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Abstract 
Virtual reality and its related technologies are being used for many kinds of content, like virtual 
environments or 360-degree videos. Omnidirectional, interactive, multimedia is consumed with a 
variety of devices, such as computers, mobile devices, or specialized virtual reality gear. Studies on 
user behavior with computer interfaces are an important part of the research in human-computer 
interaction, used in, e.g., studies on usability, user experience or the improvement of streaming 
techniques. User behavior in these environments has drawn the attention of the field but little 
attention has been paid to compare the behavior between different devices to reproduce virtual 
environments or 360-degree videos. We introduce an interactive system that we used to create and 
reproduce virtual reality environments and experiences based on 360-degree videos, which is able to 
automatically collect the users’ behavior, so we can analyze it. We studied the behavior collected in 
the reproduction of a virtual reality environment with this system and we found significant differences 
in the behavior between users of an interface based on the Oculus Rift and another based on a mobile 
VR headset similar to the Google Cardboard: different time between interactions, likely due to the 
need to perform a gesture in the first interface; differences in spatial exploration, as users of the first 
interface chose a particular area of the environment to stay; and differences in the orientation of their 
heads, as Oculus users tended to look towards physical objects in the experiment setup and mobile 
users seemed to be influenced by the initial values of orientation of their browsers. A second study 
was performed with data collected with this system, which was used to play a hypervideo production 
made of 360-degree videos, where we compared the users’ behavior with four interfaces (two based 
on immersive devices and the other two based on non-immersive devices) and with two categories of 
videos: we found significant differences in the spatiotemporal exploration, the dispersion of the 
orientation of the users, in the movement of these orientations and in the clustering of their 
trajectories, especially between different video types but also between devices, as we found that in 
some cases, behavior with immersive devices was similar due to similar constraints in the interface, 
which are not present in non-immersive devices, such as a computer mouse or the touchscreen of a 
smartphone. Finally, we report a model based on a recurrent neural network that is able to classify 
these reproductions with 360-degree videos into their corresponding video type and interface with an 
accuracy of more than 90% with only four seconds worth of orientation data; another deep learning 
model was implemented to predict orientations up to two seconds in the future from the last seconds 
of orientation, whose results were improved by up to 19% by a comparable model that leverages the 
video type and the device used to play it. 
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Resum 
La realitat virtual i les tecnologies que hi estan relacionades es fan servir per a molts tipus de 
continguts, com entorns virtuals o vídeos en 360 graus. Continguts multimèdia omnidireccional i 
interactiva són consumits amb diversos dispositius, com ordinadors, dispositius mòbils o aparells 
especialitzats de realitat virtual. Els estudis del comportament dels usuaris amb interfícies d’ordinador 
són una part important de la recerca en la interacció persona-ordinador fets servir en, per exemple, 
estudis de usabilitat, d’experiència d’usuari o de la millora de tècniques de transmissió de vídeo. El 
comportament dels usuaris en aquests entorns ha atret l’atenció dels investigadors, però s’ha parat 
poca atenció a comparar el comportament dels usuaris entre diferents dispositius per reproduir 
entorns virtuals o vídeos en 360 graus. Nosaltres introduïm un sistema interactiu que hem fet servir 
per crear i reproduir entorns de realitat virtual i experiències basades en vídeos en 360 graus, que és 
capaç de recollir automàticament el comportament dels usuaris, de manera que el puguem analitzar. 
Hem estudiat el comportament recollit en la reproducció d’un entorn de realitat virtual amb aquest 
sistema i hem trobat diferències significatives en l’execució entre usuaris d’una interfície basada en 
Oculus Rift i d’una altra basada en un visor de RV mòbil semblant a la Google Cardboard: diferent 
temps entre interaccions, probablement causat per la necessitat de fer un gest amb la primera 
interfície; diferències en l’exploració espacial, perquè els usuaris de la primera interfície van triar 
romandre en una àrea de l’entorn; i diferències en l’orientació dels seus caps, ja que els usuaris 
d’Oculus tendiren a mirar cap a objectes físics de la instal·lació de l’experiment i els usuaris dels visors 
mòbils semblen influïts pels valors d’orientació inicials dels seus navegadors. Un segon estudi va ser 
executat amb les dades recollides amb aquest sistema, que va ser fet servir per reproduir un hipervídeo 
fet de vídeos en 360 graus, en què hem comparat el comportament dels usuaris entre quatre interfícies 
(dues basades en dispositius immersius i dues basades en dispositius no immersius) i dues categories 
de vídeos: hem trobat diferències significatives en l’exploració de l’espaitemps del vídeo, en la 
dispersió de l’orientació dels usuaris, en el moviment d’aquestes orientacions i en l’agrupació de les 
seves trajectòries, especialment entre diferents tipus de vídeo però també entre dispositius, ja que hem 
trobat que, en alguns casos, el comportament amb dispositius immersius és similar a causa de límits 
semblants en la interfície, que no són presents en dispositius no immersius, com amb un ratolí 
d’ordinador o la pantalla tàctil d’un mòbil. Finalment, hem reportat un model basat en una xarxa 
neuronal recurrent, que és capaç de classificar aquestes reproduccions de vídeos en 360 graus en els 
seus corresponents tipus de vídeo i interfície que s’ha fet servir amb una precisió de més del 90% amb 
només quatre segons de trajectòria d’orientacions; un altre model d’aprenentatge profund ha estat 
implementat per predir orientacions fins a dos segons en el futur a partir dels darrers segons 
d’orientació, amb uns resultats que han estat millorats fins a un 19% per un model comparable que 
aprofita el tipus de vídeo i el dispositiu que s’ha fet servir per reproduir-lo. 
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Resumen 
La realidad virtual y las tecnologías que están relacionadas con ella se usan para muchos tipos de 
contenidos, como entornos virtuales o vídeos en 360 grados. Contenidos multimedia 
omnidireccionales e interactivos son consumidos con diversos dispositivos, como ordenadores, 
dispositivos móviles o aparatos especializados de realidad virtual. Los estudios del comportamiento de 
los usuarios con interfaces de ordenador son una parte importante de la investigación en la interacción 
persona-ordenador usados en, por ejemplo, estudios de usabilidad, de experiencia de usuario o de la 
mejora de técnicas de transmisión de vídeo. El comportamiento de los usuarios en estos entornos ha 
atraído la atención de los investigadores, pero se ha dedicado poca atención en comparar el 
comportamiento de los usuarios entre diferentes dispositivos para reproducir entornos virtuales o 
vídeos en 360 grados. Nosotros introducimos un sistema interactivo que hemos usado para crear y 
reproducir entornos de realidad virtual y experiencias basadas en vídeos de 360 grados, que es capaz 
de recoger automáticamente el comportamiento de los usuarios, de manera que lo podamos analizar. 
Hemos estudiado el comportamiento recogido en la reproducción de un entorno de realidad virtual 
con este sistema y hemos encontrado diferencias significativas en la ejecución entre usuarios de una 
interficie basada en Oculus Rift y otra basada en un visor de RV móvil parecido a la Google Cardboard: 
diferente tiempo entre interacciones, probablemente causado por la necesidad de hacer un gesto con 
la primera interfaz; diferencias en la exploración espacial, porque los usuarios de la primera interfaz 
permanecieron en un área del entorno; y diferencias en la orientación de sus cabezas, ya que los 
usuarios de Oculus tendieron a mirar hacia objetos físicos en la instalación del experimento y los 
usuarios de los visores móviles parecieron influidos por los valores iniciales de orientación de sus 
navegadores. Un segundo estudio fue ejecutado con los datos recogidos con este sistema, que fue usado 
para reproducir un hipervídeo compuesto de vídeos en 360 grados, en el que hemos comparado el 
comportamiento de los usuarios entre cuatro interfaces (dos basadas en dispositivos inmersivos y dos 
basadas en dispositivos no inmersivos) y dos categorías de vídeos: hemos encontrado diferencias 
significativas en la exploración espaciotemporal del vídeo, en la dispersión de la orientación de los 
usuarios, en el movimiento de estas orientaciones y en la agrupación de sus trayectorias, 
especialmente entre diferentes tipos de vídeo pero también entre dispositivos, ya que hemos 
encontrado que, en algunos casos, el comportamiento con dispositivos inmersivos es similar a causa 
de límites parecidos en la interfaz, que no están presentes en dispositivos no inmersivos, como con un 
ratón de ordenador o la pantalla táctil de un móvil. Finalmente, hemos reportado un modelo basado 
en una red neuronal recurrente, que es capaz de clasificar estas reproducciones de vídeos en 360 grados 
en sus correspondientes tipos de vídeo y la interfaz que se ha usado con una precisión de más del 90% 
con sólo cuatro segundos de trayectoria de orientación; otro modelo de aprendizaje profundo ha sido 
implementad para predecir orientaciones hasta dos segundos en el futuro a partir de los últimos 
segundos de orientación, con unos resultados que han sido mejorados hasta un 19% por un modelo 
comparable que aprovecha el tipo de vídeo y el dispositivo que se ha usado para reproducirlo. 
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Chapter 1. Introduction 
Virtual Reality (VR) and related technologies are nowadays being used by the general public for many 
kinds of content, like virtual environments, augmented reality applications or 360-degree videos, 
which are part of the Extended Reality (XR) model. There are many applications of these technologies, 
although we will focus on two: interactive 360-degree videos and a virtual museum. 

Omnidirectional, interactive, multimedia is consumed with a variety of devices: non-immersive 
devices such as computers or mobile devices, or immersive devices like specialized VR gear. This last 
group has seen a recent surge in popularity thanks to the rapid development of VR headsets intended 
for the general public and to the invention of gadgets designed to enhance the screen of a smartphone, 
becoming a mobile-based VR visor. 

Studies on user behavior with computer interfaces are an important part of the research in the field 
of human-computer interaction. As users find additional difficulties when they navigate 
omnidirectional environments [1], their behavior in these environments has drawn the attention of 
researchers in the field. Nevertheless, the vast majority of these studies is focused in one of these 
devices at a time, and little attention has been paid to compare the users’ behavior in multiple 
interfaces based on different devices to reproduce virtual environments or 360-degree videos. We are 
confident that the differences in the interface with various devices have an impact in their users’ 
behavior which in turn, has an effect in their experience and usability, which must be considered 
when designing this kind of virtual experiences. 

The analysis of the users’ behavior on this novel multimedia format is also important to design more 
efficient streaming techniques for 360-degree videos, as they require significantly higher quotas of 
bandwidth than regular videos. A line of research are adaptive streaming techniques for 360-degree 
videos, that leverage a prediction of the future orientation of the user. Current work considers only 
one of these devices at a time, so the effect of incorporating data of multiple devices into the model 
can improve the results of such prediction techniques, as long as differences in behavior are found 
between users of different devices. 

1.1. Objectives 

The motivation of this thesis is to collect, study and use the users’ behavior with different devices in 
virtual reality environments and 360-degree videos. The following objectives are set for this thesis: 

Objective 1. Collect the users’ behavior in a virtual reality environment and 360-degree videos with 
multiple devices. 

To be able to study such behavior, it first has to be generated on an interactive 
multimedia production which is to be played with the devices that are to be tested. This 
behavior then needs to be collected so it can be studied. 

To play the multimedia productions and to automatically collect the users’ behavior, a 
system is to be developed, with an interoperable specification to store and retrieve the 
data that is collected. 

A number of different kinds of actions and data in which this behavior is based are to 
be collected, such as the selection of virtual items, the users’ position in the virtual 
environment or the orientation of their heads, etc. Multiple contextual variables should 
also be stored, such as the device that was used in the computer interface, the element 
that is receiving the interaction, the kind of video that is being played, etc. 

The development and validation of such a system is the first milestone of this thesis. 
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Objective 2. Analyze the users’ behavior in virtual reality environments and 360-degree videos to 
identify differences between the multiple interfaces. 

Once the behavior on virtual reality environments and 360-degree videos with multiple 
devices has been collected, we are interested in finding differences in them according 
to the value of the contextual variables that we recorded. 

A comparison of the users’ behavior between devices would already extend the current 
state of the art, as studies that take under consideration multiple interfaces in 360-
degree videos or virtual environments are very scarce. Nevertheless, differences in 
behavior are to be searched for between users of different devices in both cases and 
between video types in the case of 360-degree videos. 

Objective 3. Propose an improvement of a prediction model for the users’ future orientations in 360-
degree videos played with multiple devices which considers the differences between them. 

Finally, an important application of a specific kind of user behavior in 360-degree videos 
revolves around the prediction of the future orientation of the users when they play 
these videos, to improve the streaming of these multimedia contents over the Internet. 
While this has been already studied, different devices are not considered together in the 
same experiment. 

We are to study if an improvement of the prediction made by a model for the users’ 
future orientations can be achieved by leveraging the contextual information we 
collected before, especially, the device which was used to play the 360-degree video but 
also the type of video that was being played. 

A model to recreate this contextual information will also be developed and evaluated 
with the collected data, so as to be able to improve these prediction models even when 
the contextual data is not collected. 

1.2. Contributions 

This thesis is structured in several chapters, whose body is devoted to the contributions made to the 
objectives we introduced. 

We first provide a background overview of the current state of the art on virtual reality and related 
technologies, 360-degree videos and hypervideos, adaptive streaming and the collection of users’ 
behavior in Chapter 2. We report the use of multiple devices to play virtual reality environments and 
360-degree videos, the efforts to collect and analyze users’ behavior in these multimedia applications 
and how that behavior can be used to develop models to predict future orientations of their users. 

We report the creation of four different multimedia productions, three based on 360-degree videos 
and one in a virtual reality environment in Chapter 3. We introduce a system to aid in their creation, 
reproduction, and in the collection of the users’ behavior when they were played. The development 
of this system follows an evolution through these four experiments. This contribution pursues 
Objective 1 by demonstrating the use of such a system to collect that kind of user behavior. 

In the following two chapters, we work towards Objective 2 by processing and analyzing the data we 
collected with the system we described on two of the productions we reported in the previous chapter. 

In Chapter 4, we study the users’ behavior in a virtual reality environment with two different devices, 
a standalone VR headset and a mobile-based VR headset. We analyze and discuss the differences we 
found in their behavior. This analysis contributes to Objective 2, as differences between interfaces, 
although both immersive, are noted, so they need to be taken under consideration if a similar user 
experience is to be perceived by the two groups of users in environments of virtual reality. 

In Chapter 5, we analyze the users’ behavior in 360-degree videos with four interfaces: two based on 
non-immersive devices, a mouse-based computer interface and a drag-based mobile interface; and two 
based on immersive devices, a standalone VR headset and a mobile-based VR headset. In this case, we 
observe the differences in exploration, orientation, movement and trajectory between video types and 
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devices. This study also contributes to Objective 2 by showing how the users’ actions are dissimilar 
between not only the kind of video that is played but also when they are played with different devices. 

Our final contributions are made in Chapter 6, as we explore deep learning models based on the data 
we collected. We first introduce a deep learning model to classify that behavior in 360-degree videos 
into the contextual variables we collected (type of video that was being played and device which was 
used), with an accuracy above 90% for both variables with four seconds of trajectory. We then then 
improve a deep learning model to predict the users’ future viewports leveraging that contextual data 
we collected (or that we can accurately reproduce, if it were unavailable) by up to 19% to a comparable 
deep learning model that does not use that information. These two contributions work towards 
Objective 3 by showing that the prediction models that are used in the state of the art nowadays are 
not using contextual information that could improve them significantly. 

We conclude this thesis in Chapter 7 with an overall reflection about the consecution of these 
objectives and some thoughts of future work which could take advantage of the contributions made 
in this project. 
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Chapter 2. State of the art 
In this chapter we provide an overview of the literature in Extended Reality, immersive devices, 
immersive technologies on the web, 360-degree videos and hypervideos, adaptive streaming and 
viewport prediction, and the Experience API. 

2.1. Extended Reality 

In recent years, there have been many advancements in Human-Computer Interaction (HCI). Terms 
like Virtual Reality, Augmented Reality or Mixed Reality have become popular nowadays. 

 
Figure 2.1. The reality-virtuality continuum, adapted with the modern Mixed Reality and Extended Reality 
concepts. 

Paul Milgram introduced the reality-virtuality continuum in 1994 [2], see Figure 2.1, which describes 
the continuous transition between environments composed only by elements in the real world to 
environments consisting solely of virtual elements (Virtual Reality). In this range, the terms 
Augmented Reality, and Augmented Virtuality appear. 

Virtual reality (VR) is defined as “a medium composed of interactive computer simulations that sense 
the participant’s position and actions and replace or augment the feedback to one or more senses, 
giving the feeling of being mentally immersed or present in the simulation (a virtual world)” [3]. 
According to them, the following are the key elements in any VR experience: the virtual world, the 
immersion, the sensory feedback, and the interactivity. As understood by Mel Slater [4], the sense of 
presence contributes to the realistic response required in this immersive medium. 

Augmented virtuality (AV), a term not so popular, is a medium in which real elements (e.g. a picture) 
are included in the virtual environment [5]. 

Augmented reality (AR), conversely, is a medium in which virtual elements are included in the real 
environment [5]. According to Sherman and Craig [3], it is “a medium in which real-time interactive 
digital information is overlaid on the physical world that is in both spatial and temporal registration 
with the physical world”. 

Mixed reality (MR) was first introduced by Milgram [2] to include the range between AR and AV, both 
included, without including neither reality or VR [5]. 

Distinctions between these terms are blurry and are becoming less significant as the technologies that 
support them evolve, as they are often displayed by similar devices [6], which are sometimes globally 
named “VR”. The new umbrella term “Extended Reality” (XR) was introduced to unite these terms 
under a global name. 

Museums in virtual reality have already been explored. A system that allows museums to be built and 
manage VR and AR exhibitions is presented in [7]. A VR museum based on gestures to obtain 
additional information is described in [8], a consumer technologies museum implemented in JanusVR 
[9], a system to create and experience VR exhibitions using Unity3D [10] and even a location-based 
VR museum that uses Samsung Gear VR [11]. Other projects use virtual reality inside the museum 
themselves [12]–[14]. In [15], a mobile based VR experience in a museum is reported, which uses gaze 
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as the interaction technique. Shehade et al. [16] describe the experiences of museum professionals 
about VR, which reported a lack of engaging social experiences. The description and analysis of an 
archaeological exhibition is supplemented with a virtual reality experience for informal learning in 
[17], implemented in Unity3D and played with Samsung Gear VR glasses and an HTC VIVE HMD; 
they registered the users’ actions and found that efficiency in performing gestures and amount of 
movement is correlated with the confidence of the player with the system and that most novice users 
did not leave the initial area. 

The present thesis studies immersive environments based on virtual reality: a virtual museum and 
360-degree hypervideos. They fully consist of virtual elements in a scene in which the user is 
immersed into. While it is true that most of these virtual images are obtained from real elements 
(pictures, videos), real elements are never blended in the scene in real time. 

2.2. Immersive devices 

Virtual Reality experiences require specialized gear to immerse the user in the virtual world [18]. 
These devices are common throughout Extended Reality experiences, in various degrees, contributing 
to the aforementioned confusion. There are two big families of devices that provide this immersion: 
Spatially Immersive Displays (SID) and Head-Mounted Displays (HMD). 

The first group, SID, surround the viewer with a panorama of the virtual environment through a video 
projection on a room-like device, in which the user walks in. The first application of SID to VR is the 
CAVE [19]. These devices offer a wide field of view without the need of head tracking devices and the 
possibility of a group experience between various users but are very expensive and require a large 
amount of space. 

The second group, HMD, also referred to as VR headsets or Head-Based Displays, have been a key 
part of VR since their introduction. These devices are worn over the eyes of the user and render the 
virtual environment according to the various sensors which they contain, at least a sensor that 
captures the rotation of the user’s head. 

Recently, the introduction of the Oculus Rift1 [20] has popularized VR headsets [21] which, in turn, 
has resulted in various alternatives and competitors such as the HTC Vive2 or the PlayStation VR3. As 
smartphones are also very popular nowadays, mobile VR headsets were also introduced, in which a 
smartphone is to be placed inside the visor, like the Google Daydream4, the Samsung Gear VR5 or even 
the low-cost Google Cardboard6 and variations of it [22]. 

The sensors and actuators available in these devices constrain the interface with the virtual world: at 
least three degrees of freedom are required for immersivity, which correspond to the rotation angles 
of the user’s head: yaw, pitch, roll. More advanced headsets feature six degrees of freedom, accounting 
for those three and the spatial position of the user, which are often missing in mobile VR headsets. 
The availability of controllers also defines the actions that can be performed with the interface: most 
VR headsets nowadays include controllers in one way or another, which can be used to perform 
various gestures [23], with the notable exception of the Google Cardboard [24]. 

Immersive devices are extensively used in the present thesis, as the study of the differences in the 
users’ behavior between them and non-immersive devices is one of the objectives of this thesis. 

 
1 https://www.oculus.com/rift/ 
2 https://www.vive.com/us/ 
3 https://www.playstation.com/ps-vr 
4 https://arvr.google.com/daydream 
5 https://www.samsung.com/galaxy/gear-vr/ 
6 https://arvr.google.com/cardboard/ 
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2.3. Immersive technologies on the web 

The delivery of virtual environments through the Internet has been supported by open Web3D 
standards like VRML [25] and X3D [26]. An early study of these technologies as a learning tool is 
given in [27]. 

WebXR [28] (previously WebVR [29]) is an HTML5 specification that enables browsers to use VR 
devices, including head-mounted displays, sensors and controllers on the Web, so immersive 
applications can be played with this kind of VR hardware, which helped popularize and distribute VR 
applications through the Internet even more. 

WebGL [30] is an HTML5 specification that provides a low-level 3D graphics API to web pages. This 
specification is often used through the immensely popular 3D library three.js7. 

Multiple libraries and frameworks wrap around WebXR or WebVR and the either WebGL directly or 
indirectly through three.js, like A-Frame8, React 3609 or BabylonJS10. 

WebXR is being used in the literature for 360-degree videos [31], virtual reality [32], social experiences 
in VR [33] and interactive visualization of complex data [34], to name a few examples. 

The multimedia system with which the users’ behavior will be collected, based on a web application, 
will use these technologies to display an immersive environment and use the immersive devices we 
previously discussed. 

2.4. 360-degree video 

360-degree videos [35] are a multimedia format that display a video that was recorded in all the 
directions of the space. The name for this kind of video is a reference of the 360 degrees that are 
available from left to right. Other names with which this format is often referred to are spherical 
videos, omnidirectional videos, panoramic videos, immersive videos, VR videos, etc. Some of these 
names are based on the availability of the video content: as a sphere, in all directions, as a panorama, 
while others are based on the interaction which is often used to reproduce them, such as immersive 
interfaces or VR devices. 

These kinds of videos contain recorded images through special equipment, such as ad-hoc camera rigs 
[35], where each camera records a video in one direction and they are later joined together in a process 
called stitching [36], or with special cameras that are already equipped with multiple lenses and can 
perform this stitching process while the video is being recorded. According to the geometric projection 
used in this process, the final result will differ: a sphere is often used, but a cylinder can be used when 
image data in the top and bottom is not available, a cube can also be used, and several other more 
complex geometries, like the pyramid-based geometry proposed in [37], an example of a viewport-
dependent projection. The image data is then represented in a plane with a 2d projection, like the 
equirectangular projection, the cubemap projection, etc. 

There are many techniques to reproduce 360-degree videos, which ultimately provide the user with 
the choice to control what part of the video they currently see [38]. Some of these interfaces are based 
on non-immersive devices, such as a drag interface [39] in which the video viewport shown in a 
computer screen is rotated by dragging a mouse, but other interfaces are based on immersive devices, 
also used for virtual reality applications. 

The fact that they are called VR videos and that they are often played with immersive devices which 
are also used to play virtual reality interfaces can lead to the assumption that spherical videos are a 
virtual reality experience [3], but there are some key differences and limitations between 360-degree 
videos and virtual reality experiences, such as the lack of perspective in occluding objects [40]. The 
introduction of the concept of Extended Reality (XR) should ease this confusion. 

 
7 https://threejs.org/ 
8 https://aframe.io/ 
9 https://facebook.github.io/react-360/ 
10 https://www.babylonjs.com/ 
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The collection of user behavior in 360-degree videos consists of recording the users’ head or head and 
eyes positions to determine the consumed viewports of the omnidirectional videos. There exist 
commercial solutions like Wistia 11  or LiveHEAT 12 , which display the viewed portions of the 
omnidirectional videos with heatmaps. Similar techniques are used in [41] to evaluate the behavior 
around an spherical display and in [42] for a telepresence omnidirectional video. 360-degree images 
viewed through HMD are analyzed in [43]–[45]. 

Head motion trajectories in omnidirectional video using an HMD are extracted in [46]. A dataset of 
head movements when playing 360-degree videos using an HMD is reported in [47], showing that, in 
contrast to videos recorded with a static camera, in videos in which the camera follows a path, viewers 
follow a well-defined region of interest. A head and eye trajectory dataset is reported in [48], 
establishing a relationship between camera movement and Temporal Perceptual Information. Head 
and eye trajectories are used in [49] to assist a convolutional neural network to detect saliency in 360-
degree videos. In [50], reproductions of 360-degree videos are continuously annotated with the 
valence and arousal experienced by the viewer. 

Different interfaces are used to play 360-degree videos in different studies: drag interfaces for mouse-
based computers, VR headsets and mobile VR headsets, but the literature has paid little to no attention 
to the comparison of the users’ behavior between these devices. 

360-degree videos are a core part of this thesis: the users’ behavior when playing them with different 
devices will be collected, analyzed, and used to improve this kind of content. 

2.5. Hypervideo 

A hypervideo [51] is a navigable stream of video that offers the viewer the possibility of choosing a 
path in the narrative combining several multimedia tracks through spatiotemporal hyperlinks present 
in the media. 

360-degree videos can be used in hypervideos, resulting in 360-degree hypervideos [39]. This change 
introduces challenges in the interaction with the hyperlinks [52] and the annotation required to create 
them [53]. A web-based 360-degree hypervideo used to navigate a tour through the city is presented 
in [54]. 

A number of the virtual environments produced and analyzed in this thesis are 360-degree 
hypervideos, where the user is able to select hyperlinks to navigate the content or perform other 
actions. 

2.6. Adaptive streaming 

Delivery of video through the Internet has moved from Real-Time Transport Protocol (RTP) to 
streaming over the HTTP protocol. As audiovisual quality and bit rates increase and multiple devices 
with diverse capabilities are able to reproduce these contents, there was a need to provide a system to 
stream different representations of the same multimedia content, which is why MPEG Dynamic 
Adaptive Streaming over HTTP was developed [55]. This protocol is widely used by major video 
streaming sites, such as YouTube [56] or Netflix [57]. 

360-degree videos require a much higher bit rate than conventional videos. This is due to the fact that 
a very large part of the 360-degree space, that is not viewed by the user, is streamed with the same 
quality than the part that is actually seen. 

Current research strives in identifying the viewport that is going to be displayed so that bandwidth 
can be saved, or additional bit rate can be assigned to the areas that are actually displayed if the areas 
that are not likely to be displayed are assigned a lower bit rate budget. This results in a form of 
viewport-adaptive streaming [58], which is typically based on dividing the 360-degree space in regions 
known as tiles, resulting in tile-based viewport-adaptive streaming techniques. 

 
11 https://wistia.com/ 
12 http://www.finwe.mobi/main/liveheat/ 
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A system based on MPEG-DASH SRD (Spatial Relationship Description [59]) is reported in [60], [61], 
which could save up to 72% of the required bandwidth [62]. A system based on regions with better 
quality than the rest is presented in [63], with the goal to provide the best quality for a given bit rate 
budget. In [64], a potentially non-uniform tiling scheme is explored, with savings of up to 73% of the 
required bandwidth. A model based on High Efficiency Video Coding (HEVC) [65] is proposed in [66]. 
A comparison between the tile-based technique and a viewport-dependent projection based on a 
truncated pyramid geometry is reported in [67]. A system based on HTTP/2 is studied in [68]. A 
cellular-friendly streaming scheme is proposed in [69]. 

Adaptive streaming is used in a number of the 360-degree video experiments reported in this thesis. 
Moreover, schemes specially designed for 360-degree videos often require an accurate prediction of 
the users’ future orientation, which is discussed next. 

2.7. Prediction of future orientations 

One of the most important aspects of viewport-adaptive streaming techniques lies on the correct 
prediction of the future viewports that will be displayed when a video is streamed. The literature 
makes the distinction of Field of View prediction techniques as content-based and trajectory-based. In 
the first category, the audiovisual content itself is used to predict the future viewport of a user (such 
as [37]), while in the second, this prediction is performed with the trajectory of the past viewports 
that the viewer has been watching. Techniques that combine both features have also been studied. 

Linear regression and a 3-layer perceptron based on past orientations were used in [70]. A neural 
network that leverages past fixations and video features is introduced in [71] to predict a future 
window of two seconds, using Scikit-learn 13 , Keras 14  and the Long Short-Term Memory neural 
network architecture (LSTM) [72]–[74]. Saliency is used to predict head movement in 360-degree 
videos in [75]. Deep reinforcement learning is used in [76] to predict potential orientation values from 
past orientations both offline and online, based on LSTM. [77] predicts future viewports with the aid 
of other users’ actions based on Linear Regression and k-near neighbors. In [78], other users’ 
viewports are clustered and a Support Vector Machine is used to fit the current user to a cluster. A 
probabilistic approach to improve Quality of Experience is presented in [79], with possible quality 
changes every second. 

The last objective in this thesis is based on improving the results of state-of-the-art prediction 
techniques by leveraging the knowledge of the distinct devices used to play the 360-degree videos. 

2.8. Experience API 

The Experience API (xAPI) [80] is an open specification designed to collect data about the wide range 
of experiences a person has, which allows different systems to communicate and share the data 
experienced by the users of an application. xAPI is a Representational State Transfer (RESTful) API in 
which a statement of experience is tracked as a learning record. Although the term learning appears 
throughout the elements of xAPI, any experience may be tracked, not only those related to e-learning. 

The xAPI registers the experience in statements. These statements are simple constructs, represented 
in JavaScript Object Notation (JSON), which contain, at least, an actor, a verb, and an object [81]. 
Optional properties, such as a timestamp, a context or a result can also be specified in a statement, as 
well as some properties may be extended, to better reflect in the dataset the nature of the experience. 
Some of these parts, like the verb or the activity type are identified by an Internationalized Resource 
Identifier (IRI). The Registry [82] contains several of these identifiers which are free to use by any 
application that uses xAPI, although custom identifiers can be created if needed. 

Three agents are identified in the xAPI model: the Learning Record Store, the Learning Record 
Provider, and the Learning Record Consumer. A Learning Record Provider (LRP) is any application 
that delivers data to an LRS. The Learning Record Store (LRS) is the server responsible for receiving, 

 
13 https://scikit-learn.org/ 
14 https://keras.io/ 
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securely storing, and providing access to xAPI statements, which can be standalone, such as lxHive15 
or part of Virtual Learning Environments (VLE). Finally, a Learning Record Consumer (LRC) is any 
application that accesses the data within the LRS and processes it. 

xAPI has been used in many studies, mainly related to learning technologies, such as those included 
in [83]–[86]. However, due to its generic nature, xAPI may be used in the most diverse areas. 

Virtual reality is used in learning applications, often with xAPI, such as a game-based learning using 
virtual reality, which collected students’ learning process with xAPI [87]; augmented reality has been 
used in learning and teaching, and xAPI can be used to exchange information about learning 
experiences [88]; virtual blended learning scenarios are used to integrate 3D worlds into University 
lectures, also tracking the learners’ progress with xAPI [89]. 

Finally, the Experience API is used throughout the present thesis to store and query the users’ actions 
in the immersive systems we developed, so it can be later analyzed. Concrete examples of the use of 
this technology are provided in the following chapter. 

 

 
15 https://github.com/g3i/lxHive 
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Chapter 3. Automatic collection of user behavior 
in VR multimedia 
In this chapter, we introduce the design, implementation, and initial results of the evolution of a 
system to play interactive immersive multimedia while it automatically registers the users’ behavior, 
which has been extended to work with various multimedia projects (see Figure 3.1). 

The users’ behavior collected this way can be used to perform various analyses on the usability and 
user experience with virtual reality and 360-degree videos, like cybersickness [90], immersion [91] 
and presence [92], but also to know how the users interact with the system, what they prefer using 
and which areas they explore at a given time, as we will show in the following sections. 

These projects were used to introduce new capabilities to the system incrementally, as will be reported 
in the following subsections. 

 
Figure 3.1. Evolution of the system to play omnidirectional multimedia and register the users’ behavior, and the 
user interfaces which have been supported. 

In general, the overall design of the system has remained the same (Figure 3.2): first, an interactive 
360-degree experience is designed with a creation module; then, that experience is played in a web 
application that tracks the user behavior and submits that information to a behavior database; finally, 
the user data is queried by an analysis tool which produces insights about the users’ actions. 

 
Figure 3.2. General architecture of the omnidirectional multimedia system. 

The first iteration of the system was created for educational interactive activities based on 360-degree 
videos, which were played in a drag interface using computers. Users were asked to perform a 
selection-based task on the approximate location in the 360-degree space of the video in which specific 
elements appeared. An initial analysis of the spatiotemporal consumption of the video and distribution 
of successful and unsuccessful selections was performed. 

In a second iteration, a 360-degree hypervideo documentary was created, which displayed markers in 
the 360-degree space of the video that displayed additional multimedia content. A drag-based interface 
using computers was used to play the production. The users’ data was helpful to answer questions 
about 360-degree hypervideo consumption. 
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We diverged from 360-degree videos to full virtual reality in the third iteration to demonstrate that 
our system was capable of supporting them: a virtual museum of vintage Macintosh computers was 
designed to be played with four different user interfaces: a cursor-based with positional keyboard 
movement interface for computers, a drag-based interface for smartphones, a gaze-based interface for 
mobile VR visors and a gesture-based with joystick movement for desktop-based VR HMD. A study 
comparing the interaction in the virtual reality experience using mobile VR headsets and a desktop-
based VR HMD was performed with the collected data. 

Finally, the fourth iteration consists of a 360-degree hypervideo that links 20 omnidirectional videos 
together in a virtual tour, which was played with four user interfaces: a cursor-based interface for 
computers, a drag-based interface for smartphones, a gaze-based interface for mobile VR visors and 
an interface based on a laser pointer for desktop-based VR HMD. A study comparing the interaction 
in the 360-degree videos using the four interfaces was performed with the collected data. 

In the following subsections, we will explain specific design and implementation details of this 
platform, in each of the four versions, leaving the complete analysis of the collected data for posterior 
chapters in this document. 

3.1. Immersive multimedia in the web 

The inclusion of the WebGL [30] API in web browsers has permitted the rendering of 3D graphics 
which are essential in the presentation of immersive multimedia such as virtual reality or 360-degree 
videos, which were, until recently, exclusive to native applications. WebGL is often leveraged by 
graphics libraries such as the extremely popular three.js. 

 
Figure 3.3. Still frame from a 360-degree video in the equirectangular projection in 16:9 aspect ratio. 

To produce a 360-degree video, visual data in all the directions needs to be recorded. Usually, either 
multiple cameras or cameras with several lenses are employed and the individual videos have to be 
joined together in a process called stitching, which can be done manually or automatically in some 
modern cameras. 

360-degree videos are available in a variety of formats, but the equirectangular and cubemap 
projections are the most common techniques to represent a spherical video in a standard video file. In 
this chapter we will always use videos in the equirectangular projection (Figure 3.3). 

These video files can be then loaded into a player that renders them as textures of a sphere (or a cube 
if they follow a cubemap projection or other geometries in other cases). The 3D camera is placed inside 
the geometry (see Figure 3.4), so the user can only see part of the spherical video, the viewport, with 
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its center defined by the current rotation of the camera. There are multiple ways to select a viewport, 
which range from dragging a cursor with a pointing device (like a mouse) or touchscreen to using 
orientation sensors in virtual reality headsets. In this thesis, we will represent the center of these 
viewports as two angles in degrees: latitude and longitude. The latitude represents the vertical rotation 
(pitch), and the longitude represents the horizontal rotation (yaw). 

 
Figure 3.4. Representation of the viewport in the display of a 360-degree video. 

Once 3D graphics are available, this kind of multimedia can be displayed in non-immersive devices, 
such as computers or mobile devices. But to be able to make use of truly immersive devices, such as 
Virtual Reality headsets, support for these devices needed to land into web browsers. 

The WebVR [29] API, now WebXR [28] API, introduced support for these devices, effectively making 
possible to create Virtual Reality experiences in web pages, displaying them in immersive gear with 
orientation sensors, positional tracking, and gesture-packed controllers, such as the Oculus Rift. 
Support for mobile Virtual Reality was also introduced, which are gadgets designed for smartphones 
to be inserted into them, so the user is also immersed into the experience leveraging the built-in 
sensors in most smartphones, like the Google Cardboard. 

Finally, a 360-degree video can also be displayed with these immersive devices. In this case, it is a kind 
of a virtual reality experience, in the sense that the user is immersed into the experience, but it still is 
the reproduction of a spherical video. In any case, what we exposed before still applies: a viewport 
must be selected and is rendered in the device. 

3.2. The Experience API 

The general architecture of the system (Figure 3.2) follows that of the xAPI, with modules that act as 
the Learning Record Provider, Store and Consumer. In all the cases, an external Learning Record Store 
(LRS) has been used, while a specific web-based development has been made for the player module, 
which acts as the Learning Record Provider (LRP) and for the Analysis module, which acts as the 
Learning Record Consumer (LRC). 

The communication between xAPI modules (between the LRP and the LRS and the LRS and the LRC) 
is done via statements. These statements are a structure which represent the experience that has been 
performed and contain, at least, an actor, which represents the user that performed the experience; a 
verb, which represents which action was performed; and an object, which represents on which activity 
the experience happened. Additional information can be provided in the form of contextual and results 
extensions, which are key to report specific details about these interactions. 

We can see an example of one of these statements used to report a change in the current orientation 
in a 360-degree video in Figure 3.5: in this case, the actor is identified with a local account, which is 
identified with a v4 UUID; the verb is an URI which represents the verb “interacted”, which is used to 
identify the action performed (other verbs are used for other actions, such as to report that a video 

Camera

Viewport
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has started playing, has been paused, etc.); the object contains which kind of activity the experience 
was performed on (in this case, a video) and what specific video was it performed on (the URI detailed 
in the id property); then a statement can have context and result properties, which are used according 
to the action which was performed, in this case, the context property has a set of extensions (identified 
by their URI), which detail a session-id, which links this statement to the others of this specific 
reproduction of the 360-degree video; a latitude and longitude, which specify the current orientation 
in degrees in the 360-degree video; and the current time of the video, in seconds; finally, a timestamp 
that details the specific moment in time in which the experience was performed is included in the 
statement. 

 
Figure 3.5. Example of an xAPI statement. 

Once both the LRP and the LRC agree on a specific structure of the statements, the communication 
between them is straightforward: the LRP posts these statements with the experiences of the users 
into the LRS and then the LRC just needs to query these statements and extract the relevant data 
which is included in them. This approach made it possible for us to develop the LRP and the LRC 
independently. 

In this chapter, we report which xAPI statements are created and when they are posted into the LRS 
by the player application (the LRP) but we do enter into the details of how the analysis module (the 
LRC) queries them, as this is reported in [93]. For the last two evolutions of the platform, we performed 
in-depth studies with data that was exported from the analysis modules, which are reported in Chapter 
4, Chapter 5 and Chapter 6. 

3.3. An interactive 360-degree video activity 

This is the first iteration of the omnidirectional platform. The paradigm of the interaction were 
educational activities, which consisted of a task to be performed in the reproduction of a 360-degree 
video: users were asked to identify specific features in the 360-degree video and double-click in the 
approximate location where they appeared (no visual hints, such as markers were provided) [94]. In 
this project, the creation module was divided in two separate tools: the 360-degree video annotation 
tool and the activity catalog management tool. The player module featured a drag interface designed 
to be used with computers. An initial exploration of the analyses that can be performed with this data 
is performed with the analysis module, which is explained in greater detail in [93]. 

{ 
  "actor": { 
    "objectName": "Agent", 
    "account": { 
      "homePage": "https://ltim.uib.es/360/", 
      "name": "75442486-0878-440c-9db1-a7006c25a39f" 
    } 
  }, 
  "verb": { 
    "id": "http://adlnet.gov/expapi/verbs/interacted" 
  }, 
  "object": { 
    "id": "https://ltim.uib.es/files/palma360/p1/dash.mpd", 
    "definition": { 
      "type": "https://w3id.org/xapi/video/activity-type/video", 
    }, 
    "objectType": "Activity" 
  }, 
  "context": { 
    "extensions": { 
      "https://w3id.org/xapi/video/extensions/session-id": "cf0f3f7e...c182", 
      "http://id.tincanapi.com/extension/latitude": 9.11, 
      "http://id.tincanapi.com/extension/longitude": 22.09, 
      "https://w3id.org/xapi/video/extensions/time": 4.5 
    } 
  }, 
  "timestamp": "2019-12-18T13:21:57.519Z" 
} 
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3.3.1. The creation module 

First, 360-degree videos were prepared in the de facto standard of MPEG4-AVC video stream with the 
spherical content projected following the equirectangular projection, MPEG AAC audio stream 
contained in MP4 files. They were paired with an XML metadata that includes the definition and 
location of the identified features in the video, converting them into annotated 360-degree videos. 

 
Figure 3.6. Screenshot of the 360-degree video activity annotation tool, with the list of objects on the left and the 
details of a specific object on the right, with two key positions. 

This XML file was generated by the 360-degree video annotation tool, a web application that facilitates 
the upload of the base multimedia content and modify their metadata by adding new objects (or 
modifying existing ones) by specifying its name, classes and selecting positions in the spherical and 
temporal coordinates of the video {𝑡𝑖𝑚𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒}, using a drag-based user interface (see Figure 
3.6). A set of 𝑁 ≥ 2 spatiotemporal coordinates define the trajectory of the object over time, from an 
initial to a final time: {{𝑡1, 𝜙1, 𝜆1}, … , {𝑡𝑁 , 𝜙𝑁 , 𝜆𝑁 }}, where 𝑡  denotes time; 𝜙, latitude; and 𝜆, longitude. 

Activities are created from an annotated 360-degree video in the activity catalog management tool, 
which contains a web form that enables the activity creator to select a class of the objects that had 
been identified as the objective of the activity. Activities are then saved in an XML file, so an annotated 
360-degree video can be used to create multiple interactive, measurable, and evaluable activities. 

As an example, a 360-degree video documentary was used as the base media and the animals featured 
in it were identified and classified according if they were “marine animals” or “terrestrial animals”, so 
these were the two classes that were used in this first example, that resulted in two activities: one in 
which “marine animals” had to be selected and another one in which “terrestrial animals” were the 
required ones. In this same base multimedia content, with the same objects, other categorizations 
could have been possible, which would have resulted in a different set of activities (such as “mammals”, 
“fish”, “invertebrates” or “herbivores”, “carnivores”, “omnivores”). 

3.3.2. The player module 

This is the application that displays the activity as a web application (see Figure 3.7), so the users can 
interact with it and, together with the application server, acts as the Learning Record Provider in the 
xAPI paradigm. 
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The activity player requires users to log in with their e-mail address so they can be identified in the 
xAPI statements. Then, a list of available activities is displayed and once one of them is selected, it is 
launched, displaying a message with the task to be performed and the 360-degree video, which can be 
controlled spatially through a drag-based interface with a computer mouse and temporally through 
the play/pause button and a temporal slider. The user can double-click anywhere on the 360-degree 
space of the omnidirectional video to select in that direction, a circle is displayed to provide feedback 
of the action and, if the activity is configured to do so, a green or red glow may be displayed to denote 
that the selection was correct or incorrect. When the user feels that they have finished the activity, 
they can complete it by clicking the specified button. If the connection with the server is lost or an 
amount of time passes after the video is completed, the session is automatically terminated. All the 
objects that have not been selected are considered skipped at that point. 

The video is rendered in a Three.js [95] scene, as the texture of a sphere, inside which the camera is 
placed. The drag of the user’s mouse over the canvas triggers the rotation of the camera, so other 
areas of the 360-degree video can be explored. The application server is a Node.js application that uses 
Express as the HTTP server and Socket.io for real-time communication over WebSockets. 

 
Figure 3.7. Screenshot of the 360-degree video activity player application, in the moment of a correct selection 
that displays positive feedback. 

As the player application is connected to the application server via a WebSocket connection, a message 
is sent every time one of these actions is performed which, in turn, may generate a xAPI statement so 
the session can be analyzed. Information is provided through the return channel of the WebSocket 
connection, such as the list of activities, the details of the activity or (optionally) the feedback after 
issuing a selection. 

The general xAPI vocabulary registry [96] and ADL’s video vocabulary [97] were used in this 
application. New pieces of vocabulary have been defined: an activity type, http://alumnes-
ltim.uib.es/xapi/activity-type/360videoactivity, extends the video activity defined in ADL’s video 
vocabulary; the verb http://alumnes-ltim.uib.es/xapi/verbs/lookedat is used to report that the user has 
changed its orientation in the 360-degree video; the extension http://alumnes-
ltim.uib.es/xapi/extensions/activity is used to report the title, class and video attributes of the activity 
in an object {𝑡𝑖𝑡𝑙𝑒, 𝑐𝑙𝑎𝑠𝑠, 𝑣𝑖𝑑𝑒𝑜} , as it was created in the activity management tool; the spherical 
coordinates of the current viewport of the user in the 360-degree video are contained in an object 
{𝑙𝑎𝑡, 𝑙𝑜𝑛} in the extension http://alumnes-ltim.uib.es/xapi/extensions/orientation; finally, the extension 
used to report which object was selected or skipped is http://alumnes-ltim.uib.es/xapi/extensions/object, 
which contains an object {𝑛𝑎𝑚𝑒, 𝑐𝑙𝑎𝑠𝑠}. In the rest of this section, we will refer these elements by the 
last part of their URI, such as logged-in, refer the vocabularies referenced above or this list. 

The actor in each statement contains the users’ e-mail address, as they introduce it when they log into 
the application. The object type 360videoactivity is used in the initialized statements onwards, properly 
extended with activity. The field timestamp was explicitly specified due to time precision issues when 
relying in the storage time. 
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The flow of the player application is detailed next, refer Table 3.1 for a summary of these events and 
the xAPI statements that are generated. 

Table 3.1. Summary of the events in the interactive activity player reported to the application server, the 
response received and the significant parts of the generated xAPI statements. 

Event → response? 

xAPI statement 

Verb Context extensions Result extensions 

Logged into the player → activity list logged-in   

Selected an activity → activity details initialized   

Pressed play played orientation, session-id time 

Pressed pause paused orientation, session-id time 

Sought the video seeked orientation, session-id time-from, time-to 

Changed the video orientation lookedat session-id time, orientation 

The video ended completed orientation, session-id time 

The user selected something → feedback? selected orientation, session-id time, object? 

Before finishing the session skipped* session-id object 

The user finished the activity terminated session-id  

The activity expired abandoned session-id  

Many events do not have a response; those marked with ? may not have a response; an extension marked 
with ? may not be present; a statement marked with * may be fired multiple (or zero) times. 

The first event is issued through the WebSocket channel when the user logs into the application, their 
e-mail address is received through oauth2 and the list of currently available activities is provided as 
an answer. A statement with the verb logged-in is issued when this happens. Once the user selects an 
activity, that information is submitted to the application server, which responds the metadata needed 
for the player to reproduce the activity and issues a statement with the verb initialized, in this case 
the type of the statement’s object is already set to 360videoactivity, identified by the IRI of the activity 
and extended with activity, so its title, class and video are specified in the xAPI statements. A reference 
to the id of this statement is stored in the server and used in future statements related to that session 
with the activity, in the session-id context extension. 

When the user starts or resumes the video playback, a statement with the verb played is generated, 
and when the user pauses it, one with paused is submitted. They include the time result extension 
documented in the video vocabulary and the orientation extension in the context. In the case of a time 
position seek, a statement with the seeked verb is registered, which contains the time-from and time-
to extensions in the result, according to the video vocabulary specification, and its context is extended 
by orientation. 

The user is free to change the orientation of the 360-degree video at any moment. Orientation changes 
are tracked, at a maximum frequency of four times per second, and submitted to the application server 
to be reported in xAPI statements with the verb lookedat. The statement’s result is extended by time 
and orientation. 

When the video ends, a statement with the completed verb is generated to denote that the end of the 
video has been reached (this does not mark the end of the activity: the user can resume the playback 
from the start or seek to a previous position in time). The result extension time is added as required 
by the video vocabulary and its context is extended by orientation. 

When a double-click is issued, a selected event is dispatched through the WebSocket connection, 
containing the spatiotemporal coordinates of the interaction: the spatial position, in spherical 
coordinates, of the selection and the time of the video in which that selection was made. The 
application server processes that information, 𝑝𝑠 = {𝑡𝑠 , 𝜙𝑠 , 𝜆𝑠} to check if an object has been selected 
(see Figure 3.8): first, the objects whose trajectory starts before and ends after 𝑡𝑠 are considered (𝑡1 ≤
𝑡𝑠 < 𝑡𝑁 ); then, for each pair of consecutive key positions 𝑝𝑖 = {𝑡𝑖, 𝜙𝑖, 𝜆𝑖}, 𝑝𝑖+1 = {𝑡𝑖+1, 𝜙𝑖+1, 𝜆𝑖+1}, in the 
trajectory of an object that 𝑡𝑖 ≤ 𝑡𝑠 < 𝑡𝑖+1 , the interpolated 𝑝𝑡 = {𝑡𝑡 , 𝜙𝑡 , 𝜆𝑡 } is obtained through linear 
interpolation of 𝜙  and 𝜆  for 𝑡𝑠 ; finally, a selection window of 𝜙𝑠 ± 15º  in latitude and 𝜆𝑠 ± 30º  in 
longitude is built over the selected position 𝑝𝑠 , so any object whose interpolated position for 𝑡𝑠 falls 
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inside this window is considered selected. An xAPI statement with the selected verb is issued in these 
cases, with its context extended by orientation ({𝜙𝑠 , 𝜆𝑠}) and its result by time (𝑡𝑠) and, if an object fell 
inside the selection window, the object description. The success property of the result is set to whether 
the classes of the activity match the classes of the selected object. An answer detailing if the selection 
was successful or not is sent to the player application if the activity is configured to do so. 

 
Figure 3.8. Illustration of the process of determining if an object is contained in the selection window built 
around the user-supplied selection position in the 360-degree video activity player application. 

The last event is the completion of an activity. This can happen when the user chooses to end it by 
pressing the specified button or when it automatically expires for one of these reasons: a new activity 
is being launched, the WebSocket connection was closed or the assigned time to complete the activity 
ran out. When this happens, first, an xAPI statement with the verb skipped is issued for each object 
not selected at least once during the activity, extended with the object details as a result extension; 
second, a statement with either the verb terminated (the user chose to end the session) or abandoned 
(the session expired) is posted to indicate that the user has completed the activity. The result of the 
statement is detailed with the completion property set as true if it was issued by the user and to false 
if it was expired, and its duration is set to the length of time since the activity was launched. 

3.3.3. Results 

The proposed system is able to successfully create, reproduce, register, and analyze an interactive 
experience based on 360-degree videos in a web environment. 

One of these graphs that can be obtained through the analysis module plots the spatiotemporal 
trajectories of the sessions (Figure 3.9), in which the x axis shows the relative timestamp since the 
launch of the activity (left) or the longitude in the users’ current orientation (right), while the y axis 
reports the current time in the video. Thick lines are built with statements with spatiotemporal 
information (those with verbs played, paused and lookedat), markers denote other events and pointed 
lines mark time seeks. In the right, we can appreciate the annotation of the objects in the video (indigo 
for valid objects, pink for invalid objects) and the spatiotemporal position of valid and invalid 
selections. 

Other kinds of graphs include time and longitude histograms and contextual charts that process the 
data in the context field of xAPI statements. 

We found that spatiotemporal trajectory graphs (such as Figure 3.9) provide a quick glance to the 
performance of the users in the temporal dimension and in the spatial dimension; histograms can help 
identify the most visited portions of the 360-degree videos, both in the temporal and spatial 
dimensions; finally, contextual charts process the data in the context in which the actions were 
performed, such as the direction of temporal seeks (forward or backwards) or the direction of viewport 
changes (clockwise or anticlockwise). 
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Figure 3.9. Session spatiotemporal trajectories in the 360-degree video activity player in video time (left) and 
longitude (right). 

3.4. A 360-degree hypervideo documentary 

In this second iteration of the multimedia platform, we diverged from the educational activities and 
produced an interactive documentary delivered on a 360-degree hypervideo. One of our colleagues 
collaborated with PROEM-AID16, a group of emergency professionals who voluntarily helped during 
the European migrant crisis in Greece and recorded a few 360-degree video clips and some other 
regular clips that we turned into an interactive hypervideo production [98], [99]. 

The hypervideo consists of a main 360-degree video that acts as a panorama, allowing the user to pan 
the scene and look at any direction, and acts as a basis of the documentary, as it displays links to 
additional media in specific points in the space-time of the main track. 

 
Figure 3.10. General overview of the 360-degree hypervideo documentary system. 

An overview of the system is provided in Figure 3.10, which shows solid boxes for processes for which 
a tool was developed to perform them. Multimedia sources have undergone a prior process of edition 
and encoding with state-of-the-art tools. The hypervideo was created with the aid of the annotation 
module and is reproduced in the player module, which collects the users’ actions in the LRS. That 
information is later queried by the analysis module, which provides some insight of the users’ behavior 
and was used to perform a more in-depth user study [100]. The annotation and the player modules 

 
16 https://www.proemaid.org/en/lesbos/ 
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are React web applications and use the same component to display the 360-degree video track: to 
annotate it or to reproduce it. 

3.4.1. The creation module 

Two kinds of video footage were recorded in the refugee camps of Lesbos and Piraeus, Greece: 360-
degree video and linear clips. Four 360-degree scenes of approximately 90 seconds each were captured 
using a 6-camera array, rigged on a stick. The equirectangular media was stitched together with 
Kolor’s Autopano Video Pro in a single video file with a duration of approximately six minutes. Eleven 
linear videos with durations between 30 and 137 seconds, amounting to more than 14 minutes in total, 
with different testimonies of the refugees, were prepared to extend the production. 

The 360-degree video and the linear clips were encoded as MPEG4-AVC video and MPEG AAC audio. 
As the source multimedia was captured in high quality and the stitched 360-degree video was obtained 
from six cameras, the original bit rate of the videos was high, which could be a problem in limited 
network conditions. The MPEG DASH [55] adaptive streaming technique was employed: multiple 
representations of each video (linear clips and the 360-degree media) were encoded with different bit 
rates, logically connected by an MPD manifest for each video. 

A new annotation tool was developed following the same principle as the one from the previous 
iteration. This time, a React web application was designed, which interfaced a component that displays 
the 360-degree video in a Three.js 3D scene with the forms required to annotate the points of interest 
in the 360-degree video. A point of interest is represented by a marker on the 360-degree video defined 
by 𝑁 ≥ 2 key positions in the spatiotemporal coordinates of the video, {{𝑡1, 𝜙1, 𝜆1}, … , {𝑡𝑁 , 𝜙𝑁 , 𝜆𝑁 }}, 
where 𝑡  denotes time; 𝜙, latitude; and 𝜆, longitude. The additional metadata for each point of interest 
includes a descriptive name, an IRI (Internationalized Resource Identifier) to identify that point in the 
xAPI statements, the IRI of the video that should play when it is selected (which is the URL of the 
MPD file that was previously generated) and an optional image to customize the appearance of the 
marker on the 3D scene. This information is stored in a JSON file and retrieved by the player. 

3.4.2. The player module 

Once the 360-degree hypervideo has been defined, it can be reproduced in the player web application 
(see Figure 3.11), which was implemented in React, with the same component for the scene as the 
annotation module, but this time it displays the video controls and the help area. Events in the player 
application are forwarded to the application server through a WebSocket connection, so xAPI 
statements are generated to register the users’ actions. 

 
Figure 3.11. Detail of the architecture of the player application in the 360-degree hypervideo documentary. 

When the player is started, a form prompts the user to voluntarily share some basic personal 
information (gender, age, profession, country) with us, which is used to build the actor part in the 
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xAPI statements. The user can choose not to fill this form, which makes the difference between 
registered and unregistered consumers. 

After that, the user is free to navigate the video in space (by dragging the scene with a pointing device, 
such as a mouse or the finger over the screen on a smartphone) and time (with the video controls 
shown in the lower part of the screen). When a point of interest appears, a marker is displayed 
according to the trajectory defined in the annotation tool, so the user can find it in the 360-degree 
video and select it. If they do, the main playback is paused and the associated media is played in a pop-
up view, until it ends or the window is closed by the user, so the main playback continues. Whenever 
any of these events happen, information is submitted to the application server through a WebSocket 
connection, so xAPI statements are posted to the LRS to keep track of the users’ actions. Finally, since 
video files follow the DASH specification, we leverage the DASH.js player to parse the MPD files and 
automatically adjust to a representation with a suitable bit rate. 

The Scene component, which is shared between the creation and the player modules, uses a WebGL 
scene managed by Three.js. The core of the scene is the sphere geometry used to display the frames 
of the 360-degree video texture, provided by the DASH.js player. A list of points of interest with their 
trajectories is provided so the scene can display the markers when it is needed. This list is updated 
dynamically in the editor, but it is obtained from the JSON produced by the creation module when the 
scene is in the player module. 

 𝑑 = acos[cos 𝜙0 ⋅ cos 𝜙1 ⋅ cos(𝜆0 − 𝜆1) + sin 𝜙0 ⋅ sin 𝜙1] (3.1) 

The position of a given marker in a time 𝑡 , when there exist two consecutive key positions in its 
trajectory 𝑝0 = {𝑡0, 𝜙0, 𝜆0}, 𝑝1 = {𝑡1, 𝜙1, 𝜆1}  that 𝑡0 ≤ 𝑡 < 𝑡1 , is calculated via linear interpolation in 
spherical coordinates (3.2), which requires the angular distance between two points in spherical 
coordinates (3.1). Both formulas are adapted from the “Intermediate points on a great circle”, and 
“Distance between points”, respectively, both described in [101]. 

 

𝑓 =
𝑡 − 𝑡0
𝑡1 − 𝑡0

 

𝐴 =
sin((1 − 𝑓 ) ⋅ 𝑑)

sin 𝑑
 

𝐵 =
sin(𝑓 ⋅ 𝑑)

sin 𝑑
 

𝑥 = 𝐴 ⋅ cos 𝜙0 ⋅ sin 𝜆0 + 𝐵 ⋅ cos 𝜙1 ⋅ sin 𝜆1 
𝑦 = 𝐴 ⋅ sin 𝜙0 + 𝐵 ⋅ sin 𝜙1 
𝑧 = 𝐴 ⋅ cos 𝜙0 ⋅ − cos 𝜆0 + 𝐵 ⋅ cos 𝜙1 ⋅ − cos 𝜆1 

𝜙𝑡 = atan2 (𝑦, √𝑥2 + 𝑧2) 
𝜆𝑡 = atan2(𝑥, 𝑧)  

(3.2) 

Since Three.js uses a cartesian coordinate system, we cannot use 𝑝𝑡 = {𝑡𝑡 , 𝜙𝑡 , 𝜆𝑡}  in spherical 
coordinates. (3.2) already provides the cartesian coordinates of 𝑝𝑡  as unit vectors (the values of 𝑥, 𝑦 , 𝑧), 
so they need to be scaled to the radius, 𝑅, of the sphere on which the markers should be drawn (3.3). 
Note that 𝑅 should be smaller than the radius of the sphere on which the texture of the 360-degree 
video is drawn to avoid clipping the markers out of the view of the camera. 

 𝑝𝑡 = 𝑅 [
𝑥
𝑦
𝑧
] (3.3) 

In this case, 𝜙𝑡  and 𝜆𝑡  from (3.2) are never used and there is no need to calculate them. 

Once markers are displayed on the 3D scene and their position is updated accordingly, selections on 
them are detected with a ray casted from the middle of the scene (where the camera is) to the position 
selected with the pointing device (a computer mouse or the touch on a touchscreen), which fire an 
event to launch the associated video. 

Other player-specific features are enabled on the scene component, which are not enabled in the 
creation module, (see Figure 3.12): the video controls serve to adjust the temporal dimension of the 
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360-degree video, with a play/pause button and a seekable progress bar that hints the appearances of 
points of interest; while the help zone displays in a specific location the markers that are drawn 
somewhere in the 3D scene (as we just explained), so that users cannot miss them if they appear out 
of their viewport. 

 
Figure 3.12. User interface of the 360-degree hypervideo documentary player. 

 
Figure 3.13. State diagram of the 360-degree hypervideo documentary player, with the names of the verbs in the 
submitted xAPI statements. 

The player application follows a set of states, which are transitioned after certain events and xAPI 
statements are issued in transitions and some statements are generated in one state or the other (refer 
Figure 3.13). The general xAPI vocabulary registry [96] and ADL’s video vocabulary [97] were also 
used in this application, with a similar principle as in the previous iteration. Refer Table 3.2 for the 
relation of the statements and their parts. The activity type https://ltim.uib.es/xapi/activity-
type/360augmentedvideo is used throughout the statements, except in those related to associated videos, 
in which the activity type https://w3id.org/xapi/video/activity-type/video is used. The activity id is set 
to the URL of the video except in logged-in statements, which use the URL of the web application. The 
users’ information collected in the form is included in the logged-in statement in the result extension 
https://ltim.uib.es/xapi/extensions/user-data, which contains an object {name, email, gender, age, 
profession, country, accept-language, user-agent, uuid}. Information about the video that is initialized is 
attached in the result extension of initialized statements as an object {duration} in 
https://ltim.uib.es/xapi/extensions/video-data. The following are used as context extensions in video 
statements (played, paused, seeked, completed, lookedat, selected, terminated), following the xAPI video 
specification: https://w3id.org/xapi/video/extensions/quality to report the current quality in vertical 
pixels in which the video is played, such as 720 or 1080; if the video is played or not in full screen is 
reported in https://w3id.org/xapi/video/extensions/full-screen; the size of the screen is included in 
https://w3id.org/xapi/video/extensions/screen-size, like 1920x1080, 1280x720, or 640x480; 
https://w3id.org/xapi/video/extensions/user-agent tells the User-Agent of the browser; 
https://w3id.org/xapi/video/extensions/volume reports if the mute button was used; 
https://ltim.uib.es/xapi/extensions/orientation is used (except in lookedat) to report the current 
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orientation in statements related to the main video track; since events can be fired while the video is 
paused, https://ltim.uib.es/xapi/extensions/playing reports if that is the case. The current time in the 
video is specified in https://w3id.org/xapi/video/extensions/time (except in seeked) as a result extension 
(except in lookedat and selected, in which it is context). The result extension 
https://w3id.org/xapi/video/extensions/time-from is used as a result extension to specify the point in 
time from which the user performs a seek and, similarly, the destination is specified in 
https://w3id.org/xapi/video/extensions/time-to. Analogously, the changes of orientation are reported in 
lookedat with https://ltim.uib.es/xapi/extensions/orientation-from and its destination counterpart 
https://ltim.uib.es/xapi/extensions/orientation-to. Finally, the URI of a point of interest is indicated as a 
result extension in selected statements in https://ltim.uib.es/xapi/poi. As in the past section, in the rest 
of this one, we will refer these elements by the last part of their URI. 

Table 3.2. Summary of the events in the 360-degree hypervideo documentary player and the significant parts of 
the generated xAPI statements. 

Event 

xAPI statement 

Verb Context extensions Result extensions 

The form is submitted logged-in  user-data 

A video track is loaded initialized session-id video-data 

A video track is resumed played 
orientation* 
session-id 

time A video track is paused paused 

A video track ends completed 

A video track is sought seeked 
orientation* 
session-id 

time-from 
time-to 

The orientation is changed lookedat time 
session-id 

orientation-from 
orientation-to 

A marker is selected selected 
time 
orientation 
session-id 

poi 

The associated video is closed terminated session-id time 

The player is closed abandoned session-id  

The orientation* is only included in statements related to the main video track. 

 
Figure 3.14. Hierarchical sessions in the xAPI statements of the 360-degree hypervideo documentary player. 
Statements in dotted boxes are related to the main 360-degree video, while those in dashed boxes are related to 
the associated videos. 

The actor for these statements is specified with either the e-mail address they provide in the form or 
a version 4 UUID as the name of a local account, to deal with anonymous users who dismissed the 
form. A hierarchical system of sessions is used in the statements, influenced by the xAPI video 
vocabulary (see Figure 3.14): first, the id of the logged-in statement is used as the session-id on the 
initialized statement of the main video track; second, the id of that initialized statement is used as the 
session-id in the statements that are performed on the main video track (played, paused, seeked, 
completed, lookedat, selected), the initialized statement when an associated video starts and the 
abandoned statement when the application is closed; finally, the id of these initialized statements of 
associated videos are used as session-id in the statements fired from that video track (played, paused, 
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initialized 

played paused seeked completed lookedat selected initialized abandoned 
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seeked, completed, terminated). This enables us to relate all statements to a single session and to 
distinguish behavior from the main video track to each associated video. 

The application starts in the Form state, in which the aforementioned form is displayed. Once it is 
submitted (or dismissed), an xAPI statement with the verb logged-in is issued extended with the 
submitted information (if any). This triggers the change to the Main state, so a statement with the 
initialized verb is fired as soon as the main video track is ready. 

Statements with verbs played, paused, seeked and completed are used in the Main state accordingly to 
the video vocabulary. The extension orientation is included to specify the current viewport of the user 
in the 360-degree video. Statements with the verb lookedat are sent when the user changes its current 
view. Successive submissions are throttled to 250 ms so as not to flood the LRS. A statement with 
selected verb is issued when a marker is selected and the application transitions to the Associated state, 
so a window is created to play the video associated to the selected point of interest and a statement 
with the initialized verb is fired as soon as that video track is ready, starting an associated video 
subsession (see Figure 3.14). 

In the Associated state, a linear video is played in a window. Statements with the verbs played, paused, 
seeked and completed are issued similarly as before, but without the orientation extension and 
specifying the id of that last initialized statement as its session-id. That subsession ends when the video 
window is closed, a terminated statement is issued, and the player returns to the Main state. More 
points of interest can be selected, starting a new subsession, or the user can simply close the player, 
so an abandoned statement is generated, signaling the end of the session. 

3.4.3. Results 

The production was used 71 times during 25 days after the link was shared through the University 
community, generating a total of 11139 xAPI statements. Of these 71 sessions, 37 were registered 
consumers (33 of them unique). 

A summary of the findings is provided below, please refer [93] for more details. 

The population mean of different selected markers per session is between 1.6 and 2.8 at a 95% 
confidence level, notably less than the 11 points of interest available. In 69% of the sessions, at least 1 
point was selected, which is 70% of the sessions from registered consumers and 68% of the sessions 
from unregistered ones. 

A strong, negative, and statistically significant correlation was found between the number of sessions 
in which a marker was selected and the time in which they appeared first (𝜌 = −0.82, 𝑝 = 0.002). 

Associated videos tend to be watched in its full length: the 95% confidence interval of the mean 
proportion of playback is between 56.2% and 90.8%. 55% of video plays had at least 93% of playback 
time visualization. 

The main 360-degree video tends not to be watched in its full length, either because users skip parts 
of it with seeks or because they close it before it ends. The 95% confidence interval of the mean 
proportion of playback time is between 30.8% and 45.9%. The correlation between the proportion of 
playback time visualization of the main 360-degree video and the number of unique selected markers 
was positive, strong, and statistically significant in registered sessions (𝜌 = 0.65, 𝑝 < 0.001), and 
positive, moderate, and statistically significant in unregistered sessions (𝜌 = 0.47, 𝑝 = 0.005). 

Finally, the 95% confidence interval of the mean proportion of longitude visualization per session is 
between 57.2% and 77.3%. The correlation between the proportion of longitude visualization of the 
main 360º video and the number of unique selected markers was positive, strong, and statistically 
significant in registered sessions (𝜌 = 0.60, 𝑝 < 0.001), but insignificant in unregistered sessions (𝜌 =
0.25, 𝑝 = 0.147). 

3.5. A multi-device virtual reality museum 

A virtual museum [102] was conceived as the use case of the third iteration of the interactive platform 
to demonstrate that our system is capable of supporting full VR environments. Although 360-degree 
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videos are left aside this time, the interaction in a 3D scene is very similar, so improvements in this 
iteration would be easily translated to the reproduction of 360-degree videos. The most important 
addition was the possibility to interact with the virtual scene with four kinds of devices: desktop 
computers, smartphones, desktop VR headsets (we used the Oculus Rift) and mobile VR headsets (such 
as the Google Cardboard). 

As the IT service of the University started a project to document vintage computers used by professors 
in the past, we thought it would be interesting to be able to interact with these computers that are 
now either out of service or in display. A virtual museum, in which the users could turn these 
computers on, seemed a good experiment to bring these computers back to life again. Since most of 
these computers were made by Apple, we decided to only consider Macintosh computers to make it 
more consistent. As pictures of these were captured using a greenscreen, we could easily import them 
in a virtual scene, so users would be able to explore these vintage computers. As a twist, we 
downloaded the original TV commercials in which these computers were advertised years ago from 
the Internet, so they would appear to be played inside the screens of the relevant computers. 

The system (see Figure 3.15) evolves from the previous iteration and follows roughly the same 
architecture. We finally took under consideration four different devices to play the application, which 
would present differences in the user interface. The player application, which is run inside a web 
browser, is obtained from the application server via HTTP protocol and transmits usage data back to 
the application server through a WebSocket connection. The monitor application is an addition which 
was made to perform a simple live analysis of the users’ movement. To do so, a WebSocket connection 
is also stablished with the application server, so the data generated by the player application is 
forwarded to the monitor. The application server also submits this data to the Learning Record Store 
(LRS) with xAPI statements to be later retrieved by the analysis module, so a proper analysis can be 
conducted on that data. 

 
Figure 3.15. General overview of the system in the virtual museum. 

In contrast with previous iterations, no creation module was developed for this system, as a single 
museum was intended to be implemented, so the data of the objects to be displayed in it was specified 
in a configuration file. 

3.5.1. The player module 

This is the web application that displays the virtual museum. 39 Apple Macintosh computers released 
between the decades of 1980 and 2000 are shown in the virtual scene, grouped by family, so that users 
are able to observe them and interact with them, so they are turned on, the advertisement which was 
aired when it was released is displayed in its screen and its technical specification is displayed next to 
it. 

The virtual world is displayed very similarly in all the devices (see Figure 3.16): the player stands in a 
first-person view in the middle of a large room, surrounded by Macintosh computers that have their 
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name below them. A virtual cursor appears in the middle of the screen, which changes its size to notify 
the user when it points to a valid target, is used to select the computers. The “Enter VR” button in the 
corner is used to display a stereoscopic version of the scene, so it can be viewed with a VR headset, 
such as the Oculus Rift or a mobile headset like the Google Cardboard. 

 
Figure 3.16. The virtual museum. Note the cursor in the middle and the “Enter VR” button on the bottom right 
corner. 

Despite the similarity in the virtual world, the user interface was designed with important differences 
between devices. A summary is given in Table 3.3, but the interaction is detailed next. To display the 
application in non-immersive devices (PC, smartphone), the user simply needs to browse to the 
application’s URL, while in immersive devices (Oculus, mobile visor), the VR mode needs to be enabled 
by selecting the “Enter VR” button. 

Table 3.3. User interfaces and interaction techniques in the virtual museum. 

Interface name Hardware Orientation Movement Selection 

PC Computer, monitor, mouse, keyboard Mouse Keyboard Click 

Smartphone Smartphone Gyroscope By selection Tap 

Oculus Computer, Oculus Rift + Touch Head Joystick Virtual hands 

Mobile visor Smartphone, Cardboard-like headset Head By selection Gaze 

When the application is accessed with a personal computer, no special hardware is required: the user 
can look around by moving the mouse (there is no need to drag, as the application captures the cursor), 
turning their viewport similarly to a first-person videogame; movement is performed using the 
keyboard WASD or arrow keys, so they can navigate the environment freely; selection is issued with 
a click when the cursor is on a target. 

On a smartphone, the hardware changes drastically: the user can benefit from the gyroscope of the 
device to look around the scene; their movement is limited and is performed through the selection of 
a target: when the user looks at a computer and taps the screen, the selection is performed and the 
player will automatically move next to that object, so they can watch the video and read the technical 
information. 

 
Figure 3.17. Detail of the selection of a computer with the Oculus interface (left) and the others (right) in the 
virtual museum. 
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When a desktop VR headset is used, like the Oculus rift, the user enjoys a true VR experience and is 
able to look around by turning their head; movement is performed with the joysticks in the Oculus 
Touch controllers (labeled as 1 in Figure 3.18-left); selection is performed by touching the computer 
with a virtual hand while the user makes the “point gesture” (see Figure 3.18), which is performed by 
touching the thumb rest (2), not pressing the trigger (3) and pressing the grip button (4). The use of 
this gesture eliminates the need of the virtual cursor. In this case, the technical description appears on 
the palm of the other virtual hand, as one would read a document on their hand (see Figure 3.17). 

 
Figure 3.18. Detail of the Oculus Touch controller and the “point” gesture in the virtual museum. 

Finally, if a mobile VR headset is used, the user should place their smartphone inside the headset after 
pressing the “Enter VR” button. Although the interface is similar to the smartphone interface, as the 
screen is now inaccessible, this introduces a significant constraint. Orientation is performed similarly, 
thanks to the sensors of the device, which is now attached to the user’s head; movement is also 
performed when a target is selected; the difference lies in how they are selected, as the user cannot 
interact with the touchscreen of the device: a “gaze” control is introduced, which will fire a selection 
when the user looks at an object during a dwell time of two seconds, as in [15]. 

As we needed to use VR devices in the web application, we chose to leverage a WebXR (then, WebVR) 
framework. A-Frame was chosen because it was already relatively mature, has a rich example set, 
good documentation and community support. A-Frame internally uses Three.js to interface with 
WebGL. To build the web application, React was chosen as a framework. We used the aframe-react 
package to interface these two libraries. The communication with the WebSocket protocol is leveraged 
by the Socket.IO library. 

The Macintosh computers are included in the application with a YAML file that specifies their name 
(used to choose their image, alpha and video textures), the family to which they belong, the sound 
that is played when they boot, and the adjustment done to the bounding box so selections in the 
Oculus interface roughly correspond to what is actually visible. 

 
Figure 3.19. Macintosh computer layout in the virtual museum, grouped by families. 

The computers are displayed in six concentric rings, one for each family, so oldest computers are 
placed in the middle of the scene (see Figure 3.19). Each computer is rendered in an entity that 
implements the custom look-at component to make them face the camera, plays the computer’s sound 
when the event power-on is received and listens the events power-on and power-off. As a child of that 
entity, the currently selected computer is defined in an a-video entity, while the others use a a-image, 
all using the same components: an alpha-map, to display transparency; a transparent material; width, 
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height, offset and repeat set according to the bounding box in the configuration file; and listens to click 
events to know when it has been selected. Other entities displayed as children of that first entity are 
their title, shadow and description as a-images, this last one only in the currently selected computer 
and in all interfaces but Oculus. 

The player entity, which represents the user, implements the custom components insideradius to 
prevent the user to move farther; joystick to handle the Oculus Touch input; and my-wasd-controls to 
handle the keyboard input considering the current orientation of the player. It has three children: the 
camera and the two hands. The camera entity implements the look-controls component to handle the 
orientation controls and contains the cursor entity, which implements the cursor component with the 
fuse property set whether the mobile visor interface is in use, to automatically select a computer by 
looking at them; the raycaster component to know which computer the user is pointing at; and listens 
to the events raycaster-intersection and raycaster-intersection-cleared; and the click, focusin and focusout 
animations are used to provide visual feedback. Both hands implement the hands-controls component 
(with left and right properties, respectively) to display interactive, virtual hands and the custom hand-
collider component to be able to select objects with them. Their children implement the raycaster 
component to be able to select the computers with a virtual finger and display an a-image entity on 
the other hand with the description of that computer. 

The scene is applied the mac-scene component to forward the position and orientation changes of the 
player to the application server through the WebSocket connection (throttled at four times per second). 
The other components also forward data to the application server: when a session is created when the 
connection is stablished; when the scene is loaded; when a video in a computer starts, stops, or finishes 
playing; when the user enters or leaves the VR mode with the “Enter VR” button; and when the session 
ends when the connection is closed. 

The information is submitted to the application server via the WebSocket connection which, in turn, 
posts it into the LRS with xAPI statements. The statements are composed of an actor (which is 
identified by a server-generated UUID, which is stored in a cookie, so returning users can be 
identified); the verb that defines the action which is performed; the object on which the action is 
performed (a virtual reality application or a video, identified by an URI); and additional information 
in the context and result fields. The general xAPI vocabulary registry [96] and ADL’s video vocabulary 
[97] could be adapted to work with a Virtual Reality application. We introduced some new pieces of 
vocabulary, which we will detail here so we can refer them by the last part of their URI. To record 
some of the data from the HTTP headers in the logged-in statement, the context extension 
https://ltim.uib.es/xapi/extensions/accept-language was included together with referrer and user-agent. 
The interacted events include the kind of device which was used in the context extension 
https://ltim.uib.es/xapi/extensions/vr-device: it contains an object which tells us if the player is in VR 
mode, if the device has positional tracking, if it is a headset and if it is a mobile device. Finally, 
https://ltim.uib.es/xapi/extensions/trigger is included in the context of played and paused statements to 
specify how the action was performed (was it a click, a fuse or which hand was used). 

Following Table 3.4, a statement with the verb logged-in is submitted as soon as the connection is 
stablished. An initialized statement is submitted when the application finishes to load, which contains 
metadata extracted from the HTTP headers. When the position or orientation of the player changes 
(throttled at four times per second), or when they toggle the VR mode of the application, an interacted 
statement is posted with the current data of the device used to play the application and their position 
and orientation. If the video which is played in a computer starts, is paused, or ends, played, paused 
and completed statements are submitted with the previous information and data about the video 
playback: its time, volume and how it was triggered (except when it ends, as it is automatic). Finally, 
when the connection is lost, an abandoned statement is posted. Note that the object in the statement 
changes according to the action performed: when a video is interacted, the video activity type is used, 
while in the rest of the cases, the virtual-reality activity type is used. In both cases, they are identified 
by their URI. The use of session-id is very similar to our previous experiment (see Figure 3.14): the ID 
of the logged-in statement is used as session-id for initialized and the ID of initialized is used for the 
rest. 
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Table 3.4. Summary of the events in the virtual museum reported to the application server and the significant 
parts of the generated xAPI statements. 

Event 
xAPI statement 

Verb Object Context extensions Result extensions 

Connection logged-in virtual-reality – – 

Scene loads initialized virtual-reality 

accept-language 
referrer 
user-agent 
session-id 

– 

Moves 

interacted virtual-reality 

vr-device 
latitude 
longitude 
position 
session-id 

– Looks around 

VR mode is changed 

Video played played video 
trigger* 
volume 
vr-device 
latitude 
longitude 
position 
session-id 

time Video paused paused video 

Video ends completed video 

Disconnection abandoned virtual-reality session-id – 

trigger* is only included in played and paused. 

Finally, meanwhile xAPI statements are posted to the LRS, the server forwards in real time some of 
the events in Table 3.4 to another web application: the Monitor application. This application serves as 
a map that shows in real time where all the users are in the 3D scene. The final goal of this small 
application was to be a first step of real-time analysis of the users’ data. 

3.5.2. The monitor application 

The Monitor application was also implemented with the A-Frame framework, so it borrows many 
features from the VR Player, but in this application, the view is locked in a top-down perspective and 
players are drawn on the scene as triangles (so their current location and orientation can be observed) 
and a line is drawn behind them, which represents their past locations in the 3D scene (see Figure 
3.20). 

 
Figure 3.20. The Monitor application of the virtual museum, displaying all players in the virtual scene 

The communication is performed via a WebSocket connection with the application server: the 
Monitor application notifies the server that it is an application of this kind (multiple monitors are 
supported at the same time) and then the server simply forwards the changes emitted by the VR 
players to the Monitors, so the 3D scene and the list on the right of Figure 3.20 are updated accordingly: 
a new player is added when they connect and they are removed when they disconnect, in the other 
cases, their position and orientation is updated according to the data that is supplied to the application 
server. 
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3.5.3. The user experiment 

The system was demonstrated at the science fair at the University. Hundreds of students between 6 
and 16 years old attended the sessions on three consecutive days, of which many visited our stand. 

 
Figure 3.21. The setup of the virtual reality museum study: on the left, a player uses the Oculus interface, while 
what she sees is displayed on the left screen and the Monitor application is shown on the right screen; on the 
right, a group of students use the Cardboard interface. 

Of the four available interfaces, two were present in our venue (see Figure 3.21): we set up a computer 
with the Oculus interface in front of a table (which had two screens, one that displayed what the user 
sees through the VR headset and another that displays the Monitor application) and several 
Cardboard-like mobile VR headsets on another table, so attendants could browse to the web 
application with their own devices and slide them into those visors in groups of approximately 6 
people. The participants were given a short training before they started using the system, but they 
were not given a specific task to perform more than to explore the virtual world during a slot of time 
of approximately 5 minutes. 

3.5.4. Results 

A primary analysis of the data that was collected during that study shows that 175 mobile sessions 
which selected at least a computer were recorded. As the Oculus interface was overwhelmingly 
successful (a single device was available), participants did not respect the instructions so individual 
sessions per participant could not be recorded and the data is aggregated. In total, computers were 
selected 1436 times from mobile devices and 995 times from the Oculus interface. 

A visual analysis of the user behavior (computer selections and movement) can be done from Figure 
3.22: in Figure 3.22 (a), we can observe that computers in the upper part are more selected with the 
Oculus interface than those in the lower part. Their paths in the 3D scene can be observed in Figure 
3.22 (b), with a clear difference between the upper and lower part of the figure. When the Cardboard 
interface is used, the results are different: those computers in the middle of the scene appear to be 
selected more often than those in the outer parts in Figure 3.22 (a). Their paths in Figure 3.22 (b) show 
that the center of the scene was more transited than the exterior. 

It can be observed in Figure 3.22 (a) that selections with the Cardboard interface describe circles 
around selections with the Oculus interface. The reason for this behavior revolves around the design 
of the interfaces: players with the Oculus interface need to move next to the computers to select them 
with a gesture, while with the Cardboard interface they could not move arbitrarily and had to teleport 
by looking at the computers. The selections of that interface are drawn on the destination of that 
teleport, which is 1.5 𝑚 away from the actual computer, in the direction of the origin of the movement. 

As it can be observed in Figure 3.22 (b), users of the Oculus interface explored more the upper part of 
the scene, while those who used the Cardboard interface explored more its center, which affected the 
frequency of computer selections according to their location. The exploration with the Oculus 
interface can be explained in the setup of the experiment: since participants were explained how the 
system worked in front of a table with the screens on it, they tended to look and move towards that 
direction, resulting in a higher exploration and selection rate in that part of the scene. The same did 
not happen with the Cardboard interface because participants joined the experiment in group, so they 
interacted among themselves while they were preparing their devices, resulting in random directions. 
The difference between the exploration and selection between the middle of the scene and its outer 
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parts with the Cardboard interface is also explained with the design of the interface: since users started 
from the middle of the scene and they needed to select computers to move around, it is reasonable 
that those computers in the middle are selected with a higher rate than those in the outer parts, as 
participants needed to perform a series of jumps from computer to computer to reach those farther 
away from the middle. We can also observe that the movements in Figure 3.22 (b) follow narrower 
paths between computers with the Cardboard interface, while they are less directed with the Oculus 
interface, as participants could roam freely in the 3D scene. 

 
Figure 3.22. Spatial representation of the data collected in the virtual reality museum, grouped by the device 
which was used: (a) computer selections; (b) paths followed by participants. 

These initial findings open the door to a more in-depth analysis of this dataset, which is performed 
and reported in Chapter 4. 

3.6. A multi-device 360-degree hypervideo tour 

 
Figure 3.23. Architecture of the multi-device 360-degree hypervideo platform. 

As a final step in the interactive multimedia platform, we designed TIM360, a system to create, 
visualize and analyze 360-degree hypervideos. Following Figure 3.23, 360-degree content is recorded 
using specialized equipment, such as an array of video cameras or cameras with wide lenses that 
already produce omnidirectional content in the equirectangular projection. These multimedia files are 
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then processed with traditional video editing software to, for example, cut them in suitable scenes. 
Multiple representations of each 360-degree video are encoded with different qualities in terms of 
bitrate and resolution, which are used to generate a Dynamic Adaptive Streaming over HTTP (MPEG 
DASH) manifest so the player can dynamically choose the best quality when playing the videos. All 
these files are uploaded to the Internet. 

The 360-degree hypervideo authoring tool is a web application that is hosted in the main server, which 
provides an interactive interface to create and save a definition of the hypervideo in an XML file. The 
360-degree hypervideo player, also a web application hosted in the main server, displays the 
interactive production following its definition in the XML file. The users’ behavior when playing the 
360-degree videos is submitted to the main server via a WebSocket connection, which formats the 
data as xAPI statements and posts them to the Learning Record Store (LRS), the element in the xAPI 
architecture that stores the data, so it can later be queried by our data processing tools. 

3.6.1. The multimedia contents 

A use case was designed to validate the system. A tour through the center of Palma was planned, 
consisting of routes through the streets and their intersections (see Figure 3.24). 35 intersections and 
points of interest were identified and recorded in 360-degree videos where the camera was static in 
front of that point, while a total of 22 routes between those were defined, which were also recorded 
in 360-degree videos, but this time the camera followed the street between two of these points. Note 
that each route was recorded in the two directions, resulting in a total of 44 route videos. 

Figure 3.24 shows the distribution of the point videos (represented with marker icons and labeled 
starting with p) and the route videos (represented with thin black lines and labeled starting with r). 
Point videos are usually starting and ending points of route videos, but some are in the middle of a 
route (e.g.: p2 in the middle of r1 or p4 in the middle of r2). Some connections between point videos 
had to be made (e.g.: between p10 and p18), represented with thin red lines in Figure 3.24. Thick gray 
lines show the actual GPS data registered by the camera. Finally, the area enclosed in a green dotted 
polygon contains the subset of videos used to perform the study detailed in Section 3.6.6. 

 
Figure 3.24. Distribution on a map of the 85 omnidirectional videos that were recorded for the multi-device 360-
degree hypervideo tour. 

These videos were recorded with a Garmin VIRB 36017, which features two wide lenses and is capable 
to produce already stitched 360-degree video, with a final resolution of 3840 × 2160 pixels in the 
equirectangular format. Furthermore, additional metadata can be incorporated in a GPX (GPS 

 
17 https://www.garmin.com/virb 
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exchange format) file, such as the GPS coordinates of the camera. The multimedia content was edited 
and cut using Garmin’s VIRB Edit, which also processes the metadata in the GPX file. 

Table 3.5. Resolution and bitrate combinations for the videos in the multi-device 360-degree hypervideo tour. 

 240p 360p 540p 720p 1080p 2160p 
Resolution 426 × 240 640 × 360 960 × 540 1280 × 720 1920 × 1080 3840 × 2160 
Bitrate (kbps) 300 500 1000 2000 5000 20000 

Six representations of each video were generated with FFMPEG and libx264, with the combination of 
resolution and bitrates detailed in Table 3.5. Key frames were specified every second. These six 
representations were used to define the adaptation sets in the MPEG DASH manifests, generated with 
GPAC’s MP4Box, with segments of one second. 

 
Figure 3.25. Plot of the SI and TI of the videos, grouped by video type, in the multi-device 360-degree hypervideo 
tour. 

The Spatial perceptual Information (SI) and the Temporal perceptual Information (TI) measurements 
[103] were calculated for each of the 85 videos that were recorded, following the work described in 
[48]. The Spatial Information measures the amount of information in a given frame and the Temporal 
Information measures the difference in the image between successive frames. See in Figure 3.25 a plot 
of the average SI and TI values of all the videos grouped by video type. There appears to be two very 
distinct clusters of videos according to their video type. 

 
Figure 3.26. Comparison between the SI and TI values of the two types of videos in the multi-device 360-degree 
hypervideo tour. 
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The distribution of the average Spatial perceptual Information of both types of videos is similar (see 
Figure 3.26-left), with their averages almost identical: avg(𝑆𝐼𝑝) = 61.91 , avg(𝑆𝐼𝑟 ) = 61.11 ). The 
distribution of the average Temporal perceptual Information exhibits a greater difference (see Figure 
3.26-right), with a large difference between their averages: avg(𝑇 𝐼𝑝) = 5.73, avg(𝑇 𝐼𝑟 ) = 19.83. This can 
be explained because both video types depict similar images (the streets of the city of Palma), which 
results in a similar SI, but as point videos are static, the images do not change very much in time, 
whereas they do in route videos, resulting in a much higher TI measure. Given the difference between 
these two categories we can suspect that user behavior will also be different across point and route 
videos. 

The manifests, the six representations of each video and the metadata in GPX files were uploaded to 
an HTTP server which makes them available through the Internet. 

3.6.2. The hypervideo definition 

A hypervideo project is specified by its XML definition (see Figure 3.27): a project p is identified by its 
URI, defined by its title and description, and contains a set of videos 𝑉𝑝 . Each video 𝑣𝑖 ∈ 𝑉𝑝 is identified 
by a unique name in p and defined by its src: the URL where the DASH manifest can be found for 𝑣𝑖. 
The attribute end is used to signal what video should be played once 𝑣𝑖 ends, which can be the name 
of a video 𝑣𝑗 ∈ 𝑉𝑝 or the keyword “loop”, to specify that 𝑣𝑖 should repeat indefinitely. 

 
Figure 3.27. Example of the XML definition of a hypervideo in the multi-device 360-degree hypervideo. 

Each video 𝑣𝑖 ∈ 𝑉𝑝 may contain a set of markers 𝑀𝑖, which represents the hyperlinks from video 𝑣𝑖 to 
other videos 𝑣𝑗 ∈ 𝑉𝑝 . Each marker 𝑚𝑖𝑗 ∈ 𝑀𝑖 is identified by its name and defines what video 𝑣𝑗 ∈ 𝑉𝑝 
should be played when following this hyperlink according to the value of the attribute link, which is 
formatted as a URI query string: after the name of the target video the keys “t” and “o” may be used 
to indicate the starting point in the spacetime of the omnidirectional video: “t” specifies the starting 
point in time in seconds from the beginning of the video and “o” specifies the starting point in space 
in degrees of longitude from the origin; both values default to 0 if missing. Additionally, an URL to an 
image is specified in its texture property and a label can be displayed near this hyperlink by specifying 
its attribute text. 

<project title="Title of the project" uri="https://my-project.net"> 
  <private> 
    <owner email="my@email.net"/> 
  </private> 
  <description>This is an example project.</description> 
  <settings> 
    <setting key="default-video" value="v1"/> 
    <setting key="use-tracker-url" value="https://wsserver.net"/> 
    ... 
  </settings> 
  <videos> 
    <video src="https://url.of/manifest.mpd" name="v1" end="v2"> 
      <markers> 
        <marker name="1-to-2" link="v2" texture="texture_url" text="Label"> 
          <tracking> 
            <track t="15" lat="0.00" lon="0.00"/> 
            <track t="18" lat="0.00" lon="60.00"/> 
          </tracking> 
        </marker> 
        <marker name="1-to-3" link="v3&t=10&o=90" texture="texture_url" text="Label"> 
          ... 
        </marker> 
        ... 
      </markers> 
    </video> 
    <video src="https://url.of/manifest.mpd" name="v2" end="loop"> 
      ... 
    </video> 
    ... 
  </videos> 
</project> 
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The markers, in contrast to hyperlinks in hypertext, are not displayed in static positions inside text, 
but in a position in 3D space, represented by spherical coordinates, as a function of time. Each marker 
𝑚𝑖𝑗  contains a tracking list 𝑇𝑖𝑗  of key positions in the space-time of the 360-degree video as triples 𝑡𝑘 ∈
𝑇𝑖𝑗 = 〈𝑡𝑖𝑚𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒〉. The attributes of a track element 𝑡𝑘  are time, lat and lon, which specify the 
elapsed time in seconds since the start of the video 𝑣𝑖 when the marker 𝑚𝑖𝑗  takes the position defined 
by the spherical coordinates lat and lon in degrees of latitude and longitude from the origin. This 
origin lies in the center of the equirectangular frame, with latitude values 𝜙 ∈ [−90,90] from bottom 
to top and longitude values 𝜆 ∈ (−180, 180] from left to right. A minimum of two tracks need to be 
specified for a given marker, which would define the spatiotemporal positions it takes when it appears 
and when it disappears. Additional tracks add precision in the tracking of key positions over time for 
that marker. 

Other information present in the definition of the hypervideo is the declaration of the creator of the 
project, used to enable them to edit the project in the authoring tool; and a list of setting 𝑠𝑖 ∈ 𝑆 which 
contain two attributes: key and value, which can be used by the authoring tool and the player 
application, such as the default video 𝑣𝑑 ∈ 𝑉𝑝  that is played when the project is loaded (if none is 
specified a random 𝑣𝑟 ∈ 𝑉𝑝 will play) or to define the WebSocket connection to track the user behavior 
when playing the project. 

3.6.3. The authoring tool 

A tool was created to assist the editing of the XML hypervideo definition. Implemented as a web 
application, it is hosted in the HTTP server (see Figure 3.23) and it provides an interface to create 
hypervideo projects and edit their definition. Given the set of hypervideo projects 𝑃 , the user 𝑢 can 
edit the hypervideo projects 𝑝𝑖 ∈ 𝑃  that match 𝑜𝑤𝑛𝑒𝑟(𝑝𝑖) = 𝑒𝑚𝑎𝑖𝑙(𝑢). The application is a single page 
web application made with React18 and React-bootstrap19, that communicates with the application 
server to retrieve and store the relevant data (most notably, the project’s XML definition) using an 
HTTP API. 

An interactive 360-degree video editor is included in the authoring tool (see Figure 3.28) to assist the 
placement of hyperlinks in a 360-degree video, based on the same A-Frame implementation as the 
player application that will be explained next. Through this tool, each key position in the tracking can 
be defined and visualized at the moment, with final positions between key positions calculated via 
linear interpolation spherical coordinates. 

 
Figure 3.28. The authoring tool in the multi-device 360-degree hypervideo, with the interactive editor on the left 
and the details of the tracking of a marker on the right. 

When the author has finished editing, they can submit the modified XML definition to the server. 

 
18 https://reactjs.org/ 
19 https://react-bootstrap.github.io/ 
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3.6.4. The player application 

The player is also a web application that is hosted in the HTTP server. It is accessed by specifying the 
name of the project in the URL and, optionally, the name of a starting video 𝑣0 ∈ 𝑉𝑝 , e.g.: 
https://ltim.uib.es/360/palma#cort. If a correct video name is specified this way, it will load as the first 
video; if not, the behavior defined by the hypervideo definition will be followed. 

The XML specification is loaded by the web application, which displays the first 360-degree video 𝑣0 
in a 3D scene, along with the markers that represent the hyperlinks from to other videos 𝑣𝑗 ∈ 𝑉𝑝 . 

The user can perform a limited set of actions: choose their current viewport, so they can view different 
parts of the 360-degree video; and follow a hyperlink, represented by a marker in the scene. 

The scene can be interacted with multiple devices, which we have grouped in four categories: 
computers with a mouse (pc), smartphone devices (mb), VR visors designed to be used with 
smartphones, such as the Google Cardboard (mv) and desktop VR headsets, such as the Oculus Rift, 
with hand controllers (oc). 

 
Figure 3.29. The player application of the multi-device 360-degree hypervideo. On the left, the interface as it is 
shown in the desktop PC interface and on the right as it is shown in the Oculus interface. 

When the scene is displayed in a computer with a mouse (pc), it is rendered in the computer screen, 
so the immersion is limited. The user can choose their viewport y moving the mouse (the system 
pointer is locked, so there is no need to continuously drag the scene) and can follow a hyperlink by 
clicking a marker in the scene with the aid of a cursor that is shown in the center of the screen. 

The interface is similar when a mobile device is used (mb): the user can look around by dragging the 
touch screen and can follow a hyperlink by tapping the screen when the cursor in the middle of the 
screen is over a marker. 

VR headsets introduce immersion to the player application. Before wearing one of these devices, the 
VR mode has to be enabled by clicking the enter VR button. Mobile VR headsets (mv) are designed to 
have the users slide their smartphones inside them and display the scene through a pair of lenses in 
it. The user can change their viewport by turning their head around, thanks to the sensors in their 
smartphone. Now that the touch screen of the device is inaccessible, it cannot be tapped in order to 
follow a hyperlink. In this case, marker selections are performed by centering the cursor on a marker 
during a dwell time [104] of 2 seconds. 

Finally, dedicated VR headsets often include hand controllers. When the application is accessed using 
one of these (oc), the virtual cursor is no longer displayed, and the selection of a marker is performed 
by aligning a laser line that is drawn from the virtual controllers to that marker and pressing a button 
on the controller. The viewport can be selected by the user by turning their head, similarly to the 
previous case. 

Figure 3.29-left shows the scene from a pc device, with one marker at each side, the cursor (a black 
circle) in the middle, and the enter VR button on the bottom left of the screen; Figure 3.29-right shows 
the scene as it is seen from an oc device, with half of the screen for each eye in the VR headset and a 
hand controller visible at the bottom of the scene, with the laser line aligned with the marker. To aid 
the selection of these hyperlinks, when the user is about to do so, the playback of the 360-degree video 
automatically pauses, so they do not move away from the cursor or the laser line. 
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The A-Frame WebXR framework follows a modular architecture in the form of components. The 
hypervideo component was created to display a given 360-degree hypervideo project p both in the 
player application and also in the authoring tool, which is specified by either the URL of the XML 
definition of the hypervideo project (when it is used in the player application) or the XML DOM itself 
(when it is used in the authoring tool). This component plays the required videos 𝑣𝑖 ∈ 𝑉𝑝 through the 
dash component, created to control the reproduction of the MPEG DASH manifests with dash.js20; sets 
up the markers 𝑚𝑖𝑗 ∈ 𝑀𝑖 using the marker component (which displays a marker 𝑚𝑖𝑗  according to the 
tracking defined by 𝑡𝑘 ∈ 𝑇𝑖𝑗); handles marker selection, enabling navigation through the hyperlinks; 
plays the next video when 𝑣𝑖 has finished (if it does not loop); exposes the functionality required for 
the authoring tool to play and pause the reproduction of the video and to jump to a specific 
spatiotemporal position; and finally tracks the users’ actions and submits them to the WebSocket 
server (see Figure 3.23) using the Socket.IO21 library. 

Table 3.6. Summary of the events in the multi-device 360-degree hypervideo and the significant parts of the 
generated xAPI statements. 

Event Verb Object Context Result 

The application loads logged-in virtual-reality accept-language, referrer, user-agent – 

A video is loaded initialized video display, session-id – 

A video is played played video latitude, longitude, session-id time 

A video is paused paused video latitude, longitude, session-id time 

A video ends completed video latitude, longitude, session-id time 

The orientation changes interacted video latitude, longitude, time, session-id – 

The player is closed abandoned virtual-reality session-id – 

The usage tracking is performed through xAPI statements (see Table 3.6 for the details of the events 
and statements, and Figure 3.30 for the hierarchy of statements according to their session-id extension). 
We used the general xAPI vocabulary registry [96] and ADL’s video vocabulary [97], as well as some 
of the vocabulary we introduced in the past sections. We will now define the new vocabulary and so 
we can referrer it with the last part of the URI in the rest of this section. To record some of the data 
from the HTTP headers in the logged-in statement, the context extension 
https://ltim.uib.es/xapi/extensions/accept-language was included together with referrer and user-agent. 
The initialized statements feature the context extension https://ltim.uib.es/xapi/extensions/display, 
which is an object that contains whether the device is a mobile device, whether a headset has been 
connected and whether the VR mode is currently enabled, so we can infer which of the four interfaces 
is being used to play that video. 

 
Figure 3.30. Hierarchy of xAPI statements by their verb in the multi-device 360-degree hypervideo. 

After a user loads the application (and connects to the WebSocket server) an xAPI statement is stored 
with the verb logged-in, the URI of the hypervideo project as the id of the activity (of type virtual-
reality) and the contents of the HTTP headers accept-language, referrer, and user-agent as contextual 
information. When a 360-degree video is loaded, a statement with the verb initialized is generated, 
with the src attribute of that video as the id of the activity (of type video), with the following contextual 
information: which device is being used in the display extension and the id of the logged-in statement 
as the session-id. If a video starts playing (or resumes), is paused or ends, played, paused and completed 

 
20 https://github.com/Dash-Industry-Forum/dash.js/ 
21 https://socket.io/ 
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xAPI statements are posted to the LRS. The id of the parent initialized statement is used as session-id 
and the latitude and longitude context extensions contain the current orientation of the viewport of 
the user. The current time of the video is included as a context extension, as recommended by the 
vocabulary [97]. When the user changes the orientation of its viewport (throttled four times per 
second), a statement with the interacted verb is posted, with the orientation of the new viewport in its 
latitude and longitude extensions and the id of the parent initialized statement is used as its session-id. 
Finally, after the connection with the server is lost, a statement with the abandoned verb is posted to 
the LRS to signal the end of the session. 

3.6.5. The user experiment 

To validate the proposed solution, a user experiment was performed in the University of the Balearic 
Islands. A sample tour was prepared with 20 videos of the 360-degree hypervideo production (those 
inside the green dotted area in Figure 3.24): 8 point videos and 12 route videos between them (six 
routes in both directions), using the four interfaces we described before. 

30 users were accepted in groups of maximum 4 to be given a brief explanation of how the overall 
system and each of the interfaces work. Each user ran the experiment with all the interfaces during a 
slot of time in a random order to counterbalance learning effects while their actions were 
automatically recorded by the usage tracker. Participants were asked to verbalize their thoughts 
following the think-aloud technique [105] and, once they finished, they were asked to fill the System 
Usability Scale questionnaire [106] to quantify the usability of the system. 

In the first interface, Desktop computer (pc), a standard PC equipped with a mouse was available for 
the subjects to open the web application and start browsing the hypervideo. They were instructed to 
enter in full screen mode and to lock their cursor, so they did not have the need to continuously drag 
with the mouse to orient their viewport center. In general, this interface was well received, as most 
users felt comfortable with hardware they already understood for a task they could link it with, even 
if it was not immersive. 

In the second interface, Smartphone (mb), users were asked if they wanted to try the experiment with 
their own device, which was well received, although it could only be done if they owned a smartphone 
compatible with WebGL (if they did not, they were provided a suitable Smartphone for this task); 
furthermore, some users wrongfully selected the Enter VR button, so they had to restart their session, 
increasing the total number of sessions recorded in Table 3.7. Participants particularly disliked this 
interface because they found it cumbersome to align the cursor with the hyperlinks to navigate 
between videos. 

A similar course of action was performed in the third interface, Mobile headset (mv): users who wanted 
to use their devices could do that or they could use a provided Smartphone. In any case they would 
slide the device inside a Google Cardboard after enabling the VR mode by selecting the Enter VR button. 
Users found this interface more intuitive and a good enough substitute for a fully-fledged VR headset. 

Finally, in the fourth interface, Oculus headset (oc), participants were asked to wear an Oculus Rift 
headset and the Touch controllers, which were powered by a PC. Although most of them had never 
used VR before, they learned how to use it and were able to enjoy this experience. 

3.6.6. Results 

Users observed that the adaptive streaming was not working very well, resulting in deficient image 
quality that was most evident when using the Oculus headset and least when using the small screen 
in mobile devices. This makes evident that adaptive streaming technique needs to be adjusted to work 
with 360-degree videos, or that it may be combined with other dynamic streaming techniques already 
explored by the literature, such as tile-based streaming. 

A higher degree of immersion is achieved using headsets: there is a route video that follows stairs and 
users expressed their fear to fall when going down the steps. Some users observed that they felt as if 
they were flying, and this is natural, since when the videos were recorded, the camera was placed on 
a stick on top of a helmet the camera operator was wearing. Since most markers are placed on the 
beginning of streets, some users expressed their desire to explore through streets that did not have a 
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marker. Curiously, most users performed the experiment standing, but others preferred to sit on a 
wheeled chair (except when using the desktop computer, in which all users sat down). 

Although it is the most immersive interface, the use of the Oculus headset needs preparation: the 
headset itself needs to be adequately placed on the users’ head and the user needs to familiarize with 
the controls. The mobile headset provides a similar experience as the Oculus headset but was 
considered a poor version of the real thing. Users felt very confident when using the non-immersive 
interfaces, as they were already used to interact with desktop computers and smartphones and just 
had to learn how to navigate this new kind of media. 

 
Figure 3.31. Diverging stacked bar chart of the answers given in the SUS questionnaire. Positive questions (odd-
numbered) are shown on the left and negative questions (even-numbered) are shown on the right. Answers in 
each question refer to the use of the four interfaces in this order: desktop computer, smartphone, mobile VR 
headset and Oculus VR headset. 

The SUS scores per interface are as follows: 𝑆𝑈𝑆𝑝𝑐 = 85.97, 𝑆𝑈𝑆𝑚𝑏 = 81.76, 𝑆𝑈𝑆𝑚𝑣 = 77.29 and 𝑆𝑈𝑆𝑜𝑐 =
81.39. Although all these scores are in the acceptable range [107], they suggest that usability was 
highest when using a desktop computer (pc) and lowest when using a mobile VR headset (mv). While 
users liked the novelty in the immersive devices (oc, mv), the usability in interfaces that were familiar 
to them (pc, mb) was superior. The question with lowest score was #1: “I think that I would like to use 
this system frequently”, with avg(𝑄1) = 3.31 and std(𝑄1) = 1.04, while the question with the highest 
score was #10: “I needed to learn a lot of things before I could get going with this system”, with 
avg(𝑄10) = 4.81 and std(𝑄10) = 0.49, hinting the simplicity of this system. 

After the user experiment was performed, the data which was collected could be imported from the 
LRS through the analysis module and exported into csv files which contained the relevant information 
to perform further analysis. 

Table 3.7. Number of user and video sessions by device in the experiment of the multi-device 360-degree 
hypervideo. 

 pc mb mv oc 

User sessions 33 41 36 30 

Video sessions 255 205 214 315 

A total of 140 user sessions were recorded by the usage tracker, with a total of 928 video sessions, 
distributed per device as shown in Table 3.7. The video sessions in which 𝑝2 and 𝑝4 were played (the 
two point videos which were not the end of any route but were in the middle of them) were excluded, 
as they were reproduced very few times. 

Table 3.8. Number of samples per video type and device in the experiment of the multi-device 360-degree 
hypervideo. 

Video type pc mb mv oc Total 
Point 2556 3242 3589 5290 14677 
Route 10057 7689 8405 15456 41607 
Total 12613 10931 11994 20746 56284 

The distribution of changes in orientation extracted from the LRS was resampled into a distribution 
of viewport centers by interpolation on the great-circle coordinates (3.2) in fixed intervals of 250 ms 
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to a) make all the samples be on the same temporal values and b) obtain intermediate orientations 
when the user did not change it for more than 250 ms. This way, a total of 56284 samples were obtained 
from the 928 video sessions, distributed by video type and device following Table 3.8. 

The distribution of viewport centers is shown as a heatmap in Figure 3.32, with all the devices, grouped 
by video type: point videos (a) and route videos (b). We can observe that in point videos, the viewport 
centers are more distributed along the longitude (x axis) than in route videos. 

Centroids and covariances of these viewport centers were calculated (longitudes were normalized into 
the range (−180,180]) for every type (p denotes point videos and r route videos): 𝑥�̅̅� = (−10.69, 6.25), 
𝑥�̅̅� = (−9.38, −3.44). We can observe that the variance in latitude is similar in both types of videos, but 
the variance in longitude is much larger in point videos (a) than in route videos (b). 

 
Figure 3.32. Heatmap of the viewport centers of all the reproductions in the experiment of the multi-device 360-
degree hypervideo grouped by point videos (a) and route videos (b). Concentric ellipses represent the 
covariances at 1, 2, 3 σ. Built with 180 × 90 bins and smoothed with a gaussian filter 𝜎 = 1.5. 

Two measures of dispersion between the samples and their centroids were calculated: 𝑠′ based on the 
Mean Absolute Error (3.4) and 𝑠′′  based on the standard deviation (3.5). Without differentiating 
between devices, the first measure reports 𝑠𝑝

′ = 62.16  and 𝑠𝑟
′ = 35.76  for point and route videos, 

respectively, while the second reports 𝑠𝑝
′′ = 75.20 and 𝑠𝑟

′′ = 52.17, showing a great difference between 
video types. 
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When devices are taken into consideration, we can obtain these measures for each combination of 
video type and device, which are reported in Table 3.9. We can observe how there are small differences 
between devices, especially in 𝑠′. 

Table 3.9. Dispersion of the distribution of viewport centers per video type and device in the experiment of the 
multi-device 360-degree hypervideo. 

Video type 
𝒔′ 𝒔′′ 

pc mb mv oc pc mb mv oc 
point 65.40 67.84 53.74 62.65 76.11 76.32 74.34 75.00 
route 333.25 34.58 34.83 37.97 52.50 52.80 52.23 51.93 

As observed in prior work, the centroid of the viewports falls near the origin of coordinates. This is 
influenced by two variables: a) the videos start looking at that direction, b) the camera in route videos 
follows that direction. From this data, user behavior on point videos (with a static camera and lower 
TI) show greater dispersion than on route videos (with a moving camera and higher TI), in line with 
[47], reinforcing the idea that users tend to look around more often in point videos than in route 
videos. There is not an evident difference by the device used to play the videos, as both measures are 
very similar across devices; further analysis will be performed in this regard, which will be reported 
in Chapter 5. 
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3.7. Conclusion 

In this chapter, we detailed we evolution of the interactive multimedia platform that allowed us to 
play interactive experiences with 360-degree videos and virtual reality and register the user’s actions 
with the Experience API. We evolved from a simple drag interface designed for computers in which 
360-degree videos were played to a fully immersive player compatible with VR headsets. 

In the first iteration (An interactive 360-degree video activity), we found that the Experience API is a 
suitable medium to record users’ behavior on interactive learning activities and that it may be 
extended to non-educative activities without much complication. The proposed solution provides the 
required data to perform analyses on the users’ behavior on interactive multimedia, with the benefit 
of a very modular approach: the entities at either side of the xAPI paradigm (the Learning Record 
Provider, the player module and the Learning Record Consumer, the analysis module) could be 
replaced without needing to change how the other works. 

The selection process worked well in most cases and served its purpose to test the system, but there 
were some edge cases that require further improvement. First, the decision to not showing any kind 
of visual aid (as markers) so as not to make users aware they may be required to select these or not 
resulted in inaccurate selections if the object appeared larger in the video than the selection window 
that we considered to register a selection. This could be solved by configurable per-object window 
sizes or with polygonal-based trajectories, that may be helped by computer vision on the 360-degree 
video. Second, plane linear interpolation was used to obtain the spherical coordinates in a specific 
time between two key positions. This is inaccurate and, if the object were to cross the line 𝜆 = ±180º, 
erroneous, as with this approach it would travel all the longitudes from one side to the other, which 
would be improved in future iterations. 

The player application, despite it is a web application, was designed to be interacted with a computer 
screen and mouse. Although it would launch in a smartphone device, it would not be usable enough, 
so this would be addressed in future iterations, as mobile browsing of the Internet is leading, and these 
kinds of devices are also used in some educational centers. Immersive hardware such as virtual reality 
headsets would be a natural choice to play an immersive experience such as these based on 360-degree 
videos, with further challenges in the user interface and its usability, which would also be addressed 
in future iterations. 

The second iteration of the interactive multimedia platform (A 360-degree hypervideo documentary) 
proved useful to display interactive hypervideos. This time, to address video quality constraints, the 
adaptive technique MPEG DASH was introduced to the main 360-degree video and the associated 
linear videos. To properly display markers in their actual location, the interpolation algorithm had to 
be adapted to work with great-circle formulas. 

We have demonstrated that the player system and the xAPI model can be used to collect the required 
data to perform rather complex user analysis, from which we have learnt that markers in the 
beginning are selected more often than the rest, that associated media is consumed thoroughly, that 
registered users perform better than unregistered users in main video consumption (time and space-
wise) and that the behavior between the selection of markers and exploration in time or space is better 
correlated in registered users. There appears to have been a difference in engagement between these 
two user classes, as registered users showed a more active behavior than unregistered users. 

Player issues from the first iteration remained in the second, most notably the lack of multi-device 
support (smartphones and immersive devices), which would be addressed in the next iteration. 

The third iteration of the interactive multimedia platform (A multi-device virtual reality museum) 
featured the support of multiple devices and the introduction of specialized user interfaces for them. 
We leveraged A-Frame to implement those interfaces and take advantage of the immersive hardware 
they support. The Experience API protocol we had been using for 360-degree videos could be adapted 
for a pure virtual reality experience. 

We noticed some usability issues during the study: participants showed difficulties to perform the 
pointing gesture with the Oculus interface (Figure 3.18), as it required to place their thumbs on the 
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thumbrest (which is a touch sensor) and participants did not understand the need to do so if there was 
no button there. After the study, we are certain that this gesture should be more flexible. 

Slightly related to this, the computers on the scene are placed on the plane 𝑦 = 1.5 𝑚. Since interfaces 
with three degrees of freedom (all except desktop VR devices like the Oculus) lack positional sensors, 
this makes those users see the virtual environment from that height as well, but with six degrees of 
freedom (like with the Oculus interface), one can move in all directions, also vertically. This was an 
issue with the youngest participants, because with their reduced height they struggled to reach the 
virtual objects to touch them. This makes evident that the age of the users is a factor that needs to be 
considered when designing immersive experiences. 

We also noticed that many participants, who were inexperienced with virtual reality applications, 
were confused by the lack of a precise objective or expressed their concern of not seeing the real world 
anymore, which distressed them. This complicated the task of selecting a computer, as they were rigid 
and did not move their limbs as needed. In contrast, participants were more relaxed with the 
Cardboard interface. As they performed the experiment in group, it became some sort of a social 
experience, they talked among themselves, and they even tried to find each other in the virtual world 
(which was impossible). They easily understood they needed to select a computer to move next to it, 
but they also tried to physically move, but as the Cardboard interface lacks positional sensors, that 
did not translate into a movement in the virtual world. 

Finally, as we have discussed before, we noticed some differences in behavior between interfaces. We 
observe that differences in the design of the interface produce differences in the users’ behavior, which 
will be further addressed in Chapter 4. 

The final iteration of the interactive multimedia platform (A multi-device 360-degree hypervideo tour) 
consolidates the advancements in the introduction of several devices into the reproduction of 360-
degree videos: user behavior in 360-degree videos can now be automatically registered from 
computers, smartphones, VR headsets and mobile VR visors. The definition of hypervideos with the 
creation module we introduced proves to be useful in generating interactively linked 360-degree 
videos, as validated by the experiment we described. 

We conducted a formal usability study for each of the four devices, with different results but all in the 
acceptable range. Users disliked that the video quality changed often, due to adaptation algorithm of 
MPEG DASH. 

We noticed technical differences in the 360-degree videos: point videos, in which the camera does not 
move, show a lower TI than route videos, in which the camera follows that route. Per the usability 
study, we learned that not all the devices were experienced in the same way. For these reasons, the 
users’ behavior may be different according to these two variables. 

From the data collected during the study, we conducted a preliminary analysis and observed the 
distribution of the orientation of the users in the 360-degree videos. We noticed an evident difference 
between both types of videos: users are much more disperse in point videos than in route videos. We 
observe that the direction in which the camera is moving (following the street in route videos) 
conditions the preferred orientation of the users. The difference in the dispersion between devices is 
not so evident. There are small differences, but we cannot arrive at any conclusion in this preliminary 
study. For this reason, a more in-depth analysis will be carried in Chapter 5. 

Furthermore, we will study a number of techniques to predict future viewports in Chapter 6, which 
are necessary to introduce tile-based adaptive streaming, which addresses the difficulties of streaming 
high-quality spherical content. 

To conclude, we have seen that the users’ actions when they play spherical videos and virtual reality 
are worthy of study. We analyzed the spatiotemporal exploration in the interactive 360-degree video 
activity; the relationship between the selection of points of interest and the visualization of the 
spherical video in the 360-degree hypervideo documentary; the difference by device in spatial 
exploration and selection of objects in the multi-device virtual reality museum; and the difference by 
video type and device in the dispersion of the users’ orientations in the multi-device 360-degree 
hypervideo tour. 
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The user data recorded in the experiments of these last two iterations was used to perform more in-
depth studies which are reported in the following chapters: an analysis of the user behavior in multi-
device virtual reality is reported in Chapter 4; an analysis of the user behavior in multi-device 360-
degree hypervideo is reported in Chapter 5; and finally a study of classification and prediction of 
future orientations based on this last case is reported in Chapter 6. 
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Chapter 4. Analysis of user behavior in a multi-
device virtual museum 
In this chapter we study in more detail the user behavior in the multi-device virtual reality museum 
reported in section 3.4. In section 3.5.3 we detailed a user experiment in which we collected the user 
behavior in two of the four available devices: a desktop VR headset, the oculus interface; and a mobile 
VR headset, the cardboard interface. The non-immersive devices (desktop PC and mobile) are excluded 
from this analysis as they were not used in the experiment. 

As previously introduced in Chapter 2, prior studies on user behavior in virtual reality environments 
consider a single device in their experiments. In order to advance the actual state of the art, we 
compare the users’ behavior with two immersive devices. To evaluate the difference in behavior 
between these two devices, we are interested in the differences in interaction with the virtual objects, 
in the movement and in the orientation. We are also interested to assess whether there is difference 
in behavior in the cardboard interface when different web browsers are used to access it. 

For this, we formulate the following research questions, which we will answer in this chapter. 

RQ1. Is there a difference in the time between interactions with the virtual objects? 
RQ2. Are the virtual objects interacted in the same magnitude? 
RQ3. Do users navigate the virtual space in the same way? 
RQ4. Do users look around, turning their heads, similarly? 
RQ5. When the cardboard interface is used, is the behavior uniform across different web browsers? 

In Table 4.1, we can grasp a first approach at analyzing the data obtained in the user study: we 
recorded  44 mobile sessions that used the “Enter VR” button at some point, so the mobile headset 
(cardboard from now on) was enabled. Sessions in which the user did not use the “Enter VR” are not 
counted in the following graphs as cardboard sessions. 

Table 4.1. Summary of the operating system and web browser used to access the cardboard interface. 

OS Chrome Firefox MiuiBrowser Safari Samsung Internet Total 
Android 134 1 3 0 10 148 
iPhone 32 0 0 64 0 96 

244 sessions were registered during the case study that used a mobile headset, of which 175 interacted 
with at least a computer. Due to the overwhelming success of the oculus interface, individual sessions 
per user could not be recorded and the data is aggregated. In total, computers were selected 967 times 
from the mobile interface and 708 times from the oculus interface. A single user was expected to use 
only one of the two devices, so no learning effects should not have happened. Note that successive 
plays of the same computer if its associated video did not completely play are not counted, as some 
users turned the same computer on and off repeatedly. 

4.1. Time between interactions with the virtual objects 

In this section, we analyze the results and the difference between devices in the selection and 
interaction of the virtual objects. 

Following Figure 4.1, there were many cardboard sessions which were very short or in which the user 
did not select any computer: 31 (13% of the sessions) ended in less than 1 minute and 69 (28% of the 
sessions) ended without selecting any computer. The mean duration of a cardboard session is :03:39, 
selecting 3 different computers. It can be observed that the behavior in some sessions is way more 
intense than others, with session durations over 5 minutes and selecting over 10 computers. 
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Figure 4.1. Histogram of the duration of the 244 cardboard sessions (a) and histogram of the number of distinct 
computers selected in them (b). 

We can observe in Figure 4.2 the amount of time between two consecutive selections (without 
counting consecutive selections of the same element) in the same session. The trend in both interfaces 
is similar and the mean time between selections is :00:36 for cardboard sessions and :01:04 for oculus 
sessions, showing a rapid drop for greater times. 

 
Figure 4.2. Histogram of time between consecutive selections in cardboard (a) and oculus (b) sessions. 

Of the 1675 selections in the dataset, we removed the 5% with less and the 5% with more time between 
selections to eliminate outliers, so the time between sessions lies between 6 and 155.3 seconds, with a 
total of 𝑁 = 1504 selections (868 in cardboard and 636 in oculus). 

To answer RQ1 (Is there a difference in the time between interactions with the virtual objects?), we 
set the null hypothesis 𝐻0 that the mean time between selections in both groups is the same. Levene’s 
test for homogeneity of variances reports unequal variances between groups (𝐹 = 26.81, 𝑝 < 0.001), 
so a Welch’s t-test was performed on the time between selections in cardboard (𝑁 = 868, 𝑀 = 33.720, 
𝑆𝐷 =  28.908) and oculus (𝑁 = 636, 𝑀 = 45.993, 𝑆𝐷 = 34.542). The result, 𝑡(1218) = −7.29, 𝑝 < 0.001, 
with a Cohen’s 𝑑 = −0.391, rejects the null hypothesis, so we can accept the alternate hypothesis 𝐻1 
that the average time between selections is different in both groups for a confidence level 𝛼 = 0.05 
with a small effect size. 
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4.2. Selection of the virtual objects 

The interactions with the objects in the virtual museum are plotted in Figure 4.3, according to their 
position in the virtual environment. We can observe that the computers in the centre of the scene are 
the most selected in cardboard, while the most selected in oculus are those in the top of the scene. We 
can also appreciate a difference in selections between computer families and inside each computer 
family. In example, of the five central circles in Figure 4.3 (a), the top right one is the most selected, 
and objects in the middle appear to be more selected than those farther away in Figure 4.3 (a), while 
the opposite seems to be true in Figure 4.3 (b). 

To answer RQ2 (Are the virtual objects interacted in the same magnitude?), we will test three groups 
of hypotheses. First, we will analyse if the selections are uniformly distributed between families (see 
Figure 3.19) and if they are comparable between devices; second, we will check if the selections are 
uniformly distributed per computer inside each family and if these are comparable between devices; 
third, we will correlate the placement of the object with the number of times it has been selected. 

 
Figure 4.3. Spatial representation of the computer selection frequency in cardboard (a) and oculus (b) sessions. 

4.2.1. Distribution of selections between computer families 

In this case, we wanted to know, for each device, if the selections between computer families (see 
Figure 3.19) follow a uniform distribution and if they come from the same distribution. In this case, 
the selections were summed per family. 

Chi-Square goodness of fit tests were performed for each device to test a) if the selections per family 
follow a uniform distribution and b) if selections per family in both interfaces follow the same 
underlying distribution. 𝐻0 is set that the selections a) follow the uniform distribution or b) follow the 
same distribution. The alternative hypotheses, 𝐻1, are set that the selections a) do not follow the 
uniform distribution or b) do not follow the same distribution. The degrees of freedom are set to the 
number of groups minus one; in this case, 5, as there are six families. Cohen’s 𝑊  is used to report 
effect sizes. 

Neither the selections in the cardboard interface (𝑁 = 708, 𝜒 2 = 202.69, 𝑝 < 0.001,𝑊 = 0.434) nor in 
the oculus interface (𝑁 = 967, 𝜒 2 = 182.46, 𝑝 < 0.001,𝑊 = 0.535) follow a uniform distribution, as 𝐻0 
is rejected with a confidence level 𝛼 = 0.05  in both cases, with a medium and large effect size, 
respectively. If we compare both devices, (𝑁 = 1675, 𝜒 2 = 4497.13, 𝑝 < 0.001,𝑊 = 0.745), 𝐻0 is also 
rejected at 𝛼 = 0.05, so we can accept 𝐻1: the selections in both devices are not drawn from the same 
underlying distribution with a large effect size. 

We can begin to answer RQ2: the selections of virtual objects are not uniform across families and the 
distribution of selections is not the same between devices. 
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4.2.2. Distribution of selections in each computer family 

Finally, we wanted to know if the distribution of selections in each device, in each family of computers, 
is uniform and if it is the same between devices. The actual number of selections were used this time, 
as the data was not aggregated. 

We followed a similar approach: per each family of computers, Chi-square goodness of fit tests were 
performed to test a) if the selections per computer follow a uniform distribution and b) if selections 
per computer in both interfaces follow the same underlying distribution. The null and alternate 
hypotheses are defined in a similar way than before, so are the degrees of freedom, which will change 
per family (as the number of computers per family varies). 

Table 4.2. Results of the Chi-Squared tests performed on the selection of computers in each family. 

Family 𝑨 𝑩 𝑵  𝑫𝒐𝑭  𝝌𝟐 𝒑 𝑾  

Classic Macs oculus uniform 73 4 6.93 0.14 0.308 

Classic Macs cardboard uniform 313 4 30.88 < 0.001 0.314 

Classic Macs oculus cardboard 386 4 1422.73 < 0.001 0.459 

Macintosh II oculus uniform 37 3 4.62 0.20 0.353 

Macintosh II cardboard uniform 116 3 3.59 0.31 0.176 

Macintosh II oculus cardboard 153 3 393.32 < 0.001 0.508 

Performa oculus uniform 70 4 18.86 < 0.001 0.519 

Performa cardboard uniform 128 4 7.31 0.12 0.239 

Performa oculus cardboard 198 4 509.72 < 0.001 0.433 

PowerBook oculus uniform 132 7 41.45 < 0.001 0.560 

PowerBook cardboard uniform 153 7 20.12 0.01 0.363 

PowerBook oculus cardboard 285 7 978.71 < 0.001 0.615 

iBook… oculus uniform 202 7 139.07 < 0.001 0.830 

iBook… cardboard uniform 151 7 17.74 0.01 0.343 

iBook… oculus cardboard 353 7 861.03 < 0.001 0.512 

MacBook… oculus uniform 194 8 113.86 < 0.001 0.766 

MacBook… cardboard uniform 106 8 15.08 0.06 0.377 

MacBook… oculus cardboard 300 8 628.60 < 0.001 0.560 

The results of these tests are reported in Table 4.2: the first column indicates which computer family 
is analyzed; columns A and B represent the groups which are compared: either one interface with the 
uniform distribution or both interfaces with each other; 𝑁  denotes the number of samples; 𝐷𝑜𝐹  the 
degrees of freedom used in the test; 𝜒 2 the result of the test; 𝑝 the p-value; and 𝑊  Cohen’s 𝑊 . 

The behavior per family varies: in some of them, the selections are apparently uniform in one interface 
or the other (rows in which B=uniform), so 𝐻0 cannot be rejected, but for every family, the distribution 
of selections is different between both interfaces (rows in which A=oculus and B=cardboard) and 𝐻0 
can be rejected at 𝛼 = 0.05 with at least a medium or strong effect size. Notably, the selections in the 
first family (Classic Macs) may be uniformly distributed in the oculus interface, but are not in 
cardboard, but for the next family (Macintosh II), both may be uniformly distributed at a low 
significance level. From the third family (Performa), the distribution of selections is not uniformly 
distributed in oculus (𝑝 < 0.001). In the fourth and fifth families (PowerBook and iBook…), it is not 
uniformly distributed in cardboard (𝑝 = 0.01), while p rises to 0.06 in the last family (MacBook…). 

We can continue to answer RQ2: the distribution of object selections inside each family is always 
different between devices, but there are some cases in which it can be uniformly distributed (first two 
families with oculus and second and third families with cardboard). 

4.2.3. Correlation of the selections and the position of the virtual object 

We formulated two sets of hypotheses: one based on the distance from the center of the virtual 
environment, and another based on the z component of the position of the object. 
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In the first case, the null hypotheses 𝐻0 is set that there is no correlation between the number of 
selections received by a computer and its distance from the centre of the scene. Using Spearman’s 
rank correlation, we found that we can reject 𝐻0 at a confidence level 𝛼 = 0.05 in selections made in 
the cardboard interface, as they show a medium inverse correlation (𝜌 = −0.77, 𝑝 < 0.001) but we 
cannot reject it, as they are not significantly correlated, in the oculus interface (𝜌 = 0.23, 𝑝 = 0.15). 

In the second case, we set the null hypotheses 𝐻0 as that there is no correlation between that number 
of selections and the value of the z axis in the absolute position of that computer in the virtual 
environment. In this case, we cannot reject 𝐻0 in selections made in the cardboard interface, as the 
correlation is not significant (𝜌 = −0.22, 𝑝 = 0.18) but we can reject it at a confidence level 𝛼 = 0.05 
in the oculus interface, as they show a medium inverse correlation in that case (𝜌 = −0.64, 𝑝 < 0.001). 

Per this, we can assert with a confidence level 𝛼 = 0.05 that the selections of the virtual objects and 
their position is correlated in both interfaces: in the cardboard interface it is inversely correlated with 
the value of the z axis of their absolute position, while in the oculus interface, it is inversely correlated 
with their distance from the center. 

With this, we will conclude our answer of RQ2: the interaction with virtual objects in oculus is 
inversely correlated with the value of the z axis of the objects, while in cardboard, it is inversely 
correlated with their distance from the center. 

4.3. Spatial navigation in the virtual environment 

The collected behavior can also be used to plot the position in the virtual environment where this 
experience happened. We already discussed in section 3.5.4 Figure 3.22, which relates the spatial 
position of the selection of virtual elements and the position of the users in the virtual environment. 

We can observe in Figure 4.4 the dispersion of the users’ positions in the virtual museum. While the 
position of cardboard users (Figure 4.4 (b)) have similar dispersion in both axes (𝜎𝑥 = 6.30, 𝜎𝑧 = 5.57, 
cov(𝑥, 𝑧) = −0.44), oculus users (Figure 4.4 (a)) are more disperse, especially in the z axis (𝜎𝑥 = 8.95, 
𝜎𝑧 = 11.38, cov(𝑥, 𝑧) = 13.86), as we can see more in the negative direction. 

To answer RQ3 (Do users navigate the virtual space in the same way?) and assess if these two samples 
of spatial positions are drawn from the same underlying distribution, we performed a two-dimensional 
Kolmogorov-Smirnov test [108], based on Taillon’s python library22. We set the null hypothesis 𝐻0 as 
that both samples are drawn from the same distribution. For 𝑁𝑜𝑐𝑢𝑙𝑢𝑠 = 176092, 𝑁𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑 = 162553, we 
obtained a considerable 𝐷 = 0.5154, with 𝑝 < 0.001, so we can reject 𝐻0 and affirm that the spatial 
positions are significantly different per device used at a confidence level 𝛼 = 0.05. 

 
Figure 4.4. Heatmap of the users’ positions in the virtual environment when using the oculus interface (a) and 
the cardboard interface (b). Concentric ellipses represent the covariances at 1, 2, 3 σ. Built with 100 × 100 bins 
and smoothed with a gaussian filter 𝜎 = 1.5. 

 
22 https://github.com/Gabinou/2DKS 
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4.4. Head orientation in the virtual environment 

We can observe that, in oculus, many users stayed in the top part of the graphs in Figure 3.22 and 
Figure 4.4. To try to understand it better we plot the users’ head orientation in Figure 4.5. We can see 
that, in Figure 4.5 (a), the oculus users’ longitude is, most of the times, in the [−90, 90] quarter, which 
corresponds to the direction of the negative z axis, with the centroid in 𝑥 ̅ = (−10.2, −13.41); while in 
Figure 4.5 (b), the cardboard users’ longitude shows a rise around 70º, with the centroid in 𝑥 ̅ =
(−18.91, 56.41). The dispersion in longitude is similar, but cardboard users showed more variation in 
latitude: in oculus, 𝜎𝑙𝑎𝑡 = 19.97 , 𝜎𝑙𝑜𝑛 = 87.92 , cov(𝑙𝑎𝑡, 𝑙𝑜𝑛) = −65.00 , while in cardboard, 𝜎𝑙𝑎𝑡 = 31.41 , 
𝜎𝑙𝑜𝑛 = 94.67, cov(𝑙𝑎𝑡, 𝑙𝑜𝑛) = 148.30. 

To answer RQ4 (Do users look around, turning their heads, similarly?) we set the null hypothesis 𝐻0 
as that the variance in longitude between groups is equal. Levene’s test for homogeneity of variances 
on the longitude reports unequal variances between groups (𝐹 = 3129.96, 𝑝 < 0.001), so we can reject 
the 𝐻0 and assume that the users move their heads differently. 

We calculated the dispersion of the users’ orientations by adapting the Mean Average Error (3.4), 𝑠′, 
and Standard Deviation (3.5), 𝑠′′, formulas for spherical coordinates, with 𝑑 as the spherical distance 
between each observation and the previously reported centroids (3.1). These values are similar: in 
oculus, 𝑠′ = 69.3 and 𝑠′′ = 83.90, while in cardboard, 𝑠′ = 73.82 and 𝑠′′ = 84.19. 

 
Figure 4.5. Heatmap of the users’ head orientation in the virtual environment when using the oculus interface 
(a) and the cardboard interface (b). Concentric ellipses represent the covariances at 1, 2, 3 σ. Built with 180 × 90 
bins and smoothed with a gaussian filter 𝜎 = 1.5. 

We observed the distribution of the distance between the centroid and the orientations per device 
type (its average is 𝑠′). Levene’s test for homogeneity of variances reports unequal variances between 
groups (𝐹 = 5656.38 , 𝑝 < 0.001 ), so a Welch’s t-test was performed on the great-circle distance 
between the orientations and the centroid per device type. The null hypothesis 𝐻0 is set that the mean 
of that distance is equal between groups. The result, 𝑡(338645) = −29.76, 𝑝 < 0.001, rejects the null 
hypothesis, so we can accept the alternate hypothesis 𝐻1  that the average distance between the 
orientation of the observations and their centroid is different per device with a confidence level 𝛼 =
0.05. A Cohen’s 𝑑 = 0.103 was reported by the test, a very small effect size. 

With this last knowledge, we can add to the answer to RQ4: the orientation of the users of the 
cardboard interface was significantly more disperse than those of the oculus interface, although the 
size of this effect seems to be limited. 

4.5. Behavior across web browsers 

Regarding RQ5 (When the cardboard interface is used, is the behavior uniform across different web 
browsers?), we observed the difference in behavior between the oculus and cardboard interfaces 
described in the past section and wondered if there would be a difference between the web browsers 
used to play the latter interface, as we found surprising that most of the behavior in cardbard happened 
around 90º in longitude. 

As we can see in the first row in Figure 4.6, the orientation of the users’ heads differs when they are 
using different browsers: in Figure 4.6 (a), users of Chrome in Android (𝑁 = 95) tend to look at around 
70º in longitude, but in Figure 4.6 (b), users of Chrome in iOS (𝑁 = 19) tend to look at around 0º in 



4.5. Behavior across web browsers 

51 

longitude, while users of Safari in iOS (𝑁 = 47), as reported in Figure 4.6 (c), tend to look at both 
around 0º and around 70º in longitude. 

In further analysis, shown in the second row in Figure 4.6, we obtained the orientation in which the 
first selection was done in each session. We can notice three things, which we will test next: first, the 
orientation per browser in the first row seems different; second, the orientation of the first selections 
per browser in the second row seems different (at least between (d) and (e)); third, there appears to be 
a relationship between the orientation in which the first selection was performed (second row) and 
the most viewed orientations (first row) per browser. 

 
Figure 4.6. Heatmap of the users’ head orientation in the virtual environment when they use three specific 
browsers in the cardboard interface: Chrome in Android (first column), Chrome in iOS (second column) and 
Safari in iOS (third column). The first row contains the data from all the session, with concentric ellipses that 
represent the covariances at 1, 2, 3 σ, the second row contains the data of only the first computer selection in 
each session. Built with 180 × 90 bins and smoothed with a gaussian filter 𝜎 = 1.5. 

To test the difference between browsers, we design 𝐻0 as that samples from two given browsers come 
from the same distribution. We employ a Kolmogorov-Smirnov test on the normalized longitude (as 
objects are always in latitude 0º) to assess that hypothesis. Here we could reject 𝐻0 in all the cases at 
𝛼 = 0.05: between Chrome Mobile and Chrome Mobile iOS (𝑡 = 0.1249, 𝑝 < 0.001), between Chrome 
Mobile and Mobile Safari (𝑡 = 0.1145, 𝑝 < 0.001) and between Chrome Mobile iOS and Mobile Safari 
(𝑡 = 0.0264, 𝑝 < 0.001). 

The same test was performed on the orientations of the first selections, with mixed results: between 
Chrome Mobile and Chrome Mobile iOS, we obtained 𝑡 = 0.4316 with 𝑝 < 0.01; between Chrome 
Mobile and Mobile Safari, 𝑡 = 0.1424 with 𝑝 = 0.49; between Chrome Mobile iOS and Mobile Safari, 
𝑡 = 0.3427  with 𝑝 = 0.06 . With a 5% confidence level, we can only reject 𝐻0  in the first case: 
orientation of the first selection in Chrome Mobile and Chrome Mobile iOS are not drawn from the 
same distribution. 

Finally, we calculated the dispersion in longitude and the two spherical measures of dispersion, which 
we described in section 4.4, between the orientation of each user and the orientation of their first 
selection. The results per session were averaged to obtain a single value. The average standard 
deviation of the longitude is 𝜎𝑙𝑜𝑛 = 80.04; while the average of the spherical measures based on the 
MAE and standard deviation are 𝑠′ = 67.81 and 𝑠′′ = 79.17, respectively. All these values of dispersion 
are smaller than when the overall centroid is considered (as we reported in section 4.4). 

The average per browser of these values of dispersion between the orientation in a session and the 
orientation of the first selection are as follows: in Chrome Mobile, 𝜎𝑙𝑜𝑛 = 72.45, 𝑠′ = 62.00, 𝑠′′ = 72.97; 
in Chrome Mobile iOS, 𝜎𝑙𝑜𝑛 = 86.77, 𝑠′ = 72.41, 𝑠′′ = 85.63; in Mobile Safari, 𝜎𝑙𝑜𝑛 = 91.86, 𝑠′ = 77.58, 
𝑠′′ = 88.73. 

The dispersion between the orientation and the centroid per browser (similarly as what we reported 
in section 4.4) are the following: in Chrome Mobile, the centroid is 𝑥 ̅ = (−17.58, 63.39), 𝜎𝑙𝑜𝑛 = 89.55, 
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𝑠′ = 71.22, 𝑠′′ = 82.39; in Chrome Mobile iOS, 𝑥 ̅ = (−10.85, 36.71), 𝜎𝑙𝑜𝑛 = 101.59, 𝑠′ = 84.59, 𝑠′′ = 96.29; 
in Mobile Safari, 𝑥 ̅ = (−17.72, 31.31), 𝜎𝑙𝑜𝑛 = 98.74, 𝑠′ = 80.40, 𝑠′′ = 90.52. 

The distribution of the distance between the first selection and the other orientations was calculated 
with the great-circle distance formula (3.1). We compared this distribution between browsers. 
Levene’s test for homogeneity of variances reports unequal variances in all the cases: between Chrome 
Mobile and Chrome Mobile iOS (𝐹 = 226.89, 𝑝 < 0.001); between Chrome Mobile and Mobile Safari 
(𝐹 = 65.62, 𝑝 < 0.001); and between Chrome Mobile iOS and Mobile Safari (𝐹 = 349.85, 𝑝 < 0.001). A 
set of Welch’s t-tests were performed on the distance between the orientation of that first selection 
and the rest per browser, so 𝐻0 is set that both distributions have equal means. Effect size is also 
reported with Cohen’s d. The results are as follows: between Chrome Mobile and Chrome iOS 
(𝑡(104969) = −40.21, 𝑝 < 0.001, 𝑑 = −0.363); between Chrome Mobile and Mobile Safari (𝑡(129957) =
−61.03, 𝑝 < 0.001, 𝑑 = −0.363); and between Chrome Mobile iOS and Mobile Safari (𝑡(56926) = 0.53, 
𝑝 = 0.60, 𝑑 = 0.005). We can reject 𝐻0 and accept that the distribution of the distance between the 
orientations and the orientation in the first selection has different means between Chrome Mobile and 
Chrome Mobile iOS and between Chrome Mobile and Mobile Safari at a confidence level 𝛼 = 0.05 with 
small effect sizes, but we cannot prove that between Chrome Mobile iOS and Mobile Safari, with no 
effect size. 

All these observations help us answer RQ5 (When the cardboard interface is used, is the behavior 
uniform across different web browsers?): there is a significant difference in the values of longitude, 
while the distribution of the distance between the first selection in a session and their orientations is 
statistically significant between the Android and either iOS browser (Android users tended to be less 
disperse), while it is not significant between both iOS browsers. 

4.6. Discussion and conclusion 

We studied the user behavior with two different devices in a virtual environment, guided by the 
research questions we formulated in the beginning of the chapter. 

As observed in Figure 4.1, there were many cardboard sessions which were either very short or in 
which the user did not select any computer. Since this was the first time most of the users tried virtual 
reality and they did it using the simplest interface, we can assume that some of them had difficulties 
understanding the interface. Another factor that could have had an impact is the technical capacity of 
the smartphones used by the participants in the experiment: although the VR player does not require 
a high-end smartphone to work correctly, it does need to have some sensors that may be absent in 
lower-end devices, accounting for some of these sessions with poor performance. 

In contrast, we detected several mobile sessions that lasted more than 5 minutes or selected more than 
10 different computers. Our point of view on this behavior is that as users could play with their own 
devices, some of them chose to extend their experience as much as possible. We planned that the users 
would play for approximately 5 minutes and interact with half a dozen computers. This was the 
behavior of most of the mobile sessions, most surely because of the time slots, but some of these 
sessions, as we are discussing, were longer and more active than expected. 

We found a significant difference in the average time between interactions with the virtual objects 
between devices: 34 seconds in cardboard and 46 seconds in oculus, on average. The most logical 
explanation lies in the difference of the interaction: mobile users only had to look at a computer and 
hold their gaze at the desired computer for two seconds; while oculus users needed to walk near to the 
desired computer using the joystick and then touch it with the virtual hands using the specific gesture. 

Virtual objects are not interacted in the same way between devices: selection patterns are never based 
on the same distribution between devices, although the selection in some families may be uniform 
with some devices. Furthermore, we found that there there is a significant inverse correlation in 
cardboard with the distance from the center and in oculus with the z axis. In any case, computer 
selections are related to the users’ spatial position in the virtual environment (Figure 3.22). 

We observed that oculus users were more spatially disperse than cardboard users. The users of the 
first device tended to explore the northern part of the scene, while users of the second usually 
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remained in the middle of the environment. We found a statistically significant difference between 
the spatial positions of both groups. 

This difference in spatial distribution can be attributed to the difference in interaction between 
interfaces: cardboard users started their experience in the middle of the scene and could only move 
around by selecting objects in the virtual world, whereas oculus users could move freely and started 
their experience where the previous user was. This explains the behaviour in cardboard, but to answer 
why most of the times oculus users remained in that area, we must analyse the orientation of the users’ 
heads. 

The first difference between users’ orientation we can observe is that most of the times, oculus users 
looked forward (in the negative direction of the z axis), while in cardboard, in which users tended to 
look more towards the right of the scene. The second difference is the variance in longitude of these 
orientations: 𝜎𝑙𝑜𝑛 = 87.92  in oculus and 𝜎𝑙𝑜𝑛 = 94.67  in cardboard. Despite the small difference in 
standard deviation, variance in longitude was reported to be significantly different. We obtained 
spherical values of dispersion and we compared the distribution of one of them between devices: the 
average spherical distance with the centroid of the observations was found to be significantly different, 
with the orientation of cardboard users more disperse than that of oculus users. 

When we took under consideration the mapping of the virtual world with the real world, we noticed 
that the table which contained the monitors and sensors for the oculus interface (see section 3.5.3) was 
in the negative direction of the z axis in the virtual environment so users, even when they had 360 
degrees to explore, tended to choose that direction most of the times. This also influenced the spatial 
distribution of oculus users, as they were already at the limit of the environment, they usually did not 
turn around to advance in the opposite direction. 

Conversely, users of the cardboard interface were not aware of any apparatus in the physical world 
that could condition their orientation. Despite this, Figure 4.5 (b) shows a bias around longitude 90º, 
which could be related to the default position of the web browsers used to play the cardboard interface 
in smartphones. 

We noticed that the browser used to play the virtual experience can play a role in the users’ behavior. 
We observed how different web browsers show different highly played orientations. Significant 
differences on the normalized longitude were found between browsers. 

We observed how these most frequent orientations are very close to the orientation of the first 
selection in each web browser. Precisely, different browsers showed different distributions of first 
selections: the difference between Chrome Mobile (Android) and Chrome Mobile iOS was significant, 
while between the other pairs it was not significant. 

Those first selections, when used to calculate the dispersion in longitude and the spherical dispersion, 
resulted in lower values of dispersion than when the mean longitude or the centroid of observations 
was considered. Breaking down by browser, we observed the same behavior: the average dispersion 
is lower when calculated with the orientation of the first selection than when it is calculated with the 
mean longitude or the centroid of the observations, effectively linking the orientation of the users’ 
heads to the orientation in which that first selection was performed. 

We observe that users of Google Chrome have very strong biases in the orientation of their first 
selection: in Android, the most common first selection was in longitude 𝜆 = 72º, while in iOS it was 
in longitude 𝜆 = 0º. Users of Safari iOS did not show such strong biases. 

The initial orientation of the users when they start their sessions may have played a role in that first 
selection: the sensor used to track the orientation in the virtual scene may be based on the Earth’s 
magnetic field23, acting like a compass and aligning the virtual scene and the virtual world. The exact 

 
23 Stated by one of the creators of AFRAME in https://stackoverflow.com/a/47667912/3579466: “look-controls 
takes the orientation from the sensors of the phone that is absolute and not relative to where you position the 
camera initially in the scene”. 
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implementation was apparently different by web browsers, and apparently Google Chrome (Android) 
initialized orientation to longitude 𝜆 = 90º and Google Chrome iOS defaulted to 𝜆 = 0º. 

We used the orientation of those first selections to calculate the distribution of the spherical distance 
of the orientations. We could prove how the mean distance between the Android browser and either 
iOS browser is significantly different, but it is not significant between both iOS browsers. 

To conclude, we have found several differences between both devices. These differences, although 
significant, are not vastly different between each other. This is because, although the interface differs, 
they are both immersive devices and are subject to the same constraints of the human body, especially 
in terms of orientation. 

Differences in the interface, like the trigger to select a virtual object or the initial values in the 
experience, such as the initial position or the initial orientation in the virtual environment are likely 
to cause differences in user behavior: the selection of virtual objects was easier with the cardboard 
interface than with the oculus interface; the fact that users in cardboard started in the middle of the 
scene while users of oculus did not, affected both their positions in the virtual environment and their 
selections of virtual objects; finally, users of oculus tended to look towards the physical table which 
was found in the experimental setup, while users of cardboard showed different distributions of first 
selections per web browser, which conditioned the general orientation in those browsers. 

These differences are important and must be considered if a uniform experience is to be provided 
across different devices. Otherwise, when it is not possible to make the interaction similar between 
devices (due to, e.g., limitations on the device), part of the virtual environment is going to be 
underexplored with a device or a browser. 

We have observed the following that can introduce differences between these two interfaces. First, 
relying in specific gestures to select an object can make the process more difficult. Second, the 
positioning of the objects in the scene, in relation to the starting position of the player, makes an 
important role on which are interacted. A layered design worsened the situation, as to arrive to the 
farthest objects, one had to pass through all the others first. Third, and related to the previous, the 
initial position of the player in the system is important. Fourth, the use of a monitor could have been 
a good reclaim to make users interested in our stand in the science fair, but it made participants look 
at that direction most of the times. Finally, and related to the third point, the initial orientation is also 
important. An effort to make users look consistently into a desired direction may be desirable. 

Differences in behavior between these immersive devices and non-immersive devices (pc and 
smartphone) must have been more important but were not collected in this study. The following 
chapter studies the users’ behavior with these four devices in 360-degree videos.
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Chapter 5. Analysis of user behavior in a multi-
device 360-degree hypervideo 
In this chapter, we perform a study of user behavior when playing the 360-degree videos in the multi-
device 360-degree hypervideo reported in section 3.6. A user experiment was detailed in section 3.6.5, 
which resulted in the collection of a dataset of user behavior when these videos were played with four 
different devices: a desktop computer, a smartphone, a mobile-based VR headset (a Google Cardboard) 
and a desktop VR headset with controllers (an Oculus Rift). The first two are interfaces based on non-
immersive devices, while the other two are based on immersive devices. 

Two types of videos were identified in section 3.6.1: point videos, in which the camera is static, and 
route videos, in which the camera follows a path. All the videos feature similar imagery: they were 
recorded in the streets of the city of Palma, and they together make an interactive tour. 

Although prior studies consider a single device in their experiments, as previously discussed in 
Chapter 2, we base our grouping of video types on the use in [48] of Temporal perceptual Information 
[103], which did not analyze the difference in behavior between different video types. The following 
parts of this chapter are based on prior work, extended to compare the differences between video 
types and devices: our exploratory analysis is based on that work, with a clear distinction by video 
type and device used; the work of Corbillon et al. [47] serves as a basis for our movement analysis; 
finally, we base our analysis of the trajectory of the users’ orientations in [109]. 

To assess the differences in behavior between the four devices and the two types of videos, we 
formulate the following research questions. 

RQ1. Is spatiotemporal exploration the same across devices and video types? 
RQ2. Is the dispersion of observed viewport centers similar across devices and video types? 
RQ3. Is movement performed with the same magnitude across devices and video types? 
RQ4. Are trajectories followed in the same way across devices and video types? 

In the following sections, we report the structure of the dataset, perform an exploratory analysis of 
the collected data, and will answer these questions with the analysis of the data in multiple ways, 
ultimately comparing devices in the same video type and video types with the same device. We will 
end this chapter with some conclusions obtained from this analysis. 

5.1. The dataset 

A total of 140 user sessions were registered during the experiment. Each of these user sessions 𝑈𝑆 
consists of a series of linked video sessions 𝑉𝑆 played by a user 𝑢 with a device 𝑑 . 

𝑢𝑠 ∈ 𝑈𝑆 =  {𝑉𝑆, 𝑢, 𝑑} 

Each of these video sessions 𝑉𝑆 contains the behavior of playing a video 𝑣𝑠 using a device 𝑑𝑠  in the 
form of a distribution of viewport centers during its playback (𝐹𝑠). 

𝑠 ∈ 𝑉𝑆 = {𝑣𝑠 , 𝑑𝑠 , 𝐹𝑠} 

These videos of 𝑉  are identified by an 𝑖𝑑 , categorized in a 𝑡𝑦𝑝𝑒 (point or route videos), have a 𝑙𝑒𝑛𝑔𝑡ℎ in 
seconds and define the 𝑠𝑟𝑐 of the multimedia file. 

𝑣 ∈ 𝑉 = {𝑖𝑑, 𝑡𝑦𝑝𝑒, 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑠𝑟𝑐}, 𝑡𝑦𝑝𝑒 ∈ {𝑝, 𝑟} 

The devices used to play them are 𝑑 ∈ {𝑝𝑐, 𝑚𝑏, 𝑚𝑣, 𝑜𝑐}  (PC, Mobile, Mobile visor and Oculus, 
respectively). 
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The distribution of viewport centers 𝐹  during the playback of the video (from 𝑠𝑡𝑎𝑟𝑡  to 𝑒𝑛𝑑 ) is 
represented as follows: 

𝐹 = {𝑓𝑡}𝑡=𝑠𝑡𝑎𝑟𝑡
𝑒𝑛𝑑 , 0 ≤ 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑒𝑛𝑑 ≤ 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑓𝑡 = {𝜙𝑡 , 𝜆𝑡}, 𝜙𝑡 ∈ [−90,90], 𝜆𝑡 ∈ ℝ 

A video session can 𝑠𝑡𝑎𝑟𝑡  at a point in time after the beginning of the video (𝑡 = 0) and can 𝑒𝑛𝑑  before 
the end of the video (𝑡 = 𝑙𝑒𝑛𝑔𝑡ℎ). 

The angles 𝜙𝑡  and 𝜆𝑡  represent, respectively, the latitude and longitude of the center of the viewport 
of the session at consecutive frames each 250 ms, where (0,0) represents the center of the video, which 
is 180 degrees tall and 360 degrees wide. Longitude is not normalized to [−180,180), as the user may 
turn around (although it will often be normalized in this study). 

To obtain 𝐹 , the data extracted from the LRS had to be preprocessed to make the sequence of frames 
aligned to multiples of 250 milliseconds because, while the source data is recorded roughly every 250 
milliseconds, the recorded temporal sequence may not match the video timeline. This operation was 
achieved by linear interpolation of these points on a great circle following (3.2): given two frames, 
𝑓𝑡0 = {𝜙0, 𝜆0}, 𝑓𝑡1 = {𝜙1, 𝜆1}, and a time 𝑡 , 𝑡0 < 𝑡 < 𝑡1, the great circle distance between them, 𝑑 , and the 
interpolated frame 𝑓𝑡 = {𝜙𝑡 , 𝜆𝑡} are calculated with (3.1) and (3.2), respectively. 

As point videos are played in loop (in contrast to route videos which are skipped when they end), 
frame data belonging to a looped reproduction of a point video is discarded, and only the first loop-
worth of data is kept. 

5.2. Exploratory analysis 

A total of 20 different videos were played in the experiment. 8 of these were point videos, in which 
the camera does not move, and the other 12 were route videos, in which the camera follows a route 
through a street. Two of these 8 point videos were excluded from the analysis, as they were reproduced 
very few times (see section 3.6.6). 

Table 5.1. Count of video sessions per video type and device. 

 pc mb mv oc 

Point videos 120 102 108 165 

Route videos 105 94 95 139 

The number of reproductions per video type and device can be found in Table 5.1. It can be appreciated 
that not all the user sessions played all the videos in all the devices, so there is more data available for 
some videos than the others. 

Table 5.2. Count of frames per video type and device. 

 pc mb mv oc 

Point videos 2433 3181 3566 5211 

Route videos 9673 7567 8381 15374 

The total amount of data samples can be observed in Table 5.2: here, again, not all video sessions 
played the same video for the same amount of time, as some video sessions ended early through the 
use of a hyperlink or started late due to the effect of the incoming hyperlink. 

The orientation of the frames per video type and device is drawn in the following figures, following 
the study reported in [48]. We can observe the distribution of latitude in Figure 5.1. There is not an 
evident difference between video types, but values of latitude are lower in immersive than in non-
immersive interfaces: the mean latitude in point videos for the oculus interface is avg(𝜙𝑝,𝑜𝑐) = −11.71, 
while in route videos it is avg(𝜙𝑟 ,𝑜𝑐) = −12.04 ; for the mobile visor interface, these values are 
avg(𝜙𝑝,𝑚𝑣 ) = −15.49  and avg(𝜙𝑟 ,𝑚𝑣 ) = −11.53 ; for the pc interface, they are avg(𝜙𝑝,𝑝𝑐) = −6.65  and 
avg(𝜙𝑟 ,𝑝𝑐) = −6.82; and for the mobile interface, avg(𝜙𝑝,𝑚𝑏) = −6.91 and avg(𝜙𝑟 ,𝑚𝑏) = −5.01. 

The non-normalized values of longitude are plotted in Figure 5.2, limited to the range [−720,720). Non-
normalized values are not going to be used throughout this section extensively, but they serve to 
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highlight these points: first, users tend to keep watching at the longitude they start (around 0º); second, 
values of longitude that are normalized to around 0º are the most viewed, especially in route videos 
(Figure 5.2 (b)), but also in point videos (Figure 5.2 (a)), to a lesser extent; finally, users of immersive 
interfaces tend to turn around less than users of non-immersive interfaces: values of standard 
deviation of non-normalized longitude are as follows for each video type and device: std(𝜆𝑝,𝑜𝑐) =
116.18, std(𝜆𝑟 ,𝑜𝑐) = 88.96, std(𝜆𝑝,𝑚𝑣 ) = 99.82, std(𝜆𝑟 ,𝑚𝑣 ) = 85.52, std(𝜆𝑝,𝑝𝑐) = 559.22, std(𝜆𝑟 ,𝑝𝑐) = 695.80, 
std(𝜆𝑝,𝑚𝑏) = 274.82, std(𝜆𝑟 ,𝑚𝑏) = 330.70. 

 
Figure 5.1. PDF of latitude per video type and device used to play them. Bins of 5 degrees of latitude. 

 
Figure 5.2. PDF of longitude per video type and device used to play them. Bins of 40 degrees of longitude. 

 
Figure 5.3. PDF of normalized longitude per video type and device used to play them. Bins of 10 degrees of 
longitude. 

Those values of longitude are normalized and plotted in Figure 5.3. Here we cannot appreciate much 
difference between devices, but the difference between video types is very evident: although in both 
video types the most frequent values of longitude are around 0º, they are much more disperse in point 
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videos (Figure 5.3 (a)) than in route videos (Figure 5.3 (b)). In this case, the standard deviation of the 
normalized longitude per video type and device were found to be std(𝜆𝑝,𝑜𝑐) = 78.19, std(𝜆𝑟 ,𝑜𝑐) = 57.60, 
std(𝜆𝑝,𝑚𝑣 ) = 67.64 , std(𝜆𝑟 ,𝑚𝑣 ) = 52.14 , std(𝜆𝑝,𝑝𝑐) = 82.50 , std(𝜆𝑟 ,𝑝𝑐) = 48.24 , std(𝜆𝑝,𝑚𝑏) = 83.05 , 
std(𝜆𝑟 ,𝑚𝑏) = 48.15. We can observe lower values of deviation in route videos than in point videos. 
Deviation with immersive devices is lower in point videos than with non-immersive interfaces, while 
the opposite seems to be true in route videos. 

These results are consistent with [48]: areas of interest are shown around 𝜙 = 0º and 𝜆 = 0º, with a 
more uniform distribution in longitude than in latitude. 

5.3. Spatiotemporal exploration 

In this section, to answer RQ1 (Is spatiotemporal exploration the same across devices and video types?), 
we analyze the spatiotemporal exploration of the videos in a video session: how much of the time of 
the video was consumed, how much of the 360-degree space was consumed, and whether these values 
are correlated or not. 

5.3.1. Temporal exploration 

We define the temporal exploration of a session is a measure of how much of a video was explored 
timewise in a session. It is calculated as the difference between 𝑒𝑛𝑑  and 𝑠𝑡𝑎𝑟𝑡  normalized to the video 
𝑙𝑒𝑛𝑔𝑡ℎ (5.1). 

 𝑒𝑡 =
𝑒𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡

𝑙𝑒𝑛𝑔𝑡ℎ
 (5.1) 

It should be noted that point videos are played in loop, so 𝑒𝑛𝑑 = 𝑙𝑒𝑛𝑔𝑡ℎ if the entire video was played, 
even if it stopped being played halfway during a further loop. 

The distribution of the temporal exploration by video type and interface device is shown in Figure 5.4 
in the form of a Cumulative Distribution Function. There is an initial peak in 𝑒𝑡 ≈ 0, specially in the 
mb interface, which probably are erroneous sessions in which the user could not launch the system 
in the device and tried again later; 82 sessions show 𝑒𝑡 < 0.01 and will be excluded from further 
analysis. It can be appreciated that 𝑒𝑡 ≤ 0.5 in 80% of point video sessions that are played with the pc 
interface and in 60% using the other interfaces, while this value drops to 30-50% in route video sessions. 

Apparently, point videos played with the pc interface are less explored temporally than in the other 
interfaces and route videos are more explored temporally than point videos. 

 
Figure 5.4. Cumulative Distribution Function of temporal exploration of the 946 sessions by video type and 
interface used. 

To assess the difference between video types and devices, we will test if the 𝑒𝑡  is different between 
groups with Mann Whitney’s U test, as the Shapiro-Wilk test for normality was rejected (𝑝 < 0.001). 
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The rank-biserial correlation (𝑟 ) is reported as a measure of effect size. Under the null hypotheses 𝐻0, 
the distribution of temporal exploration between two categories of video sessions are drawn from the 
same underlying distribution. The alternative hypotheses 𝐻1 sets that they are drawn from different 
distributions. 

The null hypotheses could only be rejected at a significance level 𝛼 = 0.05 in point videos between pc 
and the other devices: between pc and oc (𝑁𝑝𝑐 = 107, 𝑁𝑜𝑐 = 153, 𝑈 = 10102.0, 𝑝 = 0.001, 𝑑 = −0.234), 
between pc and mb (𝑁𝑝𝑐 = 107, 𝑁𝑚𝑏 = 86, 𝑈 = 2868.5, 𝑝 < 0.001, 𝑟 = 0.377), and between pc and mv 
(𝑁𝑝𝑐 = 107, 𝑁𝑚𝑣 = 100, 𝑈 = 3684.0, 𝑝 < 0.001, 𝑟 = 0.311). In route videos, the difference is not so clear, 
and the null hypotheses could only be rejected at 𝛼 = 0.05 between pc and oc (𝑁𝑝𝑐 = 101, 𝑁𝑜𝑐 = 131, 
𝑈 = 7903.0, 𝑝 = 0.011, 𝑟 = −0.195). These results are consistent with the visual analysis performed of 
Figure 5.4: the difference between pc and the rest of the interfaces in Figure 5.4 (a) is significant, while 
the difference between the others is not; and the difference between devices in Figure 5.4 (b) is only 
significant between the two extreme positions: oc and pc. We should consider that the repetition of 
the experiments increases the chance of error type I, so under Bonferroni’s correction with 16 
repetitions, this last difference may not be significant, at 𝛼 = 0.003. 

The difference in 𝑒𝑡  per device between video types is statistically significant in all the cases at 𝛼 =
0.05: in oc (𝑁𝑝 = 165 , 𝑁𝑟 = 139 , 𝑈 = 6973.0 , 𝑝 < 0.001 , 𝑟 = 0.392), in pc (𝑁𝑝 = 120, 𝑁𝑟 = 105 , 𝑈 =
3259.5, 𝑝 < 0.001, 𝑟 = 0.483), in mb (𝑁𝑝 = 102, 𝑁𝑟 = 94, 𝑈 = 3732.0, 𝑝 = 0.007, 𝑟 = 0.222), and in mv 
(𝑁𝑝 = 108, 𝑁𝑟 = 95, 𝑈 = 4098.0, 𝑝 = 0.014, 𝑟 = 0.201). Again, under Bonferroni’s correction with 16 
repetitions, the differences in mb and mv may not be significant, at 𝛼 = 0.003. 

With these first results, we can begin to answer RQ1 (Is spatiotemporal exploration the same across 
devices and video types?): temporal exploration is similar between devices (except in pc) and it is 
significantly different between video types. 

5.3.2. Spatial exploration 

The spatial exploration of a session is a measure of how much of a video was explored spatially in a 
session. We have chosen to simplify the measure to only account for the horizontal exploration (in 
longitude), as we have previously observed that most of the behavior takes place in the same latitude. 
It is calculated as the difference between the highest and lowest latitudes present in the session (5.2). 

 𝑒𝑠 = min (360,max
𝑡

𝜆𝑡 − min
𝑡

𝜆𝑡) (5.2) 

This calculation is possible because the recorded latitudes account for full rotations, so a user that 
starts at 𝜆0 = 0 and ends at 𝜆1 = 365, has explored 365 degrees and not only the 5 degrees that we 
would have found if full rotations were not accounted for. For this reason, this result is minimized to 
360 (a full rotation) as, following the previous example, an exploration of 365 degrees means that the 
user explored the full space (360 degrees). 

A histogram of the spatial exploration of the sessions with 𝑒𝑡 ≥ 0.01 (Figure 5.5) makes evident that 
most of the times, 360-degree videos are fully spatially explored, with spatial exploration in the last 
bin. Without accounting for full exploration sessions (𝑒𝑠 ≥ 350), sessions with low  spatial exploration, 
in the range 𝑒𝑠 ∈ [0,180), have been observed more than sessions with high spatial exploration, in the 
range 𝑒𝑠 ∈ [180,350) in both video types, but a difference between point and route videos can be 
observed: sessions with spatial exploration values 𝑒𝑠 ∈ [0,140) have been observed more when playing 
point videos than when playing route videos. The most likely explanation lies in the nature of the 
hypervideo design: point videos act as a gateway between videos and display hyperlinks that may be 
clicked without needing much exploration. In both kinds of videos, sessions played using non-
immersive interfaces as the pc and mb interfaces seem to show greater spatial exploration than other 
devices and will be further discussed next. 

A distinction per interface device is difficult to be observed in a histogram; Figure 5.6 contains the 
Cumulative Distribution Function of the previous data, and the differences between interface devices 
are more evident: spatial exploration in point video sessions with immersive interfaces (oc, mv) is 
lower than with non-immersive interfaces (pc, mb) but follows a similar trend, whereas there is a 
much larger difference between immersive and non-immersive interfaces in route video sessions. 
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Between video types, spatial exploration using immersive devices is similar in the two types of videos, 
but compared to route videos, it grows in route videos with non-immersive devices. 

 
Figure 5.5. Histogram of spatial exploration of the 846 sessions with 𝑒𝑡 ≥ 0.01 by video type and interface used, 
relative to the number of sessions per interface, with bins of size 10 degrees. 

We tested the difference in spatial exploration between groups with a series of Mann-Whitney’s U 
tests, as the Shapiro-Wilk test for normality was rejected (𝑝 < 0.001). The rank-biserial correlation (𝑟 ) 
is reported as a measure of effect size. Under the null hypotheses 𝐻0, the distribution of 𝑒𝑠 between 
two categories of video sessions are drawn from the same underlying distribution, while under the 
alternative hypotheses 𝐻1, they are drawn from different distributions. 

 
Figure 5.6. Cumulative Distribution Function of spatial exploration of the 846 sessions with 𝑒𝑡 ≥ 0.01 by video 
type and interface used. 

In point videos, we could reject 𝐻0 at 𝛼 = 0.05 between pc and oc (𝑁𝑝𝑐 = 107, 𝑁𝑜𝑐 = 153, 𝑈 = 6050.0, 
𝑝 < 0.001, 𝑟 = −0.261), between pc and mv (𝑁𝑝𝑐 = 107, 𝑁𝑚𝑣 = 100, 𝑈 = 7232.0, 𝑝 < 0.001, 𝑟 = 0.352) 
and between mb and mv (𝑁𝑚𝑏 = 86, 𝑁𝑚𝑣 = 100, 𝑈 = 5494.0, 𝑝 = 0.001, 𝑟 = 0.278). In route videos, the 
differences between immersive and non-immersive devices are very evident and significant: between 
pc and oc (𝑁𝑝𝑐 = 101, 𝑁𝑜𝑐 = 131, 𝑈 = 3708.0, 𝑝 < 0.001, , 𝑟 = −0.439), between oc and mb (𝑁𝑜𝑐 = 131, 
𝑁𝑚𝑏 = 80, 𝑈 = 3291.0, 𝑝 < 0.001, 𝑟 = −0.372), between mb and mv (𝑁𝑚𝑏 = 80, 𝑁𝑚𝑣 = 88, 𝑈 = 4880.0, 
𝑝 < 0.001, 𝑟 = 0.386), and between pc and mv (𝑁𝑝𝑐 = 101, 𝑁𝑜𝑐 = 88, 𝑈 = 2453.0, 𝑝 < 0.001, 𝑟 = −0.448). 
All of these results would still be significant under Bonferroni’s correction with 16 repetitions, at 𝛼 =
0.003. 
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Between video types, there is not a significant difference in 𝑒𝑡  with immersive devices, but it is 
significant with non-immersive devices: with pc (𝑁𝑝 = 107 , 𝑁𝑟 = 101 , 𝑈 = 4257.0 , 𝑝 = 0.005 , 𝑟 =
0.212) and with mb (𝑁𝑝 = 86, 𝑁𝑟 = 80, 𝑈 = 2645.0, 𝑝 = 0.008, 𝑟 = 0.231). This differences in mv and mb 
may not be significant under Bonferroni’s correction with 16 repetitions, at 𝛼 = 0.003. 

We can observe that sessions with immersive devices explore the 360-degree space approximately 
equally in both kinds of video and that video sessions made with immersive interfaces explore less 
space than those made with non-immersive devices. We understand that users of immersive devices 
have to perform a physical effort to turn around, so this action is less likely to be performed in great 
extents than with a non-immersive interface, while the opposite may be true for short movements, 
this does offer an explanation concerning the full exploration of the space of a 360-degree video. 

We can now continue our answer of RQ1 (Is spatiotemporal exploration the same across devices and 
video types?): spatial exploration is significantly different in point videos between some devices and 
it is not between some others, while in route videos, it is significantly different between immersive 
and non-immersive devices. Between video types, it is not significant with immersive devices, but it 
is with non-immersive devices. 

5.3.3. Relationship between temporal and spatial exploration 

Once spatial and temporal exploration have been analyzed separately, they should be analyzed 
together. 

Figure 5.7 contains a scatter plot of both measures per video type and device. It is interesting to note 
the maximum exploration values in both dimensions in the top and right sides of each plot, as expected 
per previous analysis, but a cluster in the lower-left corner in both video types, especially in point 
video sessions, with 𝑒𝑡 ∈ [0,0.5) and 𝑒𝑠 ∈ [0,140) can also be observed. This cluster, although more 
visible now, can be explained by previous analysis: point videos act as gateways to quickly navigate 
to other videos, in many cases with low spatiotemporal exploration. 

 

Figure 5.7. Scatter plot of spatial exploration and temporal exploration of the 846 sessions with 𝑒𝑡 ≥
0.01 by video type and interface used. 

The Spearman’s rank correlation coefficient has been calculated between spatial and temporal 
exploration for each video type and device (see Table 5.3). Correlation coefficients are reported 
between 0.35 and 0.54, with 𝑝 < 0.001 in all the cases. This suggests there is a statistically significant 
moderate correlation between temporal and spatial exploration. Correlation using immersive 
interfaces is similar between video types: 𝜌𝑝,𝑜𝑐 = 0.43 , 𝜌𝑟 ,𝑜𝑐 = 0.43  and 𝜌𝑝,𝑚𝑣 = 0.43 , 𝜌𝑟 ,𝑚𝑣 = 0.44 , 
whereas a difference has been noted in non-immersive interfaces: 𝜌𝑝,𝑝𝑐 = 0.54, 𝜌𝑟 ,𝑝𝑐 = 0.39 and 𝜌𝑝,𝑚𝑏 =
0.35, 𝜌𝑟 ,𝑚𝑏 = 0.39; in these last cases, the pc interface has a considerably greater correlation in point 
videos than in route videos, but the mb interface has a greater correlation in route videos than in point 
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videos. We attribute the similar behavior in immersive devices to the similarity in the interface and 
the physical constraints on the human body movements required to perform the exploration. 

Table 5.3. Correlation between spatial exploration and temporal exploration of the 846 sessions with 𝑒𝑡 ≥ 0.01 
by video type and interface used. 

Video type Device Spearman’s 𝝆 p-value 
point oc 0.4259 < 0.001  
point pc 0.5381 < 0.001  
point mb 0.3538 < 0.001  
point mv 0.4087 < 0.001  
route oc 0.4255 < 0.001  
route pc 0.3932 < 0.001  
route mb 0.4539 < 0.001  
route mv 0.4421 < 0.001  

Finally, we can complete our answer on RQ1 (Is spatiotemporal exploration the same across devices 
and video types?): there is a statistically significant moderate correlation between temporal and spatial 
exploration in all the cases. We observed that this correlation is similar between video types with 
immersive devices, while with non-immersive devices, there is variation in correlation between video 
types. 

5.4. Dispersion of the orientation 

In this section, to answer RQ2 (Is the dispersion of observed viewport centers similar across devices 
and video types?), we continue the analysis we began in section 3.6.6 to measure the dispersion of the 
orientations recorded by video type and device used. We already explained in section 3.6.6 how we 
obtained two measures of dispersion and that there were evident differences between video types, 
which were not so evident between devices (Table 3.9). 

 
Figure 5.8. Distribution of the orientation in all the frames per video type and device used to play it. 

The orientation of these frames per video type and device is plotted in Figure 5.8. The longitude is 
normalized in the range [−180, 180). While in all the cases the orientation around (0,0) is the most 
common, we can notice an evident difference between point and route videos, already discussed in 
section 3.6.6: orientation in route videos is more concentrated than in point videos. 

To test the significance of the difference in dispersion between samples and the centroids (see Table 
5.4), we calculated the distribution of the distance between these values (in which 𝑠′ is based (3.4)) and 
ran a series of Welch’s t-tests between devices in the same video type and between video types with 
the same device, which are reported in Table 5.5. Cohen’s 𝑑 is reported as a measure of effect size. The 
null hypotheses 𝐻0 are set that there is no difference in mean distance between the samples and their 
centroid between two sets of data a and b in a same group (e.g.: between oc and mb in point videos). 
The alternate hypotheses 𝐻1 are set that there is a significant difference between that mean distance. 

We can observe how in almost all the cases, the difference in the mean distance is significant between 
sets. It is only non-significant in route videos between mb and mv (𝑝 = 0.66). In all the other cases, 
the null hypotheses can be rejected at 𝛼 = 0.05. As we expected, the difference in a device between 
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video types (the last four rows in Table 5.5) is significant. We can observe that the effect sizes are 
medium or large when we compare video types, and that they are only cases in which they are medium 
when devices are compared are in point videos between oc and mv, mb and mv, and pv and mv. 

Table 5.4. Centroids of the orientations and average distance between the orientations and these centroids 
grouped by video type and device. 

Video type Device Centroid Avg. distance 
point oc (−11.71,4.02)  62.65 
point pc (−6.65,9.85)  65.40 
point mb (−6.91,14.71)  67.84 
point mv (−15.49,2.16)  53.74 
route oc (−12.04, −1.68)  37.97 
route pc (−6.82, −2.57)  33.25 
route mb (−5.01, −1.02)  34.58 
route mv (−11.53, −9.85)  34.83 

These results show us how the differences in average distance in Table 5.4 are significant in all the 
cases except in route videos between mb and mv, so the considerable difference between video types 
is significant and between interfaces it is also significant except in that case: we can observe how in 
point videos orientation with non-immersive interfaces are more disperse than with immersive 
devices, while in route videos the opposite appears to be true. These results are consistent with the 
difference in standard deviation of the longitude reported in section 5.2. 

We should consider that the repetition of the experiments increases the chance of error type I, so if 
we apply a Bonferroni correction with 16 repetitions, we should consider 𝛼 = 0.003, we may no longer 
reject the differences in point videos between oc and pc, mb and pc, and in route videos between mb 
and pc. 

Table 5.5. Results of the Welch’s t-tests applied to the distribution of the distance between observations and 
their centroid, grouped by video type and device. 

Group 𝒂  𝒃  𝑵𝒂  𝑵𝒃   𝒕  𝒑  𝒅  
point oc mb 5290 3242 -5.4421 <  0.001  -0.122 
point oc pc 5290 2556 -2.5371 0.011 -0.063 
point oc mv 5290 3589 10.5655 <  0.001  0.223 
point mb pc 3242 2556 2.0499 0.040 0.055 
point mb mv 3242 3589 14.3919 <  0.001  0.352 
point pc mv 2556 3589 10.5447 <  0.001  0.283 
route oc mb 15456 7689 6.5404 <  0.001  0.087 
route oc pc 15456 10057 9.7276 <  0.001  0.121 
route oc mv 15456 8405 6.1477 <  0.001  0.080 
route mb pc 7689 10057 2.4703 0.014 0.037 
route mb mv 7689 8405 -0.4401 0.660 -0.007 
route pc mv 10057 8405 -2.9676 0.003 -0.044 
oc point route 5290 15456 37.3012 <  0.001  0.602 
pc point route 2556 10057 32.6584 <  0.001  0.842 
mb point route 3242 7689 38.6724 <  0.001  0.881 
mv point route 3589 8405 25.8534 <  0.001  0.522 

With this knowledge, we can answer RQ2 (Is the dispersion of observed viewport centers similar 
across devices and video types?): the average dispersion between video types is significantly different 
in a given device (greater in point videos than in route videos) and the dispersion between devices is 
also significantly different except in route videos between mb and mv. 

5.5. Angular movement in segments 

One of the key aspects in adaptive streaming is the length of the segments of the video in which 
quality changes can happen. For this reason, in this section we calculate, in a segment, the distance 
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between the orientations in that segment and the orientation at the start of the segment, which would 
give us a measure of how much the user moved during that segment. This will help us answer RQ3 
(Is movement performed with the same magnitude across devices and video types?). 

The viewport movement of a session is defined with an arbitrary segment length. Segment lengths of 
𝐾 = {4,8,12,20} frames (1, 2, 3, 5 seconds) have been used in [47]. Given a segment length 𝑘 ∈ 𝐾 , 
segments of a session 𝑠 are defined as 𝐸𝑠

𝑘 = {𝑒𝑖}𝑖=0
𝑁−1, 𝑁 = 𝑠𝑙𝑒𝑛𝑔𝑡ℎ ⋅ 4 − 𝑘 + 1 (as there are four frames per 

second) and each segment 𝑒𝑖 ∈ 𝐸𝑠
𝑘  contains the following frames: 𝑒𝑖 = {𝑓𝑖+𝑗}𝑗=0

𝑘−1
∈ 𝑠. 

 𝑚(𝑒𝑖) = max
0<𝑗<𝑘

𝑑(𝑓0, 𝑓𝑗) (5.3) 

The movement in a segment (5.3) is defined as the maximum great circle distance 𝑑 (3.1) between 
viewport centers between the first frame in the segment and any others. Note that movement in 
opposite directions in a segment cancels out: e.g., a user starts at an initial orientation (0,0), moves to 
(0,15) in the second frame and then to (0,0) again, although the total movement is 20 degrees, the 
maximum distance is 15 degrees. 

Table 5.6. Distribution across video type and device of the 775 video sessions. 

 oc pc mb mv 
point 131 91 80 90 
route 127 96 76 84 

A total of 775 sessions were considered in this study, as the sessions with less than 8 frames were 
filtered out for being too short. They are distributed across video type and device as described in Table 
5.6. 

 

Figure 5.9. Histogram of the observed movement in segments, bins of 5 degrees (left) and CDF of the 
median movement across segments in each session (right). 

Segments with low movement are the most observed, especially when using a short segment length, 
as shown in Figure 5.9 (left): it is expected that a user does not move constantly, but alternates 
segments in which they move and segments in which they do not. Larger segment lengths yield 
segments with greater movement. First, it is understandable that, while users are not perfectly still (at 
least when they use immersive devices, this may indeed happen when they use non-immersive 
devices), during most of their experience they perform little movement; second, as segment length 
grows, there is more room to perform movement in that window and obtain higher movement. 

To perform an analysis on the sessions themselves, the movement of their segments is aggregated to 
obtain the median movement in a session (5.4). 

 𝑚(𝑠) = median(𝑚(𝑒𝑖)), 𝑒𝑖 ∈ 𝑠 (5.4) 

We can observe the effect of the segment length in the median movement in a session in Figure 5.9 
(right): for segments of lengths 𝑘 ∈ {4,8,12,20} frames, 80% of the sessions showed a median movement 
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of less than {26,53,77,98} degrees, respectively. The increase in movement as segment length grows is 
expected as more movement is accounted for in each segment. This result is consistent with [47]. 

It can be observed that there is an almost perfect linear relationship in the first three segment lengths: 
in segments of length 𝑘 = 8 frames, users move twice as much as in segments of length 𝑘 = 4 frames 
and, similarly, in segments of length 𝑘 = 12  frames, the extent of movement is three times the 
observed in segments of length 𝑘 = 4. Segments of length 𝑘 = 20 frames do not follow this rule, with 
a median movement of 98 degrees, less than four times the movement in segments of length 𝑘 = 4 
frames. 

We can further analyze the median movement in video sessions grouping it by video type and device 
used to play the video, as shown in Figure 5.10. It can be observed that median movement in route 
video sessions is lower than in point video sessions and this difference increases as segment length 
grows (subfigures a-d). Across devices, median movement is similar in a given segment size in route 
video sessions, whereas median movement in point video sessions is more dispersed across devices. 

 
Figure 5.10. Cumulative Distribution Function of the observed median movement in video sessions, grouped 
by video type and device used, for segment lengths 𝑘 ∈ {4,8,12,20} frames in (a, b, c, d), respectively. 

We can observe the median movement averaged between sessions per segment length, on videos of 
the same type and made with the same device, in Table 5.7. We can first notice the difference between 
video types: average movement in point videos is almost double than in route videos. Then, the 
average of the median movement is consistent across devices in route videos but, in point videos, the 
pc interface shows the greatest average movement, followed by the oc interface and then by both 
mobile interfaces (mb and mv). From this, we can extract that, when a route video is played, users tend 
to let themselves be carried by the camera movement and typically perform a more passive role, while 
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they tend to move more in point videos, in which the content does not change for them, and the kind 
of device used to play these point videos influences the degree of that movement. 

Table 5.7. Summary of the average of the median movement in a session per segment length, video type and 
device used. 

Video type Device 𝐚𝐯𝐠𝒌=𝟒 𝐚𝐯𝐠𝒌=𝟖 𝐚𝐯𝐠𝒌=𝟏𝟐 𝐚𝐯𝐠𝒌=𝟐𝟎 
point oc 23.2680 45.6933 62.8396 78.3473 
point pc 33.5255 68.1666 86.7000 103.1732 
point mb 16.8941 33.4955 45.0474 67.5932 
point mv 15.6284 32.2099 49.1514 66.9930 
route oc 9.0558 20.1493 30.7367 43.6829 
route pc 8.9392 20.7932 28.6206 47.4430 
route mb 8.8716 18.9942 27.9672 38.7422 
route mv 9.1904 20.0761 28.0457 42.1717 

The pc interface shows a much greater average degree of movement than the rest. This can be 
explained by the ease of performing such movement through the mouse of a desktop computer, which 
is not bound by the physical constraints of a device that is worn on the physical body, which is the 
case of the immersive interfaces. The degree of that movement can be influenced by several things: 
the kind of interaction (drag or cursor fusing), the mouse sensitivity and the space available on the 
table. Since, in this experiment, the cursor fusing technique was used with moderately sensitive mouse 
and a reasonable amount of space was available on the table, it is understandable why these values 
are higher than the rest. 

The oc interface is next, with greater movement than the mobile interfaces in lower segment lengths 
but a similar degree of movement in greater segment lengths. It should be noted that although 
immersive interfaces (oculus and mobile visor) are constrained to the physical limitations of the 
human body and are expected to perform similarly, the movement described by this interface falls 
between that of the pc and mobile interfaces for lower segment lengths but approximates the 
movement of mv in higher segments lengths. A possible explanation for this can be that movement is 
quicker in oc than in the mv interface and that may be caused because users needed to hold their 
smartphone in a cardboard contraption with their own hands and, for this reason, they performed 
slower turns than in the oc interface, which is strapped on their heads and is held on place for them. 

Both mobile interfaces performed similarly: it was expected that the movement in mb to be similar to 
oc, and has been discussed in the previous paragraph, but it was not expected that the mb device, a 
drag interface similar to pc performed so differently. While similar, there are key differences in the 
user interface of the two non-immersive devices (pc and mb): first, the pc interface uses the cursor 
fusing technique, which allows for continuous movement without the need to repeatedly drag the 
cursor, whereas this is not an option in mb and the finger needs to be repeatedly dragged on the 
screen; second, the small size of the screen of the smartphone plays a role on the magnitude of the 
movement per action, as the finger needs a surface to drag on to register that movement on the mv 
interface, which was tuned for handheld devices. For these reasons, movement in mb is very different 
than in pc. 

A pairwise Kolmogorov-Smirnov test was performed on the sampled data from the navigation on the 
videos, refer Table 5.8 for the results of the test and Table 5.6 for the distribution of the 775 sessions 
by video type and device. By grouping the sessions by video type (column G), we can test whether the 
observed median movement from two devices (columns A and B) come from different underlying 
distributions. The null hypotheses 𝐻0 are set that both distributions of median movement come from 
the same underlying distribution. 

It can be observed that, for point videos, we can reject the null hypotheses at 𝛼 = 0.05 and conclude 
that, the movement performed using different interfaces came from different underlying distributions 
in many cases: between pc and oc, mb and pc, mv and pc. We can find it is not different between mb 
and mv. Other combinations may be significant at some values of 𝑘. We can infer from this that, in 
many cases, there is a difference in the movement between devices in point videos. 
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When we compare behavior in route videos, it is more difficult to reach a conclusion. We can reject 
𝐻0 between pc and oc at 𝑘 ∈ {4,8} and between mv and pc at 𝑘 = 8, but in the other cases, we cannot. 
What we can notice is how the difference (the D statistic) is the smallest when devices of the same 
type of immersivity are compared (pc with mb and oc with mv). 

Table 5.8. Results of the pairwise Kolmogorov-Smirnov test on the median movement in a session by segment 
size, video type and device used. The D statistic and the p-values are reported. 

G A B 𝑫𝒌=𝟒 𝒑𝒌=𝟒 𝑫𝒌=𝟖 𝒑𝒌=𝟖 𝑫𝒌=𝟏𝟐 𝒑𝒌=𝟏𝟐 𝑫𝒌=𝟐𝟎 𝒑𝒌=𝟐𝟎 
p pc oc 0.209 0.015* 0.287 0.000* 0.267 0.000* 0.353 0.000* 
p mb oc 0.188 0.051 0.255 0.002* 0.278 0.000* 0.184 0.058 
p mb pc 0.339 0.000* 0.467 0.000* 0.508 0.000* 0.476 0.000* 
p mv oc 0.212 0.014* 0.262 0.001* 0.205 0.019* 0.142 0.209 
p mv pc 0.373 0.000* 0.483 0.000* 0.470 0.000* 0.460 0.000* 
p mv mb 0.090 0.844 0.103 0.717 0.140 0.338 0.119 0.535 
r pc oc 0.206 0.016* 0.221 0.008* 0.172 0.068 0.132 0.267 
r mb oc 0.167 0.122 0.182 0.073 0.146 0.238 0.138 0.294 
r mb pc 0.104 0.697 0.116 0.566 0.094 0.807 0.125 0.480 
r mv oc 0.057 0.998 0.075 0.912 0.090 0.762 0.069 0.949 
r mv pc 0.192 0.063 0.210 0.033* 0.162 0.167 0.121 0.491 
r mv mb 0.167 0.186 0.201 0.067 0.163 0.210 0.143 0.347 
oc r p 0.435 0.000* 0.451 0.000* 0.428 0.000* 0.388 0.000* 
pc r p 0.614 0.000* 0.593 0.000* 0.604 0.000* 0.529 0.000* 
mb r p 0.372 0.000* 0.391 0.000* 0.359 0.000* 0.370 0.000* 
mv r p 0.334 0.000* 0.325 0.000* 0.391 0.000* 0.358 0.000* 

Finally, if we group the data by device (last four rows in Table 5.6), we can see how 𝐻0 can be rejected 
in all the cases: in a given device, movement is always statistically different between video types. 

We can now answer RQ3 (Is movement performed with the same magnitude across devices and video 
types?): the movement is not performed with the same magnitude between video types with a given 
device, arriving to the same conclusion as Corbillon et al. in [47], while between devices it is different 
in many cases in point videos, but it is similar in almost all cases between devices in route videos. In 
route videos, the smallest differences are when immersive and non-immersive devices are compared 
(pc with mb and oc with mv). 

5.6. Tracking of trajectories 

To answer RQ4 (Are trajectories followed in the same way across devices and video types?) we chose 
to apply a clustering algorithm to our dataset and compare its results (mainly, the average size of the 
clusters and the size of the largest cluster, in relative amounts) between video types and devices. We 
are also interested in comparing these results when devices are considered individually and all 
together. 

Rossi et al. [109] proposed a method for the clustering of users navigating 360º video content to 
quantitatively measure how many groups of users consistently share the same behavior over time. 
We implemented this method, based on the Bron-Kerbosch (BK) clique-finding algorithm [110], and 
analyzed our dataset with it. 

This algorithm identifies clusters of users that have a common viewport overlap over a time window. 
A distance between viewport centers 𝐺𝑡ℎ = 𝜋/10 = 18º is reported in overlaps of at least an 80% [109] 
and was found suitable as a threshold for this method. As we were more interested in measuring the 
differences in our data than in the results of different clustering algorithms, we considered only this 
method. 
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5.6.1. Frame-based clustering 

For each frame in a given video, an undirected graph, G, is built between all the visualizations available 
in that frame. An edge between two visualizations exists when the spherical distance between them 
is in the defined threshold, 𝐺𝑡ℎ (5.5), which are represented in the binary adjacency matrix, 𝑊𝑡 . 

 𝑤𝑡(𝑠𝑖, 𝑠𝑗) = {1, if 𝑑(𝑓𝑖
𝑡 , 𝑓𝑗

𝑡) ≤ 𝐺𝑡ℎ
0, otherwise

 (5.5) 

This graph is then fed to the clique-based clustering algorithm, which finds the list of clusters, C, 
ordered by descending size. Each cluster 𝑐 ∈ 𝐶  is a set that contains, iteratively, the observations which 
were cliques as defined by 𝑊𝑡  in what remains of the graph G, after removing the observations in each 
successive clique [109]. 

 
Figure 5.11. Result of the clustering in the frame 15 of the reproductions of two videos: (a) in p1, a point video 
and (b) in r1a, a route video, using a window of 𝑇 = 1 frame. Markers denote individual visualizations, and their 
colors indicate the calculated clusters. Lines between markers denote if their distance is less than the threshold 
𝐺𝑡ℎ (lighter gray) and if both markers belong to the same cluster (darker gray). 

A sample of the result of the clustering method can be seen in Figure 5.11, where it is applied frame 
by frame to the visualizations of each video and a specific frame of two videos (a point video (a) and 
a route video (b)) and a specific frame of each is represented in the graph. It can be observed that 
observations are much more disperse in the point video than in the route video, but it is difficult to 
quantify the number of clusters, the average observations per cluster or the ratio of observations that 
lie in the main cluster. 

We define the number of observations (N) in a specific point in time as the total amount of 
observations of which we have recorded their position for the last 𝜏  frames (in the case of a frame 
window of 𝑇 = 1 frame, 𝜏 = 1 frame). 

With these observations, we obtain the number of clusters (K) in a specific point in time (5.6). 

 𝐾 = |𝐶| (5.6) 

The size of the clusters (S) is the number of observations in each of the K clusters. We obtain its 
average (5.7) and standard deviation (5.8) values expressed as a fraction of N per each cluster. 

 𝑆𝑎𝑣𝑔 =
∑ |𝑐𝑖|

𝑁
𝐾
𝑖=0

𝐾
=

1
𝐾

 (5.7) 

 
𝑆𝑠𝑡𝑑 =

√

∑ (
|𝑐𝑖|
𝑁 − 𝑆𝑎𝑣𝑔)

2
𝐾
𝑖=0

𝐾 − 1
 

(5.8) 
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Finally, the main cluster (𝑐0) is the one that has the biggest size. We consider its size (M) a particular 
case to be discussed independently, also expressed as a fraction of N. As the algorithm lists the clusters 
in decreasing size, this is effectively the size of the first cluster (5.9). 

 𝑀 =
|𝑐0|
𝑁

 (5.9) 

Figure 5.12 and Figure 5.13 show these values for the two videos we previously discussed. It can be 
observed that the amount of clusters (K) quickly rises during the first 4 seconds, as users spread from 
their initial position, and then it decreases as the number of observations (N) decreases, more 
noticeably in the case of the point video (Figure 5.12 (a)) than in the route video (Figure 5.12 (b)). The 
average size of the clusters (S) quickly drops as the number of clusters (K) grows during the first 
seconds and slowly rises as both N and K decrease, but its standard deviation slowly grows after the 
first seconds in both videos (Figure 5.13). The size of the main cluster (M) also describes a quick descent 
in the few first seconds until it settles around 0.2 in the point video (Figure 5.13 (a)), while it varies 
more in the route video, between 0.2 and 0.4 (Figure 5.13 (b)). 

 
Figure 5.12. Plot of the number of clusters (K) and the number of observations (N) over time of the reproductions 
of a point video, p1 (a), and a route video, r1a (b), using a window of 𝑇 = 1 frame. 

 
Figure 5.13. Plot of the number of clusters (K), average and standard deviation of the size of the clusters as a 
fraction of N (S) and size of the main cluster as a fraction of N (M) over time of the reproductions of a point 
video, p1 (a), and a route video, r1a (b), using a window of 𝑇 = 1 frame. 

Keeping in mind that this is the clustering of the visualizations of two specific videos, we analyze and 
discuss these figures: first, it is expected that the number of clusters (K) quickly grows in the first few 
seconds, as users usually start their visualizations from the same orientation; second, it is also expected 
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that the amount of clusters (K) decreases as the number of available visualizations (N) decreases, as 
less visualizations mean less possible clusters to make, overall; third, it is expected that the average 
size of the clusters (𝑆𝑎𝑣𝑔) and the amount of size of the main cluster (M) are independent to the number 
of visualizations (N), as it is expressed as a fraction of that value, so it should remain constant; fourth, 
the average size of the clusters (𝑆𝑎𝑣𝑔) and the size of the main cluster (M) start in a high value for the 
same reason as the first point. 

Furthermore, we observe that there is a difference between the visualizations of both videos: while 
the amount of visualizations (N) follow a similar, descendent, pattern, the amount of clusters (K) in 
the point video drops following the descent of N, whereas in the route video, K has remained stable 
during most of the drop in N, so although the average size of the clusters (and thus the average number 
of clusters per user) is similar and even the size of the main cluster is larger in the route video than in 
the point video, when part of the users stopped watching the video, those that kept watching it 
maintained the number of clusters, so comparatively, visualizations in the point video are disperse 
and the number of clusters (K) tends to follow the evolution of the number of visualizations (K), 
whereas in the route video, visualizations are fixated around the central region of interest, which it 
alone warrants for a minimum amount of clusters, as seen in Figure 5.11 (b). 

Additionally, the average size of the clusters (𝑆𝑎𝑣𝑔) is similar between both videos, but its standard 
deviation is slightly larger in the route video, so clusters in the route video varied more in size. This 
is reasonable when we observe the size of the main cluster (M): with a median of 0.1875 in the point 
video and of 0.2835 in the route video, we can see that more visualizations were in the same place in 
the route video, resulting in a highly populated area, with larger clusters and those visualizations that 
rarely leave this area formed smaller clusters, whereas in the point video, the strength of this central 
area is not as strong, so visualizations navigate the space more freely. These results are consistent 
with [109]: they found between 12.10% and 25.90% of users belonged to the main cluster in the 
timelapse video (analogous to our p1, a point video) and between 30.50% and 57.70% belonged to the 
main cluster in the rollercoaster video (analogous to our r1a, a route video). 

 
Figure 5.14. Result of the application of the clustering method in the reproduction data of two videos, using 
sessions grouped per device that played that video, with a trajectory window of 𝑇 = 1 frame: (a) in p1, a point 
video and (b) in r1a, a route video. The number of visualizations (N), number of clusters (K), average size of 
clusters (S) and ratio of users in the main cluster (M) are reported over time, as well as their median value across 
time (horizontal lines). 
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If we group the visualizations per device that played each video, as in Figure 5.14, we first observe 
that values of N are effectively divided between the four different device interfaces. Despite this, we 
can observe a similar behavior to that of when the four devices were grouped together in the evolution 
of K over time, which was discussed before: in the point video (Figure 5.14 (a)), the descent follows 
the descent in N whereas that relationship is not as strong in the route video (Figure 5.14 (b)): in the 
point video, all interfaces follow a similar evolution of K over time, but in the route video, the mb 
interface even grows in K during the latter part of the video. Regarding the average size of the clusters 
(𝑆𝑎𝑣𝑔 ), we can observe that in the point video (Figure 5.14 (a)), its evolution is consistent across 
interfaces, with very similar median values, while in the route video (Figure 5.14 (b)), we can see that 
the mb interface shows less 𝑆𝑎𝑣𝑔  than the others, as expected by what we just previously commented 
and oc shows more 𝑆𝑎𝑣𝑔 , possibly due to the drops in N, so the users that remained playing the video 
were looking at the region of interest. In Table 5.9 we can observe that median 𝑆𝑎𝑣𝑔  is fairly consistent 
per video in all devices except in the route video played with the oc device, while 𝑆𝑠𝑡𝑑  is higher in both 
cases when played with the oc device. Finally, the size of the main cluster (M) shows a greater variance 
but a similar evolution in the point video (Figure 5.14 (a)) for all the interfaces and in the route video 
(Figure 5.14 (b)) except for mb, which has lower M in the latter part, as expected. The median 𝑀  is 
greater in the point video for oc and mb, while it is greater for pc and oc in the route video. In any case, 
𝑀  is greater in the route video for any interface than any interface in the point video. 

Table 5.9. Median values in Figure 5.14: number of visualizations (N), number of clusters (K), average size of 
clusters (𝑆𝑎𝑣𝑔), standard deviation of the size of clusters (𝑆𝑠𝑡𝑑 ) and ratio of users in the main cluster (M), for 
different devices in the reproductions of p1, a point video and r1a, a route video using a trajectory window of 
𝑇 = 1 frame. 

Video Type Device 𝑵  𝑲  𝑺𝒂𝒗𝒈  𝑺𝒔𝒕𝒅  𝑴 
p1 point pc 8.5 8.0 0.1250 0.0274 0.2000 
p1 point oc 14.0 9.5 0.1056 0.0638 0.2500 
p1 point mb 14.5 10.0 0.1000 0.0583 0.2554 
p1 point mv 13.0 10.0 0.1000 0.0475 0.2000 
r1a route pc 9.0 6.0 0.1667 0.1286 0.4222 
r1a route oc 7.0 4.0 0.2500 0.1368 0.4286 
r1a route mb 9.0 7.0 0.1429 0.0819 0.3077 
r1a route mv 8.0 6.0 0.1667 0.0927 0.3333 

The clustering method was applied to all the videos and its results are reported in Table 5.10 in those 
cases in which 𝑁 ≥ 10. The aggregated values were obtained from all the individual samples through 
all the videos, not aggregated per video and then again across videos. We can observe how the average 
size of the clusters (𝑆𝑎𝑣𝑔) tends to be higher in average in route videos than in point videos, and the 
same can be said of the size of the main cluster (𝑀). 

Table 5.10. Average and standard deviation across all the videos of the results of the results of the frame-based 
clustering method with 𝑇 = 1 when 𝑁 ≥ 10, grouped by video type and device. 

Video 
type Device L 

Average Standard deviation 
𝑵   𝑺𝒂𝒗𝒈   𝑺𝒔𝒕𝒅   𝑴  𝑵   𝑺𝒂𝒗𝒈   𝑺𝒔𝒕𝒅   𝑴  

p all 393 36.05 0.07 0.05 0.21 22.15 0.03 0.04 0.1 
p oc 242 16.6 0.11 0.07 0.26 5.78 0.04 0.06 0.12 
p pc 88 14.56 0.15 0.1 0.3 4.6 0.12 0.12 0.19 
p mb 107 16.37 0.11 0.08 0.27 4.69 0.03 0.05 0.12 
p mv 172 14.61 0.12 0.08 0.27 4.14 0.06 0.07 0.15 
r all 1690 22.1 0.11 0.11 0.38 9.18 0.06 0.06 0.13 
r oc 474 13.38 0.17 0.15 0.45 2.43 0.09 0.08 0.15 
r pc 69 11.65 0.17 0.14 0.42 2.01 0.07 0.1 0.15 
r mb 68 11.56 0.16 0.13 0.4 1.53 0.05 0.07 0.13 
r mv 105 11.5 0.19 0.17 0.45 1.08 0.06 0.1 0.17 

We have identified some differences in the results of the clustering method between video types and 
devices. We leveraged Welch’s t-tests to evaluate the significance of these differences. Null hypotheses 
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𝐻0 are set as there is no difference in mean 𝑆𝑎𝑣𝑔  or 𝑀  between the results of applying the clustering 
method to reproductions of two different devices in the same video type or in two different video 
types with the same device. Note that here we only considered frames in which 𝑁 ≥ 10, so as not to 
take into account frames in which there were too few visualizations available. We can observe these 
results in Table 5.11, with p-values lower than 𝛼 = 0.05 are marked with an asterisk (*). 

Table 5.11. Results of the Welch’s t-tests on 𝑆𝑎𝑣𝑔  and 𝑀  between devices (A, B) grouped by video type (G) and 
between video types (A, B) grouped by device (G) for 𝑇 = 1, including the effect sizes (𝑑) and the length of the 
samples (L). 

𝑮  𝑨  𝑩  𝑳𝑨  𝑳𝑩  𝒕𝑺𝒂𝒗𝒈   𝒑𝑺𝒂𝒗𝒈   𝒅𝑺𝒂𝒗𝒈  𝒕𝑴   𝒑𝑴   𝒅𝑴  

p all oc 393 242 -13.4693 0.0* -1.1754 -6.0319 0.0* -0.5164 
p all pc 393 88 -5.6454 0.0* -1.2553 -4.1325 0.0001* -0.7167 
p all mb 393 107 -10.6344 0.0* -1.2279 -5.2475 0.0* -0.6286 
p all mv 393 172 -11.6677 0.0* -1.316 -4.8755 0.0* -0.5153 
p oc pc 242 88 -2.4953 0.0143* -0.4608 -1.4271 0.1563 -0.218 
p oc mb 242 107 0.5746 0.5661 0.0622 -0.6647 0.507 -0.0762 
p oc mv 242 172 -2.2922 0.0226* -0.2403 -0.2713 0.7863 -0.0279 
p pc mb 88 107 2.6475 0.0095* 0.4145 0.9456 0.346 0.1423 
p pc mv 88 172 1.5932 0.1141 0.2597 1.1831 0.2388 0.1691 
p mb mv 107 172 -2.5815 0.0104* -0.2859 0.343 0.7319 0.0401 
r all oc 1690 474 -12.1422 0.0* -0.813 -9.0262 0.0* -0.5235 
r all pc 1690 69 -5.9732 0.0* -0.9132 -2.0193 0.0472* -0.2918 
r all mb 1690 68 -7.1978 0.0* -0.8387 -1.4175 0.1606 -0.1766 
r all mv 1690 105 -13.8989 0.0* -1.3868 -4.5011 0.0* -0.5891 
r oc pc 474 69 0.1124 0.9107 0.0122 1.6619 0.1 0.211 
r oc mb 474 68 0.7832 0.4349 0.069 2.7796 0.0065* 0.3131 
r oc mv 474 105 -3.6439 0.0003* -0.2928 -0.3674 0.7139 -0.0423 
r pc mb 69 68 0.4573 0.6483 0.078 0.6229 0.5344 0.1063 
r pc mv 69 105 -2.5569 0.0118* -0.4168 -1.5841 0.1152 -0.2393 
r mb mv 68 105 -3.6804 0.0003* -0.5661 -2.3718 0.0188* -0.3473 
all p r 393 1690 -20.2978 0.0* -0.7971 -28.948 0.0* -1.4138 
oc p r 242 474 -11.0646 0.0* -0.7017 -17.427 0.0* -1.2832 
pc p r 88 69 -1.2971 0.1967 -0.1966 -4.3725 0.0* -0.6816 
mb p r 107 68 -7.0493 0.0* -1.202 -6.6702 0.0* -1.0496 
mv p r 172 105 -9.8883 0.0* -1.23 -9.3339 0.0* -1.1946 

In point videos, we can reject 𝐻0 when we compare all the devices are considered together with any 
of them with a large effect size on 𝑆𝑎𝑣𝑔  and a medium effect size on 𝑀 : all devices behave differently 
to the group of all the devices together; in the other cases, we can reject 𝐻0  on 𝑆𝑎𝑣𝑔  in select 
combinations: between oc and pc, oc and mv, pc and mb, mb and mv; we cannot reject 𝐻0 on 𝑆𝑎𝑣𝑔  in 
the rest of combinations nor in any combination on 𝑀 ; this means that the average relative size of the 
main cluster (𝑀 ) is not significantly different between devices: approximately the same relative 
amount of viewers were on the main cluster. 

In route videos, something similar happens when all the devices are considered, except when they are 
compared with mb, in which the difference in 𝑀  is not significant; in the other cases, we can reject 
𝐻0 on 𝑆𝑎𝑣𝑔  between oc and mv, pc and mv, mb and mv, and we can reject 𝐻0 on 𝑀  between oc and mb, 
mb and mv. In this case, there were some differences between devices in the size of the main cluster 
which were not significant in point videos. 

When we compare video types grouped by device, we can observe how we can reject all 𝐻0 except on 
𝑆𝑎𝑣𝑔  in pc. This means that the average size of clusters is different between video types with all the 
devices with at least medium effect sizes, except in pc, which shows a similar average size of clusters. 
In any case, the size of the main cluster is significantly different in all the cases, so the relative number 
of viewers in the main area of interest is larger in route videos than in point videos. 

As these t-tests were repeated 25 times for these combinations of variables, there is an increased 
chance of type I errors. Under Bonferroni’s correction, a significance level of 𝛼 = 0.002 should be 
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considered. Notably, the previously significant differences between one device and all of them are still 
significant, and the differences between point and route videos are still significant. 

5.6.2. Trajectory-based clustering 

To properly analyze trajectories, a time window is defined. During this time 𝑇 , the adjacency between 
two nodes is compared to a minimum threshold value 𝜏 . Two nodes will be connected if they have 
been adjacent, at least, during 𝜏  of the last 𝑇  frames, creating the affinity matrix that is then used in 
the clique-based algorithm (5.10). 

 𝑎𝑡(𝑠𝑖, 𝑠𝑗) = {1, if ∑ 𝑤𝑡(𝑠𝑖, 𝑠𝑗) ≥ 𝜏
𝑡

𝑢=min(0,𝑡−𝑇+1)
0, otherwise

 (5.10) 

This introduces two special considerations: first, it is impossible that there are connected nodes in the 
first 𝜏 − 1 frames, as enough data to pass the threshold is only available at frame 𝜏  and, when it does, 
this condition is so strong (as nodes need to be connected in all 𝜏  of 𝜏  frames) in the beginning, but it 
quickly relaxes as 𝑇  frames are available; and second, as sessions can start and end in any point in the 
video timeline, we had to be careful to only consider adjacencies between nodes in which both of them 
existed in at least 𝜏  frames. 

Table 5.12. Relation between the size of the trajectory window, 𝑇 , and the threshold, 𝜏 , applied to the clustering 
method. 

𝑻  1 4 8 12 20 
𝝉  1 3 6 9 15 

In [109], a trajectory window of 𝑇 = 3𝑠 and threshold 𝜏 = 1.8𝑠 is used. To maintain consistency with 
previous analysis and because our data is sampled four times per second, we express our windows in 
discrete number of frames, according to Table 5.12. In this case, we consider five window sizes, 
including one with 𝑇 = 𝜏 = 1 frame (this is the previously discussed frame-based clustering) and 
threshold values are calculated as 0.75 ⋅ 𝑇 , so the window with 𝑇 = 12 frames (3 seconds) is considered 
with threshold of 𝜏 = 9 frames (2.25 seconds). 

Table 5.13. Median values in Figure 5.15: number of visualizations (N), number of clusters (K), average size of 
clusters (𝑆𝑎𝑣𝑔), standard deviation of the size of clusters (𝑆𝑠𝑡𝑑 ) and ratio of users in the main cluster (M), for 
different trajectory windows (1, 4, 8, 12, 20 frames) in the reproductions of p1, a point video and r1a, a route 
video. 

Video Type T 𝑵  𝑲  𝑺𝒂𝒗𝒈  𝑺𝒔𝒕𝒅  𝑴 
p1 point 1 51.5 20.0 0.0500 0.0431 0.1875 
p1 point 4 50.0 26.0 0.0384 0.0327 0.1642 
p1 point 8 49.0 32.0 0.0313 0.0230 0.1304 
p1 point 12 48.0 32.0 0.0313 0.0234 0.1273 
p1 point 20 46.0 35.0 0.0286 0.0200 0.1154 
r1a route 1 33.5 15.0 0.0667 0.0697 0.2835 
r1a route 4 33.0 18.0 0.0556 0.0581 0.2500 
r1a route 8 33.0 20.0 0.0500 0.0455 0.2121 
r1a route 12 33.0 20.0 0.0500 0.0433 0.2075 
r1a route 20 32.0 21.0 0.0476 0.0391 0.1875 

After running the clustering method on these two videos for the time windows as specified in Table 
5.12, we can observe in Figure 5.15 the effect of the size of the time window in K, S and M in the 
visualizations of the previously discussed videos, while median values, plotted horizontally in Figure 
5.15, are specified in Table 5.13 

First, N is plotted in the first row: we can observe the descent of visualizations over time in the two 
videos and how N gets slightly lower as T grows: this is because for increasing values of T, the first 𝜏  
frames worth of visualizations cannot be considered, which have greater values of N and also because 
of visualizations that start late or end early, with less than 𝜏  frames available at a certain point. In any 
case, values of N are very similar across window lengths. 
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Figure 5.15. Result of the application of the clustering method in the reproduction data of two videos, using 
sessions with all devices that played that video, for different trajectory windows (1, 4, 8, 12, 20 frames): (a) in p1, 
a point video and (b) in r1a, a route video. The number of visualizations (N), number of clusters (K), average size 
of clusters (S) and ratio of users in the main cluster (M) are reported over time, as well as their median value 
across time (horizontal lines). 

The absolute number of clusters (K), in the second row, varies more across window sizes: we can 
observe that, for smaller values of T, it grows from a minimum value to the maximum in the first few 
seconds, as we discussed previously, but for larger values of T, it already begins at the maximum value. 
This is explained by the skipping of the first 𝜏  worth of data, in which visualizations are less disperse 
and, thus, less clusters are formed. In any case, for all the duration of the videos, the number of clusters 
is greater when T is larger. This is because a stronger trajectory (forced by 𝜏 ) is necessary to create a 
relation of adjacency. 

The average size of the clusters (𝑆𝑎𝑣𝑔) is plotted in the third row: 𝑇 = 1 shows the quick descent from 
its maximum (caused by the minimum K discussed before), but other window sizes perform similarly, 
with a slight grow towards the end of the video. As the number of visualizations (N) is relatively 
constant across window sizes and the number of clusters (K) grows with the size of the trajectory (T), 
the average size of the clusters (𝑆𝑎𝑣𝑔) turns smaller. Between video types, values of 𝑆𝑎𝑣𝑔  are similar. 

The standard deviation of the size of the clusters (𝑆𝑠𝑡𝑑 ), see Table 5.13, also turns smaller as the size of 
the trajectory (T) grows, but this time there is a difference between video types: cluster sizes are more 
disperse in the route video than in the point video. 

Finally, the size of the main cluster (M) is plotted in the fourth row and shows a similar behavior in 
the first portion of the videos, dropping from its maximum value in smaller window sizes, and also 
smaller values as the window size grows, but there are two key differences between both video types: 
first, M is larger in the route video, as most of the visualizations are in the same area of the 360-degree 
video, while in the point video, the visualizations are more disperse and will not belong to the main 
cluster. This also helps understand the difference in 𝑆𝑠𝑡𝑑 . Second, the relative size of the main cluster 
remains more or less constant for all the duration of the point video, while it shows a rise in the latter 
part of the route video, getting close to the 40% of the visualizations in the main cluster, as the number 
of remaining visualizations drops and most of them are in the area of interest. 
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We chose 𝑇 = 12 frames (3 seconds), with 𝜏 = 9 frames, to break down the results of the clustering 
method across devices. We can observe in Figure 5.16 the evolution of 𝑁 , 𝐾 , 𝑆𝑎𝑣𝑔  and 𝑀  over time and 
in Table 5.13 their median values. 

Table 5.14. Median values in Figure 5.16: number of visualizations (N), number of clusters (K), average size of 
clusters (𝑆𝑎𝑣𝑔), standard deviation of the size of clusters (𝑆𝑠𝑡𝑑 ) and ratio of users in the main cluster (M), for 
different devices in the reproductions of p1, a point video and r1a, a route video using a trajectory window of 
𝑇 = 12 frames (3 seconds). 

Video Type Device 𝑵  𝑲  𝑺𝒂𝒗𝒈  𝑺𝒔𝒕𝒅  𝑴 
p1 point pc 8.0 8.0 0.1250 0.0000 0.1818 
p1 point oc 14.0 10.0 0.1000 0.0499 0.2143 
p1 point mb 13.0 10.0 0.1000 0.0392 0.2000 
p1 point mv 13.0 11.0 0.0909 0.0333 0.1667 
r1a route pc 9.0 6.0 0.1667 0.0840 0.3333 
r1a route oc 7.0 5.0 0.2000 0.1155 0.4000 
r1a route mb 9.0 8.0 0.1250 0.0589 0.2500 
r1a route mv 8.0 7.0 0.1429 0.0630 0.2857 

The evolution of 𝑁  is very similar to that of when a time window with 𝑇 = 1 frame is applied. The 
number of clusters (𝐾 ) is also very similar, but instead of starting with very low values, as in 𝑇 = 1, it 
already starts at high values, as the first three seconds worth of exploration, in which the users leave 
their starting position, cannot be considered in 𝑇 = 12. 

 
Figure 5.16. Result of the application of the clustering method in the reproduction data of two videos, using 
sessions grouped per device that played that video, with a trajectory window of 𝑇 = 12 frames (3 seconds): (a) 
in p1, a point video and (b) in r1a, a route video. The number of visualizations (N), number of clusters (K), average 
size of clusters (S) and ratio of users in the main cluster (M) are reported over time, as well as their median value 
across time (horizontal lines). 

We can also appreciate, in the point video (Figure 5.16 (a)), the correlated descent of 𝐾  with 𝑁 , which 
is not that evident in the route video (Figure 5.16 (b)), as discussed previously. This time we can 
observe less spikes in the evolution of 𝐾 , as the trajectory window contributes to smooth the 
formation of clusters. 
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Regarding 𝑆𝑎𝑣𝑔 , we can observe it is closely related to the evolution of 𝐾  in both cases, and is very 
evident when the route video (Figure 5.16 (b)) is played with the oc device: two drops in 𝐾 , one in the 
middle of the reproduction and another in the end, cause a large growth in 𝑆𝑎𝑣𝑔  at these instants. As 
we can observe in Table 5.14, 𝑆𝑎𝑣𝑔  is consistent between devices in each video, except when the route 
video is played with oc, as what happened before. With 𝑇 = 12, clusters are more uniform, as 𝑆𝑠𝑡𝑑  is 
lower than with 𝑇 = 1, although the oc device has a high deviation, especially when the route video 
was played, probably due to the drop in 𝑁 , as many of the observers remained in the main cluster, 
resulting in a great difference between cluster sizes. 

Finally, we can observe the evolution of the size of the main cluster (𝑀), which is also smoother when 
𝑇 = 12 that it was when 𝑇 = 1. We can appreciate a growth in the latter part of the route video, as 𝑁  
decreases, as it is more likely that the remaining observers are in the area of interest, except in the 
case of the mb device, as discussed previously. 

The clustering method was applied to all the videos and its results are reported in Table 5.15 in those 
cases in which 𝑁 ≥ 10. The aggregated values were obtained from all the individual samples through 
all the videos, not aggregated per video and then again across videos. We can observe how the average 
size of the clusters (𝑆𝑎𝑣𝑔) tends to be higher in average in route videos than in point videos, and the 
same can be said of the size of the main cluster (𝑀), very similar to the results of the frame-based 
method (𝑇 = 1). 

Table 5.15. Average and standard deviation across all the videos of the results of the results of the trajectory-
based clustering method with 𝑇 = 12 when 𝑁 ≥ 10, grouped by video type and device. The number of samples 
is also reported (L). 

Video 
type Device L 

Average Standard deviation 
𝑵   𝑺𝒂𝒗𝒈   𝑺𝒔𝒕𝒅   𝑴  𝑵   𝑺𝒂𝒗𝒈   𝑺𝒔𝒕𝒅   𝑴  

p all 351 31.84 0.05 0.02 0.13 18.44 0.03 0.01 0.05 
p oc 199 15.08 0.08 0.02 0.15 4.34 0.02 0.02 0.06 
p pc 45 13.73 0.08 0.02 0.15 2.46 0.01 0.01 0.05 
p mb 83 15.37 0.09 0.04 0.19 3.7 0.02 0.02 0.06 
p mv 122 14.22 0.09 0.04 0.18 3.56 0.03 0.03 0.08 
r all 1589 21.67 0.09 0.08 0.31 8.66 0.03 0.03 0.1 
r oc 432 13.33 0.13 0.11 0.37 2.37 0.04 0.06 0.15 
r pc 41 11.73 0.12 0.07 0.29 1.63 0.01 0.02 0.05 
r mb 49 11.43 0.13 0.09 0.34 1.21 0.02 0.03 0.07 
r mv 84 11.29 0.15 0.12 0.38 0.82 0.04 0.08 0.17 

To evaluate the significance of the differences in the results of the trajectory-based clustering method 
between devices and video types, we used a series of Welch’s t-tests. Null hypotheses 𝐻0 are set as 
there is no difference in mean 𝑆𝑎𝑣𝑔  or 𝑀  between the results of applying the clustering method to 
reproductions of two different devices in the same video type or in two different video types with the 
same device. A trajectory window of 𝑇 = 12 frames (3 seconds) was chosen and as with the analysis 
on the frame-based approach, we only considered frames in which 𝑁 ≥ 10, so as not to consider 
frames in which there were too few visualizations available. We can observe these results in Table 
5.16, with p-values lower than 𝛼 = 0.05 are marked with an asterisk (*). 

In point videos, we can reject 𝐻0 when we compare the case when all the devices are considered 
together with any of them: all devices behave differently to the group of all the devices together, with 
large effect sizes on 𝑆𝑎𝑣𝑔  and mixed effect sizes on 𝑀 ; in the other cases, we can reject 𝐻0 on 𝑆𝑎𝑣𝑔  
between oc and mb, oc and mv, pc and mv; we cannot reject 𝐻0 on 𝑆𝑎𝑣𝑔  in the rest of combinations, 
while on 𝑀  we can reject 𝐻0 in these cases plus between pc and mb. While in a frame-based clustering, 
differences in 𝑀  were not significant in point videos, they were with a window of 𝑇 = 12 frames. 

In route videos, 𝐻0 can also be rejected in all the cases when all the devices are compared with any of 
them, with large effect sizes on 𝑆𝑎𝑣𝑔  and mixed effect sizes on 𝑀 ; in the other cases, we can reject 𝐻0 
on 𝑆𝑎𝑣𝑔  in all the cases but between oc and mb and 𝐻0 can be rejected on 𝑀  in all the cases except 
between oc and mv, mb and mv. In this case, there are some differences between devices in the size of 
the main cluster which were not significant in point videos. 
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Table 5.16. Results of the Welch’s t-tests on 𝑆𝑎𝑣𝑔  and 𝑀  between devices (A, B) grouped by video type (G) and 
between video types (A, B) grouped by device (G) for 𝑇 = 12, including the effect sizes (𝑑) and the length of the 
samples (L). 

𝑮  𝑨  𝑩  𝑳𝑨  𝑳𝑩  𝒕𝑺𝒂𝒗𝒈   𝒑𝑺𝒂𝒗𝒈   𝒅𝑺𝒂𝒗𝒈  𝒕𝑴   𝒑𝑴   𝒅𝑴  

p all oc 351 199 -15.2401 0.0* -1.2754 -3.8394 0.0001* -0.3561 
p all pc 351 45 -12.1377 0.0* -1.2721 -3.4609 0.001* -0.5425 
p all mb 351 83 -16.763 0.0* -1.5244 -8.7102 0.0* -1.2558 
p all mv 351 122 -14.1958 0.0* -1.5 -5.9237 0.0* -0.8013 
p oc pc 199 45 -0.3029 0.7627 -0.0405 -0.9582 0.3411 -0.1418 
p oc mb 199 83 -2.7086 0.0073* -0.3154 -5.7634 0.0* -0.7887 
p oc mv 199 122 -2.8901 0.0042* -0.3506 -3.4161 0.0008* -0.4306 
p pc mb 45 83 -1.906 0.0597 -0.3471 -3.8722 0.0002* -0.6594 
p pc mv 45 122 -2.2417 0.0266* -0.3069 -2.0806 0.0393* -0.284 
p mb mv 83 122 -0.6564 0.5123 -0.0853 1.6201 0.1068 0.2185 
r all oc 1589 432 -20.0478 0.0* -1.3077 -8.1773 0.0* -0.5391 
r all pc 1589 41 -15.8176 0.0* -1.0747 2.1324 0.0379* 0.1633 
r all mb 1589 49 -18.7918 0.0* -1.6331 -3.3116 0.0017* -0.3452 
r all mv 1589 84 -15.5419 0.0* -2.2924 -3.7136 0.0004* -0.6447 
r oc pc 432 41 4.0272 0.0001* 0.276 7.6479 0.0* 0.5547 
r oc mb 432 49 -1.7457 0.0833 -0.1391 2.0748 0.0406* 0.1847 
r oc mv 432 84 -5.5789 0.0* -0.6558 -0.4012 0.689 -0.0528 
r pc mb 41 49 -5.3586 0.0* -1.099 -4.0912 0.0001* -0.8351 
r pc mv 41 84 -7.9278 0.0* -1.1192 -4.3207 0.0* -0.6067 
r mb mv 49 84 -4.2609 0.0* -0.6357 -1.6015 0.1118 -0.2393 
all p r 351 1589 -22.899 0.0* -1.2632 -49.2256 0.0* -1.8701 
oc p r 199 432 -18.9533 0.0* -1.3106 -27.4594 0.0* -1.7738 
pc p r 45 41 -12.1444 0.0* -2.5911 -13.3703 0.0* -2.8871 
mb p r 83 49 -15.43 0.0* -2.8191 -12.0777 0.0* -2.2589 
mv p r 122 84 -13.1158 0.0* -1.9962 -10.0519 0.0* -1.5959 

When we compare video types grouped by device, we can observe how we can reject all 𝐻0 with large 
effect sizes. This means that the average size of clusters is different between video types with all the 
devices and that the size of the main cluster is significantly different in all the cases, so the relative 
number of viewers in the main area of interest is larger in route videos than in point videos. 

Again, under Bonferroni’s correction with  5 repetitions, a significance level 𝛼 = 0.002 should be 
considered. Some previously significant differences between devices in point and route videos may 
not be significant under this correction, but the differences between all the devices and a given device 
in both point and route videos are still significant (except on 𝑀  in route videos between all the devices 
and pc) and the differences between video types are still significant in each of the device groups 
considered. 

We have observed some differences in the results between the frame-based and the trajectory-based 
approaches. For example, we obtained significant differences in 𝑀  in point videos in route videos 
which could not be obtained in the frame-based approach, while some similitudes in route videos were 
kept. 

After this analysis, we can answer RQ4 (Are trajectories followed in the same way across devices and 
video types?): we can strongly affirm that trajectories are not followed in the same way between video 
types, arriving to the same conclusion as Rossi et al. in [109]. Between devices, while the differences 
between individual devices are significant in some cases and non-significant in other cases, the results 
when all the devices are considered together are worse than when they are considered individually: 
the average size of the clusters and the size of the main cluster are smaller when the devices are mixed 
than when they are processed individually. 



Chapter 5. Analysis of user behavior in a multi-device 360-degree hypervideo 

78 

5.7. Conclusion 

An initial exploratory analysis reported that users of immersive devices tend to look around five 
degrees of latitude lower than users of non-immersive interfaces. We reported how users of non-
immersive devices tend make complete turns in longitude more than those of immersive interfaces. 
We showed how deviation in longitude was higher in point videos than in route videos and that in 
point videos, deviation in longitude with non-immersive interfaces was higher than with immersive 
devices, while the opposite was true in route videos. 

We have found that the temporal exploration of video sessions of the same type may not be equal 
with all the devices: users of the pc interface viewed point videos during less time than with the other 
devices and users of the pc interface viewed route videos during less time than with the oc interface; 
the difference between the rest of the video types was not significant. Between video types, route 
videos were significantly more explored than point videos with all the devices. 

We understand that the familiarity of the users with the pc interface made the participants more eager 
to select hyperlinks (and it was easier) which made them skip parts of the 360-degree videos. On the 
other hand, users of the oc interface tended to consume 360-degree videos during more time, possibly 
because of the immersion that the device provides. The lower temporal exploration of point videos 
can be attributed to their function to navigate to other videos, so they could be skipped quickly by 
some users. 

Spatial exploration in immersive devices tends to be lower than when non-immersive devices are used. 
In point videos, this difference between immersive and non-immersive devices is statistically 
significant except between oc and mb, while in route videos, it is always significant. 

While changes of orientation short in distance may be performed very naturally with immersive 
devices, we understand that non-immersive interfaces may introduce an advantage in spatial 
exploration, as it may be easier to simply move the mouse or drag a touchscreen than to turn around 
one’s body and head. 

We found that temporal and spatial exploration are significantly moderately correlated. We observed 
that these values of correlation differ by device used to play the videos and that with immersive 
devices, the correlation is similar between video types, while it is dissimilar when non-immersive 
devices are used. The design of the interaction must play a role in this, as interaction with immersive 
devices is restricted by physical movement of the users’ body, while in non-immersive devices, 
interaction is performed through peripherals like a touchscreen or a computer mouse, which are not 
as natural. VR fatigue [111] is also likely to play a role in the eagerness of exploration and should be 
studied. 

We analyzed the dispersion of the orientation of the users, which resulted in significantly greater 
dispersion in point videos than in route videos per device. In point videos, orientation with non-
immersive interfaces was significantly more disperse than with immersive devices, while the opposite 
was true in route videos (except between mb and mv). 

After calculating the users’ movement in segments of lengths between one and five seconds, we found 
it to be significantly larger in point videos than in route videos. We found, in point videos, significant 
difference in movement between most devices (except between mb and mv), while in route videos the 
differences were much slimmer, and significant in only a few cases, but we found how, in route videos, 
there is very little difference between devices of the same immersivity (between pc and mb and 
between oc and mv). This shows us how in some cases, there are differences in behavior between 
devices and how, in other cases, this behavior is similar. Particularly, movement in pc was found to be 
more erratic than with the other devices and is thought to be caused by the ease to make large changes 
of orientation with a simple movement, compared with the other devices. 

A clustering method was applied on the reproductions of each video, considering each device by its 
own and all of them together. The results, the distribution over the duration of the video of the average 
size of the clusters relative to the number of viewers and the size of the main cluster, were obtained 
per different trajectory lengths. We observed significant differences between video types in these 
values with a given device and also between some combinations of devices in a given video type. We 
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observed that immersive interfaces (oc and mv) perform similarly in route videos, while they do not 
in point videos. We finally observed how the results got significantly worse when all the devices were 
considered together, so while behavior may be similar between devices, they definitely do not follow 
the same trajectories in the same way. 

In the end, we have shown how user behavior is different in 360-degree videos according to the 
context of the session. We confirmed that the type of video plays a major role in that difference, with 
behavior more disperse in point videos than in route videos. The behavior per device differs, but in 
general users of the pc interface were able to make quicker, larger movements with the mouse, which 
were more limited to perform on the touchscreen of mb. Behavior in immersive devices was usually 
similar, due to the similarity of the interfaces and the physical limitations that they impose on the 
wearer of the headset. 

We have obtained important insight from this study, as follows. As viewers are almost always centered 
in the middle latitudes, points of interest should be avoided in other places. Similarly, we have seen 
that users do not typically explore the sides of route videos, but look forward, so points of interest 
should be placed in that direction. We observed that users of immersive devices are more eager to 
spatially explore the content, so users of non-immersive interfaces may need some sort of 
encouragement to direct their attention to other parts of the video if that is wanted. We observed the 
average movement in segments of a given size, which gives us an idea of how much a user’s 
orientation moves in a given window. This information, and the fact that varies by video type and 
device, is an important finding for the prediction of future orientations, as the magnitude of the change 
over time of that measure will differ according to what we found. Finally, as we analyzed the clustering 
of the users, we found that users of different devices do not always behave in the same way, which is 
a concern for saliency-based prediction techniques [43]. 

The differences we found will be used in the next chapter, in which we will classify the user behavior 
into the context variables (video type and device), and we will use them to improve a technique to 
predict future orientations. 
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Chapter 6. Improvement of viewport prediction 
in 360-degree videos 
In this chapter, we study the effect that can have the knowledge of the context of a trajectory in the 
prediction of future viewports in a 360-degree video reproduction. 

As we have already analyzed in Chapter 5, we noticed that users behave differently across two 
contextual variables: the video type (point or route) and the device used to play it (Oculus, Mobile, 
Mobile visor or PC). 

Based on the data reported in section 5.1, we set two experiments. First, we will obtain what we already 
know: given a trajectory of orientations in a 360-degree video, can we determine the context of that 
trajectory? Second, can we improve a technique to predict future orientations in the trajectory 
leveraging the context of that trajectory? 

As we previously introduced in section 2.7, Deep Learning techniques are used to predict future values 
in time series like the trajectory of the orientations of users in 360-degree videos. Deep Learning can 
also be used to classify data into labels. For these reasons, it seems that these techniques may be useful 
to pursue our objectives in this chapter. 

We will first try to classify the trajectories into the context, with a goal of an accuracy of 90%. Then, 
to determine if we can improve a prediction technique if we leverage the context of the trajectory, we 
formulate these research questions: 

RQ1. Can we predict future orientations with neural network models? 
RQ2. Can we achieve better results with more data (higher values of L)? 
RQ3. Does a neural network model improve its results if only samples with the same video type 

and device are used? 
RQ4. Does a neural network model improve its results when the information about which video 

type and device were used are included? 
RQ5. Do these results differ by video type and device used to play the videos? 

In the following section, we will report the study on the classification problem and in the next section, 
we will expose the analysis on the prediction of future orientations. We end this chapter with a 
conclusion of both issues. 

6.1. Classification of the reproductions 

The objective of this study is to classify the trajectories of the orientations obtained in the 
reproductions of 360-degree videos into the contextual variables we have recorded (video type and 
device used in the reproduction of the spherical video). 

We performed three experiments, with deep learning models, which are reported in the following 
subsections. 

6.1.1. Densely connected model on the movement in a segment 

We perform our first experiment with the same data used to analyze the angular distance of the 
sessions in 5.5: each session is divided in segments of 𝐿 ∈ {4, 8, 12, 20} frames (1, 2, 3, 5 seconds 
respectively) and the maximum angular distance described by the viewport center from the start of 
the segment is annotated (5.3). In this first experiment we consider 𝐿 = 4. The 14210 segments are 
distributed as described in Table 6.1. 
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Table 6.1. Number of samples per category in the classification by movement in a segment. 

 pc oc mb mv total 
point 687 1345 821 911 3764 
route 2524 3884 1927 2111 10446 
total 3211 5229 2748 3022 14210 

Since there is an imbalance between groups, we draw an equal number of samples of all groups, limited 
by the size of the smallest one. So, to classify the video type, 3764 samples of both types were used, 
while to classify the device used to play the videos, 2748 samples of each device were considered. A 
80-20 split between training and testing was used, following [76]: 20% of these samples are randomly 
reserved to evaluate the model, another 16% (20% of the remaining 80%) are destined for the validation 
process and the remaining 64% are used to train the model. 

 
Figure 6.1. Summary of the neural network model used in the classification by movement in a segment. 

Each of these segments constitutes a sample. The single feature, the angular movement in the segment, 
is a real value in the range [0,180]. Each sample is labeled with the kind of video which was played 
(two values) or the device used to play it (four values). These categorical labels are one-hot encoded 
to be able to be fed into the network. This way, the shape of the features is (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, ) and the shape 
of the labels is (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠). 

 
Figure 6.2. Evolution of the training and testing processes of the densely connected model to classify the video 
type from the movement in segments of 𝐿 = 4. 

A sequential model is built in Keras24 as follows (see Figure 6.1): the samples are fed in batches of 32 
samples into two successive densely-connected layers of 80 nodes activated by the relu funcion, 
followed by a dropout layer at 10%, with a final dense layer of labels nodes, as much as labels are 
considered in the experiment (two to classify the video type, four to classify the device used to play 
the video). 

The adam optimizer is chosen and categorical crossentropy is used as the loss function. We measure 
the accuracy of the model as our metric, as the groups are balanced. 

After 50 epochs, this model achieved an accuracy of 65.76% to classify the video type and 31.61% to 
classify the device used to play the video. With longer segment lengths (𝐿 ∈ {8, 12, 20}), the results 
were almost identical. We can observe in Figure 6.2 and Figure 6.3 that this model does not learn much 
from the data when it classifies the video type nor the device used to play the videos. 

 
24 https://keras.io/ 
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Figure 6.3. Evolution of the training and testing processes of the densely connected model to classify the device 
from the movement in segments of 𝐿 = 4. 

These initial results are not very promising, which is reasonable, as the classification process is based 
on a single data point. 

6.1.2. Recurrent model on the movement in a session 

Since our dataset contains trajectories, one way to leverage this kind of data is to use a Recurrent 
Neural Network (RNN), which are used to process time series. We used the Long Short-Term Memory 
(LSTM) layer, a kind of RNN layer, to feed trajectories into a neural network, as used in the literature 
in, e.g. [71], [76]. 

We chose to use the same dataset as in the previous experiment, but this time instead of considering 
each of the segments independently, we grouped them according to their session, so each sample is 
now an entire session, with the movements in each of its segments as features, with shape (𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠, ). 

We must provide a 3D tensor to an LSTM layer, so each of the elements in the array of movement in 
segments of each session was converted to a one-element array. This way, a single sample is converted 
to shape (𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠, 1). 

Table 6.2. Number of samples per category in the classification by movement in a session. 

 pc oc mb mv total 
point 91 131 80 90 392 
route 96 127 76 84 383 
total 187 258 156 174 775 

Since the shape must be regular, the samples were padded to the length of the longest session, which 
we call 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 . The value 360 was chosen as the mask as it is not possible to perform as much 
movement (it is limited to 180 degrees, as it is the greatest angular distance between two points). This 
makes each sample to have the shape (𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 1). 

We followed the same procedure to draw the samples from the 775 sessions (see Table 6.2) which are 
available and distributed them in evaluation, validation and testing sets in the same way as in the 
previous experiment. 

In the end, the shape of the features is (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 1) and the shape of the labels is (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠), 
with two or four labels depending on what we want to classify. 

A sequential model was built in Keras as follows (refer Figure 6.4): the samples are fed into a Masking 
layer that marks the timesteps with value 360 to be skipped, followed by an LSTM layer of 128 nodes, 
followed by a dropout layer at 20%, then a dense layer of labels nodes, as much as labels are considered 
in the experiment, with a final activation layer with the softmax function. 
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Again, the adam optimizer was chosen and categorical crossentropy is used as the loss function. We 
measured the accuracy of the model as our metric. 

 
Figure 6.4. Summary of the neural network model used in the classification by movement in a session. 

After 50 epochs, this model achieves an accuracy of 81.17% to classify the video type and 34.60% to 
classify the device used to play the video. With longer segment lengths (𝐿 ∈ {8, 12, 20}), the results 
were almost identical. We can observe in Figure 6.5 that this model learns when classifying the video 
type until epoch 10, after which it starts to overfit, while when it classifies the device used to play the 
videos (Figure 6.6), it does not perform as well and it overfits heavily. 

 
Figure 6.5. Evolution of the training and testing processes of the LSTM model to classify the video type from the 
movement in a session in segments of 𝐿 = 4. 

 
Figure 6.6. Evolution of the training and testing processes of the LSTM model to classify the video type from the 
movement in a session in segments of 𝐿 = 4. 

While these results are slightly better than in the previous experiment, there is still plenty of room for 
improvement. We have seen that with a Recurrent Neural Network model can be considered instead 
of individual samples with single values. 
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6.1.3. Recurrent model on the values of orientation in a window 

In this last experiment, we change the representation of the data: instead of using a processed version 
of the trajectory of the orientations in the reproduction of 360-degree videos, we will use these values 
of orientation directly. Also, instead of using the values of an entire session as a sample, we will create 
sliding windows of L frames with an overlap of 1 frame from each session. This results in a high 
number of samples with the same length, compatible with LSTM networks. 

Table 6.3. Number of samples per category in the classification with a sliding window of 𝐿 = 4, for the spherical 
and cartesian representations. 

 pc oc mb mv total 
point 2456 4958 3019 3354 13787 
route 9749 15054 7435 8133 40371 
total 12205 20012 10454 11487 54158 

Table 6.4. Number of samples per category in the classification with a sliding window of 𝐿 = 4, for the distance 
representation. 

 pc oc mb mv total 
point 2346 4810 2935 3256 13347 
route 9649 14924 7355 8046 39974 
total 11995 19734 10290 11302 53321 

A total of three representations of these orientations were considered, and are compared in this 
section: first, the raw spherical coordinates, in which we did not normalize the longitude values; 
second, the cartesian projection of the spherical coordinates in a unit sphere; third, the spherical 
distance (3.1) between the orientation of a frame and the previous one. 

This way, a session of length N frames contributes 𝑁 − 𝐿 + 1 samples of L timesteps to our dataset 
(one less in the case of the distance between frames, as it cannot be calculated for the first frame). 

Since we based our model in the LSTM layer, we need to provide the network a 3D tensor as its input, 
with shape (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠).The first dimension, samples, is the total amount of samples that 
are generated with the sliding window technique; the second dimension, timesteps, is the size of that 
window (L); the third dimension, features, depends on the number of features that are fed into the 
network: two for the spherical coordinates, three in the cartesian representation, and one when the 
spherical distance is considered. See Figure 6.7 for an example of an input tensor with shape (5,4,3), 
which could be used for the cartesian representation. Refer Table 6.3 and Table 6.4 for the distribution 
of samples across categories. A uniform number of samples was sampled from each category, limited 
by the size of the smallest one, which were divided into training, validation and testing sets as in 
previous experiments. 

 
Figure 6.7. Representation of the 3D tensor of features in the LSTM model for three features (such as in the case 
of the cartesian representation). 
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Figure 6.8. Summary of the neural network model to classify a window of a trajectory with a single LSTM layer. 

Two sequential models were built, one with one LSTM layer and the other with two (refer Figure 6.8 
and Figure 6.9, respectively): the samples are fed, when two LSTM layers are used, into a first LSTM 
layer of lstm nodes which returns the entire sequence and is followed by a dropout layer at 20%. Then, 
for both models, either the output of that last layer (when two LSTM layers are used) or directly the 
input (when a single LSTM layer is used) into an LSTM layer of 𝑙𝑠𝑡𝑚 nodes, which is also followed by 
a dropout layer at 20%. Its results are collected by a dense layer of labels nodes, as much as labels are 
considered in the experiment, with a final activation layer with the softmax function. 

Again, the adam optimizer was chosen and categorical crossentropy is used as the loss function. We 
measured the accuracy of the model as our metric. We performed training processes of 150 epochs 
with batches of 32 samples, as before. 

 
Figure 6.9. Summary of the neural network model to classify a window of a trajectory with a pair of LSTM layers. 

We trained both models, the first configured with 𝑙𝑠𝑡𝑚 = 128 (a single LSTM layer of 128 nodes) and 
the second with 𝑙𝑠𝑡𝑚 = 256 (two LSTM layers with 256 nodes each), with the three representations of 
the data and with all the values of L. These experiments were repeated five times and the average 
results are reported in Table 6.5 (classification of the video type) and Table 6.6 (classification of the 
device used), while boxplots are reported in Figure 6.10 (classification of the video type) and Figure 
6.12 (classification of the device used). 

Training times varied by the experiment which was run, the size of 𝐿 and the configuration of the 
network. On a laptop with an Intel i7-8750H CPU and an NVIDIA GeForce GTX 1060, LSTM 128 𝐿 = 4 
classifies the video type in 4 minutes, while the device needs 8 minutes; an increase in 𝐿 increases the 
training time, as LSTM 128 𝐿 = 20 needs almost 20 minutes to classify either the video type or the 
device used to play the video. LSTM 256-256 𝐿 = 4 needed 33 minutes to classify the video type and 
18 minutes to classify the device used to play it. 

We can observe how the second configuration of the network usually performs better than the first, 
thanks to the addition of a second LSTM layer and also to the increased number of nodes. This 
difference is small in the classification of the video type, while it is larger when we classify the device, 
where the results of LSTM 256-256 𝐿 = 8 are comparable to LSTM 128 𝐿 = 12 and the results of LSTM 
256-256 𝐿 = 12 are comparable to LSTM 128 𝐿 = 20: similar results with one and two seconds less 
available of information, respectively. A test, which is not reported here, was performed with a single 
layer of 256 nodes and two layers of 128 nodes each, presented results which were in between the two 
cases reported in this chapter. 
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We can also notice how the distance-based feature compares poorly with the other two: its results are 
always considerably worse than with the spherical or the cartesian representation of the data. 

Table 6.5. Average accuracy of the neural network used to classify the video type of a window of a trajectory of 
size L by configuration of the model, L, and representation of the features. 

L 
LSTM 128 LSTM 256-256 

Spherical Cartesian Distance Spherical Cartesian Distance 
4 72.13% 73.54% 60.82% 73.41% 73.59% 60.70% 
8 78.91% 77.92% 60.15% 81.52% 80.17% 60.55% 

12 84.63% 84.19% 66.92% 88.41% 86.84% 67.52% 
16 88.29% 89.17% 72.18% 91.96% 91.67% 77.51% 
20 90.23% 92.08% 78.37% 93.38% 93.21% 82.50% 

 
Figure 6.10. Boxplot of the accuracy of the neural network used to classify the video type of a window of a 
trajectory of size L by configuration of the model, L, and representation of the features. 

 
Figure 6.11. Evolution of the training and testing processes of the LSTM model (256-256) to classify the video 
type from the spherical coordinates in windows of 𝐿 = 20. 

With LSTM 128, 𝐿 = 12, an accuracy of 84.63% and 84.19% is obtained to classify the video type with 
spherical and cartesian coordinates, respectively, which surpass the results obtained in the previous 
experiment (81.17%), so with three seconds of trajectory, we can improve our previous results which 
considered the entire session. At 𝐿 = 16, the LSTM 256-256 model achieves an accuracy of 91.96% and 
91.67% with spherical and cartesian coordinates, respectively, which can be further improved to 93.38% 
and 93.21% at 𝐿 = 20. 

We can observe in Figure 6.11 how the model learns to classify the data properly, although half the 
epochs would have sufficed to obtain similar results. 
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The results with the spherical representation were marginally better than with the cartesian 
representation to classify the video type. To classify the device, we can observe this same phenomenon 
in 𝐿 ∈ {4, 8, 12, 16} in LSTM 128 and in 𝐿 ∈ {4, 8, 12} in LSTM 256-256, but ultimately, the cartesian 
representation takes ahead in the latter results. In any case, the difference is small. 

Table 6.6. Average accuracy of the neural network used to classify the device used in a window of a trajectory 
of size L by configuration of the model, L, and representation of the features. 

L 
LSTM 128 LSTM 256-256 

Spherical Cartesian Distance Spherical Cartesian Distance 
4 54.81% 47.36% 41.94% 58.52% 53.96% 40.74% 
8 64.75% 59.18% 48.10% 74.96% 70.42% 51.65% 

12 74.82% 71.77% 62.00% 85.15% 84.55% 71.39% 
16 81.55% 80.97% 73.37% 90.41% 91.76% 82.35% 
20 84.45% 86.82% 80.68% 92.73% 94.86% 87.00% 

 
Figure 6.12. Boxplot of the accuracy of the neural network used to classify the device used in a window of a 
trajectory of size L by configuration of the model, L, and representation of the features. 

 
Figure 6.13. Evolution of the training and testing processes of the LSTM model (256-256) to classify the device 
from the cartesian coordinates in windows of 𝐿 = 20. 

With our previous experiment, we achieved an accuracy of 34.60% to classify the device used in a 
session, which is surpassed in all the reported cases. The LSTM 256-256 model achieves 90.41% and 
91.76% accuracy at 𝐿 = 16 with spherical and cartesian representations, respectively and even reaches 
94.86% at 𝐿 = 20 with the cartesian representation of the data. 

The learning process of the classification of the device appears to be faster (see Figure 6.13): after 50 
epochs, learning appears to be stalled. 
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With these results, we can affirm that we can correctly classify with more than a 90% of accuracy the 
video type and the device used with just 4 seconds of trajectory, getting very close to 95% to classify 
the device when 5 seconds of trajectory are used. 

6.2. Prediction of future orientations 

The purpose of this section is to predict future orientations in the trajectories described by the 
reproduction of 360-degree videos and try to improve that prediction by leveraging the contextual 
variables we collected during the experiment (video type and device). 

For this reason, we started by building a simple network in which we fed our dataset, followed by 
partitioning our data by its context and then building a neural network that treats that context as 
features. 

 
Figure 6.14. Example of the sliding window technique used to build the dataset to predict future orientations for 
𝐿 = 4 and 𝐹 = 4. 

Neural network models are capable of performing regression, which is to predict values from a given 
input. Since our dataset contains the user’s orientation for the entire playback of each video, we can 
partition that data in windows of a given size (𝐿 ∈ {4, 8, 12} frames) in the past and try to predict the 
user’s orientation in a given distance (𝐹 ∈ {4, 6, 8} frames) in the future (see Figure 6.14). These values 
of F were chosen according to the ones used in literature for adaptive streaming (between 1 and 2 
seconds) [63], [64], [69], [77]. 

Table 6.7. Distribution of the samples per type of video, device used to play it, length of the feature window (L), 
and distance of the prediction (F). 

L Device 
Point videos Route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 pc 2049 1871 1708 9354 9163 8976 
4 oc 4396 4134 3881 14540 14287 14035 
4 mb 2691 2531 2379 7124 6973 6825 
4 mv 2971 2791 2616 7792 7624 7458 
4 total 12107 11327 10584 38810 38047 37294 
8 pc 1708 1560 1425 8976 8790 8605 
8 oc 3881 3635 3407 14035 13783 13533 
8 mb 2379 2227 2078 6825 6679 6533 
8 mv 2616 2448 2282 7458 7292 7126 
8 total 10584 9870 9192 37294 36544 35797 
12 pc 1425 1299 1181 8605 8421 8240 
12 oc 3407 3185 2973 13533 13289 13047 
12 mb 2078 1937 1802 6533 6387 6244 
12 mv 2282 2118 1957 7126 6960 6795 
12 total 9192 8539 7913 35797 35057 34326 

Using a sliding window technique, we build the samples of the new dataset as follows: a total of 𝐿 + 𝐹  
frames are needed per sample, so the first 𝐿 are used to build the window of past orientations and the 
next 𝐹  frames are used to obtain the future orientation (if we follow Figure 6.14, the features of the 
first sample are [𝑓0, 𝑓1, 𝑓2, 𝑓3] and the label is 𝑓7; for the second sample, the features are [𝑓1, 𝑓2, 𝑓3, 𝑓4] 
and the label is 𝑓8, etc). In this case, only the last frame in 𝐹  is kept. A total of 𝐷 − 𝐿 − 𝐹 + 1 samples 
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are generated per session according to its duration D (following Figure 6.14, a hypothetical session of 
𝐷 = 10 would result in 𝑛 = 10 − 4 − 4 + 1 = 3 samples for 𝐿 = 4, 𝐹 = 4). Increasing L or F results in a 
slight decrease of the number of samples (refer Table 6.7). 

In the end, for each combination of L and F, our dataset contains the list of past orientations (of size 
L) and the orientation at a future instant. This process is performed for both the spherical coordinate 
representation of the data and its cartesian coordinate representation. 

To use the dataset in a neural network model, it has to be formatted as input and expected output. 
Following Figure 6.15, the input is a rank-3 tensor, with the number of samples as its first dimension, 
the amount of timesteps as its second dimension (L) and the features as its third dimension (2 in the 
spherical representation, 3 in the cartesian representation). The output is a rank-2 tensor, with the 
number of samples as its first dimension and the features as its second dimension (in the same way as 
the input). 

LSTM models are not only useful to classify time sequences, but they are also used to perform 
regression on them. For this reason, we built a relatively simple model with two LSTM layers followed 
by a Dense layer with as many neurons as labels have to be predicted. Following Figure 6.16, the first 
layer is an LSTM layer with 𝑙𝑠𝑡𝑚0 nodes which returns the entire sequence, so the second dimension 
in the input is preserved; this is processed by a second LSTM layer with 𝑙𝑠𝑡𝑚1 nodes, which flattens 
the data along the second axis and finally labels values per sample are received in the end. 

 
Figure 6.15. Structure of the input and output of the neural network model to predict future orientations for 5 
samples, 4 timesteps and three features and labels (x, y, and z). 

The adam optimizer was chosen, with Mean Squared Error as the loss function. As other works are 
based on an actual viewport-dependent streaming system, the accuracy of choosing the correct tile or 
the bandwidth saved can be used as metrics. In our case, as we lack that, a custom metric based on the 
geodesic distance was specially built to measure and compare our results, so the mean distance is 
returned between the output of the model and the observed values. When the cartesian coordinates 
are used to represent the data, both predictions and labels need to be converted to spherical 
coordinates before they can be introduced to the metric function. 

 
Figure 6.16. Summary of the neural network model used to predict a future orientation. 

The same procedure to split the samples between training, evaluation and validation is followed in 
these experiments: 20% of the samples are reserved for validation, 20% of the remaining 80% (16%) are 
used in the evaluation process and the remaining 64% is used to train the neural network. 

A total of five models have been developed to predict a future viewport. The first two, persistence and 
linear act as baselines, the future orientation is obtained without the need to use any kind of neural 
network. The other three, blind, grouped, and informed are variations of the model explained in this 
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section. All the models have been first applied to all the data and then by grouping the dataset by 
video type, for the difference between video types already discussed in Chapter 5. 

For each model, we obtained its results as the great-circle distance between the predicted viewport 
and the true value. The average of these distances is reported for each configuration of 𝐿 ∈ {4, 8, 12} 
and 𝐹 ∈ {4, 6, 8}. We also repeated the experiments using the entire dataset and by partitioning it by 
video type. The weighted average by number of samples (following Table 6.7) of the results by video 
type will be compared to the results of the entire dataset. 

The following five subsections detail the process for the five proposed models and their results. After 
this, we will discuss the results and answer the research questions we formulated in the beginning of 
this chapter. 

6.2.1. Persistence model 

The simplest prediction that can be made with any model lies in a persistence model. This technique 
assumes that future values are the same as the last known value, so it persists. Following Figure 6.17, 
it is assumed that the value of 𝑓3 is kept indefinitely, so it is kept as the prediction. 

 
Figure 6.17. The persistence model. 

The results for this model can be found in Table 6.8. We can observe that the average great-circle 
distance grows with F, because the farthest the prediction is made from the last known point, the more 
it diverges. The distance gets slightly smaller when L grows, because less samples are available. 

Table 6.8. Average great-circle distance (in degrees) for the persistence model to predict a future orientation. 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 19.58 25.61 30.05 28.50 37.27 43.77 16.80 22.14 26.15 
8 19.20 25.17 29.57 27.98 36.64 43.03 16.71 22.07 26.11 

12 18.87 24.71 29.02 27.45 35.65 41.69 16.66 22.05 26.10 

We can also observe the difference between applying this model to the entire dataset and to the dataset 
partitioned by video type. Here we can see that average distances are bigger in point videos than in 
route videos, as expected by the results in Chapter 5. We have to keep in mind that our dataset contains 
more samples of the reproduction of route videos, and that is why the results for the entire dataset 
are closer to those than to the results of the point videos. Furthermore, we can observe that the 
weighted average between the results of point and route videos is equal to that of the entire dataset, 
as expected. 

6.2.2. Linear model 

With the aim to build a more intelligent baseline, we thought of predicting future viewports according 
to the great-circle route between the last two known points. 

 
Figure 6.18. The linear model. 

To do this, see Figure 6.18, we iteratively obtain the next viewport from the previous two, starting by 
the last two known viewports (𝑓2 and 𝑓3 in Figure 6.18), until we predict a total of F future orientations. 
Then, only the last value is kept (𝑓7

′ in Figure 6.18). 
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The next point is obtained via a geometric approach (see Figure 6.19): let 𝐴 = (𝑥1, 𝑦1, 𝑧1) and 𝐵 =
(𝑥2, 𝑦2, 𝑧2) be two points on the sphere in cartesian coordinates, the next point in the route between A 
and B on the great circle is 𝐶 = (𝑥3, 𝑦3, 𝑧3). To find C, we first note the vector 𝑂𝐵⃗⃗  ⃗ between the origin 
𝑂 = (0,0,0). We find M, the orthogonal projection of A over the line defined by 𝑂𝐵⃗⃗  ⃗ . Since M is a 
multiple of B, we can express it as 𝑀 = (𝜆𝑥2, 𝜆𝑦2, 𝜆𝑧2) and obtain 𝜆 through (6.1). Once the point M is 
known, we can obtain C, as M is the midpoint between A and C (6.2). Finally, we normalize C by 
dividing it by its norm, to force it to lie on the sphere (6.3). 

 
Figure 6.19. 2D representation of the approach to obtain the next point in a geodesic. 

The results of the linear model are shown in Table 6.9. It can be observed that the results are similar 
to those of the persistence model: the average great-circle distance increases with F and it shrinks a 
little with larger values of L for the same reason as the previous model. 
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Table 6.9. Average great-circle distance (in degrees) for the linear model to predict a future orientation. 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 21.26 30.04 36.65 30.10 41.50 49.65 18.50 26.63 32.97 
8 20.78 29.45 36.03 29.20 40.50 48.51 18.39 26.47 32.82 

12 20.36 28.91 35.49 28.45 39.42 47.48 18.28 26.35 32.72 

Conversely, the persistence model behaves better in all the cases: for 𝐹 = 4, the linear model shows a 
distance ~1.5 degrees greater than the persistence model, which grows to ~4.5 degrees for 𝐹 = 6, and 
to ~6.5 degrees for 𝐹 = 8. The results are similar when the dataset is partitioned by video type: the 
weighted average between video types is equal to the results of the entire dataset. 

6.2.3. Blind model 

This is the first neural network model that we built. In this case, we simply divide the dataset in three 
sets for training, testing and validation and feed them into the neural network model that we specified 
in the beginning of the section. The size of the validation set is 20% of the entire dataset, the size of 
the testing set is 20% of the remaining 80% (16%), and the size of the training set is the remaining 64%. 
We used a batch size of 32 samples and trained the network for a total of 50 epochs. The configuration 
of the network was the following: 128 nodes were set up for each of the LSTM layers and each of them 
featured a dropout of 20%. They were both activated by the relu function. 
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We performed an initial experiment with both spherical and cartesian representations of the 
orientations (see Figure 6.20 and Figure 6.21, respectively) and we noticed that the spherical coordinate 
representation does not make the model learn correctly (notice in Figure 6.20 how the evolution of 
the great-circle distance for the testing process does not descend). Conversely, when cartesian 
coordinates are used, a much more normal behavior is achieved (see Figure 6.21). For this reason, for 
the rest of this prediction experiment, only the cartesian representation was considered. Regarding 
Figure 6.21, 50 epochs were more than enough, as the evolution of the testing process does not improve 
much from epoch 20 onwards. This point is affected by both L and F: the higher those values, the more 
difficult it is for the model to fit. 

 
Figure 6.20. Evolution of the training and testing processes of the blind model for 𝐿 = 8, 𝐹 = 6 and spherical 
coordinates. 

On the same hardware described in 6.1.3, training times varied by the size of 𝐿: around 5 minutes for 
𝐿 = 4, 8 minutes for 𝐿 = 8 and 12 minutes for 𝐿 = 12. The size of 𝐹  did not affect the training time. 

 
Figure 6.21. Evolution of the training and testing processes of the blind model for 𝐿 = 8, 𝐹 = 6 and cartesian 
coordinates. 

In the end, we repeated every experiment ten times and its average results are shown in Table 6.10. 
As expected, the farther the prediction is made (larger values of F), the average great-circle distance 
grows. Moreover, greater values of L contribute to reduce the distance metric. This reduction can be 
no longer attributed only to the reduction in the number of samples, as its magnitude is higher than 
with the baselines, so the model must take advantage of a larger window of past values. 

When we compare the results of the entire dataset and the weighted average of the results of splitting 
it by video type (see Table 6.11), we can still observe the clear divide between video types. This 
partition is useful, as slightly better results are obtained when video types are considered separately, 
especially for larger values of L and F: in the most extreme case (𝐿 = 12, 𝐹 = 8), the weighted average 
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between both partitions is 24.15 degrees, slightly less than the 24.92 degrees when the entire dataset 
is considered. 

Table 6.10. Average great-circle distance (in degrees) for the blind model to predict a future orientation. 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 19.34 25.12 29.15 26.84 35.48 42.01 16.89 21.73 24.88 
8 18.40 23.98 27.45 25.84 34.07 38.73 16.15 20.54 23.79 

12 17.68 21.81 24.92 24.17 30.16 33.45 15.40 19.40 22.00 

Table 6.11. Comparison of the results for the blind model to predict a future orientation using the entire dataset, 
the weighted average of the partitioned dataset and the improvement of using such partitioning. 

L 
Entire dataset Partitioned dataset Improvement 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 19.34 25.12 29.15 19.26 24.88 28.67 0.9957 0.9906 0.9834 
8 18.40 23.98 27.45 18.29 23.42 26.84 0.9941 0.9765 0.9779 

12 17.68 21.81 24.92 17.19 21.51 24.15 0.9724 0.9861 0.9689 

If we compare these results to the persistence model (see Table 6.12), we can observe that it generally 
performs better than it, and we will compare them in detail later. The farther the prediction is made 
(larger values of F), the better this model performs compared to the persistence model. Larger windows 
of past data (larger values of L) also make this model perform better than the persistence model, 
especially when both F and L grow, with a reduction of up to 4.1 degrees in 𝐿 = 12, 𝐹 = 8 for the entire 
dataset (an improvement of 14% compared to the baseline). 

Table 6.12. Difference in the results (in degrees) between the blind model and the persistence model. 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 -0.24 -0.49 -0.90 -1.66 -1.79 -1.76 0.09 -0.41 -1.27 
8 -0.80 -1.19 -2.12 -2.14 -2.57 -4.30 -0.56 -1.53 -2.32 

12 -1.19 -2.90 -4.10 -3.28 -5.49 -8.24 -1.26 -2.65 -4.10 

When we partition the dataset by video type, the improvement of the results in route videos are similar 
but the results in point videos are greatly improved, up to 8.24 degrees (19.76%) from the persistence 
model. 

6.2.4. Grouped model 

 
Figure 6.22. Evolution of the training and testing processes of the grouped model for 𝐿 = 8, 𝐹 = 6, cartesian 
coordinates, point video and Oculus interface. 

This model follows the exact same principle than the blind model, but instead of running a single 
experiment for the entire dataset (or a partition by video type of the dataset), it is partitioned by both 
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video type and device used to play that sample. For each combination of L and F, there are eight 
different ways to partition the dataset, and each experiment is repeated ten times. In Figure 6.22 we 
can see the plot of the evolution of the loss and metric over the training and testing processes for one 
of these partitions. It has to be kept in mind that the weighted average per device (and video type 
when the entire dataset is considered) is reported in the following tables to be able to compare this 
model with the others. 

This model was quicker to train than the blind model, as the number of samples in each group are a 
fraction of the dataset available in that model. Times less than a minute were reported for some 
configurations, while the slowest was around three minutes. 

The average results, weighted by the total amount of samples per partition (refer Table 6.7), are shown 
in Table 6.13. To keep it consistent with the other experiments, three groups are made: for the entire 
dataset, only for point videos and only for route videos. As expected, the weighted average of the 
results for point videos and route videos coincides with those for the entire dataset. 

Table 6.13. Average great-circle distance (in degrees) for the grouped model to predict a future orientation. 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 19.88 25.02 28.40 29.14 37.26 42.57 16.99 21.38 24.38 
8 18.47 22.79 25.45 27.26 33.77 36.80 15.98 19.82 22.54 

12 16.83 20.03 21.83 24.76 29.12 30.71 14.79 17.82 19.78 

The average great-circle distance grows the farther the prediction is made (larger F). An increase of 
the window of past values (larger L) contributes to reduce the average distance, especially when both 
F and L grow. Results by video type differ but follow the same trend than in previous models. 

Table 6.14. Difference in the results (in degrees) between the grouped model and the persistence model. 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 0.30 -0.59 -1.65 0.64 -0.01 -1.20 0.19 -0.76 -1.77 
8 -0.73 -2.38 -4.12 -0.72 -2.87 -6.23 -0.73 -2.25 -3.57 

12 -2.04 -4.68 -7.19 -2.69 -6.53 -10.98 -1.87 -4.23 -6.32 

If we compare these results with the persistence model (see Table 6.14), the grouped model generally 
performs better. The baseline is only better than the grouped model in the shortest configuration of L 
and F, which makes sense because a persistent prediction will be closer to the real value if it is not so 
far away (F) and because with less data available (L), the neural network model cannot learn as much. 

Although less samples per run were available, since the dataset was partitioned, this model seems to 
perform as good as or even better than the blind model. We will discuss this further in the next pages. 

6.2.5. Informed model 

This is the last model we developed to predict a future orientation from a window of past values. Since there is 
an apparent effect of the video type and device used to play it on the performance of the prediction, we proceeded 
to label the samples with the categorical information that we have available along the third axis in Figure 6.15. 

 
Figure 6.23. Example of the features in a timestep of a sample for the informed model. 

Two pieces of categorical data are one-hot encoded: the video type and the device used to play the 
video, for a total of two and four features each (see in Figure 6.23 the features for a timestep: the three 
cartesian coordinates (𝑥, 𝑦, 𝑧), the video type (𝑝, 𝑟 ), and the device used to play it (𝑜𝑐, 𝑝𝑐, 𝑚𝑏, 𝑚𝑣). When 
the data is partitioned by video type, the features about the video type are not included, as they would 
be redundant with the partition. 

x y z p r oc pc mb mv

.4924 .1736 .8529 1 0 0 1 0 0
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Figure 6.24. Evolution of the training and testing processes of the informed model for 𝐿 = 8, 𝐹 = 6 and cartesian 
coordinates. 

The evolution of the training and testing processes for this model (see Figure 6.24) is similar to those 
of the blind model (Figure 6.21): 20 epochs might have sufficed for this combination of L and F. 

This model showed training times very similar to the ones reported for the blind model, so including 
these additional features does not seem to have had an impact on its performance. 

Table 6.15. Average great-circle distance (in degrees) for the informed model to predict a future orientation. 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 18.82 24.09 27.83 26.78 34.60 40.59 16.59 21.25 24.00 
8 17.77 22.00 24.71 25.03 31.06 34.84 15.59 19.60 22.05 

12 16.38 19.57 21.40 22.04 25.41 27.09 14.80 17.86 19.79 

We can appreciate the usual behavior in the results of this model (see Table 6.15): the farther the 
prediction (larger values of F), the greater the distance, but the more data is available (larger values of 
L), the better results are obtained. When high values of L are used, the increase in the average great-
circle distance is less than with lower values of L. The divide between point and route videos can also 
be observed in this model, as future orientations in point videos are more difficult to predict. 

Table 6.16. Comparison of the results for the informed model to predict a future orientation using the entire 
dataset, the weighted average of the partitioned dataset and the improvement of using such partitioning. 

L 
Entire dataset W.A. of partition Improvement 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 18.82 24.09 27.83 19.01 24.31 27.67 1.0103 1.0092 0.9942 
8 17.77 22.00 24.71 17.68 22.04 24.66 0.9948 1.0017 0.9981 

12 16.38 19.57 21.40 16.28 19.34 21.16 0.9938 0.9882 0.9887 

As we did with the blind model, we can calculate the weighted average of the results for point and 
route videos and compare them with the results for the entire dataset (see Table 6.16). In this case, for 
most combinations of L and F, the partition does not bring any improvement, although a meager 
improvement of an average of 0.24 degrees is obtained with 𝐿 = 12, 𝐹 = 8. This is reasonable, as 
splitting the dataset does not bring any advantage to this model, as the information about which video 
type is being played is already included as a feature. 

We can compare the results of this model with the persistence model (see Table 6.17): we can observe 
that the informed model performs better than the baseline in all the cases and that this improvement 
is higher the higher the values of both L and F are, because there is more data available for the model 
to make its prediction (larger values of L) and with a farther away prediction (larger values of F), the 
persistence model will be less accurate, while a neural network can learn how to predict it better. 
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Table 6.17. Difference in the results (in degrees) between the informed model and the persistence model. 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 -0.76 -1.52 -2.22 -1.72 -2.67 -3.18 -0.21 -0.89 -2.15 
8 -1.43 -3.17 -4.86 -2.95 -5.58 -8.19 -1.12 -2.47 -4.06 

12 -2.49 -5.14 -7.62 -5.41 -10.24 -14.60 -1.86 -4.19 -6.31 

We can observe an improvement of an average of 7.62 degrees in the most extreme case for the entire 
dataset (26.26% better than the baseline), which is translated to an average of 14.60 degrees for point 
videos (35.02% better than the baseline) and 6.31 degrees for route videos (24.18% better than the 
baseline). 

6.2.6. Comparison and discussion 

Once we have analyzed all the models to predict a future orientation, we will compare them in order 
to answer the research questions we have formulated. 

To answer RQ1 (Can we predict future orientations with neural network models?), we will compare 
the average results of these models with the results obtained by the baselines, which were simpler 
models. 

Following Figure 6.25 we can compare the results of all the experiments. It can clearly be seen that 
the linear model is the one that performs the worst in all the cases. The persistence model is usually 
the second in performance, in some cases very close to the neural network models. 

 
Figure 6.25. Comparison of the results of all the models with the entire dataset and each partition by video type 
for each combination of L and F. 

For low values of L and F, as we have previously shown, the deep learning models perform similarly 
or some even slightly worse than the persistence model. This is especially true in route videos, as the 
average movement is less than in point videos, because many future viewports will be very close to 
the past ones. 

As soon as the prediction is done farther (higher values of F) or with more data (higher values of L), 
the deep learning models perform better than the persistence model, as we can observe in Figure 6.25. 

For this reason, we answer RQ1: we can predict future viewports with neural network models, 
especially when enough data is provided (higher values of L) or when it is more difficult to make an 
accurate prediction (higher values of F). 

Although we have partially answered RQ2 (Can we achieve better results with more data (higher 
values of L)?) now, we study in Figure 6.26 the effect of L in the prediction of a future orientation. 

We can see in Figure 6.26 that all the models improve when more data is available to perform the 
prediction (larger L). We have noted that the improvement for the baselines is not related to the 
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amount of data to perform the prediction, as they only use one value in the persistence model and in 
the linear model, so it is due to the slight reduction in the number of samples in the dataset. It can also 
be noted that the effect is bigger the farther away the prediction is made (F). 

To assess if L has a significant effect in the prediction, we have performed a series of one-sided Mann-
Whitney U tests with the results of the ten executions of each experiment with increasing values of L. 
Under the null hypotheses, the distributions of both populations are equal and under the alternate 
hypotheses, the distributions with higher values of L are less than lower values of L. The null 
hypotheses were rejected in all the cases with a significance level of 𝑝 < 0.001, so we can accept the 
alternate hypotheses and conclude that the answer to RQ2 is that with higher values of L a better 
prediction is made. This is true when the entire dataset is considered at once and when it is partitioned 
by video type. The rank-biserial correlation was used to measure the effect size, which is 𝑟 = −1.0 in 
all the cases except with 𝐹 = 4 in the blind model, in which −1 ≤ 𝑟 ≤ −0.78. 

 
Figure 6.26. Effect of L in the prediction of a future viewport for the entire dataset. 

For the sake of completeness, in Figure 6.27, we can observe how the distance at which the prediction 
is made affects its performance. Here, we can notice that with larger L, the performance of the deep 
learning models (specially in Grouped and Informed) does not degrade as much than that of the 
baselines. 

To answer RQ3 (Does a neural network model improve its results if only samples with the same video 
type and device are used?) we compare the results obtained by the blind and grouped models. 

 
Figure 6.27. Effect of F in the prediction of a future viewport for the entire dataset. 

A series of one-sided Mann-Whitney U test were performed. Under the null hypotheses, the 
distribution of the results of the grouped model and the blind model are equal, while under the 
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alternate hypotheses, the distribution of the results of the grouped model is less than the distribution 
of the results of the blind model. For the sake of completeness, the opposite test was also performed. 
The p-values are reported in Table 6.18 and Table 6.20, and the effect sizes are reported in Table 6.19. 

Following Table 6.18, in many cases, especially at higher values of both L and F, the null hypothesis 
can be rejected at 𝛼 = 0.05 and we can state that the grouped model performs better than the blind 
model, even when the first has the handicap of a reduced number of samples with which to train the 
neural network model. In some cases, the comparison is the opposite, and the blind model performs 
better (see Table 6.20), because the combination of a reduced number of samples and a reduced amount 
of timesteps per sample make it more difficult for the grouped model to perform well. This is more 
prevalent in point videos, as a prediction in that video type is more difficult to make. The effect sizes 
reported in Table 6.19 are moderate or high when either set of hypotheses are rejected. 

Table 6.18. P-values of the one-sided Mann-Whitney U test (grouped < blind). 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 0.9943 0.5451 < 0.001 0.9999 0.9997 0.9190 0.7863 0.0188 0.0086 
8 0.7637 < 0.001 < 0.001 0.9993 0.3669 < 0.001 0.1365 < 0.001 < 0.001 

12 < 0.001 < 0.001 < 0.001 0.9555 0.0070 < 0.001 < 0.001 < 0.001 < 0.001 

Table 6.19. Effect sizes (rank-biserial correlation) of the one-sided Mann-Whitney U test (grouped < blind). 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 0.660 0.020 -0.960 1.000 0.900 0.360 0.200 -0.560 -0.640 
8 0.180 -0.980 -1.000 0.840 -0.100 -0.840 -0.300 -0.880 -1.000 

12 -0.980 -1.000 -1.000 0.440 -0.660 -0.980 -0.920 -1.000 -1.000 

Table 6.20. P-values of the one-sided Mann-Whitney U test (blind < grouped). 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 < 0.01 0.4849 0.9999 < 0.01 < 0.01 0.0929 0.2363 0.9844 0.9930 
8 0.2603 0.9999 0.9999 < 0.01 0.6612 0.9993 0.8793 0.9996 0.9999 

12 0.9999 0.9999 0.9999 0.0521 0.9943 0.9999 0.9998 0.9999 0.9999 

In the end, the answer to RQ3 is that except for the lowest values of L and F, the grouped model 
performs better than the blind model at 𝛼 = 0.05. We can appreciate an average improvement of up 
to 13.40% for the entire dataset when 𝐿 = 12, 𝐹 = 8 (see Table 6.21). 

Table 6.21. Ratio between the average great-circle distances of the grouped and the blind models. 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 1.0279 0.9960 0.9743 1.0857 1.0502 1.0133 1.0059 0.9839 0.9799 
8 1.0038 0.9504 0.9271 1.0550 0.9912 0.9502 0.9895 0.9649 0.9475 

12 0.9519 0.9184 0.8760 1.0244 0.9655 0.9181 0.9604 0.9186 0.8991 

To answer RQ4 (Does a neural network model improve its results when the information about which 
video type and device were used are included?) we will compare the informed model with both the 
blind model first and then the informed model, using the same procedure as previously. 

Table 6.22. P-values of the one-sided Mann-Whitney U test (informed < blind). 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 0.0036 < 0.001 < 0.001 0.5451 0.0270 0.0023 0.0270 0.0129 < 0.001 
8 0.0086 < 0.001 < 0.001 0.0070 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

12 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.0023 < 0.001 < 0.001 
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We can observe in Table 6.22 that in all the cases except with 𝐿 = 4, 𝐹 = 4 when only point videos are 
considered in the dataset, the null hypotheses for the Mann-Whitney U tests are rejected at 𝛼 = 0.05 
and we can conclude that the informed model performs better than the blind model. In that specific 
case, we cannot reject the null hypotheses for the reverse case either. The effect sizes reported in Table 
6.23 are again high or moderate when the hypotheses are rejected. 

Table 6.23. Effect sizes (rank-biserial correlation) of the one-sided Mann-Whitney U test (informed < blind). 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 -0.720 -0.900 -1.000 0.020 -0.520 -0.760 -0.520 -0.600 -0.860 
8 -0.640 -1.000 -1.000 -0.660 -1.000 -1.000 -0.840 -0.940 -1.000 

12 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -0.760 -0.980 -1.000 

Table 6.24. Ratio between the average great-circle distances of the informed and the blind models. 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 0.9731 0.9590 0.9547 0.9978 0.9752 0.9662 0.9822 0.9779 0.9646 
8 0.9658 0.9174 0.9002 0.9687 0.9117 0.8996 0.9653 0.9542 0.9269 

12 0.9265 0.8973 0.8587 0.9119 0.8425 0.8099 0.9610 0.9206 0.8995 

Per Table 6.24, we can see that there is an average improvement of up to 14.13% for the entire dataset 
with 𝐿 = 12, 𝐹 = 8. It can also be noted that in point videos, this model performs much better than the 
blind model (up to 19.01% better on average with 𝐿 = 12, 𝐹 = 8), so knowing which device was used 
to play the video produces an important improvement on average. 

When we compare the informed model with the grouped model, there is not as much improvement. 
We use the same statistical test to assess if the distribution of the average results of the informed 
model is less than that of the grouped model. 

Following Table 6.25, it can be observed that we can reject the null hypotheses at 𝛼 = 0.05 in all the 
cases with the entire dataset and when only point videos are considered; when only route videos are 
considered, this is not so clear. In that case, we cannot reject the null hypotheses when 𝐿 = 12 or when 
𝐹 = 6. In these cases, the grouped model performs as good as the informed model (the opposite case 
cannot be rejected: we cannot say that the grouped model performs better than the informed model 
either at 𝛼 = 0.05). This is because future orientations in route videos are easier to predict, so even 
with the reduced number of samples that are present in the grouped model, it is strong enough to 
make an accurate prediction. 

Table 6.25. P-values of the one-sided Mann-Whitney U test (informed < grouped). 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 < 0.001 < 0.001 0.0086 < 0.001 < 0.001 < 0.001 0.0156 0.1923 0.0188 
8 0.0011 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.0070 0.0606 0.0320 

12 < 0.001 0.0023 0.0226 < 0.001 < 0.001 < 0.001 0.7397 0.4251 0.6331 

Similarly to the previous experiments, the effect sizes reported in Table 6.26 are smaller when we 
cannot reject the hypotheses, but high when we can. 

Table 6.26. Effect sizes (rank-biserial correlation) of the one-sided Mann-Whitney U test (informed < grouped). 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 -1.000 -0.900 -0.640 -1.000 -1.000 -0.880 -0.580 -0.240 -0.560 
8 -0.820 -0.960 -0.960 -0.980 -1.000 -1.000 -0.660 -0.420 -0.500 

12 -0.860 -0.760 -0.540 -1.000 -1.000 -1.000 0.160 -0.060 0.080 

The improvement between informed and grouped can be observed in Table 6.27. We can see that it is 
slim when the entire dataset is considered and between that and non-existent when only route videos 
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are considered, but there is a sizeable improvement when only point videos are considered, of up to 
11.79% with 𝐿 = 12, 𝐹 = 8 . In these cases, the neural network model benefits from the increased 
number of samples, as it can learn the differences between devices and use them to improve the 
prediction. 

Table 6.27. Ratio between the average great-circle distances of the informed and the grouped models. 

L 
Entire dataset Only point videos Only route videos 
F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 F = 4 F = 6 F = 8 

4 0.9467 0.9628 0.9799 0.9190 0.9286 0.9535 0.9765 0.9939 0.9844 
8 0.9621 0.9653 0.9709 0.9182 0.9198 0.9467 0.9756 0.9889 0.9783 

12 0.9733 0.9770 0.9803 0.8901 0.8726 0.8821 1.0007 1.0022 1.0005 

In the end, we can answer RQ4: the informed model tends to provide better results than both the blind 
and the grouped models. 

In general, each successive neural network model performs better than the previous one. As we can 
observe in Figure 6.28, we can see how the grouped model performs better than the blind model and 
the informed model tends to perform better than the other two when 𝐿 = 8, 𝐹 = 6. 

 
Figure 6.28. Boxplot of the results obtained by the three neural network models with the entire dataset and 𝐿 =
8, 𝐹 = 6. 

 
Figure 6.29. Results of the five models grouped by video type and device for 𝐿 = 8, 𝐹 = 6. 

To assess the differences between models in each device, we evaluated the models with samples of 
each video type and device. A sample for 𝐿 = 8, 𝐹 = 6 is shown in Figure 6.29. We can observe that all 
three neural network models perform better than the baselines in all the cases. We can also observe 
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that the general trend is followed here by device, as apparently the grouped model tends to perform 
better than the blind model and the informed model tends to perform better than the other two. 

One-sided Mann-Whitney tests were performed to evaluate which models perform better in each 
video type and device for 𝐿 = 8, 𝐹 = 6. Null hypotheses were rejected in the following cases (p-values 
and rank-biserial correlations are reported): grouped achieves better results than blind in route videos 
with all devices (𝑝 < 0.01, 𝑟 ∈ [−0.92, −0.72], )) and in point videos with non-immersive interfaces: mb 
(𝑝 < 0.01, 𝑟 = −0.66) and pc (𝑝 = 0.044, 𝑟 = −0.46); blind is only better than grouped in point videos 
with oc (𝑝 = 0.027, 𝑟 = −0.52); informed performs always better than blind (𝑝 < 0.01, 𝑟 ∈ [−1,−0.72]) 
and informed gets better results than grouped in point videos with all devices ( 𝑝 < 0.01 , 𝑟 ∈
[−1,−0.86]). We cannot reject the null hypotheses in the other cases, which leaves inconclusive results 
between the blind and grouped models in point videos with mv and between the grouped and informed 
models in route videos for similar reasons to what we discussed before. 

In the end, to answer RQ5, there is an evident difference in the results per video type and device. 
Furthermore, the relative results of the different models per video type and device are not the same: 
we can observe how the grouped model in point videos with non-immersive interfaces performs better 
than the blind model, but the reverse is true in the oc interface; similarly, results are inconclusive 
between the grouped and the informed model in route videos with any device. 

6.3. Conclusion 

In this chapter, we used the data collected in the reproduction of 360-degree videos to run two 
experiments: we first classified the reproductions into their contextual variables (video type and 
device which was used to play the video) and then we used that data to predict the future orientations 
and we improved the results of the classification by leveraging that same contextual information. 

We have observed how a recurrent neural network provides better results in this kind of problems, as 
they deal with a trajectory of data. We also observed how we can obtain vastly better results with 
untreated data (the raw value of the users’ orientation, in spherical or cartesian coordinates) 

We have seen how we could correctly classify with a high degree of accuracy (90%) the video type 
and the device which was used in the reproduction with only four seconds of trajectory with a 
recurrent neural network model based on LSTM. 

These results are encouraging: a deep learning model is able to tell the differences between video types 
and devices with a high degree of accuracy, but we can also reproduce this contextual data from 
trajectories which do not have it available, such as third-party datasets or to be used in streaming 
software that feeds on data that does not take this information into account. 

Regarding to the prediction of future orientations, we have implemented and analyzed five models, 
based on a window of past observations (L) and the distance in which the prediction is made (F). We 
have observed that the spherical representation of the data, although suitable to classify the 
reproductions, does not work well to perform a prediction of future data: while the mean squared 
error of the coordinates in the cartesian representation works towards minimizing the spherical 
distance, it does not seem to happen with the spherical representation and the model is unable to 
learn properly. 

We have seen that neural network models perform better than the baselines (RQ1), although the 
results are mixed with lower values of L and F, especially in route videos, we have shown that in the 
other cases, they do perform better. This special case is due to the combination of an easier to predict 
video type (user behavior route videos show less variation than in route videos); an easier to perform 
prediction (a lower F often makes the future value to be closer to the last value); and a more limited 
window of past data (a lower L which hinders the learning capacity of deep learning models). 

Relative to this last point, we have observed that providing more data to the deep learning models 
does improve its performance in all the cases (RQ2). 

The successive improvement between models is because the differences between video types and 
devices that we have already highlighted: with the blind model, there is no information about what 
video type or device is used; with the grouped model, we split the data, so each prediction is very 
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specific, at the cost of a reduced set of samples; with the informed model, we can use all the samples 
in the dataset and the information about the video type and device is used to improve the prediction. 
When we partition the dataset by video type, the only improvement that the grouped model brings 
over the blind model is that only samples with the same device are trained together. This improves 
the results of the blind model but is severely affected by a reduced number of samples. The informed 
model brings the solution, as all the samples of all the devices are used and, since they are labelled 
accordingly, a better prediction than with both the blind and grouped models can be made (especially 
in point videos, which are more difficult to predict). 

The implications of the answers of RQ3 and RQ4 are that yes, knowing which device was used to play 
the video and taking it into account when making the prediction (either by dealing with groups of 
only that device or by labelling them in the features) improves the accuracy of their predictions. We 
have seen that, although the grouped model performs better than the blind model, in some cases, the 
informed model performs even better. This is due to the fact that the blind model sacrifices learning 
capacity (number of samples) for a more accurate learning (samples of only the relevant kind). The 
informed model provides the best of the two worlds, as we can utilize the entire dataset and the deep 
learning model learns which categories help it to perform up to 19% better. 

Finally, as seen in RQ5, these results differ when the models are evaluated with data of different video 
types and devices. Although, in some cases, the grouped model does not perform better than the blind 
model (probably due to the issue of a reduced sample size), the informed model always performs better 
than the blind model in a statistically significant way. The grouped and the informed model perform 
similarly in route videos, as the number of samples in the grouped model is moderate and the 
prediction is easier to make. 

In the end, the conclusion is similar: better results may be achieved by reducing the sample set and 
increase its specificity by only including samples with the desired contextual data, but this may be 
counter-productive, as these kinds of models need a high volume of samples to train properly. By 
using an informed model, the specificity of the model is retained in the form of additional labels 
without sacrificing volume of samples, so better results are obtained. 

In any case, we have demonstrated that a better prediction can be made if we leverage the fact of 
knowing which device is being used to play a 360-degree video, which was the primary purpose of 
this study. Furthermore, we have seen that if that contextual information is missing, we are able to 
replicate it with our classification models with a high accuracy. 
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Chapter 7. Conclusion and future work 
Throughout this thesis we have collected and studied the users’ behavior in virtual reality 
environments and 360-degree videos with various interfaces based on different devices. 

We have reported the automatic collection of user behavior in VR multimedia, facilitated by an 
omnidirectional multimedia system. We used this system to build interactive virtual experiences, play 
them in multiple devices and obtain their behavior, so we could later analyze it. This system was 
evolved in four different experiments, two of which are analyzed in depth. 

This system achieved its goals in each of the experiments throughout its evolution: interactive 
experiences could be designed with ease, they were able to be played by users with an increasing 
number of compatible devices, and their behavior was able to be extracted and analyzed with a variety 
of tools. The reproduction of these multimedia experiences and the collection of users’ behavior were 
successful. 

While the specifics of some parts of the system varied between iterations, the core in which the 
collection of user behavior is based on did not: the exchange of information between the application 
that plays these interactive experiences and the behavioral database is based on the Experience API 
(xAPI), which was extended to properly work with each of the experiments, with their particular 
differences, with a common ground. In fact, the behavioral database, the Learning Record Store (LRS), 
was not modified at all during the evolution of the system, as it is general enough to store any 
experience as long as it follows the xAPI format. 

The use of xAPI proved to be a success, as this data was correctly collected, stored, and retrieved in 
all the cases, making it possible to perform analysis on the users’ actions in these experiments. 

The greatest benefit of this approach was that it made it possible the division of work between the 
development of the Learning Record Provider (LRP) and the Learning Record Consumer (LRC), which 
in our system are the applications that are used to play these interactive experiences (which are 
reported in Chapter 3) and the application that is used to analyze the data (which is reported by our 
colleague in [93]). Note that the behavioral data was exported from that application for further 
analysis in the last two experiments and is reported in later chapters in this thesis. 

Four experiments were produced, based on an increasingly evolved player application, which were 
used to perform an initial analysis on the collected behavior and provided valuable insight in the 
production of immersive experiences. 

The first experiment was introduced as a means to play interactive educative activities based on 360-
degree videos, which were to be played on computers with a drag-based interface. We noticed the 
issues with video quality and the particularities with spherical coordinates, as plane interpolation was 
not sufficient to move an object over the sphere in which a 360-degree video is displayed. In the end, 
this iteration served as a demonstration of the collection of user behavior with xAPI, as we showed 
how we could reproduce the events that happened during the reproduction of the 360-degree video 
activity. 

The second iteration served to reproduce a hypervideo based on a main 360-degree video track with 
multiple regular videos linked in specific points in the spacetime of the main spherical video track. 
While the experience was still to be played on computers with a drag-based interface, efforts were 
made to improve the video quality with MPEG-DASH and the positioning of the markers on the sphere 
was accurately made with great-circle formulas. This iteration served to study the spatiotemporal 
consumption of the 360-degree video track, the temporal consumption of the linked regular videos 
and the selection of the markers, and compare them between users who registered their personal 
details and those who did not, reported in [93]. Notably, markers that appear sooner are more likely 
to be selected; the more time a user watches the main video track, the more markers they select (even 
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more in registered users); and the spatial exploration in the main 360-degree video is significantly 
correlated to the selection of markers when in registered users, but it is not when they did not register 
their details. A difference in engagement between the two classes of users seems evident at this point: 
registered users behave more actively, while unregistered users behave more passively, in general. 

The third step consisted in a virtual reality environment, not based on 360-degree videos, in which we 
introduced a virtual museum of antique Macintosh computers. In this case, we first showed how we 
could extend our behavior collecting system based on xAPI from 360-degree videos a to general-
purpose VR application and we finally introduced multiple devices and four specialized user interfaces 
for them: a computer interface based with a mouse to orientate (similar to the one in previous 
experiments, but this time the cursor is captured, instead of having to drag across the scene) and select 
objects and a keyboard to move around the scene; a mobile interface that leveraged the sensors in the 
device to change the user orientation in the virtual environment and relied in the selection of objects 
to move around; an immersive interface for mobile VR visors (such as the Google Cardboard), which 
functioned similarly to the previous one, but relied in a gaze control to select objects, instead of 
tapping the touchscreen of the device; and an immersive interface for standalone VR headsets with 
controllers (such as the Oculus Rift), which used the sensors in the visor to orientate the user, the 
joystick in the controllers to move around and a gesture to select objects. In a user experiment, we 
first noticed difficulties in the interaction with the immersive interfaces, especially with the gesture 
required to select objects in the oculus interface, and we also collected the users’ behavior with the 
last two of these four interfaces. We observed some initial differences between these devices, which 
had been reviewed in a later chapter. 

The fourth and final case marked the return to spherical videos with the 360-degree hypervideo 
platform. We leveraged the advancements made in the second iteration (adaptive streaming and great-
circle equations) and in the third evolution (multiple devices and immersive interface) to create a 
general hypervideo format and demonstrated it with a tour through the streets with two kinds of 
videos (point and route videos), which were played with the same four devices than in the previous 
experiment, adapted for this experiment (one cannot move around in a 360-degree video), and in this 
case, the mobile interface relied in dragging over the touchscreen instead of on the sensors and in the 
oculus interface, instead of performing a gesture, a laser-based control was used to select the markers. 
We noticed differences in the characteristics of both kinds of videos and in the usability of the four 
interfaces after a user experiment. We collected the users’ behavior, which showed initial results of 
difference in the dispersion of the users’ orientation between video types and devices that had been 
reviewed more in-depth in a later chapter. 

Overall, we have seen that interaction in immersive experiences such as 360-degree videos and virtual 
reality are worth of study, and that is impossible without collecting the users’ behavior. We have 
presented a way of doing that automatically, in a way that could be extended through four different 
use cases, and that could be further extended to support future productions. 

With the evolution of this system, we satisfied Objective 1, as we could collect the users’ behavior 
with multiple devices in virtual reality environments and 360-degree videos. 

We studied the difference in behavior in the virtual museum (third iteration) between the interfaces 
of the immersive devices cardboard and oculus, which showed that different interfaces, although 
similar (as they were both for immersive devices), may produce differences in behavior. 

We found a significant difference in the time between interactions between the virtual devices: 
selections in cardboard were more frequent than in oculus, which was probably due to the more 
complicated way of selecting objects in oculus, as they needed to perform a specific gesture. 

Selection patterns of virtual objects differed between devices: the distribution of selections was always 
significantly different between them. We noticed how the selection of objects in cardboard was 
significantly inversely correlated with the distance from the center of the environment, while in oculus, 
it was significantly inversely correlated with the value of the z axis of the objects’ position. 

We observed how oculus users were more spatially disperse in the environment than cardboard users, 
with a statistically significant difference between the positions of the two interfaces. Users of the 



 

107 

cardboard interface were often based in the middle of the scene, while behavior with the oculus 
interface was often made towards the northern part of the environment. 

These two last observations are linked, as users selected objects in the positions where they explored. 
The difference may lie in the difference of the interaction between interfaces: cardboard users started 
in the middle of the scene, so it is normal that the most explored area is the middle, while oculus users 
continued where the previous user left, so this center bias should be eliminated. Instead, we observed 
that they explored the northern part of the environment. 

We analyzed the orientation of the users’ heads and saw how, on average, oculus users looked towards 
the northern part of the scene, while cardboard users looked towards the eastern part. Orientation in 
cardboard was significantly more disperse than in oculus. 

The general direction of the users of the oculus interface can be traced to the relative orientation in 
which we set up the monitors and sensors for that device, so that needs to be taken under 
consideration when virtual reality experiences are designed.  

After grouping the behavior of the cardboard interface by the web browser used, we noticed 
differences in the overall orientations per web browser, but also in the orientation of the first selection 
in each session, which could be caused by differences per browser in the initialization of the sensors 
of the device. We observed how the dispersion was smaller when it was based on the orientation of 
that first selection than when it is based on the centroid of the orientations, so that first orientation 
must have played a role in the overall orientation of the users. In the end, we found that the difference 
in dispersion between the Android browser and either iOS browsers was significant, but it was not 
significant between both iOS browsers. 

In the end, differences in the interaction, like the difference to perform a selection, differences in the 
initial values, like the starting position or the initial orientation, even miscellaneous differences like 
the presence of a physical element that could influence the general orientation (the table in the oculus 
interface), can make a difference in behavior between devices and must be considered if a uniform 
experience (within reason) is to be achieved in all the devices. 

We studied the users’ behavior in the 360-degree videos of the immersive hypervideo (fourth iteration) 
with four interfaces (pc, mb, oc, mv), which resulted in very evident differences in behavior between 
video types (whether the camera is static or not in the video) and more subtle differences between 
devices. 

We first compared the spatiotemporal exploration of the video sessions. Route videos were 
significantly more temporally explored than point videos and that between devices, the differences 
were only significant between some devices. Then we found that spatial exploration with immersive 
devices (oc, mv) tends to be lower than with non-immersive devices (pc, mb); in fact, between video 
types, we could not find a significant difference with the immersive devices, while in non-immersive 
devices, we found that route videos were significantly more explored spatially. Finally, we found that 
temporal and spatial exploration are significantly moderately correlated with the same combination 
of contextual variables (video type and device), with more similar values in immersive devices than in 
non-immersive devices. We understand that this is logical, as interaction in those devices is 
constrained by the same parts of the human body, while in the others, the changes of orientation can 
be performed by a mouse or a touchscreen. 

We analyzed the dispersion of the users’ orientation and we found that users are significantly much 
more disperse in point videos than in route videos and that there are small, significant differences by 
device per video type: in route videos, users of non-immersive devices showed a greater dispersion 
than users of immersive devices, while in point videos, the opposite was true (except between mb and 
mv). 

We also analyzed the movement of the users’ heads in segments of various lengths, and we found it 
to be significantly larger in point videos than in route videos. Between devices, the movement with 
pc was found to be significantly greater than the other devices in point videos, while in route videos 
the values are quite similar, especially between immersive and non-immersive devices. This difference 
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in pc is thought to have been able to be made thanks to the ease of rapidly changing the orientation 
with a simple movement of the mouse. 

To conclude that study, we analyzed the trajectories described by the users by applying clustering 
method based on trajectories on the reproductions of each video. We analyzed the average relative 
size of the clusters and the relative size of the main cluster in multiple trajectory windows. We 
observed significant differences between video types: the average relative size of the clusters and the 
relative size of the main cluster are smaller in point videos than in route videos, as users are more 
disperse in the first category, more clusters per user are created. Between devices, the results are not 
so clear, but in all the cases, the results were significantly better when we only used a single device 
than when we clustered all the devices together, which proves that different devices result in different 
trajectories. 

These two studies, one based on a virtual reality environment, and another based on 360-degree videos, 
helped us complete Objective 2 by comparing the behavior between different interfaces in these 
multimedia productions. 

Based on the same behavioral data from the fourth iteration, we ran two deep learning experiments, 
one to classify the reproductions into their contextual variables (video type and device), and another 
to improve a prediction model of future orientations with that contextual data. 

We observed that a recurrent neural network based on trajectory of raw orientation coordinates 
performs better than other models (like a dense model) or based on other data (like the movement in 
segments). In the end, we could correctly classify with a high degree of accuracy (greater than 90%) 
the video type and the device used in the reproduction with only four seconds of trajectory with either 
the spherical representation or the cartesian representation of the orientation. 

These results evidenced the difference between video types and devices, as a neural network model 
was able to find them from the raw coordinates of orientation to classify the trajectories. 

In the prediction model, we have found that those models based on deep learning perform well, 
significantly better than the baseline models. We observed how a larger window of data helps improve 
the performance of the models. 

We designed three deep learning models in total: in blind, all the samples were used altogether without 
any distinction; in grouped, only samples with the same contextual variables were considered; and in 
informed, all the samples were also considered altogether but they were labelled with the contextual 
variables (video type and device). 

We found that knowing these contextual variables and acting accordingly can be used to improve the 
prediction. We first saw that the grouped model performed significantly better than the blind model, 
as the differences between video types and devices outweigh the penalties of having a reduced training 
set. Then we observed that the blind model performs even better than the grouped model, especially 
in point videos, as they are more difficult to work with, and there are fewer samples to train the model. 

Finally, these results differ per video type and device: in some devices, the grouped model may perform 
worse than the blind model, probably due to an excessive reduction of the sample size, but the 
informed model always performs significantly better than the blind model. The difference between 
the grouped and the informed models in route videos is not significant, as the number of samples in 
the grouped model is considerable and the prediction is easier to make. 

In the end, we demonstrated how a prediction model for the users’ orientation in 360-degree videos 
can benefit from the contextual variables of the trajectories and that, if these values are missing, we 
can guess them with more than 90% of accuracy. With these results, we mark Objective 3 as complete. 

After we satisfied the three objectives we set up in 1.1, we have been able to collect the users’ behavior 
with multiple devices in virtual reality environments and 360-degree videos, we have analyzed the 
differences in that behavior in a virtual reality environment and a set 360-degree videos, and we have 
seen how a model to predict the future orientations of a user in 360-degree videos can be improved 
by leveraging the contextual information we have recorded or we have shown how to recreate from 
the raw users’ orientation. 
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This makes an advancement in the state of the art, as the users’ behavior in different devices and 
interfaces are not compared in studies. We have shown a way to collect that behavior, that there are 
differences in it and that these differences can play a part in the prediction of the users’ future 
orientations in 360-degree videos. 

Although the objectives were fulfilled and positive results were obtained, we need to reflect on some 
limitations of this work. 

The studies performed are made ad-hoc for our datasets, so if a new experiment was designed or a 
third-party dataset was to be used, new scripts to analyze these new datasets would need to be created. 
An interactive dashboard to dynamically analyze this data would be desirable but fell out of the scope 
of this work. 

The study described in Chapter 4 only included immersive interfaces. It would have been interesting 
to compare immersive and non-immersive interfaces, as we did in the next study. Furthermore, the 
data on the Oculus interface had to be aggregated, so per-session analyses in that interface could not 
be made. 

In Chapter 5 we based our study in an interactive hypervideo, but we only studied the users’ 
orientation in the 360-degree videos. It would have been interesting to study that inter-video behavior. 
The existence of hyperlinks to jump from video to video made possible that users could skip parts of 
the videos, so our dataset is not uniform and that had to be addressed when we analyzed the users’ 
orientations. 

For both of these studies, we could not fully exploit the potential of the system we presented in 
Chapter 3, as the data was collected in experimental setups. Had we distributed these immersive 
productions, we could have obtained much larger datasets from users through the Internet. 

Finally, we studied the classification of the users’ trajectories and the use of these contextual 
information to improve the prediction of future orientations. To better assess the prediction models, 
we would need to use them in an adaptive streaming system. This also fell outside of the scope of this 
current work. 

In the future, we would like to continue our work in this research line by extending the present work 
in the following aspects. 

The implementation of an adaptive streaming technique that leverages our informed prediction model 
would be a good starting point. We have seen that if the contextual information is not available, we 
can use our classification model to reproduce it. 

Regarding the contextual data, we could study if we can find more categories: there are probably more 
types of videos in other productions that are not limited to videos of the streets. In the same way, 
there are probably more classes of devices or ways to interact with them, as there are probably user-
dependent factors, such as eagerness of exploration, which are independent of the device. 

The deep learning models presented in this document are relatively simple, to research if the 
prediction made by a given model could be improved by leveraging that contextual information. An 
improvement of these models is a task in the future. 

Although we created an interactive hypervideo experience with our own 360-degree videos, it would 
be interesting to perform another analysis without all the hypervideo characteristics with third-party 
360-degree videos, either pulled from the video platforms from the Internet, such as YouTube, or 
available in research datasets, and observe if we can identify more video types and observe to what 
extent we can replicate our results with this new set of videos. 
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