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Abstract

Undoubtedly, spectrum scarcity constitutes the main bottleneck of current wire-
less networks. It is therefore imperative to move beyond the sub-6 GHz band in
order to overcome this limitation. Toward this direction, terahertz (THz) commu-
nication is deemed a promising solution for future wireless systems owing to the
abundant spectrum resources at these frequencies. Despite the prospect of terabit-
per-second wireless links, THz signals suffer from severe propagation losses, which
can undermine the communication range and performance of THz systems. In this
dissertation, we tackle this challenge by putting forward two key physical layer tech-
nologies, namely massive multiple-input multiple-output (MIMO) and intelligent
reflecting surfaces (IRSs).

More particularly, this dissertation consists of two parts. In the first part, we
thoroughly study the spatial-wideband effect in THz massive MIMO. We commence
by demonstrating that conventional narrowband beamforming/combining leads to
substantial performance degradation for large antenna arrays and high transmission
bandwidths. With this in mind, we propose a wideband array architecture based on
true-time-delay and virtual subarrays. For the channel estimation problem, we in-
troduce a wideband dictionary along with a novel variant of the orthogonal matching
pursuit algorithm. Numerical simulations are provided showcasing that the proposed
design enables: i) nearly squint-free beamforming/combining with a small number
of true-time-delay elements; and ii) accurate channel acquisition with reduced pilot
overhead even in the low signal-to-noise-ratio regime.

In the second part, we focus on the fundamentals of IRSs at THz frequencies.
Specifically, we show that an IRS has the potential to improve the energy efficiency
of THz MIMO, when it is placed close to one of the link ends. As a result, electri-
cally large IRSs are expected to operate in the radiating near-field zone, where the
spherical wavefront of the emitted electromagnetic (EM) waves cannot be neglected.
To this end, we introduce a spherical wave channel model by leveraging EM theory,
which includes far-field as special case. Furthermore, we discuss the importance of
using EM principles to characterize the path loss of IRS-aided links, as simplistic
models may wrongly estimate the link budget and actual system performance. Our
analysis reveals that: i) conventional far-field beamforming is highly suboptimal in
terms of power gain, and hence beamfocusing is the optimal mode of operation for
THz IRSs; and ii) frequency-dependent beamfocusing is required in wideband THz
transmissions, as beam squint can substantially reduce the achievable data rate.
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Mathematical Notation

Notation Description

C Set of complex numbers
a Scalar

a Vector

A Matrix (or vector field)

A Set

A† Pseudoinverse of A

AT Transpose of A

AH Conjugate transpose of A

‖a‖ l2-norm of a

‖a‖1 l1-norm of a

F{·} Continuous-time Fourier transform

a ∼ CN (µ,Σ) Complex Gaussian vector with mean µ and covariance matrix Σ

sinc(x) = sin(x)
x Sinc function

DN (x) = sin(Nx/2)
N sin(x/2) Dirichlet sinc function

erf(x) = 2√
π

∫ x
0 e
−t2dt Error function
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1 Introduction

1.1 Motivation

Spectrum scarcity is the main bottleneck of current cellular networks operating in
the sub-6 GHz band, which limits the peak data rate to a few hundred Megabits
per second [1]. To satisfy the ever-increasing demand for massive and broadband
wireless connectivity, 5G communication systems will utilize also the millimeter
wave (mmWave) band, potentially boosting the peak data rate to 10 Gigabits per
second [2]. To overcome future capacity limitations, the Wireless Industry turns
to the terahertz (THz) band (0.1-10 THz), which is widely deemed the next fron-
tier for beyond-5G networks due to the enormous bandwidths1 available at these
frequencies [3, 4]. However, extremely high carrier frequencies entail severe propa-
gation losses owing to the short wavelength of the transmitted signals. As a result,
advanced physical layer technologies are key to mitigating these losses and extending
the communication range of THz systems [6, 7].

One such technology is massive multiple-input multiple-output (MIMO), where
a very large number of antennas is deployed at the base station (BS) [8, 9]. In this
way, the severe path attenuation at THz frequencies can be effectively mitigated
by sharp beamforming [10]. Thus, massive MIMO will constitute an integral part
of future THz systems. Nevertheless, deploying a massive number of BS antennas
poses many practical challenges, such as efficient hardware implementation with low
power consumption. For this reason, THz massive MIMO will be realized by hybrid
analog-digital antenna arrays, where the number of radio-frequency (RF) chains is
much smaller than the number of BS antennas [11]. Because of the hybrid array
structure, beamforming and channel estimation become nontrivial tasks, especially
for ultra-wideband transmissions where spatial-frequency wideband effects start to
kick in [12]. In short, THz massive MIMO calls for carefully tailored solutions that
account for the peculiar characteristics of THz propagation.

Even though hybrid antenna arrays facilitate the energy efficient implementa-
tion of massive MIMO, packing an unprecedented number of antennas into an array
might yield an untolerable power consumption. This problem is particularly acute
in THz MIMO systems as the power expenditure of THz circuits is much larger than
their sub-6 GHz counterparts [13]. To alleviate this problem, the novel concept of
intelligent reflecting surfaces (IRSs) can be exploited to build transceivers with a
relatively small number of antennas, which work along with an IRS to achieve high

1In fact, they can exceed those in the mmWave band by an order of magnitude [5].
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spectral efficiency with reduced power consumption [14]. Specifically, an IRS2 is
a metasurface consisting of nearly passive reconfigurable elements, which can cus-
tomize the behavior of the impinging electromagnetic (EM) waves. As such, IRSs
are expected to revolutionize future wireless networks by creating smart propaga-
tion environments [15]. The prospects of IRSs have sparked great research interest
in the topic of EM metasurfaces and wave manipulation. However, the majority of
related studies (see [16–18] and references therein) focus on the sub-6 GHz band,
where channel modeling substantially differs from that at higher frequencies. For
example, pure stochastic channel models, e.g., Rayleigh fading, are not applicable
to THz bands because of the extremely limited multipath propagation [19]. More
importantly, the popular far-field assumption might be invalid for THz IRSs, which
are expected to work very close to the transmitter (Tx) or receiver (Rx) in order
to mitigate the path loss of the Tx-IRS-Rx link with a practical number of reflect-
ing elements; hence, near-field phenomena should be taken into consideration. In
conclusion, there are still many critical questions about IRS-aided THz communica-
tions.

1.2 Overview of Contributions

In light of the prospect of THz communications for future wireless networks, in this
thesis, we study the channel modeling, design, and performance of massive MIMO
and IRSs at THz frequencies. Specifically, the main contributions of this thesis are
summarized as follows:

Massive MIMO

1. We delve into the spatial-wideband effect, and argue that it plays a key role
in wideband THz massive MIMO. As such, we introduce a spatially wideband
channel model assuming a uniform planar array (UPA) at the BS.

2. Building on the derived channel model, we study the array gain under the
practical constraint of a hybrid array architecture at the BS side. In particular,
we calculate the normalized array gain for frequency-flat analog combining in
closed-form. Based on that, we show that conventional analog combining leads
to severe beam squint and, in turn, to a significant performance degradation.

3. To address the beam squint problem, which is inherent in typical narrowband
arrays, we propose a novel wideband array architecture based on true-time-
delay (TTD) and virtual subarrays. Our design relies mainly on plane phase
shifters, which are grouped into virtual subarrays. Then, a small number of
TTD elements is deployed between the virtual subarrays with the aim of im-
plementing frequency-dependent combining. We show that this hybrid scheme
can eliminate beam squint and perform close to its fully digital counterpart,
yet with much lower hardware complexity.

2In the literature, IRSs are also known as reconfigurable intelligent surfaces (RISs). In this
thesis, we adopt the former term because we focus on metasurfaces that alter only the phase of an
incident wave to reflect/focus it toward a desired direction/point.
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4. We study channel estimation, which is challenging owing to the hybrid array
structure at the BS. To this end, we avail of the angular sparsity of THz
channels, and formulate the channel estimation problem as a compressed sens-
ing (CS) problem. Contrary to prior works, we then introduce a wideband
dictionary for UPAs that accounts for the spatial-wideband effect. This en-
able us to apply a novel variant of the orthogonal matching pursuit (OMP)
algorithm, which exploits the information of multiple subcarriers to increase
the reliability of the channel estimate. Numerical results are provided show-
casing the effectiveness of our approach compared to narrowband OMP-like
estimators.

Intelligent Reflecting Surfaces

1. For the first time, we delve into the modeling aspects of IRSs at THz fre-
quencies. Unlike their sub-6 GHz and mmWave counterparts, THz IRSs are
expected to have a massive number of reflecting elements with a small foot-
print, and more importantly operate close to the Tx/Rx. Therefore, near-field
propagation is of the utmost importance. With this in mind, we propose a
spherical wave channel model for discrete IRSs.

2. Capitalizing on the derived channel model, we analyze the power gain under
near-field beamfocusing and far-field beamforming. In particular, we demon-
strate that the latter one is highly suboptimal in the Fresnel zone, and hence
can greatly reduce the power gain. More importantly, we provide a closed-
form expression for that reduction. Using the closed-form formula, we show
that beamfocusing is the optimal mode of operation for THz IRSs

3. We study the energy efficiency (EE) of IRS-aided MIMO. More particularly,
we prove that a nearly-passive IRS can offer huge EE gains compared to a
pure MIMO system.

4. We investigate the IRS placement problem, and prove that a THz IRS should
be deployed close to one of the link ends, i.e., either the Tx or Rx, in order to
mitigate the cascaded path loss with a practical number of reflecting elements.

5. We leverage physical optics from EM theory to determine the near-field re-
sponse of holographic IRSs; note that a holographic IRS is the ultimate form
of IRSs as it incorporates an unprecedented number of elements to realize
a nearly continuous reflecting surface. Our analysis reveals the beamfocus-
ing capabilities of electrically large IRSs, and emphasizes the importance of
physics-aware channel models.

6. We study IRS-aided wideband THz communications. Unlike prior works, our
analysis accounts for the spherical wavefront of the radiated waves and the
spatial-wideband effect. We further show that conventional, i.e., frequency-
flat, beamfocusing is highly ineffective for very large signal bandwidths. With
this in mind, we argue that a broadband IRS design is needed, and identify
TTD-based architectures as a promising avenue for future research.

3



1.3 Document Structure

This thesis constitutes a compendium of four papers, which is the result of inten-
sive research on massive MIMO and IRSs for THz communications. These papers
are appended to the end of this document. Furthermore, we provide some back-
ground on the topic and succinctly present the main contributions of the papers in
two chapters. More specifically, this document is stuctured as follows. Chapter 2
introduces the spatial-wideband effect in THz massive MIMO, details the channel
estimation and hybrid combining problems, and present our solution to these prob-
lems. Chapter 3 delves into the fundamentals of THz IRSs, with special focus on the
near-field modeling and design. Chapter 4 provides concluding remarks and outlines
the possible directions for future work.

4



2 Massive MIMO

2.1 Background

The extremely short wavelength at THz frequencies permits the deployment of thou-
sands of antennas with a small footprint [20]. For example, at carrier frequency
fc = 300 GHz, an 80 × 80-element UPA with half-wavelength spacing incorporates
6400 antennas into an area of 4 × 4 cm2. To efficiently implement such a massive
MIMO transceiver, a hybrid analog-digital array is therefore adopted, where the
number of power-hungry RF chains is much smaller than the number of antennas.
However, this limits the beamforming/combining1 capabilities, because the hybrid
antenna array cannot generate arbitrary beampatterns as its fully digital counter-
part [21].

This problem becomes quite evident in wideband setups. Specifically, a typical
MIMO channel is frequency-selective when the multipath delay spread exceeds the
symbol period. Thus, line-of-sight (LoS) channels are frequency-flat in general. In
massive MIMO, though, the propagation delay over the array can be multiple times
larger than the symbol period. As a result, spatial-wideband effects may kick in, mak-
ing the beampattern of the array vary over the signal bandwidth [22]. Frequency-
dependent beamforming is hence indispensable, yet only available in fully digital
arrays. In short, novel array architectures and processing techiques are required to
reap the full potential of THz massive MIMO.

In the sequel, we present our results on wideband THz systems with a UPA at the
BS. It is worth stressing that prior studies (e.g., [23–27] and references therein) on
mmWave/THz communication either ignore the spatial-wideband effect or assume
linear arrays.2

2.2 System Model

Consider the uplink of a THz massive MIMO system, where the BS is equipped
with an N ×M -element UPA and serves a single-antenna user. The total number of
antennas is NB = NM , and the baseband frequency response of the uplink channel
is denoted by h(f) ∈ CNB×1. In paper I, we employed a geometric channel model

1Note that beamforming refers to coherent transmission in the downlink, whilst combining cor-
responds to coherent reception in the uplink. Both techniques rely on the same principle, namely
the constructive addition of multiple signals with the aim of increasing the overall signal power.

2Linear arrays cannot accommodate a massive number of antennas with a reasonable footprint,
and hence are impractical for THz massive MIMO [28].
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RF Combiner 
(Analog)

Figure 2.1: Illustration of the hybrid array structure considered in the system model.

consisting of L+ 1 rays; the 0th ray corresponds to the LoS path whereas the other
l = 1, . . . , L rays are non-line-of-sight (NLoS) paths. Then, the frequency response
of the uplink channel is expressed as

h(f) =
L∑
l=0

βl(f)a(φl, θl, f)e−j2πfτl (2.1)

where βl(f), τl, and (φl, θl) denote the complex gain, time-of-arrival (ToA), and
direction-of-arrival (DoA) of the lth propagation path, respectively, whilst

a(φ, θ, f) ,
[
1, . . . , e−j2π(fc+f) d

c
(n sin θ cosφ+m sin θ sinφ) ,

. . . , e−j2π(fc+f) d
c

((N−1) sin θ cosφ+(M−1) sin θ sinφ)
]T

(2.2)

is the array response vector of the BS. In (2.2), d is the antenna spacing, fc is the
carrier frequency, and c is the speed of light. We stress that the array response
vector reduces to a(φ, θ, 0) in the spatially narrowband case, which holds for a small
number of BS antennas and/or signal bandwidth.

Due to the frequency selectivity of the wideband THz channel, orthogonal fre-
quency division multiplexing (OFDM) modulation is employed to combat inter-
symbol interference. Specifically, we consider S subcarriers over a signal band-
width B. Then, the baseband frequency of the sth subcarrier is specified as fs =(
s− S−1

2

)
B
S , s = 0, . . . , S−1. A hybrid analog-digital architecture with NRF � NB

RF chains is also considered at the BS, as shown in Fig. 2.1; each RF chain drives the
array through NB analog plain phase shifters. The hybrid combiner for the sth sub-
carrier is hence expressed as F[s] = FRFFBB[s] ∈ CNB×NRF , where FRF ∈ CNB×NRF

is the frequency-flat RF combiner with elements of constant amplitude, i.e., 1√
NB

,
but variable phase, and FBB[s] ∈ CNRF×NRF is the baseband combiner. Finally, the
post-processed baseband signal, y[s] ∈ CNRF×1, for the sth subcarrier is written as

y[s] = FH [s]
(√

Pdh[s]x[s] + n[s]
)
, (2.3)

where h[s] , h(fs) is the correspoding channel, x[s] ∼ CN (0, 1) is the data symbol
transmitted at the sth subcarrier, Pd denotes the average power per data symbol
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Figure 2.2: Normalized array gain of an 100 × 100-element UPA for various signal band-
widths; fc = 300 GHz, coherence bandwidth of 100 MHz, and (φ, θ) = (π/3, π/4).

assuming equal power allocation among subcarriers, and n[s] ∼ CN (0, σ2INB ) is the
additive noise vector.

2.3 Hybrid Combining

2.3.1 The Beam Squint Problem

Even for a moderate number of BS antennas, the propagation delay across the
array can exceed the symbol period due to the ultra-high bandwidth used in THz
communications. This makes the DoA vary over the OFDM subcarriers, causing
the so-called beam squint. To demonstrate the detrimental effect of beam squint
when frequency-flat RF combining is employed, we consider a single ray impinging
on the BS array with DoA (φ, θ). In the narrowband case, the uplink channel is then
given by h(0) = βa(φ, θ, 0). Let fRF = f/

√
NB be an arbitrary RF combiner, with

‖f‖2 = NB. For the combiner fRF, the power of the received signal is calculated as

|β|2Pd
∣∣∣fHa(φ, θ, 0)

∣∣∣2 /NB = |β|2NBG(φ, θ, 0)Pd, (2.4)

where G(φ, θ, f) , |fHa(φ, θ, f)|2/N2
B is the normalized array gain, which takes

values in [0, 1]. Choosing f = a(φ, θ, 0) yields G(φ, θ, 0) = 1, and hence the maximum
gain is obtained. In a wideband setup, though, it holds

G(φ, θ, f) = |a
H(φ, θ, 0)a(φ, θ, f)|2

N2
B

= |DN (2πf∆x(φ, θ))|2 |DM (2πf∆y(φ, θ))|2 ,

(2.5)

where ∆x(φ, θ) , (d sin θ cosφ)/c and ∆y(φ, θ) , (d sin θ sinφ)/c. From (2.5), we
have that G(φ, θ, fs) < 1, for fs > 0. This behavior is verified in Fig. 2.2. As
evinced, the normalized gain significantly decreases over the OFDM subcarriers for
very large bandwidths and frequency-flat analog combining. In the following section,
we detail our solution to this problem.

2.3.2 Proposed Wideband Combiner

The beam squint problem is inherent in conventional hybrid arrays, as plane phase
shifters generate a fixed phase over the whole signal bandwidth [29]. Next, we pro-
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 Element

TTD
 Element

Virtual Subarrays

Figure 2.3: Illustration of the TTD-based wideband combiner with virtual subarrays; the
circles with arrows represent frequency-flat phase shifters.

Figure 2.4: Normalized array gain for an 100× 100-element UPA. In the proposed scheme,
NsbMsb − 1 = 99 TTD elements are employed. Parameters: LoS channel, single-antenna
user, (φ0, θ0) = (π/4, π/3), fc = 300 GHz, B = 40 GHz, and S = 18 subcarriers.

pose a novel TTD-based hybrid array to mitigate beam squint.3 Since substituting
the phase shifters with TTD elements is impractical in terms of hardware cost, com-
plexity, and power consumption, we put forward the idea of virtual subarrays. In
particular, the antenna array is divided into Nsb ×Msb virtual subarrays with ÑM̃
antennas each, where Ñ , N/Nsb and M̃ ,M/Msb. Each subarray is of small size,
and hence its normalized gain is nearly uniform across the OFDM subcarriers for
frequency-flat analog combining. To synthesize the beampattern of the whole an-
tenna array, a network of (NsbMsb − 1) TTD elements is finally placed between the
virtual subarrays, which enable frequency-dependent analog combining; see Fig. 2.3.
By doing so, the normalized array gain in (2.5) reduces to

G(φ, θ, f) =
∣∣DÑ (2πf∆x)

∣∣2 ∣∣DM̃ (2πf∆y)
∣∣2 ≈ 1, (2.6)

where the approximation holds for a properly selected number of TTD elements, as
depicted in Fig. 2.4. As evinced, the proposed architecture can effectively combat
beam squint with a small number of TTD elements, and hence it is hardware-

3In the mmWave literature, beam squint is mainly alleviated by optimizing the hybrid com-
biner [30–33]. Nevertheless, these approaches are effective only when the beam squint is mild [34].
Consequently, we turn to a hardware-oriented solution in this thesis.
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Figure 2.5: Average achievable rate for an 100× 100-element UPA. In the proposed scheme,
NsbMsb − 1 = 99 TTD elements are used. The other parameters are: LoS channel, Pt =
10 dBm, σ2 = −174 dBm/Hz, fc = 300 GHz, B = 40 GHz, and S = 18 subcarriers.

friendly. We next assess the achievable rate attained by our hybrid combiner. For
this purpose, we consider the following baseline schemes:

• A fully-digital array, where the BS employs the frequency-selective combiner
a(φ0, θ0, f)/

√
NB.

• A hybrid array, where the BS uses the frequency-flat combiner a(φ0, θ0, 0)/
√
NB.

The average achievable rate is calculated as

R = B

S

S−1∑
s=0

E
{

log2

(
1 + Pt|fHRFh[s]|2

Bσ2

)}
, (2.7)

where the expectation is taken with respect to the DoA, and fRF denotes the cor-
responding combiner. The results are plotted in Fig. 2.5. Specifically, the achiev-
able rates are 517 Gbps, 514 Gbps, and 303 Gbps for the digital, proposed, and
narrowband schemes, respectively. Thus, the proposed combiner performs very
close to the fully-digital scheme, whilst offering a 40% gain with respect to the
narrowband combiner. More importantly, this is accomplished by employing only
NsbMsb − 1 = 99 TTD elements for an 100 × 100-element UPA, which yields an
excellent trade-off between hardware complexity and performance. Lastly, we stress
that transmission rates at least 0.5 Tbps can be achieved at a distance of 15 meters
through an 100× 100-element UPA, which would not be feasible with an equivalent
linear array under a footprint constraint.

Remark 2.3.1 (Near-Field Considerations). In the far-field region, the spherical
wavefront of the emitted EM waves degenerates to a plane wavefront, which allows
the use of the parallel-ray approximation to derive the array response vector (2.2).
Due to the large array aperture of THz massive MIMO, though, near-field consid-
erations are of particular interest. Recall that near-field refers to distances smaller
than the Fraunhofer distance DF , 2D2

max/λ, where Dmax is the maximum dimension
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of the antenna array, and λ is the carrier wavelength. For a UPA with N = M , we
have that D2

max = 2(N − 1)2d2, i.e., length of its diagonal dimension, which yields
DF = (N − 1)2λ for a half-wavelength spacing. For an 100 × 100-element UPA at
fc = 300 GHz, DF ≈ 9.8 meters. As a result, the plane wave assumption may not
hold anymore even for distances of multiple meters from the BS. In the Appendix,
we extend the proposed TTD-based combiner (Proposition 1 from paper I) to the
spherical wavefront case.

2.4 Channel Estimation

So far, we have assumed perfect channel state information (CSI) a the BS. In this
section, we investigate the channel estimation problem under the spatial-wideband
effect. Specifically, we first formulate a CS problem [35] to estimate the channel
at each OFDM subcarrier independently with reduced training overhead. We then
propose a wideband dictionary and employ an estimation algorithm that leverages
information from multiple subcarriers to increase the reliability of the channel esti-
mates in the low and moderate SNR regimes.

2.4.1 Problem Formulation

Due to the hybrid array structure, the BS can generate up to NRF pilot beams
simultaneously, where NRF denotes the number of RF chains. After Nslot pilots,
the BS hence obtains Nbeam = NslotNRF measurements collected into the vector
ȳ[s] ∈ CNbeam×1 for each OFDM subcarrier. In particular, the measurement vector
at the sth subcarrier is written as

ȳ[s] =
√
Pp WH [s]h[s] + n̄[s], (2.8)

where Pp is the power per pilot, W[s] ∈ CNB×Nbeam is the matrix whose columns
correspond to the pilot RF beams during the training period, and n̄[s] ∈ CNbeam×1

denotes the effective noise. From (2.8), we have Nbeam variables, whilst h[s] includes
NB variables. Thus, we need Nbeam ≥ NB in order to obtain a good estimate of
h[s]. With this condition, the standard least squares (LS) estimate of h[s] is4

ĥLS[s] = Q†sȳ[s], (2.9)

where Qs ,
√
Pp WH [s] ∈ CNbeam×NB is the sensing matrix. However, the LS

estimator (2.9) exhibits the following handicaps: i) it requires Nbeam ≥ NB, hence
yielding a prohibitively high training overhead when the number of RF chains is
much smaller than the number of BS antennas; and ii) its mean-square error is
JLS
s = σ2NB/Pp, which can result in erroneous estimates for a massive number of

BS antennas. In conclusion, we have to resort to more sophisticated techniques,
which is the theme of the subsequent section.

4We consider the LS instead of the minimum mean-square error (MMSE) method because we
focus on estimators that exploit only instantaneous CSI.
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Algorithm 1 GSOMP-Based Estimator
Input: set S of pilot subcarriers, sensing matrices Φs and measurement vectors
ȳ[s], ∀s ∈ S, and a threshold ε.

1: I−1 = ∅, G = {1, . . . , G}, r−1[s] = ȳ[s], MSE =
∑
s∈S ‖ȳ[s]‖2, and l = 0.

2: while MSE > ε do
3: g? = arg max

g∈G\Il−1

∑
s∈S

∣∣∣ΦH
s (g)rl−1[s]

∣∣∣
4: Il = Il−1 ∪ {g?}
5: rl[s] =

(
INbeam −Φs(Il)Φ†s(Il)

)
ȳ[s], ∀s ∈ S

6: MSE = 1
|S|
∑
s∈S ‖rl[s]− rl−1[s]‖2

7: l = l + 1
8: end while
9: ˆ̄β[s] = Φ†s(Il−1)ȳ[s],∀s ∈ S

10: return ĥCS[s] = Ā[s] ˆ̄β[s],∀s ∈ S.

2.4.2 Proposed Wideband Estimator

Sparse Formulation

By availing of the angular sparsity of THz channels, we can have a sparse formula-
tion of the channel estimation problem as follows. The physical channel in (2.1) is
recast as

h[s] = A[s]β[s], (2.10)

where A[s] , [a(φ0, θ0, fs), . . . ,a(φL, θL, fs)] ∈ CNB×(L+1), with a(φl, θl, fs) being
specified by (2.2) for f = fs, is the so-called wideband array response matrix, and
β[s] , [β0(fs)e−j2πfsτ0 , . . . , βL(fs)e−j2πfsτL ]T ∈ C(L+1)×1 is the vector of channel
gains. Next, consider a dictionary Ā[s] ∈ CNB×G whose G columns are the array
response vectors associated with a predefined set of DoA. Then, the uplink channel
can be approximated as

h[s] ≈ Ā[s]β̄[s], (2.11)

where β̄[s] ∈ CG×1 has L+ 1 nonzero entries whose positions and values correspond
to their DoA and path gains [ref ]. Therefore, (2.8) is recast as

ȳ[s] = Φsβ̄[s] + n̄[s], (2.12)

where Φs ,
√
Pp WH [s]Ā[s] ∈ CNbeam×G is the equivalent sensing matrix. Since

(L + 1) � G, the channel gain vector β̄[s] is (L + 1)-sparse, and the estimation
problem can be formulated as the sparse recovery problem [36]

ˆ̄β[s] = arg min
β̄[s]
‖β̄[s]‖1

s.t.
∥∥∥ȳ[s]−Φsβ̄[s]

∥∥∥
2
≤ ε, (2.13)

where ε ≤ E{‖n̄[s]‖2} is an appropriately chosen bound on the mean magnitude of
the effective noise. The above optimization problem can be solved for each subcarrier
independently, i.e., single measurement vector formulation. Lastly, the estimate of
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h[s] is obtained as ĥCS[s] = Ā[s] ˆ̄β[s]. Several greedy algorithms have been proposed
to find approximate solutions of the l1-norm optimization problem. In this thesis,
we choose the OMP algorithm [37] as the basis for our estimator, as it is one of the
most common and simple greedy CS methods that can solve (2.13).

Dictionary and Generalized Multiple Measurement Vector Problem

We now introduce a wideband dictionary for UPAs. For half-wavelength antenna
separation, the array response vector (2.2) is recast as

a(ωx, ωy, f) =
[
1, . . . , e−j2π

(
1+ f

fc

)
(nωx+mωy)

,

. . . , e
−j2π

(
1+ f

fc

)
((N−1)ωx+(M−1)ωy)

]T
, (2.14)

where ωx = 1/2 sin θ cosφ and ωy = 1/2 sin θ sinφ are the spatial frequencies [38].
Since both ωx and ωy lie in [−1/2, 1/2], we consider the grids of discrete spatial
frequencies

Gx = {ω̄x(q) = q/Gx, q = −(Gx − 1)/2, . . . , (Gx − 1)/2} , (2.15)

Gy = {ω̄y(p) = p/Gy, p = −(Gy − 1)/2, . . . , (Gy − 1)/2}, (2.16)

where GxGy = G is the overall dictionary size. By doing so, we can form a frequency-
dependent dictionary Ā[s] ∈ CNB×G, which is used to approximate the uplink chan-
nel h[s] at the sth OFDM subcarrier.

Thanks to the frequency-dependent dictionary, the channel gain vectors {β̄[s]}S−1
s=0

share the same support. Therefore, we exploit the common support property and
consider the problem in (2.13) as a generalized multiple measurement vector prob-
lem, where multiple sensing matrices are employed [39]. To solve the generalized
multiple measurement vector problem, we resort to the simultaneous OMP algo-
rithm [40]. The proposed channel estimator, coined as generalized simultaneous
OMP (GSOMP), is described in Algorithm 1.

Selected Results

Our performance metric is the normalized mean-square error (NMSE) defined as

NMSE , 1
S

S−1∑
s=0

E
{∥∥∥h[s]− ĥ[s]

∥∥∥2 /
‖h[s]‖2

}
, (2.17)

where ĥ[s] denotes the estimate of the corresponding estimator. The NMSE is com-
puted numerically over 100 channel realizations. The complex path gains {βl(fs)}Ll=1
are generated as CN (0, σ2

β), with σ2
β = 10−9, i.e., −90 dB.5 The average receive SNR

is then calculated as SNR = σ2
βPp/Pn, where Pp = Pt/S is the power per pilot sub-

carrier, and Pn = ∆Bσ2 is the noise power at each subcarrier, with ∆B ≈ B/S

5The path gains are generated in this way so that we have a single average SNR over the OFDM
subcarriers.
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Figure 2.6: NMSE versus SNR. The OMP, NBOMP, and GSOMP estimators are evaluated
under partial training of Nbeam = 0.8NB pilot beams; 40 × 40-element UPA, NRF = 2,
NLoS channel with L = 3 paths, fc = 300 GHz, B = 40 GHz, S = 400 subcarriers, and
super-resolution dictionary with G = 4NB .

being the subcarrier spacing. In this numerical experiment, we compare the follow-
ing estimation schemes:

• The LS estimator (2.9) with full pilot training, i.e., Nbeam = NB.

• The narrowband OMP-based estimator (NBOMP) with a frequency-flat dic-
tionary [41,42].

• The OMP-based estimator, but with the proposed wideband dictionary.

• The GSOMP-based estimator and its Cramér-Rao lower bound (CRLB).

The NMSE of each scheme is depicted in Fig. 2.6. As observed, the NMSE of the LS
method is prohibitively high since it scales linearly with the number of BS antennas.
Likewise, the NBOMP exhibits a very poor performance as it neglects the spatial-
wideband effect. Furthermore, the OMP-based estimator fails to successfully recover
the common support in the low SNR regime, hence resulting in significant estimation
errors. On the other hand, the proposed GSOMP-based estimator accurately detects
the common support of the channel gain vectors for all SNR values ranging from
−15 dB to 10 dB, thus attaining the CRLB.

2.5 Summary

In paper I, we investigated the spatial-wideband effect in THz massive MIMO with
a UPA at the BS. In particular:

• We showed that standard analog combining leads to severe degradation of the
array gain due to beam squint. More importantly, we derived a closed-form
expression for that reduction.
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• To address the beam squint problem, we proposed a TTD-based hybrid com-
biner, which enjoys low-complexity implementation thanks to the virtual sub-
array rationale. Specifically, our design enables nearly squint-free 3D combin-
ing/beamforming.

• For the channel estimation, we exploited the inherent sparsity of THz chan-
nels to employ CS techniques and reduce the CSI acquisition overhead. More
specifically, we introduced a wideband dictionary and employed a novel vari-
ant of the simultaneous OMP. The resulting estimator, termed GSOMP, has
exellent performance even in the low SNR regime.
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3 Intelligent Reflecting Surfaces

3.1 Why Near-Field?

The severe path attenuation at THz bands along with the sub-wavelength size of each
IRS element requires an electrically large IRS consisting of thousands of elements.
Furthermore, in order to compensate for this path attenuation with a practical
number of reflecting elements, the Tx or Rx has to work near the IRS. Consequently,
the Tx/Rx is expected to be in the radiating near-field, i.e., Fresnel zone, of the IRS,
where the spherical wavefront of the radiated waves cannot be ignored. Note that
the Fresnel region includes all distances r from the IRS satisfying [43, Ch. 2]

0.62
√
L3

IRS/λ < r ≤ 2L2
IRS/λ, (3.1)

where λ is the wavelength, and LIRS denotes the maximum dimension of the IRS.

Table 3.1: Key parameters of a rectangular IRS at f = 300 GHz.
IRS Size Physical Size [m2] Fresnel Region [m]

40λ× 40λ 0.039× 0.039 [0.15, 3.2]
50λ× 50λ 0.05× 0.05 [0.22, 5]

100λ× 100λ 0.1× 0.1 [0.62, 20]

From Table 3.1, we observe that although an electrically large THz IRS occu-
pies a small area in the order of square centimeters, its Fresnel region spans several
meters. Thus, the far-field assumption of plane waves, which is acccurate for dis-
tances r � 2L2

IRS/λ, starts becoming invalid as the IRS size grows. In conclusion,
near-field propagation should be considered in most cases of interest. In light of
these observations, a stream of recent papers [44–46] proposed a near-field channel
model for IRSs, but using the popular “cosq” model [47] for the radiation pattern
of each IRS element, and then choosing the parameter q according to experimental
measurements. However, this approach exhibits limitations, as it does not provide
a comprehensive electromagnetic-based framework for modeling the path loss. For
example, different IRS orientations can yield different radiation patterns, and more
importantly, they may change the polarization of the incident wave; hence, polar-
ization mismatch losses must be taken into account as well.

To fill this gap in the literature, we invoke physical optics from EM theory
to derive a near-field channel model. Since physical optics is an approximation,
our analysis constitutes a first step toward EM-aware modeling of IRSs at THz
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Base Station
User

IRS

Figure 3.1: Illustration of an IRS-aided THz system.

Table 3.2: Main notation used in the channel model of discrete IRSs.
Notation Description
N = N1 ×N2 Number of IRS elements
Lx × Ly Area of each reflecting element
ϕn,m Phase induced by the (n,m)th IRS element
λ Carrier wavelength
f Carrier frequency
k = 2π/λ Wavenumber
rt Radial distance of the Tx
rt(n,m) Distance between the Tx and the (n,m)th IRS element
rr Radial distance of the Rx
rr(n,m) Distance between the Rx and the (n,m)th IRS element

frequencies. In the following sections, we succinctly present the main results from
papers II-IV.

3.2 Discrete IRSs

Consider an IRS-assisted THz system, as shown in Fig. 3.1. The Tx and Rx are
equipped with a single antenna each. The IRS is modeled as a rectangular array of
N = N1 × N2 reflecting elements. Each IRS element can add a phase shift to the
incident signal, and hence the reflection coefficient of the (n,m)th element is given
by ejϕn,m , ϕn,m ∈ [−π, π]. Then, the baseband received signal is written as1

y =
N1−1∑
n=0

N2−1∑
m=0

hn,me
jϕn,mx+ ñ, (3.2)

where hn,m ∈ C is the cascaded channel through the (n,m)th IRS element, x is the
transmitted data symbol, E[|x|2] = Pt is the average power per data symbol, and

1The Tx-Rx channel can be very weak for single-antenna transceivers, or it can be blocked by
an obstacle. It is hence neglected; besides, our main focus is on modeling the Tx-IRS-Rx link.
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approximation

Figure 3.2: Illustration of the plane wave approximation over a single IRS element.

ñ ∼ CN (0, σ2) is the additive noise. Based on (3.2), the SNR is given by

SNR = Pt
σ2

∣∣∣∣∣∣
N1−1∑
n=0

N2−1∑
m=0

hn,me
jϕn,m

∣∣∣∣∣∣
2

. (3.3)

One critical question here is how to model the channel coefficients {hn,m}, which play
a key role in the IRS configuration, i.e., {ϕn,m} and, ultimately, in the performance
of the IRS-aided link.

3.2.1 Spherical Wave Channel Model

Due to the limited multipath scattering at THz frequencies, we consider LoS prop-
agation for the Tx-IRS and IRS-Rx links. The channel coefficient hn,m is then
expressed as

hn,m =
√

PLn,me−jk(rt(n,m)+rr(n,m)), (3.4)

where PLn,m is the path loss through the (n,m)th IRS element, k = 2π
λ is the

wavenumber, λ is the carrier wavelength, while rt(n,m) and rr(n,m) are the dis-
tances from the Tx and Rx to the (n,m)th IRS element, respectively. The param-
eters PLn,m, rt(n,m), and rr(n,m) depend on the IRS orientation and area of its
elements, as well as in the Tx and Rx locations. In paper II, we assumed that the
IRS lies in the xy-plane, each reflecting element is of size Lx×Ly, and the coordinate
system is placed at the center of the (0, 0)th IRS element. Then, the position vector
of the (n,m)th IRS element is pn,m = (nLx,mLy, 0). Also, the Tx and Rx locations
are described in Cartesian coordinates by the vectors

pt = (xt, yt, zt) = (rt cosφt sin θt, rt sinφt sin θt, rt cos θt), (3.5)

pr = (xr, yr, zr) = (rr cosφr sin θr, rr sinφr sin θr, rr cos θr), (3.6)

where r, φ, and θ denote the corresponding radial distances, azimuth angles, and
polar angles, respectively. Although the EM wave emitted by the Tx has a spherical
wavefront, we can assume a plane wavefront over a single IRS element owing to its
very small size,2 as depicted in Fig. 3.2. Under this assumption, we can now specify
the path loss PLn,m using the physical optics approach for a rectangular conducting
plate of size Lx×Ly and an incident plane wave that is linearly polarized along the

2Each IRS element is of sub-wavelength size in order to act as an isotropic scatterer [48].
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Figure 3.3: Path loss over an 100×100-element IRS. The other parameters are: f = 300 GHz,
κabs(f) = 0.0033 m−1, Lx = Ly = λ/2, Gt = Gr = 20 dBi, pt = (0,−0.3, 0.6), rt = 0.67 m,
pr = (0, 1, 1), and rr = 1.41 m.

x-axis. By doing so, we obtain

PLn,m = GtGr(LxLy)2

(4πrt(n,m)rr(n,m))2F (θt, φr, θr)e−κabs(f)(rt(n,m)+rr(n,m)), (3.7)

where Gt and Gr are the gains of the Tx and Rx antennas, respectively, κabs(f) is
the molecular absorption coefficient at frequency f , e−κabs(f)(rt(n,m)+rr(n,m)) accounts
for the molecular absorption loss in THz frequency bands [49], and F (θt, φr, θr) =
cos2 θt(cos2 θr cos2 φr + sin2 φr). Note that the path loss through an IRS element
depends on the reciprocal of the product (rtrr)2 rather than of the sum (rt+rr)2, as
in the case of specular reflection [50]. Consequently, the path loss of each cascaded
channel is very high in general.

We next plot PLn,m for an electrically large IRS. From Fig. 3.3, we evince that
PLn,m marginally changes across the IRS even for N = 1002 elements and a Tx
distance rt = 0.67 m. This is because of the small physical size of THz IRSs. In
particular, the 100 × 100-element IRS occupies only 5 × 5 cm2 for Lx = Ly = λ/2
at f = 300 GHz, as λ = 10−3 m. Hereafter, we consider PLn,m ≈ PL, where PL
denotes the path loss calculated using the radial distances rt and rr. In light of this
observation, the SNR in (3.3) is recast as

SNR = Pt
σ2

∣∣∣∣∣∣
N1−1∑
n=0

N2−1∑
m=0

√
PLn,me−jk(rt(n,m)+rr(n,m))ejϕn,m

∣∣∣∣∣∣
2

≈ N2PtPL
σ2

∣∣∣∑N1−1
n=0

∑N2−1
m=0 e−jk(rt(n,m)+rr(n,m))ejϕn,m

∣∣∣2
N2︸ ︷︷ ︸
G

= N2GPtPL
σ2 , (3.8)

where G ∈ [0, 1] is the normalized power gain. With the proper IRS configuration,
G = 1 and a power gain of N2 is attained, which scales quadratically with the
number N of IRS elements [51].

18



3.2.2 Near-Field Beamfocusing

The N2-power gain is obtained when the phase shift induced by the (n,m)th IRS
element is

ϕn,m = k(rt(n,m) + rr(n,m)), (3.9)

where

rt(n,m) , ‖pt − pn,m‖

= rt

√
1 + (nLx)2

r2
t

− 2 cosφt sin θtnLx
rt

+ (mLy)2

r2
t

− 2 sinφt sin θtmLy
rt

, (3.10)

and

rr(n,m) , ‖pr − pn,m‖

= rr

√
1 + (nLx)2

r2
r

− 2 cosφr sin θrnLx
rr

+ (mLy)2

r2
r

− 2 sinφr sin θrmLy
rr

. (3.11)

The phase shift design in (3.9) is referred to as near-field beamfocusing because the
IRS focuses the incident wave onto the Rx point (xr, yr, zr) rather than toward the
Rx direction (θr, φr) [52]. We stress that a different design will yield G ≤ 1.

3.2.3 Far-Field Beamforming

We now analyze the power gain under conventional far-field beamforming. Specifi-
cally, in the far-field, the spherical wavefront degenerates into a plane wave, which
enables the use of the parallel-ray approximations

rt(n,m) ≈ rt − nLx cosφt sin θt −mLy sinφt sin θt, (3.12)

rr(n,m) ≈ rr − nLx cosφr sin θr −mLy sinφr sin θr. (3.13)

Mathematically speaking, (3.12) and (3.13) follow from the first-order Taylor ex-
pansion (1 + x)a ≈ 1 + ax of (3.10) and (3.11). In far-field beamforming, the phase
shifts are designed based on the angular information (θt, φt) and (θr, φr), i.e.,

ϕn,m = −k(nLx cosφt sin θt +mLy sinφt sin θt
+ nLx cosφr sin θr +mLy sinφr sin θr). (3.14)

As a result, it can be highly suboptimal in the Fresnel zone. To analytically char-
acterize the reduction in the power gain, we first consider that the IRS is deployed
close to the Tx, and hence the Rx is in the far-field.3 We then exploit the Fresnel

3In fact, deploying the IRS close to one of the link ends yields the maximum SNR, compared to
placing it somewhere in between [53].
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(a) (b)

Figure 3.4: Results for far-field beamforming: (a) normalized power gain versus distance rt

for an 100 × 100-element IRS, pt = (0.4, 0.4, z), 0.5 ≤ z ≤ 10, and 0.755 ≤ rt ≤ 10.016 m;
(b) normalized power gain versus number of IRS elements N for pt = (0.4, 0.4, 1), and
rt = 1.15 m. The other parameters are f = 300 GHz, and Lx = Ly = λ/2.

approximation [54] of the Tx distance

rt(n,m) ≈ rt + (nLx)2(1− cos2 φt sin2 θt)
2rt

− nLx cosφt sin θt

+ (mLy)2(1− sin2 φt sin2 θt)
2rt

−mLy sinφt sin θt. (3.15)

By combining (3.14) and (3.15), the normalized power gain is recast as

G =

∣∣∣∣∣∑N1−1
n=0 e

−jk (nLx)2(1−cos2 φt sin2 θt)
2rt

∣∣∣∣∣
2

N2
1

∣∣∣∣∣∑N2−1
m=0 e

−jk (mLy)2(1−sin2 φt sin2 θt)
2rt

∣∣∣∣∣
2

N2
2

, (3.16)

which admits the approximation

G ≈

∣∣∣∣∣∑N2
1−1

n=0 e
−jk nL

2
x(1−cos2 φt sin2 θt)

2rt

∣∣∣∣∣
2

N4
1

∣∣∣∣∣∑N2
2−1

m=0 e
−jk

mL2
y(1−sin2 φt sin2 θt)

2rt

∣∣∣∣∣
2

N4
2

=
∣∣∣∣∣DN2

1

(
2π
λ

L2
x(1− cos2 φt sin2 θt)

2rt

)∣∣∣∣∣
2 ∣∣∣∣∣DN2

2

(
2π
λ

L2
y(1− sin2 φt sin2 θt)

2rt

)∣∣∣∣∣
2

,

(3.17)

where DN (x) = sin(Nx/2)
N sin(x/2) denotes the Dirichlet sinc function.

The validity of the Fresnel approximation (3.15) is depicted in Fig. 3.4(a). Fur-
thermor, the accuracy of the approximate closed-form expression (3.17) is evaluated
in Fig. 3.4(b), which exhibits a very good match with the exact expression (3.16).
Most importantly, we observe that beamforming substantially decreases the power
gain when the Tx operates in the near-field of an electrically large IRS. Lastly, by
availing of (3.17), we have the asymptotic result G → 0 as N → ∞. This implies
that for a finite yet large number N of IRS elements, the total power gain N2G tends
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Figure 3.5: Power gain versus number of IRS elements N for pt = (0.4, 0.4, 1), rt = 1.15 m,
f = 300 GHz, and Lx = Ly = λ/2.

to zero as N grows, which is demonstrated in Fig. 3.5. In conclusion, the reduction
in the power gain cannot be compensated by increasing the number of IRS elements,
and hence, near-field beamfocusing is the optimal mode of operation for THz IRSs.

3.2.4 Performance Analysis

Energy Efficiency

Capitalizing on the channel model of Section 3.2.1, we now investigate if IRS-aided
MIMO can achieve higher EE than MIMO. Before proceeding, we briefly present
the corresponding models.

Tx AntennasNt /α Nr /α Rx Antennas

(a) MIMO

Tx Antennas

IRS

Nt Nr Rx Antennas

(b) IRS-aided MIMO

Figure 3.6: Illustration of the systems under investigation.

MIMO System: Consider a MIMO system where the Tx and Rx are equipped
with Nt and Nr antennas, respectively. For efficient hardware implementation, hy-
brid array architectures are assumed at both link ends. The Tx seeks to communicate
a single data stream to the Rx through a LoS channel, whose path loss is calculated
using the Friss transmission formula

PLMIMO = GtGrλ
2

(4πrd)2 e
−κabs(f)rd , (3.18)

where rd = ‖pr−pt‖. For an adequately small Nr and Nt, far-field propagation can
be assumed. In this case, the LoS channel is rank-one [55, Ch. 7]. Hence, analog
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beamforming and combining yield the received SNR

SNRMIMO = NrNtPtPLMIMO
σ2 . (3.19)

Lastly, the respective power consumption is calculated as4

PMIMO = Pt +Nr(PPS + PPA) +Nt(PPS + PPA), (3.20)

where PPS and PPA denote the power consumption values for a phase shifter and a
power amplifier, respectively.

IRS-Aided MIMO System: The Tx and Rx perform beamforming and combining
to communicate a single stream through an N -element IRS. Due to the directional
transmissions, the Tx-Rx link is very weak, and hence is ignored. In paper II, it
was shown that the received SNR of this system is given by

SNRIRS = NtNrN
2PtPLIRS
σ2 , (3.21)

where PLIRS denotes the path loss of the IRS-aided link in (3.7). The phase of each
IRS element is controlled by a varactor diode, which consumes a negligible power
compared to a typical phase shifter. Thus, the power expenditure of each reflecting
element is set to Pe = 0 [45], and the total power consumption of the IRS-assisted
MIMO system is specified as PIRS ≈ PMIMO. The power consumption parameters
are summarized in the following table.

Proposition 3.2.1. The IRS-aided MIMO system with Nt/α and Nr/α antennas,
where α is a positive integer, attains a higher SNR than MIMO with Nt and Nr

antennas for

N? ≥ α λ

LxLy

DtDr√
F (θt, φr, θr)Dd

e−
1
2κabs(f)(Dd−Dr−Dt). (3.22)

Proof. Using (3.19) and (3.21), the IRS-aided system achieves a higher SNR for
N? ≥

√
α2PLMIMO/PLIRS, which gives the desired result after basic algebra.

According to Proposition 3.2.1, we can decrease the number of Tx and Rx an-
tennas by a factor α to reduce the power consumption as

PIRS(Nt/α,Nr/α) = Pt + Nr

α
(PPS + PPA) + Nt

α
(PPS + PPA) ≈ PMIMO/α, (3.23)

while keeping the achievable rate fixed. Consequently, the EE gain with respect to
MIMO is approximately equal to α.

Let B denote the transmit bandwidth. The achievable rate is finally calculated as

R = B log2(1 + SNRIRS), (3.24)

whilst the EE is given by EE , R/PIRS. In our numerical experimental, we consider
a MIMO setup with Nt = Nr = 100 antennas, e.g., 10× 10-element uniform planar

4The power consumption of signal processing is neglected.
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Figure 3.7: Achievable rate, EE, and number N? of IRS elements versus distance rr for
α = 2 and a fixed IRS location at (0, 0, 0). In the MIMO system, Nt = 100 and Nr = 100.
The other parameters are as follows: Gt = Gr = 20 dBi, Pt = 10 dBm, PPS = 42 mW and
PPA = 60 mW [56], σ2 = −174 dBm/Hz, B = 10 GHz, f = 300 GHz, Lx = Ly = λ/2,
pt = (0,−0.6, 1) with rt = 1.16 m, and pr = (0, rr, 1).

arrays. From Fig. 3.7, we verify that the IRS-assisted system, with Nt = Nr = 50 an-
tennas and N? = 10, 880 reflecting elements, offers a two-fold EE gain. Specifically,
an IRS can provide an alternative communication link, in addition to LoS, where
the Tx and Rx employ a smaller number of antennas to communicate with each
other, hence reducing the power consumption of the system. However, note that
the suggested benefits are valid when: i) the power expenditure of IRS elements
is negligible compared to that of conventional phase shifters; ii) the Tx operates
near the IRS in order to have a reasonable number N? of reflecting elements; and
iii) reflection losses are small [57].

Remark 3.2.1. In our EE analysis, we assumed Pe ≈ 0, which implies that the IRS
can have an arbitrarily large number of IRS elements without increasing the power
consumption of the system. Since this assumption may not be realistic, we derive
the necessary condition for having EE gains even when Pe > 0. Specifically, we need

PMIMO > PIRS ⇒ PMIMO > N?Pe + PMIMO/α⇒ Pe <
PMIMO(1− 1/α)

N?
. (3.25)

For example, in the previous numerical experiment with α = 2 and N? = 10, 880
elements, Pe should be roughly smaller than 1 mW to attain an EE gain. As a result,
the nearly passive implementation of THz IRSs is of paramount importance.

Optimal IRS Placement

We now study the impact of the IRS position on the number N? of reflecting ele-
ments. For the deployment considered in Fig. 3.7, rt is small, and hence r2

r ≈ r2
t +r2

d.
Further, φr = π/2 which gives F (θt, φr, θr) = cos2 θt. Then, (3.22) reduces to

N? = α
λ

LxLy

rtrr

cos θt
√
r2
r − r2

t

e−
1
2κabs(f)(

√
r2
r−r2

t−rr−rt), (3.26)
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Figure 3.8: Number of IRS elements N? versus distance rr for α = 2; pt = (0,−0.6, 1),
pr = (0, rr, 1), IRS at (0, (rr−yt)/2, 1) with yt = −0.6, f = 300 GHz, κabs(f) = 0.0033 m−1,
and Lx = Ly = λ/2.

which takes the asymptotic value

N?
max = α

λ

LxLy

rt
cos θt

e
1
2κabs(f)rt (3.27)

as rr →∞; this follows from
√
r2
r − r2

t ≈ rr for rr � rt. As evinced, N? is bounded
for a fixed IRS position near the Tx. We stress that due to symmetry, the same
result holds when the IRS is near the Rx. For instance, N?

max = 10, 880 in Fig. 3.7.
In contrast, when the IRS is deployed always in the middle of the link ends, N?

increases as O(rtrr). This scaling law is depicted in Fig. 3.8. In short, the IRS has
to be close to one of the link ends to compensate for the high propagation losses
with a practical number of reflecting elements.

3.2.5 Summary

In paper II, we studied IRS-aided THz communications. In particular:

• We introduced a spherical wave channel model to characterize the near-field
response of discrete THz IRSs. The path loss of the IRS-aided link was derived
using physical optics and assuming a plane wavefront over each IRS element.

• We showed that conventional beamforming is highly suboptimal in the Fresnel
zone, and hence can reduce the power gain. More importantly, we provided
an approximate yet accurate expression for evaluating that reduction.

• We demonstrated that IRS-aided MIMO can achieve much higher EE than
MIMO through nearly passive beamfocusing; hence, ultra-low power IRSs are
key enablers of energy-efficient communications.

• We proved that the IRS must be placed close to one of the link ends, otherwise
an extremely large (and hence impractical) number of IRS elements are needed
to mitigate the severe path loss of the Tx-IRS-Rx link.
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3.3 Holographic IRSs

So far, we treated the IRS as a rectangular array of sub-wavelength reflecting ele-
ments. This enabled us to assume a plane wavefront over each individual element,
and hence employ existing results from physical optics, i.e., plane scattering from a
rectangular plate, to specify the path loss of the IRS-aided link. In this section, we
extend the previous analysis to the so-called holographic IRS, which integrates a vir-
tually infinite number of elements into a limited area to form a spatially continuous
aperture [58, 59].5 Since the plane wave approximation cannot be applied to large
holographic IRSs, we resort to spherical waves. Thus, we provide some background
on spherical waves, and then introduce the near-field channel model.

3.3.1 Spherical Waves

The Tx antenna is modeled as an infinitesimal dipole of length ` � λ, which is
placed parallel to the z-axis. In spherical coordinates, the electric field (E-field) at
a distance r is then given by [61, Ch. 6]

E = −j I0`η cos θ
2πk

(
jk

r2 + 1
r3

)
e−jkrer − j

I0`η sin θ
4πk

(
−k2

r
+ jk

r2 + 1
r3

)
e−jkreθ,

(3.28)

where k = 2π/λ is the wavenumber, η is the free-space impedance, and I0 is the
excitation current. For any distance r � λ, the high-order terms 1/r2 and 1/r3 can
be neglected. Hence, the radiated E-field is approximated by

E ≈ j I0`ηk sin θ
4πr e−jkreθ = Eθeθ. (3.29)

Remark 3.3.1. For notational convenience, (3.29) can be recast as

E = j

√
2ηPG(θ)

4π
e−jkr

r
eθ, (3.30)

where G(θ) = 3
2 sin2 θ and P = η(I0`k)2

12π are the gain and total radiated power of the
infinitesimal dipole, respectively.

Hereafter, we will use (3.30) to represent spherical waves. Lastly, the associated
magnetic field is specified according to the Maxwell’s equation

H = j

ηk
∇×E = j

ηk

1
r

∂(rEθ)
∂r

eφ = j

η

√
2ηPG(θ)

4π
e−jkr

r
eφ = Hφeφ, (3.31)

whereas the power density (W/m2) at a distance r is calculated as

Ss = 1
2EθH

∗
φ = 1

2η‖E‖
2 = PG(θ)

4πr2 . (3.32)
5The operation of a spatially continuous aperture can be explained by optical holography, where

the impinging EM field is recorded and then reconstructed. Please refer to [60] for more details.
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Figure 3.9: Illustration of the IRS geometry under consideration.

3.3.2 Spherical Wave Channel Model

Scattered Field: In paper III, the holographic IRS is modeled as a continuous
surface of size Ly×Lz, which is placed in the yz-plane. The coordinate system is at
the center of the IRS, as depicted in Fig. 3.9. Moreover, the reflection coefficient of
the (y, z)th IRS point is given by ejϕ(y,z), ϕ(y, z) ∈ [−π, π]. The E-field component
of the spherical wave impinging on the (y, z)th IRS point is then written as

Ei = j

√
2ηPtGt

4π
e−jkrt(y,z)

rt(y, z)
eθ, (3.33)

where Gt is the gain of the Tx antenna,6 and

rt(y, z) =
√
x2
t + (yt − y)2 + (zt − z)2

= rt

√
1 + y2

r2
t

− 2 sinφt sin θty
rt

+ z2

r2
t

− 2 cos θtz
rt

(3.34)

is the distance between the Tx and the (y, z)th IRS point. Similarly, the distance
between the Rx and the (y, z)th IRS point is given by

rr(y, z) =
√
x2
r + (yr − y)2 + (zr − z)2

= rr

√
1 + y2

r2
r

− 2 sinφr sin θry
rr

+ z2

r2
r

− 2 cos θrz
rr

. (3.35)

Thanks to the small physical size of THz IRSs, the amplitude variation 1/rt(y, z) is
marginal, and hence it can be considered as constant over the IRS. In contrast, the
phase variation krt(y, z) is significant and cannot be ignored. We therefore consider

e−jkrt(y,z)

rt(y, z)
≈ e−jk(rt+r̃t(y,z))

rt
, (3.36)

6We assume that Gt is constant over the angular domain as our main focus is on modeling of
the IRS response.
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where rt is the radial distance of the Tx, whilst rt + r̃t(y, z) is the Fresnel approxi-
mation of the Tx distance

rt(y, z) ≈ rt + y2(1− sin2 φt sin2 θt)
2rt

− y sinφt sin θt + z2 sin2 θt
2rt

− z cos θt︸ ︷︷ ︸
r̃t(y,z)

. (3.37)

Mathematically speaking, (3.37) follows from the second-order Taylor expansion
(1 + x)α ≈ 1 + αx+ 1

2α(α− 1)x2 of (3.34), while ignoring the terms O(r−qt ), q ≥ 3.
By exploiting the approximate expression in (3.36), we can determine the scattered
field in closed-form, as articulated in the following proposition.

Proposition 3.3.1. Let ϕ(y, z) = k
(
C1y

2 + C2y + C3z
2 + C4z

)
be the phase profile

of the IRS, where C1, C2, C3, and C4 are properly selected constants. Under the
physical optics approximation [61, Ch. 7], the scattered E-field at the Rx location pr,
when the IRS is illuminated by a spherical wave originated from pt, is specified as

Es = −LyLz
λ

|Ei|e−jk(rt+rr)

rr
cosφt sin θrSyzeθ, (3.38)

where |Ei| =
√

2ηPtGt
4πr2

t
is the magnitude of the incident E-field. Also, Syz ∈ [0, 1] is

the normalized space factor of the IRS defined as

Syz ,
π

4jkLyLz
√
ayaz

[
erf
(√

jkay

(
Ly
2 −

by
2ay

))
− erf

(√
jkay

(
−Ly2 −

by
2ay

))]

×
[
erf
(√

jkaz

(
Lz
2 −

bz
2az

))
− erf

(√
jkaz

(
−Lz2 −

bz
2az

))]
, (3.39)

where

ay = (1− sin2 φt sin2 θt)
2rt

+ (1− sin2 φr sin2 θr)
2rr

− C1, (3.40)

by = sinφt sin θt + sinφr sin θr + C2, (3.41)

az = sin2 θt
2rt

+ sin2 θr
2rr

− C3, (3.42)

bz = cos θt + cos θr + C4. (3.43)

Proof. See paper III.

Remark 3.3.2. In the far-field, the parallel-ray approximations

r̃t(y, z) ≈ −y sinφt sin θt − z cos θt, (3.44)

r̃r(y, z) ≈ −y sinφr sin θr − z cos θr (3.45)

are used. Then, ay = az = 0, and the space factor of the IRS reduces to [61, Ch. 11]

Syz = sinc(Y )sinc(Z), (3.46)

where Y , kLyby/2, and Z , kLzbz/2.
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Remark 3.3.3 (Physical optics). In general, characterizing the scattered E-field re-
quires the exact solutions of Maxwell’s equations under specific boundary conditions.
Since this is very challenging, if not impossible, in most cases, one can resort to
numerical approaches such as the method of moments [62]. In our work, we employ
physical optics to obtain an approximate yet insightful expression for the scattered
field in the Fresnel zone. Moreover, our analysis becomes nearly exact (i.e., by ignor-
ing edge effects) when the IRS is configured as a perfect electric conductor (PEC).
In a similar spirit, other state-of-the-art papers [63–65] invoked physical optics to
derive an EM-aware channel model, yet for the far-field region.

Path Loss Expression: From Proposition (3.3.1), the power density of the scat-
tered field is

Ss = 1
2η‖Es‖2 =

(
LyLz
λ

)2 PtGt
4πr2

t r
2
r

cosφ2
t sin2 θr|Syz|2, (3.47)

where |Syz|2 represents the normalized beampattern of the IRS. Considering the Rx
aperture Ar = Grλ

2/(4π), the received power is calculated as Pr = SsAr. Taking
also into account the molecular absorption losses in THz bands yields the path loss
of the Tx-IRS-Rx link

PL = GtGr

(
LyLz

4π

)2 cos2 φt sin2 θr
r2
t r

2
r

e−κabs(f)(rt+rr)|Syz|2 = PL|Syz|2, (3.48)

where κabs(f) denotes the molecular absorption coefficient at the carrier frequency f .
From (3.48), we evince that the path loss of the IRS-aided link follows the plate
scattering paradigm, by which the path attenuation mainly depends on the IRS area
LyLz, the reciprocal of the product of squared distances r2

t and r2
r , i.e., 1/(rtrr)2,

as well as the beampattern |Syz|2.
Signal Model: By combining (3.38) and (3.48), the baseband received signal is

expressed as
y =
√

PLe−jk(rr+rt)Syzx+ ñ, (3.49)

where x ∼ CN (0, Pt) is the transmitted data symbol, Pt is the average power per
data symbol, Syz is the normalized space factor7 of the IRS, and ñ ∼ CN (0, σ2) is
the additive noise. Finally, the SNR is given by

SNR = PtPL|Syz|2

σ2 , (3.50)

which is maximized for |Syz|2 = 1.

3.3.3 Near-Field versus Far-Field Response

In this section, we thoroughly discuss the near-field channel model of Section 3.3.2
and its impact on the optimal IRS design.

7Note that the space factor is the continuous analogue to the array factor of antenna arrays [43].
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Figure 3.10: Illustration of the geometry for a holographic IRS configured as a PEC; the
angles are φt = φr and θt = θr + π.

Figure 3.11: Normalized beampattern of a PEC in the Fresnel zone versus distance rr.
The parameters are: Ly = Lz = 100λ, f = 300 GHz, (θt, φt) = (30◦, 30◦), (θr, φt) =
(30◦ + 180◦, 30◦), rt = 8 m, and 1 ≤ rr ≤ 60 m.

The PEC Configuration

Assume that the IRS is configured to mimick a PEC, that is C1 = C2 = C3 = C4 = 0.
In the far-field, (3.40)–(3.43) reduce to

ay = az ≈ 0, (3.51)

by = sinφt sin θt + sinφr sin θr, (3.52)

bz = cos θt + cos θr. (3.53)

As previously mentioned, the received power is maximized for |Syz|2 = 1, which
occurs when the Tx and Rx directions are (θt, φt) and (θr + π, φr), respectively; see
Fig 3.10. In other words, the maximum of the scattered E-field is at the specular
direction, as expected. Using Proposition 3.3.1, we now determine the PEC response
in the Fresnel zone. Specifically, for (θt, φt) and (θr + π, φr), we have

by = bz = 0, (3.54)

ay = (1− sin2 φt sin2 θt)
2rt

+ (1− sin2 φr sin2 θr)
2rr

, (3.55)

az = sin2 θt
2rt

+ sin2 θr
2rr

. (3.56)
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(a) rr = 2 m and ro = 8 m (b) rr = 6 m and ro = 8 m

Figure 3.12: Squared magnitude of the scattered E-field versus observation angle φo. The far-
field formula uses the space factor in (3.46). The parameters are: |Ei| = 1, Ly = Lz = 200λ,
f = 300 GHz, φt = 36◦, (θr, φr) = (45◦, 30◦), and (θo, φo) = (45◦, φo).

From Fig. 3.11, it is evident that the maximum value is not obtained when rt 6= rr.
This is because the spherical wavefront of the emitted waves make Syz depend on
the distances rt and rr as well. This behavior is in sharp contrast to the far-field
case, where the beampattern is a function only of the angular direction (θ, φ). In
conclusion, the PEC configuration is not suitable for near-field communication, as it
can significantly reduce the power gain, i.e., |Syz|2 < 1, even for distances of several
meters from the IRS.

The Beamfocusing Configuration

Consider now the phase shift profile ϕ(y, z) = k
(
C1y

2 + C2y + C3z
2 + C4z

)
, with

C1 = 1− sin2 φt sin2 θt
2rt

+ 1− sin2 φo sin2 θo
2ro

, (3.57)

C2 = − sinφt sin θt − sinφo sin θo, (3.58)

C3 = sin2 θt
2rt

+ sin2 θo
2ro

, (3.59)

C4 = − cos θt − cos θo, (3.60)

where (ro cosφo sin θo, ro sinφo sin θo, ro cos θo) is an arbitrary observation position.
This phase shift profile focuses the signal toward the Rx point. More particu-
larly, (3.40)–(3.43) reduce to

ay = 1− sin2 φr sin2 θr
2rr

− 1− sin2 φo sin2 θo
2ro

, (3.61)

by = sinφr sin θr − sinφo sin θo, (3.62)

az = sin2 θr
2rr

− sin2 θo
2ro

, (3.63)

bz = cos θr − cos θo. (3.64)

Consequently, Syz = 1 for (ro, θo, φo) = (rr, θr, φr), yielding the desired result. We
next plot the squared magnitude of the scattered E-field in Fig. 3.12. As observed
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Only point where the mirror limit

holds

Figure 3.13: Path loss of different IRS configurations versus dimension Ly. The parameters
are: Ly = Lz, f = 300 GHz, (θt, φt) = (30◦, 30◦), (θr, φt) = (30◦ + 180◦, 30◦), rt = 2 m, and
rr = 6 m.

from Fig. 3.12(a), there is a discrepancy between the near and far scattered fields
for ro 6= rr, which implies that the scattering from an electrically large IRS can
not be accurately described by the far-field model.8 Lastly, it is worth stressing
that the near-field space factor in (3.39) coincides with its far-field counterpart
(3.46) for either an electrically small IRS or relatively large distances rr and ro, i.e.,
Fig. 3.12(b).

3.3.4 Comparison with Anomalous Mirror

In the related literature [66–69], there has been a debate on whether the near-field
path loss is proportional to 1/(rt + rr)2, which represents the specular reflection
paradigm. Since specular reflection occurs only for an infinite flat surface, this
power law is referred to as mirror limit. However, we have shown that the near-field
path loss is PL ∝ 1/(rtrr)2 in general. Furthermore, beamfocusing is the optimal
IRS configuration making the Rx power scale quadratically with the IRS area LyLz.
As a result, the “mirror limit” configuration is suboptimal for unicast transmissions,
and can be only useful in broadcasting scenarios [45]. To see this, consider the
following options:

• PEC, where the path loss is calculated using (3.48).

• Beamfocuing, where the path loss is
(
LyLz
4πrtrr

)2
.

• Mirror-limit, where the path loss is
(

λ
4π(rt+rr)

)2
.

The results are depicted in Fig. 3.13. First, we observe that the PEC and beamfo-
cusing configurations act the same for an electrically small IRS since the spherical
wavefront can be neglected. However, as the IRS size increases, the PEC reduces the
received power, i.e., Syz < 1. More importantly, the path loss of the IRS coincides
with that of the mirror only for a specific IRS size, and do not make the power scale
as (LyLz)2. In conclusion, the IRS should not be treated as an anomalous mirror
either in the far-field or Fresnel zone.

8Recall that the spherical wavefront leads to a distance-dependent beampattern.
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3.3.5 Discretizing a Holographic IRS

It might be difficut to implement a holographic IRS in practice. For this reason,
the continuous surface of size Ly × Lz can be approximated by a planar structure
of N1 = Ly/(dy + L̃y) and N2 = Lz/(dz + L̃z) reflecting elements, where L̃y × L̃z
is the area of each element, whilst dy and dz are the inter-element spacings along
the y and z directions, respectively. In paper III, we have shown that the discrete
version of the space factor (3.39) can be expressed as

Sdyz =

∑N1
2 −1
n=−N1

2
e−jk((n(L̃y+dy))2ay−n(L̃y+dy)by)

N1

×

∑N2
2 −1
m=−N2

2
e−jk((m(L̃z+dz))2az−m(L̃z+dz)bz)

N2
, (3.65)

with Sdyz ≈ Syz for dy = dz = 0, i.e., negligible inter-element spacing. Furthermore,
the discretized IRS attains the same power gain as its holographic counterpart for
dy = dz = 0.9

3.3.6 Summary

In paper III, we studied holographic IRSs at THz frequencies. In particular:

• We determined the scattered E-field from a holographic IRS in the Fresnel
zone by leveraging physical optics. This enabled us to characterize the path
loss of IRS-assisted propagation analytically. Our channel model accounts
for the spherical wavefront of the radiated EM waves and, hence, reveals the
beamfocusing capabilities of electrically large IRSs.

• Capitilizing on the derived channel model, we showed that the PEC configu-
ration is suboptimal in the near-field as it can significantly reduce the power
gian. Thus, the IRS should be configured to perform beamfocusing. This new
paradigm shift in IRS design requires accurate localization of the Tx and Rx,
which is an interersting research problem per se.

• We demonstrated that an electircally large IRS does not act as an anomalous
mirror in general. Specifically, the path loss degenerates into the mirror-limit
only for a particular IRS size. Besides, the mirror-limit configuration does not
make the power scale quadratically with the IRS area, and hence can not be
exploited to mitigate the severe path loss of the IRS-aided link.

• We discussed how a holographic IRS can be discretized to facilitate efficient
hardware implementation. Specifically, a necessary condition is to have a sub-
wavelength spacing between reflecting elements. The mutual coupling effects
that kick in for ultra-dense IRSs play a key role in the overall performance,
and hence their investigation is left for future work. The work in [70] can serve
as a good starting point.

9The study of mutual coupling between adjacent reflecting elements is important and, hence, is
left for future work.

32



3.4 Wideband Considerations

The abundant spectrum available at THz frequencies is widely deemed the key
resource for attaining data rates in the order of terabits-per-second. However, IRS-
aided wideband THz systems pose several new challenges. One of these challenges
involves dealing with the spatial-wideband effect, which renders the channel response
frequency-selective even for LoS propagation. In this section, we investigate the
performance of IRS-assisted THz communication under the spatial-wideband effect.
Note that existing works on THz IRSs (e.g., [71–73] and references therein) ignore
the spatial-wideband effect.

3.4.1 Channel Model with Spatial-Wideband Effects

In paper IV, we considered a discrete IRS in the xy-plane. Specifically, the IRS con-
sists of N = N1×N2 reflecting elements of size Lx×Ly each. The origin of the coor-
dinate system is placed at the center of the IRS, and the position of each reflecting el-
ement is measured from its center. Then, assuming negligible inter-element spacing,
the position vector of the (n,m)th element is pn,m = ((n− 1/2)Lx, (m− 1/2)Ly, 0),
for n = −N1

2 , . . . ,
N1
2 − 1 and m = −N2

2 , . . . ,
N2
2 − 1. The Tx distance (3.10) and Rx

distance (3.11) are recast, respectively, as

rt(n,m) = rt
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(3.66)

and

rr(n,m) = rr
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. (3.67)

In the wideband case, the received baseband signal (3.2) at time t is expressed as

y(t) =

N1
2 −1∑

n=−N1
2

N2
2 −1∑

m=−N2
2

hn,me
jϕn,mx(t− τn,m) + ñ(t)

=

N1
2 −1∑

n=−N1
2

N2
2 −1∑

m=−N2
2

√
PLn,me−j2πfcτn,mejϕn,mx(t− τn,m) + ñ(t), (3.68)

where fc is the carrier frequency, τn,m , (rt(n,m) + rr(n,m))/c is the propagation
delay of the signal reflected by the (n,m)th IRS element, and c is the speed of light.
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The path loss PLn,m is specified according to (3.7). Taking the continuous-time
Fourier transform of (3.68) gives

Y (f) ≈
√

PL

N1
2 −1∑

n=−N1
2

N2
2 −1∑

m=−N2
2

e−j2π(fc+f)τn,mejϕn,m

︸ ︷︷ ︸
Heff(f)

X(f) + Ñ(f), (3.69)

where the approximation follows from PLn,m ≈ PL thanks to the small physical size
of THz IRSs, PL is the path loss calculated using the radial distances rt and rr,
F{y(t)} = Y (f), F{x(t)} = X(f), F{ñ(t)} = Ñ(f), and Heff(f) is the effective
channel accounting for the phase shifts. Note that Heff(f) is frequency-dependent
under LoS propagation because of the spatial-wideband effect. Next, consider OFDM
modulation with S subcarriers for a signal bandwidth B. The subcarrier spacing
is ∆B = B/S, whilst the baseband frequency of the sth subcarrier is specified as
fs =

(
s− S−1

2

)
∆B, for s = 0, . . . , S − 1. Hence, the received signal at the sth

OFDM subcarrier is given by

Y (fs) =
√

PLHeff(fs)X(fs) + Ñ(fs), (3.70)

where X(fs) ∼ CN (0, Pt/S) is the transmitted data symbol with average power
Pt/S, and Ñ(fs) ∼ CN (0, σ2∆B) is the additive noise at each subcarrier.

Remark 3.4.1. Let Ts = 1/B denote the symbol period. For τn,m � Ts,∀n,m,
we have the approximation x(t − τn,m) ≈ x(t). This yields a spatially narrowband
channel under LoS propagation.

3.4.2 Performance Analysis

Power Gain

From (3.70), the SNR at the sth OFDM subcarrier is

SNRs = PtPL|Heff|2

Bσ2 = N2GsPtPL
Bσ2 , (3.71)

where Gs , |Heff|2/N2 ∈ [0, 1] is the normalized power gain. Under frequency-
dependent beamfocusing, i.e., ϕn,m(fs) = 2π(fc + fs)τn,m, Gs = 1 and a power
gain of N2 is achived over all OFDM subcarriers. However, standard IRS designs10

facilitate narrowband beamfocusing, where the phase shift induced by the (n,m)th
element is ϕn,m = 2πfcτn,m. In this case, the normalized power gain reduces to

Gs = 1
N2

1N
2
2

∣∣∣∣∣∣∣
N1
2 −1∑

n=−N1
2

N2
2 −1∑

m=−N2
2

e−j2πfs
rt(n,m)+rr(n,m)

c

∣∣∣∣∣∣∣
2

, (3.72)

10Each IRS element is typically modeled as a transmission line [74], where the argument of the
reflection coefficient does not scale linearly with the frequency of the incident wave.
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Figure 3.14: Normalized power gain for an 80×80-element IRS, B = 20 GHz, fc = 300 GHz,
(rt, θt, φt) = (1, π/3, π/5), and (rr, θr, φr) = (5, π/4, π/3).

which yields Gs < 1 for fs > 0. Consequently, it is important to study the power
gain under narrowband beamfocusing. To this direction, in paper IV, we derived a
closed-form expression for the decrease in the power gain, which relies on the Fresnel
approximation of the Tx and Rx distances rt and rr, respectively. From Fig. 3.14,
the excellent match between the exact formula (3.72) and the derived approximate
expression is verified. Most importantly, we observe that the normalized power gain
Gs tends to zero at the subcarriers that are far from the carrier frequency fc, hence
creating severe power imbalance among different OFDM subcarriers due to beam
squint.

Achievable Rate

Rate versus IRS size: By availing of the closed-form formula, we can show that the
average power gain N2Ḡ, where Ḡ =

∑S−1
s=0 Gs/S, can be bounded as N2Ḡ ≤ Gmax

for some Gmax > 0. Then, we can write for the achievable rate

R =
S−1∑
s=0

B

S
log2

(
1 + N2GsPtPL

Bσ2

)
(a)
≤ B log2

(
1 + 1

S

S−1∑
s=0

N2GsPtPL
Bσ2

)

= B log2

(
1 + N2ḠPtPL

Bσ2

)

≤ B log2

(
1 + GmaxPtPL

Bσ2

)
, (3.73)

where (a) follows from the inequality of arithmetic and geometric means. According
to (3.73), the achievable rate R does not grow without bound as the number N of
IRS elements grows. This result comes in sharp contrast to the spatially narrowband
case, where increasing N would increase R as well. Practically speaking, this means
that the performance degradation due to beam squint cannot be effectively mitigated
by inceasing the number of IRS elements.

Beamfocusing Optimization: To improve the system performance, we resort to a
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Figure 3.15: Achievable rate for an 80 × 80-element IRS, B = 20 GHz, fc = 300 GHz,
S = 20, (rt, θt, φt) = (1, π/3, π/5), and (rr, θr, φr) = (5, π/4, π/3).

more sophisticated phase shift design than narrowband beamfocusing. Specifically,
in paper IV, we formulated an upper bound optimization problem,11 which serves
as a benchmark to assess the impact of the spatial-wideband effect on the achievable
rate. In Fig. 3.15, the achievable rates of the frequency-dependent beamfocusing,
narrowband beamfocusing, and upper bound optimization approach are 52.48 Gbps,
14.52 Gbps, and 24.61 Gbps, respectively. As evinced, narrowband beamfocusing
performs very poorly and results in a 72.3% rate loss. Moreover, the upper bound
optimization approach performs better, but it still yields a much smaller rate than
frequency-dependent beamfocusing. This numerical experiment emphasizes the need
of a wideband IRS implementation based on TTD-like elements [77].

Figure 3.16: Results under narrowband beamfocusing for α = 2 and a fixed IRS location
at (0,0,0). In the MIMO system, Nt = 100 and Nr = 100. The other parameters are
Gt = Gr = 20 dBi, Pt = 10 dBm, PPS = 42 mW and PPA = 60 mW [56], σ2 = −174
dBm/Hz, B = 20 GHz, S = 20, fc = 300 GHz, Lx = Ly = λ/2, pt = (0.8,−0.8, 0.2), and
pr = (0.8, rr, 0.2).

Energy Efficiency

In Section 3.2.4, we demonstrated that an IRS can improve the EE efficiency of THz
MIMO, yet in the absence of beam squint. In paper IV, we extended the previ-
ous analysis to the wideband case. As observed from Fig. 3.16, the EE efficiency

11This is a well-established optimization approach in the related literature, e.g., [75, 76].
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gains cannot be attained through narrowband beamfocusing because of the detri-
mental impact of beam squint. As a result, beam squint mitigation is of paramount
importance to IRS-assisted wideband THz communications.

3.4.3 Summary

In paper IV, we studied, for the first time, the spatial-wideband effect in IRS-aided
THz communications. In particular:

• We introduced a spherical wave channel model that accounts for the spatial-
wideband effect.

• Building on the proposed channel model, we analyzed the power gain, achiev-
able rate, and EE under narrowband beamfocusing. Specifically, our analysis
shows that narrowband beamfocusing leads to severe performance degradation
for large transmission bandwidths.

• The key conclusion drawn from our study is that conventional IRS designs
cannot efficiently support wideband THz communication due to beam squint.
Therefore, an interesting avenue for future work is how to implement an IRS
with a broadband response. Inspired by wideband reflectarrays, frequency
selective surfaces [77] might be promising.
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4 Concluding Remarks

In this thesis, we studied THz communications from a physical layer perspective.
Specifically, we first focused on massive MIMO, which is widely deemed a key en-
abler of 5G-and-beyond wireless networks. Unlike mmWave antenna systems, THz
massive MIMO will incorporate an unprecedented number of BS antennas and will
utilize extremely large bandwidths to facilitate terabit-per-second communications.
It therefore poses multiple new challenges, including the hardware-friendly imple-
mentation of massive antenna arrays, low-overhead acquisition of CSI, and efficient
beamforming in the face of beam squint, to name but a few. In this thesis, we sought
to provide a solution to the channel estimation and combining problems under the
constraint of a hybrid analog-digital antenna array at the BS. Our contribution was
to devise a novel hybrid combiner and channel estimator suitable for ultra-wideband
operation.

Looking beyond conventional antenna arrays, we thoroughly explored the con-
cept of IRSs as well. In particular, we focused on the near-field region, and analyzed
the channel modeling and phase shift design of electrically large IRSs. More impor-
tantly, we leveraged tools of EM theory to analytically characterize the near-field
response of holographic IRSs, which constitute the asymptotic form of reconfigurable
surfaces offering ultra-high power gains. We believe the research conducted in this
thesis has shed light on the fundamentals of IRSs at THz frequency bands. The con-
tributions made in this thesis are only an initial foray into the immersive world of
EM metasurfaces and wavefront manipulation. For future research, there are several
promising avenues, such as the modeling of mutual coupling in space-constrained
IRSs, super-directivity, transmission line models for broadband IRS designs, and
wireless power transfer in the near-field zone.

38



Paper I

39



1

Channel Estimation and Hybrid Combining for
Wideband Terahertz Massive MIMO Systems
Konstantinos Dovelos, Graduate Student Member, IEEE, Michail Matthaiou, Senior Member, IEEE,

Hien Quoc Ngo, Senior Member, IEEE, and Boris Bellalta, Senior Member, IEEE

Abstract—Terahertz (THz) communication is widely consid-
ered as a key enabler for future 6G wireless systems. However,
THz links are subject to high propagation losses and inter-
symbol interference due to the frequency selectivity of the
channel. Massive multiple-input multiple-output (MIMO) along
with orthogonal frequency division multiplexing (OFDM) can
be used to deal with these problems. Nevertheless, when the
propagation delay across the base station (BS) antenna array
exceeds the symbol period, the spatial response of the BS array
varies over the OFDM subcarriers. This phenomenon, known
as beam squint, renders narrowband combining approaches
ineffective. Additionally, channel estimation becomes challenging
in the absence of combining gain during the training stage. In this
work, we address the channel estimation and hybrid combining
problems in wideband THz massive MIMO with uniform planar
arrays. Specifically, we first introduce a low-complexity beam
squint mitigation scheme based on true-time-delay. Next, we
propose a novel variant of the popular orthogonal matching
pursuit (OMP) algorithm to accurately estimate the channel
with low training overhead. Our channel estimation and hybrid
combining schemes are analyzed both theoretically and numeri-
cally. Moreover, the proposed schemes are extended to the multi-
antenna user case. Simulation results are provided showcasing the
performance gains offered by our design compared to standard
narrowband combining and OMP-based channel estimation.

Index Terms—Beam squint effect, compressive channel estima-
tion, hybrid combining, massive MIMO, planar antenna arrays,
wideband THz communication.

I. INTRODUCTION

Spectrum scarcity is the main bottleneck of current wireless
communication systems. As a result, new frequency bands
and signal processing techniques are required to deal with
the spectrum gridlock. In view of the enormous bandwidth
available at terahertz (THz) frequencies, communication over
the THz band is deemed a key technology for future 6G
wireless systems [1]. Specifically, the THz band, spanning
from 0.1 to 10 THz, offers much larger bandwidths than the
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millimeter wave (mmWave) band. For example, the licensed
bandwidth in the mmWave band is usually up to 7 GHz whilst
that in the THz band will be at least 10 GHz [2]. According to
the Friis transmission formula, though, the path loss becomes
more severe as the frequency increases, and thus THz signals
undergo higher attenuation than their mmWave and microwave
counterparts. However, thanks to the short wavelength of THz
signals, a very large number of antennas can tightly be packed
into a small area to form a massive multiple-input multiple-
output (MIMO) transceiver, hence effectively compensating
for the propagation losses by means of sharp beamforming [3].
Therefore, THz massive MIMO is expected to enable ultra-
high-speed communication systems, such as terabit wireless
personal/local area networks and femtocells [4].

Despite the promising performance gains of THz massive
MIMO systems, the wideband transmissions in conjunction
with the large array aperture might give rise to spatial-
frequency wideband (SFW) effects [5]. In this case, the channel
response becomes frequency-selective not only because of the
delay spread of the multi-path channel, but also due to the large
propagation delay across the array aperture [6]. As a result,
the response of the BS array can be frequency-dependent also
in a line-of-sight (LoS) scenario. When orthogonal frequency
division multiplexing (OFDM) modulation is employed to
combat inter-symbol interference, the spatial-wideband ef-
fect renders the direction-of-arrival (DoA) and direction-of-
departure (DoD) of the signals to vary over the subcarriers.
This phenomenon, termed beam squint, calls for frequency-
dependent beamforming/combining, which is not available in a
typical hybrid array architecture of THz massive MIMO. More
particularly, narrowband beamforming/combining approaches
can substantially reduce the array gain across the OFDM
subcarriers, hence leading to performance degradation [7].
Consequently, beam squint compensation is of paramount
importance for THz massive MIMO-OFDM systems.

Since accurate channel state information (CSI) is essen-
tial to effectively implement combining and/or beam squint
mitigation, channel estimation under SFW effects is another
important problem to address. Specifically, in the absence of
combining gain during channel estimation, the detection of the
paths present in the channel becomes challenging in the low
signal-to-noise ratio (SNR) regime. Additionally, due to the
massive number of BS antennas and the limited number of
radio frequency (RF) chains in a hybrid array architecture, the
channel estimation overhead becomes excessively large even
for single-antenna users under standard approaches, such as
the least squares (LS) method. In conclusion, THz massive
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MIMO brings new challenges in the signal processing design,
and calls for carefully tailored solutions that take into account
the unique propagation characteristics in THz bands.

A. Prior Work

In this section, we review prior work on channel estimation
and hybrid beamforming in wideband mmWave/THz systems.

The authors in [8] proposed a novel single-carrier transmis-
sion scheme for THz massive MIMO, which utilizes minimum
mean-square error precoding and detection. Nevertheless, a
narrowband antenna aray model was considered, and hence
the SFW effect was ignored. A stream of recent papers on
wideband mmWave MIMO-OFDM systems (see [9]–[12], and
references therein) proposed methods to jointly optimize the
analog combiner and the digital precoder in order to maximize
the achievable rate under the beam squint effect. In a similar
spirit, [13] and [14] proposed a new analog beamforming code-
book with wider beams to avoid the array gain degradation due
to beam squint. These methods can enhance the achievable rate
when the beam squint effect is mild. However, their perfor-
mance becomes poor in THz MIMO systems as the signal
bandwidth and number of BS antennas are much larger than
their mmWave counterparts [17]. To this end, [15] proposed
a wideband codebook for beam training for uniform linear
arrays (ULAs) using true-time-delay (TTD) [16]. Nevertheless,
this design is limited to ULAs and beam alignment without
explicitely estimating the channel. From the relevant literature
on hybrid beamforming, we distinguish [17], which proposed
a TTD-based hybrid beamformer for THz massive MIMO, yet
assuming ULAs and perfect CSI.

Despite the importance of channel estimation, there are only
few recent works in the literature investigating the channel
estimation problem under the spatial-wideband effect. More
particularly, the seminal paper [5] introduced the SFW for
mmWave massive MIMO systems, and proposed a channel es-
timation algorithm by capitalizing on the asymptotic properties
of SFW channels. However, the proposed algorithm relies on
multiplying the channel of an N -element uniform linear array
by an N -point discrete Fourier transform (DFT) matrix, and
hence entails high training overhead when the number of RF
chains is much smaller than the number of BS antennas. In a
similar spirit, [18] employed the orthogonal matching pursuit
(OMP) algorithm along with an energy-focusing preprocessing
step to estimate the SFW channel, while minimizing the power
leakage effect. Finally, [19] leveraged tools from compressive
sensing (CS) theory to tackle the channel estimation problem
in frequency-selective multiuser mmWave MIMO systems but
in the absence of the spatial-wideband effect.

B. Contributions

In this paper, we address the channel estimation and hybrid
combining problems in wideband THz MIMO. To this end,
we assume OFDM modulation, which is the most popular
transmission scheme over frequency-selective channels. The
main contributions of the paper are summarized as follows:
• We model the SFW effect in THz MIMO-OFDM systems

with a uniform planar array (UPA) at the BS. Note that

prior studies (e.g., [20], [21]) on mmWave/THz com-
munication with UPAs ignore the SFW effect. We next
show that frequency-flat combining leads to substantial
performance losses due to the severe beam squint effect
occuring across OFDM subcarriers, and propose a beam
squint compensation strategy using TTD [22] and virtual
array partition. The scope of the virtual array partition is
to reduce the number of TTD elements needed to effec-
tively mitigate beam squint. To this end, we derive the
wideband combiner expression for a rectangular planar
array, and establish its near-optimal performance with
respect to fully-digital combining analytically, as well as
through computer simulations.

• We propose a solution to the channel estimation problem
under the SFW effect. Specifically, by availing of the
channel sparsity in the angular domain, we first adopt a
sparse representation of the THz channel, and formulate
the channel estimation problem as a CS problem. We
then propose a solution based on the OMP algorithm,
which is one of the most common and simple greedy CS
methods. Contrary to existing works, we employ a wide-
band dictionary and show that channels across different
OFDM subcarriers share a common support. This enables
us to apply a variant of the simultaneous OMP algorithm,
coined as generalized simultaneous OMP (GSOMP),
which exploits the information of multiple subcarriers
to increase the probability of successfully recovering the
common support. We also evaluate the computational
complexity of the GSOMP to showcase its efficiency
with respect to the OMP. Numerical results show that
the propounded estimator outperforms the OMP-based
estimator in the low and moderate SNR regimes, whilst
achieving the same accuracy in the high SNR regime.

• We analyze the mean-square error of the GSOMP scheme
by providing the Cramér-Rao lower bound (CRLB).
Moreover, we calculate the average achievable rate as-
suming imperfect channel gain knowledge at the BS. We
then show numerically that when the angle quantization
error involved in the sparse channel representation is
negligible, the performance of the GSOMP-based es-
timator is very close to the CRLB. Additionally, the
average achievable rate approaches that of the perfect
channel knowledge case at moderate and high SNR
values, hence corroborating the good performance of our
design. Finally, we extend our analysis to the case of a
multi-antenna user, and discuss the benefits of deploying
multiple antennas at the user side.

The rest of this paper is organized as follows: Section II in-
troduces the system and channel models. Section III describes
the hybrid combining problem under the beam squint effect,
and presents the proposed combining scheme. Section IV
formulates the channel estimation problem, introduces the
standard estimation methods, and explains the propounded al-
gorithm for estimating the SFW channel. Section V extends the
analysis to the multi-antenna user case. Section VI is devoted
to numerical simulations. Finally, Section VII summarizes the
main conclusions derived in this work.
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Fig. 1: Illustration of the BS antenna array and its geometry considered in the system model.

Notation: Throughout the paper, DN (x) = sin(Nx/2)
N sin(x/2) is the

Dirichlet sinc function; A is a matrix; a is a vector; a is
a scalar; A†, AH , and AT are the pseudoinverse, conjugate
transpose, and transpose of A, respectively; A(i) is the ith
column of matrix A; A(I) is the submatrix containing the
columns of A given by the indices set I; |I| is the cardinality
of set I; tr{A} is the trace of A; blkdiag(A1, . . . ,An) is the
block diagonal matrix; [A]n,m is the (n,m)th element of ma-
trix A; F{·} denotes the continuous-time Fourier transform;
∗ denotes convolution; Re{·} is the real part of a complex
variable; 1N×M is the N ×M matrix with unit entries; IN is
the N ×N identity matrix; [v]n is the nth entry of vector v;
supp(v) = {n : [v]n 6= 0} is the support of v; ⊗ denotes the
Kronecker product; � is the element-wise product; ‖a‖1 and
‖a‖2 are the l1-norm and l2-norm of vector a, respectively;
E{·} is expectation; and CN (µ,R) is a complex Gaussian
vector with mean µ and covariance matrix R.

TABLE I
MAIN NOTATION USED IN THE SYSTEM MODEL

Notation Description
S Number of subcarriers
fs Frequency of the sth subcarrier
B Total signal bandwidth
L Number of NLoS paths
αl(f) Frequency-selective attenuation of the lth path
τl ToA of the lth path
(φl, θl) DoA of the lth path
τl,nm Time delay to the (n,m)th BS antenna over the lth path
τnm(φl, θl) Time delay from the (0, 0)th to the (n,m)th BS antenna
x(t) Baseband-equivalent of transmitted signal
x(f) Fourier transform of x(t)
xl(t) Distorted version of x(t) over the lth path
r̃nm(t) Passband signal received by the (n,m)th BS antenna
rnm(t) Baseband-equivalent of r̃nm(t)
rnm(f) Fourier transform of rnm(t)
d Antenna spacing
fc Carrier frequency
c Speed of light
kabs Molecular absorption coefficient
D Distance between the BS and the user
Γl(f) Reflection coefficient of the lth NLoS path

II. SYSTEM MODEL

Consider the uplink of a THz massive MIMO system where
the BS is equipped with an N×M -element UPA, and serves a
single-antenna user as depicted in Fig 1(a); the multi-antenna

user case is investigated in Section V. The total number of BS
antennas is NB = NM , and the baseband frequency response
of the uplink channel is denoted by h(f) ∈ CNB×1. In the
sequel, we present the channel and hybrid transceiver models
used in this work.

A. THz Channel Model with Spatial-Wideband Effects

Due to limited scattering in THz bands, the propagation
channel is represented by a ray-based model of L + 1
rays [21], [23]. Hereafter, we assume that the 0th ray cor-
responds to the LoS path, while the remaining l = 1, . . . , L,
rays are non-line-of-sight (NLoS) paths. Specifically, each path
l = 0, . . . , L, is characterized by its frequency-selective path
attenuation αl(f), time-of-arrival (ToA) τl, and DoA (φl, θl),
where φl ∈ [−π, π] and θl ∈ [−π2 , π2 ] are the azimuth and
polar angles, respectively. In the far-field region1 of the BS
antenna array, the total delay between the user and the (n,m)th
BS antenna through the lth path, τl,nm, is calculated as

τl,nm = τl + τnm(φl, θl), (1)

where τnm(φl, θl) accounts for the propagation delay across
the BS array, and is measured with respect to the (0, 0)th BS
antenna. For a UPA placed in the xy-plane (see Fig. 1(b)), we
then have [24]

τnm(φl, θl) ,
d(n sin θl cosφl +m sin θl sinφl)

c
, (2)

where d is the antenna separation, and c is the speed of
light. The channel frequency response is derived as follows.
Let x(t) be the baseband signal transmitted by the user, with
F{x(t)} = x(f). The passband signal, r̃nm(t), received by the
(n,m)th BS antenna is written in the noiseless case as [25]

r̃nm(t) =
L∑

l=0

√
2Re

{
xl(t− τl,nm)ej2πfc(t−τl,nm)

}
, (3)

where fc is the carrier frequency, xl(t) , x(t) ∗ χl(t) is the
distorted baseband waveform due to the frequency-selective at-
tenuation of the lth path, and χl(t) models the said distortion;
namely, F{χl(t)} = αl(f) and F{xl(t)} = αl(f)x(f) [26].

1Near-field considerations are provided in Section VI-D.
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Next, the received passband signal r̃nm(t) is down-converted
to the baseband signal rnm(t), which is given by

rnm(t) =
L∑

l=0

e−j2πfcτle−j2πfcτnm(φl,θl)xl(t− τl,nm). (4)

Taking the continuous-time Fourier transform of (4) yields

rnm(f) = F{rnm(t)}

=
L∑

l=0

βl(f)e−j2π(fc+f)τnm(φl,θl)x(f)e−j2πfτl , (5)

where βl(f) , αl(f)e−j2πfcτl is the complex gain of
the lth path. Lastly, collecting all rnm(f) into a vector
r(f) ∈ CNB×1 gives the relation r(f) = h(f)x(f), where

h(f) =

L∑

l=0

βl(f)a(φl, θl, f)e−j2πfτl (6)

is the baseband frequency response of the uplink channel, and

a(φ, θ, f) =
[
1, . . . , e−j2π(fc+f) dc (n sin θ cosφ+m sin θ sinφ) ,

. . . , e−j2π(fc+f) dc ((N−1) sin θ cosφ+(M−1) sin θ sinφ)
]T

(7)

is the array response vector of the BS. Here, the array response
is frequency-dependent due to the spatial-wideband effect.2

We now introduce the path attenuation model. First, the so-
called molecular absorption loss is no longer negligible at THz
frequencies. Therefore, the path attenuation of the LoS path
is calculated as [27]

|β0(f)| = α0(f) =
c

4π(fc + f)D
e−

1
2kabs(fc+f)D, (8)

where D denotes the distance between the BS and the user, and
kabs(·) is the molecular absorption coefficient determined by
the composition of the propagation medium; different from
mmWave channels, the major molecular absorption in THz
bands comes from water vapor molecules [27]. For the NLoS
paths, we consider single-bounce reflected rays, since the
diffused and diffracted rays are heavily attenuated for distances
larger than a few meters [28]. To this end, the reflection
coefficient, Γl(f), should be taken into account, which is
specified as [29, Eq. (2)]

Γl(f) =
cosφi,l − nt cosφt,l
cosφi,l + nt cosφt,l

e
−
(

8π2(fc+f)
2σ2rough cos2 φi,l

c2

)

,

(9)
where nt , Z0/Z is the refractive index, Z0 = 377 Ω
is the free-space impedance, Z is the impedance of the
reflecting material, φi,l is the incidence and reflection angle,
φt,l = arcsin

(
n−1
t sinφi,l

)
is the refraction angle, and σrough

characterizes the roughness of the reflecting surface. The path
attenuation of the lth NLoS path is finally given by [30]

|βl(f)| = αl(f) = |Γl(f)|α0(f), (10)

where l = 1, . . . , L.

2If the delay across the BS array is small relative to the symbol period,
then xl(t−τl,nm) ≈ xl(t−τl). In this case, we have a spatially narrowband
channel with frequency-flat array response vectors, i.e., a(φ, θ, 0).

Baseband Combiner
(Digital)

Data
Streams

RF Chain

RF Chain

RF Combiner 
(Analog)

Fig. 2: Illustration of the hybrid array structure considered in the system
model.

B. Hybrid Transceiver Model

Due to the frequency selectivity of the THz channel, OFDM
modulation is employed to combat inter-symbol interference.
Specifically, we consider S subcarriers over a signal band-
width B. Then, the baseband frequency of the sth subcar-
rier is specified as fs =

(
s− S−1

2

)
B
S , s = 0, . . . , S − 1.

A hybrid analog-digital architecture with NRF � NB RF
chains is also considered at the BS to facilitate efficient
hardware implementation; each RF chain drives the array
through NB analog phase shifters, as shown in Fig. 2. The
hybrid combiner for the sth subcarrier is hence expressed as
F[s] = FRFFBB[s] ∈ CNB×NRF , where FRF ∈ CNB×NRF is the
frequency-flat RF combiner with elements of constant ampli-
tude, i.e., 1√

NB
, but variable phase, and FBB[s] ∈ CNRF×NRF is

the baseband combiner. Finally, the post-processed baseband
signal, y[s] ∈ CNRF×1, for the sth subcarrier is written as

y[s] = FH [s]r[s]

= FH [s]
(√

Pdh[s]x[s] + n[s]
)
, (11)

where r[s] , r(fs) and h[s] , h(fs) are the received signal
and uplink channel, respectively, x[s] , x(fs) ∼ CN (0, 1) is
the data symbol transmitted at the sth subcarrier, Pd denotes
the average power per data subcarrier assuming equal power
allocation among subcarriers, and n[s] ∼ CN (0, σ2INB ) is
the additive noise vector.

Remark 1. A promising alternative to OFDM is single-
carrier with frequency domain equalization (SC-FDE) due
to its favorable peak-to-average power ratio (PAPR). In our
work, we exploit the inherent characteristics of THz channels,
i.e., high path loss and directional transmissions, which result
in a coherence bandwidth of hundreds of MHz [28]. Therefore,
a relatively small number of subcarriers is used, which is
expected to yield a tolerant PAPR.

III. HYBRID COMBINING

A. The Beam Squint Problem

Even for a moderate number of BS antennas, the propaga-
tion delay across the array can exceed the sampling period due



5

Fig. 3: Normalized array gain for various bandwidths; 100×100-element UPA, fc = 300 GHz, coherence bandwidth of 100 MHz, and (φ, θ) = (π/3, π/4).

to the ultra-high bandwidth used in THz communication. As a
result, the DoA/DoD varies across the OFDM subcarriers, and
the array gain becomes frequency-selective. This phenomenon,
known as beam squint in the array processing literature, calls
for a frequency-dependent combining design which is feasible
only in a fully-digital array architecture.

To demonstrate the detrimental effect of beam squint when
frequency-flat RF combining is employed, we consider a single
ray impinging on the BS array with DoA (φ, θ); thus, we omit
the subscript “l” hereafter. In the narrowband case, the uplink
channel is given by h(0) = βa(φ, θ, 0). Let fRF = f/

√
NB be

an arbitrary RF combiner, with ‖f‖2 = NB . For the combiner
fRF, the power of the received signal is calculated as

|β|2
∣∣fHa(φ, θ, 0)

∣∣2

NB
Pd = |β|2NBG(φ, θ, 0)Pd, (12)

where G(φ, θ, f) , |fHa(φ, θ, f)|2/N2
B is the normalized

array gain. Choosing f = a(φ, θ, 0) yields G(φ, θ, 0) = 1,
and the maximum array gain is obtained. In a wideband
THz system, though, the array gain varies across the OFDM
subcarriers. In particular, we have that

G(φ, θ, f) =
|aH(φ, θ, 0)a(φ, θ, f)|2

N2
B

= |DN (2πf∆x(φ, θ))|2 |DM (2πf∆y(φ, θ))|2 ,
(13)

where ∆x(φ, θ) , (d sin θ cosφ)/c and ∆y(φ, θ) ,
(d sin θ sinφ)/c; please refer to Appendix A for the proof.
Figure 3 shows the array gain for various bandwidths, when
the narrowband RF combiner fRF = a(φ, θ, 0)/

√
NB is used.

As we see, the array gain reduces substantially across the
OFDM subcarriers. Furthermore, using the technique of [31],
one can show that G(φ, θ, f) → 0 as NM → ∞. Contrary
to narrowband massive MIMO, where the signal power in-
creases monotonically with the number of BS antennas, here
it may decrease. Consequently, beam squint compensation is of
paramount importance for the successful deployment of THz
massive MIMO systems.

B. Proposed Combiner for Single-Path Channels

In this section, we introduce our wideband combining
scheme for single-path channels, and then extend it to the

multi-path case. To this end, we consider that the BS employs
a single RF chain to combine the incoming signal, and hence
the RF combiner is denoted by fRF. Next, we analyze the
normalized array gain by decomposing the array into Nsb×Msb
virtual subarrays of ÑM̃ antennas each, where Ñ , N/Nsb
and M̃ ,M/Msb.

1) Virtual Array Partition: The array response vector in (7)
is decomposed as

a(φ, θ, f) = ax(φ, θ, f)⊗ ay(φ, θ, f), (14)

where ax(·) and ay(·) are defined, respectively, as

ax(φ, θ, f) ,
[
1, . . . , e−j2π(fc+f)n∆x(φ,θ),

. . . , e−j2π(fc+f)(N−1)∆x(φ,θ)
]T

(15)

and

ay(φ, θ, f) ,
[
1, . . . , e−j2π(fc+f)m∆y(φ,θ),

. . . , e−j2π(fc+f)(M−1)∆y(φ,θ)
]T
. (16)

Using the previously mentioned virtual array partition, we can
write

ax(φ, θ, f) = [ax,1(φ, θ, f), . . . ,ax,Nsb(φ, θ, f)]
T
, (17)

ay(φ, θ, f) = [ay,1(φ, θ, f), . . . ,ay,Msb(φ, θ, f)]
T
, (18)

where ax,n(φ, θ, f) corresponds to the response vector of the
nth virtual subarray, which is defined as

ax,n(φ, θ, f) ,
[
e−j2π(fc+f)(n−1)Ñ∆x(φ,θ),

. . . , e−j2π(fc+f)(nÑ−1)∆x(φ,θ)
]T
. (19)

Finally, each vector ax,n(φ, θ, f) is expressed in terms of
ax,1(φ, θ, f), i.e., the response of the first subarray, as

ax,n(φ, θ, f) = e−j2π(fc+f)(n−1)Ñ∆x(φ,θ)ax,1(φ, θ, f). (20)

We stress that similar expressions hold for the vector ay . Cap-
italizing on the virtual subarray notation, the normalized array
gain G(φ, θ, f) is recast as in (21) at the bottom of the next
page. Then, for an adequately small ÑM̃ , we have the approx-
imation |DÑ (2πfs∆x(φ, θ))|2|DM̃ (2πfs∆y(φ, θ))|2 ≈ 1.
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RF Chain

TTD
 Element

TTD
 Element

Virtual Subarrays

Fig. 4: Illustration of the TTD-based wideband combiner with virtual array
partition; the circles with arrows represent frequency-flat phase shifters.

2) Size of Virtual Subarrays: The size of each virtual
subarray, Ñ × M̃ , is selected such that the maximum delay
across the first virtual subarray is smaller than the sampling
period 1/B. Specifically, the maximum delay, τmax, across
the first subarray is given by (2) for n = Ñ − 1, m =
M̃ − 1, sin θ = 1, and sinφ = cosφ = 1/

√
2, yielding

τmax = d(Ñ + M̃ − 2)/(
√

2c). For half-wavelength antenna
spacing and Ñ = M̃ , the condition τmax < 1/B reduces to
(Ñ − 1) <

√
2fc/B, which is used to determine Ñ .

3) TTD-Based Combining: The factor Ω(φ, θ, f) ≤ 1
in (21) accounts for the losses caused by the delay between
consecutive virtual subarrays, and it can be canceled through
an analog TTD network placed between virtual subarrays,
as depicted in Fig. 4. Then, we obtain Ω(φ, θ, fs) = 1 by
multiplying the received signal at the (n,m)th virtual subarray
by ej2πfs∆mn(φ,θ), where ∆mn(φ, θ) , (n− 1)Ñ∆x(φ, θ) +
(m − 1)M̃∆y(φ, θ) is the delay to be mitigated. Because all
OFDM subcarriers share the same delay ∆mn(φ, θ), this can
be compensated using a single TTD element. Therefore, the
wideband RF combiner is designed as

fRF[s] =
1√
NB

vec (A(φ, θ, 0)�T[s]) , (22)

where T[s] ,
[
e−j2πfs∆mn(φ,θ)

]Msb,Nsb

m=1,n=1
⊗ 1M̃×Ñ con-

tains the frequency-dependent phase shifts of the TTD net-
work, A(φ, θ, 0) , ay(φ, θ, 0)aTx (φ, θ, 0) is realized by the
frequency-flat phase shifters, and ‖fRF[s]‖2 = 1.

Proposition 1. With the proposed combiner (22), we have
∣∣fHRFa(φ, θ, f)

∣∣2 = NB |DÑ (2πf∆x)|2 |DM̃ (2πf∆y)|2 ,
(23)

where DN (x) = sin(Nx/2)
N sin(x/2) is the Dirichlet sinc function.

Proof. See Appendix B.

From (23), we conclude that for sufficiently small Ñ and
M̃ , an array gain NB is approximately achieved over the

whole signal bandwidth B. Thus, the SNR at the sth OFDM
subcarrier is |β(fs)|2NBPd/σ2. Lastly, (NsbMsb − 1) TTD
elements are employed per RF chain, where Nsb = N/Ñ and
Msb = M/M̃ .

C. Proposed Combiner for Multi-Path Channels

The propounded method can readily be applied to multi-path
channels. For example, consider a THz channel comprising
of L = 2 NLoS paths. In a fully-digital array, the optimal
combiner for the sth subcarrier is given by the maximum-ratio
combiner h[s]/‖h[s]‖. By employing NRF = 2 RF chains, we
have that

h[s]

‖h[s]‖ = FRF[s]FBB[s]12×1, (24)

where

FRF[s] =
1√
NB

[
a (φ1, θ1, fs) a (φ2, θ2, fs)

]
, (25)

FBB[s] =

√
NB
|h[s]|

[
β1(fs)e

−j2πfsτ1 0
0 β2(fs)e

−j2πfsτ2

]
.

(26)

The columns of the wideband RF combiner FRF[s] are then
approximated using (22), whilst the vector 12×1 with unit en-
tries performs the addition of the two outputs of the baseband
combiner. Note that NRF = L are required to implement the
maximum-ratio combiner in a hybrid array architecture.

Remark 2. A few recent papers in the literature (e.g., [32]
and references therein) suggested the use of TTD to pro-
vide frequency-dependent phase shifts at each antenna of an
N -element ULA, yielding a wideband multi-beam architecture.
In our work, we adopt a hybrid array architecture, where each
frequency-independent phase shifter drives a single antenna
whilst each TTD element controls a group of antennas, i.e.,
virtual subarray. Moreover, we consider a UPA, and hence our
design enables squint-free three-dimensional (3D) combining.

IV. SPARSE CHANNEL ESTIMATION

We have introduced an effective wideband combiner as-
suming that the BS has perfect knowledge of the uplink
channel. In this section, we investigate the channel estimation
problem under the spatial-wideband effect. More particularly,
we first formulate a CS problem to estimate the channel at
each subcarrier independently with reduced training overhead.
We then propound a wideband dictionary and employ an
estimation algorithm that leverages information from multiple
subcarriers to increase the reliability of the channel estimates
in the low and moderate SNR regimes.

G(φ, θ, f) =

∣∣aHx,1(φ, θ, 0)ax,1(φ, θ, f)
∣∣2 ∣∣aHy,1(φ, θ, 0)ay,1(φ, θ, f)

∣∣2

Ñ2M̃2

∣∣∣
∑Nsb
n=1

∑Msb
m=1 e

−j2π(n−1)Ñf∆x(φ,θ)e−j2π(m−1)M̃f∆y(φ,θ)
∣∣∣
2

N2
sbM

2
sb︸ ︷︷ ︸

Ω(φ,θ,f)

= |DÑ (2πf∆x(φ, θ))|2 |DM̃ (2πf∆y(φ, θ))|2 Ω(φ, θ, f). (21)
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A. Problem Formulation

We assume a block-fading model where the channel coher-
ence time is much larger than the training period. Specifically,
the training period consists of Nslot time slots. At each time
slot t = 1, . . . , Nslot, the user transmits the pilot signal
xt[s] =

√
Pp, ∀s ∈ S, where S , {1, . . . , S} denotes

the set of OFDM subcarriers, and Pp is the power per
pilot subcarrier. In turn, the BS combines the pilot signal
at each subcarrier s ∈ S using a training hybrid combiner
Wt[s] ∈ CNB×NRF . Therefore, the post-processed signal at
slot t, yt[s] ∈ CNRF×1, is written as

yt[s] =
√
PpW

H
t [s]h[s] + WH

t [s]nt[s], (27)

where nt[s] ∼ CN (0, σ2INB ) is the additive noise vector. Let
Nbeam = NslotNRF denote the total number of pilot beams.
After Nslot training slots, the BS acquires the measurement
vector ȳ[s] , [yT1 [s], . . . ,yTNslot

[s]]T ∈ CNbeam×1 for h[s] as

ȳ[s] =
√
Pp




WH
1 [s]
...

WH
Nslot

[s]


h[s] +




WH
1 [s]n1[s]

...
WH

Nslot
[s]nNslot [s]




=
√
Pp W

H
[s]h[s] + n̄[s], (28)

where W[s] , [W1[s], . . . ,WNslot [s]] ∈ CNB×Nbeam , and
n̄[s] ∈ CNbeam×1 denotes the effective noise. More particularly,
Rn̄[s] , σ2diag

(
WH

1 [s]W1[s], . . . ,WH
Nslot

[s]WNslot [s]
)

is the
covariance matrix of the effective noise, which is colored in
general. Regarding the pilot combiners, due to the hybrid
array architecture, W[s] = WRFWBB[s], with WRF =
[WRF,1, . . . ,WRF,Nslot ] ∈ CNB×Nbeam containing the RF pilot
beams and WBB[s] = blkdiag(WBB,1[s], . . . ,WBB,Nslot [s]) ∈
CNbeam×Nbeam comprising the NRF ×NRF baseband combiners.
The design of the pilot combiners is detailed in Section IV-D3.

B. Least Squares Estimator

From (28), we have Nbeam observations, while h[s] includes
NB variables. Thus, to obtain a good estimate of h[s], we need
that Nbeam ≥ NB . With this condition, the LS estimate is3

ĥLS[s] = Q†sȳ[s], (29)

where Qs ,
√
Pp W

H
[s] ∈ CNbeam×NB is the sensing matrix.

The mean square error (MSE) of the LS estimator for the sth
subcarrier is given by

JLS
s , E

{∥∥∥h[s]− ĥLS[s]
∥∥∥

2
}

= tr
(
Q†sRn̄[s](Q

†
s)
H
)
. (30)

The optimal Qs satisfies QH
s Qs = PpINB [33], [34]. In the

hybrid array architecture under consideration, this is achieved
by WBB[s] = INB and WRF = U ∈ CNB×NB , where U is
the DFT matrix generating the RF pilot beams [34]. We then
have Rn̄[s] = σ2INB , Q†s = (1/

√
Pp)U, and

JLS
s = σ2NB/Pp. (31)

3We consider the LS instead of the minimum mean-square error (MMSE)
method because we focus on estimators that exploit only instantaneous CSI.

The LS estimator (29) requires Nbeam ≥ NB , and hence yields
a prohibitively high training overhead when the number of RF
chains is much smaller than the number of BS antennas.

C. Sparse Formulation and Orthogonal Matching Pursuit
By exploiting the angular sparsity of THz channels, we can

have a sparse formulation of the channel estimation problem
as follows. The physical channel in (6) is also expressed as

h[s] = A[s]β[s], (32)

where A[s] , [a(φ0, θ0, fs), . . . ,a(φL, θL, fs)] ∈ CNB×(L+1),
with a(φl, θl, fs) being specified by (7) for f = fs, is the
so-called wideband array response matrix, and β[s] ,
[β0(fs)e

−j2πfsτ0 , . . . , βL(fs)e
−j2πfsτL ]T ∈ C(L+1)×1 is

the vector of channel gains. Next, consider a dictionary
Ā[s] ∈ CNB×G whose G columns are the array response
vectors associated with a predefined set of DoA. Then, the
uplink channel can be approximated as

h[s] ≈ Ā[s]β̄[s], (33)

where β̄[s] ∈ CG×1 has L+1 nonzero entries whose positions
and values correspond to their DoA and path gains [35].
Therefore, (28) is recast as

ȳ[s] = Φsβ̄[s] + n̄[s], (34)

where Φs ,
√
Pp W

H
[s]Ā[s] ∈ CNbeam×G is the equivalent

sensing matrix. Since (L + 1) � G, the channel gain vector
β̄[s] is (L+1)-sparse, and the channel estimation problem can
be formulated as the sparse recovery problem [34]

ˆ̄β[s] = arg min
β̄[s]

‖β̄[s]‖1

s.t.
∥∥ȳ[s]−Φsβ̄[s]

∥∥
2
≤ ε (35)

where ε ≤ E{‖n̄[s]‖2} is an appropriately chosen bound
on the mean magnitude of the effective noise. The above
optimization problem can be solved for each subcarrier inde-
pendently, i.e., single measurement vector formulation. Finally,
the estimate of h[s] is obtained as ĥCS[s] = Ā[s] ˆ̄β[s].

Several greedy algorithms have been proposed to find ap-
proximate solutions of the l1-norm optimization problem. The
OMP algorithm [36] described in Algorithm 1 is one of the
most common and simple greedy CS methods that can solve
problem (35).

Algorithm 1 OMP-Based Estimator

Input: equivalent sensing matrix Φs and measurement
vector ȳ[s] for the sth subcarrier, and a threshold ε.

1: I−1 = ∅, G = {1, . . . , G}, r−2[s] = 0, r−1[s] = ȳ[s],
and l = 0.

2: while ‖rl−1[s]− rl−2[s]‖2 > ε do
3: g? = arg max

g∈G

∣∣ΦH
s (g)rl−1[s]

∣∣

4: Il = Il−1 ∪ {g?}
5: rl[s] =

(
INbeam −Φs(Il)Φ†s(Il)

)
ȳ[s]

6: l = l + 1
7: end while
8: ˆ̄β[s] = Φ†s(Il−1)ȳ[s]

9: return ĥCS[s] = Ā[s] ˆ̄β[s].
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Fig. 5: CDF of the normalized array gain and quantization error for a single-path channel and a super-resolution dictionary with Gx = 4N and Gy = 4M ;
1,000 channel realizations, 40× 40-element UPA, fRF = a(ω̄x(q), ω̄y(p), fs)/

√
NB , B = 40 GHz, S = 400 subcarriers, and s = 200th subcarrier.

D. Proposed Channel Estimator

1) Wideband Dictionary for UPAs: For half-wavelength
antenna separation, the array response vector (7) is recast as

a(ωx, ωy, f) =
[
1, . . . , e−j2π(1+ f

fc
)(nωx+mωy) ,

. . . , e−j2π(1+ f
fc

)((N−1)ωx+(M−1)ωy)
]T
, (36)

where ωx = 1/2 sin θ cosφ and ωy = 1/2 sin θ sinφ are the
spatial frequencies [37]. The one-to-one mapping between the
spatial frequencies (ωx, ωy) and the physical angles (φ, θ) is
given by the relationships

φ = tan−1 (ωy/ωx) , (37)

θ = sin−1
(

2
√
ω2
x + ω2

y

)
. (38)

Since both ωx and ωy lie in [−1/2, 1/2], we consider the grids
of discrete spatial frequencies

Gx = {ω̄x(q) = q/Gx, q = −(Gx − 1)/2, . . . , (Gx − 1)/2} ,
(39)

Gy = {ω̄y(p) = p/Gy, p = −(Gy − 1)/2, . . . , (Gy − 1)/2},
(40)

where GxGy = G is the overall dictionary size.
For the sth subcarrier, we define the array response matrices

Āx[s] ∈ CN×Gx and Āy[s] ∈ CM×Gy whose columns are
the array response vectors ax(·, fs) and ay(·, fs) evaluated
at the grid points of Gx and Gy , respectively. Now, the
dictionary Ā[s] , Āx[s] ⊗ Āy[s] ∈ CNB×G can be used
to approximate the uplink channel h[s] at the sth subcarrier.
Although this approximation entails quantization errors, these
become small for large Gx and Gy [35]. More specifically,
we can use a super-resolution dictionary with Gx > N and
Gy > M to reduce the mismatch between the quantized and
the actual channel. We evaluate the accuracy of the proposed
dictionary by generating a DoA with (ωx, ωy), which is then
quantized to the closest value (ω̄x(q), ω̄y(p)). Figure 5 shows
the cumulative distribution function (CDF) of the normalized
array gain

∣∣aH(ω̄x(q), ω̄y(p), fs)a(ωx, ωy, fs)
∣∣2 /N2

B , and the
quantization errors |ωx−ω̄x(q)| and |ωy−ω̄y(p)| of the spatial
frequencies. As observed, the errors are small, and do not

affect significantly the normalized array gain. Consequently,
we neglect the quantization errors and assume that the DoA
of each path lies on the dictionary grid. Note that for Gx = N
and Gy = M , the dictionary Ā[s] reduces to the known virtual
channel representation (VCR) [38] in the spatial-narrowband
case. Lastly, a similar representation, termed extended VCR,
was introduced in [39] for narrowband massive MIMO sys-
tems.

2) Generalized Multiple Measurement Vector Problem:
Thanks to the frequency-dependent dictionary, the channel
gain vectors {β̄[s]}S−1

s=0 share the same support. Therefore,
we can exploit the common support property and consider
the problem in (35) as a generalized multiple measurement
vector (GMMV) problem, where multiple sensing matrices
are employed [40]. To solve the GMMV problem, we employ
the simultaneous OMP algorithm [41]. The proposed channel
estimator is described in Algorithm 2.

Algorithm 2 GSOMP-Based Estimator

Input: set S of pilot subcarriers, sensing matrices Φs and
measurement vectors ȳ[s],∀s ∈ S, and a threshold ε.

1: I−1 = ∅, G = {1, . . . , G}, r−1[s] = ȳ[s], MSE =∑
s∈S ‖ȳ[s]‖2, and l = 0.

2: while MSE > ε do
3: g? = arg max

g∈G\Il−1

∑
s∈S

∣∣ΦH
s (g)rl−1[s]

∣∣

4: Il = Il−1 ∪ {g?}
5: rl[s] =

(
INbeam −Φs(Il)Φ†s(Il)

)
ȳ[s], ∀s ∈ S

6: MSE = 1
|S|
∑
s∈S ‖rl[s]− rl−1[s]‖2

7: l = l + 1
8: end while
9: ˆ̄β[s] = Φ†s(Il−1)ȳ[s],∀s ∈ S

10: return ĥCS[s] = Ā[s] ˆ̄β[s],∀s ∈ S.

Regarding the stopping criterion of the OMP/GSOMP al-
gorithms, we design the pilot combiners so that the effective
noise is white. In this case, the variance of the noise power
is E

{
‖n̄[s]‖2

}
= Nbeamσ

2, and the threshold can be chosen
as ε = Nbeamσ

2, or a fraction of the average noise power.
Additionally, a thresholding step can be incorporated into
the algorithms, in which only the entries of the estimate ˆ̄β
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with power higher than the noise variance will be selected as
detected paths. After estimating the spatial frequencies of each
path, the physical angles are obtained through (37) and (38),
which are then used in the TTD-based wideband combiner.

3) Pilot Beam Design: The elements of the RF combiner
WRF are selected from the set {−1/

√
NB , 1/

√
NB} with

equal probability. The reason we adopt a randomly formed
RF combiner is that it has been shown to have a low mutual-
column coherence, and therefore can be expected to attain a
high recovery probability according to the CS theory [42]. The
specific RF pilot design leads to a colored effective noise,
however the SOMP algorithm is based on the assumption
that the noise covariance matrix is diagonal. To this end,
we design the baseband combiner such that the combined
noise remains white. In particular, let DH

t Dt be the Cholesky
decomposition of WH

RF,tWRF,t, where D ∈ CNRF×NRF is
an upper triangular matrix. Then, the baseband combiner
of the tth slot is set to WBB,t[s] = D−1

t , and hence
W[s] = WRFblkdiag(D−1

1 , . . . ,D−1
Nslot

). Under this pilot beam
design, the covariance matrix of the effective noise becomes
Rn̄ = σ2INbeam , yielding the desired result. We finally point
out that the combiners W[s] can be computed offline.

E. Performance of the Proposed Channel Estimator

1) Lower Bound Error Analysis: As previously mentioned,
for semi-unitary combiners Wt[s] with WH

t [s]Wt[s] =
INRF ,∀t = 1, . . . , Nslot, the covariance matrix of the effective
noise n̄[s] is equal to σ2INbeam . Next, we derive the CRLB
assuming that the GSOMP recovers the exact support of β̄[s],
i.e., Il−1 = supp

(
β̄[s]

)
= I.4 To this end, we can define the

following linear model for the sth subcarrier

ȳ[s] = Φs(I) ˜̄β[s] + n̄[s], (41)

where ˜̄β[s] ∈ CL×1 denotes the vector to be estimated, and
ȳ[s] is distributed as CN

(
Φs(I) ˜̄β[s], σ2INbeam

)
. The model

in (41) is linear on the parameter vector ˜̄β[s], and the solution
ˆ̄β[s] = Φ†s(I)ȳ[s] gives E

{
ˆ̄β[s]

}
= ˜̄β[s]. Specifically, ˆ̄β[s]

is the mininum variance unbiased estimator of ˜̄β[s], hence
attaining the CRLB [43]. Next, the Fisher information matrix
for (41) is calculated as

I
(

˜̄β[s]
)

=
1

σ2
ΦH
s (I)Φs(I). (42)

The channel estimate for the sth subcarrier is acquired as
ĥCS[s] = Ās(I) ˆ̄β[s], where Ās(I) denotes the matrix with
the columns of Ā[s] given by the support I. Let JCS

s denote the
MSE of the OMP. Since E

{
ĥCS
}

= Ās(I) ˜̄β[s] , ψ
(

˜̄β[s]
)

,
the CRLB for the sth subcarrier is given by [43]

JCS
s ≥ tr





∂ψ
(

˜̄β[s]
)

∂ ˜̄β[s]
I−1

(
˜̄β[s]

) ∂ψH
(

˜̄β[s]
)

∂ ˜̄β[s]



 , (43)

where ∂ψ
(

˜̄β[s]
)
/∂ ˜̄β[s] = Ās(I).

4This is a well accepted assumption in the related literature; see [19] and
references therein.

2) Complexity Analysis: In this section, we detail the com-
putational complexity per iteration l of the GSOMP scheme.
Specifically, we have the following operations:
• The l2-norm operations at step 1 and step 6 have
O(|S|Nbeam) complexity.

• The calculation of the product ΦH
s (g)rl−1[s] at step 3 is

O(|S|Nbeam(G− l)) because there are G− l elements to
examine at the lth iteration, where G is the size of the
dictionary.

• To find the maximum element from G− l values at step 3
is on the order of O(G− l).

• The LS operation at step 5 is O(l3 + 2l2Nbeam) for each
pilot subcarrier. This is because Φ(Il) is a Nbeam × l
matrix, and hence its pseudoinverse entails l3 + l2Nbeam
operations plus the multiplication with Φ(Il) entailing
l2Nbeam additional multiplications.

Given the above, the overall online computational complex-
ity isO

(
|S|(Nbeam(G− l) + l3 + 2l2Nbeam) + (G− l)

)
. Note

that the OMP has O(|S|G) at step 3 for finding the maximum
correlation between the measurement vector and the columns
of the dictionary. As a result, the GSOMP leads to a compu-
tational reduction as well.

V. THE MULTI-ANTENNA USER CASE

We now discuss how the previous analysis can be extended
to the case of a multi-antenna user. To this end, we consider
a user with an NU -element ULA. The frequency response of
the uplink channel, H(f) ∈ CNB×NU , is then expressed as

H(f) =
L∑

l=0

βl(f)aB(φl, θl, f)aHU (ϕl, f)e−j2πfτl , (44)

where aB(·, ·, ·) denotes the response vector (7) of the BS
array, ϕl is the angle-of-departure (AoD) of the lth path from
the user, and

aU (ϕ, f) ,
[
1, e−j2π(fc+f) dc sinϕ,

. . . , e−j2π(fc+f)(NU−1) dc sinϕ
]T

(45)

is the wideband response vector of the user array.
At the BS, the post-processed baseband signal for the sth

subcarrier is expressed as

y[s] = FH [s] (H[s]B[s]x̃[s] + n[s]) , (46)

where B[s] ∈ CNU×NuRF is the hybrid precoder when the user
employs Nu

RF RF chains, x̃[s] = P[s]x[s] is the transmitted
signal at the sth subcarrier, P[s] = diag(p1,s, . . . , pNuRF,s

) is
the power allocation matrix, and x[s] ∼ CN (0, INuRF

) is the
vector of data symbols. Note that the the power constraint∑S−1
s=0 E

{
‖B[s]x̃[s]‖2

}
≤ Pt should be satisfied, so that the

transmit power does not exceed the user’s power budget Pt.

A. Hybrid Combining and Beamforming

Consider a single-path channel with AoD ϕ from the user
and DoA (φ, θ) at the BS. For the frequency-flat beamformer
aU (ϕ, 0)/

√
NU and combiner aB(φ, θ, 0)/

√
NB , the normal-

ized array gain in (13) is recast as in (47) at the bottom
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of this page, where ∆(ϕ) , d sinϕ/c. Employing TTD-
based combining and beamforming yields G(φ, θ, ϕ, f) ≈ 1,
and the SNR at the sth subcarrier is approximately equal to
|β(fs)|2NUNBPd/σ2. Compared to the single-antenna user
case, we have an additional beamforming gain NU .

Now consider, for instance, a multi-path channel of L = 2
NLoS paths. In a fully-digital array, the combiner and precoder
maximizing the achievable rate are given by the singular value
decomposition (SVD) of the channel matrix H[s] [11]. For
our hybrid analog-digital array structure, we adopt a practical
approach, as in [17]. We first decompose the channel matrix
as H(f) = HB(f)HH

U (f), where

HB(f) =
[
aB(φ1, θ1, f), aB(φ2, θ2, f)

]
, (48)

and

HU (f) =
[
β1(f)aU (ϕ1, f)e−j2πfτ1 ,

β2(f)aU (ϕ2, f)e−j2πfτ2
]
. (49)

Next, the RF combiner and beamformer are the matched filters
of the channels HB(f) and HH

U (f), respectively, whereas the
baseband combiner and precoder are designed using the SVD
of the effective channel, when both ends have full CSI. Note
that for a multi-path channel with L > NRF paths, the user
communicates at most min(L,NRF) spatial streams to the BS
in the absence of inter-stream interference through SVD-based
transmission.

B. Sparse Channel Estimation

The user employs a training codebook {vi ∈ CNU×1, i =
1, . . . , Nu

beam}, which consists of Nu
beam pilot RF beamformers.

When the ith pilot beamformer is used during Nslot training
slots, (28) is recast as

ȳi[s] =
√
Pp W

H
[s]H[s]vi + n̄i[s]. (50)

By collecting all vectors ȳi[s] into a single matrix Y[s] =
[ȳ1[s], . . . , ȳNubeam

[s]] ∈ CNbeam×Nubeam , we can write

Y[s] =
√
Pp W

H
[s]H[s]V + N[s], (51)

where V = [v1, . . . ,vNubeam
] ∈ CNU×Nubeam , and N =

[n̄1[s], . . . , n̄Nubeam
[s]] ∈ CNbeam×Nubeam . Utilizing the identity

vec(ABC) = (CT ⊗ A)vec(B), we express (51) in vector
form as

vec(Y[s]) =
√
Pp

(
VT ⊗W

H
[s]
)

vec(H[s]) + vec(N[s]),

(52)
where vec(Y[s]) ∈ CNbeamN

u
beam×1 is the overall measure-

ment vector, vec(H[s]) ∈ CNBNU×1 is the uplink chan-
nel to be estimated, and vec(N[s]) ∈ CNbeamN

u
beam×1 is the

noise vector. Now, the proposed GSOMP-based estimator
can readily be used by considering the equivalent sensing

matrix Φs =
√
Pp

(
VT ⊗W

H
[s]
)

Ā[s] ∈ CNbeamN
u
beam×GGu ,

where Ā[s] , Ā∗u[s] ⊗ (Āx[s] ⊗ Āy[s]) ∈ CNBNU×GGu is
the equivalent dictionary accounting also for the dictionary
Āu[s] ∈ CNU×Gu of size Gu at the user side. Finally, the
estimated channel is constructed as vec(Ĥ[s]) = Ā[s] ˆ̄β[s].

TABLE II
MAIN SIMULATION PARAMETERS [27], [28]

Parameter Value
Bandwidth B = 40 GHz
Carrier frequency fc = 300 GHz
Transmit power Pt = 10 dBm
Power density of noise σ2 = −174 dBm/Hz
Azimuth AoA φl ∼ U (−π, π)
Polar AoA θl ∼ U (−π/2, π/2)
LoS path length D = 15 m
ToA of LoS τ0 = 50 nsec
ToA of NLoS τl ∼ U(50, 55) nsec
Absorption coefficient kabs = 0.0033 m−1

Refractive index nt = 2.24− j0.025
Roughness factor σrough = 0.088 · 10−3 m

VI. NUMERICAL RESULTS

In this section, we conduct numerical simulations to eval-
uate the performance of the proposed channel estimator and
hybrid combiner. To this end, we consider the following setup:
• Number of OFDM Subcarriers: For a NLoS multi-path

scenario where τl ∼ U(50, 55) nsec, the delay spread is
Ds = 5 nsec. The coherence bandwidth is then calculated
as Bc = 1/(2Ds) = 100 MHz [25], which results in
S ≈ B/Bc = 400 subcarriers. On the other hand, for a
LoS scenario, the delay spread is equal to the maximum
delay across the UPA due to the spatial-wideband effect.
This results in S ≈ 18 subcarriers for an 100 × 100-
element UPA and B = 40 GHz.

• Antenna Gain: Each BS antenna element has a directional
power pattern, Λ(φ, θ), which is specified according to
the 3GPP standard as [48]

Λ(φ, θ) = Λmax−min [−ΛH(φ)− ΛV (θ),ΛFBR] , (53)

where

ΛH(φ) = −min

[
12

(
φ

φ3dB

)2

,ΛFBR

]
, (54)

ΛV (θ) = −min

[
12

(
θ − 90◦

θ3dB

)2

,SLAv

]
, (55)

where min [·, ·] denotes the minimum between the input
arguments, Λmax is the maximum gain in the boresight
direction, φ3dB = 65◦ and θ3dB = 65◦ are the horizontal
and vertical half-power beamwidths, respectively, ΛFBR =
30 dB is the front-to-back ratio, and SLAv = 30 dB is the
side lobe attenuation in the vertical direction. We choose

G(φ, θ, ϕ, f) =
|aHB (φ, θ, 0)aB(φ, θ, f)|2

N2
B

|aHU (ϕ, f)aU (ϕ, 0)|2
N2
U

= |DN (2πf∆x(φ, θ))|2 |DM (2πf∆y(φ, θ))|2 |DNU (2πf∆(ϕ))|2 . (47)
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(a) (b)

Fig. 6: NMSE versus SNR for a single-antenna user. The OMP, NBOMP, and GSOMP estimators are evaluated under partial training of Nbeam = 0.8NB

pilot beams; 40× 40-element UPA, NRF = 2, NLoS channel with L = 3 paths, S = 400 subcarriers, and super-resolution dictionary with G = 4NB .

Λmax = 50 dBi [27]. At the user side, we assume om-
nidirectional antennas. The channel model is then recast
by replacing a(φ, θ, f) with

√
Λ(φ, θ)a(φ, θ, f) [49].

The other simulation parameters are summarized in Table II.

A. Channel Estimation

1) Single-Antenna User: Our performance metric is the
normalized mean-square error (NMSE) versus the average
receive SNR. The NMSE is defined as

NMSE , 1

|S|
∑

s∈S
E
{∥∥∥h[s]− ĥ[s]

∥∥∥
2 /
‖h[s]‖2

}
, (56)

where ĥ[s] denotes the estimate of the corresponding estima-
tor. The NMSE is computed numerically over 100 channel
realizations. The complex path gains {βl(fs)}Ll=1 are gener-
ated as CN (0, σ2

β), with σ2
β = 10−9, i.e., −90 dB, modeling

the high path attenuation at THz frequencies [23].5 The
average receive SNR is then calculated as SNR = σ2

βPp/Pn,
where Pp = Pt/|S| is the power per pilot subcarrier, and
Pn = ∆Bσ2 is the noise power at each subcarrier, with
∆B ≈ B/S being the subcarrier spacing.

In the first numerical experiment, we compare the following
estimation schemes:
• The LS scheme of Section IV-B under full training, i.e.,
Nbeam = NB .

• The narrowband OMP-based estimator (NBOMP) with a
frequency-flat dictionary [44], [45].

• The OMP-based estimator, but with the wideband dictio-
nary of Section IV-D1.

• The proposed GSOMP-based estimator and its CRLB.
The NMSE metrics for the LS method and the CRLB are
computed using (31) and (43) in the numerator of (56),
respectively. The NMSE attained by each scheme is depicted
in Fig. 6(a). As we observe, the NMSE of the LS method

5The path gains are generated in this way so that we have a single average
SNR over the OFDM subcarriers.

is prohibitively high since it scales linearly with the number
of BS antennas. Likewise, the NBOMP exhibits a very poor
performance since it neglects the spatial-wideband effect.
Moreover, the OMP-based estimator fails to successfully re-
cover the common support in the low SNR regime, hence
resulting in significant estimation errors. On the other hand,
the proposed GSOMP-based estimator accurately detects the
common support of the channel gain vectors for all SNR values
ranging from −15 dB to 10 dB, and thus attains the CRLB.

Next, we focus on the state-of-the-art of estimation tech-
niques based on the OMP. To this end, we distinguish the
work in [46], which proposed a nonuniform dictionary and an
RF pilot beam design based on the DFT for a narrowband
system with ULAs; henceforth, we will refer to this scheme
as OMP-DFT. Here, we extend the aforementioned design to
the UPA case with spatial-wideband effects, and compare it
with our proposed method. As we see from Fig. 6(b), the
GSOMP outperfoms the OMP-DFT. The poor performance of
the OMP-DFT stems from the fact that the dictionary and RF
pilot beams become highly correlated for a large number of
BS antennas and high SNR values. To see this, recall that the
dictionary resembles a DFT matrix. Consequently, the product
of the DFT-based pilot combiner and the dictionary tends to
have multiple close-to-zero columns, thereby destroying the
incoherence of the equivalent sensing matrix.

2) Multi-Antenna User: We now investigate how multiple
user antennas affect the channel estimation performance at
the BS. In order to have a fair comparison between the
single-antenna and multi-antenna user cases, we fix the total
number of antennas to NBNU = 160, and consider an
20 × 20-element UPA at the BS and an 4-element ULA at
the user.6 For ϕ ∼ U(−π/2, π/2), the continuous spatial
frequency ω = 1/2 sinϕ lies in the interval [−1/2, 1/2].
Thus, the user’s dictionary consists of the spatial frequencies
{ω̄(p) = p/Gu, p = −(Gu − 1)/2, . . . , (Gu − 1)/2}. The

6In this way, the overhead of partial training, 0.8NBNU , is kept fixed too.
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Fig. 7: NMSE versus SNR for a user with an 4-element ULA; 20×20-element
UPA, NRF = 2, NLoS channel with L = 3 paths, S = 400 subcarriers, and
super-resolution dictionaries with G = 4NB and Gu = 4NU .

elements of the pilot RF beamformers {vi} are selected from
the set {−1/

√
NU , 1/

√
NU} with equal probability.

The NMSE is computed by replacing h[s] and ĥ[s] in (56)
with vec(H[s]) and vec(Ĥ[s]), respectively. The MSE of the
LS scheme (31) is the same as in the single-antenna user
case since we have kept fixed the total number of antennas.
Figure 7 depicts the performance of the GSOMP and OMP.
As observed, there is a slight increase in the NMSE compared
to the single-antenna user case, i.e., Fig. 6(a). Furthermore,
this increase becomes significant in the high SNR regime,
but yet, the proposed estimator outperforms the OMP for low
and moderate SNR values. The performance degradation is
because the equivalent sensing matrices {Φs}S−1

s=0 have higher
total coherence compared to the single-antenna user case,
which is defined for each matrix Φs as [46]

µ(Φs) ,
GGu∑

i=1

GGu∑

j=1,j 6=i

|ΦH
s (i)Φs(j)|

‖Φs(i)‖‖Φs(j)‖
. (57)

It is worth pointing out that different pilot beam designs might
change the performance of the estimators, which hinges on the
coherence of the equivalent sensing matrices {Φs}S−1

s=0 .
3) Subcarrier Selection: In the previous experiments, we

assumed that the GSOMP estimator employs all the subcar-
riers, i.e., |S| = 400, to estimate the common support of the
channel gain vectors {β[s]}S−1

s=0 . However, this might lead to a
very high computation burden. Thus, we can employ only a set
of successive subcarriers to detect the common support, i.e.,
steps 2−8 of Algorithm 2, and then use this support to estimate
the channel at every subcarrier s ∈ S, which corresponds to
step 9 of Algorithm 2. We refer to this scheme as GSOMP with
subcarrier selection (GSOMP-SS). From Fig. 8, we observe
that we can accurately estimate the uplink channel in the
moderate SNR regime by employing only a small number
of pilot subcarriers in the common support detection steps.
Note, though, that using one subcarrier per 50 pilot subcarriers
slightly increases the NMSE in the low SNR regime.

Fig. 8: NMSE versus SNR for a single-antenna user. In GSOMP-SS, one pilot
subcarrier per 50 subcarriers is used to detect the common support; 40× 40-
element UPA, NRF = 2, NLoS channel with L = 3 paths, and S = 400
subcarriers.

Fig. 9: Normalized array gain for an 100×100-element UPA. In the proposed
scheme, NsbMsb − 1 = 99 TTD elements are employed; LoS channel,
(φ0, θ0) = (π/4, π/3), and S = 18 subcarriers.

B. Hybrid Combining for Single-Antenna Users

1) Achievable Rate with Perfect CSI: We start the per-
formance assessment of our combiner by considering a LoS
channel. In this case, the complex path gain is given by
β0(f) = α0(f)e−j2πfcτ0 , where τ0 = D/c is the ToA of the
LoS path, and α0(f) is specified according to (8). For each
channel realization, perfect knowledge of the DoA is assumed
at the BS, which can be acquired using the GSOMP estimator.
We also consider the following cases:

• A fully-digital architecture, where the BS employs the
frequency-selective combiner a(φ0, θ0, f)/

√
NB .

• A hybrid architecture, where the BS uses the narrowband
combiner a(φ0, θ0, 0)/

√
NB .

• A hybrid architecture, where the proposed combiner (22)
is used, with Nsb = 10 and Msb = 10 virtual subarrays.

The normalized array gain is plotted in Fig. 9, where we see
that our combiner atttains approximately the maximum gain
over the entire signal bandwidth of B = 40 GHz. Next, we
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Fig. 10: Average achievable rate under perfect CSI for a LoS channel; single-
antenna user, 100 × 100-element UPA, 99 TTD elements in the proposed
scheme, and S = 18 subcarriers.

focus on the average achievable rate, which is calculated as

R =
S∑

s=1

∆BE
{

log2

(
1 +

Pd|fHRFh[s]|2
∆Bσ2

)}
, (58)

where Pd = Pt/S is the power per subcarrier, and fRF denotes
the corresponding combiner. The results are given in Fig. 10.
Specifically, the achievable rates are 517 Gbps, 514 Gbps, and
303 Gbps for the digital, proposed, and narrowband schemes,
respectively. Thus, the proposed combiner performs very close
to the fully-digital scheme, while offering a 40% gain with
respect to the narrowband combiner. Additionally, this is done
by employing only NsbMsb − 1 = 99 TTD elements for an
100 × 100-element UPA, which yields an excellent trade-off
between hardware complexity and performance. Lastly, note
that transmission rates at least R = 0.5 Tbps at D = 15
meters can be achieved through an 100 × 100-element UPA,
which would not be feasible with an equivalent ULA under a
footprint constraint.

2) Achievable Rate with Imperfect CSI: We now evaluate
the average achievable rate attained by the proposed combiner
along with the GSOMP-based estimator. To this end, we
consider a NLoS multi-path channel. The complex path gain
of the lth NLoS path is βl(f) = αl(f)e−j2πfcτl , where τl is
the ToA, and αl(f) is calculated according to (10) assuming
φi,l ∼ U(−π/2, π/2). Under imperfect CSI, the BS treats
the channel estimate as the true channel, and combines the
received signal with the maximum-ratio combiner ĥ[s]/‖ĥ[s]‖.
Let h[s] = ĥ[s] − e[s], with e[s] denoting the channel
estimation error for the sth subcarrier. The combined signal
for the sth subcarrier is then written as

y[s] =
√
Pd‖ĥ[s]‖x[s]−

√
Pd

ĥH [s]e[s]

‖ĥ[s]‖
x[s] +

ĥH [s]

‖ĥ[s]‖
n[s]

=
√
Pd‖ĥ[s]‖x[s] + neff[s], (59)

where neff[s] = (−√PdĥH [s]e[s]x[s] + ĥH [s]n[s])/‖ĥ[s]‖ is
the effective noise. Unfortunately, it is challenging to derive an
achievable rate of channel model (59) since the effective noise

Fig. 11: Average achievable rate under imperfect CSI for a NLoS channel
with L = 2 paths; single-antenna user, 100 × 100-element UPA, 99 TTD
elements per RF chain, and S = 400 subcarriers.

is correlated with the desired signal. Nevertheless, as shown in
the previous numerical results, the channel estimation error is
small. Hence, it is reasonably assumed that, conditioned on the
channel estimates, the effective noise is uncorrelated with the
desired signal. Then, we obtain the following approximation
for the equivalent SNR at the sth subcarrier [47]

SNReq[s] ≈ Pd‖ĥ[s]‖2
∆Bσ2 + PdĥH [s]Re[s]ĥ[s]/‖ĥ[s]‖2

, (60)

where Re[s] , E{e[s]eH [s]}. The corresponding average
achievable rate under imperfect CSI is then [47]

R ≈
S∑

s=1

∆BE {log2 (1 + SINReq[s])} . (61)

A closed-form expression for Re[s] can be derived by assum-
ing perfect recovery of the common support of the channel
gain vectors. More specifically, from the CRLB analysis, we
have that the error e[s] , Ās(I)

(
ˆ̄β[s]− ˜̄β[s]

)
is distributed

as CN
(
0,Re[s]

)
, where Re[s] = Ās(I)I−1

(
˜̄β[s]

)
ĀH
s (I).

Figure 11 depicts the average achievable rate under perfect and
imperfect CSI. In the imperfect CSI case, the common support
of the channel gain vectors is computed by the GSOMP-based
estimator. As observed from Fig. 11, the average achievable
rate attained by the proposed channel estimator approaches
that of the perfect CSI case.

C. Hybrid SVD Transmission for Multi-Antenna Users

In this section, we consider a multi-antenna user. As previ-
ously shown, we can accurately estimate the channel using the
GSOMP-based estimator, and hence perfect CSI is assumed.
To have a fair comparison between the single-antenna and
multi-antenna user cases, we fix the number of antennas to
NUNB = 100 × 100, and we consider an 100 × 50-element
UPA at the BS and an 2-element ULA at the user. Due to the
small user array size, we assume a fully-digital array at the
user, where Nu

RF = NU = 2. Subsequently, we compare the
following transmission schemes:
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Fig. 12: Average achievable rate a for a NLoS channel with L = 2 paths;
multi-antenna user with an 2-element ULA, 100×50-element UPA, 49 TTD
elements per RF chain, and S = 400 subcarriers.

• Digital: the combiner F[s] and precoder B[s] are de-
signed using the SVD of the channel H[s].

• Proposed: the wideband RF combiner FRF[s] implements
the scaled matrix HB(f)/

√
NB , defined in (48), using

TTD and virtual array partition. The baseband combiner
FBB[s] and precoder B[s] are then designed using the
SVD of the effective channel FHRF[s]H[s].

• Narrowband: the frequency-flat RF combiner FRF imple-
ments the scaled matrix HB(0)/

√
NB defined in (48).

The baseband combiner FBB[s] and precoder B[s] are
then designed based on the SVD of the effective chan-
nel FHRFH[s].

The average achievable rate is calculated as

R =

S−1∑

s=0

NuRF∑

n=0

∆BE
{

log2

(
1 +

pn,sσ
2
n(FH [s]H[s]B[s])

∆Bσ2

)}
,

(62)

where the set {pn,s} of powers is calculated using the wa-
terfilling power allocation algorithm, and σn(·) denotes the
nth singular value of the input matrix. From Fig. 12, we
validate the effectiveness of the proposed TTD-based method,
which performs close to the fully-digital transmission scheme.
More importantly, the deployment of a few antennas at the
user side along with waterfilling power allocation boosts the
average achievable rate compared to the single-antenna user
case, which enables rates much higher than R = 0.5 Tbps at
a distance D = 15 m. Another benefit of having multiple user
antennas is the reduction of the BS array size, which permits
combating the spatial-wideband effect with a small number of
TTD elements. In particular, for the 100 × 50-element UPA
under consideration, we have used Nsb = 10 and Msb = 5
virtual subarrays, resulting in NsbMsb−1 = 49 TTD elements.

D. Near-Field Considerations

In the far-field region, the spherical wavefront degenerates
to a plane wavefront, which allows the use of the parallel-ray

Fig. 13: Average achievable rate of the TTD-based wideband combiner for a
LoS channel; single-antenna user, and 100× 100-element UPA.

approximation to derive the array response vector (7). Due to
the large array aperture of THz massive MIMO, though, near-
field considerations are of particular interest. Recall that near-
field refers to distances smaller than the Fraunhofer distance
Df , 2D2

max/λ, where Dmax is the maximum dimension of
the antenna array, and λ is the carrier wavelength. For a UPA
with N = M , we have D2

max = 2(N − 1)2d2, i.e., length
of its diagonal dimension, which leads to Df = (N − 1)2λ
for a half-wavelength spacing. Then, for fc = 300 GHz and
an 100 × 100-element UPA, Df ≈ 9.8 meters. As a result,
the plane wave assumption may not hold anymore in small
distances from the BS [50]. In this case, a spherical wavefront
is a more appropriate model [51]. Under this model, the array
response matrix, A(φ, θ, f) ∈ CM×N , of the BS is defined as

[A(φ, θ, f)]m,n , e−j2π(fc+f)
Dmn(φ,θ)

c , (63)

where Dmn(φ, θ) =
(
(x− nd)2 + (y −md)2 + z2

)1/2
is the

distance between the (n,m)th BS antenna and the scatterer
with coordinates (x, y, z); x , D cosφ sin θ, y , D sinφ sin θ,
and z , D cos θ, where D denotes the distance from the (0, 0)th
BS antenna. The array response vector is then obtained as
a(φ, θ, f) = vec(A(φ, θ, f)). We now calculate the average
achievable rate for the TTD-based combiner (22) under the
plane and spherical wave models. The combiner is designed
assuming a plane wavefront in both cases. From Fig. 13, a
very good match between the two models is observed even
for distances smaller than the Fraunhofer distance. Thus, the
proposed combiner can be used at near-field distances without
incurring a significant rate loss. However, we stress that a
comprehensive study of the near-field effects under different
array arrangements and sizes is left for future work.

VII. CONCLUSIONS

We have proposed a solution to the channel estimation and
hybrid combining problems in wideband THz massive MIMO.
Specifically, we first derived the THz channel model with SFW
effects for a UPA at the BS and a single-antenna user. We then
showed that standard narrowband combining leads to severe
reduction of the array gain due to beam squint. To tackle
this problem, we introduced a novel TTD-based wideband
combiner with a low-complexity implementation due to the
virtual subarray rationale. We next proposed a CS algorithm
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along with a wideband dictionary to acquire reliably the CSI
with reduced training overhead under the spatial-wideband
effect. To study the performance of the proposed schemes,
we derived the CRLB and computed the achievable rate under
imperfect CSI. We also extended our analysis to the multi-
antenna user case, and conducted numerical results.

Simulations demonstrated that our design provides nearly
beam squint-free operation, as well as enables accurate CSI ac-
quisition even in the low SNR regime. Regarding the insights
drawn from our study, the deployment of multiple antennas at
the user can alleviate the spatial-wideband effect by reducing
the BS’ array size, whilst keeping constant the total number
of antennas. As a result, the TTD-based wideband array can
offer the power gain required to compensate for the very high
propagation losses at THz bands. Additionally, in the case
of multi-path propagation, it has been shown that SVD-based
transmission can boost the performance and offer rates higher
than half terabit per second over a distance of several meters.
In conclusion, wideband massive MIMO will play a pivotal
role in future THz wireless networks.

Regarding future work, it would be interesting to study the
performance of wideband THz massive MIMO under hardware
impairments, as well as investigate the beam tracking problem
in high-mobility scenarios. Moreover, it would be interesting
to compare OFDM with SC-FDE, and derive an analytical
expression for the PAPR metric.

APPENDIX A

For the normalized array gain, we have that

|aH(φ, θ, 0)a(φ, θ, f)|
NB

=

=
|
(
ax(φ, θ, 0)H ⊗ ay(φ, θ, 0)H

)
(ax(φ, θ, f)⊗ ay(φ, θ, f)) |

NM

=
|
(
ax(φ, θ, 0)Hax(φ, θ, f)

) (
aHy (φ, θ, 0)ay(φ, θ, f)

)
|

NM
.

Then, it holds

|ax(φ, θ, 0)Hax(φ, θ, f)|
N

=
1

N

∣∣∣∣∣
N−1∑

n=0

e−j2πfn
d
c sin θ cosφ

∣∣∣∣∣

=
1

N

∣∣∣∣∣
1− e−j2πfN d

c sin θ cosφ

1− e−j2πf dc sin θ cosφ

∣∣∣∣∣

=
1

N

∣∣∣∣
sin (Nπf∆x)

sin (πf∆x)

∣∣∣∣
= |DN (2πf∆x)|,

where ∆x = d
c sin θ cosφ. Likewise, we get

|ay(φ, θ, 0)Hay(φ, θ, f)|
M

= |DM (2πf∆y)|,

where ∆y = d
c sin θ sinφ, which yields the desired result.

APPENDIX B

Using the identity ax ⊗ ay = vec
(
aya

T
x

)
, we have

A(φ, θ, f) , ay(φ, θ, f)aTx (φ, θ, f)

=




ay,1(φ, θ, f)
...

ay,Msb(φ, θ, f)



[
aTx,1(φ, θ, f), · · · ,aTx,Nsb

(φ, θ, f)
]

=




A11(φ, θ, f) · · · A1Nsb(φ, θ, f)
A21(φ, θ, f) · · · A1Nsb(φ, θ, f)

...
. . .

...
AMsb1(φ, θ, f) · · · AMsbNsb(φ, θ, f)


 , (64)

where Amn(φ, θ, f) , ay,m(φ, θ, f)aTx,n(φ, θ, f). We also
have that

Amn(φ, θ, f) = ay,m(φ, θ, f)aTx,n(φ, θ, f)

= e−j2π(n−1)Ñ(fc+f)∆x−j2π(m−1)M̃(fc+f)∆yA11(φ, θ, f).

Using the above relationships, we can write

A(φ, θ, 0)�T[s] = vyv
T
x , (65)

where

vx =
[
e−j2π(n−1)Ñ(fc+f)∆xax,1(φ, θ, 0)

]Nsb

n=1
, (66)

and

vy =
[
e−j2π(m−1)M̃(fc+f)∆yay,1(φ, θ, 0)

]Msb

m=1
. (67)

Now consider a path with array response aH(φ, θ, f). Then,

fHRFa(φ, θ, f) =

=
1√
NB

vecH(A(φ, θ, 0)�T[s])a(φ, θ, f)

=

√
NB
NB

(
vHx ⊗ vHy

)
(ax(φ, θ, f)⊗ ay(φ, θ, f))

=

√
NB
NB

(
vHx ax(φ, θ, f)

) (
vHy ay(φ, θ, f)

)

=
√
NB

aHx,1(φ, θ, 0)ax,1(φ, θ, f)

Ñ

aHy,1(φ, θ, 0)ay,1(φ, θ, f)

M̃
.

As a result, we obtain (23) in Proposition 1.
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Abstract—An intelligent reflecting surface (IRS) at terahertz
(THz) bands is expected to have a massive number of reflecting el-
ements to compensate for the severe propagation losses. However,
as the IRS size grows, the conventional far-field assumption starts
becoming invalid and the spherical wavefront of the radiated
waves should be taken into account. In this work, we consider a
spherical wave channel model and pursue a comprehensive study
of IRS-aided multiple-input multiple-output (MIMO) in terms
of power gain and energy efficiency (EE). Specifically, we first
analyze the power gain under beamfocusing and beamforming,
and show that the latter is suboptimal even for multiple meters
away from the IRS. To this end, we derive an approximate,
yet accurate, closed-form expression for the loss in the power
gain under beamforming. Building on the derived model, we
next show that an IRS can significantly improve the EE of
MIMO when it operates in the radiating near-field and performs
beamfocusing. Numerical results corroborate our analysis and
provide novel insights into the design and performance of IRS-
assisted THz communication.

I. INTRODUCTION

Terahertz (THz) communication is widely deemed a key
enabler for future 6G wireless networks due to the abun-
dance of available spectrum at THz bands [1]. However, THz
wireless links are subject to severe propagation losses, which
require transceivers with a massive number of antennas to
compensate for these losses and extend the communication
range [2]. On the other hand, unlike sub-6 GHz systems, the
power consumption of THz radio-frequency (RF) circuitry is
considerably high, which might undermine the deployment of
large antenna arrays in an energy efficient manner [3]. To over-
come this problem, the novel concept of intelligent reflecting
surface (IRS) can be exploited to build transceivers with a
relatively small number of antennas, which work along with
an IRS to achieve high spectral efficiency with reduced power
consumption [4]. Thus, the performance analysis of IRS-aided
THz communication is of great research importance.

There is a large body of literature investigating the modeling
and performance of IRSs at sub-6 GHz and millimeter wave
bands. Most of them, though, treat the IRS element as a typical
antenna that re-radiates the impinging wave, and leverage
antenna theory to characterize the path loss of the IRS-aided
link. Furthermore, they assume far-field, where the spheri-
cal wavefront of the emitted waves degenerates to a plane
wavefront. Although these approaches are popular due to their
simplicity, they might not capture the unique features of IRSs,
and especially at THz bands. To this direction, [5] introduced

a path loss model for the sub-6 GHz band by invoking plate
scattering theory, but assuming a specific scattering plane;
hence, it is applicable only to special cases. The authors in [6]
extended the said path loss model to arbitrary incident angles
and polarizations, but considered the far-field zone of the IRS.
Recently, a stream of papers (e.g., [7], [8], and references
therein) proposed a path loss model that is applicable to near-
field, using the “cosq” radiation pattern [9] for each IRS
element, which differs from the plate scattering-based model.

Although there are still many critical questions about the
operation of THz IRSs, there is a dearth of related literature.
From related work, we distinguish [10], where the authors
showed that the far-field beampattern of a holographic IRS
can be well approximated by that of an ultra-dense IRS,
and then proposed a channel estimation scheme for THz
massive multiple-input multiple-output (MIMO) aided by a
holographic IRS. However, due to the high propagation losses
and the short wavelength, a THz IRS is expected to consist
of a massive number of passive reflecting elements, resulting
in a radiating near-field, i.e., Fresnel zone, of several meters.
Additionally, to effectively overcome the path loss of the
transmitter-IRS link, the transmitter will need to operate near
the IRS, which is in sharp contrast to sub-6 GHz massive
MIMO of macrocell deployments. In conclusion, a THz IRS
calls for a carefully tailored design that takes into account the
aforementioned particularities.

This paper aims to shed light on these aspects, and study the
channel modeling and performance of THz IRS. In particular:
• We provide a near-field channel model for THz frequen-

cies. Our model is physically consistent, and takes into
account the size of the IRS elements in the path loss
calculation, as well as in the spherical wavefront of the
radiated waves.

• We show that a typical THz IRS is likely to operate
in the Fresnel zone, where conventional beamforming
is suboptimal and hence can reduce the power gain.
More importantly, we analytically evaluate that loss by
providing an approximate closed-form expression.

• We compare IRS-aided MIMO with MIMO, and demon-
strate the energy efficiency (EE) gains of the former
architecture. More specifically, we determine the optimal
number of IRS elements required to attain the same rate
as MIMO with reduced power consumption, and reveal
the EE scaling laws.
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Fig. 1: Illustration of the IRS geometry considered in the channel model.

Notation: DN (x) = sin(Nx/2)
N sin(x/2) is the Dirichlet sinc function;

A is a matrix; a is a vector; [A]i,j is the (i, j)th entry of A;
AT and AH are the transpose and conjugate transpose of A,
respectively, vec(A) is the column vector formed by stacking
the columns of A; and CN (µ,Σ) is a complex Gaussian
vector with mean µ and covariance matrix Σ.

II. SYSTEM MODEL

A. Signal Model

Consider a THz IRS system where the transmitter (Tx)
and receiver (Rx) have a single antenna each. The IRS is
placed in the xy-plane, and it consists of N = Nx × Ny
passive reflecting elements. Each reflecting element is of size
Lx × Ly , and the spacings between adjacent elements are
d̄x and d̄y along the x and y directions, respectively. The
reflection coefficient of the (n,m)th IRS element is ejϕn,m ,
where ϕn,m ∈ [−π, π]. We next focus on the Tx-IRS-Rx link.
The baseband signal at the receiver is then written as

y = hTr Φhts+ ñ, (1)

where Φ = diag(vec(Φ̃)) ∈ CN×N , with Φ̃ ∈ CNx×Ny and
[Φ̃]n,m = ejϕn,m , is the IRS’s reflection matrix, hr ∈ CN×1 is
the channel from the Rx to the IRS, ht ∈ CN×1 is the channel
from the Tx to the IRS, s ∼ CN (0, Pt) is the transmitted
data symbol, Pt is the average power per data symbol, and
ñ ∼ CN (0, σ2) is the additive noise.

B. Channel Model

1) Spherical Wavefront: Unlike antenna arrays that are
typically modeled as a collection of point radiators, an IRS
comprises rectangular reflecting elements whose size cannot
be neglected. Assume that the center of the (0, 0)th IRS ele-
ment is placed at the origin of the coordinate system, as shown
in Fig. 1. Across the (n,m)th IRS element, the reflection
coefficient ejϕn,m remains constant, and the phase difference
between adjacent elements is measured from their centers.
Thus, the position vector of the (n,m)th IRS element is
pn,m = (ndx,mdy, 0), where dx , d̄x+Lx and dy , d̄y+Ly .

Let λ denote the carrier wavelength. Henceforth, we consider
Lx = Ly = λ/2 and d̄x = d̄y = 0 [8], [11].

The Tx and Rx are located in (Dt, θt, φt) and (Dr, θr, φr),
respectively, and hence their position vectors in Cartesian
coordinates are

pt = (Dt cosφt sin θt, Dt sinφt sin θt, Dt cos θt), (2)
pr = (Dr cosφr sin θr, Dr sinφr sin θr, Dr cos θr), (3)

where Dt and Dr are the distances measured from the (0,0)th
IRS element, while φ and θ denote the azimuth and polar
angles, respectively. The baseband channel from the Tx to the
IRS is specified as ht = vec(Mt), where Mt ∈ CNx×Ny is
the auxiliary matrix with entries [12]

[Mt]n,m =
√

PLtn,me
−jkDtn,m . (4)

In (4), k = 2π
λ is the wavenumber, PLtn,m is the path loss

between the Tx and the (n,m)th IRS element, and Dt
n,m ,

‖pt − pn,m‖ is the respective distance, with Dt
0,0 = Dt.

Similarly, we have hr = vec(Mr), where Mr ∈ CNx×Ny
is the auxiliary matrix with entries

[Mr]n,m =
√

PLrn,me
−jkDrn,m , (5)

where PLrn,m is the path loss between the Rx and the (n,m)th
IRS element, and Dr

n,m , ‖pr − pn,m‖, with Dr
0,0 = Dr.

Using (4) and (5), the received signal in (1) is recast as

y =

Nx−1∑

n=0

Ny−1∑

m=0

√
PLn,me−jk(D

t
n,m+Drn,m)ejϕn,ms+ ñ, (6)

where PLn,m = PLtn,mPLrn,m denotes the overall path loss of
the Tx-IRS-Rx link through the (n,m)th reflecting element.
Hence, the receive signal-to-noise ratio (SNR) is

SNR =
Pt
σ2

∣∣∣∣∣∣

Nx−1∑

n=0

Ny−1∑

m=0

√
PLn,me−jk(D

t
n,m+Drn,m)ejϕn,m

∣∣∣∣∣∣

2

.

(7)
In the sequel, we detail the path loss model for THz bands,
which relies on the plate scattering paradigm [13].

2) Scattered Field by an IRS Element: We focus on an
arbitrary IRS element and omit the subscript “n,m” hereafter.
The Tx and Rx are in the far-field of the individual element,
which implies that Dt, Dr > 2L2

max/λ, where 2L2
max/λ is

the Fraunhofer distance and Lmax = max(Lx, Ly) is the
maximum dimension of the element. Consequently, a plane
wavefront is assumed across the IRS element. For simplicity,
we consider a transverse electric incident wave which is
linearly polarized along the x-axis. The electric field (E-field)
of the incident plane wave is hence given by

Ei = Eie
−jk(y sin θt−z cos θt)ex, (8)

where ex denotes the unit vector along the x-axis. Next,
the scattered field Es at the receiver location (Dr, θr, φr)
is determined using physical optics techniques, whereby the
IRS element is modeled as a perfectly conducting plate.



Fig. 2: Squared magnitude of the scattered field versus observation angle θr
for incident angle θt = 30◦ and scattering plane φr = 60◦; |Ei|2 = 1,
carrier frequency f = 300 GHz, and Dr = 4 meters.

Specifically, the squared magnitude of the scattered E-field1

is given by [13, Ch. 11]

‖Es‖2 =

(
LxLy
λ

)2 |Ei|2
D2
r

F (θt, φr, θr)sinc2(X)sinc2(Y )

(9)

≈
(
LxLy
λ

)2 |Ei|2
D2
r

F (θt, φr, θr), (10)

where F (θt, φr, θr) , cos2 θt(cos2 θr cos2 φr+sin2 φr), while
X , πLx

λ sin θr cosφr and Y , πLy
λ (sin θr sinφr − sin θt).

The approximation in (10) follows from sinc(X) ≈ 1 and
sinc(Y ) ≈ 1 for X ≈ 0 and Y ≈ 0, which holds for Lx ≤ λ
and Ly ≤ λ. This is also verified in Fig. 2. It is worth stressing
that each IRS element is expected to be of sub-wavelength size
in order to act as an isotropic scatterer [14].

3) Path Loss: Recall that the relation between Pt and Ei
is |Ei|2/(2η) = PtGt/(4πD

2
t ), where η is the free-space

impedance, and Gt is the transmit antenna gain [15]. Hence,
the power density of the scattered field is

Ss =
‖Es‖2

2η
=

(
LxLy
λ

)2
PtGt

4πD2
tD

2
r

F (θt, φr, θr). (11)

Considering the receive aperture Ar = Grλ
2/(4π) yields the

receive power

Pr = SsAr = Pt
GtGr

(4πDtDr)2
(LxLy)2F (θt, φr, θr). (12)

Finally, taking into account the molecular absorption losses at
THz bands gives the path loss of the Tx-IRS-Rx link through
the (n,m)th element

PLn,m =
GtGr(LxLy)2

(4πDt
n,mD

r
n,m)2

F (θt, φr, θr)e
−κabs(f)(D

t
n,m+Drn,m),

(13)

where κabs(f) is the molecular absorption coefficient at the
carrier frequency f . From Fig. 3, we see that PLn,m marginally
changes across the IRS, even for 100 × 100 elements and

1The IRS elements can alter the phase of the scattered wave. The reflection
coefficient does not appear in the formula of ‖Es‖2 since |ejϕn,m |2 = 1.

Fig. 3: Path loss across an 100×100-element IRS; f = 300 GHz, κabs(f) =
0.0033 m−1, Lx = Ly = λ/2, d̄x = d̄y = 0, Gt = Gr = 20 dBi,
pt = (0,−0.3, 0.6), Dt = 0.67 m, pr = (0, 1, 1), and Dr = 1.41 m.

a Tx distance Dt = 0.67 m. This is because of the small
physical size of the IRS at THz bands. Hereafter, we will
assume that PLn,m ≈ PL, where PL is calculated using Dt

and Dr measured from the (0, 0)th IRS element.

TABLE I
IRS WITH Lx = Ly = λ/2 AND d̄x = d̄y = 0 AT f = 300 GHZ.
Nx ×Ny Elements Physical Size [m2] Fresnel Region [m]

80× 80 0.039× 0.039 [0.15, 3.2]
100× 100 0.05× 0.05 [0.22, 5]

III. POWER GAIN OF IRS-AIDED THZ SYSTEM

A. Fresnel Region

The near-field of an IRS refers to distances that are
smaller than the Fraunhofer distance DF , 2L2

IRS/λ, where
LIRS , max

(
NxLx + (Nx − 1)d̄x, NyLy + (Ny − 1)d̄y

)
is

the maximum physical dimension of the IRS. In our work, we
focus on the radiating near-field, i.e., Fresnel region, which
corresponds to distances D � λ satisfying [15]

0.62
√
L3

IRS/λ < D ≤ 2L2
IRS/λ. (14)

From Table I, we verify the small physical size of THz IRS,
as well as its large Fresnel region. Consequently, it is very
likely that the Tx and Rx are in the near-field of the IRS,
where the spherical wavefront of the impinging waves across
the IRS cannot be neglected.

B. Near-Field Beamfocusing

Let us define the normalized power gain as

G ,

∣∣∣
∑Nx−1
n=0

∑Ny−1
m=0 e−jk(D

t
n,m+Drn,m)ejϕn,m

∣∣∣
2

N2
xN

2
y

, (15)

with G ∈ [0, 1]. The receive SNR in (7) is now written as

SNR ≈ N2GPtPL
σ2

. (16)

The power gain is maximized by near-field beamfocusing.
Hence, the phase induced by the (n,m)th IRS element is

ϕn,m = k
(
Dt
n,m +Dr

n,m

)
, (17)



(a) (b)

Fig. 4: Results for far-field beamforming: (a) normalized power gain vs. distance Dt for an 100×100-element IRS, where pt = (0.4, 0.4, z), 0.5 ≤ z ≤ 10,
and 0.755 ≤ Dt ≤ 10.016 m; (b) normalized power gain vs. number of elements for an Nx ×Ny-element IRS, where Nx = Ny , pt = (0.4, 0.4, 1), and
Dt = 1.15 m. The other parameters are f = 300 GHz, Lx = Ly = λ/2, and d̄x = d̄y = 0.

which yields G = 1 and SNR = N2PtPL/σ2. As expected,
the SNR of an IRS-aided system grows quadratically with the
number N of IRS elements [16]. Note, though, that the IRS
needs to know the exact locations of the Tx and Rx in order
to perform beamfocusing.

C. Far-Field Beamforming

In this section, we analyze the power gain under conven-
tional far-field beamforming, which relies on the parallel ray
approximation. First, using basic algebra, we have that

Dr
n,m =Dr

(
1 +

(ndx)2

D2
r

− 2 cosφr sin θrndx
Dr

+
(mdy)2

D2
r

− 2 sinφr sin θrmdy
Dr

)1/2

. (18)

In the far-field Dr � DF , the first-order Taylor expansion
(1 + x)a ≈ 1 + ax can be applied to (18), while ignoring the
quadratic terms (ndx)2/D2

r and (mdy)2/D2
r . This yields

Dr
n,m ≈ Dr − ndx cosφr sin θr −mdy sinφr sin θr, (19)

which corresponds to the plane wavefront model.

Remark 1. The far-field steering vector is defined as
a(φ, θ) , vec(M), where M ∈ CNx×Ny is the matrix with
elements [M]n,m = ejk(ndx cosφ sin θ+mdy sinφ sin θ). Thus, the
channel vector is h =

√
PLe−jkDa(φ, θ).

Let us now consider that the Rx is in the far-field of the IRS
whilst the Tx is close to the IRS; in fact, this deployment yields
the maximum SNR, compared to placing the IRS somewhere
in between [17]. If the IRS employs beamforming based on
the angular information (φt, θt) and (φr, θr), i.e.,

ϕn,m = −k(ndx cosφt sin θt +mdy sinφt sin θt

+ ndx cosφr sin θr +mdy sinφr sin θr), (20)

the power gain will decrease. To analytically characterize
this reduction, we use the second-order Taylor expansion
(1 + x)a ≈ 1 + ax + 1

2a(a − 1)x2 and neglect the terms

O(dq/Dq), q ≥ 3, which yields the (Fresnel) approximation
of the Tx distance

Dt
n,m ≈ Dt +

(ndx)2(1− cos2 φt sin2 θt)

2Dt
− ndx cosφt sin θt

+
(mdy)2(1− sin2 φt sin2 θt)

2Dt
−mdy sinφt sin θt.

(21)

Using (19), (20) and (21), the normalized power gain in (15)
reduces to the expession (22) at the top of the last page. The
accuracy of the approximation of the Tx distance is depicted
in Fig. 4(a), and the validity of (22) is evaluated in Fig. 4(b).
Note that the lower limit of the Fresnel zone of an 100×100-
element IRS, with Lx = Ly = λ/2 and d̄x = d̄y = 0, is
0.22 meters according to Table I. Thus, the distances in the
numerical experiments were chosen so that the Tx does not
operate in the reactive near-field. As observed, beamforming
can substantially decrease the power gain even for distances
of several meters away from the IRS. This is because of
the mismatch between (17) and (20). Moreover, from (22),
we have the asymptotic result G → 0 as N → ∞. In
conclusion, near-field beamfocusing should be used in most
cases of interest.

IV. PERFORMANCE OF IRS-AIDED THZ SYSTEM

A. Benchmark: MIMO System

Consider a MIMO system, where the Tx and Rx are
equipped with Nt and Nr antennas, respectively. For efficient
hardware implementation, hybrid array architectures are as-
sumed at both ends. The path loss of the direct channel, i.e.,
line-of-sight (LoS), is given by

PLMIMO =
GtGrλ

2

(4πDd)2
e−κabs(f)Dd , (23)

where Dd = ‖pr − pt‖. Assuming far-field, the LoS channel
is rank-one. Then, analog beamforming and combining yield
the receive SNR

SNRMIMO =
NrNtPtPLMIMO

σ2
. (24)



Fig. 5: Achievable rate, EE, and number of IRS elements versus distance Dr

for α = 2 and a fixed IRS location at (0,0,0). In the MIMO system, Nt = 100
and Nr = 100. The other parameters are Gt = Gr = 20 dBi, Pt = 10
dBm, σ2 = −174 dBm/Hz, B = 10 GHz, f = 300 GHz, Lx = Ly = λ/2,
pt = (0,−0.6, 1) with Dt = 1.16 m, and pr = (0, Dr, 1).

Lastly, the respective power consumption is calculated as2

PMIMO
c = Pt +Nr(PPS + PPA) +Nt(PPS + PPA), (25)

where PPS = 42 mW and PPA = 60 mW are the power
consumption values for a phase shifter and a power amplifier
at f = 300 GHz, respectively [3].

B. IRS-Assisted MIMO System

The Tx and Rx perform beamforming and combining to
communicate a single stream through an IRS of N elements.
Due to the directional transmissions, the Tx-Rx link is neg-
ligible, and thus is ignored. The received signal through the
Tx-IRS-Rx channel is given by

y = wH(HrΦHtfs+ ñ), (26)

where w ∈ CNr×1 is the combiner, f ∈ CNt×1 is the
beamformer, Ht ∈ CN×Nt is the channel from the Tx to the
IRS, Hr ∈ CNr×N is the channel from the IRS to the Rx, and
ñ ∼ CN (0, σ2INr ) is the noise vector. For ease of exposition,
we assume far-field for both the Tx and the Rx. Then,

Hr =
√

PLre−jkDrar(φrx, θrx)aHIRS(φr, θr), (27)

Ht =
√

PLte−jkDtaIRS(φt, θt)a
H
t (φtx, θtx), (28)

where PLt ≈ PLtn,m and PLr ≈ PLrn,m; the far-field re-
sponse vectors ar(·, ·), at(·, ·), and aIRS(·, ·) are specified
according to Remark 1. For f = at(φtx, θtx)/

√
Nt, wH =

aHr (φrx, θrx)/
√
Nr, and proper Φ, the receive SNR is

SNRIRS =
NtNrN

2PtPLIRS

σ2
, (29)

where PLIRS is the path loss (13) of the IRS-aided link. Using
varactor diodes, the power expenditure of an IRS element is
negligible [8]. Thus, the power consumption is determined as

P IRS
c (Nt, Nr) = Pt +Nr(PPS +PPA) +Nt(PPS +PPA). (30)

2The power consumption of signal processing is neglected.

Fig. 6: Number of IRS elements N? versus distance Dr for α = 2; pt =
(0,−0.6, 1), pr = (0, Dr, 1), IRS at (0, (Dr − yt)/2, 1) with yt = −0.6,
f = 300 GHz, κabs(f) = 0.0033 m−1, and Lx = Ly = λ/2.

Proposition 1. The IRS-aided system with Nt/α and Nr/α
attains a higher SNR than MIMO with Nt and Nr for

N? ≥ α λ

LxLy

DtDr√
F (θt, φr, θr)Dd

e−
1
2κabs(f)(Dd−Dr−Dt).

(31)

Proof. According to (24) and (29), the IRS-aided system
attains a higher SNR for N? ≥

√
α2PLMIMO/PLIRS, which

gives the desired result after basic algebra.

Using Proposition 1, we can now decrease the number
of Tx and Rx antennas by a factor α to reduce the power
consumption as

P IRS
c (Nt/α,Nr/α) = Pt +

Nr
α

(PPS + PPA) +
Nt
α

(PPS + PPA)

≈ PMIMO
c /α, (32)

while keeping the achievable rate fixed. Hence, the EE gain
with respect to MIMO is approximately equal to α.

V. NUMERICAL RESULTS

In this section, we assess the performance of IRS-aided
THz communication through numerical simulations. For this
purpose, we calculate the achievable rate as

R = B log2(1 + SNR), (33)

where B is the signal bandwidth. Moreover, the EE is specified
as EE , R/Pc.

A. Energy Efficiency

We consider a MIMO setup with Nt = Nr = 100 antennas,
i.e., 10 × 10-element planar arrays. From Fig. 5, we verify
that the IRS-assisted system with Nt = Nr = 50 antennas
offers a two-fold EE gain. Consequently, an IRS can provide
an alternative communication link, in addition to LoS, where
the Tx and Rx employ a smaller number of antennas to
communicate with each other, hence saving energy. Note,
though, that the suggested benefits are valid when: 1) the
power expenditure of IRS elements is negligible compared
to that of conventional phase shifters; 2) the Tx operates near
the IRS in order to have a reasonable number of reflecting
elements N?; and 3) reflection losses are small [18].
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∣∣∣∣
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. (22)

B. IRS Placement and Near-Field Beamfocusing

We now investigate the impact of the IRS position on the
number of IRS elements N?. For the deployment in Fig. 5,
Dt is small, and hence D2

r ≈ D2
t + D2

d. Further, φr = π/2
which gives F (θt, φr, θr) = cos2 θt. Then, (31) reduces to

N? = α
λ

LxLy

DtDr

cos θt
√
D2
r −D2

t

e−
1
2κabs(f)(

√
D2
r−D2

t−Dr−Dt),

(34)
which takes the asymptotic value

N?
max = α

λ

LxLy

Dt

cos θt
e

1
2κabs(f)Dt (35)

as Dr → ∞; this follows from
√
D2
r −D2

t ≈ Dr for
Dr � Dt. Thus, N? is bounded for a fixed IRS position near
the Tx. Due to symmetry, the same holds when the IRS is near
the Rx. For instance, N?

max = 10, 880 in Fig. 5. In contrast,
when the IRS is deployed always in the middle of the Tx and
Rx, N? increases as O(DtDr). This scaling law is depicted in
Fig. 6. Consequently, the IRS has to be close to the link ends
in order to compensate for the severe propagation losses with
a practical number of reflecting elements. Note that similar
findings were reported in [17]. In this case, the Tx/Rx will be
in the Fresnel zone of the IRS where near-field beamfocusing
becomes the optimal processing strategy; otherwise, the EE
gains previously discussed cannot be attained.

VI. CONCLUSIONS AND FUTURE WORK

We studied the channel modeling and performance of IRS-
assisted THz communication. First, we introduced a spherical
wave channel model and employed plate scattering theory to
derive the path loss. We next showed that the path loss is
nearly constant across the IRS thanks to its small physical
size. However, due to the large number of reflecting elements
with respect to the wavelength, the Fresnel zone of a THz IRS
is of several meters. To this end, we analyzed the power gain
under near-field beamfocusing and conventional beamforming,
and proved the suboptimality of the latter. One implication
of this is that the IRS needs to know the exact location of
the Tx and/or Rx, rather than their angular information, to
perform beamfocusing. Capitalizing on the derived model, we
finally investigated the EE scaling law of IRS-aided MIMO,
and showed that it can outperform MIMO. Numerical results

consolidate the potential of IRSs for THz communication. For
future work, it would be interesting to study the reflection
matrix design for a multi-antenna Tx/Rx that operates in the
Fresnel zone of the IRS, as well as pursue an EE analysis under
hardware impairments and channel estimation overheads.
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Abstract—Intelligent reflecting surface (IRS)-assisted wireless
communication is widely deemed a key enabler of 6G systems.
The main challenge in deploying an IRS-aided terahertz (THz)
link, though, is the severe propagation losses at high frequency
bands. Hence, a THz IRS is expected to consist of a massive
number of reflecting elements to compensate for those losses.
However, as the IRS size grows, the conventional far-field
assumption starts becoming invalid and the spherical wavefront
of the radiated waves must be taken into account. In this work,
we focus on the near-field and analytically determine the IRS
response in the Fresnel zone by leveraging electromagnetic theory.
Specifically, we derive a novel expression for the path loss and
beampattern of a holographic IRS, which is then used to model
its discrete counterpart. Our analysis sheds light on the modeling
aspects and beamfocusing capabilities of THz IRSs.

Index Terms—Beamfocusing, electromagnetics, intelligent re-
flecting surfaces, near-field, THz communications.

I. INTRODUCTION

To deal with the imminent spectrum gridlock, terahertz
(THz) communication is favored for 6G wireless networks
because of the abundant spectrum available at the THz band
(0.1 to 10 THz) [1]. However, THz links suffer from high
propagation losses, and thus transceivers with a massive num-
ber of antennas are needed to compensate for those losses
by means of sharp beamforming [2]. On the other hand, the
power consumption of THz radio-frequency (RF) circuits is
much higher than their sub-6 GHz counterparts, which might
undermine the deployment of large-scale antenna arrays in an
energy efficient manner [3]. Consequently, addressing these
engineering challenges is of paramount importance for future
THz communication systems.

Looking beyond conventional antenna arrays, the advent of
metasurfaces, which can customize the behavior (e.g., reflec-
tion, absorption, polarization, etc.) of electromagnetic (EM)
waves, has paved the way for novel wireless technologies, such
as intelligent reflecting surfaces (IRSs) [4]. Specifically, an
IRS consists of nearly passive reconfigurable elements that can
alter the phase of the impinging waves to reflect them towards
a desired direction. Moreover, unlike amplify-and-forward
relays, an IRS does not require power-hungry RF chains,
thereby extending the radio coverage without increasing power
consumption [5].

There is a large body of literature that investigates the
modeling and performance of IRS-assisted systems at the sub-
6 GHz and millimeter wave bands. Nevertheless, the majority

of these works, e.g., [6]–[9] and references therein, focus on
the far-field regime, where the spherical wavefront of the radi-
ated EM waves degenerates into a plane wavefront. Although
the far-field assumption facilitates mathematical analysis, it
might not be valid for IRSs operating at the THz band. In
particular, an electrically large IRS must be placed close to the
transmitter/receiver in order to effectively compensate for the
path loss of the transmitter-IRS-receiver link. As a result, one
of the link ends is likely to operate in the radiating near-field
of the IRS. Additionally, packing an unprecedented number of
sub-wavelength reflecting elements into an aperture yields a
so-called holographic reflecting surface [10], which can offer
ultra-narrow pencil beams and extremely large power gains. A
few recent papers [11], [12] proposed a path loss model that
is applicable to near-field using the popular “cosq” radiation
pattern for each IRS element, but considering a discrete IRS.
In a similar spirit, [13], [14] analyzed the power scaling laws
and near-field behavior of discrete IRSs (modeled as planar
antenna arrays) under a specific user location; hence, this
analysis is applicable only to special cases. From the relevant
work, we distinguish [15], where the authors showed that
the far-field beampattern of a holographic IRS can be well
approximated by that of an ultra-dense discrete IRS.

To the best of our knowledge, holographic IRSs have not
yet been studied in the near-field region. This paper aims to
fill this gap in the literature and shed light on the fundamentals
of IRSs. Specifically:

• We determine the field scattered by a holographic IRS
in the radiating near-field, i.e., Fresnel zone. More par-
ticularly, we employ physical optics from EM theory to
model the IRS as a large conducting plate, and then derive
the scattered field in closed-form by exploiting the small
physical size of THz IRSs.

• We show that the near-field behavior differs significantly
from its far-field counterpart, and hence the derived chan-
nel model should be adopted for electrically large IRSs.
Moreover, the near-field beampattern of a contiguous IRS
can be accurately approximated by that of an ultra-dense
discrete IRS, thereby enabling the practical realization of
holographic reflecting surfaces.

• We discuss the implications of the EM-based model and
highlight the importance of beamfocusing in single-user
and multi-user transmissions.
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Fig. 1: Illustration of the IRS geometry under consideration.

Notation: A is a set, A is a vector field, a is a vector,
ex, ey , and ez denote the unit vectors along the x, y, and
z axes, respectively; er, eθ, and eφ denote the unit vectors
along the radial, polar, and azimuth directions, respectively;
erf(x) = 2√

π

∫ x
0
e−t

2

dt is the error function; sinc(x) = sin(x)
x

is the sinc function; and x ∼ CN (µ, σ2) is a complex Gaussian
variable with mean µ and variance σ2.

II. ELECTROMAGNETICS-BASED CHANNEL MODEL

Consider a holographic IRS of size Ly × Lz , where Ly
and Lz denote the dimensions along the y and z directions,
respectively. The coordinate system is placed at the center of
the IRS, as shown in Fig. 1. Thus, the IRS is represented by
the planar surface S = {(y, z) : |y| ≤ Ly/2, |z| ≤ Lz/2}. In
the sequel, we focus on the Fresnel zone of the IRS, which
refers to all distances r satisfying [16]

0.62
√
L3
max/λ < r ≤ 2L2

max/λ, (1)

where Lmax = max(Ly, Lz) denotes the maximum dimension
of the IRS, and λ is the wavelength.

A. Spherical Wavefront

Consider an infinitesimal dipole antenna emitting a spherical
wave; the dipole is placed parallel to the IRS. The exact
position of the transmit antenna is described by the tuple
(xt, yt, zt) = (rt cosφt sin θt, rt sinφt sin θt, rt cos θt), where
rt is the radial distance, whilst φt and θt are the azimuth and
polar angles of arrival, respectively. The electric field (E-field)
of the spherical wave impinging on the (y, z)th point of the
IRS can be expressed as [16]

Ei = Eθeθ = j

√
ηPtGt
4π

e−jkrt(y,z)

rt(y, z)
eθ, (2)

where η is the wave impedance, k = 2π/λ is the wavenumber,
Pt is the transmit power, Gt is the gain of the transmit

antenna, and

rt(y, z) ,
√
x2t + (yt − y)2 + (zt − z)2

= rt

√
1 +

y2

r2t
− 2 sinφt sin θty

rt
+
z2

r2t
− 2 cos θtz

rt
(3)

is the respective distance. Note that (2) holds for all distances
rt(y, z)� λ, where the radial and azimuthal components Er
and Eφ of the E-field are approximately zero. From Maxwell’s
equations, the magnetic field is specified as

Hi =
j

ηk
∇×Ei =

j

ηk

1

r

∂(rEθ)

∂r
eφ

=
j

η

√
ηPtGt
4π

e−jkrt(y,z)

rt(y, z)
eφ = Hφeφ, (4)

where r = rt(y, z) in the partial derivative for notational
convenience. Owing to the small physical size of THz IRSs,
the amplitude variation 1/rt(y, z) across S is marginal [13];
for example, an electrically large IRS of size 200λ × 200λ
occupies only 20× 20 cm2 at f = 300 GHz. On the contrary,
the phase variation krt(y, z) is significant and cannot be
ignored. In light of these observations, we henceforth consider

e−jkrt(y,z)

rt(y, z)
≈ e−jk(rt+r̃t(y,z))

rt
, (5)

where rt(y, z) ≈ rt + r̃t(y, z), with

r̃t(y, z) =
y2(1− sin2 φt sin

2 θt)

2rt
− y sinφt sin θt

+
z2 sin2 θt

2rt
− z cos θt, (6)

which follows from the second-order Taylor approximation
(1 + x)α ≈ 1 + αx+ 1

2α(α− 1)x2 of (3).

B. Scattered Field in the Fresnel Zone

According to the surface equivalence principle, the obstacle-
free equivalent problem involves an electric current density
J(y, z) (measured in A/m2) and a magnetic current density
M(y, z) (measured in V/m2) on S, which satisfy the boundary
conditions [17, Ch. 7]

n̂×H|x=0 = J(y, z), (7)
n̂×E|x=0 = M(y, z) = 0, (8)

where E = Ei+Es and H = Hi+Hs are the total electric and
magnetic fields, respectively, Es and Hs are the corresponding
scattered fields, and n̂ = ex is the normal vector of S.1

Assuming that S is an infinite PEC, it can be replaced by
a virtual source with n̂ × Hs = n̂ × Hi, hence yielding
J(y, z) = 2n̂ × Hi|x=0.2 Note that the actual IRS exhibits
a surface impedance, which can change the phase of the

1The E-field inside S is assumed to be zero, akin to the perfect electric
conductor (PEC) paradigm. The PEC model is used for simplicity. Our
analysis can readily be applied to the impedance surface model [19].

2We assume that image theory holds for a finite plate. Such an assumption
can be made in our case because the dimensions of the IRS are very large
compared to the wavelength.



surface current density J(y, z). Thus, we model that property
as J(y, z) = (2n̂×Hi|x=0)e

jϕ(y,z) [8], [9]. The phase profile
ϕ(y, z) is nonlinear due to the spherical wavefront of the
incident wave. To this end, it is decomposed as

ϕ(y, z) = k
(
C1y

2 + C2y + C3z
2 + C4z

)
, (9)

where C1, C2, C3, and C4 are properly selected constants.
Let (xr, yr, zr) = (rr cosφr sin θr, rr sinφr sin θr, rr cos θr)

be the receiver location, where rr is the radial distance, while
φt and θt denote the azimuth and polar angles of departure,
respectively. Next, the scattered E-field at the receiver is
analytically determined using the auxiliary vector potential

A(xr, yr,zr) ,
µ

4π

∫∫

S
J(y, z)

e−jkrr(y,z)

rr(y, z)
dydz

(a)≈ µe−jkrr

4πrr

∫∫

S
J(y, z)e−jkr̃r(y,z)dydz

=
µe−jkrr

4πrr
(Ãrer + Ãθeθ + Ãφeφ), (10)

where µ is the magnetic permeability of the propagation
medium, (a) follows from the Fresnel approximation of the
distance rr(y, z) ≈ rr + r̃r(y, z), and

Ãr=

∫∫

S
(Jy sin θr sinφr + Jz cos θr)e

−jkr̃r(y,z)dydz, (11)

Ãθ=

∫∫

S
(Jy cos θr sinφr − Jz sin θr)e−jkr̃r(y,z)dydz, (12)

Ãφ=

∫∫

S
Jy cosφre

−jkr̃r(y,z)dydz. (13)

Using the radiation equations for any receive distance rr � λ,
we finally have [17, Eq. (6.122)]

Es = −η
jke−jkrr

4πrr
(Ãθeθ + Ãφeφ). (14)

Proposition 1. The scattered E-field at the receive po-
sition (rr cosφr sin θr, rr sinφr sin θr, rr cos θr), when the
IRS is illuminated by a spherical wave originated from
(rt cosφt sin θt, rt sinφt sin θt, rt cos θt), is given by

Es = −
LyLz
λ

|Ei|e−jk(rt+rr)
rr

cosφt sin θrSyzeθ, (15)

where |Ei| =
√

ηPtGt

4πr2t
is the magnitude of the incident field,

and Syz ∈ [0, 1] is the normalized space factor of the IRS
specified by (16) at the bottom of the next page for

ay =
(1− sin2 φt sin

2 θt)

2rt
+

(1− sin2 φr sin
2 θr)

2rr
− C1,

by = sinφt sin θt + sinφr sin θr + C2, (17)

az =
sin2 θt
2rt

+
sin2 θr
2rr

− C3,

bz = cos θt + cos θr + C4. (18)

Proof. See Appendix.

Remark 1. In the far-field, the parallel-ray approximations

r̃t(y, z) ≈ −y sinφt sin θt − z cos θt, (19)
r̃r(y, z) ≈ −y sinφr sin θr − z cos θr (20)

are employed. Then, ay = az = 0, and the space factor
reduces to [17]

Syz =

∫ Ly/2

−Ly/2

∫ Lz/2

−Lz/2
ejk(byy+bzz)dydz

LyLz
= sinc(Y )sinc(Z),

(21)

where Y , kLyby/2 and Z , kLzbz/2.

From Proposition 1, the squared magnitude of the scattered
E-field is calculated as

‖Es‖2 =

(
LyLz
λ

)2 |Ei|2
r2r

cos2 φt sin
2 θr|Syz|2, (22)

where |Syz|2 is the normalized beampattern of the IRS.

C. End-to-End Signal Model

We now introduce the signal model of a holographic IRS-
assisted THz system, where the transmitter (Tx) and receiver
(Rx) are equipped with a single antenna each. First, recall the
relation between the magnitude of the incident wave |Ei| and
the transmit power Pt, which is |Ei|2/η = GtPt/(4πr

2
t ) [16].

Hence, the power density (W/m2) of the scattered field is

Ss =
‖Es‖2
η

=

(
LyLz
λ

)2
PtGt
4πr2t r

2
r

cos2 φt sin
2 θr|Syz|2.

(23)
Considering the receive aperture Ar = Grλ

2/(4π) yields the
received power Pr = SsAr. Lastly, taking into account the
molecular absorption loss at THz frequencies results in the
path loss of the Tx-IRS-Rx link

PL = GtGr

(
LyLz
4π

)2
cos2 φt sin

2 θr
r2t r

2
r

e−κabs(f)(rt+rr)|Syz|2

= PL|Syz|2, (24)

where κabs(f) denotes the molecular absorption coefficient
at the carrier frequency f . From (24), it is evident that the
path loss of an IRS-assisted link follows the plate scattering
paradigm. Combining (15) and (24), the baseband signal at
the Rx is written as

y =
(√

PLe−jk(rr+rt)Syz +
√

PLde−jkrd
)
s+ ñ, (25)

where s ∼ CN (0, Pt) is the transmitted data symbol, Pt is
the average power per data symbol, rd is the distance between
the Tx and Rx, PLd = GtGrλ

2/(4πrd)
2e−κabs(f)rd is the path

loss of the direct Tx-Rx channel, and ñ ∼ CN (0, σ2) is the
additive noise.

III. DISCUSSION

In this section, we discuss in detail the near-field channel
model introduced in Section II.



(a) rr = 2 m and ro = 8 m (b) rr = 6 m and ro = 8 m

Fig. 2: Squared magnitude of the scattered E-field versus observation angle φo; |Ei| = 1, Ly = Lz = 200λ, f = 300 GHz, φt = 36◦,
(θr, φr) = (45◦, 30◦), and (θo, φo) = (45◦, φo).

A. Near-Field versus Far-Field Response

Consider the phase profile (9) with

C1 =
1− sin2 φt sin

2 θt
2rt

+
1− sin2 φo sin

2 θo
2ro

, (26)

C2 = − sinφt sin θt − sinφo sin θo, (27)

C3 =
sin2 θt
2rt

+
sin2 θo
2ro

, (28)

C4 = − cos θt − cos θo, (29)

where (ro cosφo sin θo, ro sinφo sin θo, ro cos θo) is an arbi-
trary observation position, with ro, φo, and θo denoting
the corresponding radial distance, azimuth angle, and polar
angle, respectively. Then, the parameters of the beampattern
|Syz|2 are

ay =
1− sin2 φr sin

2 θr
2rr

− 1− sin2 φo sin
2 θo

2ro
, (30)

by = sinφr sin θr − sinφo sin θo, (31)

az =
sin2 θr
2rr

− sin2 θo
2ro

, (32)

bz = cos θr − cos θo. (33)

We now plot the squared magnitude of the scattered E-field for
the considered ϕ(y, z). From Fig. 2, we first observe that the
peak value is at φo = φr = 30◦, as expected. From Fig. 2(a),
however, we see a mismatch between the near and far scattered
fields of a large IRS. This discrepancy is due to the spherical
wavefront of the incident wave, which makes the beampattern
|Sxy|2 depend on the angles of arrival/departure as well as

the distances between the IRS, the Rx, and the observation
point. This unique feature manifests only in the near-field [18].
It is finally worth stressing that the near-field space factor
in (16) coincides with its far-field counterpart (21) for either
an electrically small IRS or relatively large distances rr and ro,
i.e., Fig. 2(b).

B. Discrete IRS

It might be difficult to implement a holographic IRS in
practice. Therefore, a contiguous IRS of size Ly × Lz can
be approximated by a planar array of Ny = Ly/L̃y and
Nz = Lz/L̃z reflecting elements, each of size L̃y × L̃z;
the inter-element spacing is negligible, and hence is ignored.
Then, (22) is recast as

‖Es‖2 = N2
yN

2
z

(
L̃yL̃z
λ

)2
|Ei|2
r2o

cos2 φt sin
2 θr|Syz|2,

(34)

where

Syz =

∑Ny
2 −1
n=−Ny

2

e−jk((nL̃y)
2ay−nL̃yby)

Ny

×
∑Nz

2 −1
m=−Nz

2

e−jk((mL̃z)
2az−mL̃zbz)

Nz
, (35)

which follows from (41) in the appendix for y = nL̃y ,
z = mL̃z , Ly = NyL̃y , Lz = NzL̃z , dy = L̃y , and dz = L̃z .
Likewise, the reflection coefficient of the (n,m)th IRS element
is defined as ejϕn,m , where ϕn,m , ϕ(nL̃y,mL̃z). For a

Syz =
π

4jkLyLz
√
ayaz

[
erf
(√

jkay

(
Ly
2
− by

2ay

))
− erf

(√
jkay

(
−Ly

2
− by

2ay

))]

×
[

erf
(√

jkaz

(
Lz
2
− bz

2az

))
− erf

(√
jkaz

(
−Lz

2
− bz

2az

))]
. (16)



(a) Small IRS (b) Large IRS

Fig. 3: Normalized beampattern of holographic IRS and discrete IRS versus observation angle φo; L̃y = L̃z = λ, (rr, θr, φr) = (2, 45◦, 45◦),
(ro, θo, φo) = (8, θo, 45

◦), and f = 300 GHz.

discrete IRS, when the observation direction coincides with
that of the Rx, ay = by = az = bz = 0, Syz = 1, and a power
gain of (NyNz)2 is attained over the Tx-IRS-Rx link.

C. Beamfocusing Capabilities

With proper design of the phase profile ϕ(y, z), we can
cancel out the incident phase and focus the beam into the
Rx point (rr, θr, φr).3 As previously shown, the peak value
of |Syz|2 occurs at (ro, θo, φo) = (rr, θr, φr). From Fig. 3(a)
and Fig. 3(b), we first observe the excellent match between a
holographic IRS and its discrete counterpart with a negligible
inter-element spacing. This implies that we can properly
discretize the holographic IRS without sacrificing its extremely
high spatial resolution. Consequently, (16) and (35) can be
used interchangeably. We further see that the electrically
large IRS can discriminate two points with the same angular
direction (θo, φo) = (θr, φr) but with different distances
ro 6= rr; asymptotically, we have |Syz|2 → 0 as LyLz →∞.
The beamfocusing capability can be exploited in multi-user
transmissions to suppress interference with an unprecedented
way. For example, consider an uplink scenario where two
users, user 1 and user 2, simultaneously transmit. Their
positions from the IRS are (r1, θ1, φ1) and (r2, θ2, φ2), with
(θ1, φ1) = (θ2, φ2) and r1 6= r2. In the far-field, |Syz|2 = 1,
and hence we will have strong inter-user interference at the
Rx. Conversely, in the near-field, |Syz|2 < 1 and the inter-user
interference becomes small at the Rx.

D. Scattering versus Antenna-Based Path Loss Models

Some works in the literature (e.g., [11]) treat an IRS element
as a standard antenna that re-radiates the impinging wave. In
this case, the path loss is calculated as

PL′ = GtGr

(
λ

4π

)4
Ge(θt)Ge(θr)

r2t r
2
r

e−κabs(f)(rt+rr), (36)

3This is in sharp contrast to traditional beamforming, where the IRS acts as
an anomalous reflector that focuses the signal into a desired direction (θr, φr),
rather than into a point (rr, θr, φr) [20].

Fig. 4: In the antenna-based model [11], Ge(θ) = γ cos2q θ, with
γ = π and q = 0.285. The other parameters are: f = 300 GHz,
Ly = Lz = λ/2, rt = 2 m, (θt, φt) = (60◦, 90◦), (θr, φr) =
(45◦, 90◦), Gt = 20 dBi, Gr = 0 dBi, and κabs(f) = 0.0033 m−1.

where Ge(·) is the radiation pattern of each IRS element. For
a sub-wavelength reflecting element, it holds |Syz|2 ≈ 1, and

PL = GtGr

(
LyLz

4π

)2
cos2 φt sin

2 θr
r2t r

2
r

e−κabs(f)(rt+rr) 6= PL′, as
shown in Fig. 4. Consequently, conventional antenna-based
models may not always capture the unique features of IRS-
aided links.

IV. CONCLUSIONS

We have studied, for the first time, the near-field response
of holographic IRSs operating at the THz frequency band.
To have a physics-consistent channel model, we leveraged
EM theory and derived a novel closed-form expression for
the scattered field. Unlike existing works, our model accounts
for arbitrary incident and reflection angles. Capitalizing on our
analysis, we then compared the near-field response with its far-
field counterpart and revealed a significant discrepancy, which
makes the use of the former necessary for electrically large
IRSs. We finally discussed the beamfocusing property, which



manifests on the near-field regime, and highlighted its potential
in multi-user transmissions and interference suppression. For
future work, it would be interesting to study the coupling
effects in ultra-dense discrete IRSs and their connection with
super-directive antenna arrays. Moreover, it would be inter-
esting to derive a circuit theory-based model for the power
consumption of THz IRSs.
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APPENDIX

The magnetic field in (4) is written in Cartesian coordi-
nates as

Hi = −Hφ sinφtex +Hφ cosφtey. (37)

The current density induced on the IRS is

J(y, z) = (2ex ×Hi|x=0)e
jϕ(y,z)

= 2Hφ cosφte
jϕ(y,z)ez

=
2j

η

√
ηPtGt
4π

e−jkrt

rt
e−jkr̃t(y,z) cosφte

jϕ(y,z)ez

=
2j

η
Eie
−jkr̃t(y,z) cosφte

jϕ(y,z)ez

= Jze
jϕ(y,z)ez, (38)

where Ei =
√

ηPtGt

4π
e−jkrt

rt
. Then, (12) and (13) give

Ãθ = −jLyLz
2Ei
η

cosφt sin θrSyz, (39)

Ãφ = 0, (40)

where

Syz =

∫∫
S e
−jk(r̃t(y,z)+r̃r(y,z)−ϕ(y,z)/k)ds

LyLz

=

∫ Ly/2

−Ly/2

∫ Lz/2

−Lz/2
e−jk(ayy

2−byy+azz2−bzz)dydz

LyLz
, (41)

with

ay =
(1− sin2 φt sin

2 θt)

2rt
+

(1− sin2 φr sin
2 θr)

2rr
− C1,

by = sinφt sin θt + sinφr sin θr + C2, (42)

az =
sin2 θt
2rt

+
sin2 θr
2rr

− C3, (43)

bz = cos θt + cos θr + C4. (44)

We now use the identity
∫
e−jk(ay

2−by)dy =

√
π

2
√
jka

erf
(√

jka

(
y − b

2a

))
, (45)

which follows from the definition of the error function, some
algebrain manipulations, and a change of variables. Using (45),

the expression (16) for Syz is derived. The scattered E-field
is finally given by

Es = −η
jke−kjrr

4πrr
(Ãθeθ + Ãφeφ)

=
j2LyLzkEie

−kj(rt+rr)

2πrr
cosφt sin θrSyzeθ

= −LyLz
λ

|Ei|e−kj(rt+rr)
rr

cosφt sin θrSyzeθ, (46)

which completes the proof.
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Abstract—In this paper, we study the performance of wide-
band terahertz (THz) communications assisted by an intelligent
reflecting surface (IRS). For this purpose, we first introduce a
generalized channel model that is suitable for electrically large
THz IRSs operating in the near-field. Specifically, our channel
model takes into account the spherical wavefront of the radiated
waves, as well as the spatial-wideband effect. We next show that
conventional frequency-flat beamfocusing is highly suboptimal
for wideband transmissions, and thus can significantly reduce
the power gain. More importantly, we derive an approximate
yet accurate closed-form expression to quantify this reduction.
Numerical results corroborate our analysis and provide novel in-
sights into the design of future IRS-aided wideband THz systems.

Index Terms—Beamfocusing, beam squint, intelligent reflecting
surfaces, near-field, wideband THz communications.

I. INTRODUCTION

Undoubtedly, spectrum scarcity constitutes the main bottle-
neck of current wireless communication systems. To alleviate
this problem, communication over the terahertz (THz) band,
spanning from 0.1 to 10 THz, is favored for 6G-and-beyond
networks due to the abundant spectrum available at high
frequencies [1]. Despite the potential for terabit-per-second
wireless links, THz signals suffer from severe propagation
losses because of their short wavelength. As a result, the
deployment of transceivers with a massive number of antennas
is necessary to compensate for these propagation losses by
means of sharp beamforming [2]. On the other hand, the power
consumption of THz radio-frequency circuits is much higher
than their sub-6 GHz counterparts, which might undermine the
deployment of large-scale antenna arrays in an energy efficient
manner [3]. To this end, the novel technology of intelligent
reflecting surfaces (IRSs) can be exploited to achieve high
spectral efficiency with reduced power consumption [4]. Thus,
the performance analysis of IRS-aided THz communications
is of great research importance.

The ultra-wide bandwidths, e.g., tens of gigahertz, of future
THz systems in conjunction with the large number of IRS
elements can yield a spatially wideband channel [5], where the
power gain varies across the signal bandwidth. Moreover, an
electrically large THz IRS is likely to operate in the radiating
near-field, i.e., Fresnel zone, where the spherical wavefront
of the emitted electromagnetic waves cannot be ignored [6].
Under these circumstances, frequency-flat beamfocusing can
substantially decrease the power gain due to beam squint.
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Fig. 1: Illustration of the IRS geometry under consideration.

To the best of our knowledge, though, existing studies on
IRSs (e.g., [6]–[12], and references therein) ignore the spatial-
wideband effect and its impact on system performance. This
paper aims to fill this gap in the literature, and shed light
on the channel modeling and performance of IRS-assisted
wideband THz communications. To this end, we first introduce
a spherical wave channel model for IRS-aided THz links,
which takes into account the spatial-wideband effect. Hence,
our model is applicable to the near-field region, which includes
far-field as a special case. We next analyze the power gain
under conventional narrowband beamfocusing, and show that
it is highly suboptimal. Most importantly, we analytically
evaluate the reduction in the power gain by providing an
approximate closed-form expression. Moreover, by availing
of the derived expression, we prove that the achievable rate
does not always grow without bound as the number of IRS
elements increases due to the spatial-wideband effect. Our per-
formance analysis reveals that beam squint mitigation through
a frequency-selective surface design is essential for reaping
the full potential of IRS-aided wideband THz systems.

Notation: X is a matrix; x is a vector; x and X are
scalars; (·)∗, (·)T , and (·)H are the conjugate, transpose and
conjugate transpose, respectively; [X]i,j is the (i, j)th entry
of X; vec(X) is the column vector formed by stacking the
columns of X; F{·} is the continuous-time Fourier transform;
x ∼ CN (µ,Σ) is a complex Gaussian vector with mean µ
and covariance matrix Σ; and erf(x) = 2√

π

∫ x
0
e−t

2

dt is the
error function.



II. CHANNEL MODEL WITH SPATIAL-WIDEBAND EFFECTS

A. System Setup

Consider an IRS-aided THz system, where the transmitter
(Tx) and receiver (Rx) have a single antenna each. The IRS
is placed in the xy-plane, and it consists of N = Nx × Ny
passive reflecting elements of size Lx × Ly each, as depicted
in Fig. 1; the inter-element spacing is negligible, and hence is
ignored [12]. The origin of the coordinate system is placed at
the center of the IRS. The position of each IRS element is mea-
sured from its center. Then, the position vector of the (n,m)th
IRS element is pn,m = ((n − 1/2)Lx, (m − 1/2)Ly, 0), for
n = −Nx

2 , . . . ,
Nx

2 −1, and m = −Ny

2 , . . . ,
Ny

2 −1. Likewise,
pt = (rt, θt, φt) and pr = (rr, θr, φr) are the position vectors
of the Tx and Rx, respectively, where r is the radial distance,
θ is the polar angle, and φ is the azimuth angle. In Cartesian
coordinates, the distance between the Tx and the (n,m)th IRS
element is hence given by

rt(n,m) , ‖pt − pn,m‖

= rt

(
1 +

(
(n− 1

2 )Lx
)2

r2t
− 2 cosφt sin θt(n− 1

2 )Lx

rt

+

(
(m− 1

2 )Ly
)2

r2t
− 2 sinφt sin θt(m− 1

2 )Ly

rt

)1/2

. (1)

The distance between the Rx and the (n,m)th IRS element,
rr(n,m) , ‖pr − pn,m‖, is specified in a similar manner.

B. Channel Model

We focus on the Tx-IRS-Rx link. The received baseband
signal propagated through the IRS is expressed as

r(t) =

Nx
2 −1∑

n=−Nx
2

Ny
2 −1∑

m=−Ny
2

hn,me
jϕn,mx(t− τn,m) + ñ(t), (2)

where ejϕn,m , ϕn,m ∈ [−π, π], is the reflection coefficient of
the (n,m)th IRS element, ñ(t) ∼ CN (0, σ2) is the additive
noise at the receive end, x(t) is the transmitted baseband
signal, and τn,m is the associated propagation delay given by

τn,m =
rr(n,m) + rt(n,m)

c
, (3)

where c denotes the speed of light. Moreover,

hn,m =
√

PLn,m(f)e−j2πfcτn,m (4)

is the cascaded channel through the (n,m)th IRS element,
PLn,m(f) is the corresponding frequency-dependent path loss,
and fc is the carrier frequency. The path loss of the cascaded
channel through the (n,m)th IRS element is calculated as [6]

PLn,m(f) =

GtGr

(
LxLy

4π

)2
F (θt, φr, θr)

r2t (n,m)r2r(n,m)
e−κabs(f)(rt(n,m)+rr(n,m)),

(5)

where F (θt, φr, θr) , cos2 θt(cos2 θr cos2 φr + sin2 φr), Gt
and Gr are the Tx and Rx antenna gains, respectively, while
κabs(f) denotes the molecular absorption coefficient at fre-
quency f . Taking the Fourier transform of (2) gives

R(f) ≈
√

PL(f)

Nx
2 −1∑

n=−Nx
2

Ny
2 −1∑

m=−Ny
2

e−j2π(fc+f)τn,mejϕn,m

︸ ︷︷ ︸
Heff(f)

X(f)

+ Ñ(f), (6)

where the approximation follows from PLn,m(f) ≈ PL(f)
owing to the small physical size of THz IRSs [6], PL(f) de-
notes the path loss calculated using the radial distances rt and
rr, F{r(t)} = R(f), F{x(t)} = X(f), F{ñ(t)} = Ñ(f),
and Heff(f) is the effective channel accounting for the phase
shifts. Note that Heff(f) is frequency-dependent because of the
spatial-wideband effect. Next, consider orthogonal frequency
division multiplexing (OFDM) modulation with S subcarriers
for a signal bandwidth B. The subcarrier spacing is ∆B =
B/S, and the baseband frequency of the sth subcarrier is
specified as fs =

(
s− S−1

2

)
∆B, for s = 0, . . . , S−1. Hence,

the received signal at the sth subcarrier is given by

R(fs) =
√

PL(fs)Heff(fs)X(fs) + Ñ(fs), (7)

where X(fs) ∼ CN (0, Pt/S) is the transmitted data symbol
with average power Pt/S, and Ñ(fs) ∼ CN (0, σ2∆B) is the
additive noise at each subcarrier.

Remark 1 (Fresnel Approximation). In the near-field, the Tx
distance can be approximated by rt(n,m) ≈ rt + r̃t(n,m),
where

r̃t(n,m) =

(
(n− 1

2 )Lx
)2

(1− cos2 φt sin2 θt)

2rt

−
(
n− 1

2

)
Lx cosφt sin θt

+

(
(m− 1

2 )Ly
)2

(1− sin2 φt sin2 θt)

2rt

−
(
m− 1

2

)
Ly sinφt sin θt (8)

follows from the second-order Taylor polynomial (1 + x)α ≈
1 + αx+ 1

2α(α− 1)x2 of (1). Similarly, it holds rr(n,m) ≈
rr + r̃r(n,m), where r̃r(n,m) is given by (8), but θt, φt, and
rt are replaced by θr, φr, and rr, respectively.

III. PERFORMANCE ANALYSIS OF IRS-AIDED WIDEBAND
THZ COMMUNICATIONS

A. Power Gain

From (6), the signal-to-noise ratio (SNR) at the sth OFDM
subcarrier can be written as

SNRs =
N2GsPtPL(fs)

Bσ2
, (9)



(a)
(b)

Fig. 2: Results for B = 20 GHz, fc = 300 GHz, (rt, θt, φt) = (1, π/3, π/5), and (rr, θr, φr) = (5, π/4, π/3): (a) normalized power gain
for an 80× 80-element IRS; and (b) average power gain versus the number of IRS elements.

where Gs ∈ [0, 1] is the normalized power gain defined as

Gs ,
|Heff(fs)|2

N2
. (10)

With frequency-dependent beamfocusing, the phase induced
by the (n,m)th IRS element is ϕn,m(fs) = 2π(fc + fs)τn,m,
which yields Gs = 1 for each OFDM subcarrier. Therefore,
SNRs grows quadratically with the number N of IRS ele-
ments. Conversely, with conventional narrowband beamfocus-
ing, we have ϕn,m = 2πfcτn,m for all subcarriers, and

Gs =
1

N2
xN

2
y

∣∣∣∣∣∣∣

Nx
2 −1∑

n=−Nx
2

Ny
2 −1∑

m=−Ny
2

e−j2πfsτn,m

∣∣∣∣∣∣∣

2

, (11)

which results in Gs < 1 for fs > 0. To evaluate that loss
in the power gain, we leverage the Fresnel approximations of
rt(n,m) and rr(n,m) introduced in Remark 1. Then, (11) is
recast as

Gs ≈
1

N2
xN

2
y

∣∣∣∣∣∣∣

Nx
2 −1∑

n=−Nx
2

Ny
2 −1∑

m=−Ny
2

e−j2πfs
r̃t(n,m)+r̃r(n,m)

c

∣∣∣∣∣∣∣

2

. (12)

Proposition 1. The normalized power gain at the sth OFDM
subcarrier is specified in closed-form as Gs = |ξs|2, where ξs
is given by (13) at the top of the next page for ks = 2πfs/c,
L̃x = NxLx, L̃y = NyLy , and

ax =
(1− cos2 φt sin2 θt)

2rt
+

(1− cos2 φr sin2 θr)

2rr
, (14)

bx = cosφt sin θt + cosφr sin θr, (15)

ay =
(1− sin2 φt sin2 θt)

2rt
+

(1− sin2 φr sin2 θr)

2rr
, (16)

by = sinφt sin θt + sinφr sin θr. (17)

Proof. See Appendix.

From Fig. 2(a), we observe the detrimental effect of beam
squint for different transmission bandwidths. We next verify

the excellent match between the exact expression of Gs and
the closed-form formula in Proposition 1. By availing of (13),
we have the asymptotic behavior Gs → 0 as N →∞, which
follows from the boundness of the error function. Moreover,
using the closed-form formula, we plot the average power gain
N2Ḡ versus N , where Ḡ ,

∑S−1
s=0 Gs/S. From Fig. 2(b),

it is evident that the average power gain can be bounded as
N2Ḡ ≤ Gmax, for some Gmax > 0. Then,

R =

S−1∑

s=0

B

S
log2

(
1 +

N2GsPtPL(fs)

Bσ2

)

(a)

≤ B log2

(
1 +

1

S

S−1∑

s=0

N2GsPtPL(fs)

Bσ2

)

≤ B log2

(
1 +

1

S

S−1∑

s=0

N2GsPt maxs{PL(fs)}
Bσ2

)

= B log2

(
1 +

N2ḠPt maxs{PL(fs)}
Bσ2

)
, (18)

where (a) follows from the inequality of arithmetic and
geometric means. From (18), it is straightforward to see that
R ≤ B log2

(
1 + GmaxPt maxs{PL(fs)}

Bσ2

)
. Consequently, the

achievable rate does not grow without bound as the number N
of IRS elements increases. This result comes in sharp contrast
to the spatially narrowband case, where increasing N would
bring huge spectral and energy efficiency (EE) gains [6].

B. Achievable Rate via Beamfocusing Optimization

To improve the system performance, we can resort to a more
advanced IRS design than narrowband beamfocusing. To this
end, we introduce the auxiliary matrices As ∈ CNx×Ny , with
[As]n,m = e−j2πfsτn,m , and B ∈ CNx×Ny , with [B]n,m =
ejϕn,m . Then, we have |Heff(fs)|2 = |hTs b|2, where hs =
vec(As) ∈ CN×1 and b = vec(B) ∈ CN×1. We seek to



ξs =
π

4jksL̃xL̃y
√
axay

[
erf

(
√
jksax

(
L̃x
2
− bx

2ax

))
− erf

(
√
jksax

(
− L̃x

2
− bx

2ax

))]

×
[

erf

(
√
jksay

(
L̃y
2
− by

2ay

))
− erf

(
√
jksay

(
− L̃y

2
− by

2ay

))]
. (13)

Fig. 3: Achievable rate for Nx = Ny = 80, B = 20 GHz, fc =
300 GHz, S = 20, (rt, θt, φt) = (1, π/3, π/5), and (rr, θr, φr) =
(5, π/4, π/3).

find the reflection coefficient vector b that maximimizes the
achievable rate, i.e.,

max
b

R(b) =
∑S−1
s=0

B
S log2

(
1 +

PtPL(fs)|hT
s b|2

Bσ2

)

s.t. |[b]n| = 1,∀n = 1, . . . , N.

(19)

The beamfocusing optimization problem (19) resembles the
wideband design problem in IRS-aided OFDM systems, which
is non-convex and difficult to solve [13]. In the spirit of [13],
we turn to maximize the upper bound1 of R(b):

R(b) ≤ B log2

(
1 +

PtPL(fs)

Bσ2

∑S−1
s=0 |hTs b|2

S

)
. (20)

We therefore formulate the optimization problem

max
b

S−1∑

s=0

|hTs b|2 = ‖HTb‖2 = bHH∗HTb, (21)

where H = [h0, . . . ,hS−1] ∈ CN×S . The above quadratic
form has the solution b? =

√
Nu, where u is the unit-

norm eigenvector corresponding to the maximum eigenvalue
of the Hermitian matrix H∗HT . Since the elements of b?

do not satisfy the unit-modulus constraint, this solution is
referred to as upper bound optimization; recall that b? would
be implemented by controlling the amplitude and phase of
each reflection coefficient, which is not feasible in the passive
IRS architecture under consideration. As a result, the upper
bound optimization serves as a benchmark to assess the

1This optimization approach is well-established in the related literature;
see [14] and references therein.

impact of the spatial-wideband effect on the achievable rate.
In Fig. 3, the achievable rates of the frequency-dependent
beamfocusing, narrowband beamfocusing, and upper bound
optimization approach are 52.48 Gbps, 14.52 Gbps, and
24.61 Gbps, respectively. Narrowband beamfocusing performs
very poor, and results in a 72.3% rate loss. Moreover, the
upper bound optimization approach performs better, yet yields
a much smaller rate than frequency-dependent beamfocusing.
This numerical experiment showcases the need of a frequency-
dependent IRS design [15].

C. Energy Efficiency
1) MIMO System: Consider a multiple-input multiple-

output (MIMO) system, where the Tx and Rx have Nt and
Nr antennans, respectively. For efficient hardware implemen-
tation, hybrid analog-digital array architectures are assumed
at both ends. The frequency-dependent path loss of the direct
channel, i.e., line-of-sight (LoS), is given by [5]

PLMIMO(f) =
GtGrc

2

(4πrd(fc + f))2
e−κabs(f)rd , (22)

where rd = ‖pt − pr‖. Next, we assume that Nt and Nr are
adequately small so that the spatial-wideband effect is negli-
gible; this can be attained by a uniform planar array (UPA),
such as an 10× 10-element UPA [5]. In the far-field, the LoS
channel matrix is rank-one [16, Ch. 7]. Then, frequency-flat
beamforming and combining yield the received SNR

SNRMIMO
s =

NtNrPtPLMIMO(fs)

Bσ2
. (23)

The respective power consumption is calculated as2

PMIMO = Pt +Nr(PPS + PPA) +Nt(PPS + PPA), (24)

where PPS and PPA are the power consumption values for a
phase shifter and a power amplifier, which are 42 mW and
60 mW at fc = 300 GHz, respectively [3].

2) IRS-Aided MIMO System: The Tx and Rx perform
beamforming and combining to communicate a single stream
via the IRS of N elements. Due to the directional transmis-
sions, the Tx-Rx link is very weak, and thus is neglected. In
this case, the receive SNR at the sth subcarrier is

SNRs =
NtNrN

2GsPtPL(fs)

Bσ2
. (25)

Using varactor diodes, the power expenditure of an IRS
element is nearly negligible [12]. For the sake of exposi-
tion, we assume that the power consumption of the IRS-
aided system is also given by (24). Thus, the EE is given

2The power consumption of signal processing is neglected.



Fig. 4: Results for α = 2, narrowband beamfocusing, and a fixed IRS location at (0,0,0). In the MIMO system, Nt = 100 and Nr = 100.
The other parameters are Gt = Gr = 20 dBi, Pt = 10 dBm, σ2 = −174 dBm/Hz, B = 20 GHz, S = 20, fc = 300 GHz, Lx = Ly = λ/2,
pt = (xt, yt, zt) = (0.8,−0.8, 0.2), and pr = (xr, yr, zr) = (0.8, rr, 0.2).

by
∑S−1
s=0

B
S log2(1 + SNRs)/PMIMO. As in [6], we can

now decrease the number of antennas as Nt/α and Nr/α,
whilst increasing the number of IRS elements as N? =
α λ
LxLy

rtrr√
F (θt,φr,θr)rd

e−
1
2κabs(f)(rd−rr−rt), to attain an EE

gain α compared to the pure MIMO system. The achievable
rate, EE, and N? are plotted versus rr in Fig. 4. In contrast
to the spatially narrowband case, IRS-aided MIMO cannot
outperform MIMO due to the spatial-wideband effect present
in the former architecture.
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IV. CONCLUSIONS

We have studied, for the first time, the spatial-wideband
effect in IRS-aided THz communications. Specifically, we
introduced a near-field channel model that captures the pe-
culiarities of wideband transmissions. Capitalizing on the
proposed channel model, we next analyzed the power gain and
asymptotic achievable rate under narrowband beamfocusing.
Our analysis shows that frequency-dependent beamfocusing
is vital for the successful deployment of future IRS-assisted
wideband THz systems.

APPENDIX

We have that
∑Nx

2 −1
n=−Nx

2

∑Ny
2 −1
m=−Ny

2

e−j2πfs
r̃t(n,m)+r̃r(n,m)

c LxLy

(NxLx)(NyLy)

≈

∫ L̃x
2

− L̃x
2

∫ L̃y
2

− L̃y
2

e−j2πfs
r̃t(n,m)+r̃r(n,m)

c dxdy

L̃xL̃y
, (26)

where L̃x = NxLx, L̃y = NyLy , dx = Lx, and dy = Ly .
Now setting (n − 1/2)Lx = x and (m − 1/2)Ly = y in
r̃t(n,m) and r̃t(n,m), and leveraging the identity
∫
e−jk(ax

2−bx)dx =

√
π

2
√
jka

erf
(√

jka

(
x− b

2a

))
(27)

gives the desired result after basic algebra.
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Appendix

Proposed Wideband Combiner in the Near-Field

Under a spherical wavefront, the array response vector (2.2) is recast as

a(φ, θ,D, f) = vec(A(φ, θ,D, f)), (4.1)

where D is the distance between the user and the BS, whilst A(φ, θ,D, f) ∈ CM×N

is the so-called array response matrix of the BS. The (m,n)th element of A is
calculated as [78]

[A(φ, θ,D, f)]m,n = e−j2π(fc+f)Dmn
c , (4.2)

where

Dmn ,
(
(D cosφ sin θ − nd)2 + (D sinφ sin θ −md)2 + (D cos θ)2

)1/2
(4.3)

is the distance between the user located at (D cosφ sin θ,D sinφ sin θ,D cos θ) and
the (m,n)th BS antenna. Availing of the Fresnel approximation

Dmn ≈ D + (nd)2(1− cos2 φ sin2 θ)
2D − nd cosφ sin θ

+ (md)2(1− sin2 φ sin2 θ)
2D −md sinφ sin θ, (4.4)

the proposed combiner in Proposition 1 from paper I is extended to the spherical
wavefront case as

fRF[s] = 1√
NB

vec (A(φ, θ,D, 0)�T[s]) , (4.5)

where T[s] =
[
e−j2πfs

∆mn(φ,θ,D)
c

]Msb−1,Nsb−1

m=0,n=−0
⊗ 1M̃×Ñ and

∆mn(φ, θ,D) = (nÑd)2(1− cos2 φ sin2 θ)
2D + (mM̃d)2(1− sin2 φ sin2 θ)

2D
− nÑd cosφ sin θ −mM̃d sinφ sin θ. (4.6)

Note that ∆mn(φ, θ,D)/c is the delay to be mitigated between consecutive virtual
subarrays, Msb and Nsb are the number of subarrays in the vertical and horizontal
directions, respectively, whereas M̃ = M/Msb and Ñ = N/Nsb are the number of
antennas per virtual subarray.
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[21] R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An
overview of signal processing techniques for millimeter wave MIMO systems,”
IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 436-
453, April 2016.

[22] B. Wang, F. Gao, S. Jin, H. Lin, and G. Y. Li, “Spatial- and frequency-
wideband effects in millimeter-wave massive MIMO systems,” IEEE Transac-
tions on Signal Processing, vol. 66, no. 13, pp. 3393-3406, July, 2018.

79



[23] C. Lin and G. Y. Li, “Indoor terahertz communications: How many antenna
arrays are needed?,” IEEE Transactions on Wireless Communications, vol.
14, no. 6, pp. 3097-3107, June 2015.

[24] H. Sarieddeen, M.-S. Alouini, and T. Y. Al-Naffouri, “Terahertz-band ultra-
massive spatial modulation MIMO,” IEEE Journal on Selected Areas in Com-
munications, vol. 37, no. 9, pp. 2040-2052, September 2019.

[25] Q. Sultan, M. S. Khan, and Y. S. Cho, “Fast 3D beamforming technique for
millimeter-wave cellular systems with uniform planar arrays,” IEEE Access,
vol. 8, pp. 123469-123482, 2020.

[26] C. Lin, G. Y. Li, and L. Wang, “Subarray-based coordinated beamforming
training for mmWave and sub-THz communications,” IEEE Journal on Se-
lected Areas in Communications, vol. 35, no. 9, pp. 2115-2126, September
2017.

[27] B. Wang, X. Li, F. Gao, and G. Y. Li, “Power leakage elimination for wide-
band mmWave massive MIMO-OFDM systems: An energy-focusing window
approach,” IEEE Transactions on Signal Processing, vol. 67, no. 21, pp. 5479-
5494, November 2019.

[28] I. F. Akyildiz and J. M. Jornet, “Realizing ultra-massive MIMO (1024×1024)
communication in the (0.06-10) terahertz band,” Nano Communication Net-
works, vol. 8, pp. 46–54, June 2016.

[29] H. Hashemi, T. Chu, and J. Roderick, “Integrated true-time-delay-based ultra-
wideband array processing,” IEEE Communications Magazine, vol. 46, no. 9,
pp. 162-172, September 2008.
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