
Chapter 3
Concepts

The objective of this work is to create a framework to implement multi-disciplinary finite element
applications. Before starting, it is necessary to explain some basic concepts of the finite element
method itself, multi-disciplinary problems and their solutions, and programming concepts related
to its design and implementation.

In this chapter a brief introduction to finite element concepts is given first. Then some basic
concepts of coupled systems are described. Finally some programming concepts and techniques
are explained.

3.1 Numerical Analysis

In this section a brief introduction to numerical analysis in general will be given and a short
description to different numerical methods, their similarities and their differences will be presented.

3.1.1 Numerical Analysis Scheme

There are several numerical analysis methods which are different in their approaches and type of
applications. Beside their differences, they rely on a global scheme which make them similar in
their overall methodologies and to some extent mixable or interchangeable. This overall scheme
consists of three main steps as follows:

Idealization Defining a mathematical model which reflects a physical system. For this reason
this step is also referred as mathematical modeling. In this step the governing equations of
a physical system and its conditions are transformed into some general forms which can be
solved numerically. Usually different assumptions are necessary to make this modeling pos-
sible. These assumptions make the model different from the physical problem and introduce
the modeling error in our solutions.

Discretization Converting the mathematical model with infinite number of unknowns, called de-
grees of freedom (dof), to a finite number of them. While the original model with infinite
number of unknown cannot be solved numerically, the resulting discrete model with finite
number of unknowns can be solve using a numerical approach. What is important to mention
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Figure 3.1: Three steps of Numerical analysis process.

here is the approximation involved in this step. This process introduces the discretization er-
ror to the solution which highly depends on the quality of discretization and the methodology
used.

Solution Solving the discrete model and obtaining the dof and other related results. This step
introduces the solution error coming from the inexactness of using algorithms, numerical
precision of machine, or other sources.

Figure 3.1 Shows this global scheme. An important observation here is the existence of different
errors and approximations introduced by different concepts. The accumulation of these errors can
affect the validity of the results obtained by these methods. For this reason the validity of each
step and reduction of the error in each process is one of the main challenges in using a numerical
method.

3.1.2 Idealization

The idealization is the mathematical modeling of certain physical phenomena. The main task of
this step is finding a proper mathematical model for a given physical problem.

Mathematical models are usually based on different assumptions. This dependency makes them
useful for problems in which these assumptions are correct or near to reality. For this reason finding
a good mathematical model requires a good knowledge not only about the problem but also about
the assumptions of the model.

For example in solving a fluid problem the idealization consists of finding the best fluid model
for the certain fluid in the problem. In this case the main questions are: Is this fluid Newtonian?
Is it compressible or not? Is it a laminar flow? etc. Depending on these conditions one model can
be considered more suitable than others for a certain problem. However the selected model may
still introduce certain modeling errors to our solution.

There are different form of mathematical models. Some common ones are:

Strong Form Defines the mathematical model as a system of ordinary or partial differential
equations and some corresponding boundary conditions.

Weak Form It expresses the mathematical equations in a particular modified form using a
weighted residual approximation.

Variational Form In this form the mathematical model is presented as a functional whose sta-
tionary conditions generates the weak form.

Strong Form

As mentioned before the strong form defines the mathematical model as a system of ordinary
or partial differential equations and some corresponding boundary conditions. Considering the
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Figure 3.2: The problem of finding u over a domain Ω.

domain Ω with boundary Γ shown in figure 3.2, this form defines the model by a set of equations
over the domain and the boundary as follows:

{ L(u(x)) = p x ∈ Ω
S(u(x)) = q x ∈ Γ (3.1)

where u(x) is the unknown and L is the operator applied over the domain Ω and S represents the
operator applied over the boundary Γ. The first equation represents the governing equation over
the domain and the second one represents the boundary conditions of this problem. For example,
a thermal problem over the domain of figure 3.3 can be modeled with the following strong form:

⎧⎨
⎩

∇T k∇θ(x) = Q x ∈ Ω
θ(x) = θΓ x ∈ Γθ

q(x) = qΓ x ∈ Γq

(3.2)

where θ(x) is the temperature in Ω, q is the boundary flux, Q is the internal heat source, Γθ is
the boundary with fixed temperature θΓ, and Γq is the boundary with fixed flux qΓ.

Weak Form

Let V be a Banach space, Considering the problem of finding the solution u ∈ V of equation:

L(u) = p u ∈ V (3.3)

q

Figure 3.3: A Thermal domain Ω with fixed temperature boundary Γθ and fixed flux boundary
Γq.
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It can be verified that this problem is equivalent to finding the solution u ∈ V such that for all
v ∈ V holds:

(L(u), v) = (p, v) u ∈ V,∀v ∈ V (3.4)

Which is known as the weak formulation of the problem. The weak form defines the math-
ematical model using the weak formulation of the strong form. Now using the following scalar
product:

(u, v) =
∫

Ω

uvdΩ (3.5)

results in the integral form, which is the weighted integral representation of the model:∫
Ω

L(u)vdΩ =
∫

Ω

pvdΩ u ∈ V,∀v ∈ V (3.6)

This formulation can be applied also to involve the boundary condition. For example, the same
problem represented by equation 3.1 can be rewritten as follows:∫

Ω

r(u)wdΩ +
∫

Γ

r̄(u)w̄dΓ = 0 u ∈ V,∀w, w̄ ∈ V (3.7)

where r and r̄ are the residual functions defined over the domain and the boundary respectively:

r(u) = L(u) − p (3.8)
r̄(u) = S(u) − q (3.9)

and w and w̄ are arbitrary weighting functions over the domain and boundary. Usually it is
convenient to use integration by parts in order to reduce the maximum order of derivatives in
the equations and balance it by applying some derivatives to the weighting functions. Performing
integration by parts on equation 3.7 yields:∫

Ω

A(u)B(w)dΩ +
∫

Γ

C(u)D(w̄)dΓ = 0 u ∈ V,∀w, w̄ ∈ V (3.10)

Reducing the order of derivatives in A and C respect to r and r̄, allows for a lower order of
continuity requirement in the choice of the u function. However, now higher continuity for w and
w̄ is necessary.

Variational Form

The variational form usually comes from some fundamental quantities of the problem like mass,
momentum, or energy whose stationary states are of interest. This form defines the mathematical
model by a functional in the following form:

Π(u) =
∫

Ω

F (u)dΩ (3.11)

The stationary state of this quantity is required, hence its variation is made equal to zero,
which results in the following equation:

δΠ(u) =
∫

Ω

δ(F (u))dΩ = 0 (3.12)
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Figure 3.4: A regular domain discretized with a finite difference grid.

Deriving the variational equations from conservation laws is attractive for scientists as presents
the same fundamental characteristics of the problem. Finally it is important to mention that the
weak form can also be derived from the stationary state of the variational form.

3.1.3 Discretization

The first step of numerical analysis was the definition of a mathematical or continuous model
corresponding to the real physical problem. In practice the continuous model cannot be solved
analytically except for certain domains and conditions, which is the reason for numerical solution.
The continuous model has an infinite number of unknowns corresponding to points in the domain
and the boundary, and cannot be solved directly using numerical methods. So this second step is
necessary for converting the continuous model to a discrete one with a finite number of unknowns
which can be solved numerically.

There are several ways to perform this conversion which results in different numerical methods.
The appropriate discretization method depends not only on the type of problem but also on the
type of mathematical model describing it. A brief description on proper discretization for different
models is given as follow.

Discretization of the Strong Form

Discretization of strong form is typically performed using the finite difference method. The idea
here comes from the numerical calculation of derivatives by replacing them with differences. For
example the first derivative of function f(x) can be changed to its discrete form as follows:

df(x)
dx

≈ ∆1
h(f, x) =

1
h

(f(x + h) − f(x)) (3.13)

Where the discretization parameter h is the distance of grid points. This method also can be
applied to calculate higher derivatives of a function:

dnf(x)
dxn

≈ ∆n
h(f, x) =

n∑
i=0

(−1)n−k

(
1
h

)n (
n
i

)
f(x + ih) (3.14)

The discretization is simply a cartesian grid over domain. Figure 3.4 shows a sample of grid in
two dimensional space.

This method has been used practically in many fields and implemented in many applications.
Its methodology is simple and also is easy to program. These made it one of the favorite methods
in numerical analysis. However this method has its shortcomings. First, it works well for regular
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domains, but for arbitrary geometries and boundary conditions encounters difficulties. For example
the irregular domain of figure 3.5 (a) can be approximated by the discrete domain shown in figure
3.5 (b). It can be seen easily that this discretization changes the domain boundary for an arbitrary
geometry.

(a) (b)

Figure 3.5: An arbitrary geometry and its finite difference discrete model.

Another disadvantage is its approximated solution, which can be obtained only in the grid
points hence no information is provided on other points within the grid.

Discretization of the Weak Form

Discretization of the continuous mathematical model consists of transforming the working space
to some selected discrete one. Considering the following weak form in the continuous space V :

(L(u), v) = (p, v) u ∈ V,∀v ∈ V (3.15)

This form can be transformed to the discrete space Vh to approximate the solution by uh ∈ V :

(L(uh), vh) = (p, vh) uh ∈ V,∀vh ∈ V (3.16)

As mentioned before, the weak form of the mathematical model can be represented by a
weighted integral as:

∫
Ω

r(u)wdΩ +
∫

Γ

r̄(u)w̄dΓ = 0 u ∈ V,∀w, w̄ ∈ V (3.17)

where r and r̄ are the residual functions defined over the domain and the boundary respectively.
w and w̄ are arbitrary weighting functions over the domain and the boundary. Here selecting a
discrete space Vh as our working space results in the following discrete model:

∫
Ω

r(uh)whdΩ +
∫

Γ

r̄(uh)w̄hdΓ = 0 uh ∈ Vh,∀wh, w̄h ∈ Vh (3.18)

where r and r̄ are the residual functions. Equation 3.18 is a weighted integral of residuals.
So this class of approximations is referred as the weighted residual methods. Several well known
methods like the Finite Element Method (FEM), Finite Volume (FV), and Least squares fitting
are subclasses of this method.
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It is common to choose a discrete space Vh made by a set of known trial functions Ni and
define the discrete solution as follows:

uh ≈
n∑

j=1

ajNj (3.19)

where aj are unknown coefficients, Nj are known trial-functions, and n is the number of un-
knowns. Substituting this in equation 3.18 results:

∫
Ω

r(
n∑

j=1

ajNj)whdΩ +
∫

Γ

r̄(
n∑

j=1

ajNj)w̄hdΓ = 0 ∀wh, w̄h ∈ Vh (3.20)

with:

wh =
n∑

i=1

αiwi , w̄h =
n∑

i=1

αiw̄i (3.21)

where αi are arbitrary coefficients, wi and w̄i are arbitrary functions, and n is the number of
unknowns. Expanding equation 3.20 gives:

n∑
i=1

αi

⎡
⎣∫

Ω

r(
n∑

j=1

ajNj)widΩ +
∫

Γ

r̄(
n∑

j=1

ajNj)w̄idΓ

⎤
⎦ = 0 ∀αi, wi, w̄i ∈ Vh (3.22)

As αi are arbitrary, all components of above sum must be zero in order to satisfy the equation.
This results in the following set of equations:

∫
Ω

r(
n∑

j=1

ajNj)widΩ +
∫

Γ

r̄(
n∑

j=1

ajNj)w̄idΓ = 0 ∀wi, w̄i ∈ Vh , i = 1, 2, 3, ..., n (3.23)

There are several set of functions that can be used as weighting functions. Here is a list of some
common choices:

Collocation Method Using Dirac’s delta δi as the weighting function:

wi = δi , w̄i = δi (3.24)

where δi is a function such that:

∫
Ω

fδidΩ = fi (3.25)

Substituting this weighting function in our reference equation 3.23 results in the following
discrete model:

ri(
n∑

j=1

ajNj) + r̄i(
n∑

j=1

ajNj) = 0 , i = 1, 2, 3, ..., n (3.26)
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This method satisfies the equation just in the set of collocation points and gives a set of
discrete equations similar to those obtained by the finite difference method.

Subdomain Method It is an extension of the previous method. It uses a weighting function wi

which is identity in a subdomain Ωi and zero elsewhere:

wi =
{

I x ∈ Ωi

0 x /∈ Ωi
, w̄i =

{
I x ∈ Γi

0 x /∈ Γi
(3.27)

The discrete model can be obtained by substituting this weighting function in the general
weak form of equation 3.23:

∫
Ωi

r(
n∑

j=1

ajNj)dΩi +
∫

Γi

r̄(
n∑

j=1

ajNj)dΓi = 0 , i = 1, 2, 3, ..., n (3.28)

This method provides a uniform approximation in each subdomain and establishes a way to
divide the domain into subdomains for solving the problem.

Least Square Method This method uses the governing operator applied to the trial functions
as its weighting functions:

wi = δL(Ni) , w̄i = δS(Ni) (3.29)

Here is the resulted discrete model by substituting the above weighting function in equation
3.23:

∫
Ω

r(
n∑

j=1

ajNj)L(Ni)dΩ +
∫

Γ

r̄(
n∑

j=1

ajNj)S(Ni)dΓ = 0 , i = 1, 2, 3, ..., n (3.30)

One can verify that the resulting equation is equivalent to minimizing the square of the global
residual R over the domain:

δR = 0 (3.31)

where:

R =
∫

Ω

r2(uh)dΩ +
∫

Γ

r̄2(uh)dΓ = 0 (3.32)

Galerkin Method It uses the trial functions as weighting functions:

wi = Ni , w̄i = Ni (3.33)
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Substituting equation 3.33 in equation 3.23 results in the following Galerkin discrete model:

∫
Ω

r(
n∑

j=1

ajNj)NidΩ +
∫

Γ

r̄(
n∑

j=1

ajNj)NidΓ = 0 , i = 1, 2, 3, ..., n (3.34)

This method usually improves the solution process because frequently, but not always, leads
to symmetric matrices with some other useful features which makes it a favorite methodology
and a usual base for the finite element solution.

Discretization of the Variational Form

The Rayleigh-Ritz method is the classical discretization method for the variational form of the
continuous model. It also was the first trial-function method. The idea is to approximate the
solution u by ũ defined by a set of trial functions as follows:

ũ =
n∑

i=1

αiNi (3.35)

where αi are unknown coefficients, Ni are known trial-functions, and n is the number of un-
knowns. Now considering the following continuous model in its variational form:

δΠ(u) =
∫

Ω

δ(F (u))dΩ = 0 (3.36)

Inserting the trial function expansion of equation 3.35 into equation 3.36 gives:

δΠ(ũ) =
n∑

i=1

∂Π
∂αi

δαi = 0 (3.37)

As this equation must be true for any variation δα, all its component must be equal to zero.
This results into the following set of equations:

∂Π(ũ)
∂α1

=
∫

Ω

∂(F (ũ))
∂α1

dΩ = 0

∂Π(ũ)
∂α2

=
∫

Ω

∂(F (ũ))
∂α2

dΩ = 0 (3.38)

...
∂Π(ũ)
∂αn

=
∫

Ω

∂(F (ũ))
∂αn

dΩ = 0

Mixed Discretization

Sometimes it is useful to mix two or more types of discretization in order to describe complex
phenomena or just for simplifying some approximations while keeping a more detailed approach
in other aspects of the problem. A typical case of mixing different forms is the modeling of time
dependent problems, where one can use a finite difference discretization in time while using a
weighted residual discretization in space.
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3.1.4 Solution

The last step in the numerical methodology is the solution. This step consists of solving the
discrete model using proper algorithms in order to find the main unknowns and also to calculate
other additional unknowns of the problem. This process includes:

Calculating Components All components of a discrete model (like derivatives in the finite dif-
ference method, integrals in weighted residual or variational methods, etc.) are calculated.

Creating the Global System The discrete model’s components are put together in order to
create the global system of equations representing the discrete model.

Solving the Global System The global system must be solved to calculate the unknowns of the
problem. For some models this leads to a system of linear equations which can be solved
using linear solvers. Some algorithms create a diagonal global system and made the solving
part completely trivial.

Calculating Additional Results In many problems not only the principal unknown, i.e. dis-
placement in structural problems, are of interest, but also some additional results, like stresses
and strains in structural problems, must be calculated.

Iterating In many algorithms some iterations are also needed to determine the unknown or cal-
culate different sets of unknowns. Solving nonlinear problems, calculating time dependent
unknowns, and optimization problems are examples of algorithms where iterations are needed.

3.2 Finite Element Method

In the previous section a brief introduction to numerical methods was given. As this thesis work
is based on finite element methodology, a brief description of this method and its basic steps are
presented.

The finite element method (FEM) in general takes the integral form of the problem and uses
piecewise polynomials as its trial functions. There are a wide range of formulations which lead to
the FEM but the most used one is the Galerkin method, which is used here to describe the FEM
and its basic steps.

3.2.1 Discretization

Considering a continuous problem: { L(u(x)) = p x ∈ Ω
S(u(x)) = q x ∈ Γ (3.39)

and its integral form as follows:∫
Ω

r(u)wdΩ +
∫

Γ

r̄(u)w̄dΓ = 0 u ∈ V,∀w, w̄ ∈ V (3.40)

where r and r̄ are the residual functions defined over the domain and the boundary respectively:

r(u) = L(u) − p (3.41)
r̄(u) = S(u) − q (3.42)
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Defining the discrete finite element space Vh as composition of polynomial functions Ni:

x =
n∑

i=1

αx
i Ni (3.43)

and transforming the equation 3.40 to this space results in:∫
Ω

r(uh)whdΩ +
∫

Γ

r̄(uh)w̄hdΓ = 0 uh ∈ Vh,∀wh, w̄h ∈ Vh (3.44)

where:

uh =
n∑

i=1

αiNi (3.45)

w =
n∑

i=1

βiNi (3.46)

w̄ =
n∑

i=1

βiNi (3.47)

Expanding of equation 3.44 with these definitions results in:

∫
Ω

r(
n∑

j=1

αjNj)
n∑

i=1

βiNidΩ +
∫

Γ

r̄(
n∑

j=1

αjNj)
n∑

i=1

βiNidΓ = 0 α, N ∈ Vh , ∀β ∈ Vh (3.48)

The following alternative form is obtained by taking out the βi from integrals:

n∑
i=1

βi

⎡
⎣∫

Ω

r(
n∑

j=1

αjNj)NidΩ +
∫

Γ

r̄(
n∑

j=1

αjNj)NidΓ

⎤
⎦ = 0 α, N ∈ Vh , ∀β ∈ Vh (3.49)

As βi are arbitrary, all components of above sum must be zero in order to satisfy the equation.
This results in the following set of equations:

∫
Ω

r(
n∑

j=1

αjNj)NidΩ +
∫

Γ

r̄(
n∑

j=1

αjNj)NidΓ = 0 α, N ∈ Vh , i = 1, 2, 3, ..., n (3.50)

An observation here is the equivalence of the discrete form in equation 3.50 with the one in
equation 3.34 obtained by the Galerkin method in section 3.1.3.

Node and Degree of Freedom

In the previous section, the general process of converting the continuous integral form in equation
3.40 to its discrete form in equation 3.50 was explained. In the finite element method, each unknown
value is referred as a degree of freedom (dof) and it is considered to be the finite element solution
uh at a domain point called node.

αi = ai (3.51)
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where ai is the approximate solution uh at node i. Using this assumption the set of equations
3.50 can be rewritten as follows:

∫
Ω

r(
n∑

j=1

ajNj)NidΩ +
∫

Γ

r̄(
n∑

j=1

ajNj)NidΓ = 0 a,N ∈ Vh , i = 1, 2, 3, ..., n (3.52)

This set of equations can be solved to obtain directly the unknowns at each node of the domain.
Substituting equation 3.51 into 3.45 results:

uh =
n∑

i=1

aiNi (3.53)

which relates the approximated solution uh over the domain with the nodal values obtained
from solving the previous set of equations 3.52. In this way, the approximate solution can be
obtained not only at all nodes but also at any other points of the domain.

Shape Functions and Elements

Returning to the equation 3.52 a set of trial functions Ni are necessary to define the problem. In
the finite element method these functions are called shape functions. The correct definition of the
shape functions plays an important role in the correct approximation of the solution and its many
important properties.

The discretization introduced in the previous section reduced the infinite number of unknowns
in equation 3.40 to a finite number n in the set of equations 3.52. This is a big step in making the
model numerically solvable but still is not complete for solving it in practice. The problem comes
from the fact that each equation in set of equations 3.52 involves a complete integration over the
domain and a complete relation between the unknowns in the equations which makes the solution
very costly. To avoid these problems, let us divide the domain Ω into several sub-domains Ωe as
follows:

Ω1 ∪ Ω2 ∪ ... ∪ Ωe ∪ ... ∪ Ωm = Ω , Ω1 ∩ Ω2 ∩ ... ∩ Ωe ∩ ... ∩ Ωm = ∅ (3.54)

where each partition Ωe is called an element. Dividing the integrals in equations 3.52 yields:

m∑
e=1

⎡
⎣∫

Ωe

r(
n∑

j=1

ajNj)NidΩe +
∫

Γe

r̄(
n∑

j=1

ajNj)NidΓe

⎤
⎦ = 0 i = 1, 2, 3, ..., n (3.55)

where Γe is the part of boundary Γ related to element Ωe as shown in figure 3.6. Now let us
define the shape function Ni as follows:

Ni =
{

Ne
i x ∈ Ωe ∪ Γe

0 x /∈ Ωe ∪ Γe (3.56)

where Ωe is a partition of domain called element. Substituting this shape function into equation
3.52 results in the following equation:

mi∑
e=1

⎡
⎣∫

Ωe

r(
mi∑
j=1

ajN
e
j )Ne

i dΩe +
∫

Γe

r̄(
mi∑
j=1

ajN
e
j )Ne

i dΓe

⎤
⎦ = 0 i = 1, 2, 3, ..., n (3.57)
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e

e

Figure 3.6: An element Ωe and its boundary Γe.

Where mi is the number of elements containing node i. In this manner the relation between
unknowns is reduced to those between the neighbors and in each equation the integration must be
performed only over some elements.

Boundary Conditions

Considering the following problem:

{ L(u(x)) = p x ∈ Ω
S(u(x)) = q x ∈ Γ (3.58)

and assuming that L contains at most mth-order derivatives. The boundary condition of such
a problem can be divided in two categories: essential and natural boundary conditions.

The essential boundary conditions SD are conditions that contain derivatives with order less
equal to m−1. These conditions are also called Dirichlet conditions (named after Peter Dirichlet).
For example the prescribed displacement in structural problems is a Dirichlet condition.

The rest of boundary conditions are considered to be natural boundary conditions SN . These
conditions are also referred as Neumann boundary conditions (named after Carl Neumann). For
example in a structural problem the boundary tractions are the Neumann condition of the problem.

Applying this division to equation 3.58 results in:

⎧⎨
⎩

L(u(x)) = p x ∈ Ω
SD(u(x)) = qD x ∈ ΓD

SN (u(x)) = qN x ∈ ΓN

(3.59)

where SD is the Dirichlet condition applied to boundary ΓD and SN is the Neumann condition
applied to boundary ΓN as can be seen in Figure 3.7. Transforming equation 3.59 to its integral
form results:

∫
Ω

r(u)wdΩ +
∫

ΓD

r̄D(u)w̄dΓD +
∫

ΓN

r̄N (u)w̄dΓN = 0 u ∈ V,∀w, w̄ ∈ V (3.60)

where:
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D

N

Figure 3.7: A domain and its Dirichlet and Neumann boundaries.

r(u) = L(u) − p (3.61)
r̄D(u) = SD(u) − qD (3.62)
r̄N (u) = SN (u) − qN (3.63)

If the choice of solution u is restricted to functions that satisfy the Dirichlet condition on
ΓD, the integral over the Dirichlet boundary ΓD can be omitted by restricting the choice of w̄ to
functions which are zero on ΓD. Using these restrictions results in:

∫
Ω

r(u)wdΩ +
∫

ΓN

r̄N (u)w̄dΓN = 0 u ∈ V,∀w, w̄ ∈ V (3.64)

u = ū x ∈ ΓD (3.65)

where ū is the solution over the Dirichlet boundary. Converting the above model to its discrete
form using the same process described before results in the following discrete equations:

∫
Ω

r(
n∑

j=1

ajNj)NidΩ +
∫

ΓN

r̄N (
n∑

j=1

ajNj)NidΓN = 0 a,N ∈ Vh , i = 1, 2, ..., n (3.66)

u = ū x ∈ ΓD (3.67)

3.2.2 Solution

In this section the global flow of a general finite element solution process will be described and
some techniques used to improve the efficiency in practice will be explained.

Calculating Components

Applying the essential condition to equation 3.57 results in:

mi∑
e=1

⎡
⎣∫

Ωe

r(
mi∑
j=1

ajN
e
j )Ne

i dΩe +
∫

Γe
N

r̄(
mi∑
j=1

ajN
e
j )Ne

i dΓe
N

⎤
⎦ = 0 i = 1, 2, ..., n (3.68)

u = ū x ∈ ΓD (3.69)
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If the differential equations are linear we can write the equation above as follows:

Ka + f = 0 (3.70)

where:

Kij =
m∑

e=1

Ke
ij (3.71)

fi =
m∑

e=1

fe
i (3.72)

This step consist of calculating the shape functions and their derivatives in each element and
then perform the integration for each element.

The usual technique here is to calculate these components in local coordinates of the element and
transform the result to global coordinates. Usually the shape functions are defined in terms of local
coordinates and their values and gradients with respect to local coordinates are known. However
the elemental matrices contain gradients of shape functions with respect to global coordinates.
These gradients can be calculated using the local ones and the inverse of some matrix J known
as the jacobian matrix. Considering the global coordinate x,y,z and elemental local coordinates
ξ,η,ζ, it can be seen that the gradients of the shape functions with respect to the local coordinates
can be written in terms of the global ones as follows:⎡

⎢⎢⎣
∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂ζ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

⎤
⎥⎥⎦

⎡
⎢⎣

∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

⎤
⎥⎦ = J

⎡
⎢⎣

∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

⎤
⎥⎦

where J is the jacobian matrix. Now the gradients of the shape functions with respect to the
global coordinates can be calculated as follows:

⎡
⎢⎣

∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

⎤
⎥⎦ = J−1

⎡
⎢⎢⎣

∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂ζ

⎤
⎥⎥⎦

After calculating the gradients of the shape functions respect to the global coordinates, we can
integrate them over the elements. This can be done by transforming the integration domain from
global to local coordinates as follows:∫

Ωe

fdΩe =
∫

Ωe

f detJ dξ dη dζ (3.73)

Now all elemental matrices can be calculated using local coordinates and transformed to global
coordinates. The usual way to calculate the integrals over the elements is using a Gaussian Quadra-
ture method. This method converts the integration of a function over the domain to a weighted
sum of function values at certain sample points as follows:

∫ b

a

f (x) dx ≈
n∑

i=1

wif(xi) (3.74)
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Figure 3.8: A simple beam example with two elements and three nodes.

This method uses nearly half the sample points to achieve the same level of accuracy of other
classical quadratures. Thus it is an effective method for calculating elemental integrals in FEM.
This method as well as some other integration methods will be explained later in section 5.1.

Creating the Global System

As mentioned earlier for linear differential equations the set of equations 3.68 can be written as a
global system of equations in the form of:

Ka = f (3.75)

where:

Kij =
m∑

e=1

Ke
ij (3.76)

fi =
m∑

e=1

fe
i (3.77)

However the sums in the equation above must be applied to the corresponding coordinates.
Having the elemental matrices and vectors Ke and fe, the procedure of putting them together in
order to create the global system of equation 3.75 is called assembly and consists of finding the
position of each elemental component in the global equations system and adding it to the value in
its position.

This procedure first assigns a sequential numbering to all dofs. Sometimes its useful to separate
the restricted dofs, ones with Dirichlet conditions, from others. This can be done easily at the time
of assigning indices to dofs. After that the procedure goes element by element and adds their local
matrices and vectors to the global equations system using the following assembly operator

⊔
:

Kij

⊔
Ie

Ke
ij = KIe

i I
e
j
+ Ke

ij (3.78)

fi
⊔
Ie

fe
i = fIe

i
+ fe

i (3.79)

where Ie is the vector containing the global position, which is the index of the corresponding
dof, of each row or column. For example considering the beam problem of figure 3.8 with two
elements and the following elemental matrices and vectors:
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K(1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

K
(1)
11 K

(1)
12 K

(1)
13 K

(1)
14

K
(1)
21 K

(1)
22 K

(1)
23 K

(1)
24

K
(1)
31 K

(1)
32 K

(1)
33 K

(1)
34

K
(1)
41 K

(1)
42 K

(1)
43 K

(1)
44

⎤
⎥⎥⎥⎥⎥⎥⎦

, f (1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f
(1)
1

f
(1)
2

f
(1)
3

f
(1)
4

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.80)

and:

K(2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

K
(2)
11 K

(2)
12 K

(2)
13 K

(2)
14

K
(2)
21 K

(2)
22 K

(2)
23 K

(2)
24

K
(2)
31 K

(2)
32 K

(2)
33 K

(2)
34

K
(2)
41 K

(2)
42 K

(2)
43 K

(2)
44

⎤
⎥⎥⎥⎥⎥⎥⎦

, f (2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f
(2)
1

f
(2)
2

f
(2)
3

f
(2)
4

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.81)

Giving sequential indices to dofs a1 to a6, the index vectors I1 and I2 of elements e1 and e2

will be:

I(1) =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ , I(2) =

⎡
⎢⎢⎣

3
4
5
6

⎤
⎥⎥⎦ (3.82)

Finally, assembling the elemental matrices and vectors using the index vectors above results in
the following system:

Ka = f (3.83)

with:

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K
(1)
11 K

(1)
12 K

(1)
13 K

(1)
14 0 0

K
(1)
21 K

(1)
22 K

(1)
23 K

(1)
24 0 0

K
(1)
31 K

(1)
32 K

(1)
33 + K

(2)
11 K

(1)
34 + K

(2)
12 K

(2)
13 K

(2)
14

K
(1)
41 K

(1)
42 K

(1)
43 + K

(2)
21 K

(1)
44 + K

(2)
22 K

(2)
23 K

(2)
24

0 0 K
(2)
31 K

(2)
32 K

(2)
33 K

(2)
34

0 0 K
(2)
41 K

(2)
42 K

(2)
43 K

(2)
44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.84)
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and:

f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f
(1)
1

f
(1)
2

f
(1)
3 + f

(2)
1

f
(1)
4 + f

(2)
2

f
(2)
3

f
(2)
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.85)

Another task to be done when building the global system of equations is the application of
essential boundary conditions. This can be done easily by eliminating the rows and columns corre-
sponding to restricted dofs from the global matrix and vector and apply their corresponding value
to the right hand side. This procedure can be done without reordering of equations but it is more
convenient to separate the restricted equations from others in order to simplify the process. Con-
sidering the following equation system where the components corresponding to Dirichlet degrees
of freedom are separated from others:

[
KNN KDN

KDN KDD

] [
aN

aD

]
=

[
fN

fD

]
(3.86)

where aN are unknowns and aD are known dofs with Dirichlet boundary condition and fD
their corresponding boundary unknown. Let us divide the above system in two restricted and not
restricted part as follows:

[KNN ] [aN ] + [KND] [aD] = [fN ] (3.87)
[KDN ] [aN ] + [KDD] [aD] = [fD] (3.88)

Knowing the Dirichlet boundary condition values aD let us move them to the right hand side:

[KNN ][aN ] = [fN ] − [KND][aD] (3.89)

This system of equations can be solved to obtain the unknowns aN . Considering the previous
beam example of figure 3.8. The dofs a1 and a5 are restricted. In order to partition the global
system let us reorder the dofs as follows:

ã = {a2, a3, a4, a6, a1, a5} (3.90)

which results in the following index vectors:

I(1) =

⎡
⎢⎢⎣

5
1
2
3

⎤
⎥⎥⎦ , I(2) =

⎡
⎢⎢⎣

2
3
6
4

⎤
⎥⎥⎦ (3.91)
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Now let us assemble the global matrix K:

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K
(1)
22 K

(1)
23 K

(1)
24 0 K

(1)
21 0

K
(1)
32 K

(1)
33 + K

(2)
11 K

(1)
34 + K

(2)
12 K

(2)
14 K

(1)
31 K

(2)
13

K
(1)
42 K

(1)
43 + K

(2)
21 K

(1)
44 + K

(2)
22 K

(2)
24 K

(1)
41 K

(2)
23

0 K
(2)
41 K

(2)
42 K

(2)
44 0 K

(2)
43

K
(1)
12 K

(1)
13 K

(1)
14 0 K

(1)
11 0

0 K
(2)
31 K

(2)
32 K

(2)
34 0 K

(2)
33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.92)

and vector f :

f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f
(1)
2

f
(1)
3 + f

(2)
1

f
(1)
4 + f

(2)
2

f
(2)
4

f
(1)
1

f
(2)
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.93)

Finally applying the Dirichlet boundary condition using equation 3.89:

KNN =

⎡
⎢⎢⎢⎢⎢⎢⎣

K
(1)
22 K

(1)
23 K

(1)
24 0

K
(1)
32 K

(1)
33 + K

(2)
11 K

(1)
34 + K

(2)
12 K

(2)
14

K
(1)
42 K

(1)
43 + K

(2)
21 K

(1)
44 + K

(2)
22 K

(2)
24

0 K
(2)
41 K

(2)
42 K

(2)
44

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.94)

and:

[RN ] = [fN ] − [KND][aD] =

⎡
⎢⎢⎢⎢⎢⎢⎣

f
(1)
2

f
(1)
3 + f

(2)
1

f
(1)
4 + f

(2)
2

f
(2)
4

⎤
⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

K
(1)
21 0

K
(1)
31 K

(2)
13

K
(1)
41 K

(2)
23

0 K
(2)
43

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[
a1

a5

]
(3.95)

⎡
⎢⎢⎢⎢⎢⎣

R1

R2

R3

R4

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

f
(1)
2 − K

(1)
21 a1

f
(1)
3 + f

(2)
1 − K

(1)
31 a1 − K

(2)
13 a5

f
(1)
4 + f

(2)
2 − K

(1)
41 a1 − K

(2)
23 a5

f
(2)
4 − K

(2)
43 a5

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.96)
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results in the following equation to be solved:

⎡
⎢⎢⎢⎢⎢⎢⎣

K
(1)
22 K

(1)
23 K

(1)
24 0

K
(1)
32 K

(1)
33 + K

(2)
11 K

(1)
34 + K

(2)
12 K

(2)
14

K
(1)
42 K

(1)
43 + K

(2)
21 K

(1)
44 + K

(2)
22 K

(2)
24

0 K
(2)
41 K

(2)
42 K

(2)
44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a2

a3

a4

a6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

R1

R2

R3

R4

⎤
⎥⎥⎥⎥⎥⎦ (3.97)

Another way to apply the Dirichlet conditions is to use a penalty method. This applies a
big coefficient to the diagonal elements corresponding to the restricted degrees of freedom. This
method is easier to program but is less robust than the previous one. The problem is to find the
correct coefficient because a high number may cause the system to be ill conditioned and a low
one is less realistic.

The global system matrix obtained through the FEM typically has a lot of zeros in it. Holding
all its values in a dense matrix structure, which stores all elements of matrix, implies a large
overhead in memory due to the storage of zero elements. There are several alternative structures
which hold a useful portion of matrix for solving. For example a banded matrix structure holds a
band around the diagonal of a matrix and assumes all element outside the band are zero. There are
also several sparse matrix structures like: compressed sparse row (CSR) which stores the nonzero
elements of each row with their corresponding numbers of columns, or compressed sparse column
(CSC) which is the transposed of compressed sparse row as a column major structure. Another
common structure is the symmetric matrix structure that uses the symmetry property of the matrix
to hold approximately half of the elements and can be combined with a sparse structure to store
half of the nonzeros in matrix.

Solving the Global System

In the previous section the global system of equations was prepared and applying the essential
conditions made it ready to be solved. This system of equations can be solved using conventional
solvers. There are two categories of solvers, direct solvers and iterative solvers.

Direct solvers try to solve the equation by making the coefficient matrix upper triangular,
lower triangular, diagonal, or sometimes decomposing it to upper lower form and calculating the
unknowns using this form of matrices. Solvers like Gaussian elimination [81], frontal solution [23],
LU decomposition [81] for general matrices, and Cholesky [81] for symmetric matrices are examples
of this category.

Iterative solvers start with some initial values for the unknown and try to find the correct
solution by calculating the residual and minimize it over iterations. Conjugate gradient (CG)
[90], Biconjugate gradient (BCG) [90], Generalized minimal residual method (GMRES) [90] are
examples of this category of solvers.

Direct solvers are very fast for small systems of equations and are less dependent on the condi-
tioning of the matrix. The only exception is the existence of pivot, a zero in diagonal, which needs
a special treatment. These solvers are very slow for large systems while the number of operations
grows with order O(N3) where N is the size of system. Algorithms like multi frontal solution [36]
are used to solve big systems in parallel machines taking advantage of using several processors in
parallel. A way to reduce the number of operations needed for solving the problem is to reduce
the bandwidth of the system matrix.

Iterative solvers on the contrary are highly dependent on the condition of the system which
affects considerably their convergence. Usually for small systems the direct solvers are faster while
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for medium to large systems the iterative ones are more suitable, still depending on the condition
of system. These methods are also easier to implement and optimize than direct methods.

As mentioned before the solving cost of direct solvers is highly depended on the bandwidth of
the system matrix. For this reason a procedure called reordering is recommended to reduce the
bandwidth of system matrix. This procedure consists of changing the order of rows and columns
of the matrix in order to reduce the bandwidth before the solution and then permuting the result
back after solving. In practice these algorithms can be applied to renumber the degrees of freedom
in optimum way once they are created and then solve the system as usual. The Cuthill McKee [90]
algorithm is a classical example of these algorithms. Sometimes the reordering process is applied
before using iterative solvers to reduce the cache miss produced by the large sparsity of matrix.

Sometimes it is recommended to prepare the system matrix before solving it using an iter-
ative solver. This procedure is called preconditioning and consists of transforming the system
of equations to and equivalent but better conditioned one for the solution with iterative solvers.
Diagonal preconditioner [90] for diagonal dominant systems, Incomplete LU with tolerance and
filling [90] for general nonsymmetric systems, and Incomplete Cholesky [90] for symmetric systems
are examples of popular preconditioners. Unfortunately, finding the best combination of solver
and preconditioner for a certain problem is a question of experience and there is not a single best
combination for all problems.

Calculating Additional Results

In a linear problem after solving the global system of equations, the principal results are obtained
and in some sense the problem is solved. But in many cases there are some additional results which
are of interest and must be calculated. For example in structural analysis the nodal displacements
can be obtained by solving the global system of equations. However the stress in elements is also
important and has to be calculated. These values usually are calculated using the primary result,
i.e. displacements for each element. For example the elemental stress in a structural problem can
be calculated using the displacement values ae, obtained by solving the global system using the
following equation [75]:

σ = DBae − Dε0 + σ0 (3.98)

where σ is elemental stress, D is the elasticity matrix, B is the strain matrix, ε0 is the initial
strain, and σ0 is the initial stress of element. However the results obtained by this equation are
usually discontinuous over the domain. This means that the stress result for a node from different
elements connected to it is different. For this reason different averaging methods are implemented
to smooth the discontinuous results. An alternative is to use recovery methods which try to
reproduce continuous gradient results with a better approximation [104].

Iterating

One may note that the previous sections where mainly based on linear differential equations. So
what has to be done if the problem is not linear? There are several methods to deal with nonlinear
problems. Unfortunately these methods cannot obtain the results as simply as before and usually
need to perform iterations to find the results. Considering the following nonlinear system of
equations:

K(u)u = f (3.99)
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One can plan an iterative solution procedure where each set of unknowns un is used to calculate
the system of equations and calculate the next set of unknowns un+1:

K(un)un+1 = f (3.100)

There are several methods for accelerating the convergence of this procedure. Some examples
are Newton method, Modified Newton method, Line search [104], etc. As mentioned before all these
methods need iterations over the solution.

3.3 Multi-Disciplinary Problems

The objective of this thesis is creating a framework to deal with multi-disciplinary problems. So
before getting any further, it is important to give a general description of these problems and
describe some important features of them briefly.

3.3.1 Definitions

There are different definitions for multi-disciplinary problems. A multi-disciplinary solutions is
usually defined as solving a coupled system of different physical models together. A coupled system
is assumed to be a collection of dependent problems put together defining the model.

In this work a multi-disciplinary problem, also called coupled problem, is defined as solving a
model which consists of components with different formulations and algorithms interacting together.
It is important to mention that this difference may come not only from the different physical nature
of the problems but also from their different type of mathematical modeling or discretization.

A field is a subsystem of multi-disciplinary model representing a certain mathematical model.
Typical examples are a fluid field and a structure field in a fluid-structure interaction problem.
In a coupled system a domain is the part of a modeled space governed by a field equation, i.e. a
structure domain and a fluid domain.

3.3.2 Categories

The definition given for multi-disciplinary problem includes a wide range of problems with very
different characteristics. These problems can be grouped into different categories reflecting some
of their aspects affecting the solution procedure. One classification can be made by how different
subsystems interact with each other. Another classification can be done reflecting the type of
domain interfaces.

Weak and Strong Coupling

One may classify multi-disciplinary problems by the type of coupling between the different subsys-
tems. Consider a problem with two interacting subsystem as shown in figure 3.9.

The problem is calculating the solutions u1 and u2 of subsystems S1 and S2 under applied
forces F (t). There are two types of dependency between the subsystems:

Weak Coupling Also called one-way coupling where one domain depends on the other but this
can be solved independently. A thermal-structure problem is a good example of this type of
coupling. In this problem the material’s property of the structure depends on the temperature
while the thermal field can be solved independently, assuming the temperature change due
to the structural deformation is very small. Figure 3.10 shows this type of coupling.
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Strong Coupling Also referred as two-way coupling when each system depends on the other and
hence none of them can be solved separately. The fluid-structure interaction problems for
structures with large deformations fall into this category. In these problems, the structure
deforms by the pressure coming from the fluid, and the fluid velocity and pressure depend
on the shape of the deformed structure. Figure 3.11 shows this type of coupling.

Interaction Over Boundary and Domain

As mentioned before one classification of multi-disciplinary problems relies on how subsystems
interact together. Another classification can be done by looking not on how they interact but
where they interact with each other. There are two categories of multi-disciplinary problems using
this criteria [104]:

Class I In this category the interaction occurs at the boundary of the domains. For example in
a fluid-structure interaction problem the interaction occurs at the boundary of the structure
in contact with fluid and vice versa. Figure 3.12 shows an example of this type of problems.

Class II This category include problems where domains can overlap totally or partially. A
thermal-fluid problem is a good example of this class of problems where the domain of
the fluid and the thermal problem overlap. Figure 3.13 shows an example of this type of
problems.

3.3.3 Solution Methods

There are several different approaches for solving multi-disciplinary problems. Finding a suitable
approach for each case, highly depends on the category of the problem and the different details of
each field specially for time dependent problems. In this section an overview of different method-
ologies for solving these problems will be discussed.

Sequential Solution of Problems with Weak Coupling

The solving procedure of one-way coupled problems is trivial. Considering the problem of figure
3.10 with two subsystem S1 and S2 where S2 depends on u1 (the solution of S1). This problem
can be solved easily by solving S1 first and using its solution u1 for solving S2 as shown in figure
3.14. For transient problems this can be done at each time step.

1 2

2

1

Figure 3.9: A general multi-disciplinary problem with two subsystems.
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1

2 1

1

1 2

Figure 3.10: A weak coupled system where the subsystem S2 depends on the solution of subsystem
S1.

1

2 1

1 2

2
1 2

Figure 3.11: A strong coupled system where not only the subsystem S2 depends on the solution
of subsystem S1 but also subsystem S1 depends on S2.

Monolithic Approach

In this approach the interacting fields are modeled together which results in a coupled continuous
model and finally a multi-disciplinary element to be used directly. Consider the problem with
strong coupling in figure 3.11 where not only subsystem S2 depends on the solution of subsystem
S1, but also subsystem S1 depends on S2:

L1(u1, u2, t) = f1(t) (3.101)
L2(u1, u2, t) = f2(t) (3.102)

Applying the discretization over time and space one can rewrite the above equation in the
following form for each time step:[

K1 H1

H2 K2

] [
u1

u2

]
=

[
f1(t)

f2(t)

]
(3.103)

where K1 and K2 are the field system matrices corresponding to the field variables and H1 and
H2 are the field system matrices corresponding to interaction variables. These equations can be
solved at each time step in order to calculate the solutions of both fields. Figure 3.15 shows this
scheme.

Though this approach seems to be very easy and natural, in practice it encounters difficulties.
One problem is the difficulty of the formulation. The multi-disciplinary continuous models, are
usually complex by nature and this complexity makes the discretization process a tedious task.
However by using computer algebra systems like Mathematica [103], and Maple [66], the symbolic
derivation in this approach becomes more feasible.
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Figure 3.12: A class I fluid-structure interaction problem. The interface, shown by the thick black
line, is just at the boundary of the fluid and structure domains.

Figure 3.13: A thermal-fluid interaction problem. Here the thermal domain and the fluid domain
overlap in the heating pipe part.
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Figure 3.14: Sequential solving of one-way coupled problems.
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Figure 3.15: Monolithic scheme for solving multi-disciplinary problems.

Another problem is the size and bandwidth of the global system. In this method all fields have
to be solved together which make it an expensive approach.

An additional disadvantage is the implementation cost. Implementing the interaction of a
certain field with any new field requires the interface matrices H1 and H2 to be customized to
reflect the new variables. These are not reusable for another interaction of that field. Also any
existing codes, for solving each field individually, cannot be reused as they are and in many cases
severe modifications are necessary for adapting them to this approach.

In spite of these problems, this approach perfectly models the interaction and results in a more
robust and more stable formulation for solving coupled problems.

Staggered Methods

The intention of staggered methods is to solve each field separately and simulate the interaction by
applying different techniques for transforming variables from one field to another. Some common
techniques for staggered methods are described below:

Prediction This technique consists of predicting the value of the dependent variables in the next
step. For example in the two-way coupled problem of figure 3.11 a prediction of the variable
u

(n+1)
2 can be used to solve the S1 subsystem separately. This technique is widely used to

decouple different fields in problems with strong coupling. Figure 3.16 shows the prediction’s
scheme.

There are different methods for predicting the solution for the next step. One common
method is the last-solution predictor which uses the actual value of the variable as the pre-
dicted value for the next step:

u(n+1)
p = u(n) (3.104)
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Another common choice is the prediction by solution gradient which applies a predicted
variation to the actual value of variable to obtain the predicted value in the next step:

u(n+1)
p = u(n) + ∆tu̇(n) (3.105)

with:

∆t = t(n+1) − t(n) (3.106)

u̇(n) =
(

∂u

∂t

)(n)

(3.107)

Advancing Calculating the next time step of a subsystem using the calculated or predicted solu-
tion of other subsystem. Figure 3.17 shows this technique.

Substitution Substitution is a trivial technique which uses the calculated value of one field in
another field for solving it separately. Figure 3.18 shows its scheme.

Correction Considering the S1 subsystem which is solved using the predicted solution u
(n+1)
2p to

obtain u
(n+1)
1 . Advancing the subsystem S2 using u

(n+1)
1 results in u

(n+1)
2 . The correction

step consist of substituting u
(n+1)
2 in place of the predicted value u

(n+1)
2p and solve again S1

to obtain a better result. Obviously this procedure can be repeated several times. Figure
3.19 shows this procedure.

An staggered method can be planed using the techniques above. For example, returning to the
problem of figure 3.11, one can plan the following staggered method:

1. Prediction: u
(n+1)
p = u

(n)
2 + ∆tu̇

(n)
2

2. Advancing: S
(n+1)
1 (u(n+1)

p ) → u
(n+1)
1

3. Substitution: u
(n+1)
1 = u

(n+1)
1 for S2

4. Advancing: S
(n+1)
2 (u(n+1)

1 ) → u
(n+1)
2

2
(n+1)

1
(n+1)

2
(n)

1
(n)

2p
(n+1)

(n) (n+1)

Figure 3.16: The prediction technique consists of predicting the value of the interaction variable
for the next step and use it to solve the other field.



48 CHAPTER 3. CONCEPTS

2
(n+1)

1
(n+1)

2
(n)

1
(n)

1
(n+1)

(n) (n+1)

Figure 3.17: The advancing is calculating the solution of the next time step (S1) using the calculated
or predicted solution of other subsystem (S2).
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Figure 3.18: The substitution technique consists of substituting the calculated interaction variables
in the field S1 into the field S2 to calculate it separately.

Figure 3.20 shows this procedure.
More information about staggered methods and their techniques can be found in [41, 42].
Staggered methods use less resources than the monolithic approaches because in each step solve

only one part of problem. This can be a great advantage in solving large problems. Also this gives
an idea to use the same process for solving large single field problems over several machines in
parallel.

The other advantage is the possibility of reusing existing single field codes for solving multi-
disciplinary problems almost without modification. This can be done by writing an small program
to control the interaction between independent programs for each field. This strategy is referred
as master and slave method and widely used for solving multi-disciplinary problems.

This approach also enables the use of different discretizations for each field. It also lets each
field have its own mesh characteristics. This can be a great added value for solving large and
complex coupled problems.

As usual, beside all advantages there are some disadvantages. Staggered methods require a
careful formulation to avoid instability and obtain an accurate solution. In general the staggered
method is less robust than the monolithic approach and needs more attention in time of modeling
and solving.
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Figure 3.19: The correction consist of replacing the predicted solution with recently calculated one
and resolve the subsystem to obtain a better solution.
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Figure 3.20: An staggered method for solving a coupled system.

3.4 Programming Concepts

Designing and implementing a new software is a hard task. Using proper software engineering
solutions and also advanced programming techniques can significantly increase the quality of the
program. This chapter describes different software engineering solutions and programming tech-
niques which are useful for designing a finite element program.

3.4.1 Design Patterns

Designing usually consists of several decisions that affect the feature reusability, flexibility, and
extendability of the code. However there are several classical problems that appearing during the
design and can be solved easily by applying existing Design Patterns. Design patterns are some
reusable patterns for designing a part of program representing a known problem. In this section a
set of patterns that can be used in designing a finite element program are briefly explained.

Strategy Pattern

Strategy pattern defines a family of algorithms by encapsulating each algorithm in one separate
class and making them interchangeable via a uniform interface established by their base class.
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Figure 3.21 shows this pattern.

Figure 3.21: Strategy pattern’s structure

In this structure Strategy declares the interface for all strategies. User has a reference to a
Strategy object and uses the Strategy interface to call the algorithm. User also may let Strategy
access its data via an interface. Finally each ConcreteStrategy implements an algorithm using
the Strategy interface.

There are many points in finite element program design where this pattern can be used. Linear
solvers, geometries, elements, condition, processes, strategies, etc. Figure 3.22 shows an example
of using this pattern for designing a linear solver’s structure:

Figure 3.22: Structure designed for linear solvers using strategy pattern

Using this pattern each class derived form LinearSolver encapsulates one solving algorithm
separately. This encapsulation makes a library easier to extend. The interface is defined by
the LinearSolver base class and is uniform for all derived solvers. User keeps a pointer to
LinearSolver base class which may point to any member of the solver family and use the in-
terface of the base class to call different procedures.

Bridge pattern

The bridge pattern decouples the abstraction and its implementation in such a way that they can
change independently. Figure 3.23 shows the structure of this pattern.

In this pattern Abstraction defines the interface for the user and also holds the implementor
reference. AbstractionForm create a new concept and may also extend the Abstraction interface.
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Figure 3.23: Bridge pattern’s structure.

Implementor defines the interface for implementation part which is used by abstractions. Each
ConcreteImplementor implements the implementor interface for a concrete case.

Bridge pattern is useful for connecting to concepts with hierarchical structure. In a finite
element program this pattern can be used to connect elements to geometries, linear solvers to their
reorderer, or to connect iterative solvers to preconditioners.

For example, applying a bridge pattern to an Element’s structure results in the structure shown
in Figure 3.24.

This pattern lets each Element combine its formulation to any Geometry.

Composite Pattern

The Composite pattern lets users group a set of object in one composite object and treat individual
objects and compositions of objects uniformly. Figure 3.25 shows the structure of this pattern.

In this pattern Component defines the interface for object operations and also declares the
interface for accessing and managing the child components. It may also define an interface for
accessing the component’s parent in reversible structures. Leaf has no children and implements
just the operation. It can be used as a basic unit in composition. Composite stores its children and
implements the child management interface. It also implements its operation by using operations
of its children. Finally user can use the component interface to work with all objects in composition
uniformly.

This pattern can be used to design processes which can be constructed by a set of processes,
geometries with ability of grouping them in a composite one, or even elements grouping different
elements in one and mixing formulations.

For example applying this pattern to process results in the structure shown in figure 3.26.
This structure lets users to combine different process in one and use it like any other process.

Template Method Pattern

The Template Method pattern defines the skeleton of an algorithm separately and defers some
steps to subclasses. In this way template method pattern lets subclasses redefine certain steps
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Figure 3.24: Element’s structure using bridge pattern.

of an algorithm without changing the algorithm’s structure. Figure 3.27 shows structure of this
pattern.

In this structure AbstractClass defines abstract primitive operations and also implements
the skeleton of an algorithm in a template method. ConcreteClass implements the primitive
operations which will be used by the template method as changed steps of algorithm.

This method is useful in situations when various algorithms differ in some of their steps but
not in global. Strategies can be designed using this pattern to provide a category of algorithms
changeable by schemes or applying this pattern to linear solver design can make them independent
from the matrix and vectors and their operations.

Figure 3.28 shows an example of using this pattern in designing strategies.

Prototype Pattern

The Prototype pattern provides a set of prototypes of objects to be created. User clones the
prototype to create a new object of that type. System is extendible to any new type whose
prototype is available. Figure 3.29 shows the structure of this pattern.

Prototype provides the cloning interface and is the common base class useful to create proto-
types list. Each concrete prototype implements the cloning operation for itself. User creates a new
object by asking its related prototype to clone itself.

Prototype pattern is very useful for designing an extendible IO. IO can use a prototype of new
object and create it without problem. Figure 3.30 shows a use of this pattern in IO for creating
elements.
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Figure 3.25: Composite pattern.

Interpreter Pattern

The Interpreter pattern creates a representation for given grammar and then use it to interpret
the langauge. This pattern has simple structure as shown in figure 3.31.

AbstractExpression defines the Interpret interface for all nodes in syntax tree. TerminalExpression
represents a terminal symbol in grammar and implements the Interpret method for it. For each
terminal symbol in a sentence an instance of it has to be created. NonterminalExpression rep-
resents a nonterminal symbol in context free grammar. It holds instances of all expressions in its
sentence. It also implements the Interpret method which usually consist of calling it members
Interpret method.

Curiously Recursive Template Pattern

The Curiously Recursive Template (CRT) pattern, also called as Barton and Nackman Trick,
consists of giving the derived class to its base class as its template argument. The idea is configuring

Figure 3.26: Applying composite pattern to processes’ structure.
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Figure 3.27: Template Method pattern structure.

Figure 3.28: Template Method pattern applied to solving strategy.

a base class depending on its derived class and providing a type of static polymorphism which can
be much more efficient than usual polymorphism by deriving and overriding the virtual functions.
Figure 3.32 shows this pattern.

Using this pattern lets developer customize the base class without losing efficiency in operation.
This pattern is more effective when the operation is very simple and the overhead of virtual function
calling is considerable. For example a matrix library can use this pattern to let a symmetric matrix
derived class change the operators of a base matrix class. In this way methods like access methods,
assignments, etc. can be overridden without producing performance overhead. Figure 3.33 shows
this pattern applied to the matrix example above.

The patterns described in this section are the ones used in the design of the Kratos. Description
for other patterns and also more detailed explanation of patterns mentioned before can be found
in [45].

3.4.2 C++ advanced techniques

Performance and memory efficiency are two crucial requirement for finite element programs. It has
been shown that an optimized implementation of numerical methods in C++ can provide the same
performance of Fortran implementations [100] and usually the inefficiency of the C++ codes comes
from the developer’s misunderstanding of the language [54]. For this reason it can be helpful to
take a look at different techniques used for implementing high performance and efficient numerical
algorithms in C++. These techniques are used in different parts of Kratos to improve its efficiency
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Figure 3.29: Prototype pattern.

while providing a clear and easy to use interface.

Expression Templates

Expression Templates is a technique which is used to pass expressions to a function argument
in a very efficient way [97]. For example passing a function to an integration procedure to be
integrated. This technique is also used in high performance linear algebra libraries to evaluate
vectorial expressions [98]. In this way expressions consisting of operation over matrices and vectors
can be evaluated without creating any temporary object and in a single loop.

The idea is to create a template object for each operator and constructing the whole expression
by combining these templates and their relative variables. For example, considering the function
f as follows:

f(x, y) =
1

x + y

Converting this function to its expression templates form can be done in three steps. First we
need expressions to represent the constant and variables as follows:

class ConstantExpression {

double mValue;

public:

ConstantExpression(double Constant) : mValue(Constant ){}

double Value (){ return mValue ;}

};

class ReferenceExpression {

double& mReference;

public:

ReferenceExpression(double& Variable) : mReference(Variable ){}

double Value (){ return mReference ;}

};

Then some templates are necessary to handle the operators:
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Figure 3.30: Using prototype pattern in IO for creating elements.

Figure 3.31: Interpreter pattern structure

template <class TExpression1 , class TExpression2 > class

SumExpression {

TExpression1 mExpression1;

TExpression2 mExpression2;

public:

SumExpression(TExpression1 Expression1 ,

TExpression2 Expression2) :

mExpression1(Expression1),

mExpression2(Expression2 ){}

double Value (){ return mExpression1.Value () +

mExpression2.Value ();}

};

template <class TExpression1 , class TExpression2 > class
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Figure 3.32: Curiously recursive template pattern.

DivideExpression {

TExpression1 mExpression1;

TExpression2 mExpression2;

public:

DivideExpression(TExpression1 Expression1 ,

TExpression2 Expression2) :

mExpression1(Expression1),

mExpression2(Expression2 ){}

double Value (){ return mExpression1.Value() /

mExpression2.Value ();}

};

And finally the expression template version can be written using previous components. Con-

Figure 3.33: Using CRT pattern in matrix structure desing.
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verting the x + y expression results in:

SumExpression <ReferenceExpression ,

ReferenceExpression >( ReferenceExpression(x),

ReferenceExpression(y));

Using above expression the whole function can be written as follows:

typedef SumExpression <ReferenceExpression ,

ReferenceExpression > sum_expression;

typedef DivideExpression <ConstantExpression ,

sum_expression > expression;

expression f = expression(ConstantExpression (1),

sum_expression(ReferenceExpression(x),

ReferenceExpression(y)));

Writing these expressions manually is really impractical but fortunately carefully overloaded
operators can do this conversion automatically. As mentioned earlier this technique can be used
to evaluate matrix and vector expressions without creating temporaries and in one pass. A simple
sum operation using overloaded operators over vectors or matrices can result in many redundant
loops and overhead. For example considering the following innocent code:

// a,b,c and d are vectors

d = a + b + c;

This simple code to sum three vectors and assign it to another one using simple overloaded
operators can generate a code equivalent to:

Vector t1 = b + c; Vector t2 = a + t1; d = t2;

In the first step the overloaded operator is used to calculate the sum of two vectors and put
them in the temporary vector t1. Again the overloaded operator is used to calculate the sum
of vector a and temporary vector t1 and the result is stored in another temporary vector t2.
Finally the second temporary vector is assigned to left hand side vector d. It can be seen that this
operation is done by performing three loops over all vector elements and creating two temporary
vectors which make it very inefficient. Using expression templates can eliminate all this overhead
and make it as efficient as a hand coded procedure.

The idea is to overload operators to create the expression without evaluating it. The evaluation
of the expression is postponed to the assigning time. The right hand side of this expression can be
converted to the following form:

class ReferenceExpression {

Vector& mReference;

public:

ReferenceExpression(Vector& Variable) : mReference(Variable ){}

double Value(int i){ return mReference[i];}

};

template <class TExpression1 , class TExpression2 > class

SumExpression {

TExpression1 mExpression1;

TExpression2 mExpression2;

public:
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SumExpression(TExpression1 Expression1 ,

TExpression2 Expression2) :

mExpression1(Expression1),

mExpression2(Expression2 ){}

double Value(int i){ return mExpression1.Value(i) +

mExpression2.Value(i);}

};

typedef SumExpression <ReferenceExpression ,

SumExpression <ReferenceExpression ,

ReferenceExpression > rhs_expression;

d = rhs_expression(ReferenceExpression(a),

SumExpression <ReferenceExpression ,

ReferenceExpression >(b,c));

Now an overloaded assignment operator can complete the procedure:

template <class TExpression >

operator = (Vector& a, TExpression Expression)

{

for(int i = 0 ; i < size ; i++)

a[i] = Expression.Value(i);

}

Passing our rhs expression to this assignment operator results a code equivalent to:

for(int i = 0 ; i < size ; i++)

d[i] = rhs_expression.Value(i);

Inlining the first Value method and references inside it results the following code:

for(int i = 0 ; i < size ; i++)

d[i] = a[i] + SumExpression <ReferenceExpression ,

ReferenceExpression >(b,c).Value(i);

And inlining the second Value method and its all the references results the optimized code:

for(int i = 0 ; i < size ; i++)

d[i] = a[i] + b[i] + c[i];

Template Metaprogramming

Templates were added to C++ for a better alternative to existing macros in old C. Eventually
they didn’t eliminate the usage of macros but gave us much more than anyone could expect. For
example, template meta programming. Everything began when Erwin Unruh tricked the compiler
to print a list of prime numbers at compile time. This extends the algorithm writing from standard
form in C++ to a new form which makes the compiler run the algorithm and results in a new
specific algorithm to run.

The Template Metaprogramming technique can be used to create an specialized algorithm at
the time of compiling. This technique makes compiler interpret a subset of C++ code in order to
generate this specialized algorithm. Different methods are used to simulate different programming
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statements, like loops or conditional statements, at compile time. These statements are used to
tell the compiler how to generate the code for our specific case.

This technique uses recursive templates to encourage the compiler into making a loop. When
a template calls itself recursively the compiler has to make a loop for instantiating templates
until a specialized version used as stop rule is reached.Here is an example of how template meta
programming can be used to make a compile time power function. First a general template function
class is needed to hold the power function class:

template <std:: size_t TOrder > struct Pow {

static inline

double Value(double X)

{

// Calculatin result ...

return result;

}

};

This class takes order as a template argument of the class. Note that TOrder must be a positive
integer and also known at compile time. So it cannot be used as a normal runtime power function.
Now we take a recursive algorithm to compute the n-th power of a value x:

xi = xi−1 ∗ x, i = 2, ..., N (3.108a)
x1 = x (3.108b)

Implementing this using template meta programming is relatively straightforward. Recursive
templates can be used here to make the compiler perform a for loop and in each pass add an x
multiplication to our code. Stoping the loop after repeating k times will generate a code equivalent
to manually written one. First we introduce the recursive part in Value method:

template <std:: size_t TOrder > struct Pow {

static inline

double Value(double X)

{

return X * Pow <TOrder - 1>::Value(X);

}

};

And the stop rule in equation 3.108b as a specialized template

template <> struct Pow <1> {

static inline

double Value(double X)

{

return X;

}

};

Now the power function is ready to use. Here is an example of calling it to calculate x4:

double x = 2.00; double y = Pow <4>:: Value(x); assert(y == 16.00)

In the time of Compiling, the compiler will try to inlining the Value function which results

double y = x * Pow <3>:: Value(x)
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And continuing the recursive calling to order 1

double y = x * x * x * Pow <1>:: Value(x)

At this point the template specialization stop it from going into a infinite loop because Value
method of Pow<1> is not recursive. Compiler tries to inline this Value method and generates the
following code:

double y = x * x * x * x;

There is an advantage using this class. If x is known at compile time y also be calculated in
compile time. This can be used to optimize the code for instance, loops can be unrolled when the
repeat number is a known value and so on.

Template specialization is can also be used to make compiler simulate conditional statements
or switch and cases. These statements can be used to generate different codes according to some
conditions. For example an assignment operator for matrices may change its algorithm depending
on row or column majority of a given matrix:

template <bool c> class Assign {};

class Assign <true > { public:

template <class Matrix1 , class Matrix2 >

Assign(Matrix1& A, Matrix2& B)

{

// Assigning row by row;

}

}

class Assign <false > { public:

template <class Matrix1 , class Matrix2 >

Assign(Matrix1& A, Matrix2& B)

{

// Assigning column by column;

}

}

template <class Matrix2 >

operator = (Matrix2& B)

{

Assign <Matrix2 ::IsRowMajor >(*this , B);

}

In this form the compiler generates an specialized algorithm for each assigning statement.



62 CHAPTER 3. CONCEPTS


