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ABSTRACT

Our understanding of the Universe has advanced tremendously in
the past few decades. Having a well established theory of gravity,
General Relativity(GR), laid the ground for a successful model for
the Universe, ACDM. However, despite the fact that GR and ACDM
passed numerous observational tests, there are still some fundamental
open questions about them that need to be explored. It is therefore
the objective of this thesis to highlight some of these questions by ex-
ploring them from a theoretical perspective, in addition to presenting
current and future means of exploring them observationally.

This thesis includes five parts. In the first part, the Introduction, I
will present an overview about the basic concepts in GR and ACDM
that are needed to understand the following parts, in addition to some
historical background.

The second part is on testing an essential assumption in Cosmology,
the Copernican Principle, which states that the Universe is homoge-
neous and isotropic on large scales. Theoretically, by distinguishing
between line-of-sight and transverse expansion rates in the most gen-
eral spacetime possible, one can constrain deviations from the Coper-
nican Principle. Observationally, this is done using polarization of
Cosmic Microwave Background(CMB) photons that have been inverse-
Compton scattered by galaxy clusters. The result is a constraint on
remote isotropy, which is equivalent to homogeneity.

In the third part, the possibility that Dark Matter(DM) is part of
Gravity is investigated. This is done on a Cosmological, as well as
on an astrophysical scale. In the former, I present a case study with
a specific modified gravity model: Mimetic Dark Matter(MDM). By
re-deriving the model’s equations of motion, extra free functions and
parameters appear in need of fine tuning to produce the observation-
ally certified adiabatic initial conditions. To visualize this, I modify
the Boltzmann code CLASS to include MDM, and then look at CMB
correlation functions and matter power spectra, which show that de-
viations of at least 10% from adiabatic initial conditions fall beyond
cosmic variance limits.

On an astrophysical scale, the hypothesis that DM is part of a
modified gravity theory(MGT) is tested by examining DM devoid
galaxies. The main argument is that if DM is part of a MGT, then this
phenomenon should be found in every gravitational system. The fact
that around 19 galaxies have been found with almost non-existing
trace of DM, while other similar ones are DM dominated, constrains
severely the above mentioned hypothesis. To quantify this, I derive a
generalized Virial theorem for any MGT, and show that the extra term,
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which should be associated to DM, when fitted to these 19 galaxies,
gives inconsistent results. Therefore, unless fine-tuning is used, DM is
more likely to be a non-baryonic particle, or a compact object such as
primordial black holes, rather than part of a MGT.

The fourth part explores the realm of Quantum Field Theory(QFT)
in a gravitational background, where the interaction between scalar
and quantum spinor fields in curved spacetime is presented. The
goal is to use neutrinos(spinors) as probes for Dark Energy(DE), to
distinguish between its different models. After laying down a general
formalism, I first investigate three types of interactions between the
two fields, in a semi-classical way, and study the consequences on
oscillations of neutrinos and their dynamics.

This framework is later generalized to a broader class of interactions
between neutrinos, as quantum spinors, and DE, either in the form
of a Cosmological Constant(CC) or a scalar field. I managed to show
that, in principle, one can observe the difference DE models have on
the transition probability between two neutrino flavors. This provides
a proof of concept for using neutrino oscillations in curved spacetime
as a tool to distinguish between models of the late acceleration of the
Universe.

To put the above in an observational perspective, I conclude the
fourth part by considering the full three-flavor neutrino oscillations
within the ACDM paradigm. This results in ternary diagrams and
flux plots that could be later compared to observations in neutrino
observatories.

The fifth and final part summarizes the results and conclusions
reached for each work. In addition, future perspectives and further
developments are discussed in this section.
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RESUMEN EN ESPANOL

Nuestra comprension del Universo ha avanzado enormemente en las
ultimas décadas. Tener una teoria de la gravedad bien establecida,
la Relatividad General (GR), sent6 las bases para un modelo exitoso
para el Universo, ACDM. Sin embargo, a pesar del hecho de que
GR y ACDM pasaron numerosas pruebas de observacién, todavia
hay algunas preguntas abiertas fundamentales sobre ellos que deben
explorarse. Por tanto, el objetivo de esta tesis es resaltar algunas de
estas cuestiones explordndolas desde una perspectiva teérica, ademads
de presentar los medios actuales y futuros de explorarlas observa-
cionalmente. Esta tesis consta de cinco partes. En la primera parte, la
Introduccién, presentaré una descripcion general sobre los conceptos
basicos en GR y ACDM que se necesitan para comprender las sigu-
ientes partes, ademds de algunos antecedentes histéricos, convenciones
y notaciones.

La segunda parte trata de probar una suposicién esencial en Cos-
mologia, el Principio de Copérnico, que establece que el Universo es
homogéneo e isotrépico a gran escala. Tedricamente, al distinguir entre
la linea de visién y las tasas de expansion transversal en el espacio-
tiempo mds general posible, se pueden restringir las desviaciones
del principio de Copérnico. Observacionalmente, esto se hace usando
la polarizaciéon de fotones de fondo césmico de microondas(CMB)
que han sido dispersados en Compton inverso por cimulos de galax-
ias. El resultado es una restricciéon sobre la isotropia remota, que es
equivalente a la homogeneidad.

En la tercera parte, se investiga la posibilidad de que Dark Matter
(DM) sea parte de Gravity. Esto se hace tanto a escala cosmolégica
como astrofisica. En el primero, presento un caso de estudio con
un modelo de gravedad modificado especifico: Mimetic Dark Matter
(MDM). Al volver a derivar las ecuaciones de movimiento del modelo,
aparecen funciones y pardmetros libres adicionales que necesitan un
ajuste fino para producir las condiciones iniciales adiabéticas certi-
ficadas por observacion. Para visualizar esto, modifico el cédigo de
Boltzmann CLASS para incluir MDM, y luego observo las funciones
de correlacion CMB y los espectros de potencia de la materia, que
muestran que las desviaciones de al menos un 10 % de las condiciones
iniciales adiabdticas caen més alld de los limites de varianza c6smica.

A escala astrofisica, la hip6tesis de que la DM es parte de una teoria
de la gravedad modificada (MGT) se prueba examinando galaxias
desprovistas de DM. El argumento principal es que si DM es parte
de un MGT, entonces este fendmeno deberia encontrarse en todos
los sistemas gravitacionales. El hecho de que se hayan encontrado

xiii



alrededor de 19 galaxias con trazas casi inexistentes de DM, mientras
que otras similares estdn dominadas por DM, limita severamente la
hipétesis mencionada anteriormente. Para cuantificar esto, derivo un
teorema de Virial generalizado para cualquier MGT y muestro que el
término adicional, que deberia estar asociado a DM, cuando se ajusta
a estas 19 galaxias, da resultados inconsistentes. Por lo tanto, a menos
que se utilice un ajuste fino, es mas probable que DM sea una particula
no bariénica o un objeto compacto como agujeros negros primordiales,
en lugar de parte de un MGT.

La cuarta parte explora el &mbito de la teoria cudntica de campos
(QFT) en un trasfondo gravitacional, donde se presenta la interaccion
entre los campos de espino escalar y cudntico en el espacio-tiempo
curvo. El objetivo es utilizar neutrinos (espinores) como sondas de
Energia Oscura (DE), para distinguir entre sus diferentes modelos.
Después de establecer un formalismo general, primero investigo tres
tipos de interacciones entre los dos campos, de manera semicldsica, y
estudio las consecuencias sobre las oscilaciones de los neutrinos y su
dindmica.

Este marco se generaliza posteriormente a una clase mas amplia
de interacciones entre neutrinos, como espinores cudnticos, y DE, ya
sea en forma de una constante cosmolégica (CC) o un campo escalar.
Logré demostrar que, en principio, se puede observar la diferencia
que tienen los modelos DE sobre la probabilidad de transicion entre
dos sabores de neutrinos. Esto proporciona una prueba de concepto
para el uso de oscilaciones de neutrinos en el espacio-tiempo curvo
como una herramienta para distinguir entre modelos de la aceleracion
tardia del Universo.

La quinta y dltima parte resume los resultados y conclusiones
alcanzados para cada trabajo. Ademads, en esta seccion se analizan las
perspectivas futuras y los desarrollos futuros.
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INTRODUCTION

Spacetime tells matter how to move; matter tells spacetime how to
curve. These were the twelve simple words John Wheeler used to sum-
marize GR. Although it took Albert Einstein around 10 years to fully
formalize the theory, we reached a stage in understanding it that we
can sum it up like Wheeler did. GR is considered one of human kind’s
great achievements in the 20th century(along with quantum theory)
and so far our best description for gravitational phenomena. There-
fore, comprehending it is a basic first step in studying the Cosmos, i.e
Cosmology.

In this chapter, I will present the main concepts and equations from
GR that are necessary to explain our current status in Cosmology. This
includes: the Equivalence Principle, the metric of spacetime and the
Einstein-Hilbert action, along with the field equations that come out
of it. Furthermore, to be specific for Cosmology, I will present the
Friedmann-Lemaitre-Robertson-Walker(FRW) metric, with the result-
ing Friedmann equations, in addition to a cursory description of the
cosmic inventory and initial conditions of the Universe. Finally, a brief
description of spinor fields in curved spacetime is presented, before
giving an overview of this thesis. These topics are essential for under-
standing the works of chapters 2, 3 and 4. Most of the information can
be found in references such as [1—4]

1.1 THE EQUIVALENCE PRINCIPLE

The story of GR starts in 1687, when Isaac Newton attempted to
answer the question:“what determines an inertial frame?”. According
to Newton, inertial frames are coordinate systems in which equations
of motion hold their "usual form", i.e the one given in Newton’s
first law of motion. From experiments presented in his Principia [5],
Newton concluded that there’s an absolute space in which inertial
frames are at rest, or with respect to which they are in a state of
uniform motion.

This argument was criticized by many for decades, with the most
constructive one given my Ernest Mach in the 1880’s [6]. Mach in-
terpreted Newton’s experiments as hinting at an interaction between
us and the celestial bodies, which is now known as Mach’s Principle.
In other words, Mach believed that inertial frames now depend on
the stars’ positions and velocities with respect to us, i.e. they are not
absolute. This left the community at a crossroad: either we believe
Newton’s absolute spacetime, with respect to which stars and galaxies
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can be at rest or in uniform motion, or Mach’s principle of our unity
with the Cosmos.

As a first step in solving this dilemma *, Albert Einstein established
the Principle of Special Relativity(PSR) in 1905, which states that [7]:

Physical equations of motion are invariant under Lorentz, rather
than Galilean, transformations.

The importance of this principle is that it includes a bigger group
of transformations that could leave the equations of motion invari-
ant. Indeed, Newton only considered Galilean transformations in his
definition of inertial frames, since he was focusing on his first law
of motion. But Einstein showed that these equations are a limit of
those of Special Relativity(SR), and that Galilean transformations are
a subset of the Lorentz group. This results in a broader scope for the
definition of inertial frames.

The next step was to generalize and incorporate the PSR with a
relativistic gravitational theory, which Einstein did in 1907 by first
introducing the Principle of Equivalence of Gravitation and Inertia(PoE) [8].
In its strong form, the principle states that:

At every point in spacetime, in an arbitrary gravitational field,
it is possible to choose a coordinate system that is locally inertial,
such that, in a small enough region around that point, the laws of
nature are those of an unaccelerated Cartesian coordinate system
in the absence of gravity.

This means that inertial frames correspond to those that are freely
falling in a gravitational field. Einstein’s answer puts him close to
Mach’s, but the two answers are not quite the same. According to
the PoE, in the absence of nearby matter, the gravitational field, and
hence the inertial frame, is determined by the mean gravitational
field produced by stars and galaxies far away. However, once a large
mass(like the sun) is put near the observer, the inertial frames are now
determined by the gravitational field of this mass, and not anymore
by the rest of the Cosmos. The PoE has been tested in several ways
and for many years(see [9] and references therein for past tests), and
there’s still interest in testing it nowadays [10]. These tests established
the PoE as a concrete principle to define inertial coordinate systems,
and thus end the dilemma first presented by Newton.

Having established the PoE, Einstein then continued working on
formulating a relativistic theory of gravity, basing it on Riemannian
geometry. The reason why this applies is the latter’s similarity with
the PoE: in Riemannian geometry, one can always define a set of
locally Cartesian coordinates at any point in a curved space, which

It should be noted that, originally, the purpose of this work was to insure the
invariance of Maxwell’s equations under a coordinate transformation, thus preserving
the universality of the speed of light.
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is equivalent to say that, locally, matter satisfies the laws of SR. By
noticing this resemblance between the PoE and Riemannian geometry,
in a series of papers that resulted in a final one in 1916 [11], Einstein
finally put forward his theory of gravity, GR, which we will now
explore mathematically.

1.2 A MATHEMATICAL APPROACH TO GR

In this section, I will follow a practical introduction to GR, for the
purpose of following up on the mathematics that appear later on in
this thesis. For more details, the reader is advised to check [12].

The most fundamental entity in GR is the metric tensor, commonly
symbolized by g,,, which sets clocks and rulers in our four dimen-
sional spacetime to define temporal and spatial distances. More specif-
ically, the metric defines an invariant interval:

ds? = guvdxtdx” (1.1)

where dx# is an infinitesimal of a general coordinate system x¥, with
i, v running from o to 3 for the 4 dimensions. For example, in Cartesian
coordinates, x# = {x%,x!,x2,x3} = {t,x,y,z}, with t being time and
x,V,z are the three spatial coordinates. When we move to a coordinate
system moving with a test particle, then dx = dy = dz = 0, and so ds
becomes the proper time interval, dt, of these particles. Note that this
does not apply for the case of light-like, i.e those that satisfy ds?> = 0,
since one cannot go to a frame in which light is at rest.

From the metric, one can then define the Christoffel symbols, or the
affine connection:

1
F/\pn/ = Eg/m [aygzw + avgocy - azxg;w} (1.2)

where g/\"‘ is the inverse of g, and d, = d/0x". Mathematically, I”\W
is not a tensor, i.e it does not transform as one under a coordinate
transformation. Its purpose is to insure invariance of the equations of
motion(EoM) under a general coordinate transformation. These EoM
are generalized in GR from Newton’s to the geodesic equation:

d2x® dxP dx7
T =0 (1:3)

where A is an affine parameter, one that increases monotonically along
the particle’s path. Incidentally, in curved spacetime, particles no
longer follow straight lines, rather they travel along geodesics, paths
that extremize the action of a free particle,

dxt dxv
Sfree :/ gyvﬁﬁd/\/ (1.4)
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where one can check that by extremizing eq. (1.4), we get eq. (1.3).
Another useful way to write the geodesic equation is:

usv,uf =0 (1.5)

where U* = dx*/dA is the g4-velocity of the particle and V, is the
covariant derivative. The latter generalizes 9d,, to one in curved spacetime,
and so when it acts on a vector?, it becomes:

Vo VP =9, VP +TF, V7. (1.6)

Having now the Christoffel symbols, one can then calculate the
Riemann Curvature Tensor:

As its name suggests, the Riemann tensor quantifies the local curva-
ture at each point in our spacetime. One can also derive two useful
quantities from eq. (1.7), the Ricci tensor and Ricci Scalar as

Rup = R/yzp and R = g%¥Ry, (1.8)

respectively.

The last ingredient we need to finish our discussion on GR is the
Einstein field equations. These are the result of extremizing the Einstein-
Hilbert action,

SGr = / d4x¢fg[21KR+£m], (1.9)

where ¢ is the determinant of the metric, x = c* /871G, with ¢ being
the speed of light, G is Newton’s constant, and £, is the matter3
Lagrangian density. By varying eq. (1.9) with respect to the metric, we
finally get the Einstein field equations:

1 1

where

7o 1 O(v/—8Lm)

v S g B g],n/
is the stress-energy tensor, which quantifies the energy content of matter
that modifies the spacetime curvature. One particular form of the

stress-energy tensor which is very useful is that of a perfect fluid, which
takes the form:

(1.11)

Ty = (0 + p)uytty + pguv (1.12)

To be more specific, a contravariant vector, one with an upper index. When it has a
lower index, the quantity is called a covariant vector

In here, matter includes everything that is not geometrical in nature. We will see in
the next section that there’s a distinction between matter and radiation in Cosmology.



1.3 A BRIEF INTRODUCTION TO COSMOLOGY

where p,p and u" are the energy density, pressure and 4-velocity of a
certain type of fluid, respectively.

Egs. (1.3) and (1.10) are what Wheeler’s quote mentioned at the be-
ginning of this chapter is about. Spacetime(encoded in the Christoffel
symbol) tells matter how to move(d?x* /dA?); matter(T},) tells space-
time how to curve(R,, — 3¢wR). The formalism presented here applies
to any kind of spacetime and to any matter content, taking GR as the
theory of gravity. We shall now see how a specific type of spacetime
metric, when combined with every type of matter that we know (and
don’t know) of, can result in the field of Cosmology.

1.3 A BRIEF INTRODUCTION TO COSMOLOGY

Since the beginning of human civilizations, questions such as “Why
are we here?”, “How did we get here?” and “Where are we heading?”
have been asked repeatedly. It wasn’t until now that we were able to
form scientific, testable answers to these questions, thanks to modern
Cosmology.

In short, Cosmology is a discipline that combines GR and thermo-
dynamics, resulting in a plethora of tools to describe our universe. In
this section, we will go over the main equations and concepts that
constitute pillars of modern Cosmology.

1.3.1 FRW Metric

To start our discussion, we need to find out what’s the form of our
Universe’s metric. Two ingredients enter into determining this. The
first one is the Copernican Principle, the assumption that our universe is
homogeneous and isotropic on very large scales, i.e we do not occupy
a very special place in the Universe. Many observational probes have
been put to test this principle, and chapter 2 will be dedicated to this.

Mathematically, such a homogeneous and isotropic universe cor-
responds to two properties. First, hypersurfaces of constant time are
maximally symmetric subspaces of the whole spacetime, which means
that there are 6 transformations that leave their metric invariant (6
because the surfaces are 3 dimensional). Second, the global metric
and matter components are invariant under the isometries of these
subspaces, i.e they can depend only on time. These requirements result
in the following general spacial line element(in spherical coordinates):

ds3 = a?(t) L + r2dO? (1.13)
37 1— K2 3

where the subscript 3 stands for 3 dimensional space, 7 is the radial
coordinate, dQ)? = d6? + sin? 9d4>2 is the solid angle given in terms
of the angular coordinates 6 and ¢. We will get to the meaning of
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a(t) shortly. Moreover, K determines the type of curvature of such
a subspace: if K = 0 it would be flat(Euclidean) space, if K = 1
it’s positively curved(spherical) and if K = —1 then it’s negatively
curved(hyperbolic.)

The second ingredient that enters into determining the metric’s
form is the observational fact that our universe is expanding in an
accelerating way. The first evidence for the expansion of the universe
came from Edwin Hubble [13]4, by measuring the recession velocity
of galaxies away from us. This means that if we grid our spacetime,
points on this grid, which correspond to observers at rest, will be
getting further away from each other as time advances. This is why we
have an a(t), the scale factor, in eq. (1.13): it quantifies this increasing
distance between grid points. Incidentally, the term in parenthesis in
eq. (1.13) defines the comoving distance between grid points, one that
doesn’t take into account the expansion, and thus remains constant.

Finally, we need to add the time coordinate, since we live(as we
know so far) in a 4-dimensional spacetime, to get the FRW metric:

2
ds? = —c2dt* + a*(t) (1117’[@2 + r2d02>. (1.14)
Note the minus sign next to the temporal distance. There should
always be a sign difference between spacial and temporal coordinates
in the metric to insure its invariance under Lorentz transformations.
The coordinates’ sign convention will be discussed at the end of this
chapter.

Before deriving the equations of motion that will determine the
Universe’s evolution, it will prove advantageous to work with a re-
scaled time variable, the conformal time, defined as:

dt?
2 _
dn* = 200 (1.15)

One of these advantages is that if we look at a flat FRW universe,
inserting (1.15) in the metric (1.14), we get

ds* = a* (i) (— 2dn* + dr* + r*dQY?) (1.16)

i.e a flat FRW metric described with conformal time becomes propor-
tional to Minkowski (flat) spacetime. This is one way to see Conformal
flatness of FRW spacetime, i.e. it can be transformed into Minkowski
spacetime by a simple Weyl rescaling. This is a very important prop-
erty to keep in mind for FRW metric.

There’s some debate about whether Hubble should be accredited the first discovery
of the expansion of the Universe. See [14, 15] for a historical discussion
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1.3.2  Equations of Motion

Inserting eq. (1.14) in eq. (1.10), with the help of egs. (1.8), (1.7)
and (1.12), we get the first,

K2 4

2 o~ 2
o=y (1.17)

and second,

i ct 3p
—= _61c<p+cz>' (1.18)

Friedmann equations. In eq. (1.17), H = a/a, where “*” denotes deriva-
tive with respect to ¢, is the Hubble parameter, which quantifies the
relative change in scale factor with time.

As is evident from eqs. (1.17) and (1.18), the matter content of
the universe(left hand side of those equations), determines its evolu-
tion(the right one). Therefore, we also need to know how the matter
content evolves and the effect of gravity on this evolution. The latter
is described by the continuity equation:

p
p+3H <p + cz> =0. (1.19)

This is a consequence of energy-momentum conservation, i.e V,Tp, =
0, which is automatically satisfied due to the Bianchi identity:

1
Va {Rm — zng} =0. (1.20)

Furthermore, one can define an equation of state for a certain type of
fluids, by writing

P= wpcz. (1.21)

This equation facilitates the analysis of different types of particles. For
instance, if we assume w is a constant, then eq. (1.19) is easily solved
to give:

p = poa 2@t (1.22)
where pg is the present value of the energy density of this specie.
Fluids with w = 0,1/3 and — 1 correspond to non-relativistic mat-
ter, radiation and vacuum energy, respectively. The resulting energy
densities depend on the scale factor as:

Orad a4 Om a3 and pv = constant, (1.23)

respectively. Incidentally, for species with 0 < w < 1/3, we notice
from eqgs. (1.17) and (1.18) that this leads to @ > Oand d < 0, ie
a decelerating expansion. On the other hand, if w < —1, we get an
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accelerated expansion(a, i > 0). This shows the importance of eq. (1.21)
in determining which species dominate the evolution of the universe,
and therefore determining its thermal history.

Before delving into that, it is useful to define two parameters that
are repeatedly used in Cosmology. The first is the density parameter of
some specie i

Pi
Q= —, 1.2
. (1.24)
where the critical energy density is p, = 3xH3/c*, with Hy being the
value of the Hubble parameter today. It is evident from its definition
that the sum over all density parameters should be 1, once we define
a density parameter of K as

Kc?

O = ——=
K Hja?

(1.25)
This, combined with the strong observational evidence for a spatially
flat Universe, i.e K = 0 [16, 17], is an indication for the existence of
the dark sector, as we will see later.

The second useful parameter is the redshift, formally defined as the
amount of stretching light’s wavelength suffers due to the expansion
of the universe. It is related to the scale factor by:

_ o
1+z= a(ty’ (1.26)
where ag is the value of the scale factor today, usually set to 1. The
redshift provides another way to measure time, and it is usually used
in Cosmology for this purpose.

1.3.3 Thermal History of the Universe

In this part, I will briefly go over the main events, energy scales and
content of interest in our Universe’s thermal history, starting from a Big
Bang singularity. More emphasis will be made on the characteristics
of species we know must exist so far. For more details, see [1, 2, 18]

* Planck Scale, Inflation and Grand Unified Theory:
The upper threshold in energy to which we can extend out clas-
sical theory of gravity(GR) is set by the Planck mass Mp1c2 =
10YGeV. Beyond this threshold, we should start taking quan-
tum gravity effects into account, which is still an active field of
research.

Another important event in the very early Universe is Inflation,
which we will talk about in more detail in the next subsection.
Inflation is expected to happen around the scale of Grand Uni-
fication, about 10'°GeV, i.e the scale at which electromagnetic,
weak and strong forces were unified.
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¢ Baryo/Lepto-genesis:

A quark-antiquark and lepton-antilepton asymmetry occurred
around the time inflation ended. If both species were created
with equal abundance, they would have annihilated in the early
universe, leaving nothing but radiation. However, we know that
such an asymmetry must exist due to abundance of particles
over anti-particles in the Universe, although we don’t know yet
how this asymmetry happened.

Quantitatively, this asymmetry is translated by the fact that we
have a small, yet non-vanishing, baryon-to-photon ratio = 1, =
ny/n, = 55 x 1071%, where 1, and n, are the baryons and
photon number densities, respectively.

¢ Electro-weak phase transition:
The electromagnetic and weak interactions start to deviate from
each other at thermal energies of around 100 GeV, or 10~ !2s after
the big bang. This happens when the weak interaction mediators,
W= and Z° Bosons, gain their masses of around 80 and 90 GeV,
respectively, through the Higgs mechanism.

* QCD phase transition:
At thermal energy below 150 MeV, quarks become asymptotically
free and start forming bound states of two (mesons) or three
(baryons) of them. This corresponds to about 20 ys after the Big
Bang.

* Neutrino decoupling:

So far, there are a few things we know about neutrinos from the
Standard Model(SM) of particle Physics. First, we know there
are three types(generations) of them: electron, muon and tau
neutrinos. Second, there’s one degree of freedom for each anti-
/neutrino generation (since there are no right handed neutrinos
in the SM). Third, we know that they are fermions, and therefore
they should follow the Fermi-Dirac thermal distribution. How-
ever, whether these particles are their own anti-particle or not, i.e
whether they are of Dirac or Majorana type, is still debatable [19,
20].

Strictly through weak interactions, neutrinos maintain thermal
equilibrium with the sea of particles in the early universe, the
primordial plasma. However, at around 1 MeV(or 1 s after the Big
Bang) they start decoupling, i.e going out of equilibrium, from
the primordial plasma. This happens when the expansion rate of
the universe starts surpassing that of neutrino interactions. Since
then, cosmic neutrinos have been traveling freely, interacting
only gravitationally.

From neutrino oscillation observations, we now know that neu-
trinos have mass and, from stringent cosmological constraints,
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that E?:o m; S 0.1 —0.2€V [16, 21, 22], where the sum goes over
the three neutrinos. This shows that neutrino decouples while
being relativistic, which is important to keep in mind as we will
see in chapter 4.

Electron-positron annihilation:
The reaction:

et e o+ (1.27)

remains balanced until the temperature of the universe drops be-
low the electrons rest mass, m.c?> = 511KeV. After this, electrons
and positrons start to annihilate. A major consequence of this is
that neutrinos now travel with a temperature different from that
of Photons:

4 1/3
TV:<11> T, (1.28)

where T, and T, are the neutrinos and photon temperatures,
respectively. This is why neutrino decoupling and electron-
positron annihilation occur close to each other.

Big Bang Nucleosynthesis(BBN):

When the Universe’s thermal energy was around 1 MeV or more,
energetic radiation would destroy any newly formed atom or
nucleus. Once the temperature drops below 0.1 MeV(about 3
minutes after the Big Bang), this radiation is not strong enough to
overcome typical nuclear binding energies, and therefore Helium
and Deuterium can start forming, initiating BBN.

Predictions provided by this process puts restrictions on the
baryons energy density, which at that time is composed of pro-
tons and neutrons. Moreover, these predictions, when combined
with measurements of deuterium abundance from intergalactic
media at large distances, result in )y ~ 0.05, which means
baryons constitute only 5% of the energy budget in the Universe.

As we will see shortly, constraints from the CMB and large scale
structure show that (3, = 0.3, where the subscript “m” stands
for matter. Therefore, BBN provides a compelling evidence for
the existence of DM.

Matter-radiation equality:

All the events discussed so far(since the end of inflation) oc-
curred in an era where radiation is dominating the energy
budget of the universe. In Cosmology, radiation refers to ultra-
relativistic species, i.e photons and neutrinos(only at that time).
From eq. (1.23), we can see that the energy density of radiation
decreases faster than that of matter, and then at thermal energy
of 0.75 eV (or a redshift z = 3400) these two become equal. From
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that point, matter, mainly DM, starts dominating the energy
budget of the Universe.

There have been many astrophysical proofs for the existence
of DM. These include: galaxy clusters dynamics [23], rotation
curves of spiral galaxies [24], X-ray brightness in galaxy clus-
ters [25] and weak lensing [26]. All these indicate that DM in-
teracts only gravitationally with other species, in addition to it
being cold, i.e non-relativistic. Moreover, as stated before, CMB
observations, particularly peaks of its correlation functions, show
that Qcpm ~ 0.3, where CDM stands for cold dark matter. This
means that, since DM decouples very early in the Universe’s his-
tory, they provide gravitational wells which seed late structure
formation, such as galaxies and their clusters.

Despite this plethora of information about DM, we still don’t
know what is its exact nature: a particle, compact object(such as
primordial black holes [27]) or modified gravity. However, we
will see in chapter 3 that it is more likely for DM to be either of
the former two than the latter.

Recombination and photon decoupling;:

At this stage in the Universe’s evolution, ordinary matter in
equilibrium contains: protons, electrons, photons, helium and
a trace amount of heavier nuclei. Once Compton scattering be-
tween photons and electrons becomes unable to keep up with
the Universe’s expansion rate, electrons and protons start getting
together to form the first hydrogen atoms. This is recombina-
tion, which happens at a thermal energy of roughly 0.3 eV(or at
z ~ 1200).

Approximately at the same time, because there are no longer free
electrons available to scatter off, photons become free to travel
without interactions. This is photon decoupling, which also defines
the last scattering surface from which we see CMB photons.

These mediators of the electromagnetic interaction, although
dominating the number density in the Universe (n, ~ 410
photons/cm?), they contribute the least to its energy budget,
with Q, & 5 x 107°. Moreover, after observing it for many years
and through different probes, the CMB is now established as pro-
viding most of the radiation in the Universe (the rest coming for
stars and galaxies) and that it has an almost perfect black-body
spectrum with temperature Toyp = 2.723 £ 0.001 K.

Dark Energy domination:
As previously stated, in 1929 Hubble discovered that the Uni-

verse is expanding. However, an analysis of the emission spectra
from supernovae-la showed that the Universe is in an accelerated

11
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expansion [28-30]. Given what was already known about the
content of the Universe at that time, this seemed problematic,
for the attractive nature of gravity should result in a decelerating
Universe.

The only way such accelerated expansion could happen is if
the dominant constituent of the Universe has negative pressure.
Such a mysterious component has been given the name dark
energy(DE). Another evidence that comes in favor of DE is the fact
that, as already mentioned, the sum of (); for all species should
be 1. Given that (), =~ 0.3, and that K = 0, then there must be
something that compensates for the rest, which is precisely DE,
thus having Qpg ~ 0.7.

In order to explain this entity, the easiest way is to introduce a
cosmological constant(CC) A to the cosmic inventory. This is the
same CC used by Einstein to describe a static universe, but with
an opposite sign, to insure a negative pressure, i.e wp = —1.
However, if one would attribute this type of energy to that of
vacuum, calculations from quantum field theory results in an
energy density, pa, 60 orders of magnitude bigger than what is
observed. This resulted in the fine tuning problem of cosmology.

Several proposals have been presented to circumvent this prob-
lem, such as a dynamical scalar field(quintessence) or a modi-
fication of GR. Nevertheless, the nature of DE is still an open
question.

We have now reached the end of our cosmic inventory description,
with the current state of our Universe being with DE dominating
the energy budget since a redshift of about 0.5. The final topic in
Cosmology, one of utmost importance, is the initial conditions of the
Universe, will be addressed next.

1.3.4 Initial conditions of the Universe and Inflation

The Big Bang model of the Universe is successful in explaining the
abundance of light elements, from which heavier ones started forming,
leading to stars, galaxies, etc. However, this model needed a key
ingredient in order to have the ability to predict these things: initial
conditions(ICs). Of course one can always choose the ICs they want
to match observations. The problem is, one would need to fine-tune
these ICs too much in order to explain two main issues at the time:
the horizon and flatness problems.

According to the aforementioned model, two points on the CMB
sky separated by at least 1.2° didn’t have time(from the Big Bang
singularity) to be in causal contact. This means that these two points
cannot have the same properties. Nevertheless, the CMB sky is very
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smooth, up to one part in 10°, and so the patches must have been in
causal contact. This is the horizon problem.

On the other hand, the flatness problem stems from the fact that our
Universe is spatially flat to a big degree, suggesting that the spatial
curvature’s initial conditions must be fixed at the level of 107%°. This
level pf precision requires a very high level of fine-tuning, something
that Physicists like to avoid.

To solve these two problems in one hit, as well as provide the initial
conditions needed is Inflation. This mechanism was first introduced
by Alan Guth [31], later followed by Andrei Linde [32], Katsuhiko
Sato [33], Alexei Starobinsky [34] and many others(see [35] for a recent
review on Inflation). In its simplest forms, this mechanism assumes
the presence of a homogeneous scalar field ¢(t) which slowly rolls
down its almost flat potential, causing a rapid accelerated expansion
of the Universe. This process would wipe out any initial curvature,
resulting in the spatially flat universe we see today without the need
of fine-tuning.

Moreover, by increasing the Universe’s size 10% times in less than
10~%s, CMB patches would have ample of time to communicate and
be in causal contact, which solves the horizon problem. Finally, by
relating small perturbations of ¢ to those for matter, radiation and
gravitational potentials, initial conditions are then provided, and Big
Bang Nucleosynthesis can proceed as expected(see chapter 7 in [1]
and chapter 8 in [2] for a quantitative description of Inflation).

The ability of Inflation to solve all these issue in one blow made
it the most successful description of the early universe which, when
combined with what has been described so far in this chapter, forms
the concordance ACDM model. Nonetheless, there are other possible
explanations for the state of the early universe that haven’t been
ruled out completely, such as Cyclic Universe [36, 37], string gas
cosmology [38] and loop quantum cosmology [39, 40], to name a few.

As this thesis will not focus on Inflation and its alternatives, it
would suffice the information presented so far to end this section on
Cosmology. The next topic to be presented is one which has been
gaining some attention recently, with a great possibility to enhance
our understanding of gravity and cosmology at the fundamental level:
Quantum Spinors in Curved Spacetime.

1.4 QUANTUM SPINORS IN CURVED SPACETIME

The study of quantum fields in curved spacetime proved to be very
useful in Cosmology, specially for calculating the origin of CMB
anisotropies and the seeds of large-scale structure during inflation [41].
Moreover, this subject is considered as an essential first step in the
quest of understanding the quantum nature of gravity, with numerous
attempts to tackle it were faced by its non-renormalizability [42].

13
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Thus far, a great deal of work has been done on scalar and spin-2
fields in curved spacetime, targeting the dynamics of inflation and
gravitational waves, respectively [4]. However, not much emphasis
has been made on spin-1/2 fields, or spinors, traveling in a non-trivial
gravitational field. In particular, when applied to the study of neutrinos,
the study of quantum spinors in curved backgrounds could provide a
plethora of gainful insights about our Universe, as this thesis tries to
show(see chapter 4).

In this section, I present some of the basic concepts related to
quantum spinors in curved spacetime, with the aim of making it easy
for the non-expert reader to follow the discussion of chapter 4. This
short review is based mainly on the work presented in [43]. Let’s start
with the most fundamental equation for spinors, the Dirac equation.

1.4.1  Dirac Equation in Curved Spacetime

Recall the Dirac equation in flat spacetime takes the form:

(ihny# 0¥ —me)p =0, (1.29)

where 71 is the reduced Planck constant, 7, is the Minkowski metric(diag|-

1,1,1,1]), v* are the Dirac matrices and m is the spinor’s(y) mass.
Naively, one would think that, to go to curved spacetime, one would
simply substitute the above quantities with their curved spacetime
correspondences:

(ihgu VY —mc)p = 0. (1.30)

However, the general covariance principle, which should allow us to
go from (1.29) to (1.30), applies when the equation is written in terms
of tensor fields, and spinors are not. Fundamentally, the reason for this
hindrance lies in the fact that the general linear group in 4-dimension
GL(4), which describes general coordinate transformations, doesn’t
have a spinorial representation [44, 45].

The solution to this impediment would be to work with tetrad
fields [46], whereby one studies the dynamics of spinors with respect
to local inertial observers. Recall that tetrad, or vierbein, field ef; are
defined in the entire spacetime and work by projecting a quantity from
its general coordinates form, with index p, to that in local coordinates
a. Therefore, we can write the Dirac matrices as

7 (x) = ehv", (1.31)

where 7" are the usual Dirac matrices in flat spacetime, satisfying the
commutation relation:

v+ = =2 (1.32)
This relation gets generalized, using (1.31), to

()7 (x) + 9" ()7 (x) = 28" (1.33)
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Moreover, to take into account the spinorial nature of the field, the
action of the covariant derivative on ¢ can be defined as

Dy = (0 — T) ¢, (1.34)

where we use the notation D for the covariant derivative of a spinor,
and I';, is the spinorial affine connection. To put it in simple words: the
extra effects due to the spinorial nature of the field are summed in I';.
It can be shown that the latter takes the form:

Fu(x) = — 37076 () Vs (1), (1.35)

which eventually results in the Dirac equation in curved spacetime to

be:
. 1
[zh'y" <8H + 4'ya'ybe““vﬂeba> — mc} ¢ =0. (1.36)

Having this modified Dirac equation, along with a metric for gravity,
forms the basis from which neutrino oscillations and dynamics in
curved spacetime can be studied. This is explained and elaborated on
in chapter 4.

1.5 OVERVIEW OF THE THESIS

We have reached a very advanced stage in our understanding of
the Universe, both on large and small scales. This understanding is
formulated in the ACDM concordance model within the context of GR
as a theory of gravity. However, one cannot say that this understanding
is complete, for a few of its basic constituents are still mysterious.

In particular, one cannot state with absolute certainty that our theory
of gravity is given by GR. Although the latter has been successful in
describing many phenomena, one must face the fact that its non-
renormalizability at the beginning of the Universe is problematic.
Moreover, almost 95% of the Universe’s energy budget is given by the
dark sector, with its nature still unknown till this day.

In an attempt to overcome these issues, several distinct models of
modified gravity have been suggested in the literature. Some of these
candidates for a new theory of gravity could cast away all the above
issues in one hit, under certain conditions. However, these models are
numerous, and it is becoming more important to derive new probes
to constrain them, if not rule them out.

It is therefore the purpose of the current thesis to present new
theoretical methods that derive observables which could distinguish
some of these models. As we are now in the era of precision Cosmology,
we have a golden opportunity to use this precise data to check the
models and constrain their parameters.

The first chapter after the current one, chapter 2, is a prelude for such
methodology. There, the polarization of CMB photons that have been
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inverse Compton scattered off galaxy clusters is used as a probe for
spatial homogeneity. This presents a new method to test the Copernican
Principle.

Later, in chapter 3, the possibility of DM being part of a modified
theory of gravity is investigated in two ways. The first is on cosmo-
logical scales, where a case study with a particular modified gravity
model, Mimetic Dark Matter [47, 48], shows the amount of fine tuning
this model needs to match the data. In particular, by re-deriving the
equations of motion for this model, one finds additional free functions
and constants that need to be fixed. Further, with lack of a built-in
mechanism to generated adiabatic initial conditions, these free func-
tions must be tuned to match CMB correlation functions, at least to
around 10%. This puts great constraints on this model and its likes.

The second method presented in chapter 3 to test modified gravity
is at astrophysical scales. The main argument there is: if DM is part
of gravity, then such phenomenon should be present everywhere, by
gravity’s universality. However, the discovery of DM devoid dwarf
galaxies [49—54] puts this hypothesis to question. To show this quan-
titatively, a generalized Virial theorem is derived for a wide class of
modified gravity models. The result is that there is always an addi-
tional term in the generalized Virial theorem due to modifications of
GR, even for the DM deficient galaxies. Therefore, unless high level of
fine tuning is employed, the DM-modified gravity hypothesis is put
to question.

In chapter 4, we make a turn towards quantum field theory in
curved spacetime, particularly spinor fields. In the first part, a general
formalism for the interaction of spinor and scalar fields in a generic
spacetime is presented. Later, this formalism is specified to three
different types of interactions between the two fields within flat FRW
universe, and the dynamics of the spinor field is then studied.

The second part of chapter 4 is an application of the first one to
neutrinos’® interacting with a scalar field in curved spacetime. The
purpose is to look at the effect of DE, be it a CC or a scalar field,
on neutrino oscillations. To this end, we first present a general form
of interaction between the two fields in a generic spacetime. This
results in an evolution equation for the neutrino flavor state along
its worldline, from which one gets the evolution of the transition
amplitude between two flavor states. We then specify the spacetime
to be flat FRW, and consider the case of a CC-DE (i.e. no scalar field
involved) and a scalar field one coupled to neutrinos by a linear
derivative coupling(LDC) [55].

The final conclusion from this work is that, depending on which
DE model is being used, the transition probability between two flavor
states will evolve differently with redshift. Once detected in neutrino

5 For simplicity, we look at two flavor neutrinos.
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observatories, this work present the case for neutrino oscillations to
be a new probe of DE models.
The final part of chapter 4 is an extension of the above formalism to

three-flavor neutrinos, specifying ACDM as the model of the Universe.

By looking at ternary diagrams and the neutrino fluxes” evolution
with redshift, the presented method could be to measure the present
acceleration rate of the Universe, Hy. Therefore, neutrino oscillations
could provide new insights on the Hubble tension.

We finish the thesis with a summary of the results and future
prospects in chapter 5.

17
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TESTING THE COPERNICAN PRINCIPLE






MEASURING THE HOMOGENEITY OF THE
UNIVERSE

One of modern Cosmology’s pillars is the assumption of spatial ho-
mogeneity and isotropy of the Universe on large scales. This is known
as the Copernican Principle which, stated differently, means that we do
not live in a special place in the Universe. It is therefore paramount
that we check the validity of this assumption as crudely as possible, in
order to make sure that we are not missing anything in our analysis.

The spatial isotropy part of the Copernican Principle has been
measured to a good extent with several probes. For instance, spatial
variations in the CMB temperature with direction are constrained to
about 10~*%, presenting a strong case for isotropy at the background
level. However, spatial homogeneity is not as easily probed.

The fundamental reason for this difficulty is that to probe homo-
geneity, one must access the interior of our past lightcone, and check
for spatial inhomogeneities within it. But that is not easy to do directly,
since we can only observe the surface of the lightcone. Therefore, one
will need a messenger from within the lightcone that leaves imprints
on its surface which give us information about spatial homogeneity.

The following work [56], therefore, presents the case for CMB polar-
ization to be such a probe of spatial homogeneity. To be specific, one
must start the analysis without assuming any type of symmetry, i.e. in
the most general spacetime possible. This results in having expansion
rates in the longitudinal and transverse directions that, in principle,
differ from each other. These quantities will then enter into equations
of motion for any dynamical quantity. This is on the one hand.

On the other hand, as CMB photons travel from the last scatter-
ing surface, they get scattered off energetic electrons inside massive
galactic clusters, affecting thereby their polarization. Then, the latter
follows an equation of motion that depends on the expansion rates
previously mentioned, as these photons travel towards us. By measur-
ing CMB polarization over an extended period of time (O(10) years),
and knowing that the longitudinal expansion rate can be measured
with cosmic chronometers [57, 58], we finally get a measurement for
the transverse expansion rate. The deviation of the latter from the
longitudinal expansion rate is therefore a measure of distant spatial
anisotropy, which is equivalent to homogeneity.

Below we present the work in its published form. We refer the
unfamiliar reader to Appendix F in [12] for the basics of the first
section, and [59] for those of the second one.
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neous universe. We provide explicit formulas that connect observables and properties of the
metric.
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1 Introduction

Isotropy and homogeneity of the background are basic assumptions of the current standard
model of the Universe. Within this expanding background, structure formation proceeds
via small perturbations with a possible origin in quantum fluctuations of the vacuum. The
homogeneous standard cosmological model is a simple, predictive model that successfully
accommodates all observations up to now [1]. However, we should probe the foundations of
this model as far as possible in order to understand if it holds and if new physics has not
been dismissed because of our assumptions (see e.g. the reviews in [2-4]).

Isotropy is well confirmed by observations of the cosmic microwave background (CMB):
the temperature of the CMB in its rest-frame shows isotropy at better than one part in
10* [1]. Homogeneity, on the other hand, is not established by observations of the CMB
and the large-scale galaxy distribution — we cannot directly observe homogeneity, since we
observe down the past lightcone, recording properties on 2-spheres of constant redshift and
not on spatial surfaces that intersect that lightcone. What these observations can directly
probe is isotropy about the observer. In order to link isotropy to homogeneity, we have to
assume the Copernican Principle, i.e. that we are not at a special position in the Universe.
The Copernican Principle is not observationally based; it is an expression of the intrinsic
limitation of observations from one spacetime location.!

Of course, there is a rich literature of inhomogeneous cosmological models. In particular,
void models aim at explaining the current acceleration of the Universe without the need of a
cosmological constant (see e.g. [4] for a review) and while these models suffer from difficulties
to fit all observations (e.g. [6, 7]), it is not ruled out that some better models could be built
in the future. It is therefore important that we develop direct tests of homogeneity that do
not assume the background spacetime. Checking whether galaxy number densities approach

!Nothing precludes that we are at a peculiar location. In fact, we are in the middle of a void with two
massive galaxies, Andromeda and the Milky Way; this in itself is very peculiar [5].



homogeneity on large enough scales (for recent work, see e.g. [8-12]) is based on assuming a
Friedmann background and is therefore a consistency test, not a direct test of homogeneity.

Direct tests of homogeneity need to access the interior of the observer’s past lightcone.
In the case of galaxy surveys, Bonnor and Ellis [13] formulated a conjecture about thermal
histories in separated regions of the Universe. The conjecture was developed by some of us [14]
into a direct probe of homogeneity, by using the “fossil” record (star formation history) of
galaxies. This was then applied to find the first direct constraint on inhomogeneity in a
galaxy survey, using the fossil record of SDSS galaxies [15]. The fossil record from the star
formation history of galaxies was used as a proxy to probe inside the past lightcone, and
led to constraints at the ~ 10% level on any deviation from the homogeneous Friedmann
metric. While the fossil record provides already very interesting constraints, it is not a direct
probe in the purest sense, as it uses a proxy to probe the metric. Furthermore, it is always
useful to have several probes of the same measurement, so as to minimize possible systematic
uncertainties. In this work we will present a method that uses photon geodesics to probe the
metric, which is a more direct probe of homogeneity.

In the case of the CMB, the thermal Sunyaev-Zeldovich effect probes the remote CMB
monopole as seen from the observed galaxy cluster, and thus can provide a direct test of
remote isotropy and hence of homogeneity, as pointed out by [16] (subsequently used to test
void models by [17-19]). Similarly, the kinetic SZ effect probes the remote dipole and was
used by [20] to test void models. The kinetic SZ can be used as a probe of isotropy inside
the past lightcone, and thereby as a probe of homogeneity, if we can observe photons that
are multiple-scattered or if we can observe the CMB over an interval of cosmic time [21]. In
fact, the long time baseline is critical to our plans: more spacetime geometry can be accessed
by a patient cosmologist [22].

Polarization of the SZ effect provides further important tests. The polarized thermal
SZ probes the remote quadrupole, allowing in principle for a reduction in cosmic variance in
a perturbed Friedmann universe [23, 24]. (See [25-28] for recent work on reducing cosmic
variance in perturbed Friedmann models via the kinetic and polarized thermal SZ effects.)

In this paper, we propose a new method to directly probe homogeneity, based on changes
of the polarization of CMB photons generated by inverse Compton scattering of CMB photons
off hot electrons in massive (proto)-halos, and the radial expansion history of the Universe.
The new method enables a test of isotropy at remote positions on our past lightcone — a
key test of homogeneity.

In section 2 we review the description of expansion rates in a general spacetime. This
is a necessary step because to test homogeneity we have to work with space-time metrics
that do not rely on homogeneity. For the same reason, in general cosmological spacetimes
(i.e. without assuming a background or any large scale symmetries) we cannot describe
polarisation as in homogeneous spacetime. This is presented in section 3. In section 3 we
also describe the effect of scattering (by hot electrons) of CMB photons in generic metrics
and the signature that inhomogeneities leave on the polarisation signal. Finally in Sec 4 we
present an estimate of the observations needed to constrain homogeneity with the method
developed above. We conclude in section 5.

2 Expansion rates in a general spacetime

Let us first recall how to reason in general spacetime metrics. The most efficient way is
to use covariant language. A distant object, with worldline £, emits photons at event E



that we observe with redshift zg at event O on our galaxy worldline O. (See figure 1.) In
order to compare the intrinsic properties of £ and O at the same proper time, we need to
compute the look-back time tp — tg, where ¢t denotes proper time along galaxy worldlines.
This is straightforward in a Friedmann model — but we cannot assume the geometry of the
spacetime if our aim is to test directly for homogeneity. So we need to compute the look-back
time in a covariant way, valid in a general spacetime [14].

The galaxy 4-velocity field is u# = da*/dt. The past-pointing photon 4-momentum is
k# = dx* /dv, where v is the null affine parameter with v =0 at O. Then

14+ z=uuk?, k' =1+2z)(—uv*+n"), un=0, nn* =1, (2.1)

where n* is a unit vector along the line of sight. For observers co-moving with the matter,
an increment dv in null affine parameter corresponds to a time increment dt, where

dt = —u,ktdv = —(1+4 2)dv. (2.2)
We need to relate v to z by (2.1):

% = KV, (u k") = KPRV, (2.3)
v

where the last equality follows since k* is a geodesic. The covariant derivative is split as
1 .
vuuy = ge)huu + Opy + W — UpUy h/w = Juv T UplUy , (24)

where h,,, projects into the galaxy instantaneous rest space, the dot indicates u#V, , © is
the volume expansion rate (© = 3H in a Friedmann model), oy, is the shear, w,, is the
vorticity and 4, is the acceleration. Now we will assume that the Universe is dominated by
pressure-free matter, whereby 1, = 0. Putting everything together, we get

d 1
dTZ} = (14 2)? {3@ + awn"n”} . (2.5)

Now we integrate along the lightray from O to E, using (2.2) and (2.5):

[ dz
fo~te= /o (1+2) [@(z) /3+ aw(z)nunv] '

(2.6)

This will give us the look-back time — provided that we can uniquely relate the time intervals
along galaxzy worldlines that cross the lightray to a time interval along our worldline O. In
order to do this, we need the existence of spatial 3-surfaces that are everywhere orthogonal
to u*; these will then be surfaces of constant proper time. The necessary and sufficient
condition for these surfaces to exist is an irrotational flow:?

Wy = 0. (2.7)

Then we can uniquely identify the event FE’ where the constant proper time surface t = tg
through F intersects O. For rotating matter, it is not clear whether we can consistently define

2This condition is only required on scales where the dust model holds: it is violated on nonlinear scales
due to multi-streaming and baryonic effects.
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Figure 1. Schematic of the lookback time in a general spacetime.

a look-back time. From now on we assume that the general spacetime has irrotational cold
matter and dark energy whose perturbations are negligible, together with standard baryonic
and radiation content.

A clear target of observational cosmology should thus be to measure ©(z) and o, (2)
in order to probe homogeneity. In order to identify the line of sight and transverse expansion
rates in a general spacetime, we start from the matter expansion tensor

1
@/w = §®hlu/ +ouw, 6= (—)uuh/w ) (28)
where the average expansion rate is %@. The line of sight (radial) expansion rate is
. oV 1 WV
Hj = 0,,n"'n" = g@—l—awn n”, (2.9)

so that the lookback time from (2.6) is

ZE dz
to—tg :/O (e et (2.10)

The transverse expansion tensor is

1
O, = 0SS = 3018w + Oy Suw = hp —npumy, (2.11)

where S, is the projector into the transverse space (“screen space”). Then the transverse
expansion rate is
1 1

1 1 1 v v 1 v
HJ_ = §@J_ = 5@#1,5# = 5@#,,»9# = §® — §0Wn“n . (212)



Then it follows that, as required, the volume expansion rate is
O(z) = H|(z,n") + 2H (z,n"), (2.13)
while the radial shear is
qﬂawwzng@waﬁ@m%. (2.14)
The shear can be split into transverse, radial and mixed parts:
O = O‘j,, + Anyny, +2B(,n,), Bun' =0, (2.15)

where U/f,, is defined by (2.11), and A, B, are found by suitable contractions of (2.15). This
leads to

2
1 «
Opw = Oy + g(HH — H)nuny, + 20480 S&ny) . (2.16)
In principle, H) is determined by baryon acoustic oscillation (BAO) measurements of a
physical, radial length — a standard “ruler” — in galaxy clustering [29]:
c
H=——-—Az, 2.17
I (]. + Z)ATH ( )

or by cosmic chronometers using a standard “clock” in the form of differential ages of ancient,
elliptical galaxies [30, 31]:

Az
(1+2)At’
which follows from (2.10). However, while the cosmic chronometer method is fully indepen-
dent of the cosmological model, the radial length BAO needs to assume a value for Ar| or
obtain it through consistency with other measurements. These are the only® two routes to
obtain H|.

Once H| is determined, we would be able to find H, if we could probe the remote
volume expansion O, using (2.13). By (2.14) or (2.16), an alternative would be available
if we could probe the remote shear o,,. Then we would be able to test homogeneity by
testing isotropy of the expansion rate at remote locations. The problem is to find a direct
observational way to determine H | or © or o,,. In the absence of a direct solution, we turn
to investigate the information contained in the evolution of polarization.

Hy=- (2.18)

3 Polarization in a general cosmological spacetime

Polarization in a perturbed Friedmann model is well understood (see e.g. [32-34]). Linear
polarization is described by the Stokes parameters (Q,U. Note that these parameters have
units of intensity per unit frequency, their measurement inevitably involve a quantity that is
an integration of these parameters over a frequency range. In this sense the @, U parameters
should be seen as “differential” quantities. Under rotations through ¢ in the screen space,
these parameters @', U’ are rotated by 2¢ in parameter space, showing that linear polarization
is described invariantly by a spin-2 object in the screen space. Thus @,U are not physical
invariants but depend on coordinates in the screen space. The invariants under rotation are

Q*+U”=Q*+U?, (3.1)

3Observations of supernova as standarizable candles also give H| | but this depends on assuming the metric.



whereas the direction defined by the polarization angle,
tan! = = o/ =a—¢ (3.2)

is not invariant.

In a general cosmological spacetime (i.e. without assuming a background or any large-
scale symmetries), we need to deal with the invariant objects. A general analysis was devel-
oped in a pioneering paper by Challinor [35] (see also [36, 37]): linear polarization is described
by a symmetric trace-free tensor P*¥ in the screen space, i.e. a spin-2 object in the screen
space, which satisfies

P S =0=P" =P and P*n, =0="P"u, (or P =P :=S4SY P7). (3.3)

The magnitude of the polarization tensor is independent of coordinate choice and is given by
the rotational invariant (3.1) [35]:

2P P = Q*+U?. (3.4)

After scattering by free electrons in a scatterer located at a given redshift z which is composed
of a collapsed dark matter halo above a mass large enough to host high-energy free electrons
that cause inverse Compton scattering on lower energy CMB photons, the linear polarization
tensor in the screen space propagates along lightrays towards the observer according to
conservation of =3 P where v is the photon frequency [35]:

(kYo (v 2 PH)] | = S4SY K Vo (v PPT) = 0. (3.5)

Note that we do not impose the stronger condition k*V, (v=3 P#) = 0, since in general ligh-
tray derivatives of screen-space quantities do not lie purely in the screen space. Polarization
measurements implicitly involve a projection into the screen space, so that any components
not in the screen space do not affect the measurement.

If we project (3.5) with v=3P,,,, we have

0=FkVa[v P, (v PH)] = %kava v (Q*+U?)]. (3.6)

It follows that for a source E observed by O at redshift z = vg/vp — 1, we have
QE+UE=(1+2)°(Q5+U5). (3.7)

This is the expected scaling with redshift for the differential Stokes parameters.

3.1 Local coordinates for polarization
For matter that is irrotational and pressure-free on large scales, we have
Wy = 0= iLN = U] = 0 & Uy = *L‘,H, (38)

for some scalar ¢ — which is then necessarily the proper time along matter worldlines. There-
fore we can choose comoving coordinates (¢, z*) such that

ds® = g datde” = —(u,,dx“)Z + hydatdz”
= —dt* + (nida")* + S;jda’da’ . (3.9)



1

Locally, i.e., in a neighborhood of any point, we can choose ' = z along n* and then

ds?|, . = —dt* + Afda® + Spyda' da’ (3.10)

where ' = (y, z) and n; = A|d;. The area element in the screen space is dV, = v/det S7; d*z.
Transverse areas expand as Ai, where A | is the transverse scale factor; since 2! are comoving
(constant along the matter world-lines) this means that v/det Sr; oc A2. We can normalize
A at some time t = tg so that /det S;; = Ai, and then S;j; = Aﬁ_su, where det s;; = 1.

Thus

ds* oe = —dt* + Aﬁdx2 + A% s;ydalde’  where dets;y=1. (3.11)

The expansion rates are
H=—, H =—. 3.12
I A” ’ L AL ( )

Note that H is the geometric mean of the expansion rates in the local principal axis system
of S]J.

In these coordinates, the polarization tensor has only screen-space components, and
these components are the Stokes linear polarization parameters @), U measured by the ob-
server using the local coordinates in the screen space:

U-Q

We used S,i = 85(5/{ and ST = 6%, which hold in the polarization coordinates of (3.11).
An alternative to local coordinates is an orthonormal tetrad. A polarization tetrad is
briefly described in appendix A.

1 U
Pu = Prs 646, , Prj= 5 <Q ) . (3.13)

3.2 Drift of polarization

The time evolution of polarization at a scatterer is given in a general spacetime by the co-
variant derivative of the polarization tensor along the four-velocity of the scatterer, projected
into the screen space, i.e. by (751J)J_ at E. In the local coordinates of (3.11), both S, and
P are zero if p or v is 0 or 1, and we find that

(Prs), =SS5 (u*Va Pu) = Prso — L1y Prs — D5y Prx - (3.14)

The Christoffel symbols in (3.14) encode the screen-space shear and the volume expansion
rate:

1
Il :Ufﬁ'g(Hu +2H.)0r . (3.15)
This can be seen as follows. By (2.4), with w,,, = 0 and u = ), we have
1 . " 1
o = Voul — 08 =Tl — 0. (3.16)

Then we use (2.13) for © and project into the screen space to obtain (3.15). We can
rewrite (3.14) as

. d 2
(PIJ)L = &PIJ - g(HH + QHJ_)P[J - QUIL((IP‘%. (3.17)



This equation can be derived also using the tetrad in the appendix without any need to use
local coordinates. By the Equivalence Principle, dPy;/dt is given by the special relativistic
scattering formula, which depends on the properties of the free electron distribution in the
scatterer and of the CMB photons, both of which can be estimated from observations. The
observable (Py;), is therefore determined by the local scattering physics (via dPy/dt) and
by gravitational effects, which produce the expansion rate (H, | +2H 1)/3 and screen-space
shear UIlJ, of the matter field.
If we observe a scatterer over a proper time interval dtp at the observer, where

Sto = (1 + 2)tz, (3.18)

then it follows from (3.7) that the change in polarization magnitude at the scatterer is related
to the observed change in polarization magnitude by

§(Q+U) = (1+2)°6(Q°+U?),+6(1+2)°(Q*+U?), bz, (3.19)

where the redshift measured at the observer is z 4+ 0z (see (B.5) in appendix B).

Equation (3.19) predicts the polarization drift at the scatterer in terms of the measured
polarization drift and redshift drift at the observer. The polarization drift at the scatterer is
also determined by (3.17):

6PIJ’E = (751J>J_E5tE ’ (320)

where dtg is the proper time interval at the scatterer and (”PU)J_E is given by (3.17). By
comparing the theoretical prediction for the polarization drift with the measurement (3.19),
we can in principle deduce the local volume expansion rate and the screen-space shear at the
scatterer. If we also find the radial expansion rate via the BAO, then we can deduce the
transverse expansion rate at the scatterer. To be more specific, from local measurements of
z and dtp we can obtain dtg as in (3.18). From measurements of the redshift drift §z (which
can be measured directly from estimates of Hy using the local distance ladder), Po and 6Pp
we can use (3.19) and (3.20) to determine (ﬁIJ)lE. Then we use the two equations in (3.17)
and supply a theoretical prediction for dPy;/dt to get H) and U}-J. This is our procedure to
measure homogeneity.

4 Observational strategy

We can provide an estimate of the observations needed to constrain homogeneity with the
method developed above. It is beyond the scope of this paper to provide a detailed study of
the experimental setup needed: this will be presented elsewhere.

Our proposed method relies on the difficult task of measuring the polarization drift, i.e.,
the time variation of the polarization tensor, at each scatterer position. The redshift drift
(see appendix B) needs knowledge of Hy which has already been obtained at the % level with
the local distance ladder and the other relevant quantities are much easier to measure and
have been discussed extensively in the literature. Effectively, one needs to “film” polarization
(for a closely related idea see also [39]; also see [40, 41]).

While the polarized cosmological signal can be found in several observables, we seek a
combination of detection method, observable and its scatterer that achieves the following:



1. It is stable enough to be observed for a long time and thus to detect small drifts.
2. The polarization signal can be measured with exquisite signal to noise.

3. The scatterer is at cosmological distances and its redshift can be reliably measured
(this does not need to be spectroscopic but can be photometric, which already exist).

4. It is abundant.

5. The signal can be easily accessible with current technology (but not necessarily with
current experiments).

For this reason we focus on the polarized signal of CMB photons that have been inverse-
Compton scattered by the hot intra-cluster gas of massive galaxy clusters. Consider a radio
telescope with spatial resolution at the ~ arcmin level. This is achievable as it is not too
dissimilar to that of the Planck space mission. Consider also that measurements can be ob-
tained over the time frame of O(10) years and that future CMB polarization experiments will
be basically photon-noise limited because of the large number of detectors on the focal plane.

Halos of dark matter mass above 10'3 M, are optimal scatterers, leaving their easily
identifiable (Sunyaev-Zel’dovich [42]) signature on CMB high-resolution maps. An experi-
ment to detect this signal is something like the more updated versions of CMB-S4 [43] con-
sidered by ref. [44], (Nget = 107 detectors, D = 12m mirror). Since the drift is linear in time,
there is a considerable gain through having a longer experiment, with the error on the rate
decreasing as tgxi,/ 2. For a mission with improved detector sensitivitiy sget, from the CoRE
proposal,* with a baseline 1.2m mirror, and mission length of 6t = 4yr, the noise level is

C (dyr\ Y% /400 \ /2 Sdet
Cnoise = 4.7TpuKarcmin <(5t> N L (4.1)

The S/N on the normalised drift rate a, defined such that the polarisation signals evolve
from the initial observation Py at t =0

t
P(t)=PF (1 + at> (4.2)
(where t, is the expansion timescale) is obtained through a Fisher analysis of the error on a,

which yields an error
NN A
Oq = T tT (43)
Npix S exp
where IVpix is the number of pixels in the polarisation map, which we assume is repeatedly
measured once every 0t. Putting these together, assuming all-sky coverage, the signal-to-noise
for the polarisation drift would make a detection challenging with the following S/N:

E — 66 Net 12 D Sdet - texp 32 1 ! (4 4)
N 107 12m ) \ 0.1 uKsl/2 10 yr Gyr ’

Foreground variations are likely to be uncorrelated with the drift, but would constitute an
additional source of noise. As pointed out in [44], the main contaminant is the F primordial

4http:/ /www.core-mission.org/documents/CoreProposal_Final.pdf.



mode. Our task is, on the other hand, easier as we only need to measure differential variations,
which minimizes greatly many systematic effects.” Thus it is not unreasonable to assume that
our differential measurement could have a S/N of O(100) in the integrated full sky. Assuming
scatterers can all be identified in CMB maps and assuming the Stokes parameters can be
reliably measured for all of them, we could limit variations of H)+2H via (3.19) and (3.17).

Recall that we need to measure H|| independently of the metric to determine H . The
BAO technique does require a value of the sound horizon that is usually assumed to be the
one given by the CMB, which assumes homogeneity even when using only local measurements
to obtain the ruler’s length [38]. On the other, hand none of these assumptions are needed
for the cosmic chronometer method, that is fully independent of the metric of space-time or
the cosmological model. For the sake of the argument here we can assume that in future
measurements H)| can be measured at the percent level. This will be the degree that we can
constrain homogeneity with future surveys. However, it is worth recalling that the Planck
space mission already has observed 10? Sunyaev-Zel’dovich clusters for which the polarization
drift could, in principle, be measured. This could give an interesting constraint on the degree
of homogeneity; we will explore this elsewhere. We are fully aware that we have ignored many
real-world effects, like foregrounds and other intrinsic time variable effects on @) and U, but we
have shown that the method to measure homogeneity presented above is, in principle, feasible.

5 Conclusions

Measuring the degree of homogeneity of the space-time metric of the Universe remains an
open question in cosmology. We have presented a method to measure homogeneity in general
space-time metrics by “filming” the polarization signal of CMB photons inverse Compton
scattered by the hot intra-cluster gas in galaxy clusters. In particular, the change in time of
the Stokes parameters provides a measurement of the transverse expansion rate. The radial
expansion rate is instead measured by more conventional probes like radial BAO or cosmic
chronometers. We have estimated that a measurement of homogeneity at the ~ percent level
can be obtained with high resolution full sky CMB polarization maps in a period of years.
Percent-level constraints on the degree of homogeneity may be achievable with the expected
sensitivity of the proposed Simons Observatory [45] and CMB-S4 experiment [46].
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5Stacking galaxy clusters in the same redshift slice will eliminate any intrinsic variations in the cluster
evolution.

~-10 -



A Polarization tetrad

An orthonormal tetrad e, = (u,n,e4), where e4 are orthogonal unit vectors spanning the
screen space, is adapted to describe polarization, which is measured in the screen space by
an observer w. The tetrad components Py, = Py €4 €} are then physical quantities. In this
tetrad, the polarization tensor has nonzero components only in the screen space, and these
components define the linear polarization Stokes quantities Q7 U that are measured by the
observer: o
PABEPWeff‘e"B:;<gg). (A1)

We use hats to distinguish the Stokes parameters in the polarization tetrad from those in the
polarization coordinates of (3.13).

The orthonormal tetrad e, has rotational freedom in the screen-space basis e4. By (3.5),
a natural choice is that e propagates along the lightrays according to

(k“Vaeh) , =0. (A.2)

With this choice of the screen-space basis — which we can call the polarization basis — it
follows from (3.5) that the tetrad components P4p propagate according to

d

d d A
—(1/_3 ’PAB) =0 equivalently %(1/_3 Q) =0= T

- (v30). (A.3)

A consequence of (A.3) is that the polarization at the scatterer is given in terms of the
polarization measured at the observer by

(@p, Ug) = (1+2)*(Qo, Uo) (A.4)

where z is the observed redshift of the scatterer. In particular, this means that the polariza-
tion angle « is constant along each lightray:

fan2a=2 = Yo o ap=ao (A.5)

=
Note that (A.3)—(A.5) hold only in the polarization tetrad defined by (A.2).

B Redshift drift in a general cosmological spacetime

It follows from (2.2) and (2.5) that
to
1+z:exp/ dt H)(t,n'") (B.1)
tp

Consider the small change 6z in z over a proper time interval dtp at the observer. The
corresponding time interval along the u* world-line at the source is dtg, and

to+dto to
(1+z+5z)—(1—|—z):exp/ dtHH—eXp/ dt H| (B.2)

tg+ote te
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We

break up the total time interval tg — tp + dtp into 4 segments,

to to+dto tp+itp to
6z—exp</ dtHH—i—/ dtH”) —exp(/ dtH”—l—/ dtH|>
tp+oty to tg tp+ote

to to+dto tg+ote
exp/ [exp/ dt H — exp/ dt H”} (B.3)
t t

E+otp o te

Now dtg = (14 2)~16tp, and working to lowest order in &tp:

to to+dto tp+otp
0z =~ exp/ {exp/ dt H| —exp/ dtHd
tg to tp

~ (1+ z){ exp [5toH”(to, n’é)] — exp [(%EHH(tE, n%)] }

~ (1+2) [1 +5toHy(to,nl) — 1 — (14 2) 6t Hy (tg, ng)} (B.4)
Finally 5

o 2
% = (1+Z)H||(to,né) —HH(L‘E,TL%) +O((5to) (B5)
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Part II

CAN DARK DARK MATTER BE GEOMETRY?






INVESTIGATING MODIFIED GRAVITY AS A DARK
MATTER CANDIDATE

As was mentioned in the introduction 1, DM’s existence has been
proven with several observational probes [23-26], however its nature
is still a mystery till this day. Several candidates have been proposed
to explain this mysterious entity, including particles[60, 61] and pri-
mordial blackholes[27]. One suggestion, which will be the subject of
this chapter, is modified gravity candidates of DM.

The idea that DM is part of a new, or modified, theory of gravity
was initiated by Mordehai Milgrom in 1982-83 with what was called
Modified Newtonian Dynamics (MOND) [62—64]. After many years of
investigating this subject [65-68], relativistic modifications of gravity
started to appear. These include Tensor-Vector-Scalar (TeVeS) model [69]
and, relatively recently, Mimetic Dark Matter (MDM) [47, 48]. The latter
will be the main focus of this chapter’s first part [70]. It should be
mentioned that MDM has been investigated greatly since its initiation
and we direct the interested reader to a few of those works: [71-79].

In that part, we start by presenting a brief overview of MDM in
its most simple form, highlighting the main concepts and equations.
Then, we re-derive MDM'’s equations-of-motion (EoM) at the back-
ground level, and show that there is an additional parameter and
function (of conformal time) that are not fixed by the model. These
are related to the amount of DM in the Universe, and must be speci-
fied with observational data. Therefore, one can conclude that, at the
background level, the model is at least at the same footing as ACDM.

Furthermore, we analyze the model at first order in perturbation
theory. Again, we find an additional parameter and function that needs
to be fixed by observations. We conjecture that there will always be one
additional such combination in the model at each level in perturbation
theory. The main reason for this freedom is that the model does not
incorporate a mechanism to generate initial conditions, which are
provided in ACDM by inflation. However, as we show in the work
bellow, incorporating inflation with MDM does not cast away the
fine-tuning problem, which is one of the main motivations for looking
for an alternative to ACDM.

Finally, these results are incorporated into the Boltzmann code
CLASS [80, 81] in order to see how the matter power spectrum and
CMB correlation functions look like in MDM. From the latter, we find
that a 20% change from adiabatic initial conditions puts MDM outside
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the limits of cosmic variance®. On the other hand, from the matter
power spectrum, a 10% deviation from adiabatic initial conditions can
already cast it outside of the acceptable error range.

One can conclude from this work that, to explain DM with a mod-
ification of GR, one needs to incorporate a mechanism to generate
adiabatic initial conditions within the model in a natural way. Other-
wise, the model will be at an equal footing with ACDM and will face
fine-tuning problems.

What has been described so far could be considered as a test for
MG models of DM at the Cosmological level. However, one can also
think of other tests at astrophysical scales, which is the subject of this
chapter’s second part [82].

It has been reported recently that there are a number of diffuse
galaxies that do not show any trace of DM [49—54], with galaxy AGC
114905 recently added to that pool [83]. From here, the basic argument
we present in our work is the following: if DM is part of a modification
of GR, then, by gravity’s universality, such an effect should appear
in every system of similar properties. However, the existence of the
aforementioned galaxies puts this premise to question, for other simi-
lar galaxies are in fact DM dominated, while these are not. In order to
show this quantitatively, we derive a generalized Virial theorem for a
substantial class of MG models.

In our main analysis, we use the 3+1 formalism of GR [84] and
write down a general form of the EoM that includes a term describing
DM. Moreover, we distinguish between MG models that satisfy the
Jebsen-Birkhoff theorem® and those that do not. This distinction is crucial
because in the derivation, one must assume asymptotic flatness at a
certain point, which is not valid for some MG theories.

Having derived the Virial theorem with this method, we then moved
on to constrain its additional term using observations of the Virial
mass and radius from [49-54]. What we find is that, not only this term
is never negligible, but there is also no consistency between the results.
This means that the additional term in the generalized Virial theorem
must be fine tuned to match the data of these galaxies.

After this general overview of both works, they are now presented
in their published form below.

This is a fundamental uncertainty in the knowledge we may get about CMB cor-
relation functions. It is more prominent for low values of the multipole expansion
parameter [. See chapter g in [1]

The theorem states that all spherically symmetric vacuum solutions of the Einstein
equation must be static and asymptotically flat [85].
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1. Introduction This model is still a phenomenological one, and suffers from a
number of conceptual problems that prevents us yet from calling

The General Theory of Relativity (GR) has proven to be a it the ultimate model describing the Universe. The nature of
very successful theory to describe and predict almost all of the DM itself is still unknown, despite of the many DM candidates
gravitational phenomena observed to this date [1]. It has, so far,  that have been proposed, including particles, compact objects
been tested over a wide range of scales, ranging from the weak  and gravity effects, see e.g., Refs. [8,9] and Refs. therein. Typical
field regime of our solar system, all the way to cosmological scales  modifications of GR have been driven by the presence of unsolved
or to the strong regime (through recent detections of black holes problems, and they typically address the issue of describing the
coalescence events [2-4] and most recently the super-massive dark energy sector by introducing a scalar field [10]. Since GR is

black hole imaging by the Event Horizon Telescope [5]). ) extrapolated from solar system scales up to cosmological scales,
On the other hand, explaining the universe using GR at galactic jt js not impossible that what we currently interpret as DM is in

and cosmic scales requires additional non-baryonic components. reality a pure gravitational effect.

These are cold dark matter (DM) and dark energy, and the model In this work we analyse the Mimetic Dark Matter (MDM)

associated with these two in GR is henceforth known as ACDM,
where A stands for the cosmological constant describing dark
energy. The ACDM, according to state-of-the-art observational
results [6,7], is able to describe with astonishing precision our
Universe.

model [11], in which DM, instead of being made of particle or
compact objects, is described by gravity. In its original form, the
model was a reformulation of GR, whereby the physical metric
was rewritten in terms of an auxiliary one and a scalar field, while
maintaining the language of differential geometry. The authors
of Ref. [11] claim that GR is already able to describe DM without
explicitly adding pressureless dust particles to the energy content
of the universe: the scalar field is not a new dynamical degree

* Corresponding author at: Dept. de Fisica Quantica i Astrofisica, University
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raul. jimenez@icc.ub.edu (R. Jimenez). been investigated thoroughly: alternative formulations have been
1 hitps://github.com/ark93-cosmo/CLASS_Modified_MDM. provided [12], the absence of ghosts has been proven [13,14], it
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has been generalized to explain other cosmological phenomena,
as inflation or dark energy [15], and to Horndeski theories of
gravity [16-19]. We refer the interested reader to Ref. [20] and
refs. therein to a complete discussion of different aspects of MDM.

However, some aspects of this theory remain unexplored,
in particular the degree of tuning necessary to match the the-
ory with current observations. In this work, we re-examine the
derivation of the equations of motion for MDM, and show that
the redundancy in the latter still provides the equivalent of Fried-
mann equations, but at the expense of new arbitrary functions
that require tuning to match the observed Universe. Moreover,
since the standard MDM model does not include a mechanism
able to produce adiabatic initial conditions, further tuning is
required.? In particular, we show that future cosmic-variance
limited experiments are able to detect even a slight departure
from adiabaticity, constraining the model unless some degree of
fine tuning is assumed.

The paper is organized as follows: in Section 2 we review
the mimetic dark matter model. In Section 3 we describe the
structure of the model and its equations of motion, both at
the background level and at first order in perturbation theory,
describing the freedom in the choice of particular parameters of
the theory. In Section 4 we investigate the observational con-
sequences of this extra freedom, and we discuss the degree of
tuning required by the theory. Finally we conclude in Section 5.

Throughout this work, we use the (—, +, +, +) signature and
units in which h = ¢ = 1. Spacetime indices are denoted by Greek
letters and range from O to 3, while spatial indices are denoted by
Latin letters and range from 1 to 3; repeated indices are summed
over.

2. The mimetic dark matter model

The original MDM model proposed a reformulation of the
physical metric g, as’ [11]

1 /. -
8po = _E(gaﬁaﬂpaﬁ‘p)gpm (1)

where g, is an auxiliary metric, ¢ is a scalar field, called mimetic
field, and p is an arbitrary factor we introduced here just to
make explicit the freedom in rescaling the mimetic field by a
constant factor. The physical metric corresponds to the auxiliary
metric multiplied by a conformal factor that depends on the
latter. In this way, one is said to express explicitly the conformal
mode of gravity, which is manifested by the invariance of the
physical metric under a conformal transformation of the auxiliary
one. This conformal mode is now encoded in the scalar field ¢,
and therefore the auxiliary metric will no longer be used (see,
e.g., Ref. [13] for more details on the conformal mode of gravity
in these models). The mimetic field has to obey the so called
constraint equation

877 8,09,¢ + u* =0, )

obtained by contracting the mimetic field derivatives 9,90, ¢
with the inverse of the physical metric, which reads as g* =
P~'g”°, where P = (§*#8,0d50)/ 1.

The Einstein-Hilbert action reads as [11]

M2
S= /d4xv fg(:;', ¢)[7pR(guv(§MVs (P))‘F»Cmr[g;w, Ym, wr]i|v (3)

2 This issue was already mentioned in Ref. [11], and was also discussed
in Refs. [21,22]. In the latter, adiabaticity was recovered by introducing extra
specific functions.

3 Note that there will be sign differences compared to [11] and [15] because
we use an opposite metric signature.

where g is the determinant of the physical metric, M,
= (87G)~"/2 is the reduced Planck mass, R is the Ricci scalar
and L, is the Lagrangian that describes baryonic matter and
radiation fields v, and v, respectively. By varying the action
with respect to the auxiliary metric, we get Einstein equations of
the form:

M;G‘“’ =TH 4 T, (4)

where G,, = R,, — (1/2)gR is the Einstein tensor defined
in terms of the Ricci tensor R,, and the Ricci scalar R, T,,, =
—(2//=8)8Smr/8g"" is the stress—energy tensor of the baryonic
matter and radiation fields, with Sy, being their corresponding
action, and T*" takes the form of the stress-energy tensor of
dust [11]. Note also that a dynamical variable is any quantity
by which the action is varied, which means that the auxiliary
metric, as well as the physical metric, are dynamical variables.
As can be seen from (4), the model predicts that the effects of
DM, encoded in T*", can be generated without the need of adding
extra species to the action. Moreover, as shown in Refs. [12,13],
the MDM constraint (2) can be incorporated in the action with the
use of a Lagrange multiplier A. In addition, MDM can be modified
(hence it becomes a modification of GR) by introducing into the
action a potential for the scalar field, as has been first done in
Refs. [15,23].4 In that case, the action becomes®

MZ
S= f d4XV —-£ |:2pR(g/J.u) - V(@) —A (gwaufﬂa\ﬂﬂ + I'L4)

+Emr[g/ws wm’ I/’r]i| s (5)

where V() is a potential for the mimetic field. As done previously
in [15], the variation of the action in Eq. (5) with respect to the
physical metric gives the new Einstein equations which, after
using its trace to substitute for A, gives

0. 9309 — 58 C
M2Guy — Tuy = —gu V(@) + (T — M2G — 4V) —————22—

C+ pt '

(6)

where T = T/ and G = G, are the traces of G, and T,
respectively, and

¢ =g Bapdpp + . (7)

The constraint equation (2) for the mimetic field, which inciden-
tally can be derived by varying the action with respect to the
Lagrange multiplier (§S/8A = 0), is equivalent to C = 0. More-
over, we will impose the constraint equation when we derive the
Friedmann equations at the background level in the next section.
This will allow us to track the quantities that are affected by
it. The appearance of an opposite sign in Eq. (6) compared to
equation (2.4) of Ref. [15] is due to our opposite choice of the
metric signature. Moreover, if we compare the RHS of Eq. (6) to
the stress—-energy tensor of a perfect fluid:

T = pg" + (p + p)u'u,, (8)

where p is the energy density, p is the pressure and u* =
dx*/+/—ds? is the corresponding 4-velocity of the fluid, we see

4 Notice that the mimetic field can be rescaled as ¢ — |ule, hence it is
possible to absorb the factor u into the Lagrange multiplier A at the level of
the action. However, in the case of non-zero potential, the explicit form of the
action may change under such rescaling.

5 1tis interesting to note that using the same action as in [11,15] with the
current signature will result in an imaginary field. However the study of this
case is beyond the scope of this work.
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that we can re-obtain Eq. (4) by identifying as energy density,
pressure and 4-velocity of the scalar field fluid, respectively with

1
pp=(1+ ic)(T —M2G—4V(p)) +V;

1 2
Py = _EC(T — M2G — 4V(¢)) — V(p);

ut = 3"p/\/C + ut (9)

In this case Eq. (2) corresponds to the normalization equation
utu, = —1 for the 4-velocity. The equations of dynamics for
matter and radiation fields (§S/8vm, §S/8¢¥ = 0) do not change
with respect to the standard ones in GR. Moreover, the stress-
energy tensor of matter and radiation fields is conserved as in
GR, namely we have V,T#*" = 0, even if Einstein equations (6)
changed. For this reason we do not report them here and we refer
the interested reader to Ref. [24].

3. Einstein equations

In the following we specify the general equations of the
MDM model to the case of an Universe described by Friedman-
Lemaitre-Robertson-Walker metric. Since we are interested only
in the description of scalar modes, we choose to work with the
conformal Newtonian gauge described by the metric

ds® = g dxtdx’ = a*(t) [—(1 +2@)dr? + (1 — 20)8;dx'd¥ |,
(10)

where a is the scale factor, 7 is the conformal time, ¥ are comov-
ing spatial coordinates and the potentials ¥ and @ are related to
Bardeen gauge-invariant variables [25]. Throughout this section
we follow notation and conventions of Ref. [24].

We assume that the matter and radiation content of the Uni-
verse can be described by an almost perfect fluid with stress-
energy tensor given by

Th = pgh + (p + putu, + =7, (11)

where X' contributes to the anisotropic stress only at first order
in perturbation theory. Assuming that the fluid has some small
density and pressure fluctuations §p and ép, coordinate velocity
v' = dx'/dr and anisotropic stress X', (such that X', = 0),
the components of the stress—energy tensor, up to first order in
perturbation theory, can be written as

T, = (p+8p)3';+ =),
(12)

TG =—(p+dp),  Ty=—(p+pN,

where an over-bar denotes background quantities. In the fol-
lowing we use also the overdensity contrast § = dp/p, the
divergence of the velocity 6 and of the traceless anisotropic
stress o, which read as

_ . . o a1 )
(p+P)0 = 5T = i(p +pKv;. (5 +P)o = — (kikj - géy) =l
(13)
3.1. Background evolution

At the background level, energy densities p(t), pressures p(7)
and the scalar field ¢(r) are only time-dependent. The con-
straint equation (2) reads, after fixing it for the appropriate metric
signature, as

=72
L o, (14)
a

w /o

where denotes derivative with respect to the conformal time
7. As in GR, and as done in Ref. [15], Friedman equations are
obtained from the (0 — 0) and the trace of the spatial (i — j)
components of Eq. (6) and read as

___ 1 _ 2-p 1

T S RRNH| ”
B—L[3B—Ai| (16)
T 2CH+ pt) ’

where

A=3MH —*p—a®V, B=-M}(2H +#*)—d’p+da’V (17)
and H = d'/a is the Hubble expansion parameter in conformal
time. Note that these two equations are identical once the explicit

form of C, Eq. (7), is substituted. Therefore, the final form of either
of them would be:

(azu4 _ @’Z)A + (02M4 + @'2)8 —0 (18)

If we now impose the constraint equation (14) to (18), in order
to make it consistent, we deduce that:

B=0 = MQH +#)+dp—aV=0 (19)
and
A=f(r) = 3MH —d*p—aV=f(z) (20)

These two equations have the same form as the 2nd and 1st
Friedmann equations, respectively. Therefore, although we have
a redundancy at the level of Einstein equation’s components, we
still get the Friedmann equations. However, this is at the expense
of getting an arbitrary function of conformal time, f(t), which
connects the expansion history of the universe to its energy.
Indeed, as done before, if we identify the energy density of the
scalar field with p, = a~%f(t)+V, Egs. (9), (19) and (20) give the
following definitions for the background density and pressure of
the field, respectively:

Pp=T—MG—3V=f(r)a’+V: p,=-V. (21)

Note that f(7) function can be determined by taking the time
derivative of Eq. (20), using the conservation equation, p’ +
3H(p + p) = 0, and comparing the result to Eq. (19). We find
that f(7) has to satisfy the differential equation

'+ #f + [(@®V) = 2#(@®V)] = 0. (22)

The solution of the homogeneous equation reads f = «/a,
where « is a space-independent integration constant because of
homogeneity and isotropy. The general solution depends on the
shape of the potential and is given by

T
fr) =5 — ?v(p) + E/ dz (HaV), (23)
a aJq
where 7 is some reference time, and which generalizes the result
presented in Ref. [15] to an Universe filled with matter and
radiation. Therefore, independently of the chosen shape of the
potential, a fraction of the mimetic field energy density scales as
xa~3,i.e., as DM would do. The integration constant, , is an extra
free parameter of the theory that has to be chosen properly to
fit the observation. Notice that this additional parameter is not
connected to any parameter in the action of the theory, hence
apart from setting its value using current observational data,
we cannot assign it any value motivated by the theory itself.
Therefore, when it comes to the amount of DM in the universe,
the model presents at least the same level of tuning needed as in
ACDM. We discuss how this parameter was linked to the initial
conditions of our Universe in Section 4.
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We conclude by highlighting the solutions for two special
cases: a zero potential (V = 0) and a strictly negative constant
potential (V =V < 0). In the first case we have that

po=fa?+V=ka3  Pp,=-V=0, (24)

hence the mimetic field plays only the role of cold DM. In the
second case we have both DM and dark energy at the same time,
in fact f(v) = [« + Va3] /a = & /a, where % is a new integration
constant and ag = a(to), therefore

Po =fa?+V=ka3+V, Py = -V, (25)
hence in this scenario the mimetic field plays the role both
of DM and a cosmological constant, as in certain quartessence
models [26] and as also shown in Ref. [23]. In both cases, see,
e.g., Ref. [15], we can connect the energy density and pressure
of the mimetic field to the background value of the Lagrange
multiplier 2» = p, + p, = fa~2 Therefore the ambiguity
in choosing the free parameter « derives from the possibility
of rescaling arbitrarily the mimetic field while reabsorbing any
constant in the Lagrange multiplier.

3.2. Perturbative dynamics

In order to compare the predictions of this model to those of
the traditional ACDM we need to compute the evolution of per-
turbations. In this section we present the equations of dynamics
for the metric and scalar field fluctuations, while, as previously
stated, we do not report those of matter and radiation fields since
they are identical to those in GR. Moreover, the same machinery
used to derive (19) and (20) applies to their perturbed equiv-
alents, and therefore it will not be presented explicitly, rather
simply the final results will be. Also, to simplify the expressions,
we will impose the constraint equation (14), or equivalently ¢ =
0, at the level of the perturbation of Einstein equations (6). The
result will be the same whether we take C = 0 at this level or at
very end. The results of this section apply to MDM models with
an arbitrary shape of the potential, hence they can be applied to
different scenarios.

The constraint equation (2) for the mimetic field fluctuation
reads as

s¢' — W =0, (26)

however, as done in Ref. [18], it is more convenient to introduce
a new variable v, = —8¢ /@’ whose equation of motion, invariant
under rescaling of the mimetic field, is

v, + Hu, + ¥ =0. (27)

Moreover, by defining the velocity divergence of the scalar field
fluid as 6, = k*v,, we find that Eq. (27) can be recast as

6, + Hb, + kKW =0, (28)

which is the equation of motion of the velocity divergence for a
non-relativistic and collisionless fluid. Therefore the theory itself,
independently of the shape of the potential, is able to reproduce
the equation of motion of DM velocity divergence.

At first order in perturbation theory we have four independent
Einstein equations. In reporting these equations, we keep on the
LHS of each equation all the terms unchanged with respect to the
GR case, see e.g., Ref. [24], while on the RHS we put the new terms
given by the MDM model.

By defining the pressure perturbation of the scalar field fluid
as ép, = v,¢'V,,, where V,, = 9V /3¢, we find that the traceless
part and the trace of the (i —j) components of Einstein equations

are given by

kz(d)—lI/)—ﬁ(,Z)-i—ﬁ)o:O, (29)
2M?

"+ (W' +20")+(2% + H?) 11/+E (® - ll’)—i(Sp = i(Sp .

3 2M2 am2

(30)

Notice that the mimetic field cannot be a source of anisotropic
stress, i.e,, o, = 0, and only when the gradient of the poten-
tial (dV/d¢) is non-zero the scalar field develops an isotropic
pressure perturbation p,.

Using Friedman equations (19) and (20), we find that the (0—1i)
components of Einstein equations reads
2 2

a a
2M2k?

, -
Q'+ HY M (P+Dp)6=
which shows that not only in MDM we have an equation for
velocity divergence identical to that of DM, but also this velocity
contribution appears in the correct form in Einstein equations.

Finally, using the results we have found both in Section 3.1 and
in Section 3.2 so far, we are able to write the perturbed equivalent
of the 1% Friedmann equation as:

(P + Dy, (31)

a a*p,
where this specific form has been chosen for later convenience.
It is important to emphasize again the fact that even if we
have redundancy in the equations of motion, we can still find
the equivalence of the perturbed Friedmann equations for this
model, at the expense of getting an arbitrary function, which at
1%t order in perturbation is g(k, T). We argue that there is one
of these functions at every level in perturbation theory, hence
going to second order we would find an 60 arbitrary function, and
so on.

By taking time derivatives of (32) and using the results of
Sections 3.1 and 3.2, we get

g =—(14w, )6, —30") — 3H(,) s — w,)g (33)

where w, = p,/p, is the equation of state of the scalar field fluid,
and c(zw)yg = 38p,/d8p, is an effective sound-speed-like term of the
mimetic field. If we compare Eq. (33) to equation (30) of Ref. [24],
we notice that the function g evolves as the overdensity contrast
of a fluid, therefore it can be thought as g = §,. In the case of
zero potential, i.e., in the case where the mimetic field describes
DM, we recover the evolution equation for dust.

3HD' + 3HW + KD +

4. Initial conditions and observational constraints

We have shown that the MDM model, for any given poten-
tial V, shows a level of flexibility in the choice of the function f(7)
and in the choice of the initial conditions (ICs) for the mimetic
field fluctuation and the function g at first order in perturbation
theory. Notice that generalizations of the standard MDM model
seems to be able to produce adiabatic ICs [21,22], however this
feature depends on the form of the mimetic Lagrangian and it is
not a general property of the MDM model.

At the background level, independently of the shape of the
potential, we have a free parameter, x, whose value in prin-
ciple is set by ICs of the mimetic field and cannot be derived
directly from the action written in Eq. (5). The authors of Ref. [11]
suggested that if the mimetic field is coupled to the inflaton, a
non-vanishing amount of DM can survive 60 e-folds of expansion
without spoiling inflationary dynamics. Since the evolution of the
mimetic field is fixed by the constraint equation (2), which does
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not provide any attractor solution, the dynamics of the inflaton
need to be fine-tuned to provide the correct amount of DM
today. Moreover, in case the potential is non-zero, its shape and
parameters have to be tuned to match observations, as we can
see in the example in Eq. (25).

At the perturbation level, even if the g function and the
mimetic field fluctuation evolve as an energy overdensity and
a velocity, respectively, we have to set ICs for both quantities.
This requires a second tuning because we know them to be
adiabatic [27]. If the mimetic field is just a spectator field during
inflation, as suggested above to fix the value of «, then its
presence can result in having also isocurvature ICs [28], which
are largely ruled out [29]. However, having isocurvature initial
conditions is not inevitable for MDM, rather it is a possibility
without some level of fine-tuning. Moreover, even assuming no
isocurvature ICs are generated, we still have to properly define
the scalar field ICs, or, equivalently, to define an inflationary
scenario able to generate adiabatic ICs also for the mimetic
field.

To study the impact of ICs in this model, we consider the case
study of MDM accounting only for DM, i.e., we consider the V = 0
case. We fix « to be the observed DM energy density today, we
fix the ICs for g so that adiabaticity is preserved. We let vary only
the IC of the mimetic field perturbation, i.e., the IC of the mimetic
field fluid velocity divergence 6,, which in the adiabatic case
is related to the gravitational potential by 6, = %(kz‘[)q/ [24].
Variations in ¥ and ICs for g, would result in larger departures
from the ACDM case, hence we can consider our approach as
conservative.

We modify the public code CLASS [30] to include the effects of
the MDM model accounting for DM. We parametrize deviations
from standard adiabatic ICs for the velocity divergence as

9, = [1 + asin(log, k)]%(k%)w, (34)

where o represents the maximum amplitude of the deviation
from adiabatic initial conditions. Our choice in Eq. (34) has
been made only for illustrative purposes, to make the plots
clearer and easier to be interpreted; any other small devia-
tion from adiabatic initial conditions would be equally valid
to prove our point. This choice allows us to have variations
between [1 — &, 1+ «] with respect to adiabatic ICs. We check
that for other wavenumber dependences, for instance randomly
choosing a number in [1 — &, 1 4 «], our findings are unchanged.
In the following we assume the Planck18 baseline cosmology
assuming the best-fit parameters to the whole Planck dataset [6]:
wp, = 0.0224 is the physical baryon density today, wcim = 0.120
is the physical cold dark matter density today, h = 0.674 is
the reduced Hubble expansion rate today, 10°A; = 2.101 is the
amplitude of the primordial scalar perturbations, n; = 0.965 is
the scalar spectral index and t = 0.054 is the optical depth
to reionization. We use ®, = «h? = 0.120, where w, is the
physical density of the mimetic field today, instead of wcqm when
computing observables in MDM.

We compare the evolution of perturbations in ACDM and
MDM in Fig. 1. As we can notice, even when we perfectly match
the overdensity perturbation in the MDM model to the one of DM
in ACDM and we assume for them the same initial conditions
at early times, we observe deviations at late times generated by
different ICs in the velocity sector. Hence any small change in
ICs only in the velocities will generate in turn larger changes in
cosmological observables.

These differences in the evolution of perturbations gener-
ate deviations in cosmological observables. We report them in
Fig. 2 for the CMB temperature and polarization power spec-
tra (C[™, CFF) and for the matter power spectrum (Pp). In all

the cases, we analyse deviations up to 10%, 20% and 50% from

adiabatic ICs, corresponding to « = 0.1, 0.2, 0.5, respectively.
We compare these deviations to cosmic variance uncertainty.

For the angular power spectra, the cosmic variance reads as [31]

%@ _ | 2 (35)
G\ fa2E+1)

where £ is the multipole and fy is the observed fraction of the
sky, independently from the chosen experiment. On the other
hand, in the case of the matter power spectrum we have a
dependence on the chosen survey, in fact the error is given by,
see, e.g., [32],

opy 472 1+ 1 (36)
P~ \ Vsk3Alogk ngPm )’

where A logk is the bin size in k-space, Vs is the volume of the
survey and ng is the number density of galaxies. For an Euclid-
like survey, with average redshift z = 1, redshift bin width Az =
0.1 and uniform binning of log k, we have an estimated volume
of Vs(Z) = 1.719 Gpc® and number of galaxies of ng(z) = 1.998 x
103 Mpc~3. Following Ref. [32], we further normalize the error
bars to make them independent of the number of redshift bins
and the width of the k bins.

As can be seen from Fig. 2, even fractional changes in the
ICs generate deviations in the observable spectra which are de-
tectable by cosmic variance limited experiments. Note that given
the absence of a mechanism that automatically guarantees adi-
abatic ICs, a fractional change of less than 50% represents a
very modest variation. In the CMB temperature and polarization
correlation functions, current observations by the Planck mission
(cosmic variance limited up to £ ~ 2000), rule out deviations
larger than 20% (o > 0.2) from the adiabatic initial conditions
of ACDM. Furthermore, constraints by an Euclid-like mission will
constrain any change at the percent level, as can be seen from the
lower panel of Fig. 2. By allowing also the « parameter, g function
and its ICs, to vary we would expect much more significant
deviations.

In other words, the free parameter « and the ICs of the DM
sector need to be fine-tuned at the 10% level with current obser-
vations and they will be constrained at better than percent level
with Euclid-like observations. Note that the fine-tuning problem
is more severe than it looks as it is a function and not a simple
number that needs to be adjusted to reproduce exactly adiabatic-
ity (thus the level of fine-tuning extends to infinite degrees of
freedom). Our main finding is that modifications of gravity that do
not naturally produce a mechanism to generate adiabatic initial
conditions do suffer from serious fine-tuning issues in the form
of fine-tuning of free functions.

5. Conclusions

Despite its great success in describing the Universe we live in,
the ACDM model does not provide any insight into what actually
is the nature of its two main constituents, DM and dark energy. In
this work we have explored in detail the predictions of a modified
gravity model where the phenomenology associated to DM is
described by pure geometry rather than elementary particles or
compact objects. In particular, as a proof of principle, we focused
on the mimetic dark matter model.

After providing an alternative formulation to perturbation the-
ory in this model, we found that this modified gravity model
is naturally able to reproduce DM phenomenology, however it
also contains free parameters and functions whose ICs need to
be tuned in order to match observational data. Since the model
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Fig. 1. Ratio of the mimetic field velocity divergence perturbation (left panel) and mimetic field density perturbation (right panel) in MDM (with V = 0) with
respect to that of DM assuming ACDM for k = 0.1 hMpc~", as a function of conformal time. We consider different values of the parameter « (colour coded), which
represents the maximum deviation from the adiabatic ICs case. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 2. Ratio of the CMB temperature angular power spectrum (upper left panel), the CMB E-mode polarization angular power spectrum (upper right panel) and the
matter power spectrum at redshift z = 1 (bottom panel), in the MDM model (with V = 0) with respect to the ACDM prediction, for the same cases considered in
Fig. 1. In the three panels the grey regions represents the cosmic variance limit (normalized for P,, as explained under Eq. (36)).

does not naturally produce adiabatic initial conditions for the
mimetic field, it requires extra tuning to reproduce observations.
The purpose of this work was to highlight that this model, in its
most basic form (i.e without a potential in the case of MDM),
requires further development. In particular, to produce adiabatic
initial conditions and, at the same time, to describe late time
evolution of the universe, specific functions must be introduced at
the level of the action. In other words, to reproduce observations,
we do not have to tune only parameters, like in ACDM, but also
the specific shape of functions.

We have modified the public Boltzmann code CLASS to com-
pute both the evolution of perturbations and standard cosmolog-
ical observables, as the matter power spectrum and cosmic mi-
crowave background temperature and polarization power spec-
trum, of the MDM model. Our modified version of CLASS is
available on GitHub.® Several studies showed that ghosts and
gradient instabilities may develop in an Universe filled only with
the mimetic field [33,34]. In our numerical computations, which

6 https://github.com/ark93-cosmo/CLASS_Modified_MDM

include matter and radiation, we did not impose by hand any
extra stability requirement, hence we note that in a more re-
alistic set-up this does not represent a problem of the model
in its simplest version. However, if adding extra specific higher
derivative couplings was needed to prevent these instabilities to
emerge, as shown in Refs. [35-37], we would need a higher level
of fine tuning. We proved that current and future cosmic variance
dominated experiments are able to detect small deviations from
perfect adiabatic ICs, even in the conservative case where only the
ICs of the velocity perturbations were allowed to vary by a small
fraction. If all the free parameters and functions of the theory
were allowed to deviate from its ACDM analogue, deviations
would be much larger and would have been detected, for instance
by Planck.

We conclude by noticing that any modification of gravity that
does not generically predict adiabatic ICs will suffer from severe
fine tuning problems, since the degree of fine tuning for arbitrary
functions is actually infinite and the model does not contain any
attractor solution. This can be a route to restrict modifications
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of gravity and guide model building when abandoning General
Relativity.
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ABSTRACT

The discovery of 19 dwarf galaxies without dark matter (DM) provides, counterintuitively, strong support for the ACDM
standard model of cosmology. Their presence is well accommodated in a scenario where the DM is in the form of cold dark
particles. However, it is interesting to explore quantitatively what is needed from modified gravity models to accommodate the
presence of these galaxies and what extra degree of freedom is needed in these models. To this end, we derive the dynamics at
galaxy scales (Virial theorem) for a general class of modified gravity models. We distinguish between theories that satisfy the
Jebsen—Birkhoff theorem, and those that do not. Our aim is to develop tests that can distinguish whether DM is part of the theory
of gravity or a particle. The 19 dwarf galaxies discovered provide us with a stringent test for models of modified gravity. Our
main finding is that there will always be an extra contribution to the Virial theorem coming from the modification of gravity,
even if a certain galaxy shows very small, if not negligible, trace of DM, as has been reported recently. Thus, if these and more
galaxies are confirmed as devoid (or negligible) of DM, while other similar galaxies have abundant DM, it seems interesting to
find modifications of gravity to describe DM. Our result can be used by future astronomical surveys to put constraints on the
parameters of modified gravity models at astrophysical scales where DM is described as such.

Key words: galaxies: dwarf —dark matter —cosmology: theory.

1 INTRODUCTION

The existence of dark matter (DM) has been demonstrated observa-
tionally in many occasions. Initially, at astrophysical scales, the virial
mass of the Coma galaxy cluster was found by Zwicky (Zwicky 1933;
Salucci et al. 2007) to be 500 times larger than the observed one.
Later, the flat behaviour of stars’ velocity curves in the outskirts of
spiral galaxies was also another proof of the existence of additional
unobserved matter (Persic, Salucci & Stel 1996; Sofue et al. 1999;
Sofue & Rubin 2001). Moreover, from the cosmic microwave
background structure at cosmological scales, there is a clear evidence
for DM (Bennett et al. 2003; Komatsu et al. 2009); see Bertone &
Hooper (2018) and Freese (2009) and references within for a detailed
overview of DM. However, the nature of this unobserved entity is
still an open question and an active field of research. In the context of
the general theory of relativity (GR), this phenomenon is described
by adding cold particles, that is pressurless non-relativistic ones, to
the energy content of the universe. To describe the theory, given a
metric of space-time g,,,, one would write an action of the form:
M2

§= /d4x\/jg |:;R(81Lu) + [/m,r(guus wmv l//r) + LDM ) (1)
where g is the determinant of g,,, R is the Ricci scalar, the trace
of the Ricci tensor R,,,, M} = (87 G) ™" is the reduced Planck mass
(in units for which the reduced Planck constant 2 and the speed of

* E-mail: raul.jimenez @ gmail.com

light c are 1), £,, , is the Lagrangian density of matter and radiation,
given as a function of the metric and the corresponding fields, ¥,
¥, and finally Lpy is the Lagrangian density of DM particles. By
setting the variation of (1) with respect to the metric to 0, we get the
Einstein equations of motion:

1 43S 0= R 1 R 1
—— = w T 8w = o
J—g gty Mp

2

where 7, is the stress energy tensor of the baryonic and leptonic
matter, as well as radiation, whereas T;DVM is that of the DM
particles. From here, one can see how the gravitational phenomena
observed (LHS of the above equation) is affected by the presence
of DM particles (RHS). The particle nature proposal for DM has
presented many candidates beyond the Standard Model of particle
physics. These include sterile neutrinos (Dodelson & Widrow 1994),
axions (Duffy & van Bibber 2009; Visinelli & Gondolo 2009), and
WIMPs (weakly interacting massive particles), which include the
lightest supersymmetric stable particle, the neutralino. For a detailed
review on the different particle candidates for DM, see Silk et al.
(2010) and Profumo, Giani & Piattella (2019).

Another explanation for these phenomena is to consider a theory
of gravity other than GR, which is known as modified gravity theory
(MGT). In this context, the gravitational laws of nature have specific
geometrical properties that could result in the observed phenomena
caused by DM, without the need for adding extra species to the
particle content of the universe. For instance, one of the proposed
MGTs is called f(R) gravity, where f(R) stands for an arbitrary (in the
appropriate units) function of the Ricci scalar R. In this MGT, one

(T + M), @
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generalizes the Einstein—Hilbert action to

M2
Srr) = /d4x«/—g {;f(R) + Lo s 3)
The resulting Einstein equations would take the form:
1 1 -
R/uz - Eg/,th = MT(T/L\J + Tuv)s (4)
Peff
where the effective Planck mass is
2 2
My =M, ['(R) ®)

and’ denotes the derivative of a function with respect to its argument.
The additional term on the RHS,

JS(R)— Rf'(R)

Tuv:M% B

g+ ViVu f'(R) — g0 f'(R)| (6)
can now generate the gravitational phenomena observed associated
with DM, but this term is not related to some type of particle,
rather to gravity itself. In this way, one can provide an alternative
explanation to the existence of DM. Another MGT that has been
recently proposed is called mimetic dark matter (MDM; Chamsed-
dine & Mukhanov 2013; Barvinsky 2014; Golovnev 2014). The
original proposal of this work was to rewrite the physical metric
in terms of an auxiliary one and the derivative of a scalar field.
The resulting equation of motion will resemble (4) with a different
T,, and M; ., but can describe the gravitational effects of DM.
The model was further developed to incorporate other cosmological
phenomena (Chamseddine, Mukhanov & Vikman 2014), as well as
to avoid problems related to defining quantum fluctuations, adiabatic
initial conditions, and cosmological singularities (Mirzagholi &
Vikman 2015; Ramazanov 2015; Chamseddine & Mukhanov 2017).
For further analysis and study of the model, see Ganz et al. (2019a,
b), Arroja et al. (2015, 2016, 2018), Khalifeh (2015), and Khalifeh
et al. (2020). More recently, the model has been developed to
avoid the original singularity of the universe by having a running
gravitational constant (Chamseddine, Mukhanov & Russ 2019). For
more reviews on MGTs, see Clifton et al. (2012) and Nojiri, Odintsov
& Oikonomou (2017).

The main purpose of this letter is to study the DM phenomena at
astrophysical scales using the MGT approach. More specifically, we
derive the virial theorem for a general class of MGTs, including the
Horndeski model (Horndeski 1974; Kobayashi 2019), and see where
the observed additional virial mass comes from. We distinguish,
however, our derivation for theories that satisfy the Jebsen—Birkhoff
theorem (JBT; Birkhoff & Langer 1923; Jebsen 1921) and those that
do not, for reasons that will be explained below. We notice here that
the additional virial mass term will exist irrespective of the system
under consideration. Therefore, if one wants to associate T,w with
DM, one would be claiming that their effects exist everywhere, by
the universality of gravitational interactions. However, one might
wonder what if there is a system in which there is no traceable
amount of DM, as has been recently observed (Danieli et al. 2020a,
b; Guo et al. 2020; Mancera et al. 2019; van Dokkum et al. 2019).
Even though these results are still being further analysed, we use the
possibility of having systems with no traceable amount of DM to put
constraints on the parameters of MGTs in general.

2 VIRIAL THEOREM IN MGT

In this section, we derive the virial theorem for a class of MGTs that
generate equations of motion with the form given in (4) within the
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Figure 1. Illustration of foliating a manifold M with a set of hypersurfaces
X, in the 3 + 1 formalism of GR.

3 + 1 formalism of GR (Arnowitt, Deser & Misner 2008). A vital
element in this derivation is the assumption of asymptotic flatness
and stationarity (explained below in more detail), which is valid
only if the MGT satisfies the JBT, such as in Brane cosmology
or Palatini f{R) gravity (see Dai, Maor & Starkman 2008; Faraoni
2010; Sotiriou & Faraoni 2010; Clifton et al. 2012, and references
therein for more details on theories that do and do not satisty the
JBT). Therefore, the treatment in Section 2.1 will be applicable
mainly to the former case, while a slight deviation from that will
be presented in Section 2.2 for theories that violate the JBT. An
alternative derivation of the virial theorem, using the Lagrangian
formalism, will be briefly present in Appendix A. This method is
applicable to both types of theories described here, for the virial
theorem relies on the collisionless Boltzmann equation, and therefore
itis a consequence of stress energy conservation. This means it should
be applicable to any metric theory of gravity (Schmidt 2010).

2.1 Theories satisfying the JBT
2.1.1 Formalism

Consider a stationary and asymptotically flat space—time! M with
a metric g, and consider foliating M with a set of space-like
hypersurfaces X,, as illustrated in Fig. 1. Moreover, let n be a
time-like 4-vector field, orthonormal to the X,s and directed along
increasing time #:

ng = —Nty = nen® = —1, 7

where , means 9/dx*, and N is the strictly positive lapse function.
The latter measures the rate of flow of proper time t with respect
to coordinate time as one moves normally from one ¥, to the next
along n. Let

haﬂ = 8ap + nghg (8)

be the projection tensor orthogonally on to ¥, and, when restricted
to X,, defines the positive definite induced 3-metric by g on X,.
Furthermore, define the shift vector N* as the measure of how much
the spatial coordinates shift as they move from one ¥, to the next
along n:

N* = —h%g", ©)

'Mathematically, stationarity means that there exists a time-like Killing
vector, at least at spatial infinity, that can be normalized to —1. Asymptotically
flat, on the other hand, means two things: First, the X,s contain a compact
region P, such that ¥, — P is diffeomorphic to R — {0}, where R3 is
the three-dimensional real space. Second, one can establish on each X, a
coordinate system in a way that the components of the metric differ from
those of the Minkowski one by O(1/r) as r — oo, where r is the radial
distance.
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where &% = (9/d1)* is the Killing vector associated with the
stationarity of M(see footnote 1). From these definitions, one can
write the explicit components of n and N as

ng = (=N, 0,0,0);
n* =(1/N,N'/N,N?/N, N*/N);
N* = (0, N', N>, N%) (10)
and the metric components would be
gudx"dx” = —(N? — N;N')dr* — 2N;dedx’ + hjjdx’dx/. (1)

The starting point in deriving the virial theorem is to contract the
Einstein equation (4) with i2"":

LoV 1 L T u
Run'n® = SR = - [S) =81, 12)
Peft
where
SH(S 1) = T(Tw). (13)

We can now use the Gauss—Codazzi—Mainardi equations, which
relate the Ricci tensor of the 4-metric to that of the 3-metric A,,,,
3R,,w, the lapse function /N, and the extrinsic curvature of X,, K,
(see Gourgoulhon & Bonazzola 1993 for more details). The final
result would be

o1 . 3 y
W — ZZR + vy = (KK = K*) 4+ (Kn“)q
1 i <
= oz, 15 =5

Peff

(14)

where ‘;” denotes the covariant derivative with respect to x' associated
with the 3-metric 4, ‘.’ is the covariant derivative with respect to x*
associated with the 4-metric g, v =InN, and K = —n®, is the trace
of K,,,. Now that we have done the first step, we can proceed to the
second one, which is to integrate this result over space.

2.1.2 Step 2: integration over space

Integrating (14) over the space-like hypersurface X, and reshuffling
some terms, gives

[ T 88 =t + 2000 = )| Vs
s

Peff
C1
:/ |:(Kn°‘);a +ol, - Z3R Vhdx. (15)
P
The first term inside the integral on the RHS of (16) is
(Kn®)y = N"KN); = N"'KN'v; + (KN'/N); (16)

where the first equality follows from equation (2.5) of Gourgoulhon
& Bonazzola (1993). Therefore,

K . K
/(Kn“);a\/ﬁd3x:/ —N’v‘ix/fld3x+ lim ?{—N’dSi
% 5 N S—oo [¢ N
K
:/ VR, (17
%

where the integral over the 2-surface S, which is diffeomorphic to a
2-sphere, goes to 0 as the radius tends to co (hence the meaning of the
limit). Furthermore, the second integral of (16) is also a surface one,
and in the limit considered, it is the total mass energy in X, (Komar
1959; see appendix of Gourgoulhon & Bonazzola 1994 for proof):

/ v hd'x = lim }{v“ds,- =47 My,. (18)
PN —Js
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The final term on the RHS of (16),
/ 3RV hd?x (19)
)

needs to be considered carefully. The 3-Ricci scalar can be written

as (Lifshitz & Landau 1980):

1 9 1 9 . .

3 i i 1 m 1 m

R=— i _(hh prt. ., -1, T,

Vh 3xi L/E o7 )} R ml"]
(20)

where T jx are the Christoffel symbols associated with h. The
problem is that this is not a covariant form, and its convergence
into a finite value depends on the coordinate system used, as one
can check by comparing (19) in spherical coordinates to its form in
Cartesian ones. But all the other terms of (16) are indeed finite. This
means that (19) must also be finite. The solution to this dilemma is
to express the Ricci scalar in a form valid in any coordinate system
and corresponding to the sum of a convergent surface integral and
a volume integral. The latter should be written in terms quadratic
in the derivative of the metric, containing only its curvature part,
and not the coordinate part like the I's do. The key point in doing
so is by introducing a flat background metric &, on to ¥, along
with h. The asymptotic flatness hypothesis insures that both metrics
match at infinity, and then we can write *R in a way covariant
with respect to /. In particular, the Christoffel terms of (19) will
be replaced by a quadratic term covariant with respect to &, tending
to 0 in the flat-space case. This procedure is known as the bimetric
formalism (Cornish 1964; Nahmad-Achar & Schutz 1987; Katz &
Ori 1990). The final form of (19) is?

/ SRVhd*x = 167 My,
s

+/Eh"-f (A, A", = Al A" VhdPx, (21)
where

A" =SB g + b = ] 22)

| =

is a covariant tensor on X, and |; denotes covariant derivative with
respect to x/ corresponding to the 3-metric /2.

Ultimately, the final form of the Virial theorem in an MGT
satisfying the JBT:

1 A )
[ [ (5050 - o

Peff
1 ij ! m ! m 3
+Zh1(A A" — Al A ij)]ﬁd x
3 ij 2 K 3
+ [ |5 (KiK' = K*) = =Ny [Vhd®x = 0. (23)
5 L4 N

To see how this result corresponds to the known Newtonian form of
the virial theorem, consider dust particles with a stress energy tensor
of the form

T = pu®u?, (24)

where p is the energy density of the system and u® is its 4-velocity
vector. This means that

S =y puad, (25)

2Note that My, in (21) should be the total ADM mass energy, but because
the two masses are equal in the stationary and asymptotically flat case, we
skipped introducing it explicitly in the text.
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where y = —n,u® is the Lorentz factor between the observer and the
dust particles, and ' is the velocity vector measured by the observer.
In the Newtonian limit, one can choose a coordinate system in which
the metric becomes

ds? = —(1 +2v)df* + (1 — 2v)h;;dx'dx. (26)

Therefore, from (11) and the definition of K.s (Gourgoulhon &
Bonazzola 1993), one can show that Kj; = K = 0. Moreover, the AA
term of the integrand becomes 1/2v;v!l", so the net result is

2T +Q-Q =0, @7
where the total kinetic energy is
1 2
T=—- [ pudV (28)
2 /s,

with 4> = w'u; and dV = Vhd3x. Furthermore, the gravitational
potential energy due to the dust particles is

1

= (Vv)2dv, (29)
/):’ Mlz%ff

where we put Mﬁcﬁ inside the integral because, depending on the

MGT under consideration, this term can depend on space. Finally,

the additional contribution to the theorem due to the MGT is

Qz/ RIT;dV. (30)
P

It is clear that the latter is always present, even if one considers
the systems analysed in Danieli et al. (2020a, b), Guo et al. (2020),
Mancera et al. (2019), and van Dokkum et al. (2019). By considering
these galaxies in (27), one can then put constrains on the parameters
of the MGT considered to make (30) vanishingly small.

2.2 Theories violating the JBT

Now we consider theories, such as the Dvali-Gabadaze—Porati
model (Dvali, Gabadadze & Porrati 2000), which do not satisty the
JBT. Even in these theories, the equations of motion can be written
in the from (4), and hence we start our analysis from equation (16).
First of all, the surface term in (18) will not go to zero, because we
are no longer assuming asymptotic flatness. Furthermore, concerning
the bimetric formalism trick used previously to write a covariant
expression for (19), we can still use the same analysis. However, now
the metric introduced / on to the ¥,s in no longer flat everywhere,
rather it should match the form of 4 at infinity (which is not flat
for the type of theories considered here), but remain flat where the
dynamics is taking place. This is a mathematical trick to guarantee
that (19) is written in a covariant way, and should not affect the
physical result, specially when we take the Newtonian limit, as we
will see shortly (see Cornish 1964; Nahmad-Achar & Schutz 1987,
Katz & Ori 1990 for more details). Finally, since the mass term (18),
which is known as the Komar mass (Komar 1959), does not cancel
the ADM one appearing in (21), the final result of the generalized
virial theorem (24) will have three additional terms on its RHS:

lim ﬂ{ ENidS,v +47 (Mg — Mapm), 31
§—o0 J¢ N
where Mg and Mapy are the Komar and ADM masses, respectively.
From here, since we are interested in studying the dynamics of
galaxies and galactic clusters, we need to take the Newtonian limit, as
given by the metric (26). In this limit, it was shown in Abramowicz,
Lasota & Muchotrzeb (1976) that the two mass terms in (31) do
indeed match, and therefore cancel. Furthermore, the surface term

Dwarf galaxies without dark matter 257

cancels by definition from the form of the metric in this limit.
Therefore, even for the case of theories that violate the JBT, in
the Newtonian limit, the virial theorem takes the form (27), but away
from that limit it has (31) as additional terms. It should be stressed
that if an MGT does not produce the virial theorem at galactic scales,
then such a theory fails in producing one of the observational proofs
of the existence of DM, and therefore cannot be considered as a
candidate for the latter in the first place.> Moreover, the unlikeliness
of MGTs violating the JBT to be DM candidates has been studied
previously (see Dai et al. 2008).

3 OBSERVATIONAL CONSTRAINTS

In this section, we link the quantities obtained in the generalized
virial theorem (27) to those that could be observed, such as in Danieli
et al. (2020a, b), van Dokkum et al. (2019), Guo et al. (2020), and
Manceraet al. (2019). To this end, we can define masses and densities
associated with the quantities Q and €2, as written in (A19) and (A21).
Note that the effect of MGT on M, has been absorbed into the
masses. One can also define radii associated with the these two
quantities:

Ry = —&, (32)

where Ry is the virial radius and Ry, is the radius in which the MGT

takes effect. According to Jackson (1970), the virial mass is defined

as

_ GM?}
Ry

2T , (33)
which, when inserted in (27), with the use of (32), gives the following
relation between the virial, baryonic, and MGT masses:

M} M?Ry

— =1 34
M? +M2RM 34

and therefore one way of constraining the ratio M?/Ry, ie. a
constrain on , is by measuring M, My, and Ry and using (34).
In Table 1, we present the constraint on the ratio €/ given by the
measurements presented in Guo et al. (2020). This ratio is calculated
using equations (32) inserted in (34). As we can see in Table 1
and Fig. 2, Q is an appreciable multiple of , when in fact, for
these DM devoid galaxies, it should be negligible. This shows that,
unless another mechanism is introduced specially for these galaxies
to remove £, it is very difficult for MGTs to account for these
galaxies and for other DM rich ones that are similar in properties,
such as AGC 8915, for instance (Guo et al. 2020).

In addition to that, another observable parameter that can be used
is the velocity dispersion, o, related to the virial mass and radius
by (Munari et al. 2013; Owers et al. 2017)

_ 302RV

This can be used with (34) to put another constraint on a given MGT.
Indeed, we can write (34) as

14 (35)

U; _ 1 + MZRV (36)
o M2Ry’

where o, and o, are the intrinsic and globular cluster’s velocity
dispersions, respectively. For instance, if we use the results of van

3But such a theory might still be a viable candidate for DE.
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Table 1. Data from Guo et al. (2020). The second and third columns are the
logarithm of the baryonic and virial masses, respectively. The ratio |Q/ Q|
shows no obvious correlation or trend with the masses, which indicates
modified gravity theories may need extra fine tuning as R will need to be
adjusted on an object by object basis.

Galaxy name log (Mp/Mg) log (My/Mg) R =1Q/Q|
AGC 6438 9.444 10.231 36.497
AGC 6980 9.592 9.876 2.698
AGC 7817 9.061 10.599 1190.242
AGC 7920 8.981 10.653 2207.005
AGC 7983 9.046 9.515 7.700
AGC 9500 9.092 9.712 16.378
AGC 191707 9.080 9.567 8.419
AGC 205215 9.706 9.984 2.597
AGC 213086 9.8 10.149 4.000
AGC 220901 8.864 9.363 8.954
AGC 241266 9.547 9.96 5.699
AGC 242440 9.467 10.098 17.281
AGC 258421 10.124 10.387 2.373
AGC 321435 9.204 9.593 4.998
AGC 331776 8.503 8.904 5.339
AGC 733302 9.042 9.489 6.834
AGC 749244 9.778 10.003 1.818
AGC 749445 9.264 9.708 6.727
AGC 749457 9.445 9.759 3.246
[ T T T
*
105F * ]
N ]
— 3 * * ¢ -
Ei 10 - : N 1
= [ L 3
¥ 9sf S ]
[ ¢ ]
9ol ]
F *
8.5( . L L
1 10 100 1000 10000

Figure 2. Virial mass as a function of R. There is no obvious correlation or
trend with the masses, which indicates modified gravity theories may need
extra fine tuning as R will need to be adjusted on an object by object basis.

Dokkum et al. (2019), where the velocity dispersion of DM devoid
galaxy NGC 1052-DF?2 has been measured, we find
> M*
— x3— = Q=x3Q. 37
Ror Ry (37
In other words, if DM is described by an MGT, the latter should
produce a gravitational potential approximately 3 times that of
baryonic matter for NGC 1052-DF2, where in reality it should not
be present.

A third method to check the consequences of MGTs on DM devoid
galaxies is by writing the mass in a radius r of a system as

M@r) = 471/ (op + P)r?dr = My + M, (38)
0

where pp and Mjp are the density and mass of baryonic matter,
respectively, while, 5 and M are those of MGT. By measuring M(r)
and M one can therefore determine the amount of DM available as an
MGT. Note that this is independent of whether a system is virialzed
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or not. For example, in Danieli et al. (2020b) the dynamical mass
and that of the stars within the half-light radius for the ultradiffuse
galaxy NGC 1052-DF2 have been measured to be very similar. This
puts dire constraint on MGTs, which highlights the importance of
such DM devoid galaxies in constraining these theories.

4 CONCLUSIONS

‘We have computed the virial theorem for MGTs that satisfy the JBT,
as well as those that do not. Motivated by the recent discovery of a
class of dwarf galaxies with no significant DM, we wanted to quantify
what constraints these objects put on MGTs. In the same vein that the
number of satellite dark matter haloes imposes severe constraints on
the nature of particle DM, we have found an equivalent observable
for the case when DM is a modification of gravity. Inspection of
(24) and (27) shows that the virial theorem for MGT contains an
extra term ! or Q. The existence of this term can be constrained by
the DM devoid galaxies considered here. For instance, it was shown
in Capozziello et al. (2013) that this extra mass term is proportional
to the baryonic mass present in the system. If one then applies this
model to the galaxies at hand, as is presented in Table 1, it would
be difficult to see how the model matches the observations without
fine tuning. On the other hand, trying to accommodate this term for
MGT models will provide interesting insights into the nature of these
models. If DM can indeed be part of the theory of gravity, one can
think of two possibilities that S;’ can have in order to achieve that.
The first is that Sii should include specific coupling terms dependent
on the environment and baryonic content of the considered galaxies
in Danieli et al. (2020a, b), van Dokkum et al. (2019), Guo et al.
(2020), and Mancera et al. (2019) such that they cancel the terms that
generate DM effects in other galaxies. That is, the matter content and
configuration of these galaxies should couple to gravity in a special
way in order to make sure there’s no DM effect. But this puts the
universality of gravitational interactions into question. So another
way is to look at a map of the sky for DM distribution, and have S‘ii
be the function that goes to O at the special positions where these
galaxies are found, while it is not O in other locations. However,
the difficulty arises from the fact that most dwarf galaxies do have
DM, in fact are DM dominated, which makes the above suggested
solution highly fine tuned. On the other hand, if DM was some
type of particles, then accommodating its absence in these galaxies
would be less fine tuned, by using, for instance, hydrodynamical
events associated with galaxy formation. It will be interesting to see
if non-fine-tuned MGT can be constructed to fulfill the existence of
DM-free galaxies (Danieli et al. 2020a, b; van Dokkum et al. 2019).
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APPENDIX A: ALTERNATIVE DERIVATION OF
THE VIRIAL THEOREM

We present here another method for deriving the virial theorem (27),
using the Lagrangian formalism and the relativistic Boltzmann
equation. The method presented here should be applicable to any
metric gravity theory, since it follows from energy—momentum
conservation. Therefore, it applies to theories that violate the JBT as
well. First, consider the equations of motion (4) and the metric in
spherical coordinates:

ds?> = —e™dr* 4 e7>7dr? + r7(d6* + sin 07dg?) (A1)

(at the moment no approximations are being made. When we apply
the Newtonian approximation, this metric reduces to 26). The 0 — 0,
r—r,0 —6,and ¢ — ¢ components of the field equations are,
respectively:

a( L, 2 1 1 (Too + Ton) (A2)

—e — — —_ = — 5
p . p Mizw 00 00

2 1 1 1 =
2v —
e (—r + ﬁ) — ﬁ = m (Trr + Trr)a (A3)
1 2 " 2 V/ 1 7
F (2 4t d— ) = o (T + Tio), (A4)

r Peit

Lo (o s a +42) = L (1,4 7,) (AS)
5 p Mz oo+ 1g9)-

Summing these equations together, we get:

L, A , 1 -
e (21) + +4v 2) = MT (Ttm + Ttot)a (A6)

r Petf

where Ty and T are the sum of the components of 7 and T,
respectively. Assuming that the deviation from GR is small, one
can write M) = M}(1 +€W¥), where ¢ is a small quantity and
W describes the deviation from GR due to the presence of T,,.

Equation (A6) becomes
v 1
2 ” 2y _ ~
el <2u +— ) =i (Tt +25) (AT)

and 25 = Ty (1 — eW), written in this form for later convenience.

Next step, consider a system of collisionless point particles
following a distribution function fz. The stress energy tensor of such
a system can be defined as

T :/fgmuuuvdu (A8)

where m is the mass of a particle (galaxy, star...), u,, its 4-velocity, and
du = du,dugduy/u, the invariant volume element in velocity space.
From this definition, one can write

1 2,
@Tm = ﬁgp(” )s (A9)
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where p is the mass density of the system, and (u?) = (u?) +
(u?) + (u3) + (u}), with (.) being the average in velocity space.
The distribution function fz follows the relativistic Boltzmann
equation (Maartens & Maharaj 1985; Bildhauer 1989):

a ;0
(p“ Frie p‘*p‘*r‘aﬁa—pi) f5=0. (A10)
where p“ is the particle’s 4-momentum (see Boehmer, Harko &
Lobo 2008 for further mathematical details). At this stage, it is more
convenient to introduce a set of local tetrads efj(x),a =0, 1,2, 3,
which can be chosen to be, for the current case of spherical symmetry:

eg = e”éﬁ, e}L = e“’é,‘i (A11)
e, =18}, e =rsinds,, (A12)

where &7 is the Kronecker delta. Assuming that fz = f3(r, u“),
where u® = u'ej are the velocity components in the tetrad frame,
equation (A10) becomes (Jackson 1970)

W e (20 _wrwi\dfs 1 [ 0fs  0fs
or O9r r duy 1\ s s
1 df ad
L viscote (w208 — 03008 o, (A13)
r ous ouy

Multiplying the above equation by mu,du and integrating over the
velocity space (assuming that fz — 0 as u — £00), then multiplying
by 47 *dr and integrating over the system, we get finally:

R
/ arp[(ud) + W) + W] r2dr
0

1 (R ) 27 30V
—= [ dmp[{ug) + wi)]r? —dr =0. (Al4)
2 Jo ar

To simplify the problem, one can make two further approximations.
First, assume v to be small and slowly varying, hence e*’ & 1 + 2v
and all quadratic terms in v or v drop. Second, assume the velocities

MNRAS 501, 254-260 (2021)

to be much smaller than the speed of light, therefore (u?) ~ (u3) ~

(u3) < (u2) ~ 1. Thus, equations (A7; after using A9) and (A14)
become

Y (A (AL5)
——\r"—)=-—=
r2or or M127 pp
and
1R 9v o,
2T — = [ dap—ridr =0, (A16)
2 Jo ar

respectively, where
R
T =/ 2rp[(uf) + (u3) + (u3)]r*dr (A17)
0
is the total kinetic energy of the system. Multiplying (A15) by * and

integrating from O to r, we get, when using the explicit form of Mﬁ
given in Section 1:

I ,0v _
GM(r)==r’*— — GM(r), (A18)
2 or
where
5 R
M@r)(M(r)) :471/ p(p)r?dr. (A19)
0

Finally, multiplying (A18) by dM(r) and integrating from O to R,
after the use of (A16), we get the generalized virial theorem:

2T+Q+Q=0, (A20)
where
B _
Q(Q) = —/ Mdmm. (A21)
0 r

This paper has been typeset from a TgX/I&TgX file prepared by the author.
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Part III

SPINOR FIELDS IN GRAVITATIONAL
BACKGROUNDS






NEUTRINO-DARK ENERGY INTERACTION IN
CURVED SPACETIME

It is now well established that neutrinos form part of Multimessenger
Astronomy, along with electromagnetic and gravitational waves. There-
fore, the more properties we uncover about neutrinos, the more we
can discover about the universe from these messengers.

Studying neutrinos in Cosmology is not a recent subject and a
great deal of literature on that is available, see [86, 87] for instance.
However, most of the analysis has been made assuming neutrinos to
be classical point particles. It would be therefore a natural step further
to generalize our analysis by considering neutrinos to be quantum
spinors traveling in gravitational fields. In this chapter, I present three
projects I did where that generalizing step has been applied [88—90].

In the first work [88], I present a general formalism for studying the
interaction of quantum spinor and scalar fields in curved spacetime.
After writing down an action principle, I derive a generalized Dirac
equation, such as (1.36) but including the scalar-spinor interaction. Fol-
lowing that, I specify the coupling term to three different interactions,
and study their effect on neutrino dynamics in FRW spacetime. One
of these coupling terms is particularly interesting: the linear derivative
coupling(LDC), "0, @, where (@) is the spinor(scalar)field.

This interaction is motivated by early universe symmetry breaking
arguments [91, 92], and it was shown that it could play a role in
explaining away DE [55]. The latter work focused on the scalar field
part in this interaction, showing how it could produce a force that
would “freeze” the scalar field and produces an equation fo state
w = —1, thus mimicking DE. It is therefore natural to look at what
would happen to neutrinos under such interaction, which is what I
did in [89].

The ultimate goal of this work is to distinguish between DE models,
mainly a cosmological constant(CC) and scalar field DE, using neutrino
oscillations®. To do that, I first look at a particular form of general
coupling between the two fields in a generic spacetime. This interaction
will manifest itself in the spacetime evolution of neutrino flavor state,
and thus in the transition amplitude between two flavors. Taking the
latter’s modulus squared gives the oscillation probability between two
neutrino flavors in a generic spacetime.

Having done that, I then consider the case of a cosmological con-
stant DE in a flat FRW spacetime. Then, I make contrast between
the oscillation probability of this formalism and the one from flat

1 For simplicity, I consider a system of two neutrino flavors.
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spacetime (eq.(38) in [89]), when using cosmological distances, e.g. the
luminosity distance. The main message from this result is that there will
be a huge difference between the two approaches as we go to higher
redshifts. Thus, one should be careful when doing neutrino astronomy
and use the formalism presented here, rather than simply substitut-
ing cosmological distances into flat spacetime oscillation probability
formulae.

The next step would be to consider the case of scalar field DE, with
the coupling between the two fields given by the LDC mentioned
above. Again, a contrast between oscillation probabilities” evolution
with redshift is made for this model and that of CC-DE. By varying
the strength of the scalar-spinor coupling, a clear difference appears
between the two models, showing thereby that neutrino oscillations
could be used as probe to distinguish DE models.

While working on this project, I noticed that different values of Hy
in the Friedmann equation produce a slight shift in the evolution of the
probabilities. This pushed me to study this effect in more detail in [90]
by looking at the full three-flavor neutrino system in ACDM. The
purpose would be to see if neutrino oscillation could be a probe of Hy
and therefore add some insight onto the Hubble tension [93—95]. Indeed,
what I find is that there will be a difference of a few % in neutrino
fluxes between early and late Universe probes of Hy. Although this
shift might not be substantial to be detected with current neutrino
observatories, there could be hints of its presence with future ones,
such as IceCube-Genz [96].

This chapter aims at demonstrating the potential of quantum field
theory in curved spacetime to probe the Universe in a novel way. It
would be a natural generalization of our current analysis, without
the need of adding new forces or particles. With the advancement
of detector technology, traces of these effects sho