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1

Introduction

It is often said that mathematics is the language of nature and science. Since hu-
mankind became conscious of the world around them, there has been an imper-
ative need to understand the underlaying rules behind natural phenomena, and
no one can deny the central role that mathematics plays in this game. They allow
to explain what we see and to predict what will happen in a rigorous and uni-
versal language. In particular, differential equations have proved to be one of the
most efficient tools for modelling the relations between objects or events from the
reality in which we live, not only in terms of describing the laws of nature but also
for example to explain the behaviour of some social processes. Although seen as
a simple modelling tools at first, ordinary differential equations have given rise
to a whole and elaborated theory themselves.

The birth of differential equations is intrinsically linked to the development
of infinitesimal calculus in the 17th century by I. Newton (1642–1727) and G. W.
Leibnitz (1646–1716). These two brilliant minds built the foundations for the the-
ory of ordinary differential equations which would be developed during the fol-
lowing 350 years. During the 18th century, the study of differential equations was
fostered by L. Euler (1707–1783), who tackled the resolution of some problems in
mechanics, as well as by the two French mathematicians J. L. Lagrange (1736–
1813) and P. S. Laplace (1749–1827), who also introduced the notion of partial
differential equations.

In the last years of the 19th century, the work of H. Poincaré (1854–1912) im-
plied a new point of view in the study of ordinary differential equations, which
led to the beginning of what today is known as qualitative theory of differential equa-
tions. Poincaré gave a geometrical sense to differential equations in his series of
works Mémoire sur les courbes définies par une équation différentielle, published be-
tween 1881 and 1886. This new approach consisted on the study of the topologi-
cal structure of the solutions of a differential equation, which allowed to deduce
properties about such solutions without explicitly finding them.

The idea of limit cycle as a periodic orbit for which at least one trajectory of the
vector field approaches in positive or negative time was introduced by Poincaré.
Usually, an alternative definition is given: a limit cycle is periodic orbit which
is isolated in the set of periodic orbits of a differential equation. He also defined
other fundamental objects such as phase portrait, a name for the compilation of the
minimal information which enables to determine the topological structure of the
orbits of a differential system, or the notion of return map, which is also known as
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Poincaré map. The work of Poincaré together with the contribution of I. Bendixson
(1861–1935) during the first years of the 20th century resulted in the well-known
Poincaré–Bendixson’s Theorem, which states that under compacity conditions
every solution tends to a singular solution which can be either a critical point, a
periodic orbit or a connected set.

In 1900, D. Hilbert published a series of problems which would be very in-
fluential for mathematics during the 20th century. Ten of these problems were
presented at the International Congress of Mathematicians in Paris. Among them
there is the 16th Hilbert Problem, whose second part can be outlined, according
to [Rou98], as

“Proving that for any n ≥ 2 there exists a finite number H(n) such that
any polynomial differential equation whose degree is lower or equal than n

has less than H(n) limit cycles.”

This problem remains unsolved, but a number of researchers have made a lot
of advances. More details about it can be found in the review of Y. Ilyashenko
in [Ily02] and J. Li did a nice review of the state of the problem in [Li03]. About
global lower bounds, the work of C. Christopher and N. Lloyd in [CL95] is re-
markable, improved some years ago by M. Han and J. Li in [HL12] and recently
in [Álv+20]. Regarding summaries of known lower bounds for H(n) for low val-
ues of the degree, the best ones can be found in [PT19].

The interest in the study of limit cycles arises from the large number of phe-
nomena in nature or in social sciences where periodic behaviour can be observed.
A classical example is the periodicity of the oscillations in RLC circuits and the
existence of some isolated periodic orbits. In this line, the works of the engineer
A. Liénard (1869–1958) and the physicist B. van der Pol (1889–1959) are highly
remarkable. Years later, A. A. Andronov (1901–1952) and his partners tackled the
problem of mechanical and electronical oscillators focusing on the limit cycles
analysis. Actually, the van der Pol and Liénard equations have been frequently
generalized, and up to the present days there is still a strong interest and research
on the study of limit cycles in such generalized models.

Let us consider a system of differential equations in the plane{
ẋ = P(x, y),
ẏ = Q(x, y),

(1)

being P, Q analytic functions. We say that (x0, y0) is an equilibrium point of sys-
tem (1) if P(x0, y0) = Q(x0, y0) = 0, and γ is a periodic orbit if it is a solution of
the system such that γ(0) = γ(T) for some T > 0. From now on, we will consider
that P, Q in (1) are polynomials.

A classical result in qualitative theory is the Hartman’s Theorem, which clas-
sifies equilibrium points which are hyperbolic, but does not conclude for other
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types of critical points. Let us consider system (1) taking the form{
ẋ = −y + X(x, y),
ẏ = x + Y(x, y),

(2)

being X, Y polynomials without constant nor linear terms. The linear part of
such system has eigenvalues ± i, so the origin is a nonhyperbolic equilibrium
point and Hartman’s Theorem does not apply. This case is known as monodromic
nondegenerate, and the orbits near the origin spin around it. This situation leads
to the so-called center problem or center-focus problem, which aims to determine
whether orbits in a neighbourhood of the origin are closed –in which case the
origin is a center– or they spiral towards the origin when times goes forward or
backward –in which case the origin is a weak focus. In the latter case, we are also
interested in determining the stability of the focus, this is whether it is attracting
or repelling. In many contexts, we will have that (2) consists of a parametric
family of equations and we aim to find conditions on the parameters which define
the centers of such family.

Another problem we will consider is a local version of the Hilbert problem
that consists on finding the maximum number of limit cycles of small amplitude
that bifurcate from an equilibrium point for a planar polynomial vector field (1)
of degree n. This number is usually called the cyclicity of the equilibrium, which
gives name to the cyclicity problem. The most standard way to get lower bounds
for this number is to analyze the local return map or Poincaré map defined in a
neighborhood of a monodromic equilibrium point, which maps a radial initial
condition ρ to the radial component Π(ρ) after a 2π loop on the angular com-
ponent. This study is usually done by studying the maximum codimension of a
degenerated Hopf bifurcation and the most recent progress in the aforementioned
problem for small degrees can be found in [GGT21], analyzing such bifurcation
near very special centers that have high codimension.

A. M. Lyapunov (1957–1918) defined the functions which give the stability
in the resolution of the center problem, also known as Lyapunov constants; some
authors also refer to them as Lyapunov quantities or focal values. Lyapunov,
in his work [Lia66], proves that in a neighbourhood of the origin of system (2)
Poincaré map takes the form

Π(ρ) = r(2π, ρ) = ρ +
∞

∑
j=2

Vjρ
j,

being r(ϕ, ρ) the solution such that r(0, ρ) = ρ. The first nonzero coefficient in
the expression of Π(ρ) gives the stability of the origin. As we will see, the first
nonzero coefficient Vk provided that Vl = 0 for l < k has odd subscript, and we
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define it as the k−1
2 th Lyapunov constant of the system. These Lyapunov con-

stants are the main tool to address the center and cyclicity problems, but finding
these quantities turns out to be a highly demanding challenge in computational
terms, impossible to achieve in most of the situations, as we will see throughout
this memory.

Let us assume now that system (1) has a center at the origin having the form
(2). One can then consider the period function on the period annulus of the center,
which maps each periodic orbit ρ to the time T(ρ) needed by such orbit to per-
form a complete loop and return to the original point. It can be shown that this
period function takes the form

T(ρ) = 2π +
∞

∑
j=1

Tjρ
j,

and the first nonzero coefficient Tk provided that Tl = 0 for l < k is known as the
k
2th period constant of the system, a consistent definition since such first nonzero
coefficient Tk has even subscript k, as we will justify.

From the described situation one can propose the isochronicity problem, which
aims to determine whether all the periodic orbits in the period annulus of the
center have the same period or not, in which case we say that the center is iso-
chronous. This question has been classically considered in relevant physical mod-
els, such as the pendulum equation or certain conservative systems. In the last
decades, there has been an increasing interest on studying the monotonicity of
the period function and seeing the existence of oscillations or critical points of it.
These oscillations are known as critical periods, and we refer to this question as bi-
furcation of critical periods or criticality problem. The isochronicity and criticality
problems have a strong analogy to the center and cyclicity problems, respectively,
and the period constants fulfill the same role as the Lyapunov constants. Actu-
ally, the computational difficulties of dealing with Lyapunov constants can also
be extrapolated to the case of period constants, as in some sense they are part of
the same mathematical object as we will see in the last chapter of this work.

The present doctoral thesis is framed in the study of the described problems,
in the context of the qualitative theory of differential equations. This memory
is organized in three chapters, which are described with more detail followingly
together with their main results.

The first chapter deals with the center and cyclicity problems. We start by
giving a deeper and more exhaustive description of the center and cyclicity prob-
lems, together with a brief introduction to the main tools about polynomial ideals
that will be needed to cover the topics. Our attention is focused on centers of the
form (2). Some classical techniques for classifying centers are also presented, such
as symmetries or Darboux Integrability Theory. We proceed then to a more de-
tailed analysis on Lyapunov constants, by showing methods to compute them
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and how these calculations can be computationally implemented, stressing the
importance of parallelization in the used techniques. Later, we deal with the cen-
ter and cyclicity problems for some families of differential equations in the plane.
Many of these first introductory sections and examples are based on the work
done during my master’s thesis, which consisted on a first approach to the center
and cyclicity problems.

Section 1.4 collects a series of advances in the computation of Lyapunov con-
stants and the determination of their structure. We explain how we have been
able to reach the 14th Lyapunov constant of a complete cubic system in the plane,
with the indispensable support of parallelization. Also, we present a reconstruc-
tion technique which allows to see whether a specific Lyapunov constant belongs
to the ideal generated by the previous ones, and this has been applied to three
different families. The results in this section have led to the publication of the
work New advances on the Lyapunov constants of some families of planar differential
systems in the book Extended Abstracts Spring 2018 ([ST19]).

In the last section of Chapter 1 we study the Hopf-bifurcation in 3-dimensional
polynomial vector fields, with the objective to find the highest possible number
of limit cycles for different degrees. We explain how the classical computation
algorithm of Lyapunov constants can be extrapolated to R3, and we highlight
again the importance of parallelization. The Poincaré–Miranda’s Theorem is also
introduced here, as it represents an essential tool to prove our results. The used
techniques have enabled to find 11 limit cycles for quadratic systems, 31 for cubic
systems, 54 for quartic systems, and 92 for quintic systems, which to the best of
our knowledge are the highest numbers found so far. These findings have re-
sulted in the paper Hopf-bifurcation in 3-dimensional polynomial vector fields, which
is submitted for its publication ([ST21b]). Even though this work was initially
planned to be developed during a research stay in the Shanghai Jiao-Tong Uni-
versity (China) in 2020, this had to be cancelled due to the COVID-19 pandemic.

The second chapter is devoted to the study of isochronicity and criticality.
We start by defining both concepts in more detail, working on the notions of
period function and critical periods. Then, the equivalence between isochronicity
and linearizability is introduced, together with other tools to study isochronicity
which are the Lie bracket and commuting transversal systems. A section which
deals with the computation of period constants is presented, where two methods
are described: the classical one and a new approach which uses the Lie bracket.
A result on linear parts of period constants is also given at this stage.

The next section in Chapter 2 aims to find the maximum number of critical
periods which unfold from low degree n planar polynomial centers when per-
turbing reversible holomorphic isochronous centers inside the reversible class.
This is done by studying the local bifurcation of zeros of the first derivative of the
period function. We prove a result on the criticality of isochronous centers which
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is based on the Implicit Function Theorem, and by using the isochronicity pa-
rameters of the system extra critical periods can be obtained. The result is that 6
critical periods are seen for the cubic case, 10 for the quartic case, (n2 + n − 2)/2
for 5 ≤ n ≤ 9, and (n2 + n − 4)/2 for 10 ≤ n ≤ 16. This work has been pub-
lished this year under the name New lower bounds of the number of critical periods in
reversible centers in the Journal of Differential Equations ([ST21c]).

The final section of this chapter introduces the idea of using an equivalent
of Melnikov functions for the bifurcation of critical periods instead of limit cy-
cles. This will allow to study criticality by using period constants only up to their
first-order Taylor development, which will imply a significant reduction of com-
putation time and improved results. In particular, we obtain 10, 22, 37, 57, 80,
106, and 136 critical periods for n = 4, 6, 8, 10, 12, 14, and 16, respectively. We also
classify some isochronous centers throughout this section. This work has been
published also this year on the paper Criticality via first order development of the
period constants in Nonlinear Analysis. Theory, Methods & Applications. An Interna-
tional Multidisciplinary Journal ([ST21a]).

The third and last chapter of this memory presents a new problem that, to the
best of our knowledge, has never been considered before. This problem consists
on simultaneously studying the bifurcation of limit cycles and critical periods
for a system of differential equations in the plane, obtaining a value (k, l) which
means that k limit cycles and l critical periods can simulteneously unfold. In
this line, we will define the term bi-weakness [k, l] as a concept for the degree of
the first nonzero coefficients in the return map k and the period function l at the
same time, being both the center and isochronicity properties not kept. During
Chapter 3 we study the bi-weakness for different classical families: we obtain a
[5, 4] case for cubic Liénard systems, a [7, 6] for quartic Liénard, a [5, 4] for the
complete quadratic family, and a [7, 6] for the cubic homogeneous nonlinearities
family. In addition, we give a complete classification of the simultaneous cyclicity
and criticality for the cubic Liénard system, proving that the center case can only
have one critical period, that for the noncenter case we can have the configura-
tions (1, 3) and (2, 3), and that isochronous foci do not exist for this family. We
also show the isochronicity for some Liénard families in this part.

The work to elaborate Chapter 3 was mainly developed during a research stay
in the Instituto de Ciências Matemáticas e de Computação from the São Paulo Univer-
sity (Brazil) in 2019, together with professor Dr Regilene D. S. Oliveira. The re-
sults here have led to the preprint named Simultaneous bifurcation of limit cycles and
critical periods ([OST21]), which has been recently submitted for its publication.
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Chapter 1

Center problem and limit cycles

The second part of the 16th Hilbert problem aims to determine the maximum
number of isolated periodic solutions which a system of polynomial differential
equations in the plane has. Two related problems are the center and cyclicity
problems, which consist on identifying whether the origin of a system having a
specific form is a center or a focus and determining the maximum number of limit
cycles, respectively. Here, we aim to work on the necessary tools for the study of
these problems for polynomial differential equations, and this means to analyze
the stability in a neighborhood of a monodromic nondegenerate point. An essen-
tial mathematical object to deal with these problems are the Lyapunov constants,
which determine whether the origin is a center or a focus and its stability. In
this chapter, we introduce two procedures to find these quantities: the Lyapunov
method and an interpolation technique. Both algorithms are computationally im-
plemented, and the differences between both methods are discussed. The idea of
implementing parallelization on these methods is also introduced, and we show
the necessity of considering a parallel approach for the computation of the Lya-
punov constants in terms of efficiency and computational speed.

The developed codes are tested on some examples of planar systems, for
which we show how to solve the center and cyclicity problems. It is worth re-
marking that the idea of developing a parallelization approach here is to con-
solidate the proposed techniques rather than to apply it to the resolution of the
center and cyclicity problems of many new planar families. In this sense, such
techniques will be extrapolated to polynomial three-dimensional systems in Sec-
tion 1.5 and to period constants in the following chapter to obtain a number of
new results. Also, the implemented algorithms are used in Section 1.4 to obtain
new findings on the Lyapunov constants of some systems in R2. In particular, we
use parallelization to obtain 14 Lyapunov constants for the complete cubic fam-
ily, and we present a reconstruction technique that enables to find new Lyapunov
constants of a few planar systems. Finally, we present some studies on the cyclic-
ity of polynomial vector fields in R3, and prove the unfolding of limit cycles for
several degrees. To this end, we consider a 3-dimensional Hopf bifurcation to
provide lower bounds for the number of limit cycles.
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1.1 The center and cyclicity problems

As we already stated, the idea of this chapter is to analyze the center and cyclicity
problems for several types of polynomial differential equations systems. This
consists on studying the stability in a neighborhood of the origin when it is a
monodromic nondegenerate point –this is the name given to points which do not
have any arrival direction, particularly those whose linear part has zero trace and
positive determinant. If the readers are familiar with these topics, they could skip
directly to Section 1.2.

The center problem, also known as the Poincaré center problem or center-focus
problem, consists on identifying whether the origin of a system of differential
equations in the plane whose origin is a monodromic nondegenerate point is a
center or a focus. This means distinguishing whether the solutions near the origin
are all periodic orbits or not. Answering this question is a first step towards the
cyclicity problem, which aims to determine the maximum number of limit cycles1

which can appear when perturbing a system. All this is related to the second part
of the 16th Hilbert problem, a question related to finding the maximum number
of limit cycles H(n) that a planar polynomial system can have as a function of
its degree n. This problem remains unsolved for most of the polynomial families
of differential equations. Actually, the center and cyclicity problems have been
solved only for a few systems, and during this chapter some families for which
the problem can be completed will be introduced.

Let us consider a system of differential equations in the plane with an equi-
librium point at the origin such that its differential matrix has eigenvalues ±β i
with β �= 0 and zero trace –in later sections, when we deal with cyclicity, we will
consider the same system with nonvanishing trace. With an appropriate time
change, we can assume β = 1 and write the system in its normal form{

ẋ = −y + X(x, y, λ),
ẏ = x + Y(x, y, λ),

(1.1)

where X(x, y, λ) and Y(x, y, λ) are polynomials without constant nor linear terms
in x and y and parameters λ = (λ1, . . . , λd) ∈ Rd in the coefficients. For the
sake of simplicity, from now on these polynomials will be denoted as X(x, y) and
Y(x, y) in order to simplify notation, but the dependence on parameters λ must
be taken into account. X(x, y) and Y(x, y) are such that

X(x, y) = X2(x, y) + X3(x, y) + X4(x, y) + · · · ,
Y(x, y) = Y2(x, y) + Y3(x, y) + Y4(x, y) + · · · ,

1Recall that a limit cycle is a periodic orbit which is isolated in the set of periodic orbits of a
system.
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where Xk(x, y) and Yk(x, y) are homogeneous kth degree polynomials with pa-
rameters λ = (λ1, . . . , λd) in the coefficients, which means that the coefficients
polynomially depend on λ.

It will be useful to have system (1.1) in complex coordinates z = x + i y. Let
us derive z with respect to time,

ż = ẋ + i ẏ = (−y + X(x, y)) + i (x + Y(x, y)) = i(x + i y) + (X(x, y) + i Y(x, y)).

Let w = x − i y be the conjugate of z. We define

Z(z, w) := X(x, y) + i Y(x, y) = X
(

z + w
2

,
z − w

2 i

)
+ i Y

(
z + w

2
,

z − w
2 i

)
.

Then the system of differential equations (1.1) can be rewritten in complex vari-
ables simply as

ż = i z + Z(z, w). (1.2)

Notice that the equation in ẇ is redundant because it is the complex conjugate of
ż due to the fact that this complex system is associated to a real vector field. In
(1.2), Z(z, w) is such that

Z(z, w) = Z2(z, w) + Z3(z, w) + Z4(z, w) + · · · ,

being Zk(z, w) homogeneous kth degree polynomials. Equation (1.2) will also
have a set of parameters λ, which could be the same as in (1.1) or could be trans-
formed into new complex parameters. In the latter case we will also denote them
as λ = (λ1, . . . , λd) ∈ Cd with a slight abuse of notation.

As the linear part of system (1.1) has eigenvalues ± i at the origin, the Hart-
man Theorem cannot be applied for studying the stability of the origin, so other
techniques are required. A transformation into polar coordinates shows that if the
origin is monodromic nondegenerate then the orbits near the origin spin around
it, so the origin will be either a center or a focus. We aim to detect whether the ori-
gin consists of a center or a focus and to determine the maximum number of limit
cycles which can appear when a perturbation occurs in a given degree family of
polynomials.

To deal with this problem, we will start by introducing the notion of Poincaré
map (see for example [Wig03]). Let Σ be a transversal section to an orbit γ which
is in a neighborhood of the origin. The Poincaré map is a map Π : Σ → Σ such
that, for an initial value r(0) = ρ ∈ γ ∩ Σ (where r(ϕ) is the radial coordinate of
system (1.1) in polar coordinates), then Π(ρ) is the first intersection point of orbit
γ with Σ in positive time. This is schematized in Figure 1.1. A classical result
is that the Poincaré map can be analytically extended to ρ = 0 (see [And+73;
Rou98]), so we can consider its Taylor expansion



10 Chapter 1. Center problem and limit cycles

γ

ρ Π(ρ)

Σ

FIGURE 1.1: The Poincaré Map Π(ρ).

Π(ρ) = ρ + V2ρ2 + V3ρ3 + V4ρ4 + · · · = ρ +
∞

∑
j=2

Vjρ
j, (1.3)

for certain values Vj which depend on the parameters λ of (1.1). Observe that the
center-focus problem is equivalent to determine whether all Vj are zero or not,
since periodic orbits are fixed points of the Poincaré map. In the case for which
not all the coefficients in (1.3) vanish, the origin of the system is a focus and its
stability is determined by the first nonzero coefficient. As a consequence, the
center-focus problem reduces to the problem of finding the coefficients Vj of the
Poincaré map.

1.1.1 Polynomial ideals and radicality

In later sections we will see that the coefficients of the return map (1.3) are polyno-
mials in the parameters λ of the corresponding system (1.1). The ideals generated
by these polynomials will be crucial to address the center and cyclicity problems.
Therefore, we will need some concepts and results from ring theory, which will be
reviewed in this section. For the definitions and results outlined here the reader
is referred for example to [CLO07].

Definition 1.1. Let I be an ideal of a ring R. The radical of I is the set

Rad I := {r ∈ R | ∃ n ∈ N, rn ∈ I}.

Definition 1.2. An ideal I of a ring R is said to be radical if I = Rad I.

For our study we will need to use the well-known Hilbert Basis Theorem,
outlined as follows.

Theorem 1.3 ([CLO07]). (Hilbert Basis Theorem) Let K be a field and we denote
by K[x1, . . . , xn] the ring of polynomials with coefficients in K. Then every ideal I of
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K[x1, . . . , xn] is finitely generated, i.e. there exist F1, . . . , Fs ∈ K[x1, . . . , xn] such that
I = 〈F1, . . . , Fs〉.

Another important result which will be useful for us is the Hilbert Zeros The-
orem (in German, Hilberts Nullstellensatz). This theorem requires some previous
definitions.

Definition 1.4. Given a set of points U ∈ An, for a set A, we define the ideal of U as

I(U) = {F ∈ K[x1, . . . , xn] | F(u) = 0 for all u ∈ U}.

It can be proved that I(U) is actually an ideal (see [CLO07]).

Definition 1.5. Given a field K and a set A, for every ideal in K[x1, . . . , xn] the set of
zeros or variety of I is

V(I) = {x ∈ An(K) | P(x) = 0 for all P ∈ I}.

Now we can finally outline the theorem.

Theorem 1.6 ([CLO07]). (Hilbert Zeros Theorem) Let K be an algebraically closed
field and let us denote by K[x1, . . . , xn] the ring of polynomials with coefficients in K. If
I is an ideal of K[x1, . . . , xn], then

I(V(I)) = Rad I.

As a consequence, using this theorem and the definition of radical ideal we
have the next result.

Corollary 1.7. With the same notation as in Theorem 1.6, if I is a radical ideal then:

I(V(I)) = I.

1.1.2 The center problem and center characterization

Let us express system (1.1) in polar coordinates as follows,

dr
dt

= r2 P2(ϕ) + r3 P3(ϕ) + · · · , (1.4)

dϕ

dt
= 1 + r Q2(ϕ) + r2 Q3(ϕ) + · · · , (1.5)

where

Pi(ϕ) = cos ϕ Xi(cos ϕ, sin ϕ) + sin ϕ Yi(cos ϕ, sin ϕ),
Qi(ϕ) = cos ϕ Yi(cos ϕ, sin ϕ)− sin ϕ Xi(cos ϕ, sin ϕ).
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Now we divide equation (1.4) by (1.5),

dr
dϕ

=
r2 P2(ϕ) + r3 P3(ϕ) + · · ·

1 + r Q2(ϕ) + r2 Q3(ϕ) + · · · .

We can observe that this function is analytic in a neighborhood of the origin be-
cause the denominator does not vanish in r = 0. Let us then expand this function
as a power series in r, which leads to an analytic differential equation,

dr
dϕ

= R2(ϕ) r2 + R3(ϕ) r3 + · · · , (1.6)

for certain Ri(ϕ). This is an analytic differential equation with particular solution
r = 0. Let r(ϕ, ρ) be the solution of equation (1.6) which r(0, ρ) = ρ. This solution
is analytic in ρ, which is the initial value, so it can be expanded in the following
way:

r(ϕ, ρ) = ρ +
∞

∑
j=2

uj(ϕ) ρj,

As r(0, ρ) = ρ, it immediately follows that uj(0) = 0 for every j. Let us study the
stability near the origin, r = 0, by using

r(2π, ρ) = ρ + Vk ρk +
∞

∑
j=k+1

Vjρ
j, (1.7)

where Vj := uj(2π) for j ≥ k and Vk is the first coefficient which does not vanish.
The following classic result about these coefficients will be highly useful.

Lemma 1.8 ([And+73]). With the used notation, the first nonidentically zero coefficient
Vk has odd k. Furthermore, quantities Vk are polynomials in the coefficients of the original
equation.

Applying this Lemma, expression (1.7) can be rewritten as

r(2π, ρ) = ρ + V2n+1 ρ2n+1 +
∞

∑
j=2n+2

Vjρ
j.

This first nonzero coefficient Ln := V2n+1 with odd subscript is known as the
nth Lyapunov constant of the system, also known as the nth Lyapunov quantity
or focal value. Notice that the Lyapunov constant V2n+1 or Ln is technically de-
fined under the conditions on the parameters λ of the coefficients in (1.1) such
that Vj = 0 for every j < 2n + 1. It is worth remarking that the expressions of
the Lyapunov constants can differ in a positive multiplicative factor when being
found by different methods due to the nature of the used techniques in each case.
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Despite this, the stability and center conditions do not vary when using different
computation algorithms.

Observe that r(2π, ρ) indicates the radius after a whole loop starting in the
initial value ρ, so it turns out to be the Poincaré map defined in Section 1.1,

Π(ρ) := r(2π, ρ) = ρ +
∞

∑
j=3

Vjρ
j.

Alternatively, this can be written as

Δ(ρ) := Π(ρ)− ρ =
∞

∑
j=3

Vjρ
j,

and this function is known as the displacement map. With this last expression of
the Poincaré map, the next properties follow immediately.

Proposition 1.9. The Poincaré map Π(ρ) satisfies the following properties:

(a) A certain initial condition ρ0 defines a periodic orbit of system (1.1) if and only if
Δ(ρ0) = Π(ρ0)− ρ0 = 0.

(b) Furthermore, this periodic orbit is a limit cycle if and only if ρ0 is an isolated zero in
the set of zeros of function Δ(ρ) = Π(ρ)− ρ.

(c) The origin of the system (1.1) is a center if and only if Δ(ρ) = Π(ρ)− ρ ≡ 0 in a
neighborhood of the origin.

According to Proposition 1.9c, solving the center problem and characterizing a
center is equivalent to determine under which conditions the Lyapunov constants
are Ln = 0 for all n ≥ 1. There are two possible cases: either Ln = 0 for all n or
there exists an � such that L� �= 0.

(i) If all Ln vanish, then Π(ρ)− ρ ≡ 0 so the origin is a center.

(ii) Otherwise, let L� be the first nonzero Lyapunov constant. In this case the
origin is a focus, namely a weak focus of order �, and furthermore

• If L� < 0 then it is an attracting focus (asymptotically stable).

• If L� > 0 then it is a repelling focus.

These conclusions follow immediately from the Lyapunov Stability Theorem, an
elementary theorem in dynamical systems theory which can be found for exam-
ple in [Chi06].

Even though we will computationally implement some codes to compute the
first N Lyapunov constants, this is not enough to determine centers. The reason
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is that finding that Ln = 0 for n ≤ N for some N ∈ N does not guarantee that all
the Lyapunov constants will vanish, and we would need to compute an infinite
number of Ln.

Let us consider the ideal generated by all the Lyapunov constants of a system
〈L1, L2, L3, . . .〉, which according to Lemma 1.8 are polynomials –the ideals gener-
ated by Lyapunov constants are also known as Bautin ideals. This is an ideal of the
ring of polynomials C[λ], where λ ∈ Cd denotes the array of parameters in the
coefficients of the differential system (1.2). Then, according to the Hilbert Basis
Theorem, this ideal is finitely generated, so there must exist m ∈ N such that

〈Li〉i=1,...,∞ = 〈L1, . . . , Lm〉. (1.8)

Knowing the value of m would significantly simplify the problem, because by
computing the first m Lyapunov constants of a system we would obtain its center
conditions. Nevertheless, as [CR06] states, there are no general methods find this
m, so in each particular case in which a point is a candidate to be a center we have
to manage to see whether actually Ln = 0 for all n ≥ 1. This means that there are
not general methods to find the center conditions of a system, and this is the rea-
son why the center problem has been solved only for certain polynomial families.
In this line, in the following subsections we will introduce a few techniques and
results which may be useful for center characterization.

Liénard systems

We will start by briefly introducing Liénard systems and a center characteriza-
tion theorem for them, which will be useful because many other systems can be
written in Liénard form.

Definition 1.10. A Liénard system is a ordinary system of differential equations in the
plane which has the form {

ẋ = y,
ẏ = −g(x)− y f (x),

(1.9)

where f(x) and g(x) are real polynomials such that

g(0) = 0, g′(0) > 0.

Observe that a Liénard system with g(x) = x + g̃(x), where g̃(x) does not
have constant nor linear terms, is a particular case of the system of equations
(1.1) under a time change t → −t.

Let F(x) and G(x) be the primitive functions of f (x) and g(x), respectively,

F(x) =
∫ x

0
f (s) ds, G(x) =

∫ x

0
g(s) ds.
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It is easy to see that, under the so-called Liénard transformation (x, y) → (x, y +
F(x)), system (1.9) can be rewritten as{

ẋ = y − F(x),
ẏ = −g(x),

(1.10)

and this way of expressing Liénard systems will be helpful afterwards.
For Liénard systems, [Chr99] outlines and proves the following necessary and

sufficient condition for the so-called composition centers; this center classification
can also be found in [GT98].

Theorem 1.11 ([Chr99]). The origin of system (1.9) is a center if and only if F(x) =
Φ(G(x)) for any analytic function Φ such that Φ(0) = 0.

Darboux Integrability Theory

In this subsection we will see how the existence of first integrals is related to
invariant curves through Darboux Integrability Theory. Let us define P := −y +
X(x, y, λ) and Q := x + Y(x, y, λ) in system (1.1). We denote by K either the
real field R or the complex field C, and by K[x, y] the ring of polynomials in the
variables x and y and coefficients in K. For a reference on the ideas and the proofs
of the results presented here the reader is referred to [DLA06].

We start by introducing the basic concepts of first integral and invariant alge-
braic curve.

Definition 1.12. (Integrability and first integral) The polynomial system (1.1) is
integrable on an open subset U ⊂ K2 if there exists a nonconstant analytic function
H : U → K, called a first integral of the system on U, which is constant on all solution
curves of system (1.1) contained in U.

Definition 1.13. (Invariant algebraic curve) Consider f ∈ C[x, y], f nonidentically
zero. The algebraic curve f (x, y) = 0 is an invariant algebraic curve of system (1.1) if

(P, Q) · �� f = K f ,

for some polynomial K ∈ C[x, y]. The polynomial K is called the cofactor of the invariant
algebraic curve f = 0. Finally, if f is an irreducible polynomial in C[x, y] we say that
f = 0 is an irreducible invariant algebraic curve.

Invariant algebraic curves are also known as algebraic partial integrals. Observe
that in the definition of invariant algebraic curve we always allow this curve to
be complex, even in the case of a real polynomial system. This is due to the
fact that for real polynomial systems the existence of a real first integral can be
forced by the existence of complex invariant algebraic curves. For more details
see [DLA06].
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To study Darboux Integrability, we also need the notion of integrating factor.

Definition 1.14. (Integrating factor) Let U be an open subset of K2 and let R : U →
K be an analytic function which is not identically zero on U. The function R is an in-
tegrating factor of system (1.1) on U if one of the following three equivalent conditions
holds on U:

∂(RP)
∂x

= −∂(RQ)

∂y
, div(RQ, RP) = 0, P

∂R
∂x

+ Q
∂R
∂y

= −R div(Q, P).

Definition 1.15. The first integral H associated to the integrating factor R is given by

H(x, y) =
∫

R(x, y)P(x, y) dy + h̃(x),

where h̃ is chosen such that ∂H
∂x = −RQ; then{

ẋ = RP = ∂H
∂y ,

ẏ = RQ = − ∂H
∂x .

There is another mathematical concept, the so-called exponential factor, which
plays the same role that invariant algebraic curves in obtaining a first integral of
a polynomial system.

Definition 1.16. (Exponential factor) Let h,g ∈ C[x, y] and assume that h and g are
relatively prime in the ring C[x, y] or that h ≡ 1. Then the function exp(g/h) is called
an exponential factor of the system (1.1) if

(P, Q) · �� exp
(g

h

)
= L exp

(g
h

)
,

for some polynomial L ∈ C[x, y] of degree at most max{deg(P), deg(Q)} − 1. We say
that the polynomial L is the cofactor of the exponential factor exp(g/h).

For the same reason that for invariant algebraic curves, in the definition of
exponential factor we always allow the function to be complex even in the case
of a real polynomial system.

Now we can outline the following Darboux Integrability Theorem.

Theorem 1.17 ([DLA06]). (Darboux Integrability) Suppose that system (1.1) admits
p irreducible invariant algebraic curves fi = 0 with cofactors Ki for i = 1, . . . , p and q
exponential factors exp(gj/hj) with cofactors Lj for j = 1, . . . , q.

(i) There exist λi,μj ∈ R not all zero such that ∑
p
i=1 λiKi + ∑

q
j=1 μjLj = 0 if and only

if the function

f λ1
1 · · · f λp

p

(
exp

(
g1

h1

))μ1

· · ·
(

exp
(

gq

hq

))μq

(1.11)
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is a first integral of system (1.1).

(ii) There exist λi,μj ∈ R not all zero such that ∑
p
i=1 λiKi +∑

q
j=1 μjLj = −div(P, Q)

if and only if function (1.11) is an integrating factor of system (1.1).

If a system has a focus on the origin then it cannot exist a first integral in a
neighborhood U of the origin. The reason is that if this first integral existed we
would have that H is constant in all U, which contradicts the definition of first
integral. As a consequence, in the center-focus problem analysis, if we manage
to find a first integral –for example by means of Darboux Integrability Theorem–
we can guarantee that the origin is a center.

Symmetries: reversibility with respect to straight lines

Another tool to determine whether a system has a center at the origin is identify-
ing if there exists any kind of symmetry which allows to detect if orbits close on
themselves or not. Even though there are many other types of reversibilities, here
we will only introduce the time-reversibility with respect to straight lines, which
is the one that we will use throughout this memory. For more details about the
relation between the center problem and reversibility the reader is referred to
[GM11]; the work [BBT21] presents a generalization of the most usual symme-
tries in differential equations.

Let us consider a system which has the form (1.1) such that is invariant under
a time and coordinates change (x, y, t)→ (x,−y,−t). This means that the orbits
near the origin are symmetric with respect to the x−axis, so they follow a specific
direction for y > 0 and the opposite direction but symmetrically for y < 0, as
the left-hand side image in Figure 1.2 shows. This implies that all the orbits near
the origin will close on themselves defining periodic orbits, which proves that
the system has a center at the origin. On the other hand, if the system remains
invariant when applying a transformation (x, y, t) → (−x, y,−t) then the orbits
near the origin are symmetric with respect to the y−axis, as the right-hand side
image in Figure 1.2 shows. Therefore, by an analogous reasoning to the previous
case we deduce that this system also has a center at the origin.

Two monomial differential equations

In this subsection, a center characterization technique is introduced for the family
of differential equations

ż = i z + Azkwl + Bzmwn, (1.12)

where k + l ≤ m + n, (k, l) �= (m, n) and A, B ∈ C. The integer values defined as

α = k − l − 1, β = m − n − 1,



18 Chapter 1. Center problem and limit cycles
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y

FIGURE 1.2: Periodic orbits which are symmetric with respect to the
coordinate axes.

will play a key role in our study. One of the reasons for this special role of both
numbers is that when α = 0 (resp. β = 0) the monomial zkwl (resp. zmwn) appears
as a resonant monomial.

The center characterization result we present here has been extracted from
[GGT16], and it is formulated as follows.

Theorem 1.18 ([GGT16]). The origin of equation (1.12) is a center when one of the
following (nonexclusive) conditions holds:

(i) k = n = 2 and l = m = 0;

(ii) l = n = 0;

(iii) k = m and (l − n)α �= 0.

Although these center conditions are only valid for the particular example of
equations which have the form (1.12), they will be useful in some examples which
we will analyze in later sections.

Inverse integrating factor

To end this center characterization part, we will recall the notion of inverse inte-
grating factor. Let U be an open subset of R2. A class C1(U) function V : U → R

is an inverse integrating factor of system (2.1) if V verifies the partial differential
equation

P
∂V
∂x

+ Q
∂V
∂y

=

(
∂P
∂x

+
∂Q
∂y

)
V (1.13)
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in U. The name inverse integrating factor arises from the fact that if V(x, y) satis-
fies (1.13) then its reciprocal 1/V(x, y) is an integrating factor of (2.1). This implies
that the system can be transformed into an integrable system by means of being
multiplied by 1/V(x, y). For more information the reader is referred to [DLA06].

1.1.3 The cyclicity problem

The second problem that we are dealing with in this chapter is the cyclicity prob-
lem, which aims to determine the maximum number of limit cycles that unfold
in a neighborhood of the origin when slightly perturbing a system whose origin
is a center or a focus. The problem can be outlined as follows: given a differen-
tial system whose origin is a monodromic nondegenerate point for a certain set
of parameters λ0, which is the maximum number of limit cycles that will bifur-
cate when perturbing the problem parameters? Applying Proposition 1.9, we can
reformulate the problem as, given a set of parameters λ0 ∈ Cd such that

Π(ρ, λ0)− ρ = Vkρk +
∞

∑
j=k+1

Vjρ
j, (1.14)

with odd k and being Vk �= 0 the first nonzero Lyapunov constant if the origin is
a focus, or

Π(ρ, λ0)− ρ = 0,

if the origin is a center, which is the maximum number of positive zeros that
function Π(ρ, λ)− ρ will have for λ ∼ λ0?

In order to analyze the problem let us consider system (1.1) slightly perturbed
with nonzero trace: we choose α ∼ 0 but α �= 0, this is, α arbitrarily close to 0,
and rewrite the system as {

ẋ = αx − y + X(x, y),
ẏ = x + αy + Y(x, y),

so the linear part has trace 2α ∼ 0, α �= 0. We proceed analogously to Subsec-
tion 1.1.2: rewrite the system in polar coordinates, and we obtain expressions
which are similar to (1.4) and (1.5):

dr
dt

= αr + r2 P̃2(ϕ) + r3 P̃3(ϕ) + · · · ,

dϕ

dt
= 1 + r Q̃2(ϕ) + r2 Q̃3(ϕ) + · · · .
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Now divide both equations and expand in power series,

dr
dϕ

=
αr + r2 P̃2(ϕ) + r3 P̃3(ϕ) + · · ·
1 + r Q̃2(ϕ) + r2 Q̃3(ϕ) + · · ·

= αr + R̃2(ϕ, α) r2 + R̃3(ϕ, α) r3 + · · · ,

(1.15)
for certain R̃i(ϕ, α). Let r(ϕ, ρ, α) be the solution of (1.15) such that r(0, ρ, α) = ρ.
This solution is analytic in ρ, which is the initial value, so it can be expanded as

r(ϕ, ρ, α) = eαϕ ρ +
∞

∑
j=2

ũj(ϕ, α) ρj.

Let us set Wj(α) := ũj(2π, α), so we can rewrite the previous expression evaluated
at 2π as

Π(ρ, α)− ρ =
(

e2π α −1
)

ρ +
∞

∑
j=2

Wj(α) ρj,

where Π(ρ, α) := r(2π, ρ, α) is the Poincaré map. Notice that, as expected, if we
set the trace to be zero we recover expression (1.7), being Vj equal to Wj for α = 0.
If our differential equation has parameters λ ∈ Cd, the trace α will depend on
them, α = α(λ), so we can actually write Π(ρ, λ) instead of Π(ρ, α), where λ are
the parameters of the original system.

Assume that α(λ0) = 0 for certain λ0 and that the origin is a focus (Vk �= 0),
so we have expression (1.14). We aim to study what occurs when the system is
perturbed, taking λ ∼ λ0. We define a displacement map Δ(ρ, λ) := Π(ρ, λ)− ρ
and consider λ ∼ λ0:

Δ(ρ, λ) =
(

e2π α(λ) −1
)

ρ +
∞

∑
j=2

Wj(λ) ρj, (1.16)

Δ(ρ, λ0) = Vkρk +
∞

∑
j=k+1

Vjρ
j.

Notice that, if λ = λ0 and hence α = 0, all Wj(α = 0) = Vj are polynomials in
λ0. Now we can apply on function Δ(ρ, λ) the so-called Weierstrass Preparation
Theorem, proved for example in [Wal04] and outlined as follows.

Theorem 1.19 ([Wal04]). (Weierstrass Preparation Theorem) Let f (x, λ) be an an-
alytic function with x ∈ C and λ ∈ Cd near the origin. Let k be the lowest integer such
that

f (0, 0) = 0,
∂ f
∂x

(0, 0) = 0, . . . ,
∂k−1 f
∂xk−1 (0, 0) = 0,

∂k f
∂xk (0, 0) �= 0.

Then, near the origin, function f can be written in a unique way as a product of an
analytic function c which is nonidentically zero at the origin by an analytic function
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which consists of a kth degree polynomial in x, i.e.

f (x, λ) = c(x, λ)
(

xk + ak−1(λ)xk−1 + · · ·+ a1(λ)x + a0(λ)
)

,

where functions c(x, λ) and ai(λ) are analytic and c(x, λ) is nonidentically zero at the
origin.

When perturbing a focus, the first derivative of the displacement map Δ(ρ, λ)
which does not vanish in (ρ = 0, λ = λ0) is that of order k, since Vk �= 0. There-
fore, applying the Weierstrass Preparation Theorem, we can rewrite Δ(ρ, λ) as

Δ(ρ, λ) = c(ρ, λ)
(

ρk + ak−1(λ)ρ
k−1 + · · ·+ a1(λ)ρ

)
,

for (ρ, λ) ∼ (0, λ0) and where the involved functions are analytic. Notice that,
according to (1.16), using the theorem notation we have a0(λ) = 0.

As a consequence, the problem of finding the positive zeros of Δ(ρ, λ) for
(ρ, λ) ∼ (0, λ0) reduces to finding the positive zeros of ρk + ak−1(λ)ρ

k−1 + · · ·+
a1(λ)ρ, since function c(ρ, λ) does not vanish near λ0. Our aim is then to solve
equation

ρk + ak−1(λ)ρ
k−1 + · · ·+ a1(λ)ρ = 0. (1.17)

The following lemma, which is proved in [And+73], will be helpful.

Lemma 1.20. With the previous notation, the displacement map satisfies Δ(−ρ) =
−Δ(ρ).

One of the k solutions of (1.17) is ρ = 0. Applying Lemma 1.20 we have that
if Δ(ρ0) = 0 then Δ(−ρ0) = 0, so every positive solution is associated with a
negative one and vice versa. As we also have Δ(0) = 0, we can conclude that the
number of positive zeros is at most k−1

2 , being k ≥ 3 is odd, and this will be the
maximum number of limit cycles which can unfold.

Finally, let us see what happens when the origin is a center. According to
(1.8), there will be a certain m such that, if Ln = 0 for every n ≤ m, the origin is
already a center. In this case, Δ(ρ, λ0) ≡ 0, so all the successive derivatives are
also identically zero and the Weierstrass Preparation Theorem cannot be applied
to complete the cyclicity study. We will see in a later section an example of cubic
polynomials for which we will justify that if the ideal 〈L1, . . . , Lm〉 is radical then
the problem can be solved in a relatively simple way. However, if the ideal is
not radical the problem gets much more complicated, as happens for example
with the quadratic polynomials that Bautin studied in [Bau52], which we will
also analyze.

For this center case, we will end by providing a theorem originally proved
by C. Christopher in [Chr05], which uses linear parts of Lyapunov constants of a
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center to study the cyclicity of the system, and this result will be highly useful in
some of our studies.

Theorem 1.21 ([GT21]). Suppose that S is a point on the center variety and that the
first k Lyapunov constants, L1, . . . , Lk, have independent linear parts (with respect to the
expansion of Li about S), then S lies on a component of the center variety of codimension
at least k and there are bifurcations which produce k limit cycles locally from the center
corresponding to the parameter value S. If, furthermore, we know that S lies on a compo-
nent of the center variety of codimension k, then S is smooth point of the variety, and the
cyclicity of the center for the parameter value S is exactly k. In the latter case, k is also
the cyclicity of a generic point on this component of the center variety.

1.2 Lyapunov constants computation

At this point, the importance of Lyapunov constants in the center and cyclicity
problems has been made clear, as they are the main mathematical object to tackle
such problems. In this section we aim to present some methods which allow to
compute these quantities, as well as their computational implementation.

The main technique we will see is the Lyapunov method, which uses Lya-
punov functions2 to find the quantities. This method will be introduced in Sub-
section 1.2.1 and implemented afterwards. Later, a new method for more com-
plicated systems is presented. It is based on applying the previous Lyapunov
method to some simple systems and using interpolation so as to obtain the Lya-
punov constants of the original differential equation.

Apart from the two approaches we will see here, there are many other pro-
cedures to compute the Lyapunov constants. Another interesting technique is
the Andronov method, which is actually the classical technique to find Lyapunov
constants. This method consists on writing the system in polar coordinates and,
by means of derivation, obtain equivalent expressions whose coefficients can be
equalized, which gives some integrals which can be solved in order to obtain the
Lyapunov constants; see [And+73] for more details. This method is not useful
for us at the current stage at a practical level due to the size of the involved ex-
pressions. It follows the idea introduced in Subsection 1.1.2, and we will give
an overview of it in the last chapter of this thesis because it will be interesting
from the theoretical point of view for the topics addressed there. It can be proved
that Andronov method is equivalent to Lyapunov method, as stability and center
conditions cannot depend on the used procedure.

2Given a differential system in Rn with and an open subset U ⊂ Rn, we define a Lyapunov
function (resp. a strict Lyapunov function) for an equilibrium point x0 ∈ Rn as a scalar function
F : Rn → R such that is continuous, has continuous derivatives, F(x0) = 0 but F(x) > 0 locally
near x0 and Ḟ(x(t)) ≤ 0 (resp. Ḟ(x(t)) < 0) locally near x0.
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1.2.1 The Lyapunov method

This method is based on the utilization of a Lyapunov function type of system
(1.1). The computation could be made using real values –see [Shi81]–, but the
obtained expressions are shorter if complex coordinates are considered. For this
reason, here the method will be developed using complex variables. The objective
is then to find a Lyapunov function type F of system (1.2),

F = F2 + F3 + F4 + · · · , (1.18)

with Fk an homogeneous kth degree polynomial. Let us start with degree 2. We
aim to study the sign of Ḟ and whether it vanishes or not. We compute

Ḟ = Fz ż + Fw ẇ = Fz (i z + Z(z, w)) + Fw (− i w + Z(z, w)) = ∑
k≥1

Lk (zw)k+1.

(1.19)
The last equality is a consequence of the following theorem applied to (1.2):

Theorem 1.22 ([DLA06]). Given the system of differential equations (1.1) (resp. (1.2)),
if there exists a first integral F of the system, then in suitable coordinates F is analytic on
x2 + y2 (resp. on zw). As a consequence, Ḟ is also analytic on x2 + y2 (resp. on zw).

Observe that, in expression (1.19), if all Lk vanish then Ḟ = 0, and therefore F is
a first integral so the origin is a center. Otherwise, if any Lk is nonzero, according
to Lyapunov Stability Theorem the origin will be a focus, either attracting or re-
pelling depending on the sign of the first nonzero Lk. Therefore, these coefficients
Lk are actually the Lyapunov constants, maybe differring from those presented in
Section 1.1 by a multiplicative constant.

Now we will show how to find F recursively. We impose equation (1.19) and
perform formal operations as follows,

(F2z + F3z + F4z + · · · ) (i z + Z2 + Z3 + Z4 + · · · )+
+ (F2w + F3w + F4w + · · · ) (− i w + Z2 + Z3 + Z4 + · · · ) =

= L1 (zw)2 + L2 (zw)3 + L3 (zw)4 + · · · .

Here we equal those terms having the same degree.

• 2nd degree:

i z F2z − i w F2w = 0,
z F2z − w F2w = 0.

By deriving the corresponding polynomials and making their coefficients
equal, it is easy to see that the solution to this equation is F2(z, w) = c zw for
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any constant c ∈ C. We set for example c = 1/2, and we obtain

F2(z, w) =
zw
2

.

• 3rd degree:
i z F3z − i w F3w + Z2 F2z + Z2 F2w = 0.

The term Z2 F2z + Z2 F2w is already known, so by writing F3 as an homoge-
neous 3rd degree polynomial in z and w and unknown coefficients, taking
the derivative and using the previous equation F3 can be determined, if
there exists a solution.

• 4th degree:

i z F4z − i w F4w + Z3 F2z + Z3 F2w + Z2 F3z + Z2 F3w = L1 (zw)2.

We operate analogously to the 3rd degree case.

Using this reasoning and notation φlk := Flz Zk + Flw Zk we can write the pth
degree equation as follows:

− i z Fpz + i w Fpw =
p−1

∑
k=2

φp−k+1,k − L p
2−1 (zw)

p
2 , (1.20)

with L p
2−1 = 0 if p is odd. As we will see, for even p the system matrix will

have zero determinant. Therefore, so that the system has a solution we must
force a suitable independent term so that the system is compatible. Now we will
write this equation for degree p (1.20) in matrix form, and we will see how the
whole problem can be reduced to solve a simple system of linear equations. Let
us denote

Fp(z, w) :=
p

∑
j=0

hp−j,j zp−jwj. (1.21)

Now we derive Fp with respect to z and w:

Fpz =
p

∑
j=0

(p − j) hp−j,j zp−j−1wj, Fpw =
p

∑
j=0

j hp−j,j zp−jwj−1.
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Thus,

− i z Fpz + i w Fpw =− i z
( p

∑
j=0

(p − j) hp−j,j zp−j−1wj
)
+ i w

( p

∑
j=0

j hp−j,j zp−jwj−1
)

= i
p

∑
j=0

(
−(p − j) hp−j,j zp−jwj + j hp−j,j zp−jwj

)
= i

p

∑
j=0

(2j − p) hp−j,j zp−jwj.

Then, substituting in equation (1.20) we obtain

i
p

∑
j=0

(2j − p) hp−j,j zp−jwj =
p−1

∑
k=2

φp−k+1,k − L p
2−1 (zw)

p
2 ,

and multiplying both members by − i we finally obtain that equation (1.20) can
be rewritten as

p

∑
j=0

(2j − p) hp−j,j zp−jwj = − i
p−1

∑
k=2

φp−k+1,k + i L p
2−1 (zw)

p
2 . (1.22)

Our aim is to determine the coefficients hp−j,j of the pth degree term Fp in the
Lyapunov function F. By equating coefficients in equation (1.22), we can outline
a simple diagonal system of linear equations as follows.

• If p is odd, there is no L p
2−1 and then the system can be written as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−p 0 0 . . . 0 0 . . . 0
0 −p + 2 0 0
... . . . . . . . . . ...
0 0 −1 0 0
0 0 1 0 0
... . . . . . . . . . ...

0 0 p − 2 0
0 . . . 0 0 . . . 0 0 p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hp,0
hp−1,1

...
h p+1

2 , p−1
2

h p−1
2 , p+1

2
...

h1,p−1
h0,p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ̃0
φ̃1
...

φ̃ p−1
2

φ̃ p+1
2

...
˜φp−1
φ̃p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where φ̃j are the coefficients corresponding to − i ∑
p−1
k=2 φp−k+1,k in equation
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(1.22) and they are known values. Let us observe that, in this case, the sys-
tem has a unique solution and values hp−j,j can be trivially computed as

hp−j,j =
φ̃j

2j − p
. (1.23)

• If p is even, then the system can be written as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−p 0 0 . . . 0 0 0 . . . 0
0 −p + 2 0 0
...

. . . . . . . . .
...

0 0 −2 0 0
0 0 0 0 0
0 0 2 0 0
...

. . . . . . . . .
...

0 0 p − 2 0
0 . . . 0 0 0 . . . 0 0 p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hp,0
hp−1,1

...
h p

2 +1, p
2 −1

h p
2 , p

2
h p

2 −1, p
2 +1

...
h1,p−1

h0,p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ̃0
φ̃1
...

˜φ p
2 −1

φ̃ p
2
+ i L p

2 −1
˜φ p

2 +1
...

˜φp−1
φ̃p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where φ̃j are the coefficients corresponding to − i ∑
p−1
k=2 φp−k+1,k in equation

(1.22) and, as before, they are known. In the same way as in the odd case,
coefficients hp−j,j for j �= p

2 can be trivially determined using expression
(1.23). Observe that for j = p

2 the equation

0 h p
2 , p

2
= φ̃ p

2
+ i L p

2−1,

is obtained, so h p
2 , p

2
remains as a free parameter, and for the sake of simplic-

ity we set h p
2 , p

2
= 0. This equation also allows to find the Lyapunov constant

L p
2−1 as

L p
2−1 = i φ̃ p

2
.

Example

Let us provide an example to illustrate the presented Lyapunov method. Con-
sider the system of differential equations{

ẋ = −y + a2x2 + a3x3 + a4x4 + a5x5,
ẏ = x,

(1.24)

for a2, a3, a4, a5 ∈ R. We will show how to use the explained Lyapunov method
to find some coefficients of a Lyapunov function F of this system and its first
Lyapunov constant. Using the notation of equation (1.1), we have that X(x, y) =
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a2x2 + a3x3 + a4x4 + a5x5 and Y(x, y) = 0. Writing in complex coordinates we
obtain the system

ż = i z + a2

(
z + w

2

)2

+ a3

(
z + w

2

)3

+ a4

(
z + w

2

)4

+ a5

(
z + w

2

)5

,

and we have that Zk(z, w) = Zk(z, w) = ak
( z+w

2

)k , for k = 2, 3, 4, 5.

• 2nd degree. We have seen that the 2nd degree term of the Lyapunov func-
tion F (expression (1.18)) is

F2 =
zw
2

.

• 3rd degree. We write the 3rd degree term of the Lyapunov function F as

F3 = h30z3 + h21z2w + h12zw2 + h03w3,

where hkj = akj + i bkj. We can find φ22 by doing

φ22 = F2zZ2 + F2wZ2 =
w
2

a2

(
z + w

2

)2

+
z
2

a2

(
z + w

2

)2

= a2

(
z + w

2

)3

.

We can write the system matrix introduced in the method explanation, and
we can then compute the coefficients hkj by means of (1.23),

⎛⎜⎜⎝
−3 0 0 0

0 −1 0 0
0 0 1 0
0 0 0 3

⎞⎟⎟⎠
⎛⎜⎜⎝

h30
h21
h12
h03

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
− i 1

8 a2

− i 3
8 a2

− i 3
8 a2

− i 1
8 a2

⎞⎟⎟⎟⎟⎠ ,

h30 = i
1
24

a2, h21 = i
3
8

a2, h12 = − i
3
8

a2, h03 = − i
1

24
a2. (1.25)

Then,
F3 = i

a2

24

(
z3 + 9z2w − 9zw2 − w3

)
.

• 4th degree. The 4th degree term of F is

F4 = h40z4 + h31z3w + h22z2w2 + h13zw3 + h04w4.
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Let us find φ23 and φ32:

φ23 =F2zZ3 + F2wZ3 =
w
2

a3

(
z + w

2

)3

+
z
2

a3

(
z + w

2

)3

= a3

(
z + w

2

)4

,

φ32 =F3zZ2 + F3wZ2 =

= i
a2

24
(3z2 + 18zw − 9w2)a2

(
z + w

2

)2

+

+ i
a2

24
(9z2 − 18zw − 3w2)a2

(
z + w

2

)2

= i a2
2(z − w)

(
z + w

2

)3

.

Therefore, the degree 4 system can be written as follows and the coefficients
can be found,

⎛⎜⎜⎜⎜⎝
−4 0 0 0 0

0 −2 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 4

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

h40
h31
h22
h13
h04

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
8 a2

2 − 1
16 i a3

1
4 a2

2 − 1
4 i a3

i L1 − 3
8 i a3

− 1
4 a2

2 − 1
4 i a3

− 1
8 a2

2 − 1
16 i a3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

h40 = − 1
32

a2
2 +

1
64

i a3, h31 = −1
8

a2
2 +

1
8

i a3,

h22 = 0 (we impose),

h13 = −1
8

a2
2 − 1

8
i a3, h04 = − 1

32
a2

2 − 1
64

i a3,

L1 =
3
8

a3. (1.26)

Then, the coefficients of the 4th degree terms of the Lyapunov function have
been obtained, as well as the first Lyapunov constant. In the same recurrent
way one can continue to find the expressions for the following Lyapunov
constants up to the desired order; we have applied this to obtain the expres-
sions of L2 and L3:

L2 = −53
32

a3a2
2 +

5
16

a5,

L3 =
31393
3072

a3a4
2 −

215
96

a2
2a5 −

1673
384

a2a3a4 −
663

2048
a3

3.
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1.2.2 Interpolation technique

Let us consider the system of differential equations in complex coordinates (1.2),

ż = i z + Z2(z, w) + Z3(z, w) + Z4(z, w) + · · · ,

being every Zk(z, w) an homogeneous kth degree polynomial having the form
Zk(z, w) = ∑k

j=0 rk−j,jzk−jwj, where rk−j,j ∈ C. Recall that w denotes the conjugate
of z, this is w = z.

Before presenting our results and our method, we need some introductory
definitions.

Definition 1.23. M is a monomial of (1.2) when M = ∏k,l rmk,l
k,l rnk,l

k,l , with mk,l, nk,l ∈
N, where the product is finite and rk,l is any coefficient of Zk+l(z, w).

Definition 1.24. A monomial M of (1.2) is a monomial of the nth Lyapunov constant
Ln if the expression of Ln has a term with either Re(M) or Im(M).

Definition 1.25. Let M be a monomial as defined above. We define the degree, deg(M),
the quasi degree, qdeg(M), and the weight of M, w(M), respectively, as

deg(M) = ∑
k,l
(mk,l + nk,l),

qdeg(M) = ∑
k,l
(k + l − 1)(mk,l + nk,l),

w(M) = ∑
k,l
(1 − k + l)(mk,l − nk,l).

Definition 1.26. A monomial M of weight zero is basic if M′|M and w(M′) = 0
imply that M′ = ±M. In other words, the basic monomials are the prime factors of the
monomials of weight zero.

With the above notation, the following result is well known; see [Cim+97;
LL90; LL91; Sib76; Zol94].

Theorem 1.27 ([GGM99]). Let M be a monomial of the Lyapunov constant Ln. Then
qdeg(M) = 2n and w(M) = 0.

This theorem gives some information about the monomials that appear in the
Lyapunov constants. [GGM99] proves a result which improves Theorem 1.27
by describing how these monomials are distributed according to their degree.
This improvement is due to the fact that the new theorem restricts even more the
monomials which can appear in the Lyapunov constant. The result is as follows.
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Theorem 1.28 ([GGM99]). Let M1, . . . , Mk be monomials of Ln with even degree, and
Mk+1, . . . , Mk+l monomials of Ln with odd degree. Then

Ln =
k

∑
i=1

αi Im(Mi) +
k+l

∑
i=k+1

βi Re(Mi)

for some αi, βi ∈ R.

Observe that, for any differential equation, the Lyapunov constants Ln are
real numbers. Therefore, if M is a monomial of (1.2), then Ln must have the
form Ln = αM + αM + N, where N denotes the sum of the other monomials ap-
pearing in the expression, and hence Ln = 2 Re(α)Re(M)− 2 Im(α) Im(M) + N.
As a consequence, Theorem 1.28 reduces by half the estimation of the length of
the Lyapunov constants obtained using only the monomials predicted by Theo-
rem 1.27.

We present now a method to compute the general formula of the Lyapunov
constants via interpolation. Let us suppose that we want to find the expression
of the nth Lyapunov quantity Ln for a differential equation of the form (1.2). We
proceed as follows:

1. By using Theorems 1.27 and 1.28, we list all the monomials involved in Ln,
that is, we write Ln as a linear function of products of basic monomials and
their unknown coefficients.

2. Once the monomials are listed, we search all the undetermined coefficients
by computing the Lyapunov constants for some particular systems. This
can be done by applying the Lyapunov mehtod introduced in Section 1.2.1.
Then, by interpolation, we obtain the general expression of the constant Ln.

Finally, let us briefly justify the use of interpolation. One can wonder why
to use interpolation if the Lyapunov method from the previous section already
computes the Lyapunov constants. The answer is that, for some cumbersome dif-
ferential equations, or polynomial equations whose coefficients contain many pa-
rameters, using the Lyapunov method can be slow and inefficient, and even some
problems could not be solved. In this case, the interpolation technique described
here reduces the problem to applying the Lyapunov method to many simple dif-
ferential equations adequately chosen, and then find the Lyapunov constant for
the original equation. Therefore, a complicated and slow problem can be split
into several simple and faster problems which can even be parallelized; then,
when these simple problems have been solved, the solution of the initial problem
can be found by means of interpolation.
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1.2.3 Computational implementation and parallelization

The aim of this subsection is to perform the computational implementation of
the previously presented methods, as well as to introduce parallelization tools
in order to increase computational efficiency and highly reduce execution times.
Before starting we would like to point out the following. The parallelization ap-
proaches of these methods are developed for the computation of Lyapunov con-
stants of systems in the plane, which we have seen that are the principal tool to
deal with the center and cyclicity problems. Such parallelization will enable us to
get some new results about Lyapunov constants in Section 1.4. Nevertheless, the
center and cyclicity problems in R2 have been exhaustively studied for decades,
and we barely present new results in this sense apart from using some known
systems to check our implementations and studying a quartic and a quintic sys-
tem in Subsections 1.3.3 and 1.3.4, respectively. The idea is rather to consolidate
the computing and parallelization mechanisms so that they can be extrapolated
to limit cycles in R3 in Section 1.5 and to the calculation of period constants to
deal with isochronicity and criticality in Chapter 2, where we do provide more
powerful results.

Programming language choice

The two methods to calculate Lyapunov constants presented in the previous sec-
tion have been computationally implemented. The programming languages se-
lected for this purpose have been Maple and PARI/GP, or simply PARI. Maple
([Map]) is a symbolic and numeric computing environment as well as a multi-
paradigm programming language. PARI ([Par]) is a specialized computer algebra
system which, according to its creators, is designed to users whose primary need
is speed, since its main advantage is execution velocity. This software is suit-
able when working with rational numbers with a lot of digits, and works prop-
erly when not much polynomial algebra is needed. However, although quite an
amount of symbolic manipulation is possible, PARI does badly compared to sys-
tems like Maple. This is the reason why some of the outputs of our PARI codes
will be afterwards treated with Maple also. The Lyapunov method has been im-
plemented in both languages, while the interpolation technique only in PARI.

Verification of the codes with some examples

After implementing the codes, we will check that they work correctly by applying
them to some examples. The codes whose verification is shown here are those
written in PARI, as it is the language in which we have implemented both codes.
The Lyapunov method implementation in Maple has also been tested and works
properly, but it is not presented here for the sake of brevity.
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The first system we will consider for this verification is (1.24), for which in
Subsection 1.2.1 we already found the first Lyapunov constant and the coefficients
of 3rd and 4th degree terms of the Lyapunov function. Now we want to perform
the same computation using the elaborated code in PARI/GP that implements
the Lyapunov method, and check that the same result is obtained to verify that
the program works properly. The execution in the PARI calculator is as follows:

Coefficient hij in the Lyapunov function corresponds to the component (i +
1, j + 1) from matrix �, so we see that the results obtained by executing the code
for these coefficients and for L1 are the same that those we obtained by manually
applying the method in (1.25) and (1.26).

Let us study a second example, extracted from [LT17]. The system is

ż = i z − n
n − 2

zn + zwn−1 + i τnwn. (1.27)

[LT17] states that for n = 6, 8, 10, 12, 14, 16, 18 there exist values τn such that equa-
tion (1.27) has a weak focus of order n2 + n − 2 at the origin. Let us check this for
n = 6 :

Observe that

L35 = −41683536624647
2142402696

τ7
n +

1573547024015
80515134

τ5
n .
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If we want this weak focus to be of order n2 + n − 2 = 62 + 6 − 2 = 40 then L35
must vanish. The values of τn for which L35 = 0 are

τn1 = 0,

τn2 =
6

958721342366881

√
25646082957398216075410002655,

τn3 = − 6
958721342366881

√
25646082957398216075410002655.

We have also obtained

L40 =
1794626188667717

16246553778
τ9

n − 12386004853480749489787
22812598487378700

τ7
n+

+
30386878785608837

80095055040
τ5

n .

Now we can check

L40(τn = τn1) = 0, L40(τn = τn2) ≈ −55149 �= 0, L40(τn = τn3) ≈ 55149 �= 0.

These results have been rounded because fractions with a lot of irrelevant digits
have been obtained, and our only purpose is to see whether they vanish or not.
Thus, we have checked what the article states, since we have found τn = τn2 and
τn = τn3 such that Ln2+n−2 = L40 �= 0 and Lj = 0 for j < 40, so there is a weak
focus of order 40 at the origin.

We will show a last verification example to check that the interpolation tech-
nique implementation is also working as expected. Let us consider the following
differential equation, also extracted from [LT17],

ż = i z + wn−1 + zn.

According to Theorem 1.3 from [LT17], the origin of this equation is an stable
(resp. unstable) weak focus of order (n − 1)2 when n is even (resp. odd), for
3 ≤ n ≤ 100. Let us check this for n = 3, 4, 5, 6 with the implemented PARI code.
To apply the interpolation technique we can write
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Now in order to compare with the Lyapunov method, we create the following
loop and obtain the same results:

We have stated that for a certain n there is a focus of order (n − 1)2. This
means that the first Lyapunov constant different from 0 is the (n − 1)2th, and this
is why for each n the first (n − 1)2 first constants have been computed. Observe
that we obtain what we expected, as we see that for each n we have Lk = 0 for
k < (n − 1)2 and L(n−1)2 �= 0. Furthermore, as [LT17] claims, we observe in our
results that for odd n (n = 3, 5) then L(n−1)2 > 0, so it is an unstable weak focus,
and for even n (n = 4, 6) then L(n−1)2 < 0, so it is a stable weak focus.

A first approach to parallelization

The high computational cost of the methods developed in this thesis justifies the
necessity of implementing a parallelization technique on them. In this subsec-
tion, we take a first approach to the technique of parallelization by applying it to
the interpolation method for a particular example, and in later sections we will
develop this technique by using it in other algorithms such as finding linear parts
of Lyapunov and period constants.

As previously explained, the interpolation technique intoduced above allows
to split a complicated and slow problem into several simple and fast problems.
Particularly, instead of applying the Lyapunov method to the original equation it
can be applied to several simpler equations. Furthermore, this approach has the
advantage that the many calls to this function can be parallelized, which reduces
execution times and increases efficiency. Therefore, the part of the interpolation
technique which can be potentially parallelized are the many executions of the
Lyapunov method.
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For the parallelization of codes during this thesis we will connect to Antz,
the computing servers in the Mathematics Department of UAB (Universitat Au-
tònoma de Barcelona). The software used to perform the parallelization will
be PBala ([Sal]), a distributed execution software for Antz developed by Oscar
Saleta, a former research support specialist in the Mathematics Department of
UAB. PBala is a parallellization interface for single threaded scripts, which al-
lows to distribute executions in Parallel Virtual Machine enabled clusters using
single program multiple data paradigm. This interface lets the user execute the
same script or program over multiple input data in several CPUs located at the
Antz computing servers. It supports memory management so nodes do not run
out of RAM due to too many processes being started in the same node. It also
reports resource usage data after execution. PBala allows the parallelization of
codes in many different languages: Maple, C, Python, PARI/GP, Sage, and Oc-
tave. For the current case we will use the PARI/GP option, as the interpolation
code we want to parallelize is written in this language, but in later sections we
will also parallelize Maple codes.

Let us see now with a bit more of detail how to perform this parallelization.
First, we need to have a data file which contains the data to be passed as argu-
ments in the parallel code. Each row is a single execution and has each value
separated by a comma, line format being “tasknumber,arg1,arg2,. . . ,argN”. The
first value in each row must be a number and it is the task identification num-
ber, which will be stored in ������. The rest of each row are the arguments to
be passed to the code, which are stored in ������	�. For row 
, the arguments
are contained in ������	��
�. A node file also needs to be created, which con-
tains the number of processes to be assigned to each node. In Antz there are
nine nodes, called a01, a02, . . . , a09, and the node file line format is “nodename
number_of_processes”.

With this, the instruction to execute the parallel code in our case will be

�

� ������� ��� � ��������������������
�	� �����
������ �����
������

�������

The options ��� tell PBala that we want to generate error files –in case something
goes wrong– and a slave file –that tells us which node has performed each ex-
ecution. Number � in this line tells PBala that the language to use is Pari/GP,
and each programming language is represented by a different number. Then the
file containing the code to be executed, the data file and the node file must also
be indicated. Finally, ������� is the output directory for storing the results and
the information about each process. The option �

� at the beginning makes the
execution show the runtime.

As we have already stated, we will not perform a general parallelization of the
problem, but we will present a particular example of this and show how execu-
tion times are reduced with parallelization. To carry out this analysis we will
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consider an example from [GGM99] for computing some Lyapunov constants of
the differential equation

ż = i z + A z2 + B zw + C w2 + D z3 + E z2w + F zw2 + G w3 + H z4 + I z3w

+ J z2w2 + K zw3 + L w4 + M z5 + N z4w + O z3w2 + P z2w3 + Q zw4 + R w5.

To simplify the problem, we will use the interpolation technique and consider a
set of simpler nonlinearities to apply the Lyapunov method on them. According
to [GGM99], a suitable set of 28 simple polynomial nonlinearities Z(z, w) which
allows to solve this problem is the following:

z3w2 w2 + i zw3 z2 + w2 + zw2 z2 + i zw + (1 + i)z2w
z3 − i zw2 z2 + zw2 zw + w2 + zw2 z2 + (1 + i)zw + (1 + i)z2w
z2 − i z3w zw − z3 zw + w2 + z3 (1 + i)z2 + zw + (1 + i)z2w
z2 + i z2w2 zw + zw2 z2 + w2 + w3 z2 + (1 + i)zw + z2w
zw − i z3w z2 + zw + zw2 zw + w2 + w3 z2 − i zw + w2 − z2w
zw + i z2w2 z2 + zw − z3 i z2 + w2 i z2 + zw + w2 + z2w

w2 + i z4 z2 + w2 − z3 zw + i w2 i z2 + i zw + w2

These 28 polynomials are then included in the data file to be taken as the
arguments of the Lyapunov method. Our aim is to compute the first N Lyapunov
constants for the differential equations (1.2), taking as Z(z, w) the previous 28
polynomials. This will be done with different levels of parallelization3 and their
execution times will be compared. In particular, we have taken as numbers of
threads 1, 2, 4, 7, 14, 21, and 28, and this information is given to PBala by means
of the node file. Then the Lyapunov constants computation has been performed
taking N = 30 and N = 50. The execution time results are shown in Table 1.1,
and graphically in Figure 1.3.

TABLE 1.1: Execution times for different levels of parallelization

Number of Execution time for Execution time for
threads N = 30 (seconds) N = 50 (seconds)

1 29.741 218.823
2 15.798 157.654
4 9.096 81.911
7 6.146 54.347

14 5.005 37.431
21 4.001 27.603
28 3.409 24.633

3The level of parallelization refers to the number of threads, this is, the number of parallelized
tasks that the system will perform at the same time.
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FIGURE 1.3: Execution time as a function of the level of paralellism
for the computation of the first 30 Lyapunov constants (first graph)

and the first 50 Lyapunov constants (second graph).

We can make some observations on the pictures in Figure 1.3. The most obvi-
ous and expectable observation is the fact that, as the level of paralellization in-
creases, the execution time is reduced, because the execution is distributed among
a greater number of threads and this makes it faster. Furthermore, as both graphs
have the same shape, we can deduce that the relative improvement by paral-
lelization is always the same independently on the problem size N.

The difference between both N is that, as can be seen in Table 1.1, when pass-
ing from N = 30 to N = 50, the execution time increases approximately at least 7
times. This shows that the Lyapunov constants computation complexity does not
increse linearly with the problem size. Taking into account the Lyapunov method
algorithm this is what we expect, since for computing the first N constants it is
necessary to solve linear equations systems whose matrices have size N × N,
which quickly increases the computational cost (at least with order N2). For this
reason, as the problem size is increased parallelization becomes more useful, and
even indispensable.

Moreover, we can see in Figure 1.3 that both plots become flatter as the num-
ber of threads increases, which indicates that the improvement by parallelization
is lower for high levels of parallelism. This fact corroborates the so-called Am-
dahl’s Law, a principle which states that there is a speedup limitation that makes
that, for a certain number of threads, increasing even more the number of threads
is not worth –see [CA12; YMG14] for more information on this topic.

This example justifies the need of parallelization and the great benefit it pro-
vides in the computation of the Lyapunov constants and, more generally, in the
resolution of the center and cyclicity problems. The reason is that the systems to
solve quickly become enormous and they require high computational efficiency.
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This is just what we have seen with the significant improvement in the computa-
tion time of Lyapunov constants for big problem sizes: comparing the execution
time between 1 thread (no parallelization) and 28 threads (maximum paralleliza-
tion) in Table 1.1, we can see a reduction of approximately 90% in computation
time.

1.3 Resolution for some families in R2

In this section we address the center and cyclicity problems for a few polyno-
mial systems of differential equations. Firstly, we will solve such problems for a
cubic polynomial family and the so-called Bautin’s quadratic polynomials. The
results for these families are classical and well-known, but they are outlined here
for completeness and in order to illustrate how the tools introduced in previous
sections can be applied to specific examples. We also show how the radicality
of Bautin ideals helps to the resolution of the cyclicity problem, a method that
has enabled us to solve it for the considered cubic family in a new way. Nev-
ertheless, if the readers are familiar with these topics they can skip directly to
Subsections 1.3.3 and 1.3.4, where we bound the cyclicity for a quartic rigid sys-
tem and solve the center problem for a particular polynomial family with quintic
homogeneous nonlinearities, respectively.

1.3.1 A cubic polynomial family

Let us consider the cubic polynomial family{
ẋ = −y + a2x2 + a3x3,
ẏ = x + b2x2 + b3x3.

(1.28)

Notice that by applying the time change t → −t these equations have the form of
a Liénard system (1.10). Let us start by solving the center problem for this family.
The result is as follows.

Theorem 1.29. The system of differential equations (1.28) has a center at the origin if
and only if at least one of the following conditions is satisfied:

(i) a2 = a3 = 0;

(ii) b2 = a3 = 0; or

(iii) b3 = 0 and a3 =
2
3

a2b2.
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Proof. We must check for which parameters the Lyapunov constants of the system
satisfy Lk = 0 for every k ≥ 1. Using the software developed during the previous
section, we can compute the two first Lyapunov constants of (1.28),

L1 =
3
8

a3 −
1
4

a2b2, L2 =
5

24
a2b2b3.

We will solve L1 = 0 and L2 = 0 and use methods to prove that in this case the
origin is a center, so Lk = 0 for every k ≥ 3. This will be the only case in which
the origin can be a center, since if L1 �= 0 or L2 �= 0 we know that the origin must
be a focus.

Let us solve the system {L1 = L2 = 0}, which has three possible solutions:
S1 = {a2 = a3 = 0}, S2 = {b2 = a3 = 0}, and S3 = {b3 = 0, a3 = 2

3 a2b2}. For so-
lution S1, the system becomes invariant under the change (x, y, t) → (x,−y,−t),
so according to what we saw in Subsection 1.1.2 orbits close on themselves and
form periodic orbits, hence the origin of the system is a center. For the sec-
ond solution S2, the system is invariant under the coordinate change (x, y, t) →
(−x, y,−t), so it also has a center at the origin. For the latter case S3, by apply-
ing a time change t → −t the system takes the form of a Liénard system (1.10)
with F(x) = a2x2 + 2

3 a2b2x3 and g(x) = x + b2x2. A primitive G(x) of g(x) is
G(x) = 1

2 x2 + 1
3 b2x3. Comparing F(x) and G(x) we see that

F(x) = a2x2 +
2
3

a2b2x3 = 2a2

(
1
2

x2 +
1
3

b2x3
)
= 2a2G(x) =: Φ(G(x)),

where we define function Φ(x) = 2a2x. This function is clearly analytic and sat-
isfies Φ(0) = 0, so we can apply Theorem 1.11 to conclude that the origin of this
system is a center.

These are the three only possibilities for the origin of being a center. Thus,
the conditions we have found here which make L1 and L2 vanish are the center
conditions of system (1.28), and the result follows.

A complex coordinates version of this theorem can be found in [Zol94]. Thus,
we have seen that for system (1.28), if L1 = L2 = 0 then the system has a center at
the origin and Lk = 0 for every k ≥ 3. A question that naturally arises is whether
this is due to the fact that every Lk with k ≥ 3 belongs to the ideal generated by
L1 and L2. This is actually true, and we aim to prove the following result which
was already presented in [Tor98], but is included here in order to illustrate how
the radicality of Bautin ideals can be used to bound the local cyclicity.

Theorem 1.30. The Bautin ideal of system (1.28) satisfies that

〈Li〉i=1,...,∞ = 〈L1, L2〉, (1.29)
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and this implies that at most two limit cycles bifurcate from the origin when the trace
parameter is added.

Proof. Let us start by considering the case L1 �= 0, for which there exists a set of
parameters λ1 := (a(1)2 , a(1)3 , b(1)2 , b(1)3 ) for which

Π(ρ, λ1)− ρ = L1ρ3 + · · · .

Now let us slightly perturb the system by taking λ := (a2, a3, b2, b3) such that
λ ∼ λ1. We want to compute the zeros of the displacement map Δ(ρ, λ ∼ λ1).
As we saw in Subsection 1.1.3, by applying the Weierstrass Preparation Theorem
this problem reduces to finding the zeros of polynomial ρ3 + s2(λ)ρ

2 + s1(λ)ρ. We
also justified that, as in this case k = 3, then the system has at most (k − 1)/2 =
(3 − 1)/2 = 1 limit cycle.

Assume that L1 = 0 and L2 �= 0, then there exists λ2 := (a(2)2 , a(2)3 , b(2)2 , b(2)3 )
such that

Π(ρ, λ2)− ρ = L2ρ5 + · · · .

Analogously, by applying the Weierstrass Preparation Theorem, we know that
finding the zeros of Δ(ρ, λ ∼ λ2) is equivalent to finding the zeros of polynomial
ρ5 + t4(λ)ρ

4 + t3(λ)ρ
3 + t2(λ)ρ

2 + t1(λ)ρ. In this case, as k = 5 we can conclude
that the system has at most (k − 1)/2 = (5 − 1)/2 = 2 limit cycles.

The problem gets a bit more complicated when L1 = L2 = 0. We know that in
this center case

Π(ρ, λ0)− ρ ≡ 0,

for λ0 := (a(0)2 , a(0)3 , b(0)2 , b(0)3 ) satisfying one of the conditions of Theorem 1.29.
In this situation, the Weierstrass Preparation Theorem cannot be applied to study
what occurs when perturbing λ0 because the Poincaré map is identically zero and
then the conditions of the theorem are not satisfied. Therefore, in this case other
techniques must be used to study function Δ(ρ, λ) = Π(ρ, λ)− ρ for λ ∼ λ0.

Let J be the ideal generated by L1 and L2, this is J = 〈L1, L2〉. Using instruc-
tion ��������� from the package 	
���

��������� in Maple we can straightfor-
wardly check that this ideal J is radical. Now let V(J) be the set of zeros of ideal
J –recall that this is the set of parameters for which the elements of J = 〈L1, L2〉
vanish. Consider now the ideal of set V(J), denoted as I(V(J)).

As we have seen that if L1 = L2 = 0 then the system has a center and Lk =
0 for every k ≥ 3, we have that the set of parameters which make L1 and L2
vanish will automatically make Lk = 0 vanish for every k ≥ 3. This implies that
Lk ∈ I(V(J)) for every k ≥ 3. Therefore, due to Corollary 1.7 of the Hilbert Zeros
Theorem, we also have that Lk ∈ J = 〈L1, L2〉 for every k ≥ 3, and this finally
proves that 〈Li〉i=1,...,∞ = 〈L1, L2〉. As a consequence, if k ≥ 3 then

Lk = rk(x)L1 + sk(x)L2,



1.3. Resolution for some families in R2 41

for certain polynomials rk(x) and sk(x). We have then that the displacement
map for a perturbation λ ∼ λ0 is

Δ(ρ, λ) =L1ρ3 + V4ρ4 + V5ρ5 + V6ρ6 + V7ρ7 + · · · =
=L1ρ3

(
1 + A1(ρ, λ)ρ + A2(ρ, λ)ρ2 + · · ·

)
+

+ L2ρ5
(

1 + B1(ρ, λ)ρ + B2(ρ, λ)ρ2 + · · ·
)

,

for certain polynomials Ai(ρ, λ), Bi(ρ, λ). The Weierstrass Preparation Theorem
can be applied on each of the terms in the previous expression, and we obtain
that there exist analytic functions A(ρ, λ), B(ρ, λ) such that

Δ(ρ, λ) = A(ρ, λ)ρ3 + B(ρ, λ)ρ5.

As it is a degree k = 5 polynomial, function Δ(ρ, λ) for λ ∼ λ0 has at most
(5− 1)/2 = 2 positive zeros, which means that at most 2 limit cycles can bifurcate
in a neighborhood of the origin when perturbing the system also considering the
trace parameter.

Notice that the fact that the polynomials introduced here have two positive
zeros is due to the fact that L1 and L2 in (1.29) take an arbitrary value. Thus, the
procedure we have seen is general for any system where 〈L1, L2〉 is a radical ideal
which satisfies (1.29).

1.3.2 Bautin’s quadratic polynomials

In his work [Bau52] from 1952, Bautin solved the problem of finding the maxi-
mum number of limit cycles for quadratic differential systems, these are systems
of the form {

ẋ = a10 x + a01 y + a20 x2 + a11 xy + a02 y2,
ẏ = b10 x + b01 y + b20 x2 + b11 xy + b02 y2.

(1.30)

In this subsection we will explicitly show how to solve the center problem for
system (1.30) and we will give an overview on how the maximum number of
limit cycles can be found. First, we will illustrate the center characterization for
this family in the following result.

Theorem 1.31 ([DLA06]). (Kapteyn-Bautin Theorem) A quadratic system (1.30) that
has a center at the origin can be written in the form{

ẋ = −y − bx2 − Cxy − dy2,
ẏ = x + ax2 + Axy − ay2.

(1.31)
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This system has a center at the origin if and only if at least one of the following conditions
is satisfied:

(i) A = 2b and C = −2a;

(ii) C = a = 0;

(iii) d = −b; or

(iv) C = −2a, A + 3b + 5d = 0 and a2 + bd + 2d2 = 0.

Proof. A quadratic system can have a center only if it can be rewritten in the form
(1.31), by applying a linear transformation and a time rescaling –see [DLA06] for
more details on this.

Using the implemented algorithm, the first Lyapunov constants of (1.31) can
be computed,

L1 =
1
8
(b + d)(2a + C),

L2 = − 1
96

C(b + d)(A − 2b)(A + 3b + 5d),

L3 = − 5
512

C(b + d)2(C2 + 4bd + 8d2)(A − 2b).

We will see that these 3 first Lyapunov constants are enough to tackle the prob-
lem, so solve system {L1 = L2 = L3 = 0} and obtain four solutions: S1 = {A =
2b, C = −2a}, S2 = {C = a = 0}, S3 = {d = −b}, and S4 = {C = −2a, A + 3b +
5d = 0, a2 + bd + 2d2 = 0}. These are the four cases to analyze whether the origin
is a center. For S1, the system is Hamiltonian4, and it is straightforward to check
that its Hamiltonian function is H = 1

2(x2 + y2) + a
3 x3 + bx2y− axy2 + d

3 y3, which
is a first integral defined near the origin. Thus, as there exists a first integral the
origin must be a center. In the case S2, the system is invariant under the change
(x, y, t) → (−x, y,−t), and this symmetry proves that the origin is a center.

For the third solution S3, if a �= 0 then there exists a certain rotation such
that the new a′ = 0, so we can assume a = 0 and d = −b –see [DLA06] for
more details. This system has the invariant curves f1 = 1 + Ay = 0 (if A �= 0)
with cofactor K1 = Ax and f2 = (1 − by)2 + C(1 − by)x − b(A + b)x2 = 0 with
cofactor K2 = −2bx − Cy. As div(P, Q) = −2bx − Cy + Ax = K1 + K2, we have
that there exist λ1 = −1, λ2 = −1 such that λ1K1 + λ2K2 = −div(P, Q), and by
applying Darboux Theorem 1.17ii we have that f−1

1 f−1
2 is an integrating factor.

As the first integral associated to the integrating factor is well-defined near the

4A Hamiltonian system is a differential system for which there exists a scalar function H, called
the Hamiltonian of the system, such that ẋ = −∂H/∂y and ẏ = ∂H/∂x. Furthermore, it can be
trivially checked that the Hamiltonian H is a first integral of the system.
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origin, we can conclude that the origin is a center. If A = 0 then f1 is not an
invariant curve, but in this case the system divergence is K2 and analogously we
see that the integrating factor is f−1

2 and the origin is a center.
For the last case S4, let us assume that d �= 0 –if d = 0 we can reduce the

problem to case S2. The resulting system has an invariant curve f1 = (a2 +
d2)
[
(dy − ax)2 + 2dy

]
+ d2 = 0 with cofactor K1 = 2(a2 + d2)x/d. If we com-

pute the divergence of the system in this case we obtain 5
2 K1, and by applying

Darboux Theorem 1.17ii we deduce that f−5/2
1 is an integrating factor. As d �= 0,

the associated first integral is defined in a neighborhood of the origin, and there-
fore the origin is a center.

We have seen the conditions under which system (1.31) has a center. Observe
that these are the only possibilities for the system to have a center at the origin,
because if they are not satisfied then either L1 �= 0, L2 �= 0, or L3 �= 0, and the
origin would be a focus, so the theorem follows.

We have just proved that, for the considered quadratic family, if L1 = L2 =
L3 = 0 then the system has a center at the origin and therefore Lk = 0 for every
k ≥ 4. Using what we saw about cyclicity in Subsection 1.1.3, we have that if
L1 �= 0 then at most 1 limit cycle will appear when perturbing the system; if
L1 = 0 and L2 �= 0, at most 2 limit cycles can bifurcate; if L1 = L2 = 0 and L3 �= 0
at most 3 limit cycles can unfold. We can deduce this because the Weierstrass
Preparation Theorem holds. Nevertheless, in the center case L1 = L2 = L3 = 0,

Π(ρ, λ0)− ρ ≡ 0,

so the Weierstrass Preparation Theorem cannot be applied.
As we saw in the example of the cubic polynomials in Subsection 1.3.1, the

fact that the ideal generated by the two first Lyapunov constants was radical al-
ready solved the problem. In the current case of the quadratic polynomials, again
by using for example Maple we see that the ideal 〈L1, L2, L3〉 is not radical, so we
cannot apply the same techniques we used for the cubic system (1.28) and the
problem becomes much more complicated. Despite this, Bautin proved in his ar-
ticle [Bau52] that the maximum number of limit cycles which can unfold near the
origin when perturbing the system is 3. In this article, Bautin explicitly deduced
how the Lyapunov constants Lk for k ≥ 4 are a linear combination of constants
L1, L2, and L3, so proceeding as in the cubic example one can conclude that the
maximum number of limit cycles which can unfold when perturbing the system
is 3. We will not go deeper in the problem of the cyclicity for this quadratic fam-
ily; it has only been introduced here as an example of how the problem becomes
much harder when the ideal generated by the Lyapunov constants is not radical,
as in this case the resolution of the cyclicity problem is not straightforward.
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1.3.3 A quartic rigid system

Rigid systems are those having constant angular velocity, or equivalently, ϕ̇ =
1 being ϕ the angular component in polar coordinates. In this subsection we
will show the resolution of the center and cyclicity problems for the quartic rigid
system {

ẋ = −y + x f (x, y),
ẏ = x + y f (x, y),

(1.32)

being f (x, y) = a10x + a01y + a30x3 + a21x2y + a12xy2 + a03y3 for aij ∈ R. The fol-
lowing result characterizes the centers of (1.32), and uses this to bound its cyclic-
ity by means of the radicality of Bautin ideals, an approach which to the best of
our knowledge has not been considered formerly for this system.

Theorem 1.32. System (1.32) has a center at the origin if and only if, modulo a rotation,
one of the following set of conditions holds:

(i) a10 = a01 = 0; or

(ii) a10 = a30 = a12 = 0.

In this case, at most 5 limit cycles bifurcate from the origin when the trace parameter is
added.

Proof. Let us start by computing the Lyapunov constants of system (1.32), which
modulo multiplicative constants take the form

L1 =0,
L2 =− a10a21 − 3a03a10 + 3a30a01 + a12a01,

L3 =a03a3
10 − 3a03a10a2

01 + 2a30a3
01 − a12a2

10a01 + a12a3
01,

L4 =3a2
01a03a30 − a2

01a12a21 − 2a2
01a21a30 + a01a10a2

12 + 3a01a10a12a30 − a03a2
10a12

− 3a03a2
10a30,

L5 =9a01a2
03a30 − 3a01a03a12a21 − 3a01a03a21a30 + a01a3

12 + 6a01a2
12a30 − a01a12a2

21

+ 9a01a12a2
30 − 2a01a2

21a30 − a03a10a2
12 − 6a03a10a12a309a03a10a2

30.

If we solve the system {L1 = L2 = L3 = L4 = L5 = 0}, we find that modulo
rotations there are two solutions S1 = {a10 = a01 = 0} and S2 = {a10 = a30 =
a12 = 0}. For S1, the system has f (x, y) = a30x3 + a21x2y + a12xy2 + a03y3, which
is cubic homogeneous. As a system being linear plus nth degree homogeneous
takes the form ṙ = rn P(ϕ) in polar coordinates for some trigonometric polyno-
mial P(ϕ), it can be trivially integrated by separation of variables, so in our case
the origin is a center. For S2, we have y(a01 + a21x2 + a03y2) and the origin is
a center because there exists a reversibility with respect to the horizontal axis,
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and therefore the system is symmetric –this nonhomogeneous case was actually
solved in [CGG01].

Now we check by using Maple that the Bautin ideal generated by the first 5
Lyapunov constants of the system is radical, and therefore the resolution of the
center problem also bounds the cyclicity of the system. Indeed, we have that
equality 〈Li〉i=1,...,∞ = 〈L1, L2, L3, L4, L5〉 holds, and as we have seen in previous
sections this implies that at most 5 limit cycles can bifurcate from the origin, so
the result follows.

1.3.4 A system with quintic homogeneous nonlinearities

Let us consider the following example of polynomial family with fifth degree
homogeneous nonlinearities,

ż = i z + a50z5 + a32z3w2 + a14zw4. (1.33)

The following result shows the center characterization for this family.

Theorem 1.33. Equation (1.33) has a center at the origin if and only if one of the follow-
ing set of conditions holds:

(i) a32 = −a32, a50 = 0; or

(ii) a32 = −a32, a14a50 = a14a50.

Proof. The first 20 Lyapunov constants of (1.33) have been computed, but they are
not shown here for the sake of brevity. What we can see is that those constants
Lk with odd k ≤ 20 are identically zero, while those with even k ≤ 20 are not.
With the help of Maple we check that L20 = 0 provided that L2 = L4 = L6 =
L8 = L10 = L12 = L14 = L16 = L18 = 0. Therefore, it is expected that the first 9
nonidentically zero constants are enough to solve the center problem.

Let us first find the conditions for which L2 = L4 = · · · = L18 = 0. This
is done by using Maple, and two possible solutions are obtained: S1 = {a32 =
−a32, a50 = 0} and S2 = {a32 = −a32, a14a50 = a14a50}. Now we will prove that
under these conditions the system has a center at the origin, which will complete
the resolution of the center problem for this family. To simplify notation, we will
define akl := bkl + i ckl being bkl, ckl ∈ R for any pair of subscripts k, l ∈ N ∪ {0}.

Let us start by studying the first solution S1. Observe that the condition a32 =
−a32 implies that a32 is purely imaginary, so a32 = i c32 for c32 ∈ R. Then, as
a50 = 0, in this case equation (1.33) can be written as

ż = i z + i c32z3w2 + a14zw4, (1.34)

As (1.34) has the form (1.12), we can apply Theorem 1.18 to show that the origin
is a center. Using the notation of the theorem, k = 3, l = 2, m = 1, n = 4
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(k + l = 3 + 2 ≤ 1 + 4 = m + n), α = 3 − 2 − 1 = 0, and β = 1 − 4 − 1 = −4.
Then, by taking A = i c32 = −i c32 ei 0ϕ and choosing an appropriate ϕ so that
B = a14 = −a14 e−4 i ϕ, condition (iii) of the theorem is satisfied and therefore the
origin is a center.

For the second solution S2, we have again that the first condition a32 = −a32
implies that a32 = i c32 for c32 ∈ R, so the system has the form{

ż = i z + a50z5 + i c32z3w2 + a14zw4,
ẇ = − i w + a50w5 − i c32z2w3 + a14z4w,

(1.35)

where we have also written the complex conjugate equation. In this case, it will
be useful to express the system in polar coordinates (r, ϕ) instead of (z, w), so we
consider z = r ei ϕ and w = r e− i ϕ . By taking the corresponding derivatives,

ż =
dz
dr

ṙ +
dz
dϕ

ϕ̇ = ei ϕ ṙ + i zϕ̇, ẇ =
dw
dr

ṙ +
dw
dϕ

ϕ̇ = e− i ϕ ṙ − i wϕ̇. (1.36)

We are interested in finding an expression for ṙ. This can be done by substituting
(1.36) in żw + ẇz as follows,

żw + ẇz =
(

ei ϕ ṙ + i zϕ̇
)

w +
(

e− i ϕ ṙ − i wϕ̇
)

z,

żr e− i ϕ +ẇr ei ϕ = ei ϕ ṙr e− i ϕ + e− i ϕ ṙr ei ϕ,

ṙ =
ż e− i ϕ +ẇ ei ϕ

2
.

Substituting (1.35) in this expression and using polar coordinates we obtain

ṙ = r5
(
a50 e4 i ϕ +a50 e−4 i ϕ

)
+
(
a14 e−4 i ϕ +a14 e4 i ϕ

)
2

= r5 Re
(

a50 e4 i ϕ +a14 e−4 i ϕ
)

.

Using notation akl = bkl + i ckl and Euler’s fomula5 this can be rewritten as

ṙ = r5 (b50 cos(4ϕ)− c50 sin(4ϕ) + b14 cos(4ϕ) + c14 sin(4ϕ)) .

Now we aim to follow an analogous procedure to find an expression for the
derivative of the angular component ϕ̇. To this end we will subtitute (1.36) in

5Euler’s formula states that, for any real number φ, ei φ = cos φ + i sin φ.
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expression ż e− i ϕ −ẇ ei ϕ as follows,

ż e− i ϕ −ẇ ei ϕ =
(

ei ϕ ṙ + i zϕ̇
)

e− i ϕ −
(

e− i ϕ ṙ − i wϕ̇
)

ei ϕ,

ż e− i ϕ −ẇ ei ϕ = i r ei ϕ ϕ̇ e− i ϕ + i r e− i ϕ ϕ̇ ei ϕ,

ϕ̇ =
ż e− i ϕ −ẇ ei ϕ

2 i r
.

Again we can substitute (1.35) in this expression and use polar coordinates to
obtain

ϕ̇ =1 + r4

(
c32 +

(
a50 e4 i ϕ −a50 e−4 i ϕ

)
+
(
a14 e−4 i ϕ −a14 e4 i ϕ

)
2 i

)
=1 + r4

(
c32 + Im

(
a50 e4 i ϕ +a14 e−4 i ϕ

))
.

With notation akl = bkl + i ckl and Euler’s fomula, this can be expressed as

ϕ̇ = 1 + r4 (c32 + b50 sin(4ϕ) + c50 cos(4ϕ)− b14 sin(4ϕ) + c14 cos(4ϕ)) ,

Therefore, we have seen that system (1.35) in polar coordinates takes the form{
ṙ = r5 (b50 cos(4ϕ)− c50 sin(4ϕ) + b14 cos(4ϕ) + c14 sin(4ϕ)) ,
ϕ̇ = 1 + r4 (c32 + b50 sin(4ϕ) + c50 cos(4ϕ)− b14 sin(4ϕ) + c14 cos(4ϕ)) .

(1.37)
Recall that the second condition in S2 is a14a50 = a14a50. Let us write in polar

coordinates a14 = r14 ei ϕ14 and a50 = r50 ei ϕ50 for r14, ϕ14, r50, ϕ50 ∈ R. Using this
notation, the aforementioned condition is rewritten as e− i(ϕ14+ϕ50) = ei(ϕ14+ϕ50),
and after Euler’s formula this yields to − sin(ϕ14 + ϕ50) = sin(ϕ14 + ϕ50), which
implies sin(ϕ14 + ϕ50) = 0. The solutions for this equation are ϕ14 + ϕ50 = 0 and
ϕ14 + ϕ50 = π. Let us study both cases separately.

If ϕ14 + ϕ50 = 0 then ϕ14 = −ϕ50, so a14 = r14 e− i ϕ50 =
r14

r50
a50. Using notation

akl = bkl + i ckl, we have then that b14 =
r14

r50
b50 and c14 = −r14

r50
c50. Substituting

this in (1.37) we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
ṙ = r5

(
1 +

r14

r50

)
(b50 cos(4ϕ)− c50 sin(4ϕ)) ,

ϕ̇ = 1 + r4
(

c32 +

(
1 − r14

r50

)
(b50 sin(4ϕ) + c50 cos(4ϕ))

)
.

Let us define G1(ϕ) :=
(

1 +
r14

r50

)
(b50 cos(4ϕ)− c50 sin(4ϕ)) as the part of the ṙ



48 Chapter 1. Center problem and limit cycles

equation which only depends on the angular variable. Then we integrate such
equation as follows,∫ r

r0

dr
r5 =

∫ t

0
G1(ϕ) dt ⇒ − 1

4r4 +
1

4r4
0
= G1(ϕ) t.

By denoting r̃0 :=
1

4r4
0

and isolating r, we get the expression

r(t, ϕ) =
1

4
√

4 (r̃0 − G1(ϕ) t)
. (1.38)

Now we can use Maple to solve the differential equation on ϕ̇ to find ϕ(t, r), and
then isolate t on this expression to find how t depends on ϕ. The result is

t(ϕ) = −1
2

2K1
√

f1 − r50 arctan

(
f2 tan (2ϕ) + f3√

f4

)
√

f5
, (1.39)

where K1 is an integration constant and fi for i = 1, 2, 3, 4, 5 are expressions of
sums and products such that fi = fi(r, b14, c14, r14, b50, c50, r50, c32), so they not
depend on the angular variable ϕ. Observe that, for any angle ϕ0, tan(2(ϕ0 +
π)) = tan(2(ϕ0 − π)). Therefore, using expression (1.39) we see that t(ϕ0 + π) =
t(ϕ0 − π) for any angle ϕ0, which implies that for any initial angle ϕ0 the time
t(ϕ0 + π) needed to go forward π is the same as the time t(ϕ0 − π) needed to go
backward π. Furthermore, as cos(4(ϕ0 + π)) = cos(4(ϕ0 − π)) and sin(4(ϕ0 +
π)) = sin(4(ϕ0 − π)) are also true for any angle ϕ0, by using the definition of
G1 we trivially see that G1(ϕ0 + π) = G1(ϕ0 − π). Using this and the fact that
t(ϕ0 + π) = t(ϕ0 − π), according to expression (1.38) we obtain that r(t(ϕ +
π), ϕ + π) = r(t(ϕ − π), ϕ − π). This implies that, as the radius of the orbit
when moving forward a π angle is the same as moving backward a π angle for
any initial angle ϕ0 we can conclude that under these conditions the orbits close
on themselves so the origin of the system is a center.

The case ϕ14 + ϕ50 = π can be solved analogously to the previous one. If
ϕ14 + ϕ50 = π then ϕ14 = π − ϕ50, so a14 = r14 ei(π−ϕ50) = −r14

r50
a50. This implies

b14 = −r14

r50
b50 and c14 =

r14

r50
c50, and substituting in system (1.37) we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ṙ = r5

(
1 − r14

r50

)
(b50 cos(4ϕ)− c50 sin(4ϕ)) ,

ϕ̇ = 1 + r4
(

c32 +

(
1 +

r14

r50

)
(b50 sin(4ϕ) + c50 cos(4ϕ))

)
.
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Now we define G2(ϕ) :=
(

1 − r14

r50

)
(b50 cos(4ϕ)− c50 sin(4ϕ)) , and by solving

the ṙ equation we obtain

r(t, ϕ) =
1

4
√

4 (r̃0 − G2(ϕ) t)
, (1.40)

for a certain r̃0. The differential equation in ϕ̇ can be solved using Maple and the
temporal variable isolated to obtain

t(ϕ) = −1
2

2K2
√

h1 − r50 arctan
(

h2 tan (2ϕ) + h3√
h4

)
√

h5
,

where K2 is an integration constant and hi for i = 1, 2, 3, 4, 5 are expressions of
sums and products such that hi = hi(r, b14, c14, r14, b50, c50, r50, c32), so they do not
depend on the angular variable ϕ. Again, for any initial angle ϕ0 we have that
G2(ϕ0 + π) = G2(ϕ0 − π) and t(ϕ0 + π) = t(ϕ0 − π) so, according to (1.40),
r(t(ϕ + π), ϕ + π) = r(t(ϕ − π), ϕ − π). As a consequence, for any initial angle
ϕ0 the radius when moving forward or backward a π angle is the same, which
implies that the origin of the system is a center.

1.4 New advances on Lyapunov constants

This section presents some advances regarding the Lyapunov constants of some
families of planar polynomial differential systems, as a first step towards the res-
olution of the center and cyclicity problems. Firstly, a parallelization approach is
computationally implemented to achieve the 14th Lyapunov constant of the com-
plete cubic family. It is worth remarking that, to the best of our knowledge, this is
the first time that 14 Lyapunov constants for the complete cubic family are found,
and this achievement would not have been possible without the indispensable
support of the developed parallelization techniques. We notice that despite hav-
ing found these Lyapunov constants, solving the center problem for this family
has not been feasible due to the high computational cost. Secondly, a technique
based on interpolating some specific quantities so as to reconstruct the structure
of the Lyapunov constants is used to study a Kukles system, some fifth-degree
homogeneous systems, and a quartic system with two invariant lines.

1.4.1 The complete cubic family

In Subsection 1.2.1 we described the Lyapunov method algorithm to find Lya-
punov constants of a system, which is based on the utilization of a first integral
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of system (1.2). Here we will use the PARI implementation of this method. As
the computation of Lyapunov constants is a highly computationally expensive
procedure, this algorithm has been optimized and improved by means of paral-
lelization, which allows to significantly increase computation velocity. The idea
is to find each of the Lyapunov constants and the coefficients hp−j,j (j = 0, . . . , p)
from Fp of degree p from (1.21) in terms of the coefficients of lower degree, this
is, as a function of hk−j,j being k < p and j = 0, . . . , k. This part is relatively fast
computationally speaking, since the manipulated expressions are not too large.
Then we parallelize the substitution of those coefficients with their actual value,
and here parallelization is essential because this process deals with very large
expressions.

The results of this parallelization technique are amazing, and its efficiency
has allowed our method to find Lyapunov constants in a relatively short time
for cases which had not been solved before due to the huge amount of time and
computational complexity required. In particular, we have applied this method
to the complete cubic system{

ż = i z + r̂20z2 + r̂11zw + r̂02w2 + r̂30z3 + r̂21z2w + r̂12zw2 + r̂03w3,
ẇ = − i w + ŝ20w2 + ŝ11wz + ŝ02z2 + ŝ30w3 + ŝ21w2z + ŝ12wz2 + ŝ03z3.

(1.41)
We have observed that if time is rescaled by dividing by the imaginary unit i,

computations are much more efficient and the calculation time decreases. Actu-
ally, the computations we describe here cannot be performed if this time rescaling
is not done, and it has turned out to be as important as parallelization. This seems
to be because of how computer algebra systems manipulate the expressions with
the imaginary unit i, and eliminating it from the problem to consider only ratio-
nal coefficients has proved to be an indispensable part to achieve the presented
results. If we denote rjk =

r̂jk
i and sjk =

ŝjk
i , system (1.41) in the new time variable

can be written as{
z′ = z + r20z2 + r11zw + r02w2 + r30z3 + r21z2w + r12zw2 + r03w3,
w′ = −w + s20w2 + s11wz + s02z2 + s30w3 + s21w2z + s12wz2 + s03z3.

(1.42)

Up to our knowledge, the highest known Lyapunov constant for the above
system is the 10th. However, with our parallelization technique we have been
able to reach the 14th. To perform this computation we have used the computer
network of our department Antz, and the parallelization has been done with the
software PBala which we already introduced in previous sections. The nodes of
this server work with Intel Xeon 2.60GHz processors, the total used memory is
640GB, and the maximum number of threads run at the same time has been 96.
The found Lyapunov constants are not shown here due to their enormous length,
but their sizes are shown in Table 1.2. The total computing time has been around
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22 hours.

TABLE 1.2: Size of the computed Lyapunov constants of (1.42)

Lyapunov constant Size (MB)
11 111
12 261
13 588
14 1282

The last step to obtain a complete characterization of cubic centers would be
how can we solve the nonlinear system {L1 = L2 = · · · = 0}, and not how to con-
struct it because we think that we have computed enough Lyapunov constants to
achieve it. This is a very demanding problem computationally speaking and we
have not been able to tackle it yet, but by finding 14 Lyapunov constants we have
taken a step towards its resolution.

Let us finish by making the following observations regarding the number of
necessary Lyapunov constants to address the problem for the complete cubic fam-
ily. At the moment when the calculations in this section were done, it was a well-
known fact –see for example [Chr05]– that the solution of the center problem
for the general cubic differential system needs at least 11 Lyapunov constants,
and we thought that 14 constants would actually be needed. Later, a real 12th
order weak focus was found in [GGT21], which made clear that 12 Lyapunov
constants were needed in the real case by correcting some missing points in the
arguments of the original proof from [YT14]. Very recently, in 2020, Sadovskii
proved the existence of a complex cubic system with a 14th order weak focus at
the origin ([Sad20]), which strengthens the idea that 14 Lyapunov constants are
necessary to solve the center problem for the cubic family. It is worth noticing
that in such work the author finds the first 14 Lyapunov constants for the partic-
ular cubic system he studies, while we have reached the first 14 constants for a
general complete cubic.

The fact of having a complex weak focus with 14th order shows the great dif-
ficulty of the problem. This is because more elements will be needed to find the
generators of the Bautin ideal, but maybe not for the center problem as these com-
plex objects may not help to solve the problem in real coordinates. What could
happen here is that the conditions which vanish the first 14 Lyapunov constants
in complex coordinates have no real associated solutions, so fewer constants may
be necessary to solve the problem in real coordinates, maybe 12 as in the 12th
order focus from [GGT21]. However, classically extra Lyapunov constants have
been used in order to help to solve the problem, and to deal with all these math-
ematical object is an extremely demanding problem in computational terms.
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1.4.2 The reconstruction technique

Let Bk := 〈L1, . . . , Lk〉 be the Bautin ideal generated by the first k Lyapunov con-
stants. The method suggested in this subsection aims to check whether a certain
Lyapunov constant Ln belongs to Bn−1, and therefore it vanishes when the pre-
vious are equal to zero. It is important to remark that to apply this techique at
this step we assume that we have been able to compute the first n Lyapunov
constants.

Let us start by writing

Ln =
n−1

∑
j=1

AjLj, (1.43)

where Aj are polynomials whose variables are the parameters of the original sys-
tem (1.2). Our method consists on trying to see whether we can determine these
polynomials Aj, since this will tell if expression (1.43) is possible or not. Using the
notation of (1.42) for the parameters, let us consider a monomial M = ∏k,l rpk,l

k,l rqk,l
k,l ,

where rk,l denotes the coefficients of zkwl in Z(z, w) from (1.2), and rk,l denotes
their complex conjugates. Recalling Theorem 1.27, the monomials of a Lyapunov
constant Lj have quasi-degree 2j and weight 0. Now using these properties to-
gether with the degree of Lj, we can select which monomials are candidates to
be part of each Aj, but with undetermined coefficients. Thus, we have that Aj
are polynomials whose monomials have been selected and have undetermined
coefficients, and these coefficients of Aj are what we try to compute.

Once known the structure of Aj, we would substitute it in (1.43), expand the
products and the sum and finally equate the coefficients of monomials with the
same literal part. This gives a set of linear equations consisting of the coefficients
of equality (1.43). If this system of linear equations is compatible, then the poly-
nomials Aj do exist and Ln vanishes when L1, . . . , Ln−1 are zero; otherwise, if the
system is incompatible then the polynomials Aj do not exist and Ln does not be-
long to Bn−1. Therefore, instead of explicitly solving the system of equations, it
is enough to compare the ranks of the system matrices to see if they are equal or
not, and this is how we have proceeded.

With this method we have studied three different polynomial families and we
have obtained the following results. Notice that we have not explicitly shown
their proofs, because they consist simply on applying the described method to
the considered systems and check the belonging of Ln to Bn−1 in each case.

Proposition 1.34. Consider the Kukles differential system{
ẋ = −y,
ẏ = x + b20x2 + b11xy + b02y2 + b30x3 + b21x2y + b12xy2 + b03y3,
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which in complex coordinates is written as{
ż = i z + r20z2 + r11zw + r02w2 + r30z3 + r21z2w + r12zw2 + r03w3,
ẇ = − i w − r20z2 − r11zw − r02w2 − r30z3 − r21z2w − r12zw2 − r03w3.

Then L9 does not belong to B8. In the case r12 = 0, L9 again does not belong to B8, but
L10 does belong to B9 since there exist Aj such that L10 = ∑9

j=1 AjLj.

From the above result, we can guess that only the first 9 Lyapunov constants
are enough to solve the center problem for this family when r12 = 0. This inter-
polation method works better than the standard approach using Groebner basis
for the simplifications (see [RS09] for more details on Groebner basis).

The center problem for 5th degree homogeneous perturbations of the linear
oscillator is an open problem, and even the value m in (1.8) is unknown. The
mechanism proposed here fails for the general family due to the size of the com-
putations. The next result presents some particular cases.

Proposition 1.35. Consider the linear plus homogeneous 5th degree polynomial differ-
ential system{

ż = i z + r41z4w + r32z3w2 + r23z2w3 + r14zw4 + r05w5,
ẇ = − i w + s41w4z + s32w3z2 + s23w2z3 + s14wz4 + s05z5.

Then the next properties hold:

• If r41 = s41 = 0, then L10 does not belong to B9 but L11 does belong to B10.
• If r32 = s32 = 0, then L11 and L12 do not belong to B10 and B11, respectively.

The last considered family is a special quartic differential system with four
invariant straight lines, which has been considered here because it has turned out
to work well with the proposed reconstruction technique.

Proposition 1.36. Consider the system with two parallel invariant straight lines{
ẋ = (1 − x2)(−y + a20x2 + a11xy + a02y2),
ẏ = (1 − y2)(x + b20x2 + b11xy + b02y2),

which can be written in complex coordinates as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ż = i z + r40z4 + r31z3w + r22z2w2 + r14zw3 + r04w4 + r21z2w + r03w3+

r20z2 + r11zw + r02w2,

ẇ =− i w + s40w4 + s31w3z + s22w2z2 + s14wz3 + s04z4 + s21w2z + s03z3+

s20w2 + s11wz + s02z2.
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For this system both L7, L8, and L9 do not belong to B6,B7, and B8, respectively. How-
ever, when r11 = s11 = 0, L7 does belong to B6.

1.5 Hopf bifurcation for polynomial vector fields in
R3

In this section we consider the Hopf bifurcation in families of polynomial dif-
ferential systems of equations in R3, and we aim to find as many limit cycles
as possible for systems of several degrees n. It is widely known that, unlike for
planar systems, systems in R3 can exhibit infinitely many limit cycles, as it is
the case, for example, in any vector field with a Shilnikov homoclinic orbit, see
[GH90; Shi65]. Other interesting bifurcations also exhibiting infinitely many can
be found in [BZ07], where a counterexample to a multidimensional version of
the weakened Hilbert’s 16th problem is presented, or the ones appearing on an
infinite family of algebraic invariant surfaces, even for the quadratic case ([BG96;
YH15]). There is also the example of the bifurcation of infinitely many limit cy-
cles near a Hopf-zero equilibrium point. Indeed, geometrical arguments to show
the existence of Shilnikov homoclinic orbits around a Hopf-zero point were al-
ready provided by Guckenheimer and Holmes ([GH90]). Formal statements were
proved in [BV84] and later in [Dum+13], but the first rigorous proof was done
very recently in [BIS20].

In our case, we will restrict the problem of finding lower bounds for the max-
imum number of limit cycles of small amplitude to the center manifold. In fact,
we will study bifurcations from systems having an equilibrium point such that
the corresponding Jacobian matrix has eigenvalues {± i, 1}, this is having a cen-
ter in the center manifold and a hyperbolic eigenvalue in the third direction. The
fact that the linear part of the third equation ż is different from 0 and thus hy-
perbolic makes that the z direction is tightening the solutions towards the center
manifold, and in this sense the considered problem is far from the Hopf-zero
situation. In this line, the problem is more similar to finding the cyclicity in a
two-dimensional case, and therefore makes sense to consider lower bounds for
the maximum number of local limit cycles despite the global problem being un-
bounded. This problem was also considered in [BZ03; BZ05a; BZ05b; SMB06]
and more recently in [GMS18; GMS19]. We will also take the advantage that, as
explained in some of these works, from the computational point of view it is not
necessary to do the changes of variables to transform the problem to a planar
one. The scenario being considered is then a local cyclicity problem of a certain
object inside a particular class of vector fields which is far from the 0 eigenvalue
degeneration in the third component. We notice that in the nonpolynomial case
this problem makes no sense because also an infinite number of small limit cycles
can bifurcate from the origin, see [YS19].
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Let us consider then a three-dimensional system⎧⎪⎨⎪⎩
ẋ = αx − y + X(x, y, z),
ẏ = x + αy + Y(x, y, z),
ż = z + Z(x, y, z),

(1.44)

where X, Y, Z are polynomials of degree n ≥ 2 having no constant nor linear
terms in x, y, z. The main result of this section is the following.

Theorem 1.37. There exist systems of the form (1.44) (with α ≈ 0) such that at least
11, 31, 54, 92 limit cycles of small amplitude bifurcate from the origin for n = 2, 3, 4, 5,
respectively.

To the best of our knowledge, the highest number of limit cycles found so far
for the degenerate Hopf bifurcation in the quadratic case is 10 (see [YH15]), and
we are not aware of any studies neither on cubic, quartic, nor quintic polynomial
vector fields in R3, probably due to the computational difficulties.

This section is devoted to prove the above main theorem and is structured as
follows. First, we present a subsection which introduces the main tools neces-
sary for the proof of our result: the Lyapunov constants method computation in
R3 and a couple of results that will be useful for the proofs. Subsections 1.5.2
and 1.5.3 use 2-parametric families to study the Hopf bifurcation and prove The-
orem 1.37 for n = 2 and n = 3, respectively. In the last subsection, we extend to
R3 the parallelization approach for R2 presented in [LT15] for the Lyapunov con-
stants computation and apply it to achieve our above main result for the fourth
and fifth degree cases.

1.5.1 Preliminary tools

The usual way to study the Hopf bifurcation in R3 is the restriction to the central
manifold where a center-focus type problem can be considered, but in many cases
the necessary normal form changes to go further in the computations make the
problem impossible to be solved. Then, we have opted for the approach of work-
ing directly in R3 as in [SMB06] but with the algorithm described in [BGM12].
Additionally, as we will explain later, we have avoided the situation when the
center manifold is the invariant plane z = 0, because the corresponding obtained
results are worse than when the center manifold is not a plane. In fact we will
prove that the number of limit cycles in the Hopf bifurcation depends on the cen-
ter manifold when the considered vector field is a family depending on parame-
ters. We will restrict our computations to families with (at most) two parameters
because of the computational difficulties.
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Lyapunov constants in R3

The main tool to study the local cyclicity of a Hopf equilibrium point are the Lya-
punov constants, and we present here two methods to find such quantities in R3.
The first method simply uses a first integral and finds center conditions, whereas
the second one consists on performing the corresponding transformation to the
center manifold in order to consider it as a planar problem. This reduction to the
center manifold presents some computational difficulties, so the first technique is
the one we will use throughout the section to find Lyapunov constants. However,
we will see an example and check that both methods lead to the same result.

Even though the center notion can be only considered in even dimensional
spaces, some authors introduce the notion of center in R3 to simplify the reading.
With this aim we can say that the origin is a center for an analytic system in
R3 when the eigenvalues of the Jacobian matrix are {± i, λ}, with λ �= 0, and
the system has a center on the 2-dimensional center manifold. The next result is a
classical one in the study of the existence of 2-dimensional center varieties having
centers in a three-dimensional space. It can be found in [BGM12] and is proved
in [Bib79].

Theorem 1.38 ([BGM12]). The origin is a center for the analytic system (1.44) if and
only if α = 0 and it admits a real analytic local first integral of the form H(x, y, z) =
x2 + y2 + O3(x, y, z) in a neighborhood of the origin in R3, being O3(x, y, z) a sum of
terms of degree at least 3. Moreover, when there is a center, the local center manifold is
unique and analytic.

The method we propose to find Lyapunov constants in R3 consists on using
Theorem 1.38 to construct a first integral H(x, y, z) = x2 + y2 + · · · with unknown
coefficients up to a certain degree. It is a well-known fact that condition

Ḣ =
∂H
∂x

ẋ +
∂H
∂y

ẏ +
∂H
∂z

ż ≡ 0 (1.45)

is equivalent to the system having a center at the origin. In contrast, if the system
does not have a center at the origin then (1.45) is not identically zero, and it can
be proved ([DLA06]) that actually it is an analytic function in x2 + y2, this is

Ḣ =
∂H
∂x

ẋ +
∂H
∂y

ẏ +
∂H
∂z

ż = ∑
�≥1

L�(x2 + y2)�+1, (1.46)

for some coefficients L� ∈ R. In this context, the coefficients L� are the so-called
Lyapunov constants, and they have the property that they all vanish if and only
if the system has a center.

The algorithm that we have implemented to find the coefficients in (1.46)
works as follows. First, we define a first integral up to a certain degree N having
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the form

H = x2 + y2 +
N

∑
i+j+k=3

hijkxiyjzk, (1.47)

being hijk the unknown coefficients for degrees between 3 and N. We aim to find
these coefficients together with Lyapunov constants. First, we calculate Ḣ =
∂H
∂x ẋ + ∂H

∂y ẏ + ∂H
∂z ż for (1.47). Then, by imposing equality (1.46), the coefficients

of both sides are equated degree by degree starting at 3, and this allows to re-
cursively determine coefficients hijk together with the Lyapunov constants when
the degree is even. Actually, the extra term L�(x2 + y2)�+1 is added so that the
resulting systems for even degrees are not underdetermined, but in our case and
for simplicity we have equivalently considered L�x2�+2 as the adding term (see
[Chr05] for more details on this change).

This is essentially the usual Lyapunov method used to find Lyapunov con-
stants in the plane but adapted to the three-dimensional case. As we have com-
mented above, this approach decreases the computational time because the re-
striction of being on the center manifold given by Theorem 1.38 is not necessary.
We can also observe that we have considered the method in real coordinates,
since the complex coordinates approach which in previous sections simplified
the computations cannot be applied in a three-dimensional space.

Remark 1.39. If the linear part of (1.44) was not written in its real Jordan normal
form, we could use the same approach but finding which coefficients would make function
H(x, y, z) = a20x2 + a11xy + a02y2 + O3(x, y, z) be a first integral.

The algorithm explained here has been computationally implemented with
Maple ([Map]), and used to calculate the Lyapunov constants throughout the rest
of this section. Actually, we will see that for the results we want to prove we
will only need those Lyapunov constants up to first-order in the perturbative pa-
rameters, which highly simplifies the calculations and reduces the computation
time.

The second method to find Lyapunov constants in 3-dimensional systems con-
sists on an algorithm to compute Lyapunov constants on the center manifold (see
for instance [WHW11]). According to the center manifold theorem (see [Car81]),
system (1.44) has an approximation to the center manifold by means of the change

z → Z = χ(x, y) = χ2(x, y) + O3(x, y), (1.48)

where χ2 is a quadratic homogeneous polynomial in x and y, and O3 denotes the
terms with orders greater than or equal to 3. This process can be iterated to up
to an arbitrary degree M to remove all the possible terms of the third equation
in (1.44), by following the idea of normal form theory. The obtained change of
variable can be performed into the equations of system (1.44), and we obtain a
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generic two-differential system with center-focus type linear part: these are the
equations on the center manifold. This way, the center manifold can be translated
to the plane Z = 0, which highly simplifies the problem as it is reduced to find-
ing Lyapunov constants of a system in the plane and the usual method can be
applied.

As an example to check that the two presented methods are equivalent, we
will see that the Lyapunov constants obtained by both methods are the same
when computing the N = 2 first Lyapunov constants of system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = −y + x2 +
2
∑

i+j+k=2
aijkxiyjzk,

ẏ = x +
2
∑

i+j+k=2
bijkxiyjzk,

ż = z +
2
∑

i+j+k=2
cijkxiyjzk,

for aijk, bijk, cijk ∈ R. Its first integral would have the form H(x, y, z) = x2 + y2 +
· · · , and to find N = 2 Lyapunov constants we need degree 2N + 2, so we define

H(x, y, z) = x2 + y2 +
2N+2

∑
i+j+k=3

hijkxiyjzk.

Now by imposing condition (1.45) and applying the usual algorithm, we deter-
mine coefficients hijk and Lyapunov constants up to second-order in the pertur-
bative parameters, which in our case are

L1 =
1
4

a110 −
1
2

b200 −
1

10
c020a011 −

1
20

c110a011 +
1

10
c200a011 +

1
4

a020a110

+
1
2

a020b020 −
9
20

c020a101 −
1
10

c110a101 −
11
20

c200a101 +
1
4

a110a200

− 1
2

b200a200 −
11
20

c020b011 +
1

10
c110b011 −

9
20

c200b011 −
1
4

b020b110

− 1
10

b101c020 −
1

20
b101c110 +

1
10

b101c200 −
1
4

b200b110,

(1.49)
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L2 =
5

24
a110 −

1
4

b020 −
5
12

b200 −
121
600

c020a011 −
121

1200
c110a011 +

2
75

c200a011

− 2
3

a020a110 + 2a020b200 −
221
300

c020a101 −
121
600

c110a101 −
343
600

c200a101

− 2a110a200 −
31
48

a110b110 −
3
4

a200b020 + 4b200a200 −
263
600

c020b011

− 13
1200

c110b011 −
97

600
c200b011 +

67
300

b101c020 +
67

600
b101c110

+
53

300
b101c200 +

4
3

b200b110.

(1.50)

These are the constants obtained by the first method presented above.
Let us now find the same Lyapunov constants but applying the algorithm of

reducing the problem to the center manifold. As we want to find N = 2 Lya-
punov constants, we need to reach the normal form up to degree M = 2N + 1 =
5. To this end, we consider the Mth order truncation of (1.48), and we determine
the coefficients of this change which remove as many terms as possible in the ż
equation in (1.44) to obtain the corresponding normal form up to 5th degree. We
do not show here neither the explicit change of variables nor the explicit form of
the equations of ẋ and ẏ after the change due to the length of the expressions, but
the expression of ż in the new variable becomes

Ż =Z +

(
a200c011 +

6
5

a101c200 +
2
5

a101c110 +
4
5

a101c020 + c011a020 −
2
5

a011c200

+
1
5

a011c110 +
2
5

a011c020 − c101b200 −
2
5

b101c200 +
1
5

b101c110 +
2
5

b101c020

− c101b020 +
4
5

b011c200 −
2
5

b011c110 +
6
5

b011c020 − 2c002c200 − 2c002c020

+ c011

)
x2Z + · · · .

Finally, we can set Z = 0 to move the invariant center manifold to the plane
Z = 0, and therefore the problem becomes a system of differential equations in
the plane for which the usual R2 algorithm can be applied to find the Lyapunov
constants. Using the expressions of ẋ and ẏ after the change with Z = 0, we have
checked that the obtained Lyapunov constants are the same as those in (1.49) and
(1.50).

The Poincaré–Miranda’s Theorem

Here we formulate Poincaré–Miranda’s Theorem, a result which could be de-
scribed as a generalization of Bolzano’s Theorem to higher dimensions.
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Theorem 1.40 ([Maw19]). (Poincaré–Miranda’s Theorem) Let B = {x ∈ Rm : |xj| ≤
h, for 1 ≤ j ≤ m} and suppose that the mapping F = ( f1, f2, . . . , fm) : B → Rm is
continuous on B and such that F(x) �= (0, 0, . . . , 0) for x on the boundary ∂B of B, and

(i) fj(x1, x2, . . . , xj−1,−h, xj+1, . . . , xm) ≥ 0 for 1 ≤ j ≤ m, and

(ii) fj(x1, x2, . . . , xj−1,+h, xj+1, . . . , xm) ≤ 0 for 1 ≤ j ≤ m.

Then, F(x) = (0, 0, . . . , 0) has a solution in B.

We observe that in all our examples of using the above result, the inequalities
on ∂B are always strict. For the proof of this theorem the reader is referred to
[Maw19] or [Vra89].

A result on the number of limit cycles of parametric systems

The idea behind the proof of Theorem 1.37 is studying the structure of the Lya-
punov constants near centers up to first-order Taylor development and analyzing
the rank of such linear parts. The last preliminary tool we present is a theorem
which, given a family of centers which depends on some parameters and under
certain conditions, enables to obtain extra limit cycles to those seen only with the
ranks of linear parts. The following result is based on the fact that we study the
local cyclicity on a center component, which takes a generical value that can be
increased on some special curves. For example, in Proposition 1.42 we have a
2-dimensional space of center parameters (a, b) such that, generically, 9 limit cy-
cles of small amplitude bifurcate from the origin under quadratic perturbations.
But there exists a curve of special centers where 10 limit cycles bifurcate and, on
this curve, there exist special points (we prove the existence of at least one) for
which, from the corresponding center, 11 limit cycles bifurcate. In fact, this is
like describing a bifurcation diagram on the center component because the local
cyclicity depends on the parameters of the center family. In all our results we are
only providing lower bounds for the local cyclicity value.

Theorem 1.41 ([GGT21]). We denote by L(1)
j (λ, b) the first-order development, with

respect to λ ∈ Rk, of the j-Lyapunov constant of system{
ẋ = αy + Pc(x, y, μ) + P(x, y, λ),
ẏ = αx + Qc(x, y, μ) + Q(x, y, λ),

(1.51)

being (ẋ, ẏ) = (Pc(x, y, μ), Qc(x, y, μ)) a family of polynomial centers of degree n de-
pending on a parameter μ ∈ R� and having a non-degenerate center equilibrium point at
the origin, and being P(x, y, λ), Q(x, y, λ) polynomials of degree n having no constant
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nor linear terms with perturbative parameters λ ∈ Rn2+3n−4. We assume that, after a
change of variables in the parameter space if necessary, we can write

Lj =

⎧⎪⎨⎪⎩
λj + O2(λ), for j = 1, . . . , k − 1,
k−1
∑

l=1
gj,l(μ)λl + f j−k(μ)λk + O2(λ), for j = k, . . . , k + �,

where with O2(λ) we denote all the monomials of degree higher or equal than 2 in λ with
coefficients analytic functions in μ. If there exists a point μ∗ such that f0(μ

∗) = · · · =
f�−1(μ

∗) = 0, f�(μ∗) �= 0, and the Jacobian matrix of ( f0, . . . , f�−1) with respect to μ
has rank � at μ∗, then system (1.51) has k + � hyperbolic limit cycles of small amplitude
bifurcating from the origin.

This result is proved in [GGT21], where it is used to study the cyclicity of some
planar families of vector fields. Even though we aim to study cyclicity in R3, the
same technique from Theorem 1.41 can be automatically extrapolated to vector
fields in the space as the whole problem is analogous.

1.5.2 11 limit cycles for a quadratic system

In this subsection we present a quadratic system in R3 and show that it unfolds
11 limit cycles by using the techniques from Subsection 1.5.1. This proves the case
n = 2 in Theorem 1.37.

The presented result improves by one the previous best lower bound found
in [YH15]. In such work, the authors use a family of planar centers inspired by a
family of Lotka-Volterra systems in R2, because this family defines a center com-
ponent (depending on parameters) denoted by QLV

3 according to the classification
of quadratic planar centers provided by [Zol94]. However, this family does not
have the maximum generic local cyclicity unlike family Q4. Family Q4 has a first
integral of the form F3G−2, as detailed in [BZ05b], but no free parameters. Here,
F = 0 and G = 0 are two special invariant algebraic curves of Q4, such as in (1.53).
Our goal is to take advantage of Theorem 1.41 in a family of centers extending Q4
to R3. Hence, we add parameters to the third component instead of the first two,
and from Theorem 1.38 we know the existence of a local center manifold. We
remark that the next result is saying that the local cyclicity can increase when
the parameters change. We recall that these families have already been found in
Theorem 1.31.

From the computational point of view, it is important to remark that the best
centers are the ones whose linear part is in the usual Jordan normal form, namely
(x′, y′, z′) = (−y, x, z). But sometimes, as in our case, the changes of variables
to achieve this form add square roots in the coefficients, and this increases the
computational complexity, so we use Remark 1.39 to avoid these difficulties.
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The following result provides, up to our knowledge, the best lower bound for
the local cyclicity near a Hopf point in quadratic vector fields in R3.

Proposition 1.42. The quadratic system⎧⎪⎨⎪⎩
ẋ = − 1

3 y − 5x2 − 2xy + 1
3 y2,

ẏ = x − 3x2 − 10xy + y2,
ż = z + z2 + ax2 + by2,

(1.52)

has a center at the origin, and there exist a and b such that 11 limit cycles of small
amplitude bifurcate from the origin under a complete quadratic perturbation.

Proof. The two first equations in (1.52) define a center in the plane, as it can be
trivially checked that the corresponding system has a rational first integral of the
form

H2(x, y) =
(36x2 − 24xy + 4y2 − 8y + 1)3

(108x3 − 108x2y + 36xy2 − 4y3 − 36xy + 12y2 − 12y + 1)2 . (1.53)

This center in R2 can be embedded in R3 by adding a third component that, from
Theorem 1.38, adds a 2-dimensional center manifold where system (1.52) has a
center and the origin is a equilibrium point of Hopf type. Let us add a quadratic
perturbation and the trace parameter to (1.52) in the following way⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = αx − 1
3 y − 5x2 − 2xy + 1

3 y2 +
2
∑

i+j+k=2
aijkxiyjzk,

ẏ = x + αy − 3x2 − 10xy + y2 +
2
∑

i+j+k=2
bijkxiyjzk,

ż = z + z2 + ax2 + by2 +
2
∑

i+j+k=2
cijkxiyjzk,

(1.54)

for α, aijk, bijk, cijk ∈ R perturbative parameters.
The next step is to find, for α = 0, the first 11 Lyapunov constants of (1.54) up

to first-order in the perturbative parameters. Notice that, due to Remark 1.39, in
this case we will consider a first integral with the form H(x, y, z) = 1

2 x2 + 1
6 y2 +

O3(x, y, z). Once we have the linear parts of the 11 first Lyapunov constants of the
system, we check that their rank is generically 9. Hence, by the Implicit Function
Theorem and adding α, we generically have 9 limit cycles of small amplitude
bifurcating from the origin.
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After a linear change of coordinates in the parameters space, we obtain that
the Lyapunov constants have the following form:

Lk = uk + O2, for k = 1, . . . , 8,

L9 =
f1(a, b)
d(a, b)

u9 + O2,

L10 =
f2(a, b)
d(a, b)

u9 + O2,

L11 =
f3(a, b)
d(a, b)

u9 + O2,

being f1(a, b), f2(a, b), f3(a, b), d(a, b) certain polynomials with integer coefficients
in the variables a and b. We do not show the complete polynomials here due to
their large size. They have respectively total degree 38, 39, 40, and 29, their num-
ber of monomials are respectively 744, 784, 825, and 444, and the coefficients are
integers having between 72 and 158 figures. Then, by Theorem 1.41, to prove the
bifurcation of 11 limit cycles we just have to check that there exists a point (â, b̂)
in the parameters space such that f1(â, b̂) = f2(â, b̂) = 0, f3(â, b̂) �= 0, d(â, b̂) �= 0,
and the Jacobian determinant det Jac( f1, f2)(â, b̂) �= 0.

The situation is represented on the graph in Figure 1.4, where the zero level
curves of the considered polynomials are represented. In it, we can see how the
curves f1(a, b) = 0 and f2(a, b) = 0 intersect at a point (â, b̂) which does not
belong to the curves f3(a, b) = 0 and d(a, b) = 0. We aim to analytically prove the
existence of such point by means of Poincaré–Miranda’s Theorem (Theorem 1.40).
To do this, we will provide a computer-assisted proof by using rational interval
analysis.

FIGURE 1.4: Plot of the zero level curves of f1(a, b), f2(a, b), f3(a, b),
and d(a, b) in color red, blue, green, and black, respectively.
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Let us start by finding a numerical approximation for an intersection point

(â, b̂) ≈ (−15.87687966375324925, 12.23255254136248609) (1.55)

of f1(a, b) = 0 and f2(a, b) = 0, which can be seen in Figure 1.4. To simplify the
application of Poincaré–Miranda’s Theorem, we will perform a linear change of
variables (a, b) → (u, v) with rational coefficients. To this end, we will consider
the approximation (â, b̂) ≈ (− 159

10 , 61
5 ) = (−15.9, 12.2) and define u and v as the

numerical tangent lines at this point. Then, one can isolate (a, b) as a function
of (u, v), consider the solution with 3 significant digits and convert it to rational
values, obtaining

(a, b) =
(
−159

10
− 577

100
u +

577
100

v,
61
5

+
129
500

u +
371
500

)
. (1.56)

If we substitute (1.56) in f1(a, b), f2(a, b), f3(a, b), and d(a, b) we obtain the poly-
nomials in the new variables, which we will denote by F1(u, v), F2(u, v), F3(u, v),
and D(u, v). These new polynomials are represented in Figure 1.5, where we can
see that now the intersection point (û, v̂) of F1(u, v) = 0 and F2(u, v) = 0 has
shifted near (0, 0) and the application of Poincaré–Miranda’s Theorem will be
easier.

FIGURE 1.5: Plot of the zero level curves of F1(u, v), F2(u, v), F3(u, v),
and D(u, v) in color red, blue, green, and black, respectively.

Taking h = 1/10 in Theorem 1.40, we will show that in the square [−h, h]2

there must be a zero of F1(u, v) and F2(u, v). The proof follows by checking also
that F3(u, v), D(u, v), and the Jacobian determinant J(u, v) := det Jac(F1,F2)(u, v)
do not vanish in the whole square. Observe that F1(u, v) and F2(u, v) are contin-
uous because they are polynomials. Then, there will be a point (û, v̂) ∈ (−h, h)2
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such that F1(û, v̂) = 0 and F2(û, v̂) = 0 by applying the Poincaré–Miranda’s The-
orem because the following conditions hold.

(a) F1(h, v) > 0 and F1(−h, v) < 0 for v ∈ [−h, h].
To prove this, we will show that F1(h, v) is inferiorly bounded by a positive
number in v ∈ [−h, h] and F1(−h, v) is superiorly bounded by a negative
number in v ∈ [−h, h]. Indeed,

4 · 10145 < F1(h, 0)−
38

∑
i=1

|Ai|hi ≤ F1(h, 0) +
38

∑
i=1

Aivi = F1(h, v),

F1(−h, v) = F1(−h, 0) +
38

∑
i=1

Bivi ≤ F1(−h, 0) +
38

∑
i=1

|Bi|hi < −8 · 10145,

where Ai, Bi ∈ Q are the coefficients of the corresponding polynomials. No-
tice that, due to how Theorem 1.40 is formulated, it should be applied to
−F1(u, v) rather than F1(u, v), but the conclusion is exactly the same.

(b) F2(u,−h) > 0 and F2(u, h) < 0 for u ∈ [−h, h].
Analogously, we will show that F2(u,−h) is inferiorly bounded by a posi-
tive number in u ∈ [−h, h] and F2(u, h) is superiorly bounded by a negative
number in u ∈ [−h, h]. Indeed,

1 · 10158 < F2(0,−h)−
39

∑
i=1

|Ci|hi ≤ F2(0,−h) +
39

∑
i=1

Ciui = F2(u,−h),

F2(u, h) = F2(0, h) +
39

∑
i=1

Diui ≤ F2(0, h) +
39

∑
i=1

|Di|hi < −8 · 10157,

where Ci, Di ∈ Q are the coefficients of the corresponding polynomials.

The last step of the proof is to ensure that F3(u, v), D(u, v), and J(u, v) do not
vanish in [−h, h]2. More concretely, we will check that the three functions are
negative in the whole square by seeing that they are superiorly bounded by a
negative number,

F3(u, v) = F3(0, 0) +
40

∑
i+j=1

Gijuivj ≤ F3(0, 0) +
40

∑
i+j=1

|Gij|hi+j < −6 · 10171,

D(u, v) = D(0, 0) +
29

∑
i+j=1

Hijuivj ≤ D(0, 0) +
29

∑
i+j=1

|Hij|hi+j < −7 · 10128,

J(u, v) = J(0, 0) +
75

∑
i+j=1

Kijuivj ≤ J(0, 0) +
75

∑
i+j=1

|Kij|hi+j < −3 · 10305,
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where Gij, Hij, Kij ∈ Q are the coefficients of the corresponding polynomials.
Hence, all the above bounds are obtained by adding rational numbers with no
error in the computations.

All the computations have been done with α = 0, and 10 limit cycles are
obtained. The proof follows by adding an extra limit cycle which bifurcates from
the origin when using the usual Hopf bifurcation moving the trace parameter α
adequately.

From the proof of Proposition 1.42, we can extract from Figure 1.4 the bifur-
cation diagram as we explained at the beginning of Subsection 1.5.1, obtaining
Figure 1.6.

FIGURE 1.6: Avoiding the dots line, we have (generically) 9 small
limit cycles bifurcating from (1.52), 10 on the red line, and 11 on the

black point.

In fact, there are other intersection points for the zero level curves of f1 and
f2, but they are more difficult to find and to prove their transversal intersection.
See Figure 1.7 for a better understanding of the difficulty of finding intersection
points like (1.55).

Before finishing this subsection, we would like to make two final comments
about quadratic systems in R3.

In Proposition 1.42, we have added a third component in (1.52) to extend the
problem from R2 to R3. This procedure can be done in many different ways and
for each third component we obtain different center manifolds. We have tested
different possibilities, and we have observed that when the center manifold is
z = 0, the number of limit cycles is the same as in the planar problem. For this
reason, we have added some terms including x or y for increasing such number.
Furthermore, we have observed by adding different third components which in-
clude x and y that the result does not improve.
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FIGURE 1.7: Plot of the zero level curves of f1, f2, f3, and d in color
red, blue, green, and black, respectively, in different zones of the

plane (a, b).

We believe that the result obtained in Proposition 1.42 is the maximum cyclic-
ity that can be obtained by using the presented technique. In (1.54) we have a
total of 18 perturbative parameters, and we have observed in our calculations
that only 12 of them actually play a role when finding the ranks of linear parts
of the Lyapunov constants. Actually, the ones which play a role are aijk and bijk,
these are the ones in ẋ and ẏ; parameters cijk in ż do not appear in the compu-
tation of the linear parts of the Lyapunov constants. Perhaps more limit cycles
could be obtained by studying higher-order developments, but this is a very dif-
ficult computational problem due to the size of the corresponding polynomials,
assuming that such polynomials could be found.

1.5.3 31 limit cycles for a cubic system

Here we prove the case n = 3 in Theorem 1.37, by presenting a cubic system in
R3 having a Hopf point at the origin from which 31 limit cycles bifurcate.

Proposition 1.43. The cubic system⎧⎪⎨⎪⎩
ẋ = −y(1 − 68x + 1183x2),
ẏ = x − 58x2 − 44xy + 30y2 + 672x3 + 1484x2y − 945xy2 − 84y3,
ż = z + x2 + ax3 + by3,

(1.57)

has a center at the origin, and there exist a and b such that 31 limit cycles of small
amplitude bifurcate from the origin under a complete cubic perturbation.

Proof. The two first equations in (1.57) define a system in the plane with a center
at the origin because it has a rational first integral (see [BS08]). Then, we extend
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this system to (1.57) by adding a third equation, and there exists a center mani-
fold tangent to z = 0 guaranteed by Theorem 1.38 on which (1.57) has a center.
Let us add a perturbation with cubic and quadratic terms to (1.57) and the trace
parameter as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = αx − y(1 − 68x + 1183x2) +
3
∑

i+j+k=2
aijkxiyjzk,

ẏ = x+αy−58x2−44xy+30y2+672x3+1484x2y−945xy2−84y3

+
3
∑

i+j+k=2
bijkxiyjzk,

ż = z + x2 + ax3 + by3 +
3
∑

i+j+k=2
cijkxiyjzk,

(1.58)

for α, aijk, bijk, cijk ∈ R perturbative parameters.
The proof for the unfolding of 31 limit cycles is analogous to that of Proposi-

tion 1.42. We first take α = 0 and find the linear parts of the first 31 Lyapunov
constants of (1.58) with respect to the perturbative parameters. We see then that
generically their rank is 29. After a linear change of coordinates in the parameters
space we obtain that the first 28 Lyapunov constants have the following form:

Lk = uk + O2, for k = 1, . . . , 28.

Next, we consider an analytic change of coordinates, by using the Implicit Func-
tion Theorem, such that the Lyapunov constants write as Lk = vk, for k = 1, . . . , 28.
Assuming that vk = 0, for k = 1, . . . , 28, and vanishing the nonessential pertur-
bative parameters, we get

L29 =
f1(a, b)
d(a, b)

u29 + O2(u29),

L30 =
f2(a, b)
d(a, b)

u29 + O2(u29),

L31 =
f3(a, b)
d(a, b)

u29 + O2(u29),

being f1(a, b), f2(a, b), f3(a, b), d(a, b) certain polynomials with integer coefficients
in the variables a and b. We do not show the complete polynomials here due
to their large size, but we see that both f1(a, b), f2(a, b), and f3(a, b) have de-
gree 28 and 434 monomials, and d(a, b) has degree 25 and 350 monomials. To
see the bifurcation of 31 limit cycles we can use Theorem 1.41 and check the
conditions on it, this is to find a point (â, b̂) in the parameters space such that
f1(â, b̂) = f2(â, b̂) = 0, f3(â, b̂) �= 0, d(â, b̂) �= 0, and the Jacobian determinant
det Jac( f1, f2)(â, b̂) �= 0.
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We have drawn f1(a, b) = 0, f2(a, b) = 0, f3(a, b) = 0, and d(a, b) = 0 in
Figure 1.8. Although it is not discernible in this graph, what is happening is that
curves f1(a, b) = 0, f2(a, b) = 0, and f3(a, b) = 0 are practically overlapping, so
the intersection point that we are searching cannot be appreciated; d(a, b) = 0 is
not shown because it remains out of the plotted region. To sight the intersection
point of f1(a, b) = 0 and f2(a, b) = 0 we will perform a change of variables
such that the intersection is transversal, and we will apply Poincaré–Miranda’s
Theorem (Theorem 1.40) to analytically show its existence. This will be done by
means of a computer-assisted proof and using rational interval analysis.

FIGURE 1.8: Plot of the zero level curves of f1(a, b), f2(a, b), and
f3(a, b) in color red, blue and green, respectively.

First we find a numerical approximation

(â, b̂) = (− 0.2618746696871324942811545745396788956798,
− 0.4750062727838396305466509058484908194011)

for an intersection point of f1(a, b) = 0 and f2(a, b) = 0. We need a good rational
approximation so that the zero level curves drawn in Figure 1.8 are separated,
and this way the transversality can be appreciated. Let us perform a change of
variables (a, b) → (u, v) such that u and v are the first-order Taylor expansion at
(â, b̂) of f1(a, b) and f2(a, b), respectively. Now we can find the inverse of such



70 Chapter 1. Center problem and limit cycles

change and convert the coefficients to rational numbers, which gives

(a, b) =
(
− 3125780069700516145310827

11936168066330948602492655

+
1427237216612

940600247814793427315253720871652057
u

− 6400609904497
4224724520267912944601259158052139159

v,

− 2950612633153916740411853
6211734038503208283147559

− 3951139552423
4971433349089293973487138537373615874

u

+
2249793630741

2835231811366846850770950557241968074
v
)

.

These expressions can be substituted in f1(a, b), f2(a, b), f3(a, b), and d(a, b) to ob-
tain the polynomials in the new variables, which we will be denoted respectively
by F1(u, v), F2(u, v), F3(u, v), and D(u, v). The new polynomials are represented in
Figure 1.9, where we can see that now the intersection point (û, v̂) of F1(u, v) = 0
and F2(u, v) = 0 has shifted near (0, 0) and its transversality can be clearly seen.
F3(u, v) and D(u, v) are not in the graph because they stay out of the plotted re-
gion, so they will be nonvanishing at the intersection point.

FIGURE 1.9: Plot of the zero level curves of F1(u, v) and F2(u, v) in
color red and blue, respectively.

The proof follows as in the case of Proposition 1.42, also taking h = 1/10 and
applying the Poincaré–Miranda’s Theorem, since the following conditions hold:

(a) F1(h, v) > 0 and F1(−h, v) < 0 for v ∈ [−h, h].
We will see that F1(h, v) is inferiorly bounded by a positive number in v ∈
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[−h, h] and F1(−h, v) is superiorly bounded by a negative number in v ∈
[−h, h]. Indeed,

9
100

< F1(h, 0)−
28

∑
i=1

|Ai|hi ≤ F1(h, 0) +
28

∑
i=1

Aivi = F1(h, v),

F1(−h, v) = F1(−h, 0) +
28

∑
i=1

Bivi ≤ F1(−h, 0) +
28

∑
i=1

|Bi|hi < − 1
10

,

where Ai, Bi ∈ Q are the coefficients of the corresponding polynomials.

(b) F2(u, h) > 0 and F2(u,−h) < 0 for u ∈ [−h, h].
Analogously, we will show that F2(u, h) is inferiorly bounded by a positive
number in u ∈ [−h, h] and F2(u,−h) is superiorly bounded by a negative
number in u ∈ [−h, h] :

9
100

< F2(0, h)−
28

∑
i=1

|Ci|hi ≤ F2(0, h) +
28

∑
i=1

Ciui = F2(u, h),

F2(u,−h) = F2(0,−h) +
28

∑
i=1

Diui ≤ F2(0,−h) +
28

∑
i=1

|Di|hi < − 1
10

,

where Ci, Di ∈ Q are the coefficients of the corresponding polynomials.

Notice that, due to how Theorem 1.40 is formulated, it should be applied to
−F1(u, v) and −F2(u, v) rather than F1(u, v) and F2(u, v), but the conclusion is
exactly the same.

Finally, we will check that F3(u, v) is negative in [−h, h]2, and D(u, v) and
J(u, v) are positive, so none of those functions vanish in the whole square.

F3(u, v) = F3(0, 0) +
28

∑
i+j=1

Gijuivj ≤ F3(0, 0) +
28

∑
i+j=1

|Gij|hi+j < −2 · 1020,

2 · 101032 < D(0, 0)−
25

∑
i+j=1

|Hij|hi+j ≤ D(0, 0) +
25

∑
i+j=1

Hijuivj = D(u, v),

99
100

< J(0, 0)−
54

∑
i+j=1

|Kij|hi+j ≤ J(0, 0) +
54

∑
i+j=1

Kijuivj = J(u, v)

where Gij, Hij, Kij ∈ Q are the coefficients of the corresponding polynomials.
The proof finishes adding, as in Proposition 1.42, the trace parameter.

As we already noticed for quadratic systems, we think that we have almost
obtained the maximum cyclicity for the cubic case in R3 by using this approach.
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Here we have 48 perturbative parameters and, by considering linear Taylor de-
velopments, only 32 do appear.

1.5.4 A parallelization approach for quartic and quintic systems

In this subsection we will show how the cases n = 4 and n = 5 from Theorem 1.37
are achieved. The idea, as we have done in the previous subsections, is to con-
sider centers in the plane such that generically unfold a high number of limit cy-
cles, and then extend them to R3 by adding the third equation. For this case, we
will not use the technique described in Theorem 1.41 as we did for quadratic and
cubic systems of taking the best known quartic and quintic systems due to the
difficulty to deal with the obtained constants because of their huge size. We have
considered the cubic system (1.57) adding one or two straight lines of equilibria.
Furthermore, for the Lyapunov constants computation during this subsection we
will consider a parallelization approach in order to reduce the executing times of
the processes.

The technique we have used to parallelize the computation of linear parts of
Lyapunov constants is inspired by [LT15], and is described as follows. Let us
consider a system with perturbative parameters λ1, . . . , λd. We select some k ∈
{1, . . . , d} and consider the same system with λl = 0 for l ∈ {1, . . . , d}\{k}, this
is a system with only one perturbative parameter λk. Then, we find its Lyapunov
constants up to first-order L(1)

j,k , and repeat this process for every k = 1, . . . , d. This
step can be easily parallelized by assigning to each thread of the execution the
computation of the Lyapunov constants of the system with a different nonzero
perturbative parameter λk, so we would have a parallelization paradigm with
d threads, as many as perturbative parameters. Once this has been done, the
linear part of the jth Lyapunov constant Lj of the original system with all the
perturbative parameters λ1, . . . , λd would be

L(1)
j =

d

∑
k=1

L(1)
j,k .

These calculations have been performed using a cluster of servers. The paral-
lelization has been implemented by using the previously introduced PBala ([Sal]),
a parallellization interface for single threaded scripts which allows to distribute
executions in Parallel Virtual Machine enabled clusters using single program
multiple data paradigm. This interface lets the user execute a same script/pro-
gram over multiple input data in several CPUs located at the cluster. It supports
memory management, so nodes do not run out of RAM due to too many pro-
cesses being started at the same node.

The parallelization approach presented here has proved to be highly efficient.
For instance, to find the necessary Lyapunov constants to prove Proposition 1.44,
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the computing time has been reduced from 30 hours to 4 hours when paral-
lelizing. However, the computational requirements of the studied problem have
caused that we cannot go further than 5th degree, which is the case solved in
Proposition 1.45 and for which about 10 days of computing were needed even
with parallelization in a cluster with 5 servers

The first result, related to a quartic system, is as follows.

Proposition 1.44. The quartic system⎧⎪⎨⎪⎩
ẋ = −y(1 − 68x + 1183x2)(1 − x − y),
ẏ = (x − 58x2 − 44xy + 30y2 + 672x3 + 1484x2y − 945xy2 − 84y3)(1 − x − y),
ż = z + x2 + x3 + x4,

(1.59)
has a center at the origin and unfolds 54 limit cycles of small amplitude under a complete
quartic perturbation.

Proof. The two first equations in (1.59) define a system in the plane with a center
at the origin because they are the same center defined by the two first equations of
(1.57) multiplied by a fixed points straight line. Then, by adding the third equa-
tion with a center manifold tangent to z = 0 we have a center in R3. The proof
follows as the first part of the proofs of Propositions 1.42 and 1.43. First, we con-
sider a perturbation having the trace parameter terms and a quartic perturbation
starting with degree 2 terms. Second, we take α = 0 and compute the first 54
Lyapunov constants of the perturbed system up to first-order with respect to the
perturbative parameters by using the parallelization algorithm described above.
Finally, we see that generically they have rank 54, which by adding the trace pa-
rameter proves the unfolding of 54 limit cycles of small amplitude. We notice
that the generical rank does not increase when we compute 6 more Lyapunov
constants.

In all our computations we have observed that, for none of the systems stud-
ied so far, the perturbative parameters cijk from the third equation ż appear in
the expressions of any first-order Taylor series of the Lyapunov constants. Even
though this fact has not been proved, we believe that this is a general behav-
ior. Therefore, in this sense, when considering the perturbed system for the fol-
lowing quintic system in Proposition 1.45 we will ignore the perturbation in the
third equation to simplify the computations and reduce the execution times, as
we think that this will make no difference. Actually, for this quintic system (1.60)
we have checked that the linear parts of the first 70 Lyapunov constants do not
include the perturbative parameters in ż, which confirms what we expected. This
fact also reduces by 2/3 the maximum cyclicity that can be obtained by only look-
ing at Lyapunov constants up to first-order regarding the number of perturbative
parameters, as 1/3 of such parameters will not increase the cyclicity of the sys-
tem.
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For the quintic case we have the following result.

Proposition 1.45. The quintic system⎧⎪⎨⎪⎩
ẋ = −y(1 − 68x + 1183x2) f (x, y),
ẏ = (x − 58x2 − 44xy + 30y2 + 672x3 + 1484x2y − 945xy2 − 84y3) f (x, y),
ż = z + x2 + x3 + x4 + x5,

(1.60)
with f (x, y) = (1 − x − y)(1 + 2x − y), has a center at the origin and unfolds 92 limit
cycles of small amplitude under a complete quintic perturbation.

Proof. System (1.60) has a center at the origin for the same reason that system
(1.59), in this case with two straight lines filled with equilibrium points and also
having a center manifold tangent to z = 0. To simplify the calculations we have
considered perturbations only on the first two equations. The proof finishes as
the previous one. Here we have computed the first 92 Lyapunov constants, and
we have checked that when computing three more the rank does not increase.

We have also made an attempt to find the linear parts of Lyapunov constants
for a degree n = 6 system, but as we already commented the problem soon be-
comes highly demanding computationally speaking. In particular, for the tested
sextic case we have reached the memory limit and the process is using 16GB of
RAM memory. We have reached the 124th Lyapunov constant, and to find only
this constant for only one perturbative parameter the required time has been ap-
proximately 3 days. For this reason, we have stopped the problem at 5th degree,
as we believe that going higher in the degree is impossible at this stage in com-
putational terms.

It is worth making a final comment about the expected local cyclicity from the
used approach. The total number of perturbative parameters –also considering
the trace parameter– is (n3 + 6n2 + 11n − 16)/2 but, as we explained above, the
parameters from the third equation do not seem to appear in the linear part of
the Lyapunov constants. Hence, the maximum number of essential parameters is
(n3 + 6n2 + 11n − 15)/3 and, consequently, the best lower bound for the number
of limit cycles of small amplitude in Hopf point in R3 will be one less, that is
C(n) ≥ (n3 + 6n2 + 11n − 18)/3. This function takes the values 12 and 32 for
degrees n = 2 and n = 3, respectively, which are very close to the ones obtained
in our main result, but the values corresponding to n = 4 and n = 5 are a bit quite
far from the ones we obtained. The reason is that the first two systems are built
from optimal planar systems. Our achievement is that we have been able to work
with such degrees –4th and 5th– because of the designed parallelized algorithm.
We notice that, up to our knowledge, all the obtained values are the highest ones
found so far.
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Chapter 2

Isochronicity and critical periods

With his work on the cycloidal pendulum in the 17th century, the mathemati-
cian and physicist C. Huygens (1629–1695) was the forerunner of isochronicity
studies and aroused the interest of this line of research, see [CF05]. In the last
30 years many authors have studied the existence of differential equations with
equilibrium points of center type that satisfy this isochronicity property, see for
example [CMV99; MMJR97], the interesting survey of Chavarriga and Sabatini
[CS99], and the approach to the problem via normal form in [AFG00; AR08] or
via Lie brackets in [Sab97]. Closely connected are the problems of the isochro-
nicity when having a focus instead of a center ([AR08; Gin03; GG05]) and the
problems associated to the flight return function of a focus, see [BGG19]. There is
another intimately related question, the bifurcation of critical periods or critical-
ity problem. In analogy to cyclicity, the criticality problem aims to determine the
number of critical periods1 that can unfold from a system. In this chapter we deal
with these isochronicity and criticality problems. We will introduce the math-
ematical object known as period constants and we will describe a few efficient
methods to compute them, as well as some techniques to optimize the obtained
results, which will allow us address the isochronicity and criticality problems for
some systems.

2.1 The isochronicity and criticality problems

Let us consider a real polynomial system of differential equations in the plane
with a nondegenerate center at the origin, this is the linear part at the equilibrium
point having zero trace and positive determinant. It is a well known fact that, by
a suitable change of coordinates and time rescaling, it can be written in the form{

ẋ = −y + X(x, y) =: P(x, y),
ẏ = x + Y(x, y) =: Q(x, y),

(2.1)

1As we will see later with more detail, critical periods are the oscillations of the period function
of a system.
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where X and Y are polynomials of degree n ≥ 2 which start at least with quadratic
monomials. This system in complex coordinates (z, w) = (z, z) = (x + i y, x − i y)
can be written as {

ż = i z + Z(z, w) =: Z(z, w),
ẇ = − i w + Z(z, w) =: Z(z, w),

(2.2)

where Z is a polynomial starting without linear nor constant terms and Z is its
complex conjugate.

We define the period annulus of a center as the largest neighborhood Ω of the
origin with the property that the orbit of every point in Ω \ {(0, 0)} is a simple
closed curve that encloses the origin, so these trajectories are periodic. Suppose
the origin is a center for system (2.1) and that the number ρ∗ > 0 is so small that
the segment Σ = {(x, y) : 0 < x < ρ∗, y = 0} of the x-axis lies wholly within the
period annulus. For ρ satisfying 0 < ρ < ρ∗, let T(ρ) denote the lowest period of
the trajectory through (x, y) = (ρ, 0) ∈ Σ. The function T(ρ) is the period function
of the center, which by the Implicit Function Theorem is real analytic. Moreover,
we say that the center of system (2.1) is isochronous if its period function T(ρ) is
constant, which means that every periodic orbit in a neighborhood of the origin
has the same period.

By performing a change to polar coordinates, one can deduce that the period
function takes the form

T(ρ) = 2π +
∞

∑
k=1

T̂kρk, (2.3)

where the T̂k are known as the period constants of the center, see for example
[RS09]. In the next section we will see how to compute these period constants. In
the case that (2.1) depends on some parameters, the period constants are polyno-
mials on them ([Cim+97]). A direct consequence of (2.3) is that, in the considered
situation, system (2.1) has an isochronous center at the origin if and only if T̂k = 0
for all k ∈ N. This result is also justified by Shafer and Romanovski in [RS09].
This shows that the period constants play the same role when studying isochro-
nicity as Lyapunov constants when characterizing centers. Every value ρ > 0
for which T′(ρ) = 0 is called a critical period. In addition, if it is a simple zero of
T′, i.e. T′′(ρ) �= 0, we call it a simple or hyperbolic critical period. The number of
simple critical periods provides the number of oscillations of the period function.
For a family of vector fields having an equilibrium point of center type, we can
say that it has criticality c if the maximum number of oscillations of the period
function is not higher than c. For some examples of works about critical periods
of some families the reader is referred to [LH14; PLF15; PLF17]. In analogy to the
local cyclicity finiteness conjecture in the 16th Hilbert problem ([Rou88]) we think
that, in any class of planar polynomial vector fields of degree n having a center
of type (2.1), the number of oscillations of the period function will be uniformly
bounded by a function depending only on the degree n.
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About the problem of the monotonicity of the period function (2.3), it is usu-
ally studied in polynomial center families ([Chi87; Sab12; VZ20]). The unique-
ness of critical periods is studied for example in [GGJ06] for a class of polynomial
complex centers. Recently, this uniqueness problem has also been considered
for some Hamiltonian and quadratic Loud families in [RV18; VZ20]. For the
quadratic family we recommend the nice work done by Chicone and Jacobs in
[CJ89]. The study of critical periods for the classical quadratic Loud family was
extended to some generalized Loud’s centers, see [MV13]. For cubics, in particu-
lar for homogenenous cubics nonlinearities, we refer the reader to [GV10; RT93].
For more information on the period function and the criticality problem we sug-
gest the reading of [MRV16] and [RS09].

In our work we will consider the class of time-reversible, or simply reversible,
planar polynomial vector fields of degree n. The most common symmetry is re-
versibility with respect to straight lines. As the linear part of system (2.1) is invari-
ant with respect to any rotation, without loss of generality we can consider only
differential systems which are invariant under the change (x, y, t) �→ (x,−y,−t).
This classic reversibility makes the system have a symmetry with respect to the
straight line x = 0 and have a center at the origin, as we saw in the previous
chapter. The finiteness property described above should also be true if we restrict
our attention to this time-reversible polynomial vector fields class.

The problem of bifurcations of critical periods or criticality problem is addressed
to find the maximum number of zeros of T′ which can bifurcate. Let us denote by
C(n) the criticality restricted to the degree n class; as the general criticality prob-
lem is very difficult, we will focus on the bifurcation of local critical periods in
the period annulus of the origin in the reversible class. We will denote by C�(n)
the maximum number of local critical periods that can bifurcate from the origin
of an nth degree reversible planar system. Our aim is to find the highest possible
lower bound of this number for different values of the degree n. This question
is considered in analogy to the local cyclicity problem, whose purpose is to find
the maximum number of limit cycles –these are zeros of the Poincaré map– that
bifurcate from an equilibrium. Observe that the concept of hyperbolic critical pe-
riod is also defined in analogy to a hyperbolic limit cycle, following the idea of
having multiplicity one.

2.1.1 Isochronicity characterization

In this subsection we present three different methods which may help to check
whether a center is isochronous or not. Actually, all three methods are equivalent
in terms of characterizing the isochronicity of a system ([AFG00; CS99]). We will
start by justifying that the isochronicity property is equivalent to linearizability,
and we will provide the linearization tools known as Darboux linearization. The
observations and results introduced here are based on [RS09].
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Let us consider the canonical linear center{
ẋ = −y,
ẏ = x,

(2.4)

which is trivially isochronous. Since isochronicity does not depend on the coor-
dinates in use, without changing time, any system with a center which can be
brought to (2.4) by means of an analytic change of coordinates must be isochro-
nous. Such a change of coordinates is called a linearization, and in this case we
say that the system is linearizable. From this observation the next result follows.

Theorem 2.1 ([RS09]). The origin of system (2.1) is an isochronous center if and only
if there is an analytic change of coordinates (x, y) �→ (x + ζ(x, y), y + η(x, y)) that
reduces (2.1) to the canonical linear center (2.4).

We notice that, in the above result, ζ(0, 0) = η(0, 0) = 0 and ∇ζ(0, 0) =
∇η(0, 0) = 0. This theorem tells us that the isochronicity of a planar analytic
system is equivalent to its linearizability, so the linarizability of a system can be
studied to prove its isochronicity. In this line, we present now one of the most
efficient tools for checking linearizability, which is Darboux linearization.

Definition 2.2. For z, w ∈ C, a Darboux linearization of a polynomial system (2.2) is an
analytic change of variables (z, w) �→ (χ(z, w), ξ(z, w)) whose inverse linearizes (2.2)
and is such that χ(z, w) and ξ(z, w) are of the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

χ(z, w) =
m1
∏
j=0

f
αj
j (z, w) = z + χ̃(z, w),

ξ(z, w) =
m2
∏
j=0

g
β j
j (z, w) = w + ξ̃(z, w),

(2.5)

for some m1, m2, where fj, gj ∈ C[z, w], αj, β j ∈ C, and χ̃(z, w) and ξ̃(z, w) begin with
terms of order at least two. A system is Darboux linearizable if it admits a Darboux
linearization.

In our case, as the considered vector fields come from real systems the conju-
gacy relationship ξ(z, w) = χ(z, w) holds, so throughout this section we will only
give the first component χ(z, w) of the provided linearizations.

The next concept we will see is the notion of Lie bracket, which will be highly
useful for isochronicity studies and period constants computation.

Definition 2.3. We define the Lie bracket of two complex planar vector fields Z ,U , cor-
responding to two real vector fields, as

[Z ,U ] = ∂Z
∂z

U +
∂Z
∂w

U − ∂U
∂z

Z − ∂U
∂w

Z . (2.6)
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This definition appears also in [GGJ06]. We notice that, as we have mentioned
above, both vector fields Z and U are described only from their first components,
because the second ones are obtained by complex conjugation. The first proof of
the next geometrical equivalence was done by Sabatini in [Sab97].

Theorem 2.4 ([AFG00]). Equation (2.2) has an isochronous center at the origin if and
only if there exists ż = U (z, w) = z + O(|z, w|2) such that [Z ,U ] = 0.

It is a well-known fact that holomorphic systems are isochronous, see for
example [AFG00]. The paper [GGJ10] also deals with this problem, and gives
ż = i f (z) as a linearizing system. As a first example of application of Theo-
rem 2.4, we can straightforwardly prove this same result and see that actually
U : ż = k f (z) for any k ∈ C is a linearizing system. Indeed,

[Z ,U ] =[ f (z), k f (z)] =
∂ f (z)

∂z
k f (z) +

∂ f (z)
∂w

k f (z)− ∂ (k f (z))
∂z

f (z)

=− ∂ (k f (z))
∂w

f (z)
∂ f (z)

∂z
k f (z) + 0 − k

∂ f (z)
∂z

f (z)− 0 = 0.

Finally, we will deal with the utility of commuting systems (see [CS99]). We
will start by defining the notion of two systems which commute.

Definition 2.5. Let us consider two systems of the form (2.1) and denote by φ(t, (x0, y0))
and ψ(s, (x0, y0)) their respective solutions such that φ(0, (x0, y0)) = (x0, y0) and
ψ(0, (x0, y0)) = (x0, y0). Let τ1, τ2 be positive real numbers, and S = [0, τ1]× [0, τ2]
be a rectangle, which will be called a parametric rectangle. We say that the local flows
φ(t, (x0, y0)) and ψ(s, (x0, y0)) commute if, for every parametric rectangle S such that
both φ(t, ψ(s, (x0, y0))) and ψ(s, φ(t, (x0, y0))) exist whenever (t, s) ∈ S, one has

φ(t, ψ(s, (x0, y0))) = ψ(s, φ(t, (x0, y0))).

By a classical result, two local flows commute if and only if the Lie bracket (2.6)
of their corresponding vector fields vanishes identically (see [Arn89; Olv86]). In
this case we say that the vector fields commute. It is then natural to think that
commutativity can actually be used to characterize isochronous centers, a fact
proved in [Sab97] and stated in next theorem.

Theorem 2.6 ([CS99]). The center at the origin of system (2.1) is isochronous if and
only if there exists a second vector field defined in a neighbourhood of the origin which is
transversal to (2.1) at nonsingular points and both commute.
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2.2 Period constants computation

2.2.1 The classical method

We start this subsection by presenting the classical method to find period con-
stants (see [RS09]). By performing the usual change to polar coordinates (x, y) =
(r cos ϕ, r sin ϕ), one can rewrite system (2.1) as⎧⎪⎪⎪⎨⎪⎪⎪⎩

ṙ =
n−1
∑

k=1
Uk(ϕ)rk+1,

ϕ̇ = 1 +
n−1
∑

k=1
Wk(ϕ)rk,

(2.7)

where Uk(ϕ) and Wk(ϕ) are homogeneous polynomials in sin ϕ and cos ϕ of de-
gree k + 2. Eliminating time and doing the Taylor series expansion in r we obtain

dr
dϕ

=
∞

∑
k=2

Rk(ϕ)rk, (2.8)

where Rk(ϕ) are 2π-periodic functions of ϕ and the series is convergent for all ϕ
and for all sufficiently small r. The initial value problem for (2.8) with the initial
condition (r, ϕ) = (ρ, 0) has a unique truncated solution

r(ϕ) = ρ +
M

∑
j=2

Aj(ϕ)ρj, (2.9)

up to some finite order M ∈ N. Let us see how to find the coefficients Aj(ϕ). By
the chain rule, we have

dr
dϕ

dϕ

dt
− dr

dt
= 0. (2.10)

If we substitute (2.7) and (2.9) in (2.10), we obtain(
M

∑
j=2

A′
j(ϕ)ρj

)⎛⎝1 +
n−1

∑
k=1

Wk(ϕ)

(
ρ +

M

∑
j=2

Aj(ϕ)ρj

)k
⎞⎠−

n−1

∑
k=1

Uk(ϕ)

(
ρ +

M

∑
j=2

Aj(ϕ)ρj

)k+1

= 0.

(2.11)
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Now for j from 2 to M, we can extract the coefficient of ρj from the left hand side
of (2.11) and equate it to zero, this is

A′
j(ϕ)− Cj(ϕ) = 0,

where −Cj denotes the remaining part after A′
j. Observe that due to the struc-

ture of (2.11), for a certain j we have that Cj(ϕ) can only contain terms Ai(ϕ) for
i < j. With a slight abuse of notation, this allows to constructively obtain the
expressions for Aj as

Aj(ϕ) =
∫ ϕ

0
Cj(θ) dθ. (2.12)

Let us now substitute the solution (2.9) into the second equation of (2.7), which
yields a differential equation of the form

dϕ

dt
= 1 +

M+n−1

∑
k=1

Fk(ϕ)ρk.

Rewriting this equation as

dt =
dϕ

1 +
M+n−1

∑
k=1

Fk(ϕ)ρk
=

(
1 +

∞

∑
k=1

Ψk(ϕ)ρk

)
dϕ

and integrating from 0 to 2π yields

T(ρ) =
∫ T(ρ)

0
dt =

∫ 2π

0

(
1 +

∞

∑
k=1

Ψk(ϕ)ρk

)
dϕ = 2π +

∞

∑
k=1

(∫ 2π

0
Ψk(ϕ) dϕ

)
ρk,

(2.13)
where the series converges for 0 ≤ ϕ ≤ 2π and sufficiently small ρ ≥ 0. From
(2.13) it follows that the lowest period of the trajectory of (2.1) passing through
(x, y) = (ρ, 0) for ρ �= 0 is given by (2.3), which is the period function. Then we
can directly see that the period constants T̂k are given by the expression

T̂k =
∫ 2π

0
Ψk(ϕ) dϕ. (2.14)

Assume now that system (2.7) has an isochronous center at the origin and we
add a perturbation which depends on some parameters λ ∈ Rd and such that the
center property is kept. We can follow exactly the same procedure as before, and
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now we have that the period constants

T̂k(λ) =
∫ 2π

0
Ψk(ϕ, λ) dϕ (2.15)

are polynomials in the parameters λ (see [Cim+97]).
Even though this is the classical method of finding period constants, the inte-

grals in (2.14) and (2.15) easily become too difficult to be explicitly solved, so this
technique is not useful in many cases for high degree polynomial vector fields. In
the next subsection we will describe a second method which turns out to be more
efficient in many cases.

2.2.2 The Lie bracket method

The second algorithm we will introduce for the computation of period constants
is equivalent to the previous one, but has the advantage that it avoids integrals
and reduces the problem to solving linear systems of equations. Our method is
based on the ideas given in [AFG00] and uses the Lie bracket and normal form
theory.

We will consider system (2.2) in complex coordinates. In this case, Z and Z do
not actually need to be polynomials, they can be convergent series which start at
least with quadratic terms. For the sake of simplicity, we will deal with

ż = i z + Z(z, w) = Z(z, w) (2.16)

instead of (2.2) and using w = z̄, taking into account that the second component
is the complex conjugate of the first one. By applying near the identity changes
of variables, as the spirit of normal form transformations, system (2.16) can be
simplified to

ż = i z +
N

∑
j=1

(α2j+1 + i β2j+1)z(zw)j + O2N+3(z, w),

where N ∈ N is arbitrary and α2j+1, β2j+1 ∈ R. The above normal form can be
expressed in polar coordinates as follows,⎧⎪⎪⎪⎨⎪⎪⎪⎩

ṙ =
N
∑

j=1
α2j+1r2j+1 + O2N+3(r),

ϕ̇ = 1 +
N
∑

j=1
β2j+1r2j + O2N+2(r).

(2.17)
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As we are considering system (2.1), which has a center at the origin, the nor-
mal form of system (2.17) becomes{

ṙ = r2N+3R(r, ϕ),
ϕ̇ = 1 + β3r2 + β5r4 + · · ·+ β2N+1r2N + r2N+2Θ(r, ϕ),

(2.18)

where β3, β5, . . . , β2N+1 ∈ R, and the functions R(r, ϕ) and Θ(r, ϕ) are analytical
in r and 2π periodic in ϕ.

The following theorem establishes a relationship between these coefficients
β2j+1 and the period constants defined in (2.3). From this result it becomes clear
that coefficients β2j+1 play the same role as the period constants, in the sense that
a center is isochronous if and only if β2j+1 = 0 for all j ≥ 1.

Theorem 2.7 ([AFG00]). For all m ≥ 1, the period constants defined in (2.3) satisfy

(i) T̂2m−1 = 0,

(ii) T̂2m = 2π ∑
n1+···+nl=2m

nj even, l≥1

(−1)l βn1+1 · · · βnl+1.

From this theorem, one deduces that only period constants with even sub-
script actually play a role, in the sense that if for a certain m we vanish T̂1, . . . , T̂2m
then T̂2m+1 = 0. Therefore, it is convenient to define Tm := T̂2m, and we will use
this notation from now on during this chapter.

Now we can bring this result together with Theorem 2.4 to propose a con-
structive method to find the first N period constants of a system. We define

U = z +
2N+1

∑
m=2

m

∑
l=0

ul,m−lzlwm−l, U = w +
2N+1

∑
m=2

m

∑
l=0

ul,m−lwlzm−l,

and use it together with Z and Z in (2.16) to compute the Lie bracket [Z ,U ]
from (2.6). Observing the structure of the normal form of a center (2.18) and
considering Theorems 2.4 and 2.7, it is straightforward to see that we can also
write the Lie bracket as

[Z ,U ] = T̃1 z(zw) + T̃2 z(zw)2 + · · ·+ T̃N z(zw)N + O2N+3(z, w).

We have now two expressions for the Lie bracket of Z and U , and equating
the coefficients with the same degree from both expressions, we can construc-
tively determine the coefficients ul,m−l, ul,m−l, and T̃m for m = 1, . . . , N, simply
by solving linear systems of equations. Then we have that the first nonvanishing
period constants obtained above and the one provided by (2.14) may differ only
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in a nonzero multiplicative constant. As both methods are equivalent for our pur-
poses and as in this chapter we will use the later, for the sake of simplicity we will
denote Tm instead of T̃m.

The benefit of this approach is that it reduces the problem of finding period
constants to the resolution of linear systems of equations, instead of dealing with
integrals which can become cumbersome or even unsolvable. We have checked
that this new approach allows us to go further in the computation of period con-
stants than the classical previously explained method. This algorithm has been
computationally implemented with Maple ([Map]) and used to calculate all the
necessary period constants throughout this chapter.

2.2.3 Linear parts of period constants

To end this section, we will prove the following result inspired by [LT15] which
provides a useful method to compute the linear parts of the period constants
by means of parallelization. We already used this idea for the linear parts of
Lyapunov constants in Subsection 1.5.4.

Proposition 2.8. Consider a system, as in (2.16), with a center at the origin

ż = i z + Z(z, w, λ), (2.19)

where λ = (λ1, . . . , λd) ∈ Rd are parameters such that for λ = 0 the origin is an
isochronous center and Z ∈ C1(λ). Assume that for every j = 1, . . . , d, the kth period
constant of system (2.19) with λr = 0 for every r = 1, . . . , d such that r �= j takes the
form

T(j)
k = τ

(j)
k λj + O2(λj),

for some coefficient τ
(j)
k ∈ R, where O2(λj) denotes a sum of monomials of degree at least

2 in λj. Then the kth period constant of system (2.19) takes the form

Tk =
d

∑
j=1

τ
(j)
k λj + O2(λ1, . . . , λd),

where O2(λ) denotes a sum of monomials of degree at least 2 in the parameters.

Proof. The proof is straightforward by using the linearity property in the first-
order terms of the period constants. The kth period constant of system (2.19)
must have the form

Tk =
d

∑
j=1

η
(j)
k λj + O2(λ1, . . . , λd),
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for some coefficients η
(1)
k , . . . , η

(d)
k ∈ R and O2(λ1, . . . , λd) being a sum of mono-

mials of degree at least 2 on the parameters. Now if for some j = 1, . . . , d we
impose λr = 0 for every r = 1, . . . , d such that r �= j, we obtain that the kth period
constant of the corresponding system has the form

T(j)
k = η

(j)
k λj + O2(λj),

which shows that η
(j)
k = τ

(j)
k , where τ

(j)
k is as defined in the statement of the

proposition. Repeating this process for every j = 1, . . . , d, the statement is proved.

Remark 2.9. The structure outlined in Proposition 2.8 can be used together with paral-
lelization to find the linear part of the period constants of a given center in a way which
is much more efficient, in computational terms, than directly applying the Lie bracket
method. The idea is to consider each perturbative monomial instead of all of them to-
gether. One can separately use this method up to first-order Taylor development to obtain
the linear part of the corresponding kth period constant, and then add all of them to find
the linear part of Tk. It is relevant to observe that the computed linear parts are not ob-
tained by calculating each complete period constant and then finding its power series
expansion up to first-order, but by directly computing its first-order terms at each step.

The advantage of this approach is that it is much easier in computational terms
to find the first-order part of the period constants of a number of systems with
only one parameter than computing them for only one system with many pa-
rameters. As a matter of fact, what we are doing is to apply the same Lie bracket
method to these simpler systems instead of directly to the initial one. Further-
more, this technique allows to parallelize the computation for each family, which
allows to highly decrease the total execution time.

2.3 Lower bounds in criticality for reversible centers

The main objective of this section is to find the highest possible lower bound for
C�(n), by fixing our attention to lower bounds of local criticality for low degree
planar polynomial centers. The main technique is the study of perturbations of
reversible holomorphic isochronous centers, inside the reversible centers class.
More concretely, we study the Taylor developments of the period constants with
respect to the perturbation parameters.

The problem of finding the maximum number of local critical periods which
can bifurcate from a plane vector field is completely solved only for the quadratic
case n = 2. This is done by Chicone and Jacobs in [CJ89]: their result states that
C�(2) = 2. To the best of our knowledge, for cubic reversible systems the highest
number of critical periods achieved so far is 6, a result given in [YH09] by Yu
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and Han. In the case of Hamiltonian systems, [YHZ10] shows that such bound
increases to 7. There are also a few works dealing with lower bounds for gen-
eral families of degree n. One is given by Cima, Gasull, and da Silva in [CGS08]
proving that C�(n) ≥ 2 [(n − 2)/2] , where [·] denotes the integer part. Another
one is the bound that Gasull, Liu, and Yang propose in [GLY10], which grows as
n2/4. Very recently, in 2020, Cen proves in [Cen21] a lower bound of (n2 − 4)/2
for even n and (n2 + 2n − 5)/2 for odd n. In our work we have improved some
of these bounds up to n = 16. Our main result from this section is as follows.

Theorem 2.10. The number of local critical periods in the family of polynomial time-
reversible centers of degree n is

C�(n) ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
6, for n = 3,
10, for n = 4,
(n2 + n − 2)/2, for 5 ≤ n ≤ 9,
(n2 + n − 4)/2, for 10 ≤ n ≤ 16.

The essential tool for proving the above result is the local bifurcation of zeros
of the first derivative of the period function (2.3). That is, for each degree n,
finding the highest value for the multiplicity of a zero of T′ and its unfolding
in the corresponding reversible polynomial centers family, more concretely by
perturbing some special isochronous centers. This is as the usual mechanism for
limit cycles of small amplitude in polynomial vector fields known as degenerate
Hopf bifurcation, see [RS09]. The number of critical periods bifurcating from a
center clearly depends on the family to which it belongs and it is closely related to
the number of free parameters. The most studied families in this problem are the
reversible and the Hamiltonian ones, having (n2 + 3n− 4)/2 and (n2 + 5n− 6)/2
parameters, respectively. As usual in this kind of bifurcation mechanisms, at
least one of the monomials in the perturbation terms can be rescaled to be one,
so regarding the number of parameters and using this bifurcation technique, the
maximum number of critical periods we expect to find in the class of nth degree
time-reversible systems is

C�(n) =
n2 + 3n − 6

2
.

This is the value obtained in Theorem 2.10 for n = 3, and it is only one more
than our lower bound for n = 4. In later subsections, we will discuss more about
this explicit value and why we expect that it will be the value for the maximum
number of local critical periods. Observe also that for n = 2 this value C�(2) = 2
coincides with the one provided by [CJ89] that we already mentioned. The reason
why we choose reversible families instead of Hamiltonian is that they can be more
easily generated. For a study on the criticality of third-order Hamiltonian systems
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the reader is referred to [YHZ10], where the unfolding of 7 critical periods is
proved, one more than in the reversible class.

This whole section is devoted to prove Theorem 2.10 and has the following
structure. In Subsection 2.3.1 we present a technique that can be used to increase
the number of critical periods with respect to the bounds obtained by linear de-
velopments. Subsection 2.3.2 explains the choice of the family of isochronous
centers that will be perturbed to obtain as many local critical periods as possi-
ble. All this is used in Subsection 2.3.3 to increase the number of local critical
periods to 5 in the cubic case. Nevertheless, the complete proof of Theorem 2.10
for n = 3 is done in Subsection 2.3.6, where it is shown that actually 6 critical
periods can unfold in cubic reversible centers family, but perturbing from an iso-
chronous center only having linear terms. Despite being a previous result (given
by [YH09]), we present an alternative proof for the existence of 6 critical periods
in cubic reversible systems. With the same technique we also increase the number
of local critical periods up to 10 for n = 4 and the ones stated in Theorem 2.10 for
5 ≤ n ≤ 9, respectively in Subsections 2.3.4 and 2.3.5. The last bounds of C�(n) for
10 ≤ n ≤ 16 are also obtained in Subsection 2.3.5, studying only first-order de-
velopments. We finish with a last short discussion in Subsection 2.3.7 about these
increment values. We notice that all the computations have been done using the
computer algebra system Maple ([Map]).

Finally, we would like to say a few words about the computational difficul-
ties and what about going further in the degree n to improve Theorem 2.10. As
we will see during the section, some of the results have been obtained thanks to
developing particular algorithms using parallelized computations. The main dif-
ficulty is related to the fact that there are no general classifications of reversible
isochronous centers, so we have used holomorphic centers because they provide
isochronous reversible centers for every degree n. But as they have many free pa-
rameters, the necessary computations to improve our main result would involve
the explicit resolution of nonlinear systems of equations with several variables,
concretely n − 1 for families of degree n. This is actually the hardest point to go
further in the degree.

2.3.1 A result on the criticality of isochronous centers

Let us consider a family of isochronous centers with some parameters, and add
a perturbation which keeps the center property. In this subsection we will prove
a theorem which outlines how the criticality of such a family can increase under
some conditions on the isochronicity parameters. The idea behind this result is
inspired by [HY12] but better developed in [GGT21], a recent work about cyclicity
in families of centers that proves Theorem 1.41. We already used such theorem
for cyclicity in Section 1.5, and the aim now is to extrapolate it to period constants
and the study of criticality.
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First we present a technical result which shows the structure of the first-order
terms of the period constants for a perturbed family of isochronous centers. This
is essentially an extension of Proposition 2.8 adapted to the case where the un-
perturbed system is a parametric family of isochronous centers instead of a fixed
one.

Proposition 2.11. Let us consider a polynomial family of isochronous centers being
parametrized by A ∈ RP for some P ∈ N and add a polynomial perturbation with
coefficients λ ∈ RN for some N ∈ N which does not break the center property.

(i) The kth period constant Tk of the perturbed system is a polynomial on the perturba-
tive parameters λ whose coefficients are polynomials in A and takes the form

Tk =
N

∑
j=1

g(j)
k (A)λj + O2(λ), (2.20)

for some polynomials g(j)
k (A) in A which are the coefficients of the linear part of Tk

with respect to λ.

(ii) Let us consider the m×m matrix Gm(A) whose element in position (i, j) is g(j)
i (A)

from expression (2.20). This is the matrix of coefficients of linear parts of the first
m period constants. Then if det GN(A) = 0 and det GN−1(A) �= 0 there exists
a linear change of variables such that the first N − 1 first period constants take the
form

Tk = uk + O2(u1, . . . , uN) (2.21)

for k = 1, . . . , N − 1, where the linear part of Tk is uk, uN := λN, and the higher-
order terms are denoted by O2(u1, . . . , uN).

(iii) Under the same assumptions of (ii), the first N + M period constants for some
M ∈ N can be written as

Tk =

⎧⎪⎨⎪⎩
vk, if k = 1, . . . , N − 1,
N−1
∑

j=1
g̃(j)

k (A)vj + fk−N(A)uN + O2(v, uN), if k = N, . . . , N + M,

(2.22)
where v = (v1, . . . , vN−1) are new variables, fk−N(A) and g̃(j)

k (A) are the corre-
sponding coefficients of v1, . . . , vN−1, uN which are rational functions in A ∈ RP,
and O2(v, uN) are analytical functions of order two in v1, . . . , vN−1, uN.

Proof. Recall that the period constants are polynomials in the parameters of the
system. As parameters A do not break the isochronicity of the system they cannot
appear isolated, so when considering the power series expansion of the period
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constant Tk, it is straightforward to see that its linear part must be a linear combi-
nation of the perturbative parameters λ with the coefficients being polynomials
in A, and (i) follows.

To see (ii), as det GN−1(A) �= 0, we can apply Cramer’s rule to the system

of N − 1 equations
N
∑

j=1
g(j)

k (A)λj = uk or equivalently
N−1
∑

j=1
g(j)

k (A)λj = uk −

g(N)
k (A)λN =: uk − g(N)

k (A)uN for k = 1, . . . , N − 1, with unknowns λ1, . . . , λN−1.
Then we can explicitly find the linear change of variables that proves (2.21). By
using this method it is clear that the coefficients which define the change of vari-
ables are rational functions in A.

Let us consider new variables v1, . . . , vN−1 to perform the following change,
using (2.21), in RN:

vk = Tk = uk + O2(u1, . . . , uN), for k = 1, . . . , N − 1.

As u1, . . . , uN−1 are independent and have rank N − 1, the Implicit Function The-
orem can be applied to write u1, . . . , uN−1 as functions of v1, . . . , vN−1, uN. This
is

uk = Fk(v1, . . . , vN−1, uN), for k = 1, . . . , N − 1, (2.23)

for some real functions Fk. Then by applying (2.20) from part (i) of the statement
together with the change (2.23), the period constants take the form (2.22) where
g̃(j)

N+d(A) and fd(A) for d = 0, . . . , M and j = 1, . . . , N − 1 are the corresponding
coefficients of v1, . . . , vN−1, uN respectively, and are functions in A ∈ RM, and
each O2(v, uN) is an analytical function of order two in v1, . . . , vN−1, uN due to the
application of the Implicit Function Theorem. Then the statement follows.

Now we can present the aforementioned theorem.

Theorem 2.12. Let us consider a polynomial family of isochronous centers parametrized
by A ∈ RP for some P ∈ N and a polynomial perturbation with coefficients λ ∈ RN

for some N ∈ N which does not break the center property. Let us denote by Gm(A) the
m × m matrix as defined in Proposition 2.11.

(i) If there exists A∗ ∈ RP such that det GN(A∗) �= 0, then the linear parts of the
first period constants have rank N and at least N − 1 simple critical periods can
bifurcate.

(ii) If there exists A∗ ∈ RP such that det GN(A∗) = 0, det GN−1(A∗) �= 0, fi(A∗) =
0 for i = 0, . . . , M − 1, fM(A∗) �= 0 (where f0, . . . , fM are those defined in (2.22))
and the Jacobian determinant satisfies J(A∗) := det Jac( f0,..., fM−1)

(A∗) �= 0, then
M extra critical periods can bifurcate, which leads to a total of N + M − 1 critical
periods.
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Proof. If there exists A∗ ∈ RP such that det GN(A∗) �= 0, we can apply the same
technique as in Proposition 2.11ii to obtain a change of variables to N new inde-
pendent variables u1, . . . , uN. By applying Weierstrass Preparation Theorem, this
implies that N − 1 critical periods can bifurcate and the first statement follows.

Now we move to prove statement (ii). Firstly, as we are under the assumption
det GN−1(A∗) �= 0 for some A∗ ∈ RP, we can apply Proposition 2.11 and write
the first N + M period constants as (2.22). If we set the problem in the manifold
{v1 = · · · = vN−1 = 0} –this means vanishing the first N − 1 period constants–,
the structure becomes

Tk =

{
0, for k = 1, . . . , N − 1,

uN

(
fk−N(A) + ∑∞

l=1 f (l)k−N(A)ul
N

)
, for k = N, . . . , N + M,

for some functions f (l)d (A) with d = 0, . . . , M. As by assumption there exists A∗ ∈
RP such that the Jacobian determinant J(A∗) �= 0, the Implicit Function Theorem
guarantees that in a neighbourhood of A = A∗ and uN = 0 the following change
of variables can be performed in TN, . . . , TN+M−1:

vN+k = fk(A) +
∞

∑
l=1

f (l)k (A)ul
N, for k = 0, . . . , M − 1.

As we suppose that fi(A∗) = 0 for i = 0, . . . , M − 1 but fM(A∗) �= 0, we can
rewrite

TN+k =

{
uNvN+k, for k = 0, . . . , M − 1,

uN

(
fM(A∗) + ∑∞

l=1 f (l)M (A∗)ul
N

)
=: uNvN+M, for k = M.

Finally, by again the Implicit Function Theorem, as we have obtained M new
independent variables we get the existence of M extra critical periods.

A natural consequence of the last result is the following corollary.

Corollary 2.13. With the notation from Theorem 2.12, if det GN(A) is not identically
zero then generically at least N − 1 simple critical periods bifurcate from the origin. The
same conclusion is valid also when the number of parameters is greater than or equal to
N. Clearly, in this second case the corresponding matrix Gm would be a nonsquare matrix
having rank N.

Proof. The proof is straightforward by following the ideas in the proof of the pre-
vious theorem. If det GN(A) is not identically zero, then as it is a polynomial we
have that det GN(A) �= 0 except for a set of zero Lebesgue measure, which im-
plies that the rank of GN(A) is N and therefore N − 1 critical periods unfold.
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This last property is equivalent to the one for bifurcation of limit cycles from
[Chr05]. The idea of using just linear parts appeared previously in [CJ89]. It is
important to notice that in some cases the above determinant is identically zero,
then the generic condition is never satisfied. This is the case for the analogous
case of limit cycles bifurcation from holomorphic polynomial centers of degree 3,
see [LT15].

2.3.2 The main reversible families

As we have previously mentioned, to get the bounds outlined in Theorem 2.10
we have considered nth degree polynomial differential systems which are time-
reversible with respect to straight lines. We can assume without loss of generality
that the equilibrium is at the origin and that the symmetry line with respect to
which the reversibility is considered is the horizontal axis. These differential sys-
tems take the form {

ẋ = −y + y f (x, y2),
ẏ = x + g(x, y2),

(2.24)

where f (x, y2) and g(x, y2) are polynomials in x and y of degrees n − 1 and n,
respectively. Clearly, system (2.24) is invariant under the classical reversibility
change of coordinates (x, y, t) �→ (x,−y,−t).

The next proposition shows that the condition of a system being reversible
with respect to the horizontal axis in complex coordinates z = x + i y and w =
z = x − i y is that its coefficients are purely imaginary.

Proposition 2.14. A system (2.24), which is reversible with respect to the horizontal
axis, takes in complex coordinates the form

ż = i z + i
n

∑
l+m≥2

clmzlwm, (2.25)

where clm ∈ R.

Proof. A change to complex coordinates shows that system (2.24) is written as⎧⎪⎪⎨⎪⎪⎩
ż = i z +

n
∑

l+m≥2
blmzlwm,

ẇ = − i w +
n
∑

l+m≥2
blmwlzm,

(2.26)

for certain parameters blm ∈ C and their conjugate values blm ∈ C. Observe that
the reversibility change (x, y, t) �→ (x,−y,−t) takes the form (z, w, t) = (x +
i y, x − i y, t) �→ (x − i y, x + i y,−t) = (w, z,−t) in complex coordinates. Thus,
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when applied to (2.26), one obtains⎧⎪⎪⎨⎪⎪⎩
−ẇ = i w +

n
∑

l+m≥2
blmwlzm,

−ż = − i z +
n
∑

l+m≥2
blmzlwm.

(2.27)

Now imposing that the system must remain invariant under this change, we
have that systems (2.26) and (2.27) must be equal, so we see that blm = −blm. The
proof follows from this condition. The reversibility property in complex coordi-
nates is given by the parameters being purely imaginary, this is blm = i clm with
clm ∈ R. Notice that in (2.25) there is no need to write the equation in ẇ because
it is the complex conjugate of the equation in ż.

Let us consider an nth degree polynomial system of the form{
ż = i F(z, w),
ẇ = − i F(z, w),

(2.28)

having an isochronous center at the origin, where F(z, w) = z + F̃(z, w) being
F̃(z, w) a sum of monomials of degree at least 2. As the ẇ equation in (2.28) is
the complex conjugate of the ż equation, from now on we will simply write the
equation in ż to describe the system. We will also consider adding a reversible
nth degree polynomial perturbation as follows

ż = i F(z, w) + i
n

∑
l+m≥2

rlmzlwm, (2.29)

where rlm are real perturbative parameters so that the perturbation is reversible
and thus the center property is kept.

A well-known fact is that holomorphic systems are isochronous (see [GGJ04]).
We are interested in perturbing holomorphic isochronous centers by adding non-
holomorphic perturbations, in which case equation (2.29) can be rewritten as

ż = i z + i
n

∑
j=2

Ajzj + i
n

∑
l+m≥2

m≥1

rlmzlwm, (2.30)

for certain holomorphy parameters Aj ∈ R, and rlm ∈ R are perturbative param-
eters of the isochronous center

ż = i z + i
n

∑
j=2

Ajzj, (2.31)
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which keep the center property due to being real.
In our work we have considered perturbations of the family of isochronous

centers

ż = i z
n−1

∏
j=1

(
1 − ajz

)
, (2.32)

where n > 1 and aj ∈ R \ {0} are real parameters such that aj �= ai for every
i, j ∈ {1, . . . , n − 1}, i �= j. Observe that this family takes the form (2.31), so it is
isochronous due to the holomorphy property. These systems are also Darboux
linearizable, as we will see at the end of this subsection.

Our study will focus on reversible families of the form (2.32) being perturbed
also inside the reversible polynomial class. The choice of these holomorphic sys-
tems is due to the fact that it is the easiest family that can be considered for any
degree n. Moreover, as we will see, these particular systems are the most suitable
for our study, in the sense that they provide quite a high number of oscillations of
the period function without being too demanding computationally. Additionally,
in the following subsection we also perturb some other cubic isochronous centers
obtained from [CR10], where a complete classification of all reversible cubic iso-
chronous centers is done.

The next result is a direct consequence of applying Theorem 2.12 to (2.30).

Theorem 2.15. Consider the polynomial differential system of degree n defined in (2.30)
with n ≥ 3 and A2 = 1. Let us denote by Gm(A) the m × m matrix as defined in
Proposition 2.11 and N := (n2 + n − 2)/2 the number of perturbative parameters.

(i) If there exists A∗ = (A∗
3, . . . , A∗

n) ∈ Rn−2 such that det GN(A∗) �= 0, then the
linear parts of the first period constants have rank N and at least N − 1 simple
critical periods bifurcate from the origin.

(ii) If there exists A∗ = (A∗
3, . . . , A∗

n) ∈ Rn−2 such that det GN(A∗) = 0,
det GN−1(A∗) �= 0, fi(A∗) = 0 for i = 0, . . . , M − 1, fM(A∗) �= 0 (where
f0, . . . , fM are those defined in (2.22)) and the Jacobian determinant satisfies
J(A∗) := det Jac( f0,..., fM−1)

(A∗) �= 0, then M extra critical periods bifurcate from
the origin, which leads to a total of N + M − 1 critical periods.

Experimentally, we have observed that we get more criticality when all the pa-
rameters Aj are nonvanishing. Then, after a variables rescaling and without loss
of generality, we can fix A2 = 1, when A2 �= 0. Subsection 2.3.5 uses the first state-
ment fixing specific values for A. The second statement, choosing M = n − 2, is
used in Subsections 2.3.3 and 2.3.4 for perturbations of holomorphic polynomial
vector fields of degree 3 and 4, respectively. In these last cases we have achieved
the maximum value for the corresponding criticality when A2 = 1. This state-
ment is also used in Subsection 2.3.5 but only with M = 1 for some small values
of the degree n. Finally, in the above result we have not considered quadratic
vector fields because this case was completely solved in [CJ89].
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Darboux linearization for (2.32)

Even though we already know that (2.32) is an isochronous center due to being
holomorphic, we will prove that it is also Darboux linearizable by explicitly find-
ing its linearization, as an alternative proof for the isochronicity of the system.
This will be done to illustrate an example of how Darboux linearizations can be
found.

Let us consider equation (2.32) together with its complex conjugate, and per-
form a change of time to eliminate the imaginary unit i,⎧⎪⎪⎪⎨⎪⎪⎪⎩

z′ = z
n−1
∏
j=1

(
1 − ajz

)
=: Z(z),

w′ = −w
n−1
∏
j=1

(
1 − ajw

)
=: W(w).

(2.33)

The idea to find the linearization is to apply the following result, which is Theo-
rem 4.4.2 from [RS09] adapted to our case.

Theorem 2.16 ([RS09]). The polynomial system (2.33) is Darboux linearizable if and
only if there exist s + 1 ≥ 1 algebraic partial integrals f0, . . . , fs with corresponding co-
factors K0, . . . , Ks and t+ 1 ≥ 1 algebraic partial integrals g0, . . . , gt with corresponding
cofactors L0, . . . , Lt with the following properties:

(i) f0(z, w) = z + · · · but fj(0, 0) = 1 for j ≥ 1;

(ii) g0(z, w) = w + · · · but gj(0, 0) = 1 for j ≥ 1; and

(iii) there are s + t constants α1, . . . , αs, β1, . . . , βt ∈ C such that

K0 + α1K1 + · · ·+ αsKs = 1 (2.34)

and
L0 + β1L1 + · · ·+ βtLt = −1. (2.35)

The Darboux linearization is then given by Y1(z, w) = f0 f α1
1 · · · f αs

s and Y2(z, w) =

g0gβ1
1 · · · gβt

t .

Now the following proposition gives some algebraic partial integrals of sys-
tem (2.33) and their corresponding cofactors.

Proposition 2.17. Polynomials f0 = z and fm = 1 − amz with m ∈ {1, . . . , n − 1}
are algebraic partial integrals of (2.33) with cofactors K0 =

n−1
∏
j=1

(
1 − ajz

)
and Km =

−amz
n−1
∏

j=1,j �=m

(
1 − ajz

)
with m ∈ {1, . . . , n − 1}, respectively. Also, polynomials g0 =
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w and gm = 1 − amw with m ∈ {1, . . . , n − 1} are algebraic partial integrals of

(2.33) with cofactors L0 = −
n−1
∏
j=1

(
1 − ajw

)
and Lm = amw

n−1
∏

j=1,j �=m

(
1 − ajw

)
with

m ∈ {1, . . . , n − 1}, respectively.

Proof. Observe that

∂ f0

∂z
Z +

∂ f0

∂w
W = Z = z

n−1

∏
j=1

(
1 − ajz

)
,

so f0 = z is an algebraic partial integral with cofactor K0 =
n−1
∏
j=1

(
1 − ajz

)
.

Now take fm = 1 − amz for m ∈ {1, . . . , n − 1}, and see that

∂ fm

∂z
Z +

∂ fm

∂w
W = −amZ = −amz

n−1

∏
j=1

(
1 − ajz

)
=

(
−amz

n−1

∏
j=1,j �=m

(
1 − ajz

))
(1 − amz) ,

which shows that fm = 1− amz is an algebraic partial integral with cofactor Km =

−amz
n−1
∏

j=1,j �=m

(
1 − ajz

)
.

Analogously,
∂g0

∂z
Z +

∂g0

∂w
W = W = −w

n−1

∏
j=1

(
1 − ajw

)
,

so g0 = w is an algebraic partial integral with cofactor L0 = −
n−1
∏
j=1

(
1 − ajw

)
.

Finally,

∂gm

∂z
Z +

∂gm

∂w
W = −amW = amw

n−1

∏
j=1

(
1 − ajw

)
=

(
amw

n−1

∏
j=1,j �=m

(
1 − ajw

))
(1 − amw) ,

so gm = 1 − amw for m ∈ {1, . . . , n − 1} is an algebraic partial integral with

cofactor Lm = amw
n−1
∏

j=1,j �=m

(
1 − ajw

)
.
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From now on, for the sake of simplicity we will denote N := n − 1. Observe
that n > 1 is the degree of the polynomial system (2.33), so N > 0 represents

the number of factors in the product
n−1
∏
j=1

(
1 − ajz

)
of (2.33). The next result is

fundamental to reach our purpose.

Lemma 2.18. If we denote

αm = − am
N−1

N
∏

j=1,j �=m

(
am − aj

)
for m ∈ {1, . . . , N}, then equality

K0 + α1K1 + · · ·+ αNKN = 1

holds, where K0, . . . , KN are as defined in Proposition 2.17.

Proof. The Lemma will be proved by induction on N. The case N = 1 is trivial,

K0 + α1K1 = (1 − a1z) + (−1) (−a1z) = 1.

Now we will assume that the statement is true for N, this is

K0 +
N

∑
m=1

αmKm = 1,

N

∏
j=1

(
1 − ajz

)
+

N

∑
m=1

⎛⎜⎜⎜⎝− am
N−1

N
∏

j=1,j �=m

(
am − aj

)
⎞⎟⎟⎟⎠
(
−amz

N

∏
j=1,j �=m

(
1 − ajz

))
= 1,

N

∏
j=1

(
1 − ajz

)
+ z

N

∑
m=1

⎛⎜⎜⎜⎝ am
N

N
∏

j=1,j �=m

(
am − aj

) N

∏
j=1,j �=m

(
1 − ajz

)
⎞⎟⎟⎟⎠ = 1. (2.36)

Assuming that equality (2.36) holds, we will deduce that then it must also hold
for N + 1, which means that

N+1

∏
j=1

(
1 − ajz

)
+ z

N+1

∑
m=1

⎛⎜⎜⎜⎝ am
N+1

N+1
∏

j=1,j �=m

(
am − aj

) N+1

∏
j=1,j �=m

(
1 − ajz

)
⎞⎟⎟⎟⎠ = 1. (2.37)
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First, let us multiply both sides of equality (2.36) by (1 − aN+1z), which gives

N+1

∏
j=1

(
1 − ajz

)
+ z

N

∑
m=1

⎛⎜⎜⎜⎝ am
N

N
∏

j=1,j �=m

(
am − aj

) N+1

∏
j=1,j �=m

(
1 − ajz

)
⎞⎟⎟⎟⎠ = 1 − aN+1z. (2.38)

Let us now compute the following sum, which will be useful later:

am
N

N
∏

j=1,j �=m

(
am − aj

) + am
NaN+1

N+1
∏

j=1,j �=m

(
am − aj

) =
am

N+1

N+1
∏

j=1,j �=m

(
am − aj

) . (2.39)

Now add the term

z
N

∑
m=1

⎛⎜⎜⎜⎝ am
NaN+1

N+1
∏

j=1,j �=m

(
am − aj

) N+1

∏
j=1,j �=m

(
1 − ajz

)
⎞⎟⎟⎟⎠+

aN+1
N+1

N
∏
j=1

(
aN+1 − aj

)z
N

∏
j=1

(
1 − ajz

)
(2.40)

on both sides of (2.38). By applying (2.39), the left-hand side of equation (2.38)
when adding (2.40) results in

N+1

∏
j=1

(
1 − ajz

)
+ z

N

∑
m=1

⎛⎜⎜⎜⎝ am
N+1

N+1
∏

j=1,j �=m

(
am − aj

) N+1

∏
j=1,j �=m

(
1 − ajz

)
⎞⎟⎟⎟⎠

+
aN+1

N+1

N
∏
j=1

(
aN+1 − aj

)z
N

∏
j=1

(
1 − ajz

)

=
N+1

∏
j=1

(
1 − ajz

)
+ z

N+1

∑
m=1

⎛⎜⎜⎜⎝ am
N+1

N+1
∏

j=1,j �=m

(
am − aj

) N+1

∏
j=1,j �=m

(
1 − ajz

)
⎞⎟⎟⎟⎠ ,

and this is equal to the left-hand side of equation (2.37) which we want to prove.
Now to finish the proof, we must see that the right-hand side of (2.38) when
adding (2.40) equals 1 as in (2.37). This means that we must check



98 Chapter 2. Isochronicity and critical periods

1 − aN+1z + z
N

∑
m=1

⎛⎜⎜⎜⎝ am
NaN+1

N+1
∏

j=1,j �=m

(
am − aj

) N+1

∏
j=1,j �=m

(
1 − ajz

)
⎞⎟⎟⎟⎠

+
aN+1

N+1

N
∏
j=1

(
aN+1 − aj

)z
N

∏
j=1

(
1 − ajz

)
= 1,

which is equivalent to

N+1

∑
m=1

⎛⎜⎜⎜⎝ am
N

N+1
∏

j=1,j �=m

(
am − aj

) N+1

∏
j=1,j �=m

(
1 − ajz

)
⎞⎟⎟⎟⎠ = 1.

This equality can be rewritten as

N+1

∑
m=1

N+1

∏
j=1,j �=m

am − amajz
am − aj

= 1.

To prove that this equality holds we will proceed as follows. Observe that the
left-hand side of the equality is a degree N polynomial in z. If it is evaluated in
z = 1

am
the result is 1 for all m ∈ {1, . . . , N + 1}. Therefore, as we have a degree N

polynomial which takes the same value 1 for N + 1 points, we conclude that this
must be a constant polynomial and equals 1.

From this lemma we can deduce the following analogous one.

Lemma 2.19. If we denote βm := αm for m ∈ {1, . . . , N} where the αm are defined as
in Lemma 2.18, then equality

L0 + β1L1 + · · ·+ βN LN = −1

holds, where L0, . . . , LN are as defined in Proposition 2.17.
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Proof. The proof is straightforward by applying Lemma 2.18. Let us compute

L0 +
N

∑
m=1

βmLm = −
N

∏
j=1

(
1 − ajw

)
+

N

∑
m=1

αmamw
N

∏
j=1,j �=m

(
1 − ajw

)
= −

(
N

∏
j=1

(
1 − ajw

)
+

N

∑
m=1

αm

(
−amw

N

∏
j=1,j �=m

(
1 − ajw

)))

= −
(

K0(w) +
N

∑
m=1

αmKm(w)

)
= −1,

where we have used Lemma 2.18 in the last equality. Notice that Km(w) for m ∈
{0, . . . , N} are simply the polynomials Km switching the variable z by w.

Finally, we can outline our result.

Proposition 2.20. System (2.33) is Darboux linearizable and its linearization is given
by Y1(z, w) = f0 f α1

1 · · · f αN
N and Y2(z, w) = g0gβ1

1 · · · gβN
N , where

• f0 = z and fm = 1 − amz for m ∈ {1, . . . , N};

• g0 = w and gm = 1 − amw with m ∈ {1, . . . , N}; and

• the exponents αm and βm for m ∈ {1, . . . , N} are

αm = βm = − am
N−1

N
∏

j=1,j �=m

(
am − aj

) .

Proof. We will check that all conditions in Theorem 2.16 are fulfilled. First, by
Proposition 2.17 we know that f0, . . . , fN and g0, . . . , gN as defined in the state-
ment of the proposition are algebraic partial integrals of the system, and have
resepctively cofactors K0, . . . , KN and L0, . . . , LN that have been explicitly found.
Observe also that f0(z, w) = z, fm(0, 0) = 1 for m ∈ {1, . . . , N}, g0(z, w) = w
and gm(0, 0) = 1 for m ∈ {1, . . . , N}, so conditions (i) and (ii) of the theorem are
satisfied. Finally, Lemmas 2.18 and 2.19 show that equalities (2.34) and (2.35) of
condition (iii) in the theorem hold, which finishes the proof.

2.3.3 Perturbing cubic isochronous systems

The first part of this subsection is focused on the cubic systems of the form (2.32),
this is for n = 3. In the second part we study lower bounds for the criticality of
some reversible isochronous centers appearing in [CR10]. We will see that at least
5 critical periods can unfold in the reversible cubic polynomial class. Actually, in
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Subsection 2.3.6 we will show that 6 critical periods can unfold in cubic systems,
but not bifurcating from centers having nonlinear terms.

The first 4 critical periods appear by studying specific isochronous centers
such that, after reversible perturbation, the rank of the linear parts of their period
constants is 5. In all the studied cases this is the maximum found rank. Then, by
Proposition 2.11, we can write the first 5 period constants in the form

Tk = uk + O2, for k = 1, . . . , 5,

where O2 denotes the terms of degree at least 2, or directly Tk = uk for k = 1, . . . , 5
if we use the Implicit Function Theorem. We have checked that the next three
linear parts are a linear combination of these 5 variables. Consequently, in all
the studied cases, no more critical periods can be found using only first-order
developments. We need to use higher-order developments or pay attention to
the nongeneric cases in some parameter families of isochronous centers.

Perturbing holomorphic centers

In the next result we will study the critical periods bifurcation diagram of a 1-
parameter cubic holomorphic system. We show how, by applying Theorem 2.15,
we can obtain 5 critical periods when choosing the values for which the rank
is not maximal. In the following subsection, these 5 critical periods will appear
from higher-order developments.

Proposition 2.21. Let a ∈ R \ {0}. Consider the 1-parameter family of cubic (holomor-
phic) reversible systems

ż = i z (1 − z) (1 − az) . (2.41)

The number of critical periods bifurcating from the origin when perturbing in the class of
reversible cubic systems is at least 5 for a ∈ {−3/2,−1,−2/3, 1/2, 2} and 4 otherwise.

Proof. As we have explained in Subsection 2.3.2, system (2.41) is time-reversible
holomorphic and therefore it has an isochronous center at the origin.

We can consider system (2.41) without losing generality with respect to the
general cubic case (2.32), which is ż = i z (1 − a1z) (1 − a2z) , with |a1| > |a2|.
Both systems are equivalent after the rescaling (z, w) �→ (a−1

1 z, a−1
1 w) and we get

a := a−1
1 a2. Thus, we can reduce our study to a ∈ [−1, 1) \ {0}. Notice that the

case a = 1 is not included in (2.32) because a1 �= a2.
As in (2.30), we consider the time-reversible cubic perturbation without the

holomorphic monomials,{
ż = i z (1 − z) (1 − az) + i (r11zw + r02w2 + r21z2w + r12zw2 + r03w3),
ẇ = − i w (1 − w) (1 − aw)− i (r11wz + r02z2 + r21w2z + r12wz2 + r03z3).
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When a ∈ R \ {−1, 0, 1/2, 2}, the rank of the linear developments of first four
period constants of this system with respect to (r11, r02, r21, r12) is 4. The explicit
expressions of those linear developments are not shown here due to the fact that
they are quite long. Then, after using the Implicit Function Theorem, the period
constants take the form

Tk = uk, for k = 1, . . . , 4.

Taking u1 = u2 = u3 = u4 = 0 and r03 = u5, the fifth and sixth period constants
take the form

T5 =
5
24

P(a)
3a2 + 2a + 3

u5 + u2
5

∞

∑
j=0

f j(a) uj
5,

T6 = − 1
42

Q(a)
3a2 + 2a + 3

u5 + u2
5

∞

∑
j=0

gj(a) uj
5,

(2.42)

where P(a) = a3(a− 2)(3a+ 2)(2a+ 3)(2a− 1), Q(a) = a3(a− 2)(2a− 1)(834a2 +
1735a+ 834)(a+ 1)2, and f j and gj are rational functions. Applying Theorem 2.15
we have 4 critical periods when P(a) �= 0 and 5 when P(a) = 0, P′(a) �= 0, and
Q(a) �= 0. Then, as a �= 0, the statement follows except for the remaining cases
a ∈ {−1, 1/2, 2}.

For the cases a ∈ {−1, 1/2, 2} we need to add the holomorphic monomials,
then the time-reversible cubic perturbation is now⎧⎪⎪⎨⎪⎪⎩

ż = i z (1 − z) (1 − az) + i
3
∑

k+l=2
rklzkwl,

ẇ = − i w (1 − w) (1 − aw)− i
3
∑

k+l=2
rklwkzl.

(2.43)

When computing the linear parts of the period constants we observe that they
have rank 3 with respect to three of the parameters in {r20, r11, r02, r30, r21, r12, r03}.
Then, similarly to what we did above, we have Tk = uk, for k = 1, 2, 3 and we
should study the second-order developments of T4, T5, T6 under the condition
u1 = u2 = u3 = 0 with respect to the remaining parameters.

For a = 2 (and similarly for its equivalent case a = 1/2) we write the remain-
ing parameters, as in a blow-up procedure, as r03 = u4v1, r12 = u4v2, r20 = u4,
r30 = 0. Then,

Tk = u2
4Fk−3(v1, v2) + u3

4

∞

∑
j=0

fkj(v1, v2) uj
4, for k = 4, 5, 6, (2.44)
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with
F1(v1, v2) = −96 v1 −

304
5

v2 − 24 v2
1 −

1016
5

v1v2 −
1178
15

v2
2,

F2(v1, v2) =
112
3

v2 − 350 v2
1 −

922
3

v1v2 −
1297
126

v2
2,

F3(v1, v2) = −1080
7

v2
1 +

6264
49

v1v2 +
212634
1715

v2
2.

Next we show that the zero level curves of F1 and F2 have a transversal intersec-
tion point

(v∗1, v∗2) =
(
−6972965

1901
α2 − 807195

7604
α − 1743

3802
,

105
2

α

)
,

being α the unique simple real zero of p(α) = 5578372α3 + 183328α2 + 1789α + 7,
where F3(v∗1, v∗2) is nonvanishing. This follows because F1(v∗1, v∗2) = F2(v∗1, v∗2) =
0,

F3(v∗1, v∗2) = p1(α) =
1051652160α2 + 17223840α + 120960

1901
�= 0,

det Jac(F1,F2)(v
∗
1, v∗2) = p2(α) =

−103534584320α2 − 571544320α + 7499520
1901

�= 0,

and the resultants Res(p, p′, α), Res(p, p1, α), and Res(p, p2, α) are all nonvanish-
ing.

Then, after dividing (2.44) by u2
4 and using again the Implicit Function The-

orem at (v1, v2, u4) = (v∗1, v∗2, 0), we obtain that 5 critical periods unfold for this
value of the parameter a.

The proof for the case a = −1, also considering the perturbation (2.43), follows
similarly taking in r02 = u4, r11 = u4v1, r20 = u4v2, r30 = 0. Now we have

F1(v1, v2) = −8 +
192
5

v1 −
16
5

v2,

F2(v1, v2) =
1277
56

+
145
24

v1 −
85
8

v2
1 +

5
8

v1v2,

F3(v1, v2) =
12
35

− 144
7

v1.

Here, the zero level curves of F1 and F2 have two transversal intersection points,
both of them written as

(v∗1, v∗2) =
1
5
(α, 12α − 5),

being α each simple real zero of p(α) = 42α2 − 301α − 7662. Additionally, we see
that F3(v∗1, v∗2) = p1(α) = 12(−12α + 1)/35 and det Jac(F1,F2)(v

∗
1, v∗2) = p2(α) =
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(−12α + 43)/3.

Finally, we would like to consider an alternative proof for the special case
a = −3/2 (similarly for its equivalent case a = −2/3), which is a simple zero
of P that does not vanish Q in (2.42). We will consider (2.43) and second-order
developments, as in the previous cases for which the generic result for every a
does not apply.

Here, the linear parts of the first four period constants have rank 4. Then, by
using the Implicit Function Theorem, Tk = uk for k = 1, . . . , 4, and vanishing
these first four we get the next two period constants which depend on the re-
maining parameters (u5, u6, u7),

T5 = u5u6 + O3(u5, u6, u7),

T6 = u5

(9
2
− 2552689

12348
u5 −

1439
245

u6 − 15u7

)
+ O3(u5, u6, u7),

(2.45)

where r03 = u5, r20 = (16000u5 − 4536u6 − 6615u7)/39690, and r30 = u7. To solve
T5 = 0 we need to know the different branches of the variety T5 = 0 near the
origin. The blow-up mechanism can help to discover them. This is the procedure
proposed by Loud in [Lou61], where he considered it as a singular use of the Im-
plicit Function Theorem. As we would like to find a branch where T5 vanishes
but T6 does not, we will not use the tangent variety to u5 = 0 because it is not
clear from (2.45) whether T6 vanishes on it or not. Then, assuming u5 small but
not zero and using the blow-up u6 = u5v1 and u7 = u5v2, the expressions (2.45)
write as

T5 = u2
5

(
v1 + u5

∞

∑
j=0

f j(v1, v2) uj
5

)
,

T6 = u5

(9
2
+ u5

∞

∑
j=0

gj(v1, v2) uj
5,
)

.

Clearly, we can use the usual Implicit Function Theorem to write T5 = u2
5w1.

Then, on the variety w1 = 0 we have T5 = 0 but T6 �= 0, and the unfolding of 5
critical periods is proved.

We notice that we have not considered a = 0 because in this case the unper-
turbed system is only quadratic, and up to first and second-orders only one and
two critical periods appear, respectively.

Perturbing other isochronous

This section is devoted to see the existence of other cubic reversible isochronous
systems from which, after perturbation inside the cubic reversible class, also 5
critical periods bifurcate from the origin. All these systems appear in the full clas-
sification of cubic reversible isochronous systems of Chen and Romanovski, see
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[CR10]. We have not checked all of them and neither the ones in [CS99] because,
as we have commented previously, we believe that there will be no more critical
periods bifurcating from the centers different from the harmonic oscillator.

In the following results the cubic reversible perturbations are considered as in
(2.43), because first we switch them to complex coordinates and then we apply the
mechanism explained in Subsection 2.2.2. Recall that the bifurcation mechanisms
are the direct application of the limit cycles bifurcation mechanisms described in
[Chr05; GGT21].

Proposition 2.22. Consider the cubic reversible isochronous systems⎧⎪⎪⎨⎪⎪⎩
ẋ = −y +

16
3

xy,

ẏ = x − 16
3

x2 + 4y2 +
256
27

x3,

{
ẋ = −y − 3x2y,

ẏ = x + 2x3 − 9xy2.

The number of critical periods bifurcating from the origin when perturbing in the class of
reversible cubic systems is at least 5.

Proof. The existence of the respective unfoldings of 5 critical periods follows as in
Proposition 2.21, so we only describe the main differences.

For the first system, after using the Implicit Function Theorem we get Tk = uk
for k = 1, . . . , 5. Then, after vanishing them, the sixth writes as

T6 = −2928640
81

u3
6 + O4(u6, u7).

For the second system we need again the Implicit Function Theorem but a
little more work is required. First, we get Tk = uk for k = 1, . . . , 3. Then, after
vanishing them and from the order two developments of the next three period
constants, we have that there exists a curve in the parameters space such that,
along it, the zero level curves of T4 and T5 intersect transversally and T6 does not
vanish at this point. The curve is defined by

Λ := (r02(λ), r11(λ), r20(λ)) =
(3α

2
, 1,

1288836α2 − 33437α + 8492
2(182687α − 14408)

)
λ + O2(λ),

where α is the unique simple zero of the polynomial p(α) = 14865206α3 −
9450402α2 + 5998353α − 494789. On such curve, T4 and T5 vanish and

T6(Λ) =
4428675 p1(α)

98996508541251328(182687α − 14408)2 λ2 + O3(λ),

det Jac(T4,T5)(r02, r20)(Λ) =
12695535 p2(α)

118921648(182687α − 14408)2 λ2 + O3(λ),
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with

p1(α) = 8601448118622283590359α2 − 9039597241380812188234α

+ 767502262831182901877,

p2(α) = 62303007298924α2 + 70835816547508α − 7694925309941.

Moreover, the resultants with respect to α of (p, p′), (p, p1), and (p, p2) are
nonzero rational numbers.

Proposition 2.23. Consider the cubic reversible isochronous systems⎧⎪⎪⎨⎪⎪⎩
ẋ = −y +

4
3

xy,

ẏ = x − 4
3

x2 + 4y2 +
16
27

x3,

⎧⎪⎪⎨⎪⎪⎩
ẋ = −y − 14

15
xy +

16
175

x2y,

ẏ = x +
16
15

x2 − 46
15

y2 +
64

175
x3 +

48
175

xy2.

Up to a sixth-order study, the number of critical periods bifurcating from the origin when
perturbing in the class of reversible cubic systems is only 4.

Proof. The proof follows just by checking that the linear parts of the first five pe-
riod constants have rank 5. Straightforward computations show that, after using
the Implicit Function Theorem and vanishing them, the next two period constants
vanish up to a sixth-order study.

Proposition 2.24. Let a ∈ R \ {0,±
√

3,±
√

5}. Consider the 1-parameter family of
cubic isochronous reversible systems{

ẋ = −y + 2(1 − a2)a−1xy + 2x2y − 2y3,

ẏ = x + ax2 + (2 − a2)a−1y2 + 4xy2.

The number of critical periods bifurcating from the origin when perturbing in the class of
reversible cubic systems is at least 5 for a ∈ {±

√
7/3,±2,±3} and 4 otherwise.

Proof. The proof follows using Theorem 2.12 as the proof of Proposition 2.21.
Here, the linear part of the first four period constants have rank 4, then there
exists a change of variables such that Tk = uk for k = 1, . . . , 4. The differences
are only the expressions of T5 and T6 which are, after vanishing the first period
constants,

T5 = −70(a − 2)(a − 3)(a + 3)(a + 2)(3a2 − 7)a4

44a8 + 90a6 + 129a4 + 167a2 + 30
u5,

T6 =
4(834a10 − 16310a8 + 115767a6 − 387870a4 + 629063a2 − 401940)a2

44a8 + 90a6 + 129a4 + 167a2 + 30
u5.
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In the above result we have not considered a ∈ {±
√

3,±
√

5} because for
these values more computations and higher-order developments should be stud-
ied, and we suspect that no more than 5 oscillations of the period function will
appear. Let us explain the main difficulties. Let R�(a) = (R1, . . . , R�) be the se-
quence of ranks of the linear developments of the ordered period constants for a
fixed value of the parameter a, being Rk = Rank(T(1)

1 , . . . , T(1)
k ). Then, we have

that R10(±
√

3) = (1, 2, 3, 3, 4, 4, 4, 4, 4, 4) and R10(±
√

5) = (1, 2, 2, 3, 4, 4, 5, 5, 5, 5)
while for the other values, that is for a ∈ R \ {0,±

√
3,±

√
7/3,±2,±

√
5,±3}, we

have R7(a) = (1, 2, 3, 4, 5, 5, 5).

2.3.4 Perturbing quartic isochronous systems

In this section we will prove that there exist quartic reversible centers for which
at least 10 critical periods bifurcate by using Theorem 2.15. This proves the state-
ment of Theorem 2.10 corresponding to n = 4, that is C�(4) ≥ 10. Basically we
will follow the same scheme as in the previous section for the holomorphic case.
Assuming that the linear parts of the period constants of a quartic system have
rank 9, we rewrite the 9 first period constants as

Tk = uk + O2, for k = 1, . . . , 9,

where the uk are new variables which depend on the original perturbative pa-
rameters and O2 denotes a sum of monomials of degree at least 2. Linear parts
of higher period constants would be a linear combination of these uk. For conve-
nience we can also write directly, by using the Implicit Function Theorem, Tk = uk
for k = 1, . . . , 9.

By using Poincaré–Miranda’s Theorem (Theorem 1.40) together with Theo-
rem 2.15, in the following result we present a family of quartic isochronous re-
versible centers from which at least 10 critical periods can bifurcate.

Proposition 2.25. Let a, b ∈ R. Consider the 2-parameter family of quartic (holomor-
phic) reversible systems

ż = i z (1 − z) (1 − az) (1 − bz) . (2.46)

Generically, at least 8 critical periods bifurcate from the origin when perturbing in the
class of reversible quartic centers. Moreover, in this perturbation class there exists a point
(a, b) such that at least 10 critical periods bifurcate from the origin.

Proof. System (2.46) is time-reversible holomorphic and therefore it has an iso-
chronous center at the origin. Let us add a time-reversible quartic perturbation
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with no holomorphic terms as in (2.30), this is, being rlm ∈ R,

ż = i z (1 − z) (1 − az) (1 − bz) + i
4

∑
l+m≥2

m≥1

rlmzlwm.

Straightforward computations show that the coefficients of the linear parts of the
first 9 period constants, with respect to the only 9 perturbation parameters in the
above equation, form a square matrix. Its determinant is a polynomial of degree
64 in the parameters of the family (a, b). We do not show it here because of its
size. Then, the first statement follows from Theorem 2.15i.

The proof of the second statement needs more computations. After a linear
change of coordinates in the parameters space we obtain that, generically, the
period constants have the following form:

Tk = uk + O2, for k = 1, . . . , 8,

T9 =
G(a, b)P(a, b)

D(a, b)
u9 + O2,

T10 =
G(a, b)Q(a, b)

D(a, b)
u9 + O2,

T11 =
G(a, b)R(a, b)

D(a, b)
u9 + O2,

with G(a, b) = (ab− a− b+ 2)(ab− 2b2 − a+ b)(2a2 − ab− a+ b)a3b3 and P(a, b),
Q(a, b), R(a, b), and D(a, b) certain polynomials with rational coefficients in the
variables a and b. We do not show the complete polynomials here because they
are too large. They have respectively total degree 37, 39, 41, and 37. Their num-
ber of monomials are respectively 657, 736, 819, and 606. Then, the second state-
ment follows directly from Theorem 2.15ii just checking that there exists a point
(a0, b0) in the parameters space such that P(a0, b0) = Q(a0, b0) = 0, R(a0, b0) �= 0,
det Jac(P,Q)(a0, b0) �= 0, and D(a0, b0) �= 0. To show the difficulty to find this spe-
cial point, the zero level curves of the polynomials P, Q, R, and D in the square
[−1, 1]2 are depicted in Figure 2.1. The point (a0, b0) should be in the intersec-
tion of the red and blue curves but not in the green and black ones, although the
curves are very close to see the point.

Before proving analytically the existence of at least one intersection point
(a0, b0), we will start by doing some numerical simulations in order to apply later
the Poincaré–Miranda’s Theorem.

After some tedious work zooming some zones of the figure together with
some tricks, we have found a numerical approximation of this special point. In-
creasing the number of digits in the computations up to see the stabilization of
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FIGURE 2.1: Plot of the zero level curves of P(a, b), Q(a, b), R(a, b),
and D(a, b) for (a, b) ∈ [−1, 1]2, in color red, blue, green, and black,

respectively.

the results, we obtain

a0 ≈ 0.62577035826746384070691323127,
b0 ≈ 0.71179266608573393310773491596,

R(a0, b0) ≈ −1.44391455520361722121698980760 · 1013,

det Jac(P,Q)(a0, b0) ≈ −7.71411995359481041501433585645 · 1029,

D(a0, b0) ≈ −9.87896448642393578498609236141 · 1013.

(2.47)

For the sake of simplicity of the expressions, we will divide each of the poly-
nomials P, Q, R, and D by the coefficient of its highest power in a and, with a
slight abuse of notation, we call them P, Q, R, and D again. Now we perform a
linear change of variables which allows to separate the curves. The (numerical)
Taylor expansion of P(a, b) and Q(a, b) at the above numerical approximation
(a0, b0) is

P(a, b) ≈ 14476.355528262242592711069492
− 1516162.34376751076199474015954 a
+ 1312591.63242100192712169534384 b + O2(a, b),

Q(a, b) ≈ 78319.07106237404777027603042
− 8048108.27358418867430264665612 a
+ 6965439.18320811849214303073248 b + O2(a, b),

where O2 are sums of monomials of degree at least 2. Consider now a change of
variables from (a, b) to new parameters (u, v) such that u and v are respectively
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the above linear parts. By solving these two equations with respect to a and b, we
obtain that

a = 0.625770358267463840706913241773
+ 0.00221618993488297996013588284494 u
− 0.000417626554172747676923930511920 v,

b = 0.711792666085733933107734928103
+ 0.00256066216093940651327090078741 u
− 0.000482396534881316802873914874492 v.

(2.48)

We notice that at (u, v) = (0, 0) we approximately recover the values for (a0, b0)
at (2.47). Figure 2.2 shows the zero level curves of the polynomials P, Q, R, and
D near (0, 0) after this change of variables. Now it is clear that the four zero
level curves do not intersect simultaneously at such point. Moreover, the ones
corresponding to P and Q are transversal. Observe that D(u, v) is not seen in
the graph because it stays out of the plotted region. This intersection point has
shifted to near (0, 0) in the new variables, and is not exactly at (0, 0) due to the
rounding errors.

FIGURE 2.2: Plot of the zero level curves of P(u, v), Q(u, v), and
R(u, v) in color red, blue, green, respectively; the curve correspond-

ing to D(u, v) is out of the plotted region.

The last step is the analytical proof of the existence of the point (a0, b0), which
we have seen above that exists numerically. We will do a computer-assisted proof
checking the properties in Theorem 1.40 by using rational interval analysis, be-
cause all the involved polynomials have rational coefficients. We start by writing
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FIGURE 2.3: Plot of rescaled polynomials P and Q at the boundaries
of [−h, h]2 and the polynomials R(u, v), D(u, v), and J(u, v) in the

full square [−h, h]2.

the relation (2.48) as rational numbers with a 30 digits precision,

a =
803010141443820
1283234545763833

+
59980860399959

27064855523371976
u − 5287648183641

12661187682653458
v,

b =
480154601557585
674570874968458

+
4931930765653

1926037273048026
u − 4470981572020

9268270496843407
v.

We will set h = 10−3 in Theorem 1.40, and we will show that in the square
B = [−h, h]2 there must be a zero of P(u, v) and Q(u, v). The proof follows
checking also that R(u, v), D(u, v), and the Jacobian determinant J(u, v) :=
det Jac(P,Q)(u, v) do not vanish in the whole square. The draws in Figure 2.3
show that these conditions hold. Observe that P(u, v) and Q(u, v) are continu-
ous because they are polynomials. Then there will be a point (u0, v0) ∈ (−h, h)2

such that P(u0, v0) = 0 and Q(u0, v0) = 0 by applying the Poincaré–Miranda’s
Theorem because the following conditions hold.

(a) P(h, v) > 0 and P(−h, v) < 0 for v ∈ [−h, h].
First we find the first derivatives of P(h, v) and P(−h, v) with respect to v.
Then we compute all its real roots and see that none of them belongs to the
interval (−h, h), which implies that there are no local maxima nor minima in
this interval. Now we check that P(h,−h) > 0, P(h, h) > 0, P(−h,−h) < 0,
and P(−h, h) < 0, which together with the fact that there are not any local ex-
trema means that the function P(h, v) is strictly positive in the whole interval
while P(−h, v) is strictly negative.
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(b) Q(u, h) > 0 and Q(u,−h) < 0 for u ∈ [−h, h].
The proof follows checking that the first derivatives of Q(u, h) and Q(u,−h)
with respect to u have only one real root in the interval (−h, h), which means
only one extremum. We also see that the second derivatives of Q(u, h) and
Q(u,−h) again with respect to u at those points take a negative value, so
these only local extrema are local maxima. Also, the value of Q(u, h) and
Q(u,−h) evaluated at the u which gives the maxima are positive and nega-
tive, respectively. Additionally, Q(−h, h) > 0, Q(h, h) > 0, Q(−h,−h) < 0,
and Q(h,−h) < 0. Then, the functions Q(u, h) and Q(u,−h) are respectively
strictly positive and negative in the whole interval.

Strictly speaking, we observe that due to how Theorem 1.40 is formulated we
should apply it to −P(u, v) and −Q(u, v) rather than P(u, v) and Q(u, v), but the
conclusion is exactly the same.

The last step of the proof is to ensure that R(u, v), D(u, v), and J(u, v) do not
vanish in the whole square.

First we will prove that there exists R̃ ∈ Q+ such that R(u, v) ≥ R̃ > 0 for
(u, v) ∈ [−h, h]2. It is clear that R(u, v) can be written as

R(u, v) = R(0, 0) +
k̂

∑
i=0

l̂

∑
j=0

(i,j) �=(0,0)

aijuivj (2.49)

for certain rational coefficients aij, where k̂ and l̂ denote the degree of R(u, v) with
respect to u and v, respectively. Observe that

R(u, v) = R(0, 0) +
k̂

∑
i=0

l̂

∑
j=0

(i,j) �=(0,0)

aijuivj ≥ R(0, 0)−
k̂

∑
i=0

l̂

∑
j=0

(i,j) �=(0,0)

|aij|hi+j =: R̃,

where we have used that |u| ≤ h and |v| ≤ h. The right part of the inequality can
be easily computed and we obtain a positive rational number R̃ ≈ 1.7529595059.

The proof that there exists J̃ ∈ Q+ such that J(u, v) ≥ J̃ > 0 for (u, v) ∈
[−h, h]2 follows analogously to the one for R(u, v), just by writing the equiva-
lent expression (2.49) for function J and adequately changing the values for the
degrees k̂, l̂, and the rational coefficients aij. The positive rational lower bound
is J̃ ≈ 0.9996974188. Similarly, we can prove that there exists d̃ ∈ Q− such that
D(u, v) ≤ d̃ < 0 for (u, v) ∈ [−h, h]2. In this case, as well as changing the values
for the degrees k̂, l̂ and the rational coefficients aij we have to invert all inequali-
ties. The upper bound is the negative rational number d̃ ≈ −14177.3096985157.
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We notice that these values for the lower and upper bounds obtained above
are far from the values in (2.47) because we have rescaled all the involved func-
tions.

2.3.5 Perturbing higher degree systems

In this subsection we will use period constants only up to first-order in the pertur-
bative parameters to obtain as many critical periods as possible by bifurcating, in
the class of reversible systems, from some reversible holomorphic systems. The
idea is to consider an isochronous center of the form (2.32) perturbed as in (2.30),
being rlm ∈ R. Using linear terms of the period constants one can deduce that at
least (n2 + n − 4)/2 critical periods bifurcate from the origin. In Proposition 2.26
this is proved for 3 ≤ n ≤ 16. This provides the lower bound for C�(n) given in
Theorem 2.10 for 10 ≤ n ≤ 16. In fact, we notice that for n = 3 and n = 4 we have
already found better bounds in the previous sections, but we also include them
for the sake of completeness. According to Theorem 2.15, under certain condi-
tions the system could unfold up to n − 2 extra critical periods with respect to
those (n2 + n − 4)/2 obtained by using only linear parts, as the system has n − 2
holomorphy parameters aj. Nevertheless, we will see that this is unfeasible even
for degree 5 due to the large size of the obtained polynomials, but we will add
at least one extra critical period in Proposition 2.27 for 5 ≤ n ≤ 9. This gives the
lower bound for C�(n) given in Theorem 2.10 for 5 ≤ n ≤ 9.

Proposition 2.26. For 3 ≤ n ≤ 16, consider the system

ż = i z
n

∏
k=2

(
1 − Φ

([
k
2

])(−1)k

z

)
, (2.50)

where Φ(j) is the jth prime number and [·] denotes the integer part function. Then,
when perturbing in the class of reversible centers at least (n2 + n − 4)/2 critical periods
bifurcate from the origin, which is of isochronous reversible center type.

Proof. The nth degree system (2.50) can alternatively be written as{
ż = i z (1 − 2z)

(
1 − 2−1z

)
(1 − 3z)

(
1 − 3−1z

)
(1 − 5z)

(
1 − 5−1z

)
· · · ,

ẇ = − i w (1 − 2w)
(
1 − 2−1w

)
(1 − 3w)

(
1 − 3−1w

)
(1 − 5w)

(
1 − 5−1w

)
· · · .

This system is reversible and holomorphic, so it has an isochronous center at the
origin. Now add an nth degree perturbation with real parameters rlm as in (2.30).

The next step is to compute the first N = (n2 + n − 2)/2 period constants of
the perturbed system up to first-order. To this end, we apply the method pre-
sented in Subsection 2.2.3 which uses Proposition 2.8. We have performed these
calculations for degree 3 ≤ n ≤ 16 by using Maple plus the parallelization with
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PBala (see [Sal]), and we have found that the rank of the linear part of the first
N period constants is precisely N, thus we obtain maximal rank. Therefore, by
applying Theorem 2.15i this implies that N − 1 critical periods bifurcate from the
origin, which is the lower bound given in the statement.

It is worth saying that we would not have been able to reach degree n = 16
in the above result without using the technique presented in Proposition 2.8. The
reason why for a certain degree n we can obtain rank N = (n2 + n − 2)/2 in
the linear parts of the corresponding period constants is as follows. By basic
combinatorics one can see that the number of perturbative terms in a reversible
degree n ≥ 3 system is

n+1

∑
j=3

j =
n+1

∑
j=1

j − 2 − 1 =
(n + 2)(n + 1)

2
− 2 − 1 =

n2 + 3n − 4
2

. (2.51)

However, observe that the terms of the form cj0zj = Ajzj belong to the holomor-
phic part of the system and are not considered perturbative parameters, so they
cannot appear in the linear part of the period constants. As a consequence, for de-
gree n the terms Ajzj for 2 ≤ j ≤ n do not count when computing ranks of linear
parts of period constants, so the number of perturbative parameters which can ac-
tually play a part results from subtracting n − 1 to the total number (2.51), which
results in N. This means that with Proposition 2.26 we have reached the max-
imum number of critical periods that can bifurcate by studying the rank when
perturbing a fixed holomorphic system using linear parts only.

As we can theoretically get rank N for degree n, then N − 1 critical periods
could bifurcate from the origin. In Proposition 2.26 we proved that this number
of critical periods can actually appear for 3 ≤ n ≤ 16, and for higher degrees the
problem gets too demanding in computational terms. Nevertheless, it is natural
to think that this lower bound will hold for any degree n ≥ 3. For the computa-
tions we have used the cluster of servers Antz described in Subsection 1.2.3, with
more than 100 cores and more than 300 GB of RAM in total.

In the next result we provide one more critical period than the obtained in the
previous proposition, considering the holomorphic reversible system of degree n

ż = i z(1 − z)
n−2

∏
j=1

(
1 − ajz

)
, (2.52)

with 5 ≤ n ≤ 9 and aj ∈ R, but with only one free parameter instead of n − 2,
(a1, . . . , an−2), because of the difficulties in the analytical computations.
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Proposition 2.27. Let 5 ≤ n ≤ 9 be a natural number and a ∈ R. For the (holomorphic)
reversible 1-parameter family

ż = i z(1 − az)
n−2

∏
k=1

(1 − kz) , (2.53)

there exists a real value a such that at least (n2 + n − 2)/2 critical periods bifurcate from
the origin when perturbing in the class of polynomial reversible centers of degree n.

Proof. System (2.53) is time-reversible holomorphic, so it has an isochronous cen-
ter at the origin. We consider the time-reversible polynomial perturbation of de-
gree n with no holomorphic terms as in (2.30) and we compute the first-order
developments of its (n2 + n)/2 first period constants as a function of a. Notice
that this system has N := (n2 + n − 2)/2 perturbative parameters, which is the
maximal rank that the linear parts can have. In the case that we have rank N − 1
instead, as in Theorem 2.15ii, a perturbative parameter is still not used. We have
checked that, after a linear change of parameters, for each degree 5 ≤ n ≤ 9, the
period constants have the form

Tk = uk + O2 for k = 1, . . . , N − 1,

TN = a2Cn(a)
Pn(a)
Dn(a)

uN + O2,

TN+1 = a2Cn(a)
Qn(a)
Dn(a)

uN + O2,

for certain polynomials Pn(a), Qn(a), Dn(a), and Cn(a) in the variable a with ra-
tional coefficients. These polynomials are not shown here because of their large
size: Pn(a) has degree 100, 206, 374, 626, and 986 for n = 5, 6, 7, 8, and 9, re-
spectively; Qn(a) has degree 102, 208, 376, 628, and 988 for n = 5, 6, 7, 8, and 9,
respectively; Dn(a) has degree 89, 188, 349, 593, and 944 for n = 5, 6, 7, 8, and
9, respectively. The polynomials Cn(a) are C5(a) = 2a − 3 and Cn(a) = 1 for
n = 6, 7, 8, 9.

To prove the unfolding of an extra critical period by following the ideas in
Theorem 2.15, we should see that there exists some value an such that Pn(an) =
0, P′

n(an) �= 0, Qn(an) �= 0, and Dn(an) �= 0 for 5 ≤ n ≤ 9. Straightforward
computations show that P5(a) has a root a5 in the interval [0.75, 0.76], P6(a) has
a root a6 in the interval [1.27, 1.28], P7(a) has a root a7 in the interval [0.11, 0.12],
P8(a) has a root a8 in the interval [0.58, 0.59] and P9(a) has a root a9 in the interval
[0.12, 0.13]. Thus, we know that for each n = 5, 6, 7, 8, and 9, Pn(a) has a real root
an.

Finally, we find that the resultant of Pn(a) with P′
n(a), the resultant of Pn(a)

with Qn(a), and the resultant of Pn(a) with Dn(a) are nonzero rational numbers
for each n = 5, 6, 7, 8, and 9, which means that Pn(a) has no common zeros with
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P′
n(a), Qn(a), and Dn(a). Therefore, by applying Theorem 2.15ii, we can conclude

that for degrees from 5 to 9 one extra critical period unfolds.

As we already commented, due to the fact that system (2.52) has n − 2 holo-
morphic free parameters, according to Theorem 2.15ii one could expect to see
n − 2 extra critical periods. However, when computing the period constants of
(2.52) even for n = 5, we observe that we cannot deal with them: after appropri-
ately handling the following three period constants T14, T15, and T16, the obtained
polynomials that we need to apply the theorem have approximately half a mil-
lion of monomials, with degrees 154, 156, and 158. Moreover, their coefficients
are integer numbers between 40 and 80 digits long. Because of this, we have not
been able to see numerically the existence of a transversal intersection of them.
Nevertheless, by working with two parameters we have numerical evidence that
for n = 5 actually 2 additional critical periods unfold, as we will see followingly.
Even for this case, the size of the expressions is too large to achieve an analytical
proof.

Let us consider the system{
ż = i z(1 − z)2(1 − az)(1 − bz),
ẇ = − i w(1 − w)2(1 − aw)(1 − bw).

(2.54)

Firstly, we compute the first 16 period constants of system (2.54), consider
their linear parts and denote by P(a, b), Q(a, b), and R(a, b) the numerator of the
coefficient of the corresponding linear part and D(a, b) the common denominator,
following the notation in the proof of Proposition 2.27. Working with enough pre-
cision up to see the stabilization of the values of the intersection of the zero level
curves of P and Q, together with the value of R, D, and the Jacobian determinant
of (P, Q), we can find a transversal intersection at

(a0, b0) ≈ (0.63824202454687891,−1.75185147414301379).

In Figure 2.4 we represent graphically the intersection of the zero level curves of
the polynomials P(a, b) and Q(a, b).

2.3.6 Six critical periods on cubic systems

This subsection is devoted to prove the part of the statement of Theorem 2.10
corresponding to n = 3, this is C�(3) ≥ 6. This result will not arise from a pertur-
bation of isochronous centers as we did in Subsection 2.3.3, in the sense that the
perturbative parameters are not ‘small’.
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FIGURE 2.4: Plot of the zero level curves of polynomials P(a, b) and
Q(a, b) in red and blue color, respectively; the zero level curves of
the polynomials R, D, and the Jacobian determinant of P and Q do
not appear because they stay out of figure. The intersection of P(a, b)

and Q(a, b) can be clearly seen.

Proposition 2.28. There exist values of r20, r11, r02, r30, r21, r12, r03 ∈ R for which the
origin of the cubic reversible system

ż = i
(

z − z3 +
3

∑
l+m=2

rlmzlwm
)

, (2.55)

unfolds 6 local critical periods.

Proof. The proof will consist on the following steps. First we compute the first
7 period constants of system (2.55). Then we show the existence of a point in
the parameters space, with r20 = 1, for which T1 = · · · = T6 = 0 but T7 �= 0.
The complete unfolding is proved checking that the determinant of the Jacobian
matrix of (T1, . . . , T6) with respect to the remaining 6 parameters is not zero.

The first 7 period constants of system (2.55) have been obtained by using the
method described in Subsection 2.2.2. Because of their size, here we only show
the first two,

T1 =− 2r11r20 + 2r21 −
4
3

r2
02 − 2r2

11,
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T2 = 4r12 − 8r2
11 + 4r11r20 − 4r2

12 − 3r2
03 − 4r12r30 + 8r2

11r30 + 8r2
11r21 +

8
3

r2
02r21

+ 16r2
11r12 −

8
3

r20r02 −
40
3

r02r3
11 −

44
3

r11r02 −
4
3

r2
02r2

20 − 15r2
02r2

11 + 20r12r11r02

+
8
3

r02r12r20 + 4r11r12r20 − 4r11r20r21 +
4
3

r03r20r02 +
44
3

r30r11r02 +
58
3

r02r03r11

+
8
3

r30r20r02 − 4r11r20r30 −
28
3

r2
02r11r20 −

8
3

r02r2
20r11 − 12r02r20r2

11.

The number of monomials of the following constants, T3, T4, T5, T6, T7, are respec-
tively 164, 576, 1645, 3861, 8303, and their degrees are 6, 8, 10, 12, 14.

Now the second step is to check that there exists some point in the parameters
space such that the first 6 period constants vanish but T7 does not. Let us start
by imposing r20 = 1 and solving T1 = T2 = 0 provided that D := 3r12 + 3r11 −
11r02r11 − 2r02 − 6r2

11 �= 0. Then

r21 =r11 +
2
3

r2
02 + r2

11,

r30 =
1

12
(
3r12 + 3r11 − 11r02r11 − 2r02 − 6r2

11

) (16r4
02 − 63r2

02r2
11 − 84r2

02r11

− 12r2
02 − 120r02r3

11 − 108r02r2
11 − 24r02r2

11 + 72r4
11 + 36r3

11 − 36r2
11

+ 174r02r03r11 + 12r02r03 + 180r02r11r12 + 24r02r12 + 144r2
11r12

+36r11r12 − 132r02r11 − 24r02 − 27r2
03 − 72r2

11 + 36r11 − 36r2
12 + 36r12

)
.

Under the above condition D �= 0, the Jacobian determinant of T1 and T2 with
respect to r21 and r30 is nonzero. This implies that the study of the complete versal
unfolding of the 6 critical periods can be restricted to the study of the remaining
period constants with respect to the four free parameters r11, r02, r12, r03.

To simplify the manipulation of T3, . . . , T7, we take their numerators and di-
vide them by their highest coefficient in absolute value; with a slight abuse of
notation, we call them again T3, . . . , T7, respectively.

Before the analytical proof, we will provide numerical evidence that there ex-
ists a solution for {T3 = 0, T4 = 0, T5 = 0, T6 = 0} such that T7, the denominator
D, and the Jacobian determinant J of (T3, T4, T5, T6) do not vanish. We have in-
creased the precision up to see the stabilization of the results. A 30-digits approx-
imation to this intersection point is

S := {r11 = 0.332239671964981276819848124224,
r02 = −1.14623564863006725151534814297,
r12 = 0.707146879073682873590033571024,
r03 = −0.857479316438844353902485565632}
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and, at this point,

T7 =− 1.84620573446485590097286118 · 10−9,

D =− 4.92423261813104720132211463191 · 10−14,
J =− 8.93740626746136868462260172503.

Even though T7 and D might seem too close to zero, the numerical values of
T3, T4, T5, T6 at S are about 20 orders of magnitude lower, so we can actually con-
sider that T7 and D are nonzero.

Having this numerical evidence, we will proceed with the analytical proof by
following a computer-assisted proof as we have done in the proof of Proposi-
tion 2.25.

Let us consider the rational approximation of the first-order Taylor expansion
of the period constants T3, T4, T5, T6 at the point S,

T(1)
3 =− 73352896192857

1157958866091236
+

66262571735671
670216015479518

r11 −
119234362424303
776335803127460

r02

+
7903848963503

675876388619388
r12 +

55731331328881
310685226195660

r03,

T(1)
4 =− 25841873263308

2144739207215017
+

40160593855699
1426912747264762

r11 −
117691544210802

4702223212288759
r02

+
7773205101075

2079218586073918
r12 +

110363479645312
3304887976984249

r03,

T(1)
5 =− 16219703349568

10414082088666585
+

42608385876433
9737281715798994

r11 −
29366717293918

9762325804542787
r02

+
6748894626740

9711312046719413
r12 +

6430413960561
1437481484699156

r03,

T(1)
6 =− 1959207228925

14543712037193487
+

11134499629945
27672511586934129

r11 −
5248411486748

20480381071923191
r02

+
3134463695044

45208235327076605
r12 +

8433554097025
21161093903316966

r03,

and the change of variables

{T(1)
3 = u1, T(1)

4 = u2, T(1)
5 = u3, T(1)

6 = u4}. (2.56)

Now one can solve this system to obtain the inverse change. To deal with shorter
rational numbers, we convert the coefficients of the resulting expressions to a
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30-digit approximation and then reconvert it to rational, obtaining

r11 =
114216314885635
343776871106692

+
3690270297600200
19535367373429

u1 −
24306493749268230

4889036398111
u2

+
3565552496655516

44921198443
u3 −

74580049035068047
133328816009

u4,

r02 =− 2830661790614852
2469528664544625

− 8579444837165377
6135160885376

u1 +
62633434081451044

1884512347855
u2

− 218159188810346297
437320083677

u3 +
433555893724556147

125890356506
u4,

r12 =
308981620175863
436941220161516

+
14794405087051724

7814232065819
u1 −

52171010172694907
1180772594709

u2

+
207814747586335205

323119349554
u3 −

91326167194000251
20903373436

u4,

r03 =− 301994834117308
352189059639955

− 28146991231557103
19831964964997

u1 +
65898129221474685

1933801767914
u2

− 292164620132414823
569752028783

u3 +
570903623821683593

161190849884
u4.

Using these expressions we can rewrite the whole T3, . . . , T7 in these new vari-
ables. For simplicity we denote them by Uj(u1, u2, u3, u4) := Tj+2(r11, r02, r12, r03)
for j = 1, . . . , 5. Observe that the first-order Taylor expansion of U =
(U1, U2, U3, U4) with respect to the variables u = (u1, u2, u3, u4) is near the iden-
tity. Consequently, the problem reduces to proving the existence of some point
u∗ = (u∗

1, u∗
2, u∗

3, u∗
4) near the origin for which U1(u∗) = U2(u∗) = U3(u∗) =

U4(u∗) = 0, and U5(u∗), the denominator D(u∗), and the Jacobian determinant
J(u∗) := det JacU(u∗) do not vanish. The existence of such point will be shown
applying again Poincaré–Miranda’s Theorem (Theorem 1.40).

Let us set h = 10−12. We have implemented an algorithm which provides
rational upper and lower bounds to a given function with m variables in B =
[−h, h]m, for m = 3, 4. Using it as a computer-assisted proof, we have been able
to find the following bounds.

• For U1, we have 0 < û1 < U1(h, u2, u3, u4) and U1(−h, u2, u3, u4) < −û1 < 0
for all u2, u3, u4 ∈ [−h, h], where û1 ≈ 2.67 · 10−13.

• For U2, we have 0 < û2 < U2(u1, h, u3, u4) and U2(u1,−h, u3, u4) < −û2 < 0
for all u1, u3, u4 ∈ [−h, h], where û2 ≈ 8.78 · 10−13.

• For U3, we have 0 < û3 < U3(u1, u2, h, u4) and U3(u1, u2,−h, u4) < −û3 < 0
for all u1, u2, u4 ∈ [−h, h], where û3 ≈ 9.85 · 10−13.

• For U4, we have 0 < û4 < U4(u1, u2, u3, h) and U4(u1, u2, u3,−h) < −û4 < 0
for all u1, u2, u3 ∈ [−h, h], where û4 ≈ 9.98 · 10−13.
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This means that Uj is positive in uj = h and negative in uj = −h for j = 1, 2, 3, 4.
Therefore, by applying Poincaré–Miranda’s Theorem we can conclude that there
exists some point in [−h, h]4 which vanishes U1, U2, U3, U4.

By following an analogous computer-assisted proof, one can see that functions
U5 and D satisfy U5(u1, u2, u3, u4) < −û5 < 0 and D(u1, u2, u3, u4) < −d̂ < 0 for
all u1, u2, u3, u4 ∈ [−h, h], where û5 ≈ 1.84 · 10−9 and d̂ ≈ 8.93, so both functions
are always negative in [−h, h]4 and do not vanish in the box.

The last part of the proof will be to check that the Jacobian determinant J(u)
is also nonzero in [−h, h]4. From the change (2.56), it is clear that the Jacobian
matrix JacU is close to the identity matrix I and we can write JacU = I + M for
some matrix M. By adapting and using the previously implemented algorithm,
we find upper and lower bounds for each one of the 16 entries (k, l) of M, proving
that for every entry Mkl of the matrix there exists a positive rational number m̂kl
such that −m̂kl < Mkl < m̂kl.

It is straightforward to check that the Jacobian determinant J(u) has the fol-
lowing structure,

J(u) = 1 +
64

∑
s=1

Ms,

where every Ms is a product of entries of matrix M which may be either positive
or negative. Let us denote by M̂s the rational number resulting of the substitution
of every factor Mkl by m̂kl in Ms. We have then a rational lower bound Ĵ for which
J(u) satisfies

J(u) = 1 +
64

∑
s=1

Ms ≥ 1 −
64

∑
s=1

|M̂s| = Ĵ ≈ 0.9918518555136.

This justifies that the determinant is positive for every u1, u2, u3, u4 ∈ [−h, h], so
we can guarantee that it does not vanish in [−h, h]4 and the result follows.

2.3.7 Some remarks for arbitrary degree

The method used in Subsection 2.3.3 for cubics and Subsection 2.3.4 for quartics
can be theoretically extended to systems of any degree n. We have seen that for
the cubic case we can obtain families with an extra parameter which gives one
extra oscillation, and for the quartic case we have families with two extra param-
eters which give two extra oscillations. Indeed, holomorphic reversible systems
of degree n of the form (2.32) can be rescaled as z �→ a−1

1 z to obtain

ż = i z (1 − z) (1 − b1z) · · · (1 − bn−2z) ,
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where we have defined the n − 2 new parameters bj := aj+1a−1
1 for j = 1, . . . , n −

2. By adding a time-reversible perturbation, with the same technique from Sub-
sections 2.3.3 and 2.3.4 we should be able to obtain n − 2 extra critical periods.
Even though this method seems pretty clear from a theoretical point of view,
when trying to make the calculations one realises that it soon becomes too de-
manding in computational terms, and this is the reason why we have not gone
further than n = 4. However, we think that these n − 2 extra critical periods
must appear near the holomorphic reversible centers, by bifurcation in the class
of polynomial reversible systems of degree n. Then the local criticality of polyno-
mial holomorphic reversible systems of degree n in the class of polynomial reversible
vector fields also of degree n would be Ch

� (n) ≥ (n2 + 3n − 8)/2. We notice that
we have not considered here the harmonic oscillator, ż = i z, because it is not
strictly a degree n system.

As we have seen in Subsection 2.3.6, if we consider the complete polynomial
reversible center family of 3rd degree, an extra oscillation can be found when us-
ing the total number of parameters except the scaled one. This rescaling is like
stating that the harmonic oscillator will be the reversible center with the highest
criticality. We think that what is happening for degree 3 is a bifurcation phe-
nomenon that will occur for every degree, being C�(n) ≥ (n2 + 3n − 6)/2.

As a summary, being N = (n2 + 3n − 4)/2 the total number of parameters
in reversible nondegenerate centers, we think that C�(n) ≥ N − 1 while Ch

� (n) ≥
N − 2.

2.4 Criticality via first-order development of period
constants

Melnikov functions are widely used on the well-known problem of limit cycles
bifurcation in planar systems of differential equations, an issue related to the sec-
ond part of the 16th Hilbert Problem ([Gin07; Li03]). In analogy to this question,
some authors have proposed an equivalent approach for studying the number
of oscillations of the period function of a center. Works such as [CRZ11; GLY10;
ZLH13] propose this technique to deal with the lower bounds on the number of
critical periods by using the equivalent to the first-order Melnikov function for
the period.

The main objective of this section is to present a method which allows to ob-
tain high numbers of (local) critical periods with less computational effort, and to
apply it to some low degrees n systems having a center at the origin and consid-
ering only one period annulus. The bifurcation technique uses the development
(2.3) and usually each local oscillation is obtained from a perturbative parameter.
To perform this criticality study, we present an approach which is equivalent to
the use of the first nonidentically zero Melnikov function in the problem of limit
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cycles bifurcation, but adapted to the period function. We prove that the Taylor
development of this first order function can be found from the linear terms of the
corresponding period constants. Later, we consider families which are isochro-
nous centers being perturbed inside the reversible centers class, and we prove
our criticality results by finding the first-order Taylor developments of the period
constants with respect to the perturbation parameters.

Using this technique we have been able to improve the lower bound of C�(n)
known so far for some even values of the degree n, as the following theorem
states.

Theorem 2.29. The number of local critical periods in the family of polynomial time-
reversible centers of degree n is at least κ(n), this is C�(n) ≥ κ(n), where

n 4 6 8 10 12 14 16
κ(n) 10 22 37 57 80 106 136

To the best of our knowledge, the highest lower bound for C�(4) is what we
achieved in Section 2.3 and is also 10. Observe that we do not improve this num-
ber, but we will see that here we obtain the same lower bound for the local criti-
cality with a much simpler method both in conceptual and computational terms.
As in the previous section, the way to prove this result is the local bifurcation
of zeros of the first derivative of the period function (2.3), by finding the highest
value for the multiplicity of a zero of T′ for each degree n. More concretely, this
is done by perturbing inside the time-reversible class some isochronous centers
with homogeneous polynomial nonlinearities.

Let us first introduce how we write the families that we will use throughout
the section. Assume that system (2.2) has an isochronous center, and add a per-
turbation starting with quadratic terms such that in (z, w) coordinates is written
as ⎧⎪⎪⎨⎪⎪⎩

ż = Z(z, w) +
ν

∑
l+m≥2

blmzlwm,

ẇ = Z(z, w) +
ν

∑
l+m≥2

blmzmwl,
(2.57)

where ν is the perturbation degree and blm ∈ C are perturbative parameters.
In general, we will have perturbations such that ν = n, this meaning that the
perturbation degree is actually the system degree. However, in Subsection 2.4.3
we will consider some cases in which ν = n + 1, as we will justify later.

We are interested in reversible perturbations so that the center property is
kept. As Proposition 2.14 states, a perturbation of the form (2.57) is reversible if
it satisfies blm = −blm, or equivalently, it is purely imaginary and blm = i clm for
some clm ∈ R. Therefore, throughout this section we will deal with perturbed
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systems of the form ⎧⎪⎪⎨⎪⎪⎩
ż = Z(z, w) + i

ν

∑
l+m≥2

clmzlwm

ẇ = Z(z, w)− i
ν

∑
l+m≥2

clmzmwl,
(2.58)

with clm ∈ R, which still have a center at the origin despite the perturbation and
being ż = Z(z, w) a planar polynomial system of degree n having an nondegen-
erate isochronous center at the origin.

This whole section is devoted to prove Theorem 2.29, and has the following
structure. Subsection 2.4.1 proves the main result that will be used to obtain
the criticality results from Theorem 2.29, and which is equivalent to Melnikov
functions when dealing with cyclicity. Later, Subsection 2.4.2 characterizes some
isochronous centers of 6th degree and general even degree n. Finally, these iso-
chronous centers are used in Subsection 2.4.3 to show the bifurcation of critical
periods which proves Theorem 2.29. We remark that all the computations have
been done using Maple.

2.4.1 Melnikov technique for the period function

The method we propose to obtain lower bounds on the number of critical peri-
ods is based on the equivalence of a first Melnikov type function for the period
of the perturbation of an isochronous system and the linear developments with
respect to the perturbation parameters of the period constants also near the same
isochronous system. This is our main technique and is presented in the following
result.

Theorem 2.30. Let λ = (a20, a11, . . . , b20, b11, . . .) ∈ R(n2+3n−4)/2 be perturbative pa-
rameters such that the next polynomial perturbations of a system of differential equations
in the plane of the form (2.1),⎧⎪⎪⎨⎪⎪⎩

ẋ = −y + Xc(x, y) +
n
∑

k+l=2
akl xkyl,

ẏ = x + Yc(x, y) +
n
∑

k+l=2
bkl xkyl,

(2.59)

and ⎧⎪⎪⎨⎪⎪⎩
ẋ = −y + Xc(x, y) + ε

n
∑

k+l=2
akl xkyl,

ẏ = x + Yc(x, y) + ε
n
∑

k+l=2
bkl xkyl,

(2.60)
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have a center at the origin which is isochronous respectively when λ = 0 and ε = 0.
Let us denote by T(1)

k (λ) the first-order truncation of the Taylor series, with respect to
λ, of the period constants Tk(λ) of (2.59). If we write the Taylor series in ε of the period
function of system (2.60) as

T(ρ, λ, ε) = 2π +
∞

∑
k=1

Tk(ρ, λ)εk, (2.61)

then, for ρ small enough, the first averaging function T1(ρ, λ) writes as

T1(ρ, λ) =
N

∑
k=1

T(1)
k (λ)

(
1 +

∞

∑
j=1

αkj0ρj

)
ρ2k, (2.62)

with the Bautin ideal2 satisfying 〈T1, . . . , TN, . . . 〉 = 〈T1, . . . , TN〉.

We notice that, by the isochronicity property of the unperturbed system,
T(1)

k (0) = 0. Let us briefly interpret what this theorem is expressing. If we con-
sider a privileged perturbative parameter ε such that the perturbed system is
written as (2.60), by taking its period function (2.61) we can express the power
series of T1(ρ, λ) with respect to ρ and rewrite (2.61) as

T(ρ, λ, ε) = 2π +

(
∞

∑
j=1

θj(λ)ρ
j

)
ε +

∞

∑
k=2

Tk(ρ, λ)εk, (2.63)

for some functions θj(λ). This idea is equivalent to the Melnikov method when
studying limit cycles. Theorem 2.30 states that the first-order coefficients in
T1(ρ, λ) from (2.63), these are functions θj(λ), are exactly the first-order trunca-
tion of the Taylor series of the period constants in (2.15) with respect to λ. This
is inspired by [GT20], where the authors prove the equivalence between the first-
order truncation of the Lyapunov constants and the first Melnikov function for
limit cycles.

The utility of the above result in terms of finding a high number of critical
periods lies in its following corollary.

Corollary 2.31. Let us consider the m × l matrix Gm whose element in position (i, j)
is the coefficient of the jth perturbative parameter in the first-order expression of the ith
period constant of a perturbed system (2.59), so Gm is the matrix of coefficients of the
first-order truncation of the Taylor series of the first m period constants. If the rank of
Gm is N then at least N − 1 critical periods bifurcate from the origin of the center (2.59)
or (2.60).

2The notion of Bautin ideal for period constants is defined in analogy to the Bautin ideal for
Lyapunov constants
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Observe that the size of matrix Gm is determined by the number of considered
period constants m and the number of perturbative parameters l.

Before the proof of Theorem 2.30 and its Corollary 2.31, we will start by illus-
trating the equivalence between both methods with a particular example. Con-
sider the next polynomial system with homogeneous nonlinearities of degree 6
written in polar coordinates as⎧⎪⎪⎨⎪⎪⎩

dr
dt

= r6 (sin ϕ + 2 sin(3ϕ)) =: r6U(ϕ),

dϕ

dt
= 1 − 5

3
r5 (3 cos ϕ + 2 cos(3ϕ)) =: 1 + r5V(ϕ),

(2.64)

which has the form (2.7). It can be shown that this system has a reversible iso-
chronous center at the origin by using that it has a rational first integral, written
in Cartesian coordinates as

H(x, y) =
(x2 + y2)5

1 − 50
3 x5 − 20

3 x3y2 + 10xy4
,

and applying Proposition 2.32. Here, the time-reversibility condition is moved
to the invariance with respect to the change (r, ϕ, t) �→ (r,−ϕ,−t). First we
consider a change of variables r̂ := r5 to simplify notation, then dr̂/dt =
(dr̂/dr) · (dr/dt) = 5r4dr/dt. Therefore, system (2.64) becomes⎧⎪⎨⎪⎩

dr̂
dt

= 5r̂2 U(ϕ),

dϕ

dt
= 1 + r̂ V(ϕ).

Now we add a time-reversible polynomial perturbation with parameters λ =
(λ1, . . . , λ7) ∈ R7 also corresponding to homogeneous nonlinearities of degree 6,
and having the form ⎧⎪⎨⎪⎩

dr̂
dt

= 5r̂2
(

U(ϕ) + Ũ(ϕ, λ)
)

,

dϕ

dt
= 1 + r̂

(
V(ϕ) + Ṽ(ϕ, λ)

)
,

(2.65)

where

Ũ(ϕ, λ) :=λ1 sin ϕ + λ2 sin(3ϕ) + λ3 sin(5ϕ) + λ4 sin(7ϕ),

Ṽ(ϕ, λ) :=− (5λ1 − λ5) cos ϕ − 1
3
(5λ2 − 3λ6) cos(3ϕ) + λ7 cos(5ϕ) + λ1 cos(7ϕ).
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Let us propose a truncated solution up to fourth-order as in (2.9), this is

r̂ = ρ + A2(ϕ)ρ2 + A3(ϕ)ρ3 + A4(ϕ)ρ4.

By using (2.11) and (2.12), we obtain that A2(ϕ) = A3(ϕ) = A4(ϕ) = 0. Now
applying formula (2.14) to first-order terms, we finally write the linear parts with
respect to λ of the first and second period constants as

T(1)
1 =− 5

2
λ5 −

5
3

λ6,

T(1)
2 =

625
27

λ3 −
1000
63

λ4 −
3125

6
λ5 −

3250
9

λ6 +
625
27

λ7.
(2.66)

To exemplify the second method we will consider system (2.65) with a privi-
leged perturbative parameter ε, this is⎧⎪⎨⎪⎩

dr̂
dt

= 5r̂2
(

U(ϕ) + εŨ(ϕ, λ)
)

,

dϕ

dt
= 1 + r̂

(
V(ϕ) + εṼ(ϕ, λ)

)
.

In this case we can express the period function as a power series in ε (see equation
(2.63)), so

T(ρ, λ, ε) = 2π + T1(ρ, λ)ε +
∞

∑
k=2

Tk(ρ, λ)εk,

and then T1(ρ, λ) = ∑∞
j=1 θj(λ)ρ

j. Finally, after performing the calculations we
check that the two first nonzero coefficients θj(λ) are the linear parts of period
constants obtained in (2.66).

Followingly we present the proofs of Theorem 2.30 and Corollary 2.31.

Proof of Theorem 2.30. Consider the series expansions of the perturbative parame-
ters λ in terms of a privileged parameter ε,

λl(ε) =
∞

∑
j=0

λjlε
j, (2.67)

we have that the period function writes

T(ρ, λ) =
N

∑
k=1

Tk(λ)ρ
2k

(
1 +

∞

∑
j=1

αkj(λ)ρ
j

)
,
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with αkj vanishing at zero in the variables λ. We can now consider the power
series expansion in ε of the period function

T(ρ, ε) =
∞

∑
k=1

τk(ρ)ε
k =

∞

∑
k=1

1
k!

(
∂kT(ρ, ε)

∂εk

∣∣∣∣∣
ε=0

)
εk.

Notice that the series representation of the period function is only local, but the
Global Bifurcation Lemma, see [CJ89], implies that the coefficients

τk(ρ) =
1
k!

∂kT(ρ, ε)

∂εk

∣∣∣∣∣
ε=0

are defined and analytic in the period annulus of the center.
Considering the power series expansions (2.67), we have that for each k

Tk(λ(ε)) =
∞

∑
m=1

T(m)
k (λ(ε))εm,

and

αkj(λ(ε)) =
∞

∑
i=0

αkjiε
i.

Rearranging the series for ε and ρ small enough it follows that

T(ρ, ε) =
N

∑
k=1

∞

∑
m=1

T(m)
k εm

(
1 +

∞

∑
i=0

∞

∑
j=1

αkjiρ
jεi

)
ρ2k.

Hence, choosing the coefficient of ε in the equation above –this is m = 1 and
i = 0–, for ρ small we have the expression

T1(ρ) = τ1(ρ) =
N

∑
k=1

T(1)
k

(
1 +

∞

∑
j=1

αkj0ρj

)
ρ2k,

where all T(m)
k depend on λ and, consequently, the first-order truncation of T(1)

k
are linear combinations of the original parameters λ in the statement.

Proof of Corollary 2.31. If the rank of Gm is N, one can rearrange the terms of the
linear parts T(1)

k from expression (2.62) in Theorem 2.30 according to the linear
relationship between the parameters, and by applying Weierstrass Preparation
Theorem (Theorem 1.19), this implies that N − 1 critical periods can bifurcate
from the origin and the statement follows.
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2.4.2 Isochronicity of some even degree systems

In this section we will present some results about the isochronicity of some even
degree systems. As we have already mentioned, the studied polynomial systems
have homogeneous nonlinearities of degree n. We will consider systems with
even n, and the reason is as follows. It is a well-known fact that, as we saw for
Lyapunov constants in Theorem 1.27, given a parametric family of systems, its
period constants are polynomials whose variables are the parameters of the sys-
tem and having a particular structure based on their weight and quasi-degree –for
more details see for instance [Cim+97; GGM99]. It can be checked that this struc-
ture implies that, when the nonlinearities are homogeneous of degree n, some
of the corresponding period constants are identically zero. When n is even and
k = i(n− 1), for i ∈ N, we obtain Tk �≡ 0, while when n is odd this property holds
for k = i(n − 1)/2. Therefore, the computational effort is lower using only homo-
geneous nonlinearities when the objective is to get systems having at the origin
a point with the highest multiplicity value for the period function. Clearly, for
even degrees we can go further with less computations and this allows us to ob-
tain higher criticality. This fact was already observed in the analogous problem of
studying cyclicity using Lyapunov constants –for example, Giné took advantage
of it in [Gin12a; Gin12b].

We will start with the following proposition that characterizes a class of sys-
tems of even degree n, whose proof is a generalization of a reasoning inspired by
reading [CS99].

Proposition 2.32. Let n > 1 be a natural number and p(x, y) a homogeneous polyno-
mial of degree n − 1 such that p(x,−y) ≡ p(x, y). The system{

ẋ = −y + Xn(x, y),
ẏ = x + Yn(x, y),

(2.68)

with Xn(x, y) and Yn(x, y) homogeneous polynomials of degree n, associated to the first
integral

H(x, y) =
(x2 + y2)n−1

1 + p(x, y)
, (2.69)

has a time-reversible (with respect to the x-axis) isochronous center at the origin.

Proof. System (2.68) has a center at the origin because the first integral (2.69) is
well defined and, moreover, it is time-reversible since also the first integral is so.
To see the isochronicity let us first write the first integral (2.69) in polar coordi-
nates,

H(r, ϕ) =
r2(n−1)

1 + rn−1Φ(ϕ)
, (2.70)

where Φ(ϕ) is a trigonometric polynomial in ϕ.
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Due to the reversible linear plus homogeneous structure and the parity of the

polynomials being n even, Φ(ϕ) =
n/2
∑

k=1
ak cos((2k − 1)ϕ). Here we have used the

well-known fact that cos(mϕ) = fm(cos ϕ) and sin((m + 1)ϕ) = gm(cos ϕ) sin ϕ,
where fm and gm are the mth degree Chebyshev polynomials of the first and sec-
ond kind, respectively (see [Riv90] for more information on this topic).

Let us see that this function Φ(ϕ) is actually directly related to the expression
of system (2.68) in polar coordinates. As (2.70) is a first integral, it satisfies ∂H

∂r ṙ +
∂H
∂ϕ ϕ̇ = 0, so

ṙ
ϕ̇
= −

∂H
∂ϕ

∂H
∂r

=
rnΦ′(ϕ)

(n − 1) (2 + rn−1Φ(ϕ))
.

Therefore, system (2.68) is written in polar coordinates as⎧⎪⎪⎨⎪⎪⎩
ṙ = rn Φ′(ϕ)

2(n − 1)
,

ϕ̇ = 1 + rn−1 Φ(ϕ)

2
.

(2.71)

From the level curve H(r, ϕ) = 1/h, where h is an arbitrary nonzero real number,
we obtain hr2(n−1) = 1 + rn−1Φ(ϕ), and solving this second degree equation in
rn−1 we get

rn−1 =
Φ(ϕ)±

√
Φ2(ϕ) + 4h

2h
. (2.72)

From the second differential equation in (2.71) and using (2.72), we obtain that
the period function of the system is

T(r) =
∫ 2π

0

dϕ

1 + rn−1 Φ(ϕ)
2

=
∫ 2π

0

(
1 ± Φ(ϕ)√

Φ2(ϕ) + 4h

)
dϕ

= 2π ±
∫ 2π

0

Φ(ϕ)√
Φ2(ϕ) + 4h

dϕ.

Finally, as Φ(ϕ) is a sum of terms of the form cos((2k − 1)ϕ), it is easy to see that
the last integral is zero by making the change θ = ϕ+π and using the periodicity
of Φ(ϕ). Therefore, the period function is constant and the statement follows.

The next results prove the isochronicity of some 6th degree polynomial sys-
tems, mainly by finding linearizations of them.
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Proposition 2.33. The time-reversible system (with respect to the x-axis) with polyno-
mial homogeneous nonlinearities of 6th degree⎧⎪⎪⎨⎪⎪⎩

ẋ = −y +
32
3

x5y +
80
9

x3y3 − 2
3

xy5,

ẏ = x − 80
9

x6 − 8
3

x4y2 +
55
9

x2y4 + y6,
(2.73)

has an isochronous center at the origin.

Proof. The system has a center due to the fact that it is time-reversible with respect
to the x-axis, since it remains invariant under the change (x, y, t) �→ (x,−y,−t).
The statement follows just checking that the system has a Darboux linearization
(in complex coordinates) of the form (2.5),

χ(z, w) = z χ−1/5
1 χ

4/5
2 χ

1/10
3 χ−3/10

4 ,

with

χ1(z, w) = 1 − 5
144

z5 − 35
36

z4w − 55
8

z3w2 − 35
36

z2w3 − 5
144

zw4,

χ2(z, w) = 1 − 5
144

z4w − 35
36

z3w2 − 55
8

z2w3 − 35
36

zw4 − 5
144

w5,

χ3(z, w) = 1 − 40
27

z4w − 40
9

z3w2 − 40
9

z2w3 − 40
27

zw4,

χ4(z, w) = 1 +
125

7776
z12w3 +

2375
2592

z11w4 +
12875
648

z10w5 +
128375

648
z9w6

+
1081625

1296
z8w7 +

1081625
1296

z7w8 +
128375

648
z6w9 +

12875
648

z5w10

+
2375
2592

z4w11 +
125

7776
z3w12 +

25
72

z8w2 +
325
36

z7w3 +
3575
72

z6w4

− 2125
18

z5w5 +
3575
72

z4w6 +
325
36

z3w7 +
25
72

z2w8 − 5
3

z4w − 35
3

z3w2

− 35
3

z2w3 − 5
3

zw4.

Proposition 2.34. Let H1,H2,H3 ∈ R[x, y] be nonidentically zero homogeneous poly-
nomials with degrees 5, 5, and 10, respectively, such that Hi(x,−y) ≡ Hi(x, y), for
i = 1, 2, 3. A time-reversible polynomial system (with respect to the x-axis) of de-
gree n = 6 of the form (2.1) having an isochronous center at the origin with an
inverse integrating factor of the form V(x, y) =

(
x2 + y2) U1(x, y)U2(x, y), being
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U1(x, y) = 1 +H1(x, y) and U2(x, y) = 1 +H2(x, y) +H3(x, y), writes as⎧⎪⎪⎨⎪⎪⎩
ẋ = −y +

6
5

x5y − 4
5

x3y3,

ẏ = x − x6 +
21
5

x4y2 +
16
5

x2y4,
(2.74)

or ⎧⎪⎪⎨⎪⎪⎩
ẋ = −y +

6
5

x5y − 6
5

xy5,

ẏ = x − x6 +
6
5

x4y2 + 3x2y4 +
4
5

y6.
(2.75)

Proof. We notice that U1(x, y) = 0 and U2(x, y) = 0 are two algebraic invariant
curves which, as well as the inverse integrating factor, are invariant with respect
to the change (x, y) �→ (x,−y). Due to the reversibility, the considered systems
take the form{

ẋ = −y + p1x5y + p2x3y3 + p3xy5 =: P(x, y),
ẏ = x + q1x6 + q2x4y2 + q3x2y4 + q4y6 =: Q(x, y),

(2.76)

and the invariant curves write as

U1(x, y) =1 + a1x5 + a2x3y2 + a3xy4,

U2(x, y) =1 + b1x5 + b2x3y2 + b3xy4

+ c1x10 + c2x8y2 + c3x6y4 + c4x4y6 + c5x2y8 + c6y10.

From the statement it is clear that P, Q, U1, U2 ∈ R[x, y].
As V is actually an inverse integrating factor of system (2.76), the relation

(1.13) must be satisfied. Now equating the corresponding coefficients we obtain
a system of polynomial equations, which can be solved by means of a computer
algebra system. Among the obtained solutions are only interested in those which
satisfy that U1(x, y) �= 0, U2(x, y) �= 0, and r′ �= 0, were r is the radial component
in the usual polar coordinates. The latter condition is imposed in order to avoid
trivial cases, as the fact that r′ = 0 implies that the system can be rescaled to the
canonical linear center (2.4).

The next step is to test those solutions and check if they could correspond to
isochronous centers by computing some period constants. We must reject those
which give period constants that cannot be vanished at the same time, since this
means that they are not isochronous. Finally, we have only two solutions which
are candidates to be isochronous, and correspond to systems (2.74) and (2.75). To
prove the isochronicity of such systems we will propose a linearization in com-
plex coordinates and a transversal commuting system for each of them, and then
apply Theorems 2.1 and 2.6.
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The functions U1, U2 for systems (2.74) and (2.75) that we have obtained are
respectively

UA
1 (x, y) = 1 − 4

3
x5 − 4

3
x3y2,

UA
2 (x, y) = 1 − 2x5 + x10 + x8y2,

and

UB
1 (x, y) = 1 − 2x5 − 4x3y2 − 2xy4,

UB
2 (x, y) = 1 − 2x5 − 2x3y2 + x10 + 3x8y2 + 3x6y4 + x4y6.

The corresponding (complex) linearizations are χA(z, w) = z χA
1 χA

2 with

χA
1 (z, w) = 1 − 1

6
zw4 − 1

2
z2w3 − 1

2
z3w2 − 1

6
z4w,

χA
2 (z, w) = 1 +

1
4

w5 +
7
16

zw4 − 1
4

z2w3 − 7
8

z3w2 − 1
2

z4w − 1
16

z5,

and χB(z, w) = z χB
1 χB

2 with

χB
1 (z, w) = 1 − z3w2 − z2w3,

χB
2 (z, w) = 1 − 1

2
z4w − 5

4
z3w2 +

3
4

zw4.

For the sake of completeness in the isochronicity characterization we have also
found the (real) transversal commuting systems{

ẋ = x
(
1 − x5 + x3y2)UA

1 (x, y),

ẏ = y
(
1 − 6x5 − 4x3y2)UA

1 (x, y),

and {
ẋ = x

(
1 − x5 + 2x3y2 + 3xy4)UB

1 (x, y),

ẏ = y
(
1 − 6x5 − 8x3y2 − 2xy4)UB

1 (x, y),

associated to (2.74) and (2.75), respectively. We notice that the second functions
UA

2 and UB
2 do not appear in the above transversal systems.

2.4.3 Critical periods unfolding

In this subsection we will apply Corollary 2.31 to obtain lower bounds on the
number of critical periods for some polynomial systems to prove Theorem 2.29.
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Before that, we will introduce a notation that will be useful throughout the sub-
section.

Consider a system (2.59) and let r� = (r1, . . . , r�) be the sequence of ranks of
the matrices obtained from the first-order truncated Taylor series of the first �
ordered period constants with respect to the parameters λ, being rk = Rank Gk
and the matrix Gk as defined in Corollary 2.31 from the coefficients of the lin-
ear homogeneous polynomials T(1)

1 (λ), . . . , T(1)
k (λ). In the case that a consecu-

tive subsequence of length m of ranks takes a constant value r̃ (rk = rk+1 =
· · · = rk+m−1 = r̃ for some k, m ∈ N) we will substitute the whole subsequence
rk, rk+1, . . . , rk+m−1 by r̃m.

4th degree systems

Let us consider the following systems with quartic homogeneous nonlinearities,

(ẋ, ẏ) =
(
−y + (a + 4b)x3y + axy3, x + (a + 4b)x2y2 + ay4

)
, (2.77)

(ẋ, ẏ) =
(
−y − 7x3y + 5xy3, x + 3x4 − 10x2y2 − y4

)
, (2.78)

(ẋ, ẏ) =
(
−y − 4x3y + 2xy3, x + 3x4 − 7x2y2 − 4y4

)
, (2.79)

(ẋ, ẏ) =
(
−y + 4x3y + 10xy3, x − 5x2y2 + y4

)
, (2.80)

(ẋ, ẏ) =
(
−y − (4a + 2b)x3y − (4a − 4b)xy3,

x + ax4 + (2a − 5b)x2y2 − (a − b)y4
)

, (2.81)

(ẋ, ẏ) =
(
−y + x3y + xy3, x

)
, (2.82)

(ẋ, ẏ) =
(
−y + 100(a + 3)2x3y + 4(5a − 81)(5a − 9)xy3,

x − 75(a + 3)2x4 − 10(a + 3)(5a − 201)x2y2 + (5a − 9)2y4
)

, (2.83)

for a, b ∈ R. All these systems are reversible with respect to the x-axis, as they
are invariant under the change (x, y, t) �→ (x,−y,−t). The isochronicity of these
systems is studied in [CS99], where the authors make an attempt to characterize
all the isochronous centers of a linear center perturbed with homogeneous poly-
nomials of degree 4. They conclude that the first 6 systems are all the possibilities,
but they do not manage to prove the isochronicity of the latter. The above ordered
list of systems corresponds to the ones in [CS99] labeled as H4i, for i = 1, . . . , 7.
Notice that we have rescaled the systems for the sake of simplicity and switched
their symmetry so that they are reversible with respect to the x-axis as in the rest
of this section.
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Let us observe that we are presenting a technique for the perturbation of iso-
chronous centers and the isochronicity of (2.83) has not been proved. Despite
this, if it was not isochronous the method would be valid anyway, since we could
ask for the vanishing only of the first k period constants for a certain k and the
approach would work anyway if we are not dealing with higher period constants.

In the following proposition we give lower bounds for the criticality of sys-
tems (2.77)–(2.83).

Proposition 2.35. For each system (2.77)–(2.83), let us consider a quartic perturbation
inside the reversible class which starts with quadratic terms as in (2.58). Then the per-
turbation of systems (2.78), (2.79), and (2.80) unfold at least 10 critical periods, while
the perturbation of systems (2.77), (2.82), (2.81), and (2.83) unfold at least 7, 8, 9, and 9
local critical periods, respectively.

Proof. Firstly, for each system we will find the linear part with respect to the per-
turbative parameters of the first 20 period constants perturbed in the reversible
polynomial class detailed in the statement. Secondly, we will evaluate the corre-
sponding sequence of ranks r20. Finally, the statement will follow applying Corol-
lary 2.31. We notice that each lower bound will be the maximum achieved rank
minus 1.

Straightforward computations show that for systems (2.77), (2.82), (2.81) we
have

r20 = (1, 2, 3, 4, 5, 6, 72, 812),
r20 = (1, 2, 3, 4, 5, 62, 7, 83, 99),
r20 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 1011),

respectively, so at least 7, 8, and 9 local critical periods bifurcate from the origin,
respectively. For system (2.83) we obtain the same sequence as for (2.81) and,
consequently, the same number of local critical periods. For all three systems
(2.78), (2.79), and (2.80) we have obtained the best result for these families with
homogeneous nonlinearities because the sequence of ranks is

r20 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 102, 119).

Hence, at least 10 local critical periods bifurcate from the origin and the proof is
finished.

Notice that we have computed a few extra period constants to check that, in
some sense, the sequence of ranks stabilizes and that no extra oscillation of the
period function will easily appear by applying this first-order bifurcation mech-
anism. We remark that the 10 local critical periods obtained above prove the part
of Theorem 2.29 corresponding to degree 4.
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6th degree systems

In this subsection we will study lower bounds for the local criticality of the 6th de-
gree isochronous centers from Subsection 2.4.2 using the tools provided by The-
orem 2.30 and Corollary 2.31, in a similar way to the previous quartic case. The
result is as follows.

Proposition 2.36. For each system (2.73)–(2.75), let us consider a sextic perturbation
inside the reversible class which starts with quadratic terms as in (2.58). Then the per-
turbation of system (2.73) unfolds at least 22 critical periods, while the perturbation of
systems (2.74) and (2.75) unfolds at least 20 local critical periods.

Proof. The proof follows analogously as we have done in Proposition 2.35, the
only difference being the corresponding sequences of ranks. The described per-
turbation provides

r35 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 172, 18, 192, 202, 21, 222, 239),

for (2.73) and

r35 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 172, 18, 192, 203, 2111),

for both systems (2.74) and (2.75). Consequently, the respective lower bounds are
the ones detailed in the statement.

According to our previous result in Section 2.3, the highest achieved lower
bound for C�(6) is 20. Notice that in Proposition 2.36 we have obtained the same
lower bound with systems (2.74) and (2.75) but with a more efficient technique
and, moreover, we have improved it with system (2.73). Actually, the fact that
we obtain at least 22 local critical periods for system (2.73) proves C�(6) ≥ 22 in
Theorem 2.29.

nth degree systems

Here we will study the bifurcation of local critical periods for nth degree isochro-
nous systems, provided by Proposition 2.32, for several values of n. As we have
already mentioned, systems with homogeneous nonlinearities and even degree
will usually have higher criticality than those with odd degree, so we will take
advantage of this fact to also study odd degree systems by perturbing systems of
even degree n − 1 with an odd nth degree perturbation.

Let us start with the following genericity criticality result for 4th and 6th de-
grees.

Proposition 2.37. Isochronous systems (2.68) of degrees n = 4 and n = 6 with a first
integral of the form (2.69), when they are perturbed in the class of reversible polynomials
of degree n, generically unfold 9 and 21 local critical periods, respectively.
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Proof. For the case n = 4 we have a first integral

H4(x, y) =
(x2 + y2)3

1 + ax3 + bxy2 ,

with a, b ∈ R, and the corresponding reversible isochronous system is⎧⎪⎪⎨⎪⎪⎩
ẋ = −y −

(
a − 1

3
b
)

x3y − 2
3

bxy3,

ẏ = x +
1
2

ax4 −
(

1
2

a − 5
6

b
)

x2y2 − 1
6

by4.

Now if we change to complex coordinates and add a quartic reversible perturba-
tion as in (2.58), we can find the first-order developments of the first 10 period
constants and compute their determinant with respect to the perturbative pa-
rameters c02, c03, c04, c11, c12, c13, c20, c21, c22, c30, which after being rescaled via a
multiplicative constant is

(−3045a5 − 17535a4b − 19362a3b2 − 5166a2b3 + 1975ab4 + 125b5)(−42735a5

−126049a4b − 6974a3b2 + 35766a2b3 + 6909ab4 + 475b5)(−295507521a7

−165909573a6b + 517786803a5b2 + 19400559a4b3 − 132219763a3b4

−14086623a2b5 + 4613697ab6 + 320885b7)(a − b)6(3a + b)7.

This determinant is nonzero except for a set of null measure. Therefore, gener-
ically we obtain rank 10 which means 9 local critical periods by using Corol-
lary 2.31.

For the case n = 6, the first integral is

H6(x, y) =
(x2 + y2)5

1 + ax5 + bx3y2 + cxy4 ,

with a, b, c ∈ R, and the corresponding system is⎧⎪⎪⎨⎪⎪⎩
ẋ = −y −

(
a − 1

5
b
)

x5y −
(

4
5

b − 2
5

c
)

x3y3 − 3
5

cxy5,

ẏ = x +
1
2

ax6 −
(

1
2

a − 7
10

b
)

x4y2 −
(

3
10

b − 9
10

c
)

x2y4 − 1
10

cy6.

Analogously to the quartic case, we find the first-order developments of the first
22 period constants of this system after being perturbed and compute their de-
terminant with respect to 22 perturbative parameters. The resulting determinant,
which is a polynomial of degree 92 in (a, b, c), has such a long expression to be



2.4. Criticality via first-order development of period constants 137

written here. We conclude that the rank is generically 22 and the finishes using
again Corollary 2.31.

We have also dealt with systems of higher even degrees n = 8, 10, 12, 14, and
16, as the following proposition states.

Proposition 2.38. There exist isochronous reversible systems of degrees n =
8, 10, 12, 14, and 16 having a first integral of the form (2.69) which unfold at least
37, 57, 80, 106, and 136 local critical periods under a polynomial reversible perturbation
of degree n, respectively.

Proof. Here we will consider perturbations of the form (2.58) being ν = n, this is,
both the isochronous system and the perturbation having the same degree n.

Due to Proposition 2.32, all the chosen systems have an isochronous reversible
center at the origin, so we can follow the same idea and notation as in the proofs
of Propositions 2.35 and 2.36. Hence, by evaluating the sequence of ranks r� for a
high enough number of period constants and applying Corollary 2.31, we deduce
the lower bound for the criticality values detailed in the statement. We will only
list the first integrals, the systems and the sequences of ranks.

For the case n = 8, we propose a first integral

H8(x, y) =
(x2 + y2)7

1 + x7 + 2x5y2 + 3x3y4 + 4xy6 ,

and the corresponding system⎧⎪⎪⎨⎪⎪⎩
ẋ = −y − 5

7
x7y − 6

7
x5y3 − 3

7
x3y5 − 16

7
xy7,

ẏ = x +
1
2

x8 +
11
14

x6y2 +
23
14

x4y4 +
43
14

x2y6 − 2
7

y8.

In this case we have
r64 = (1, 2, 3, . . . , 363, 374, 3813).

In the case n = 10 the first integral and system are, respectively,

H10(x, y) =
(x2 + y2)9

1 + 8x9 + 90x7y2 + 6
7 x5y4 + 5x3y6 − 54xy8

and ⎧⎪⎪⎨⎪⎪⎩
ẋ = −y + 2x9y − 1676

21
x7y3 + x5y5 − 82

3
x3y7 + 30xy9,

ẏ = x + 4x10 + 51x8y2 − 722
21

x6y4 +
55
14

x4y6 − 311
6

x2y8 + 3y10.
(2.84)
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The first 100 period constants of this system provide the following sequence of
ranks

r100 = (1, 2, 3, . . . , 564, 575, 5816).

For n = 12 we take the first integral

H12(x, y) =
(x2 + y2)11

1 + 4x11 + 99x9y2 + 1023
2 x7y4 + 3047

24 x5y6 + 770
3 x3y8 + 44xy10

corresponding to system⎧⎪⎪⎨⎪⎪⎩
ẋ = −y + 5x11y + 3x9y3 − 3071

8
x7y5 + x5y7 − 430

3
x3y9 − 24xy11,

ẏ = x + 2x12 +
113
2

x10y2 +
1233

4
x8y4 − 3103

48
x6y6 +

3085
16

x4y8 + 7x2y10 − 2y12,

(2.85)
which has

r140 = (1, 2, 3, . . . , 796, 805, 8121).

For n = 14 the first integral and the corresponding system are, respectively,

H14(x, y) =
(x2 + y2)13

1 + 10x13 + 221x11y2 + 2691
2 x9y4 − 3x7y6 − x5y8 − 13

8 x3y10

and⎧⎪⎪⎨⎪⎪⎩
ẋ = −y + 7x13y + 3x11y3 − 29619

26
x9y5 + 2x7y7 +

7
104

x5y9 + x3y11,

ẏ = x + 5x14 +
245
2

x12y2 +
3145

4
x10y4 − 24333

52
x8y6 − 259

208
x4y10 +

3
16

x2y12.

(2.86)
The linear parts of the period constants of the above system provide the following
sequence of ranks:

r200 = (1, 2, 3, . . . , 1056, 1067, 10739).

Finally, for degree n = 16 we propose the first integral

H16(x, y) =
(x2 + y2)15

1 − 2x15 + 45x13y2 + 735
2 x11y4 + 3215

2 x9y6 − 40
11 x7y8 − 2x5y10 − 5

3 x3y12
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corresponding to system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋ = −y + 5x15y + 7x13y3 + 3x11y5 − 42470

33
x9y7 + 2x7y9 +

2
3

x5y11 + x3y13,

ẏ = x − x16 +
53
2

x14y2 +
853
4

x12y4 +
1981

2
x10y6 − 64025

132
x8y8 − 9

11
x6y10

−7
6

x4y12 +
1
6

x2y14.
(2.87)

The corresponding sequence of ranks for the linear parts of its period constants
is

r260 = (1, 2, 3, . . . , 1357, 1368, 13744).

The above result provides the proof of all the cases for even n ≥ 8 from The-
orem 2.29. We have not gone further in the degree because we have reached the
computational limit of our computing machines. Inside the considered family
having a first integral of the form (2.69), with the values found in this subsection
for n = 4, 6, 8, 10 we have provided a good lower bound C�(n) ≥ (n2 + 2n− 6)/2,
but the ones for n = 12, 14, 16 are lower than expected. Therefore, this general
family is not good enough to get the previously conjectured value for C�(n), al-
though they are the best values obtained so far.

Finally, we will present a last result concerning systems with odd degrees.

Proposition 2.39. There exist reversible isochronous systems of degrees n = 10, 12, 14,
and 16 having a first integral of the form (2.69) which unfold at least 66, 91, 119, and 151
critical periods, respectively, under a reversible perturbation of odd degree ν = n + 1.

Proof. Here we consider the even degree n reversible isochronous systems (2.84),
(2.85), (2.86), and (2.87) in (2.58) but perturbed with reversible odd degree ν =
n + 1. The proof follows similarly to the previous results, so we only indicate the
respective sequences of ranks for a high enough number of period constants in
order to get the lower bounds written in the statement:

r120 = (1, 2, 3, . . . , 659, 669, 6717),
r170 = (1, 2, 3, . . . , 9011, 9111, 9222),
r230 = (1, 2, 3, . . . , 11813, 11913, 12029),
r300 = (1, 2, 3, . . . , 15015, 15115, 15238).

This technique of using an even degree system with an odd degree perturba-
tion to obtain higher criticality was already introduced in [GLY10], and has re-
sulted in a higher criticality than directly perturbing all our best candidates with



140 Chapter 2. Isochronicity and critical periods

homogeneous nonlinearities of odd degree. It is worth noticing that we have also
tested this approach with odd degrees 5, 7, and 9, but we have not presented them
here because they do not improve the local criticality we already obtained in Sec-
tion 2.3. The bounds we obtain for degrees 11, 13, 15, and 17 in Proposition 2.39
are better than those from Section 2.3 but do not improve the ones from [Cen21].
However, we have explained them anyway because it is interesting to illustrate
how this method works and its efficiency.
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Chapter 3

Simultaneous cyclicity and criticality

As we have seen in the previous chapters, a classical problem in the study of
qualitative theory of planar differential equations in the plane is the second part
of the 16th Hilbert Problem, related to the bifurcation of limit cycles or isolated
periodic orbits in a polynomial class of fixed degree. A large number of works in
this line of research have been published so far for several polynomial families of
differential equations. A different problem that has aroused interest during the
last decades is the study of the isochronicity of a system, as well as its bifurcation
of critical periods. These problems consist on analyzing the flatness and the os-
cillations of the period function of the system, respectively. As a matter of fact,
the bifurcation of limit cycles and critical periods are analogous in terms of the
techniques that can be used to be approached. For this reason, in this chapter
we suggest the study of the bifurcation of limit cycles and critical periods simul-
taneously, a problem that to the best of our knowledge has not been formulated
yet.

3.1 Introduction

Let us consider a real polynomial system of differential equations in the plane
whose origin is a nondegenerate monodromic equilibrium point, so the matrix
associated to the differential system evaluated at the origin has zero trace and
positive determinant. It is a well-known fact that, by a suitable change of coordi-
nates and time rescaling, it can be written in the form{

ẋ = αx − y + X(x, y) =: P(x, y),
ẏ = x + αy + Y(x, y) =: Q(x, y),

(3.1)

being α = 0, where X and Y are polynomials of degree n ≥ 2 which start at least
with quadratic monomials. We can consider system (3.1) in complex coordinates
(z, w) = (z, z) = (x + i y, x − i y), which will be represented by only one equation
as

ż = (α + i)z + Z(z, w) = Z(z, w), (3.2)
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where Z is a polynomial starting with monomials of at least second degree.
Let us consider system (3.1), and perform a (near the identity) change of vari-

ables to a normal form type with action-angle coordinates (�, θ). We will denote
by Od(�) a sum of monomials in � of at least degree d, and the system will become
one of the following normal form type structures:

L The transformed system linearizes, that is, it takes the form (�̇, θ̇) = (0, 1). We
can also say that the origin is an isochronous center.

C The transformed system takes the form (�̇, θ̇) = (0, 1 + Tl�
l + Ol+1(�)). The

origin is a center with weakness of order l on the period.

W The transformed system takes the form (�̇, θ̇) = (Vk�k + Ok+1(�), 1). The ori-
gin is an isochronous weak focus of order k.

B The remaining case is when both the center and isochronicity properties are
not kept at the same time. Hence, the transformed system takes the general
form {

�̇ = Vk�k + Ok+1(�),
θ̇ = 1 + Tl�

l + Ol+1(�).
(3.3)

For more details on normal forms theory for planar vector fields we refer the
reader to [CLW94; HY12].

It is usual to restrict the study of the period function to the class of centers,
i.e. systems that remain in type C in the aforementioned normal form changes
of variables classification. The study of the global monotonicity or the num-
ber of total oscillations of such function are difficult problems, see for example
[Chi87; CMV99; MMJR97; Zha02] and the references therein. There are not so
many global studies of the period function for general classes of centers. Gavrilov
([Gav93]) proved the existence of at most one critical period for the Hamilto-
nian potentials x′′ + x + ax2 + bx3 = 0, a problem started by Chow and Sanders
([CS86]) in 1986. In 2006, Mañosas and Villadelprat ([MV06]) proved that the
derivative of the period function for Hamiltonian potentials x′′ + x + ax3 + bx5 =
0 has only one zero. Some years later, Grau and Villadelprat ([GV10]) proved that
only two critical periods appear in some cubic homogeneous nonlinearity classes.
In those cases, we say that the systems have one and two critical periods, respec-
tively. For centers in the quadratic class, the most relevant study was done by
Chicone and Jacobs in 1989 ([CJ89]). Among others, they studied the local prob-
lem for the quadratic family, proving that only two critical periods bifurcate from
the center equilibrium point. The answer for the global problem remains open.
The greatest difficulty to deal with is the fact that the outer boundary of the pe-
riod annulus changes together with the parameters inside a fixed family, see for
example [GMM02; Swi99]. Hence, the usual perturbation techniques are not use-
ful and new tools need to be developed ([MV21]). As we have described, the



3.1. Introduction 143

maximal number of zeros of the derivative of the period function under pertur-
bation (in some fixed class) is known as the criticality of the center. This problem
has been studied for low degree polynomial vector fields in the class of reversible
centers in Sections 2.3 and 2.4 (see also [ST21c; ST21a]).

Similarly to the above problem, we can restrict our analysis to the class of
vector fields that remain in type W. This is the case associated to the problem
of studying isochronous foci, a problem that was addressed for example by Giné
in [Gin03; GG05; GL05]. In this special class, the cyclicity problem is also an
interesting problem to be approached, which up to our knowledge is not com-
pletely solved even for low degree vector fields. A special family of systems in
this class are the so-called rigid (or uniformly isochronous) systems. They satisfy
that ϕ̇ = 1 in the usual polar coordinates. Inside this class, quadratics have no
limit cycles and there are cubics with at least two ([GPT05]), but there is no an-
swer for the global question about the total number of limit cycles in rigid cubic
systems.

With this chapter we aim to initiate a sort of mixed or simultaneous bifur-
cation problem. From the above explanation, we will start by introducing the
notions of simultaneous cyclicity and criticality and bi-weak monodromic equi-
librium point.

Definition 3.1. We say that the simultaneous cyclicity and criticality of the origin of
system (3.1) is (k, l) ∈ (N ∪ {∞})2, or that the system has configuration (k, l), if k
limit cycles and l critical periods bifurcate from the origin. If α = 0, we denote k = ∞
when the origin is a center and l = ∞ when it is isochronous.

Definition 3.2. We say that the origin of system (3.1) is a bi-weak monodromic equilib-
rium point with normal form of type [k, l], or for brevity bi-weak [k, l] type of bi-weak of
type [k, l], if there exists a (near the identity) change to normal form such that the system
becomes (3.3) in a neighborhood of the origin. We denote k = ∞ if the origin is a center
and l = ∞ if the origin is isochronous. In the case k �= ∞, we will also refer to a bi-weak
[k, l] type as a bi-weak [k, l] focus.

When α = 0, the origin of system (3.1) can be a either a center or a weak focus
of a certain order. This classical notion of order will be recalled in the next section,
where we will generalize it to the bi-weak type by adding also the study of the
first nonzero term in the second component of (3.3). This gives birth to the idea
of duality in weakness of a nonisochronous focus. In this chapter we will restrict
our analysis to the case in which the transversal section is the horizontal axis.

As we will see in Section 3.2, we start by observing that for a bi-weak [k, l]
focus k will always be odd, since it is a well-known fact that the first nonzero
Lyapunov constant of a system has odd subscript (Lemma 1.8). We also know
that the first nonzero period constant of a center has even subscript (Theorem 2.7),
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so if k = ∞ then l is even. However, this is not the case for systems which do not
have a center at the origin. For instance, let us consider the quadratic system⎧⎪⎪⎨⎪⎪⎩

ẋ = −y + x2 − 10
9

xy,

ẏ = x + x2 + 4xy − 25
9

y2.
(3.4)

For this system, the origin is bi-weak of type [3, 3], because we can easily find that
the first nonzero Lyapunov constant is V3 = π and the first nonzero coefficient of
the period function is T3 = π, so the origin is not a center because V3 �= 0 and we
have T3 �= 0. Therefore, if the center property is not kept then the property which
states that the first nonzero period constant has even subscript does not hold.

As we have established, k = ∞ means that the system has a center at the
origin, so all Lyapunov constants would vanish and the Poincaré return map Π
is the identity, i.e. Π(x) ≡ x. Analogously, l = ∞ means isochronicity and all
period constants would vanish in this case, so the period function T is constant.
Consequently, an isochronous center would be [∞, ∞]. Setting these notations and
fixing a class of systems, we have two different problems, one being to find the
maximal simultaneous cyclicity and criticality (k, l), and another being to find
the highest finite bi-weak [k, l] type –more concretely, when both components of
the pair are finite. Observe that this last problem is different from finding the
highest finite values k and l of bi-weak [k, ∞] or [∞, l] types. It is also different
from finding the classical highest weak focus order of a monodromic equilibrium
point.

As we will see in the following, the values for k, l will be not the same in both
problems. This is due to the fact that in the classical Hopf bifurcation, when only
one limit cycle bifurcate from the origin of (3.1), the stability of the equilibrium
point (with α = 0) is given by the sign of V3.

The main purpose of this chapter is to present the problems of simultaneous
cyclicity and criticality and bi-weak systems with [k, l] normal form type, as well
as some useful tools to deal with them. The first result we present is related
to bi-weak [k, l] foci in Liénard, quadratic, and linear plus cubic homogeneous
systems.

Theorem 3.3. (i) There exist cubic Liénard systems of the form{
ẋ = −y + a2x2 + a3x3,
ẏ = x + b2x2 + b3x3,

(3.5)

being a2, a3, b2, b3 ∈ R, which have a bi-weak [5, 4] focus at the origin.
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(ii) There exist quartic Liénard systems of the form{
ẋ = −y + a2x2 + a3x3 + a4x4,
ẏ = x + b2x2 + b3x3 + b4x4,

(3.6)

being a2, a3, a4, b2, b3, b4 ∈ R, which have a bi-weak [7, 6] focus at the origin.

(iii) There exist quadratic systems of the form{
ẋ = −y + a20x2 + a11xy + a02y2,
ẏ = x + b20x2 + b11xy + b02y2,

(3.7)

being a20, a11, a02, b20, b11, b02 ∈ R, which have a bi-weak [5, 4] focus at the origin.

(iv) There exist linear plus cubic homogeneous systems of the form{
ẋ = −y + a30x3 + a21x2y + a12xy2 + a03y3,
ẏ = x + b30x3 + b21x2y + b12xy2 + b03y3,

(3.8)

being a30, a21, a12, a03, b30, b21, b12, b03 ∈ R, which have a bi-weak [7, 6] focus at
the origin.

The second result solves the complete classification of the simultaneous cyclic-
ity and criticality for cubic Liénard systems.

Theorem 3.4. For the cubic Liénard family (3.5), adding the trace parameter α as in
(3.1), we have the following possible configurations of simultaneous cyclicity and criti-
cality:

(i) for the center case we can obtain either (∞, 1), i.e. at most 1 critical period, or an
isochronous center (∞, ∞);

(ii) if the center property is not kept then the maximal simultaneous cyclicity and criti-
cality has configurations (1, 3) and (2, 3), and if k ≥ 3 then (k, l) = (∞, l) so it is
a center;

(iii) the system does not have isochronous foci at the origin, i.e. if (k, ∞) then k = ∞.

This chapter is structured as follows. In Section 3.2 we introduce the classical
methods to find Lyapunov and period constants as well as a method which uses
the Lie bracket. We also discuss the pros and cons of each of the approaches.
The presented Lie bracket method is used in Section 3.3 to study the bi-weakness
of Liénard, quadratic, and linear plus cubic homogeneous systems in order to
prove Theorem 3.3. Finally, in Section 3.4 we show some properties of several
Liénard systems and give the isochronicity conditions for some cases, and finish
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by proving Theorem 3.4. We remark however that the aim of this chapter is not to
provide any isochronicity characterization, not even for an a priori simple class
of systems as the Liénard family, a characterization of which has been obtained
very recently in [Ame21].

3.2 Lyapunov and period constants computation

Throughout this section we will introduce two methods to find Lyapunov and
period constants. First, we present a generalization of the mathematical object
known as Lie bracket introduced in Chapter 2. Then, we describe the classical
method to find Lyapunov and period constants by means of integrating the sys-
tem. Notice that we have already seen this method in the previous chapters,
but we include them also here for completeness to show how one actually can
find Lyapunov and period constants analogously. Then we describe a technique
based on the Lie bracket which also enables to find Lyapunov and period con-
stants under certain conditions, and we finish the section with a discussion of its
advantages and drawbacks.

3.2.1 Generalization of the Lie bracket

In this subsection we present the Lie bracket, a powerful tool to study the iso-
chronicity of a system and to find its Lyapunov and period constants under cer-
tain conditions that we will see. Even though we gave a first overview on the
Lie bracket in Subsection 2.1.1 from Chapter 2, we present here a more general
point of view. In particular, here we generalize the notion of Lie bracket to gen-
eral complex vector fields, instead of considering it only for complex vector fields
associated to real vector fields.

Definition 3.5. We define the Lie bracket of two planar vector fields F1 = (F1
1 , F2

1 ) and
F2 = (F1

2 , F2
2 ) in variables (x, y) ∈ K2, where K = R or C, as a new vector field which

has the form

[F1, F2] =

(
∂F1

1
∂x

F1
2 +

∂F1
1

∂y
F2

2 − ∂F1
2

∂x
F1

1 − ∂F1
2

∂y
F2

1 ,

∂F2
1

∂x
F1

2 +
∂F2

1
∂y

F2
2 − ∂F2

2
∂x

F1
1 − ∂F2

2
∂y

F2
1

)
.

(3.9)

Let us consider now the Lie bracket in the case of having two complex planar
vector fields Z ,U , corresponding to two real vector fields. Observe that, in such
situation, second components are obtained by complex conjugation of first com-
ponents, thus both vector fields Z and U and their Lie bracket can be described
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only from their first components, so in some cases we will simply write the Lie
bracket as in (2.6).

3.2.2 The classical method

We start by presenting the classical method of finding Lyapunov and period con-
stants. Let us write system (3.1), with α = 0, in polar coordinates by performing
the usual change (x, y) = (r cos ϕ, r sin ϕ), and one obtains⎧⎪⎪⎪⎨⎪⎪⎪⎩

ṙ =
n−1
∑

i=1
Ui(ϕ)ri+1,

ϕ̇ = 1 +
n−1
∑

i=1
Wi(ϕ)ri,

(3.10)

where Ui(ϕ) and Wi(ϕ) are homogeneous polynomials in sin ϕ and cos ϕ of de-
gree i + 2. Eliminating time and doing the Taylor series expansion in r we obtain

dr
dϕ

=
∞

∑
j=2

Rj(ϕ)rj. (3.11)

The initial value problem for (3.11) with the initial condition (r, ϕ) = (ρ, 0) has a
unique analytic solution which can be expanded as

r(ϕ, ρ) = ρ +
∞

∑
j=2

uj(ϕ)ρj. (3.12)

As r(0, ρ) = ρ, it immediately follows that uj(0) = 0 for every j. Let us study the
stability near the origin, r = 0, by using

r(2π, ρ) = ρ + Vk ρk + Ok+1(ρ), (3.13)

where Vk := uk(2π) is the first coefficient which does not vanish. It is a well-
known fact that the first nonidentically zero Vk has odd k ([And+73; RS09]). As a
consequence, expression (3.13) can be rewritten as

r(2π, ρ) = ρ + V2m+1 ρ2m+1 + O2m+2(ρ).

We will denote the V2m+1 with odd subscript as Lm := V2m+1, and these values
are the Lyapunov constants. These objects are the key tool to study the center and
cyclicity problems of a system of the form (3.1). Observe that r(2π, ρ) indicates
the radius after a whole loop starting in the initial value ρ, and then we define the
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Poincaré map

Π(ρ) := ρ +
∞

∑
j=3

Vj ρj.

Alternatively, this can be written as

Δ(ρ) := Π(ρ)− ρ =
∞

∑
j=3

Vj ρj, (3.14)

which is the so-called displacement map. We recall that we are taking a nonde-
generate equilibrium point with zero trace, i.e. α = 0.

Now let us illustrate how the period constants can be found, for which the
reader is referred to [Mn95; RS09; ST21a], or to Chapter 2. First, we substitute the
power series (3.12) into the second equation of (3.10), which yields a differential
equation of the form

dϕ

dt
= 1 +

∞

∑
i=1

Fi(ϕ)ρi,

for some trigonometric polynomials Fi(ϕ). Rewriting this equation as

dt =
dϕ

1 +
∞
∑

i=1
Fi(ϕ)ρi

=

(
1 +

∞

∑
i=1

Ψi(ϕ)ρi

)
dϕ

and integrating ϕ from 0 to 2π yields the period function

T(ρ) =
∫ T(ρ)

0
dt =

∫ 2π

0

(
1 +

∞

∑
i=1

Ψi(ϕ)ρi

)
dϕ = 2π +

∞

∑
i=1

(∫ 2π

0
Ψi(ϕ) dϕ

)
ρi,

(3.15)
where the series converges for 0 ≤ ϕ ≤ 2π and sufficiently small ρ ≥ 0. In the
center case, (3.15) can be seen as the lowest period of the trajectory of (3.1) passing
through (x, y) = (ρ, 0) for ρ �= 0, and this is known as the period function. The
coefficients Ti of this function are then given by the expression

Ti =
∫ 2π

0
Ψi(ϕ) dϕ, (3.16)

and the first nonzero Tl is the lth period constant of the system.
If we assume now that system (3.10) depends on some parameters λ ∈ Rd, we

can follow exactly the same procedure as before, and now we have that both the
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Lyapunov constants Vk = uk(2π, λ) and the period constants

Tl(λ) =
∫ 2π

0
Ψl(ϕ, λ) dϕ (3.17)

are polynomials in the parameters λ (see [Cim+97; RS09]).
Finally, we consider the case with nonzero trace (α �= 0). The following result

studies how the return map and the period function, together with cyclicity and
criticality, change when the considered system has nonzero trace.

Lemma 3.6. Let us consider a system of the form (3.1) with V3 �= 0, T2 �= 0, and nonzero
trace, written as {

ẋ = αx − y + a20x2 + a11xy + a02y2 + X̃(x, y),
ẏ = x + αy + b20x2 + b11xy + b02y2 + Ỹ(x, y),

(3.18)

where X̃ and Ỹ are polynomials of degree n ≥ 3 which start at least with cubic monomials,
and α �= 0.

(i) The displacement map (3.14) in this case has the form

Δ(ρ) = (e2πα −1)ρ + V3ρ3 + O4(ρ). (3.19)

If α V3 < 0, then a unique limit cycle bifurcates from the origin due to a Hopf
bifurcation.

(ii) The period function (3.15) in this case has the form

T(ρ) = 2π + (e2πα −1)T̃1(α) ρ + T2ρ2 + O3(ρ), (3.20)

where

T̃1(α)=
−α3b20 − α2a20 + α2b11 + 2αa11 − 2αb02 − 7αb20 − 6a02 − 3a20 + 3b11

α4 + 10α2 + 9
.

If (e2πα −1) T̃1(α) T2 < 0, then a unique critical period bifurcates from the origin.

Proof. It is a well-known fact and a straightforward computation that the dis-
placement map of system (3.18) has the form (3.19). Thus, as α and e2πα −1 have
the same sign, it is immediate to see that if α V3 < 0 then Δ(ρ) has an extra change
of sign in the coefficients of ρ, so a new positive zero can appear and this implies
the unfolding of an extra limit cycle of small amplitude.

For the case of the period, we can change system (3.18) to polar coordinates
and integrate the angular equation of dϕ/dt as we did above. After doing the
computations, we obtain that the period function in the case of nonzero trace be-
comes (3.20). Notice that in (3.18) we have only considered the coefficients of the
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quadratic part because by construction they are the only ones which can actually
play a part in the coefficient of ρ in the period function, in the sense that higher
degree coefficients would appear in higher degree terms of the period function.
Now if (e2πα −1)T̃1(α) T2 < 0, there is an extra change of sign in the coefficients of
the period function, which implies the bifurcation of an extra critical period.

3.2.3 Lyapunov and period constants via the Lie bracket

In the previous subsection we presented the classical method to compute Lya-
punov and period constants. Such method involves some integrals (equations
(3.16), (3.17)) which easily become too difficult to be explicitly obtained, so this
technique is not useful in many cases. To deal with this inconvenience, a method
to find period constants which is based on the Lie bracket tool was introduced
in [Mn95] and recently used in [ST21c; ST21a] (corresponding to Sections 2.3,2.4
from Chapter 2). However, this technique was only valid when the origin is a cen-
ter, which is not our case in this chapter, since we aim to study cyclicity and criti-
cality simultaneously. Here we present a new approach based on the Lie bracket
which will allows to find both Lyapunov and period constants at the same time.
This method will provide some valuable advantages, even though it also has its
limitations.

Let us consider system (3.2) with α = 0. By applying near the identity changes
of variables, as the spirit of normal form transformations, such system can be
simplified to

ż = i z +
N

∑
j=1

(α2j+1 + i β2j+1)z(zw)j + O2N+3(z, w), (3.21)

where N ∈ N is arbitrary, O2N+3(z, w) denotes a sum of monomials of degree at
least 2N + 3 in z and w, and α2j+1, β2j+1 ∈ R (see [AFG00] for more details). Let
us consider the truncation of differential system (3.21)

ż = i z +
N

∑
j=1

(α2j+1 + i β2j+1)z(zw)j. (3.22)

Proposition 3.7. System (3.22) in polar coordinates takes the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
ṙ =

N
∑

j=1
α2j+1r2j+1,

ϕ̇ = 1 +
N
∑

j=1
β2j+1r2j.

(3.23)
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Proof. The proof is straightforward by applying the change of variables (r, ϕ) �→
(z, w) =

(
r ei ϕ, r e− i ϕ

)
to differential equation (3.23). Indeed,

ż =ṙ ei ϕ + i rϕ̇ ei ϕ =

(
N

∑
j=1

α2j+1r2j+1

)
ei ϕ + i r ei ϕ

(
1 +

N

∑
j=1

β2j+1r2j

)

=z

(
N

∑
j=1

α2j+1r2j

)
+ i z

(
1 +

N

∑
j=1

β2j+1r2j

)
= i z +

N

∑
j=1

(α2j+1 + i β2j+1)z(zw)j,

where we have used the trivial relation r2 = zw.

The next result shows how we can compute the Lyapunov and period con-
stants of (3.22) by using the Lie bracket. This result was previously obtained in
[Mn95], but its proof is included here for completeness.

Theorem 3.8. Let us denote by Z the vector field (3.22), and consider the vector field

U defined by the differential equation ż = z +
∞
∑

k=2N+2

k
∑

l=0
Ak−l,lzk−lwl. Then the Lie

bracket between Z and U has the form

[Z ,U ] =
(

N

∑
j=1

p2j+1z(zw)j + O2N+2(z, w),
N

∑
j=1

p2j+1w(zw)j + O2N+2(z, w)

)
,

where O2N+2(z, w) denotes a sum of monomials of degree at least 2N + 2 in z and w,
and

V2j+1 =
1
2j

Re(p2j+1) =
p2j+1 + p2j+1

4j
= α2j+1, (3.24)

T2j =
1
2j

Im(p2j+1) =
p2j+1 − p2j+1

4j i
= β2j+1, (3.25)

are the coefficients of the return map and the period function of system (3.22), respectively.

Proof. Observe that, by Proposition 3.7, the quantities α2j+1 and β2j+1 from (3.22)
are in fact the Lyapunov and period constants, respectively, of the system in this
normal form.

Let us compute the Lie bracket between Z and U . Actually, we only need to
find the first component [Z ,U ]1 of such operation, since its second component is
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its complex conjugate.

[Z ,U ]1 =

(
i+

N

∑
j=1

(α2j+1 + i β2j+1)(j + 1)(zw)j
)(

z +
∞

∑
k=2N+2

k

∑
l=0

Ak−l,lzk−lwl
)

+

( N

∑
j=1

(α2j+1 + i β2j+1)jzj+1wj−1
)(

w +
∞

∑
k=2N+2

k

∑
l=0

Ak−l,lzlwk−l
)

−
(

1 +
∞

∑
k=2N+2

k−1

∑
l=0

Ak−l,l(k − l)zk−l−1wl
)(

i z +
N

∑
j=1

(α2j+1 + i β2j+1)z(zw)j
)

−
( ∞

∑
k=2N+2

k

∑
l=1

Ak−l,l lzk−lwl−1
)(

− i w +
N

∑
j=1

(α2j+1 − i β2j+1)w(zw)j
)

=
N

∑
j=1

2j(α2j+1 + i β2j+1)z(zw)j + O2N+2(z, w)

= :
N

∑
j=1

p2j+1z(zw)j + O2N+2(z, w),

and the second component is, by conjugation,

[Z ,U ]2 =
N

∑
j=1

2j(α2j+1 − i β2j+1)w(zw)j + O2N+2(z, w)

=
N

∑
j=1

p2j+1w(zw)j + O2N+2(z, w).

Notice that we have denoted by p2j+1 the coefficient of the Lie bracket with
degree 2j + 1, and it has the expression p2j+1 = 2j(α2j+1 + i β2j+1). Finally, as we
observed that α2j+1 and β2j+1 are the Lyapunov and period constants of system
(3.22), formulas (3.24) and (3.25) follow.

Remark 3.9. It is worth remarking that this Lie bracket method does not allow to obtain
the general expression of the Lyapunov and period constants V2j+1 and T2j, but only
under the conditions V2i+1 = T2i = 0 for every i < j. In this sense, and with a slight
abuse of notation, when using the Lie bracket method throughout this chapter we will
denote by V2j+1 the jth Lyapunov constant assuming that V2i+1 = T2i = 0 for every
i < j, and by T2j the jth period constant assuming that V2i+1 = T2i = 0 for every i < j.

We have seen that, when having a system in normal form (3.22), one can use
the Lie bracket to find the corresponding Lyapunov and period constants. The
last step is to prove that, in fact, the system does not have to be necessarily in
such normal form. In other words, we will show that the method is equally valid
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if a change of variables is performed on the system, and this will allow to apply
the Lie bracket method to general systems of the form (3.2) and not only to those
which are in normal form.

Before the main result we present the following lemma.

Lemma 3.10. Let φ = (φ1, φ2) : K2 → K2, where K = R or C, be a C2-diffeomorphism
which maps (u, v) ∈ K2 to new variables (x, y) = φ(u, v) = (φ1(u, v), φ2(u, v)) ∈
K2, and whose inverse is (u, v) = φ−1(x, y) = (φ−1

1 (x, y), φ−1
2 (x, y)). Then the follow-

ing equivalences hold:

∂φ−1
1

∂x
(x, y) · ∂φ1

∂u
(φ−1(x, y)) +

∂φ−1
1

∂y
(x, y) · ∂φ2

∂u
(φ−1(x, y)) = 1, (3.26)

∂φ−1
2

∂x
(x, y) · ∂φ1

∂v
(φ−1(x, y)) +

∂φ−1
2

∂y
(x, y) · ∂φ2

∂v
(φ−1(x, y)) = 1, (3.27)

∂φ−1
1

∂x
(x, y) · ∂φ1

∂v
(φ−1(x, y)) +

∂φ−1
1

∂y
(x, y) · ∂φ2

∂v
(φ−1(x, y)) = 0, (3.28)

∂φ−1
2

∂x
(x, y) · ∂φ1

∂u
(φ−1(x, y)) +

∂φ−1
2

∂y
(x, y) · ∂φ2

∂u
(φ−1(x, y)) = 0. (3.29)

Proof. The proof is straightforward by applying the chain rule for two variable
functions. For (3.26), we use that φ1(u, v) = x and φ2(u, v) = y and the chain rule
to rewrite it as

∂φ−1
1

∂x
(x, y) · ∂x

∂u
(φ−1(x, y)) +

∂φ−1
1

∂y
(x, y) · ∂y

∂u
(φ−1(x, y)) =

∂φ−1
1 (x, y)

∂u
=

∂u
∂u

= 1.

For (3.27), (3.28), and (3.29), we follow an analogous procedure and we obtain that
they are equivalent to ∂v/∂v = 1, ∂u/∂v = 0, and ∂v/∂u = 0, respectively.

Theorem 3.11. Let us consider two vector fields F1 = (F1
1 , F2

1 ) and F2 = (F1
2 , F2

2 )
in variables (u, v) ∈ K2, where K = R or C. Let φ = (φ1, φ2) : K2 →
K2 be a C2-diffeomorphism which maps (u, v) ∈ K2 to new variables (x, y) =
φ(u, v) = (φ1(u, v), φ2(u, v)) ∈ K2, and whose inverse is (u, v) = φ−1(x, y) =
(φ−1

1 (x, y), φ−1
2 (x, y)). Let us denote by G1 = (G1

1, G2
1) and G2 = (G1

2, G2
2) the vector

fields F1 and F2, respectively, in variables (x, y) after applying the change of variables
(x, y) = φ(u, v). Then the following equivalence between the Lie brackets of F1, F2 and
G1, G2 holds:

[G1, G2]
T = Jφ(φ

−1(x, y)) · [F1, F2]
T
φ−1(x,y), (3.30)

where Jφ(φ−1(x, y)) is the Jacobian matrix of φ(u, v) evaluated at (u, v) = φ−1(x, y),
[F1, F2]φ−1(x,y) denotes the Lie bracket between F1 and F2 also evaluated at (u, v) =

φ−1(x, y), and the superscript T denotes the transpose vector.
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Proof. Let us start by observing that equivalence (3.30) can be rewritten in matrix
form as

(
[G1, G2]

1

[G1, G2]
2

)
=

⎛⎜⎜⎝
∂φ1

∂u
(φ−1(x, y))

∂φ1

∂v
(φ−1(x, y))

∂φ2

∂u
(φ−1(x, y))

∂φ2

∂v
(φ−1(x, y))

⎞⎟⎟⎠ ·
(
[F1, F2]

1
φ−1(x,y)

[F1, F2]
2
φ−1(x,y)

)
. (3.31)

We will only prove the first component of equivalence (3.31), since the second
one can be analogously seen. Then, our aim is to show that

[G1, G2]
1 =

∂φ1

∂u
(φ−1(x, y)) · [F1, F2]

1
φ−1(x,y) +

∂φ1

∂v
(φ−1(x, y)) · [F1, F2]

2
φ−1(x,y).

(3.32)
The idea of the proof is to develop the expression of [G1, G2]

1 when perform-
ing the change of variables φ and to check that it satisfies (3.32). First we will see
how G1 and G2 can be expressed in terms of F1 and F2. Let us denote by G̃j

i (u, v)
the vector field such that Gj

i (x, y) = (G̃j
i ◦ φ−1)(x, y) for i, j = 1, 2. As vector

fields G1
i and G2

i correspond respectively to ẋ and ẏ, we can take the derivative of
(x, y) = φ(u, v) with respect to time and apply the chain rule to see that

G̃j
i =

∂φj

∂u
F1

i +
∂φj

∂v
F2

i , (3.33)

since vector fields F1
i and F2

i correspond respectively to u̇ and v̇.
The first partial derivative we need to find for [G1, G2]

1 is ∂G1
1/∂x and, by

applying the chain rule, it is

∂G1
1

∂x
(x, y) =

∂(G̃1
1 ◦ φ−1)

∂x
(x, y)

=
∂G̃1

1
∂u

(φ−1(x, y)) · ∂u
∂x

+
∂G̃1

1
∂v

(φ−1(x, y)) · ∂v
∂x

.

(3.34)

We can find the expression for ∂G̃1
1/∂u by taking the derivative of (3.33) with

respect to u, and we get

∂G̃1
1

∂u
=

∂

∂u

(
∂φ1

∂u
F1

1 +
∂φ1

∂v
F2

1

)
=

∂2φ1

∂u2 F1
1 +

∂φ1

∂u
∂F1

1
∂u

+
∂2φ1

∂u∂v
F2

1 +
∂φ1

∂v
∂F2

1
∂u

.

To find ∂G̃1
1/∂v we proceed analogously. Now, by substituting these two expres-

sions in (3.34), we get ∂G1
1/∂x in terms of the derivatives of F1 and F2 as we

wanted. The same procedure can be applied to ∂G1
1/∂y, ∂G1

2/∂x, and ∂G1
2/∂y,

and then we have all the terms of [G1, G2]
1 expressed with F1 and F2.
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For the sake of compactness, from now on we will use the following notation
to write this expression of [G1, G2]

1:

φju =
∂φj

∂u
(φ−1(x, y)), φjv =

∂φj

∂v
(φ−1(x, y)), φjuu =

∂2φj

∂u2 (φ
−1(x, y)),

φjuv =
∂2φj

∂u∂v
(φ−1(x, y)) =

∂2φj

∂v∂u
(φ−1(x, y)), φjvv =

∂2φj

∂v2 (φ−1(x, y)).

Also, with a slight abuse of notation, we will denote the derivatives
(∂Fj

i /∂u)(φ−1(x, y)) and (∂Fj
i /∂v)(φ−1(x, y)) simply as ∂Fj

i /∂u and ∂Fj
i /∂v, re-

spectively.
The expression of [G1, G2]

1 can then be written as

[G1, G2]
1 =

∂G1
1

∂x
G1

2 +
∂G1

1
∂y

G2
2 −

∂G1
2

∂x
G1

1 −
∂G1

2
∂y

G2
1

=

((
φ1uuF1

1 + φ1u
∂F1

1
∂u

+ φ1uvF2
1 + φ1v

∂F2
1

∂u

)
∂u
∂x

+

(
φ1uvF1

1 + φ1u
∂F1

1
∂v

+ φ1vvF2
1 + φ1v

∂F2
1

∂v

)
∂v
∂x

)(
φ1uF1

2 + φ1vF2
2

)
+

((
φ1uuF1

1 + φ1u
∂F1

1
∂u

+ φ1uvF2
1 + φ1v

∂F2
1

∂u

)
∂u
∂y

+

(
φ1uvF1

1 + φ1u
∂F1

1
∂v

+ φ1vvF2
1 + φ1v

∂F2
1

∂v

)
∂v
∂y

)(
φ2uF1

2 + φ2vF2
2

)
−
((

φ1uuF1
2 + φ1u

∂F1
2

∂u
+ φ1uvF2

2 + φ1v
∂F2

2
∂u

)
∂u
∂x

+

(
φ1uvF1

2 + φ1u
∂F1

2
∂v

+ φ1vvF2
2 + φ1v

∂F2
2

∂v

)
∂v
∂x

)(
φ1uF1

1 + φ1vF2
1

)
−
((

φ1uuF1
2 + φ1u

∂F1
2

∂u
+ φ1uvF2

2 + φ1v
∂F2

2
∂u

)
∂u
∂y

+

(
φ1uvF1

2 + φ1u
∂F1

2
∂v

+ φ1vvF2
2 + φ1v

∂F2
2

∂v

)
∂v
∂y

)(
φ2uF1

1 + φ2vF2
1

)
.

(3.35)

This expression can be expanded, and a long sum of terms in products of
F1

1 , F2
1 , F1

2 , F2
2 and their derivatives is obtained. Even though we will not show

the complete expansion here due to length reasons, we will split it into several
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parts and see what happens in each case.
First, it is straightforward to see that the terms with F1

1 F1
2 cancel with each

other, as well as those terms with F2
1 F2

2 . Now let us focus on the terms with F1
1 F2

2
and F2

1 F1
2 . The coefficient of F1

1 F2
2 in (3.35) is((

∂v
∂x

φ1v +
∂v
∂y

φ2v

)
−
(

∂u
∂x

φ1u +
∂u
∂y

φ2u

))
φ1uv+(

∂u
∂x

φ1v +
∂u
∂y

φ2v

)
φ1uu −

(
∂v
∂x

φ1u +
∂v
∂y

φ2u

)
φ1vv.

We can show that this expression is zero by applying Lemma 3.10. In particular,
the coefficient of φ1uv equals zero due to (3.26) and (3.27), and the coefficients of
φ1uu and φ1vv also equal zero due to (3.28) and (3.29), respectively. Therefore, the
term with F1

1 F2
2 vanishes in (3.35). Analogously, by applying Lemma 3.10, we can

see that the coefficient of F2
1 F1

2 also vanishes.
Now let us see how the Lie bracket of F1 and F2 appears in (3.35). One can see

that the coefficient of ∂F1
1

∂u F1
2 in this expression is

φ1u

(
∂u
∂x

φ1u +
∂u
∂y

φ2u

)
= φ1u,

where we have applied (3.26) from Lemma 3.10. Analogously, applying both

(3.26) and (3.27) from such lemma, we see that the coefficients of ∂F1
1

∂v F2
2 , ∂F1

2
∂u F1

1 ,

and ∂F1
2

∂v F2
1 in (3.35) are respectively φ1u,−φ1u, and −φ1u. Therefore, as these are

the terms of the first component of the Lie bracket according to (3.9), we obtain
that those terms altogether equal φ1u[F1, F2]

1. The same procedure can be followed

with terms ∂F2
1

∂u F1
2 , ∂F2

1
∂v F2

2 , ∂F2
2

∂u F1
1 , and ∂F2

2
∂v F2

1 from (3.35), and we see that these terms
equal φ1v[F1, F2]

2.
After all this, expression (3.35) can be rewritten as

[G1, G2]
1=φ1u[F1, F2]

1 + φ1v[F1, F2]
2

+

(
∂u
∂x

φ1v +
∂u
∂y

φ2v

)(
φ1u

∂F1
1

∂u
F2

2 + φ1v
∂F2

1
∂u

F2
2 − φ1u

∂F1
2

∂u
F2

1 − φ1v
∂F2

2
∂u

F2
1

)
+

(
∂v
∂x

φ1u +
∂v
∂y

φ2u

)(
φ1u

∂F1
1

∂v
F1

2 + φ1v
∂F2

1
∂v

F1
2 − φ1u

∂F1
2

∂v
F1

1 − φ1v
∂F2

2
∂v

F1
1

)
.

(3.36)

Finally, by applying (3.28) and (3.29) on the first factor in the second and third
lines of (3.36) and seeing that they are zero, we prove relation (3.32) for the first
component of [G1, G2].
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To prove the relation for the second component, this is

[G1, G2]
2 =

∂φ2

∂u
(φ−1(x, y)) · [F1, F2]

1
φ−1(x,y) +

∂φ2

∂v
(φ−1(x, y)) · [F1, F2]

2
φ−1(x,y),

we follow an analogous procedure and see that

[G1, G2]
2 = φ2u[F1, F2]

1 + φ2v[F1, F2]
2,

and the proof follows.

Now let us consider the Lie bracket of two planar real vector fields written
(abusing notation) in complex coordinates as (F1, F1) and (F2, F2), and the Lie
bracket of new vector fields (G1, G1) and (G2, G2) after a change of variables
(φ, φ) on F1 and F2, respectively. As we already stated, these Lie brackets can
be described only from their first components, as the second ones are the com-
plex conjugates, so in such case we will denote the first components of the Lie
bracket simply by [F1, F2] and [G1, G2], with a slight abuse of notation as in (2.6).
Therefore, relation (3.30) from the theorem can be written, in this case, as

[G1, G2] = φu[F1, F2] + φu[F1, F2].

With this relation, the following corollary from Theorem 3.11 is straightforward.

Corollary 3.12. Let (F1, F1) and (F2, F2) be two planar complex vector fields which
correspond to two real vector fiels in the plane, and let (G1, G1) and (G2, G2), respec-
tively, be the same vector fields after a change of variables (φ, φ). If [F1, F2] = 0 then
[G1, G2] = 0.

3.2.4 Some remarks on the Lie bracket method

The Lie bracket method introduced in Theorem 3.8 allows to find Lyapunov and
period constants equivalently to the classical approach from Subsection 3.2.2,
but with the difference that the constants V2j+1, T2j obtained by the Lie bracket
method are found under conditions V2i+1 = T2i = 0 for i < j (see Remark 3.9).
Even though the exact expressions of the Lyapunov and period constants may
differ from a multiplicative constant when using one method or the other –in par-
ticular, we have checked that the classical method gives an extra π–, the cyclicity
and criticality or the center and isochronicity conditions deduced in both ways
are identical.

As we have already stated, the Lie bracket method has the advantage that it
does not involve cumbersome integrals while the classical approach does, and
also that in contrast to the Lie bracket method introduced in Chapter 2, the cur-
rent technique does not require that the center conditions are fulfilled. On the



158 Chapter 3. Simultaneous cyclicity and criticality

other hand, this method also has a few drawbacks. The nature of the presented
Lie bracket method requires that Lyapunov and period constants of the same or-
der are found at the same time. This is in fact the same mechanism that finding
the linearization condition, see for example [RS09]. In this sense, if we are in-
terested in finding some period constant we are forced to find simultaneously
the Lyapunov constant corresponding to the same order, and vice versa. For this
reason, if both the classical and the Lie bracket methods work for a system then
the classical may be better, but theoretically the classical approach will get stuck
quite fast due to the complexity of the integrals to solve, in which case only the
Lie bracket method would be able to go further in the order. This fact allows us
to split case (3.3) into the two following subcases:

(3.3.1) Finding Lyapunov and period constants of the same order simultaneously,{
�̇ = V2m+1�2m+1 + O2m+2(�),
θ̇ = 1 + T2m�2m + O2m+1(�),

in which case both the classical approach and the Lie bracket method are
valid; using the Lie bracket method here may be slower but able to arrive
further in the order.

(3.3.2) Finding Lyapunov and period constants of the same order separately,{
�̇ = Vk�k + Ok+1(�),
θ̇ = 1 + Tl�

l + Ol+1(�),

in which case the classical method works but not the Lie bracket method;
this approach should be faster but would get stuck sooner in comparison
to the previous one.

The presented Lie bracket technique has been computationally implemented
with Maple, and used to calculate the Lyapunov and period constants in some
parts of this chapter.

3.3 Bi-weakness for certain families

This section is devoted prove Theorem 3.3. The way to do this is to apply the Lie
bracket method introduced in Section 3.2, so all the found bi-weak types will be
of the form [2m+ 1, 2m]. Actually, the proved results are maximal in the sense that
if we vanish V2k+1 and T2k for k ≤ m then V2m+3 = 0 and T2m+2 = 0. However,
this does not mean that such bi-weak type is the maximal for the system, but
the maximal which can be found by means of the Lie bracket method, since such
method only detects bi-weak types of the form [2m + 1, 2m].
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Proof of Theorem 3.3. (i) Let us start by studying system (3.5). We find V3 and T2
by using the Lie bracket method,

V3 =
1
4
(2b2a2 − 3a3), T2 =

1
12

(4a2
2 + 10b2

2 − 9b3). (3.37)

System {V3 = 0, T2 = 0} has solution S(1)
1 = {3a3 − 2a2b2 = 0, 9b3 − 4a2

2 − 10b2
2 =

0}. The next step is to find V5 and T4 assuming that conditions in S(1)
1 hold. This

gives

V5 = − 5
27

(2b2a3
2 + 5b3

2a2), T4 = − 5
27

(11a2
2b2

2 − 14b4
2),

and {V5 = 0, T4 = 0} has the solution S(2)
1 = {b2 = 0}. Finally, if we compute

V7 and T6 under conditions S(1)
1 ∪ S(2)

1 , we find V7 = 0 and T6 = 0, and this case
corresponds to system ⎧⎨⎩ẋ = −y + a2x2,

ẏ = x +
4
9

a2
2x3,

(3.38)

which is an isochronous center as we will see in Proposition 3.14. System (3.5)
under condition S(1)

1 has then a bi-weak [5, 4] type, which is the maximal of the
form [2m + 1, 2m] as we have seen that [7, 6] does not appear.

(ii) For the quartic Liénard (3.6), we proceed analogously. By using the Lie
bracket technique we find that V3 and T2 are the same that in the cubic case,
(3.37), so they vanish again for S(1)

2 = {3a3 − 2a2b2 = 0, 9b3 − 4a2
2 − 10b2

2 = 0}.
Now we find the next constants, which are

V5 =
1

54
(−20a3

2b2 − 50a2b3
2 + 27a2b4 + 90a4b2),

T4 =
1

54
(−110a2

2b2
2 − 140b4

2 + 72a2a4 + 189b2b4).

We consider then system {V5 = 0, T4 = 0} which has the two following solutions:

S(2a)
2 =

{
a4 = −5

3
b2

2a2(a2
2 + 7b2

2)

4a2
2 − 35b2

2
, b4 =

10
27

b2(8a4
2 − 35a2

2b2
2 − 70b4

2)

4a2
2 − 35b2

2

}
,

S(2b)
2 = {a2 = 0, b2 = 0}.
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The next step is to find V7 and T6, which under conditions S(1)
2 ∪ S(2a)

2 are

V(a)
7 =− 35

216
b3

2a2(8a6
2 + 525a4

2b2
2 − 2520a2

2b4
2 − 4900b6

2)

(4a2
2 − 35b2

2)
2

,

T(a)
6 =

35
648

b4
2(430a6

2 − 3900a4
2b2

2 + 46431a2
2b4

2 + 56350b6
2)

(4a2
2 − 35b2

2)
2

,

and under S(1)
2 ∪ S(2b)

2 ,

V(b)
7 =

21
16

a4b4, T(b)
6 =

1
80

(84a2
4 + 189b2

4).

System {V(a)
7 = 0, T(a)

6 = 0} has the solution S(3a)
2 = {b2 = 0}, and {V(b)

7 =

0, T(b)
6 = 0} has the solution S(3b)

2 = {a4 = 0, b4 = 0}. Finally, if we substitute

S(1)
2 ∪ S(2a)

2 ∪ S(3a)
2 and S(1)

2 ∪ S(2b)
2 ∪ S(3b)

2 in V9 and T8 we obtain V9 = 0 and T8 = 0
in both cases, so the maximal bi-weak type is of the form [2m + 1, 2m] is [7, 6] and
this proves Theorem 3.3ii. We notice that case S(1)

2 ∪ S(2a)
2 ∪ S(3a)

2 corresponds to

system (3.38) and case S(1)
2 ∪ S(2b)

2 ∪ S(3b)
2 is the linear center, so both systems are

isochronous centers.

(iii) Let us study the quadratic case. First, for the sake of simplicity in the
obtained expressions, we will consider system (3.7) in complex coordinates as{

ż = i z + r20z2 + r11zw + r02w2,
ẇ = − i w + s02z2 + s11zw + s20w2,

being sij = rij. The first Lyapunov and period constants are

V3 = i(−r11r20 + s11s20), T2 =
4
3

r02s02 + 2r11s11 − r11r20 − s11s20.

In this case, solving the systems for Lyapunov and period constants equal to
zero as we did in Liénard families is cumbersome, as many more solutions are
obtained. For this reason, we will study Lyapunov and period constants V2m+1
and T2m in the Bautin ideal Bm−1 := 〈V3, T2, . . . , V2m−1, T2m−2〉. First we want to
check whether V5 and T4 belong to B1 = 〈V3, T2〉. The expressions of V5 and T4 in
B1 are

V5 =
1
3

i(−4r02r2
20s11 + 6r02r20s2

11 + 4r02s3
11 − 4r3

11s02 − 6r2
11s02s20 + 4r11s02s2

20),
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T4 =
1
6

(
−8r02r2

20s11 + 36r02r20s2
11 − 40r02s3

11 − 40r3
11s02 − 96r2

11r2
20

+219r2
11r20s11 + 36r2

11s02s20 − 135r2
11s2

11 + 12r11r2
20s20 − 8r11s02s2

20

)
.

As we can easily find explicit values of the parameters such that these constants
are not identically zero, we have a bi-weak [5, 4] type.

Let us check now that [7, 6] does not appear, so we find the expressions of V7
and T6 in B2 = 〈V3, T2, V5, T4〉,

V7 =
1

64
i
(
−80r02r11r2

20s2
11 + 360r02r11r20s3

11 − 100r02r11s4
11 − 300r4

11s02s11

+60r3
11r3

20 − 480r3
11r2

20s11 + 1095r3
11r20s2

11 − 675r3
11s3

11

)
,

T6 =
1

480

(
3032r02r11r2

20s2
11 − 4548r02r11r20s3

11 − 2282r02r11s4
11

+ 750r4
11s02s11 + 94178r3

11r3
20 − 249834r3

11r2
20s11 + 287559r3

11r20s2
11

−117863r3
11s3

11 − 14832r2
11r3

20s20 + 792r11r3
20s2

20

)
.

However, we can see that actually V2
7 = 0 in B2, i.e. V7 = 0 in the variety of zeros

defined by the elements in B2, so the bi-weak [7, 6] type cannot appear as we have
a center and in this case [5, 4] is maximal. We notice that there are quadratic cen-
ters with T6 �= 0, which makes sense as it is a classical result that locally quadratic
centers can have at most 2 oscillations in the period function (see [CJ89]), because
in the center case only T2, T4, and T6 are necessary to characterize the isochroni-
city property. In fact, T2

8 = 0 in B3 = 〈V3, T2, V5, T4, T6〉.
Let us make the following observation regarding the quadratic case. It is a

well-known fact that the general quadratic family (3.7) classically unfolds 3 limit
cycles, hence the case V3 = V5 = 0 with nonvanishing V7 exists. This is not the
case for the simultaneous study of Lyapunov and period constants we have seen
here, but as we are adding the conditions for vanishing the corresponding period
constants, the fact that the obtained Lyapunov constants vanish at lower orders
is not inconsistent.

(iv) Finally, let us study the bi-weakness of the cubic homogeneous nonlinear-
ity family (3.8). To simplify the expressions we will perform a change to complex
coordinates, obtaining{

ż = i z + r30z3 + r21z2w + r12zw2 + r03w3,
ẇ = − i w + s03z3 + s12z2w + s21zw2 + s30w3,

being sij = rij. We will proceed analogously to the quadratic case, by studying
V2m+1 and T2m in the Bautin ideal Bm−1 := 〈V2k+1, T2k〉k≤m−1.
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The first Lyapunov and period constants are

V3 = −r21 − s21, T2 = i(r21 − s21).

The next step is to find the expressions of V5 and T4 simplified with respect to
B1 = 〈V3, T2〉,

V5 = −2 i(r12r30 − s12s30), T4 = 3r03s03 − 2r12r30 + 4r12s12 − 2s12s30.

Being in B2 = 〈V3, T2, V5, T4〉 we have

V7 =
3
8
(3r03r2

30 − 8r03r30s12 − 3r03s2
12 − 3r2

12s03 − 8r12s03s30 + 3s03s2
30),

T6 =− 3
8

i(3r03r2
30 − 16r03r30s12 + 21r03s2

12 − 21r2
12s03 + 16r12s03s30 − 3s03s2

30).

As they are not identically zero, this proves the existence of a bi-weak [7, 6] type.
The proof finishes due to the fact that V9 = 0 in B3 = 〈V3, T2, V5, T4, V7, T6〉.

3.4 Some results on Liénard families

This section is devoted to the study of Liénard systems and it is divided into three
parts. First, we use the Lie bracket method to deduce the structure of Lyapunov
and period constants of a Liénard system starting with an odd and an even de-
gree monomials on its first differential equation. Second, we classify the centers
and the isochronicity of a Liénard family. Finally, we use the previous results
to provide a complete study of the simultaneous bifurcation of limit cycles and
critical periods of the cubic Liénard family, which proves Theorem 3.4.

3.4.1 A Liénard family starting with an odd and an even degree
monomials

In this subsection we will consider the Liénard family{
ẋ = −y + amxm + anxn + xdP(x),
ẏ = x,

(3.39)

where m and n are even and odd natural numbers, respectively, d = max(m, n) +
1, and P(x) is a polynomial in x.

In order to motivate the problem, let us start by considering (3.39) being
Pd(x) = 0. It is a well-known fact that in this classical Liénard family the coef-
ficients corresponding to odd powers control the center property, so if an = 0 we
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have a center at the origin. In this case the even power controls the isochronicity
property, so if am = 0 the system has an isochronous center. A study in this line
is presented for example in [Cim+97], but in our case we will present our result
by using the Lie bracket method introduced in Subsection 3.2.3 to find the Lya-
punov and period constants. It is worth recalling that different methods can lead
to Lyapunov and period constants that differ in a multiplicative constant, but the
dependence on parameters am and an is the same and the center and linearizabil-
ity conditions are also kept. The result is as follows.

Theorem 3.13. For system (3.39),

(i) if n < 2m − 1, then the first nonidentically zero Lyapunov constant is

Vn =
an

2n (n − 1)
(

n
n−1

2

)
, (3.40)

and the system vanishes all its period constants up to order n;

(ii) if n = 2m − 1, then the first nonidentically zero Lyapunov and period constants are
(3.40) and

T2m−2 = − a2
m

22m−1
m2(m − 1)
(m + 1)2

(
2m
m

)
, (3.41)

respectively;

(iii) if n > 2m − 1, then the first nonidentically zero period constant is (3.41), and the
system vanishes all its Lyapunov constants constants up to order 2m − 1.

Proof. Let us start by writing system (3.39) in complex coordinates. By using the
Binomial Theorem,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ż = i z +
am

2m

m

∑
j=0

(
m
j

)
zm−jwj +

an

2n

n

∑
k=0

(
n
k

)
zn−kwk +

(
z + w

2

)d
P(z, w),

ẇ = − i w +
am

2m

m

∑
j=0

(
m
j

)
zjwm−j +

an

2n

n

∑
k=0

(
n
k

)
zkwn−k +

(
z + w

2

)d
P(z, w),

(3.42)
where we denote the first equation by ż = Z(z, w) and the second one by ẇ =
Z(z, w). We will consider the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ż = z +
m

∑
l=0

(Am−l,l + i Bm−l,l)zm−lwl +
n

∑
p=0

(An−p,p + i Bn−p,p)zn−pwp,

ẇ = w +
m

∑
l=0

(Am−l,l − i Bm−l,l)zlwm−l +
n

∑
p=0

(An−p,p − i Bn−p,p)zpwn−p,

(3.43)
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where we denote the first equation by ż = U (z, w) and the second by ẇ = U (z, w).
To calculate the Lyapunov and period constants we will find the structure of the
Lie bracket of (3.42) and (3.43). Observe that, due to the fact that they are associ-
ated to a real vector field, by using (2.6) their Lie bracket can be described only
from its first component:

[Z ,U ]1 =
∂Z
∂z

U +
∂Z
∂w

U − ∂U
∂z

Z − ∂U
∂w

Z
= Hm +Hn +H2m−1 +H2n−1 + Om+n−1(z, w),

(3.44)

where each Hq is an homogeneous qth degree polynomial in z, w. These polyno-
mials have been found, but they are not written here for the sake of brevity.

We have that

Hm =
m

∑
l=0

[
(−Bm−l,l + i Am−l,l)(2l − m + 1) +

am

2m (m − 1)
(

m
l

)]
zm−lwl. (3.45)

This homogeneous mth degree part vanishes taking

Am−l,l = 0, Bm−l,l =
am

2m
m − 1

2l − m + 1

(
m
l

)
for l ∈ {0, . . . , m}. (3.46)

The homogeneous nth degree polynomial Hn is analogous to (3.45), only
changing m by n. We can take then

An−p,p = 0 for p ∈ {0, . . . , n},

Bn−p,p =
an

2n
n − 1

2p − n + 1

(
n
p

)
for p ∈ {0, . . . , n}\

{
n − 1

2

}
,

(3.47)

as for the term corresponding to p = n−1
2 we have that 2p − n + 1 = 0, and

therefore the coefficient of z
n+1

2 w
n−1

2 = z(zw)
n−1

2 cannot be vanished; in this case
we take Bn+1

2 , n−1
2

= 0. Notice that this fact occurs with n because it is an odd
number, but not with m which is even.

Let us see the structure of H2m−1. After substituting (3.46), we obtain

H2m−1 = i
a2

m
22m

m

∑
j,l=0

m − 1
2l − m + 1

(
m
l

)(
m
j

) [
(l − j)z2m−l−j−1wj+l

−jzm+l−jwm+j−l−1 − lzm+j−lwm+l−j−1
]

.

(3.48)

We know by Theorem 3.8 that the period constant associated to (3.48) is the co-
efficient of z(zw)m−1. Then, after some basic combinatorial computations, this
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coefficient can be written as

p2m−1 = i
a2

m
22m (m − 1)

(
m−1

∑
j=0

(
m
j

)(
m

j + 1

)
−

m

∑
j=0

2j
2j − m + 1

(
m
j

)2
)

. (3.49)

Let us write this expression in a more compact way. We can use the generating
functions (1 + x)m and (1 + x)2m to rewrite the first summation in (3.49). In the
relation

2m

∑
k=0

(
2m
k

)
xk = (1+ x)2m = ((1 + x)m)2 =

(
m

∑
k=0

(
m
k

)
xk

)2

=
m

∑
k,j=0

(
m
k

)(
m
j

)
xk+j,

we equate the coefficients of xm−1, and we obtain

m−1

∑
j=0

(
m
j

)(
m

j + 1

)
=

(
2m

m − 1

)
=

m
m + 1

(
2m
m

)
. (3.50)

For the second summation in (3.49), the equality

m

∑
j=0

2j
2j − m + 1

(
m
j

)2

=
m(3m + 1)
(m + 1)2

(
2m
m

)
(3.51)

holds. This equality has been obtained with a computer algebra system by means
of the Zeilberger’s algorithm. For more details on how to use such method, the
reader is referred to [Zei90; Zei91], as well as [Koe14] and the references therein.
Notice that this Zeilberger’s algorithm can also be used to justify (3.50).

Adding (3.50) and (3.51), one can rewrite (3.49) as

p2m−1 = − i
a2

m
22m−1

m2(m − 1)
(m + 1)2

(
2m
m

)
. (3.52)

After these calculations we can finally prove our result. To this end, we will
consider (3.44) assuming (3.46) and (3.47), so Hm = 0 and Hn only has the
z(zw)

n−1
2 term. If n < 2m − 1, then the lowest degree homogeneous polynomial

is the nth degree one,

Hn =
an

2n (n − 1)
(

n
n−1

2

)
z(zw)

n−1
2 ,

and due to Theorem 3.8 this coefficient is the first nonidentically zero Lyapunov
constant (3.40), while all period constants vanish up to this order.

If n = 2m − 1, then the lowest degree homogeneous polynomial in (3.44)
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is Hn + H2m−1, so the coefficient of z(zw)
n−1

2 = z(zw)m−1 is (3.40) plus (3.52).
Therefore, by Theorem 3.8 the real part is the Lyapunov constant (3.40) and the
imaginary part is the first nonidentically zero period constant (3.41).

Finally, for n > 2m − 1, an analogous procedure shows that the lowest de-
gree homogeneous polynomial in (3.44) is H2m−1, so the period constant is the
imaginary part of (3.52) and all Lyapunov constants vanish up to this order.

3.4.2 Center and isochronicity classification of a Liénard family

In this subsection we present, as an application of our approach, a characteriza-
tion of isochronous centers in a Liénard family. For a general proof we refer the
reader to the very recent work of Amel’kin ([Ame21]). We start with the following
result.

Proposition 3.14. Let us consider the Liénard system{
ẋ = −y + a2x2 + a3x3 + a4x4 + a5x5 + a6x6,
ẏ = x + b2x2 + b3x3 + b4x4 + b5x5 + b6x6.

(3.53)

The only isochronous center having the form (3.53) is (3.38).

Proof. We start by finding the first five Lyapunov and period constants of (3.53) by
using the Lie bracket method from Subsection 3.2.3. Then we solve the resulting
system {V3 = V5 = V7 = V9 = V11 = T2 = T4 = T6 = T8 = T10 = 0}, and
we compute that the only nontrivial solution is {a3 = 0, a4 = 0, a5 = 0, b2 =
0, 9b3 − 4a2

2 = 0, b4 = 0, b5 = 0}, which corresponds to system (3.38) and has a
center at the origin due to Theorem 1.11.

To show the isochronicity of (3.38) we will start by rescaling the system via
the change (x, y) →

(
3

2a2
x, 3

2a2
y
)

for a2 �= 0, which results in⎧⎪⎨⎪⎩
ẋ = −y +

3
2

x2,

ẏ = x + x3.
(3.54)

Observe that for the case a2 = 0, the system is isochronous because it corresponds
to the linear center. System (3.54) is isochronous because it commutes with⎧⎪⎪⎨⎪⎪⎩

ẋ = xA(x, y),

ẏ =

(
y +

1
2

x2
)

A(x, y),

where A(x, y) = −1 − y + 1
2 x2, as the Lie bracket between both systems is 0.
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We will present an alternative proof for the isochronicity of (3.54), because we
consider that it is interesting as it simply uses a first integral and the system itself.
A first integral of (3.54) is

H(x, y) =
x4 − 4x2y + 4x2 + 4y2

(x2 − 2y − 2)2 , (3.55)

which satisfies that H(0, 0) = 0. The idea is to prove the isochronicity of (3.54) by
using (3.55) to find an expression for the level curves γh and check that its integral
through a whole loop is 2π.

Let us consider H(x, y) = h2 with h > 0 and solve it for x. As it has degree 4
in x we obtain four solutions, two of which are imaginary for values of h close to
0. The other two solutions are

X±(y, h) = ±

√
−2(h2 − 1)(−h2y − h2 +

√
2h2y + 3h2 − 2y + 1 + y − 1)

h2 − 1
,

which are real for 0 < h < 1, and they correspond to the level curve on the right
and left side of the vertical axis. By solving H(0, y) = h2 with respect to y, we can
find that the intersections of the level curves with the vertical axis for level h2 are
y± = − h

h∓1 , being 0 < h < 1. Considering the second equation in (3.54), we aim
to calculate the integral for the time

T(h) =
∫ T(h)

0
dt =

∫
γh

dy
ẏ

= 2
∫ y+

y−

dy
X+(y, h) + X3

+(y, h)
=: 2I(h),

and see that we obtain 2π. Here we have used that, due to the symmetry of the
problem, we can simply integrate from y− to y+ and check that we obtain I(h) =
π, which represents half a loop.

To simplify the expression of I(h) we will consider the change of variables
z2 = 2h2y + 3h2 − 2y + 1, or equivalently y = − 1

2
3h2−z2+1

h2−1 . After applying this
change both to X+(y, h) and the integration limits y±, the integral becomes

I(h) =
∫ 1−h

1+h
− 1 − h2

(z − 2)
√
−h4 + h2z2 − 2h2z + 2h2 − z2 + 2z − 1

dz.
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This integral can be simplified a little more so that the integration limits become
±1. Let us apply the change z = 1 − hw to a new variable w, and we have

I(h) =
∫ 1

−1

√
1 − h2

√
1 − w2(1 + hw)

dw = lim
k→1

∫ k

−k

√
1 − h2

√
1 − w2(1 + hw)

dw

= lim
k→1

[
arctan

h + w√
1 − h2

√
1 − w2

]w=k

w=−k
=

π

2
−
(
−π

2

)
= π,

for 0 < h < 1, so the result follows.

By studying the Liénard system from the previous result we have come across
the Liénard family {

ẋ = −y + axn,
ẏ = x + bx2n−1,

(3.56)

for a, b ∈ R, n ∈ N, being n ≥ 2. Indeed, (3.38) is a particular case of (3.56). The
centers and isochronicity of this new family are classified on Theorem 3.16. For
the proof of this classification result, we first need the following proposition.

Proposition 3.15. System (3.56) with even n, b = n2

(n+1)2 a2, and a �= 0 has a first
integral of the form

H(x, y) =
A(x, y)

(x2 + y2 − 2xny + x2n)
n−1

2
, (3.57)

being A(x, y) a polynomial in x, y.

Proof. For b = n2

(n+1)2 a2 and a �= 0, system (3.56) can be rewritten as{
ẋ = −y + (n + 1)xn =: P(x, y),
ẏ = x + n2x2n−1 =: Q(x, y),

(3.58)

after the rescaling (x, y) →
((

n+1
a

) 1
n−1 x,

(
n+1

a

) 1
n−1 y

)
. It can be checked that

function F(x, y) = x2 + y2 − 2xny+ x2n is an invariant curve of system (3.58) with
cofactor K = 2nxn−1, and the divergence of the vector field is div(P, Q) = n(n +
1)xn−1. Now according to Darboux integrability theory (see Theorem 1.17ii), for
λ satisfying λK = −div(P, Q) we have that R(x, y) = F(x, y)λ is an integrating
factor of the system. In our case, λK = −div(P, Q) is λ2nxn−1 = −n(n + 1)xn−1,

so λ = −n+1
2 and R(x, y) =

(
x2 + y2 − 2xny + x2n)− n+1

2 is an integrating factor.
Having an integrating factor R(x, y) of the system, we know that a first inte-

gral H(x, y) satisfies ∂H/∂x = Q(x, y)R(x, y) and ∂H/∂y = −P(x, y)R(x, y), so
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we can integrate this second equation to find the form of such first integral,

H(x, y) =
∫

−P(x, y)R(x, y)dy =
∫ y − nxn − xn

(x2 + y2 − 2xny + x2n)
n+1

2
dy

=
∫ y − xn

(x2 + y2 − 2xny + x2n)
n+1

2
dy − n

∫ xn

(x2 + y2 − 2xny + x2n)
n+1

2
dy.

(3.59)

The first term in (3.59) is an immediate integral and its result is
−1

(n−1)(x2+y2−2xny+x2n)
n−1

2
, taking into account that due to being a first inte-

gral we can consider that the integration constant is 0. For the second integral we
will perform the change of variables ω = x√

x2+y2−2xny+x2n
, so dy = − x

ω2
√

1−ω2 dω

and the integral can be written as

∫ xn

(x2 + y2 − 2xny + x2n)
n+1

2
dy = −

∫
ωn−1

√
1 − ω2

dω.

Now we can apply a trigonometric change of variables ω = sin φ, and

−
∫

ωn−1
√

1 − ω2
dω =−

∫ sinn−1 φ√
1 − sin2 φ

cos φdφ = −
∫

sinn−1 φdφ

=−
∫

sin φ sinn−2 φdφ.

As n is even, so is n − 2 and the integral becomes

−
∫

sin φ
(

sin2 φ
) n−2

2 dφ =−
∫

sin φ
(

1 − cos2 φ
) n−2

2 dφ

=−
∫

sin φ

⎛⎝ n−2
2

∑
j=0

aj cos2j φ

⎞⎠ dφ,

for certain coefficients aj, where in the last equality we have used the Binomial
Theorem. Then, after swapping the sum and the integral we get

−
n−2

2

∑
j=0

aj

∫
sin φ cos2j φdφ =

n−2
2

∑
j=0

aj

2j + 1
cos2j+1 φ = cos φ

n−2
2

∑
j=0

aj

2j + 1
cos2j φ.
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By using cos2j φ =
(
1 − sin2 φ

)j
and applying the Binomial Theorem again, we

have that for new coefficients bj,

cos φ

n−2
2

∑
j=0

aj

2j + 1
cos2j φ = cos φ

n−2
2

∑
j=0

bj sin2j φ =
√

1 − ω2

n−2
2

∑
j=0

bjω
2j,

after undoing the change ω = sin φ. To finish the proof, we can substitute ω =
x√

x2+y2−2xny+x2n
, and after some trivial calculations we get

√
1 − ω2

n−2
2

∑
j=0

bjω
2j =

(y − xn)

n−2
2
∑

j=0
bjx2j(x2 + y2 − 2xny + x2n)

n−2
2 −j

(x2 + y2 − 2xny + x2n)
n−1

2
,

so joining both terms from (3.59) the result follows.

Theorem 3.16. The Liénard family (3.56) satisfies that,

(i) for odd n, the system is a center if and only if a = 0 –in which case it is a reversible
center–, and it is an isochronous center if and only if a = b = 0;

(ii) for even n, the system is a reversible center for any a and b, and it is an isochronous
center if and only if b = n2

(n+1)2 a2.

Proof. Let us start with the case of n being odd. If a = 0, it is immediate to see
that (3.56) is a time-reversible center with respect to the vertical axis. Consider
the function

H(x, y) =
1
2

x2 +
1
2

y2 +
b

2n
x2n, (3.60)

and compute

∇H · (ẋ, ẏ) =
(

x + bx2n−1, y
)
·
(
−y + axn, x + bx2n−1

)
= axn+1

(
1 + bx2n−2

)
.

We can see then that for a = 0 function H is a first integral of the system, and for
a �= 0 it is a Lyapunov function of the system. In the latter case, the origin is a
focus and the sign of a determines its stability near the origin.

We will prove now the isochronicity condition provided that we have a center,
i.e. a = 0. If b = 0, (3.56) becomes the linear center so it is isochronous. Now let us
show that if b �= 0 then the system is not isochronous, for which we will integrate
the second equation in (3.56) along the level curves γh determined by the first
integral (3.60). The integral to solve is

T(h) =
∫ T(h)

0
dt =

∫
γh

dy
ẏ

=
∫

γh

dy
x + bx2n−1 . (3.61)
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By considering (3.60) on a level curve such that H(x, y) = h2

2 being h > 0, we
obtain that y2 = h2 − x2 − b

n x2n, and we can use this relation to perform a change
of variables from y to x in (3.61) as follows:

T(h) =
∫

γh

dy
x + bx2n−1 = 2

∫ x+h

x−h

dx√
h2 − x2 − b

n x2n

= 4
∫ xh

0

dx√
h2 − x2 − b

n x2n
,

(3.62)

where we have used the symmetry of the integral and x−h , x+h = xh, are the in-
tersections of the level curve with the horizontal axis, i.e. the real solutions of
H(x, 0) = h2

2 or equivalently x2 + b
n x2n − h2 = 0. As xh depends on h, we will

perform a second change of variables x = xhz so that the integration limits are
constant, so we rewrite (3.62) as

T(h) = 4
∫ 1

0

xh√
h2 − xh

2z2 − b
n xh

2nz2n
dz. (3.63)

As we are not able to find the explicit solution of L(h) := x2 + b
n x2n − h2 = 0 to

have an expression of xh, we consider a power series expansion of xh with respect
to h. One can check that such series expansion starts

xh = h − b
2n

h2n−1 + O4n−3(h), (3.64)

as for this xh we have

L(h) =
(

h − b
2n

h2n−1 + O4n−3(h)
)2

+
b
n

(
h − b

2n
h2n−1 + O4n−3(h)

)2n
− h2

=h2 − b
n

h2n + O4n−2(h) +
b
n

(
h2n + O4n−2(h)

)
− h2 = O4n−2(h).

Now by substituting (3.64) in (3.63) and developing the expression we have

T(h) = 4
∫ 1

0

1 − b
2n h2n−2 + O4n−4(h)√

1 − z2 + b
n (z2 − z2n) h2n−2 + O4n−4(h)

dz,
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where we can expand the denominator as a power series and obtain

T(h) = 4
∫ 1

0

(
1 − b

2n
h2n−2 + O4n−4(h)

)
(

1√
1 − z2

− b
2n

z2 − z2n

(1 − z2)3/2 h2n−2 + O4n−4(h)
)

dz,

= 4
∫ 1

0

[
1√

1 − z2
− b

2n

(
1√

1 − z2
+

z2 − z2n

(1 − z2)3/2

)
h2n−2 + O4n−4(h)

]
dz,

= 4
∫ 1

0

[
1√

1 − z2
− b

2n
1 + z2 + z4 + · · ·+ z2n−2

√
1 − z2

h2n−2 + O4n−4(h)
]

dz.

Notice that on the last equality we have used the formula for the sum of terms in
a geometric progression. Finally, this integral becomes

T(h) = 4
∫ 1

0

dz√
1 − z2

− 2b
n

h2n−2
∫ 1

0

1 + z2 + z4 + · · ·+ z2n−2
√

1 − z2
dz + O4n−4(h)

= 2π − 2b
n

h2n−2
∫ 1

0

1 + z2 + z4 + · · ·+ z2n−2
√

1 − z2
dz + O4n−4(h).

As the remaining integral has a strictly positive integrand in the considered in-
terval, the integral is strictly positive and nonzero, so if b �= 0 the term of order
2n − 2 in h is nonzero and the center is not isochronous, hence the isochronicity
condition is proved.

For the case of n being even, it is straightforward to see that (3.56) is a time-
reversible center for any value of the parameters a and b. To prove the isochro-
nicity condition, we will see that if b = n2

(n+1)2 a2 then there exists a transversal
system such that its Lie bracket with the original system vanishes, and for the
reciprocal we will check that if b �= n2

(n+1)2 a2 then the period function is not con-
stant.

Let us assume that b = n2

(n+1)2 a2, and consider the rescaled system (3.58). Ac-
cording to Proposition 3.15, this system has a first integral of the form (3.57). Ob-
serve that, due to the fact of being a first integral, the condition ∂H

∂x P + ∂H
∂y Q = 0

must be satisfied. In our case, when finding the partial derivatives of the first
integral (3.57) we obtain

∂H
∂x

P +
∂H
∂y

Q =−
(

n(n − 1)xn A(x, y) +
(

xy − (n + 1)xn+1
) ∂A

∂x

−
(

x2 + n2x2n
) ∂A

∂y

)
F(x, y),
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where F(x, y) = x2 + y2 − 2xny + x2n is the invariant curve of the system found
in the proof of Proposition 3.15. Therefore, the condition that must be fulfilled is

n(n − 1)xn A(x, y) +
(

xy − (n + 1)xn+1
) ∂A

∂x
−
(

x2 + n2x2n
) ∂A

∂y
= 0. (3.65)

Let us consider system {
ẋ = xA(x, y),
ẏ = (y + (n − 1)xn) A(x, y),

(3.66)

where A(x, y) is the numerator of the first integral (3.57) of the system. A straight-
forward computation shows that the Lie bracket between systems (3.58) and
(3.66) is exactly the left hand side of equality (3.65), so by construction it equals 0
and the system is isochronous due to Theorem 2.4.

Finally, we have to check that if b �= n2

(n+1)2 a2, then the center is not isochro-
nous. To this end, we will use the Lie bracket method to find the first period
constant and check that it only vanishes for b = n2

(n+1)2 a2. System (3.56) can be
rewritten in complex coordinates as

ż = i z + a
(

z + w
2

)n
+ i b

(
z + w

2

)2n−1

, (3.67)

which is actually system (3.42) choosing am = a, an = i b, and P(z, w) = 0, and
taking into account that (m, n) in (3.42) corresponds to (n, 2n − 1) in (3.67). By
applying the Lie bracket method analogously to the proof of Theorem 3.13, one
can see that the first nonzero term is that of degree 2n − 1, whose coefficient is

p2n−1 = i
b

22n−1 (2n − 2)
(

2n − 1
n − 1

)
− i

a2

22n−1
n2(n − 1)
(n + 1)2

(
2n
n

)
. (3.68)

By Theorem 3.8, the imaginary part of (3.68) is the period constant

T2n−2 =
b

22n−1 (n − 1)
(

2n
n

)
− a2

22n−1
n2(n − 1)
(n + 1)2

(
2n
n

)
=

(
b − n2

(n + 1)2 a2
)

n − 1
22n−1

(
2n
n

)
,

which only vanishes for b = n2

(n+1)2 a2.
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After presenting the new isochronous family (3.56) for even n and b =
n2

(n+1)2 a2, a natural question is to wonder if these isochronous centers will pro-
vide a high criticality under perturbation –notice that we do not consider odd n
because in this case the only isochronous center is the linear one. To inquire into
this question, we find the number of critical periods which can bifurcate from
the system by considering only linear parts in the perturbative parameters of the
period constants, following the ideas presented in Chapter 2. In particular, we
have performed this study for n = 2, 4, 6, 8, which correspond to systems of de-
grees 2n − 1 = 3, 7, 11, 15 respectively, and by adding either a time-reversible
perturbation with respect to the horizontal axis (x, y, t) → (x,−y,−t) or with re-
spect to the vertical axis (x, y, t) → (−x, y,−t), none of which breaks the center
property. After computing period constants up to first-order and calculating the
corresponding ranks, we find the number of critical periods presented in the next
chart. We also show the number of critical periods (n2 + n − 4)/2 obtained in
Section 2.3 for a class of holomorphic systems also with linear parts, which were
found with a reversible perturbation with respect to the horizontal axis.

Critical periods Critical periods
n Degree (reversible respect (reversible respect n2+n−4

2
horizontal axis) vertical axis)

2 3 4 2 4
4 7 20 13 26
6 11 44 30 64
8 15 76 53 118

As we can check, the obtained criticality of the isochronous family (3.56) for
even n found up to linear parts in the period constants is much worse than the
one obtained for the holomorphic family in Section 2.3 also with linear parts. This
leads us to believe that family (3.56) will not provide a high number of oscillations
of the period function, so we will not go further in the study of its criticality.

3.4.3 The cubic Liénard family (k, l) classification

The aim of this subsection is to study the simultaneous bifurcation of limit cycles
and critical periods of the cubic Liénard system (3.5) adding the trace parameter
α as in (3.1). First, we will start by finding some Lyapunov and period constants
of this system being α = 0, obtaining the following results:



3.4. Some results on Liénard families 175

V3 = −1
4

π (2a2b2 − 3a3) , V5 =
5

12
πa2b2b3,

T2 =
1

12
π
(

4a2
2 + 10b2

2 − 9b3

)
, T3 =

1
12

a2π (2a2b2 − 3a3) ,

T4 = − 1
3456

π
(

3484a2
2b2

2 + 4480b4
2 + 81a2

3

)
,

T5 = − 1
162

b2π
(

10a4
2 + 3193a2

2b2
2 + 4032b4

2

)
.

(3.69)

Notice that these expressions are the corresponding constants given that the pre-
vious constants equal zero. These constants have been found by using the classi-
cal method instead of the Lie bracket method.

Let us make the following observation. As we already saw for the quadratic
system (3.4), in a system not having a center at the origin it is not generally true
that its first period constant must have even subscript. The presented cubic Lié-
nard system is another example of this fact. If we compare V3 and T3 we can
observe this: for a center we would have V3 = 0 which means 2a2b2 − 3a3 = 0,
and this implies T3 = 0, but T3 can be nonzero if V3 �= 0. We can also see by
comparing V5 and T5 that this equality in the factors of V3 and T3 is not a general
fact for any pair V2k+1 and T2k+1.

Our aim is to prove Theorem 3.4, which provides a complete classsification of
the simultaneous cyclicity and criticality for the cubic Liénard system (3.5).

Proof of Theorem 3.4. (i) Let us start by finding the centers in family (3.5). This was
already done in Theorem 1.29, but we recall it here for completeness. Solving the
system formed by the two first Lyapunov constants of (3.5) being equal to 0, this
is {V3 = 0, V5 = 0}, we obtain three solutions:

(ẋ, ẏ) = (−y, x + b2x2 + b3x3), (3.70)

(ẋ, ẏ) = (−y + a2x2, x + b3x3), (3.71)

(ẋ, ẏ) =
(
−y + a2x2 +

2
3

a2x3, x + b2x2
)

. (3.72)

Equations (3.70) and (3.71) are time-reversible families with respect to the x−axis
and y−axis, respectively, and (3.72) corresponds to a center due to Theorem 1.11.
Observe that such theorem is also an alternative proof for (3.71) having a center
at the origin. Therefore, we have seen that for (3.5) only two Lyapunov constants
are necessary to solve the center problem, this is V3 = V5 = 0 implies V2k+1 = 0
for any k ≥ 3, which we already saw in Subsection 1.3.1.

Now we will check that (3.70) unfolds one critical period. To see this, we find
from (3.69) that for this family T2 = 1

12 π
(
10b2

2 − 9b3
)

, T3 = 0 –as it is a center–,
and T4 = − 35

27 πb4
2. Then, if b3 = 10

9 b2
2 we see that T2 = 0 but T4 can be different
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from 0, so 1 critical period unfolds and this proves the case (∞, 1). Now if we
vanish T2 and T4, automatically b2 = b3 = 0 and (3.70) becomes the linear center,
so it is isochronous and the case (∞, ∞) is also proved.

We will also see that for (3.71) and (3.72), when vanishing T2 an isochronous
system is obtained so no critical periods appear, thus the critical period obtained
from (3.70) is maximal. For (3.71) we have that T2 = 1

12 π
(
4a2

2 − 9b3
)

, and it
vanishes for b3 = 4

9 a2
2, which corresponds to system (3.38) and it is isochronous

due to Proposition 3.14. For (3.71), T2 = 1
12 π

(
4a2

2 + 10b2
2
)

, which only vanishes
for a2 = b2 = 0 and in this case the system becomes the linear center, hence is
isochronous. This finishes the proof of the statement.

(ii) To prove this statement, let us recall that two Lyapunov constants charac-
terize the center for the Liénard system given in (3.5), so for studying the simulta-
neous cyclicity and criticality we aim to find the highest possible l �= ∞ for (1, l)
and (2, l), as for k ≥ 3 we have a center and (k, l) = (∞, l).

First we will prove the case (1, l), so we start by assuming α = 0 and V3 �= 0. If
we vanish T2, T3, and T4, we obtain system (3.38) and it is an isochronous center
due to Proposition 3.14, so l = ∞ and this case is dismissed. When solving the
system of equations {T2 = 0, T3 = 0} we obtain two solutions: S1 = {a2 =
3
2

a3
b2

, b3 = 1
9

10b4
2+9a2

3
b2

2
}, S2 = {a2 = 0, b3 = 10

9 b2
2}. S1 is dismissed because it vanishes

V3, but for S2 we see that both V3 and T4 are not identically zero, and T4 has the
expression

T4 =
1

3456
π(4480b4

2 + 81a2
3).

We can see then that T4 can vanish only for b2 = a3 = 0, in which case we would
have the linear center and therefore isochronous, so at most 3 critical periods
could appear, this is l ≤ 3. We will show now that these 3 critical periods can
actually bifurcate from the origin by using S2.

Let us set the free parameters a3 and b2 from S2 to 1 and −3, respectively,
and consider adding a perturbation by performing the change (a2, a3, b2, b3) →
(εe1, 1 + εe2,−3 + εe3, 10 + εe4) on the Lyapunov and period constants, where ε is
a small perturbative parameter. After this change,

T2 =
1

12
πε
(
−60e3 − 9e4 + 4εe2

1 + 10εe2
3

)
,

T3 =
1

12
πεe1

(
−3 − 6εe1 − 3εe2 + 2ε2e1e3

)
,

and we define f2 := T2/ε and f3 := T3/(εe1). We isolate e4 in the expression of
f2 and e2 in the expression of f3, and we substitute them in V3 and T4, perform-
ing a change of variables (e1, e2, e3, e4) → (e1, f3, e3, f2). If we consider a nonzero
trace 2α, according to (3.19) and (3.20) we have the following expressions for the
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displacement map and the period function for ρ small enough:

Δ(ρ) ≈ (e2πα −1)ρ − 3 f3ρ3 + O4(ρ),

T(ρ) ≈ 2π + (e2πα −1)T̃1(α) ρ + ε f2ρ2 + εe1 f3ρ3

−
(

105π +
3
8

f 2
3

π
+ ε f4

)
ρ4 + O5(ρ),

where f4 is a polynomial on ε, e1, f3, e3, and f2, and in our case

T̃1(α) =
−α3(−3 + εe3)− α2εe1 − 7α(−3 + εe3)− 3εe1

α4 + 10α2 + 9

=
3α(α2 + 7)− ε(α3e3 + α2e1 + 7αe3 + 3e1)

α4 + 10α2 + 9
.

For simplicity, we have written the above approximations of functions Δ and T
in the form

ξ(ρ) ≈
N

∑
i=0

κiρ
i + ON+1(ρ), (3.73)

which actually corresponds to

ξ(ρ) =
N

∑
i=0

κiρ
i (1 + O1(ρ)) + ON+1(ρ).

Finally, if we take α > 0, f3 > 0, f2 < 0, and e1 > 0, for sufficiently small ε
we get 1 change of signs in the coefficients of Δ(ρ) and 3 changes of signs in the
coefficients of T(ρ), and applying Lemma 3.6, we conclude that 1 limit cycle and
3 critical periods bifurcate, which corresponds to a (1, 3) configuration.

To see the configuration (2, 3) we will follow an analogous procedure; we aim
to analyze the case (2, l), so we assume that α = V3 = 0 and V5 �= 0. Using the
Lyapunov and period constants (3.69) we solve the system {V3 = 0, T2 = 0, T3 =
0} and obtain the solution S = {a3 = 2

3 a2b2, b3 = 4
9 a2

2 +
10
9 b2

2}, for which V5 and
T4 are not identically zero and have the expressions

V5 =
5

54
πa2b2(2a2

2 + 5b2
2), T4 = − 5

54
πb2

2(11a2
2 + 14b2

2).

Observe that T4 = 0 would mean b2 = 0, which would imply also V5 = 0 and we
would have a center. Therefore, the highest nonzero period constant that we can
have is T4, so at most 3 critical periods could appear, this is l ≤ 3. We will check
now that actually l = 3.

Let us set the two free parameters a2 and b2 from S to −3, and consider adding
a perturbation by performing the change (a2, a3, b2, b3) → (−3+ εe1, 6+ εe2,−3+
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εe3, 14 + εe4) on the Lyapunov and period constants, where ε is a small perturba-
tive parameter. After this change,

V3 = −1
4

πε(−6e1 − 3e2 − 6e3 + 2εe1e3),

T2 =
1

12
πε(−24e1 − 60e3 − 9e4 + 4εe2

1 + 10εe2
3),

and we define g3 := V3
ε and f2 := T2

ε . We isolate e2 in the expression of g3 and
e4 in the expression of f2, and we substitute them in V5 and T4, performing a
change of variables (e1, e2, e3, e4) → (e1, g3, e3, f2). If we consider a nonzero trace
2α, according to (3.19) and (3.20) we have the following approximate expressions
for the displacement map and the period function for ρ small enough (following
the notation in (3.73)):

Δ(ρ) ≈ (e2πα −1)ρ + g3ρ3 +

(
105
2

π + εg5

)
ρ5 + O6(ρ),

T(ρ) ≈ 2π + (e2πα −1)T̃1(α) ρ + ε f2ρ2 + εg3

(
1 − εe1

3

)
ρ3

−
(

375
2

π + ε f4

)
ρ4 + O5(ρ),

where g5 and f4 are polynomials on ε, e1, g3, e3, and f2, and in our case

T̃1(α) =
−α3(−3 + εe3)− α2(−3 + εe1)− 7α(−3 + εe3)− 3(−3 + εe1)

α4 + 10α2 + 9

=
3α3 + 3α2 + 21α + 9 − ε(α3e3 + α2e1 + 7αe3 + 3e1)

α4 + 10α2 + 9
.

If we take α > 0, g3 < 0, and f2 < 0, for sufficiently small ε we can get two
changes of signs in the coefficients of Δ(ρ) and three changes of signs in the co-
efficients of T(ρ), and applying Lemma 3.6 we conclude that 2 limit cycles and 3
critical periods bifurcate, which corresponds to a (2, 3) configuration.

(iii) Finally, we know that if an isochronous focus exists it must be either (1, ∞)
or (2, ∞), because any other case would become a center. Actually, we have al-
ready shown that none of these two configurations is possible: in both cases we
have seen that when vanishing T2, T3, and T4 the system automatically becomes
a center, so no isochronous foci exist for this system and the result follows.
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