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ABSTRACT 
 
 
 We live in a complex and interconnected world which permeates different scales, sectors or 

decision problems. This fact is acknowledged by the United Nations 2030 Agenda for Sustainable 

Development, which underscores current global challenges, recognizes their interconnectivity and 

calls for international action. It is recognized that the connected nature of the issues we currently face 

have been tackled by “silo” approaches, separating the complexities of the real–world into specialized 

disciplines, fields of research, institutions and ministries, each one focused on a fraction of the overall 

truth. Similarly, it is widely recognized the need of a major shift in decision–making processes 

towards more holistic and integrated approaches. Evidence–based decision–making involves complex 

processes of considering a wide range of information of different nature. Nowadays, available data can 

support these processes, but methodologies to effectively integrate these data are lacking.  

    With the aim to contribute in this direction, this thesis focuses on the increasing use of 

Bayesian Networks (BNs) modelling as an approach to accommodate complex problems and to 

support decision–making. Common practice employs separately expert knowledge and empirical data 

to build and apply associated models. Despite of the demonstrated utility of this practice, in an era 

where the data are bigger, faster and more detailed than even before, there is still room for further 

exploration. Thus, this dissertation proposes a data–driven Bayesian Networks approach to combine 

expert opinion and quantitative data to support informed decision–making. 

 We propose two systematic methods to this end. First, we use our approach to replicate 

composite indicators (CI)–based conceptual frameworks, which represent expert knowledge, through 

the use of structure learning algorithms, which characterizes this data–driven Bayesian Networks 

approach. Second, we use our approach to identify interlinkages associated with a complex context, 

coupled with a statistical technique (i.e. bootstrapping) to reduce results uncertainty and with a 

comprehensive result robustness analysis (i.e. expert knowledge). 

 For testing and validating the proposed approach, this thesis takes the Sustainable 

Development Goal 6 embedded on the 2030 Agenda as a reference point, with particular attention to 

the water, sanitation and hygiene sector. 

 Our results emphasize the likely utility of the data–driven Bayesian Networks approach 

adopted. First, it allows the integration of both expert knowledge and data availability when dealing 

with BNs modelling and it accurately replicates (CI)–based conceptual frameworks. As added values, 

this combination improves model inference capacity, it reduces and quantifies the key variables that 

explain a pre-defined objective variable (implying important advantages in data updating), and it 

identifies the interlinkages among the variables considered (which might enhance more integrated 

actions). Second, the approach adopted is useful to accommodate a thorough analysis and 

interpretation of the complexities and interdependencies of any context at hand. As added values, 

interlinkages identification is spurred on by the available data and this identification makes the 



approach more suitable than the use of composite indicators. Third, the systematic nature of the 

methodological contributions associated with the proposed approach can be adapted to different 

complex problems. Thus, it might expand and deepen the knowledge about the validity, reliability and 

accuracy of using BNs modelling.  

  



RESUMEN 
 
 
 Vivimos en un mundo complejo e interconectado que impregna diferentes escalas, sectores o 

problemas de decisión. Esta visión es destacada por la Agenda 2030 para el Desarrollo Sostenible de 

las Naciones Unidas, que además pone de manifiesto los desafíos globales actuales, reconoce su 

interconexión y hace una llamada a la acción internacional. Por otro lado, es ampliamente reconocido 

que la naturaleza conectada de los problemas a los que nos enfrentamos actualmente se ha abordado 

mediante enfoques “estancos”, separando las complejidades del mundo real en disciplinas 

especializadas, campos de investigación, instituciones y ministerios, cada uno centrado en una parte de 

la verdad. De igual manera, es reconocida la necesidad de un cambio de paradigma en los procesos de 

toma de decisiones hacia enfoques más holísticos e integrados. La toma de decisiones basada en 

evidencias lleva implícita procesos complejos en los que se integran una amplia gama de información 

de diferente naturaleza. Hoy en día, los datos cuantitativos disponibles pueden respaldar estos 

procesos, pero faltan metodologías para integrar estos datos de manera efectiva. 

 Con el objetivo de contribuir en esta dirección, esta tesis se centra en el uso de modelos de 

Redes Bayesianas (BNs), como un enfoque válido para abordar problemas complejos y, en última 

instancia, para apoyar la toma de decisiones. En la práctica, se emplea comúnmente por separado el 

conocimiento de expertos y los datos empíricos para construir y aplicar estos modelos. A pesar de la 

utilidad demostrada de esta práctica, en una era en la que los datos son más numerosos, más rápidos y 

más detallados que antes, hay espacio para explorar hasta dónde pueden llegar estos datos. En este 

sentido, esta tesis propone un enfoque de Redes Bayesianas basadas en los datos que permite combinar 

el conocimiento experto y la información cuantitativa existente para, en última instancia, apoyar la 

toma de decisiones. 

 Se proponen dos métodos sistemáticos para tal fin. En primer lugar, se emplea dicho enfoque 

para replicar marcos conceptuales basados en indicadores compuestos (IC), que representan el 

conocimiento experto, mediante el uso de algoritmos de aprendizaje de estructuras, que caracteriza 

este enfoque de Redes Bayesianas basado en datos. En segundo lugar, se utiliza el enfoque propuesto 

para identificar las interrelaciones existentes dentro de un contexto complejo, junto con una técnica 

estadística (bootstrapping) para reducir la incertidumbre de los resultados y con un análisis 

bibliográfico exhaustivo (conocimiento experto) para demostrar la robustez de los resultados 

obtenidos. 

 Para testear y validar el enfoque propuesto, esta tesis toma como punto de referencia el 

Objetivo de Desarrollo Sostenible 6 que forma parte de la Agenda 2030, con especial atención al 

sector del agua, el saneamiento y la higiene. 

 Nuestros resultados ponen de manifiesto la potencial utilidad del enfoque adoptado de Redes 

Bayesianas basadas en los datos. Primero, este enfoque permite la integración de conocimiento 

experto y de información cuantitativa a la hora de construir las RBs, y replica con precisión los marcos 



conceptuales basados en IC. Como valor añadido, esta combinación mejora la capacidad de inferencia 

del modelo, reduce y cuantifica las variables clave que explican una variable objetivo predefinida (lo 

que implica importantes ventajas en la actualización de datos) e identifica las interrelaciones entre las 

variables (lo que podría potenciar acciones más integradas). En segundo lugar, el enfoque adoptado es 

útil para dar cabida a un análisis e interpretación exhaustivos de las complejidades e interdependencias 

de cualquier contexto en cuestión. Como valor añadido, la identificación de las interconexiones se 

realiza exclusivamente en base a los datos disponibles. Además, el considerar dichas interconexiones 

hace que este enfoque sea más adecuado que el uso de IC. En tercer lugar, la naturaleza sistemática de 

las contribuciones metodológicas asociadas al enfoque propuesto puede adaptarse a diferentes 

problemas complejos. En este sentido, se considera que se contribuye a ampliar el conocimiento sobre 

la validez, fiabilidad y precisión del uso de modelos de Redes Bayesianas. 
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Chapter I. Introduction 
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CHAPTER I. INTRODUCTION 
 

 

 The challenges we face in the 21st Century are essentially connected. This fact is 

acknowledged by the United Nations 2030 Agenda for Sustainable Development, which underscores 

current global challenges, recognizes their interconnectivity and calls for international action. 

However, established approaches tend to separate the complexities of the real–world into specialized 

disciplines, fields of research, institutions and ministries, each one focused on a fraction of the overall 

truth. Similarly, it is widely recognized the need of paradigm change in decision–making processes 

towards more integrated approaches. Evidence–based decision–making involves complex processes of 

considering a wide range of information of different nature. Nowadays, available data can support 

these processes, but methodologies to effectively integrate these data are lacking.  

 Within this aim, this thesis focuses on the increasing use of Bayesian Networks modelling as 

an approach to accommodate complex problems and to support decision–making. Common practice 

employs separately expert knowledge and empirical data to build and apply associated models. 

Despite of the demonstrated utility of this practice, in an era where the data are bigger, faster and more 

detailed than even before, there is still room for further exploration. Thus, this dissertation proposes a 

data–driven Bayesian Networks approach to combine expert opinion and quantitative data to support 

informed decision–making. 

 For testing and validating the proposed approach, this thesis takes the Sustainable 

Development Goal 6 embedded on the 2030 Agenda as a reference point, with particular attention to 

the water, sanitation and hygiene sector. In this context, various approaches have been implemented 

(for different purposes and from different perspectives) that might support evidence–based decision–

making. In addition, many academic attempts and proposals have contributed in this direction. 

Nonetheless, a few attempts to test more complex tools are found, being Bayesian Networks used to a 

limited extent. 

 This introductory Chapter is divided into two main sections. The first part describes the 

rationale where the state of the art is presented. It provides an overview of the approaches proposed to 

tackle complex problems associated with the sector on which this thesis focuses. It presents as well the 

approach selected and the current use within the sector. The second part describes the research 

problem in more detail, as well as the methodology implemented, and outlines the structure of the 

remainder of the thesis.  
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1.1. RATIONALE 
 

 “Globalized”, “interconnected”, “interdependent”, “complex”, “systemic”. These are just few 

adjectives that define the world we live in. These apply to different scales, sectors or decision 

problems. At global level, the 2030 Agenda for Sustainable Development (SD), which underscores the 

current challenges human–kind is facing, describes the Sustainable Development Goals that it 

comprises as integrated, indivisible and mutually reinforcing (United Nations General Assembly, 

2015). As highlighted, one major goal seeks to build a sustainable future in a recognized 

interconnected world (United Nations General Assembly, 2015). This requires covering and balancing 

the three dimensions of SD – environmental, social and economic – and their institutional/governance 

aspects (Costanza et al., 2016). Lack of integration across these dimensions in development strategies, 

policies and implementation has long been perceived as a major weakness in previous attempts 

towards SD (Le Blanc, 2015; Liu et al., 2018; Obersteiner et al., 2016). This weakness has been 

widely related to the “silo” approaches in which governments and international agencies, as well as 

sectorial policies and institutions, operate (Nhamo et al., 2018; Weitz et al., 2014). Similarly, it is 

widely recognized the need of a major shift in decision–making processes towards more holistic and 

integrated approaches (Rasul, 2016). In other words, there is the need to pull each part of the overall 

truth together in order to organize effective policy responses (OECD–IIASA, 2020).  

 From this global context, a parallelism can be built around the water, sanitation and hygiene 

(WaSH) sector. The main challenge across this sector is to enable and accelerate progress towards 

achieving Sustainable Development Goal (SDG) 6 “to guarantee the availability of water and its 

sustainable management and sanitation for all” (United Nations, 2018a; United Nations General 

Assembly, 2015). Similarly, there is a growing acknowledgement that existing “silo” approaches will 

not be sufficient on their own to meet sectorial targets (Valcourt et al., 2020). The WaSH sector is 

struggling to increase the access and quality of WaSH services. Some of the many challenges are 

practical actions that provide the “visible” side of water  United Nations, 2018a). To cite some 

examples, these actions fall on installing taps and toilets, building water storages, drilling boreholes, 

and treating and reusing/recycling wastewater. The term “sustainability” associated to these services 

has been broadly used in a wide variety of contexts, and lacks a precise definition (Fisher et al., 2015). 

Thus, while recognizing the importance of many of the connotations of sustainability, a fair starting 

point might be those services that offer long term prospects (e.g. in terms of functionality, continuity, 

manageability, etc.). However, some actions are much less visible. They are complex and challenging, 

and yet they underpin the visible side of water (United Nations, 2018a). These actions include, for 

instance, the need for good “water governance”. Although water governance lacks as well an accurate 

definition (see detailed overview in Jiménez et al., 2020), a reference point might be established at the 

political, institutional and socio–economic settings that influence water’s use and management. In 

other words, the systems that determine who gets what water, when and how, and who has the right to 

water and related services and their benefits (Allan, 2001).  



Chapter I. Introduction 

3 
 

 Water governance includes, among other processes, monitoring and learning. It is a common 

vision that what it is not measured, it is not manageable. In the WaSH sector, there are a number of 

global initiatives, from different purposes and from different perspectives, all aimed at better 

understanding WaSH performance and, ultimately, support decision–making based on evidence. In 

this sense, various approaches have been implemented, for different purposes and from different 

perspectives. For the global monitoring, the WHO and UNICEF Joint Monitoring Programme (JMP) 

for Water Supply, Sanitation and Hygiene reports at the international level on the status of access to 

water and sanitation, shifting from technology–based indicators to multidimensional measures of the 

level of service delivered (JMP, 2000; 2008; 2017a; 2019; 2020). In parallel, the UN–Water Global 

Analysis and Assessment of Sanitation and Drinking–Water (GLAAS) provides a global update on the 

policy frameworks, institutional arrangements, human resource base, and international and national 

finance streams in support of drinking–water and sanitation (GLASS, 2019). For inter–utility 

performance benchmarking, the International Benchmarking Network for Water and Sanitation 

Utilities (IBNET) is an initiative to encourage water and sanitation utilities to compile and share a set 

of core cost and performance indicators. For the assessment of WaSH service sustainability, the 

initiative Water Point Data Exchange (WPDx) gathers and harmonizes data from rural areas at the 

water point or small water scheme level, and facilitates further assessments through its decision 

support tools. A further initiative, the Rural Water and Sanitation Information System (SIASAR, by its 

acronym in Spanish) shares a similar principle of free data access and includes a comprehensive 

framework for data collection, analysis and dissemination that simultaneously fulfils different 

stakeholder needs (Requejo-Castro et al., 2017; WB, 2017). In this case, collected data is expanded 

from the rural water schemes to sanitation services, hygiene–related issues and service and technical 

provision performance. 

 In addition to these implemented global monitoring mechanisms, and from a more academic 

perspective, WaSH–related aspects have been assessed from many disciplinary perspectives and 

conceptual frameworks: these have tackled issues that are water–related (Bordalo et al., 2006; Cho et 

al., 2010; Cohen and Sullivan, 2010; Giné-Garriga and Pérez-Foguet, 2010, 2011; Sullivan et al., 

2010), sanitation–related (Giné-Garriga et al., 2011; Giné-Garriga and Pérez-Foguet, 2019; WB–WSP, 

2015) or hygiene–related (Giné-Garriga and Pérez-Foguet, 2013; Webb et al., 2006). Additionally, 

more integrated approaches have addressed WaSH–related issues from a human rights perspective 

(Flores Baquero et al., 2016a; Luh et al., 2013) as well as from a more sectorial–focused one (Giné-

Garriga and Pérez-Foguet, 2013; Godfrey et al., 2014). 

 From all the approaches introduced above, a common factor is the use of indicators and/or 

composite indicators (CIs). Despite the likely use of these approaches to inform decision–making 

processes, these suffer from a number of common weaknesses (Giné-Garriga et al., 2018). First, 

indicators and CIs tend to induce a somewhat narrow, issue–centered perspective on the problem at 

hand, which is not conducive to a good understanding of the interrelationships within considered 
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variables. Second, in CIs, results are generally expressed in a measure of central tendency (instead of 

using the distribution variability of the variables at hand), which jeopardizes an adequate identification 

of the neediest (Flores-Baquero et al., 2016b; Giné-Garriga, 2015). Third, desirable impact assessment 

of different scenarios is not straightforward in CI–based conceptual frameworks, as relationships 

between policy initiatives, remedial actions and their impact are not correctly integrated (Pérez-Foguet 

and Giné-Garriga, 2011). 

 It is acknowledged as well that previous assessments need to be complemented with analyses 

that enable interlinkages among the variables at hand to be assessed (Allen et al., 2018; Le Blanc, 

2015). Recent publications have proposed different approaches to this end. From a more conceptual 

and qualitative perspective, the variables at hand have been read as an interconnected network (Le 

Blanc, 2015), or have been analyzed and presented as a list of relationships (ICSU–ISSC, 2015). They 

have been also organized through a grading system of interactions (Nilsson et al., 2018), with specific 

focus on one specific issue (Bangert et al., 2017; Hall et al., 2018; Herrera, 2019 , or on a “nexus 

approach”  e.g. water–energy–food nexus) (Fader et al., 2018; Pahl-Wostl, 2017) with the aim to 

understand connections, synergies and trade–offs (Liu et al., 2018). On the other hand, from a 

quantitative point of view, existing relationships among the variables at hand have been assessed by 

applying more sophisticated modeling approaches. 

 It is in this last group of approaches the focus of this thesis. Indeed, models are identified as 

important management tools, since they are descriptions of a real–world system that simplify the 

calculation and prediction of outputs, given a set of inputs and parameters that characterize the model. 

However, although these models are very useful for studying a wide range of problems and related 

impacts, in most cases they are not designed to address and integrate issues such as socio–economic, 

environmental and cultural issues. In response to the need for more integrated approaches, and 

complementary to these models, Decision Support Systems (DSS) appear as an alternative instrument. 

A DSS is a means of collecting data from different kinds of information sources to support a decision. 

The information might include experimental or survey data, results of functional models, or, when 

data are sparse, expert knowledge (Bromley, 2005). In other words, a DSS can help to structure 

decision–making processes and support the analysis of the impacts of possible decisions, making the 

data easily accessible and allowing analysis of “what if ...” (Cain , 2001). Specific benefits cited in last 

study in relation to DSS include i) an increase in the quantity and quality of the information identified 

as relevant to the decision, ii) an increase in the number of alternatives examined, iii) a better 

understanding of the system management, iv) better use of data resources, and v) better 

communication and documentation of the issues and justification of the decisions made. 

 Specifically, the interest of this thesis is narrowed to the use of Bayesian Networks (BNs). 

BNs have gained popularity among practitioners (Aguilera et al., 2011; Marcot, 2017; Marcot and 

Penman, 2019) for exploring the interdependencies and cause–effect relationships, simulating complex 

problems that involve a large number of variables that are highly interlinked. Briefly, a BN is a DSS 
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based on probability theory where each node of the model is associated with one variable of the 

dataset, where the links connecting the nodes represent informational or cause–effect relationships, 

and where these dependencies are quantified by the conditional probability tables (CPTs), which 

represent the extent to which one node is likely to be affected by the others. 

 Furthermore, some of the features that position BNs as a tool to support decision–making are 

following detailed. First, BNs are useful for incorporating data and knowledge from different sources 

and domains, including the economic, social, physical, and environmental (Bromley et al., 2005; 

Castelletti and Soncini-Sessa, 2007; Henriksen and Barlebo, 2008). Second, since nodes in BNs are 

modelled by means of probability distributions, uncertainty can be estimated more accurately than in 

models where commonly only mean values are taken into account (Uusitalo, 2007). Third, since 

numeric values are associated to the relationships among the variables of a BN, the probability of a 

particular hypothesis or scenario can be automatically computed (Ordónez-Galán et al., 2009). Fourth, 

once the BN is designed, the probability distribution of a variable given another (set of) variable(s) is 

obtained, which also applies for the way round (Uusitalo, 2007). In other words, BNs allow knowing 

the effects given the causes and the causes given the effects. 

 These key characteristics make BNs particularly suited for tackling WaSH–related issues in an 

interdisciplinary, holistic way (Alok and Mazumdar, 2002; Fisher et al., 2015). While BNs have been 

successfully applied to address environmental issues (Bromley, 2005) and water issues (Phan et al., 

2016), their application to the WaSH sector is less common (Alok and Mazumdar, 2002; Chan et al., 

2020; Cronk and Bartram, 2017, 2018; Dondeynaz et al., 2013; Fisher et al., 2015; Giné-Garriga et al., 

2018). For instance, Cronk and Bartram (2018) applied BNs to define the factors that influence 24–

hour water service availability, and to explore which variable was more influential in water 

discontinuity. Giné-Garriga et al. (2018) developed a BN system to monitor WaSH national 

programmes, taking as a reference point a WaSH–related multidimensional index (Giné-Garriga and 

Pérez-Foguet, 2013). Commonly, these contributions agree with the suitability of BNs approach to 

accommodate the complexities of WaSH issues and their interlinkages. This aspect represents the 

starting point of this dissertation. 
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1.2. AIMS AND METHODS 

  
 This Section first defines the research problem and then introduces the main objective and the 

subsequent research questions. It then details the research method employed and provides a brief 

overview of the topics addressed. 

 

 

 1.2.1. Defining the research problem 

 
 Evidence–based decision–making involves complex processes of considering a wide range of 

information of different nature. Nowadays, available data can support these processes, but 

methodologies to effectively integrate these data are lacking. As introduced, in the WaSH sector, 

complex processes are already impacting governance and sustainability of services. In this sense, 

various approaches have been implemented to support decision–making from different perspectives; 

global monitoring (e.g. JMP and GLAAS), benchmarking of utilities performance (e.g. IBNET), and 

service sustainability assessment (e.g. WPDx and SIASAR). In parallel, different academic 

approaches have been proposed to assess WaSH–related issues. Commonly, these approaches rely on 

the use of indicators and/or composite indicators, which does not facilitate the assessment of the 

existing interlinkages among the variables at hand. In this context, BNs appear as a suitable tool to 

accommodate sectorial complexities and support decision–making. However, BNs use is still limited.

 When dealing with BNs modelling, two main tasks are involved: the definition of the structure 

(encoded in the so–called directed acyclic graph, DAG) and the definition of the conditional 

probability tables (CPTs). In both cases, the main sources of information to construct these features 

are expert knowledge, stakeholder knowledge, empirical data and model simulations. Expert and/or 

stakeholder knowledge refers to the opinion of these actor’s beliefs, mainly expressed as qualitative 

factors derived from expertise, interviews, survey tools or participatory activities. Empirical data 

refers to experimental or observational evidence or data. Model simulations refer to outputs obtained 

by means of other empirical or stochastic models. To this regard, it is of special interest the systematic 

reviews carried out by Phan et al. (2016),  analyzing 111 case studies in the water resources field 

where the BNs approach was employed. Specifically, it is showed that expert knowledge is the main 

approach for DAG construction, while empirical data is employed for CPTs population. A similar 

patter can be found in Aguilera et al. (2011) as regard DAG generation. In contrast, very few studies 

explored the capacity for automated learning of both constructing DAGs and populating CPT values 

from empirical data (Phan et al., 2016). In the case of the WaSH studies identified in previous section 

and which applied a BNs approach, these commonly employ above mentioned methodologies (i.e. 

DAGs – expert/stakeholder knowledge; CPTs – empirical data; none a pure data–driven approach). 

 Even with the increasing number of publications applying BNs approach, the task of building 

model structure remains daunting. The use of expert knowledge and a participatory approach for DAG 
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construction are useful means of ensuring that all dimensions are brought to bear in the problem at 

hand (Pérez-Miñana, 2016). This approach might be adequate in many instances, particularly in 

presence of scarce observational data. However, it might imply as well time and cost consuming 

processes, prone to errors and lacked with a widely accepted interpretation of the processes being 

studied (Alameddine et al., 2011). The use of empirical data to generate plausible BN model structures 

appears as an alternative, without being exempt from criticism. 

 In the 90’s, the development of machine learning techniques for BNs gave the possibility to 

induce automatically BNs from databases (Aguilera et al., 2011). This aspect expanded the potential 

applications of these models. Specifically, network structures can be obtained through the use of the 

so–called structure learning algorithms (SLAs). This possibility might tackle above mentioned 

drawbacks when using expert knowledge to build model structure. However, SLAs are not perfect and 

several obstacles or critics can be identified in literature. First, learning the structure of the networks 

purely from data might require important volumes of data (Aguilera et al., 2011; Gama, 2012). 

Second, these algorithms have been shown to miss dependencies, particularly when dealing with 

complex models (Alameddine et al., 2011). Third, the network structures automatically generated will 

be more unwieldy as the logic of the links produced with the algorithm might not be so meaningful 

(Pérez-Miñana, 2016). Nonetheless, these obstacles might be redefined. First, the world is already 

experiencing an exponential increase in the volume and types of data available within the so–called 

“data revolution”. Nowadays, data are bigger, faster and more detailed than even before. This fact 

provides a suitable context for experimentation, innovation and adaptation to the new world of data 

(UN–IEAG, 2014). Second, SLAs must be considered as aid tools regarding its flexible capacity. 

SLAs allow specifying known relationships in the study at hand prior to executing the algorithm. 

Thus, a combination of SLAs along with expert involvement seems to be most promising (Alameddine 

et al., 2011). However, how to combine them in a systematic way remains elusive. Third, SLAs might 

identify not so meaningful interlinkages but, at the same time, SLAs might identify further 

relationships spurred on by the data (i.e. not identified by experts). Thus, testing result robustness and 

validating them are essential when applying a data–driven approach. In brief, operationalizing both 

data and expert knowledge and analyzing to which extent data–based solutions are robust deserve 

further exploration. 

 Having redefined such obstacles, this research aims at enabling a systematic consideration of 

data and expert knowledge to support decision–making, particularly in the WaSH sector. The 

hypothesis underlying this thesis is that providing systematic methods within data–driven approaches 

might expand and deepen the knowledge about the validity, reliability and accuracy of using 

associated tools (i.e. BNs modelling). As introduced previously, the main motivation falls on shifting 

traditional assessments towards more holistic and integrated approaches, where the existing 

complexities of the problem at hand can be accommodated.   
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1.2.2. Objective and research questions 

 
The overall objective of the research presented in this thesis is as follows: 

 

To improve decision–making processes and the solution of complex problems through data–

driven approaches that combine qualitative and quantitative available information 

 

 We address this objective from a two–fold perspective. Theoretically, we first review existing 

approaches within the WaSH sector which tackle the complexities of the context. Then, we provide 

systematic methodological contributions that might expand the use the proposed data–driven Bayesian 

Networks approach, by dealing with the valuable knowledge from experts and stakeholders and the 

increasing amount of data available. Second, and from a more practical point of view, we implement 

the proposed methodologies in different case studies to assess their validity and usefulness. 

 Within the outlined objective, this thesis examines the following research questions: 

 

 RQ1: How can be combined expert knowledge and data–driven Bayesian Network 

 approaches? 

 

 RQ2: To which extent are data–driven Bayesian Network approaches robust in 

 capturing the complexities and interdependencies of a given context? 

 

 The first research question tackles the way to systematically combine expert knowledge and 

empirical data, and to apply it to Bayesian Networks modelling. Operationalizing both sources of 

information might expand the use of BNs modelling as a tool to support decision–making processes. 

To answer this question, this thesis proposes the replication of composite indicators–based conceptual 

frameworks, which represent expert knowledge, through the use of structure learning algorithms, 

implicit in BNs modelling.  

 The second question focuses on the identification of interlinkages associated with a complex 

context. Understanding these linkages enables the full exploitation of synergies, conflict resolution, 

and trade–offs balances. On the basis of these linkages, integrated planning and management can 

support decision–making, reduce investment costs and facilitate implementation of a number of 

strategies that are geared towards sustainable development. To answer this question, we propose a 

pure data–driven Bayesian Network approach, coupled with a statistical technique to reduce results 

uncertainty and with a comprehensive result robustness analysis. 
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1.2.3. Research methodology 

 
 To tackle the formulated questions, this thesis integrates three general research steps (see 

Figure 1.1), which are briefly outlined below. In addition, these steps are complemented by specific 

methods for each chapter, introduced in next Section. 

 The first step consists in a literature review with a two–fold objective. On the one hand, this 

review aims to identify the theoretical and methodological debates associated with the proposed 

research topic. For this purpose, a wide and diverse array of information resources has been consulted, 

covering scientific papers, published reports by UN agencies and other organizations, handbooks, and 

grey literature such as conference proceedings, working papers and project reports. The broad themes 

addressed include, but are not limited to, BNs modelling, system approaches and monitoring strategies 

of WaSH and SDGs. The insights from the literature review have informed the theoretical framework 

of this thesis. On the other hand, this review aims at testing and validating the results obtained. Due to 

the nature of the analyses carried out along this research, it is remarkable the key role played by the 

comprehensive reviews. 

 

 

Figure 1.1. Conceptualization of the three general steps followed to tackle the research questions of the thesis.  

 The second step entails the development of systematic methodologies, based on the use of 

structure learning algorithms (SLA), for widening the application Bayesian Networks modelling from 

a data–driven perspective. The underlying philosophy of these methods is “keeping it simple”. The 

main objective is to offer operative mechanisms to deal with existing SLA with a reasonable balance 

between simplicity, robustness and accuracy. The proposed methods are developed such as they could 

be replicated by other researches in any context of interest. To this end, all technical details of the 
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methods that this thesis puts forward are publicly available1.  

 The third and last step is the implementation of the proposed methods in real–life problems 

with the aim to assess their validity and usefulness. Two case studies are selected to test the methods 

and validate the research: 

 

– The Rural Water Supply and Sanitation Information System (SIASAR, by its acronym 

in Spanish). SIASAR is an information system (IS) and a country–led monitoring initiative 

developed in Latin America and Caribbean (LAC) countries. This initiative seeks to support 

decision–making of a variety of stakeholders involved in the WaSH sector, as well as to 

promote evidence–based planning. SIASAR combines data collection from households, water 

systems and service providers. SIASAR countries have already collected a significant amount 

of data, which is public available. Specifically, we use data from two different countries, 

namely Nicaragua and Honduras. 

 

– The 2030 Agenda for Sustainable Development. This global Agenda provides an 

evidence-based framework for global sustainable development planning and programming at 

different scales (i.e. national, regional and global). This indicator–based framework embraces 

17 Sustainable Development Goals (SDGs), 169 targets and 232 indicators. Baselines at 

national level are already public available, which are gathered by different technical or 

specialist agencies. Specifically, we select the dedicated goal on water and sanitation (SDG 6). 

 

 Data are the lifeblood of this thesis. For the purpose of this research, we cover the two faces of 

the same coin; large and small datasets. In this sense, we use public available data associated with both 

datasets (SIASAR and 2030 Agenda, respectively). In addition to this, it is important to emphasize that 

the contribution of this thesis goes beyond the application to a specific context. Therefore, the 

proposed methods can be applied to any field of interest.  

 As mentioned previously, the main feature of the methodological contributions rely on their 

systematic nature. These are defined by step–by–step processes, making them self–explanatory. 

Specifically, we provide the guidance to pre–process the data of interest, to select and apply the 

proposed SLA, and to test and validate the obtained results. However, there are some limitations to 

take into consideration when applying these methods to any dataset. First, one of the proposed 

methods is only applicable to composite indicator–based conceptual frameworks that integrate a 

hierarchical structure. Second, and when dealing with small datasets, there is a constraint associated 

with the sample size. We establish the minimum size as to obtain reliable results.   

 

 

                                            
1 All R scripts and datasets used to methods development are available in the Zenodo repository: 

https://zenodo.org/communities/escgd 
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1.2.4. Overview of the topics addressed 

 

 This thesis includes four additional chapters. First, we provide the qualitatively and 

quantitatively background of Bayesian Networks modelling, which allow understanding the 

operational aspects of the algorithms used to obtain BNs from the data, as well as understanding the 

use of these models within this thesis (Chapter II). Second, we focus on the combination of qualitative 

and quantitative available data within the WaSH sector (Chapter III). The output is a systematic 

method to this end based on Bayesian Networks modelling. Third, we expand the use of BNs to the 

framework of the Sustainable Development Goals, focusing on results consistency and reliability 

(Chapter IV). In this case, the output is a pure data–driven approach that complements existing studies 

on interlinkages identification. Fourth, we describe the overall theoretical, methodological and 

empirical conclusions (Chapter V). Additionally, it identifies the future lines of research.  

 

Figure 1.2. Overview of the topics addressed in this thesis. Our goal is to improve decision–making and the 

solution of complex problems through data–driven approaches that combine qualitative and quantitative 

available information. We propose a systematic method to this end based on Bayesian Networks modelling. We 

further apply this approach to test results consistency and reliability in interlinkages identification. For both 

applications (red solid squares), SDG 6 on “clean water and sanitation” is selected as a case study. 

 In more detail: 

 

 Chapter II. Bayesian Networks modelling and Structure Learning Algorithms 

 

 We present the basic concepts associated with BNs, as well as the terms and nomenclature 

used within this thesis. In addition, we provide the theoretical foundations on which BNs are based. 

Finally, we present the basic operating principles of the structure learning algorithms (SLAs) 
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employed hereinafter. 

 

Chapter III. Combining expert knowledge and Bayesian Networks modelling 

 

 We propose a semi–automatic methodology to combine expert knowledge and data–driven 

Bayesian Networks approach. Centered on hierarchical and composite indicator (CI)–based conceptual 

frameworks, which represents expert knowledge, the proposal accurately replicates it, offering great 

potential for a wider application. It is presented in detail and used as a pilot study the SIASAR 

initiative.   

 

Chapter IV. Exploring interlinkages between SDG 6 and the 2030 Agenda through a 

data–driven Bayesian Networks approach 

 

 We present a pure data–driven Bayesian Networks approach to identify and interpret interlinkages. 

The proposal is useful to accommodate a thorough analysis and interpretation of the complexities and 

interdependencies of the problem of interest, which is ratified by its results robustness and coherency. 

It is applied to the interlinkages of the Sustainable Development Goal (SDG) 6, related to water and 

sanitation, across the whole 2030 Agenda. 
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CHAPTER II. BAYESIAN NETWORKS MODELLING AND 

STRUCTURE LEARNING ALGORITHMS 

 
 

 In this Chapter, we present the concepts that allow understanding the operational aspects of 

the algorithms used to obtain BNs from the data, as well as understanding the use of these models 

within this thesis. First, we introduce the basic qualitative concepts associated with BNs, establishing 

the terms and nomenclature used in the rest of the thesis, thus facilitating its comprehension. In 

addition, this background represents the starting point to introduce the quantitative concepts. Second, 

we present the theoretical foundations and basic quantitative concepts themselves on which BNs are 

based. Third, we present the basic operating principles of the algorithms that allow building BNs 

models based solely on the available data. Finally, we end up with a brief of several key aspects. 

 

 

2.1. BAYESIAN NETWORK DEFINITION 
 
 Extending the definition provided in the introductory Chapter, a Bayesian Network (BN) is a 

statistical multivariate model where its graphical structure allows us to represent and reason about an 

uncertain domain (Korb and Nicholson, 2004). Each node in a BN is associated with one variable of 

the domain. A set of directed links connects the nodes representing informational or cause–effect 

relationships. These dependencies are quantified by conditional probability distributions, which 

represent the extent to which one node is likely to be affected by the others. The only constraint on the 

links allowed in a BN is that there must not be any directed cycles. Such networks are called directed 

acyclic graphs (or DAGs). In brief, BNs are defined in terms of two components: a qualitative one and 

a quantitative one (Aguilera et al., 2011). We describe the main aspects associated to each component 

below. 

 

 

2.2. QUALITATIVE COMPONENT OF A BAYESIAN NETWORK 
 

 2.2.1. Nodes and links 

  

 On a qualitative level, BNs are graphs with the nodes representing variables and the links 

representing different kinds of relations among them. Below, we present the taxonomy of these three 

elements (i.e. graphs, nodes and links) employed in this thesis. 

 A node represents an exhaustive set of mutually exclusive states, namely the variable domain. 

This domain can be discrete or continuous (see Figure 2.1).  
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Figure 2.1. Taxonomy for nodes. 

 The nomenclature of the nodes is summarized in Figure 2.2. We refer basically to three types 

of nodes: input, intermediate and objective nodes. The graph depicted in Figure 2.2 could be the 

qualitative component of a BN for variables X1…X5. According to the nomenclature, nodes X1, X2 and 

X3 represent input nodes, X4 and X5 intermediate nodes and X6 an objective node. 

 

Figure 2.2. Nomenclature for nodes: input (left), intermediate (centre) and objective (right). 

 In addition to this, it is common to use a family metaphor to refer to nodes. Thus, a node is a 

parent of a child if there is a link from the former to the latter. For example, node X3 is the parent of 

node X5. Similarly, nodes X4 and X5 are parents of node X6 (see Figure 2.3).  

 

Figure 2.3. Examples for parents (red) and children (green) nodes.  
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 As far as the links, we refer to directed links and undirected links. The former is depicted 

through arrows from a parent node to a child one. The latter is represented by lines with no direction 

between parent and child (see Figure 2.4). 

 

Figure 2.4. Directed links (left) and directed acyclic graph (DAG), and undirected links (right) and skeleton of 

the graph. 

 Both nodes and links constitute the graphs. If the graph does not contain undirected links, then 

the graph is a directed one. Otherwise, it is an undirected graph. Furthermore, if a directed graph does 

not contain directed cycles is called a directed acyclic graph or DAG. The undirected graph obtained 

from a DAG by replacing all its directed links with undirected ones is known as the skeleton of the 

graph (see Figure 2.4). 

 

 

2.2.2. Evidences and types of reasoning 

 

 Bayesian networks can be used for updating the values of the nodes when new information is 

available. This new information is commonly called evidence. This information is received from 

external sources and is related to the (possible) states/values of a subset of the nodes of the network.  

 We differentiate and use two types of evidence (Kjærulff and Madsen, 2005). For instance, if 

the domain of a node is dom (X) = {x1, x2, x3}, and if the evidence function is εx = {1, 0, 0}, this 

indicates that the state of the node is X = x1 with certainty. An evidence function that assigns a zero 

probability to all but one state is often said to provide hard evidence. On the other hand, if εx = {1, 3, 

0}, then with certainty X ≠ x3 and X = x3 is three times as likely as X = x1. In this case, we refer to it as 

soft evidence. 

 As BNs provide full representations of probability distributions over their nodes, this implies 

that they can be conditioned upon any subset of their nodes, supporting any direction of reasoning 

(Korb and Nicholson, 2004). For example, we can perform diagnostic reasoning (i.e. reasoning from 

effect to cause). Note that this reasoning occurs in the opposite direction to the network links (see 

Figure 2.5). We refer to this performance as an inverse use of the BN. On the other hand, we can 

perform predictive reasoning (most common in BNs modelling), reasoning from new information 
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(evidences) about causes to updated knowledge about effects, following the directions of the network 

links (see Figure 2.5). In this case, we refer to it as a direct use of the BN. 

 

 

Figure 2.5. Types of reasoning: diagnostic or inverse use (left) and predictive or direct use (right). 

 

 

 2.2.3. The Marcov property 

  

 In general, modeling with BNs requires the assumption of the Markov property. This states 

that there are no direct dependencies in the system being modeled which are not already explicitly 

shown via links (Korb and Nicholson, 2004).  

 

 

 2.2.4. Flow of information in Bayesian Networks 

  

 One of the most important advantages of BNs is that the structure of the associated DAG 

(which satisfies the Marcov property) determines the independence and dependence relationships 

among the nodes. The relation between conditional independence and Bayesian network structure is 

important for understanding how BNs work (Korb and Nicholson, 2004). Thus, it is possible to find 

out, without any numerical calculation, which nodes are irrelevant (independent) or relevant 

(dependent) for some other nodes of interest (Aguilera et al., 2011; Kjærulff and Madsen, 2005).  

 Here, we introduce an adapted “toy” example from Pearl (1988) to illustrate and explain the 

transmission of information in BNs. The context is as follows: at a rural town of a tropical country, a 

researcher is carrying out a routine water quality tests, when observes a positive result in pathogens. 

She concludes that the water treatment system has not been operative due to the previous week storms, 

as these phenomena cause energy outages which render these systems inoperative. When she is about 

to contact the energy company to report the incidence, she finds on her way a technician heading to 

the treatment system. He explains to her that they have indeed communicated a fault in the system. 

Knowing that mechanical failures are also the cause for the not functionality of the systems, she 
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refuses to call the company. 

 

Figure 2.6. Bayesian Network for the example introduced, including the states of each node. 

 The context described in the example can be represented in terms of a BN (see Figure 2.6). 

Generally, there are only three types of connections among nodes in a DAG: serial, diverging and 

converging connections (see Figure 2.7). Therefore, it is enough to explain how information flows for 

these three connections. We recall the example introduced above to illustrate this. 

 

Figure 2.7. Serial (left), diverging (centre) and converging (right) connections. 

 1. Serial connections: “Energy outage” has a causal influence on “Treatment system”, which 

in turn has a causal influence on “Water test”. Thus, information flows from “Energy outage” to 

“Water test” and vice versa, since evidence (new information) associated to one of the nodes provides 

information about the other. However, if we know about the state of “Treatment system”, any 

information about the state of “Energy outage” is irrelevant to our belief about “Water test” and vice 

versa, since once we have certainty about the fact that the treatment system is not operative, the 

information provided by the water test does not change our state of belief. In brief, information may 

flow through a serial connection A → B → C unless the state of C is known. 

  

 2. Diverging connections: “Mechanical failure” has a causal influence on both “Treatment 

system” and “Technical provision”. Therefore, information flows from “Treatment system” to 

“Technical provision” and vice versa, since evidence associated to one of the nodes provides 

information about the other. Thus, if we only know that the technician is about to repair the treatment 
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system, our belief about the non functionality of the system would increase. On the other hand, if we 

observe “Mechanical failure” (i.e. we have certainty about that), any information about the state of 

“Treatment system” is irrelevant for our belief about a contact for “Service provision” and vice versa. 

Similarly to the previous case, information may flow through a diverging connection A ← B → C 

unless the state of B is known. 

  

 3. Converging connections: “Treatment system” is causally influenced by both “Energy 

outage” and “Mechanical failure”. However, in this case the last two nodes are irrelevant to each 

other: if we do not have any evidence about the status of the treatment system, there is no relationship 

between the other two nodes. However, if we have evidences about “Treatment system” and “Energy 

outage”, then this will affect our belief about “Mechanical failure”: energy outage explains treatment 

system failure, reducing our belief that a mechanical failure is the triggering factor, and vice versa. 

Contrary to serial and diverging connections, information may flow through a converging connection 

A → B ← C if we know the status of B and the status of one of its descendants. 

  

 

 2.2.5. Dependencies and independencies (d–separation criterion) 

   

 In general, applying the three rules detailed above, it is possible to determine the nodes that 

are relevant to our objective node (Aguilera et al., 2011). Specifically, these three rules comprise the 

components needed to formulate a general rule for reading off the statements of relevance 

(dependency) and irrelevance (independency) relations among for two nodes or two sets of nodes, 

possibly given a third node or set of nodes (Kjærulff and Madsen, 2005). This general rule is known as 

the d–separation (from direction–dependent separation) criterion and is due to Pearl (1988). 

 The formalism of the d–separation criterion reads “A set of nodes B d–separates two other sets 

of nodes A and C if every path from a node in A to a node in C is blocked given B” (Korb and 

Nicholson, 2004). In other words, if A and C are d–separated by B, then A and C are conditionally 

independent given B (given the Markov property). Some of the d–separation properties observed in 

the example depicted in Figure 2.6 are: 

 – Energy outage and Mechanical failure are d–separated (converging connection with no 

 evidence about Treatment system)  

 – Energy outage and Mechanical failure are not d–separated, given the status of  Treatment 

system (converging connection with evidence about Treatment system)  

 – Treatment system and Technical provision are d–separated, given the status of 

 Mechanical failure (diverging connection with evidence about Mechanical failure) 

 – Energy outage and Water test are d–separated, given the status of Treatment system  (serial 

connection with evidence about Treatment system) 
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 2.2.6. Markov Blanket criterion 

 

 Another useful concept is that of the Markov Blanket (MB) of a node. Considering the 

definition introduced by Pearl (1988), in any BN the MB of a node X consists on the union of the 

node’s parents, its children, and its children’s parents (see Figure 2.8), which is easily identifiable 

from the graph.  

 

Figure 2.8. Schematic representation of a Markov Blanket with full conditionals. Source: Adapted from 

Kirchhoff et al., 2018. 

 Figure 2.8 illustrates the Markov Blanket for node X. It consists on the union of its parents (B, 

C), its children (E, F), and the parents' children (D). Hence, X = (B, C) U (E,F) U (D) = (B, C, D, E, 

F). The overall union of X does not include (A). This remarks that X and (A) are conditionally 

independent given (B, C, D, E, F).  It also illustrates that, once the union of X is given, the probability 

of X will not be affected by the probability of (A). This means that, once all the neighbouring nodes 

for X are known, knowing the state of (A) provides no additional information about the state of X. It is 

this kind of statistical neighbourhood for X that is called a Markov blanket (Kirchhoff et al., 2018). 

 The concept of the MB of a node or a set of nodes is central to the algorithms used in this 

thesis and presented in Section 2.4.   

 

 

2.3. QUANTITATIVE COMPONENT OF A BAYESIAN NETWORK 
   

 2.3.1. Basics of probability calculus 
 

 The probability calculus allows us to represent the independencies which other systems 

require, but also allows us to represent any dependencies which we may need (Korb and Nicholson, 

2004). Furthermore, the language of probabilities consists of statements (propositions) about 

probabilities of events (Kjærulff and Madsen, 2005). In general, and citing two common examples, an 

event can be considered as an outcome of a particular observation of a value of a variable (or set or 

variables), or a result of an experiment such as the water test mentioned previously. 

 We briefly introduce the formal language of probability through the use of Venn diagrams (see 
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Figure 2.9). Considering a universe of elements U, where X ⊆ U, the chance that an element sampled 

randomly from U belongs to X defines the probability of the latter, and is denoted by P (X). This 

probability can informally be understood as the relative area occupied by X in U.  

 Supposing now that U = X   Y                , then the probability that a random element from U 

belongs to X   Y is defined as: P (X   Y) = P (X) + P     −   (X ∩ Y). Furthermore, if X and Y are 

disjoint (i.e. X ∩ Y = ∅), then P (X   Y) = P (X) + P (Y). 

 

 

Figure 2.9. The space event U (left), P (X) (centre), and           (right). 

  

 

 2.3.2. Conditional probability 

  

 The concept of conditional probability is crucial for the useful application of the probability 

calculus.  

  

Figure 2.10. Conditional probability: P (X | Y) = P (X ∩ Y) / P (Y). 

 If we consider Figure 2.10 and assume that we know that a random element from U belongs to 

Y, the probability that it belongs at the same time to X is then obtained as the ratio P (X ∩ Y) / P (Y). 

Here, the notation      |    is used to denote this ratio and is read as “the conditional probability of X 

given Y”. Thus, we have: 

 

 P (X | Y) = 
     ∩  

     
 = 

    ,   

     
 , or 

 

 P (X, Y) = P (X | Y) P (Y) 

 

 This last equation is called the factorization of the joint distribution for the elements X and Y.  

 

 



Chapter II. Bayesian Networks modelling and structure learning algorithms 

22 
 

 2.3.3. Conditional Probability Tables 

 

 A conditional probability table (CPT) quantifies the interlinkages between connected nodes, 

which is done by specifying a conditional probability distribution for each node. It should be 

highlighted that CPTs apply only for the case of discrete variables.  

 In order to construct a CPT, and in first instance, for each node it is needed to look at all the 

possible combinations of states of those parent nodes. Each such combination is called an instantiation 

of the parent set. For each distinct instantiation of parent node values, it is needed to specify the 

probability that the child will take each of its states. 

 

Figure 2.11. Conditional probability tables (CPTs) for each node. 

 For example, consider the Treatment system node of Figure 2.11. Its parents are Energy 

outage and Mechanical failure and take the possible joint values {<Yes, Yes>, <Yes, No>, <No, Yes>, 

<No, No>}. The CPT specifies in order the probability of Treatment system functionality for each of 

these cases to be: <0.01, 0.10, 0.05, 0.99>. Since these are probabilities, and must sum to one over all 

possible states of Treatment system node, the probability of non functionality is already implicitly 

given as one minus the above probabilities in each case. Thus, the probability of treatment system non 

functionality in the four possible parent instantiations is <0.99, 0.90, 0.95, 0.01>. 

 Input nodes also have an associated CPT, containing only the so–called prior probabilities. In 

this example, the prior for an energy outage is given as 0.7, indicating that 70% of the times there is a 

storm, the electrical infrastructure suffers from an energy outage.  

 

  

 2.3.4. Axioms of Bayesian probability calculus 

 

 The following three axioms provide the basis for Bayesian probability calculus, and 

summarize the considerations introduced above (Kjærulff and Madsen, 2005): 

 

 – Axiom 1: For any event a, 0 ≤ P (a) ≤ 1, the P (a) = 1 if and only if event a occurs  with 
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certainty. 

 

 – Axiom 2: For any two mutually exclusive events, a and b, the probability that  either a or b 

occur is:  

 

  P (a or b) = P (a) + P (b)  

 

 In general, if events a1,…,an are pairwise exclusive, then: 

 

    ai

n

i

      a    …     an       ai 

n

i

  

   

 – Axiom 3: For any two events, a and b, the probability that both a and b occur is: 

 

   P (a and b) ≡ P (a, b) = P (b | a) P (a) = P (a | b) P (b) 

 

 Here, P (a, b) is called the joint  probability of the events a and b. 

  

 In words, Axiom 1 simply says that a probability is a non–negative real number less than or 

equal to 1, and that it takes the value 1 if and only if the associated event has happened for sure. 

Axiom 2 states that if two events cannot occur at the same time, then the probability that either one of 

them occurs is equal to the sum of the probabilities of their individual occurrences. Finally, Axiom 3 

says that the probability that two events (a and b) occur at the same time can be computed as the 

product of the probability of event a (b) occurring conditional on the fact that event b (a) has already 

occurred and the probability of event b (a) occurring. 

 

 

 2.3.5. Rule of Total Probability 

 

 Bayesian Networks are defined over a (finite) set of nodes, each of which represents a finite 

set of exhaustive and mutually exclusive states (or events). Thus, (conditional) probability 

distributions for variables (i.e. over exhaustive sets of mutually exclusive events) play a central role in 

BNs (Kjærulff and Madsen, 2005). 

 If X is a (random) variable (or node) with domain dom (X) = {x1,…, xn}, then P (X) denotes a 

probability distribution (i.e., a vector of probabilities summing to 1), where: 

 

  P (X) = [P (X = x1),…, P (X = xn)] = [P (x1),…, P (xn)] 
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 On the other hand, if the probability distribution for a different variable Y is given conditional 

on a variable (or set of variables) X, then the notation P (Y | X) is used, as introduced in previous 

Section. This means that, for each possible value (state), x ∈ dom (X), we have a probability 

distribution P (Y | X = x) = P (Y | x). 

 Let P (X, Y) now be a joint probability distribution for two variables X and Y with dom (X) = 

{x1,…, xm} and dom (Y) = {y1,…, yn}. Considering the fact that dom (X) and dom (Y) are exhaustive 

sets of mutually exclusive states of X and Y, respectively, Proposition 2 introduced above gives the 

rule of total probability: 

 

 i:    xi, y    …      xi, yn        xi, yj 

n

j  

  

  

 Using this equation, we can calculate P (X) from P (X, Y): 

 

             x , yj ,…,

n

j  

    xm, yj 

n

j  

        , y
j
        ,   

 

 

n

j  

 

 

  

 2.3.6. Baye’s Rule 

 

 Generalizing Axiom 3 to arbitrary (random) variables X and Y, we obtain the so–called 

fundamental rule of probability calculus: 

 

 P (X, Y) = P (X | Y) P (Y) = P (Y | X) P (X) 

 

 From this equation, Bayes’ rule follows immediately: 

 

 P (Y | X)   
               

     
 

 

 Using Axiom 3 and the rule of total probability, the equation above can be rewritten as 

follows: 

 

 P (Y | X)   
               

     |   y        y   …      |   yn       yn  
 

 

 That is, the denominator in Bayes’ rule formula can be derived from the numerator in the same 

formula. However, the denominator P (X) hardly enters into consideration because it is merely a 
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normalizing constant P (X) = P (X | Y) P (Y) + P (X | -Y) P (-Y), which can be computed by requiring 

that P (Y | X) and P (Y | -X) sum to unity. Thus, Bayes’ rule is often written as follows: 

 

 P (Y | X)   P (X | Y) P (Y) or in general: posterior   likelihood x prior 

 

 The usual Bayesian interpretation asserts that the probability of a variable Y conditioned upon 

some evidence X is equal to its likelihood P (X | Y) times its probability prior to any evidence P (Y), 

normalized by dividing by P (X) (so that the conditional probabilities of all variable states sum to 1). 

Here, the prior distribution, P (Y), expresses the initial belief about the variable Y, and the posterior 

distribution, P (Y | X), expresses the updated belief about Y in light of the observation  . Bayes’ rule 

tells how to obtain the posterior distribution by multiplying the prior P (Y) by the ratio P (X | Y) / P 

(X), where P (X) is a constant for each state of Y. 

 

 

 2.3.7. The Chain Rule 

 

 A useful generalization of the equation P (X, Y) = P (X | Y) P (Y) is the so–called chain rule 

formula. It states that if we have a probability distribution, P (X), over a set of variables X = 

{X1,…,Xn}, then the probability of the joint event (X1,…, Xn) can be written as a product of n 

conditional probabilities: 

 

 P (X) = P (X1 | X2,..,Xn) P (X2,…, Xn) 

  

 P (X) = P (X1 | X2,..,Xn) P (X2 | X3,..,Xn) ··· P (Xn-1 | Pn) P (Xn) 

 

           i    i  ,…, n 

n

i  

 

  

 Here, it is important to remark that the order in which the variables are selected has an 

important impact. Thus, there are n factorial different factorizations of P (X), and to each factorization 

corresponds a unique DAG. However, all of these DAGs are equivalent in terms of dependence and 

independence properties (Kjærulff and Madsen, 2005). 

 Recalling the Markov property, the structure of a BN implies that the value of a particular 

node is conditional only on the values of its parent nodes. This reduces previous equation to: 

 

            i    arents   i  

n

i  
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 2.3.8. Inference in Bayesian Networks  

 

 Bayesian Networks, like other statistical models, can be used to answer questions about the 

nature of the data that go beyond the mere description of the behavior of the observed sample (Scutari 

and Denis, 2015). The techniques used to obtain those answers are known in general as inference. The 

basic task for any probabilistic inference system is to compute the posterior probability distribution for 

a query node (or set of query nodes), given the evidences related to other nodes. This task is called 

probabilistic inference. Inference in BNs is very flexible, as evidence can be entered about any node 

while beliefs in any other nodes are updated (Korb and Nicholson, 2004). 

 For example, we can consider Xi as a node in which we are interested (our objective node), 

and Parents (Xi) = Xe  as a set of nodes whose states can be known. Then, the posterior distribution of 

Xi given Xe can be obtained by computing the probability of each possible state of Xi given each 

possible configuration of Xe. This probability distribution can be obtained from the joint distribution 

introduced immediately above. In fact, there is no need to compute the joint distribution, since there 

are efficient algorithms that allow the calculation of P (Xi | Xe) taking advantage of the factorization of 

the joint distribution imposed by the network structure (Aguilera et al., 2011). 

 Probabilistic inference, however, can be done once the qualitative component of the BN is 

built (i.e. the DAG). As reflected in the introductory Chapter, we use so–called structure learning 

algorithms (SLAs) to obtain the network structure. Following, we introduce the details related to these. 

 

 

2.4. STRUCTURE LEARNING ALGORITHMS 
 
 2.4.1. Principle for structure learning 
 

 As introduced previously, the DAG of a BN defines a factorization of the joint probability 

distribution of a set of variables X = {X1,…,Xn}, into a set of local probability distributions, one for 

each variable. The form of this factorization is given by the Markov property (see Section 2.2.3) of the 

BN, which states that every variable considered, Xi, directly depends only on its parents, Parents (Xi). 

Here, we provide again the associated expression but expanded to continuous variables: 

 

            i    arents   i  

n

i  

                             discrete variables  

 

f       f   i    arents   i                                 continuous variables 

n

i  

 

 

 The correspondence between conditional independence (of the variables) and graphical 

separation (of the associated nodes of the graph) is extended to an arbitrary triplet of disjoint subsets 
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of X by Pearl (1988) with the d–separation criterion (see Section 2.2.5).  Therefore model selection 

algorithms first try to learn the graphical structure of the BN (hence the name of structure learning 

algorithms) and then estimate the parameters (i.e. the conditional probability tables, CPT) of the local 

distribution functions conditional on the learned structure (Scutari, 2010). This two–step approach has 

the advantage that it considers one local distribution function at a time, and it does not require to 

model the overall joint distribution function explicitly. 

 

 

 2.4.2. Existing algorithms for structure learning 
  

 Structure learning algorithms (SLA) are automatic approaches that provide the optimum 

structure of the network, spurred on by data. These can be grouped in two main categories: constraint–

based and score–based algorithms: 

  

 – Constraint–based algorithms: These algorithms learn the network structure by analyzing 

the probabilistic relationships entailed by the Markov property of the BN (see Section 2.2.3) with 

conditional independence (C–Ind) tests. Then, a graph which satisfies the corresponding d–separation 

statements (see Section 2.2.5) is constructed (Scutari, 2010). 

 

 – Score–based algorithms: These algorithms assign a score to each candidate BN and then 

try to maximize it with a heuristic search algorithm (Scutari, 2010). 

 

 In this thesis, we focus on the use of constraint–based SLA, which are applied to a large 

database (Chapters III) and to a small database (Chapter IV). Two are the main reasons for this. First, 

the use of conditional independence tests reduces the subjectivity of the links among the nodes of the 

network, if compared to the use of heuristic methods in the case of score–based algorithms. Second, 

and despite the large amount of data needed to guarantee the reliability of the C–Ind tests, a recent 

study points out that constraint–based algorithms are more accurate than score–based algorithms for 

small sample sizes (Scutari et al., 2018).  

 As detailed by Scutari (2010), the constraint–based algorithms are all based on the inductive 

causation (IC) algorithm developed by Verma and Pearl in 1991. This algorithm provides a theoretical 

framework for learning the structure of the BN model from the available data. The process to do this 

can be summarized in three steps: 

  

 1. Network skeleton (see Section 2.2.1) learning. To do this, and since an exhaustive search 

is computationally unfeasible even for all but the simplest datasets, all learning algorithms use some 

kind of optimization such as restricting the search to the Markov Blanket of each node (see Section 

2.2.6). 
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 2. All links’ direction setting. All the directions are set in relation to the links that are part of 

a V–structure (a triplet of nodes incident on a converging connection Xj →  i ←  k). 

  

 3. DAG structure satisfaction. The directions of the other links are set as needed to satisfy 

the acyclicity constraint. 

 

 

 2.4.3. Applied software 

 

 Notably, a large amount of software (both free and commercial) is available for developing a 

BN model. Existing software employs the SLA introduced above, adding the possibility to apply a 

hybrid approach as well (Liu et al., 2017;Madsen et al., 2016). In this thesis, we use the free R 

software and its package bnlearn, developed by Scutari (2010). 

 bnlearn implements the following constraint–based learning algorithms, which are used and 

tested in the following chapters: 

  

 – Grow–shrink (gs): Based on the grow–shrink Markov blanket, it represents the simplest 

Markov Blanket (MB) detection algorithm used in a SLA (Margaritis, 2003). This detection is based 

on pairwise independence tests and it consists of two phases, a growing and a shrinking one (hence its 

name). In the growing phase, variables which are dependent on a selected variable constitute an initial 

empty set of variables. In other words, as long as the MB property of the selected variable is violated, 

the variables are added to the empty set until there are no more such variables. In this process 

however, there may be some variables that were added that were really outside the MB. The shrinking 

phase identifies and removes these variables. In brief, the MB for all variables are identified as a first 

step, and then used to guide the construction of the Bayesian Network of the domain. 

 

 – Incremental association (iamb): Based on the incremental association MB (IAMB) 

algorithm (Tsamardinos et al. 2003), which is based on a two–phase selection scheme (a forward 

selection followed by an attempt to remove false positives). This algorithm and the previous one 

follow the same two–phase structure. However, there is one important difference which relies on the 

order in which variables are selected to detect the MB. This implies the appearance of more false 

positives. 

 

 – Interleaved incremental association (inter.iamb): Another variant of IAMB which uses 

forward stepwise selection (Tsamardinos et al. 2003) to avoid false positives in the Markov Blanket 

detection phase. 
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 – Fast incremental association (fast.iamb): A variant of IAMB which that employs 

speculation to recover the MB faster by reducing the number of conditional independence tests 

(Yaramakala and Margaritis 2005).  

 

 – Max–min parents and children (mmpc): This algorithm learns the underlying skeleton of 

the BN, with no attempt to determine the direction of the links (Tsamardinos et al. 2006). Given a 

variable of interest and statistical data, this algorithm returns the set of parents and children associated 

to that variable. In other words, it provides a way to identify the existence of links to and from the 

variable of interest, without identifying the orientation of the links. Repeating this with each variable 

as the one of interest, all the links (in an un–oriented fashion) can be identified in the network (i.e. 

identifying the skeleton of the BN). 

 

 On the other hand, conditional independence tests focus on the presence of individual links. 

Since each links encodes a probabilistic dependence, conditional independence tests can be used to 

evaluate whether that probabilistic dependence is supported by the data (Scutari and Denis, 2015). In 

this sense, several conditional independence tests from information theory and classical statistics are 

available for use in coupled with the constraint–based SLA. Furthermore, the C–Ind tests must be 

chosen with respect to their data typology. As mentioned previously, in this thesis, we will use discrete 

and continuous variables. Thus, the C–Ind tests differ for each case. 

 For the case of discrete variables, several C–Ind tests are available. For computing time, this 

selection is reduced to mutual information (mi) and Pearson's Χ
2
(x2) tests (see details in Scutari, 

2010). 

 On the other hand, and for continuous variables, the selection is reduced as well to avoid 

intensive computing time. Specifically, we apply to linear correlation (cor), Fisher's Z (zf), and 

mutual information (mi-g) C–Ind tests (see details in Scutari, 2010). 

 Once the structure of the BN has been learned from the data (through the combination of SLA 

and C–Ind tests), the task of estimating and updating the parameters of the joint probability 

distribution is greatly simplified by the decomposition into local distributions (Scutari and Denis, 

2015). Specifically, the parameters of these local distributions (i.e. conditional probabilities) are 

estimated (or learned) from the data available. The applied software and package offer the possibility 

to automate this task through the use of a specific function (bn.fit) and two different estimators: 

maximum likelihood (mle) and Bayesian (bayes) estimators (see details in Scutari and Denis, 2015). 
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2.5. KEY MESSAGES 

 
 From this Chapter, we highlight the following key messages: 

 

 – The qualitative component of a BN (i.e. DAG) is a compact representation of 

independencies and dependencies among a set of variables, allowing reasoning to proceed in any 

direction across the network of variables. Furthermore, it provides a powerful language for 

formulating, discussing and communicating qualitative interaction models. 

 

 – The quantitative component of a BN quantifies the strength of variable dependencies in 

terms of conditional probability distributions. Through the use of the Bayes’ theorem, BNs automate 

the process of updating the probability distributions of variables whose states have not been observed, 

given some set of new evidences (i.e. probabilistic inference). 

 

 – The DAG and the conditional probability distributions of a Bayesian Network can be 

obtained automatically from a given dataset. This is done through the combination of structure 

learning algorithms and conditional independence tests, which apply the Marcov property, the Marcov 

Blanket detection and d–separation criterion. This approach makes the process computationally 

feasible. 

 

 



 

 
 



Chapter III. Combining expert knowledge and Bayesian Networks modelling 

32 
 

CHAPTER III. COMBINING EXPERT KNOWLEDGE AND BAYESIAN 

NETWORK MODELLING 

 

 

 The water, sanitation and hygiene (WaSH) sector has witnessed the development of multiple 

tools for multidimensional monitoring and for supporting decision–making. Hierarchical and 

composite indicator (CI)–based conceptual frameworks provide one illustrative example. However, 

these approaches do not address the existing interrelationship of the indicators they comprise. In this 

line, Bayesian networks (BNs) are increasingly being exploited to assess WaSH issues and to support 

decision–making processes.  

 In this Chapter, we aim to evaluate the validity, reliability and feasibility of BNs in replicating 

an existing CI–based conceptual framework. We adopt a data–driven approach and propose a semi–

automatic methodology. As a pilot study, we used the regional monitoring initiative Rural Water 

Supply and Sanitation Information System (SIASAR). Data from two different countries are processed 

and analyzed to calibrate and validate the model and the method. The major findings show: i) the 

model inference capacity improves when structure is provided to the networks (according to the CI–

based framework); ii) key components that explain a pre–defined objective variable are reduced and 

quantified (implying important advantages in data updating); and iii) interlinkages among these 

components can be identified (which might enhance multi– and trans–disciplinary actions).We 

conclude that BNs accurately replicate the CI–based conceptual framework, with great potential for a 

wider application. 
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3.1. INTRODUCTION 

 
 Indicators play a key role in monitoring and evaluation, reporting, decision– and policy–

making and public communication. An important feature of indicators is their capacity to summarize, 

focus and condense information about complex systems (Godfrey and Tood, 2001).  However, a 

solely indicator cannot capture the complexity of the real world, and much efforts has been put into 

developing related approaches. For instance, composite indicators (CIs) have been widely used to 

evaluate the existing multi–dimensionality of the problems at hand (Nardo et al., 2005), enhancing 

multi– and cross–disciplinary approaches. Some of these CIs have been structured hierarchically (i.e. 

indicators, sub–indices and indices) based on conceptual frameworks defined by experts (see examples 

in Bandura, 2006; Singh et al., 2009) and for enhancing multi– and cross–disciplinary approaches. In 

the water, sanitation and hygiene (WaSH) sector, various approaches have been implemented to 

support decision–making from different perspectives; global monitoring (e.g. JMP and GLAAS), 

benchmarking of utilities performance (e.g. IBNET), and service sustainability assessment (e.g. WPDx 

and SIASAR). From a more academic perspective, CIs have been used to evaluate WaSH aspects from 

many disciplinary perspectives and conceptual frameworks: composites have tackled issues that are 

water–related (Bordalo et al., 2006; Cho et al., 2010; Cohen and Sullivan, 2010; Giné-Garriga and 

Pérez-Foguet, 2010, 2011; Sullivan et al., 2003), sanitation–related (Giné-Garriga et al., 2017; Giné-

Garriga and Pérez-Foguet, 2018; WSP, 2015) or hygiene–related (Giné-Garriga and Pérez-Foguet, 

2013; Webb et al., 2006). Additionally, more integrated approaches have addressed WaSH–related 

issues from a human rights perspective (Flores-Baquero et al., 2016a; Luh et al., 2013) as well as from 

a more sectorial focused one (Giné-Garriga and Pérez-Foguet, 2013; Godfrey et al., 2014; Requejo-

Castro et al., 2017). 

 One major weakness is that CIs do not address the existing interrelationship of the indicators 

they comprise; thus, they do not describe the increasing interdependency of the real world. This 

drawback has been widely tackled by applying data–driven and the traditional “cause–effect” 

approach. Within the former, classical techniques such as Principal Component Analysis (PCA) and 

Factor Analysis (FA) have highlighted the statistical relationships between indicators in terms of a 

smaller number of components or factors, respectively (Nardo et al., 2005). These techniques are 

based on the variance of a given dataset. While PCA reduces the dimensionality of a dataset by finding 

correlated variables, FA determines the number of latent independent variables underlying the data. 

On the other hand, and mainly in the environmental field, the principle of causality has been 

introduced through two different approximations: causal chains and causal networks. Within the 

former, most of the publications apply the Pressure–State–Response framework (PSR; OCDE, 1993) 

and its transformations: Driving force–State–Response (DSR; UN, 1996) and Driving force–Pressure–

State–Impact–Response (DPSIR; EEA, 1999). Here, the main idea is to identify factors (for instance, 

the progressive chain of events) from the driving force and related pressure indicators, which lead to 

changes, impacts and responses. Other authors have suggested that causal networks within the DPSIR 
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framework are more appropriate than causal unidirectional chains for dealing with the complexity of 

real world connections (Lin et al., 2009; Niemeijer and De Groot, 2008). A few studies have applied 

techniques, such as the Analytic Network Process (Saaty, 2001) or PCA and FA, to quantify (in terms 

of weight) the linkages between indicators (Hou et al., 2014; Vacik et al., 2007; Wolfslehner and 

Vacik, 2011). Both the causal chain (mostly DPSIR framework and its derivatives) and causal 

networks approaches have been helpful for: i) conceptual framework development (Chandrakumar and 

McLaren, 2018; Ortiz-Lozano, 2012; Taft and Evers, 2016; Wolfslehner and Vacik, 2011); ii) scenario 

assessment (Chung and Lee, 2009; Ramos-Quintana et al., 2018; Scharin et al., 2016); and iii) 

structuring modelling exercises (García-Santos et al., 2018; Pirrone et al., 2005). The PSR conceptual 

framework has been also applied to address the linkages between water scarcity and poverty (Pérez-

Foguet and Giné-Garriga, 2011). 

 Bayesian networks (BNs) are another step into this direction. They have been exponentially 

used to explore the interdependencies and cause–effect relationships, simulating complex problems 

that involve a large number of variables that are highly interlinked (Aguilera et al., 2011; Marcot, 

2017). BNs thus present a complementary approach to tackling the above–mentioned drawbacks. 

Furthermore, BNs have been used to identify the key factors that influence aspects of interest (Li et al., 

2019; Song et al., 2018), and to elucidate the network structure underlying the data–at–hand, through 

associated structure learning algorithms (SLA) (Alameddine et al., 2011; Garcia-Prats et al., 2018).  

 In this Chapter, we focus on the latter line of research. Although the use of empirical data to 

generate plausible BN model structures appears as an alternative, how to operate in a systematic way 

remains elusive. Considering that the combination of SLAs along with expert involvement might be 

most promising, our approach falls on replicating existing conceptual frameworks, which represent 

expert knowledge, through the use of SLA and available data. In particular, our aim is to expand and 

deepen the knowledge about the validity, reliability and accuracy of using BNs to replicate CI–based 

conceptual frameworks. To do this, we provide a systematic methodology for network construction to 

replicate the structure of CIs that are organized hierarchically. We adopt a data–driven approach, using 

one regional monitoring initiative as a pilot study: the RuralWater Supply and Sanitation Information 

System (SIASAR, for Sistema de Información de Agua y Saneamiento Rural). We opt for this pilot 

study due to i) its open–database availability for interested stakeholders, and ii) its complex 

hierarchical structure of indicators and CIs. 

 We structure this Chapter as follows. In Section 3.2, we present in detail the case study, 

highlighting the technical and organizational aspects involved. Next, in Section 3.3, we explain the 

propose methodology for CIs–based conceptual frameworks replication. In Section 3.4, we present 

and discuss the results focused on method validation and results implication in monitoring and 

planning purposes. Finally, we summarize the key messages extracted from the study in Section 3.5. 
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3.2. CASE STUDY: THE SIASAR INITIATIVE 

 
 In this Section, we describe the Rural Water and Sanitation Information System (SIASAR; 

Sistema de Información de Agua y Saneamiento Rural). SIASAR is a regional sector information 

system (IS) and a country–led monitoring initiative developed in Latin America and Caribbean (LAC) 

countries. SIASAR seeks to support decision–making of a variety of stakeholders involved in the 

sector (such as policy makers, national and local planners and sector practitioners). Among others, one 

aim of this initiative is to improve resource allocation by influencing targeting and prioritization; thus, 

it promotes evidence–based planning (Pena et al., 2014).  

 In particular, and following the background of this initiative, we present and analyze SIASAR 

from a two–fold perspective. First, we focus on major aspects related to the information cycle, 

including the issues of i) data collection, ii) data analysis, and iii) data use. Second, we highlight the 

existing participatory processes of the initiative. Both aspects represent the way in which expert 

knowledge is brought together into the scene and are essential to visualize the applicability of our 

proposal (i.e. BNs modelling). In addition to this, we provide a range of illustrative examples to foster 

a better understanding about SIASAR’s scope and performance. 

 

 

 3.2.1. Background 

 

 The SIASAR initiative was initially launched in 2011 by the governments of Nicaragua, 

Honduras and Panama. Although these countries already had their own IS, these were out–of–date and 

overly focused on the water component, largely neglecting sanitation and hygiene issues. In this 

context, strategic partners such as the World Bank (through the former Water and Sanitation Program, 

currently known as Water Global Practice), the Inter–American Development Bank, the Spanish 

Agency for International Cooperation and the Swiss Agency for Development and Cooperation joined 

efforts to support these countries in the development of SIASAR. This IS focuses not only on service 

delivery but also integrates sustainability aspects as a core element. This last aspect was identified by 

and agreed upon by country experts as the main challenge to be addressed in the WaSH sector. 

 In 2012, the first version of the SIASAR conceptual model, questionnaires and Information 

and Communications Technology (ICT) tools became functional. This milestone allowed countries to 

first collect and process information and then to display it publicly through the SIASAR website and 

other dissemination mechanisms (e.g., automatic reports, dynamic maps and defined indicators). Since 

2013, with a consolidated system and more than 5,000 registered communities, SIASAR has 

expanded, mainly through the natural framework of the Central American Forum and the Dominican 

Republic of Drinking Water and Sanitation (FOCARD–APS; Foro Centroamericano y República 

Dominicana de Agua Potable y Saneamiento). In 2014, the first Regional Agreement was signed, and 

SIASAR was adopted as the regionally approved and free affiliation IS for the FOCARD–APS 
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countries as well as for those who wanted the convenience of using these instruments. Thus, 

Dominican Republic, Costa Rica and the Mexican state of Oaxaca joined the initiative in 2014, and 

Peru, the Brazilian state of Ceará, Bolivia, Paraguay and Colombia joined between 2015 and 2016. 

Today, SIASAR is in use in twelve countries, after the enrollment of Kyrgyzstan to the initiative in  

2018. 

 Country members adopted a Regional Normative in 2014 (revised in 2016) that gives a clear 

institutional and operational body to the initiative. This progress is extremely important, as SIASAR is 

located in the water–related governmental structures of each country. Furthermore, costs of sector 

technicians as well as of ICT development required to operate the IS are carried by the countries 

themselves; however, this requires the design of coordinated and collaborative structures within and 

between countries. As a result, each member country has now implemented a well–structured 

institutional framework for information and related monitoring mechanisms that is common to all (i.e. 

covering political, advisory and support, operative and administrative, and executive levels). 

Specifically reflected in its Normative, each nation is committed to appointing a leader institution that 

has that goal of ensuring the development, implementation, promotion and financing of the IS 

(SIASAR, 2016). The creation of such structures, and the commitment of ensuring the sustainability of 

the IS through its institutionalization, implementation and capacity building are the minimal 

requirements for joining the initiative. In parallel, these groups are coordinated by one SIASAR 

country, which assumes a one–year leadership of group organization and economic management, and 

transfers it after this period. Similarly, national teams have the support of external advisory groups, 

which are mutually agreed upon. 

 It is important to stress that this entire initiative, from the organizational to the functional 

levels, has been created ad hoc by the SIASAR community itself. It is not dependent on any 

organization or international structure. SIASAR has designed its own coordination and work space and 

has provided budget and distributed costs among country members. This level of self–management 

achieved by these countries is one of the strengths that allows SIASAR to be considered a successful 

case of a collaborative and effective network among teams from 12 countries. 

  

 

 3.2.2. Data collection 

 
 Public investment in the WaSH sector of LAC countries has been traditionally biased toward 

the construction of new infrastructure, and little attention has been paid to other factors that compound 

sustainable water and sanitation service delivery (Lockwood et al., 2010). Understanding those factors 

is critical for addressing sustainability gaps and for improving policy development, sector planning, 

priority setting, budget allocation, project design and technical assistance provision. This core idea led 

countries to design a set of survey instruments to analyze the quality and sustainability of services 

from different perspectives: i) the community; ii) the water system; iii) the service provider; and 
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iv) the technical assistance provider (see Table 3.1). In parallel, the alignment of SIASAR with 

international monitoring standards (e.g. indicators related to use of water and sanitation infrastructure, 

as those proposed by the JMP) was taken into account. Briefly, one specific questionnaire was 

elaborated to collect data from each information source, as shown in the following table. 

Table 3.1. Relevant data associated to each questionnaire of SIASAR. 

Community 

Location and georeference; population; water coverage (at household level); sanitation 

and hygiene infrastructure and use (at household level); water, sanitation and hygiene 

software (at education and health centres); community associated water systems and 

service providers; ongoing projects 

Water System 
Location and georeference; service type; water intakes; system infrastructure status 

(catchment, conduction, treatment, storage, distribution); water quality 

Service Provision 
Type of provider; organization; gender equity; legal status; tariff; revenues and 

expenses; accountability; operation and maintenance 

Technical Assistance 

Provision 

Type of provider; jurisdiction; human, economic and logistic resources; community 

coverage, frequency and type of support 

 For data collection processes, the SIASAR community paid attention to three key stages. The 

first stage involves those preliminary tasks needed to ensure successful field work. From these 

activities, special focus is given to: i) previous contacts with local institutions and sector practitioners 

in a given area, as this aspect favours field planning, initiative dissemination and generation of 

synergies; and ii) survey team training given by the SIASAR–responsible entity in each country. 

 The second stage represents one of the salient aspects of SIASAR, as it combines data 

collection from households, the water systems and the service provider. This is especially relevant as 

widely used household surveys (e.g., Multiple Indicator Cluster Surveys of UNICEF, and the Census 

of Population and Housing) are not sufficient to monitor many relevant questions related to the WaSH 

sector (Giné-Garriga et al., 2013). A separate questionnaire was therefore developed to assess these 

different information sources. Data are then collected through different mechanisms: a closed–

question survey, direct observation and water quality testing. For a given geographical area, the 

methodology consists of visiting all communities in the area. In each community, all existing water 

systems are inspected, members of the organizations in charge of providing the service are interviewed 

and a tour around the community (including schools and health centers (SHC)) takes place. Associated 

technical assistance providers are identified as well; it should be pointed out that these actors generally 

have a different scale of intervention. Finally, sanitation and hygiene information is obtained through 

household visits and direct observation. The selected sample of households is defined according to 

each country’s resources and/or community participation degree. Additionally, the use of ICT–based 

devices are noteworthy, as these facilitate the survey teams’ ability to collect, store and transmit 

related data. 

 Finally, the third stage integrates the validation process, which is crucial for ensuring data 

quality. Validation is carried out through: i) an instant check facilitated by the survey device (internal 
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programming and detection of logical errors) and an agreement with the interviewed players; and ii) a 

final verification executed by municipal or national authorities. Once the information is validated, data 

are published on the public website. As can be seen in Table 3.2, the majority of the SIASAR 

countries have already collected a significant amount of data. The case of Nicaragua is noteworthy, as 

it carried out a baseline of all rural communities, systems and service providers. This milestone was 

officially certificated by its government. Furthermore, and as expected during any data collection 

process, Nicaragua has also finished updating this baseline. 

Table 3.2. Validated monitoring results at SIASAR by country (updated on December 2020). 

Country Communities Water Systems Service Providers 

Bolivia (2016) 1,079 1,207 939 

Colombia (2016) 5,298 2,728 2,536 

Costa Rica (2015) 80 5 8 

Dominican Republic (2013) 2,353 664 473 

Honduras (2011) 4,523 3,276 3,278 

Kyrgyzstan (2018) 1,715 1,166 905 

Nicaragua (2011) 4,862 5,442 2,558 

Panama (2011) 1,388 638 684 

Paraguay (2016) 49 5 1 

Peru (2015) 9,910 10,070 10,070 

State of Ceará (2016) 90 53 23 

State of Oaxaca (2015) 132 128 126 

TOTAL 26,956 25,382 21,601 

In brackets, year of joining SIASAR initiative. 

 Undoubtedly, the SIASAR initiative has grown over the past few years. This growth brings the 

challenge of constantly reviewing survey instruments, with the aim of integrating each country’s 

realities and of ensuring comparability. Under a principle of simplicity – use as little information as 

necessary, but not less –, each country’s particularities are analyzed, discussed and finally harmonized 

and approved by all countries. Additionally, SIASAR visualizes the need of alignment and 

collaboration with other international monitoring systems. In this sense, a thorough revision of survey 

instruments is currently taking place, in order to tailor them to post–2015 key monitoring elements. 

 

 

 3.2.3. Data analysis 

 
 One salient aspect of SIASAR is the manner that collected data are organized and analyzed 

(Pérez-Foguet and Flores-Baquero, 2015). Six aggregated dimensions are defined to assess water and 

sanitation services from different and complementary points of view. The aim of this structure is to 

keep different aspects in focus that characterize an increasing decentralized WaSH sector, as in 
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practice, institutional roles and responsibilities of sectorial issues are assumed by different 

stakeholders (Giné-Garriga and Pérez-Foguet 2013a, 2013b). This characteristic is common to most of 

the SIASAR countries. The dimensions mentioned have been proposed to measure: i) the water 

service level (WSL); ii) the community sanitation situation and various hygiene issues at the 

household level (SHL); iii) the condition of water system infrastructure (WSI); iv) the service provider 

performance; v) the technical assistance provider performance; and vi) the WaSH situation in public 

institutions (SHC). Additionally, at a higher level, the cited dimensions are aggregated into two partial 

indices: i) water, sanitation and hygiene service level (WSHL), and ii) water services sustainability 

index (WSSI). These partial indices aim to keep the focus on aspects related to quality and 

sustainability of services identified by all member countries. Finally, a last level is represented by an 

aggregated water and sanitation service performance (WSP) index. These last indices provide a means 

of initiating discussion and stimulating public interest. All presented elements are listed in Table 3.3. 

Table 3.3. General Index, Partial Indices, Dimensions and Components of SIASAR conceptual model. 

Water and Sanitation service Performance index (WSP) 

Water, Sanitation and Hygiene service Level 

(WSHL) 

Water Services Sustainability Index  

(WSSI) 

Water Service Level  (WSL) Water System Infrastructure  (WSI) 

Accessibility (ACC) 

Continuity (CON) 

Seasonality (SEA) 

Quality (QUA) 

System Autonomy (AUT) 

Production Infrastructure (INF) 

Water Catchment Protection (PRO) 

Treatment system (TRE) 

Sanitation and Hygiene Service Level (SHL) Service Provision (SEP) 

Sanitation Service Level (SSL) 

Personal Hygiene (PER) 

Household Hygiene (WAT) 

Community Hygiene (COM) 

Organizational Management (ORG) 

Operation & Maintenance Management (OPM) 

Economic Management (ECO) 

Environmental Management (ENV) 

Schools and Health Centres (SHC) Technical Assistance Provision (TAP) 

Water Supply in Schools (SWA) 

Water Supply in Health Centres (HWA) 

Sanitation in Schools (SSH) 

Sanitation in Health Centres (HSH) 

Information Systems (ICT) 

Institutional Capacity (INS) 

Community Coverage (COV) 

Intensity of Assistance (INT) 

 Each dimension comprises four components. In turn, each component is fed by a short list of 

single indicators, with a total of 109 indicators. In terms of method and technique, index construction 

relies on a simple step–by–step procedure: i) the selection and combination of key indicators into their 

corresponding subindices, using an equal and dimensionless numeric scale; ii) the determination of 

weights for each subindex and their aggregation to yield an overall index; and iii) the dissemination of 

index values by means of a grading system, classifying communities in four levels. 

 First, indicators are classified according to the previously described conceptual framework. As 

collected data are frequently represented on different scales (such as percentage of systems with 

adequate water treatment, distance–to–source in meters, service continuity in hours per day, and so 

forth), they have to be normalized prior to their analyses. A score between 0 and 1 is assigned for each 



Chapter III. Combining expert knowledge and Bayesian Networks modelling 

40 
 

parameter, whereby 1 represents the best performance and 0, the worst–case scenario. Components are 

then defined by simple and easy–to–use multi–attribute utility functions. For instance, there are 

criteria whose values are associated with linear variations (e.g. water coverage). An additional 

indicator, such as the distance to the water source, can also be considered to evaluate the overall value 

of the component accessibility (see example in Table 3.4). A second example takes into account 

several criteria to assess the component OPM of the service provider: i) a different punctuation is 

given according to the residual chlorine measurement obtained; ii) a combination of different OPM 

aspects are assessed and rated; and iii) a final value of the utility function is provided by a linear mean 

of both criteria (Table 3.4). 

Table 3.4 Examples of utility functions associated to the components of Accessibility (top) and Operation & 

maintenance management (bottom).  

Accessibility (ACC) 

Effective 

coverage 
Coverage = 0 

Coverage * Accessibility factor  

ACC fact.      if average dist. ≤  00 m  

ACC fact. = 2/3 (if average dist. > 100 m) 

Coverage = 1  

Average dist. < 100 m 

Criteria 0 

Linear variation 

1 

0.33 0.66 

Chlorine 

basic 

operation 

(residual 

chlorine) 

Cl ≤ 0.  mg/l 
0.  mg/l < Cl ≤ 0.3 

mg/l 
Cl > 1 mg/l 0.3 < Cl ≤   mg/l 

General 

assessment 

of OPM 

Neither 

corrective nor 

preventive 

maintenance is 

provided 

Corrective AND/ 

OR preventive 

maintenance is 

provided 

Corrective AND/ OR 

preventive 

maintenance is 

provided, AND OPM 

costs are registered 

Corrective AND 

preventive maintenance 

is provided, AND OPM 

costs are registered, 

AND a plumber is 

present at the 

organization 

Operation & maintenance management (OPM) 

 Next, different components of each dimension are aggregated into a single value. Two major 

issues need to be addressed: i) the choice of weights should reflect the relative importance of each 

component, and ii) the aggregation function should be consistent with the theoretical framework 

(Nardo et al., 2005; Giné-Garriga and Pérez-Foguet, 2010; Flores-Baquero et al., 2016a). For weight 

assignment, two approaches were compared: i) equal weights, and ii) weights according to expert 

opinion (analytical hierarchical process). Several experts from all member countries were involved in 

this process. Based on comparative analysis, equal weights are assigned to all components. Similarly, 

partial indices are calculated by using an equal weighted grouping of all dimensions, and a general 

index (the WSP index) is created by giving both partial indices the same relative importance. For the 
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aggregation method, two different alternatives were tested: i) linear (compensatory), and ii) geometric 

(partial compensatory). According to the analysis carried out, partial compensatory methods 

(geometric) might favor the appearance of null values, hampering the duty of discrimination among 

results. Thus, all dimensions are constructed by allowing the compensation of their components 

(additive aggregation). However, due to the first compensation, posterior aggregations for partial and 

general indices are geometric. 

 Finally, in order to foster prioritization and decision–making, the achieved results were made 

more understandable for final users and stakeholders by linking components, dimensions and index 

values to a defined set of categories (A, B, C or D, whereby A represents the best result and D, the 

worst). This representation can be done in several ways, and two alternatives were tested here: i) equal 

intervals, and ii) different intervals. The results of the two tested methods differed significantly from 

each other. Overall, however, the different interval method was the preferred method: despite being 

less simple conceptually, the fact that it requires a higher overall score in order to move up to a better 

category sets a higher service threshold, which can be seen as a positive aspect. Thus, the different 

interval method is the classification adopted for visualizing results. Specifically, the intervals are 

defined as follows: A, [1–0.9], with both limits included; B (0.9–0.7]; C (0.7–0.4]; and D (0.4–0].  

 The involvement of the member countries in conceptual framework design has been 

indispensable. First, preference levels  punctuation  of a component’s utility functions were agreed by 

common consent at the sectorial level. The same procedure was carried out to define an aggregation 

methodology, while the assignment of weights was based on a wider consultation (as mentioned 

previously). There is no doubt about the need to preserve the consensus among countries in relation to 

the SIASAR concept and its monitoring framework. However, it is also necessary to validate the 

conceptual model against real data. The validation showed that the model is sufficiently flexible to 

evolve and to be adapted to future requirements. This principle of flexibility allowed different versions 

of the conceptual model to be developed. As a result, and in terms of calibration, survey tools as well 

as the definition of the different components have been improved. The aim was to favor i) the 

refinement of the preference levels, and ii) the duty of discrimination. 

 

 

 3.2.4. Data use 

 

 The ultimate goal of sound sector–related data is to facilitate its use and to improve decision–

making. To do this, two elements are necessary (Grosh, 1997): i) the data must be analyzed to produce 

outcomes that are relevant to the policy question, and ii) the analysis must be disseminated and 

transmitted to policy makers. Assuring that data are easily accessible and are presented in a user–

friendly format will stimulate their use. Otherwise, decision–making will be carried out without 

considering the information. 

 When using SIASAR data, the most remarkable aspects to take into account are i) the 
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existence of a common monitoring architecture, ii) the possibility to compare WaSH issues at different 

scales, and iii) the development of a regional sector–related community in which knowledge exchange 

and good practices transcend beyond national borders. As a starting point, the SIASAR community 

designed a distinctive, easy–to–use and meaningful dissemination method of results, which aims to 

address sustainability aspects, that is applied to all SIASAR elements (indices, dimensions and 

components). According to the agreed upon intervals (discussed in the previous section), a specific 

meaning was defined to facilitate interpretation. The SIASAR grading system is represented 

graphically in Figure 3.1, using the WSI as an illustrative example. The “A” grade represents the 

desirable situation of a completely functional system. Over time, the system is likely to experience 

different technical issues due to its use. If these deficiencies can be addressed by the community, 

service provider, etc., then the functionality is classified with a “B” grade. This ranking status 

commonly reflects the fact that, in a short–term period, actions could be taken that would allow the 

initial functionality to be recovered. When no measures are taken on the short–term, deficiencies 

become more pronounced, and external support would then required for recovery. This aspect 

represents the main difference between the “B” and “C” grades. Finally, a “D” grade highlights the 

absence of a system or the ability to recover it. This last point might be a consequence of not taking 

actions when issues were initially detected. In this last scenario, community, service provider, etc., 

need external financial and technical support to recover the full functionality of the system. 

 

Figure 3.1. SIASAR distinctive classification methodology A/B/C/D, where each value is associated to a 

specific meaning that has been defined and acquired by all country members. Source: SIASAR, 2016. 

 To exemplify results from the regional level and the visualization instruments employed, 

Figure 3.2 presents results of the sanitation and hygiene service level (SHL) dimension for four 

country members. As mentioned, this dimension provides a simultaneous point–of–view of the 

community sanitation situation and various hygiene issues at the household level. Note that a “D” 

classification is given to 45% and 48% of the communities in Nicaragua and Panama, respectively, but 

only to 17% and 23% of the communities in Honduras and Dominican Republic, respectively. In any 
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case, sanitation and hygiene services are deficient and require priority attention. In addition to this, a 

high percentage of communities are qualified as “C”, ranging from 32% in Panama to 48% in 

Honduras, which underscores the need of external support to improve the service. This first approach 

provides i) a direct visualization of the countries with the most need to those possible interested actors, 

and ii) the starting point of a more in–depth analysis. Nevertheless, these results must be analyzed 

carefully, as available data differ notably among these countries (see Table 3.2). For instance, the 

baseline of Nicaragua provides a more reliable image of the SHL situation, while the current Panama 

database might not be completely representative of the rural national condition. However, objective 

comparability is possible, as an equal set of indicators to assess SHL have been employed. It should be 

noted that same nature of analysis might be done at a general and partial index level, as well as a 

component plane. Additionally, and within the SIASAR community, countries that count with a more 

tangible management (such as Honduras and the Dominican Republic) share their experience to 

support and guide partner initiatives. 

  

  
 

Figure 3.2. Results associated to the evaluation of "Sanitation and Hygiene service Level, SHL" dimension, 

obtained by the aggregation of its four different components (data available at 

http://doi.org/10.5281/zenodo.571351). 

 Beyond the aggregated indices, a model structure allows a narrower focus on specific 

components. Following a previous first approach and analysis, Figure 3.3 presents detailed 

information about the SHL dimension in Nicaragua. For this, maps are powerful instruments for 

displaying information and enable non–technical audiences to easily understand current sectorial 

situation. The model permits prioritization among the different components. In this case, hygiene–

related aspects are visualized as the ones with the higher need to improvement. Specifically, these 

components deal with appropriate hand–washing practices (SHL.PER), with safe water storage 

http://doi.org/10.5281/zenodo.571351
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(SHL.WAT) and with the practice of open defecation and community cleanliness (SHL.COM). For 

these aspects, the eastern region of the country presents a clear deficiency. Additionally, combining 

this information with health data could provide a complete picture of the context. On the other hand, 

components related to improved sanitation infrastructure (SHL.SSL) associate lower service levels to 

the south–east area of the country, which should be considered in conjunction with the previous 

results. This first assessment might lead to establishing strategies to tackle sectorial needs. For the 

local decision–making level, the SIASAR platform also provides listed communities and rankings, 

thereby allowing the most vulnerable segments of the population to be precisely determined so that 

policy attention and public resources can be directed to them. Importantly, results are easily obtained 

by different administrative scales, allowing decision–makers to better identify needs and target future 

investments more effectively. 

  

  
 

Figure 3.3. Results represented by the four components of "Sanitation and Hygiene service Level, SHL". 

Aggregation to shown administrative units considers population size. Upper–left: “Sanitation Service Level, 

SHL.SSL”; Upper–right: “ ersonal Hygiene, SHL.PER”; Bottom–left: Household Hygiene, SHL.WAT”; 

Bottom–right: “Community Hygiene, SHL.COM”. 
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 To promote data use, SIASAR has designed and developed a battery of harmonized reports. 

They provide a comprehensive assessment of key issues reflected in the conceptual model. As the aim 

is to guarantee the usefulness of these tools, reports have been tested in field with key stakeholders, 

paying attention to the local level. The following examples show the practical use of SIASAR as a 

decision–making tool. In Nicaragua, during the period 2013–2016, 64 rural municipal plans for water 

supply and sanitation were developed using data from the system, supporting the prioritization of the 

most vulnerable communities to receive investments and technical assistance. Since 2014 in Honduras, 

sectorial profiles of 28 municipalities have been developed based on SIASAR information that target 

technical assistance activities and inform the development of Municipal Development Plans. This is 

especially relevant as these plans are an instrument by which Honduran municipalities formally 

request the transfer of national funds for local investments. In Panama, SIASAR data were used in 

2016 to better target investments and technical assistance in indigenous communities. In Dominican 

Republic, 33 water systems were rehabilitated during 2016 based on information collected through 

SIASAR. 

 

 

 3.2.5. Final considerations 

 
 In this Chapter, we exploit the conceptual framework of SIASAR. As described, it comprises 

six aggregated dimensions and three additional indices. Nevertheless, at the time of this research, data 

was only available for four of the six dimensions. Thus, we consider a simplification of the conceptual 

model (Table 3.5). Similarly, each dimension comprises four components, which are fed by a short list 

of single indicators (see Annexes Table A1). In addition, the different composites are constructed by 

aggregating the components arithmetically in the case of the four dimensions (or geometrically for the 

partial and general indices; see Annexes Table A2). 

Table 3.5. SIASAR simplified conceptual model. 

Water and Sanitation service Performance index (WSP) 

Water, Sanitation and Hygiene service Level 

(WSHL) 

Water Services Sustainability Index  

(WSSI) 

Water Service Level  (WSL) Water System Infrastructure  (WSI) 

Accessibility (ACC) 

Continuity (CON) 

Seasonality (SEA) 

Quality (QUA) 

System Autonomy (AUT) 

Production Infrastructure (INF) 

Water Catchment Protection (PRO) 

Treatment system (TRE) 

Sanitation and Hygiene Service Level (SHL) Service Provision (SEP) 

Sanitation Service Level (SSL) 

Personal Hygiene (PER) 

Household Hygiene (WAT) 

Community Hygiene (COM) 

Organizational Management (ORG) 

Operation & Maintenance Management (OPM) 

Economic Management (ECO) 

Environmental Management (ENV) 

  



Chapter III. Combining expert knowledge and Bayesian Networks modelling 

46 
 

 

 

Figure 3.4. Components, dimensions, partial indices and general index A–B–C–D distributions. ACC, 

accessibility; CON, continuity; SEA, seasonality; QUA, quality; SSL, sanitation service level; PER, personal 

hygiene; WAT, household hygiene; COM, community hygiene; AUT, system autonomy; INF, production 

infrastructure; PRO, water catchment protection; TRE, treatment system; ORG, organizational management; 

OPM, operation & maintenance management; ECO, economic management; ENV, environmental management; 

WSL, water service level; SHL, sanitation and hygiene service level; WSI, water system infrastructure; SEP, 

service provision; WSHL, WaSH service level; WSSI, water service sustainability index; WSP, water and 

sanitation service performance index. 

 We process and analyze data from two different countries, namely Nicaragua and Honduras. 

For Nicaragua, we analyzed a baseline of all rural communities, water systems and service providers; 

after data pre–processing, we used a total number of 3,495 communities, with values associated to all 

components detailed in the simplified conceptual model. For Honduras, we found that 3608 

communities fulfilled these requirements (both datasets are available at 

https://doi.org/10.5281/zenodo.804010). The distribution of the primary data according to the intervals 

or states is shown in Figure 3.4. In general, all components possess values associated with each state, 

https://doi.org/10.5281/zenodo.804010
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with the exception of PER and WAT, for which values belong to the A, C or D states (due to the 

utility function structures). Specifically, for Nicaragua, the average distribution of A, B, C and D states 

are 38.3, 23.0, 21.3 and 20.3, respectively (Annexes Table A3). However, important differences are 

found when focusing on individual states. For instance, 64.7% of the rural communities are evaluated 

as A for SEA, while just 10.1% are evaluated as A for COM (Figure 3.4). Additionally, it is possible 

to identify components that are in a more precarious situation (i.e. the ones related to hygiene and 

service provider performance). For Honduras, the average distribution for the states A, B, C and D is 

42.2, 27.3, 18.7 and 15.2, respectively. In this case, there are wider differences within the states, such 

as D, for which there is a maximum of 80.2 and a minimum of 1.5. Here, in contrast the Nicaragua, the 

components QUA and TRE require more attention. Overall, these two countries represent two 

different realities and specificities within the same sector, thus making them suitable for the purpose of 

this work. 

 

 

3.3. METHODS 

 
 This Section proposes a step–by step methodology to replicate the SIASAR hierarchical CI–

based framework (see Table 3.3) by exploiting the flexibility of BNs. First, however, we present the 

main novelty of this work in terms of method, and then we introduce the main assumptions of the 

approach adopted. 

 

 

 3.3.1. Initial settings 

 

 Two main approaches can be taken when developing a BN model: manual or automatic 

(Aguilera et al., 2013). A manual approach includes expert opinion and complementary literature as 

part of the process of defining which variables are dependent on each other, and to which extent. 

An automatic approach uses structure learning algorithms (SLA) to provide the optimum structure of 

the network, spurred on by data. This data–driven approach can reduce the subjectivity of the 

decisions to be made when defining the structure of the network and can also help to minimize the 

need for expert elicitation, which is a time–consuming process (Alameddine et al., 2011). To the best 

of our knowledge, no previous studies in the WaSH sector have proposed a data–driven approach 

when applying BNs modelling. In model construction, three key assumptions have been made: i) the 

method should be applicable to large set of databases; ii) a limited number of states has been used for 

each variable. Specifically, we employed the A–B–C–D grading system that characterized the 

presented pilot study; and iii) variables are only allowed to connect others at the same or the next 

hierarchical level (Figure 3.2). 
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 3.3.2. Model generation 

 

 Once the initial settings have been introduced, the proposed methodology for BN model 

generation comprises four main stages (see Figure 3.5): model proposal (A), model calibration (B), 

model validation (C) and method validation (D). Each stage integrates different steps which are 

specified as follows: 

 

 – Step 0. Conceptual model selection and data split.  

 

 The first step is to select an appropriate conceptual framework to test the proposed 

methodology. We suggest those that possess at least three levels of variables (e.g. indicators, partial 

indices and a general index). Then, we propose randomly splitting the data into two parts: one for 

training the model, and the other for testing. This process, which is directly related to model 

evaluation, helps to ensure that the final result is feasible and defensible (Chen and Pollino, 2012). In 

this case, we opted for assigning 70% of the dataset to training, and 30%, to testing. The training 

dataset is used for the stages A and B of the methodology. 

 

Figure 3.5. Step–by–step methodology for BN model generation and validation. 
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 – Step A.1: Network alternatives generation. 

 

 The bnlearn (version 4.1) package implements the following constraint–based learning 

algorithms (Scutari, 2010): grow–shrink (gs), incremental association (iamb), fast incremental 

association (fast.iamb), interleaved incremental association (inter.iamb) and max–min parent and 

children (mmpc) (see Section 2.4.3). Additionally, the C–Ind tests must be chosen with respect to their 

data typology. In this case, all values are discrete. For computing time, the C–Ind test selection is 

reduced to mutual information (mi) and Pearson's Χ2 (x2) tests. After applying the combination of 

both SLA and C–Ind tests to the database, ten primary networks were obtained. 

 

 – Step A.2: Structure learning algorithm (SLA) + conditional independence (C–Ind) test 

 selection. 

  

 Alameddine et al. (2011) used constraint–based algorithms to learn the structure of the 

network from data but also suggested comparing different potential networks by evaluating a model's 

ability to either incorporate the relevant endpoint (understood as the answer of interest) or to identify 

variable links. In order to select the final primary network (i.e. the SLA and C–Ind tests in tandem), 

we propose several joint criteria for making the final selection; specifically, it should: i) not leave a 

considerable number of nodes isolated; ii) present a lower number of undirected links; and iii) identify 

a higher number of links associated with the objective node(s) – for instance, the node WSP (from the 

general index) can be considered as the objective node, according to the hierarchical structure of the 

presented conceptual model. 

 

 – Step B.3. Network refinement. 

 

 Once the primary network has been selected, a further manual refinement is required (in 

contrast to the previous process, which can be carried out automatically). This process, as the first part 

of the BN model calibration, comprises several actions (see Section 2.2.1 for nomenclature): 

 i) Inversion of links associated with the objective node. It might occur that the link between 

the objective node and any other node goes from the former to the latter. Considering the structure of 

the conceptual framework at hand, this must be solved by reversing this direction; 

 ii) Definition of direct links. BNs can only be fully operative (e.g. able to simulate scenarios) 

in the absence of undirected links. If this is not the case, a complete directed acyclic graph (DAG) 

cannot be obtained. Therefore, we recommend providing this direction, as supported by expert 

consultation; 

 iii) Definition of input nodes. We propose three alternatives for the final selection of the 

network input nodes: i) a data–driven approach, in which inputs nodes are selected by providing the 

minimum manipulation to the network (using input nodes proposed by SLA and the C–Ind test); ii) an 
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interquartile range (IQR) approach, with input nodes as well as intermediate ones (e.g., those between 

the input and objective nodes) represented by those variables with highest IQR (see Annexes Table 

A4); and iii) a smart variable approach, in which input nodes are selected according to their facility for 

data collection in field. No matter which are chosen, this manipulation must be done carefully, and 

some decisions must be taken in order to avoid closed loops. At this point, four different functional 

networks are obtained for further analysis. 

 

 – Step B.4. Computation of CPTs of the nodes. 

 

 CPTs of the nodes represent the probability of each possible state in a child node, given each 

possible event in the parent node(s). In this study, node states are represented by an A–B–C–D grading 

system (inherited from the selected conceptual model). Thus, every node is associated with a 

probability distribution according to these states. To simplify the nomenclature, we refer to model 

results as inferred distributions, and the ones provided by the available data, as IS (information 

system) distributions. 

 Once networks are functional, a direct use (i.e. forward direction from input nodes to objective 

node, see Section 2.2.2) is carried out. This application is known as predictive inference (Carriger et 

al., 2016). For this, evidence is introduced to compare inferred and IS distributions. Specifically, IS 

distributions (obtained from Nicaragua database) were assigned to the corresponding input nodes. 

Inferred distributions at the WSP node were then compared with the IS distributions provided by the 

data. 

This procedure was carried out for all of the different networks. We also suggest testing the two 

methods available to compute the CPTs of any node of interest, namely the maximum likelihood 

estimates (mle) and the Bayesian setting (bayes) (Scutari and Denis, 2015). 

 

 – Step B.5. Result bias check. 

 

 The last step regarding the calibration process is to assess each network's inferred results. A 

priori, a threshold bias between 0% and 5% is established. If one, two or all networks provide results 

within the threshold, the network that provides a lower bias (e.g., with a lower difference between 

inferred and IS distributions) should be selected. If the results are similar, the minimum mean bias 

should be used to carry out the final network selection. If either of these two situations is the case, the 

procedure should jump to Step C.7 (BN model validation). However, if the resulting bias is larger than 

the established threshold, an iterative intermediate step should be carried before model validation, as 

detailed in the following Step B.6. 
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 – Step B.6. New network generation. 

 

 If the obtained bias is not acceptable, we propose that the network is provided with structure, 

which is related to the conceptual model selected; in other words, the structure represents the expert 

knowledge contribution during model development. For instance, the previous steps could be carried 

out by setting a first scenario using the sixteen components of the conceptual model and the general 

index. If the bias is too large, a second scenario should be simulated introducing the two partial indices 

as new nodes (WSHL and WSSI), as well as the sixteen components and general index, and the bias 

should be re–checked.  If the bias is still large, the loop involving Steps B.3–B.5 should be repeated 

(which would add a new level of model structure) until an acceptable bias is achieved. If the bias is 

still too large but it is not possible to add a new level of structure to the network, the suitability of the 

established threshold and the subsequent trade–offs should be assessed. 

 

 – Step C.7. Network validation. 

 

 Different actions are suggested for validating the selected network: 

 i) Check using testing dataset. Similar to Step B.4, evidence is introduced to compare inferred 

distributions with IS distributions. Based on the network obtained, the dataset kept for testing can be 

used, and result biases can then be checked. Optionally, the same procedure might be done using the 

complete dataset prior to splitting. 

 ii) Assessment of further quality measures. Apart from evaluating the bias obtained with 

respect to the objective node, we recommend that the inferred distributions associated with those 

nodes, which provide structure to the model, should also be assessed. They should then be compared 

to the associated real distributions. 

 

 – Step D.8. Method validation. 

 

 Last but not least, a final step is included in this study with the aim to validate the proposed 

methodology. This step might not be possible when dealing with other conceptual frameworks, as 

additional data from another context may be required. In such a case, we recommend focusing on the 

results obtained in previous steps. In this study, it was possible to access data from another country, 

which is similar in terms of methods and results, to validate the methodology. Although it is unlikely 

that one model fits all country members, a preliminary check should be carried out using the model 

previously obtained (e.g., from the first country considered), prior to recalculating from scratch for the 

second country. In case the resulting bias is too large, Steps A.1–C.7 should be applied. For this case, 

we carried out this process using the database from Honduras. 
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3.4. RESULTS AND DISCUSSION 

 
 3.4.1. Testing the proposed methodology 

 
 We applied the proposed methodology to two WaSH–related country databases – Nicaragua 

and Honduras. Initially, and according to the step–by–step proposal, different SLA and C–Ind tests 

were applied to the database of Nicaragua. A first scenario  “ 6    ”  considers those sixteen 

components as well as the general index (WSP) of the selected conceptual model. Fromthe ten 

different primary networks obtained in first instance, six networks provided a structure containing a 

high amount of isolated nodes. Thus, only the remaining four networks were considered suitable for 

selection (see Figure 3.6). Considered the overall criteria proposed, the tandem “fast.iamb” SLA and 

“mi” C–Ind test conforms the selected primary network. Specifically, this tandem presents i) no 

isolated nodes, ii) three undirected links, and iii) 13 direct links pointing to the objective node. 

 

Figure 3.6. Primary networks resulting from the application of different structure learning algorithms and C–Ind 

tests. Top–left: fast.iamb (x2); top–right: fast.iamb (mi); bottom–left: inter.iamb (x2); bottom right: inter.iamb 

(mi). In black, input nodes. In blue, objective node. The final selection is highlighted. 

 The first step in model calibration requires a manual refinement of the selected primary 

network, by appropriately defining links associated to the objective node, converting undirected links 

into direct ones and establishing input nodes following the four proposed alternatives (Figure 3.5). For 

the Nicaragua case, four different networks were obtained (see Figure 3.7). CPTs for nodes were 
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computed, and evidence (e.g., IS distributions, elicited from data) was assigned to input nodes. 

Finally, the inferred distributions associated with the WSP node were compared to the IS ones 

provided by Nicaragua dataset. In this first scenario (16+1), no acceptable biases were obtained (see 

Annexes Table A5). Therefore, expert knowledge (in terms of provision of structure according to the 

selected conceptual model) was provided to the candidate networks. Specifically, this second scenario 

was tested by integrating the WSHL and WSSI nodes, which represent the partial indices of the 

conceptual framework. In this case, acceptable biases were obtained for those networks, using “lowest 

IQR” and “smart” as inputs nodes. However, after using the test dataset to validate the networks, the 

biases obtained were not acceptable (see Annexes Table A5). 

 

Figure 3.7. Candidate networks obtained from the tandem “fast.iamb” SLA and “mi” C–Ind test and assigning 

different inputs nodes according to the proposed approaches. In black, input nodes. In blue, WSP objective node.  

 As a consequence, a third scenario was set out by including those nodes representing the four 

dimensions of the conceptual model (e.g., WSL, SHL, WSI and SEP), resulting in four different 

networks (see Figure 3.8). After evidence was assigned to the input nodes, and bias results were 

checked, the network in which the input nodes were represented by those ones with the lowest IQR 

were found to provide slightly better results and were therefore selected. A validation process was then 

carried out using the testing dataset. Additionally, the unsplit dataset (all data) was used as well for the 

validation process (see Annexes Table A5), and further quality measures were checked. 
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Figure 3.8. Full structure (expert knowledge) provision to networks after the iterative process proposed in the 

methodology. In black, input nodes. In red, nodes representing SIASAR conceptual model dimensions. In dark 

green, nodes representing SIASAR partial indices. In blue, WSP objective node. The final selection is 

highlighted (see Annexes Table A5 as well). 

  

 

Figure 3.9. Resulting biases over WSP IS distribution associated to the stages of calibration and validation and 

for the case of Nicaragua. SLA + C–Ind test: fast.iamb (mi). Input nodes: lowest IQR. Results are obtained by 

subtracting the values provided by the database from those provided by the model (i.e. WSPmodel – WSPdatabase). 
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 Figure 3.9 summarizes the step–by–step procedure described above, with a focus on the 

selected network (fast.iamb + mi, lowest IQR as input nodes). It is evident that the biases are reduced 

and fall within the threshold established (up to 5%) once network structure is provided. Specifically, 

when the training dataset is used, this network infers a lower number of communities classified as A 

(3.7%), while overestimating the communities classified as B (5.4%). On the other hand, those 

communities in state C are estimated with an insignificant bias. As a negative aspect, the model 

assigns a state B to 1.5% of the communities (52 locations out of 3495) that were classified as D. 

However, once the testing and unsplit (all) datasets are applied, these biases are even lower. 

Furthermore, when focusing on the other variables of the network (i.e. dimensions and partial indices), 

the results provided by the model do not excess the threshold established (Table 3.6). As a 

consequence, the final network is positively validated.   

Table 3.6. Further quality measures to validate the network. Result biases are presented regarding the 

dimensions, partial indices and general index of the conceptual model, based on the full (unsplit) dataset from 

Nicaragua.  

 Nodes A B C D 

Water & san. service performance index (WSP) –3.6 5.0 0.2 –1.6 

WaSH service level (WSHL) –2.4 4.7 –1.6 –0.7 

Water service sustainability index (WSSI) –4.4 4.2 1.6 –1.4 

Water service level (WSL) –0.8 2.3 –0.9 –0.6 

Sanitation and hygiene service level (SHL) –3.2 3.3 4.0 –4.1 

Water system infrastructure (WSI) –4.0 5.5* –0.6 –0.9 

Service provision (SEP) –0.1 –1.6 2.9 –1.2 

Values are express as percentages, taking as a reference the IS distributions of each node. 

* Errors higher than 5% threshold established. 

 In summary, this example makes it evident that biases can be reduced by structure provision. 

This is a major finding in terms of results. The introduction of intermediate variables makes 

conditional probability tables (CPTs) smaller and tractable (Marcot, 2017). This is coherent with the 

process carried out, as the computational time is also reduced when providing structure to the network. 

However, we found out that introducing intermediate or summary variables (i.e. dimensions and 

partial indices) improves model inference capacity as well.  

 In order to validate the proposed methodology, the final network obtained for Nicaragua was 

first applied to the context of Honduras. In doing so, network input nodes were populated with the IS 

distributions associated with the context of the latter. Then, WSP inferred distributions were compared 

to the IS ones. In this case, results had biases that were too large (e.g. up to 7% in WSP, and up to 36% 

in WSI; see Annexes Table A6). Nonetheless, the proposed step–by–step methodology was fully 

applied from the initial stage in order to check its validation. Similar to the previous BN model, 

“fast.iamb  mi ” was the final selection of SLA and C–Ind test. In addition to this, lower biases were 

obtained as well when providing full structure (expert knowledge), but in this case, using a “smart 
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variables” approach  see Annexes Table A7). 

 The final results (in terms of errors) reveal that, in six cases, the biases reached values of up to 

9.1% (Table 3.7). Even if the desired goodness of the model was not fully achieved, the overall results 

are positive enough to not be discarded (with 79% of the values inferred below the established 

threshold). However, we propose two measures to tackle this situation. First, the initial threshold of 

5% might be redefined according to the problem at hand and then assessed to determine whether or 

not it is too strict. Second, and in order to counteract this systematic error, we propose a simple action 

of providing new evidence (IS) distributions (e.g., newA–B–C–D) to the network input nodes. 

Considering the IS distributions as “x” and the inferred values as “y”, the difference “x – y” (bias) is 

obtained (as shown in Table 3.7). When new evidence is provided, new inferred values “z” are 

obtained. In this way, a correction of the results should follow the operation “z – (x – y ”. The 

validation of this methodology based on the examples provided here strongly indicated that this 

methodology can be used for network construction regardless of the context at hand. 

Table 3.7. Result biases regarding the dimensions, partial indices and general index of the conceptual model. 

The full dataset of Honduras was used in this case.  

 Nodes A B C D 

Water & san. service performance index (WSP) –3.6 6.3* –2.3 –0.4 

WaSH service level (WSHL) –1.8 3.9 –1.8 –0.3 

Water service sustainability index (WSSI) –5.1* 7.9* –2.0 –0.8 

Water service level (WSL) –0.7 1.6 –0.8 –0.1 

Sanitation and hygiene service level (SHL) –2.6 5.1* –0.8 –1.7 

Water system infrastructure (WSI) –1.1 1.5 0.5 –0.9 

Service provision (SEP) –5.9* 9.1* –1.9 –1.3 

Values are express as percentages, taking as a reference the IS distributions of each node. 

* Errors higher than 5% threshold established. 

 
 

 3.4.2. The network for Nicaragua 

 
 The graphical result obtained using the proposed methodology highlights the reduction in the 

number of input variables that explain the general index WSP (Figure 3.10). Thus, the BN model 

identifies, as key components, variables related to water accessibility (ACC), seasonality (SEA), 

sanitation service level (SSL), community hygiene (COM), water system infrastructure (INF), water 

catchment protection (PRO) and the service provider's operation and maintenance (OPM) and 

environmental (ENV) management. This aspect is especially relevant for data updating purposes, as 

the questionnaires that feed the conceptual model collect an important amount of information. Here, 

two datasets can be differentiated: 1) those that are collected only once and are not considered in the 

conceptual model (e.g., name of the community, administrative scales and geospatial coordinates of 

water system elements, among others); and 2) those that are integrated into the conceptual model. 
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Specifically, this model is fed with a set of 43 questions. For Nicaragua, the 8 input nodes obtained 

would just require 22 questions (51%) to infer the values of the CIs and aggregated indices. As a 

consequence, important savings in terms of time (and thus, of economic resources) are achieved. 

 

Figure 3.10. Final network for the case of Nicaragua (the software NodeXL was used to depict the results). In 

black, input nodes; in grey, intermediate nodes (in terms of components); in red, nodes representing conceptual 

model dimensions; in dark green, nodes representing partial indices; and in blue, the WSP objective node. See 

Figure 3.4 for abbreviations. 

 We also would like to point out that, with the BNs approach, links can be identified between 

the different components at hand, which is an advantage over a CI–based approach. Of note, these 

links represent dependencies rather than cause–effect linkages. Further, it is possible to identify intra– 

components relationships. Here, the model identifies coherent dependencies among hygiene–related 

components (i.e. COM, WAT and PER). Equally coherent are links between water seasonality (SEA) 

and water quality (QUA), as well as between QUA and service continuity (CON), which have been 

already documented. The former argues the possibility of accessing higher–risk water sources via 

changes in the type of primary water source used by households during the dry season (Pearson et al., 

2016). The latter points out that providing water intermittently can compromise water quality in the 

distribution system (Kumpel and Nelson, 2016). Going deeper into the Nicaragua database (i.e. by 

checking specific contingency tables), one can observe that those communities without seasonality 

problems (i.e. that are qualified as A), also have no water quality issues (43% of the rural 

communities). The same statement can be made for communities evaluated as A for QUA and CON 

(38% of the rural communities). In addition to this, the model identifies a dependency between the 

status of the production infrastructure (INF) and the treatment system (TRE). The service provider 

performance appears to have four components that are interconnected. However, the model only 
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identifies in this case one inter–component relationship (i.e., the link between the service provider's 

economic management (ECO) and system autonomy (AUT)). From the Nicaragua database, one can 

observe a higher correlation when ECO and AUT are evaluated as D (20% of the rural communities). 

AUT is evaluated as the capacity of the storage system (Pérez-Foguet and Flores-Baquero, 2015), and 

it seems logical that a lack of economic resources is negatively related to construction of appropriate 

storage infrastructures. A sensitivity analysis was carried out to identify the key contributors on water 

and sanitation performance index (WSP) for rural communities among the input nodes. For this, we 

applied an inverse use of the network (see Section 2.2.2), as recently tested by Li et al. (2019). Also 

known as diagnostic inference (Carriger et al., 2016), the model is run in a backward direction (from 

objective to input nodes). Specifically, Figure 3.11 shows the results of predicted changes of all input 

variables when assuming hard evidence for a sustainable WaSH service provision (i.e. WSP = A). The 

sensitivity analysis suggests that operation and maintenance management (OPM) and community 

hygiene (COM) are the two most important components affecting WSP index. These are followed by 

sanitation service level (SSL), water system infrastructure (INF) and seasonality (SEA). Those 

components related to environmental management (ENV), water catchment protection (PRO) and 

water accessibility (ACC) appeared to have the least impact. If the aim is to achieve sustainable 

services and to support those communities more in need, large efforts might be oriented to those 

communities that have been graded as D for OPM (16%), SSL (12%), COM (11%) and SEA (7%). 

 

Figure 3.11. Nicaragua sensitivity analysis results and predicated impacts on inputs states with the objective 

node of WSP set at A=100%. See Figure 3.4 for abbreviations. 

 

  



Chapter III. Combining expert knowledge and Bayesian Networks modelling 

59 
 

 3.4.3. The network for Honduras 

 
 The network obtained for the case of Honduras is depicted in Figure 3.12. Similar to that for 

Nicaragua, the number of components explaining the WSP node is reduced by half. Although similar 

key variables are identified by the BN model (i.e. for ACC, SSL and PRO), the results present many 

more differences. For instance, the key explanatory components rely on continuity (CON), personal 

hygiene (PER), water system treatment (TRE) and service provider's organizational (ORG) and 

economical (ECO) management. However, a higher number of inter–component relationships are 

identified. 

 

Figure 3.12. The final network for Honduras. In black, input nodes; in grey, intermediate nodes in terms of 

components; in red, conceptual model dimensions; in dark green, partial indices; and in blue, the WSP general 

index. See Figure 3.4 for abbreviations. 

 We would like to highlight the fact that the input nodes of this network are so–called “smart” 

variables. In this case, the time savings from data updated would be even greater as compared to 

Nicaragua. Remarkably, it would not be necessary to visit the different elements of the water system, 

which normally is a time–consuming task, especially in disperse rural areas. 

 Further, it is important to highlight the existing differences when the model identifies links 

among components. However, we recall that this research is data–driven by nature. In this case, we 

find that the results obtained are coherent. For example (and focusing on inter–component 

relationships), the nodes system treatment (TRE) and water quality (QUA) are logical connections. 

Similarly, water catchment protection (PRO) is associated with the environmental management (ENV) 

of the service provider. The model also identifies a dependency between seasonality (SEA) and system 
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autonomy (AUT). Contingency tables from the Honduras database shows that in 37% of the rural 

communities are graded A for these two components. Similarly, in 43% of the communities, the best 

qualification is achieved simultaneously for service provider's ENV and the status of the production 

infrastructure (INF). Surprisingly, the model identifies a link between household hygiene (WAT) and 

operation and maintenance management (OPM). As far as intra–component linkages, coherent results 

are found in relation to those dependencies between sanitation service level (SSL) and community 

hygiene (COM), as well as seasonality (SEA) with both accessibility (ACC) and continuity (CON). In 

contrast, the model does not identify any dependency between the components associated to the 

service provider performance. 

 Similarly as for Nicaragua, we performed a sensitivity analysis following the same procedure 

described previously (see Figure 3.13). The analysis suggests that treatment system (TRE) and 

personal hygiene (PER) are the two most influencing components in the WSP index, followed by 

water catchment protection (PRO), sanitation service level (SSL) and continuity (CON) and lastly, 

economic (ECO) and organizational (ORG) management and accessibility (ACC). 

 

Figure 3.13. Honduras sensitivity analysis results and predicated impacts on inputs states with the objective 

node of WSP set at A=100%. See Figure 3.4 for abbreviations. 

 

 

3.5. KEY MESSAGES 

 
 In this Chapter, we have proposed a step–by–step methodology to reproduce CI–based 

conceptual frameworks that integrate a hierarchical structure. For this, we have exploited the 

flexibility of BNs. Using a regional information system as a pilot study, we were able to successfully 
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calibrate and validate the methodology. As a result, we have developed a semi–automatic procedure 

(with manual decisions in one step of the method), which relies basically on a data–driven approach. 

 

 Some key messages can be highlighted from this Chapter: 

 

 – The results obtained here reveal how expert knowledge (in terms of network structure) 

improves model inference capacity. The biases achieved for the case of Nicaragua do not reach the 

established threshold of 5%. Similarly, positive results were obtained for the case of Honduras. 

However, in six out of 28 cases (12%), the biases reached values of up to 9.1%. Nonetheless, even 

though the desired goodness of the model was not fully achieved, the overall results can be considered 

positive enough as to not discard it. 

 

 – The two models obtained allowed us to identify the key variables that explain the objective 

one (in this case, the general index of the selected conceptual framework). This fact is especially 

important when considering the existing difficulties of the sector in updating the required data. As a 

consequence, important savings (both in terms of time and economic resources) can be made. In 

addition to this, the flexibility of BNs permitted us to quantify, for each context, the key contributors 

to the water and sanitation performance index for rural communities. 

 

 – BNs are also able to identify the interdependencies of variables at hand. This fact makes this 

approach more suitable than the use of CIs. In this sense, using BNs might enhance multi– and trans–

disciplinary actions. 
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CHAPTER IV. EXPLORING INTERLINKAGES BETWEEN SDG 6 AND 

THE 2030 AGENDA THROUGH A DATA–DRIVEN BAYESIAN 

NETWORKS APPROACH 

 

 

 

 The Sustainable Development Goals (SDGs) are presented as integrated and indivisible. 

Therefore, for supporting decision–making, conventional indicator-based frameworks need to be 

combined with approaches that capture and describe the links and interdependencies between the 

Goals and their targets.  

 In this Chapter, we propose a data–driven Bayesian Networks (BNs) approach to identify and 

interpret SDGs interlinkages. We focus our analysis on the interlinkages of SDG 6, related to water 

and sanitation, across the whole 2030 Agenda, using SDG global available data. To analyze and 

validate the BN results, we first demonstrate the robustness of the BNs approach in identifying 

indicator relationships (i.e. consistent results throughout different country sample sizes). Second, we 

show the coherency of the results by comparing them with an exhaustive study developed by UN–

Water. As an added value, our data–driven approach identifies further interlinkages, which are 

contrasted against the existing literature. We conclude that the approach adopted is useful to 

accommodate a thorough analysis and interpretation of the complexities and interdependencies of the 

SDGs. 

 

 

 

 

 

 

 

 

 

 

This Chapter is based on paper:  

 

Requejo-Castro, D., Giné-Garriga, R., Pérez-Foguet, A., 2020. Data-driven Bayesian Network 

modelling to explore the relationships between SDG 6 and the 2030 Agenda. Sci. Total Environ. 710, 

136014. https://doi.org/10.1016/j.scitotenv.2019.136014. 

https://doi.org/10.1016/j.scitotenv.2019.136014
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4.1. INTRODUCTION 

 
 On 25 September 2015, the 2030 Agenda resolution announced 17 Sustainable Development 

Goals (SDGs) and underscored their integrated and indivisible nature (United Nations General 

Assembly, 2015). The SDGs seek to address the three dimensions of sustainable development (SD) – 

environmental, social and economic–and their institutional/governance aspects (Costanza et al., 2016). 

Lack of integration across these dimensions in development strategies, policies and implementation 

has long been perceived as amajor weakness in previous attempts towards SD, such as in the 

Millennium Development Goals (MDGs) (Le Blanc, 2015; Liu et al., 2018; Obersteiner et al., 2016). 

In the SDG era, more holistic and integrated approaches are needed to elucidate the interdependencies 

among the different targets and goals, as well as to facilitate their effective implementation. 

 Indicator frameworks are a useful tool for policy making, benchmarking and public 

communication (Nardo et al., 2005; Singh et al., 2009) and will represent the backbone of monitoring 

progress towards the SDGs at all levels (i.e. local, national, regional and global). Their assessment will 

require quality, accessible, timely and reliable disaggregated data from all countries (United Nations 

General Assmebly, 2015). This, in turn, will require much greater efforts and investments in building 

national statistical capacities and strengthening statistical quality and standards. However, this 

challenge comes with a huge opportunity within the so–called “data revolution”  UN–IEAG, 2014). 

To date, data collection and harmonization has been assigned to at least one lead technical or specialist 

agency (SDSN, 2015), some of which are already elaborating data baselines and reports and present a 

starting point for SDG achievement. This step forward has promoted an emerging catalogue of 

publications (reviewed elsewhere; Allen et al., 2018), which include indicator–based assessments. An 

illustrative example is the development of an unofficial SDG Index (Sachs et al., 2018) as a tool to 

provide indicative country–level estimates and trends, covering 111 and 88 indicators for the OEDC 

and the 193 UN member countries, respectively. Countries are ranked according to the index values, 

and indicators that require priority attention are identified for each country. Despite the likely 

usefulness of this approach, indicator–based assessments can fall short on explaining how multiple and 

interacting forces have led to specific outcomes (Schmalzbauer and Visbeck, 2016). Such assessments, 

therefore, need to be complemented with analyses that enable interlinkages among targets and 

indicators to be assessed (Allen et al., 2018; Le Blanc, 2015). 

 Several contributions have addressed SDGs interlinkages to a certain extent. From a more 

conceptual and qualitative perspective, SDGs have been read as a network of targets connecting the 

different goal areas (Le Blanc, 2015), or analyzed and presented as a list of relationships (ICSU–ISSC, 

2015). They have been also organized through a grading system of interactions (Nilsson et al., 2018), 

with specific focus on one SDG (Bangert et al., 2017; Coopman et al., 2016; Hall et al., 2018; Herrera, 

2019; Singh et al., 2018; UN–ESCAP, 2016 , or on a “nexus approach” (e.g. water–energy–food 

nexus) (Fader et al., 2018; Pahl-Wostl, 2017; Rasul, 2016) with the aim to understand connections, 

synergies and trade–offs (Liu et al., 2018). On the other hand, from a quantitative point of view, SDGs 
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relationships have been assessed to support planning and decision–making for their implementation by 

applying sophisticated modelling approaches to evaluate reduced and different sets of Goals (Collste 

et al., 2017; Gao and Bryan, 2017;Mainali et al., 2018), to assess the (in)consistency of the SDG 

framework (Spaiser et al., 2017), to simulate and evaluate the interactions among multiple SDG policy 

options over one specific Goal (Obersteiner et al., 2016) and to introduce stakeholder's knowledge 

(Kanter et al., 2016; Khalili et al., 2017).  

 In parallel, Bayesian networks (BNs) have gained popularity among practitioners (Aguilera et 

al., 2011; Marcot, 2017; Marcot and Penman, 2019) for exploring the interdependencies and cause–

effect relationships, simulating complex problems that involve a large number of variables that are 

highly interlinked. The flexibility of BNs is commonly exploited in scenario simulation and analysis 

(e.g. Bromley et al., 2005; Dang et al., 2019; Eldridge et al., 2019; Gonzalez-Redin et al., 2019; 

Molina et al., 2009). BNs have also been used to identify the key factors that influence aspects of 

interest (Li et al., 2019; Song et al., 2018), to replicate hierarchical composite indicators (Requejo-

Castro et al., 2019) and to elucidate the network structure underlying data at hand, through associated 

structure learning algorithms (SLA) (Alameddine et al., 2011; Garcia-Prats et al., 2018). 

 In this Chapter, we propose a data–driven BNs approach to identify and interpret SDGs 

interlinkages. Specifically, we apply SLA to automatically capture those interlinkages spurred on by 

data. We selected SDG 6 on water and sanitation as a case study. We first developed a BN model and 

then used it carry out a comprehensive analysis of achieved results, after which we tested their 

robustness and validated them through an extensive literature review. 

 

 

4.2. CASE STUDY: SDG 6 ON WATER AND SANITATION 

 
 We selected the dedicated goal on water and sanitation to explore its interlinkages across the 

2030 Agenda. SDG 6 reads “to guarantee the availability of water and its sustainable management and 

sanitation for all”  United Nations General Assembly, 2015), and includes eight targets, six of which 

are based on outcomes, and two of which are based on the means of implementation. Specifically, 

Targets 6.1 and 6.2 relate to drinking–water, sanitation and hygiene; Target 6.3 expands the 

framework beyond the use of sanitation facilities to focus on wastewater and water quality; Targets 6.4 

and 6.5 refer to water–use efficiency and water scarcity, and the implementation of Integrated Water 

Resources Management (IWRM), respectively; Target 6.6 focuses on healthy water–related 

ecosystems; and Targets 6.a and 6.b suggest the importance of international cooperation and local 

stakeholder participation to achieve previous targets. 

 Water and sanitation is at the very core of sustainable development (Mugagga and Nabaasa, 

2016; Nhamo et al., 2018; United Nations, 2018a; UN–Water, 2016; WWAP, 2019). Available water 

and adequate sanitation for all and for different purposes are pillars of human health and well–being, 

thus contributing to the achievement of other development goals such as health, adequate nutrition, 
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gender equality, education and poverty eradication (Bartram et al., 2005; Cairncross et al., 2010; 

Cohen and Sullivan, 2010; JMP, 2015; UN–Women, 2018). We sought to capture the bi–directionality 

of the interlinkages: incorporating water and sanitation in other Goals is necessary for the achievement 

of Goal 6, and implementing targets under Goal 6 enables the achievement of a number of other 

targets across the 2030 Agenda. We thus contribute to the existing applications of BN modelling to the 

SDG 6. The flexibility of BNs has been exploited to address the inherent complexity of individual 

SDG 6 targets, and the literature shows several studies on Target 6.1 (Cronk and Bartram, 2017, 2018; 

Fisher et al., 2015), Targets 6.1 and 6.2 (Dondeynaz et al., 2013; Giné-Garriga et al., 2018; Requejo-

Castro et al., 2019) and Targets 6.4 and 6.5 (Mohajerani et al., 2017;Molina et al., 2009, 2010, 2013). 

To the best of our knowledge, however, BNs have not been applied to explore the relationships 

between targets of different goals. 

 We take as a reference point the UN–Water Analytical Brief entitled “Water and sanitation 

interlinkages across the 2030 Agenda for Sustainable Development”  UN–Water, 2016). This report 

captures the complex nature of the SDGs and gives a qualitative snapshot as far as the relationships 

between the SDG 6 and the 2030 Agenda, providing an overview of the target–level linkages and their 

interdependencies (UN–Water, 2016). This report allows comparing the results obtained in our study 

and validating the proposed data–driven approach. 

 

 

4.3. METHODS 

 
 In this Section, we first introduce in detail the criteria and steps followed for data selection and 

pre–process. Specifically, we focus on the process of selecting the final set of indicators for the BN 

analysis (as well as a complete definition of these indicators), the assumptions made to deal with 

missing data, and the normalization process for correct data management. Second, we briefly detail the 

initial settings considered. Third, we describe the steps followed to carry out the BN analysis. 

 

 

 4.3.1. Data selection and data pre–process 

  

 Indicator selection 

 

 Globally available data for SDGs are provided by the different specialist agencies and 

published online by the United Nations Statistic Division (UNSD)
2
. In their website, latest official 

available data for all indicators are published and regularly updated at both the regional and country 

levels. In this study, a first screening of eligible indicators was conducted based on the study 

developed by UN–Water (2016), which analyses the relationships between targets of Goal 6 and rest 

                                            
2
 Data available at https://unstats.un.org/sdgs/indicators/database. 

https://unstats.un.org/sdgs/indicators/database
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of the Goals targets included in the 2030 Agenda. It comprises 107 outcome-based targets (excluding 

those related to the means of implementation, such as all the targets included in SDG 17) and 169 

indicators, and provides a summary table of all these linkages, identifying as well whether the link 

represents synergy (positive impact) or conflict (negative impact). The report shows, for instance, the 

water and sanitation links with those targets related to the reduction of poverty (i.e. SDG Targets 1.1, 

1.2, and 1.4). In contrast, none of the SDG 6 targets are linked to SDG Target 11.5, which deals with 

reduction deaths and the number of people affected by natural disasters. In order to work with a 

manageable number of variables, we selected those SDG targets showing a high number of synergies 

and/or conflicts (i.e. 3 or more linkages with SDG 6 targets). However, we have also considered 

Target 4.2, related to the access to quality in early childhood development, with only two identified 

linkages with SDG 6, to represent Goal 4. Thus, all SDGs are represented in this study with one or 

more targets.  

 In total, we analyzed 52 SDG targets and 80 associated indicators. However, global data were 

only available for 28 out of these 51 (55%) targets and 44 (55%) different indicators (UNSD, 2018). 

Although we did not consider any indicators related to the means of implementation, we included 

SDG Target 6.a due to its relevance for the study. Table 4.1 presents the final list of indicators, their 

definition, the custodian agency in charge of data reporting, and the number of countries with 

available information. For each indicator, we also specify how we dealt with missing data and data 

normalization (see next sub–Section). 

 

Table 4.1. SDG indicators employed in the data–driven Bayesian network analysis. Source: UNSD, 2018. 

SDG Indicator (units) Year(s)* Source(s) 

Countries 

with 

information 

1 

1.1.1. Poverty line of USD1.90 per day (% population) 

1.2.1. Poverty line below the national threshold (% 

population) 

2003–2016 

2000–2017 

WB & ILO 

WB 

155 a, 1 

133 b, 1 

2 2.1.1. Prevalence of undernourishment (% population) 2015 FAO 167 a, c, 1 

3 

3.1.1. Maternal mortality ratio (number per 100,000 live 

births) 

3.2.1. Under–five mortality rate (number per 1,000 live 

births) 

3.3.5. People requiring interventions against neglected 

tropical diseases, NTD (number) 

3.8.1. Universal health coverage (UHC) service coverage 

index (0 – 100) 

3.9.1.  Age-standardized mortality rate attributed to 

household air pollution (deaths per 100,000 people) 

3.9.2. Mortality rate attributed to unsafe water, unsafe 

sanitation and lack of hygiene (deaths per 100,000 people) 

2015 

 

2016 

 

2016 

 

2015 

 

2016 

 

2016 

WHO 

 

UNICEF 

 

WHO 

 

WHO 

 

WHO 

 

WHO 

180 a, 1 

 

1871 

 

185 b, 1 

 

181 

 

145 a, b, 1 

 

1811 

4 4.2.2. Participation rate in organized learning (% children) 2000–2017 UNESCO–UIS 152 a 
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5 

5.5.1. Proportion of seats held by women in national 

parliaments (% women) 

5.5.2. Proportion of women in managerial positions (% 

women) 

2018 

 

2000–2016 

UN–Women & 

IPU 

ILO 

186 a 

 

149 b 

6 

6.1.1. Proportion of population using AT LEAST BASIC 

drinking water services (% population) 

6.2.1. Proportion of population using AT LEAST BASIC 

sanitation services (% population) 

6.4.1. Water–use efficiency (USD/m3) 

6.4.2. Freshwater withdrawal as a proportion of available 

freshwater resources (%) 

6.5.1. Integrated Water Resource Management 

implementation (%) 

6.6.1. Water body extent (permanent) (% of total land area) 

6.a.1. Total official flows for water supply and sanitation, 

by recipient (billions USD) 

2015 

 

2015 

 

2014 

2014–2015 

 

2017 

 

2016 

2016 

JMP 

 

JMP 

 

FAO 

FAO 

 

UNEP 

 

UNEP 

WHO & OECD 

187 

 

187 

 

165 b 

179 a, 1 

 

153 a 

 

188 

130 a, b 

7 

7.1.1. Proportion of population with access to electricity 

(%) 

7.1.2. Proportion of population with primary reliance on 

clean fuels and technology (%) 

7.2.1. Renewable energy share in the total final energy 

consumption (%) 

7.3.1. Energy intensity level of primary energy 

(Megajoules per constant 2011 purchasing power parity 

GDP) 

2016 

 

2016 

 

2016 

 

2015 

WB 

 

WHO 

 

IEA & UN–

DESA 

IEA & UN–

DESA 

189 

 

183 a 

 

189 

 

183 a, 1 

8 

8.1.1. Growth rate of real GDP per capita (%) 

8.2.1. Annual growth rate of real GDP per employee (%) 

8.5.2. Unemployment rate, 15 years old and over, both 

sexes (% population) 

2016 

2017 

2000–2017 

UN–DESA 

ILO 

ILO 

189 

178 a 

174 a, 1 

9 

9.1.2. Passenger volume, by air transport (tonne 

kilometres) 

9.4.1. Emissions of carbon dioxide (millions metric tons) 

2016 

 

2015 

ICAO 

 

IEA & UNIDO 

178 b 

 

137 b, 1 

10 

10.1.1. Growth rates of household expenditure or income 

per capita among the bottom 40 per cent of the population 

(%) 

2009–2016 WB 94 b 

11 

11.1.1. Urban population living in slums (%) 

11.6.1. Municipal Solid Waste collection coverage, by 

cities (%) 

11.6.2. Annual mean levels of fine particulate matter 

(PM2.5  in cities  μg/m
3) 

2000–2014 

2001–2017 

 

2016 

UN–Habitat 

UN–Habitat & 

UN–DESA 

WHO 

92 a, b, c, 1 

98 b 

 

1861 

12 

12.2.1. Material footprint per capita – raw material – 

(tonnes) 

12.2.2. Domestic material consumption per capita – raw 

material – (tonnes) 

12.4.1. Compliance with the Stockholm Convention on 

hazardous waste and other chemicals (%) 

2017 

 

2017 

 

2015 

UNEP 

 

UNEP 

 

UNEP 

166 a, 1 

 

140 a, 1 

 

171a, b 

  



Chapter IV. Exploring interlinkages through a data–driven BNs approach 

69 
 

13 13.1.1. People affected by disaster (number) 1990–2017 UNDRR 112 b, 1 

14 
14.5.1. Average proportion of Marine KBAs covered by 

protected areas (%) 

2018 UNEP–WCMC 137 a, b, c 

15 

15.1.1. Forest area as a proportion of total land area (%) 

15.1.2.1. Average proportion of Freshwater KBAs covered 

by protected areas (%) 

15.1.2.2. Average proportion of Terrestrial KBAs covered 

by protected areas (%) 

15.2.1. Forest area net change rate (%) 

15.4.1. Average proportion of Mountain KBAs covered by 

protected areas (%) 

15.4.2. Mountain Green Cover Index (%) 

2015 

2018 

 

2018 

 

2015 

2018 

 

2017 

FAO 

UNEP–WCMC 

 

 UNEP–WCMC 

 

FAO 

UNEP–WCMC 

 

FAO 

188 

133 a, b 

 

185 a 

 

187 a 

146 a 

 

161 a 

16 
16.5.2. Bribery incidence (% of firms experiencing at least 

one bribe payment request) 

2006–2017 WB & UNODC 138 a, 1 

* By the time of this study, and for each indicator–country pair, the more recent data were used. When data 

were obtained from different years, the time period is specified. 

Missing data and data gaps were addressed by applying: a) regional data, b) HDI group–related information, c) 

literature review. Missing data treatment was required as well for indicators with more than 179 countries in 

order to reach the final list of countries with information associated with all indicators considered. 

1: Indicators transformed from the scale “less is better” to “more is better”. 

 The final set of 44 indicators was assessed, to a different extent, in 189 countries. The full 

dataset of 189 countries and available data for all 44 indicators were extracted from the UNSD 

database. These countries were classified according to their Human Development Index (HDI) 

(UNDP, 2018), as this classification shows the unbiased nature of samples in terms of country 

development context and also helps us to deal with missing data. A representative number of countries 

from each HDI group was included (Table 4.2). However, only 7 countries have available data for the 

44 indicators considered, and more than 50% of the selected countries do not have data for five or 

more indicators. To increase the final sample of countries, a set of assumptions was made for missing 

data treatment in the first three groups (referred to the number of indicators with no data available). A 

total number of 179 countries were finally included in the analysis. 

 
Table 4.2. Number of countries considered in the study according to their HDI. Sources: UNDP, 2018; UNSD, 

2018.  

Human Development  

Index (HDI) group 

Number of countries 

 

Indicators with no data available  

(out of 44)  

≤ 5 ≤ 10 ≤ 15 ≥ 15 

Very high 59 19 27 10 3 

High 53 30 11 8 4 

Medium 39 25 10 1 3 

Low 38 18 15 5 0 

Total 189 92 63 24 10 
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 Imputation of missing data 

 

 As BNs are only fully functional if no data is missing, the following assumptions were made 

to deal with missing data:   

 

– SDG regional data (when available) were used to fill information gaps at the country level. This 

assumption applied to 55% (24 out of 44) of the indicators considered (the number of countries 

using regional data for each indicator varied between indicators).  

 

– When regional data were not available, information gaps were replaced considering the 

country’s HDI group  UNDP, 2018) in two different manners. For some indicators, VH HDI 

countries obtained the highest score (e.g., for SDG 1.1.1, 0% of population below the international 

poverty line of USD1.90 per day; for SDG 6.a.1, 0 billion USD were received as official flows for 

water supply and sanitation). For other indicators, average values were assigned to replace missing 

data according to HDI group (i.e. very high, high, medium, or low). In total, this was applied to 

35% of the indicators in this study (the information gaps varied from one indicator to another). 

 

– Values from the literature were also considered when available. For example, a value of 1.2% 

prevalence of undernourishment rate (SDG indicator 2.1.1) was assumed for VH and H HDI 

countries with missing data (SDSN, 2016); and 6% of European urban dwellers living in 

extremely precarious conditions (UN–Habitat, 2015), which we computed it as proportion of 

urban population living in slums (SDG indicator 11.1.1). Considerations from existing literature 

were applied to 10% of the indicators considered. 

  

 Normalization  

 

 Prior to the BN analysis, indicators were normalized between 0 and 100, with 0 denoting the 

worst performance and 100 describing the optimum. To do this, those indicators expressed in 

percentage were kept invariable. On the other hand, the rest of indicators were normalized using a 

“min–max” technique. This method normalizes indicators to have an identical range by subtracting the 

minimum value and dividing by the range of the indicator values (Nardo et al., 2005). No max–min 

thresholds were fixed, and maximum and minimum values were defined according to the best and 

worst performance of the indicators, applying logarithms when values were either considerably lower 

or higher than the rest. Finally, a last transformation was required for several indicators according to a 

“more is better” scale  see Table 4.1). For instance, SDG indicator 9.4.1 (CO2 emissions), which 

represents a “less is better” goal, was assessed by calculating the complementary value. In contrast, 

similar examples to SDG indicator 7. .   proportion of population with access to electricity , a “more 

is better” indicator that is presented as a percentage, were kept constant according to a fixed scale. 
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 4.3.2. Initial settings 

 
 We apply again the free R software and its package bnlearn (version 4.4), which implements 

the following constraint–based learning algorithms (see Section 2.4.3): grow–shrink (gs), incremental 

association (iamb), fast incremental association (fast.iamb), interleaved incremental association 

(inter.iamb) and max–min parent and children (mmpc). We consider that all indicators follow a normal 

distribution (see Annexes Figure A1). The C–Ind tests are chosen with respect to this data typology. 

To avoid intensive computing time, C–Ind test selection is reduced to linear correlation  cor , Fisher’s 

Z (zf), and mutual information (mi-g) tests. By applying the combination of both SLA and C–Ind tests 

to the database, 16 candidate networks are obtained. 

 Scutari et al. (2017) suggest selecting a single BN model from the data and drawing the 

conclusions from this model, treating it as a “fixed” quantity. However, this model is not “fixed” and 

carries its own uncertainty from the selection procedure used to learn it from the data. To reduce this 

source of uncertainty, we applied the bootstrap technique (re–sampling), used most to determine 

confidence intervals (Henderson, 2005), to test the stabilities and strength of links among variables, 

and to obtain the direction of these links (Chao et al., 2018; Scutari et al., 2017).  

 

 

 4.3.3. Data–driven Bayesian Network model generation and analysis settings 

 

 To facilitate similar studies in the future (i.e., with a focus on different SDGs), we have 

provided a step–by–step methodology for this data–driven BN analysis. For validation purposes, we 

recommend identifying relevant reference studies in the literature. Here, we use the UN–Water 

Analytical Brief (UN–Water, 2016), which allows us to compare achieved results and to validate the 

proposed approach.  

 Analysis development is divided in two complementary stages (Figure 4.1). In the first stage, a 

BN model is developed that allows the identification and assessment of the interlinkages between 

selected targets and indicators. In the second stage, the robustness of the achieved results is assessed 

(i.e. the consistency of the interlinkages obtained through the data–driven approach). The step–by–step 

procedure to construct the BN model (i.e. first stage) from the dataset is as follows:  

 

 – A1. SLA + C–Ind test tandem selection. In this initial stage, we applied three selection 

criteria to identify the most suitable BN network: i) identify a higher number of links associated with 

the objective nodes (i.e. SDG 6 associated indicators); ii) present a higher number of directed links; 

and iii) leave a lower number of nodes isolated. 

 

 – A2. Isolated nodes removal. As these nodes do not contribute to the analysis, they were 

removed.  
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Figure 4.1. Process followed to carry out the BN analysis.  

  – A.3. SLA + C–Ind test tandem application. The overall interlinkages (On) identified by 

the model are obtained. They are differentiated between directed links (Dn), which imply one–way 

directions, and undirected links (Un), which imply two–ways directions. 

 

 – A.4. Bootstrap technique application. To  bootstrap, the so–called strong links (Sn) were 

identified. To do this, data were re–sampled 500 times, and the selected tandem SLA + C–Ind test is 

performed separately on each of the resulting samples, thus collecting 500 networks. The frequency of 

the links with which each appears in those networks was then computed (known as arc strength), and 

the resulting links that have a frequency above a certain threshold were selected (in this case, a value 

of 0.80 over 1). Specifically, three steps were followed: i) compute 100 bootstrapped networks to get a 

reference list of relationships, ii) select links that are repeated more than 60% from 100 new 
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bootstrapped networks in comparison to the previous list, and iii) obtain the directions of the strong 

links (i.e. cause–effect direction). 

 

 – A.5. Nodes of interest extraction. As our focus was on those indicators related to SDG 6, 

the “first–order” or “direct” links  Dir–linkn) that associate these indicators with the neighbouring ones 

were extracted from On. Moreover, the “second–order” links  Indir–linkn) that represent indirect 

relationships through the above mentioned neighbour indicators, were analyzed. 

 

 – A.6. Coherency assessment. The interlinkages obtained in the previous step were then 

contrasted against those ones selected from the literature or based on expert opinion. Our comparative 

analysis focused on the UN–Water Analytical Brief (2016), complemented by an extensive literature 

review. 

 For the second stage of this analysis, the following steps were carried out: 

 

 – B.1. Random samples generation (ni) from the initial number of 179 countries, using the 

sample sizes of 175, 160, 145, 130, 115, 100, and 85 countries. For each sample size, 100 different 

networks were generated.  

 

 – B.2. SLA + C–Ind test and bootstrap application. For each network associated to each 

sample size, the selected SLA + C–Ind test tandem (Step A.1) and the bootstrap technique were used. 

The overall relationships    
ni
 , the strong links  S

ni
 , and the “first–order”   Dir–link

ni
  linkages were 

then determined. 

 

 – B.3. Comparative assessment.  The relationships obtained were compared to the ones 

identified from the overall sample size. This comparison was complemented with further quality 

analysis in terms of results coherence.  

 

 

4.4. RESULTS AND DISCUSSION 

 
 The overarching objectives of this section are: i) to identify the different interlinkages of 

interest from the overall dataset; ii) to test the robustness of the above results by comparing these 

results against the ones obtained from the different sample sizes; and iii) to assess in–depth the results 

with respect to the interlinkages between the SDG 6 and the 2030 Agenda. 
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 4.4.1. Identifying interlinkages of interest 

 
 The tandem SLA + C–Ind test produced 16 candidate networks. The tandem incremental 

association (iamb) algorithm and mutual information (mi-g) test showed the best performance — 

according to the 3 criteria described — and was thus selected for analysis (Step A.1). Specifically, it 

identified 23 links associated to SDG 6 indicators, and 61 directed links (out of 65). Two nodes with 

no relationships within the network (6.6.1 and 15.2.1 indicators) were removed (Step A.2). Finally, the 

overall interlinkages (On) among SDG indicators and the strong links (Sn) and their direction were 

determined by bootstrap application (Steps A.3 and A.4) (Figure 4.2). 

 

Figure 4.2. Reference network showing the interlinkages between the SDG indicators considered. 

Corresponding definitions to these indicators are given in Table 4.1. This network was obtained through the 

tandem SLA (iamb) and C–Ind test (mi-g). Three different elements are shown; strong links, Sn (black solid 

arrows), directed links, Dn (grey dot arrows) and undirected links, Un (bi–directional red dot arrows). 

  

 

 4.4.2. Testing the data–driven approach robustness 

 
 To demonstrate the robustness of the results (Figure 4.2), we generated different random 

samples (Step B.1). For each sample size, and for each of the 100 networks generated, SDG indicators 

links (On) were identified together with the strong links (Sn) and their direction (Step B.2). Notably, 

the overall link repetitiveness decreased when the sample size of countries was reduced (Step B.3) 

(Figure 4.3). This decrease appears slightly more pronounced for the samples of n=175 and n=160 

countries. When reducing the sample size to 115 countries (65% of the total), the repetitiveness mean 
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value still reached 71.8%.  Maximum and minimum values present unequal fluctuations, but those 

related to 90th and 10th percentiles showed a trend similar to the repetitiveness mean value.  

 

 

Figure 4.3. Overall link repetitiveness for the different random samples of countries in comparison to the 

reference network (179 countries and 42 SDG indicators). 

 The same decreasing tendency was observed for interlinkages identified as strong ones (Step 

B.3). For instance, when country sample was reduced to 72% (n=130), approximately half of the 

strong links (55%, 10 out of 18) were identified in at least 70% of the bootstrapped networks. This 

ratio increases to 62%, 74% or 100% for the samples of n=145, 160 or 175, respectively (see Annexes 

Table A8). Two trends can be observed: i) strong links with high repetitiveness even when the sample 

size of countries is reduced drastically; and ii) strong links with low repetitiveness when sample size is 

reduced (see Annexes Table A8). The performance of the model is positively evaluated up to the 

sample size of 130 countries.  

 Complementary to this, we carried out an in–depth analysis of the direction (i.e. cause–effect 

direction) of these strong links. For this, the strong links were firstly disaggregated, with all considered 

as undirected although they are not (see Figure 4.2). For instance, the obtained link from 3.9.2 to 3.1.1 

is considered to be true for 3.1.1 to 3.9.2 as well. The direction of a link is obtained through the 

bootstrap technique, which assigns a value between 0.5 and 1, whereby 0.5 is related to an undirected 

link and 1.0 assures the direction of the link. Here, 72% (13 out of 18) of the strong links were 

identified to be in one specific direction throughout the different sample sizes (see Annexes Table A9). 

However, most links present values closer to 0.5, which should be taken carefully into consideration 

before stating a clear cause–effect of the links (see Annexes Table A10). 

 A further complementary assessment was carried out considering the “first–order” or direct 

(Dir–linkn) relationships associated with SDG 6 indicators (Step B.3) (see Table 4.3). In this case, only 

their frequency is taking into account but not their strength or direction. For n=130, 12 out of 27 (44%) 
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links were identified in more than 70% of the bootstrap networks (Table 4.3). This value increased to 

60% and 67% for sample sizes n=145 and 160, respectively (see full details in Annexes Table A11). 

Again, two trends are observed: i) links that present a high repetitiveness while reducing the sample 

size (most of which coincide with the links identified as strong); and ii) relationships whose 

repetitiveness is reduced rapidly when decreased numbers of countries are in the sample. 

 Extending this assessment in terms of quality measures, we analysed the impact of the 

approach for missing data treatment in model results (Step B.3). We carried out the process described 

in Section 3 but considering only those countries with 10 or less SDG indicators presenting missing 

data (see Table 4.2). Thus, 155 countries were used for a second BN model construction. Table 4.3 

shows that 78% (21 out of 27) of the links related to SDG 6 indicators were identified in the new 

model. In addition, 86% (6 out of 7) of the strong links are shown. This confirms that the approach 

used to fill information gaps has little impact on the results achieved. 

Table 4.3. Links identified in relation to SDG 6 indicators, for different country samples.  

SDG 6–related links identified 
Repetitiveness (%) 

n=175 n=160 n=145 n=130 

3.9.2  

(mortality 

rate due to 

unsafe 

WaSH) 

3.1.1 Maternal mortality ratio* 100 100 100 86 

3.2.1 Infant mortality rate* 100 100 100 100 

3.3.5 
People requiring interventions 

against NTD* 
100 99 94 89 

6.2.1 
Population using AT LEAST 

BASIC sanitation services* 
100 98 84 86 

7.2.1 
Renewable energy share in total 

final energy consumption 
85 51 42 28 

6.1.1 

(basic 

drinking 

water) 

6.2.1 
Population using AT LEAST 

BASIC sanitation services* 
99 87 70 68 

7.1.1 
Population with access to 

electricity* 
100 100 100 96 

6.2.1 

(basic 

sanitation) 

3.8.1 Universal health coverage (UHC)* 84 80 74 63 

3.9.2 
Mortality rate attributed to unsafe 

WaSH* 
100 98 84 86 

6.1.1 
Population using AT LEAST 

BASIC drinking water services* 
99 87 70 68 

7.1.2 
Population with primary reliance on 

clean fuels and tech* 
94 64 60 59 

6.4.1 

(water–use 

efficiency) 

3.8.1 Universal health coverage (UHC) 63 49 27 30 

6.5.1 Degree of IWRM implementation* 89 62 52 38 

6.a.1 
Total official development 

assistance (ODA)* 
100 100 100 99 

8.1.1 
Annual growth rate of real GDP per 

capita 
97 78 62 59 

6.4.2 

(freshwater 

withdrawal) 

5.5.2 
Proportion of women in 

managerial positions* 
100 100 99 97 

7.2.1 
Renewable energy share in the total 

final energy consumption 
62 49 56 51 

15.1.1 
Forest area as a proportion of 

total land area 
100 100 97 94 
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6.5.1 

(IWRM) 

6.4.1 Water–use efficiency* 62 52 38 38 

10.1.1 
Growth rates of household 

expenditure (bottom 40% pop.)* 
63 46 30 27 

15.1.2.2 
Average proportion of KBAs 

covered by protected areas* 
83 69 62 53 

6.a.1 

(ODA for 

water and 

sanitation) 

3.1.1 Maternal mortality ratio* 83 67 63 52 

3.3.5 
People requiring interventions 

against NTD* 
66 71 60 58 

6.4.1 Water–use efficiency** 100 100 99 95 

10.1.1 
Growth rates of household 

expenditure (bottom 40% pop.)** 
98 93 88 78 

11.6.1 
Municipal Solid Waste collection 

coverage 
47 35 36 32 

12.2.1 
Material footprint per capita (raw 

material )* 
98 94 82 82 

In bold, strong links. 

* Links identified in the second BN model (155 countries). 

** Links identified in the second BN model but not as strong links. 

 We analyzed in more depth the coherency of the results obtained by constructing the 

contingency tables associated with the links presented in Table 4.3 (see also Annexes Table A12). To 

do this, we discretize the continuous values of the indicators in 5 different intervals. As an example, 

the relationship between the proportion of a population using at least basic drinking water services 

(6.1.1) and the proportion of population with access to electricity (7.1.1) was considered. This link, 

identified as strong one, shows a positive correlation according to the values of the diagonal of the 

table. In other words, an improvement in one of these indicators might generate a similar impact in the 

other one. This is consistent with the fact that access to drinking water services requires energy for the 

extraction, treatment, and distribution of water. Reciprocally, water is required to produce all forms of 

energy to some degree (United Nations, 2018a; UN–Water, 2016; WWAP, 2014).  

 Summarizing the results presented in this subsection, we demonstrated that the applied data–

driven approach provides robust results up to certain sample size (i.e., n=130, which represents 

approximately 70% of the overall countries considered). Moreover, the strategy used for missing data 

treatment does not significantly affect the final results and might be considered as an appropriate 

approach for other studies. The applied data–driven techniques (SLA + C–Ind test and bootstrapping) 

allowed us to identify different kind of links (i.e. strong or not). However, these techniques fall short 

in identifying specifically the direction (i.e. cause–effect) of the links.  

  

 

 4.4.3. Assessing the SDG 6 interlinkages across the 2030 Agenda 

 

 To assess the results achieved with the aim to validate the proposed data–driven approach, we 

first compare the results obtained from the data with those presented in the UN–Water Analytical 

Brief (2016). We do not consider the direction of the links identified within this assessment but rather 

focus on dependencies between the indicators employed. In addition to this, and for each SDG 6 

target, we explore both the “first–order”  Dir–linkn  and “second–order”  Indir–linkn) interlinkages 
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identified (Step A.5) to evaluate their coherency with the main findings from an extensive literature 

review.  

 
Figure 4.4. SDG 6 related interlinkages identified. “First–order”  Dir–linkn) linkages are represented by solid 

blue lines. “Second–order”  Indir–linkn) relationships are indicated by dotted orange lines. 

 The UN–Water Analytical Brief argues how Goal 6 impregnates the social, environmental and 

economic dimensions of sustainable development, identifying relationships with all SDGs. From the 

results depicted in Figure 4.4, it is observed that “first–order”  direct  interlinkages are identified in 

relation to Goals on health (SDG 3), gender (5), energy (7), economic growth (8), inequality (10), 

sustainable cities and communities (11), sustainable consumption and production (12) and terrestrial 

ecosystems   5 . When considering “second–order”  indirect  links, identified interdependencies also 

includes the goals on poverty (1), food (2), infrastructure and industry (9), oceans (14), and peace and 

security (16). Specifically, 37 out of 42 indicators (88%) are connected as a result of the generated BN 

model. Indicators related to the participation rate in organized learning (4.2.2), economic growth per 

employee (8.2.1), unemployment rate (8.5.2), passenger volume by air transport (9.1.2), and people 

affected by a disaster (13.1.1) fall out of the direct and indirect relationships considered (not shown in 

Figure 4.4). These results including those targets i) identified in both the UN–Water Analytical Brief 

(2016) and the BN model (considering direct and indirect links), ii) identified within the Analytical 

Brief but not by the BN model, iii) identified by BN the model but not within the Analytical Brief, and 

iv) with no information available (Table 4.4).  
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Table 4.4. Summary of interlinkages (direct and indirect) associated with SDG 6 in comparison to those identified in the UN–Water Analytical Brief (2016). 

Indicators 

Links identified (data–driven approach) UN–Water Analytical Brief (2016) (Synergies & Conflicts) 

“First order” (direct) “Second order” (indirect) Data available 
Insufficient or no data 

available 

Access to at least basic 

drinking water services 

(SDG 6.1.1) 

2 direct links: Access to at 

least basic sanitation services 

(1.4.1 & 6.1.2); Access to 

electricity (7.1.1) 

7 indirect links: International poverty line (1.1.1); 

Essential health (3.8.1); Mortality due to air pollution 

(3.9.1); Mortality due to unsafe WaSH (3.9.2); Clean 

fuels and technology (7.1.2); Population in slums 

(11.1.1); Solid waste collection (11.6.1) 

Links in Analytical Brief but not in 

network: Hunger (T2.1); Childhood 

development (T4.2); Economic growth 

(T8.1); Economic productivity (T8.2); 

Full employment (T8.5); Resilient 

infrastructure (T9.1); Sustain income 

growth (T10.1); Resilience to climate–

related hazards and natural disasters 

(T13.1); Terrestrial and inland 

freshwater, forest and mountain 

ecosystems (T15.1, T15.2 & T15.4); 

Corruption and bribery (T16.5) 

Links in network but not in 

Analytical Brief: Universal electricity 

(T7.1) 

Malnutrition (T2.2); Small–

scale agricultural productivity 

(T2.3); Sustainable food 

production (T2.4); Education 

for sustainable development 

(4.7); Gender equality (T5.1, 

T5.2); Labour rights (T8.8); 

Sustainable tourism (T8.9); 

Inequalities (T10.2 & 10.3); 

Sustainable urbanization 

(T11.3); Marine pollution 

(T14.1); Desertification and 

loss of biodiversity (T15.3 & 

T15.5); Accountability (T16.6) 

Access to at least basic 

sanitation services 

(SDG 6.2.1) 

4 direct links: 
Essential health 

services (3.8.1); 

Mortality due to unsafe 

WaSH (3.9.2); Access 

to drinking water (1.4.1 

& 6.1.1); Access to 

electricity (7.1.1) 

10 indirect links: International poverty line 

(1.1.1); Maternal mortality ratio (3.1.1); 

Under‑5 mortality rate (3.2.1); Interventions 

against NTD (3.3.5); Mortality due to air 

pollution (3.9.1); Women in governmental seats 

(5.5.1); Clean fuels and technology (7.1.2); 

Population in slums (11.1.1); Solid waste 

collection (11.6.1); Levels of PM (11.6.2) 

Water–Use Efficiency 

(SDG 6.4.1) 
4 direct links: Essential 

health services (3.8.1); 

IWRM (6.5.1); ODA for 

water and sanitation (6.a.1); 

Growth rate (8.1.1) 

11 indirect links: National poverty line (1.2.1); 

Maternal mortality ratio (3.1.1); Under‑5 mortality 

rate (3.2.1); Interventions against NTD (3.3.5); 

Women in governmental seats (5.5.1); Access to 

sanitation (1.4.1 & 6.1.2); Household growth rates 

(10.1.1); Solid waste collection (11.6.1); Levels of 

PM (11.6.2); Material footprint (12.2.1); Terrestrial 

KBAs (15.1.2.2) 

Links in Analytical Brief but not in 

network: Hunger (T2.1); Economic 

productivity (T8.2); Environmental 

degradation (T8.4); Resilient 

infrastructure (T9.1); Safe and 

affordable housing (T11.1); Waste 

management (T12.4); Climate–related 

hazards and natural disasters (T13.1); 

Forest area change (T15.2) 

Links in network but not in 

Analytical Brief: Maternal mortality 

(T3.1); Child mortality (T3.2); Water–

borne diseases (T3.3); Universal health 

 T3.8 ; Women’s participation  T5.5 ; 

Marine ecosystems (T14.5) 

Malnutrition (T2.2); Small scale 

agricultural productivity (T2.3); 

Sustainable food production 

(T2.4); Education for 

sustainable development (4.7); 

Sustainable tourism (T8.9); 

Sustainable industrialization 

(T9.2); Sustainable urbanization 

(T11.3); Green and public 

spaces (T11.7); Waste 

generation (T12.5); 

Desertification and loss of 

biodiversity (T15.3 & T15.5); 

Accountability (T16.6) 

Freshwater withdrawal 

(SDG 6.4.2) 3 direct links: Women in 

managerial positions (5.5.2); 

Renewable energy (7.2.1); 

Forest area (15.1.1) 

7 indirect links: Clean fuels and technology (7.1.2); 

Energy efficiency (7.3.1); CO2 emissions (9.4.1); 

Levels of PM (11.6.2); Marine KBAs (14.5.1); 

Mountain Green Cover Index (15.4.2); Firms 

involved in bribery (16.5.2) 
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Integrated Water 

Resource Management 

(SDG 6.5.1) 

3 direct links: Water–use 

efficiency (6.4.1); Household 

growth rates (10.1.1); 

Terrestrial KBAs (15.1.2.2) 

7 indirect links: Essential health services (3.8.1); 

ODA for water and sanitation (6.a.1); Growth rate 

(8.1.1); Marine KBAs (14.5.1); Freshwater KBAs 

(15.1.2.1); Mountain KBAs (15.4.1); Firms involved 

in bribery (16.5.2) 

Links in Analytical Brief but not in 

network: Poverty (T1.1 & 1.2); Basic 

services (T1.4); Hunger (T2.1); 

Women’s full and effective 

participation (T5.5); Universal 

electricity (T7.1); Renewable energy 

(T7.2); Energy efficiency (T7.3); 

Economic productivity (T8.2); Full 

employment (8.5); Resilient 

infrastructure (T9.1); Environmentally 

sound technology (T9.4); Safe and 

affordable housing (T11.1); 

Environmental impact of cities (T11.6); 

Sustainable management of natural 

resources (T12.2); Waste management 

(T12.4); Climate–related hazards and 

natural disasters (T13.1) 

Links in network but not in 

Analytical Brief: Household growth 

rates (10.1.1); Universal health (T3.8); 

Economic growth (T8.1); Marine 

ecosystems (T14.5) 

Malnutrition (T2.2); Small–

scale agricultural productivity 

(T2.3); Sustainable food 

production (T2.4); Education 

for sustainable development 

(4.7); Gender equality (T5.1, 

T5.2); Labour rights (T8.8); 

Sustainable tourism (T8.9); 

Inequalities (T10.2 & 10.3); 

Sustainable urbanization 

(T11.3); Green and public 

spaces (T11.7); Sustainable 

consumption and production 

(T12.1 &T12.3); Waste 

generation (T12.5); Marine 

pollution and ecosystems 

(T14.1 & T14.2); 

Desertification and loss of 

biodiversity (T15.3 & T15.5); 

Accountability (T16.6) 

Synergies (plain text): Links which are likely to be mainly positive in that they may be mutually reinforcing or have positive interdependencies (UN–Water, 2016).  

Potential conflict (underlined text): Links which usually still have positive aspects, but there exists a potential conflict in one or both directions (UN–Water, 2016). 
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 SDG Targets 6.1 and 6.2 on access to drinking water and sanitation 

 

 Targets 6.  and 6.2 refer specifically to the access to “at least basic” drinking water and 

sanitation services. Target 6.1 relates to improved drinking water sources where collection time is not 

more than 30 minutes for a round trip (including queuing), while Target 6.2 refers to improved 

facilities which are not shared with other households (JMP, 2017b). 

 Considering both “first–order”  direct  and “second–order”  indirect  interlinkages, the BN 

model identified, for the case of water, 30% (7 out of 23) of the target–level relationships noted in the 

UN–Water Analytical Brief. In contrast, this result increased to 48% (11 out of 23) for the sanitation–

related indicator (see Table 4.4).  

 In Table 4.5, the coherency of the results is expanded and contrasted against the existing 

literature. Specifically, this comparison is carried out at 3 levels, of whether the link identified by the 

BN model is related to i) a direct relationship, ii) an indirect relationship, and iii) a missing 

relationship.  

 For direct relationships, there is a link between both SDG 6 indicators and the links with Goal 

3 (health) and Goal 7 (energy). The latter is of particular relevance, as the UN–Water Analytical Brief 

does not refer to it specifically. However, water is required to produce energy, and vice versa (United 

Nations, 2018a; UN–Water, 2016; WWAP, 2014). In addition to this, energy is required to treat fecal 

sludge and wastewater. In turn, it is possible to produce energy from wastewater in the form of heat, 

biogas, and biofuels (United Nations, 2018a; UN–Water, 2016). 

 When considering indirect links, the spectrum of health and energy is expanded to the 

relationships between access to water and sanitation and Goal 1 (poverty), Goal 5 (gender), and Goal 

11 (sustainable cities and communities). For instance, the results show a relationship with the 

population living below the international poverty line (1.1.1). As pointed out by Cohen and Sullivan 

(2010), there exists a mass of literature that examines the interlinkages between water and poverty 

from different points of view (e.g. economic assessment, physical accessibility, or a basic needs 

perspective). For instance, access to water (and sanitation) is a component of the Multidimensional 

Poverty Index formulated by the United Nations Development Programme (Alkire and Jahan, 2018). 

Additionally, and per definition, SDG 1 includes a target for universal access to basic services (Target 

1.4). Another result points to the link with the proportion of seats held by women in national 

parliaments (5.5.1). The lack of adequate sanitation facilities might expose women and young girls to 

illness and safety risks, compromising their learning experience (UN–Women, 2018). Thus, it hinders 

the opportunities to reach professional positions of national responsibility. 

 From those relationships not identified by the BN model (see Table 4.4), we acknowledge the 

absence of the links related to the participation rate in pre–primary school (4.2.2) and the proportion 

of women in managerial positions (5.5.2), which might be treated together. Women and girls are 

responsible for water collection in 8 out of 10 households with water off–premises (UN–Women, 
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2018). In different world regions, it is likely that, if women and young girls reduce the time to collect 

water, they would have more time and opportunities to improve their lives through education, paid 

work, and better health (Fisher, 2008; ILO, 2019; UNDP, 2006a; Willetts et al., 2010). Moreover, it 

would give the opportunity to combat further problems that threaten poor women’s well–being 

(Kevany and Huisingh, 2013). However, it cannot be assumed that increased water access reduces 

women’s workload or strengthens women’s empowerment (Ivens, 2008). This implies an unequal 

sharing of family and household responsibilities, which means that when public services such as 

education, childcare, water, and sanitation are cut back or become less affordable, it is usually women 

and young girls who fill gap, and the overall families do not enjoy these services (Desai and Alva, 

1998; UN–Women, 2018). In addition to this, the BN model does not identify any relationship with 

Goal 8 (economic growth). Economic growth (8.1.1) and jobs rely on limited environmental resources 

such as water (ILO, 2018). Specifically, 78% of the jobs constituting the global workforce are water 

dependent (WWAP, 2016). Furthermore, the provision of WaSH services at home and in the 

workplace enables a robust economy by contributing to a healthy and productive population 

workforce (8.2.1) (WWAP, 2016). Investments in WaSH have paved a path to economic growth and 

unemployment rates (8.5.2) reduction and new business opportunities appear as a result of policies 

which address, for example, water (and sanitation) infrastructures (UN–EMG, 2011; WWAP, 2016). 
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Table 4.5. Literature review of the identified relationships (both direct and indirect) and the ones missing (in comparison to the UN–Water Analytical Brief) for SDG Targets 

6.1 and 6.2. 

 SDG 6 

indicator 
Interlinkages identified Relationship assessment 

1
st
 O

R
D

E
R

 (
D

ir
ec

t)
 6.1.1 6.1.1 – 6.2. : Access to “at least basic” 

water and sanitation services 

Water and sanitation have been jointly monitored together since 1930. A WaSH implementation approach has 

been in place  since 1970  (Bartram et al., 2014; Herrera, 2019) 6.2.1 

6.2.1 
3.8.1: Coverage of essential health 

services 

The human right to essential health includes, among others, access to an adequate supply of basic sanitation 

(Backman et al., 2008) 

6.2.1 
3.9.2: Mortality rate attributed to unsafe 

WaSH services 
Intrinsically related per definition 

6.1.1 
7.1.1: Access to electricity 

Water as a source to produce energy, and vice versa (United Nations, 2018a; UN–Water, 2016; WWAP, 2014). 

Energy is required to treat fecal sludge and wastewater. Energy can be produced in the form of heat, biogas, and 

biofuels (United Nations, 2018a; UN–Water, 2016) 6.2.1 
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6.1.1 

1.1.1: Population living below the 

international poverty line 

Direct linkages between water and poverty from different points of view (e.g. economic assessment, physical 

accessibility, and basic needs perspective) (Cohen and Sullivan, 2010; Sullivan, 2002) 

Water and sanitation are components of the UNDP Multidimensional Poverty Index (Alkire and Foster, 2007; 

Alkire and Jahan, 2018; Alkire and Santos, 2014; Giné-Garriga and Pérez-Foguet, 2019) 

SDG 1 includes a target for universal access to basic services, such as water and sanitation (Target 1.4) 
6.2.1 

6.2.1 3.1.1: Maternal mortality rate Extensive literature dealing with the effects of WaSH on health (e.g. Bartram et al., 2005; Cairncross et al., 

2010; Cheng et al., 2012; Esrey et al., 1991; Feachem, 1984) 6.2.1 3.2.1: Under–five mortality rate 

6.2.1 
3.3.5: People requiring interventions 

against NTD 

WaSH interventions can reduce the number of people requiring interventions against NTD (e.g. Fitzpatrick and 

Engels, 2015; Hotez et al., 2015; United Nations, 2018a; WHO, 2015a) 

6.1.1 
3.8.1: Coverage of essential health 

services 
The human right to health includes, as well, an adequate supply of safe water (Backman et al., 2008) 

6.1.1 3.9.1: Mortality rate attributed to 

household and ambient air pollution 

Consequence of using solid fuels for domestic purposes, such as cooking, heating or treating water  

Countries presenting higher 3.9.1 rates coincide with countries presenting higher 3.9.2 rates (mortality due to 

unsafe WaSH) (WHO, 2018) 6.2.1 

6.2.1 
5.5.1: Proportion of women in national 

parliaments 

Lack of adequate sanitation facilities might expose women and young girls to illness and safety risks, 

compromising their learning experience and hindering the opportunities to develop a professional career (UN–

Women, 2018) 

6.1.1 7.1.2: Primary reliance on clean fuels 

and technology 

Lack of 7.1.2 access leads to high levels of household air pollution (United Nations, 2018b; World Bank, 2018). 

Potential link if it is considered the existing relationship between air pollution and unsafe WaSH  6.2.1 

6.1.1 
11.1.1: Urban population living in slums Access to water and sanitation helps in promoting better housing and slum upgrading (UN–Habitat, 2018) 

6.2.1 

6.1.1 
11.6.1: Urban solid waste collection 

Existing connection with SDG 11 is established through Target 11.6 (reduction environmental impact of cities) 

(UN–Habitat, 2018) 6.2.1 
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6.1.1 

2.1.1: Prevalence of undernourishment 

Caused by inadequate dietary intake and infectious diseases, such as diarrhoea. WaSH interventions are 

frequently implemented to reduce the latter (Dangour et al., 2013)  

“Zero hunger” is highly dependent on progress in ensuring availability and sustainable management of water 

and sanitation (ICSU–ISSC,  2017) 

Increasing literature applying nexus approaches, such as the water–energy–food nexus (Rasul, 2016; Pahl-

Wostl, 2017) 
6.2.1 

6.1.1 
3.1.1: Maternal mortality rate 

3.2.1: Under–five mortality rate 

Extensive literature dealing with the effects of WaSH on health (e.g. Bartram et al., 2005; Cairncross et al., 

2010; Cheng et al., 2012; Esrey et al., 1991; Feachem, 1984) 

6.1.1 4.2.2: Participation rate in organized 

learning 

5.5.1: Proportion of women in national 

parliaments (only for 6.1.1) 

5.5.2: Proportion of women in 

managerial positions 

Women are responsible for water collection in 8 out of 10 households with water off–premises (UN–Women, 

2018) 

Reducing the time to collect water would provide more time and opportunities for education, paid work, and 

better health (ILO, 2019; Fisher, 2008; UNDP, 2006a; Willetts et al., 2010) 

 pportunity to combat further problems that threaten poor women’s well–being (Kevany and Huisingh, 2013) 

Increased water access might not reduce women’s workload or strengthen women’s empowerment (Ivens, 2008) 

Due to unequal sharing of household responsibilities, and availability and affordability of public services (e.g. 

education, water and sanitation), women and young girls usually fill the gap, and overall, families do not enjoy 

these services (Desai and Alva, 1998; UN–Women, 2018) 

6.2.1 

6.1.1 
8.1.1: Economic growth 

8.2.1: Growth rate per employee 

8.5.2: Unemployment rate 

Based on limited environmental resources, such as water (ILO, 2018) 

78% of the jobs constituting the global workforce are water dependent (WWAP, 2016) 

WaSH services enable a robust economy by contributing to a healthy and productive population workforce 

(WWAP, 2016) 

Investments in WaSH have paved a path to economic growth, unemployment rates reduction and new business 

opportunities (UN–EMG, 2011; WWAP, 2016) 
6.2.1 

6.1.1 

9.1.2: Air traffic 

Growth in traffic at airports also brings growth in the direct jobs generated (ATAG, 2018) 

Peripheral regions air activity appears to boost regional development, while in core regions regional growth 

causes airport activity (Mukkala and Tervo, 2013) 

Relationship  between air traffic and economic growth and employment links with the access to water 
6.2.1 

6.1.1 
9.4.1: CO2 emissions 

Global economic and population growth as the most important drivers. Contribution of economic growth has 

risen sharply comparing to population growth (IPCC, 2014) 6.2.1 

6.1.1 
10.1.1: Growth rates inequalities 

Inequalities in access to water and sanitation services between SDG regions, between countries within each 

region, within individual countries, between urban and rural areas, sub–national regions and wealth quintiles 

(JMP, 2017a) 6.2.1 

6.1.1 
13.1.1: People affected by disasters 

WaSH interventions can prevent outbreaks of waterborne diseases in both emergency settings and displaced 

population (Brown et al., 2012; Watson et al., 2007) 6.2.1 

6.1.1 15.1.1: Forest areas 
Forests play a large role in regulating fluxes of atmospheric moisture and rainfall patterns over land through 

evapotranspiration and transpiration (Ellison et al., 2012; 2017) 
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Natural forests transport water locally and globally (Ellison et al., 2017). These are suggested to be capable of 

“pumping” atmospheric moisture from the ocean to land in order to compensate the river runoff and ensuring 

maximum ecosystem productivity (Makarieva and Gorshkov, 2007) 

Land conversions from forests to agriculture or forest protection might imply trade–offs in both downstream and 

upstream communities (Ellison et al., 2017; Pramova et al., 2012; Sheil et al., 2016) 

 
6.1.1 15.1.2.1: Freshwater KBAs 

15.1.2.2: Terrestrial KBAs 

15.4.1: Mountain KBAs 

These provide a range of important ecosystem services, with drinking water a significant one (UNEP–WCMC 

and IUCN, 2016; UNEP–WCMC et al., 2018; United Nations, 2018b) 

Clear link between the treatment of fecal sludge and wastewater, and environment health (UN–Water, 2016) 6.2.1 

6.1.1 

16.5.2: Bribery practices 

The water sector is not exempt of bribery practices, such as expediting new service connections after payment or 

favoritism in public procurement (Stålgren, 2006) 

These practices contribute to millions of people dying from illnesses caused by lack of access to sanitation (and 

clean water) (Stålgren, 2006) 
6.2.1 
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 SDG Target 6.4 on water–use efficiency and water stress 

 

 Target 6.4 includes two indicators that are strongly linked and offer complementary 

information.  n the one hand, indicator 6.4.  assesses to what extent a country’s economic growth is 

dependent on the use of water resources, representing an economic indicator. On the other hand, 

indicator 6.4.2 is an environmental indicator, tracking the physical availability of freshwater resources 

(FAO, 2018).  

 In this case, the BN model identified 15 out of 20 (75%) of the target–level relationships 

extracted from the UN–Water Analytical Brief, taking into account both direct and indirect links. 

Similar to the case of access to water and sanitation, the links identified refer as well to Goals on 

poverty (1), health (3), gender (5), energy (7), and cities (11). However, in this case, the spectrum of 

the relationships obtained expands to Goals 12 (sustainable consumption and production), 14 

(oceans), 15 (terrestrial ecosystems), and 16 (peace and security) (see Table 4.4).  

 A summary of the academic contributions to the direct, indirect, and missing interlinkages 

associated with the BN analysis is shown in Table 4.6. Focusing on the direct links identified, a 

relationship of water–use efficiency (6.4.1) and the degree of IWRM implementation (6.5.1) and the 

ODA for water supply and sanitation (6.a.1) can be observed. For 6.4.1, IWRM has been presented 

during the last decades as the framework to support the achievement of an efficient use of water 

(among other things) (GWP, 2000; UNEP, 2018). Target 6.a advocates expanding international 

cooperation and capacity–building in water–related activities and programs, such as water efficiency. 

In fact, a recent survey of 24 external support agencies show that more than 40% promote water use 

efficiency and sustainable withdrawals, and that 50% support the implementation of IWRM as a “very 

high” priority area (GLAAS, 2017). On the other hand, the results show a relationship between water–

stress (6.4.2) and the renewable energy share in the total final energy consumption (7.2.1). Water is 

used for non–renewable energy generation (e.g. in the extractive industries for producing fuels or for 

cooling purposes in power plants), but also for renewable energy generation (e.g. as an input for 

energy crops or as driving force for hydroelectric turbines) (WWAP, 2014). However, the latter is 

also identified as a potential conflict, as hydropower and bio–energy might have significant impacts 

on land and water resources and ecosystems (UN–Water, 2016). In this study, the data used show that 

when the share of renewable energy increases, fewer countries show water stress (see Annexes Table 

A12). Another direct link that was identified is that one associated with the forest area as a proportion 

of total land area (15.1.1). Natural resources, such as land, have been acquired to satisfy immediate 

human needs, often at the expense of degrading the environment. Forests have been cleared for 

intensive agriculture and livestock, and for expanding urban settlements. Water demands associated 

with these practices, especially irrigation for agriculture, directly affect freshwater supplies and 

increase water scarcity levels (Foley et al., 2005; Mekonnen and Hoekstra, 2016; United Nations, 

2018a). Similar to the previous relationship identified, the tendency of the data used in this study 
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suggests that there is a positive correlation between high rates of forest coverage and low levels of 

water stress (see Annexes Table A12). In addition to these direct links associated to water–use 

efficiency (6.4.1) and water stress (6.4.2), we highlight those relationships identified by the BN model 

and not reflected within the Analytical Brief. For instance, a link between water–use efficiency (6.4.1) 

and the essential health service coverage (3.8.1), and indirectly to other health–related targets, can be 

observed (see Table 4.6). An increase in water–use efficiency makes more water available for 

drinking and other uses (UNEP, 2018). Access to improved water (and sanitation) represents a tracer 

indicator for universal health coverage achievement (WHO, 2015b) and is especially useful for 

monitoring the progressive realization of the right to health (Backman et al., 2008). In the case of 

water stress (6.4.2), it is observed a direct link with the proportion of women in managerial positions 

(5.5.2). Although this link has not been addressed within this specific focus, its interdependency has 

been largely analyzed. Several publications affirm that women’s involvement in water management is 

a key aspect to improving effectiveness of programs and projects due to women’s roles, concerns, and 

priorities in water–related issues (Ivens, 2008). This is believed to balance the access to the control 

over resources such as water (Panda, 2007; UNDP, 2006b) and to hasten the achievement of 

sustainability in the management of scarce water resources (GWA, 2003). The data employed in this 

study suggest that the higher the participation of women, the lower the water stress (see Annexes 

Table A12). 

 When paying attention to the indirect links, several relationships are provided by the BN 

model that are not reflected in the Analytical Brief. In particular, an indirect relationship between 

water–use efficiency (6.4.1) and maternal mortality (3.1.1), child mortality (3.2.1), and the number of 

people requiring interventions against neglected tropical diseases (3.3.5) can be observed. As 

mentioned previously, an increase in water–use efficiency makes more water available, which in turn 

positively affects health issues. In the case of water stress (6.4.2), a relationship with the marine Key 

Biodiversity Areas (KBAs) (14.5.1) can be observed. Much of the pollution affecting oceans and 

coastal zones comes from human activities, such agriculture or industry (United Nations, 2018a). In 

addition to this, population and economic growth are some of the major drivers that affect and will 

affect water resources (Ercin and Hoekstra, 2014; Vörösmarty et al., 2000). It has also been suggested 

that in this stress context, the protection of marine areas would rise. 
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Table 4.6. Literature review of the identified relationships (both direct and indirect) and the ones missing (in comparison to the UN–Water Analytical Brief) for SDG Target 

6.4. 

 SDG 6 

indicator 
Interlinkages identified Relationship assessment 
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6.4.1 
3.8.1: Coverage of essential health 

services 

An increase in 6.4.1 makes more water available for drinking and other uses (UNEP, 2018) 

Access to improved water (and sanitation) represents a tracer indicator for universal health coverage 

achievement (WHO, 2015b)  

Useful for monitoring the progressive realization of the human right to health (Backman et al., 2008) 

6.4.2 
5.5.2: Proportion of women in managerial 

positions 

Women’s involvement improves programme and project effectiveness due to their roles, concerns and priorities 

in water–related issues (Ivens, 2008)  

It  balances the access to the control over resources such as water (Panda, 2007; UNDP, 2006b) and accelerates 

the achievement of sustainability in scarce water resources management (GWA, 2003) 

Higher participation of women is correlated to lower levels of water stress (see Annexes Table A11) 

6.4.1 6.5.1: Degree of IWRM implementation IWRM promotes the achievement of an efficient use of water (GWP, 2000; UNEP, 2018) 

6.4.1 
6.a.1: ODA for water supply and 

sanitation 

Support to water efficiency programmes included in Target 6.a definition 

More than 40% and 50% of surveyed agencies consider, respectively, water use efficiency and sustainable 

withdrawals and IWRM implementation as “very high” priority areas (GLAAS, 2017)  

6.4.2 7.2.1: Renewable energy share 

Water is used for non–renewable energy generation (e.g. extractive industries or for power plants), but for 

renewable energy generation as well (e.g. input for energy crops or driving force for hydroelectric turbines) 

(WWAP, 2014) 

Potential conflict, as hydropower and bio–energy might have significant impacts on land and water resources 

and ecosystems (UN–Water, 2016) 

Tendency of lower levels of water stress when increasing 7.2.1 (see Annexes Table A11) 

6.4.1 8.1.1: Economic growth 
An increase in 8.1.1 might enhance technological advancements that can improve efficiency in using water and, 

thus, reduce the exploitation of water resources (El Khanji, 2016; FAO, 2018) 

6.4.2 15.1.1: Forest area 

Forests have been cleared for intensive agriculture and livestock, and for expanding urban settlements. Water 

demands associated with these practices, especially irrigation for agriculture, directly affect freshwater supplies 

and increase water scarcity levels (Foley et al., 2005; Mekonnen and Hoekstra, 2016; United Nations, 2018a) 

Positive correlation between high rates of forest coverage and low levels of water stress (see Annexes Table 

A11) 
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6.4.1 

1.2.1: Population living below the national 

poverty line 

Increasing water availability by using water more efficiently impacts positively on poverty alleviation. Potential 

conflict if development for poverty reduction and economic growth are not taken carefully to use water 

sustainably (UN–Water, 2016) 

6.4.1 

6.2.1: Access to at least basic sanitation 

services 

Higher levels of 6.4.1 increases water availability for different purposes (UNEP, 2018). This improves health of 

mothers and children, reduces the number of people requiring interventions against NTD, provides more 

learning opportunities for women, and reduces environmental impacts of cities 

3.1.1: Maternal mortality rate 

3.2.1: Under–five mortality rate 

3.3.5: People requiring interventions 

against NTD 

4.2.2: Participation rate in organized 

learning 

5.5.1: Proportion of women in national 

parliaments 

6.4.2 
7.1.2: Primary reliance on clean fuels and 

technology 

The same people who lack access to improved water (and sanitation) are also likely to lack access to electricity 

and to rely on solid fuel for cooking (WHO, 2018; WWAP, 2014) 

With some exceptions, water stress is considered the symptom of water scarcity, which hinders the access of 

this resource (United Nations, 2018a) 

6.4.2 7.1.3: Energy efficiency 

Water is required for energy production, and more efficient processes in this concern reduces water 

consumption and thus water stress (ICSU–ISSC, 2017; Ringler et al., 2013; United Nations, 2018a; UN–Water, 

2016) 

Resource savings might be invested to increase production and thus hindering to achieve an overall decrease in 

demand (Unver et al., 2017; WWAP, 2014) 

6.4.2 9.4.1: CO2 emissions 

Energy generation contributes with the highest levels of CO2 emissions (IPCC, 2014) and consumes large 

amounts of water (Li et al., 2012) 

Water sector as a greenhouse–gases emitter (Rothausen and Conway, 2011) 

Higher levels of water withdrawals are related to “medium” levels of emissions in relative terms (see Annexes 

Table A12) 

Different picture if so–called “virtual water” is considered within the analysis (Hoekstra and Hung, 2002; Longo 

and York, 2009) 

6.4.1 10.1.1: Growth rates inequalities 
Increasing 6.4.  implies an increase in drinking water availability. This impacts positively on people’s health 

and the economy, thereby contributing to reducing inequalities 

6.4.1 

11.6.1: Solid waste management 

11.6.2: Levels of fine particulate matter 

(PM) 

6.4.1 and 6.4.2 support waste reduction and improve its management, as well as progress on air quality levels 

(UN–Water, 2016) 

Effective waste management systems are crucial to access to safe WaSH services and to improve water 

resources quality and sustainability (UN–Habitat, 2018) 
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6.4.2 

Waste disposal cost rises in tandem with the investments and operating costs for reducing emissions to water 

(UN–Habitat, 2010) 

Anthropogenic sources of PM include, among others, solid–fuel combustion, and industrial and agricultural 

activities (Kim et al., 2015)  

These water consumer activities contribute to air pollution and hinder the sustainability of natural resources, as 

well as economic and social development (UN–Water, 2016; WWAP, 2016) 

6.4.1 12.1.1: Material footprint 

Humans rely on raw materials to meet basic needs, such as access to water 

Water is used for material extraction processes, linking material and water footprints (United Nations, 2018a; 

Wiedmann et al., 2015) 

Resource efficiency means a small footprint per unit of product (Hoekstra and Wiedmann, 2014) 

6.4.2 14.5.1: Marine KBAs 

Protected areas can work against improving rights and access to resources (Target 1.4) if they are established 

and enforced without engaging local stakeholders (Singh et al., 2018). This study does not point to the specific 

link with basic services 

Much of the pollution affecting oceans and coastal zones comes from human activities, such agriculture or 

industry (United Nations, 2018a) 

Population and economic growth are some of the major drivers that affect and will affect water resources (Ercin 

and Hoekstra, 2014; Vörösmarty et al., 2000). It might be suggested that in this stress context, the protection of 

marine areas would rise 

10% of the countries suffer water stress while protecting a low percentage of marine areas (see Annexes Table 

A12) 

6.4.1 15.1.2.2: Terrestrial KBAs 
Effort towards achieving water–use efficiency must incorporate, among others, the principle of conserving, 

protecting, and enhancing natural ecosystems (Unver et al., 2017) 

6.4.2 15.4.2: Mountain Green Cover Index 

Mountains provide between 60% and 80% of the Earth’s freshwater (FAO, 2015)  

Green coverage of mountain areas (i.e. forests, shrubs and trees) increases water availability and, thus, reduces 

potential water stress 

53% of the countries (95 out of 179) show a positive correlation (see Annexes Table A12) 

6.4.2 16.5.2: Bribery practices 

 When water becomes scare, so does the competition for this resource. This creates more incentives to resort to 

corruption and to grab more than one’s fair share (Transparency International, 2008) 

Data used do not suggest a clear relationship (see Annexes Table A12) 
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6.4.1 2.1.1: Prevalence of undernourishment 

Hunger and food security (secure access to sufficient amounts of safe and nutritious food for normal growth and 

development and an active and healthy life) are intrinsically related, and water plays an important role in this 

process (United Nations, 2018a)  

Regions with high levels of water stress show high prevalence of severe food insecurity, but the latter is present 
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6.4.2 

in regions with low water stress as well (United Nations, 2018a) 

Agriculture plays a key role towards “zero hunger” and accounts for approximately 70% of water withdrawals 

Agricultural productivity, if not properly managed, jeopardizes the availability, sustainability, and quality of 

water for multiple purposes and users (ICSU–ISSC, 2017) 

Water–energy–food nexus has been extensively reviewed elsewhere (Albrecht et al., 2018) 

6.4.1 
8.2.1: Growth rate per employee 

9.1.2: Air traffic 

11.1.1: Urban population living in slums 

13.1.1: People affected by disasters 

Increasing water availability and access contributes to a healthy and productive population workforce, enables a 

robust economy and growth in activities such as airport activities, helps to promote slum upgrading (although 

increasing the potential overuse or pollution of water resources), and supports the prevention of waterborne 

disease outbreaks in both emergency circumstances and population displacements 
6.4.2 

6.4.1 12.4.1: Compliance with the Stockholm 

Convention 

Sustainable and efficient use of water resources is mutually supportive to the safe management of chemicals and 

wastes throughout their life cycle (UN–Water, 2016) 6.4.2 
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 SDG Target 6.5 on integrated water resources management 

 

 IWRM represents a process–oriented and aspirational target rather than an outcome as the 

previous ones. Its implementation supports balancing the environmental, social, and economic 

dimensions of sustainable development, and achieving all Goals across the 2030 Agenda (UNEP, 

2018). Specifically, indicator 6.5.1 refers to the degree of IWRM implementation, which it is assessed 

through a self–assessed country questionnaire and organized into four main dimensions: enabling 

environment, institutions and participation, management of instruments, and financing (UNEP, 2018).  

Overall relationships related to the degree of IWRM implementation encompass 33% (7 out of 21) of 

the target–level links addressed in the UN–Water Analytical Brief (see Table 4.4). Even though 

IWRM is per definition wide in scope, the aggregated nature of this indicator means that it might 

mask further potential links. Those linkages identified are related to Goal 3 (health), Goal 8 

(economic growth), Goal 10 (inequality), Goal 14 (oceans) Goal 15 (terrestrial ecosystems), and Goal 

16 (peace and security) (see Table 4.7).  

 Unlike the UN–Water Analytical Brief, the BN model show a direct relationship between 

IWRM (6.5.1) and growth rates inequalities (10.1.1). It is acknowledged that water (and sanitation) is 

essential to reduce inequalities. IWRM concept calls to “leave no one behind”. This highlights 

overlapping aspects between IWRM and the human rights–based approach to water and sanitation 

(i.e. equality, equity, participation, and governance) (WWAP, 2019).  

 Notably, indirect links between IWRM and the coverage of essential health services (3.8.1) 

and economic growth (8.1.1) can also be observed, which are not reflected in the Analytical Brief. 

However, a recent report states the existence of a positive correlation with the Human Development 

Index (UNEP, 2018), where life expectancy (health) is one of its parameters (UNDP, 2018). 

Furthermore, it states that wealthier countries present higher degrees of IWRM implementation 

(UNEP, 2018). The BN analysis also shows a relationship between IWRM and marine KBAs 

(14.5.1). In general, KBAs provide a range of ecosystem services (e.g. drinking water) both up– and 

downstream. A key principle of IWRM is that water resources also need to be managed according to 

hydrological boundaries (UNEP, 2018). 

 

 

 SDG Target 6.a on international cooperation and capacity–building  support 

 

 Unlike previous targets, Target 6.a focuses on the means of implementation to achieve SDG 

6. Specifically, it assesses the amount of water– and sanitation–related official development assistance 

(ODA) that is part of a government–coordinated spending plan (6.a.1). As a comparison with the UN–

Water Analytical Brief is not possible, only the direct links obtained from the BN model are 

considered to evaluate their coherency. 
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 Interestingly, this indicator shows the highest number of direct links identified (see Table 

4.8), which refer to Goal 3 (health), Goal 10 (inequality), Goal 11 (sustainable cities and 

communities), and Goal 12 (sustainable consumption and production). For instance, the BN model 

shows a link between the ODA (6.a.1) and both maternal mortality (3.1.1) and the number of people 

requiring interventions against neglected tropical diseases (3.3.5). In general, ODA for health has 

been much greater in countries with highest levels of maternal (and child) mortality (GLAAS, 2017; 

Pitt et al., 2010). In addition to this, from the data used in this study, the ODA for water and sanitation 

is greater in countries with higher rates of maternal mortality and with more interventions against 

neglected tropical diseases (see Annexes Table A12). However, some authors consider it necessary to 

increase the share of ODA for NTD control (Liese and Schubert, 2009). Another link identified by the 

BN model points out the relationship with the growth rate inequalities (10.1.1). A recent study states 

that ODA plays an important role in reducing gender inequalities and rural–urban disparities in social 

and human development (Ndikumana and Pickbourn, 2017). 
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Table 4.7. Literature review of the identified relationships (both direct and indirect) and the ones missing (in comparison to the UN–Water Analytical Brief) for SDG Target 

6.5. 

 Interlinkages identified Relationship assessment 
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6.4.1: Water–use efficiency IWRM promotes an efficient use of water (GWP, 2000; UNEP, 2018) 

10.1.1: Growth rates inequalities 

Water (and sanitation) is essential to reduce inequalities  

IWRM concept calls to “leave no one behind”. This highlights overlapping aspects between IWRM and the human rights–

based approach to water and sanitation (i.e. equality, equity, participation, and governance) (WWAP, 2019) 

15.1.2.2: Terrestrial KBAs 

Terrestrial ecosystems are important for rainwater infiltration, groundwater recharge, and river flow regimes. These 

influence water availability and quality, and they must be considered in the overall planning and management of the water 

resources (GWP, 2000) 
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 3.8.1: Coverage of essential health 

services 

Positive correlation with the Human Development Index (UNEP, 2018), which has life expectancy (health) as one of its 

parameters (UNDP, 2018) 

6.a.1: ODA for water supply and 

sanitation 

ODA is mentioned within the financing dimension of IWRM as a potential and complementary source for its 

implementation (UNEP, 2018) 

8.1.1: Economic growth Positive correlation with the HDI. Wealthier countries present higher degrees of IWRM implementation (UNEP, 2018) 

14.5.1: Marine KBAs 

15.1.2.1: Freshwater KBAs 

15.4.1: Mountain KBAs 

These areas provide a range of ecosystem services (e.g. drinking water) both up– and downstream. A key principle of 

IWRM is that water resources also need to be managed according to hydrological boundaries (UNEP, 2018) 

16.5.2: Bribery practices 
Countries with low perception of corruption count with a higher HDI and, in consequence, with higher levels of IWRM 

implementation (UNEP, 2018) 
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3.1.1: Maternal mortality rate 

3.2.1: Under–five mortality rate 

3.3.5: People requiring interventions 

against NTD 

3.9.1: Mortality rate attributed to 

household and ambient air pollution 

3.9.2: Mortality rate attributed to unsafe 

WaSH services 

4.2.2: Participation rate in organized 

learning 

Countries likely to achieve the global Target 6.5 are predominantly the “high” and “very high” HDI countries  UNE , 

2018). There is a positive correlation with those indicators related to life expectancy, education, and standard of living 

 

5.5.1: Proportion of women in national 

parliaments 

5.5.2: Proportion of women in 

managerial positions 

13.1.1: People affected by disasters 

The self–assessed country survey for the 6.5.1 indicator quantification (UNEP, 2018) integrates specific questions on 

women’s participation at different levels and on the management instruments to reduce impacts of water–related disasters 

(partially related to 13.1.1) 
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1.1.1: Population living below the 

international poverty line 

1.2.1: Population living below the 

national poverty line 

8.2.1: Growth rate per employee 

8.5.2: Unemployment rate  

Water supply for different uses is a critical element of reducing poverty, creating good working conditions and making 

industrialization and consumption patterns sustainable with increased resource–use efficiency and environmentally sound 

processes 

Implementing the different SDG 6 targets provides operating mechanisms for IWRM implementation, as it promotes the 

coordination of different potential stakeholders and captures the impacts under those targets 

 

2.1.1: Prevalence of undernourishment 

7.1.1: Access to electricity 

7.2.1: Renewable energy share 

7.3.1: Energy efficiency 

Coordinated efforts, such as the water–energy–food (WEF) nexus, have been documented as a complementary and catalyst 

approach to IWRM (United Nations, 2018a; UN–Water, 2016; WWAP, 2019) 

Defence of nexus approach over IWRM due to its multi–centric nature instead of water–centric one (Nhamo et al., 2018) 

IWRM challenged by suggestions supporting nexus approaches of interrelated development priorities (Woodhouse and 

Muller, 2017) 

WEF nexus analyses the links between achieving food, water and energy security and the impacts of these activities, 

aiming towards an efficient and fair balance of sector needs  

 

Table 4.8. Literature review in relation to the direct relationships identified in relation to SGD Target 6.a.  

Interlinkages identified Relationship assessment 

3.1.1: Maternal mortality rate 

3.3.5: People requiring interventions 

against NTD 

Relatively, ODA for health is much greater in countries with highest levels of maternal (and child) mortality (GLAAS, 2017; Pitt 

et al., 2010) 

ODA for water and sanitation is greater in countries with higher rates of maternal mortality and more interventions against NTD 

(see Annexes Table A11) 

Some authors consider increasing the share of ODA for NTD control to be necessary (Liese and Schubert, 2009) 

6.4.1: Water–use efficiency 

Support for water efficiency programmes included in Target 6.a definition 

More than 40% of surveyed agencies consider it as a “very high” priority area (GLAAS, 2017) 

ODA effectiveness might become negative as countries scale up the income ladder (Gopalan and Rajan, 2016) 

10.1.1: Growth rates inequalities 

Service delivery to the most vulnerable as a “very high” priority for 67% of the surveyed agencies (GLAAS, 2017) 

ODA plays an important role in reducing gender inequalities and rural–urban disparities in social and human development 

(Ndikumana and Pickbourn, 2017) 

11.6.1: Urban solid waste collection 
Existing connection with SDG 11 is established through Target 11.6 (reduction environmental impact of cities) (UN–Habitat, 

2018) 

12.2.1: Material footprint 
Countries with higher levels of material footprint receive more ODA for water and sanitation (see Annexes Table A12) 

Connection between material and water footprint suggests that increasing water–use efficiency supports their reduction  
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 4.4.4. Potential applications in decision–making processes 

 

 We have demonstrated the potentiality of this data–driven BNs approach to identify 

relationships among global development indicators. Understanding these linkages enables the full 

exploitation of synergies, conflict resolution, and trade–offs balances. On the basis of these linkages, 

integrated planning and management can support decision–making, reduce investment costs and 

facilitate implementation of a number of strategies that are geared towards sustainable development. 

 Nonetheless, current data gaps for a number of indicators and countries clearly limit the scope 

of the study and the lessons learnt. We have tested the robustness of our approach, showing that its 

performance is positive until a specific side of the sample. Credible data are the lifeblood of decision–

making (IEAG, 2014), and are needed to underpin sector advocacy, stimulate political commitment, 

and trigger well–placed investments towards optimum health, environment, and economic gains (UN–

Water, 2016). Moreover, data are the raw material for BNs models, as the validity of their outputs is 

directly dependant on both data quality and quantity. At present, there are several global initiatives 

that monitor different aspects of the development Agenda, yet a coherent framework is missing. To the 

extent that existing efforts expands to ensure harmonized and integrated monitoring of SDGs, 

increasing high–quality data availability, it is expected that a wide range of potential uses may emerge 

in relation to BNs applications.   

 The BNs approach presented here is a flexible tool that could be adapted to a specific context, 

such as focusing at the sub–national level, where decisions are taken by decentralized administrations. 

In fact, the 2030 Agenda resolution encourages each government to set “its own national targets 

guided by the global level of ambition but taking into account national circumstances” (United Nations 

General Assembly, 2015). Specifically, it opens the possibility to simulate different scenarios and to 

infer the impact of potential interventions. Different levels of improvement (investments) regarding 

node 6.2.1 (access to “at least basic” sanitation services  might be simulated (through CPTs 

modification) (see for example Figure 4.2). Here, the impact on immediate nodes 6.1.1 (access to 

drinking water services), 3.9.2 (mortality rate due to unsafe WaSH), 3.8.1 (coverage of essential health 

services), and 7.1.1 (access to electricity) could be evaluated. Similarly, further connected nodes could 

be analyzed as well. This requires a shift in the way that potential interventions are assessed and 

encourages decision–makers to integrate interdisciplinary perspectives, which, in turn, are essential for 

sustainable development.  

 In this scenario–based analysis, and considering the difficulty of countries to collect all the 

information related to the 17 SDGs, BNs might be also especially helpful when there is scarcity or 

some degree of uncertainty in the data. For example, if no information related to the access to 

sanitation services is available, different hypotheses can be made, and their potential impacts on 

associated nodes can then be assessed. 

 Another potential application of BNs is based on its inverse use (Li et al., 2019; Requejo-

Castro et al., 2019; Song et al., 2018). In contrast to methodology for a scenario simulation, where one 



Chapter IV. Exploring interlinkages through a data–driven BNs approach 

97 
 

or more nodes can be modified to assess the impact in subsequent nodes, inverse use allows a 

desirable value in an objective node to be established and the new values of connected nodes to be 

obtained that would reach that value (see Section 2.2.2). Thus, specific interventions can be designed, 

assessed, and implemented. This possibility might be useful for planning purposes, allowing decision–

makers to optimize these interventions in order to achieve the expected results. 

 

 

 4.5. KEY MESSAGES 

 
 As per definition, the SDGs are presented as integrated and indivisible. Therefore, 

conventional indicator–based frameworks need to be combined with innovative approaches for an 

accurate assessment of interlinkages and interdependencies between targets and indicators.  

 In this Chapter, we tested the validity of a data–driven BNs approach to elucidate SDGs 

interlinkages. In particular, we applied our approach to explore the relationships of SDG 6 across the 

2030 Agenda.   

 

 Some key messages can be highlighted from this Chapter: 

 

 – We demonstrated the robustness of the approach for identifying indicator interlinkages, as 

results were consistently obtained up to a sample size of 130 countries. This aspect is particularly 

important when considering that results are spurred on by the data used. Furthermore, this sample size 

represents the potentiality of this approach for dealing with a relative low amount of data. However, a 

limitation of this approach that should be noted was that it did not identify the cause–effect 

relationships, which might be of interest. In any case, these results might be considered as a potential 

starting point for further discussion.  

 

 – We further demonstrated that the results obtained are coherent. Taking as a starting point the 

UN–Water Analytical Brief, we have compared the results provided by the BN model with the main 

water and sanitation interlinkages on the SDGs identified by this study. Our results have reached 

different levels of coincidence when considering both “first order”  direct  and “second order” 

(indirect) relationships. Notably, relationships regarding SDG Target 6.4 have reached 75% of 

coincidence. In contrast, lower levels of concurrence were obtained for Targets 6.1 (30%), 6.2 (48%), 

and 6.5 (33%). Further, and as an added value of our approach, we identified linkages that were not 

reflected in the UN Water Analytical Brief, which have been positively contrasted against the existing 

literature. 

  



Chapter IV. Exploring interlinkages through a data–driven BNs approach 

98 
 

 – A data–driven BNs approach complements existing approximations and is needed to 

increase both the understanding and the interpretation of the complexities and interdependencies of the 

SDGs. 
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CHAPTER V. CONCLUSIONS AND WAYS FORWARD 

 

 
 The complex and interconnected nature of the world we live in permeates different scales, 

sectors or decision problems. This fact is acknowledged by the United Nations 2030 Agenda for 

Sustainable Development, which underscores current global challenges, recognizes their 

interconnectivity and calls for international action. However, established “silo” approaches in which 

different institutions, sectors, governments and international agencies operate have been perceived as a 

weakness towards a sustainable future. In this sense, it is widely recognized as well the need of a 

major shift in decision–making processes towards more holistic and integrated approaches. Evidence–

based decision–making involves complex processes of considering a wide range of information of 

different nature. Nowadays, available data can support these processes, but methodologies to 

effectively integrate these data are lacking.  

 This thesis has focused on the increasing use of Bayesian Networks modelling as an approach 

to accommodate complex problems and, ultimately, to support decision–making. Some of the features 

that characterize these models include, but not limited to, i) incorporating data and knowledge from 

different sources and domains, ii) estimating more accurately uncertainty, as the variables at hand are 

modeled by means of probability distributions, iii) computing automatically the probability of a 

particular hypothesis or scenario, and iv) obtaining the probability distribution of a variable given 

another (set of) variable(s), applying as well for the way round. 

 In practice, expert knowledge and empirical data to build and apply Bayesian Networks 

models are employed separately. Despite of the demonstrated utility of this practice, this dissertation 

has proposed a data–driven Bayesian Networks approach to combine expert opinion and quantitative 

data to support informed decision–making.  

 We have laid out the content of this thesis along a pair of interconnected research questions, 

both aimed at providing answers to the potential usefulness of the proposed approach to ultimately 

support decision–making. The first research question – how can be combined expert knowledge and 

data–driven Bayesian Network approaches? – deals with the development of a systematic 

methodology based on the replication of composite indicators–based conceptual frameworks, through 

the use of structure learning algorithms (implicit in BNs modelling). The second research question – to 

which extent are data–driven Bayesian Network approaches robust in capturing the complexities and 

interdependencies of a given context? – proposes a pure data–driven Bayesian Network approach, 

coupled with a statistical technique to reduce results uncertainty and with a comprehensive result 

robustness analysis. 

 Both approaches have been tested and validated taking the Sustainable Development Goal 6 as 

a reference point, with particular attention to the water, sanitation and hygiene sector. 

 Overall, this thesis offers systematic methods to combine qualitative and quantitative available 
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data and to deal with the identification of interlinkages associated with a complex context. Both 

contributions might expand the use of BNs modelling as a tool to support decision–making processes. 

Hereafter a summary of the main contributions is presented. In addition, the limitations of this 

research are detailed. Some directions for future research are pointed out at the end of this Chapter. 

 

 

5.1. MAIN CONCLUSIONS 
 
 The main conclusion of this thesis is that expert knowledge and quantitative data available 

complement each other. This idea might be far from being original, but it is the way in which both 

sources of information have been combined. We have taken a step forward the flexibility of Bayesian 

Networks modelling to deal with complex problems and from a data–driven approach. First, in 

Chapter III, we have demonstrated that the step–by–step methodology proposed is able to reproduce 

composite indicators (CI)–based conceptual frameworks that integrate a hierarchical structure. 

Furthermore, the results obtained reveal how expert knowledge (in terms of network structure) 

improves model inference capacity. Second, in Chapter IV, we demonstrated the robustness of the 

data–driven BNs approach for identifying indicator interlinkages. Although combining this analysis 

with an exhaustive literature review is expected for any research field, we provided an illustrative 

example on how to combine expert knowledge and the proposed approach. 

 The methodology proposed for combining expert knowledge and data to replicate 

hierarchical CI–based conceptual frameworks brings together further significant advantages. 

First, the models obtained allowed us to identify the key variables that explain the objective one (in 

this case, the general index of the selected conceptual framework). As detailed in Chapter III and as 

far the case study introduced, there are important difficulties in data collection for the member 

countries of the initiative assessed. Indeed, after ten years since it was launched, only one country has 

carried out a baseline of its rural communities, systems and service providers. The finding of key 

variables identification is then especially important when updating the required data. A direct 

consequence is translated into important savings, both in terms of time and economic resources. In 

addition to this identification, the flexibility of BNs permitted us as well to quantify, for each context 

assessed, to which extent the key variables might be improved as to reach a desirable value  associated 

with the general index of this initiative. Thus, this feature represents a useful starting point for 

planning purposes. 

 The proposed data–driven BNs approach is also able to identify the interdependencies of 

the variables that define complex contexts. We have applied and tested this feature to two different 

contexts which represent a significant spectrum for analysis, namely large dataset and discrete 

variables (Chapter III) and small dataset and continuous variables (Chapter IV). In both cases, and 

through the combination of structure learning algorithms (SLAs) and conditional independence (C–

Ind) tests, we have demonstrated the coherency of the results obtained. Interlinkages identification 
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makes this approach more suitable than the use of composite indicators. In this sense, using BNs might 

enhance multi– and trans–disciplinary actions. In addition, this BNs approach complements existing 

approximations and is needed to increase both the understanding and the interpretation of the 

complexities and interdependencies of the problem at hand. Further, and as an added value of this 

approach shown in Chapter IV, we identified linkages that were not reflected in the analytical brief 

taken as a reference, which have been positively contrasted against the existing literature. On the basis 

of the linkages identified, integrated planning and management can support decision–making, reduce 

investment costs and facilitate implementation of a number of strategies that are geared towards 

sustainable development. 

 This research might expand and deepen the knowledge about the validity, reliability and 

accuracy of using BNs modelling. One remarkable output of this thesis relies on the systematic 

nature of the methodological contributions. These are defined by step–by–step processes, making them 

self–explanatory. Specifically, we provided the guidance to pre–process the data of interest, to select 

and apply the proposed SLA, and to test and validate the obtained results. The case studies selected 

represent potential applications, but the contribution of this thesis goes beyond the application to a 

specific context. Therefore, the proposed methods can be applied to any field of interest. 

 The proposed approach includes as well some weaknesses. On the one hand, the method 

proposed in Chapter III is only applicable to composite indicator–based conceptual frameworks that 

integrate a hierarchical structure. Furthermore, although the overall results can be considered as 

positive, the desired goodness of the model was not fully achieved. On the other hand, when dealing 

with small datasets as illustrated in Chapter IV, there is a constraint associated with the sample size as 

to obtain robust results. In addition, this approach was not able to identify the cause–effect 

relationships, which might be of interest.  

 

 

5.2. LIMITATIONS OF THE RESEARCH 
 
 In addressing the research questions initially formulated, two key issues have impacted the 

extent of the research. 

 On the one hand, we ackowledge the reduced number of contexts studied within this thesis. 

For instance, we have not reproduced the analysis presented in Chapter III in other contexts (i.e. 

countries), which would be however of interest for providing a more general methodology. Similarly, 

we have not extended this research to compare the results of using, for example, a higher number of 

variable states. We are concerned that this aspect might be sensitive to the structure learning process 

(Alameddine et al., 2011). Furthermore, although having a lower number of variable states facilitates 

node CPTs management, it represents a potential loss of statistical accuracy (Chen and Pollino, 2012). 

As far as the analysis carried out in Chapter IV, it is important to emphasize the reduced nature of the 

dataset considered. In this context, and at the time of the study, existing data gaps for a number of 
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indicators and countries clearly limited the scope of the study and the lessons learnt. At present, 

however, there are several global initiatives that monitor different aspects of the development Agenda, 

yet a coherent framework is missing. To the extent that existing efforts expands to ensure harmonized 

and integrated monitoring of SDGs, increasing high–quality data availability, it is expected that a wide 

range of potential uses may emerge in relation to Bayesian Networks applications.   

 On the other hand, we acknowledge the lack of practical implementation associated with the 

proposed methodologies into the real–world. This thesis falls short of showing how the developed 

methodologies might be specifically applied in practice and integrated into existing decision–making 

processes. Indeed, despite the implementation of real–life case studies, they hardly suffice to give 

conclusive information on how are effectively used to improve decision–making. In practice, 

decision–making is related to the process by which the choice of an alternative among the available 

options is made, in order to solve a current or potential problem. Taking as a reference the model 

obtained in Chapter III, the following step would rely on validating the model with the potential 

stakeholders involved, specifically as regard the interlinkages identified based on the data. In this 

sense, it is remarkable that the graphical nature of network presentation facilitates this process and 

makes it easier to illustrate the impact of a range of different actions and strategies to stakeholders. 

Once this step is carried out, the features of BNs models could be exploited. As detailed, one of these 

advantages relies on the explicit representation of the uncertainty (i.e. results are given as a probability 

distribution). This allows decision makers to first estimate the chance that a specific intervention will 

have a particular effect, and then to investigate the consequences of their uncertainty. Due to the 

stochastic nature of BNs models, the outcomes produced are more flexible than those produced by 

deterministic approaches (e.g. a composite index). As a last step, results could then be analyzed for a 

range of scenarios and/or conditions, enabling decision makers to identify the combination of actions 

in which to direct their efforts for maximum impact. In addition to this reflection, it is noteworthy to 

mention that even if there is no need to be an expert in mathematics or statistics to use BNs, it is 

obviously beneficial to understand some of the general principles on which models are based, and to 

be aware of what is possible to do and what is not. In this sense, we acknowledge that the learning 

process for using BNs models is not trivial. This hinders to a certain extent its implementation in 

certain contexts, where resources are limited and stakeholders often lack capacities to profit from the 

BNs models once developed. 

   

 

5.3. THE WAY FORWARD 
  
 This thesis has proposed a data–driven Bayesian Networks approach to combine existing 

expert knowledge and data availability, as well as to identify the interdependencies of the context of 

interest. The overall aim of this proposal relies on the improvement of decision–making processes 

associated to inherent complexity of the problems at hand. For this purpose, we have provided 
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systematic methods that might expand the use the proposed approach. In this sense, we have tested the 

validity of the approach, as well as the robustness of the results obtained. We acknowledge that 

approach validation has not been exhaustive but provides the starting point for further exploration. 

Thus, the proposed way forward focuses on giving more light to validate the proposed data–driven 

Bayesian Networks approach and associated methods developed. 

 First, the proposed approach must be tested in further contexts. Besides the results 

presented in this research are considered as positive, more evidences as regards approach validity are 

required. We have applied the BNs approach to two specific case studies but the proposed methods 

can be applied to any field of interest. Due to the systematic nature of the proposed methods (i.e. 

defined by step–by–step processes), these are presented as self–explanatory. On the one hand, the 

method developed to replicate hierarchical CI–based frameworks might be applied to any context that 

includes similar characteristics. Furthermore, it would be suitable a further assessment that tests to 

which extend more hierarchical levels within the framework improves or not the inference capacity of 

the BN model. On the other hand, the method employed for interlinkages identification across the 

2030 Agenda for Sustainable Development might be focused on a different SDG of interest. In 

addition, and considering that the amount of data available is increasing, a more complete analysis can 

be done as missing information associated with SDG indicators is now available. Moreover, further 

analyses might be focused at sub–national level. Overall, the application of the proposed approach has 

been focused at national level. Despite the likely usefulness of the results obtained, we acknowledge 

that scaling down the analysis would be appropriate as decisions are taken by decentralized 

administrations. In fact, the 2030 Agenda resolution encourages each government to set “its own 

national targets guided by the global level of ambition but taking into account national circumstances” 

(United Nations General Assembly, 2015). As pointed out in previous Section, data are the raw 

material for the proposed data–driven BNs approach. Thus, the validity of their outputs is directly 

dependant on both data quality and quantity. From the existing efforts to increase high–quality data 

availability, we expect this line of research to be explored, as well as deepen on the potential uses that 

might emerge in relation to BNs applications.      

 Second, the proposal must be extended to work directly with the raw variables. Recalling 

the case study of Chapter III, the selected CI–based framework includes a general index, two partial 

indices, four dimensions and sixteen components. In this case, the raw variables refer to the list of 

single indicators that fed each component. As a result, a more complex framework with a new level of 

hierarchy would be obtained. Nevertheless, this new framework offers the possibility to exploit BNs 

features directly to the indicators in which decisions fall upon. At any context of analysis, the output 

might be translated into informed decisions to tackle the problem at hand. 

 Last but not least, both proposed methods might be merged into a single one. Specifically, 

a first step would rely on the identification of the interlinkages of the variables at hand (i.e. strong 

links), following the procedure detailed in Chapter IV. Then, these links are introduced automatically 
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as fixed ones when applying the method detailed in Chapter III. As detailed in this last Chapter, we 

developed a semi-automatic procedure (with manual decisions in one step of the method). Preliminary 

research on this line suggests that the manual decisions to make are reduced significantly. Recalling 

the case studies employed in this thesis, the combined method might be applied to the SIASAR 

conceptual framework, using as well the raw variables it comprises. In the case of the SDGs 

framework, it would be necessary to organize the indicators in a hierarchical way. A potential 

application might take as a starting point the development of an unofficial SDG Index (Sachs et al., 

2018).  By organizing the indicators it comprises in composites associated with SDG targets and goals, 

then it would be established the framework needed for replication.  

 These different lines of research suggest a potential way forward. 
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ANNEXES 
 
 

SUPPLEMENTARY FIGURES 

Figure A1. SDG indicators distributions (histograms) and associated normality check (Q–Q plot).  
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Continuation of Figure A1. 
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Continuation of Figure A1. 
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SUPPLEMENTARY TABLES 
 

Table A1. Dimensions, components and indicators (including corresponding survey questionnaire) within 

SIASAR conceptual framework. Source: Pérez-Foguet and Flores-Baquero (2015). 

Dimensions Components Indicators 

Water service level 

(WSL) 

Accessibility (ACC) 
Improved water supply coverage a 

Access time b 

Continuity (CON) Service hours per day b 

Seasonality (SEA) 

Water system  flow b 

Minimum water system  flow b 

Sufficient water during summer b 

Number of households a  

Quality (QUA) 
Physico–chemical quality b 

Bacteriological quality b 

Sanitation and 

hygiene service 

level (SHL) 

Sanitation service level (SSL) Improved sanitation coverage a 

Personal hygiene (PER) Hand–washing practice a 

Household hygiene (WAT) Household safety water management a 

Community hygiene (COM) 
Garbage and puddles presence a 

Open defecation a 

Water system 

infrastructure 

(WSI) 

System autonomy (AUT) 
Service days without production b 

Number of households a 

Production infrastructure (INF) 

Catchment area status b 

Conduction status b 

Storage status b 

Distribution status b 

Water catchment area protection (PRO) Catchment protection area status b 

Treatment system (TRE) 
Treatment system typology b 

Treatment system functionality b 

Service provision 

(SEP) 

Organization management (ORG) 

Legalization and directive structure c 

Ordinary operation c 

Equity within the organization c 

Economic management and 

accountability c 

Operation & maintenance management (OPM) 
O&M general assessment c 

Basic operation with chlorine b 

Economic management (ECO) 

Collection efficiency rate c  

Cost coverage rate c 

Liquid assets rate c 

Environmental management (ENV) 
Catchment attention measurements c 

Environmental sanitation promotion c 

(a) Community questionnaire, (b) System questionnaire, and (c) Service provision questionnaire. 
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Table A2. Aggregation to construct the different dimensions, partial indices and general index. 

 

Water and sanitation performance index for rural communities (WSP) 

        
  

     

     

            
 
   

   

 

WaSH service level index (WSHL) 

         
  

     

     

          
 
   

 

 

 

 

Water services sustainability index (WSSI) 

         
  

     

     

          
 
   

 

 

Water service level (WSL) 

           

     

     

 
                 

 
 

ACC – Accessibility 

CON – Continuity 

SEA – Seasonality 

QUA – Quality 

 
 

Water system infrastructure (WSI) 

           

     

     

 
                 

 
 

AUT – System autonomy 

INF – Production infrastructure 

PRO – Water catchment area protection 

TRE – Treatment system 

 

Sanitation and hygiene service level (SHL) 

           

     

     

 
                 

 
 

SSL – Sanitation service level 

PER – Personal hygiene 

WAT – Household hygiene 

COM – Community hygiene 

 

Service provision (SEP) 

           

     

     

 
                 

 
 

ORG – Organization management 

OPM – Operation & maintenance management 

ECO – Economic management 

ENV – Environmental management 
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Table A3. Variables distributions detailed numerically. 

 

NICARAGUA  HONDURAS 

  States (%)  States (%) 

Variables A B C D  A B C D 

Accessibility 23.1 41.5 21.4 14.0  42.1 44.2 10.2 3.5 

Continuity 56.9 14.5 11.7 16.9  79.5 4.4 10.8 5.3 

Seasonality 64.7 19.1 4.7 11.5  62.4 25.8 4.5 7.3 

Quality 63.3 6.9 1.2 28.6  12.8 6.8 0.2 80.2 

Sanitation service level 36.7 23.1 14.9 25.3  42.8 29.0 13.8 14.4 

Personal hygiene 30.4  --- 66.9 2.7  55.3 ---  43.2 1.5 

Household hygiene 39.2  --- 47.1 13.7  28.2  --- 46.3 25.5 

Community hygiene 10.1 30.0 36.7 23.2  20.8 30.1 37.2 11.9 

System autonomy 25.4 15.6 20.2 38.8  54.6 18.0 11.5 15.9 

Production infrastructure 54.5 32.6 7.8 5.1  61.9 29.2 4.2 4.7 

Water catchment protection 45.1 36.9 15.9 2.1  48.7 39.2 9.8 2.3 

Treatment system 53.7 6.5 9.9 29.9  23.7 1.0 30.5 44.8 

Organizational management 12.0 24.3 26.4 37.3  15.9 42.0 31.1 11.0 

O&M management 23.1 24.0 25.7 27.2  10.7 52.5 30.6 6.2 

Economic management 19.4 19.6 18.5 42.5  59.0 24.6 9.7 6.7 

Environmental management 55.0 26.8 11.5 6.7  56.4 35.8 6.0 1.8 

Mean 38.3 23.0 21.3 20.3  42.2 27.3 18.7 15.2 

Max 64.7 41.5 66.9 42.5  79.5 52.5 46.3 80.2 

Min 10.1 6.5 1.2 2.1  10.7 1.0 0.2 1.5 

 Water service level 44.0 36.9 16.1 3.0  15.1 63.1 20.2 1.6 

Sanitation and hygiene service level 17.1 32.4 41.1 9.4  20.7 40.3 34.2 4.8 

Water system infrastructure 35.9 39.1 22.4 2.6  31.3 51.6 14.7 2.4 

Service provision 12.4 36.6 40.4 10.6  24.5 60.2 13.2 2.1 

 WaSH service level 14.8 51.9 31.2 2.1  12.1 59.7 27.3 0.9 

Water services sustainability index  14.5 45.0 33.8 6.7  21.3 63.2 14.1 1.4 

 Wat. & San. service performance index 8.0 54.4 34.7 2.9  10.6 70.6 18.2 0.6 

 Mean 21.0 42.3 31.4 5.3  19.4 58.4 20.3 2.0 

Max 44.0 54.4 41.1 10.6  31.3 70.6 34.2 4.8 

Min 8.0 32.4 16.1 2.1  10.6 40.3 13.2 0.6 
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Table A4. Mean, median and interquartile range (IQR) values for the cases of Nicaragua (left) and Honduras 

(right). 

NICARAGUA 

 
mean median IQR 

ACC 0.57 0.60 0.30 

CON 0.70 1.00 0.67 

SEA 0.79 1.00 0.33 

QUA 0.68 1.00 1.00 

SSL 0.55 0.61 0.62 

PER 0.53 0.33 0.67 

WAT 0.55 0.33 0.67 

COM 0.44 0.33 0.33 

AUT 0.43 0.38 0.71 

INF 0.77 0.82 0.33 

PRO 0.75 0.67 0.33 

TRE 0.62 1.00 1.00 

ORG 0.38 0.37 0.50 

OPM 0.45 0.38 0.45 

ECO 0.38 0.33 0.67 

ENV 0.76 1.00 0.33 
 

HONDURAS 

 
mean median IQR 

ACC 0.72 0.67 0.41 

CON 0.75 0.83 0.00 

SEA 0.81 1.00 0.33 

QUA 0.17 0.00 0.00 

SSL 0.63 0.70 0.41 

PER 0.70 1.00 0.67 

WAT 0.44 0.33 1.00 

COM 0.51 0.50 0.33 

AUT 0.68 0.79 0.54 

INF 0.79 0.83 0.33 

PRO 0.78 0.67 0.33 

TRE 0.35 0.33 0.33 

ORG 0.51 0.50 0.29 

OPM 0.47 0.50 0.17 

ECO 0.76 0.88 0.36 

ENV 0.82 1.00 0.33 
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Table A5. Result bias against objective node “WS ” for the three scenarios considered and for the case of 

Nicaragua. 

Scenario “16+1” 

Input nodes  A (2.9%) B (34.7) C (54.4) D (8%) Method 

Data–driven 
10.8 13.0 -21.4 -2.4 mle 

16.4 -29.5 -9.1 22.2 bayes 

Lowest IQR 
11.3 10.9 -20.1 -2.1 mle 

16.4 -29.4 -8.9 21.9 bayes 

Highest IQR 
12.0 11.2 -20.9 -2.3 mle 

16.5 29.6 -24.5 -21.6 bayes 

Smart 
11.0 15.3 -23.6 -2.7 mle 

16.4 -29.2 -9.1 21.9 bayes 

All values are express in percentage. 

“WS ” node is taking as a reference. 

 

 Scenario “16+2+1” 

Input nodes A (2.9%) B (34.7) C (54.4) D (8%) Method 

Data–driven 
-1.2 14.2 -10.4 -2.6 mle 

0.8 -6.7 3.3 2.6 bayes 

Lowest IQR 
-1.2 12.6 -8.9 -2.5 mle 

0.9 -8.7 4.5 3.3 bayes 

Highest IQR 

-2.0 11.7 -7.3 -2.4 mle 

-0.3 

(-2.7) 

-3.4 

(-9.3) 

2.1 

(17.0) 

1.6 

(-5.0) 
bayes 

Smart 

-1.5 11.9 -8.0 -2.4 mle 

-0.2 

(2.6) 

-3.6 

(-9.7) 

2.1 

(2.0) 

1.7 

(5.1) 
bayes 

All values are express in percentage. 

“WS ” node is taking as a reference. 

In brackets, biases obtained when using the test dataset for network validation. 

 

 Scenario “16+4+2+1” 

 Input nodes A B C D Method 

Data–driven 
-3.8 7.5 -1.7 -2.0 mle 

-3.7 6.4 -0.9 -1.8 bayes 

Lowest IQR 

-3.8 6.3 -0.6 -1.9 mle 

-3.7 

(-2.5) 

5.4 

(2.8) 

-0.2 

(0.8) 

-1.5 

(-1.1) 
bayes 

Highest IQR 
-4.3 7.4 -1.2 -1.9 mle 

-4.0 6.8 -1.1 -1.7 bayes 

Smart 

-4.0 6.9 -1.0 -1.9 mle 

-3.9 

(-2.9) 

5.9 

(2.9) 

-0.3 

(1.1) 

-1.7 

(-1.1) 
bayes 

All values are express in percentage. 

“WS ” node is taking as a reference. 

In brackets, biases obtained when using the test dataset for network validation. 
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Table A6. Result bias applying Honduras database to Nicaragua final network. General index, partial indices 

and dimensions are considered for the comparison. 

 Nodes A B C D 

Wat. & San. service performance index (WSP) -3.6 -3.2 7.0* -0.2 

WaSH service level (WSHL) 6.6* -0.7 -5.6* -0.3 

Water services sustainability index (WSSI) -9.4 -7.1* 15.8* 0.7 

Water service level (WSL) 36.0* -27.0* -9.1* 0.1 

Sanitation and hygiene service level (SHL) -0.1 -1.8 4.2 -2.3 

Water system infrastructure (WSI) 5.5* -8.1* 3.3 -0.7 

Service provision (SEP) -13.2* -16.4* 28.8* 0.8 

Values are express as percentages, taking as a reference the IS distributions of each node. 

* Errors higher than 5% threshold established. 
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Table A7. Result bias in relation to “WS ” node for the case of Honduras. 

Scenario “16+1” 

Input nodes  A (10.6%) B (70.6%) C (18.2%) D (0.6%) Method 

Data–driven 
-0.2 15.7 -14.7 -0.8 mle 

13.6 -42.9 6.2 23.1 bayes 

Lowest IQR 
-1.6 17.2 -14.8 -0.8 mle 

13.8 -43.4 6.4 23.2 bayes 

Highest IQR 
-1.5 16.8 -14.5 -0.8 mle 

13.6 -42.5 5.9 23.0 bayes 

Smart 
0.3 15.8 -15.3 -0.8 mle 

13.4 -42.7 6.3 23.0 bayes 

All values are express in percentage. 

“WS ” node is taking as a reference. 

 

 Scenario “16+2+1” 

Input nodes  A (10.6%) B (70.6%) C (18.2%) D (0.6%) Method 

Data–driven 
-2.2 11.2 -8.2 -0.8 mle 

-1.2 -9.9 8.2 2.9 bayes 

Lowest IQR 

-3.6 11.0 -6.6 -0.8 mle 

-2.2 

(-0.9) 

-3.2 

(-6.5) 

4.2 

(4.5) 

1.2 

(2.9) 
bayes 

Highest IQR 
-2.6 11.7 -8.3 -0.8 mle 

-1.5 -9.3 8.0 2.8 bayes 

Smart 
-2.9 11.7 -8.0 -0.8 mle 

-1.6 -6.2 5.8 2.0 bayes 

All values are express in percentage. 

“WS ” node is taking as a reference. 

In brackets, biases obtained when using the test dataset for network validation. 

 

 Scenario “16+4+2+1” 

Input nodes A B C D Method 

Data–driven 
-3.6 7.4 -3.1 -0.7 mle 

-3.5 6.1 -2.1 -0.5 bayes 

Lowest IQR 

-3.5 7.3 -3.1 -0.7 mle 

-3.6 

(-3.4) 

6.5 

(5.9) 

-2.3 

(-2.6) 

-0.6 

(0.1) 
bayes 

Highest IQR 

-3.7 7.6 -3.2 -0.7 mle 

-3.7 

(-3.5) 

6.7 

(6.2) 

-2.4 

(-2.8) 

-0.6 

(0.1) 
bayes 

Smart 

-3.4 7.2 -3.1 -0.7 mle 

-3.5 

(-3.4) 

6.1 

(5.5) 

-2.1 

(-2.2) 

-0.5 

(0.1) 
bayes 

All values are express in percentage. 

“WS ” node is taking as a reference. 

In brackets, biases obtained when using the test dataset for network validation. 
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Table A8. Evolution of the identification of strong links within the different country samples generated. 

Links  
Repetitiveness (%) 

n=175 n=160 n=145 n=130 n=115 n=100 n=85 

3.1.1 3.9.2 100 97 80 63 55 53 40 

3.2.1 3.9.2 100 100 99 97 83 63 38 

5.5.2 6.4.2 99 65 51 38 22 17 8 

6.1.1 7.1.1 97 73 57 41 39 29 31 

6.4.2 15.1.1 100 81 58 34 23 23 8 

6.a.1 6.4.1 100 83 72 58 38 40 22 

6.a.1 10.1.1 70 42 44 22 16 11 9 

7.1.1 1.1.1 100 100 98 92 78 70 50 

7.1.2 3.9.1 100 100 100 100 100 100 100 

7.1.2 7.2.1 82 44 40 33 18 10 15 

9.4.1 7.2.1 96 77 55 38 25 18 10 

9.4.1 9.1.2 100 100 100 100 100 100 99 

11.6.2 5.5.2 100 96 85 58 50 39 23 

12.2.2 9.1.2 100 100 100 100 100 100 100 

14.4.1 15.1.2.2 100 100 93 75 51 54 31 

15.1.1 15.4.2 98 79 57 35 25 16 14 

15.1.2.2 15.1.2.1 100 100 100 100 100 100 98 

15.1.2.2 15.4.1 100 100 100 100 100 100 100 

In bold, those interlinkages associated with SDG–6 indicators. 
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Table A9. Disaggregated identification of all strong links identified for the different country samples. 

from to n=175 n=160 n=145 n=130 n=115 n=100 n=85 

3.9.2 3.1.1 58 
100 

 

46 
97 

45 
80 

44 
63 

40 
55 

32 
43 

38 
40 

3.1.1 3.9.2 42 51 35 19 15 11 2 

3.2.1 3.9.2 100 
100 

 

96 
100 

81 
99 

56 
97 

45 
83 

23 
63 

4 
38 

3.9.2 3.2.1 0 4 18 41 38 40 34 

5.5.2 6.4.2 90 
99 

 

56 
65 

35 
51 

33 
38 

16 
22 

13 
17 

6 
8 

6.4.2 5.5.2 9 9 16 5 6 4 2 

6.1.1 7.1.1 87 
97 

 

47 
73 

29 
57 

16 
41 

12 
39 

9 
29 

11 
31 

7.1.1 6.1.1 10 26 28 25 27 20 20 

6.4.2 15.1.1 100 
100 

 

81 
81 

58 
58 

34 
34 

22 
23 

23 
23 

6 
8 

15.1.1 6.4.2 0 0 0 0 1 0 2 

6.a.1 6.4.1 100 
100 

 

83 
83 

72 
72 

57 
58 

38 
38 

40 
40 

21 
22 

6.4.1 6.a.1 0 0 0 1 0 0 1 

6.a.1 10.1.1 70 
70 

 

42 
42 

43 
44 

20 
22 

15 
16 

10 
11 

8 
9 

10.1.1 6.a.1 0 0 1 2 1 1 1 

7.1.1 1.1.1 100 
100 

 

100 
100 

98 
98 

92 
92 

78 
78 

69 
70 

48 
50 

1.1.1 7.1.1 0 0 0 0 0 1 2 

7.1.2 3.9.1 100 
100 

 

100 
100 

100 
100 

98 
100 

100 
100 

97 
100 

97 
100 

3.9.1 7.1.2 0 0 0 2 0 3 3 

7.2.1 7.1.2 32 
82 

 

12 
44 

9 
40 

9 
33 

7 
18 

0 
10 

2 
15 

7.1.2 7.2.1 50 32 31 24 11 10 13 

9.4.1 7.2.1 94 
96 

 

60 
77 

34 
55 

18 
38 

8 
25 

4 
18 

2 
10 

7.2.1 9.4.1 2 17 21 20 17 14 8 

9.4.1 9.1.2 97 
100 

 

95 
100 

92 
100 

90 
100 

89 
100 

85 
100 

81 
99 

9.1.2 9.4.1 3 5 8 10 11 15 18 

11.6.2 5.5.2 100 
100 

 

95 
96 

85 
85 

56 
58 

49 
50 

35 
39 

20 
23 

5.5.2 11.6.2 0 1 0 2 1 4 3 

12.2.2 9.1.2 100 
100 

 

97 
100 

95 
100 

88 
100 

83 
100 

77 
100 

70 
100 

9.1.2 12.2.2 0 3 5 12 17 23 30 

14.4.1 15.1.2.2 72 
100 

 

50 
100 

38 
93 

23 
75 

19 
51 

12 
54 

10 
31 

15.1.2.2 14.4.1 28 50 55 52 32 42 21 

15.1.1 15.4.2 66 
98 

 

51 
79 

36 
57 

25 
35 

17 
25 

9 
16 

9 
14 

15.4.2 15.1.1 32 28 21 10 8 7 5 

15.1.2.2 15.1.2.1 99 
100 

 

94 
100 

91 
100 

93 
100 

94 
100 

88 
100 

80 
98 

15.1.2.1 15.1.2.2 1 6 9 7 6 12 18 

15.1.2.2 15.4.1 100 
100 

 

100 
100 

100 
100 

100 
100 

100 
100 

97 
100 

94 
100 

15.4.1 15.1.2.2 0 0 0 0 0 3 6 
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Table A10. Values related to the strength of the links (arc strength) and their direction. 

from to 
arc strength (direction) 

n=175 n=160 n=145 n=130 n=115 n=100 n=85 

3.9.2 3.1.1 0.93 (0.52) 0.91 (0.53) 0.90 (0.54) 0.91 (0.55) 0.91 (0.56) 0.89 (0.57) 0.90 (0.59) 

3.1.1 3.9.2 0.92 (0.51) 0.90 (0.52) 0.90 (0.52) 0.89 (0.53) 0.89 (0.54) 0.91 (0.53) 0.89 (0.54) 

3.2.1 3.9.2 0.99 (0.56) 0.97 (0.56) 0.94 (0.55) 0.92 (0.54) 0.90 (0.54) 0.88 (0.53) 0.88 (0.52) 

3.9.2 3.2.1 — 0.99 (0.51) 0.96 (0.52) 0.94 (0.52) 0.93 (0.54) 0.91 (0.56) 0.88 (0.57) 

5.5.2 6.4.2 0.86 (0.54) 0.87 (0.56) 0.86 (0.56) 0.87 (0.56) 0.89 (0.55) 0.88 (0.55) 0.91 (0.54) 

6.4.2 5.5.2 0.85 (0.51) 0.87 (0.52) 0.87 (0.53) 0.87 (0.54) 0.88 (0.53) 0.84 (0.53) 0.87 (0.52) 

6.1.1 7.1.1 0.86 (0.53) 0.86 (0.53) 0.91 (0.53) 0.88 (0.53) 0.88 (0.53) 0.90 (0.53) 0.87 (0.54) 

7.1.1 6.1.1 0.87 (0.52) 0.86 (0.53) 0.88 (0.54) 0.89 (0.55) 0.91 (0.55) 0.89 (0.55) 0.90 (0.55) 

6.4.2 15.1.1 0.88 (0.66) 0.87 (0.66) 0.87 (0.65) 0.86 (0.63) 0.87 (0.63) 0.87 (0.61) 0.84 (0.55) 

15.1.1 6.4.2 — — — — 0.83 (0.55)  — 0.86 (0.52) 

6.a.1 6.4.1 0.90 (0.70) 0.89 (0.69) 0.89 (0.68) 0.89 (0.67) 0.87 (0.67) 0.88 (0.65) 0.87 (0.66) 

6.4.1 6.a.1 — — — 0.81 (0.51) — — 0.88 (0.51) 

6.a.1 10.1.1 0.84 (0.69) 0.85 (0.66) 0.85 (0.66) 0.86 (0.64) 0.86 (0.64) 0.84 (0.61) 0.86 (0.57) 

10.1.1 6.a.1 — — 0.80 (0.51) 0.91 (0.55) 0.97 (0.56) 0.82 (0.52) 0.85 (0.51) 

7.1.1 1.1.1 0.98 (0.62) 0.97 (0.61) 0.95 (0.61) 0.94 (0.61) 0.93 (0.61) 0.91 (0.59) 0.91 (0.62) 

1.1.1 7.1.1 — — — — — 1.00 (0.51) 0.93 (0.53) 

7.1.2 3.9.1 1.00 (0.60) 1.00 (0.61) 0.99 (0.62) 0.99 (0.62) 0.99 (0.62) 1.00 (0.62) 0.99 (0.62) 

3.9.1 7.1.2 — — — 0.99 (0.54)  — 1.00 (0.53) 0.99 (0.54) 

7.2.1 7.1.2 
0.84  

(0.52) 
0.83 (0.52) 0.89 (0.55) 0.87 (0.54) 0.88 (0.54)  — 0.96 (0.56) 

7.1.2 7.2.1 0.84 (0.59) 0.86 (0.54) 0.87 (0.55) 0.86 (0.57) 0.87 (0.57) 0.87 (0.60) 0.89 (0.59) 

9.4.1 7.2.1 0.88 (0.58) 0.86 (0.60) 0.85 (0.60) 0.85 (0.61) 0.86 (0.57) 0.91 (0.59) 0.84 (0.59) 

7.2.1 9.4.1 0.88 (0.52) 0.88 (0.53) 0.86 (0.60) 0.86 (0.57) 0.86 (0.57) 0.85 (0.60) 0.87 (0.58) 

9.4.1 9.1.2 1.00 (0.55) 1.00 (0.56) 0.99 (0.57) 0.99 (0.58) 0.99 (0.59) 0.99 (0.59) 0.98 (0.59) 

9.1.2 9.4.1 1.00 (0.51) 1.00 (0.51) 0.99 (0.52) 0.99 (0.52) 0.99 (0.52) 0.99 (0.52) 0.97 (0.53) 

11.6.2 5.5.2 0.94 (0.61) 0.91 (0.60) 0.90 (0.59) 0.91 (0.58) 0.88 (0.60) 0.88 (0.58) 0.89 (0.56) 

5.5.2 11.6.2  — 0.89 (0.51)  — 0.85 (0.53) 0.91 (0.51) 0.91 (0.52) 0.87 (0.52) 

12.2.2 9.1.2 0.99 (0.58) 1.00 (0.58) 0.99 (0.58) 0.99 (0.57) 0.99 (0.57) 0.99 (0.58) 0.98 (0.57) 

9.1.2 12.2.2  — 1.00 (0.51) 0.99 (0.52) 0.99 (0.52) 0.99 (0.53) 0.99 (0.54) 0.97 (0.54) 

14.4.1 15.1.2.2 0.95 (0.53) 0.92 (0.52) 0.91 (0.53) 0.89 (0.54) 0.88 (0.53) 0.89 (0.55) 0.87 (0.53) 

15.1.2.2 14.4.1 0.95 (0.51) 0.94 (0.53) 0.93 (0.54) 0.92 (0.55) 0.92 (0.55) 0.91 (0.57) 0.90 (0.57) 

15.1.1 15.4.2 0.88 (0.53) 0.87 (0.54) 0.88 (0.55) 0.87 (0.56) 0.87 (0.57) 0.85 (0.54) 0.88 (0.56) 

15.4.2 15.1.1 0.89 (0.52) 0.88 (0.51) 0.87 (0.53) 0.90 (0.54) 0.88 (0.53) 0.91 (0.53) 0.90 (0.53) 

15.1.2.2 15.1.2.1 1.00 (0.57) 1.00 (0.57) 1.00 (0.59) 1.00 (0.58) 0.99 (0.58) 0.99 (0.58) 0.97 (0.58) 

15.1.2.1 15.1.2.2 1.00 (0.52) 1.00 (0.53) 1.00 (0.53) 1.00 (0.54) 0.99 (0.52) 0.97 (0.52) 0.98 (0.53) 

15.1.2.2 15.4.1 1.00 (0.73) 1.00 (0.71) 1.00 (0.69) 1.00 (0.67) 0.99 (0.66) 1.00 (0.65) 0.99 (0.62) 

15.4.1 15.1.2.2  —  —  —  —  — 1.00 (0.55) 0.99 (0.52) 
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Table A11. Overall interlinkages identified in relation to SDG–6 indicators for the different country samples generated. 

SDG6–related links identified 
Repetitiveness (%) 

n=175 n=160 n=145 n=130 n=115 n=100 n=85 

3.9.2  

(mortality rate due to 

unsafe WaSH) 

3.1.1 Maternal mortality ratio 100 100 100 86 91 90 83 

3.2.1 Infant mortality rate 100 100 100 100 100 98 88 

3.3.5 People requiring interventions against NTD 100 99 94 89 76 70 65 

6.2.1 Population using AT LEAST BASIC sanitation services 100 98 84 86 65 69 55 

7.2.1 Renewable energy share in total final energy consumption 85 51 42 28 32 28 29 

6.1.1 

(basic drinking water) 

6.2.1 Population using AT LEAST BASIC sanitation services 99 87 70 68 63 60 50 

7.1.1 Population with access to electricity 100 100 100 96 95 82 80 

6.2.1 

(basic sanitation) 

3.8.1 Universal health coverage (UHC) 84 80 74 63 60 57 53 

3.9.2 Mortality rate attributed to unsafe WaSH 100 98 84 86 65 69 55 

6.1.1 Population using AT LEAST BASIC drinking water services 99 87 70 68 63 60 50 

7.1.2 Population with primary reliance on clean fuels and tech. 94 64 60 59 51 50 47 

6.4.1 

(water–use efficiency) 
3.8.1 Universal health coverage (UHC) 63 49 27 30 24 29 21 

6.5.1 Degree of IWRM implementation 89 62 52 38 38 32 30 

6.a.1 Total official development assistance (ODA) 100 100 100 99 95 96 87 

8.1.1 Annual growth rate of real GDP per capita 97 78 62 59 44 33 25 

6.4.2 

(freshwater 

withdrawal) 

5.5.2 Proportion of women in managerial positions 100 100 99 97 94 84 68 

7.2.1 Renewable energy share in the total final energy consumption 62 49 56 51 46 47 48 

15.1.1 Forest area as a proportion of total land area 100 100 97 94 91 91 74 

6.5.1 

(IWRM) 

6.4.1 Water–Use Efficiency 62 52 38 38 32 30 62 

10.1.1 Growth rates of household expenditure (bottom 40% pop.) 63 46 30 27 27 21 63 

15.1.2.2 Average proportion of KBAs covered by protected areas 83 69 62 53 46 37 83 

6.a.1 

(cooperation and 

capacity building) 

3.1.1 Maternal mortality ratio 83 67 63 52 51 38 83 

3.3.5 People requiring interventions against NTD 66 71 60 58 49 51 66 

6.4.1 Water–Use Efficiency 100 100 99 95 96 87 100 

10.1.1 Growth rates of household expenditure (bottom 40% pop.) 98 93 88 78 65 57 98 

11.6.1 Municipal Solid Waste collection coverage 47 35 36 32 30 23 47 

12.2.1 Material footprint per capita – raw material – 98 94 82 82 61 55 98 

In bold, those interlinkages identified as strong ones. 
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Table A12. Contingency tables associated with SDG–6 interlinkages identified (3.9.2 indicator is included as 

well). Results are obtained from the 179 countries considered within this study. 

 

SDG 3.9.2: Mortality rate attributed to unsafe water, unsafe sanitation and lack of hygiene 

 3.1.1 

3.9.2 0-20 21-40 41-60 61-80 81-100 

0-20 24 10 0 0 0 

21-40 1 23 1 0 0 

41-60 0 8 11 5 0 

61-80 0 2 19 11 3 

81-100 1 0 5 20 35 

Σ 26 43 36 36 38 
 

 3.2.1 

3.9.2 0-20 21-40 41-60 61-80 81-100 

0-20 5 10 16 3 0 

21-40 0 2 10 13 0 

41-60 0 0 2 11 11 

61-80 0 0 0 2 33 

81-100 0 0 0 0 61 

Σ 5 12 28 29 105 
 

 

 3.3.5 

3.9.2 0-20 21-40 41-60 61-80 81-100 

0-20 24 10 0 0 0 

21-40 15 10 0 0 0 

41-60 2 16 2 3 1 

61-80 3 11 9 5 7 

81-100 0 1 10 20 30 

Σ 44 48 21 28 38 
 

 

 6.2.1 

3.9.2 0-20 21-40 41-60 61-80 81-100 

0-20 13 14 7 0 0 

21-40 2 5 12 6 0 

41-60 0 1 1 9 13 

61-80 0 0 1 2 32 

81-100 0 0 0 2 59 

Σ 15 20 21 19 104 
 

 

 7.1.2 

3.9.2 0-20 21-40 41-60 61-80 81-100 

0-20 28 3 3 0 0 

21-40 10 6 5 3 1 

41-60 1 1 5 6 11 

61-80 0 2 3 4 26 

81-100 0 0 0 5 56 

Σ 39 12 16 18 94 
 

 

 

SDG 6.1.1: Proportion of population using AT LEAST BASIC drinking water services 

 6.2.1 

6.1.1 0-20 21-40 41-60 61-80 81-100 

0-20 1 0 0 0 0 

21-40 3 0 0 0 0 

41-60 6 7 1 2 0 

61-80 5 12 11 1 1 

81-100 0 1 9 16 103 

Σ 15 20 21 19 104 
 

 7.1.1 

6.1.1 0-20 21-40 41-60 61-80 81-100 

0-20 0 0 1 0 0 

21-40 0 2 1 0 0 

41-60 7 6 2 1 0 

61-80 3 6 10 9 2 

81-100 0 0 2 2 125 

Σ 10 14 16 12 127 
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Continuation of Table A12. 

SDG 6.2.1: Proportion of population using AT LEAST BASIC sanitation services 

 3.8.1 

6.2.1 0-20 21-40 41-60 61-80 81-100 

0-20 0 10 5 0 0 

21-40 0 9 11 0 0 

41-60 0 3 17 1 0 

61-80 0 0 8 11 0 

81-100 0 0 6 80 18 

Σ 0 22 47 92 18 
 

 3.9.2 

6.2.1 0-20 21-40 41-60 61-80 81-100 

0-20 13 2 0 0 0 

21-40 14 5 1 0 0 

41-60 7 12 1 1 0 

61-80 0 6 9 2 2 

81-100 0 0 13 32 59 

Σ 34 25 24 35 61 
 

 

 6.1.1 

6.2.1 0-20 21-40 41-60 61-80 81-100 

0-20 1 3 6 5 0 

21-40 0 0 7 12 1 

41-60 0 0 1 11 9 

61-80 0 0 2 1 16 

81-100 0 0 0 1 103 

Σ 1 3 16 30 129 
 

 

 7.1.2 

6.2.1 0-20 21-40 41-60 61-80 81-100 

0-20 13 2 0 0 0 

21-40 14 3 3 0 0 

41-60 9 3 5 4 0 

61-80 3 1 7 3 5 

81-100 0 3 1 11 89 

Σ 39 12 16 18 94 
 

 

SDG 6.4.1: Water–Use Efficiency 

 3.8.1 

6.4.1 0-20 21-40 41-60 61-80 81-100 

0-20 0 0 1 2 4 

21-40 0 2 2 26 10 

41-60 0 7 20 48 4 

61-80 0 10 22 12 0 

81-100 0 3 2 4 0 

Σ 0 22 47 92 18 
 

 6.5.1 

6.4.1 0-20 21-40 41-60 61-80 81-100 

0-20 0 1 0 2 4 

21-40 1 10 10 9 10 

41-60 3 35 23 17 1 

61-80 2 24 14 4 0 

81-100 2 5 2 0 0 

Σ 8 75 49 32 15 
 

 

 6.a.1 

6.4.1 0-20 21-40 41-60 61-80 81-100 

0-20 6 0 0 0 1 

21-40 30 1 3 6 0 

41-60 14 5 5 33 22 

61-80 1 0 5 17 21 

81-100 0 0 0 4 5 

Σ 51 6 13 60 49 
 

 

 8.1.1 

6.4.1 0-20 21-40 41-60 61-80 81-100 

0-20 1 0 1 5 0 

21-40 0 0 11 28 1 

41-60 2 1 20 55 1 

61-80 0 1 14 26 3 

81-100 0 0 0 9 0 

Σ 3 2 46 123 5 
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Continuation of Table A12. 

SDG 6.4.2: Level of water stress 

 5.5.2 

6.4.2 0-20 21-40 41-60 61-80 81-100 

0-20 14 6 1 0 0 

21-40 1 1 0 0 0 

41-60 3 11 0 0 0 

61-80 3 15 3 0 0 

81-100 9 95 17 0 0 

Σ 30 128 21 0 0 
 

 7.2.1 

6.4.2 0-20 21-40 41-60 61-80 81-100 

0-20 19 0 1 1 0 

21-40 1 0 1 0 0 

41-60 12 2 0 0 0 

61-80 15 3 1 1 1 

81-100 31 35 19 20 16 

Σ 78 40 22 22 17 
 

 

 15.1.1 

6.4.2 0-20 21-40 41-60 61-80 81-100 

0-20 21 0 0 0 0 

21-40 2 0 0 0 0 

41-60 6 6 1 1 0 

61-80 7 12 1 1 0 

81-100 33 32 35 16 5 

Σ 69 50 37 18 5 
 

 

SDG 6.5.1: Degree of integrated water resources management implementation 

 6.4.1 

6.5.1 0-20 21-40 41-60 61-80 81-100 

0-20 0 1 3 2 2 

21-40 1 10 35 24 5 

41-60 0 10 23 14 2 

61-80 2 9 17 4 0 

81-100 4 10 1 0 0 

Σ 7 40 79 44 9 
 

 10.1.1 

6.5.1 0-20 21-40 41-60 61-80 81-100 

0-20 0 0 0 8 0 

21-40 0 0 11 53 11 

41-60 0 0 15 31 3 

61-80 0 2 12 16 2 

81-100 1 1 10 3 0 

Σ 1 3 48 111 16 
 

 

 15.1.2.2 

6.5.1 0-20 21-40 41-60 61-80 81-100 

0-20 2 2 2 1 1 

21-40 19 28 14 10 4 

41-60 9 15 15 6 4 

61-80 4 7 4 6 11 

81-100 0 2 5 5 3 

Σ 34 54 40 28 23 
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Continuation of Table A12. 

SDG 6.a.1: Total official development assistance for water supply and sanitation 

 3.1.1 

6.a.1 0-20 21-40 41-60 61-80 81-100 

0-20 0 1 1 14 35 

21-40 0 0 4 2 0 

41-60 3 2 4 4 0 

61-80 13 20 18 6 3 

81-100 10 20 9 10 0 

Σ 26 43 36 36 38 
 

 3.3.5 

6.a.1 0-20 21-40 41-60 61-80 81-100 

0-20 0 1 6 19 25 

21-40 0 2 0 4 0 

41-60 0 6 6 0 1 

61-80 15 28 6 2 9 

81-100 29 11 3 3 3 

Σ 44 48 21 28 38 
 

 

 6.4.1 

6.a.1 0-20 21-40 41-60 61-80 81-100 

0-20 6 30 14 1 0 

21-40 0 1 5 0 0 

41-60 0 3 5 5 0 

61-80 0 6 33 17 4 

81-100 1 0 22 21 5 

Σ 7 40 79 44 9 
 

 

 10.1.1 

6.a.1 0-20 21-40 41-60 61-80 81-100 

0-20 1 2 35 13 0 

21-40 0 0 0 6 0 

41-60 0 0 0 11 2 

61-80 0 1 7 43 9 

81-100 0 0 6 38 5 

Σ 1 3 48 111 16 
 

 

 11.6.1 

6.a.1 0-20 21-40 41-60 61-80 81-100 

0-20 0 0 1 2 48 

21-40 0 0 0 4 2 

41-60 0 2 1 9 1 

61-80 3 16 4 28 9 

81-100 2 13 5 24 5 

Σ 5 31 11 67 65 
 

 

 12.2.1 

6.a.1 0-20 21-40 41-60 61-80 81-100 

0-20 16 34 1 0 0 

21-40 0 6 0 0 0 

41-60 2 7 4 0 0 

61-80 2 30 20 7 1 

81-100 0 10 33 6 0 

Σ 20 87 58 13 1 
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Table A13. Further contingency tables associated with SDG–6 indirect interlinkages identified. Results are 

obtained from the 179 countries considered within this study. 

 9.4.1 

6.4.2 0-20 21-40 41-60 61-80 81-100 

0-20 0 3 13 5 0 

21-40 0 0 0 2 0 

41-60 1 5 4 3 1 

61-80 2 6 6 7 0 

81-100 1 9 33 64 14 

Σ 4 23 56 81 15 
 

 16.5.2 

6.4.2 0-20 21-40 41-60 61-80 81-100 

0-20 0 1 0 6 14 

21-40 0 0 0 1 1 

41-60 0 0 2 3 9 

61-80 0 0 0 3 18 

81-100 0 1 9 36 75 

Σ 0 2 11 49 117 
 

 

 14.5.1 

6.4.2 0-20 21-40 41-60 61-80 81-100 

0-20 8 8 2 2 1 

21-40 2 0 0 0 0 

41-60 2 4 1 2 5 

61-80 7 2 4 4 4 

81-100 44 22 28 15 12 

Σ 63 36 35 23 22 
 

 

 15.4.2 

6.4.2 0-20 21-40 41-60 61-80 81-100 

0-20 3 5 3 7 3 

21-40 0 1 0 0 1 

41-60 0 1 1 1 11 

61-80 0 0 3 2 16 

81-100 3 3 4 16 95 

Σ 6 10 11 26 126 
 



 

 
 

 

 
 

 

 


