected points using multi-linear regression. Such linear function is given by

n
Z bizi+c=0 (10)
i=1

where bi and c are constants to be determined in the multi-linear regression analysis. The resulting
linear regression equation is to be used in the same sense as the FORM [17] to estimate the design
point and sensitivity factors. The latter are denoted by «a;, i =1, 2, ..., n, and given by the gradient
vector of Equation (10) as indicated below

="/ e a
Zi=1 bi

Note that the reliability index can also be estimated as the smallest distance between the linear
surface and the origin as

A 12)

As regards the design point (in the normal space) it is given by
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Zig = a;ff (13)

The design point in the original space can now be determined with the inverse transformation
of zii, as

xiqg = F7 (@ (2i)) (14)

The subscript i in Equations (11)-(14) is associated to the random variable xi. The inverse
transformation in Equation (14) is dependent on the PDF of xiz and, in the case of the Longuet-Higgins
distribution [20] used for the coastal engineering example, the inverse transformations of zis requires
of a numerical approach to be determined.

The formulation in this section, and the one in the previous section, are to be applied to three
case studies in the following section to evaluate their adequacy for structural and coastal engineering,
and to assess their deviation with respect to the exact reliability index.

3. Applications and Results

3.1. A Classical Limit State Funtion

The two approaches described in the previous section are applied here to the simplest classical
LSF

g=R-1L (15)

where R and L can be considered, in a broad sense, as random variables for the capacity and demand
of a system element. For the sake of simplicity and illustration purposes, units are skipped and both
random variables are assumed independent and characterized with lognormal distributions, with
mean values and standard deviations mr = 10, mr = 5.6, or= 1, and or= 0.75 for the capacity and
demand, respectively. These values are arbitrary, except by the fact that they lead to a reliability index
equal to practically 3.5, which is a common reference for code calibration and that can be computed
with the following expression [21,22]

1 1
(ln mp —5In(1 + v,%)) - (ln m;, —5In(1+ U%)) Inmg —Inm, 16
Bre = ~ (16)

VIn(1 +v3) +In(1 + v?) JVi +v?
where vk and vi are the coefficients of variation of R and L, respectively. This reliability index is shown
in Figure 1a (dashed line), as a reference to inspect how close are the s obtained by crude Monte
Carlo simulations as a function of the number of simulations (shown in logarithmic scale in the
horizontal axis from 2 x 10" to 2 x 107) to the exact value. The reliability index for Equation (15) using
Monte Carlo simulations (dashed-dotted line in Figure 1a) is obtained by plugging into Equation (7)
the following probability of failure

n .
pr="""ngm (17)

which is simply the ratio of number of failures, i, to the total number of simulations. The latter (i.e.,
nsim) is also the number of fractile constraints when the reliability index is computed with the
normality polynomial approach, also depicted in Figure 1a (solid line).

Additional runs are shown in Figure 1b—d, which indicate that the results are different and
dependent on the generated random numbers of each run, but they stabilize if enough simulations
are performed or enough fractile constraints are used. Other observations from Figure 1 include that
B cannot always be computed with the Monte Carlo simulations (MCS) (not a single failure is
obtained), while the opposite occurs when using normality polynomials, although significant
deviations are observed for a limited number of simulations, that the fitted normality polynomials
tends to deviate less from the exact reliability index for fewer 7sin, and that such error in the precision
may not be large for a relative small #sim, (e.g., 1 x 10).
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Figure 1. Reliability index as a function of the number of simulations. (a), (b), (c) and (d) are different
runs for the MCS.

To quantitatively inspect these deviations, Bzt is to be used as benchmark to assess the exactness
of the used methods (i.e., normality polynomials and MCS) in terms of the relative percentual error
given by

ﬁbench - ﬁoth

x 100 18
ﬁbench ( )

where Brenan denotes the reliability index considered as benchmark and fon is the reliability index
computed with any other method. A total of 1000 runs are performed for each 7sin, and ¢ is computed
for each of the runs. Then, the mean values of the error and their uncertainties (the unbiased standard
deviation) are computed and plotted for the whole range of nsi» in Figure 2 (solid lines and dashed
lines for normality polynomial and MCS mean errors, respectively), where the mean errors + one
standard deviation are also depicted in grey lines.

Figure 2 shows that is not always possible to compute the statistics for the MCS; this happens
when not a single failure is reported in one or more of the 1000 runs for a given #sin (at least 5 x 104
are necessary). This is not a problem when using the fitted polynomials. Additionally, the MCS
approach always tend to larger mean errors and standard deviations for a decreasing number of
simulations. This makes the normality polynomial approach more adequate for estimating the
reliability indices; however, for few simulations the errors are too large. Nevertheless, the designer
could decide which precision level (quantitatively) is willing to accept using information like the one
in Figure 2 as an aid (and reduce the number of required simulations as a function of such an accepted
error).
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Figure 2. Deviations from the exact reliability index as percentage error.

If desired, the curves in Figure 2 could be casted as a mathematical expression. For instance, the
following power equations fit very well the mean (u:) and standard deviation (o¢) of the error in
Figure 2 (by fitting from 2.5 x 10? simulations and over)

Ue = 257.2 x n o244 (19)
o, = 157.3 x n; 05068 (20)

If the power in Equations (19) and (20) is assumed as —0.5 in both expressions, the coefficient of
variation of the error is ve = 150/250 = 0.6, i.e., it is constant and roughly independent of the number
of simulations; the actual ve obtained from the 1000 runs does exhibit such a roughly constant
behavior for this case, except that it is =0.7 (difference related to the actual different powers in
Equations (19) and (20)). Power equations like Equations (19) and (20) can be linearized by taking
logarithms on both sides. Therefore, if the involved variables are transformed into the logarithmic
space, a linear fitting can be performed. In this study, we simply used a built-in function in the
commercial software for the fitting.

Coefficients for the fitted normality polynomial in Figure 1a are shown in Table 1 (upper set of
values) for selected values of nsim. The computing of these coefficients is based on minimizing the
error in Equation (4) and was implemented in the coded program by using a built-in function of the
programming language employed (MATLAB). As mentioned before, the coefficients ao can be linked
to the generalized reliability index. Coefficients for results in Figure 1b—d (or those associated to
Figure 2) were computed but not shown for brevity.

As regards the reliability index, design point and sensitivity factors derived from the simulations
(i.e., those obtained with Equations (11), (12), and (14)), they are compared with those obtained by
applying the FORM to Equation (15). They are summarized in Table 2 for selected values of #simn.

Results listed in Table 2 indicate that when the points obtained by applying the criterion in
Equation (8) were enough to successfully perform a multi-linear regression (also with a built-in
function, as in the case of the normality polynomial fitting), § did not deviate from the exact value,
but marginally, just like the reliability index obtained with FORM. However, a relatively large rsim
was required, usually at least 1 x 10° simulations (by inspecting all the 1000 x nsim cases used to derived
Figure 2); this depends on each run (implicitly the generated random numbers in each simulation),
and sometimes less than 1 x 10° simulations are required. For the considered runs, 2 x 105 simulations
seem to guarantee the obtaining of the values reported in Table 2. In any case, when the muti-linear
regression is successfully performed, the results are quite adequate and invariant for increasing
number of simulations; this is also the case for the coefficients of the regression (i.e., they remain
independent of #sin), which are ¢ =0.5837, b1 = 0.0998, and b2 =—-0.1333.
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Table 1. Coefficients of the fitted normality polynomials.

Classic LSF, Equation (15)

Hsim ao @ a as as
1x10% -3.1193 3.9078 3.6571 -1.9371 -
1x10* -3.3195 4.9672 1.8106 -0.9905 -
1x10° -3.4813 5.8709 0.2415 -0.1324 —

Structural LSF, Equation (21)  rvp=0.4
MNsim ao ai az as as

1x10% -3.0950 6.3170x 107 3.8257 x 1074 -3.2619 x 102 --ne
1x10* -3.2923 7.3372x10%7 21457 x107* -2.3097 x 10! e
1x105 -3.3341 7.8972x10% 5.2658 x 10> -1.0534 x 102 -
Structural LSF, Equation (21)  rvw=0.4  4th-order

Msim ao ai az as as
1x10% -2.8726 1.7464 =107 27997 x107® -5.0461 x 102 3.1134 x 10%
1x10* -3.2802 6.7401x107 6.0193 x10* -1.0616 x 102 5.7321 x 1028
1x105 -3.2799 7.1276 x 107 3.6215 x 10 -5.7785x 102! 2.4322 x 1028

Table 2. Design point, f and ai by using multi-linear regression and first order reliability method

(FORM).
Design Point  Sensitivity Factors
Hsim p xR XL ar aL
1x104  -—-- — — — —
5 x 10* —- - —- ———- —-

1x105 3.5055 8.0699 8.0699 -0.5990  0.8007
2x105 3.5055 8.0699 8.0699 -0.5990  0.8007
1x10% 3.5055 8.0699 8.0699 -0.5990  0.8007
FORM 35055 8.0670 8.0670 -0.5990  0.8007

If the tolerance e: in Equation (8) is increased, the minimum number of required simulations can
be decreased. For instance, if e = 0.25 were used (instead of the actual used e =0.05), 5 x 10* simulations
would be enough for a successful multi-linear regression. Moreover, the design point, sensitivity
factors and reliability index would be the same as those reported in Table 2. The opposite would
occur if e = 0.005 were used (instead of the actual used e = 0.05), i.e., a much larger number of
simulations would be required to determine the reliability parameters from the regression.

Therefore, this approach based on multi-linear regression can be quite an adequate alternative
by itself to compute 8, conditioned on the feasibility of performing enough simulations, the number
of which can be decreased by using a large ¢; with the additional advantage that the design point and
sensitivity factors can also be determined.

In the following section a more realistic LSF for a structural application is used to further
investigate the revisited methods.

3.2. Reliability of Reinforced Concrete Beam under Flexure Moment

In this section the approaches described before are applied to a reinforced concrete beam (RCB)
subjected to flexure moment. The example is the same investigated in a previous study [23] but
focused only in one design code [24] and three ratios of the mean live to the mean dead load effect
for the beam. The rectangular beam section information, LSF, and statistics are succinctly reproduced
below. The LSF is

= Bafyd(1-05928) _p_y 21
Gacr = sfy — U m — U= (21)
where B is the modeling error, f" is the concrete compressive strength, As is the reinforcement steel
area, fy is the yielding stress of the reinforcement steel, b is the section width, / is the effective depth,
and D and V are the dead load and live load effect, respectively (flexure moment). The information
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of all the independent variables in Equation (21) is summarized in Table 3. As is assumed
deterministic and equal to 3000 mm? The PDFs of the random variables in Table 3 are based on
previous literature, which in turn reflects results from experimental projects, field information,
observed phenomena, and even the engineers experience to characterized these variables properly,
since such PDFs have a direct impact in the computed reliabilities, code calibration tasks, and
ultimately in the safety of real structures. More details can be found in [23] and the references therein.

Table 3. Random variables for the limit state functions (LSF) of the reinforced concrete beam (RCB)

considered.
Random Variable Mean coeff. of var. PDF
B 1.01 0.06 Normal
fe (MPa) 31.6 0.145 Normal
fyv (MPa) 474 0.05 Lognormal
b (mm) 303 0.04 Normal
d (mm) 990 0.04 Normal
D (kN-m) * 0.05 Normal
V (kN-m) * 0.18 Gumbel

* denotes that these values are not determined until a rvio value is selected and used together with Equation (22).

Mean values of D and V are not defined in Table 3, but they are derived by considering given
mean live load effect (mv) to mean dead load effect (mmp) ratios (rvio= 0.4, 1.0 and 2.0 are used in this
study) and the assumption that the RCB just meets the code requirement; thus, the following
expression is used to determine the mean values.

Asmfy
L2mp + 1.6my = pA;my, (md —0.59 %> (22)
where m denotes the mean values of the variables in the corresponding subscripts, and ® = 0.9.

Using the previous information, the normality polynomial approach is applied to Equation (21)
and the results are shown in Figures 3 and 4. These figures are analogous to Figures 1 and 2, except
that the reference reliability indices (dashed lines) correspond to the values computed using FORM,
that three cases of the ratio rvio= mvmp are depicted (the largest fs correspond to rvio = 0.4 and the
smallest to rvio=2.0, as shown in Figure 3a) and that the error in Figure 4 is shown for rvio =0.4 (Figure
4a) and for rvio = 2.0 (Figure 4b), which is computed by considering in Equation (18) B as the
average of the 1000 runs for nsim =2 x 107 (assumed as the exact value). MCS results are depicted with
dashed-doted lines. To perform the MCS, mp and mv are defined using Equation (22) and rvio as
mentioned before. Once they are determined, MCS can then be performed to obtain samples of D and
V (and all other random variables in Table 3) and the probability of failure as per Equation (17) can
be computed. As an example of the simulated bending moments, histograms of D and V are shown
in Appendix A (Figure Al) for 1 x 10¢ MCS and rvio = 1.0; it can be observed that the values are
comparable in average (because rvp = 1.0 is considered), and that histograms for D and V clearly
resemble normal and Gumbel distributions, respectively, which is expected given that these variables
were sampled from such PDFs.

From Figures 3 and 4 similar conclusions to those drawn from Figures 1 and 2 can be extracted.
Some additional observations worth to mention are that #sm = 1 x 10* seems a reasonable number of
simulations for the normality polynomial approach, if a compromise between #sin and error (in terms
of mean and standard deviation) is envisaged, that the fitted polynomials lead to better results than
the FORM for increasing nsim and that larger errors are obtained for smaller rvip; this latter aspect
could be attributed to a better approximation of the failure surface for larger rvip, since the first order
approximation to the failure surface by the other method shown in Figure 3 (i.e., the FORM), also
deviates more from the exact value for decreasing rvp.

By observing Figure 4, it is pointed out once more that error and its uncertainty is less for
normality polynomial when decreasing nsim than for MCS for this case too and, as previously
mentioned, is not always possible to estimate the error for MCS for decreasing number of simulations.
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The error for § obtained with the normality polynomial approach exhibits an asymptotic behavior
towards approximately ue = 1% for large nsim. As before, power laws fit adequately the error and its
uncertainty and are defined as

pe=8xn. +1 (23)
O, = K X Ny (24)

where 0 = 656, 1103, and 1349, y = 0.7401, 0.8493, and 0.9062, x = 129.8, 201, and 179.1, 7 = 0.4937,
0.5609, and 0.5703 for rvio = 0.4, 1.0, and 2.0, respectively. In Equation (23) the constant unity is
included to shift the curve upwards to reproduce the asymptotic behavior mentioned; nonetheless,
it could be skipped, and the equations will still fairly adequately describe the mean error. The fitting
for u: was performed for the whole range of nsim, while for o, #sim from 250 and over was employed.
Note that although the range for the fitting could be established based on practical grounds and
fitting improvement, in any case the errors and their uncertainties follow a power law; this is the case
for the three case studies carried out in this study.

4.5

b) -~~~ FORM
Norm. Poly.

------- MCS

Reliability index
& e

w

25

45 45

c) -~~~ FORM
Norm. Poly.

IS
~

Reliability index
Reliability index
w
(3]

w
w
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2.5 .
10? 104 10
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Figure 3. Reliability index as a function of the number of simulations for RCB. (a), (b), (c) and (d) are
different runs for the MCS.

It is noteworthy that the normality polynomial approach leads to comparable p. and oe for
Figures 2 and 4, considering that the LSF for the RCB is a more complex (non-linear) function, and
that it has much more random variables and several PDFs.
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Figure 4. Deviations from the exact reliability index as percentage error for RCB; (a) rvio= 0.4 and (b)
rvio=2.0.

The fitted coefficients of the polynomials for Figure 3 (corresponding to rvio= 0.4) and selected
nsim are listed in Table 1 (middle set of values). If normality polynomials of order higher than 3 are
used, no further accuracy is gained (or even higher inaccuracies could be obtained; [11]). This is
confirmed by carrying out a single case for rvio = 0.4 using a 4th-order polynomial, since the results
are comparable to those of the 3rd-order polynomial case (Table 1, lower set of values). Note that the
order of the coefficients of the normality polynomials for the RCB problem can be very small
(compared to the classical LSF problem and to a coastal engineering application shown later); this
could be due to the units employed, and should not be understood as if the order of the polynomial
could be decreased, whereas obtaining comparable precision, because the use of at least third-order
normality polynomials was illustrated and found adequate in [11].

To end this section, the results of using the multi-linear regression approach for the LSF defined
in Equation (21) are listed in Table 4 for rvio =1.0. The subscripts in Table 4 (and the units of the design
point) are associated to the random variables in Table 3. The reported values correspond to the last
of the 1000 runs used to develop Figure 4. As an example of the coefficients obtained by multi-linear
regression, the ones from the last of the 1000 runs (for deriving Figure 4) corresponding to rvio = 1.0
and 1 x 106 simulations resulted in ¢ = 3.3635 x 106, b1=4.0861 x 105, b2 =2.7767 x 105, bs =1.1215 x 105,
ba =-1.1888 x 105, bs=-9.1330 » 105, bs = 3.1471 x 104, and b7 = 2.8878 x 105.

The previous information indicates that a similar conclusion to that of the previous example (i.e.,
for the case of Equation (15)) can be drawn, i.e., at least a sufficiently large number of simulations is
required for a successful multi-linear regression. However, unlike in the previous example, the
design point and sensitivity factors are not invariant by varying nsim. The differences are not so
significant though; therefore, once a minimum number of simulations is ensured (around 8 x 10*
simulations) a very precise 8 is obtained; it is also observed that the required number of simulations
for adequately carrying out the multi-linear regressions decreases with increasing rvip (this could be
attributed to the same reason argued before about the larger errors obtained for smaller rvip). If the
tolerance e is increased, the number of simulations can be reduced, but not as significantly as for the
classical LSF case (i.e., Equation (15)). For instance, an increment to e = 0.35 reduces #sin to around
5x10% this also changes the values of the design point and sensitivity factors, but not substantially.
From Table 4, it is also observed that the values are in very good agreement with the FORM results,
with even higher precision from the regression approach for the reliability index. Therefore, it is
concluded that the multi-linear regression by itself can be a very attractive alternative to compute g,
if a minimum #sim (similar to those mentioned above) is feasible; it is emphasized once more that an
additional advantage is that the design point and sensitivity factors are also determined.
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Table 4. Design point,  and aiby using multi-linear regression and FORM for the RCB.

Design Point/(Sensitivity Factors)

Hsim B xl(aB)  xplap)  xrd(ar)  xol(ap)  xvl(av)  xl(aw) xal (aea)
1x10¢ - — — — — — — —
5x 104 - —- ———- —- —- - —- —-

0.9429 455.528 29.802 420.037 534.156  301.950 959.454
(-0.3521)  (-0.245) (-0.1248) (0.1170) (0.8520) (-0.0276) (-0.2453)
0.9354 453.722 30.099  420.169 539.456  302.109  956.271
(-0.3732) (-0.2575) (-0.0992) (0.1134) (0.8395) (-0.0223) (-0.2580)
0.9350 453.914 30.042 419.88 539.275 301.844  955.342
(-0.3747) (-0.2546) (-0.1028) (0.1090) (0.8375) (-0.0289) (—0.2648)
0.9424 455.332 30.393 419.026 702.302  302.151 958.785
(-0.3562) (-0.2489) (-0.0841) (0.1019) (0.8543) (-0.0224) (-0.2518)

1x10° 3.0798

2x105 3.0747

1x10¢ 3.0842

FORM 3.130

One final application of the revisited described methods is performed for a coastal structure in
the following section.

3.3. Overtopping Reliability of a Breakwater

In this section, we consider for the coastal engineering application the example reported in [10],
where certain conditions are assumed and where the reader is referred to for further details and used
references. It is a breakwater with deterministic slope, tan 7 = 1/1.5, and freeboard, F» = 10 m. When
the water runs up the breakwater, overtopping could occur (i.e., the water surpasses the freeboard),
which is considered as a failure. This is defined by the LSF given by

tant
Goiew = Fo—A H (1 — " TE ) (25)

where A. and B. are coefficients characterized as independent normally distributed random
variables, with mean values equal to 1.05 and -0.67, respectively, and coefficients of variation both
equal to 0.2 [10]; H denotes de wave height and T represents wave period. H and T are random
variables probabilistically characterized by the joint Longuet-Higgins distribution [20] with
parameter v=0.25. The joint PDF of the Longuet-Higgins distribution is given by

B 2 (HE\ . 1\,
fu 1 (Hy T) = L(V) m(@) o H3 [1 + (1 - T_n> v ] (26)
where Hi = H/Hs and Tu= T/T: are normalized wave heights and periods by considering Hs=5 m and
T:=10 s, which are the significant wave height and the zero up-crossing mean period, respectively,
which define the sea state [10]; L(v) is a normalization factor implying only positive values of T» and
defined by

-1

L(v) = G [1+@+ vz)_l/z]) (27)

First, the FORM is applied to Equation (25). Salient points of performing the FORM to this
overtopping LSF are briefly described in the following. First, it is noted that since H» and T» are not
independent, the Rosenblatt transformation is performed for the joint distribution to map the
equivalent distribution parameters into the normal space by using [17]

2 = &7 (Fy, (Hy))
72 = O (P, (T Hn) )

where ®71(s) denotes the inverse of the CDF of a standard normal variable, Fy, (H,) and

(28)

Fr.\m, (Tn|Hy) are the marginal distribution of Hx and the conditional distribution of T» given H. for
Equation(26), respectively, and defined by
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Fi (Hy) = HyL(V)e ™ [1 + erf (Ry / v)] (29)
Fayuy (TalHo) = 20e[L + erf (i, /) (B2) e 4(0-n) (30)

where the error function is given by

Hp/v

erf(Hn/v)=% j ot dt (31)
0

In Equation (29) the equivalent version reported in [25], rather than the original version in [10],
is considered. This is so, simply because the error function used in [25] is more readily available in
current software. Then, to derive the conditional probability distribution, we divided Equation (26)
by Equation (29) yielding Equation (30) given above. Since the CDFs of Equation (29) and Equation
(30) are also required to obtain the equivalent parameters mapped in the standardized normal space,
other point to highlight is that they were obtained numerically at the design point, unlike for the
normal distributed random variables, where simple analytical expressions can be used (which is also
possible for other common PDFs).

Additionally, it is noted that as part of the procedure to obtain the reliability index in each
iteration of the FORM, usually a vector obtained by multiplying each partial derivative of the LSF
(i.e., Equation (25)), evaluated at the design point, by the equivalent second moment in the normal
space (for the corresponding random variable) is enough. However, this approach is not possible for
the joint random variables in this example. Therefore, the Jacobian (and its inverse) is required [17];
once the inverse of the Jacobian is computed, it is multiplied by the vector of partial derivatives
evaluated at the design point mentioned above, and the reliability index can then be obtained in each
iteration in the regular way for the FORM (i.e., as when the variables are independent). This approach
is followed in the present study. Note that for a set of jointly distributed random variables xi (zi in the
normalized space), the inverse of the Jacobian is a lower-triangular matrix determined (often
numerically) as [17]

( 0, i<j
I fi(xilxli "'!xi—l)

1 _ 07 { ¢ ()

1 = —L = 13 [ = ]

I3 =5 = om ;i) (32)
|6_xi(xi|x1’ s Xioq) o
, 1>

k o(z;) J

where @ (zi) is the PDF of a standard normal random variable, with the argument zi obtained in an
analogous way to Equation (28); fi and F: refers to the PDF and CDF for the variable with subscript 7,
respectively. It was noticed that for the present example, disregarding the elements outside the
Jacobian diagonal does not impact very significantly the computed reliability indices.

A few final important aspects regarding the FORM worth to mention, include that the order of
the variables in defining Equation (28) does matter, although similar results may be expected [17].
For instance, in [10] the marginal distribution of T and the conditional distribution of Hx given T are
used to define Equation (28) (i.e., the order of the variables is inverted as compared with this study),
which results in a reliability index, f, equal to 2.01 for the problem in question, whereas = 2.10 is
obtained in this study with the FORM formulation described earlier, and adopted in the following; 8
= 2.10 is also closer to the exact value to be discussed later. Another slight difference between [10]
and this study when applying the FORM, is that in the present work, when assuming initial design
points, one is determined by setting gukw =0, to ensure that the design point is on the failure boundary
(e.g., [26]).

To inspect the variation of § for different F. values, the FORM is performed by varying the
freeboard between 9 m and 12 m and the resulting reliability index is shown in Figure 5a with a black
dashed line. As expected, it can be observed that § increases for increasing freeboard; if the slope of
the breakwater is increased to tan 7 = 1/2eand the FORM is carried out for the same range of F, it
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further increases reliability levels, as shown by the dashed grey line in Figure 5a. These results are
used as reference and for comparison purposes, with respect to the results from the normality
polynomial and multi-linear regression approaches revisited in this study.
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Figure 5. Reliability of breakwater and error estimation in the reliability index. (a) Reliability index as
a function of F; (b) Reliability index as a function of nsin; () Computed error for the reliability index;
(d) Fitted mean and standard deviation for the error in the reliability index estimation.

The simulations for this coastal engineering application, used as the basis of the revisited
methods, are much more computationally intensive than for the classical and structural examples,
because of the dependency between the wave height and period and inclusion of the Longuet-
Higgins distribution, which imposes numerical computing for the probability levels (e.g., values from
CDFs) and a different method for the sampling. This latter aspect, i.e., the generation of jointly
distributed random numbers when a set of x; variables are dependent, is based on expressing the joint
PDF as [22]

fx () = fr1 ) faa (e210) woe fion (%4, ooes X)) (33)
with the corresponding CDF given by
Fy(x) = Fy1 (1) Fx2(x21%1) woo Fyn O |1, o) Xn—1) (34)

Using the previous concepts, and considering a set of values U generated from n independent
standard uniformly distributed random variables, the set of dependent random variables can be
determined as

X1 = Fet(uy)

X2 = F;c_zl (uz]x1)

(35)

Xn = F;c_nl (Unlxy) o) Xp-1)

where F-1(*) denotes the inverse of the CDF. The obtaining of this inverse of the CDF can be relatively
straightforward for some common probability distributions, where an analytical expression can be
used for Equation (35). This is not the case for the Longuet-Higgins distribution. In this case, the
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jointly distributed random wave height and period must be determined numerically. Figure 6 shows
samples of jointly generated random values of wave height and period in the normalized space (for
nsim=1x10%,5x10% 1 x 10*and 5 x 10%). A few contours of the theoretical Longuet-Higgins distribution
(i.e., Equation (26)) are also shown in Figure 6; it can be observed that they are in good agreement.
The values in the non-normalized space can be obtained simply by recognizing that H. = H/Hs and Tx
=T/T-.

3 -
25
i .
»
£ 15 ’
I
1
05 :
gl <t <
0

05 1 15 2
T
z

Figure 6. Randomly generated joint values of H» and T« for (a) 1 x 103, (b) 5 x 105, (c) 1 x 104, and (d) 5
x 10* simulations.

As mentioned before, the sampling procedure is significantly more time-consuming than for the
LSFs in previous sections. Therefore, MCS are sampled only up to 1 x 10¢ simulations for all the
variables of the LSF represented by Equation (25), and the reliability index is determined by
employing Equation (17) and Equation (7), only for the case reported in [10] (i.e., Fe.=10 m and tan 7
=1/1.5).oNonetheless, results depicted in Figure 5b indicate that the reliability index stabilizes, from
approximately nsim=1 x 10> and over, to a reliability index practically equal to 2.2 (gray solid line).
Therefore, f = 2.2 is adopted as the exact value of the reliability index for the breakwater under
overtopping. This value is to be used to assess the error by estimating the reliability index with the
normality polynomial approach, and to compare versus the results obtained with the multi-linear
regression approach. In fact, the results from these two approaches are also shown in Figure 5b (black
solid line for the normality polynomial; grey dashed line for the multi-linear regression approach),
where it is observed that the normality polynomial approach converges to a stable value
(approximately p = 2.12) from about 2 x 10° simulations on, leading in average to a slightly smaller
reliability index (i.e., in the conservative side) but closer to the exact value than by using the FORM.
The multi-linear regression approach (like the MCS and unlike the normality polynomial) requires a
minimum number of simulations to be carried out, being this number 1 x 10° for Figure 5b, but
sometimes more simulations are required; nevertheless, when a sufficient large number of
simulations is performed (e.g., about 3 x 10* or more in Figure 5b), the results of the multi-linear
regression leads to practically the exact , and the design point and sensitivity factors can also be
determined.

For brevity, the coefficients of the polynomials and multi-linear regression, design points and
sensitivity factors are not extensively listed in this section, but as an example values are given for a
single case of 2 x 10* simulations, which led to coefficients for the normality polynomial of ao=-2.164,
a=0.3175, a2=—-0.0110 and as= 0.0028, and for the multi-linear regression of ¢ = 1.4760, b1=-0.3382, b2
=0.1235, bs =-0.5550 and bs = -0.0633, as well as sensitivity factors equal to aau = 0.5089, as. =-0.1859,
an=0.8351, and ar = 0.0953 and design points equal to xau = 1.2874, xg. = —0.7263, xu = 9.3045 m, and
xr =10.2051 s, which compares very well with the corresponding sensitivity factors computed with
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the FORM, that are equal to 0.4959, -0.1712, 0.8466, and 0.0900, respectively, and also very well to the
design points from FORM equal to 1.2689, —0.7182, 9.0796 m, and 10.1933 s, respectively. These values
of sensitivity factors and design points are also very similar with those reported in [10].

It is noted that Figure 5b corresponds to only one set of simulations for every nsim, which may
vary for different sets of generated random numbers (as shown in Figures 1 and 3), implying an
uncertainty in the deviation from the exact value for different number of simulations. This
uncertainty is assessed as for the classical and structural LFSs in previous sections, i.e., by computing
the errors in the reliability index as per Equation (18) and fitting them to power laws with the
mathematical functional form represented in Equations (19) and (20) (or Equations (23) and (24)), but
with different values of the parameters. To do so, and unlike the case of the classical LSF and the
reinforced concrete beam under flexure moment, not 1000 but only 100 sets of simulations are
computed for each nsim, due to the more extensive required time and computational resources referred
to earlier (A comparison in terms of computing time (CPU time), a description and a discussion are
given in Appendix B and Figure A2 of the appendix). This leads to the mean errors shown in Figure
5c¢ with a black solid line for the normality polynomial case (including mean values + one standard
deviation indicated in black dashed lines), and with a grey dashed line for the MCS case (including
mean values * one standard deviation indicated in grey dotted lines).

Even though errors reported in Figure 5c exhibit not as a smooth behavior as those observed in
Figures 2 and 4 (obtained in an analogous way but for 1000 sets of nsin), the qualitative trend is fairly
similar, especially for mean values and not so small #sin. Indeed, power laws can be adequately fitted
to pe and o, as shown in Figure 5d by fitting the computed errors from 1 x 10? simulations and over;
the mathematical functional form is analogous to that of Equations (23) and (24), except that the
constant 1 in Equation (23) is omitted. The obtained fitted parameters are 6 = 23.62, y = 0.2342, « =
47.94 and 7 = 0.4254. As observed in Figure 5d the fitting is very adequate for o: and adequate for .,
albeit only 100 sets of nsim were employed for the statistics.

From Figure 5c,d similar conclusions to those found before can be drawn, namely, that for
decreasing nsin the MCS tends to deviate more from the exact value than the normality polynomials
(in terms of ¢), that for decreasing number of simulations the error for the MCS can be unknown and
that power laws are adequate to mathematically defined pe and o. for the normality polynomial
approach. Therefore, a designer could for instance use the normality polynomial method to compute
the reliability index for a reduced number of simulations, whereas accepting an error in the
estimation. However, such an error could be estimated if expressions of pe and o (like the power
laws determined in this study) are known.

As an example, in Figure 5a nsim = 7 x 102 is used for the normality polynomial approach (black
solid line) and, as it is shown, this leads to reasonably adequate results (using a fairly small number
of simulations) when compared with the FORM and the MCS (also included in Figure 5a with a black
dotted line). Moreover, the fitted equations shown in Figure 5d can be used to quantitatively compute
the associated error and its standard deviation with respect to the exact reliability index, that is u =
5.09% and 0. =2.95%. This is strictly applicable only to F. =10 m; however, comparable errors may be
expected for a range of freeboard values by inspecting Figure 5a. Naturally, the contents of this paper
could be extended to investigate how the error changes by varying one or more parameters of the
LFSs. In such a case, one would expect that functional forms like those reported in this study can be
used to assess ¢, but possibly with higher mean errors (and/or standard deviations) for higher
reliability levels, because usually more simulations are required for lower probabilities of failure.
This could be inferred from Figure 5a, where a last set of calculations is shown by increasing the
breakwater slope to 1/2 (dashed and dotted grey lines for the normality polynomial and MCS
techniques, respectively), where higher variations of the normality polynomial in relation to the
FORM are observed; this higher reliability levels also have the effect of decreasing the ability of the
MCS to capture the probability of failure, as also observed in Figure 5a for a wide range of F.
Additionally, although not shown in Figure 5a, it was observed that the minimum number of
simulations required to adequately performed the multi-linear regression increases for higher
reliability levels (e.g., larger breakwater slopes).
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Overall, results in this section indicate that the revisited simulation-based methods can be also
effective for coastal engineering applications.

4. Discussion

Results in the previous section suggest that the two revisited approaches based on simulations,
namely, the normality polynomial and the multi-linear regression approaches, are effective in
reducing the number of required simulations while adequately computing the reliability index,
design point and sensitivity factors. It could be argued that still a relatively large number of
simulations are required. However, the computing power is becoming higher every year, and these
methods proposed at the end of the 1990s could become a feasible alternative for some complex
models two or three decades later.

The power law (Equations (19), (20), (23), and (24)), which describes the precision in computing
p for the normality polynomial approach, was found very adequate for the three LSFs considered.
Albeit it cannot be concluded that the underlaying error is based on the power law for every possible
LSF, since one of LSFs studied here was a simple classical case using only one type of PDF, and the
other LSFs were more complex (non-linear functions), with much more random variables and
included several PDFs, as well as dependency between variables and the joint Longuet-Higgins
distribution, it is reasonable to believe that the error for other LSFs for a wide range of coastal and
structural engineering applications could follow the power law. A designer could opt to reduce the
number of simulations while accepting an error level (including its uncertainty) by using the power
laws as an aid.

The multi-linear regression approach was originally developed to derive the design point and
sensitivity factors not obtained when performing MCS; however, it is considered that it can be an
alternative by itself to compute f in an accurate way, conditioned on performing enough simulations
for a successful regression; the number of simulations can be reduced by increasing the tolerance e.
Values reported in this study can be used as a guide.

It is acknowledged that some differences with respect to the present study could be found when
other LSFs and applications are used. However, the values reported in this study could be used for
guidance, and it is believed that the power law may hold in many coastal and structural engineering
applications, since the normality polynomials are based in strong mathematical foundations, as
referenced before; nevertheless, future research to further inspect the findings in this study is
recommended by using mathematical LSFs considered as benchmark in the literature, but also more
ultimate and serviceability LSFs for other coastal and structural engineering applications. It is also
believed that the revisited methods and the findings in this study can be exported to other
engineering fields if practical applications can be posed as a capacity—-demand problem and when
extensive simulations are required, including system reliability (for instance for reinforced concrete
frame buildings, among many other possibilities). Future research could also include a systematic
study for the multi-linear regression approach by varying the tolerance, for given number of
simulations, so that the number of MCS can be limited to a minimum while guaranteeing the
obtaining of adequate reliability-related values.

If more LSFs are investigated in future studies, perhaps it could be possible to infer general
bounds for a wider applicability of the findings in the present study.

5. Conclusions

Two reliability methods based on simulations are revisited. One method fits normality
polynomials to the simulated data with fractile constraints, and the other approximates the linearized
limit state surface at the design point using multi-linear regression; for the latter, a slight modification
is proposed. Three limit state functions, a very simple one, other for a structural engineering
application and another for a coastal engineering application, are employed.

The most relevant findings of this study are that for the normality polynomial approach, a power
law was found to adequately represent the mean and standard deviation of the error in the estimated
reliability index as a function of the number of simulations. It could be used as an aid for decision
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makers to select a precision level (quantitatively) associated to a selected reliability index, thus

reducing the number of required simulations by expressively accepting an error level. Additionally,

it is found that the multi-linear regression approach is an excellent option to obtained accurate

reliability levels, although a sufficiently large number of simulations is required (not prohibitive

though). It also has the advantage that the design point and sensitivity factors are determined.
Other findings in this study are:

1.  When the normality polynomial approach is used, the reliability index is dependent on the
generated random numbers of each run, but it becomes stable for a large number of simulations.

2. The reliability index cannot always be determined with the Monte Carlo simulations, while the
opposite occurs when normality polynomials are used, although significant deviations from the
exact value are observed for small numbers of simulations. In general, for an intermediate
number of simulations (e.g., 1 x 10%), the fitted normality polynomials lead to a better estimate
of the reliability index than the Monte Carlo simulations.

3. When the mean relative error and its standard deviation are computed for the reliability index
(compared to the exact value), for decreasing number of simulations the Monte Carlo simulation
approach tend to larger mean errors and standard deviations than the normality polynomial
approach.

4. 3rd-order normality polynomials were mostly used; when 4th order ones are used, the fitting
leads to comparable results.

5. When the multi-linear regression approach is considered, a minimum number of simulations is
required for successfully performing the regression (in the order of 10*to 10°simulations), but
once this is ensured, a very precise reliability index is obtained (more precise than by using the
first order reliability method (FORM)), and the design point and sensitivity factors are also
determined and in good agreement with those determined with the FORM.

6. If the tolerance for the multi-linear regression approach is increased (i.e., if a wider range in the
nearest of the failure surface is stipulated to gather the vectors of simulated data), the number
of simulations can be reduced.
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Appendix A

Figure A1. Histograms for 1 x 10° Monte Carlo simulations (MCS) of bending moment due to (a) dead
load (D) and (b) live load (V).

Appendix B

Figure A2 shows the computing (CPU) time required for the classical and structural engineering
LSFs (Figure A2a) and for the coastal engineering LSF (Figure A2b). The CPU times include
computing of MCS and probabilities of failure, fitting of the normality polynomials and obtaining of
the reliability parameters by multi-linear regression. The employed processor is an Intel(R) Core(TM)
i7-9750H CPU @ 2.60 GHz with RAM of 16.0 GB and operating system of 64 bits.

It is highlighted that CPU times are for 1000 sets of #sim and for 100 sets of nsim (as indicated in
the horizontal axes of the figure) for the classical and RCB LFSs and overtopping LSF, respectively.
It can be observed in Figure A2 that the CPU times are significantly larger for the coastal engineering
application, as shown by the different ranges used in the vertical and horizontal axes and by the fact
that only 100 sets of nsin are used for this case (compared to 1000 sets for the others, as mentioned
before). This significant larger computing time is imposed by the joint distribution of wave heights
and periods and the Longuet-Higgins distribution used to represent them, which must be solved
numerically and for which a different sampling technique is required, as indicated in the main body
of this article.

Figure A2 could assist the readers to establish feasible simulation schemes. It was noticed that
efficient computing time is obtained if 10,000 simulations at a time are considered for the overtopping
LSE. See for instance that for nsin = 100 in Figure A2b (which translates into 100 x 100 = 10,000 MCS),
a reasonable CPU time is required; in fact, it is shown in Figure A2b that over this threshold the CPU
time starts to increase to a much faster rate. Therefore, once the random numbers are simulated (this
is not a problem in terms of CPU times for millions of random numbers), a programming scheme
dividing the computing in 10,000 MCS can be used to improve the efficiency (e.g., subdividing the
tasks within the same program, running several windows simultaneously and/or using several
computers).



Appl. Sci. 2020, 10, 8176 20 of 21

800 a) 8000 b)

700 Classical LSF 7000

= Coastal Eng. LSF
=Struct. Eng. LSF

600 6000

o]
=3
S

5000

.§ 400 -§ 4000
2 2
© 300 © 3000
200 2000
100 1000
[} 0
1.00E+04 1.00E+05 1.00E+06 1.00E+01 1.00E+02 1.00E+03
ng, X 1000 sets ng., X 100 sets
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ABSTRACT

In the present study an extreme value analysis of maximum significant waves recorded at a buoy
located in the Pacific Ocean was carried out by including/excluding an atypical extreme wave height.
The analysis was carried out using a non-stationary Generalized Extreme Value (GEV) model, which
incorporates the monthly seasonality of maximum observed values in time increments; the maximum
significant wave behavior was parameterized using harmonic functions for the distribution measures.
A single buoy was considered for the scope of this paper. In the study differences in the seasonality
effect were found due to the exclusion of the atypical value, which is especially significant because it
occurred in a season with supposedly low wave heights values.

Keywords: GEV model; atypical value; non-stationary,; seasonality; projections.

1. INTRODUCTION

In the recent literature, [1] the Gumbel probability density function (PDF) is used to estimate the
extreme maximum annual significant wave height. In [2] non-stationary GEV models are employed. In
[3] design values for significant wave height accounting for direction and seasonality are proposed. In
[4] the behavior of tropical cyclone is compared for two Chinese seas. In [5] peak over threshold
(POT) methods are used for estimating significant wave heights for given reference periods.

Several studies historically developed and extended the Extreme value theory [6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23]. More recently these extreme value concepts have been applied to
designing maritime structures [24]. The seasonality of extreme waves in the Gulf of Mexico has been
investigated [25]. Seasonality effects can have an impact on the meteo-oceanographic variables
[26,27].

The main objective of this study is to compare the effect of excluding an atypically large wave height
value on the seasonality of such meteo-oceanographic variable. A single buoy site in the Pacific
Ocean is used for this aim.

2. SINGLE BUOY CONSIDERED

Buoy number 51004 in the Pacific Ocean is considered, which is operated by the National Data Buoy
Center (NDBC, www.ndbc.noaa.gov).

Fig. 1 shows the buoy location which is located to the south of the Hawaii islands. It has recorded
wave heights from 1984 to 2017, except 2010. The significant wave height (Hs) is used within this
study. This buoy recorded an atypically large Hs in July, 1986, when the largest values usually do not
occur.
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Station 51004 - SOUTHEAST
HAWAII - 205 NM Southeast of Hilo,
HI

Fig. 1. Buoy number 51004

3. COMPUTED VALUES
3.1 Simple Statistics

Simple statistics were computed in a previous study [28] and are reproduced herein. In Fig. 2a (upper
part) a main wave incidence to the NEE is observed. The atypical recorded Hs referred earlier is
equal to 10.60 m; see Fig. 2b (lower part). The most frequently observed significant wave height is
roughly 2 m.
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Fig. 2. Basic Statistics of the buoy under study (after [28]) (a) Wave rose and, (b) time series
data
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3.2 Analysis of Extreme Values

3.2.1 Generalized extreme value distribution

The governing equations can be found in [29]. It is stated that the only non-degenerate family of

distributions obtained from EVT are the well-known Weibull, Gumbel and Fréchet families for maxima,

given by

Maximal Weibull or Reversed Weibull:
exp |- (5]

H(x) = &P s) ],ifx<A >0 (1

1, Otherwise

Gumbel or Maximal Gumbel:
H(x) = exp [—exp (XS;A)] —o L x < ® (2)
Fréchet or Maximal Fréchet:
0, ifx < 4,
= B
H(x) I exp[—(%) ],ifo/l,[)’>O )
where g, §and A are distributions parameters.

The used GEV distribution e.g., [22,30], reduces to a single mathematical expression, the three well-
known families of extreme distributions, as follows

_NTH
G(x)=expl— |1+ T & S E£0
7

+

_ x—u_
7

G(x) =exps—exp| — —>&=0

The PDF is defined by

s e () e o (5 e

= Loxp(=X* —exp (=8 if e =
9(0) = s exp (=) exp |- exp (- 5E)]if € = 0 (5)
where —~ <u < « is the location parameter, ¢ > 0 is the scale parameter and £ the shape parameter.
The location parameter represents the mean values of the random variable, x, and defines the value
with a non-exceedance probability exp(-1). The scale parameter denotes the sample dispersion. The

shape parameter defines the distribution family as a function of the tail behavior; when ¢ exists, G(x)
includes two distribution families.
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3.2.2 Non-stationary GEV model

GEV model is used for block maxima of a time interval for modelling Hs. The monthly maximum
values are employed. Note that throughout this study; the methodology in [25] is used.

The seasonality is defined as the cyclic changes during the year which is related to climatic patrons
and usually repeats itself for many years and behaves in a sinusoidal way. However, sometimes
atypical values do occur, as shown in Fig. 3 where it can be observed that a very large value
happened in July, 1986.
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Fig. 3. Seasonality of monthly maxima and atypical value
For the assessment of time-dependency the successive monthly maxima are considered as
independent random variables; homogeneity hypothesis is not necessary [28]. The maximum monthly

value Z; of the observed Hs in month ¢ is supposed to follow a GEV distribution, with location u(t)>0,
scale y(t)>0 and shape € (t) parameters being time-dependent.

The cumulative distribution function (CDF) of Z; is

ferv{-[1+ 0 (522 )
exv{-exp [ (222)])

The non-stationarity of the models is introduced by means of

Fu(2) =

u(t) = By + By cos(2mt) + Bysen(2mt) + B5 cos(4mt) + B,sen(4mt)
0 =4Y(t) = ag + a; cos(2mt) + a,sen(2nt) + az cos(4nt) + azsen(4nt) (7)
E(t) = yo + v, cos(2mt) + y,sen(2mt) + y5 cos(4mt) + y,sen(4mt)

where Y(t > 0), ,80,050 and Y are mean values; D;,Q&; y }; (for i=1,2) are the harmonic

amplitudes; ,85,05,- y Y; (for i=3,4) are the subharmonic amplitudes and t is in years.

152



Emerging Issues in Science and Technology Vol. 1
Influence of an Atypical Value in the Extreme Wave Analysis using Non-Stationary GEV Models

In Fig. 4 the results from the variability analysis within a year of the maximum-likelihood estimators for
the location, u, scale, y, and shape, &, parameters along the year are depicted by including the
atypical value. The line is obtained by regression fitting with two harmonics.
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Fig. 4. Estimators for distribution parameters including atypical value
3.2.3 Non-stationary model fitting

The maximum likelihood (MML) approach is employed to estimate the probability distribution
parameters. Such approach is based in the search for point estimators () for the parameters of a X
function, so that the probability of observing the sample data {x;,...x;} is maximum. The likelihood
function L(x;6) is the joint density function associated to all initial extreme values, from a previously
selected distribution and, in general terms, is given by

L(x;0) = f(xq,... x5 0) = [1i=1 f (x5 0) (8)

The location pu(t)>0, scale w(t)>0 and shape ¢ () parameters are expressed in terms of harmonic
functions, whose amplitudes are regression parameters to be mathematically estimated [29].

For our case it is denoted with

1011x)=-% 10gl//(tl-+(1+%(li))log{l+§(ti{xil;(fz()ti)ﬂ+ +{1+ g(tf{WH Kol g

+

Finding of the best model is based on a previous study [25,28], and leads to the values associated to
a return period by using

w0 - YU 1o - *0) i 00

s (10)

X, (1,0)= X, (u®),p(),£(t))=
(1) = () log[- log(1 - q)] i &n=0

where q is the exceedance probability defined from G (x)=71-q and the estimated quantile, and X(t,0)
is the time-dependent value associated to the return period R=1/q.

4, EXCLUSION OF ATYPICAL VALUE AND DISCUSSION

4.1 Stationary Model

For reference only, considered the stationary case, in which the location, scale and shape parameters
do not change with time. Table 1 lists the computed values of the distribution parameters, as well as
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the maximum recorded significant wave height, Hs.x, and the projected value for Hs associated to a
return period of 30 years, by including or excluding the atypically large Hs.

Table 1. Parameters for the stationary model, Hs,,.x and Hs and Tr=30 years (including and
excluding atypical value)

HSmax (M) 10.60 HSmax (M) 7.60
Hs (m) for Tr= 30 yr 5.60 Hs (m) for Tr= 30 yr 4.99

u 360.34 u 359.59
Y 58.59 Y 57.40
& 1x10™ & 1x10™

From the values reported in Table 1, it can be inferred that the stationary model is dominated by a
Frechet type (heavy tail) distribution behavior, and that the exclusion of the atypical Hs leads to
significant differences in the average value and corresponding projections to return periods of Hs. The
impact on the model parameters is not captured by the stationary model. Similar conclusions can be
drawn by observing Fig. 5.

4.2 Non Stationary Model

The emphasis on the tail behavior is useful for engineering purposes, and the use of the GEV model
is preferred as an adequate and objective criterion for the extremes [31], and the non-stationary GEV
is useful to capture the seasonality effect. Using the non-stationary GEV model, the best fitted
parameters for the distribution are obtained and shown in Fig. 6, where the red line shows the time-
dependent quantile associated to a 30-year return period; the black line depicts the location
parameter, the green line corresponds to the scale parameter and the yellow line corresponds to the
shape parameter. The monthly maxima for Hs are shown by the black dots. Note that the inclusion
(Fig. 6, left) or exclusion (Fig. 6, right) of the atypical Hs does not change the general qualitative trend
of the values associated to a 30-year return period; however, it does have an important impact at a
quantitative level, as can be observed in Fig. 6. Fitting to the empirical probabilities seem to improve
by excluding the atypical value as shown in Fig. 7.
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Fig. 5. Quantile values for Tr=30 years, monthly maximums and location, scale and shape
parameters by including/excluding atypical Hs

Further comparisons in Fig. 8 (analogous to Fig. 6, but for 100-yr return period) and in Fig. 9

(confidence intervals for the month-to-month non-stationary GEV model), further support the findings
previously discussed.
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Fig. 8. Quantiles comparison for 100-year return period and measured Hs
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Fig. 9. 30-year return period quantile and 95% confidence interval for the non-stationary GEV
model and the month-to-month stationary GEV

5. CONCLUSIONS

In this study the impact of including or excluding an atypical significant wave height on a non-
stationary GEV model is investigated using a single buoy located near the Hawaiian Islands in the
Pacific Ocean.

For reference only, parameters using a stationary model were also included, and it was found that the
stationary model is dominated by a Frechet type (heavy tail) distribution behavior, and that the
exclusion of the atypical Hs leads to important differences in the average value and corresponding
projections to return periods of Hs; nevertheless, the effect on the other model parameters is not
captured by the stationary model.

By using the non-stationary GEV model the main finding of this study was found, namely, that the
inclusion or exclusion of the atypical significant wave height may not change the general qualitative
trend of the values associated to given return periods, but it does have a markedly important impact at
a quantitative level. Also, fitting to the empirical probabilities seem to improve by excluding the
atypical value.
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ABSTRACT

An extreme value analysis of maximum significant waves recorded at a buoy located in the Pacific
Ocean is summarized from a previous study in this book chapter. The analysis was carried out from
two perspectives, by considering a Generalized Extreme Value (GEV) model with stationary
distribution (i.e., the time variations are not accounted for), and by considering a non-stationary GEV
model, which incorporates the monthly seasonality of maximum observed values in time increments;
the maximum significant wave behavior was parameterized using harmonic functions for the
distribution measures. Both approaches were compared for a single buoy. In the study a seasonality
effect was found, which was also present at the Gulf of Mexico in previous studies, and which cannot
be captured by a stationary model. Future studies for more buoys and wider regions are desirable, to
characterized extreme wave activity, aimed at improving the design and management of coasts and
ports by including seasonality.

Keywords: GEV model; stationary; non-stationary; seasonality; projections.

1. INTRODUCTION

In a recent study, [1] used the Gumbel probability density function (PDF) together with maximum
annual values to assess the extreme maximum annual significant wave height for projection
purposes. [2] and [3] described the weather variability in the geophysical variables of events.

More recently [4] referred to the Bayesian inference for modelling extreme values of characteristic
marine environments and for designing maritime structures. Calderén-Vega et al. [5] investigated the
seasonality of extreme waves in the Gulf of Mexico; it was found that, for the Gulf of Mexico, there is
indeed seasonality effects on the extreme values; moreover, two clear peaks were found which are
associated to hurricanes and cold fronts in distinctives seasons of the year. The study was carried out
for several buoy sites in the Gulf of Mexico, but it was not performed for buoys in the Pacific. The use
of stationary models is very common when carrying out analyses of extremes, however, as already
mentioned and found in a previous study [5], seasonality may play a role in the probabilistic
characterization of meteo-oceanographic variables, and it may also have an impact on design,
management and reliability-oriented tasks; furthermore, since meteo-oceanographic variables are
directly linked to climate change detection, vulnerability, future projection and sustainability of coasts
and coastal infrastructure [6,7], an impact due to seasonality effects would be expected on all these
issues for extreme waves. The significant wave height of the sea surface is an important
parameter of the “digital ocean”, and plays an important role in ocean environmental prediction and
safety [8].
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The main objective of this study is to select a single buoy site to compare stationary versus non-
stationary GEV models for significant wave height projections and to inspect possible seasonality
effects in the Pacific Coast for this meteo-oceanographic variable.

2, DATA USED

Significant wave data recorded at 51004 buoy located at the Pacific Ocean are analyzed; the buoy is
operated by the National Data Buoy Center (NDBC, www.ndbc.noaa.gov).

Fig. 1 shows the buoy location and general information. The 51004 buoy geographical coordinate are
17.602N 152.395W, and is located to the south of the Hawaii islands. It comprises a time window from
1984 to 2017 including all years, except 2010. The significant wave height (Hs) is obtained as the
mean of the highest third for wave heights during a given sample time period, which is 20 minutes for
the used NDBC data. The NDBC Hs is preliminarily processed for uniformizing the data series, so that
they can be employed in the probabilistic model.

3. RESULTS AND DISCUSSION

3.1 Preliminary Analysis

A preliminary analysis of the data is carried out to broadly inspect the behavior of the variable under
study at the selected site. In Fig. 2a (upper part) a main wave incidence to the NEE is observed. The

maximum recorded Hs is equal to 10.60 m; see Fig. 2b (lower part). The most frequently observed
significant wave height fluctuates around 2 m.

Station 51004 - SOUTHEAST
HAWAII - 205 NM Southeast of Hilo,
HI

Fig. 1. NOAA 51004 buoy
3.2 Extreme Value Model
3.2.1 GEV model
The governing equations for the extreme value theory (EVT) can be found in [9] and they are used to
establish feasible limit distributions for maxima. The only non-degenerate family of distributions

obtained from EVT are the well-known Weibull, Gumbel and Fréchet families for maxima, and they
are given below [9].
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Fig. 2. Basic statistics of the buoy under study (a) wave rose and, (b) time series data
Maximal Weibull or Reversed Weibull
exp [~ (5]
H(x) = { P 5 Jifx <A B>0 )
1, Otherwise

Gumbel or Maximal Gumbel
)
H(x) = exp [—exp (XT)] —o L x < (2)
Fréchet or Maximal Fréchet

0, ifx< 4,

e —%B,ifxs,ubo
H(x)_{ xp[ (xﬂ)]

where g, §and 4 are distributions parameters.
The used model is the Generalized Extreme Value (GEV) distribution e.g., [2,9], which encompasses,

in a single mathematical expression, the three well-known families of extreme distributions, i.e., the
Gumbel, Weibull and Frechet Distributions given above, and is given by:
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"
The PDF is defined by means of
o0 =1+ G e (- [ro6 ()] e o

9() = zexp (=) exp |- exp (- 5E)]if € = 0 (5)

where -~ <y < = is the location parameter, @ > 0 is the scale parameter and € the shape parameter.

To develop the model, the lack of data should be accounted for, since this issue affects the
parameters estimation stability for the extreme value distribution. Therefore, since it is known that
data for some years may be absent (e.g., due to buoys maintenance), a minimum of data per time unit
is considered to define the maximum values, by adopting the criterion of rejecting maximum monthly
events with data blank spaces of up to 40% e.g. [5].

3.2.2 Non-stationary GEV model

For modelling Hs the GEV is used for block maxima of a time interval. In this study, the monthly
maximum values are used for the extreme value samples. Note that throughout this study, the
methodology used and referenced by [5] is followed.

The seasonality is defined as the cyclic changes during the year. Usually, this cycle is linked to
established climatic patrons; consequently, it repeats itself for many years and behaves in a
sinusoidal way, as shown in Fig. 3. In Fig. 3 the marine weather variation is exhibited; in the winter the
wave heights are larger than in the spring.

For the assessment of time-dependency an extension of traditional stationary
models in extreme value theory is used. In this case the successive monthly maxima are
considered as independent random variables, disregarding the need of the homogeneity
hypothesis for the consecutive months, because they do not have identical distributions.
It is assumed that the maximum monthly value Z; of the observed Hs in month t follows
a GEV distribution, where the location u(t)>0, scale w(t)>0 and shape ¢ (f) parameters are time-
dependent.

The cumulative distribution function (CDF) of Z; is given by

{exp {— [1 + &(t) (%:;))]g(_;}
exp{=ex |- (5G7)])

The non-stationarity of the models is introduced in the GEV parameters as:

Fi(2) =
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u(t) = By + By cos(2nt) + B,sen(2mt)
+B; cos(4mt) + Lysen(4mnt)
0= Y(t) = ay + a; cos(2mt) + a,sen(2nt) )

+a5 cos(4mt) + a,sen(4mt)
&(t) = yo + vy cos(2mt) + y,sen(2mt)
+y; cos(4mnt) + yusen(4mt)

Where, ¥(t > 0), ﬂoaao y Y are mean values, ﬁ;,a,- and Y, (for i=1,2) are the harmonic

amplitudes; ﬂi,ai and }; (for i=3,4) are the subharmonic amplitudes and t is in years.

In Fig. 4 the results from the variability analysis within a year of the maximum-likelihood estimators for
the location, u, scale, g, and shape, &, parameters along the year are depicted. The circles represent
the values computed with the stationary GEV model, month to month, and the line is the resulting
function from the regression fitting with two harmonics.

The location parameter exhibits maximum values in winter season, which indicates, in general terms,
larger wave heights in November, December, January and February.
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Fig. 3. Seasonality of monthly maxima

¥

25— U — R 03— 06

j Fmam j jas on ¢ jfmamjjason j fmamgj j as ond
Time (months) Time(months) Time (months)

Fig. 4. Estimators for distribution parameters month to month by regression fitting
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3.2.3 Non-stationary model fitting

To estimate the regression coefficients and the probability distribution parameters, the method of
maximum likelihood (MML) is employed.

This method is based in the search for point estimators (6) for the parameters of a X function, so that
the probability of observing the sample data {x;,...x,} is maximum. The likelihood function L(x;6) is the
joint density function associated to all initial extreme values, from a previously selected distribution
and, in general terms, is given by

L0 0) = f(xq,.. x5 0) =TT, f(x556) (8)

The location pu(t)>0, scale w(t)>0 and shape ¢ () parameters are expressed in terms of harmonic
functions, whose amplitudes are regression parameters to be mathematically estimated [10].
For our study the specific maximum likelihood function is given by

, (9)
I(H\I‘x,):—%{logw(t,+[1+%(t’))log{l+§(t‘{%f(;')ﬂ {1%(:,)["';(7”’()"))} : }
3.2.4 Automatic selection, confidence intervals and return period values

To find the best model, a selective search methodology named Stepwise is carried out [5]. Standard
errors and confidence intervals are used to deal with the uncertainty. Finally, with regard to the values
associated to a return period of interest, the following equations are adopted

w0y =Y g -0} i 20

X,(6,0)= X, (1), 0,£0)= w0
(1) = (1) log[~ log(1 - q)] i &n=0
(10)
where q is the exceedance probability.
3.3 Discussion
3.3.1 Stationary model

For the stationary model the location, scale and shape parameters, which are invariant in time, are
obtained. Table 1 lists the computed values of these parameters, the maximum recorded significant
wave height, and the projected value for Hs associated to a return period of 30 years.

Table 1. Parameters for the stationary model, Hs,,,, and Hs and Tr=30 years

Hsmax (M) 10.60
Hs (m) for Tr= 30 yr 5.60

U 360.34
Y 58.59
& 1x10™

From Table 1, it can be inferred that the stationary model is dominated by a Frechet type distribution.
Note that in Table 1, Hs,ax = 10.60 m is an atypical value recorded on 23 July, 1986 during hurricane
Estelle. It can be clearly observed in Fig. 5.

In Fig. 5 instantaneous quantiles for 30 years for the location and scale parameters are shown, the
depiction corresponds to the stationary GEV over the monthly extreme values distributed month to
month along the year; dots indicate the monthly maximum Hs; the red line the time-dependent
quantile for a 30-year return period; the black, green and yellow lines location, scale and shape
parameters, respectively.
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QQ and probability Plots are shown in Fig. 6; for buoy 51004 the probability paper implies an
adequate fit for the data.
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Fig. 5. Estimated quantile values for Tr=30 years, monthly maximums and location,
scale and shape parameters
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Fig. 6. (a) Probability and (b) quantile plots for the stationary GEV model

3.3.2 Non stationary model

For the non-stationary model, it was found that values for the annual and semiannual cycles for the
location and scale parameters are present, as well as the annual cycle for the shape parameter. The
zero positive gamma value indicates that data exhibit a heavy-tailed Frechet type distribution, which is
expected, if it is considered that the buoy maximum value is related to a hurricane activity, which is
quite large as compared to the regular maximum recoded waves. Using the computed numerical
values in the non-stationary GEV distribution equations, the best fitted parameters for the distribution
are obtained. In Fig. 7 the red line shows the time-dependent quantile associated to a 30-year return
period; the black line depicts the location parameter, the green line corresponds to the scale
parameter and the yellow line corresponds to the shape parameter. The monthly maxima for Hs are
shown by the black dots. An adequate fit for the studied case can be observed in Fig. 7. Note that the
maximum Hs associated to hurricane Estelle (mentioned previously), does not significantly deviate the
trend of the values associated to a 30-year return period. Nevertheless, it may lead to a smoother
curve as compared with the trend for buoys in the Gulf of Mexico, where two peaks associated to cold
fronts and hurricanes are shown; Fig. 7 also seems to show that kind of behavior, but the peaks may
be somehow attenuated due to the atypical maximum Hs in July. Nevertheless, a seasonality effect
does exist also in the Pacific Coast; it could be preliminarily concluded that seasonal trends are
existent in both, the Gulf of Mexico and the Pacific Ocean.
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In Fig. 8; the probability associated to the Gumbel distribution from the W(t) statistic is shown.
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Fig. 7. Fitting for the monthly maximum for the non-stationary GEV model
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Fig. 8. Diagnostic plots (a and b) for the non-stationary GEV model
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3.3.3 Comparison of stationary versus non-stationary GEV models

In this section a comparison of the two employed models for the extreme value analysis is carried out.
The basic stationary GEV model and the non-stationary GEV model.

In Fig. 9 the most adequate fitting of the non-stationary GEV model to the data can be clearly
observed, since the curve follows the seasonal trends; conversely, it can be seen that the stationary
GEV model is unable to capture the seasonality of the significant wave heights. Fig. 10 shows also
the best fitted results month-to-month, but for a 100-year return period. Fig. 11 shows 95% confidence
intervals, where it can be observed that the bounds are more reduced for the non-stationary model
and better correlated to the month-to month data.

Results in Figs. 10 and 11 show the advantage of using the non-stationary GEV model, since the
computed seasonal trend tend to capture the maximum values and fits better the data series. This is
important, because extreme wave heights are applied to different engineering fields, for instance to

offshore engineering applications [11].
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A final Figure in this study, Fig. 12, shows that the best behavior (in terms of representing the selected
meteo-oceanographic variable) for the used empirical data is obtained with the non-stationary GEV
distribution, at least for the selected buoy, as observed by the goodness-of-fit for both models in Fig.
12 (left side column for the stationary model and right side column for the non-stationary model,
respectively).
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Fig. 9. Quantiles associated to 30-year return period for (a) the stationary and (b) non-
stationary GEV models
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Fig. 11. 30-year return period quantile and 95% confidence interval for the non-
stationary GEV model and the month-to-month stationary GEV
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Fig. 12. Goodness-of-fit plots for stationary (a) and non-stationary (b) models
4. CONCLUSION

In this study a methodology for fitting empirical meteo-oceanographic data to extreme value models
for projections purposes is published as a summary of a book chapter, based on a previous study.
The selected meteo-oceanographic variable is significant wave height. The GEV model is used from
two perspectives: stationarity and non-stationarity. A comparison is carried out between the two
approaches for a single site. For the non-stationary GEV model the seasonality is model by means of
sinusoidal curves for a single buoy in the Pacific Ocean.

From the comparison of the stationary and non-stationary GEV models, it is concluded that the later
leads to a better representation of the significant wave height, and also leads to larger projected
return period values than the former for winter season.

It is also concluded that, at least for the selected buoy and its recorded data, a seasonality trend is
found, as it was the case for the Gulf of Mexico [5], although some differences are found in the trends.
Future studies for more buoys and wider regions are desirable, to characterized extreme wave
activity, aimed at improving the design and management of coasts and ports by including seasonality.

ACKNOWLEDGEMENTS
The financial support from the Erasmus Mundus Coastal and Marine Engineering and Management

(CoMEM) programme and from Universidad de Guanajuato is gratefully acknowledged. We are
thankful for the comments, suggestions and constructive criticism from two anonymous reviewers.

121



New Ideas Concerning Science and Technology Vol. 4

Describing the Summary of Single Site Extreme Wave Analysis in the Pacific Ocean Comparing Stationary and Non-Stationary

GEV Models

We are also very thankful to Ms. Ruma Bag and the Editorial team for their invitation and help in the
editorial process.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1.

10.

11.

Shao Z, Liang B, Li H, Lee D. Study of sampling methods for assessment of extreme significant
wave heights in the South China Sea. Ocean Eng. 2018;168:173-184.

DOI: 10.1016/j.oceaneng.2018.09.015.

Coles SG. An introduction to statistical modelling of extreme values. 1st ed.; Springer-Verlag:
London, UK. 2001;1-208.

Katz RW. Stochastic modeling of hurricane damage. J. of App. Meteor. 2002;41:754-762.
Johathan P, Ewans K. Statistical modelling of extreme ocean environments for marine design:
A review. Ocean Eng. 2013;91-109

DOI: 10.1016/j.oceaneng.2013.01.004

Calderon-Vega F, Vazquez-Hernandez AO, Garcia-Soto AD. Analysis of extreme waves with
seasonal variation in the Gulf of Mexico using a time-dependent GEV model. Ocean Eng.
2013;73:68-82.

DOI: 10.1016/j.oceaneng. 2013.08.007

Sanchez-Arcilla A, Sierra JP, Gracia V, Garcia M, Jimenez JA, Mdsso C, Valdemoro H. Coastal
sustainability for uncertain futures: A spanish mediterranean case from the RISES-AM project.
A: Intenational Association for Hydraulic Research Congress. E-proceedings of the 36" IAHR
World Congres. L’'Haia. 2015;1-8.

Sanchez-arcilla A, Sierra JP, Mdsso C, Gracia V, Garcia M. Progress on climate change
detection and projections over Spain since the findings of the IPCC ARS5. International
Symposium CLIMATE-ES. 2015;146.

Peng Q, Jin S. Significant wave height estimation from space-borne cyclone-GNSS
reflectometry. Remote Sensing. 2019;11(5):584.

Castillo E, Hadi AS, Balakrishnan N, Sarabia JM. Extreme value and related models with
applications in engineering and science. Wiley-Interscience. New Jersey; 2005.

Menéndez M, Méndez FJ, Izaguirre C, Lucefio A, Losada IJ. The influence of seasonality on
estimating return values of significant wave height. Ocean Eng. 2009;56:211-219.

DOI: 10.1016/j.coastaleng.2008.07.004.

Panchang V, Kwon Jeong Ch, Demirbilek Z. Analyses of extreme wave heights in the Gulf of
Mexico for offshore engineering applications. J Offshore Mech Arct. 2013;135(3):1-15.

122



New Ideas Concerning Science and Technology Vol. 4
Describing the Summary of Single Site Extreme Wave Analysis in the Pacific Ocean Comparing Stationary and Non-Stationary
GEV Models

Biography of author(s)

F. Calderon-Vega
Department of Civil Engineering, Universidad de Guanajuato, Juarez 77, Zona Centro, P.C. 36000 Guanajuato, Gto. Mexico
and Laboratori d’Enginyeria Maritima, Universitat Politéecnica de Catalunya, Jordi Girona 1-3, Modul D1, Campus Nord, 08034,
Barcelona, Spain.

She is a Ph.D. Candidate at the Polytechnic University of Catalunya, BarcelonaTech. She is a Researcher at the University of
Guanajuato in Guanajuato, Mexico. Her research interests include maritime engineering and structures, hydraulics, extreme
value theory applied to meteo-oceanographic variables and others. She has published several technical papers in international
journals.

C. Mosso

Laboratori d’Enginyeria Maritima, Universitat Politécnica de Catalunya, Jordi Girona 1-3, Modul D1, Campus Nord, 08034,
Barcelona, Spain and Centre Internacional d'Investigacié dels Recursos Costaners, Jordi Girona 1-3, Modul D1, Campus Nord,
08034, Barcelona, Spain.

He is a Researcher at the Department of Civil and Environmental Engineering (hydraulics, maritime and environmental Section)
at the Universitat Politecnica de Catalunya (UPC) BarcelonaTech, as well as in the Laboratori d'Enginyeria Maritima
(LIM/UPC). His research interests include coastal engineering, climate change, maritime hydrodynamics among others. He has
published several technical papers in international journals.

A. D. Garcia-Soto
Department of Civil Engineering, Universidad de Guanajuato, Juarez 77, Zona Centro, P.C. 36000 Guanajuato, Gto. Mexico.

He is a Researcher at the University of Guanajuato in Guanajuato, Mexico. He holds a Ph.D. degree from the University of

Western Ontario and a master’s degree from UNAM, Mexico. His research interests include structural reliability, live loads on
bridges, seismic hazard and others. He has published several technical papers in international journals.

123



New Ideas Concerning Science and Technology Vol. 4
Describing the Summary of Single Site Extreme Wave Analysis in the Pacific Ocean Comparing Stationary and Non-Stationary
GEV Models

E. Delgadillo-Ruiz
Department of Civil Engineering, Universidad de Guanajuato, Juarez 77, Zona Centro, P.C. 36000 Guanajuato, Gto. Mexico.

He is currently a research professor at the University of Guanajuato Mexico. He has a Ph.D. in engineering with a terminal line
in physical process modelling. His lines of research include the modelling of the components of the surface and underground
water balance, as well as the study of the effects of global climate change. In addition, he belongs to the water resources and
environmental engineering research group of the civil and environmental engineering department of the University of
Guanajuato.

© Copyright (2021): Author(s). The licensee is the publisher (Book Publisher International).

DISCLAIMER
This chapter is an extended version of the article published by the same author(s) in the following journal.
Current Journal of Applied Science and Technology, 32(6): 1-12, 2019.

Reviewers’ Information

(1)Dr. Olumide Adesina, Olabisi Onabanjo University, Nigeria.
(2)Zlatin Zlatev, Trakia University, Bulgaria.

124



APENDIX

130



Paper C

Single Site Extreme Wave Analysis in the Pacific Ocean
Comparing Stationary and Non-stationary GEV Models.
Current Journal of Applied Science and Technology.

Calderon-Vega, C. Msso, A. D. Garcia-Soto and E. Delgadillo-Ruiz

Current Journal of Applied Science and Technology. 32(6): 1-12, 2019; Article no.CJAST.47420

131



Current Journal of Applied Science and Technology

32(6): 1-12, 2019; Article no.CJAST.47420

ISSN: 2457-1024

(Past name: British Journal of Applied Science & Technology, Past ISSN: 2231-0843,
NLM ID: 101664541)

Single Site Extreme Wave Analysis in the Pacific
Ocean Comparing Stationary and Non-stationary
GEV Models

F. Calderén-Vega'?, C. Mosso??, A. D. Garcia-Soto' and E. Delgadillo-Ruiz’

"Department of Civil Engineering, Universidad de Guanajuato, Juarez 77, Zona Centro, P.C. 36000

Guanajuato, Gto, Mexico.

2| aboratori d’Enginyeria Maritima, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Modul D1,
Campus Nord, 08034, Barcelona, Spain.

3Centre Internacional d'Investigacio dels Recursos Costaners, Jordi Girona 1-3, Modul D1, Campus
Nord, 08034, Barcelona, Spain.

Authors’ contributions

This work was carried out in collaboration between all authors. All authors designed the study,
performed the statistical analysis, wrote the protocol, wrote the first draft of the manuscript, managed
the analyses of the study and managed the literature searches. All authors read and approved the
final manuscript.

Article Information

DOI: 10.9734/CJAST/2019/v32i630038

Editor(s):

(1) Dr. Vyacheslav O Vakhnenko, Professor, Division of Geodynamics of Explosion, Subbotin Institute of Geophysics, National
Academy of Sciences of Ukrainian, Ukraine.

(2) Dr. Jodo Miguel Dias, Assistant Professor, Habilitation in Department of Physics, CESAM, University of Aveiro, Portugal.
Reviewers:

(1) Dr. Olumide Adesina, Olabisi Onabanjo University, Nigeria.

(2) Zlatin Zlatev, Trakia University, Bulgaria.

Complete Peer review History: http://www.sdiarticle3.com/review-history/47420

Received 25 October 2018
Accepted 09 February 2019
Published 23 February 2019

Original Research Article

ABSTRACT

The adequate knowledge of the weather behavior is very important for the design and management
of socioeconomical, environmental and sustainability human interests in the coasts and oceans. In
the present study an extreme value analysis of maximum significant waves recorded at a buoy
located in the Pacific Ocean was carried out. The analysis was carried out from two perspectives,
by considering a Generalized Extreme Value (GEV) model with stationary distribution (i.e., the time
variations are not accounted for), and by considering a non-stationary GEV model, which
incorporates the monthly seasonality of maximum observed values in time increments; the
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maximum significant wave behavior was parameterized using harmonic functions for the
distribution measures. Both approaches were compared for a single buoy. In the study a
seasonality effect was found, which was also present at the Gulf of Mexico in previous studies, and
which cannot be captured by a stationary model.

Keywords: GEV model; stationary; non-stationary; seasonality; projections.

1. INTRODUCTION

The use of the extreme value theory has been
widely extended in recent years to meteo-
oceanographic variables. In a recent study, [1]
used the Gumbel probability density function
(PDF) together with maximum annual values to
assess the extreme maximum annual significant
wave height for projection purposes. [2] used
non-stationary GEV models for investigating
period trends in extreme waves. [3] developed
design values for significant wave height
accounting for direction and seasonality by
means of a non-stationary model. [4] compared
the behavior of tropical cyclone data (extreme
values), obtained through simulations, versus
those recorded at buoys located in the Meridional
Chinese Sea and the Oriental Chinese Sea, and
proposed an approach combining the set of data.
[5] used peak over threshold (POT) methods and
block maxima for the assessment of return
values for significant wave heights.

The Extreme value theory encompass methods
and techniques to quantify and model the
stochastic behavior, in terms of magnitude as
well as in terms of frequency, of extreme events.
[6,7] already mentioned the size effect on the
materials strength, and in 1922 [8] introduced the
concept of extreme values, while [9] studied the
maximum and minimum distributions for a
sample, problem which also [10] approached for
normal samples. A keystone in the development
of extreme value analysis was given by [11] and
[12], who demonstrated that only three limiting
parametric distribution families for maximum (and
their minimum counterparts) are possible. [13],
[14,15,16] and [17], worked on the problem of
maximum and minimum distributions for a
sample and found the generalized proof for [18]
on the extremes type theorem. Gumbel [19]
published the book "Statistics of extremes", one
of the greatest contributions in the history of
extreme value statistics. Later on, [20] and [21]
incorporated the dependency and related results
for the multivariate case. [22] and [23] described
the weather variability in the geophysical
variables of events.

More recently [24] referred to the Bayesian
inference for modelling extreme values of
characteristic marine environments and for
designing maritime structures. Calderén-Vega et
al. [25] investigated the seasonality of extreme
waves in the Gulf of Mexico; it was found that, for
the Gulf of Mexico, there is indeed seasonality
effects on the extreme values; moreover, two
clear peaks were found which are associated to
hurricanes and cold fronts in distinctives seasons
of the year. The study was carried out for several
buoy sites in the Gulf of Mexico, but it was not
performed for buoys in the Pacific. The use of
stationary models is very common when carrying
out analyses of extremes, however, as already
mentioned and found in a previous study [25],
seasonality may play a role in the probabilistic
characterization of meteo-oceanographic
variables, and it may also have an impact on
design, management and reliability-oriented
tasks; furthermore, since meteo-oceanographic
variables are directly linked to climate change
detection, vulnerability, future projection and
sustainability of coasts and coastal infrastructure
[26,27], an impact due to seasonality
effects would be expected on all these issues for
extreme waves. Although not pursued in the
present study, the relation between extreme
wave heights and sustainability (using stationary
versus non-stationary models) could be
explored in future projects; the present study
can be considered as a first step in that
direction.

The main objective of this study is to select a
single buoy site to compare stationary versus
non-stationary GEV models for significant wave
height projections and to inspect possible
seasonality effects in the Pacific Coast for this
meteo-oceanographic variable.

2. DATA USED

recorded at 51004
Pacific Ocean are
operated by the
Center (NDBC,

Significant wave data
buoy located at the
analyzed; the buoy is
National Data Buoy
www.ndbc.noaa.gov).
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Fig. 1 shows the buoy location and general
information. The 51004 buoy geographical
coordinate are 17.602N 152.395W, and is
located to the south of the Hawaii islands. It
comprises a time window from 1984 to 2017
including all years, except 2010. The significant
wave height (Hs) is obtained as the mean of the
highest third for wave heights during a given
sample time period, which is 20 minutes for the
used NDBC data. The NDBC Hs is preliminarily
processed for uniformizing the data series, so
that they can be employed in the probabilistic
model.

3. RESULTS AND DISCUSSION
3.1 Preliminary Analysis

A preliminary analysis of the data is carried out to
broadly inspect the behavior of the variable
under study at the selected site. In Fig. 2a (upper
part) a main wave incidence to the NEE is
observed. The maximum recorded Hs is equal to
10.60 m; see Fig. 2b (lower part). The most
frequently observed significant wave height
fluctuates around 2 m.

Station 51004 - SOUTHEAST
HAWAII - 205 NM Southeast of Hilo,

HI

Fig. 1. NOAA 51004 buoy
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Fig. 2. Basic statistics of the buoy under study (a) wave rose and, (b) time series data
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3.2 Extreme Value Model
3.1.1 GEV model

The governing equations for the extreme value
theory (EVT) can be found in [28] and they are
used to establish feasible limit distributions for
maxima. The only non-degenerate family of
distributions obtained from EVT are the well-
known Weibull, Gumbel and Fréchet families for
maxima, and they are given below [28].

Maximal Weibull or Reversed Weibull

_\B
H(x)=!exp[_(%) ] Jifx<a >0 (1)

1, Otherwise

Gumbel or Maximal Gumbel

H(x) = exp [—exp(x&;l)], —o < x <™

Fréchet or Maximal Fréchet

ifx< 4,

0,
H(x) =[ exp[_(%)ﬁ],ifx <4 B>0
3)

where g, 6and A are distributions parameters.

The used model is the Generalized Extreme
Value (GEV) distribution e.g., [22,28], which
encompass, in a single mathematical expression,
the three well-known families of extreme
distributions, i.e., the Gumbel, Weibull and
Frechet Distributions given above, and is given
by:

_y
G(x)=exps— {1 + g{x—,uﬂ '
174

+

G(x):exp{_ p{ [X—Wﬂmﬁg:o

The PDF is defined by means of

—>&#0

IR

9@ =3 [1+¢(5E
G- puift— 161 40

exp {— [1+

glx) = %exp (— %) exp [— exp (—x;}—”)] ifé=0
(5)

where —» <y < « js the location parameter, @ > 0
is the scale parameter and ¢ the shape
parameter.

The location parameter represents the mean
values of the random variable, x, and defines the
value with a non-exceedance probability exp(-1).
The scale parameter represents the sample
dispersion. Finally, the shape parameter defines
the distribution family as a function of the tail
behavior; when ¢ exists, G(x) includes two
distribution families.

To develop the model, the lack of data should be
accounted for, since this issue affects the
parameters estimation stability for the extreme
value distribution. Therefore, since it is known
that data for some years may be absent (e.g.,
due to buoys maintenance), a minimum of data
per time unit is considered to define the
maximum values, by adopting the criterion of
rejecting maximum monthly events with data
blank spaces of up to 40% e.g. [25].

3.1.2 Non-stationary GEV model

For modelling Hs the GEV is used for block
maxima of a time interval. In this study, the
monthly maximum values are used for the
extreme value samples. Note that throughout this
study, the methodology used and referenced by
[25] is followed.

The seasonality is defined as the cyclic changes
during the year. Usually, this cycle is linked to
established climatic patrons; consequently, it
repeats itself for many years and behaves in a
sinusoidal way, as shown in Fig. 3. In Fig. 3 the
marine weather variation is exhibited; in the
winter the wave heights are larger than in the
spring.

For the assessment of time-dependency an
extension of fraditional stationary models in
extreme value theory is used. In this case the
successive monthly maxima are considered as
independent random variables, disregarding the
need of the homogeneity hypothesis for the
consecutive months, because they do not have
identical distributions. It is assumed that the
maximum monthly value Z; of the observed Hs in
month t follows a GEV distribution, where the
location u(t)>0, scale w(t)>0 and shape ¢ (1)
parameters are time-dependent.



Calderén-Vega et al.; CJAST, 32(6): 1-12, 2019; Article no.CJAST.47420

The cumulative distribution function (CDF) of Z; is
given by

fer{-[1+50 (522)}
exp{=exv [~ (7))}
(6)

The non-stationarity of the models is introduced
in the GEV parameters as:

Fi(2) =

u(t) = By + B, cos(2mt) + B,sen(2mt)
+pB5 cos(4nt) + Bysen(4mnt)

Y(t) = ag + a; cos(2mt) + a,sen(2mt)
+a; cos(4nt) + a,sen(4mnt)

&(t) = yo + y1 cos(2mt) + y,sen(2mt)

9 =

Where, %(t>0), fB,,&, y Yo are mean
values, ,Bi,al. y ¥, (for i=1,2) are the harmonic

amplitudes; B,,a, y y, (for i=3,4) are the
subharmonic amplitudes and tis in years.

In Fig. 4 the results from the variability analysis
within a vyear of the maximum-likelihood
estimators for the location, u, scale, w, and
shape, ¢, parameters along the year are
depicted. The circles represent the values
computed with the stationary GEV model, month
to month, and the line is the resulting function
from the regression fitting with two harmonics.

The location parameter exhibits maximum values
in winter season, which indicates, in general

+v3 cos(4mt) + yusen(4mt) terms, larger wave heights in November,
(7)  December, January and February.
51004

1

1077

Hs max(m)

It 8

+

PP s

51

1

+

+

+
T

-

{3~
---Og -

+
+
ha
%2 1
1

PO

|
1

it m a m |

Time(months)

i a s o n d

Fig. 3. Seasonality of monthly maxima
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Fig. 4. Estimators for distribution parameters month to month by regression fitting
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3.1.3 Non-stationary model fitting

To estimate the regression coefficients and the
probability distribution parameters, the method of
maximum likelihood (MML) is employed.

This method is based in the search for point
estimators (6) for the parameters of a X function,
so that the probability of observing the sample
data {xj,...x,} is maximum. The likelihood
function L(x;6) is the joint density function
associated to all initial extreme values, from a
previously selected distribution and, in general
terms, is given by

L(x;0) = f(xq,...xp;0) =

i=1 f(x:;0) (8)

The location u(t)>0, scale w(t)>0 and shape ¢ (f)
parameters are expressed in terms of harmonic
functions, whose amplitudes are regression
parameters to be mathematically estimated [29].

For our study the specific maximum likelihood
function is given by

064x)=— é{log v, + (1 Y ))log[l Ll )[ x l; (/;()f )H N [1 Ll )[ X, l;(;t:()t )ﬂ/( ! }

3.1.4 Automatic selection, confidence
intervals and return period values

To find the best model, a selective search
methodology named Stepwise is carried out; the
Stepwise is in turn based on combining two
approaches denoted “Forward Selection” and
“Backward Elimination”. Any probabilistic model
should ideally incorporate some measure of
uncertainty to evaluate the randomness or error
from the selected model; for the present study
standard errors and confidence intervals are
used to deal with the uncertainty. Finally, with
regard to the values associated to a return period
of interest, the following equations are adopted,

w0y -4 Lrog -7} i

EM#0
()
X, (6,6)= X, (u@),w(0),60))=

4(0) -y (t)log[-log(1 - 9)] if &n=0

(10)

where q is the exceedance probability defined
from G ((x)=71-q and the estimated quantile, and

X4(t,8) is the time-dependent value associated to
the return period R=1/q.

A more detailed description can be found in the
study by [25] and the references cited in that
paper.

4. DISCUSSION
4.1 Stationary Model

For the stationary model the location, scale and
shape parameters, which are invariant in time,
are obtained. Table 1 lists the computed values
of the distribution parameters, as well as the
maximum recorded significant wave height,
Hsmax, and the projected value for Hs associated
to a return period of 30 years.

Table 1. Parameters for the stationary model,
Hsmax and Hs and Tr=30 years

Hs max (M) 10.60
Hs (m) for Tr= 30 yr 5.60
u 360.34
P 58.59
& 1x10™
From the values reported in Table 1, it

can be inferred that the stationary model is
dominated by a Frechet type (heavy tail)
distribution behavior. Note that in Table 1, Hspax
= 10.60 m is an atypical value recorded on
23 July, 1986 during hurricane Estelle
(http://www.prh.noaa.gov/cphc/summaries/1986.
php); it can be clearly observed in Fig. 5.

In Fig. 5 the instantaneous quantiles for
a return period of 30 years for the location and
scale parameters are shown, the depiction
corresponds to the stationary GEV over the
monthly extreme values distributed month to
month along the year. In Fig. 5, dots indicate
the monthly maximum Hs; the red line
represents the  time-dependent  quantile
associated to a 30-year return period; the
black, green and yellow lines depict the
location, scale and shape parameters,
respectively.

In addition to the previous figure, QQ and
probability Plots are shown in Fig. 6, where it can
be observed that for buoy 51004 the probability
paper implies an adequate fit for the data;
nonetheless, the QQ plot underestimates the
quantiles of the extreme values.
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Fig. 9. Quantiles associated to 30-year return period for (a) the stationary and (b) non-
stationary GEV models

4.2 Non Stationary Model

For the non-stationary model, it was found that
values for the annual and semiannual cycles for
the location and scale parameters are present,
as well as the annual cycle for the shape
parameter. The zero positive gamma value
indicates that data exhibit a heavy-tailed Frechet
type distribution, which is expected, if it is
considered that the buoy maximum value is
related to a hurricane activity, which is quite large
as compared to the regular maximum recoded
waves. Note that an emphasis on the (tail
behavior is useful for engineering purposes, and
the use of the GEV model is preferred as an
adequate and objective criterion for the extremes
[30]. Using the computed numerical values in the
non-stationary GEV distribution equations, the
best fitted parameters for the distribution are
obtained. In Fig. 7 the red line shows the time-
dependent quantile associated to a 30-year
return period; the black line depicts the location
parameter, the green line corresponds to the

scale parameter and the yellow line corresponds
to the shape parameter. The monthly maxima for
Hs are shown by the black dots. An adequate fit
for the studied case can be observed in Fig. 7
Note that the maximum Hs associated to
hurricane Estelle (mentioned previously), does
not significantly deviate the trend of the values
associated to a 30-year return period.
Nevertheless, it may lead to a smoother curve as
compared with the trend for buoys in the Gulf of
Mexico [6], where two peaks associated to cold
fronts are hurricanes are shown; Fig. 7 also
seems to show that kind of behavior, if the black
dots (monthly maxima) are observed for
February and September, but those peaks may
be somehow attenuated due to the atypical
maximum Hs in July. Nevertheless, it is
noteworthy that a seasonality effect does exists
also in the Pacific Coast and, although the
results in the present study are limited to one site
only, it could be preliminarily concluded that
seasonal trends are existent in both, the Gulf of
Mexico and the Pacific Ocean. Consequently,
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further studies to compare the trends for more
buoys in the Pacific are strongly recommended.

To represent the adequacy of the fitting, the
empirical probabilities obtained with the model
and with the quantiles are shown in Fig. 8; the
probability associated to the Gumbel distribution
from the W(t) statistic is shown.

4.3 Comparison of Stationary Versus
Non-stationary GEV Models

In this section a comparison of the two employed
models for the extreme value analysis is carried
out. The basic stationary GEV model and the
non-stationary GEV model, which, unlike the
former, captures seasonal variation for monthly
maxima data series, are contrasted.

In Fig. 9 the most adequate fitting of the non-
stationary GEV model to the data can be clearly
observed, since the curve follows the seasonal
trends; conversely, it can be seen that the
stationary GEV model is unable to capture the
seasonality of the significant wave heights. Fig.
10 shows also the best fitted results month-to-
month, but for a 100-year return period. In Fig.
10 the depicted quantile for a 100-year
return period shows that the non-stationary
model includes the extreme values and
represents more adequately the seasonality of
the used data (red line), as compared to the
stationary model (green line), except by the
extreme value in July (see black dots for
monthly Hs).

Fig. 11 shows 95% confidence intervals, where it
can be observed that the bounds are more
reduced for the non-stationary model and better
correlated to the month-to month data.

Results in Figs. 10 and 11 show the advantage
of using the non-stationary GEV model, since the
computed seasonal trend tend to capture the
maximum values and fits better the data series;
the expected wave heights for Tg=100 years
computed for the non-stationary case are larger
than those computed with the stationary one for
the winter season, and the opposite occurs for
the summer season; this is important, since an
impact in design, management, reliability related
tasks and sustainability related issues is
expected. The reason of the smaller values with
the stationary GEV model for some months, is
that it does not effectively account for scarce and
extreme wave heights associated to hurricanes.
In contrast, the non-stationary GEV model can
capture these extreme values (also included in
the integrated quantile) by means of the
sinusoidal trend.

A final Figure in this study, Fig. 12, shows that
the best behavior (in terms of representing the
selected meteo-oceanographic variable) for the
used empirical data is obtained with the non-
stationary GEV distribution, at least for selected
buoy, as observed by the goodness-of-fit for both
models in Fig. 12 (left side column for the
stationary model and right side column for the
non-stationary model, respectively). It is pointed
out once more, that this is due to the fact that the
non-stationary model try to capture the majority
of extreme values through a sinusoidal
computing scheme; also, the existent extreme
wave values caused by hurricanes, which
significantly alter the seasonal periodic variation,
are more adequately incorporated by the non-
stationary GEV model in general terms;
moreover, the uncertainty induced by hurricane
activity, is compensated by the non-stationary
GEV model for the monthly data series.

J F M A M

Time (month)

J A 8 O N D

Fig. 10. Quantiles comparison for 100-year return period and measured Hs
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Fig. 12. Goodness-of-fit plots for stationary (a) and non-stationary (b) models

5. CONCLUSION

In this study a methodology for fitting empirical
meteo-oceanographic data to extreme value
models for projections purposes is presented.
The selected meteo-oceanographic variable is
significant wave height. The GEV model is used
from two perspectives: Stationarity and non-

10

stationarity. A comparison is carried out between
the two approaches for a single site. For the non-
stationary GEV model the seasonality is model
by means of sinusoidal curves for a single buoy
in the Pacific Ocean.

The non-stationary GEV model predicts
adequately the monthly maximum significant
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wave heights and reduce the uncertainty of the
estimated quantiles; it also projects in a better
way the wave heights associated to given return
periods, since the methodology includes not only
the point maxima, but also the peripheric values
along the year. From the comparison of the
stationary and non-stationary GEV models, it is
concluded that the later leads to a better
representation of the meteo-oceanographic
variable, and also leads to larger projected return
period values than the former for winter season.
This is important, since implications in design of
maritime  structures, managements tasks,
reliability and risk assessments, as well as
sustainability related issues, are expected
depending on the selected model.

It is also concluded that, at least for the selected
buoy and its recorded data, a seasonality trend is
found, as it was the case for the Gulf of Mexico
[6], although some differences are found in the
trends. Future studies for more buoys and wider
regions are desirable, to characterized extreme
wave activity, aimed at improving the design and
management of coasts and ports by including
seasonality. It is suggested to investigate the
impact of selecting different models (i.e.,
stationary versus non-stationary models for
extreme waves) in the sustainability of coasts
and coast infrastructure. Further research for

other meteo-oceanographic variables is also
recommended.
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1. Introduction

Correct characterization of the maritime climate is crucial for
the design and operation of coastal and marine infrastructure.
Seasonal variation of extreme values of waves influences the risk
of flooding. It also affects the design, construction, installation and
operation activities of structures such as breakwaters, ports, and
oil rigs. Often the design and operation of the structures requires
the estimation of the extreme wave height for specified return
periods. The selection and assignment of an appropriate prob-
ability distribution based on available statistical data is of para-
mount importance for the estimation of the return period values
of the wave height.

According to the asymptotic theory, the maximum values of
random sequences could be adequately modeled by the general-
ized extreme value (GEV) distribution, which is a reformulation of
the limiting distributions originally developed by Fisher and
Tippet, and later systematized by Gumbel (Chakrabarti, 2001).
It is important to note that, depending on the employed statistical
method, the available records and the sample selection can
significantly influence the assessment of the extreme values
(Prpie-Orsic et al., 2007; Martucci et al., 2010).

* Corresponding author. Tel.: +52 55 9175 8228; fax: +52 55 9175 8258.
E-mail addresses: ovazquez@imp.mx, ovazquezmx@yahoo.com
(A.O. Vazquez-Hernandez).

0029-8018/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.0ceaneng.2013.08.007

Several statistical models have been proposed to adequately
represent the ocean behavior considering site conditions (Isaacson
and Mackenzie, 1981; Muir and ElShaarawi, 1986; Prevosto et al.,
2000; Stansell, 2005; Tayfun and Fedele, 2007; Jensen et al., 2011;
Mazas and Hamm, 2011; Muraleedharan et al., 2012; Solari and
Losada, 2012; Soares and Carvalho, 2012). However, only a few
studies have focused on the seasonal variation. For example,
Mietus (1998) carried out an analysis of the seasonal variation
on the surface level wind speed in the Baltic Sea. Jonsson et al.
(2002) showed that there is a large seasonal variation in maximum
monthly wave heights in the Baltic Sea. Méndez et al. (2008)
presented a statistical model to characterize the long-term
extreme value distribution of significant wave height, conditioned
to the duration of the storm and accounting for seasonality; they
basically used a time-dependent version of the peak over thresh-
old (POT) approach to build a model that considers the annual and
semiannual cycles parameterized in terms of harmonic functions.
Mackay et al. (2010) showed that estimates of extreme wave
conditions from stationary models have a lower bias and variance
than those from discrete seasonal models. They also showed that
the estimations from discrete seasonal models tend to be highly
biased. Ridmet and Soomere (2010) estimated the seasonal varia-
tion in wave climate in the Baltic Sea using a high-resolution
version of a wave model.

There are some studies for extreme wave heights in the Gulf
of Mexico; most of them do not consider the seasonal variation.
Although Jonathan and Ewans (2011) modeled the seasonality of
extreme waves in the Gulf of Mexico using a non-homogeneous
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Poisson model, it was carried out only for two unspecified
locations and considering only peak significant wave heights
for storm events. They used information from GOMOS hindcast
data (2005) instead of NOAA buoys. They employed the general-
ized Pareto distribution including shape and scale parameters
only, and concluded that seasonal variation may be dependent
on the location in the Gulf of Mexico. Therefore, it would
be desirable to carry out a study considering the seasonal
variations of extreme wave heights during the year at several
sites in the Gulf of Mexico, and to incorporate the seasonal
variability in the probabilistic model. This can be important for
the design of maritime structures, coast management, and
estimation of wave loading and reliability of offshore structures
(e.g. Hong, 1994).

The main objective of this study is to characterize the seasonal
behavior of extreme wave heights in the Gulf of Mexico. It uses the
model presented by Méndez et al. (2008) but with additional
terms that take into account the seasonality of the shape para-
meter of the GEV (i.e, time-dependent GEV model), through
harmonic functions that represents the annual and semiannual
cycles (e.g. Menéndez et al., 2009). The seasonality is the main
covariate in this work, although it is acknowledged that other
covariates such as the directionality (e.g. Jonathan and Ewans,
2007) could be important but are out of the scope of this study.
The estimated extremes are compared with those presented by
Panchang and Li (2006).

2. Extreme time-dependent GEV distribution

The GEV distribution for maximum values in a block of time is
used for modeling the significant wave height (Leadbetter et al.,
1983). The GEV distribution that in the extreme cases, becomes
the well-known Gumbel, Weibull and Frechet distributions, can be
expressed as (Coles, 2001)

G(x):exp{— [1 +§(x_7ﬂ>} +1/§}_,§¢ 0
G(x):exp{fexp{f(x;—”)}}a§=0 1

The density function is defined by:

= [12(5)] " Cewn{-[1e()] o

w-on( por{ el (0

where [a], implies max (a, 0), —co<pu<oo is the location
parameter, >0 is the scale parameter and & is the shape
parameter, which defines the type of distribution; &+ 0, corre-
sponds to two distribution families: Fréchet for £ > 0 and Weibull
& <0; when £ 0 the GEV tends to the Gumbel distribution.

The behavior of Weibull, Frechet and Gumbel distributions
in the tail of the distribution function differs. The tails are
bounded, heavy and light, for the Weibull, Frechet and Gumbel
distributions, respectively. In the Gumbel distribution the tail
decays exponentially, whereas in the Fréchet distribution the tail
decays as a function of a power. Only one of the three extreme
value distributions is often selected for practical applications.

In this study, a time-dependent GEV distribution model,
which takes into account the seasonality using independent
monthly maximum values, x;, observed at times t; is employed.
The consideration of independent monthly maximum series is
adequate because: first, the seasonality for quasi-homogeneous

Table 1
Information of the buoys used in the study.

Station Recorded No. of No. of Maximum Distance Water
(Buoy) years recorded monthly recorded to shore depth
years maximum SWH (m) (Km) (m)
values
42,001  1975-2011 36 393 1.2 334 3246
42,002 1973-2011 33 391 9.7 346 3566
42,003 1976-2011 35 374 11.04 307 3233
42,007 1981-2009 29 183 9.09 35 14
42,019 1990-2011 22 228 6.30 92 82
42,020 1990-2011 22 233 8.20 68 88
42,035 1993-2011 19 223 6.03 25 16
42,036  1994-2011 18 194 8.60 127 54
42,039  1995-2011 17 143 12.05 114 307
42,040 1995-2011 17 142 16.91 79 274

time distributed data could be modeled (Mendez et al., 2007),
and second, because the monthly maxima provides additional
information about the upper tail of the distribution (Katz et al.,
2002). The model is applied to the records of wave heights from
several buoys located in the Gulf of Mexico and described in
Table 1.

The lack of data in the series must be taken into account to
apply the model, because this affects the stability of the parameter
estimation for the extreme value distribution. Since there are
seasons without recorded data in the series, a minimum number
of data points per unit time (or a time interval in which the
maximum value is extracted) is considered. For this, the criterion
proposed in Mendez et al. (2007) is adopted. This criterion states
that the record for a month is rejected if up to 40% of data of the
month is missing.

2.1. Regression model

The seasonal variation in this study is defined as the cyclical
changes within one year. Authors such as Morton et al. (1997), and
Carter and Challenor (1981), modeled the intra-annual variability
by analyzing the seasonal behavior of extreme wave heights using
extreme value distribution. Ridmet and Soomere (2010) devel-
oped a model that adequately reproduced the seasonal patterns of
wave intensity and the probability distribution functions for
different wave heights. Normally, the seasonal variation is linked
to established weather patterns, so it is usually recurrent over the
years and has a sinusoidal behavior. The seasonal variability for
geophysic variables is manifested in different ways. However, a
predominant factor is presented in all cases: the annual cycle,
generally defined by the winter-summer variability. In Fig. 1,
this cycle is observed in the monthly maxima wave heights for
the shown buoys in the Gulf of Mexico. It is also observed that the
annual cycle clearly defines the variable behavior along the time.
The semiannual cycle is not only referred to the winter-summer
variability, but also to a systematic climate pattern during the year,
such as the hurricanes.

After observing the boxplots in Fig. 1, it is considered that the
seasonal variability can be modeled as a superposition of sinusoi-
dal waves by using harmonic functions and include them in the
model. To justify the inclusion of the seasonality in the model, the
one-year variability of the location, scale and shape parameters of
the fitted time-independent GEV for every month has been
analyzed.

The time dependency is introduced in the model parameters in
the GEV model by employing harmonic functions defined by
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Fig. 1. Boxplots for monthly maxima significant wave height in 42,001, 42,002, 42,035, and 42,040 buoys. Trapezoidal boxes have lines at the lower, median and upper
quartile values. The whiskers extend to the 1.5 interquartile range, and crosses show unusual values.

(Méndez et al., 2008; Menéndez et al., 2007; Menéndez et al.,
2009),

H(t)=Po+ P, cos(2at)+p, sin(2xt)+B; cos(4xt)+ B, sin(4xt)
0=/{ y(t)=ap+a; cos2xat)+a, sin(2zt)+as cos(4xt)+ay sin(4xt)
E(t)=yo+y; COS(2mt)+y, sin(2xt)+y4 cos(4xt)+y, sin(4xt)

3)

where y/(t > 0). 0 includes the three parameters: location, scale
and shape (u(t), w(t) and &(t)), respectively. To simplify the
notation, in the following it is considered that € represents the
vector of all the model parameters involved in Eq. (3) that are to be
estimated, 0= (B, 1.2, P3. P4 A0, X1, %2, A3, 04,Y0 Y1,V 2. V3V a)-
Note that B, a¢ and y, represent the mean of (u(t), y(t) and
&t)); P, a; and y; (for i=1,2) are the amplitudes of the harmonics;
pi,a; andy; (for i=3,4) are the amplitudes of the subharmonics,
and t is given in years.

2.2. Fitting to the data

Different procedures to estimate the model regression coefficients,
or to estimate the probability distribution parameters are available.

In this study the maximum likelihood method has been employed
for the analysis. In general, this technique results in adequate
fitting, and in less biased and more efficient estimators, especially
for long return periods and for small data samples (Lettenmaier
and Burges, 1982). The maximum likelihood method consists in
estimating the point parameter estimators of a likelihood function
so that the likelihood of observing the samples {xi,...x,} is
maximum. More specifically, the likelihood function can be
expressed as (Benjamin and Cornell, 1970)

L0052, = [0, 2020) = T] fxi0) @

where L(0; x1,X2, ..., Xy) is the likelihood function and f(x,...xn; 0)
represents the joint probability density function conditioned on
the model parameters 6. The last equality holds if the sample is
independent and identically distributed with density function
f(x; 0). To simplify the computing, Eq. (4) can be re-written as,

n
[0:x1,%2,....%0) = i§1 log [f(x1,..Xa; 0)] (5)

where the
X1,X2, ..., Xn).

log-likelihood function [(0;x4,X>, ...,xy) = log L(O;
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The maximum likelihood estimators, 6, that maximizes l(é?;
X1,X2,...,Xp) 1S obtained by solving

no9
2o

1

log [f(x1,..xn;0)]=0forj=1,...,p (6)

where p denotes the total number of parameters to be estimated.
For the GEV model shown in Eq. (2), the log-likelihood function is

[O16,x) =— 3  log y(t)+(1+1/&E)log [1+5<r,»>(""‘”@)}
i=1 wt) /1,

_ Xi—u(t;) (=1/&(t)
+[l+‘§(t’)< Yt )L @

where x,,....x, are defined as the n observations of maxima for a
block of time. The obtained distribution parameters j, yrand &, for
the considered wave height data are shown in Fig. 2.

It can be observed from the figure that the location parameter
presents minimum values in summer and maximum values in
winter. This means that higher wave heights occur in November,
December, January and February. The scale parameter shows a
harmonic behavior in all buoys, which generally has a lower value
in summer. The shape parameter is also seasonally modulated;
when it is not zero and adopts positive or negative values, it
indicates that the sample behaves as a Frechet or Weibull
distribution, respectively.

2.3. Uncertainty

An estimate of the uncertainty associated with the point
estimate of the distribution model parameters are given below.
This estimation is carried out using Hessian matrix of —I(x;0)
evaluated at 6, known as information matrix, I,

_ U0 _UO)
20,2 .- e 30,00,
A0
96,00; g
IO = - 1) = ( )
90;00;
a0 A ()
3000, 0,7

where p is the number of estimated parameters defining the
distribution function. The I, matrix is asymptotically equivalent
to the Fisher information matrix (the same matrix but with the
real parameter values instead of the point estimators), showing
that the @ distribution is normal. The I matrix represents the
surface curvature of the approximated log-likelihood function, and
the square roots of the diagonal elements of its inverse, | =1 1
represents the standard deviations of 6;....,6,, which will be
denoted as (Coles, 2001),

se(@) = /Jij ©

From the normality property of the maximum likelihood estima-
tors, the confidence interval at level (1 —a) for each estimator is

Ci(0;) = 0; + z425e(0;) (10)

where z,/, is the quantil (1—a/2) of the standard normal dis-
tribution function (1.96 for a confidence level of 0.05). Although
Bootstrap approaches have been employed by some authors to
quantify uncertainties (e.g. Chavez-Demoulin and Davison, 2005),
we rather prefer to quantify them by using the above described
theory (Coles, 2001).

2.4. Model selection

Once the parametric equations defining the different processes
are determined, the next step is to find an optimal model
representing the non-stationary behavior of the studied extreme
values. To achieve this, the parsimony principle must be satisfied.
This means that the simplest possible model which results in a
good fitting is pursued, and that a set covering all possible
parametric combinations must be found. However, this search
implies the fitting of many candidate models.

In this study the largest parameterization with two sinusoidal
harmonics is considered. There are a wide variety of models to
choose with several degrees of freedom. Following the genetic
algorithms nomenclature (Goldberg, 1989), a binary codification to
represent the model, according to the involved factors, is adopted.
Every model is coded with a binary chromosome c=|[gg>
2384858627] where g; are the binary genes representing the given
factors. Each gene, g;, has two possible values: g;=1 when the ith
factor is turned on, and g;=0 when it is turned off (Menéndez
et al., 2009). The gene g,(f,, f,) represents the annual cycle for the
location parameter; g»(f3;, 3,) represents the semiannual cycle for
the location parameter; gs(a,ay)represents the annual cycle for
the scale parameter; g4(a3, a4) represents the semiannual cycle for
the scale parameter; gs is a gene representing a constant shape
parameter (y, # 0); gs(Y;,7,) represents the annual cycle for the
shape parameter; and g,(y5,7,) represents the semiannual cycle
for the shape parameter. To find the best model a search selective
methodology denominated as Stepwise, a mixed of the Forward
Selection and Backward Elimination, is carried out. In this meth-
odology, every time that a gene is activated in the Forward
Selection, the Backward Elimination is employed to check if the
gene must be eliminated. This procedure allows the elimination of
an initially considered factor, which later on is not considered
representative of the data variation. For more detailed information
on the binary codification and the search selective methodology,
the reader is referred to Menéndez et al. (2009).

To select the preferred model the Akaike Information Criterion
(AIC) (Akaike, 1973) given below is adopted,

AIG = 218 |t %)+ 2p; 1

where p; is the number of parameters and l(él|ti,xj)is the max-
imum of the log-likelihood resulting from the model i for the
sample {t;,x;}; this equation holds for a particular model i with a
binary chromosome ¢’ and a corresponding vector parameter &'
(Menéndez et al., 2009). Note that the criterion that considers the
number of free parameters and the maximum likelihood dictate
that the model with the lowest AIC is the preferred.

2.5. Model verification

To prove that the adopted model adequately represents the
analyzed extreme events, verification is carried out by establishing
diagnostic techniques. In this study the diagnostic is focused on
descriptive methods based on quantil-quantil plots (QQ) and the
probability plots. If a non-stationary behavior occurs, the lack of
homogeneity in the hypothetically considered distributions for
each observation, leads to modifications before the QQ and
probability plots are employed. These modifications are based on
a standardization of the data, aimed to simplify their diagnostic
behavior. The standardization varies depending on the parametric
equation describing the distribution function for each model of
extremes.

A very convenient standardization for the extreme events,
considering that there is special interest in the distribution tail,
consists in transforming the statistical model distribution into a
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Fig. 2. Values of the estimators for the GEV distribution parameters for each month and the resulting functions from the regression fitting with one (gray line) and two (solid
line) harmonics. 95% confidence bands (dashed lines) are shown only for two harmonics.

Gumbel distribution. This allows representing a linearized process, where each of the maximum n observations {xy,...,x,} are denoted
so that it is easier to qualitatively describe how good the fitting is. in a block time and occur at the times {ty,...,t,}.

The resulting statistics from this change of variable is denoted as If the studied variable is adequately modeled, the resulting

W corresponding to the following equation: statistics represent a random standardize Gumbel variable.

R The representation of the W(t) statistics as a function of time,

W(t) = A1 log {1 +&(b) (Xfﬂ(t)ﬂ (12) allows to asses the stationarity in the variable behavior.

& 40) The probability associated to the Gumbel distribution based on
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Fig. 2. (continued)

the W(t) statistic is obtained with the equation
Pr{W <x} =exp(—e™®) (13)

In the probability plots, the probability values associated to the
extreme values samples, {F(x;)}, and the estimated probabilities
by using the statistic W(t), are compared.

The QQ plots are obtained by sorting the sample values and
plotting them; the quantiles obtained with the supposed theore-
tical distribution of the model of extremes are also plotted. With
the considered scaling, the resulting model quantiles will be
Weiy=WI(x(, t)), while the corresponding logarithmic transforma-
tion must be applied to the direct sample values, in order to scale
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Fig. 2. (continued)

them to Gumbel by using the following equation:

{— log (— log (F(x)), W)} (14

2.6. Values associated to quantiles

The values associated with given return periods are deduced
from the x variable equation in the time-dependent GEV distribu-
tion function, G,(x), resulting in (Menéndez et al., 2009)

Xq(t,0) = Xq(u(t), (1), &(1))
_ {u(t)—‘gf:;{l—[— log(1-q)1 ¥} if &b #0
KO-y (b)log [ log (1-q)] if &(t)=0
where q is the exceedance probability defined from G{x)=1-—gq,

and the estimated quantil Xy(t,0), is the time dependent variable
value associated to the return period R=1/q.

(15)

3. Analysis of extreme waves in the Gulf of Mexico

In this section, recorded data at 10 locations detailed in Table 1
and shown in Fig. 3 are employed. The significant wave height
(SWH) data obtained from the NOAA (National Oceanic and
Atmospheric Administration) buoys operated by the National Data
Buoy Center (NDBC, www.ndbc.noaa.gov) are analyzed. SWH is
computed as the mean of the highest third of wave height during
the sampling period for a given time.

Considering the existent records for each buoy, it is possible to
carry out the models fitting by obtaining the chromosomes
representing the annual and semiannual cycle values for the
location parameters, the annual and semiannual cycle for the scale
parameter, the constant value y, (defining the distribution type:
GEV or Gumbel), and the annual cycle for the shape parameter.
The estimated mean values, and the amplitudes of the harmonics

and subharmonics of the parameters obtained with the Stepwise
method for each buoy are summarized in Table 2. The estimated
standard errors associated with each parameter are also shown in
Table 2.

It can be observed from the table that, for buoys 42,001, 42,003
and 42,040 the location and scale parameters show annual and
semiannual cycles, while the shape parameter shows an annual
cycle; the positive yo value indicates that for these buoys the
Frechet distribution was the more adequate.

Note that significant wave heights for 42,003, 42,007, 42,039
and 42,040 buoys were registered in the wake of Hurricane Ivan
on September 2004. The values of waves caused by hurricanes
could affect the type of distribution obtained with the time-
dependent GEV model. For the mentioned buoys the distribution
type is Frechet.

The negative y, value for buoys 42,002 and 42,019 in Table 2
indicates that the data is better characterized by Weibull ditribu-
tions. These buoys also show annual and semiannual cycles for the
location and scale parameters; and an annual cycle in the shape
parameter is observed only for buoy 42,002.

Annual cycles for the location, scale and shape parameters, and
semiannual cycles for the scale parameter can be observed for
buoys 42,036 and 42,039 (defined by Frechet distributions) in
Table 2. On the other hand, annual and semiannual cycles for the
location parameter, a semiannual cycle for the scale parameter and
an annual cycle for the shape parameter can be observed for
42,007 buoy. Finally, yo equal to zero, implying Gumbel distribu-
tions, is observed for 42,020 and 42,035 buoys.

For the recorded wave heights at almost all the buoys there are
annual and semiannual cycles for the location parameter; this
suggests two seasons of extreme events during the year.

Considering the values obtained with the time-dependent GEV
distribution equations, the parameters which best fit the distribu-
tion model were determined and illustrated in Fig. 4. The bold line
represents the 30-year return period value (i.e., (1—1/30)-quantile),
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Fig. 3. NOAA Buoys considered in the analysis.

75

Numerical values of the maximum likelihood estimates for the location, scale and shape parameters (with standard errors in brakets); final chromosome, maximum of the
log-likelihood function (I) number of involved parameters (p) and Akaike Information Criterion statistic (AIC) for the studied buoys.

Buoy Number 42,001 42,002 42,003 42,007 42,019 42,020 42,035 42,036 42,039 42,040
Cycle Chromosome [1,1,1,1,1,1,0] [1,1,1,1,1,1,0] [1,1,1,1,1,1,0] [1101110] [111110,0] [1110,010] [1111010] [1011110] [1011110] [1,11,11,1,0]
Po 2.795 3.070 2.728 1.645 3.009 3125 2.083 2.730 2.884 2.749
(4.84) (4.62) (4.40) (3.51) (5.37) (4.88) (3.26) (6.03) (719) (6.76)
Annual P 1.012 1.062 1.036 0.301 0.789 0.844 0.291 0.990 0.979 0.788
(6.00) (6.02) (5.64) (3.93) (7.02) (6.96) (4.45) (8.11) (9.57) (8.99)
)23 0.196 0.210 0.268 0.078 0.033 0.077 —0.026 0.058 0.0149 0.192
(7.03) (6.85) (6.66) (4.69) (6.52) (7.03) (4.73) (8.93) (10.77) (9.41)
Semi annual S -0173 -0.278 -0.147 -0.138 -0.269 -0.210 —0.080 - - -0.171
(5.91) (6.00) (5.80) (4.36) (6.72) (6.55) (4.19) (8.09)
La -0.127 —0.094 —0.054 0.002 —0.053 —0.060 —0.096 - - —0.026
(6.30) (6.04) (5.90) (4.55) (6.62) (5.93) (4.16) (8.63)
Olo 0.837 0.830 0.751 0.480 0.701 0.699 0.442 0.751 0.780 0.665
(3.55) (3.19) (3.31) (2.87) (3.94) (3.66) (2.45) (4.72) (6.00) (5.90)
Annual a 0.174 0.095 0.100 - —0.140 —0.048 —0.044 0.099 0.099 —0.052
(4.16) (4.26) (4.16) (5.01) (4.95) (3.12) (6.16) (7.67) (8.14)
as 0.047 —0.155 —0.099 - —0.184 -0.173 -0.134 -0.114 -0.139 —0.189
(5.64) (4.95) (5.22) (4.67) (5.20) (3.38) (6.84) (8.74) (8.50)
Semi annual a3 —0.145 —0.093 —0.146 —-0.076 0.061 - —-0.027 —0.042 —0.083 —0.001
(4.99) (4.04) (441) (3.65) (4.58) (3.08) (5.78) (8.45) (7.72)
ay 0.195 0.128 0.037 0.068 0.200 - 0.141 0.113 0.166 0.149
(5.09) (5.05) (5.19) (4.01) (5.06) (3.14) (5.90) (6.56) (7.90)
Yo 0.047 -0.071 0.11 0.12 -0.12 0.00 0.00 0.08 0.13 0.18
(0.03) (0.02) (0.03) (0.06) (0.04) (0.05) (0.07) (0.07)
Annual 71 -0.13 —0.097 -0.11 -0.12 - -0.34 -0.26 -0.20 -0.33 -0.13
(0.05) (0.04) (0.05) (0.08) (0.06) (0.07) (0.07) (0.09) (0.12)
Y2 -0.16 —0.041 —0.09 -0.26 - 0.06 0.03 -0.15 -0.12 -0.24
(0.04) (0.03) (0.04) (0,08) (0.05) (0.05) (0.10) (0.10) (0.12)
Semi annual y5 - - - - - - - - - -
Va - - - - - - - - - -
1 —2351.50  —2313.51 —2220.92 —-1339.54 —1302.62 —1349.43 —2220.92 —1152.21 —1029.40 —1385.42
p 13 13 13 11 1 10 12 1 11 13
AIC 4729.01 4653.03 2627.24 2701.09 2627.24 2718.87 2390.75 2326.42 1737.17 1684.68

Location parameter z(t): fo_fa (m)

Scale parameter y(t): Qo_0ts (M)

Shape parameter &(t): Yo_ya
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and the dashed lines represent the 95% confidence intervals, the
lower dotted line represents the location parameter, and the
lower solid line represents the scale parameter. The maximum
monthly values of significant wave height are represented with
dots.

In Fig. 4, a bimodal behavior for many of the buoys in the 30-
year return period value (bold line) can be observed. The peaks
happen approximately between February and April, and between
August and October. This behavior may be related to two seasonal
patterns, the latter associated to hurricanes and the former asso-
ciated to cold fronts. The assessment of this behavior can be
relevant because, although the larger wave heights are associated
to the hurricanes, the values associated to the cold fronts can be

important during the construction phase of maritime and offshore
structures, for planning issues, etc. Results for other return periods
not shown here for brevity present similar trends.

Fig. 4 also shows a good fitting of all the parameters for
the considered cases. To further illustrate the adequacy of the
fit, comparison of the empirical distributions and fitted distri-
butions is presented in Fig. 5 for data from each of the
considered buoys.

It is observed that in 42,007 buoy, the model lightly over-
estimated the maximum values. In the case of 42,001, 42,002 and
42,003 buoys, the model underestimated the quantile. For the
monthly maximum series of 42,019, 42,020, 42,035, 42,036, 42,039
and 42,040 buoys, a very good fitting of the model is shown.

Fig. 4. Fittings for the monthly maximum values for 30-year return period quantiles (bold lines) within a year and 95% confidence intervals (dashed lines) including location

and scale parameters (lower dotted and lower solid lines respectively).
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Fig. 4. (continued)

4. Comparison with the study results from Panchang
and Li (2006)

In this section some of the results from the statistical study by
Panchang and Li (2006) for 11 buoys in the Gulf of Mexico (with
information recorded by NDBC) are reproduced and compared
with those obtained in this study (for 10 buoys only). Panchang
and Li (2006) employed annual maximum and monthly maximum
significant wave height (SWH) values and carried out an analysis
of extremes by employing Weibull and Gumbel distributions. They
reported that the wave heights associated to a return period of N
years (SWHpy) using the Weibull distribution are slightly lower
than those estimated using the Gumbel distribution. In general,
they found that the SWHy values were on the order of the
maximum recorded SWH, as long as the data sets were not very
short and for the return periods considered in their study (50-500
years).

Particular attention is focused on large waves caused by
Hurricane Ivan; for example, it was found that at the locations
for buoys 42,003, 42,007, 42,039 and 42,040 during this hurricane,
the SWHs were the largest ever recorded. They noted that the
differences in the maxima, in special at buoys 42,007 and 42,040,
with those prior to Hurricane Ivan were considerable. They also
reported SWHs up to 179 m in the vicinity of buoy 42,040
measured by the Naval Research Laboratory. This measurement
is the largest SWH ever recorded in U.S. waters.

Before describing the comparison with the work by Panchang
and Li (2006), it is important to notice that in addition to Panchang
and Li (2006) Jonathan and Ewans (2011) investigated the extreme
waves in the Gulf of Mexico modeling the seasonality based on the
hindcast data from GOMOS (2005) rather than records from the

NOAA buoys. They employed a Generalized Pareto distribution to
describe storm peak significant wave heights. The modeling was
performed for two unknown locations in the Gulf of Mexico,
covering two areas of about 80 x 180 km each. This makes difficult
to carry out a quantitative comparison between the referred study
and the present one. Therefore, in the following, a quantitative
comparison is carried out, but only for the study by Panchang and
Li (2006).

In Table 3 values of maximum monthly recorded SWH and
SWHgo for Gumbel and Weibull distributions reported by
Panchang and Li (2006) are reproduced. Table 3 also shows the
results from the time-dependent GEV-model for maximum sig-
nificant wave heights associated to a return period of 100 years
including their corresponding distribution types and 95% confi-
dence interval values. This information is shown for the 10 buoys
considered in this study, but in this case, information recorded up
to 2004 was employed, so that the data is consistent with that
used by Panchang and Li (2006). Note that for buoys 42,007 and
42,040 the analysis was performed including or excluding the
SWH associated to Hurricane Ivan, as it was done by Panchang and
Li (2006). Actually, for reasons which will be explained later, one
more analysis was carried out for buoy 42,040 excluding not only
the SWH associated to Hurricane Ivan, but also the SWH asso-
ciated to Hurricane Mitch. Note also that the SWHq for the time-
dependent GEV model in Table 3 are the maximum within the year
months.

When comparing SWHqo from both studies, it can be observed
that the values are similar. However, for the time-dependent
GEV model the month when the expected value occurs can be
determined, as indicated in brackets beside the SWH;oo values
in Table 3. In fact, the values for any month within the year
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Fig. 5. Probability and QQ plots (left and right) for each buoy.

(not shown here for brevity) can be obtained. Moreover, the time-
dependent GEV model directly determines the extreme distribu-
tion type which best characterizes the data.

Panchang and Li (2006) computed the SWHy with or without
the SWH associated to Hurricane Ivan for buoys 42,007 and
42,040. This was also considered in this study for comparison
purposes. This led to obtaining two different distribution types for
buoy 42,007 by using the time-dependent GEV model, possibly
because the maximum SWH with and without considering the
Hurricane Ivan vary significantly (9.09 m and 4.91 m, respectively).
By excluding and including SWHs associated to the hurricane,
Gumbel and Frechet distribution types are obtained, respectively.
Results for the Frechet distribution are not included by Panchang
and Li (2006).

For the case of buoy 42,040 a Frechet distribution type was
found in both cases (with and without SWHs associated to
Hurricane Ivan). However, it was noted that the difference in
maximum SWH value was not as remarkable as for the case of
buoy 42,007 (15.96 m and 10.88 m, respectively). This could be
explained because the maximum SWH after excluding Hurricane
Ivan, is still associated to another hurricane, in this case, the
Hurricane Mitch. A last row was included in Table 3 excluding
both, SWHs associated to Hurricanes Ivan and Mitch for buoy
42,040. The new analysis, for a maximum SWH equal to 7.12 m,
resulted in a Gumbel distribution. It is believed that this change in
the distribution type (from Frechet to Gumbel), depending on
whether a typical maximum SWHs are included in the analysis or
not, could be associated to the occurrence of infrequent events like
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Fig. 5. (continued)

Hurricanes at the site of interest. This point, however, deserves
further research for more cases and more detailed analyses before
a sound conclusion could be drawn.

Note that the results presented in the comparison are from data
recorded up to 2004. In Section 3, by using data recorded up to
2011, in some cases different distribution types were found for the
same buoys. Also, unlike the case of Table 3 (using buoys data up
to 2011), Weibull distributions where found (42,002 and 42,019
buoys). This means that the fitting could be sensible to the time
period considered in the analysis.

Panchang and Li (2006) considered 42,001, 42,002 and 42,003
buoys to assess the recurrence interval for the maximum SWH
reported in U.S. waters until now (17.9 m). Note that Panchang and
Li (2006) computed the recurrence intervals using annual maxima.

In this work the return periods by using monthly maximum
values, and the equations and distribution parameters given by
Panchang and Li (2006), were obtained. Then, the return periods
were compared with those computed with the time-dependent
GEV model, and are shown in Table 4.

Fretchet distributions using the GEV model for buoys 42,001,
42,002 and 42,003 were obtained (see Table 3). As it was
previously mentioned, the employed data is the same considered
by Panchang and Li (2006) (from 1973 to 2004). For the Panchang
and Li model, Table 4 shows recurrence intervals of 75,000, 49,000
and 63,000 years, for buoys 42,001, 42,002 and 42,003, respec-
tively; whereas, for the time- dependent GEV model recurrence
intervals of 630, 95,000 and 15,000 years, for buoys 42,001, 42,002
and 42,003, respectively, are shown. It is considered that these
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Fig. 5. (continued)

dissimilar results are due to the different probability distribution
(Gumbel vs Frechet) and the employed model (stationary vs non-
stationary). It is noticeable that for buoy 42,001 the maximum
SWH considering data up to 2004 was 11.2 m, however, the next
year a maximum SWH equal to 11.1 m was recorded; so, the return
period of 630 years obtained with the time-dependent GEV model,
seems to be more reasonable than the 75,000 years return period
obtained with the stationary model. In fact, the recurrence interval
considering data up to 2011, by employing the non-stationary
model, is even shorter and equal to 350 years.

As a last comparison, to emphasize the differences between the
stationary and the time-dependent GEV models, Figs. 6 and 7 are
presented. Fig. 6 shows SWHs results from Panchang and Li (2006)
for different return periods by using maximum monthly values
and the Gumbel distribution; 95% confidence intervals are also

shown. Fig. 7 also shows SWHs for different return periods. These
results were also computed for the buoys data up to 2004. In
contrast to Fig. 6, Fig. 7 shows an evident non-stationary behavior
which is not possible to predict with the stationary model; a 95%
of confidence interval is included for a return period of 1000 years.

5. Conclusions

A time-dependent GEV model is used to analyze the maximum
significant wave height values with seasonal and monthly varia-
bility. In the model, the seasonality of time-dependence is intro-
duced by using the harmonic functions to represent the annual
and semiannual cycles of the extreme waves. More specifically, it
is considered that the scale, location and shape parameters in the
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Fig. 5. (continued)

Table 3

Comparison of quantiles for a 100 year return period for the analyzed models, vs maximum recorded values.

Buoy Maximum recorded SWH(m) Panchang and Li (2006) Time-dependent (GEV)

SWH0o SWHygo (m) SWHjgo (m) Distribution 95% Confidence intervals

(m) using Gumbel using Weibull type

Lower Upper

42,001 11.20 10.56 9.30 10.47 (September) Fretchet 8.46 12.49
42,002 9.70 10.89 8.54 7.96 (September)  Fretchet 7.01 8.93
42,003 11.04 10.59 9.24 8.41 (September)  Fretchet 7.33 9.49
42,007 (Without Hurricane Ivan)  4.91 5.28 4.78 5.88 Gumbel 5.49 6.26
42,007 (With Hurricane Ivan) 9.09 5.47 5.66 6.57 (September)  Frechet 6.41 713
42,019 6.80 9.28 6.15 6.03 (August) Gumbel 5.63 7.33
42,020 8.20 9.10 717 8.85 (July) Gumbel 7.01 10.79
42,035 5.40 5.90 4.59 6.83 (August) Gumbel 6.40 7.28
42,036 8.60 10.27 8.37 10.71 (August) Gumbel
42,039 12.05 10.59 10.65 10.91 (August) Gumbel 9.83 12.05
42,040 (Without Hurricane Ivan) 10.88 9.27 8.51 10.27 Frechet 9.79 10.76
42040 (With Hurricane Ivan) 15.96 9.84 10.88 13.38 (August) Frechet 12.75 14.05
42,040 (Without Hurricanes 712 - - 6.57 Gumbel 6.09 7.37

Ivan and Mitch)

Table 4
Comparison of the time-dependent GEV analysis vs. the Gumbel Analysis in
Panchang and Li (2006).

Buoy Years to SWH,.x=17.9 m)

Gumbel (Panchang) Time-dependent GEV

42,001 ~ 75,000 ~ 630
42,002 ~ 49,000 ~ 95,000
42,003 ~ 63,000 ~ 15,000

GEV model vary from month to month. To select the preferred
model and to reduce the number of free parameters to be
estimated, the Akaike Information Criterion is employed.

The characteristics of the wave seasonality variation for each
site are obtained by applying the mentioned model in 10 buoys in
the Gulf of Mexico, showing that the wave heights varies with the
season, resulting in the largest wave height for the fall-winter
season. The seasonality effect is examined by using the monthly
maximum wave height values, and expected wave height values
for different return periods. It is expected that the obtained results
can be employed for a better understanding of the ocean wave
height for each season, and to anticipate the wave heights which
could be used for structural design and coast risk management.

Fig. 6. Return period (years) and 95% confidence intervals for 42,003 buoy for
monthly maximum using Gumbel (Panchang and Li, 2006).

It was found that the recorded wave height at the examined
locations have annual and semiannual cycles, suggesting two
seasons of extreme events during the year. The observed bimodal
behavior (the peaks at two different year seasons) in the signifi-
cant wave height associated to a 30-year return period, could be
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Fig. 7. Return periods for monthly maximum for Tr=10, 100 and 1000 years and
95% confidence bands (dashed lines, for Tr=1000 years only) for 42,003 buoy
(Time-dependent GEV model).

possibly related to hurricanes and cold fronts. The assessment of
this behavior can be relevant for the construction phase of
maritime and offshore structures, and for planning activities.

When comparing the time-dependent GEV model and the
stationary model (Panchang and Li, 2006), it was observed that
the values are similar. However, for the time-dependent GEV
model the significant wave heights associated to a given return
period can be obtained for any month, whereas this is not possible
for a stationary model. The time-dependent GEV model directly
determines the extreme distribution type which best characterizes
the data.

The time-dependent GEV model appears to give more realistic
recurrence intervals for the maxima observed in the measured
data sets.
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