oo 1 1

Conclusions and Future Work

11.1 Conclusions

Kratos, a framework for developing multi-disciplinary programs has been designed and imple-
mented. It helps developers in implementing applications for different fields of analysis by provid-
ing input-output, data structures, solvers, basic tools, and standard algorithms. The applications
implemented in this framework can be used for solving multi-disciplinary problems using any
master and slave strategies or even by solving simultaneously. At this moment several solvers
(incompressible fluid, structural, thermal, and electromagnetic) are implemented in Kratos. Com-
bination of these applications are also used to solve different multi-disciplinary problems, specially
fluid-structure interaction and thermal-structural problems.

This framework provides a high level of flexibility and generality which is required for dealing
with multi-disciplinary problems. Developers in different areas can configure Kratos for their needs
without altering the standard interface used to communicate with other fields in coupled analysis.
Different applications like: the particle finite element method and explicit compressible fluid are
implemented in Kratos which helped for validating its flexibility in handling different algorithms.
Finally its python interface gives extra flexibility in handling nonstandard algorithms.

Several reusable components are provided to help developers allowing easier and faster imple-
mentation of their applications. Data structure, IO, linear solvers, geometries, quadrature tools,
and different strategies are examples of these reusable components. Use of these components makes
application development not only faster, but also ensures compatibility with other tools for solving
multi-disciplinary problems.

Kratos is also very extensible at different levels of implementation. Each application can add
its variables, degrees of freedom, Properties, Elements, Conditions, and solution algorithms to
Kratos. The object-oriented structure and appropriate patterns used in its design make these
extensions easy while reducing the need for modifications. The extensibility is also validated at all
levels by implementing different applications varying from standard finite element applications to
optimization procedures using Kratos and its applications.

Last but not least, the performance of Kratos is comparable even to single purpose programs
and different benchmarks show this in practice. This makes Kratos a practical tool for solving
industrial multi-disciplinary problem.

275



276 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

11.1.1 General Structure

An object-oriented structure has been designed to maximize the reusability and extensibility of
the code. This structure is based on finite element methodology and many objects are designed to
represent the basic finite element concepts. In this way the structure becomes easily understandable
for developers with a finite element method background.

In this design Vector, Matrix, and Quadrature representing the basic numerical concepts.
Node, Element, Condition, and Dof are defined directly form finite element concepts. Model,
Mesh, and Properties are from the practical methodology used in finite element modeling com-
plemented by ModelPart, and SpatialContainer, for organizing better all data necessary for
analysis. I0, LinearSolver, Process, and Strategy represent the different steps of a finite ele-
ment program flow. Finally Kernel and Application are defined for library management and its
interface definition.

Kratos uses a multi-layer approach in its design which reduces the dependency between different
parts of program. It helps in maintenance of the code and also helps developers in understanding
the code. These layers are defined in a way such as each user has to work in the smallest number
of layers as possible. In this way the amount of code that each users has to be familiar with
is minimized and the chance of conflict between users of different categories is reduced. The
implementation difficulties needed for each layer is also tuned for the knowledge of users working in
it. For example the finite element layer uses only basic to average features of C+4 programming but
the main developer layer use advanced language features in order to provide desired performance.

11.1.2 Basic Tools

Different reusable tools have been implemented to help developers in writing their applications
in Kratos. Several geometries and different quadrature methods are provided and their perfor-
mances are optimized. Their flexible design and general interface make them suitable for use in
different applications. Their optimized performance make them appropriate not only for academic
applications but also for real industrial simulations.

An extensible structure for linear solvers has been designed and different common solvers have
been implemented. In this design the solver encapsulates only the solving algorithms and all
operations over vectors and matrices are encapsulated in space classes. In this way solvers become
independent of the type of mathematical containers and can be used to solve completely different
types of equations systems like symmetric, skyline, etc. This structure also allows highly optimized
solvers (for just one type of matrices or vectors) to be implemented without any problem.

11.1.3 Variable Base Interface

A new variable base interface has been designed and implemented. All information about a con-
cept or variable to be passed through this interface is encapsulated in the Variable class. The
information about components of a variable also is encapsulated in the VariableComponent class
which gives an additional flexibility to this interface. This interface is used at different levels of
abstraction and proved to be very clear, flexible, and extensible.

Variable provides the type of data statically and objects can use it to configure their operations
for a given type of data via template implementation. This type information also prevents the use
of variables in procedures that cannot handle their type of data. Each variable has a unique key
which can be used as the reference key in data structures. The name of variable as an string helps
routines like IO to read and write them without requiring additional parameters. Finally it provides
a zero value which can be used for initializing data independent of its type in generic algorithms.



11.1. CONCLUSIONS 277

Beside this information, variable provides different methods for raw memory manipulations. These
methods are excellent tools for low level generic programming, specially for writing heterogeneous
containers.

This interface has been used successfully in different parts of Kratos. Its flexibility and ex-
tendibility is demonstrated in practice and its evident contribution to readability of the code is
shown. This interface played a great role in uniforming different concepts coming from different
area of analysis.

11.1.4 Data Structure

New heterogeneous containers have been implemented in order to hold different types of data
without any modifications. The DataValueContainer can be used to store variables of any type
without even explicitly defining the list of them. This container is very flexible but uses a search
mechanism to retrieve given variable’s data. The VariablesListContainer only stores the vari-
ables defined in its variables list which can be have any type but its advantage is its fast indirection
mechanism for finding the variables data. In Kratos these two containers are used alternatively in
places where performance or flexibility are more important. Being able to store even the list of
neighbor Nodes or Elements shows their flexibility in practice.

An entity base data structure has been developed in Kratos. This approach gives more freedom
in partitioning the domain or in creating and removing Nodes and Elements, for example in adaptive
meshing. Several levels of abstraction are provided to help users group model and data information
in different ways. In Kratos the Model contains the whole model, divided to different ModelParts.
Each model part can have different Meshes which hold a complete set of entities in Kratos. These
objects are effectively used for separating domain information or sending a single part to some
process.

11.1.5 Finite Element Implementation

The Element and Condition classes are designed as the extension points of Kratos. Their generic
interfaces provide all information necessary for calculating their local components and also are
flexible enough for handling new arguments in the future.

Several processes and strategies has been developed to handle standard procedures in finite
element programming. These components increase the reusability of the code and decrease the
effort needed to implement new finite element application using Kratos.

Some experimental work has been done to handle elemental expression using a higher level of
abstraction. In this way elemental expressions can be written in C++ but with a meta language
very similar to mathematical notations and then can be compiled with the rest of the code using
the C++ compiler. These expressions have been successfully tested and their performance is
comparable to manually implemented codes.

Finally the Formulation is designed to handle nodal, edge based, or even elemental formulations
in different forms of implementations. However these capabilities have not been implemented yet
due to the lack of interest from developers.

11.1.6 Input-Output

A flexible and extensible IO module for finite element programs has been developed. It can handle
new concepts very easily while Kratos automatically adds variables to its components and 10 uses
these components as its list of concepts. Therefore any application built with Kratos can use 10



278 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

for reading and writing its own concepts without making any change to it. However, more effort
is required to extend this IO system to handle new types of data.

This IO is multi-format. It can support new formats just by adding a new IO derived class an
without changing any other part of 10. For example a binary format IO can be added using this
feature.

An interpreter is also implemented to handle Kratos data files. Its format is relatively intuitive
and similar to Python scripts. The major interpreting task is given to the Python interpreter.
This flexible interpreter with its object-oriented high level language can be used to implement and
execute new algorithms using Kratos. In this way the implementation and maintenance cost of a
new sophisticated interpreter is eliminated.

11.2 Future Work

This work can be continued in different ways. First of all different extensions to the existing
framework can increase the number of useful features provided by it. Besides these extensions,
parallelization of the code is the next task to perform in order to guarantee its success in solving
future large scale problems.

11.2.1 Extensions

Here is a list of suggested extensions to this work.

Basic Tools

New solvers and preconditioners should be added to extend the solving abilities of Kratos. Also a
new type of linear solvers for very small system of equations should be implemented. They can be
used for solving efficiently the small equations appearing in some algorithms like the patch recovery
method [104].

Variable Base Interface

As mentioned before, there are some complexities related to incompatibility of variables and their
components in this interface. This also is an open door for further improvements. A solution
could be deriving the VariableComponent from variable and using some indexing mechanism
to distinguish them. This can be completed by some traits to avoid virtual function calling in
cases where a good performance is also needed. This is something to be implemented and tested
carefully.

Finite Element Implementation

Creating new processes and strategies can increase the reusability of the code and also the com-
pleteness of Kratos. This can be done also by revising the processes and strategies implemented
in different applications and adding a generic version of them to Kratos which could be usable for
a wider set of applications.

As mentioned in section 8.5, an experimental elemental expression has been developed and
tested. These part needs more components to be useable in a wide variety of formulations. Im-
plementing missing components and practically use them can help the fast development of finite
element formulations in Kratos, At the same time, it can be used to optimize the new formulations
or even transform them automatically to parallel codes.



11.3. ACKNOWLEDGMENTS 279

Formulations are another part of Kratos to explore. Adding nodal or edge based formulations
to Kratos can be a good way to refine its design in practice.

Input-Output

Serialization is not implemented yet but is considered to be useful for automatization of problem
loading and saving. Adding this feature to Kratos would help users to run longer problems and
pause them whenever they want. Using an external library is considered to be a better solution
than implementing it.

Supporting binary format for input can reduce significantly the data reading time. The multi-
format feature of Kratos reduces a lot the effort necessary to implement it.

11.2.2 Parallelization

Beside the extensions mentioned before, parallelization of Kratos framework is the main task to be
undertaken in the future. The growing size of problems and the increase of available parallel com-
puting machines (even in the personal computers sector), stress the importance for parallelization
of numerical codes. For this reason a big effort should be invested to parallelize Kratos for shared
memory and distributed memory architectures.

Fortunately, several aspects of Kratos become useful in this process. Its entity based data
structure makes the distribution of data over processors easier. Also, several layers of abstraction
in the data structure will help the partitioning task which are needed for division of the model
over processors. Finally the Strategy is designed to be parallelized with a very small effort.

11.3 Acknowledgments

This work is dedicated to Hengameh who left her family, friends and also her work to come to
Barcelona with me. Her support and patience during these long years have been priceless.

I would like to thank Professor Eugenio Onate for his support which made this project possible
and to the whole Kratos team for their contributions and valuable feedback that was decisive for
the evolution of Kratos.

I would also like to thank specially my good friend Dr. Riccardo Rossi for his great effort in
developing Kratos as a very good engineer and programmer. He helped me to overcome several
difficulties arising during this work not only with his practical solutions but also with his high
motivation and belief in the project.

This work has been done in the memory of Francisco Javier Royo who started it but his short
life did not let him finish it...



280 CHAPTER 11. CONCLUSIONS AND FUTURE WORK




