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Infrared Modifications of Gravity

Diego Blas Temiño

Memoria presentada para obtener el t́ıtulo de Doctor en F́ısica.

Tesis dirigida por el Dr. Jaume Garriga Torres.

Abril de 2008

UNIVERSITAT DE BARCELONA

U

B

Programa de doctorat de F́ısica Avançada
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zo, Miriam Calvo, Alessio Celi, Diederik Roest, Guillem Pérez-Nadal y, especialmente,
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Redondo, Carla Biggio, Eduard Massó, Albert Roura, Andi Ross, Gregory Gabadadze
y Alberto Iglesias con quienes he disfrutado compartiendo ideas sobre F́ısica.

En el plano personal, no existen palabras para agradecer suficiente el apoyo que he
recibido por parte de mis padres, Vicente y Sabina. Muchas gracias, a vosotros os dedico
esta Tesis. También mis hermanos, Rodrigo y Gonzalo han supuesto un continuo punto
de referencia durante todos estos años y este es un buen momento para darles las gracias.

Me siento muy afortunado por todos los amigos que me han acompañado durante
mi carrera cient́ıfica. En primer lugar, gracias a mis amigos zaragozanos Iván Calvo,
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Throughout the dissertation we will follow the Landau-Lifshitz time-like conventions;
the n-dimensional flat metric in particular, reads ηµν = diag (1,−1, . . . ,−1). n is the
space-time dimension that will be taken to be 4 in some parts of the Thesis. We will
also use N = n − 1 as the space dimension. Lagrangians are written in momentum
space as well as in configuration space, depending on the context. It is usually trivial
to shift from one language to the other. For the totally antisymmetric tensor we choose
ǫ0123 = 1.

We will define the Laplacian operator as ∆ =
∑

i ∂i∂i = −∂i∂i and � = ηµν∂µ∂ν .

Given a connection, the Riemann tensor will be defined as

Rαµβν ≡ Γαµν,β − ..., Rµν ≡ Rαµαν . (0.1)

Similarly, given a spin-connection ωµab,

Rµνab(ω) = ∂µωνab − ∂ωνab + ω c
µa ωνcb − ω c

νa ωµcb. (0.2)

The (anti)symmetrization is performed with a weight factor,

φ(ab) =
1

2
(φab + φba) , φ[ab] =

1

2
(φab − φba) . (0.3)

The gamma matrices in 4-dimensions will be (see also [dWF84])

γ0 =

(
1 0
0−1

)

, γi =

(
0 σi

−σi 0

)

, γ5 = iγ0γ1γ2γ3, C = iγ2γ0, (0.4)

satisfying
{γµ, γν} = 2ηµν . (0.5)

We would also like to write a list of some abbreviations that appear throughout this
Thesis:

• Eq.: equation,

• KK: Kaluza-Klein

• PDoF: Propagating degree(s) of freedom,

• EoM.: Equations of motion,

• GR: General relativity,

• CC: Cosmological constant,

• RS: Rarita-Schwinger,
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• FP: Fierz-Pauli,

• TDiff: Transverse diffeomorphisms,

• Diff: Diffeomorphisms,

• GCT: General coordinate transformations,

• r.h.s.: Right hand side.

The references are sorted alphabetically.
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Lo más terrible se aprende en seguida y lo

hermoso nos cuesta la vida.

(Silvio Rodŕıguez)

1. Introduction

In this Chapter, we will first review some of the proposals for modifying gravity at large
distances, explaining the difficulties that appear in these models together with possible
solutions. In the second part of the chapter, we present an outline of the rest of the
Thesis.

1.1. Massive gravity and related models of modifications

of gravity

The non-renormalizability of Einstein’s theory of general relativity (GR) suggests that
GR will be superseded by a quantum theory of gravity at high enough energies with
respect to a certain mass scale MQG. For dimensional reasons, it is customary to
associate this scale with the Planck mass1

MP =

√

~c

G
= 1.220892(61) · 1019 GeV · c−2,

or the corresponding Planck length lP = GMP c
−2 = 1.616252(81) · 10−35 m. The

standard assumption is that GR is valid as an effective field theory (EFT2) for length
scales much larger than lP . If this is true the expectation of learning something about
the actual theory of quantum gravity from experiments to be performed within the near
future is almost hopeless3.

Yet, when the cosmological observational data is analyzed within the framework of
GR, the most successful models imply the existence of a vacuum energy Λ whose mag-
nitude is unnatural from the EFT point of view4. Hence, a very fine-tuned vacuum
energy (or dark energy) is needed to reconcile GR with the observations [Wei00, Wei89]
(see [Nob06] for a quite comprehensive review of the cosmological constant (CC) prob-
lem). This problem is rather pressing as it corresponds to the explanation of actual
data [S+07, AM+07, A+06]. In fact, the problem can be divided into two: first why the
vacuum energy is not as high as it should be (fine tuning problem) and second why is
it so small that becomes dominant precisely at the present time (coincidence problem).
For a modern review article see, e.g., [CST06].

To address the previous problems, GR can be modified at short (ultraviolet, UV) or
long (infrared, IR) distances. This requires the introduction of new length scales L in
the theory which can be combined with lP to build new constants with dimensions of

1Source http://physics.nist.gov/.
2For reviews on EFT see e.g. [Bur04, Don95, Bur07, Gol07, Pol92] (see also [Fal07]). Henceforth, we

will take units such that ~ = c = 1.
3It is true that there are some astrophysical phenomena that involve very high energy events, and

that may shed some light at energies beyond the possibilities of accelerators (see e.g. [A+07]).
4The value of a constant is technically unnatural if it is much smaller than the size of quantum

corrections to it.
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1. Introduction

length

Lq = lP

(
L

lP

)q

. (1.1)

When L and lP are very different, we find a hierarchy of length scales larger than
the Planck length where GR may be modified. For instance, we may assume that the
fundamental scale of quantum gravity is a certain Lq in (1.1), and that lP is a derived
quantity. The energy scale at which quantum gravity effects are important, L−1

q , may be
as low as TeV in which case the phenomenology of LHC could probe the true quantum
theory of gravity and shed some light in the existing hierarchy between the Planck
energy and the electroweak energy [AHDD98, AHDD99, AAHDD98]. Later on, we will
discuss some models where this possibility is realized.

A related possibility is that there exists a certain low energy scale L−1
ir below which

GR may be modified. In particular, if this length scale Lir is of the order of the present
cosmological horizon, Lir ∼ 10 Gpc, we expect modifications of GR to be important
at cosmological scales. Thus, all the predictions of GR at these scales (including the
existence and amount of dark energy) may be modified within this new framework of
infrared modifications of gravity.

Linearized Massive Gravity

The appearance of the length scale L can be motivated in several ways. One of the first
possibilities dates back to the work of Fierz and Pauli [FP39] and consists of adding
a mass to the graviton. More concretely, if one considers a small gravitational field
propagating in Minkowski space-time,

gµν = ηµν + hµν , (1.2)

the Lagrangian for the perturbations hµν corresponds to that of a massless particle
of spin-2 [Ein16, FP39, Wei78]. In the linear approximation, one can solve the field
equations for hµν in the presence of a conserved energy-momentum tensor5 and Newton’s
law and the deflection of light are recovered for weak gravitational fields [Wei78, Ort04].
The interaction between two sources can be understood as due to the exchange of a
massless particle so that, ignoring the tensor structure, the corresponding potential
between two test particles of mass m1, m2 can be written as

V (r) ∼ m1m2

M2
P

1

r
. (1.3)

After the addition of a mass term to the mediator of gravity we expect that the potential
will acquire a Yukawa form for length scales larger that the inverse of the mass scale.
Namely, we expect it to behave as

V (r) ∼ m1m2

M2
P

e−mr

r
. (1.4)

If the mass is as small as m ∼ (10 Gpc)−1 ∼ 10−33 eV, we expect that gravity fades
away at cosmological distances and that at smaller distances the usual predictions of
GR are recovered. This would imply that sources of the scale of the Universe would
gravitate less than those smaller than this scale, which could alleviate the CC problem.

5In the massless case the energy-momentum tensor must be conserved from consistency reasons.
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1.1. Massive gravity and related models

There are some obstacles in the way of this naive expectation. Assuming the Diff
invariant kinetic term, there is only a possible mass term at the linear level which
respects Lorentz invariance and does not contain ghost degrees of freedom6 [FP39],

Lm ∼ hµνh
µν − h2. (1.5)

The interaction between two conserved sources computed from this linearized Lagrangian
suffers from a discontinuity with respect to its massless counterpart, coming from the
different tensor structure of the propagator. As shown in [vV70, Zak70], when coupled
to conserved sources, the propagator of the massive theory reduces to

Pµνρσ =
1

k2 −m2 + iǫ

(

ηµ(ρην)σ − 1

a
ηµνηρσ

)

, (1.6)

with a = (n − 1) where n is the dimension of the space-time. In the massless case,
the propagator corresponds to the massless limit of (1.6), but with a = (n− 2), which
means that the propagator of the massless theory does not agree with the massless limit
of the massive case. This fact, known as vDVZ discontinuity, has drastic consequences.
From measurements of the deflection of light by the Sun, the linear massive case can
be excluded completely for any value of m [vV70, Zak70]. Notice that the difference
between the massless and the massive case comes from the scalar part of the propagator.
One may think that the massless case can be recovered by adding a scalar field coupled
to the trace of the energy-momentum tensor. This is obviously true, but the fact that
a(m = 0) > a(m 6= 0) implies that the new field will be a ghost7, i.e. its propagator
will have a negative residue [Zak70]. The existence of these states with negative norm
destroys unitarity, and it is usually understood that quantum theories with ghosts are
ill-defined. One can modify the quantization procedure to get rid of the the negative
norm states but in this case the vacuum is unstable. In Lorentz-invariant theories its
decay rate is in fact infinite8 [CJM04].

As first noticed in [Vai72], another way in which the discontinuity may disappear is
through the non-linear effects. The main idea is that there is a source dependent scale
r⋆ below which the three graviton vertex (i.e. the operators involving three gravitons)
becomes of the same order as the quadratic terms and the classical linearized approxi-
mation breaks down. In other words, in the presence of a source the theory is strongly
coupled for distances smaller than r⋆. If r⋆ is bigger than the length scales at which
an experiment probing gravity is performed, one must solve the whole non-linear sys-
tem to give reliable predictions and there is a chance that the nonlinear effects restore
agreement with GR. For the massless case, given a source of mass M , the non-linear
effects of GR become important at a scale r⋆ ∼ rs ≡ MM−2

P , which for the Sun is
much smaller than the distance at which the light deflection is measured. Naively, we
would think that for length scales smaller than m−1, the dynamics of the massive case
would be similar to the massless one, and that non-linear effects will not show up for

6By a ghost we mean a field with negative kinetic energy in the Lagrangian.
7If non-local couplings are considered, the previous argument can be circumvented by choosing a

coupling of the scalar field to matter that vanishes in the UV. Recently, a local model with a
running a has been discovered in certain local brane models with two extra dimensions, but the
vDVZ discontinuity is still present [dR+07].

8If a Lorentz breaking cut-off is introduced in the theory, the decay rate can be regularized to be
consistent with the observations. Similarly, as the linearized theory is understood as an effective
field theory valid to a certain scale, beyond this scale new degrees of freedom can make the theory
well-behaved [CNPT05].

3



1. Introduction

r > rs also for the massive case. However, as found in [Vai72], this naive expectation
is incorrect. It was shown in [AHGS03] (see also [DDGV02, NR04]) that for the FP
massive case the spin-0 polarization of the massive graviton interacts strongly (in the
presence of a source of mass M) at a scale which can not be smaller than

r⋆ & (m−2MM−2
P )1/3. (1.7)

This scale diverges for m→ 0. For a source of Solar mass M ∼M⊙ and m of the order
of the Hubble length, r⋆ is larger than the size of the Solar System (r⋆ ∼ 10 pc). The
tensor structure of the massive graviton at distances r ≪ r⋆ where non-linear effects are
important is still an open issue. For a related model that we will discuss later (DGP),
it was argued that the correct tensor structure is recovered and the vDVZ discontinuity
is not present [DDGV02, Dva06] (see also [DKP03]).

Even if this effect is welcome, it is intimately related to another potential disaster
of the theories that modify GR in the infrared: strong coupling at the quantum level.
This pathology shows up when one considers the scale at which sources of the scale
of quantum gravity are strongly coupled [AHGS03] (see also [Aub04] for an explicit
calculation). From (1.7) we see that this scale is Λ ∼ (m2MP )1/3 which for m of the
order of the present Hubble parameter is of the order of Λ ∼ (1000 km)−1. This energy
scale is much lower than the Planck mass and also than the naive scale that one would
expect from the analogous calculation for spin-1,

√
mMP . The reason why this happens

is that the strongly coupled polarization does not have a standard kinetic term, but gets
it from its mixing with other polarizations [AHGS03].

In a non-renormalizable theory like the one at hand, quantum corrections imply the
presence of an infinite tower of higher dimensional operators suppressed by inverse
powers of the interaction scale Λ and a theory of quantum gravity would be needed
to deal with calculations at distances smaller than Λ−1 ∼ 1000 km. These conclusions
depend on the UV completion of the theory and, as outlined in [NR04], there may exist
a non-generic prescription to choose the counterterms in such a way that the quantum
corrections are not important in all the astrophysical situations (see also [Dva04]). In
other words, the loop expansion may admit a resummation such that the scale Λ−1 is
unphysical (indeed, this is what happens for the classical expansion [Dva04]).

To sum up, let us state again that whenever a Lorentz invariant theory has a massive
graviton as the mediator of gravity, it requires the presence of strong coupling to be
phenomenologically acceptable, which generically requires a UV completion at very low
energy scales.

A related aspect of massive gravity is that when propagating on a curved background,
it behaves differently than in flat space9. In particular, in anti-de Sitter (AdS) space
there is no vDVZ discontinuity [KMP01a, Por01, KKR01] while in de Sitter (dS) a
light massive graviton becomes a ghost [Hig87]. The reason why this happens is simply
that the mode that becomes strongly coupled in the flat case acquires a kinetic term
proportional to the curvature in the curved background case10 [AHGS03].

9Writing the action for a spin-2 field in an arbitrary background is problematic as the structure of the
constraints is modified and a ghost mode may appear or causal propagation can be lost (see, e.g.

[AD80]). These problems have been recently reconsidered in [BGKP00] for the coupling of the spin-2
field to gravity (see also [DH07] and [AD71] where the coupling of spin-2 fields to electromagnetism
is studied).

10As shown in [DDLS01], the discontinuity reappears at the quantum level, but then its effects happen
at very short distances.
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1.1. Massive gravity and related models

For the sake of completeness, we should mention that there are some theories with
massive gravitons which only involve the four dimensional metric and are invariant
under diffeomorphisms. An example of these theories is gravity with higher derivatives
[Ste78, Ste77, Sta80, DFMW08, NO07]. One can show that the spectrum of this theory
can be decomposed into a massless graviton and a massive graviton with a mass term
different from (1.5) in general. In this sense, these models resemble bigravity theories
(see below).

However, these models have a very serious drawback, namely the appearance of ghost
states. Only in certain instances where the massive states disappear this pathology
may be absent. In these cases, called Modified Gravity Models, the term in higher
derivatives is simply f(R) and the theory is equivalent to a scalar-tensor theory (cf.
[Wan94, Ste78]). The gravitational interaction can be modified both at long and short
distances11 but a successful model is still absent [DFMW08]. Yet another possibility is
provided by topological massive gravity in 2 + 1 dimensions [DJT82b, DJT82a] or the
possibility of mass generation through matter loops in AdS [Por02]. Besides, we could
also consider non-local modifications of gravity [DHK07, AHDDG02, Dva06].

Non-linear Massive Gravity

From the discussion above, it seems clear that it is essential for any theory of massive
gravity to have a formulation beyond the linear regime. In fact, this is also true for
the massless case both from observational (perihelion of Mercury) and theoretical (the
equivalence principle) considerations. In the massless case, the gauge invariance can be
a guiding principle in this extension and it is usually stated that the only consistent final
result is GR in the usual geometrical formulation (i.e. having the whole group of dif-
feomorphism as a gauge group) [Kra55, OP65, BDGH01, Wal86, Des70, Fey95, Gup57].
The presence of the mass term (1.5) breaks the gauge invariance of the linear theory
and thus it is not clear how to build a non-linear theory consistently. One could con-
sider adding a term to the full GR Einstein-Hilbert Lagrangian that in the weak field
limit reduces to (1.5). Since no scalar can be built out of the metric alone without
including derivatives, either one relaxes the invariance under diffeomorphisms, or other
dynamical fields should be added to the theory (see below). A possibility in the first
approach consist of adding a static background (e.g. Minkowski space-time) and defin-
ing hµν and the mass term as in (1.2) and (1.5). However, in this case, besides breaking
of the background independence of the theory, the Hamiltonian is not bounded from
below. This can also be understood through the appearance of a mode with a nega-
tive kinetic energy which propagates at the nonlinear level (Boulware and Deser mode)
[BD72, CNPT05] (see also [GG05a]). A related problem of this proposal is that the
spherically symmetric solution with flat boundary conditions12 presents a singularity at
finite radius [DKP03].

An approach more similar to the massless case can be followed, based on the Stück-
elberg formalism of compensators for massive gauge theories [Stü38] (see [RRA04] for
a review). Currently, this approach has been developed until third order [Zin07]. Be-
sides, a version of the Brout-Englert-Higgs mechanism to give mass to vector fields can

11The modification at large distances occurs, e.g., when one considers functions of the form Ra, with
a < 1 [Woo07].

12Remind that, in general, the Birkhoff theorem does not hold in modified theories of gravity [Ste78,
DMS07].
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be applied to spin-2 [tH07]. The idea in both cases is to add new degrees of freedom
coupled to the massive graviton in a way that the theory has a gauge invariance which
makes them spurious. The presence of a gauge invariance at linear order may then
be used to guess the non-linear terms as the non-linear extensions of linear gauge in-
variance must satisfy certain consistency conditions, such as the closure of the algebra
[Hen98]. Both approaches encounter problems with unitarity, which may be understood
from the counting of the degrees of freedom. The number of new fields required for a
diffeomorphism invariant formulation of massive gravity is 4, whereas the massive and
the massless theories differ by just 3 degrees of freedom. This means that besides the
spin-2 degrees of freedom, the gauge invariant formulations generically include a new
scalar. This field must be a ghost in flat space since the only ghost-free possibility for
Lorentz invariant massive gravity only has tensor degrees of freedom and this destroys
the consistency of the theory (see, however, [Por02] for a successful model in AdS).

The Fierz-Pauli mass term is singled out from the rest of Lorentz preserving mass
terms because at the linear level this new degree of freedom disappears in Minkowski
space. This allows for a successful Stückelberg formulation of massive gravity at linear
order [AHGS03]. However, the dangerous ghost mode reappears once the non-linear ef-
fects are taken into account [BD72]. Furthermore, around non-trivial sources the ghost
is also present at the linear level [CNPT05]. In particular, this means that for the
Fierz-Pauli mass term any non-linear extension breaks down at length scales beyond
the radius where the non-linear effects can cure the vDVZ discontinuity.

The previous negative conclusions may change if Lorentz invariance is broken [GG05a]
(see [RT08] for a review). In that case, there are more possibilities for mass terms
which are unitary and are not affected by strong coupling [Rub04, Dub04] (see also
[DPR07, BFK08, Jac07] for other aspects of Lorentz violation and gravity). As the mass
term explicitly breaks Lorentz invariance, the massive polarizations do not necessarily
correspond to spin states. This kind of models appears naturally when more fields are
added to GR, and bigravity (to be discussed below) is perhaps the simplest possibility13.

Large Extra Dimensions and Braneworlds

From the previous section, it seems clear that a covariant non-linear theory with mas-
sive gravitons requires the presence of new fields coupled to the graviton. The theories
with extra spatial dimensions provide such fields as the pure massless graviton in higher
dimensions can be understood as a four dimensional field theory with an infinite tower
of modes interacting with each other14 [ACF87]. This provides a method to find consis-
tent coupling of massive gravitons in fixed backgrounds [AN89, NW89]. Nevertheless, it
should be noted that those completions are not consistent in general unless the infinite
tower of modes is considered [DPS89].

The simplest possibility is that the extra dimensions are compact with a typical size
L. In this case, the extra dimensions can be understood as a massless graviton coupled
to a discrete tower of massive fields with masses depending on the size and topology of
the compact manifold [AHCG01, ACF87]. If two test masses m1, m2 are placed within
a distance r ≫ L the gravitational flux lines can not spread in the extra compact
dimensions. Only the massless mode is excited at this energy scale and the usual four

13Another possible generalization is to consider non-local extensions [DGS03, Dva06].
14Besides, the presence of extra-dimensions is necessary for consistent string theory [Pol98].
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1.1. Massive gravity and related models

dimensional potential potential (1.3) is obtained,

V (r) ∼ m1m2

M2+d
Pd Ld

1

r
, (1.8)

where d is the number of extra dimensions and MPd is the gravitational scale of the
theory. The effective four dimensional Plank mass in this set-up is easily read comparing
the previous expression with (1.3),

M2
P = M2+d

Pd Ld.

For distances of the order L and below, the gravitational interaction is modified by the
tower of massive modes. The fact that Newton’s law has not been probed at distances
smaller than than 10−2 millimeters [D+07, GSW+08, K+07] allows for a L ∼ 10 µm
and a fundamental Planck mass MPd & 1 TeV for d ≥ 2 [K+07, AHDD98].

If the Standard Model fields live in the bulk, the Kaluza-Klein (KK) reduction affects
all the interactions. However, the Standard Model interactions have been accurately
measured at the weak scale mEW ∼ 1 TeV and this gives the constraint L < m−1

EW ∼
10−17 mm.

A way to circumvent the previous arguments is by localizing the Standard Model
fields in a four dimensional submanifold of a certain width LD (domain wall or brane)
[RS83, AHDD98, DS97]. This idea introduces two length parameters apart from the
Planck length: the size of the extra dimensions L and the width15 of the defect LD. If
gravity is not localized, these parameters can be chosen so that gravity is modified at
the submillimeter scale and the compact extra dimensions are large in comparison with
the electroweak scale. In this scenario, gravity is modified at high energies and remains
massless and four dimensional at large distances16.

An alternative to the existence of compact dimensions is provided by warped ex-
tra dimensions (not necessarily compact but of finite volume and with the Standard
Model fields localized in a brane) [RS99a, RS99b] (see [Maa04] for a review). In this
scenario, known as Randall-Sundrum scenario, the extra dimensions are not factorized
and solutions with nontrivial warped factors of typical curvature L−1

W exist and give rise
to massless zero modes and a continuous tower of massive states without a mass gap.
Nonetheless, the gravitational interaction is again four dimensional for length scales
larger than LW . The effect of the warped factor can be understood as a potential that
makes the wave functions of massive states to be suppressed in the brane, and the final
effective non-relativistic potential for two sources in the brane can be written as

V (r) ∼ m1m2

M2
P

1

r
+
m1m2

M2
P

L2
W

∫ ∞

0

dm m
e−mr

r
=
m1m2

M2
P

1

r

(

1 +
L2
W

r2

)

. (1.9)

From the previous expression we see that a mass gap in the spectrum in not required
to obtain a correct Newtonian limit because the coupling of massive modes to matter
is suppressed by a factor mL2

W . Again, this model proposes modifications to the gravi-
tational interaction only at high energies.

There are many generalizations of the previous model, and we would like to focus on
those where GR is also modified in the infrared. In [KMP+00], the number of branes is

15This length scale can be arbitrarily small.
16Another way of localizing fields in submanifolds is provided by string theory and D-branes [Pol98].
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1. Introduction

increased to three: two of positive tension and laying in the fixed point of an orbifold
and a third brane with negative tension placed between those two. The final result is
the existence of a mass gap between the first massive mode and the rest of the tower
of KK states. That makes it possible to integrate out the heavy modes and consider
a theory with only two gravitons at intermediate distances (bigravity). Finally, for
large distances, the massive mode is frozen and only the massless mode remains. Thus,
there are two scales in which gravity is modified: one related to the first massive mode
and the other one related to the mass of the second massive mode. Unfortunately,
the branes of negative tension do not satisfy the null energy condition. This has been
related to Hamiltonians which are unbounded from below, which makes the theory ill-
defined [Wit00]. This problem is related to the stabilization of the branes positions. In
principle, the branes are dynamical objects whose relative distances fluctuate and these
fluctuations must be stabilized. For the case of branes with negative tension, this degree
of freedom (the relative distance of the branes or radion) is a ghost and its stabilization
is an important issue in brane physics [GW99a, GW99b, GPT01, GP03].

A ghost-free bigravity scenario was presented in [KMP01b], where the addition of a
non-trivial background in the branes allows for a model with two light gravitational
modes without ghosts or vDVZ discontinuity. However, in this case the deviations from
GR occur at distances which are not observable.

In [Pad05], the author considers two five-dimensional spacetimes separated by a do-
main wall and allows for different Planck masses in the two separated regions. This
setup admits solutions with asymmetric warp factors and introduces modifications of
GR both at long and at short distances. This model suffers from the vDVZ discontinuity
which may be cured through the non-linear interactions. As we discussed previously,
this implies that the theory has a low energy cut-off, although it was argued in [Pad05]
that this scale may be set to the Planck scale.

Other possible generalizations including regularized (thick) branes and intersecting
branes can be found in [CEHS00] and references therein. Finally, we would like to men-
tion a recent proposal of an asymmetric background with a induced gravity term (see
below) where some of the previous problems are absent [CGP07].

Besides the linear approximation, it is interesting to study how some non-linear pre-
dictions of GR are modified in the models with large extra dimensions. Many studies
have been devoted to cosmology in the presence of large extra dimensions (see e.g.
[BvdB03, BvdBD04, Lan03]). In the models related to the Randall-Sundrum scenario,
the standard Friedmann equation is modified at high energies on the brane of positive
tension, which sets some phenomenological constraints in the parameters of the theory
and there is also no-conservation of energy on the brane as some matter can leak to
the extra-dimensions [BDL00, CGKT99, CGS99]. The parameters in the models can
be tuned so that these modifications are phenomenologically acceptable.

Inflation is also modified in models with large extra dimensions and branes. Apart
from new mechanisms of inflation (such as collision of branes) the modification of Fried-
mann equation implies that slow-roll inflation may be possible for potentials that are too
steep for ordinary cosmology [Maa04]. Besides, some other aspects of cosmology, such
as the growth of cosmological perturbations and structure formation, may be modified
in the presence of large extra dimensions (see e.g. [Koy06, Koy07, Maa04, CGKP06,
GKMP07] and references therein).
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1.1. Massive gravity and related models

Metastable gravitons

Another way in which gravity is modified at large distances is provided by models where
the four dimensional graviton is not a normalizable eigenstate of the linearized theory
but a metastable resonance with a finite lifetime [CEH00, DGP00b]. The basic idea is
that if the graviton is a resonance, its propagator for momentum close to the resonance
mass mr can be written as (neglecting the tensor structure)

P (k) ∼ 1

k2 −m2
r + imrΓ

, (1.10)

where Γ is the width of the resonance. The previous expression admits a spectral
representation

1

k2 −m2
r + imrΓ

=

∫

ds
ρ(s)

s− k2 + iǫ
,

where s is the Mandelstam variable and ρ(s) is a spectral density [Art07, DGP00b].
Assuming that the resonance lifetime is very big the potential produced by exchanging
of such a particle between two static sources is

V (r) ∼
∫

dsρ(s)
e−

√
sr

r
, (1.11)

which for a peaked spectral density ρ(s) around the resonance mass s = m2
r reduces

to the standard Newtonian interaction at distances r ≪ m−1
r and is modified at large

distances (or late times) where the resonance decays into the eigenvalues of the theory.

This kind of behavior can be reproduced by higher dimensional set-ups. A particular
model where gravity opens up at long distances due to the presence of a metastable
four dimensional graviton and which can have also a modified fundamental scale of
quantum gravity is provided by the localization of gravitons on a brane, but not com-
pletely [GRS00b, KR01]. In this set-up, the relevant fact is that the extra dimension
is warped, asymptotically flat but with an infinite volume which makes the zero mode
non-normalizable. This background yields two length scales related to the length at
which the crossover to flat space occurs and to the curvature in the extra dimension. In
this model, there is a resonant mode at zero momentum in the extra dimension that can
be interpreted as a metastable four dimensional graviton with a certain width Γ and de-
caying into the eigenmodes of the theory which spread in the extra dimensions [CEH00].
This Γ is thus related to the large scale at which the four dimensional description breaks
down.

Generalizations of these models which connect them to the bigravity scenario are
provided by the inclusion of more 3-branes in the model [KMPR01, KR00]. These
scenarios interpolate between a spectra with more than one ultralight massive graviton
and the appearance of resonances [KMPR01]. Many aspects of these models were
summarized in [Pap01].

The fact that the resonant mode is built out of massive modes (without a massless
zero mode) implies the presence of the vDVZ discontinuity in these models [DGP00b].
However, the presence of matter in the brane produces a bending of the brane which
restores the right tensor structure of the propagator [GT00, GRS00a]. As we have
argued, the only way in which the vDVZ discontinuity can be cured at the linear level is
through the introduction of ghost states and their presence in these models was shown
explicitly in [PRZ00]. This makes them quantum mechanically ill-defined at the linear
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1. Introduction

level17. It was argued in [KR00] that, in the brane models, the condition that the energy-
momentum tensor must satisfy to stabilize the brane configuration directly implies the
right tensor structure. In this case the ghost state decouples from matter at the linear
level [KMPR01]. Besides, the previous models involved branes with negative tension
free to fluctuate which implies the lack of energy-positivity in this scenario [Wit00].

Induced gravity: DGP

A related possibility, pointed out by Dvali, Gabadadze and Porrati (DGP henceforth),
is provided by factorized non-compact extra dimensions of infinite volume with induced
terms in a 3-brane [DGP00a]. In these models one includes a four dimensional action
for gravity in the brane which is compatible with the symmetries of the set-up. Thus,
even if it is absent classically, it may be generated on a brane by the loops of the matter
localized in the brane. For simplicity let us consider the case of just one extra dimension.

The gravitational interaction is five dimensional except in the brane where the induced
term produces modifications to this behavior at distances smaller than

lDGP =
L3

5

L2
4

where L5 is the five dimensional Planck length which sets the scale of quantum gravity
effects and L4 is the length scale of the induced term. The propagator in this case
evaluated on the brane takes the form

P (x) ∼
∫

d4k
e−ikx

k2 + 2
√
k2/lDGP

, (1.12)

whose interpretation is the following. A graviton emitted by the source localized on
the brane propagates along the brane and gradually dissipates in the bulk. The lower
the frequency of the signal, the faster it leaks in the extra dimension. This is similar
to what happened in the previous model of metastable gravitons (see also [DGS03]).
The potential between two test particles in the brane and separated by a distance
L5 ≪ r ≪ lDGP is [DGP00a]

V (r) ∼ L2
4

m1m2

r

(
π

2
+

r

2lDGP

[

−1 + γ + ln

(
r

2lDGP

)]

+O(r2)

)

, (1.13)

which implies the identification L4 ∼ lP . For r ≫ lDGP the gravitational interaction
is five dimensional, i.e., the potential satisfies the five dimensional Laplace equation
whose solution is of the form r−2. It is interesting to note that for similar setting with
more than one extra-dimensions the evaluation of the propagator is more involved (see
e.g. [dR+07] and references therein).

The tensor structure of the propagator in DGP is that of a massive graviton (which
may be related to the infinite volume of the extra dimension) which means that it
suffers from the vDVZ discontinuity [DGP00a, LPR03]. As argued in [DDGV02], its
resolution in this model may be related to the strong coupling phenomenon. As happens
for the Fierz-Pauli mass term of massive gravity, in DGP there is a mode (related to
the extrinsic curvature of the brane) which gets strongly coupled at large distances as

17Of course, at non-linear level or at high energies, the theory can have a well defined UV completion,
even if this possibility has been questioned in [AAHD+06].
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1.1. Massive gravity and related models

compared to the rest of modes [LPR03]. More concretely, the cross-over scale at which
there is a strongly coupled mode is [LPR03, Rub03, NR04]

ΛDGP ∼ (L4l
2
DGP )−1/3.

In the presence of a sourceM , the non-linearities set in at a distance rc ∼ (ML2
4l

2
DGP )1/3

which for the Solar System is far bigger than the distance where the deflection of light
by the Sun has been measured. Even more, it was shown in [DDGV02] that for certain
sources, at distances smaller than rc the full non-linear solution approaches that of GR
(see also [Gru05]). Unfortunately, the exact solution for a static spherically symmetric
source in the brane is not known even if one expects that the non-linearities may also
help to circumvent the vDVZ discontinuity [GI05] (see also [DGPR07] for the exact
domain wall solution).

As happens in massive gravity, the strong coupling of a mode at relatively small
energy scales can be quite problematic as it may introduce a rather low UV cut-off.
If the crossover scale to Newtonian gravity is of the order of the Hubble length, the
scale of strong coupling is ΛDGP ∼ (1000 km)−1 [LPR03] and a theory of quantum
gravity would be needed to deal with calculations at distances smaller than Λ−1

DGP . As
for massive gravity, these conclusions depend on the UV completion of the theory. For
DGP, a non-generic prescription to choose the counterterms was proposed in [NR04], in
a way that the quantum corrections are not important in all the astrophysical situations
(see also [Dva04]). As we already said, the loop expansion may admit a resummation
such that the scale ΛDGP is unphysical (indeed this is what happens for the classical
expansion [Dva04]).

Similarly to the case of massive gravity, the previous results change in the presence of
curvature. More concretely, positive curvature increases the scale of strong interaction
and yields a ghost for large curvatures (compared to l−1

DGP ) whereas negative curvature
decreases it [LPR03].

DGP models are phenomenologically very interesting because they not only modify
the scale of quantum gravity (which is now L5) but they also predict a modification
of the gravitational interaction at long range which may have interesting consequences
in cosmology (see [Lue06] for a review). In the DGP model, the Friedmann equation
is modified and can mimic the behaviour of a cosmological constant [Def01, DDG02,
Koy07]. In particular, self-accelerating solutions are found in the brane without the need
of a cosmological constant, and they provide an alternative to dark energy [Def01]. Even
if these solutions are interesting it has been argued that they suffer from the presence of
a ghost state which makes them quantum mechanically unstable [NR04, LPR03, IKT07].

Again, other aspects of cosmology, such as inflation or the behaviour of perturbations
and structure formation in the DGP model may differ from GR [Koy07, KM06, LSS04].

Addition of Scalar or Vector Fields

So far we have presented models of non-linear massive gravity which involved only the
metric (possibly in the presence of extra dimensions). As we already stated, from the
four dimensional point of view, the introduction of extra dimensions can be understood
as the addition of an infinite number of fields in a precise way which allows for general
covariance in higher dimensions [AHCG01]18. The reason why these modifications are

18A related possibility is considering higher dimensional QFT where the presence of a four dimensional
defect induces GR in it [DG01, Adl82, Aka82]
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considered natural nowadays is because of the need of extra dimensions in some ex-
tensions of GR, such as string theory. However, from a purely four dimensional point
of view the addition of a finite collection of new fields coupled to the graviton and/or
to matter seems a much simpler possibility19. Indeed, independently of the modern
ideas of extra dimensions, the phenomenology of the addition of new fields which cou-
ple to matter has been a subject of constant research [Wil93]. The more conservative
possibility is adding relativistic fields of different spin. These fields may condensate
generically giving rise to Lorentz breaking mass terms for the gravitons (or to a cos-
mological constant in certain cases). Let us say a few words about the most studied
possibilities.

Before, it is fair to say that the possibility that a simple model gives rise to an
adjustment mechanism yielding a small cosmological constant does not seem possible
[Wei89]20 .

Models where a scalar field is added to the gravitational interaction have been studied
for many years [FM03, Wei78, Wil93, BD61]. The standard approach consist of adding
a scalar field to the GR action with some free parameters which allow for interesting new
phenomenology [Wil01, Wil93]. For a recent review on some proposals of scalar fields
models of dark energy see [CST06]. The origin of the scalar field can be fundamental,
as happens in string theory, or purely phenomenological. This field can also couple to
matter and, depending on parameters such as the mass of the field, the interaction+ is
modified at a certain distance.

Recently, there has been some interest in models with non-standard Lagrangians,
such as the case of the ghost condensate [AHCLM04] (earlier attempts to apply non
canonical kinetic terms to the CC problem can be found in [APMS00]). In these mod-
els, the vacuum solution is a time dependent configuration for the scalar field together
with a flat metric. The fact that the vacuum breaks some of the Lorentz symmetries
gives rise to a consistent modification of GR at large distances and the model can be
generalized to obtain a Lorentz breaking mass term for the graviton [Dub04, RT08].
The phenomenology of this scenario is very interesting and different from the standard
approach (see e.g. [BT07, RT08] and references therein). On the other hand, the ther-
modynamic properties of black holes are problematic when the Lorentz symmetry is
violated [JW08].

The next possibility to modify gravity in the infrared is by adding a vector field that
condensates. Some examples with spontaneous breaking have also been considered in
recent years (see e.g. [TR07, LR05, Gri04, ZFS07]). Again, those models present some
regions in the parameter space which are phenomenologically acceptable and more non-
trivial checks are necessary to rule them out or to accept them as plausible models.

Recently, models which include a vector and a scalar field coupled to the graviton have
been considered in the context of dark matter. Along with the cosmological observa-
tions, another motivation to modify GR at large distances is that the total gravitational
field of different astrophysical objects in the Universe surpasses by far what we expect
from the baryonic mass we can see. The standard solution of this problem is to invoke
the existence of a exotic form of matter which does not couple to light (dark matter,
DM) [NFW96]. However, one can take a different point of view and try to modify

19Besides, as we have seen, there are models with extra-dimensions with a spectrum with a mass gap
which yield these theories at low energies.

20It is also true that none of the previously mentioned possibilities provides this mechanism.
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Newton’s law to avoid the introduction of exotic matter. A very successful possibility
dubbed MOND (Modified Newton Dynamics) consist of modifying Newton’s law not at
a certain length scale but at a certain acceleration scale [Mil83]. Recently a relativistic
version of MOND has been proposed. It includes vector and scalar fields which couple
non trivially to the metric21, and thus can be considered as a particular example of the
general scalar-vector-tensor theories (see e.g. [SMFB06, BEF07] for a recent review and
[MT07] for the related MOG theory).

Addition of a Tensor Field: Bigravity

One of the possibilities we will focus on in this dissertation isbigravity. This theory
consists of two rank-2 tensor fields, i.e. two metrics. The first thing we may notice
is that there are some theorems that forbid the interaction of massless gravitons (see
e.g. [BDGH01]). This means that when two metric fields interact non-trivially one of
them will always acquire a mass. The phenomenology of theories with a fixed metric
background (or aether), known as bimetric theories, has been studied in [Wil93]. A
slight generalization consists of allowing for both metrics to by dynamical (see [DKP02]
and references therein). This possibility is known as bigravity. One of the key ingre-
dients of the theories with more than one field is the physical metric, i.e. the field
that produces the gravitational interaction between the matter of the Standard Model.
Having two metrics at our disposal, any combination of them can be considered as the
physical metric while the interaction between both metrics will produce a massive and
a massless graviton.

The main motivation to focus on bigravity is that it offers a simple modification of
GR where the gravitons can be massive and where there are known non-linear exact
solutions. This may help to clarify some of the difficulties that we have outlined.
Besides, the Lorentz breaking mass terms appear quite naturally in these theories,
which means that some of the difficulties of the linear analysis encountered in the
Lorentz invariant case may be absent.

Unimodular Gravity

Hitherto we have presented modifications to GR which appear at a certain length scale
related to some parameters with dimension of length which is present in the model22.
As we have seen, they are sometimes related to the appearance of a preferred frame
which breaks the diffeomorphism invariance of the theory. One may wonder about the
mildest way of introducing this modification, i.e. about the possibility of sending the
length scale to infinity or about keeping a large subgroup of the diffeomorphisms as
a gauge invariance of the theory. It turns out that both possibilities are related and
this modification of GR is dubbed unimodular gravity [vvN82, Unr89]. Unimodular
gravity dates back to the work of Einstein himself who discovered that the Einstein’s
equations are equivalent to their traceless part except for the appearance of an inte-
gration constant which plays the role of a cosmological constant. Thus, both equations
of motion coincide except for a zero mode. The interesting thing is that the traceless
part of the Einstein’s equations can be derived from Lagrangians which have a fixed
volume element. In a sense, this is the minimal way in which a background can be

21The fact that gravity is modified at a curvature scale makes it important the appearance of derivative
couplings.

22Besides, there may be a source dependent scale.

13



1. Introduction

added: we just include a privileged volume form, whose presence breaks the group of
diffeomorphisms to its transverse part. As we just said, this is enough to modify the
problem of the cosmological constant, even if it does not quite solve it [Wei89]. As we
shall see, the transverse part of the diffeomorphisms (TDiff) appears naturally in the
theories of spin-2.

Finally, a common feature of the different scenarios that modify gravity is that they
must admit the embedding in a complete theory of quantum gravity (UV completion).
This issue has been addressed recently in [AAHD+06] but the results are controversial.
It is fair to say that there are some models whose embedding in string theory seems
possible (as e.g. the Randall-Sundrum model [Ver00]) whereas for other models such as
DGP or the ghost condensate it is not clear how to find them in UV complete theories
(see also [GKMP07] for a list of other problems that may appear in DGP at the quantum
level).

1.2. Outline and Summary of the Thesis

The body of the Thesis is divided into three parts. The first part (Chapters 2 and 3)
is devoted to the analysis at the linear level of certain gauge theories related to gravity,
whereas the non-linear extensions are presented in the second part (Chapters 4, 5 and
6). The third part contains the conclusions (Chapter 7) and three appendices which
contain aspects related to the Thesis but which are not essential to it. Every Chapter
begins with a summary of the contents and main results.

In Chapter 2 we will study the most general quadratic Lagrangian of second order in
derivatives for rank-2 symmetric tensors which preserves Lorentz invariance, in order to
see which possibilities yield a consistent modification of the usual Lagrangian coming
from the linearization of GR (with the possibility of a mass term). The Chapter is
based on [ABGV06]. As it is well known, a symmetric rank-2 tensor has more degrees
of freedom than those required for the propagation of a massless particle, and the
presence of a gauge invariance is required if we want to match both counts. This is the
reason why we will first focus on the characterization of the different gauge invariances
which the previous Lagrangians can enjoy. Out of them, two possibilities are singled out
as involving a larger number of free parameters: the linearized diffeomorphisms (Diff)
of GR and its transverse part (TDiff) enlarged with a Weyl transformation (WTDiff).
Even if both possibilities correspond to inequivalent Lagrangians, we will show that
the equations of motion (EoM) coincide in both cases except for the appearance of an
integration constant.

We will then analyze the general Lagrangians and find the constraints in the param-
eters that prevent the appearance of ghosts and tachyons. As expected, the consistency
of the theory will imply the presence of a gauge invariance which can be smaller than
the Diff or WTDiff. The consistent theories are equivalent to scalar-tensor theories
except in those two cases.

The next step will be to study the consistency of the general Lagrangian once a
Lorentz preserving mass term is included. Contrary to what happens in the massless
case, we will find just one possibility which is free of ghosts and tachyons and that gives
mass to the tensor modes, which corresponds to the Fierz-Pauli (FP) choice [FP39].

After a comment on an alternative derivation of the WTDiff and Diff Lagrangians,
we will devote the rest of the Chapter to study the propagators that mediate the in-
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1.2. Outline and Summary of the Thesis

teraction between conserved sources in the consistent cases. We will discuss in some
detail the gauge fixing of the TDiff theories, which is not trivial as the gauge invariance
is reducible (i.e., there is a condition between the gauge parameters), and the issue
of the consistent coupling to matter, as the TDiff subgroup allows the graviton to be
coupled to a source which is conserved except for a divergence. We will finally set some
phenomenological bounds on the mass and coupling constant of the extra scalar field
which appears in the TDiff invariant case. This mode disappears in the theory invariant
under the WTDiff group, whose propagator coincides on-shell with that of linearized
GR.

Chapter 3 is devoted to the extensions of the ideas of Chapter 2 to the fermionic
counterpart of spin-2: the spin-3/2 field. The Chapter is partially based on [Bla08, Bla].
We will first study the most general first order Lorentz invariant Lagrangian for the
vector-spinor field ψµ. As happens for any massless field of spin higher than 1/2,
the description in terms of a covariant field includes more degrees of freedom than
the physical polarizations of the massless particle. We will find that there are just
two possible Lagrangians which enjoy a gauge invariance that may render the extra
degrees of freedom spurious: the Rarita-Schwinger (RS) Lagrangian [RS41] and another
possibility endowed with a S-symmetry (WRS). We will study the equations of motion
for both possibilities and find that the WRS Lagrangian has an extra spin-1/2 PDoF.
To study whether this new degree of freedom yields different physical predictions, we
will couple the field ψµ to a conserved fermionic current and study the propagator that
mediates the interaction between the conserved currents in the WRS case. As we will
show, the propagator coincides with that of RS.

After making some remarks on the consistent coupling of the WRS Lagrangian to
U(1) gauge filds, we will study the possibility of finding a supersymmetric Lagrangian
built out of the WTDiff Lagrangian for spin-2 and a certain Lagrangian for the spin-3/2
field. We will show in the last part of the Chapter that, unless more ingredients are
included in the set-up, this does not seem to be possible.

After the linearized study, in the second part of the Thesis we embark on the non-
linear extensions of the spin-2 Lagrangians. If the spin-2 particle is related to the
actual graviton, it must account for the equivalence principle. In other words, it must
be coupled universally to any kind of energy including its own. This paves the way
to the addition of non-linearities to the Lagrangian to get a consistent self-interacting
theory of gravity.

In Chapter 4 we will study non-linear extensions of the TDiff Lagrangians of Chapter
2. This Chapter is based on [ABGV06, Bla07a]. We will first address the issue con-
structively following the approach developed in [Des70] for the Diff case and we will
find that the analogous construction is not successful for WTDiff. It is however easy to
construct a consistent extension based on the intuitive non-linear extension of the TDiff
group, which will be the transverse subgroup of the non-linear diffeomorphisms. We
will show the equivalence between these theories and scalar-tensor theories. Concerning
the WTDiff linear Lagrangian, we will find a unique non-linear Lagrangian of second
order in the derivatives of the metric whose equations of motion are equivalent to the
Einstein’s equations even in the presence of matter except for the appearance of an
integration constant which acts as a cosmological constant (they are equivalent to those
of unimodular gravity, namely the traceless part of Einstein’s equations [Wei89]).

Finally, we will consider the first order formulation of the WTDiff non-linear La-
grangian and comment on the possibility of coupling the metric consistently to a spin-
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1. Introduction

3/2 field.

Chapter 5 is concerned with bigravity. It is based on the work that appeared in
[Bla06, BDG06, Bla07b, BDG07]. The framework in which we will be interested consists
of two metrics interacting through a a non-derivative term which can be considered as
a mass term in the linear approximation. We will choose a minimal possibility for the
coupling to matter in which there are two kinds of matter each of which is coupled to
one of the metrics (weekly interacting worlds).

After finding the conditions for the interaction term to admit maximally symmetric
metrics as solutions of the equations of motion, we will focus on spherically symmetric
static solutions and a certain subclass of them with both metrics being Schwarzschild-
(anti)de Sitter in different coordinates. It is interesting to notice that any potential
admits this kind of solutions. Similarly, we will show that the system of two maximally
symmetric and proportional metrics is a general solution of bigravity and the interaction
term reduces to a cosmological constant term.

The rest of Chapter 5 is devoted to the global structure analysis of certain bigravity
solutions. We will focus on geodesic completeness and global hyperbolicity of the so-
lutions. One might think that the presence of two causal structures could give rise to
new pathologies, but we will find that this is not necessarily the case. We will study
the behaviour of the null geodesics for one metric in the conformal compactification of
the other metric. This will lead us to propose a prescription to construct geodesically
complete manifolds even in the case where one the metrics is geodesically complete
whereas the companion metric of the solution is not. We will illustrate the procedure
with some examples.

We will see that, in general, this maximal extension implies the loss of the global
hyperbolicity of the solution. This problem is not as catastrophic as it may seem and it
also appears in GR. Besides, as we will argue, one expects this solution to be unstable
near the Cauchy horizon.

Another related issue that we will study is the possibility of building closed timelike
curves (CTC) by using both metrics to propagate signals. We will prove that this is not
possible for all the solutions of bigravity that we studied in the Thesis. The coexistence
of two causal structures can also have very important consequences in black hole physics
and in the homogeneity problem, but we will not elaborate on them.

The next Chapter of the second part, Chapter 6, deals with the stability of certain
bigravity solutions and is based on [BDG07]. We will first focus on a solution with two
flat metrics which breaks the Lorentz invariance to a common SO(3) invariance. The
linearized analysis will include a Lorentz breaking mass term for one of the gravitons
and the PDoF will be a spin-2 massless graviton and a spin-2 massive graviton with
two polarizations. We will proceed by coupling the system to matter and show that
the corrections to Newton’s law scale with the coupling constant of the metrics (related
to the mass of the graviton). In the limit where the coupling constant goes to zero
(massless limit) we recover Newton’s law which means that the vDVZ discontinuity is
absent. We will comment on the apparent contradiction of this correction with the fact
that the non-linear theories accept Schwarzschild as a solution (where Newton’s law is
not modified).

The next section is devoted to the analysis of perturbations around two de Sitter met-
rics which are proportional to each other. The PDoF will be a massless graviton and a
massive graviton with a mass term which in general will differ from the FP form. The
appearance of a new mass scale in the Lagrangian makes the analysis of the PDoF quite
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1.2. Outline and Summary of the Thesis

different from the similar analysis in Minkowski and one could think that the new mass
scale would allow for a hierarchy of scales where deviation from FP could be well defined
as an EFT till a certain cut-off scale built out of the curvature scale and the mass. We
will show that this expectation is not fulfilled in the Lorentz invariant case and only
FP survives as a stable possibility. After a brief comment on a possible mechanism to
offload the cosmological constant in bigravity, we will devote the section of Chapter 6
to study the degrees of freedom for non-covariant mass term in de Sitter and find that
this hierarchy can be realized. This constitute the last section of the body of the Thesis.

The third part of the dissertation contains some general conclusions and the outlook
of possible future directions (Chapter 7) and is supplemented with three appendices.

Appendix A is devoted to the study of some quantum aspects of TDiff theories and
is based on unpublished results [Bla]. The final aim of this approach is to tell whether
the TDiff invariant theories which are classically equivalent to GR are still equivalent
to GR at the quantum level. We will first comment on the possible differences at the
semiclassical level and present regularization schemes compatible with TDiff, WTDiff
and Diff invariant theories. The counterterms associated to the different regularizations
may yield observable differences between them.

We will then present a BRST construction that may allow for a covariant quantization
of the theories. The fact of dealing with a reducible gauge theory means that new ghosts
besides the usual Fadeev-Popov ghosts are required and we will find a minimal set of
fields that makes the BRST transformation nilpotent.

The Chapter ends with a section devoted to the Euclidean Quantum Gravity formal-
ism for WTDiff theories where we will show that the convergence of the path integral
in this case seems to be as problematic as for the Diff invariant case.

The second appendix, Appendix B, has some extra information on unimodular gravity
and bigravity. The first section is devoted to the integration of tensor densities on
manifolds and some comments on the gauge invariance of the WTDiff theories. Finally,
in the last section we will prove the uniqueness of the solutions dubbed Type II (see
Chapter 5) for a specific form of the potential.

In Appendix C we present a summary of the Thesis in Spanish.
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2. Lorentz Invariant Healthy

Lagrangians

As stated in Chapter 1, it is important to study how gravity can be modified to obtain
a consistent theory of gravitation which differs from GR in the infrared. This Chapter
is motivated by the possible modifications at the linear level where GR can be under-
stood as a theory of a massless particle of spin-2 represented by a symmetric rank-2
tensor1 hµν . More precisely, we will study the most general quadratic Lorentz invariant
Lagrangians for the tensor hµν and will characterize those which are free from tachyon
or ghost instabilities (which will be dubbed healthy).

For the case where the tensor modes are massless, we will show that there is a whole
family of Lagrangians which are phenomenologically viable and which are equivalent to
the usual scalar-tensor theories. Besides, we will find two inequivalent possibilities where
the degrees of freedom are purely tensor modes and which share the same equations
of motion (EoM). For the massive case, we will see that the only healthy possibility is
the Pauli-Fierz mass term. Besides the study of the degrees of freedom, we will provide
the propagator for the healthy theories from which we can read the interaction between
conserved sources and set the first phenomenological constraints. As expected, we find a
whole family of scalar-tensor possibilities together with two massless tensor possibilities.
This Chapter is based on [ABGV06] (see also [VN73] for related previous work and
[KN86, Sez81] for a extension including propagating torsion and higher derivatives).

2.1. Massless theory

Let us begin our discussion with the most general Lorentz invariant local Lagrangian
for a free massless symmetric tensor field hµν involving just two derivatives,

L = LI + β LII + a LIII + b LIV , (2.1)

where we have introduced

LI =
1

4
∂µh

νρ∂µhνρ, LII = −1

2
∂µh

µρ∂νh
ν
ρ,

LIII =
1

2
∂µh∂ρhµρ, LIV = −1

4
∂µh∂

µh. (2.2)

The first term is strictly necessary for the propagation of spin-2 particles, and we give
it the conventional normalization. Before proceeding to the dynamical analysis it will
be useful to consider the possible symmetries of (2.1) according to the values of β, a
and b.

1We will restrict to this possibility even if it is also possible to represent the gravitational field by a
vielbein ea

µ, whose linearized limit does not necessarily coincide with that of gµν , see e.g. [NPS07].
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2. Lorentz Invariant Healthy Lagrangians

2.1.1. TDiff and enhanced symmetries.

Under a general transformation of the fields hµν 7→ hµν + δhµν , and up to total deriva-
tives, we have2

δLI =−1

2
δhµν�h

µν ,

δLII = δhµν∂
ρ∂(µhν)ρ ,

δLIII =−1

2

(

δh∂µ∂νhµν + δhµν∂
µ∂νh

)

,

δLIV =
1

2
δh�h. (2.3)

It follows that the combination

LTDiff ≡ LI + LII + a LIII + b LIV , (2.4)

with arbitrary a and b is invariant under restricted gauge transformations

δhµν = 2∂(µξν), (2.5)

with
∂µξ

µ = 0. (2.6)

These restricted (or more correctly reducible [HT94]) gauge transformations have been
claimed to pay the crucial role for the propagation of massless spin-particles [vvN82,
Alv05]. Indeed, as shown in [vvN82], this reducible gauge invariance is enough to get
rid of the extra polarizations introduced by applying the little group generators of the
massless spin-2 particle to the usual polarizations of spin-2

h+ ≡ e+ ⊗ e+ − e− ⊗ e−, h× ≡ e+ ⊗ e− + e− ⊗ e+,

where e± are the standard polarizations of spin s = ±1. This can be understood from
the fact that the transformations (2.5-2.6) are characterized by the Lorentz invariant
condition of leaving the trace h invariant and the trace does not belong to the irre-
ducible representation of the Lorentz group which contains h± . From now on we will
call the transformations (2.5-2.6) transverse diffeomorphisms (TDiff).

An enhanced symmetry can be obtained by adjusting the parameters a and b appropri-
ately. For instance, a = b = 1 corresponds to the Fierz-Pauli (FP) Lagrangian [FP39],
which is invariant under the full group of linear diffeomorphisms (Diff henceforth),
where the condition (2.6) is dropped. In fact, a one parameter family of Lagrangians
can be obtained from the FP one through the non-derivative field redefinitions

hµν 7→ hµν + λhηµν , (λ 6= −1/n) (2.7)

where n is the space-time dimension and the condition λ 6= −1/n is necessary for the
transformation to be invertible. Notice that the new variables are tensor densities with
respect to the transformation (2.5). Under this redefinition, the parameters in the
Lagrangian (2.4) change as

a 7→ a+ λ (an− 2) , b 7→ b+ 2λ(nb− a− 1) + λ2(bn2 − n(2a+ 1) + 2). (2.8)

2Notice that we keep the coordinates fixed under this transformation. By construction, the La-
grangians are also invariant under Lorentz transformations. In the standard GR case, both kind of
transformations blend at the non-linear level to give rise to the non-linear diffeomorphism [Ort04].
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2.1. Massless theory

Starting from a = b = 1, the new parameters are related by

b=
1 − 2a+ (n− 1)a2

(n− 2)
. (2.9)

It follows that Lagrangians where this relation is satisfied are equivalent to FP, with
the exception of the case a = 2/n, which cannot be reached from a = 1 with λ 6= −1/n
(cf. (2.8)).

A second possibility is to enhance TDiff with an additional Weyl symmetry,

δhµν =
2

n
φηµν , (2.10)

by which the action becomes independent of the trace. This possibility is accomplished
if in the generic transverse Lagrangian LTDiff [hµν ] of Eq. (2.4), one replaces hµν with
the traceless combination

hµν 7→ ĥµν ≡ hµν − (h/n)ηµν . (2.11)

This is formally analogous to the transformation (2.7) with λ = −1/n, but cannot be
interpreted as a field redefinition. As such, it would be singular, because the trace h
cannot be recovered from ĥµν . The resulting Lagrangian

LWTDiff [hµν ] ≡ LTDiff [ĥµν ], (2.12)

is still invariant under TDiff (the replacement (2.11) does not change the coefficients

in front of the terms LI and LII). Moreover, it is invariant under (2.10), since ĥµν is
so. Using (2.8) with λ = −1/n, we immediately find that this “WTDiff” symmetry
corresponds to Lagrangian parameters

a =
2

n
, b =

n+ 2

n2
. (2.13)

This is the exceptional case mentioned at the end of the previous paragraph. Even if
we will not deal with non-linearities till Chapter 4, we just want to remark that the
metric density ĝµν = g−1/ngµν with ĝ = 1 can be written at the linear level as

ĝµν = ηµν + ĥµν +O(h2).

This is the starting point for the non-linear generalization of the WTDiff invariant
theory, which is discussed in the second part of this Thesis. Notice also that the WTDiff
Lagrangian cannot be related to the Diff Lagrangian by gauge fixing. To show it, it is
enough to realize that the most general covariant gauge fixing term which breaks Diff
to TDiff and has two derivatives is simply

Lgf = λ∂µh∂
µh, (2.14)

which cannot change the coefficient of the term LIII .
Let us now show that Diff and WTDiff exhaust all possible enhancements of TDiff

for a Lagrangian of the form (2.1) (and that, in fact, these are its largest possible
gauge invariance groups3). Note first, that the variation of LI involves a term �hµν .

3Lagrangians for hµν with a larger WDiff gauge invariance can be constructed by adding terms with
higher derivatives to (2.1). However those Lagrangians are problematic as the presence of higher
derivative generically implies the existence of ghosts [Ste78].
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For arbitrary hµν , the previous variation will only cancel against other terms in (2.3)
provided that the transformation is of the form

δhµν = 2∂(µξν) +
2φ

n
ηµν , (2.15)

for some ξµ and φ, i.e., the transformation does not touch the spin-2 polarizations. The
vector field ξµ can be decomposed as

ξµ = ηµ + ∂µψ (2.16)

where ∂µη
µ = 0. Using (2.3) we readily find

δL= ην(β − 1)�(∂µh
µν)

+
ψ

2
[(b− a)�h+ (2β − a− 1)�(∂µ∂νh

µν)]

+
φ

n
[(bn− a− 1)�h+ (2β − na)∂µ∂νh

µν ] . (2.17)

TDiff corresponds to taking β = 1, with arbitrary transverse ηµ and with φ = ψ = 0.
This symmetry can be enhanced with nonvanishing φ and ψ satisfying the relation

n(a− 1)�ψ = 2(2 − an)φ, (2.18)

provided that

b =
1 − 2a+ (n− 1)a2

(n− 2)
. (2.19)

Eq. (2.18) ensures the cancellation of the terms with ∂µ∂νh
µν , and Eq. (2.19) elim-

inates terms containing the trace h. Eq. (2.19) agrees with (2.9), and therefore the
Lagrangian with the enhanced symmetry is equivalent to Fierz-Pauli, unless a = 2/n,
which corresponds to the Lagrangian invariant under WTDiff4.

It is worth noticing that the Weyl symmetry of equation (2.10) is an internal symmetry
in contrast with the conformal symmetry which includes transformations of coordinates
which are not transverse [ISS70]. A conformal covariant Lagrangian for spin-2 can be
found in [BX82]. This Lagrangian has β = 2/3, which, as we will see, implies the
existence of vector ghost states.

2.1.2. Comparing Diff and WTDiff

Let us briefly consider the differences between the two enhanced symmetry groups. A
first question is whether the Fierz-Pauli theory LDiff is classically equivalent to LWTDiff .
Since Diff includes TDiff, we can use (2.12) to obtain

δSWTDiff [h]

δhµν
=
δSDiff [ĥ]

δĥρσ

(

δµ(ρδ
ν
σ) −

1

n
ηρση

µν

)

. (2.20)

Hence, the WTDiff EoM are traceless

δSWTDiff [h]

δhµν
ηµν ≡ 0.

4Incidentally, it may be noted that for n = 2 both possibilities coincide, since in this case the symmetry
of the Fierz-Pauli Lagrangian is full diffeomorphisms plus Weyl transformations.
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2.1. Massless theory

In the WTDiff theory, the trace of h can be changed arbitrarily by a Weyl transforma-
tion, and we can always go to the gauge where h = 0. Likewise, in the familiar Diff
theory we can choose a gauge where h = 0. Then, hµν = ĥµν , and the WTDiff EoM are
just the traceless part of the Fierz-Pauli EoM. Differentiating Eq. (2.20) with respect
to xµ and using the Bianchi identity

∂ρ

(
δSDiff [h]

δhρσ

)

= 0,

one easily finds that δSWTDiff [h]/δhµν = 0 implies

δSDiff [ĥ]

δhρσ
ηρσ = Λ.

Hence, the trace of the Fierz-Pauli EoM is also recovered from the WTDiff EoM (in
the gauge h = 0), up to an arbitrary integration constant Λ which plays the role of
a cosmological constant5. Thus, the two theories are closely related, but they are not
quite the same. Another conclusion that stems from the previous analysis is that the
traceless part of the linearized Einstein’s equations in the gauge h = 0 are equivalent
to the full Einstein’s equations except for an integration constant. This statement is
nothing but the linear version of the well known result that the full Einstein’s equations
are equivalent to its traceless part up to an integration constant [Ein16, Alv05]. As we
will see in the next section and in Chapter 4, there is also a TDiff invariant Lagrangian
which shares this property: the Lagrangian with a Diff invariant kinetic term and a
TDiff invariant mass term.

Let us now consider the relation between the corresponding symmetry groups. Acting
infinitesimally on hµν they give

δDiffhµν = 2∂(µξν) = 2∂(µην) + ∂µ∂νψ (2.21)

δWTDiffhµν = 2∂(µη̄ν) +
2

n
φηµν (2.22)

where ∂µη
µ = ∂µη̄

µ = 0. In (2.21) we have decomposed ξν = ην + ∂νψ into transverse
and longitudinal part. The intersection of Diff and WTDiff can be found by equating
(2.21) and (2.22)

2∂(µην) + ∂µ∂νψ = 2∂(µη̄ν) +
2

n
φηµν . (2.23)

Taking the trace, we have
�ψ = 2φ. (2.24)

The divergence of (2.23) now yields

�(η̄µ − ηµ) =
n− 1

n
�∂µψ. (2.25)

Taking the divergence once more, we have

�φ = 0. (2.26)

Taking the derivative of (2.25) with respect to ν, symmetrizing with respect to µ and
ν, and using (2.23) and (2.24), we have (n − 2)∂µ∂ν�ψ = 0. For n 6= 2 this implies
∂µ∂νφ = 0, i.e.

φ = bµx
µ + c,

5Consistency of the linear theory implies Λ = O(h).
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2. Lorentz Invariant Healthy Lagrangians

where bµ and c are constants. Hence, not every Weyl transformation belongs to Diff,
since only the φ’s which are linear in xµ qualify as such. Conversely, the subset of
Diff which can be expressed as Weyl transformations are the solutions of the conformal
Killing equation for the Minkowski metric [Wal84],

∂(µξ
CD
ν) =

1

n
φηµν , (2.27)

where φ = ∂ρξCDρ (and, as shown above, φ has to be a linear function of xµ). These
solutions generate the so called conformal group, which we may denote by CDiff. In
conclusion, the enhanced symmetry groups Diff and WTDiff are not subsets of each
other. Rather, their intersection is the set of TDiff plus CDiff. As we have already
mentioned, the implementation of this conformal transformation differs from the one of
[ISS70] which also involves transformations in the coordinates.

Finally, for theories invariant under Weyl and Diff transformations, one can show
that the covariant group of the theory contains the conformal group as a subgroup (see
e.g. [FT85]). For the TDiff case, one can easily see that this is not the case, as the
equation

e−2λ(x) ∂x
µ

∂yα
∂xν

∂yβ
ηµν = ηαβ , (2.28)

which determines the covariant group of the theory in the Minkowski vacuum, implies
λ(x) = 0 for a TDiff change of variables. This yields just the Poincaré group as the
covariant group of symmetry of the WTDiff theories.

2.1.3. Dynamical analysis of the general massless Lagrangian.

The little group argument mentioned above indicates that if the quantum theory de-
scribes massless spin-2 particles it is not unitary unless the Lagrangian is invariant under
TDiff [vvN82]. In fact, as we will see, in the absence of TDiff symmetry the Hamilto-
nian is unbounded from below. This leads to pathologies such as classical instabilities
or the existence of ghosts.

To show this, as well as to analyze the physical degrees of freedom of the general
massless theory (2.1), it is very convenient to use the “cosmological” decomposition
in terms of scalar, vector, and tensor modes under spatial rotations SO(3) (see e.g.
[MFB92]),

h00 =A,

h0i = ∂iB + Vi,

hij = ψδij + ∂i∂jE + 2∂(iFj) + tij , (2.29)

where ∂iFi = ∂iVi = ∂itij = tii = 0. Two important features of this decomposition are
that it is local in time and that in the linearized theory the scalar (A,B,ψ,E), vector
(Vi, Fi) and tensor modes (tij) decouple from each other. Also, we can easily identify
the physical degrees of freedom without having to fix a gauge by directly substituting
the constraints in the Lagrangian [Jac93].

The tensor modes tij only contribute to LI , and one readily finds that their La-
grangian is

(t)L = −1

4
tij�tij. (2.30)
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2.1. Massless theory

The vector modes contribute both to LI and LII . Working in Fourier space for the
spatial coordinates and after some straightforward algebra, we have

(v)L =
1

2
k

2
(

V i − Ḟ i
)2

+
1

2
(β − 1)

(

k
2F i + V̇ i

)2

. (2.31)

For β = 1, corresponding to TDiff symmetry, there are no derivatives of V i in the
Lagrangian. Variation with respect to V i leads to the constraint V i − Ḟ i = 0, which
upon substitution in (2.31) shows that there is no vector dynamics.

Other values of β lead to pathologies. The Hamiltonian is given by

(v)H =
(ΠF + k

2V )2

2k2
− [ΠV + (1 − β)k2F ]2

2(1 − β)
+

(1 − β)k4F 2

2
− k

2V 2

2
, (2.32)

where the momenta are given by ΠF = k
2
(

Ḟ − V
)

and ΠV = (β− 1)
(

k
2F + V̇

)

, and

we have suppressed the index i in the vector modes F and V . Because of the alternating
signs in Eq. (2.32), the Hamiltonian is not bounded from below. Generically this leads to
a classical instability. The momenta satisfy the equations Π̇F = k

2ΠV and Π̇V = −ΠF .
These have the general oscillatory solution

|k|ΠV + i ΠF = C exp i(|k|t+ φ0),

where C and φ0 are real integration constants. On the other hand, V and F satisfy

V̈ + k
2V =

−β
(β − 1)

ΠF , (2.33)

F̈ + k
2F =

β

(β − 1)
ΠV . (2.34)

For β 6= 0 these are equations for forced oscillators. For large times, the homogeneous
solution becomes irrelevant and we have

V + i|k|F ∼
(

βCt

(β − 1)|k|

)

exp i(|k|t+ φ0),

whose amplitude grows without bound, linearly with time. This classical instability is
not present for β = 0. However, in this case F and V decouple and we have

(v)Lβ=0 =
1

2
k

2(∂µF
i)2 − 1

2
(∂µV

i)2,

so Vi are ghosts. One may argue that these ghosts do not couple to conserved matter
at the linear level, and thus Lagrangians with ghosts in the vector sector are stable.
Even if this is true, these modes are coupled to matter and to the other polarizations of
the graviton through the non-linear terms and thus the theory is quantum mechanically
unstable at the scales where those terms are important. By considering this criterium
of stability, we are going one step beyond other analysis which restrict the parameters
to be ghost free at the linear level once the propagator is coupled to conserved sources,
as [VN73].
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2. Lorentz Invariant Healthy Lagrangians

Hence, the only case where the vector Lagrangian is not problematic is β = 1, corre-
sponding to invariance under TDiff. The scalar Lagrangian is then given by

(s)LTDiff =
1

4

[
(∂µA)2 − 2k2(∂µB)2 +N(∂µψ)2 − 2k2∂µψ∂

µE + k
4(∂µE)2

]

− 1

2

[

(Ȧ+ k
2B)2 − k

2Ḃ2 − k
2ψ2 + 2k4Eψ − k

6E2 + 2k2Ḃ(ψ − k
2E)

]

+
a

2

[

(Ȧ−Nψ̇ + k
2Ė)(Ȧ+ k

2B) − k
2(A−Nψ + k

2E)(Ḃ − ψ + k
2E)

]

− b

4

[
∂µ(A−Nψ + k

2E)
]2
, (2.35)

where N = n − 1 is the dimension of space. It is easy to check that B is a Lagrange
multiplier, leading to the constraint

(N − 1)ψ = (a− 1)h, (2.36)

where h = A − Nψ + k
2E is the trace of the metric perturbation. Substituting this

back into the scalar action (2.35) we readily find

(s)LTDiff = −Z
4

(∂µh)2, (2.37)

where

Z ≡ b− 1 − 2a+ (n− 1)a2

n− 2
. (2.38)

Hence, the scalar sector contains a single physical degree of freedom, proportional to
the trace. Whether this scalar is a ghost or not is determined by the parameters a and
b and we see that there is a whole family of Lagrangians with a positive definite energy
(i.e. with Z < 0). For b = (1− 2a+ (n− 1)a2)/(n− 2), corresponding to the enhanced
symmetries which we studied in the previous subsection, the scalar sector disappears
completely, and we are just left with the tensor modes6.

The fact that we have found a Lagrangian with the WTDiff gauge invariance that
has the same degrees of freedom as the the usual Lagrangian invariant under Diff is
surprising. Indeed, a naive counting of the degrees of freedom (see e.g. [SV07]) implies
that the number of propagating degrees of freedom (PDoF) is three and not two for
this Lagrangian. However, after a canonical analysis of the Hamiltonian for the WTDiff
theory one readily sees that there is a tertiary constrain which appears in WTDiff and
which is not present in the Diff theory which kills the extra expected degree of freedom
[SV07]. Indeed, something similar happens also for higher spin Lagrangians [SV07].

2.1.4. TDiff Lagrangians in terms of gauge invariant quantities.

As the Lagrangian of (2.4), LTDiff , is invariant under TDiff, one should be able to write
it in terms of quantities invariant under these transformations (for the Diff case see e.g.
[MFB92]). It is easy to see that under a general transformation hµν 7→ hµν + 2∂(µξν)
the fields of the cosmological decomposition transform as

tij 7→ tij , Vi 7→ Vi + ∂0ξ
T
i , Fi 7→ Fi + ξTi , A 7→ A+ 2∂0ξ0,

B 7→B + ∂0η + ξ0, E 7→ E + 2η, ψ 7→ ψ,

6Whenever (2.9) holds, we find always the same Lagrangian for the physical degrees of freedom without
the appearance because we have assumed this constant to be zero when we solved the constraints.
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2.1. Massless theory

where ξi = ξTi + ∂iη, with ∂iξTi = 0. Whereas for a Weyl transformation hµν 7→
hµν + 1

nφηµν only A and ψ change as

A 7→ A+
φ

n
, ψ 7→ ψ − φ

n
.

For general transverse transformations the only gauge invariant combinations are

tij , wi = Vi − ∂0Fi, (2.39)

in the tensor and vector sectors respectively and

Φ = A− 2∂0B + ∂2
0E, ψ, Θ = (A− ∆E), (2.40)

for the scalar modes. In terms of these combinations, the tensor, vector and scalar part
of the Lagrangian (2.4) can be written as (we write also the TDiff invariant mass term
LV = −m2h2)

(t)LTDiff =−1

4
tij�tij,

(v)LTDiff = −1

2
wi△wi,

(s)LI + (s)LII =
1

4

(

−Θ̇2 − Θ∆(Θ − 2Φ) − 2∆ψ(Φ − Θ) + (n− 3)ψ∆ψ + (n− 1)ψ̇2
)

,

(s)LIII =
a

4

(

(Θ − (n− 1)ψ)(∆(Θ − ψ − Φ) − Θ̈)
)

,

(s)LIV =− b
4

(

(Θ̇ − (n− 1)ψ̇)2 + (Θ − (n− 1)ψ)∆(Θ − (n− 1)ψ)
)

,

(s)LV =−m
2

4
(Θ − (n− 1)ψ)2.

From this decomposition we easily see that Φ is always a Lagrange multiplier whose
variation yields the constraint

△ ((1 − (n− 1)a)ψ − (1 − a)Θ) = 0. (2.41)

In the Diff invariant case (a = b = 1), only two scalar combinations are gauge
invariant, namely Φ and ψ. Thus, the lagrangian for the scalar part can be expressed
as

(s)LDiff =
(2 − n)

4

(

−2Φ∆ψ + (n− 1)ψ̇2 + (n− 3)ψ∆ψ
)

. (2.42)

Concerning the Weyl transformations, we can write only two scalar invariants which
are also scalars for TDiff,

Ξ = Φ + ψ, Υ = Θ + ψ. (2.43)

Thus, for the Weyl invariant choice a = 2
n , b = n+2

n2 , we can write the Lagrangian as

(s)LWTDiff =
1

4n2

(

(n− 2)(2nΞ − (n− 1)Υ)△Υ − (2 − 3n+ n2)Υ̇2
)

. (2.44)

Varying the Lagrangian with respect to Ξ we find the constraint

∆Υ = 0. (2.45)

Besides, the mass term can be written as

(s)LV = −m
2

4
(Υ − nψ)2. (2.46)
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2. Lorentz Invariant Healthy Lagrangians

2.2. Massive fields

Let us now turn our attention to the massive case. The most general mass term takes
the form7

Lm = −1

4
m2

1hµνh
µν +

1

4
m2

2h
2.

First of all, let us note that for m1 = 0, this mass term is still invariant under TDiff.
The term m2

2h
2 gives a mass to the scalar h, but not to the tensor or vector modes.

Hence, the analysis of the previous section remains basically unchanged. At energy
scales below the mass m, the extra scalar effectively decouples and we are back to the
situation where only the standard helicity polarizations of the graviton are allowed to
propagate8. For a tachyon free situation we require −m2

2 > 0.
When m1 6= 0, we must repeat the analysis9. With the decomposition (2.29), the

Lagrangian for the tensor modes becomes

(t)L = −1

4
tij
(
� +m2

1

)
tij , (2.47)

and in order to avoid tachyonic instabilities we need m2
1 > 0. For the vector modes,

and for β 6= 1, the potential term

∆Hv =
m2

1

2
[k2(F i)2 − (V i)2],

is added to (2.32). The contribution proportional to V 2 is negative definite. Hence, to
avoid ghosts or tachyons we must take β = 1. In this case, V̇ i does not appear in the
Lagrangian and V i can be eliminated in favor of Ḟ i. This leads to

(v)L = −1

2

(
k

2m2
1

k2 +m2
1

)

F i
(
� +m2

1

)
F i. (2.48)

Out of the (N + 2)(N − 1)/2 polarizations of the massive graviton in n = N + 1
dimensions, (N − 2)(N + 1)/2 of these are expressed as transverse and traceless tensor
modes tij , and N − 1 are expressed as transverse vector modes F i, whose dispersion
relation must coincide. The remaining one (also with the same dispersion relation) must
be contained in the scalar sector. The scalar Lagrangian can be written as

(s)L =(s) LTDiff +(s) Lm, (2.49)

where the first term is given by (2.35) and the second is given by

(s)Lm = −m
2
1

4
(A2 − 2k2B2 +Nψ2 − 2k2ψE + k

4E2) +
m2

2

4
(A−Nψ + k

2E)2. (2.50)

7Here, we are disregarding the possibility of Lorentz breaking mass terms, which has been recently
considered in [Rub04]. We will say more about these massive terms in the next part of the Thesis
(see Chapter 6).

8Note also that the addition of the term m2
2
h2 to both the Diff or the WTDiff Lagrangian does not

change the propagating degrees of freedom of the theory. The analogous statement in a non-linear
context is illustrated by the addition of a “potential” f(g) to the non-linear extensions of these
Lagrangians (something does change, though, by the addition of the potential, since the new theory
does have the arbitrary integration constant Λ). Hence, one may in principle construct classical
Lagrangians which propagate only massless spin-2 particles, and whose symmetry is only TDiff,
although in this case radiative stability is not guaranteed (i.e. we may expect other terms, such as
kinetic terms for the determinant g, which are not protected by the symmetry, to be generated by
quantum corrections).

9For a similar analysis in terms of spin projectors see [VN73].
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2.2. Massive fields

Variation with respect to B leads to the constraint

m2
1 B = (1 − a)(Ȧ+ k

2Ė) − (1 − aN)ψ̇.

To proceed, it is convenient to eliminate E in favor of the trace h,

k
2E = h+Nψ −A,

and to further express A and ψ in terms of new variables U and V ,

(N − 1) A= (aN − 1) h+ [2(N − 1)k2 −Nm2
1] U,

(N − 1) ψ = (a− 1) h−m2
1 (U − V ). (2.51)

With these substitutions, and after some algebra, we find

(s)L = −Z
4
ḣ2 +

[Nm2
1 − 2(N − 1)k2]m2

1

4(N − 1)

(

V̇ 2 − U̇2
)

+
W (h,U, V )

4(N − 1)2
, (2.52)

where Z is given by (2.38) and

W ≡
{
(N − 1)2(k2Z +m2

2) − [1 + (1 − 4a+ a2)N + a2N2]m2
1

}
h2

+(N − 1)m4
1 [(N − 2)k2 −Nm2

1] V
2

−m2
1 [4(N − 1)2k4 + (2 +N − 3N2)m2

1k
2 +N(N + 1)m4

1] U
2

+4(N − 1)m2
1k

2[Nm2
1 − (N − 1)k2] UV

+2m2
1 [(N + 1)a− 2] [(Nm2

1 − (N − 1)k2) U − (N − 1)k2 V ] h. (2.53)

For 2(N − 1)k2 < Nm2
1 the variable U has negative kinetic energy, whereas for 2(N −

1)k2 > Nm2
1 the same is true of V . Thus, the Hamiltonian is unbounded below, unless

Z = 0. (2.54)

In this case, h is non-dynamical, and it will implement a constraint between U and V
provided that the coefficient of h2 in W vanishes identically. This requires

m2
2 =

(
1 + (1 − 4a+ a2)N + a2N2

(N − 1)2

)

m2
1. (2.55)

As discussed in section 2.1.1, as long as a 6= 2/(N + 1), all kinetic Lagrangians with
Z = 0 are related to the Fierz-Pauli kinetic term by the field redefinition (2.7). Thus,
there are only two possibilities for eliminating the ghost10: either the kinetic term is
invariant under Diff or it is invariant under WTDiff.

10As we already mentioned, the presence of ghosts is not problematic as long as they are not coupled
to ordinary matter at energies below a certain cut-off. This allows to consider TDiff invariant
Lagrangians with massive gravitons which are stable at energy scales larger than the interaction
scale. Contrary to the Diff invariant case, the interaction scale for the ghost modes can be made
arbitrarily small by a convenient choose of the coefficients a and b [Por04], but this is not a real
progress since then the vDVZ discontinuity is present till these scales, and those models are ruled
out phenomenologically. Besides, this result only holds at the linear level.
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2. Lorentz Invariant Healthy Lagrangians

2.2.1. Diff invariant kinetic term

Without loss of generality, we can take a = b = 1, and from (2.55) we have the usual
Fierz-Pauli relation

m2
1 = m2

2.

Variation with respect to h leads to the constraint

(N − 1)k2V = [Nm2
1 − (N − 1)k2]U. (2.56)

In combination with (2.51), this yields

(N − 1)k2ψ = m2
1[Nm

2
1 − 2(N − 1)k2] U. (2.57)

Substituting (2.56) in the Lagrangian, and using (2.57) we obtain

(s)L = − N

4(N − 1)
ψ(� +m2

1) ψ, (2.58)

which is the remaining scalar degree of freedom of the graviton.
The tensor, vector and scalar Lagrangians (2.47),(2.48) and (2.58) are not in a man-

ifestly Lorentz invariant form, and the actual form of the propagating polarizations is
obscured by the fact that the components of the metric must be found from F i and ψ
with the help of the constraint equations. Nevertheless, once we know that the system
has no ghosts and all polarizations have the same dispersion relation, it is trivial to
repeat the analysis in the rest frame of the graviton, k = 0. In this frame, the metric is
homogeneous ∂ihµν = 0 and we may write

h00 = A, h0i = Vi, hij = ψδij + tij ,

where tii = 0. The Lagrangian for tensor modes becomes

(t)L = −1

4
tij
(
� +m2

1

)
tij , (2.59)

Vectors contribute to LI and LII , giving

(v)L =
1

2
(β − 1)V̇ 2

i +
1

2
m2

1V
2
i , (2.60)

which is non-dynamical in the present case because β = 1. Likewise, it can easily be
shown that the scalar fields A an ψ are non-dynamical. Therefore, in the graviton rest
frame the propagating polarizations are represented by the [N(N+1)/2]−1 independent
components of the symmetric traceless tensor tij .

2.2.2. WTDiff invariant kinetic term

For a = 2/n = 2/(N + 1), the last term in Eq. (2.53) disappears, and U and V do not
mix with h. Because of that, there are no further constraints amongst these variables
and the ghost in the kinetic term in (2.52) is always present for m2

1 6= 0. This means
that the WTDiff theory cannot be deformed with the addition of a mass term for the
graviton without provoking the appearance of a ghost.

Note that this is so even in the case of a mass term compatible with the Weyl sym-
metry, i.e. m2

1 = nm2
2. This relation causes h to disappear from the Lagrangian, but
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2.3. Lagrangians from Tracelessness and from Unitarity

of course it does nothing to eliminate the ghost. Thus, we have found that from the
Lagrangians that describe the propagation of massless spin-2 particles only one, the
Diff invariant one, can be deformed to describe pure massive spin-2 particles. Again,
the ghost mode may be decoupled from matter at the linear level, but we expect it to
reappear in the interactions. Concerning the strong coupling phenomenon for these La-
grangians, we expect it to be absent but an explicit calculation has not been performed.

In the previous analysis we have restricted to Lorentz invariant mass terms. However,
if one lifts this restriction, one expects to find mass terms for the WTDiff kinetic term
which are free of ghosts or tachyons as happens in the Diff invariant case [Rub04]. And
interesting possibility would be to consider situations where even if Lorentz invariance
is broken a SIM(2) subgroup of the Lorentz group is preserved [CG06]. Mass terms
compatible with the gauge invariance and with the SIM(2) symmetry are known for
spin-1 [LR06] but the search for equivalent terms for spin-2 is still in progress [Bla].
Besides, the mass terms may be non-local operators that come from the integration of
high-energy degrees of freedom as in [Dva06].

2.3. Lagrangians from Tracelessness and from Unitarity

An alternative route to the WTDiff invariant theory is to try and construct a Lagrangian
which will yield the traceless part of Einstein’s equations. As we have shown, these field
equations are equivalent to the Einstein’s equations except for an integration constant
and finding Lagrangians which yield these EoM is interesting by itself.

It is clear, however, that we can only obtain traceless equations of motion from a
Lagrangian which is invariant under Weyl transformations. If the EoM are traceless,
then δS = 0 for variations of the form for δhµν ∝ ηµν . This symmetry is not included in
Diff, and therefore the traceless part of Einstein’s equations cannot be recovered from
the Diff invariant Lagrangian in any gauge. Rather, we should look for a Lagrangian
which will yield the traceless part of Einstein’s equations in some gauge.

Let us consider the EoM of the Diff invariant theory in momentum space

δSDiff [h]

δhρσ
= Kρσµν

Diff hµν , (2.61)

where

8Kµνρσ
Diff = k2 (ηµρηνσ + ηµσηνρ − 2ηµνηρσ) −

(kµkρηνσ + kνkσηµρ + kµkσηνρ + kνkρηµσ − 2kµkνηρσ − 2kρkσηµν) . (2.62)

We can also define the traces

trKµν
Diff = ηρσK

ρσµν
Diff =

n− 2

4

(
kρkσ − k2ηρσ

)
,

tr trKDiff = ηµνηρσK
ρσµν
Diff = − (n− 1)(n− 2)

4
k2. (2.63)

The traceless part of the Kρσµν
Diff ,

8Kt
Diff = 8

(

KDiff − 1

n
ηµνtrKρσ

Diff

)

, (2.64)
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2. Lorentz Invariant Healthy Lagrangians

cannot be derived from a Lagrangian as it is not symmetric in the indices (ρσ) vs. (µν).
Nevertheless, we can still define traceless symmetric Lagrangians. One might think
of substituting ηµν in the previous expression by trKµν

Diff , and dividing by its trace.
However, this would yield nonlocal terms.

For a local Lagrangian which is still invariant under TDiff, we must restrict to de-
formations which correspond to changes in the parameters a and b in (2.1). The most
general symmetric Lagrangian with these properties is of the form

Kµνρσ
tDiff ≡ Kµνρσ

Diff − ηµνMρσ −Mµνηρσ , (2.65)

with Mρσ a symmetric operator at most quadratic in the momentum. Asking that the
result be traceless leads to:

Mµν =
1

n
(trKµν

Diff − (trM)ηµν) , (2.66)

which implies

trM =
1

2n
tr trKDiff . (2.67)

Therefore

Mµν =
1

n

(

trKµν
Diff − 1

2n
(tr trKDiff)ηµν

)

, (2.68)

and we can write

8Kµνρσ
tDiff = k2 (ηµρηνσ + ηµσηνρ) − (kµkρηνσ + kνkσηµρ + kµkσηνρ + kνkρηµσ)

−2(n+ 2)

n2
k2ηµνηρσ +

4

n
(kµkνηρσ + kρkσηµν). (2.69)

Moving back to the position space, this corresponds to the WTDiff Lagrangian, i.e. the
case a = 2

n and b = n+2
n2 in (2.4). As shown before, this yields the traceless part of the

Fierz-Pauli EoM in the gauge h = 0.
A similar analysis could be done for the massive case. However, as we have seen in

the previous section, the corresponding Lagrangian has a ghost.

We would also like to comment on a technique to obtain the free Lagrangian for
a massive field of spin-2 based on unitarity [Alv05, Vel]. The basic requirement is
that the propagator be transverse and traceless on shell, so that it does not mix with
scalar or vector modes at the tree level. One can show (cf. [Vel]) that there is only one
propagator transverse and traceless on the mass shell such that the imaginary part of the
tree level diagram corresponding to the interaction of two identical sources is positive
(as unitarity demands because, from the usual cut rules, the imaginary part of this
diagram corresponds to the emission of a spin-2 particle). Obviously this Lagrangian
is the FP Lagrangian that we found in the previous section. Notice also that in the
previous section we showed that the vector and scalar parts, if included, would give rise
to a non-unitary Lagrangian, and thus asking for unitarity is indeed enough to get a
unique Lagrangian for massive spin-2 particles.

2.4. Propagators and coupling to matter

In this section we shall consider the propagators and the coupling to external matter
sources for the different healthy Lagrangians which we have identified in the previous
sections.
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2.4. Propagators and coupling to matter

On one hand, we have the standard massless and massive Fierz-Pauli theories, which
have been thoroughly studied in the literature. There are also the generic ghost-free
TDiff theories, which satisfy the condition

Z ≡ b− 1 − 2a+ (n− 1)a2

n− 2
< 0. (2.70)

These may include a mass term of the form m2h2, which affects the scalar mode but
does not give a mass to the tensor modes. The WTDiff invariant theory completes the
list of possibilities.

Throughout this section, we will make use of the spin-2 projector formalism of [Riv64],
which is very useful to invert the equations of motion. We can expand the momentum
space projector of the propagator as a sum over non-local projectors in the space of
symmetric tensors of two indexes. These are known as Barnes and Rivers projectors
[VN73, Riv64]. We start with the usual transverse and longitudinal projectors

θαβ ≡ ηαβ − kαkβ
k2

,

ωαβ ≡ kαkβ
k2

. (2.71)

and then define projectors on the subspaces of spin-2, spin-1, and the two different spin
zero components, labeled by (s) and (w). We introduce also the convenient operators
that map between these two subspaces,

P2 ≡ 1

2
(θµρθνσ + θµσθνρ) −

1

(n− 1)
θµνθρσ,

P s0 ≡ 1

(n− 1)
θµνθρσ,

Pw0 ≡ ωµνωρσ ,

P1 ≡ 1

2
(θµρωνσ + θµσωνρ + θνρωµσ + θνσωµρ) ,

P sw0 ≡ 1
√

(n− 1)
θµνωρσ , Pws0 ≡ 1

√

(n− 1)
ωµνθρσ.

(2.72)

These projectors obey

P ai P
b
j = δijδ

abP bi ,

P abi P cdj = δijδ
bcδadP aj ,

P ai P
bc
j = δijδ

abP acj ,

P abi P cj = δijδ
bcP acj . (2.73)

And the traces:

trP2 ≡ ηµν(P2)µνρσ = 0, trP s0 = θρσ, trPw0 = ωρσ,

trP1 = 0, trP sw0 =
√
n− 1ωρσ , trPws0 =

1√
n− 1

θρσ. (2.74)

Apart from the previous expressions, these projectors satisfy

P2 + P1 + Pw0 + P s0 =
1

2
(δµνδρσ + δρσδµν) , (2.75)
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and any symmetric operator can be written as

K = a2P2 + a1P1 + awP
w
0 + asP

s
0 + aswP

×
0 , (2.76)

where P×
0 = P sw0 + Pws0 . The inverse of the previous operator is easily found from

(2.73) to be

K−1 =
1

a2
P2 +

1

a1
P1 +

as
asaw − a2

sw

Pw0 +
aw

asaw − a2
sw

P s0 − asw
asaw − a2

sw

(Pws0 + P sw0 ) ,

(2.77)
provided that the discriminant asaw − a2

sw never vanishes.

2.4.1. Gauge Fixing.

As noted in [Alv05], for the TDiff gauge invariance there is no linear covariant gauge
fixing condition which is at most quadratic in the momenta. This is in contrast with
the Fierz-Pauli case, where the harmonic condition contains first derivatives only. The
basic problem is that a covariant gauge-fixing carries a free index, which leads to n
independent conditions. This is more than what transverse diffeomorphisms can handle,
since these have only (n − 1) independent arbitrary functions. To be specific, let us
consider the most general possibility linear in k,

Mαβγh
βγ = 0, (2.78)

where
Mαβγ = a1ηα(βkγ) + a2ηβγkα. (2.79)

In order to bring a generic metric hµν to this gauge by means of a TDiff, we have

Mαβγh
βγ = Mαβγ∂

βξγ . (2.80)

However, deriving the r.h.s. of the previous expression with respect to xα and summing
in α, this terms cancels, which implies that the integrability condition

∂αMαβγh
βγ = 0, (2.81)

must be satisfied. This simply means that the gauge condition cannot be enforced on
generic metrics.

It is plain, however, that the transverse part of the harmonic gauge (which contains
only n−1 independent conditions) can be reached by a transverse gauge transformation.
The corresponding gauge fixing piece is obtained by projecting the harmonic condition
with k2ηµν − kµkν ≡ k2θµν :

Lgf =
1

2M4
(∂α∂

µ∂νhµν − �∂µhαµ)
2. (2.82)

The gauge fixing parameter is now dimensionful, and this has been explicitly indicated
by denoting it by M4. A study of this kind of term and its associated FP ghosts and
BRST transformations can be found in [ALV06] (see also Appendix A). We would like to
remind that when projector operators are present in the gauge fixing term, there may
appear ghosts of ghosts in the quantization process [HT94] and also Kallosh-Nielsen
ghosts [Kal78, Nie78].

By contrast, in the case of WTDiff, the additional Weyl symmetry allows for the use
of gauge fixing terms which are linear in the derivatives (such as the standard harmonic
gauge).
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2.4. Propagators and coupling to matter

2.4.2. Propagators

The generic Lagrangian including a mass term can be written in Fourier space as

L=LI + β LII + a LIII + b LIV + Lm + Lgf =
1

4
hµνK

µνρσhρσ =

1

4
hµν

{(
k2 −m2

1

)
P2 +

[
(1 − β) k2 −m2

1 + λ2(k)
]
P1

+asP
s
0 + awP

w
0 + a×P

×
0

}µνρσ

hρσ, (2.83)

where P1 and P2 are the projectors onto the subspaces of spin-1 and spin-0 respectively,
while the operators P s0 , Pw0 and P×

0 ≡ P sw0 + Pws0 project onto and mix the different
spin-0 components. The coefficients in front of the spin-0 projectors are given by

as = [1 − (n− 1)b]k2 −m2
1 + (n− 1)m2

2,

aw = (1 − 2β + 2a− b)k2 −m2
1 +m2

2,

a× =
√
n− 1

[
(a− b)k2 +m2

2

]
. (2.84)

In (2.83), we have included the term λ2(k)P1 which can be used to gauge fix the TDiff
symmetry whenever it is present. Indeed, (2.82) can be written as

Lgf = λ2(k)hµνP
µνρσ
1 hρσ. (2.85)

where λ2(k) = (1/4M4)k6. Even though we are primarily interested in the TDiff
Lagrangian (which corresponds to β = 1), we have kept generic β throughout this
subsection. This can be useful to handle the cases with enhanced symmetry, since a
generic β arises, for instance, from the conventional harmonic gauge fixing term (as
we shall see below). When invertible, the previous Lagrangian yields a propagator
∆ ≡ K−1,

∆ =
P2

k2 −m2
1

+
P1

(1 − β) k2 −m2
1 + λ2(k)

+
1

g(k)

(

awP
s
0 + asP

w
0 − a×P

×
0

)

,

where,

g(k) = asaw − a2
×. (2.86)

Consider a generic coupling of the form

Lint(x) =
1

2
(κ1T

µν + κ2Tη
µν)hµν ≡ 1

2
T µν
tot hµν . (2.87)

For conserved external sources11

∂µT
µν = 0, (2.88)

this coupling is invariant under TDiff for all values of κ1 and κ2. Moreover, it is Diff
invariant when κ2 = 0, and WTDiff invariant for the special case κ1 = −nκ2. The
interaction between sources is completely characterized by [BD72]

Sint ≡
1

2

∫

dnkLint(k) =
1

2

∫

dnk Ttot(k)∗µν∆µνρσTtot(k)ρσ. (2.89)

11For the theories which are not invariant under the whole Diff, the external source is not necessarily
conserved. Nevertheless, the coupling to a non-conserved source may imply the loss of unitarity.
See also [FVD80] for the study of the FP Lagrangian coupled to non-conserved sources.
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From the properties of the projectors Pi, it is straightforward to show that

Lint(k) = κ2
1 T

∗
µν

(
Pµνρσ2

k2 −m2
1

)

Tρσ + P0 |T |2, (2.90)

where the operator

P0 =
1

g(k)

[
κ2

1aw
(n− 1)

+ 2κ1κ2

(

aw − a×√
n− 1

)

+ κ2
2

[
(n− 1)aw + as − 2

√
n− 1a×

]
]

(2.91)
encodes the contribution of the spin-0 part. We are now ready to consider the different
particular cases, which we present by order of increasing symmetry.

2.4.3. Massive Fierz-Pauli

In this case the parameters in the Lagrangian are given by β = a = b = 1 and m2
1 = m2

2.
From (2.86), we have

g(k) = −(n− 1) m4
2,

which does not depend on k. Because of that, the denominator of the operator P0 does
not contain any derivatives. Its contribution to Eq. (2.90) corresponds only to contact
terms, which do not contribute to the interaction between separate sources. We are
thus left with the spin-2 interaction, which ignoring all contact terms, can be written
as

Lint = κ2
1 T

∗
µν

(
Pµνρσ2

k2 −m2
1

)

Tρσ =
κ2

1

k2 −m2
1

[

T ∗
µνT

µν − 1

(n− 1)
|T |2

]

. (2.92)

The factor 1/(n − 1) is different from the familiar 1/(n − 2) which is encountered in
linearized GR, and produces the well known vDVZ discontinuity in the massless limit
[vV70, Zak70].

2.4.4. TDiff invariant theory

In this case, we set m2
1 = 0 and β = 1. Note that the gauge fixing term (2.85) will not

play a role, since the term proportional to P1 does not contribute to the interaction
between conserved sources. With these values of the parameters we have

g(k) = (n− 2)(Z k2 −m2
2) k

2, (2.93)

which is quartic in the momenta. The terms proportional to κ2 in the numerator of Eq.
(2.91) are also proportional to k2, so this factor drops out and we obtain the propagators
for an ordinary massive scalar particle (provided that Z < 0, in agreement with our
earlier dynamical analysis).

However, for the first term in Eq. (2.91) (the one proportional to κ2
1) there is no

global factor of k2 in the numerator, and we must use the decomposition

1

g(k)
=

−1

(n− 2)m2
2

(

1

k2
− 1

k2 − m2
2

Z

)

. (2.94)

Substituting in (2.91), and disregarding contact terms, we obtain

P0 = −
(

κ2
1

(n− 1)(n− 2)

)
1

k2
−
(

κ2 +
1 − a

n− 2
κ1

)2
1

Zk2 −m2
2

. (2.95)
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Substituting in (2.90) and adding the contribution of P2 for m2
1 = 0, which can be read

off form (2.92), we have

Lint = κ2
1

[

T ∗
µνT

µν − 1

(n− 2)
|T |2

]
1

k2
−
(

κ2 +
1 − a

n− 2
κ1

)2 |T |2
Z k2 − m2

2

. (2.96)

Note that the massless propagator in (2.95) combines with the second term in the spin-2
part to give the factor 1/(n − 2) in front of |T |2. Eq. (2.96) shows that the massless
interaction between conserved sources is the same as in standard linearized General
Relativity.

In addition, there is a massive scalar interaction, with effective mass squared

m2
eff =

m2
2

Z
> 0. (2.97)

(note that both parameters m2
2 and Z must be negative to yield a healthy interaction,

according to our earlier analysis), and effective coupling given by

κ2
eff =

−1

Z

(

κ2 +
1 − a

n− 2
κ1

)2

. (2.98)

These are subject to the standard observational constraints on scalar tensor theories.
If the scalar field is long range, then the strength of the new interaction has to be very
small κeff . 10−5κ1 [Wil05, Wil01]. Alternatively, the interaction could be rather
strong, but short range, shielded by a sufficiently large mass meff & (30 µm)−1 [K+07,
Wil05, Wil01, AHN03]. In fact, this mass term is not protected by any symmetry which
makes it sensitive to radiative corrections that will push it till the cut-off scale of the
theory. This way, the previous limit in the mass is easily achieved. If the mass for
the scalar field is raised to the cut-off then any value for Z is possible (as long as not
tachyons are present), as the ghost states only propagate at the cut-off scale and the
propagation of new degrees of freedom are expected at this scale which can render the
theory unitary.

2.4.5. Enhanced symmetry: WTDiff and Diff invariant theories

From general arguments, the interaction between sources in the WTDiff theory is ex-
pected to be the same as in standard massless gravity, since both theories only differ
by an integration constant but have the same propagating degrees of freedom.

In fact the result for WTDiff can be obtained from the analysis of the previous section
by setting Z = 0. In this case, the term m2

2h
2 can be thought of as the additional gauge

fixing which removes the redundancy under the additional Weyl symmetry. With Z = 0
the second term in (2.96) becomes a contact term, and we recover the same result as in
the standard massless Fierz-Pauli theory [BD72]12,

Lint = κ2
1

[

T ∗
µνT

µν − 1

(n− 2)
|T |2

]
1

k2
, (2.99)

as expected.
Note that in the Diff and WTDiff invariant theories, there is a different possibility

for gauge fixing. Rather than using the term (2.85) in order to take care of the TDiff

12Note also that the WTDiff invariant coupling to conserved sources requires κ1 = −nκ2. Using this
and a = 2/n in (2.98) we have κeff = 0, which again eliminates the scalar contribution.
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part of the symmetry, and then the m2
2h

2 to take care of the Weyl part, we can gauge
fix the entire symmetry group with a standard term of the form

Lgf =
α

4

(
∂βh

βµ + γ∂µh
)2
, (2.100)

where α and γ are arbitrary constants. This can be absorbed in a shift of the parameters
a, b and β

a 7→ a+ αγ, b 7→ b− αγ2

2
, β 7→ β − α

2
.

With these substitutions, the propagator becomes invertible, even if it is not for the
original values of a, b and β which correspond to Diff or to WTDiff. Needless to say,
the result calculated in this gauge coincides with (2.99).

Before ending this Chapter we would like to emphasize that even if both theories give
the same predictions at tree level, this behaviour can change once interaction terms
are considered. First, we may find that the vertices for the non-linear extensions are
different. Besides, even if the vertices coincide, the fact that the off-shell propagators
for WTDiff and Diff are not related by a gauge-fixing term makes it possible that the
contributions from loops differ in both cases [GS05].
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3. TDiff and Higher Spin: The Spin 3/2

Case

In the previous Chapter we have shown that the free massless spin-2 field can be con-
sistently described by a traceless tensor field with transverse gauge invariance. This
analysis has been extended to bosonic fields of higher spin in [SV07] and a similar result
has been found1. Again, in the higher spin case, although the new Lagrangian can be
obtained from the Fronsdal Lagrangian of [Fro78] by restricting to the traceless part of
the field, the equivalence between both Lagrangians is not trivial. In fact, as shown in
[SV07] and similarly to spin-2, the equivalence of the EoM is due to the appearance of
a tertiary constraint in the trace-free case that kills the extra degree of freedom and
makes both theories equivalent at the classical level.

The covariant description of fermionic fields of spin s > 1/2 also needs the introduc-
tion of auxiliary fields which are rendered spurious by an associated gauge invariance
[FF78]. A natural question one may ask is whether, as happens in the bosonic case,
there exists more than one Lagrangian that describes the propagation of just the de-
grees of freedom of the spin under consideration. In this Chapter we will restrict to the
s = 3/2 case. Again, we will find that there are two possible Lagrangians which satisfy
the previous requirement: the standard Lagrangian for spin-3/2 (the Rarita-Schwinger
Lagrangian [RS41]) and a traceless version of it which enjoys a S-symmetry. We will also
comment on the possibility of consistently coupling the field ψµ to the electromagnetic
field in the last case.

Besides, the interacting spin-3/2 field appears very naturally in supergravity (SUGRA)
[VN81]. At the linear level, the action built out of the addition of the Diff invariant
spin-2 action and the Rarita-Schwinger (RS) action for the massless spin-3/2 constitute
a supersymmetric action [VN81]. We will devote the last section of the Chapter to
prove that for the WTDiff Lagrangian there is no minimal supersymmetric counterpart
in the spin-3/2 sector.

As we pointed out in Chapter , we will follow the conventions of [dWF84] and work
with a Majorana vector-spinor ψµ. This Chapter is based on [Bla08] and work in
progress [Bla].

3.1. Lagrangians for Pure Massless Spin-3/2

The most general local Lorentz invariant Lagrangian for a Majorana vector ψµ and first
order in derivatives is given by2

S(3/2) =

∫

d4x ψ̄µ (λ(γµ∂ν + γν∂µ) + ϑγµ/∂γν + ζηµν/∂)ψν . (3.1)

1This formulation is in some sense opposite to the standard approach of higher spin which resorts to
the introduction of auxiliary fields to build a covariant Lagrangian which yields the correct equations
of motion [FP39, Fro78, FF78, dWF80] (see also [SH74a, SH74b] for the massive case).

2For a Dirac spinor, the coefficients in front of the first and second terms do not necessarily coincide.
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3. TDiff and Higher Spin: The Spin 3/2 Case

After a transformation of the form

ψµ 7→ ψµ −
a

4
γµγ

ρψρ, (3.2)

the coefficients are transformed as

λ 7→ λ (1 − a) − a

2
ζ, ϑ 7→ ϑ(1 − a)2 − a(1 − a)

2
λ+

a

2

(

1 − a

4

)

ζ. (3.3)

This transformation is a field redefinition which makes one of the coefficients spurious
except for the case a = 1. In this pathological case, the transformation is not invertible
(see the comment after (3.12).

The Majorana field ψµ has 16 real independent components, all of which will be
dynamical for a general action of the form (3.1). However, if the action is to describe
a massless particle, only the ±3/2 polarizations should be dynamical, which implies
the need for a gauge invariance to render the remaining polarizations non-dynamical3.
The RS action, characterized by λ = −ϑ = −ζ (and the coefficients related to it by a
transformation (3.3) for a 6= 1) is invariant under the transformation

ψµ 7→ ψµ + ∂µǫ. (3.4)

Let us consider now the transformation

ψµ 7→ ψµ + ∂µǫ+ γµϕ, (3.5)

which is the most general covariant gauge invariance for the field ψµ which does not
involve the spin-3/2 components of the field. Under the previous transformation, the
action changes as

δS(3/2) = −2

∫

d4x
(

{(λ+ ϑ)�ǭ+ (λ+ 4ϑ− ζ)∂αϕ̄γα}γµψµ

−{(λ+ ζ)∂αǭγα + 2(2λ+ ζ)ϕ̄}∂µψµ
)

.

For 2λ+ ζ 6= 0, the previous variation cancels for

ϕ̄ = − (λ+ ζ)∂αǭγα
2(2λ+ ζ)

, (3λ2 + 2ζλ+ ζ2 − 2ϑζ)�ǭ = 0. (3.6)

In other words, for

ϑ =
ζ2 + 2ζλ+ 3λ2

2ζ
, 2λ+ ζ 6= 0, (3.7)

the action (3.1) is invariant under (3.5) with

ϕ̄ = − (λ+ ζ)∂αǭγα
2(2λ+ ζ)

,

and ǫ remains a free parameter. As it is clear from (3.3), all these possibilities correspond
to the RS action and field redefinitions of the form (3.2) with

a =
2(λ+ ζ)

ζ
.

3Recall also that fermions have half as many PDoF as components as the other half are canonical
momenta.
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For the singular case 2λ+ ζ = 0 the variation cancels provided that

/∂ǫ = 0, (λ+ 4ϑ− ζ)/∂ϕ = 0. (3.8)

In this case, the condition for a free gauge parameter ϕ requires the condition

λ = ζ − 4ϑ, (3.9)

which, together with 2λ+ ζ = 0, imply that

λ = −1

2
ζ, ϑ =

3

8
ζ. (3.10)

Substituting the previous values in (3.1) (and fixing ζ), one finds the action

S(3/2)
WRS = SRS(ψ̂µ) = −1

2

∫

d4x
¯̂
ψµǫ

µνρσγ5γν∂ρψ̂σ, (3.11)

where ψ̂µ ≡ ψµ − 1
4γµγ

αψα. This action corresponds to the singular transformation
of the RS action, (3.2) with a = 1. The WRS label stands for the analogy of the
transformation in (3.5) involving the field ϕ (known as special supersymmetry, or simply,
S-symmetry [FT85]) with the Weyl gauge invariance. Notice that, as happens for
the WTDiff case, the WRS action is written in terms of a traceless field with fewer
components than the original field. In particular,

γµψ̂µ = 0, (3.12)

which means that ψ̂µ has just 12 independent real components. Besides, in complete
analogy with the WTDiff case, even if the action is invariant under the Lorentz and
the S-symmetries, the rigid superconformal group is not a symmetry of the Lagrangian
(which happens when ǫ and ϕ are arbitrary [FT85]). As with in the spin-2 case, there is
no action in (3.1) invariant under the general transformation (3.5)4. Hence some of the
low spin components of the field ψµ may be dynamical, as they are not automatically
killed by the gauge invariance.

It is important to note that this action is not related to the RS action by a gauge
fixing term, as the only covariant gauge fixing term just involves the ϑ term

ψ̄µγ
µ/∂γνψν

in (3.1). To our knowledge, the WRS action has not been studied in the past5. The
remaining possibilities will include both spin-1/2 polarizations, one of which will be a
ghost [VN81].

The analysis of the degrees of freedom can be performed in a covariant way after
introducing a system of projectors as in [DKS77, VN81] or performing the decomposition

ψ0 = A, ψi = ti + γiχ+ ∂iE, (3.13)

with γit
i = ∂it

i = 0. Notice that the presence of the γi matrices in the definition of χ
implies that it is an anti-Majorana fermion6

χ̄ = −χTC.
4As happens for the Weyl and Diff symmetries, an action with this gauge group is possible once higher

derivatives terms are included (see [FT85]), but the theory is not unitary.
5For the Lagrangians equivalent to RS see [VN81, dWF84].
6We could have defined χ = γ0η with η being a Majorana spinor.
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3. TDiff and Higher Spin: The Spin 3/2 Case

This decomposition breaks the Lorentz invariance, but this allows to identify the actual
PDoF and the constraints of the theory. It is also very useful to show that the RS and
the WRS are the only possibilities out of the general action (3.1) endowed with a gauge
invariance. To prove it, it suffices to show that these are the only possibilities where
the kinetic term of the associated EoM is singular [HT94].

In terms of the previous fields, the general Lagrangian (3.1) can be written as

L = L(3/2) + L(1/2), (3.14)

where L(3/2) ≡ −ζt̄i/∂ ti and

L(1/2) ≡ Ē {(ζ − ϑ)γ0∂0 − (2λ+ ϑ+ ζ)γi∂i}∆E

+Ā {(2λ+ ϑ+ ζ)γ0∂0 − γi∂i(ζ − ϑ)}A+ χ̄ {3(3ϑ− ζ)γ0∂0 − γi∂i(6λ+ 9ϑ− ζ)}χ
+2χ̄ {−(4λ+ 3ϑ+ ζ)∆E − (3ϑ− ζ)γ0γi∂0∂iE}

+2Ā {−(λ+ 3ϑ)γ0γi∂iχ+ (λ+ ϑ)[∂0(3χ− γi∂iE) − γ0∆E]} .

The kinetic part can be written as,

(Ē, χ̄, Ā)





(ζ − ϑ)γ0∆ (ζ − 3ϑ)γ0γi∂i (λ+ ϑ)γi∂i
(ζ − 3ϑ)γ0γi∂i 3(3ϑ− ζ)γ0 3(λ+ ϑ)
−(λ+ ϑ)γi∂i 3(λ+ ϑ) (2λ+ ϑ+ ζ)γ0









Ė
χ̇

Ȧ



 ,

and the determinant of the matrix multiplying the time derivative of the fields is

16ζ4(−2ϑζ + ζ2 + 2ζλ + 3λ2)4∆4. (3.15)

Thus, we find that the theory will include constraints whenever (we take ζ 6= 0 as
otherwise the spin-3/2 degrees of freedom are not present)

ϑ =
ζ2 + 2ζλ+ 3λ2

2ζ
. (3.16)

As we found previously, this condition correspond to the existence of a gauge invariance
of the form (3.5). In the singular case, the kinetic term will be non-singular once the
constraints are introduced back in the Lagrangian. Besides, notice that for the general
case, the determinant has a definite positive sign, to be contrasted with the negative
sign of the determinant of kinetic part of the spin-3/2 case. Thus, the kinetic term of
the total Lagrangian (3.14) has not a definite sign unless (3.16) is satisfied. This means
that if (3.16) does not hold, the action (3.1) has propagating ghosts in its spectrum, as
claimed in [VN81].

3.2. Propagator and Coupling of the WRS action

For the RS Lagrangian, the propagator, spin content and unitarity properties can be
found in [DF76, STvN78, VN81]. In this case, the gauge invariance including a deriva-
tive allows to kill all the low-spin states, leaving just the ±3/2 polarizations as physical.

For the WRS action (3.11), the naive counting of PDoF implies the existence of spin-
1/2 components. To show that this is the case, we analyze the EoM derived from the
action (3.11). One readily finds that they correspond to the γ-traceless part of the RS
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case in the gauge γµψµ = 0, which can be reached by a S-transformation in the WRS
case and by a gauge transformation in the RS case [VN81],

Rµ
WRS ≡ δLWRS

δψ̄µ
=

(

δµα − 1

4
γµγα

)
δLRS(ψ̂µ)

δ
¯̂
ψµ

≡
(

δµα − 1

4
γµγα

)

Rα
RS(ψ̂µ) = 0, (3.17)

with γαRα
WRS = 0, which is the Bianchi identity associated to the fermionic S-symmetry.

Contracting the EoM with the derivative operator, one finds

∂µRµ
WRS = −1

4
/∂
(

γαRα
RS(ψ̂µ)

)

= 0. (3.18)

Thus, contrary to what happens in the bosonic case, we do not recover the missing
equations of the RS Lagrangian (in this case the γ-trace of the RS EoM)7. From the
identity

γαRα
RS(ψ̂µ) = −2∂αψ̂α,

we see that there is a spin-1/2 PDoF as the equation of motion for ∂αψ̂α is

/∂∂αψ̂α = 0, (3.19)

in contrast to the RS case where ∂αψ̂α cancels on shell8. Besides, the residual gauge
transformation satisfies /∂ǫ = 0, which leaves this combination invariant as

δ∂αψ̂α = �ǫ = 0. (3.21)

This implies that, in principle, the WRS case is not classically equivalent to the RS
case as there is one more spin-1/2 PDoF. However, from the fact that this new PDoF
does not mix with the spin-3/2 part, we can consistently fix it to cancel by the initial
condition

∂αψ̂α
∣
∣
0

= 0.

In this case, equation (3.19) implies that the missing equation also holds and that both
systems are equivalent. This situation is analogous to what happens in ordinary gauge
theory when one fixes the gauge through a covariant quadratic gauge fixing term (see
e.g. [DF76, IZ]).

The previous result is trivial in the case of free theories but it may change in the
presence of sources. Let us see that for conserved sources this is not the case, i.e. both
theories yield the same physical results in this case. To show this, we will consider the
coupling of the free spin-3/2 field to a conserved source Jα, ∂αJα = 0. The most general
non-derivative covariant coupling will be of the form

Sint =

∫

d4xψ̄µ

(

Jµ − b

4
γµγαJ

α

)

+ h.c.

The consistency of the equations of motion implies that for the RS case b = 0 whereas
for WRS b = 1. The equations of motion for the WRS case are

(

δµα − 1

4
γµγα

)(

Rα
RS(ψ̂µ) − Jα

)

= 0. (3.22)

7This result was expected as there is no gauge invariance left in the WRS action written in terms of
ψ̂µ, which means that no new constraints can appear in the EoM.

8Similar equations of motion are also obtained if we add a term

λψ̄µγ
µγνψν (3.20)

to the RS action. This is reminiscent to what happens in unimodular gravity [HT89].
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Again, from the conservation of the current and the Bianchi identity for Rµ
RS, contract-

ing the EoM with the derivative operator, we obtain

/∂
(

γαRα
RS(ψ̂µ) − γαJ

α
)

= 0. (3.23)

After the imposition of the initial condition

(

γαRα
RS(ψ̂µ) − γαJ

α
)

,

this is equivalent to the missing equation of (3.22) compared to the RS case. Thus the
propagator that mediates the interaction between two conserved sources is the same in
both cases. In particular we find

/∂ψ̂µWRS = Jµ − 1

2
γµγαJ

α + γµξ. (3.24)

with /∂ξ = 0. The interaction between sources can be read from the quantity

J̄µψ̂µ = J̄µ
1

�

(

ηµν/∂ +
1

2
γµ/∂γν

)

Jν , (3.25)

which coincide with that of the RS (see e.g. [DKS77]). In particular, this form guar-
antees the unitarity of the theory. Thus, even if we have found an additional field ξ in
the WRS case, given that it is a free field it can be projected out consistently.

It is interesting to note that, as happens for the spin-2 Lagrangian, the WRS massive
case is completely different from the RS and the propagation involves new degrees of
freedom.

3.2.1. Remarks on Quantization and Consistent Coupling

In the previous section we showed that apart from the Rarita-Schwinger (RS) action and
the actions related to it by a gauge fixing term or by a field redefinition, there is another
Lorentz invariant action for the spin-3/2 field (the WRS action) with the same physical
predictions once coupled to a conserved source. This equivalence needs the imposition
of initial conditions which may not be compatible with the canonical (anti)commutators
as happens for electromagnetism in the Lorentz gauge. For the electromagnetic case,
this problem is solved by imposing the condition as a restriction in the physical Hilbert
space where the theory turns out to be unitary (Gupta-Bleuler formalism). Even if we
have not applied this formalism to the WRS theory, the similarities with the standard
case in the presence of a covariant gauge fixing term, whose correspondence with the
canonical treatment in the gauge γiψi = 0 can be found in [DF76], makes one think
that it may also be valid in this case. Besides, no Fadeev-Popov or Nielsen-Kallosh
ghosts present in the RS case (cf. [VN81]) will appear in the quantization of the WRS
action, as it has no gauge invariance.

The previous conclusions may change in the presence of interaction where the extra
spin-1/2 may become dynamical. Besides, the proof of unitarity of interacting massless
theories resorts on gauge invariance (see e.g. [DF76] for supergravity) and its absence
in the WRS theory casts some doubts in the consistency of any interacting theory.

Even more, the interacting theories of higher spin, both massive and massless, may
be problematic already at the classical level. For the massive spin-3/2 field there are
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3.2. Propagator and Coupling of the WRS action

problems with unitarity and causal propagation once the field is coupled to an external
electromagnetic source [JS61, VZ69]. For the massless case, the inconsistency occurs
already at an algebraic level.

Namely, if we substitute the ordinary derivative by a covariant derivative in the RS
action, differentiating with the covariant derivative Dµ = ∂µ− ieAµ and after using the
Bianchi identity of the RS action

∂µRµ
RS = 0,

we find [VN81]
Fµνγ

µψν = 0.

The previous expression means that either ψµ = 0 or that the photon is a gauge exci-
tation. A similar problem occurs for every massless higher spin theory, as the Bianchi
identities of the free theory always imply some condition in the background field. It
was suggested in [SV07] that the description in terms of traceless fields may alleviate
this problem as the Bianchi identities are less stringent in this case.

For the WRS case, coupling minimally the action to the electromagnetic field, one
finds the equations of motion

(δαµ − 1

4
γαγµ)ǫ

µνρσγ5γνDρψ̂σ = i

(

γµDµψ̂
α − 1

2
γαDµψ̂µ

)

= 0. (3.26)

After applying the covariant derivative, the equations of motion read

eFµνγ
µψ̂µ =

i

2
γβDβ(Dαψ̂

α), (3.27)

which is not a constraint but a field equation9. The hyperbolic structure of this equation
is independent of the connection, and due to Lorentz invariance there are just two
possibilities: either the determinant associated to this equation cancels identically (as
happens for RS) or the characteristic surfaces have null normals [VZ69]. The first
possibility can not be realized as it would indicate the presence of a gauge invariance,
thus in the WRS case the signals propagate in the null-cone. More explicitly, the symbol
of the system of differential equations is

σ =

(

(γµ)abηασ − 1

2
(γα)abηµσ

)

nµ, (3.28)

where nµ is an arbitrary vector. The determinant of this operator is

detσ =
1

16
(n2)8. (3.29)

The main concern about the previous coupling is that the states of low spin correspond-
ing to ∂αψ̂

α are turned on by the interaction, and this may spoil the unitarity of the
theory.

The absence of a gauge invariance implies that Slavnov-Taylor identities can not be
derived in the standard fashion and unitarity may be violated even at tree level. We
leave the study of these issues for future research10 [Bla].

9The same happens if one considers the coupling of the gauge-fixed RS action.
10Even if unitarity is not preserved, one could try to introduce new fields of spin-1/2 to obtain a

consistent theory.
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3.3. Supersymmetric Extensions of WTDiff

A natural question concerning the possible extensions of the WTDiff Lagrangian of the
previous Chapter and its relation to the spin-3/2 field is whether a minimal supersym-
metric extension exists. In other words, as the number of off-shell and on-shell degrees
of freedom of the massless WTDiff case coincides with that of Diff (and RS) actions
(see e.g. [VP03]), we may wonder about the existence of an action for the spin-3/2
field such that the total action of WTDiff graviton plus gravitino has a certain global
supersymmetry . A first sign that this may not be possible unless more fields are added
to the theory is that, as we showed in section 3.1, the only Lagrangian for the field
ψµ that describes purely spin-3/2 on-shell is the RS Lagrangian whose supersymmet-
ric counterpart is the usual linearized Einstein-Hilbert action11. One may still think
that the supersymmetric transformations can be deformed so that the WTDiff action is
also supersymmetric with the RS action. We will study this possibility in a completely
general way.

Let us first consider the variation of the WTDiff at linear level (2.12) under a variation
δhµν in four dimensions,

δS(2)
WTDiff =

∫

d4x δĥµν

(

RLµν(ĥ) −
1

2
ηµνR

L(ĥ)

)

=
1

4

∫

d4x δhµν

(

4ηαbηβ(µην)a − 2ηαβηaµηbν − ηabηµαηνβ

−ηµν
{

ηαaηβb − 3

4
ηabηαβ

})

∂α∂βhab. (3.30)

For the spin-3/2 Majorana field ψµ we will take the general action (3.1). The most gen-
eral supersymmetric transformation for Majorana spinors and gravitons can be written
as12

δhµν = ǭγ(µψν) +Aηµν ǭγ
ρψρ,

δψµ =
(
B∂µh+C∂ah

a
µ +Dγµγ

ν∂νh+ Eγµγ
α∂bh

b
α + Fσab∂ahµb

)
ǫ, (3.32)

where σab ≡ 1
4 [γa, γb]. Some of the previous transformations are simply field redefi-

nitions or gauge transformations for certain Lagrangians but we will consider all the
coefficients as independent.

The variation of the bosonic Lagrangian can be written as

δS(2)
WTDiff =

1

4

∫

d4x ǭ
(

−ηabγαψβ + 2ηαaγbψβ + 2ηαaγβψb − 2ηαβγbψa

−ηαaηβbγρψρ +
3

4
ηabηαβγρψρ

)

∂α∂βhab. (3.33)

11We could consider actions for the bosonic sector with more degrees of freedom e.g. allowing for a
propagating torsion or non-metricity, but this goes beyond the present work.

12The supersymmetric transformation should preserve the traceless condition of the WTDiff field ĥµν ,
which for the usual supersymmetric transformation of the graviton implies

δh = ǭγµψµ = 0. (3.31)

This seems to imply that the supersymmetric partner of the field ĥµν should be the field ψ̂µ but,
as we will see, this is not so.
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For the variation of the fermionic part we find

δS(3/2) = −
∫

d4x ǭ
{

(2B(λ+ ζ) + 4D(2λ+ ζ) − Fλ)ηabγαψβ

+(2Cλ+ 4E(2λ+ ζ) + Fλ)ηαaγbψβ + ζ(2C − F )ηαaγβψb + Fζηαβγbψa

+(2B(λ+ ϑ) + 2D(λ+ 4ϑ− ζ) − Fϑ)ηabηβαγρψρ + λ(2C − F )ηαaηβbγρψρ

+(2Cϑ+ 2E(λ + 4ϑ− ζ) + F (λ+ ϑ))ηαaγbγβγρψρ

}

∂α∂βhab. (3.34)

Comparing the third and forth coefficients of (3.33) and (3.34), we find C = 0. From
the relation between the last but one coefficient and the forth one of (3.33), we find
ζ = −2λ. Finally, comparing the second and forth coefficient we arrive at Fζ = 0. The
condition ζ 6= 0 is necessary if we want the fermionic action to describe spin-3/2 fields.
This means that F = 0, which, together with C = 0 and (2λ+ ζ) = 0, implies that the
third term of (3.34) cancels and there is no way in which both variations can cancel each
other. Thus, we conclude that there is not a minimal supersymmetric system including
the WTDiff Lagrangian.

One could try to add more fields to the theory to find a supersymmetric action. In
[NR02] a supersymmetric extension for unimodular gravity was found by the addition
of Lagrange multipliers to enforce a traceless conditions on the spin-2 and spin-3/2
fields. It was shown that the system has a local constrained supersymmetry for any
cosmological constant while the gravitino remains massless. As we said, the addition of
these Lagrange multipliers goes beyond the minimal coupling considered in this section
and can be problematic [GS05].

Finally, notice that the addition of a mass term or putting the gravitino in an anti-
de Sitter background can not help to build a supersymmetric action as the previous
incompatibility will still be present.
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Part II.

Non-linear extensions: from

Unimodular gravity to Bigravity

51





4. Non-linear Extensions of TDiff

Lagrangians

In Chapter 2, we have studied different Lagrangians which are phenomenologically
equivalent to GR in the linearized approximation. In particular, the TDiff invari-
ant Lagrangians are admissible as long as the mass term compatible with the TDiff
symmetry is set to an energy scale beyond the scales at which GR has been studied
(m & (10 µm)−1 ∼ 10−14 TeV). Besides, we have found two inequivalent possibilities
which describe pure spin-2 massless propagation at any scale: the usual Diff invariant
Lagrangian and the WTDiff Lagrangian. As it is well known, the linear theory of GR
is not enough to describe the gravitational interaction. First, it fails observationally
as it does not predict the nonlinear effects of GR as the right perihelion of Mercury
[Ort04]. Besides, from the strong equivalence principle, gravity must couple to any kind
of energy including its own [Wil01]. If the gravitational interaction is described by a
spin-2 particle, this particle must be coupled to its own energy-momentum tensor. Both
arguments imply the inclusion of interaction terms in the Lagrangian. As we are deal-
ing with a theory with a gauge invariance, the new terms must be compatible with this
gauge invariance as otherwise they generically impose new constraints in the propagat-
ing fields. This requirement uniquely determines the nonlinear terms for the Diff case
[OP65, Des70, Wal86, BDGH01] (see also [GPP84, Fey95, Gup57]). The Noether trick
can also be considered to constructively build the nonlinear theory. However, for GR it
is not very useful as it requires the knowledge of the deformation of the linear algebra
to be applied [Ort04]. For an argument based on quantum gravity for the nonlinear
extension see [BD75].

For the TDiff and WTDiff cases much less is known about the possible nonlinear ex-
tensions. Transverse diffeomorphisms form a group also at the nonlinear level, providing
a first possibility for the nonlinear gauge invariance [vvN82, BD88] (see also [PS01]).
Furthermore, a nonlinear Weyl transformation is also easily added to the picture and a
unique Lagrangian appears for this WTDiff nonlinear gauge invariance [Bla07a]. How-
ever, as we will argue, it is not clear whether in this case there are no other possible
nonlinear extensions

A consistent nonlinear extension of the massive case may be sought using the Stück-
elberg or Higgs mechanisms to recover a gauge symmetry at the linear level [Zin07,
Cha04, AHGS03]. In both cases, the appearance of nonlinear terms typically implies
the propagation of a new degree of freedom which makes the theory non-unitary1 [BD72].

In this Chapter we will first present some results on the possible nonlinear extensions
of the TDiff theory and then we will focus on the only consistent possibility that we
know about. We will show that the nonlinear TDiff Lagrangian is completely equivalent
to a scalar-tensor theory whereas the nonlinear WTDiff corresponds to a Lagrangian for
unimodular gravity. We will then comment on the possible ways in which matter can

1A possible solution for this problem is to impose an additional constraint at the nonlinear level in
the spirit of [tH07].
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be coupled to gravity in theories invariant under TDiff. The last section of the Chapter
is devoted to the first order formalism of WTDiff and the coupling of the vielbein to a
spin-3/2 field. This Chapter is partially based on [ABGV06, Bla07a, Bla].

4.1. Non-linear Extensions

In this section we will present two different ways of building the nonlinear extension of
the linear Lagrangians of the previous chapters. We will first say a few words about
the techniques that allow to build the interaction terms constructively and apply a
method similar to that suggested by Deser in [Des70] for GR to the WTDiff case. We
will find that we get an inconsistent2 Lagrangian. Then we will present the nonlinear
extensions of TDiff which we can construct directly from the intuition gained from the
linear theory.

4.1.1. Systematic Extension

There are different ways in which the non-linear extensions of the theories of free
gravitons can be found constructively. The most direct one is to consider the energy-
momentum tensor of the graviton as a source for its equations of motion. This amounts
to the first correction, or three-graviton vertex, for the linear action and for the Diff case
it is not a consistent way to proceed, as there is no Lagrangian that gives rise to these
equations of motion [OP65, Ort04]. Another way of performing the extension is to first
show how the gauge invariance can be deformed nonlinearly [OP65, Wal86, BDGH01]
and then build a Lagrangian endowed with the nonlinear gauge invariance. To find
the possible deformations, one benefits from the nonlinear nature of the closure of the
algebra, which relates the different orders in a deformation parameter [OP65]. For the
case of linearized Diff symmetry these nonlinear deformations lead uniquely to the group
of nonlinear diffeomorphisms after some mild assumptions. The equivalent calculation
for TDiff and WTDiff is more cumbersome and is currently under research [Bla] (see
also [PS01]). It is worth noticing that even if the usual techniques for deforming gauge
algebras can be applied (see e.g. [Hen98]) the fact of dealing with a reducible gauge
invariance implies some additional difficulties.

An alternative approach for GR which extends easily to the WTDiff case exists [Des70,
Bla07a]. This approach is based on the first order (or Palatini’s) formulation of gravity
[Des70] (see also [Des87] for the generalization to a curved background). The first order
formulation of the second order Lagrangian (2.1) for the WTDiff case is

S(1) =
1

κn−2

∫

dnx
{

−ĥµν∂[µΓρρ]ν + ηµνΓρλ[µΓ
λ
ρ]ν

}

, (4.1)

where ĥµν = hµν − hηµν and the metric and the connection are now considered as

independent fields. The equations of motion from the variation of ĥµν are the traceless
part of the Fierz-Pauli case, whereas from the variation of Γρµν we find a constraint for
this field which, once solved, yields (for n 6= 2)

Γρµν =
1

2
ηρσ

(

∂µĥνσ + ∂ν ĥµσ − ∂σĥµν

)

. (4.2)

2By inconsistent we mean that the gauge invariance does not survive at the nonlinear level.
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This is just the equation of compatibility of the connection and the traceless metric
at linear order. Substituting this constraint in the action and after the redefinition
hµν 7→

√
2κ(n−2)/2hµν , we just get the WTDiff Lagrangian for hµν , (2.12). This is not a

trivial result as the equivalency between the first and second order formulations without
the use of Lagrange multipliers is not guaranteed a priori [IKPP07, ESJ08]. The next
step is computing the energy-momentum tensor of the hµν field and couple it to the
graviton. As it is well known, there is a great amount of ambiguity in the definition
of the energy-momentum tensor of the gravitational field (see e.g. [BG00, Nik03]).
Following [Des70], we will use a modified Rosenfeld’s prescription [Ort04].

Rosenfeld’s prescription consist of substituting the flat space metric ηµν by an aux-
iliary metric γµν in a way that renders the action invariant under auxiliary non-linear
diffeomorphisms. One can prove that the quantity

tµν = − 2√−γ
δS[γ]

δγµν

∣
∣
∣
γµν=ηµν

,

is symmetric and conserved on-shell [BG00]. Thus, one may identify tµν with the
energy momentum tensor for the action S[η]. To use the previous prescription, we need

to define ĥµν in a curved background

ĥµν [γ] ≡ hµν − 1

n
γµνγαβh

αβ (4.3)

and assign a transformation law under the auxiliary coordinate transformations to the
fields ĥµν and Γρµν (this is the strongest assumption of Deser’s method [Ort04]). The
general action reads

S[γ]WTDiff =
1

κn−2

∫

dnx
(

−|γ|aĥµν [γ]∇[γ][µΓρρ]ν + |γ|bγµνΓρλ[µΓ
λ
ρ]ν

)

, (4.4)

where a and b are arbitrary constants depending on the transformation rules for the
metric and the connection. The conserved energy-momentum tensor derived from this
action differs from the one of [Des70] due to the appearance of γµν in the definition of

ĥµν (4.3). However, in the gauge h = 0, hµν = ĥµν and the equations of motion for the
WTDiff Lagrangian are the same as the Diff ones. Thus, the quantity

t̃µν = − 2√−γ
δS[γ; ĥµν ]Diff

δγµν

∣
∣
∣
γµν=ηµν

, (4.5)

is also conserved in this gauge. Besides, one can easily convince oneself that this quan-
tity is conserved as it corresponds to the energy-momentum tensor associated with the
choice of ĥµν to be a contravariant tensor density (a = 0).

If we consider ĥµν to be a contravariant tensor density (a = 0) and the indices of the
connection to behave like a vector (b = 1/2), it is easy to see that the energy-momentum
tensor t̃µν is given by the usual energy-momentum tensor of [Des70] except for the fact

that the tensor ĥµν is now traceless. Following [Des70], this energy-momentum tensor
can be derived from the term

S(2) = − 1

κn−2

∫

dnxĥµνΓσρ[µΓ
ρ
σ]ν . (4.6)
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as ĥµν is already traceless. Thus, after the addition of a boundary term, the action at
third order simply reads

S ≡ S(1) + S(2) = − 1

2κn−2

∫

dnxg̃µνRµν

[

Γραβ

]

, (4.7)

where we have defined g̃µν = ηµν −
√

2κĥµν . This Lagrangian differs from the Einstein-
Hilbert Lagrangian of GR and is background dependent as ĥµν involves ηµν in its
definition. Besides, the equations of motion coming from the variation with respect to
gµν and the connection are not Einstein’s equations but

Rµν [g̃] −
1

n
ηµνη

αβRαβ [g̃] = 0, (4.8)

where the connection is compatible with the metric associated to the tensor density
g̃µν ,

gµν ≡ |g|−1/2g̃µν ,

which satisfies the constraint √−ggµνηµν = n. (4.9)

We can now wonder about the consistency of this Lagrangian, as the WTDiff gauge
invariance was necessary to go to the h = 0 gauge and prove the conservation of the
tensor t̃µν . One can show that the action (4.7) is invariant under the non-linear diffeo-
morphisms satisfying

ηµν

(

gµαδνβ − 1

2
δαβ g

µν

)

∇αξ
β = 0, (4.10)

which reduces to the transverse condition at the linear level. The algebra of these dif-
feomorphisms does not close for a general metric and thus they do not constitute a finite
subgroup of Diff. Even if the algebra may close on-shell3, we expect that the number of
propagating degrees of freedom will differ from GR. More concretely, as the number of
free gauge parameters is three and they are differentiated in the gauge transformation,
we expect that 6 degrees of freedom will not be dynamical [SV07]. As the field gµν has 9
independent components, we expect the non-linear theory to have 3 (light) propagating
degrees of freedom4. If this is the case, this theory is ruled out phenomenologically.
Besides, the new degree of freedom that appears may be a ghost, which would mean
that the theory is not consistent at the quantum level.

Before finishing this section, it is worth mentioning some of the assumptions that we
made and which can be relaxed. First, for the TDiff invariant Lagrangians, the Bianchi
identities are less restrictive than for the Diff gauge invariance and it is enough that the
source of the EoM is conserved except for a total derivative,

∂µTµν = ∂νψ. (4.11)

Surprisingly enough, the same is true for the WTDiff case, as far as we consider the
coupling to the traceless part of the tensor. This opens the possibility for more general

3The reason why this may happen is that the transformations satisfying (4.10) are the most general
diffeomorphisms that leave the action (4.7) invariant. This means that, as their commutator leaves
(4.7) invariant, it must correspond to a parameter satisfying (4.10) except for a term proportional
to the EoM [HT94].

4It may happen that, similarly to what was found for linear WTDiff, a tertiary constraint appears
that kills the extra degree of freedom.
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energy-momentum tensors than those obtained in any of the prescriptions of the Diff
case. This possible generalization may also be helpful to build higher-spin interacting
theories [SV07]. Besides we have made an assumption on the values of the parameters
a and b in (4.4) and we have used a modified conserved energy-momentum tensor t̃µν .

In the next section we will see that there is a consistent non-linear theory of WTDiff
equivalent to GR on-shell. Besides, it is also invariant under a non-linear extension
of the Weyl symmetry, which casts some doubt in the possibility of finding it using
the method we envisaged. This does not exclude the possibility of a suitable choice
of variables at the linear level to perform a consistent non-linear extension in a single
step. We leave the systematic study of consistent deformations of the TDiff and WTDiff
algebras for further research [Bla].

4.1.2. Intuitive Extension

A possible non-linear extension of the linear TDiff is provided by any subgroup of the
non-linear Diff for which an object f which at the linear level reduces to the trace h
transforms as a scalar. That is, given

f (ηµν , gµν) = k + ηµνhµν +O
(
h2
µν

)
(4.12)

for k a constant and hµν = gµν − ηµν , we want to find the subgroup of Diff such that

δξf = ξµ∂µf, (4.13)

for δξgµν = 2∇(µξν). This subgroup, if it exists, will be background dependent in
general. The previous condition can be expressed as

Aµρ∇µξ
ρ − ξρ∂ρf = Aµρ∂µξ

ρ = 0, (4.14)

where

Aµρ = 2
δf

δgµν
gνρ.

In particular this means that the translations belong always to this subgroup.

Let us study the group structure for a generic f . From Frobenius theorem applied to
the Diff, the infinitesimal transformations will be integrable if and only if [Wal86]

[ξµ1 ∂µ, ξ
ν
2 ∂ν ] = ξν3∂ν (4.15)

with ξν3 = ξµ1 ∂µξ
ν
2 − ξµ2 ∂µξ

ν
1 . The integrability condition that must be satisfied in our

case is
Aµρ∂µξ

ρ
3 = 2Aµρ

(

∂µξ
α
[1|∂αξ

ρ
|2] + ξα[1|∂µ∂αξ

ρ
|2]

)

= 0, (4.16)

for ξ1 and ξ2 satisfying (4.14). For the term involving second derivatives to cancel, the
only possibility is Aµρ = l(x)Sρµ, with Sµρ being a constant matrix, i.e.

2δf = l(x)gµνδgµν = l(x)g−1δg, (4.17)

where g = det gµν . Thus, f depends just on the determinant of the metric. The
subgroup which preserves these functions is TDiff also at the non-linear level, i.e. the
subgroup of diffeomorphisms satisfying

∂µξ
µ = 0. (4.18)
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Once integrated, this subgroup gives rise to the diffeomorphisms of Jacobian equal to
one, which are related to unimodular gravity [vvN82].

The simplest form of f is provided by the choice f = |g|. As required, this function
satisfies

|g| = 1 + ηµνhµν +O(h2
µν), (4.19)

which in fact holds for any background. General Lagrangians where |g| is considered as
an independent degree of freedom have been studied in [vvN82, ABGV06] and (as we
will see in section 4.2) they are usually equivalent to scalar-tensor theories of gravity
except for an integration constant.

Notice also that the condition ∇µξ
µ = 0 is integrable, as its integrability condition

reduces to

∂[σΓαρ]α = 0, (4.20)

which is automatically satisfied as Γαρα = ∂ρ ln
√

|g|. However, comparing this con-
dition with (4.14) one realizes that they are inconsistent. In other words, there is no
object f transforming as a scalar under the subgroup of Diff satisfying ∇µξ

µ = 0.
One can understand the relation between the previous two integrable conditions from

the difference between the active and the passive action of Diff. The diffeomorphisms
act passively over (densitized) tensors as (see e.g. [AGG85])

δpT (x) = T ′(x′) − T (x), (4.21)

for a Diff: x 7→ x′(x). In particular, the integration measure changes under this trans-
formation, and the integral of a density is constant for transverse diffeomorphisms (see
Appendix B). Under these transformations, the determinant of the metric transforms
infinitesimally as

δpg = ∂µξ
µ.

This means that the transverse subgroup can be understood as the subgroup of the Diff
under which the determinant of a metric transforms as a scalar.

Besides, in every point of the manifold we can also act actively with the diffeomor-
phism and define the variation

δaT (x) = T ′(x) − T (x). (4.22)

This is the way in which we usually define symmetries, as we compare quantities at the
same point, i.e. it is a local concept. Under the previous active transformations, the
determinant of the metric changes as

δag = ∇µξµ, (4.23)

which means that the group of symmetries of the determinant is provided by the Diff
satisfying ∇µξ

µ = 0.

Recall that at the linear level the TDiff gauge invariance could be enlarged to the
Diff or WTDiff groups. At the non-linear level, the Diff enlargement corresponds to the
whole group of the diffeomorphisms whereas for the WTDiff non-linear transformation
we seek a transformation of the determinant of the form

δ(φ,ξ)g = φg + ξµ∂µg. (4.24)
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From the previous expression we find that

[δ(φ1,ξ1), δ(φ1,ξ1)] = δ(ξ[1∂φ2],ξ3). (4.25)

If we want the same algebra to hold for the metric field gµν then it is clear that the non-
linear Weyl transformation of the whole metric must be the usual conformal rescaling,
i.e.

δ(φ,ξ)gµν = φ1/ngµν + 2∇(µξν). (4.26)

It is interesting to note that once this Weyl invariance

gµν 7→ eφgµν (4.27)

is added to the TDiff gauge invariance, we find a unique Lagrangian with just two
derivatives of the metric5

SWTDiff = − 1

2κn−2

∫

dnxĝµνRµν(ĝµν) + SM (g, ĝµν , ψ). (4.28)

where ĝµν = |g|−1/ngµν and SM refers to a matter Lagrangian compatible with the
WTDiff invariance. As we will see in the next section, this Lagrangian yields Einstein’s
equations of motion in the gauge |g| = 1 (even when coupled to matter) except for the
origin of the cosmological constant which comes from an integration constant [ABGV06].

The reason why we did not find the previous non-linear extension in the previous
section is now evident: the determinant g is a highly non-linear function of the field hµν

and thus the condition |g| = 1 can not be recovered in a single step from the variables
in the last section (compare it with the condition (4.9) which is linear in hµν).

4.2. Lagrangians and Equations of Motion for Nonlinear

TDiff and WTDiff

Non-linear generalizations of TDiff invariant theories in the lines of the previous subsec-
tion have been discussed in [BD88] (see also [PS01]). The basic idea is to split the metric
degrees of freedom into the determinant g, and a new rank-2 object6 ĝµν = |g|−1/ngµν ,
whose determinant is fixed |ĝ| = 1. Note that ĝµν is a tensor density, and under arbitrary
diffeomorphisms (for which δξgµν = 2∇(µξν)) it transforms as

δξ ĝµν = 2ĝλ(µ∇̂ν)ξ
λ − 2

n
ĝµν∇̂λξ

λ, (4.30)

where ∇̂ denotes covariant derivative with respect to ĝµν . Next, one defines transverse
diffeomorphisms as those which satisfy

∇̂µξ
µ = ∂µξ

µ = 0, (4.31)

5Notice that this Lagrangian can not be put in the Einstein frame, as it is invariant under Weyl
transformations.

6If we admit non-local splitting of the degrees of freedom, the combination

ǧµν ≡
[

1 − 1

6

(

−∇µ∇µ +
1

6
R
)−1

R

]2

gµν , (4.29)

is Weyl invariant and transforms as a metric under Diff (cf. [FT85], p. 319). Besides R(ǧ) = 0.
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4. Non-linear Extensions of TDiff Lagrangians

where in the first equality we have used |ĝ| = 1. Under such TDiff, the new metric
transforms as a tensor

δξ ĝµν = 2ĝλ(µ∇̂ν)ξ
λ,

while g transforms as a scalar
δξg = ξλ∂λg.

Moreover [BD88], the only tensors under TDiff which can be constructed from ĝµν are
the geometric ones, such as Rµνρσ [ĝ] and its contractions. It follows that the most
general action invariant under TDiff which contains at most two derivatives of the
metric takes the form

S =

∫ (

−χ
2[g, ψ]

2κn−2
R[ĝµν ] + L[g, ψ, ĝµν ]

)

dnx. (4.32)

Here, χ is a scalar made out of the matter fields ψ and g. Thus, the TDiff invariant
theories can be seen as “unimodular” scalar-tensor theories, where g plays the role of an
additional scalar. These are very similar to the standard scalar-tensor theories, except
for the presence of an arbitrary integration constant in the effective potential. A first
restriction on these Lagrangians is that they must correspond to healthy Lagrangians:
if Minkowski space-time is a solution, at the linear level they must reduce to a healthy
form of those discussed in Chapter 2.

Following [BD88], we may go to the Einstein frame by defining ḡµν = χ2ĝµν , and we
have

S = − 1

2κn−2

∫ √−ḡ R[ḡµν ] dnx+ SM +

∫

Λ dnx, (4.33)

where

SM =

∫ √−ḡ
[
(n− 1)(n− 2)

2κn−2χ2
ḡµν∂µχ∂νχ+ χ−nL[χ,ψ, ḡµν ] − χ−nΛ

]

dnx. (4.34)

Here, we have first eliminated g in favor of χ, and we have then implemented the
constraint ḡ = χ2n[g, ψ] through the Lagrange multiplier Λ(x). Note that the invariance
under full diffeomorphisms which treat ḡµν as a metric and χ and Λ as scalar fields is
only broken by the last term in (4.33). In particular, SM is Diff invariant, and since
δξΛ = ξµ∂µΛ, it is straightforward to show that if the equations of motion for ψ, χ and
Λ are satisfied, then

|ḡ|1/2∇̄µTµν = ∂µΛ.

Here, we have introduced Tµν = −2|ḡ|−1/2δSM/δḡµν . On the other hand, the Einstein’s
equations which follow from (4.33) imply the conservation of the source ∇̄µTµν = 0,
and therefore we are led to

Λ = const.

This is the arbitrary integration constant, which will feed into the equations of motion
as an extra term in the potential for χ, corresponding to the last term in Eq. (4.34).
In general, this will shift the height and position of the minima of the potential for the
scalar fields on which χ depends. In the particular case where we have χ[g, ψ] = 1 in
Eq. (4.32), the effect is just an arbitrary shift in the cosmological constant.

Diff invariance is recovered when all terms in SM , given in Eq. (4.34), except for the
last one, are independent of χ. In that case, χ is a Lagrange multiplier which sets Λ = 0,
so the freedom to choose the height (or position) of the minimum of the potential is lost.
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4.2. Lagrangians and EoM for Nonlinear TDiff and WTDiff

Likewise, if the action (4.32) does not depend on g, then the symmetry is the non-
linear WTDiff group that we studied in the last section. The situation is exactly the
same as in the TDiff case, where now χ = χ[ψ]. For instance the simple action

SWTDiff = − 1

2κn−2

∫

dnx R[ĝµν ], (4.35)

which has χ = 1, leads to the equations of motion

R̂µν −
1

2
R̂ĝµν = Λĝµν , (4.36)

with arbitrary integration constant Λ (note that in this case ĝµν = ḡµν). This coincides
with the standard Einstein’s equations in the gauge |g| = 1. The same action can be
expressed in terms of the “original” metric gµν as

SWTDiff = − 1

2κn−2

∫

dnx(−g)1/n
(

R[gµν ] +
(n− 1)(n− 2)

4n2
∂µ ln g ∂µ ln g

)

. (4.37)

This is invariant under Weyl transformations (4.27) since ĝµν is unaffected by these.
Of course, it is also invariant under transverse diffeomorphisms and provides, therefore,
an example of a consistent non-linear extension of a pure spin-2 Lagrangian, which is
different from GR. It is interesting that a cosmological constant term is not allowed
in the Lagrangian, but as shown before the cosmological constant is recovered as an
integration constant7.

Note that the equations of motion can be derived in two different ways: directly from
(4.35) under restricted variations of ĝµν (since by definition |ĝ| = 1), or from (4.37)
under unrestricted variations of gµν . Whichever representation is used may be a matter
of convenience, but there seems to be no fundamental difference between the two. In
the latter case, the equations of motion will be completely equivalent to (4.36), although
they will only take the same form in the gauge |g| = 1.

It is worth mentioning that equations of the form (4.36) with an arbitrary Λ can also
be derived under unrestricted variations of an action which is not invariant under (4.27).
An example is given by8

S = − 1

2κn−2

∫
[√−gR+ f(g)

]
dnx, (4.38)

Here, the second term breaks Diff to TDiff, and there is no Weyl invariance9. A par-
ticular example of these Lagrangians is the standard Lagrangian of unimodular gravity
[Wei89, HT89]. However, the equations of motion will give

Rµν −
1

2
Rgµν =

√−g f ′(g) gµν ,

and from the Bianchi identities it follows that g is an arbitrary constant (except in
the Diff invariant case when f ∝ √−g ), a situation identical to (4.36). It is unclear
whether the action (4.38) is of any fundamental significance, since the remaining TDiff
symmetry does not forbid an arbitrary function of g in front of R, and additional kinetic

7A similar action was considered some time ago in the context of quantum cosmology [Unr89].
8Related actions can be found in the case of non-linear Lorentz violating massive gravity [Gri08].
9As we will explain in the Appendix A, this kind of terms may be induced quantum mechanically if

the usual regularization prescriptions that preserve the whole Diff group are used.
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4. Non-linear Extensions of TDiff Lagrangians

terms for g. Nevertheless, as we will see in the next Chapter, Lagrangians similar to
(4.38) do arise in the context of certain bigravity theories where the interaction term
between two gravitons breaks Diff × Diff to the diagonal Diff times a TDiff symmetry
[BDG07].

It should be stressed that it seems to be very difficult to determine from experiment
whether Diff, WTDiff or just TDiff is the relevant invariance of Nature. First, as we
have seen the trace of the equations of motion (except for an integration constant) is al-
ways recovered in the WTDiff theory through the Bianchi identity and the conservation
of the energy-momentum tensor. The difference between WTDiff and the rest of TDiff
theories is just the absence of the extra scalar. However, this scalar may well have a mass
comparable to the cut-off scale, and in this case it would not be seen at low energies.
Also, at the classical level, the WTDiff differs only from Diff in that the cosmological
constant is arbitrary. Of course the measurement of this constant does not reveal too
much about its origin. Therefore, the only “observable” differences between both the-
ories may be in the quantum theory [ALV06, Alv05, Unr89, Kre90, DK88, GS05]) (see
also the Appendix A).

To conclude, we would like to say a few words about the coupling of matter to
gravity in TDiff invariant Lagrangians. It was shown in [AF07b] that the relative
weight of potential and kinetic energy can be tuned in these models. Even more, for
certain Lagrangians with a GR kinetic term for gravity, consistent models were found
which exhibit non-accelerating solutions even in the presence of vacuum energy (see also
[AF07a] and the related ideas of [GK07]).

Besides, the action for a particle or an extended object (like a string) compatible with
the WTDiff can be derived from the substitution

gµν 7→ ĝµν . (4.39)

It would be interesting to study whether Einstein’s equations (without the integration
constant) are recovered from the consistency of the quantum string as happens for the
Diff case [Pol98]. Besides, the extension to the TDiff case deserves further study.

4.3. First order formalism of WTDiff

We have already seen in section 4.1.1 that the first order (or Palatini’s) formalism also
applies for the linearized WTDiff Lagrangian without the need of Lagrange multipliers.
One can easily see that this is also the case for the non-linear extension. Let us first
show it for the metric and the connection. We will consider the Lagrangian

L = ĝµνRµν [Γ
σ
αβ ], (4.40)

where ĝµν = |g|1/ngµν and Γσαβ is an arbitrary connection. This Lagrangian is invari-
ant under WTDiff simply imposing that the Weyl transformations do not change the
connection. Varying the action with respect to the connection one obtains the con-
straints that make the connection10 compatible with the density ĝµν . This means that
once substituted back in the Lagrangian, we obtain the WTDiff Lagrangian (4.28).

10This connection will not transform as a connection under general Diff, but only under TDiff. It
is important to remark that the connection is compatible with the object ĝµν for the covariant
derivative ∇. Imposing that the compatibility holds for other possible covariant derivatives present
in TDiff invariant theories (the ∇w to be defined in (B.14)) does not determine all the components
of the connection in terms of ĝµν [AA07].
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4.3. First order formalism of WTDiff

If we want to couple the gravitational field to fermions one must adopt a description
in terms of the vielbein. The equivalent of the ĝµν field in this case will be a vielbein
êaµ with unit determinant. In four dimensions,

êaµ = e−1/4eaµ, (4.41)

where e = det eaµ. Notice that this condition is compatible with the local SO(3, 1)
invariance, and thus the use of êaµ just breaks the Diff invariance to TDiff. The action
in four dimensions can be written as

S = − 1

2κ2

∫

d4xêaµêbνRµνab[ω
ab
ν ], (4.42)

where ω ab
ν is an arbitrary spin-connection. The variation of this action reads

δS(2) =− 1

2κ2

∫

d4x e−1/4

(

R̂aµ − 1

4
eaµR̂

)

δeaµ

− 1

16κ2

∫

d4x ǫ̂µνλρǫ̃abcdê
c
λê
d
ρ(Dµδω ab

ν −Dνδω ab
µ ) (4.43)

where ǫ̃abcd is a totally antisymmetric frame tensor and

ǫ̂µνλρ = ê µ
a ê ν

b ê
λ
c ê ρ

d ǫ̃
abcd. (4.44)

Notice that we use the vierbein êaµ and its inverse to handle with indexes, so that

R̂aµ = êaλêcµêdρRλρcd, R̂ = êaµR
aµ.

Following the standard derivation (see e.g. [dWF84]) the equations of motion imply

ωµab = ωµab(ê), R̂µν(ĝ) − 1

4
ĝµνR̂(ĝ) = 0, (4.45)

where ĝµν = ê µ
a ê ν

b η
ab and

ωµab(ê) =
1

2

[
ê ν
a (∂µêbν − ∂ν êbµ) − ê ν

b (∂µêaν − ∂ν êaµ) − ê ρ
a ê

σ
b (∂ρêcσ − ∂σ êcρ) ê

c
µ

]
.

Besides, we used ĝµν and ê µ
a to contract indexes. We also find

ĝµν = g−1/4gµν , (4.46)

for gµν = e µ
a e ν

b η
ab. As a result, we find that the first order formalism without the

presence of Lagrange multipliers is well-suited for the WTDiff Lagrangian.

Let us finish this Chapter with a brief comment on supersymmetry. In the previous
Chapter we found that there is no minimal supersymmetric action constructed out of the
WTDiff action already at the linear level. For the Diff case, this minimal supersymmet-
ric action consist of the Diff invariant spin-2 action together with the Rarita-Schwinger
(RS) action, and there is a unique non-linear deformation that allows to couple the spin-
2 and spin-3/2 systems and blend the global supersymmetry transformation with the
gauge invariance to reach a local supersymmetric transformation [BE02, DKB79, DZ76].
The reason why this system is consistent is related to the fact that once all the Einstein’s
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4. Non-linear Extensions of TDiff Lagrangians

equations hold, the Bianchi identities related to the supersymmetric transformation are
satisfied [DZ76, VN81]. If one couples the RS action to the field êaµ and use the WRS
action, then, one may hope that the Bianchi identities for the spin-3/2 field equations
will imply all of the Einstein’s equations including the missing trace. In other words,
the equations of motion may imply a vanishing cosmological constant even if the action
is not supersymmetric. In contrast to what happens in [AF07b] this result would hold
for an action for the spin-3/2 field invariant under WTDiff.

Whether the previous naive expectation holds or not is currently under research [Bla].
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5. Bigravity: General Aspects and

Exact Solutions

In the previous Chapter we have studied non-linear extensions of one of the possibilities
to modify the standard theory of gravity at the linear level. More precisely, we consid-
ered theories which are invariant under non-linear TDiff1. The TDiff gauge invariance
allows for a modification of gravity where a scalar component of the metric can be mas-
sive and thus it provides a non-linear extension of the simplest TDiff massive gravity
through the introduction of a fixed background volume [Unr89, AF07b].

In the next two chapters we will focus on a non-linear extension of the Lagrangians
with massive spin-2 polarizations. It is easy to realize that the addition of scalar or
vector fields can never render massive the tensor modes of the graviton unless the
background is not homogeneous. This is why we will consider bigravity (i.e. theories
with two interacting rank-2 tensors) as the simplest candidate to provide a mass to the
tensor modes of the graviton in a covariant way2. In this Chapter we will study some
general issues and global aspects of these theories whereas in the next Chapter we will
study perturbations to some exact solutions. This Chapter is based on [BDG06, Bla06,
BDG07, Bla07b].

5.1. Introduction

Bigravity was first proposed in the seventies in the context of the strong interactions as
a theory that describes the interaction of a spin-2 meson with the graviton [ISS71]. This
idea is known also as f-g gravity or strong gravity. More recently, bigravity have been
reconsidered in different contexts. To list some of them, it is relevant in the presence
of extra dimensions with peculiar compactifications that allow for a mass-gap in the
KK spectrum [DK02]; it is also found in braneworlds with certain fine-tuned configura-
tions [Pad04]; two metrics naturally appear in some non-commutative set-ups [DK02].
Bigravity (and its generalization to “multigravity”) is also relevant to the program of
“deconstruction” of gravity [AHCG01, DM05] and for the area metric gravity [PSW07].

We will consider bigravity as a simple non-linear model of massive gravity that may
be useful to understand whether some of the phenomena found at the linear level (see
Chapter 1) persist in the complete theory. An interesting aspect of bigravity (as com-
pared to other non-linear infrared modifications of gravity) is that, as we will discuss,
there are exact solutions which belong to the same category as those of usual GR in
the limit of massless graviton (vanishing coupling). Besides, we will find flat solutions

1Another way of thinking about this subgroup is through the introduction of a background volume
form as a Stückelberg field that allows for the recovery of the whole Diff group, but reduces to the
TDiff case in the analogous of the unitary gauge [AF07b].

2A related possibility that we will not study is to consider one of the metrics as a fixed background
[Wil93].
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around which the linear theory does not suffer neither from the vDVZ discontinuity nor
from the strong coupling problem. Finally, it is also interesting to note that there are
accelerated solutions without the need of introducing dark energy (in a sense the second
metric acts as a sort of dark energy).

In dealing with a space-time with two metrics, it is natural to ask whether we can
make sense of its causal structure. In general, the light-cones related to the metrics
f and g will not agree, and this may lead to pathologies which may restrict the class
of physically acceptable solutions. We will study the causal structure of some exact
solutions in the last part of this Chapter and find that the possible pathologies reduce
to those which are also present in solutions of standard GR.

5.2. Exact Solutions of Bigravity

Following [ISS71], we consider the action

S =

∫

d4x
√−g

(−Rg
2κg

+ Lg

)

+

∫

d4x
√

−f
(−Rf

2κf
+ Lf

)

+ Sint[f, g]. (5.1)

Here Lf and Lg denote generic matter Lagrangians coupled to the metrics f and g
respectively, and subindices f and g on the Ricci scalar R indicate which metric we
use to compute it. For the background solutions, we shall restrict attention to the case
where there is only a vacuum energy term in each matter sector Lf = −ρf , Lg = −ρg,
where ρf and ρg are constant. The kinetic terms are invariant under independent
diffeomorphisms of the metrics f and g, but the interaction term is invariant under
“diagonal” diffeomorphisms3, under which both metrics transform.

The most general interaction potential which preserves the “diagonal” diffeomorphism
takes the form [DK02]

Sint = ζ

∫

d4x(−g)u(−f)vV [{τn}], (5.2)

where τn = tr[Mn], n : 1, ..., 4 correspond to the traces of the first four powers of the
matrix Mµ

ν = fµαgαν , and V is an arbitrary function.
There is also some arbitrariness in the way one introduces matter fields, since one

has two different metrics at hand. This opens the possibility to have two types of
matter4, one which feels the metric g and the other which feels the metric f . Those two
choices correspond to the two matter Lagrangians Lg and Lf , of action (5.1), where it
is understood that the matter fields entering into Lg and Lf are different. In fact one
can imagine more complicated situations in which matter fields would be coupled to
some composite metric built out of the two metrics f and g. If one wishes to recover
the standard equivalence principle, one should obviously ask that standard matter only

3In principle, we might also include derivative interactions between the two metrics compatible with
the diagonal symmetry, but in general these terms yield a ghost in the vector sector and we will not
consider them here (see e.g. [NPS07, Dru01] for other bigravity actions). This fact implies that the
modifications to GR will happen at a certain length scale, and it seems to indicate that derivative
couplings may be compulsory to get modifications of GR closer to MOND theories. As it is clear
from the previous Chapter, another interesting possibility would be to preserve the independent
unimodular diffeomorphisms in the kinetic terms, in which case the derivative coupling may be
possible.

4This possibility is known as the weakly coupled worlds assumption [DK02].
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couples to one metric, and a minimal choice is, e.g., that all matter fields appear say in
Lf (respectively Lg), while Lg (respectively Lf ), will be simply given by a cosmological
constant. With such a choice, matter moves along geodesics of the metric f (respectively
g), and, provided the solutions for the metric f are the same as in standard GR (which
turns out to be possible as will be seen below), there would be no deviations from GR
seen in matter motion. In this case, the other metric can be regarded as some kind of
exotic new type of matter which may violate the equivalence principle.

Finally, notice that a consequence of the invariance of the action (5.1) under diago-
nal diffeomorphisms is that the total Hamiltonian will cancel. This may alleviate the
problem of the Boulware-Deser instability in non-linear massive gravity [BD72], but it
does not guarantee the absence of ghosts in the spectrum of the theory (see Chapter 6).

For arbitrary metrics f and g, the contribution to the energy-momentum tensors
coming from the interaction term in (5.1) will be

fµαT fαν ≡ −2√
−f

δSint
δfαν

fµα = −2ζ(g/f)u

(

vV δµν −
∑

n

n(Mn)µν V
(n)

)

, (5.3)

gµαT gαν ≡ −2√−g
δSint
δgαν

gµα = −2ζ(g/f)−v
(

uV δµν +
∑

n

n(Mn)µν V
(n)

)

, (5.4)

where we have introduced the notation

V (n1,...,nl) ≡ ∂lV

∂τn1 · · · ∂τnl

,

where l is the number of derivatives. Moving to the frame where both metrics are
diagonal (which can always be done locally), the matrix M = f−1 · g can be put to
the diagonal form with eigenvalues λi. Two arbitrary metrics gµν and fµν which are
solutions of the vacuum Einstein’s equations, i.e. such that

gµαGgαν/Λg = fµαGfαν/Λf = δµν , (5.5)

will be solutions for bigravity if all the τn are constant and the eigenvalues of the matrix

∑

n

n(Mn)µν V
(n), (5.6)

entering (5.3-5.4) are all equal to each other. Note that for a given ansatz, the constancy
of the traces (or of the eigenvalues) is a frame independent notion. The equations of
motion will be then satisfied for vacuum solutions f and g with cosmological constants
Λf and Λg satisfying

Λf = −2κfζ(g/f)u

(

vV − 1

4

∑

n

nτn V
(n)

)

+ κfρf , (5.7)

Λg = −2κgζ(g/f)−v
(

vV +
1

4

∑

n

nτn V
(n)

)

+ κgρg. (5.8)
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5.2.1. Type I Solutions

Let us introduce some concrete exact solutions. The general static spherically symmetric
ansatz for bigravity can be written as [IS78]

gµνdx
µdxν = Jdt2 −Kdr2 − r2

(
dθ2 + sin2 θ dφ2

)
, (5.9)

fµνdx
µdxν =Cdt2 − 2Ddtdr −Adr2 −B

(
dθ2 + sin2 θ dφ2

)
, (5.10)

where the metric coefficients are functions of r. Note that in general it is not possible
to write both metrics in diagonal form in the same coordinate system and that we have
also assumed that the axes for the SO(3) symmetry are shared by both metrics.

A particularly interesting class of spherically symmetric configurations is provided by
the solution5

gµνdx
µdxν = (1 − q) dt2 − (1 − q)−1dr2 − r2(dθ2 + sin2 θdφ2), (5.11)

fµνdx
µdxν =

γ

β
(1 − p)dt2 − 2Ddtdr −Adr2 − γr2(dθ2 + sin2 θdφ2), (5.12)

where

A=
γ

β
(1 − q)−2 (p+ β − q − βq) , (5.13)

D2 =

(
γ

β

)2

(1 − q)−2(p− q)(p+ β − 1 − βq). (5.14)

Here β and γ are arbitrary positive constants and p and q are functions of r to be
determined latter. Solutions of the form (5.11-5.12) are called Type I (cf. [IS78]).
Notice also that in the flat limit p = q = 0, even if the f metric is flat, it does not
reduce to a Minkowski metric in these coordinates. As we will see, this breaking of
Lorentz invariance will be crucial for certain properties of the perturbations to these
solutions like the absence of vDVZ discontinuity. Besides, it means that matter cannot
be coupled to the massless combination of the metrics (see next Chapter) as this would
imply the violation of Lorentz invariance in the matter sector.

Remarkably, the non-trivial background (5.11-5.12) has the property that the eigen-
values of M are constant

λi = {γ−1, γ−1, γ−1, βγ−1},

which implies
τn = γ−n(3 + βn), det[M] = βγ−4.

Thus, to get a solution of (5.1), it is enough to impose
∑

n

n(Mn)µν V
(n) ∝ δµν ,

and that (5.5) holds.
In the frame where M is diagonal the previous combination is a constant diagonal

matrix with only two different constant eigenvalues
{
∑

n

nβnγ−n V (n),
∑

n

nγ−n V (n)

}

.

5Recently, more general non-linear solutions of bigravity which deviate from GR have been found for
certain potentials [BCNP08].
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Both eigenvalues will coincide when

∑

n

nγ−n(−1 + βn) V (n) = 0. (5.15)

This tells us that for any potential there will exist non-trivial solutions with certain γ
and β satisfying (5.15) (note that the values of V (n) depend also on β and γ) for which,
without assuming any specific form for the functions p(r) and q(r),

T fµν =
Λ̃f
κf
fµν , T gµν =

Λ̃g
κg
gµν , (5.16)

where Λ̃X are constant. Thus, (5.7-5.8) translate into

Λf = Λ̃f + κfρf , Λg = Λ̃g + κgρg. (5.17)

These are three equations for the parameters Λf , Λg, β and γ. Therefore, one of
the effective cosmological constants can be chosen arbitrarily. It has the status of an
integration constant which allows for a see-saw mechanism that makes one of the metrics
to be flat whereas the other can be highly curved.

It is clear from the previous discussion and (5.5), that the metrics f and g must belong
to the Schwarzschild-(A)dS family. Note that the corresponding cosmological constants
(5.7-5.8) are not determined solely by the vacuum energies ρf and ρg. They also contain
a contribution from the interaction term in the Lagrangian. This contribution depends
not only on the parameters ζ and u (recall that v = 1/2− u), but also on the arbitrary
integration constant β (recall that γ is fixed by the condition (5.15)).

It is somewhat surprising that the cosmological constants depend on an integration
constant. This situation is reminiscent of the unimodular gravity case that we presented
Chapter 4. One difference here is that we have two cosmological constants Λf and Λg,
and we can only choose the value of one of them at will.

The metric (5.12) can be put in a more familiar form defining a new time coordinate
t̃ by

dt̃ =
1√
β

{

dt+ ǫD

√

(p− q)(p+ β − 1 − βq)

(1 − q)(1 − p)
dr

}

, (5.18)

where ǫD = ±1 is defined by the sign retained for D from equation (5.12), namely by

D = −ǫD
γ

β
(1 − q)−1

√

(p− q)(p+ β − 1 − βq). (5.19)

With such a coordinate change, the line element (5.12) now reads

fµνdx
µdxν = γ{(1 − p)dt̃2 − (1 − p)−1dr2 − r2(dθ2 + sin2 θdφ2)}. (5.20)

As is clear from the previous discussion, the potentials p and q will be given by the
familiar Schwarzschild-(A)dS forms

p=
2Mf

r
+
γΛf
3
r2, (5.21)

q =
2Mg

r
+

Λg
3
r2, (5.22)
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where Mf and Mg are two additional integration constants with the interpretation of
mass parameters.

It is tempting to conclude that this non-linear “theory of massive gravity” is phe-
nomenologically sound, since the vacuum solutions of GR with a cosmological term are
recovered, without a trace of the vDVZ discontinuity. In this sense, the mass term does
not seem to act as an exponential cut-off at a finite range6. Rather, it contributes to
the effective cosmological constant, which tends to bend space-time on a length-scale
of the order of the inverse mass of the graviton (which is of order m2 ∼ κ ζ)7. On
the other hand, this contribution from the interaction term can be compensated for by
a finely-tuned contribution from the vacuum energy of matter fields, and then we can
have an asymptotically flat solution with exactly the same form as for massless gravity.

It is therefore of some interest to understand the global structure of the solutions
(5.12-5.11) with (5.21-5.22), and we defer this analysis to the next section. The study
of perturbations and the investigation of stability of these solutions are left for the next
Chapter.

Before studying other exact solutions it is worth mentioning that the solution of the
form (5.11-5.12) was discovered in the context of the potential [ISS71]

Sint = −ζ
4

∫

d4x(−g)u(−f)v(fµν − gµν)(fστ − gστ )(gµσgντ − gµνgστ ), (5.23)

with

u+ v =
1

2
.

This potential is a simple choice that reduces to the Fierz-Pauli combination in the
weak field limit [ISS71, DK02]. The metrics (5.11-5.12) are a solution for γ = 2/3 and
it can be shown that they are the most general solution for D(r) 6= 0 [IS78] (see also
[SS77]). This is the origin of the name Type I. Unfortunately, if D(r) = 0 the general
solution is not known even for this simple potential [ACF72] (see also the Appendix B).
Furthermore, as we will see in the next Chapter, for this particular theory the linearized
perturbations around asymptotically bi-flat Lorentz-breaking solutions of this particular
theory show a singular behaviour.

5.2.2. Proportional Metrics and Related Solutions

Another interesting class of solutions is obtained by taking f and g proportional to each
other, but otherwise arbitrary

fµν = γ(x)gµν . (5.24)

In this case, the matrix M is proportional to the identity Mµ
ν = γ−1δµν and the energy-

momentum tensors (5.3-5.4) read

Λ̃fδ
µ
ν ≡ κff

µαT fαν = −2ζκfγ
−4u

(

vV −
∑

n

nγ−n V (n)

)

δµν

Λ̃gδ
µ
ν ≡ κgg

µαT gαν = −2ζκgγ
4v

(

uV +
∑

n

nγ−n V (n)

)

δµν . (5.25)

6This argument is not completely correct as even if we find the same solutions, the interpretation
of the integration constants may differ from that of GR due to some mass-screening effects [GI07,
BCNP08]. To clarify this point, the whole solution representing a star is required.

7See also the related discussion of [GG05b].
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Thus, for any matter content this term just adds to the vacuum energy. From Bianchi
identities Λ̃f and Λ̃g must be constant, and f and g must then be solutions of the

vacuum Einstein’s equations. Generically, the expressions for Λ̃f,g depend on γ, so that
they imply a constant γ. In this case, the parameter γ is determined through Einstein’s
equations by noting that (5.24) implies

Rg = γRf . (5.26)

Clearly, this class will include solutions in the Schwarzschild-(A)dS family, although
non-spherically symmetric solutions are possible as well. Note also that such solutions
can easily be generalized to multigravity theories by deconstructing 5D metrics with a
warp factor [DM04]. Maximally symmetric solutions of the form (5.24) have also been
considered in [DKP02]. As in the Type I case, the proportional metrics will be of the
Schwarzschild-(A)de Sitter family and there is no sign of vDVZ discontinuity either.
For the potential (5.23) one can prove that these are the most general Type II (i.e. di-
agonal) solutions when one of the metrics is maximally symmetric (see the Appendix B).

The previous proportional solutions can be slightly generalized in factorized space-
times. The generalization consist simply of considering two metrics which are propor-
tional but with different proportionality factors for the components of each factorized
submanifold. If one of the metrics is maximally symmetric in the factorized subman-
ifolds (but not in the whole manifold) we can follow the previous steps to find the
conditions to obtain a solution. Other possible generalizations together with a coupe of
methods to generate solutions of bigravity can be found in the section B.3.

5.3. Global structure of Bigravity Solutions

In dealing with a space-time with two different metrics, it is natural to worry about their
compatibility in some global aspects8. Even if many concepts of ordinary Lorentzian
manifolds may be (almost trivially) generalized, there are some global issues that can
appear. Concepts such as global hyperbolicity, closed causal curves (CCC) or geodesic
completeness are related to a single metric and not to the underlying manifold struc-
ture, and thus their definition in the case of bigravity is done for each of the metrics
separately. Requiring that both metrics are globally hyperbolic with common Cauchy
surfaces or geodesically complete may lead to some surprises9. Nevertheless, as we will
see, for the known solutions of bigravity there are no blatant violations of causality
(beyond those of GR).

For the sake of simplicity we will restrict ourselves to solutions with a common SO(3)
invariance, which means that it is enough to focus on radial geodesics in the diagram
r − t (see (5.10-5.9)). Before further restricting to the solutions of the form (5.11-5.12)
let us say a few words about the methodology we will follow.

8Remember that both metrics interact through local terms that break the symmetry group of the
kinetic terms to the diagonal Diff.

9There are also other possible pathologies of bigravity solutions that we will not treat and whose
solution is usually a generalization of a solution for similar pathologies in GR. For instance, whenever
a metric is not time orientable in GR, it is customary to use the double-covering manifold [HE73].
When the manifold has two metrics, it is conceivable that closed curves that change the time
orientation of a single metric exist. In the worst situation we need a forth-covering manifold whose
definition is a trivial generalization of the double-covering manifold.
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We will first consider the issues of causal compatibility, maximal extensions and
geodesic completeness. To study them we will make maximal extensions for both metrics
through geodesics of each metric that attain their conformal boundary in a finite proper
time. The causal structure will be illustrated by means of Carter-Penrose diagrams for
one of the metrics where we will include information about the causal structure of the
companion metric. More concretely, once the causal structure for the first metric, gµν ,
is clarified and we have found its maximal extension, we will plot the light-cones of
fµν and study their behaviour. This will inform us about the way in which the causal
structure of the second metric fits in the Carter-Penrose diagram of the first one.

Matter that is coupled to one of the metrics will follow trajectories inside the future
light-cone defined by that metric. However, at any point there are two light-cones and
one of the sectors will typically propagate outside the null-cones of the other metric.
In other words, there is faster than light propagation. This may give rise to a series of
very interesting phenomena such as the possibility of scape from a black hole [DTZ07],
Čerenkov radiation [Alt07] or may even be useful for the homogeneity problem in cos-
mology. Besides, superluminal propagation is usually associated to the appearance of
CCC10. The causal diagrams that we will draw for bigravity allow to study some of this
phenomena. For instance, we will show that it is possible to define a global time even
in the presence of superluminal propagation.

The conformal compactification allows to extend the geodesics of the metric gµν that
reach the boundary in a finite proper time to find a maximal extension of this metric
[HE73]. If the companion metric is already geodesically complete, the new region to
which the geodesics are extended is not accessible to it. More specifically, if all the
geodesics of the fµν finish within the conformal diagram, the extra region can not be
reached in a finite proper time for the fµν geodesics. However, the interaction between
both metrics makes possible the passage from the geodesically complete initial region
to the new region for matter coupled to the fµν metric through the gµν metric. For
this matter, the new region is causally disconnected from the initial region. Even if this
may sound exotic, it is analogous to the appearance of Cauchy horizons in GR where
the region beyond the horizon does not depend only on the initial values of the fields,
but has a new dependence on completely arbitrary boundary conditions.

The global structure of solutions where the metrics are related by a conformal factor,
fµν = Ω2(x)gµν can also become complicated. In this case, even if the local structure
of the null cones will be the same, there may be global differences. Remember, for
instance, that given a metric with singularities and satisfying certain plausible physical
conditions, a conformal factor exists that sets the singularities at an infinite distance
[HE73]. However, this is not guaranteed in our more general set-up if the conformal
factor Ω(x) has some additional singularities. Besides, depending on the conformal
factor the proper time that a causal curve employs to reach the boundary may change
dramatically. In this case, the metric fµν may be extended beyond the region where
gµν is already geodesically complete and the other way around. Beyond this point the
gµν metric is not determined by the initial metric in the first region. The existence of
a global common Cauchy surface is not guaranteed even if fµν is globally hyperbolic.
These are some of the problems that can appear in general, and we will study them
in some detail in the examples in the next subsections. In the trivial case when both
metrics are proportional with a constant proportionality factor both causal structures

10This is not true if Lorentz symmetry is broken [BMV07, DGNR06].
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coincide.

For the rest of this section, we will consider solutions of the form (5.11-5.12). It
is worth mentioning a particular type of “singularity” which arises in some of these
solutions (even in cases where both metrics are separately smooth). Note that the metric
(5.12) becomes complex in regions where D2 < 0. As noted in [IS78], the coordinate
singularity at D = 0 can be removed by a change of variables. This is of course true,
since f is in the family of Schwarzschild-(A)dS metrics, which are everywhere smooth
(except perhaps at r = 0 when Mf 6= 0). However, it does not seem to be possible
to find a change of variables which would remove the singularity from both metrics at
once, in the vicinity of the point at which D2 changes sign, and which would make both
metrics real. The reason is that there are geodesics of g which invade the regions D2 < 0
(with arbitrary slope, in fact). On such geodesics, the line element with respect to f is
generically complex, and since the line element is a scalar, this fact cannot be changed
by a coordinate transformation. To avoid a complex metric, we could try matching
Type I solutions with Type II solutions at D = 0 but this possibility has not yet been
clarified.

Henceforth, we will restrict to real Type I solutions of the form (5.11-5.12). We shall
assume β = 1, which ensures positivity of D for all choices of the potentials p and
q, and therefore seems to be the most natural choice [IS78]. For certain potentials,
however, there may be other special values of β for which the metric is everywhere real.
We will say more about it later on. We shall also choose γ = 2/3 which is a solution
for the potential (5.23). For definiteness, we remind that for this interaction term the
conditions that must satisfy the cosmological constants (5.7-5.8) reduce to

Λf
κf

=
ζ

4

(
3

2

)4u

βu {3v + 9β(1 − v)} + ρf , (5.27)

Λg
κg

=
ζ

4

(
2

3

)4v

β−v {3u− 9β(1 + u)} + ρg. (5.28)

5.3.1. de Sitter with Minkowski

Let us choose parameters in (5.27-5.28) so that Λg = 0 and Λf > 0. Then there is a
Type I solution where g is Minkowski and f is de Sitter. The corresponding potentials
in Eqs. (5.11-5.12) are given by

p =
2Λf
9

r2 ≡ H2r2, q = 0. (5.29)

Note that each of the spacetimes, characterized respectively by the metrics (5.11) and
(5.12) with the above defined potentials, has a maximal extension which is geodesically
complete (trivial in the case of Minkowski). However, combining both together will
be non-trivial because the static coordinates (t, r) (where we also include implicitly
the angular part) cover the whole of Minkowski space, but not the whole of de Sitter.
Hence, the conformal diagram for the extended de Sitter space accommodates all points
for which the metric g is defined, but the converse is not true. To illustrate the causal
structure, let us represent the light-cones of metric g in the conformal diagram of f . To
this end, it is convenient to use Kruskal-type coordinates, (see e.g. [HE73])

U = −
(

1 −Hr

1 +Hr

)1/2

e−Ht̃, V =

(
1 −Hr

1 +Hr

)1/2

eHt̃. (5.30)
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Note that this involves t̃ (and not t), the temporal coordinate in which f is diagonal. Eq.
(5.30) maps the interior of the de Sitter horizon Hr < 1 into the quadrant U < 0, V > 0
of the plane (U, V ). The future event horizon for an observer at r = 0 corresponds
to U = 0, whereas the past event horizon corresponds to V = 0 (see Fig. 5.1). The
quadrant U > 0, V > 0 which lies beyond the future event horizon, is similarly covered
by the change of coordinates

U =

(
Hr − 1

Hr + 1

)1/2

e−Ht̃, V =

(
Hr − 1

Hr + 1

)1/2

eHt̃. (5.31)

The remaining quadrants can be obtained by changing the sign in the right hand side
of Eqs. (5.30-5.31). As usual, we may perform the conformal re-scaling

T = arctanh V + arctanh U, R = arctanh V − arctanh U,

so that the in the new coordinates the four quadrants lie in a square of finite size (see Fig.
5.1). The vertical boundaries correspond to r = 0, while the past and future boundaries
of the diagram correspond to r = +∞ (which is a spacelike boundary). Note further
that the coordinate system (t, r) only covers the V > 0 corner of the maximally extended
de Sitter spacetime but also that it accomodates positive and negative values of U , so
that it goes beyond the future event horizon. Thus, this coordinate system is similar,
as far as the de Sitter metric is concerned, to the Eddington-Finkelstein coordinates
of a black hole. At this point one might worry about a possible singularity due to the
presence of the horizon. Indeed, as we discussed above, a coordinate singularity in one
of the two metric cannot always be removed by a coordinate change that renders both
metrics non singular. Here the situation is different, and in the coordinates (t, r), both
metrics are smooth and regular everywhere where t and r take finite values. So the
U = 0 part of the de Sitter horizon in the V > 0 corner does not result in a singularity
in the bimetric theory. Things are however more involved for the V = 0 part of the
horizon, as we will now see.

To this end, let us consider the light-cones in the Minkowski metric. Radial null
geodesics are simply given by

t = ǫr + k (5.32)

where ǫ = ±1 corresponds to future and past directed null rays respectively. For ǫ = 0 we
obtain the space-like t = k slices. In order to represent such geodesics in the conformal
diagram for metric f , let us first express them in terms of t̃. For the potentials (5.29),
Eq. (5.18) reads

dt̃ = β−1/2dt+
Hr

1 −H2r2
(β − 1 +H2r2)1/2 β−1/2dr. (5.33)

For β = 1 this yields

t̃ = t− r − 1

2H
ln

∣
∣
∣
∣

1 −Hr

1 +Hr

∣
∣
∣
∣
. (5.34)

The integration constant has been chosen so that t̃ = t at r = 0. For β 6= 1, Eq. (5.33)
can also be integrated, but the expressions are a bit more cumbersome and we shall
omit them in what follows. Note that the change of variables (5.34) is discontinuous at
the de Sitter horizon. This is just as well, since the coordinates (t̃, r) become singular
at r ≡ rH = H−1, and we need to consider the Kruskal-type coordinates anyway.
Substituting in (5.30) or in (5.31), we have

U =
(Hr − 1

Hr + 1

)

e−H(t−r), V = eH(t−r). (5.35)
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Figure 5.1.: Causal diagrams when the f metric is de Sitter (left diagram) while the g metric
is Minkowski (right diagram) and β = 1. The dashed curly vertical line of the
left diagram represents a sphere of constant radial coordinate r. The solid curly
vertical line of the right diagram represents the de Sitter horizon r = rH plotted
in the Minkowski space-time. We also plotted three radial geodesics of Minkowksi
space-time emanating from the origin r = 0 at t = 0: the thick dashed (blue) curve
is a future-directed radial null ray from the origin (notice it is also a null geodesic
(V = constant) of the de Sitter space-time), the thin solid (green) curve with two
arrows is a t = 0 radial geodesic, the thin dashed (red) curve is a past-directed
null ray from the origin. The last two curves are radial geodesics of Minkowski
space-time but not of de Sitter space-time. The whole of the Minkowski space-
time is mapped onto the half of the de Sitter diagram verifying V > 0. Note
that the past directed null geodesics of Minkowski turn around and start moving
towards the future boundary of de Sitter space. This behaviour, however, does
not lead to closed time-like curves, as discussed in section 5.3.4

As noted above, these expressions are valid both for U ≤ 0 and U ≥ 0 (with V > 0),
and so they cover both quadrants (5.30) and (5.31) at once. Now, the radial geodesics
are easily given in the U, V chart (as a curve parametrized by r) by substituting (5.32)
into (5.35),

U =
(Hr − 1

Hr + 1

)

e−Hke−H(ǫ−1)r, V = eHkeH(ǫ−1)r. (5.36)

Future directed null rays of the Minkowski metric t = r + k, are simply straight lines
at 45 degrees,

V = eHk = const.

On the other hand, past directed null geodesics ǫ = −1, as well as the spacelike geodesics
ǫ = 0, have a rather non-trivial behavior which is illustrated in Fig. 5.1. For Hr ≪ 1,
the light-cone emanating from r = t = 0 (i.e. k = 0) has the same shape as in Minkowski
space. However, at Hr ∼ 1 the past directed light-cone opens up and turns around in
the U, V plane. Beyond this turning point, “past directed” null rays of Minkowski start
progressing towards the future in the de Sitter diagram! In particular, at large affine
parameter, Hr → ∞, both space-like and past directed null geodesics of Minkowski
meet at the upper left corner of the conformal diagram, U → +∞, V → 0, which
belongs to the future boundary of de Sitter. In fact, the future timelike infinity i+ of
Minkowski is mapped into the upper right corner of the de Sitter diagram, the future

75



5. Bigravity: General Aspects and Exact Solutions
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Figure 5.2.: Causal diagram for de Sitter with Minkowski, for β = 1. The left diagram is
for de Sitter with horizon radius rH , while the right diagram is for Minkowski.
The dashed thin lines (with no arrows) are t = constant lines. The dashed thick
line with one (resp. two) arrow is an r = constant curve, with r < rH (resp.
r > rH). The thin solid line with three arrows represents the trajectory of an
observer sitting at constant radius r = rH in Minkowski spacetime. The thick
solid lines with arrows are past directed null geodesics of de Sitter space-time
U = constant curves. The mapping of the infinities (null, spacelike, timelike) of
Minkowski spacetimes (i±,0, I±) has been indicated on the de Sitter diagram.
One of the stricking feature of those diagrams, is that the past time-like infinity
of Minkowski is split between the upper left corner (for r > rH), the lower right
corner (for r < rH) and the diagonal (r = rH) of the de Sitter space-time.

null infinity I+ of Minkowski is mapped into the future null infinity of de Sitter (which
is spacelike), the spacelike infinity i0 and null past infinity I− of Minkowski are both
mapped to the upper left corner of the de Sitter diagram (see Fig. 5.2). The situation
is more complicated for the past timelike infinity i− of Minkowski. The latter is split
into three pieces: a particle moving back in time along a r = constant geodesic of
Minkowski space-time would either go to the upper left corner of the de Sitter diagram
if r > rH , to the lower right corner if r < rH , or to the U = 0, V = 0 central point if
r = rH . However, a given timelike trajectory in Minkowski, stemming from the infinite
past (t = −∞, r = rH) can emanate in the de Sitter diagram from any point along the
diagonal V = 0. The latter diagonal is then representing the whole of the past r = rH
infinity of Minkowski. This can be better seen, plotting the null geodesics of de Sitter
into a conformal diagram for Minkowski. Inverting (5.35),

t = r +H−1 lnV, r =
UV + 1

H(1 − UV )
, (5.37)

outgoing (or incoming) null curves are given parametrically in terms of U (or V ) by
taking V = k (or U = k). These are represented in Fig. 5.2. In particular, one sees that
past directed U = constant null lines can intersect the V = 0 curve anywhere, while
they all asymptote the r = rH curve in the Minkowski diagram as t goes to −∞.

We may then ask whether it is possible to construct a closed time-like curve by com-
bining signals which propagate in the f metric with those propagating in the g metric.
We defer this discussion to section 5.3.4, where we show that this is not possible for
general Type I solutions.
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A similar analysis can be performed for other values of β. For β > 1, D is everywhere
real and the causal structure is quite similar to the one described above. A minor
difference is that the light-cones of Minkowski geodesics are not at 45 degrees near the
origin (as they were in Fig. 5.1). This can be easily seen from Eq. (5.18). On the other
hand, for β < 1 the metric becomes complex in the region H2r2 < 1− β (see Fig. 5.3).

f g

(a) (b)

D
(r

)
∈

C

D
(r

)
∈

C

Figure 5.3.: Causal diagrams when the f metric is de Sitter (left diagram) while the g metric is
Minkowski (right diagram) and β = 1/6. Thick dashed (blue) curve, thin dashed
(red) curve, and thin solid (green) curve with two arrows, are respectively null
(for the two first) and spacelike (for the last) radial geodesics of Minkowski space-
time. The dashed curly vertical line in both diagram is an r = constant curve
which is the boundary of the region where one of the metrics becomes complex.

Let us now consider the issue of global structure. As was stressed above, the coordi-
nates (r, t) cover the full Minkowski space corresponding to the metric g, but only half
of the conformal diagram for the extended de Sitter metric, corresponding to V > 0
(see Fig. 5.1 (a)). This portion is by itself globally hyperbolic, since the t = k surfaces
are Cauchy surfaces for all geodesics of both metrics in this region. However, the region
V > 0 is not geodesically complete, since the null geodesics U = const. of de Sitter
reach V = 0 at finite affine parameter. To obtain a geodesically complete space-time,
we can match the solution in the upper half of the conformal diagram with a solution in
the lower half of the diagram. For this purpose we introduce a second Minkowski space,
with metric g′, which will be covered with coordinates r′ and t′. The change of variables
(5.30) and (5.31) with the substitutions t → −t′, U → −U , V → −V , maps the full
range of the coordinates (r′, t′) into the lower half of the de Sitter conformal diagram,
below the diagonal V = 0. The full diagram, represented in Fig. 5.4 and 5.5, is now
geodesically complete. In doing such an extension, we mean we are gluing together one
Minkowski spacetime to the other along the past infinity of the r = rH sphere of the
former to the future infinity of the r = rH sphere of the latter. These infinities do not
belong to the Minkowski spacetimes, but to their boundaries, while they are located in
the interior of the de Sitter spacetime. This provides indeed a perfectly fine geometric
maximal extension, where all geodesics are complete.

We should add, however, that a maximal extension is usually required to satisfy
the equations of motion. The bigravity equations of motion are certainly satisfied
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Figure 5.4.: Diagram showing the extension proposed in the text for the de Sitter/Minkowski
solution. Notations are the same as in Fig. 5.1. By using a second Minkowski
space, we can extend the de Sitter diagram of Fig. 5.1, represented by region I
and II above, to the lower half, represented by region III and IV above. The de
Sitter space-time is now geodesically complete, however the whole space-time it is
not globally hyperbolic, when both metric are considered on the same footing. If
we draw a Cauchy surface for all the de Sitter geodesics [such as a horizontal line
cutting accross the diagram (b)], this surface will intersect some of the Minkowski
geodesics twice, while it will fail to intersect some others.

everywhere in regions I, II, III and IV of Fig. 5.4, but it is unclear in which sense
they are satisfied along the diagonal V = 0. The problem is precisely that we are
joining two Minkowski spacetimes [(a) and (c) of Fig. 5.4] at a locus which lies at
their conformal boundary. It is conceivable that promoting our maximal extension to
a solution of the equations of motion might necessitate additional input, such as the
inclusion of some source at the time-like infinity of Minkowski. Note further, that there
is some arbitrariness in the extensions which are possible, as the already geodesically
complete companion can be extended by any other companion to the metric that we
are extending. As we have already commented, a similar ambiguity is present in usual
General Relativity when a metric must be continued beyond a Cauchy horizon.

The extended diagram, Fig. 5.4, is not globally hyperbolic. The t = k surfaces of the
region V > 0 are no longer Cauchy surfaces for the whole space-time, since they do not
intersect causal geodesics in the lower half of the diagram. A surface which intersects
all causal geodesics should cut through both regions, V > 0 as well as V < 0. One such
surface is, for instance, the horizontal line U = V . The problem is that, as can be seen
in Fig. 5.4, there are causal geodesics which intersect this surface twice (such as the
past directed null rays from r = t = 0). A formal proof that the maximally extended
diagram of Fig. 5.4 is not globally hyperbolic runs as follows. Let us restrict attention
to radial geodesics. A Cauchy surface must intersect all causal geodesics once and only
once. Let us assume that such a surface Σ exists. In particular, Σ must intersect the
null geodesic V = 0 of de Sitter space. By continuity, it will also intersect the null
geodesics V = const., in the range −δ < V < δ, where δ is an arbitrarily small positive
number. Let us now consider the null geodesic of Minkowski space, parametrized by r
in Eq. (5.36), and let us choose the constant k < H−1 ln δ. It is clear that the incoming
radial geodesic (with ǫ = −1) will start at the upper left corner of the de Sitter diagram
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Figure 5.5.: Same as Fig. 5.4, with radial geodesics of de Sitter plotted instead of those of
Minkowski. The thick dashed (blue) curve is a future-directed radial null ray from
the origin (r = 0, t̃ = 0). The thin solid (green) curve is a t̃ = 0 radial geodesic
of de Sitter. The thin dashed (red) with one arrow curve a the past-directed null
geodesic from the origin. We also plotted, as thin solid (green) curves with two
and three arrows, the continuation of the t̃ = 0 curve beyond the horizon r = rH .
When mapped into the Minkowski diagram, the past directed null geodesics of
de Sitter, of region I, reach the timelike past infinity of the Minkowski space-time
at a finite value of their affine parameter in de Sitter, namely when they cross
the de Sitter horizon r = rH . Nevertheless, we can “smoothly” continue them in
the newly added Minkowski solution onto which regions III and IV of de Sitter
space-time are mapped.

(at r → ∞), and work its way down towards the right boundary of the diagram (at
r=0), while V will always remain in the interval 0 < V < δ). Hence, the incoming null
geodesic must intersect Σ at least once before it reaches r = 0. At r = 0 it bounces
and becomes the outgoing null geodesic V = eHk < δ, which will intersect Σ once more
before it reaches null future infinity. Hence, there are geodesics of Minkowski which
intersect Σ twice, which simply means that this is not a good Cauchy surface for all
geodesics in the extended diagram. We will have more to say about the tension between
global hyperbolicity and geodesic completeness in 5.3.5.

Let us compare the present situation to that in usual GR. As mentioned above,
Cauchy horizons are also present in certain maximally extended solutions of GR, such
as Reissner-Nordstrom or anti-de Sitter space. Whenever there is such a horizon, the
equations of motion do not suffice to continue the solution past it, and we need additional
input. Usually, analytic continuation is used, or else some boundary conditions at
certain time-like boundaries of spacetime are introduced. As mentioned above, in the
present context it is not clear whether the equations of motion are satisfied or not at the
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5. Bigravity: General Aspects and Exact Solutions

Cauchy horizon of the maximally extended solution, but this is precisely because this
horizon corresponds to a point in the conformal boundary of one of the metrics. In this
sense, the situation is no worse than in GR, where we have to prescribe data on certain
boundaries in order to determine the maximal extension. Another point to consider is
that, physically, Cauchy horizons tend to be unstable to perturbations, because of large
blueshift effects expected from the accumulation of perturbations close to the horizon
[SP73, CH82]. The same is expected to happen in the present context. Note, e.g., from
Fig. 5.4, that all future directed null geodesics of Minkowski in regions III and IV tend
to pile up near the Cauchy horizon at V = 0, suggesting that there will be a large
backreaction near that surface once we include perturbations.

Another interesting fact of the bi-metric solution is that the concepts of causal past
and future are “broadened”, since signals can be transmitted by matter coupled to both
metrics. For instance, the observers at r = 0, with V > 0 can see signals emitted by all
other observers, and hence they have no future event horizon. Likewise, observers at
r = 0, with V < 0, can emit signals which will eventually reach all other observers, and
hence they have no past event horizon. It is tempting to speculate that cosmological
bi-gravity solutions, if they can be made sense of, could in principle be relevant to the
horizon problem.

5.3.2. de Sitter with Schwarzschild

Let us now replace the Minkowski metric by the Schwarzschild one. In this case, the
potentials of the Type I solution are given by

p = H2r2, q =
2M

r
. (5.38)

(5.39)

Both metrics have now horizon singularities whenever p = 1 and q = 1, corresponding
respectively to r = rH and r = rS ≡ 2M . Those are coordinate singularities from the
point of view of each metric considered separately from the other. However, one might
be concerned by the possibility to remove such singularities from both metrics at the
same time. To study this issue, we first keep p and q unspecified, and note that the
coordinate change (5.18) reads (with β = 1, which we shall assume in the following)11

dt̃ = dt− dr∗ + dr̃∗, (5.40)

r∗ and r̃∗ defining “tortoise” coordinates associated with metric f and g respectively
by

dr∗ =
dr

1 − q
, (5.41)

dr̃∗ =
dr

1 − p
. (5.42)

Thus, introducing the null coordinates v = t − r∗, u = t + r∗ for the metric g, and
ṽ = t̃− r̃∗, ũ = t̃+ r̃∗, for the metric f , one has from the above expression (5.40)

dṽ = dv. (5.43)

11We only discuss here the case ǫD = +1, the other case, which corresponds to a change in the sign of
time, follows similarly
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Figure 5.6.: Causal diagrams when the f metric is de Sitter (right) and the g metric is
Schwarzschild (left). The notations are the same as in figure 5.2. The main differ-
ence with the case depicted in this last figure is the presence of the Schwarzschild
horizon. The part of the Schwarzschild horizon shown as a thick gray line on
the right diagram above is mapped to the thick gray line of the left diagram.
The part of the Schwarzschild horizon which is the diagonal of the right diagram
orthogonal to the thick gray line is mapped to the upper right corner of the de
Sitter diagram in analogy to what was found to happen for the de Sitter horizon
when the other metric is Minkowski. This shows the possibility to extend the
Schwarzschild space-time through another de Sitter spacetime joined to the other
by the future infinity of a r = rS sphere (rS being the Scharzschild horizon)

This means that v is null for both metrics, but also that (v, r, θ, φ) are Eddington-
Finkelstein coordinates for both metrics. In such a coordinates system none of the
metric is singular at the horizons.

Coming back to the explicit expressions for p and q (5.38) and substituting those in
(5.18) we find

dt̃ =
1√
β

{

dt+

√

(H2r3 − 2M)(H2r3 + (β − 1)r − 2βM)

(r − 2M)(1 −H2r2)
dr

}

, (5.44)

For β = 1, we have

t̃ = t− r∗ − 1

2H
ln

∣
∣
∣
∣

1 −Hr

1 +Hr

∣
∣
∣
∣
. (5.45)

This matches equation (5.40) where, the Schwarzschild “tortoise” coordinate reads

r∗ = r + 2M ln |1 − r/2M |. (5.46)

The analog of Eq. (5.35) is now

U =
(Hr − 1

Hr + 1

)

e−H(t−r∗), V = eH(t−r∗), (5.47)

which, again, is valid both for U > 0 and U < 0 (with V > 0), covering both
quadrants (5.30) and (5.31) of de Sitter, that is to say the region covered by the
Eddington-Finkelstein coordinates (v, r, θ, φ). The null and spacelike radial geodesics of
Schwarzschild can be written as

t = ǫr∗ + k, (5.48)
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this being obviously valid in the whole region covered by coordinates (v, r, θ, φ). In the
U, V chart these geodesics are given by

U =
(Hr − 1

Hr − 1

)

e−Hke−H(ǫ−1)r∗ , V = eHkeH(ǫ−1)r∗ . (5.49)

Again, we find that the null geodesics t = r∗ correspond to V = const., (or v = const) so
V is a null coordinate both in Schwarzschild and in de Sitter. The other radial geodesics,
with ǫ = −1, 0 have a more complicated form, which is qualitatively represented in Fig.
5.7. Note that for this figure, we have assumed that the Schwarzschild radius rS is
smaller that the de Sitter horizon radius rH .

f

g

(a) (b)

I

I

II

II

II

III

III

IV

IV IV

Figure 5.7.: Causal diagrams when the f metric is de Sitter (right) and the g metric
is Schwarzschild (left) showing the extension proposed in the text for the
Schwarzschild space-time. Various radial geodesics of Schwarzschild are mapped
onto the de Sitter diagram The dashed vertical curly line in the de Sitter diagrams
indicates the Schwarzschild horizon. Note that we can “send a signal” from region
I of the lower de Sitter space to region IV of the upper de Sitter space by using
the left-moving null geodesic of Schwarzschild (thin dashed (red) line).

As we discussed previously, and is manifest from Fig. 5.6, half of the de Sitter di-
agram (above the diagonal) is mapped onto half of the Schwarzschild diagram (below
the diagonal), corresponding to the region mapped by the Eddington-Finkelstein coor-
dinates (v, r, θ, φ). Both half-diagrams are geodesically incomplete, since some geodesics
reach the horizons (which dissects the diagrams in two) at finite affine parameter. These
geodesics can of course be extended by adding new regions of space-time. If one adds
de Sitter and Schwarzschild regions, one obtains a “stair-case” diagram with an in-
finite chain of de Sitter and Schwarzschild space-times, two adjacent de Sitter (resp.
Schwarzschild) space-times being linked together by a common Schwarzschild (resp. de
Sitter) space-time. Needless to say, there is also a tension in this case between geodesic
completeness and global hyperbolicity, as we found in the Minkowski-de Sitter case.

As we will discuss, this applies to more general situations where one of the metrics
has an horizon which is not shared by the other one. As noted previously, the new
metric (new “step”) which can be added to the stair does not necessarily correspond to
the same solution as the one of the last step of the stair, since one of the two metrics
does not determine uniquely the form of the other. Thus, in general we can construct
“stair-case” diagrams with steps having different forms. Note further, that in the case

82



5.3. Global structure of Bigravity Solutions

considered here, the stairs can always be finished by adding a Minkowski spacetime,
linked to a Schwarzschild space-time along a sphere of radius rH at time-like infinity.

Figure 5.8.: This shows a possible maximal extension of the bi-metric space-times, following
the procedure given in the text, when one of the metric is de Sitter while the other
is Schwarzschild. We are led to the “stair-case” diagram, an infinite chain of de
Sitter spaces linked to each other through a common Schwarzschild diagram.
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Figure 5.9.: Causal diagram when both metric are de Sitter and β = 1. Notations are the
same as in figure 5.5.

5.3.3. de Sitter with de Sitter

When both metrics are de Sitter, the potentials are given by

p = H2
1r

2 q = H2
2r

2. (5.50)
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For β = 1, the analysis proceeds along the same lines as in the previous Subsection,
with the only difference that the (de Sitter) tortoise coordinate is now given by

r∗ = − 1

2H2
ln

∣
∣
∣
∣

1 −H2r

1 +H2r

∣
∣
∣
∣
. (5.51)

The corresponding causal diagram is represented in Fig. 5.9
Aside from the choice β = 1, the de Sitter de Sitter solution allows for another way

of having D2 > 0 for the entire range of r. Indeed, it is enough to have H2
1 ≥ βH2

2 and
β ≥ 1 or H2

1 ≤ βH2
2 and β ≤ 1. Choosing for example β given by

β =
H2

1

H2
2

, (5.52)

we have

H1 t̃ = H2t−
1

2
ln

∣
∣
∣
∣

1 −H2
1r

2

1 −H2
2r

2

∣
∣
∣
∣
, (5.53)

or H1(t̃− r̃∗) + ln(1 +H1r) = H2(t− r∗) + ln(1 +H2r). Thus, the Kruskal coordinates
(5.30-5.31) for the metric p can be expressed in terms of coordinates t and r as

U =

(
H1r − 1

H2r + 1

)

e−H2(t−r∗), V =

(
H2r + 1

H1r + 1

)

e+H2(t−r∗), (5.54)

where r∗ is given by (5.51). The corresponding diagram is given in Fig. 5.10.
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Figure 5.10.: Causal diagram when both metric are de Sitter and β = 1/4. Notations are the
same as in Fig. 5.5.

5.3.4. Closed time-like curves?

An interesting question regarding the bigravity solutions is whether we can construct
closed time-like curves (CTC) or closed causal curves (CCC) by patching together future
directed geodesics corresponding to both metrics. The existence of these curves is seen
as a serious pathology of a solution and they are forbidden by the chronology protection
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5.3. Global structure of Bigravity Solutions

conjecture which basically states that quantum effects and vacuum polarization effects
prevent the formation of CCC, as this curves lead to instabilities due to the piling of
modes [BMV07].

For β = 1 it is easy to show that CTC cannot be constructed by using the “tortoise”
coordinates r∗ and r̃∗ that we defined in equations (5.41) and (5.42), as well as the null
(for both metric) coordinate v (in all this subsection, we keep the functions p and q
unspecified). The radial null and time-like geodesics of both metrics are given by

t = ǫr∗ + k, t̃ = ǫ̃r̃∗ + k̃,

(Here ǫ = ±1, 0 for outgoing and incoming null rays, or for spacelike geodesics, respec-
tively, and similarly for ǫ̃). Thus, any future directed causal curve with respect to f
or g has the property that dv ≥ 0, and dv vanishes only along the outgoing null radial
geodesic. Once v increases, even if it is by just a little bit, it is impossible to go back to
the original value by following a future directed time-like curve, which means that such
curve cannot be closed.

Here, we disregard the possibility of making global identifications in the coordinate v,
which might allow for the construction of a closed loop. Of course, even in flat space with
a single metric, closed time-like curves could be constructed by global identifications,
and in what follows we shall ignore this somewhat artificial setup. We shall only be
concerned with the possibility of locally constructing closed time-like curves within a
given coordinate patch of space-time, without identifications.

To analyse the general case β 6= 1 it is convenient to separately consider the following
regions of space-time:

a: For (1−p) < 0, and (1−q) < 0 the condition dr = 0 defines a space-like surface for
both metrics f and g. This means that r can only change monotonically along time-like
curves of both metrics, making it impossible to close them in this region.

b: For (1 − p) < 0 and (1 − q) > 0, the condition dt = 0 defines a space-like surface
for the metric g. Also, from (5.18) with dt = 0, we have

∣
∣
∣
∣

dt̃

dr̃∗

∣
∣
∣
∣

2

= 1 +
1

β

(
1 − p

1 − q

)2

− β + 1

β

(
1 − p

1 − q

)

> 1. (5.55)

Since t̃ is space-like in metric f this means that the surface dt = 0 [which is also defined
by Eq. (5.55)] is space-like in metric f too. Hence, t changes monotonically along
time-like curves of both f and g, and as a consequence such curves cannot be closed.

c: If (1 − p) > 0 and (1 − q) < 0, then the surface dt̃ = 0 is space-like for f . From
(5.18) with dt̃ = 0, we have

∣
∣
∣
∣

dt

dr∗

∣
∣
∣
∣

2

= 1 + β

(
1 − q

1 − p

)2

− (β + 1)

(
1 − q

1 − p

)

> 1. (5.56)

Since t is space-like in metric g, Eq. (5.56) means that the surface dt̃ = 0 is space-like
in metric g too, and t̃ must be monotonic on time-like curves, which therefore cannot
close.

d: Finally, if (1 − p) > 0 and (1 − q) > 0, then we must distinguish two cases. For
p ≥ q, it is easy to see that A > 0 in Eq. (5.12), and therefore dt = 0 is space-like for
both metrics f and g. Hence, t is monotonic for time-like curves of both metrics. On
the other hand, for p ≤ q, Eq. (5.56) for dt̃ = 0 leads to

∣
∣
∣
∣

dt

dr∗

∣
∣
∣
∣

2

< 1. (5.57)
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Since now t is time-like in metric g, this means that dt̃ = 0 is a space-like surface for
this metric. Of course dt̃ = 0 is also space-like for f , and so t̃ is monotonic along causal
curves for both metrics.

This completes the proof for the individual regions listed above. It is remarkable
that in spite of the strong differences in the light-cone structure of both metrics, it is
not possible to draw closed time-like curves in any of the regions. The reason is that
the future light-cone for one of the metrics never contains a part of the past light-cone
for the other metric. Thus, we can always find a coordinate which labels hypersurfaces
which are space-like for both metrics. This coordinate must grow monotonically along
time-like curves.

By continuity, at the boundaries in between the regions, the future light-cone of one
of the metrics can at most touch the past light-cone of the other metric, sharing perhaps
a common null direction for both metrics. Even if this were the case, a future directed
time-like geodesic with respect to one of the metrics can never get to the inside of the
past light cone with respect to the other metric, and closed time-like curves cannot be
constructed even if we cross the boundaries between the individual regions12.

5.3.5. Global Hyperbolicity vs. Geodesic Completeness.

In section 5.3.1, we showed that global hyperbolicity may be lost when a solution of bi-
gravity is maximally extended to obtain a geodesically complete metric (not necessarily
a solution of the equations of motion).

Figure 5.11: This figure gives a general idea of
the settings in this section. Σ is
a Cauchy surface for the metric g
for which the lightcone from p is
drawn. {γn} is a series of space-
like curves for g which converge
to a curve in the lightcone T+g

p

and to a timelike curve for f .

γn

Σ

p

The main idea of the proof can be easily generalized to other situations13 (see Fig.
5.11 to get an intuitive idea). Let us consider a time orientable manifold M endowed
with two globally hyperbolic metrics f and g. Let us suppose that there exists a point p
in the boundary of the manifold (p ∈ M) through which the manifold can be extended
for the metric g through the past (future). Any Cauchy surface Σ for the metric g will
have to intersect the causal future or causal past of p, Jg(p). If for any such a surface
there is a non-causal curve for g which intersects Σ more than once and which is timelike
for f , Σ will not be a Cauchy surface for f .

12In the examples we have examined, the situation where the future light-cone of one of the metrics
marginally touches the past light-cone of the other metric at the boundary between regions does
not arise. If it did, then there might be closed future-directed null curves at such boundary. Note,
however, that since the boundary is at r = const., this situation can only happen when both metrics
have a common event horizon at the same value of r. The possibility of having closed null curves
on these boundaries may require a case by case analysis, and is left for further research.

13We will use the notation and conventions of [HE73]. A subindex f or g will indicate that the concept
refers to the metric f or g respectively.
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Let us see with some examples that the existence of this curve γ for any Cauchy
surface Σ is a generic feature when one extends the non-geodesically complete manifold
through a horizon which is not shared by both metrics or when both metrics share a
horizon but it is of different type for each of them.

First, take the future null cone for the metric g at a point p of the boundary of
a manifold M, i.e., p ∈ M. If M is b-complete14, the light rays in the null cone
can be approached by both connected timelike and connected spacelike curves in all the
disconnected parts in which M is divided by the cone. When the manifold is maximally
extended for g through the past at p the future lightcone T+g

p can be approached by
spacelike curves {γn} ∈ M (see Fig 5.11). This means that they must converge to a
curve γg in Mg and similarly to a curve γf in Mf

15. For the g metric, this curve is
composed of two future directed null curves stemming from p, and thus every Cauchy
surface Σ will have to intersect both curves in J+

g (p) or J−
g (p) or at p. Let us suppose

that it intersects J+
g (p). As the surface Σ must be spacelike for both f and g, there

exists m ∈ N such that it will also intersect twice the curves γn for n ≥ m. The curve
γf ∩ M will be null as for the g metric. If it is timelike for the f metric so will be
the curves γn for n ≥ q for a certain q ∈ N. Now consider a curve γ ∈ M in {γn} for
n ≥ max(q,m). This will be a timelike curve for f which intersects twice Σ, which will
not be an appropriate Cauchy surface.

In more abstract terms, the curve γ can be characterized as follows. Let us consider
a family λp of future (past) directed non-spacelike curves for the g metric stemming
from p ∈ M. Given a non-causal curve for g in the future domain of dependence of λp,
γ ∈ int

(
D+
g (λp,M)

)
, such that γ is non-compact and without boundary in the open

set int
(
D+
g (λp,M) ∩D−

g (Σ)
)

but it is compact in D+
g (λp,M)∩D−

g (Σ), if γ∩D−
g (Σ) is

timelike for the companion f metric, this will be such a curve. To see it, it is enough to
realize that being timelike for f which is globally hyperbolic, γ can not be a self inter-
secting curve. Thus, being compact and not-self intersecting, γ will have two boundary
points q1 and q2 in D+

g (λp,M)∩D−
g (Σ) (which may coincide). As γ ∩ Ḋ+(λp,M) = Ø

and γ is non compact and without boundary in int
(
D+
g (λp,M) ∩D−

g (Σ)
)
, these points

can only be in Σ. Thus, the curve intersects the Cauchy surface at least twice.

It is not hard to identify other pathological situations where global hyperbolicity is
lost once bigravity solutions are extended (see e.g. [Bla07b]). They refer to particular
situations and we shall not elaborate on them.

14A manifold M endowed with a metric g is b-complete if there is an endpoint for every continuous
curve of finite length as measured by a generalized affine parameter [HE73].

15The map from one of this limit curves to the other one is not necessarily continuous as the topology
of M depends on the metric which is used to make the conformal compactification.
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6. Perturbations around Bigravity

Solutions

In the previous Chapter we have considered a non-linear extension of massive gravity
consisting of two interacting metrics that at the linear level reduce to certain models
of massive gravity. Here we will study the linear regime of perturbations to some of
the solutions more closely. We will be interested in two cases. First, there are some
Type I solutions that reduce to two diagonal flat metrics which are not proportional to
each other. This bi-flat solution is very interesting as Lorentz invariance is broken in
the vacuum. This will give rise to mass terms which do not suffer from neither vDVZ
discontinuity and strong coupling nor ghost states [RT08, Rub04]. As we will see, the
dispersion relations are also modified in this set-up (there are two “speeds of light”).
This solution is also interesting because it corresponds to the field far from the sources
in a wider class of spherically symmetric exact solutions of the Schwarzschild form.

Besides, even when both metrics are proportional, the mass term of the perturbations
for a generic potential V [{τn}] is not FP. For Minkowski spacetime this means that only
the case where the FP condition is satisfied can be considered as a stable vacuum of
the theory. For other mass terms, a Lorentz breaking cut-off is necessary to regularize
the decay rate [CJM04]. As the cut-off must be of the order of the mass scale, the
theory is effectively equivalent to GR within its range of validity. For other non-trivial
backgrounds the appearance of a curvature scale suggests the possibility of a softer
cut-off which would allow more general mass terms. We will study this possibility
in the second part of this Chapter and find that this possibility does not happen for
bi-de Sitter solutions. Finally, we will study the case of two de Sitter solutions with
a common SO(3). This Chapter is based on [BDG07] (see also [Bla07b, Bla06]). A
potentially interesting possibility which we leave for future research is a background
with a black hole for one of the metrics[Bla]. Black holes are not yet well understood in
the theories of massive gravity and bigravity provides a simple scenario to study some of
their features (see also [DTZ07] for the ghost condensate case). Besides, it is well known
that stationary black holes can not carry massive tensor field (no hair theorem [Bek72]).
It would be interesting to study whether it can support a non-covariant massive tensor
hair.

6.1. Perturbations around Lorentz-breaking bi-flat

metrics

In a theory with two metrics with Einstein-Hilbert kinetic terms and no interaction,
there are 4+4 ADM Lagrange multipliers1. When we add a non-derivative interaction
which preserves diagonal diffeomorphisms, only 4 combinations of these may in principle
appear non-linearly in the action [DK02]. For these, their equation of motion relates
them to the other variables, but they do not lead to further constraints. Thus, we have

1For the ADM analysis of massive gravity see [BD72, DR05, GG05a].
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a minimum of 4 and a maximum of 8 Lagrange multipliers for 20 metric components.
Hence, we generically expect a maximum of (10 − 4) + (10 − 8) = 6 + 2 = 8 degrees of
freedom and a minimum of (10− 8)× 2 = 2+2 = 4. In a Lorentz-invariant context, the
first possibility corresponds to a massless and a massive graviton, whereas the second
would correspond to two massless gravitons. In the Lorentz breaking context, it is pos-
sible to have a massive graviton with just two physical polarizations [DTT05b, GG05a].

Let us consider a general potential V [{τn}] as in (5.2). As we showed in the previous
Chapter, the vacuum energies ρf and ρg can be tuned so that the previous potential
has asymptotically bi-flat solutions. At large distances from the origin, these take the
form

gµν = ηµν , fµν = γη̃µν , (6.1)

where

η̃µν = ηµν −
β − 1

β
δ0µδ

0
ν , (6.2)

and ηµν = diag(1,−1,−1,−1). The parameters γ and β are related by Eq. (5.15). For
β 6= 1, we cannot simultaneously write both metrics in the canonical form ηµν , and
Lorentz invariance breaks down to spatial rotations2. It will be convenient to introduce
the general perturbation in the form

fµν = γ−1
(
η̃µν + h µν

f

)
, (6.3)

gµν = ηµν + hgµν , (6.4)

where η̃µν is the inverse of η̃µν . The perturbation to the metric f has been defined
with the upper indices, just because this simplifies the manipulations which yield the
action quadratic in the perturbations shown below. For the remainder of this section,
all space-time indices will be raised and lowered with the canonical Minkowski metric
ηµν . The interaction Lagrangian quadratic in perturbations then reads

L̃int ≡Lint −
√−gρg −

√

−fρf =

−M
4

8

{

n2(h
g
ij + h ij

f )(hgij + h ij
f ) + n0(h

g
00 + β−1h 00

f )(hg00 + β−1h 00
f )

−2n4(h
g
00 + β−1h 00

f )(hgii + h ii
f ) + n3(h

g
ii + h ii

f )2
}

, (6.5)

where, after imposing (5.15),

M4 = 4ζ

(
γ4

β

)v

, n0 = 3n3 − 2n4 − n2 + γ
∂

∂γ

(
∑

n

nγ−n(−1 + βn)V
(n)
0

)

,

n2 =−
∑

n2γ−nV (n)
0 , n3 = uvV0 +

∑

n

n[v − u]γ−nV (n)
0 −

∑

m,n

nmγ−(n+m)V
(n,m)
0 ,

n4 = n0 + β
∂

∂β

(
∑

n

nγ−n(−1 + βn)V
(n)
0

)

. (6.6)

2For β = 1, we have proportional flat metrics the perturbations of which can be obtained from the
flat space-time limit of the calculations done in the next section.
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6.1. Perturbations around Lorentz-breaking bi-flat metrics

For the sake of simplicity, we will restrict to potentials V [{τn}] for which Eq. (5.15) is
independent3 of β, and determines γ. From equation (6.6), this implies n0 = n4. In
particular, this class includes the interaction (5.23), which, as we shall see, leads to a
rather pathological behaviour for the perturbations. On the other hand, it is general
enough to be representative of generic choices of potentials.

In Refs. [Rub04, Dub04] the case of a single graviton with a Lorentz violating mass
term has been discussed. For comparison with those references, it will be useful to
introduce

m2
0 = −cn0, m

2
1 = 0, m2

2 = cn2, m
2
3 = −cn3, m

2
4 = −cn4,

where c > 0 is an irrelevant constant which has the dimensions of mass squared.
Note that the components hg0i and h 0i

f are absent from (6.5). As noted in [BCNP07]
the absence of such terms is a consequence of invariance under diagonal diffeomorphisms
in this background (see below). In the case of a single graviton (with a Fierz-Pauli
kinetic term), the absence of h0i in the mass term leads to a very interesting behaviour
[Dub04, DTT05b, DTT05a], where the two polarizations of the massless graviton acquire
mass, while all the other modes do not propagate4.

Let us now investigate whether a similar phenomenon occurs in our model. The
situation is not directly reducible to that of a single graviton, since the equations of
motion are not diagonal. Also, the kinetic term breaks the Lorentz invariance. It is
convenient to decompose the perturbations into irreducible representations of the spatial
rotations,

hX00 = 2AX ,

hX0i =BX,i + V Xi ,

hXij = 2ψXδij − 2EX,ij − 2FX(i,j) − tXij , (6.8)

where tXii = tXij,i = V Xi,i = FXi,i = 0 for X = f, g, and all space-time indices are
raised and lowered with the metric ηµν .

To second order in the perturbations, the kinetic terms in (5.1) can be written in
terms of these scalar, vector and tensor variables as:

LK =
1

2κg

{

− 1

4
tgij�t

g
ij −

1

2

(

V gi + Ḟ gi

)

∆
(

V gi + Ḟ gi

)

+ 4∆ψg
(

Ag − Ḃg − Ëg
)

−2ψg∆ψg − 6(ψ̇g)2
}

+
1

2κ̃f

{

− 1

4
tfij�̃t

f
ij −

β−1

2

(

V fi + βḞ fi

)

∆
(

V fi + βḞ fi

)

+4β−1∆ψf
(

Af − βḂf − β2Ëf
)

− 2ψf∆ψf − 6β(ψ̇f )2
}

, (6.9)

3The case where (5.15) is satisfied independently of β or γ leads to the condition

3n3 − 3n0 − n4 = 0, n4 = n0, (6.7)

which, as we shall see, corresponds to the case of no corrections to the Newton’s law. An example
of an interaction where these conditions are satisfied is a potential which is only a function of the
ratio of determinants of f and g; that is V [{τn}] = V [f/g]. In this particular case, there is an
enhanced symmetry under independent “non-diagonal” unimodular diffeomorphisms, which do not
change the value of the determinants of the respective metrics.

4It should be stressed that the absence of 0i components is a peculiarity of the background considered.
By suitable adjustment of the vacuum energies, the theory we are considering also admits the Lorentz
preserving vacuum of type II, where fµν = gµν = ηµν . In that case, the interaction term leads to
the Fierz-Pauli mass term for a combination of the two gravitons. This mass term does contain the
0i components.
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6. Perturbations around Bigravity Solutions

where �̃ = η̃µν∂µ∂ν , κ̃f = γ−1β1/2κf and dot means a derivative with respect to
time. At the linear level, the transformations generated by independent diffeomorphisms
δxµ = ξµX in each one of the metrics can be expressed as

δhgµν = 2∂(µξ
g
ν), δhfµν = 2ηβ(µ|η̃

αβ∂αξ
f
|ν). (6.10)

Note that the kinetic term is written in terms of the following quantities:

tgij , V
g
i + Ḟ gi , ψ, A

g − Ḃg − Ëg ,

tfij , V
f
i + βḞ fi , ψ, A

f − βḂf − β2Ëf , (6.11)

which are invariant under both gauge transformations. On the other hand, the full
action (including the mass terms), is invariant only under the diagonal gauge invariance

ξgµ = ξfµ. (6.12)

No second order scalar combination of hX0i is invariant under this gauge invariance,
which implies that those terms are always absent (cf. (6.5)). We may now analyze the
propagating degrees of freedom.

6.1.1. Tensor Modes

The linearized Lagrangian for the tensor and vector modes can be expressed as

Lt,v =
1

2κg

{

− 1

4
tgij�t

g
ij −

1

2

(

V gi + Ḟ gi

)

∆
(

V gi + Ḟ gi

)}

+
1

2κ̃f

{

− 1

4
tfij�̃t

f
ij −

β−1

2

(

V fi + βḞ fi

)

∆
(

V fi + βḞ fi

)}

−M
4

8

{

n2(t
g
ij + tfij)

2 − 2n2(F
g
i + F fi )∆(F gi + F fi )

}

, (6.13)

where κ̃f = γ−1β1/2κf . The corresponding equations of motion in Fourier space read

ω2tgij = k
2tgij + κgM

4n2(t
g
ij + tfij), (6.14)

+βω2tfij = k
2tfij + κ̃fM

4n2(t
g
ij + tfij), (6.15)

from which we obtain the dispersion relations

ω2
± =

1

2β

(

(β + 1)k2 + κ0M
4 ±

√

((β + 1)k2 + κ0M4)2 − 4βk2(κ1M4 + k2)
)

, (6.16)

where κ0 = n2(βκg + κ̃f ) and κ1 = n2(κg + κ̃f ).
At high energies, we have

ω2
+ ≈ k

2, ω2
− ≈ β−1

k
2. (6.17)

In this limit, each one of the two gravitons propagates in its own metric (with the
corresponding “speed of light”5) along null directions kµ = (ω,k) satisfying

gµνX kµkν ≈ 0.

5Superluminal propagation has previously been considered in several contexts (see e.g. [BMV06,
BMV07] for a recent discussion). Clearly, such propagation cannot by itself be considered patholog-
ical. Indeed, in the present case we always have superluminal propagation from the point of view
of one of the metrics, whereas there is not any superluminal propagation from the point of view of
the other metric. Nevertheless, as we have seen in the previous Chapter, the global structure of
non-linear bi-gravity solutions is complicated in general, and its interpretation is far from trivial.
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6.1. Perturbations around Lorentz-breaking bi-flat metrics

The low energy expansion of (6.16) is given by

ω2
− =

κ1

κ0
k

2 +O(k4), (6.18)

ω2
+ =

κ0M
4

β
+

(
κ̃f + β2κg
βκ̃f + β2κg

)

k
2 +O(k4). (6.19)

The first dispersion relation corresponds to two massless polarizations which propagate
at the “intermediate” speed

c2s =
ω2
−

k2
=
κ1

κ0
=

κg + κ̃f
βκg + κ̃f

.

Note that for β > 1 we have β−1 < c2s < 1, while for β < 1 we have 1 < c2s < β−1.
The second dispersion relation, Eq. (6.19), corresponds to two massive polarizations.
It is easy to check that the graviton polarizations are stable and tachyon free as long
as κ0 > 0, in the whole range of momenta k. The second dispersion relation (6.19)
corresponds to the massive graviton.

6.1.2. Vector Modes

From the Lagrangian (6.13), we find that V gi and V fi do not appear in the interaction
term. Varying with respect to the vector fields we have,

∆(V gi + Ḟ gi ) = 0, (6.20)

∆
(

V̇ gi + F̈ gi

)

=−M4n2κg∆
(

F gi + F fi

)

, (6.21)

∆(V fi + βḞ fi ) = 0, (6.22)

∆
(

V̇ fi + βF̈ fi

)

=−M4n2κ̃f∆
(

F gi + F fi

)

. (6.23)

We can always use the diagonal diffeomorphism invariance to work in the gauge where
V gi = 0. It then follows from (6.20) that F gi = Fi(~x) + fgi (t), where Fi are arbitrary
functions of position and fi are arbitrary functions of time. The latter are in fact
irrelevant, because FXi enters the metric only through spatial derivatives. Formally, we
may describe this as a gauge invariance FXi 7→ FXi + fXi (t), which we can use in order
to write, without loss of generality,

F gi = Fi(~x).

It then follows from (6.21) that

F fi = −Fi(~x),
where again we eliminate the additive time dependent part. Finally, from (6.22) we
obtain

V fi = f̃i(t),

where f̃i are new arbitrary functions of time. This is not a desirable situation, since it
means that the initial conditions do not determine the future evolution of V fi . Techni-

cally, the absence of the fields V gi and V fi in the mass term leads to an enhanced gauge
invariance in the linearized Lagrangian. Indeed, we can consider independent gauge
transformations for each of the metrics

hµν 7→ hµν + 2∂(µξ
h
ν), lµν 7→ lµν + 2∂(µξ

l
ν), (6.24)

of the form ξXi = ξXi (t). As we have discussed, these do not affect the FXi , but can be
used to give both of the V Xi an arbitrary time dependence.
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6. Perturbations around Bigravity Solutions

6.1.3. Scalar Modes

The Lagrangian for the scalar modes can be expressed as

Ls =
1

κg

{

2∆ψg
(

Ag − Ḃg − Ëg
)

− ψg∆ψg − 3(ψ̇g)2
}

+
1

κ̃f

{

2β−1∆ψf
(

Af − βḂf − β2Ëf
)

− ψf∆ψf − 3β(ψ̇f )2
}

−M
4

2

{

n2{3(ψg + ψf )2 + (∆(Eg + Ef ))2 − 2(ψg + ψf )∆(Eg + Ef )}

+n0{(Ag + β−1Af )
(
Ag + β−1Af − 2[3(ψg + ψf ) − ∆(Eg + Ef )]

)
}

+n3{3(ψg + ψf ) − ∆(Eg +Ef )}2
}

.

Let us first study the non-homogeneous modes. The mass terms do not depend on
Bg nor on Bf , so those fields are Lagrange multipliers, just as in Einstein’s gravity.
Variation with respect to these fields yields

∆ψ̇g = ∆ψ̇f = 0. (6.25)

The variation with respect to Ag and Af yields the constraints

Ag =−β−1Af + 3(ψg + ψf ) − ∆(Eg + Ef ) +
2

M4n0κg
∆ψg ,

ψg =
κg
κ̃f
ψf + f(t). (6.26)

Once we substitute the first of these constraints in the Lagrangian, the quadratic term
in Eh and El takes the form

(n2 − n0 + n3)(E
h + El)2. (6.27)

We can now distinguish two different cases, neither of them with propagating scalar
degrees of freedom. First, if the coefficient n2 − n0 + n3 does not cancel, the equations
of motion for Eh and El result in a new constraint which determines these fields, and
upon substitution into the Lagrangian we are left without any scalar degrees of freedom.
If the coefficient cancels, as happens for the potential (5.23), Eg and Ef are Lagrange
multipliers appearing in the gauge invariant combination Eh + El. After using (6.26),
the variation with respect to Eh yields

∆ψg = ∆ψf = 0. (6.28)

The Lagrangian cancels after substitution of these constraints, and there are no propa-
gating degrees of freedom. Note that in this last case the combination Eh + El, is not
determined by the equations of motion. Again, this is not a desirable feature, since it
means that the value of this combination, which is gauge invariant under the diagonal
diffeomorphisms, is not predicted by the linear theory. Nevertheless, we expect that
higher order terms in the expansion will determine Eh+El, since there is no symmetry
in the non-linear Lagrangian under which this quantity can be “gauged” to arbitrary
spacetime dependence (see section 6.1.4).

Concerning the homogeneous modes, after using the constraints we are left with
two modes ψf and ψg which have a negative definite kinetic term. Nevertheless, the
dispersion relations for the degrees of freedom which diagonalize the equations of motion
are ω2 = 0 and ω2 = M4n2(κ̃f + κg) > 0, so there is no classical instability associated
to these modes.
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6.1. Perturbations around Lorentz-breaking bi-flat metrics

6.1.4. A comment on third order perturbations

As we have seen in the previous section there are some interaction terms of bigravity that
have ill-defined perturbation theory at second order. In particular, when the condition

(n2 − n0 + n3) = 0

is satisfied, the gauge invariant combination Ef+Eg is not determined by the equations
of motion from the boundary conditions. The absence of a non-linear gauge invariance
that accounts for this behaviour makes one expect that the next order in perturbation
theory will determine this combination from the initial conditions.

Third order perturbation theory is a thorny issue in GR (see e.g. [DBMR08] and
references therein). Contrary to what happens at second order, at third order the
tensor, vector and scalar perturbations mix, which makes the general formalism very
involved. For massive gravity the previous problem is alleviated by the strong coupling.
In fact, as the scalar perturbations have a strong coupling scale smaller than that of the
other perturbations, at this scale the only strongly interacting field will be the scalar.
This allows to consistently studying the third order perturbations in certain models
such as DGP in a certain regime [NR04]. Unfortunately, we are not so lucky in the
bigravity case. As it is clear from the previous section the combination Eg +Ef is not
strongly coupled, but directly absent at the linear level. Thus, if we want to push the
theory till the scale where this mode is dynamical, we need to take into account all the
plethora of vector, scalar and tensor modes (which, furthermore, are coupled at third
order). We studied other possibilities, such as a the imposition of a hierarchy in the
perturbations E2 ∼ ǫ2, where ǫ is the scale of the rest of the perturbations, but we could
not find a consistent scheme with a simple perturbation theory at third order (we will,
however, present an heuristic argument on the behaviour of third order perturbations
in the next subsection).

From the previous arguments, it seems clear that it is more convenient to work with
Lagrangians where (n2 − n0 + n3) 6= 0. We will assume this condition unless otherwise
stated.

6.1.5. Coupling to Matter and vDVZ discontinuity

The explicit and non-singular exact solutions of bigravity which we reviewed in Chapter
5 are also solutions of GR6. This immediately suggests that the vDVZ discontinuity may
be absent altogether in this theory at the non-linear level. Also, from the analysis of
perturbations done in the previous section around the Lorentz breaking background, it
is clear that the situation here is very different from that of ordinary massive gravity.
The massive spin-2 graviton has only two physical polarizations (as opposed to the five
polarizations of the ordinary FP massive graviton), and there are no propagating vector
or scalar modes.

Let us consider the coupling of the linearized theory to conserved sources. To this
end, we introduce the couplings

Smatt =
1

4

∫

d4x
(

λgh
g
µνT

µν
g + λfh

f
µνT

µν
f

)

, (6.29)

where Tµνg and T fµν are conserved, i.e. ∂µT
µν
g = 0 and ηρµη̃

ρα∂αT
µν
f = 0. In terms of

6Recently, solutions which deviate from GR have been found in [BCNP08].
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the decomposition (6.8), we have

Smatt =
λg
4

∫

d4x
(

−tgijT ijg + 2T 0i
g (V gi + Ḟ gi ) + 2T 00

g Φg + 2T iig ψ
g
)

+
λf
4

∫

d4x
(

−tfijT
ij
f + 2T 0i

f (V fi + βḞ fi ) + 2T 00
f Φf + 2T iif ψ

f
)

. (6.30)

where we have introduced the gauge invariant combinations

Φg ≡ Ag − Ḃg − Ëg, Φf ≡ Af − βḂf − β2Ëf .

Inverting the equations of motion for the tensor modes in the presence of the source
T ij , we find

tgij =
λg(k

2 − βω2 + κ̃fM
4n2)T

g
ij − λfκgM

4n2T
f
ij

ω2{βω2 − (κ̃f + βκg)M4n2} + k2{(κ̃f + κg)M4n2 − (β + 1)ω2} + k4
, (6.31)

and an analogous expression for tfij :

tfij =
λf (k

2 − ω2 + κgM
4n2)T

f
ij − λgκ̃fM

4n2T
g
ij

ω2{βω2 − (κ̃f + βκg)M4n2} + k2{(κ̃f + κg)M4n2 − (β + 1)ω2} + k4
. (6.32)

In the limit M4 → 0 this reduces to the standard expression for linearized GR.
For the vector modes, the equations of motion read

∆(V gi + Ḟ gi ) = λgκgT
0i
g

∆
(

V̇ gi + F̈ gi

)

=−M4n2κg∆
(

F gi + F fi

)

+ λgκgṪ
0i
g (6.33)

∆(V fi + βḞ fi ) = λfβκ̃fT
0i
f

∆
(

V̇ fi + βF̈ fi

)

=−κ̃fβ−1M4n2∆
(

F gi + F fi

)

+ λf κ̃fβṪ
0i
f . (6.34)

It follows immediately that ∆(F gi + F fi ) = 0, and therefore the term proportional to
M4 vanishes. This means that there is no difference with the GR results for each one
of the metrics.

For the scalar part, we may start with variation with respect to BXi , which yields the
constraints

ĊX = 0 (6.35)

where
Cg ≡ 4∆ψg + λgκgT

00
g , Cf ≡ 4∆ψf + λf κ̃fβT

00
f .

Variation with respect to AX gives

Cf = Cg (6.36)

and
C+ ≡ Cf +Cg = 2M4(κ̃f + κg)(A+ − 3ψ+ + ∆E+)n0, (6.37)

where A+ = Ag + β−1Af , ψ+ = ψf + ψg, and E+ = Ef + Eg. Variation with respect
to ∆EX yields, with the help of (6.35),

n0A+ = (n2 + 3n3)ψ+ − (n2 + n3)∆E+. (6.38)
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Substituting into (6.37), we have

C+ = 2M4(κ̃f + κg)[(n2 + 3n3 − 3n0)ψ+ − (n2 + n3 − n0)∆E+]

and using (6.35), we have

4(n2 − n0 + n3)∆
2Ė+ = −(n2 + 3n3 − 3n0)(λf κ̃fβṪ

00
f + λgκgṪ

00
g ). (6.39)

For (n2 − n0 + n3) 6= 0, this determines Ė+ in terms of the sources. The solution will
depend on an arbitrary time independent mode E0(x).

For the singular case (n2 − n0 + n3) = 0, Eq. (6.39) do not determine E+ at all.
Instead, it imposes some non-trivial equations to be satisfied by the sources,

λf κ̃fβṪ
00
f = −λgκgṪ 00

g (6.40)

which seem hard to motivate. Thus, coupling to the sources seems rather inconsistent
in this case, unless (n2 + 3n3 − 3n0) = 0 as well. But this would imply n2 = 0, in
which case the tensor modes are massless. As we have already stated, this problem is
likely to disappear at the third order in perturbation. Concerning the exact non-linear
solutions, they do not require any condition on the matter content but for the studied
case of constant energy they satisfy (6.40).

In the generic case, the solution for the ψ potentials is of the form

∆ψg =−κgλg
4

T 00
g +

1

8
C+(~x),

∆ψf =− κ̃fλfβ
4

T 00
f +

1

8
C+(~x). (6.41)

where C+(~x) is entirely determined by initial conditions.
Finally, variation with respect to ψf and ψg leads [after use of (6.41)] to the following

equations for the gauge invariant potentials:

∆Φg =−κgλg
4

(

T 00
g + T iig − 3

∆
T̈ 00
g

)

+
1

8
C+ + κgM

4n2∆E+, (6.42)

β−1∆Φf =− κ̃fλf
4

(

βT 00
f + T iif − 3

∆
β2T̈ 00

f

)

+
1

8
C+ + κ̃fM

4n2∆E+, (6.43)

where

∆E+ = − 1

n2 + n3 − n0

[ 1

2M4(κ̃f + κg)
C+

+
n2 + 3n3 − 3n0

4∆

(
κgλgT

00
g + κ̃fλfβT

00
f − C+

) ]

. (6.44)

In general, the solution depends on an arbitrary “initial” function C+(~x). This corre-
sponds to a mode with dispersion relation ω2 = 0 in the linear theory. It was argued
in [Dub04] that in such cases, from higher order terms the expected dispersion relation
will be of the form ω2 ∼ p4, and in this sense C+ corresponds to a slowly varying
“ghost condensate” [AHCLM04]. In what follows, we shall take the initial condition
C+(~x) = 0.

For n2 − n0 + n3 6= 0, the solution is of the form

∆ψg = −κgλg
4

T 00
g , ∆ψf = − κ̃fλfβ

4
T 00
f , (6.45)
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and

∆Φg =− κgλg
4

(

T 00
g + T iig − 3

∆
T̈ 00
g

)

−
(
κgM

4n2

4∆

)
n2 + 3n3 − 3n0

n2 + n3 − n0

(
κgλgT

00
g + κ̃fλfβT

00
f

)
,

∆Φf =− κ̃fλfβ

4

(

βT 00
f + T iif − 3

∆
β2T̈ 00

f

)

−
(
κ̃fβM

4n2

4∆

)
n2 + 3n3 − 3n0

n2 + n3 − n0

(
κgλgT

00
g + κ̃fλfβT

00
f

)
. (6.46)

Hence, there is a well behaved massless limit, with corrections of order M4∆−2 to the
gauge invariant potentials Φ and ψ. This means, in particular, that there is no vDVZ
discontinuity. This is quite analogous to the “half massive gravity” model discussed in
[GG05a] (see also [DTT05b]). The additional terms lead to corrections to the Newtonian
potential. The sign of this correction can be positive or negative, depending on the
values of the numerical coefficients ni. For isolated sources, such corrections scale
like the square of the graviton mass m2 ∼ κM4 times the “Schwarzschild” radius rs
corresponding to the given source, and grow linearly with the distance r. Parametrically,
the potential takes the form

Φ ∼ φN +m2rsr,

where φN is the standard Newtonian potential. Linear theory breaks down at large
distances, when the second term is of order unity. It would be interesting to try and
match this solution to a non-perturbative exact solution which is well behaved at infinity.

As we stated before, the case of no correction to the Newton’s law corresponds to
the case where (5.15) is independent of β or γ (cf. (6.7)). One possibility for this is
a potential which depends only on the determinants g and f . From the arguments in
Chapter 4, it is easy to show that this kind of interaction leads also to two independent
massless metrics. Indeed, notice that the gauge group is Diff×TDiff.

Finally, we note that the simple interaction term (5.23) first considered in [ISS71, IS78]
happens to land on the special case

n2 − n0 + n3 = 0,

where the above expressions for the gauge invariant potentials are singular. The ori-
gin of the singularity is the following. After substitution of the constraints (6.38), the
linearized action no longer depends on ∆E+. In particular, the absence of this vari-
able results in the unwanted restriction (6.40) on the sources7. Nevertheless, beyond
the linear order, the action will depend on ∆E+, and hence the “restriction” will no
longer exist. Rather, a nonlinear equation will determine the value of ∆E+. Can we
nevertheless try to find classical solutions in a perturbative expansion? The above con-
siderations suggest an expansion scheme for the singular case n2 − n0 + n3 = 0, where
E+ is treated as a much bigger quantity than the rest of the linearized fields8 (such as
ψ). Heuristically, the size of ∆E+ can be estimated as follows. Instead of perturbing

7This accidental symmetry is similar to that which exists in ordinary massive gravity where the linear
action has 5 PPoF whereas a new ghost-like PDoF appears at the non-linear level [DR05, BD72].
However, in that case the accidental symmetry corresponds to a symmetry of the massless theory
and no further constraints are needed in the sources.

8Some of the linearized fields will be of the order of E as is clear from (6.38).
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6.1. Perturbations around Lorentz-breaking bi-flat metrics

the flat solution Eq. (6.1), we may consider the quadratic action for perturbations
around a solution which differs from the original by O(h). The expansion around this
new solution will have9

n2 − n0 + n3 = O(h).

From (6.41), we have

∆ψ ∼ κT ≡ ∆φN ,

where φN stands for the potential corresponding to the given source in Newton’s theory.
From (6.46), ∆Φ ∼ O(κT ) + O(m2∆E), where m2 ∼ κM4 denotes the graviton mass
squared. From (6.44), we have ∆E ×O(h) ∼ O(κT/∆). This suggests the hierarchy

∆E ≫ ψ, Φ ∼ max(ψ,m2E).

Taking n2 −n0 +n3 ∼ max(Φ,∆E) ∼ max(ψ,m2E,∆E) ∼ ∆E
(
1 +m2/∆

)
, this leads

to the estimate

(∆E)2 ∼ ψ

1 +m2/∆
. (6.47)

For distances shorter than the inverse graviton mass, we have ∆E ∼ φ
1/2
N , and hence

we may expect

Φ ∼ φN + (m2/∆)φ
1/2
N . (∆ ≫ m2)

At distances which are large compared with the inverse graviton mass, the estimate
(6.47) yields ∆E ∼ (∆φN/m

2)1/2, and we expect

Φ ∼ (m2/∆)1/2φ
1/2
N . (∆ ≪ m2)

These very crude arguments seem to indicate that, also in this special case, there is
no vDVZ discontinuity. However, for finite m, there are significant modifications to
the value of the “gauge invariant” potential Φ which determines the motion of slowly

moving particles. For isolated sources, such modifications scale like r
1/2
s , where rs is

the “Schwarzschild” radius corresponding to the given source. They grow with the
distance as r3/2 below the graviton Compton wavelength m−1, and as r1/2 for larger
distances. The potential Φ becomes of order one for r & m−2r−1

s , beyond which we en-
ter a non-perturbative regime. It would be interesting to confirm this heuristic analysis
in a numerical study of a spherically symmetric solution with sources. This is left for
further research.

Perturbations around Lorentz-breaking bi-flat solutions lead to gravitons with Lorentz-
breaking mass terms. Because of the invariance under diagonal diffeomorphisms, mass
terms with components h0i are absent from the second order Lagrangian[BCNP07].
This, in turn, leads to a well behaved theory of linearized perturbations [BCNP07,
GG05a], which is not afflicted by the vDVZ discontinuity. It is somewhat puzzling
that in the linear theory, there are corrections to the Newtonian potential which are
proportional to the square of the graviton mass and which grow linearly with the dis-
tance to the origin. On the other hand, as mentioned above, these theories admit the
Schwarzschild metric as an exact solution for the same values of the parameters. Thus,
the linearized solutions for a static spherically symmetric sources do not coincide with

9All the coefficients will have corrections of order O(h). However, for the rest of coefficients one
expects that they will yield second order small corrections.
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6. Perturbations around Bigravity Solutions

the linearization of the known vacuum solutions10. This seems to indicate that this
theory has a linearization instability such as the one which is found in other contexts
[Mon76, KT93, Hig91], some of which are related to massive gravity and may have
important phenomenological consequences [DGI06]. Another possibility is that there
may be other exact solutions which coincide with the linearized approximation at large
distances, and those may be the relevant ones which can be matched to spherically sym-
metric matter sources near the origin. This issue clearly deserves further investigation.

6.2. Perturbation theory of Proportional de Sitter

Metrics

As stated in the previous Chapter, another interesting class of solutions of bigravity can
be constructed from two proportional metrics with a constant proportionality factor.
Let us define our perturbations as

gµν = Ωµν + hgµν , (6.48)

fµν = γ−1(Ωµν + hµνf ). (6.49)

All indices will be handled with the Ωµν metric.

We first focus on the interaction term for a general potential (5.2). Using (5.25) we
can write

L̃int = ζ(−g)u(−f)vV [{τn}] +
√−g Λ̃g

κg
+
√

−f Λ̃f
κf

= − 1

8κ+

√
−Ω

{

m2
t (h

µν
g + hµνf )(hgµν + hfµν) −m2

s(h
g + hf)

2
}

, (6.50)

where indices are manipulated with the metric Ωµν , e.g. hg = Ωµνhgµν , and

m2
s = 4κ+ζγ

4v

(

−uvV0 + (u− v)
∑

n

nγ−nV (n) +
∑

n,m

nmγ−(n+m)V (n,m)

)

,

m2
t =−4κ+ζγ

4v
∑

n

n2γ−nV (n). (6.51)

We have also introduced an effective Newtons’s constant κ+ for later convenience.
Note that the massive graviton corresponds to h+

µν = (hg + hf)µν . This is to be

expected, as for hgµν = −hfµν the metrics are still proportional and therefore the pertur-
bations are standard massless gravitons of GR in vacuum. Also, in the present set-up,
h+
µν are the quantities invariant under the diagonal diffeomorphisms. Notice also that

the mass term does not have in general a Pauli-Fierz form,

m2(h2
+ − hµν+ h+

µν). (6.52)

This particular form can only be achieved by properly tuning the parameters. This is
in contrast with other ways of getting massive gravitons, such as dimensional reduction,

10It has recently been argued in [BCNP08] that the linear theory is not appropriate to describe bigravity
at large distances. In this work they also propose an exact solution relating the interior of a star
(where perturbation theory is valid) to an exterior solution which presents modifications to GR.
See also [DKP03].
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6.2. Perturbation theory of Proportional de Sitter Metrics

where the original symmetry group is much larger. Here, the degrees of freedom of the
original theory are 8 which can be split into a massless graviton with 2 polarizations
and a massive graviton with 6 polarizations11. The expression of the massless graviton
as a linear combination of the metric perturbations will be given below.

From Eq. (6.50) we note that whenever mt = 0 there is an enhancement of the gauge
invariance, which now admits all transformations which leave the traces hg and hf in-
variant12. This corresponds to the transverse subgroup of the diffeomorphisms, which
we considered in the first part of the Thesis. In this special case the gauge invariance
is enough to have just two massless gravitons propagating13.

Let us now consider the case of generic ms and mt. For simplicity we will concentrate
on perturbations around de Sitter solutions which will be foliated by spatially flat
sections,

Ωµνdx
µdxν = a(η)2(dη2 − δijdx

idx2), (6.53)

where a(η) = −(Hη)−1, H2 = Λg/3 being a constant and η ∈ (−∞, 0). The kinetic
term in (5.1) will be given by (cf. (6.50))

LK ≡ − 1

2κg

√−g (Rg + 2Λg) −
1

2κf

√

−f (Rf + 2Λf ), (6.54)

with Λf = γ−1Λg. To second order in perturbations we can rewrite the kinetic term in
terms of a massive and a massless field,

LK = − 1

2κ+

√
−g+ (Rg+ + 2Λg) −

1

2κ−

√
−g− (Rg− + 2Λg) + o(h3), (6.55)

where κ− =
κg

1+κ , κ+ = κgκ
−1(1 + κ), with κ = γκgκ

−1
f , g−µν = Ωµν + h−µν and

g+µν = Ωµν +h+
µν . Besides, we have introduced the massive and massless combinations

h+
µν = hgµν + hfµν , h−µν = (1 + κ)−1

(
hgµν − κhfµν

)
. (6.56)

The dynamics of the massless part is well known. One easily finds that only the tensor
modes are dynamical. For the generic massive theory in de Sitter space, studying the
longitudinal mode of the massive representation we would argue that the only ghost-free
possibility is the Fierz-Pauli mass term, m2

t = −m2
s [FP39, AHGS03]. However, in gen-

eral, this mode decouples only at high energies (larger than a combination of the rest of
relevant mass scales). For intermediate energy scales, the longitudinal mode is coupled
to another scalar mode which can modify this picture [Dub04, CNPT05]. Also, the cur-
vature scale H could play a role in making these intermediate scales phenomenologically
relevant14. We will study this possibility directly in the unitary gauge15.

11The number of degrees of freedom coincides with that of higher derivative gravity [Ste78].
12This happens in the case when the derivative of Eq. (5.15) with respect to β vanishes at β = 1. For

the case (5.23) this amounts to γ = 2/3
13At first sight, this seems to contradict the results of Ref. [BDGH01], where it is shown that we

cannot have two massless interacting gravitons. However, the starting point in [BDGH01] is a free
Lagrangian invariant under linearized diffeomorphisms. As we showed in the first part of this Thesis
(Chapter 2), there are Lagrangians invariant under transverse diffeomorphisms which propagate just
massless spin-two particles. An extension of the analysis of [BDGH01] to the transverse subgroup
is currently under investigation [Bla].

14Recently a consistent model of Lorenz invariant massive gravity with a mass term different from
the FP mass term has been discovered in certain local brane models with two extra dimensions
[dR+07]. In this case there is a momentum dependence in the mass parameters.

15Notice that the Stückelberg formalism is more useful to determine the strong interacting scale and
the cut-off of the theory [AHGS03]. Nevertheless, as we are interested in the validity of the linear
theory, it is enough to work in the unitary gauge.
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6. Perturbations around Bigravity Solutions

Let us first split the degrees of freedom of the massive combination into scalar, vector
and tensor modes,

h+
00 = 2a(η)2A,

h+
0i = a(η)2(B,i + Vi),

h+
ij = a(η)2(2ψδij − 2E,ij − 2F(i,j) − tij), (6.57)

where ψ, B, and E are the scalar modes, Fi and Vi are vector modes, and tij is a tensor
mode. The vector modes are divergenceless and the tensor modes are transverse and
traceless.

The expansion of the kinetic term in this foliation can be extracted from the usual
expansion in de Sitter space (see e.g. [MFB92], notice however the difference of con-
vention). One finds

− 1

2κ+

∫

d4x
√

−g+(R+ + 2Λg) = − 1

2κ+

∫

d4xa2(η)
{1

4
tij�tij (6.58)

+
1

2
(Vi + F ′

i )∆(Vi + F ′
i ) + 6(ψ′ + HA)2 − 2∆ψ(2A − ψ) − 4∆(B + E′)(ψ′ + HA)

}

,

where H = a(η)′/a(η) = a(η)H and the prime refers to derivative with respect to the
conformal time η. We have also introduced the d’Alembertian � = ηµν∂µ∂ν and the
Laplacian △ = ∂i∂i. The interaction term (6.50) reads

L̃int =
1

2κ+
a(η)4

{

m2
s(A+ ∆E − 3ψ)2 (6.59)

−1

4
m2
t

(

tijtij − 2(ViVi + Fi∆Fi) + 4(A2 +
B∆B

2
+ (∆E)2 + 3ψ2 − 2ψ∆E)

)}

.

We can now analyse the different components in turn.

6.2.1. Tensor and Vector Modes

The action for the massive tensor modes is simply

(t)δS2 = − 1

8κ+

∫

dx4a2(η)
(

tij�tij + a(η)2m2
t tijtij

)

. (6.60)

From this equation we can read the mass of the graviton which will be given by m2
t ,

and the tachyon-free condition will simply read

m2
t ≥ 0.

Regarding the vector modes, their action is

(v)δS2 = − 1

4κ+

∫

dx4a2(η)
(

(Vi + F ′
i )∆(Vi + F ′

i ) − a2(η)m2
t (ViVi + Fi∆Fi)

)

. (6.61)

The field Vm enters the action without time derivatives, and thus its variation yields
the constraint,

△(Vi + F ′
i ) = a(η)2m2

tVi ≡ m2(η)Vi. (6.62)

Taking this constraint into account, the action for the vector modes up to second order
can be written as

(v)δS2 =
1

4κ+

∫

d4xa2(η)m2(η)
(

F ′
i

∆

∆ −m(η)2
F ′
i + Fi∆Fi

)

. (6.63)
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This Lagrangian has the usual signs, and thus no ghost or tachyons appear in the theory
for m2

t ≥ 0. More concretely, we can canonically normalize the previous field equation
with the field redefinition

F ci = m(η)

√

∆

κ(∆ −m(η)2)
Fi. (6.64)

We conclude that the only constraint we get form the analysis of the vector and tensor
modes is m2

t ≥ 0.

6.2.2. Scalar Modes

From (6.58) and (6.59), the second order Lagrangian for the scalar part reads

(s)δS2 =
1

2κ+

[ ∫

d4xa2(η){−6(ψ′ + HA)2 + 2∆ψ(2A− ψ) + 4∆(B + E′)(ψ′ + HA)}

+

∫

d4xa4(η)
(

m2
s(A+ ∆E − 3ψ)2 −m2

t {3ψ2 + (∆E)2 − 2ψ∆E +
B∆B

2
+A2}

)]

.

(6.65)

B is non-dynamical, and for m2
t 6= 0 it is determined in terms of the other fields. For

m2
t = m2

s, A appears only linearly in the mass term. For the flat case H = 0 and
a(η) = 1, this makes A a Lagrange multiplier and thus its variation gives rise to a
constraint between the fields E and ψ, leaving just one scalar propagating degree of
freedom. In the de Sitter case, the result is the same, although this is not so obvious
from the previous expression for the action until one substitutes the constraints.

The variation with respect to A and B yields the constraints

B =
4(ψ′ + HA)

a(η)2m2
t

, (6.66)

A=
−2a(η)2m2

t (H(φ′ − 3ψ′) + ∆ψ) − a(η)4m2
sm

2
t (φ− 3ψ) − 8∆Hψ′

m2
t (m

2
s −m2

t )a(η)
4 + 8∆H2 − 6m2

t a(η)
2H2

, (6.67)

where φ = ∆E. Let us first consider the kinetic part of the action, which after insertion
of the constraints reads

K =
a(η)2

2κ+
(M1(η)φψ

′ +M2(η)ψ
′2 +M3(η)ψ

′φ′ +M4(η)φ
′2), (6.68)

where we have performed a partial integration to eliminate the term φ′ψ. The functions
Mi(η) are given by

M1(η) =
8∆(m2

t − 2m2
s)a(η)

2H
m2
t (m

2
s −m2

t )a(η)
4 + 8∆H2 − 6m2

t a(η)
2H2

, (6.69)

M2(η) =
2(m2

s −m2
t )a(η)

2(4∆ − 3m2
t a(η)

2)

m2
t (m

2
s −m2

t )a(η)
4 + 8∆H2 − 6m2

t a(η)
2H2

, (6.70)

M3(η) =
4m2

t (m
2
s −m2

t )a(η)
4

m2
t (m

2
s −m2

t )a(η)
4 + 8∆H2 − 6m2

t a(η)
2H2

, (6.71)

M4(η) =
−4m2

ta(η)
2H2

m2
t (m

2
s −m2

t )a(η)
4 + 8∆H2 − 6m2

t a(η)
2H2

. (6.72)
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A difference between the flat and the de Sitter backgrounds is that the coefficients M1(η)
and M4(η) cancel in the former case, and this automatically yields a kinetic term with
a negative eigenvalue unless M3(η) = 0 which happens for the Fierz-Pauli combination
m2
s = m2

t . The situation in de Sitter is slightly more complicated.

Let us now show that the previous kinetic term gives a positive contribution to the
Hamiltonian in the range of parameters

m2
t ≥ 0, 0 ≤ m2

s −m2
t ≤ 6H2. (6.73)

Indeed, the kinetic term can be written as

K =
a(η)2

2κ+

(

M1(η)φψ
′ +

(

M2(η) −
M2

3 (η)

4M4(η)

)

ψ′2 +M4(η)

(

φ′ +
M3(η)

2M4(η)
ψ′
)2
)

.

(6.74)
In the range (6.73), M4(η) and 4M4(η)M2(η)−M2

3 (η) are positive. By Euler’s theorem,
the corresponding Hamiltonian

HK ≡ Πφφ
′ + Πψψ

′ −K, (6.75)

is numerically equal to the two last terms in the Lagrangian, which are quadratic in
generalized velocities, and hence it is positive definite. The second condition in (6.73)
for a positive kinetic term reduces to the usual m2

s = m2
t for the Minkowski limit

H = 0. For H > 0 the endpoints of the interval are of different nature: the condition
m2
s −m2

t ≥ 0 is a necessary condition for the positivity of M2 −M2
3 /M4 at any value of

the momentum, whereas the upper bound on the range of m2
s −m2

t can be somewhat
relaxed depending on the value of the momentum. Indeed, what we need is that

m2
s −m2

t ≤ 6H2

[

1 − 4∆

3a2m2
t

]

, (6.76)

so the condition is considerably relaxed at wavelengths shorter than the inverse graviton
mass.

Once we have established the positivity of part of the Hamiltonian, let us see what
happens to rest of it, namely to the potential part. This part will be given by

V ≡ K − L =
a(η)2

2κ+
(M5(η)φ

2 +M6(η)φψ +M7(η)ψ
2), (6.77)

where the coefficients are rather cumbersome and we omit them. Before proceeding, it
should be noted that the Hamiltonian we are considering is time dependent, and hence
not conserved. Its positivity and boundedness is a useful criterion only as long as we
consider time-scales shorter than the expansion time, or energies larger than H . This
is what we may call the adiabatic limit. Hence, let us assume that ms,mt ≫ H , even if
their difference is much smaller m2

s −m2
t . H2, so that we can satisfy the positivity of

the kinetic term as discussed above. We have checked that within this adiabatic limit,
the potential V grows negative and unbounded below for −∆/a2 ≫ m2. Instabilities at
high momenta have been previously studied in [DGNR06], and they are just as bad as
ghost instabilities. Unlike the case of tachyons, the phase space for instability is infinite
and this yields infinite decay rates.
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If the masses mt and ms are small, of order of the expansion rate H , then we are
outside of the adiabatic limit, and the Hamiltonian above is not a very useful indicator
of stability. Instead, we should use a conserved charge associated to thet time-like
Killing vector for length scales smaller than the horizon [AD82]. Due to the existence
of the cosmological scale, it is in principle possible (although by no means clear) that
there may be some range

m2

(
H

m

)α

& −∆/a2 & H2 & m2, (6.78)

(with α > 2), where this conserved charge is positive definite. The effective theory
would then be well defined for momenta larger than H (corresponding to modes within
the horizon), provided that the theory is cut-off at the energy scale m(H/m)α/2. We
leave the study of this conserved charge for further research. We note, however, that
we need a theory which is applicable to wavelengths much smaller than the horizon
−∆/a2 ≫ H2, where the adiabatic approximation should again be valid. We have
checked that for −∆/a2 ≫ H2 & m2, the potential V grows negative and unbounded
below, so the possibility of a range of the form (6.78) where the conserved charge is
positive does not look particularly promising.

Finally, for the case m2
s = m2

t the analysis of the degrees of freedom has already been
performed in another foliation in [DW01] (see also [Ben95]). In our analysis for this
case we find M2(η) = M3(η) = 0 and thus ψ is not a propagating field. After varying
the action with respect to ψ we obtain a constraint which after substitution yields the
Lagrangian

Υ
(

φ′2 +
9m4

ta(η)
4µH − 21m2

ta(η)
2µH∆ + 4(µH − 6m2

ta(η)
2)∆2 + 2∆3

(9m2
ta(η)

2µH − 6µH∆ − 2∆2)
φ2
)

,

where µH = 2H2 −m2
ta(η)

2 and

Υ =
3a(η)4m2

tµH
κ+(9m2

ta(η)
2µH − 6µH∆ − 2∆2)

.

This Lagrangian will be ghost-free and tachyon-free for µH ≤ 0. This reduces to the
well known condition m2 ≥ 2H2 [Hig87].

6.2.3. Offloading the Cosmological Constant

In chapters 5 and 6, we have considered a couple of interacting metrics and found that
there are cosmological solutions where the cosmological constant is not only determined
by the vacuum energy (cf. (5.7-5.8)). For the Type I metrics, we saw that the solution
includes an integration constant that can be chosen so that one of metrics does not feel
the vacuum energy whereas the other one is highly curved. This see-saw mechanism is
reminiscent of unimodular gravity (see Chapter 4).

Besides, we found proportional solutions for which

Λg = γΛf , (6.79)

where γ is the proportionality factor and the cosmological constants are functions of the
parameters of the theory (in particular of γ) (cf. section 5.2.2). The previous equation
fixes the relative curvature of both metrics and we may hope that the fact of dealing
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with two different scales ζ (related to the mass of the massive graviton) and ρ (the
vacuum energy) can lead to a see-saw mechanism (this time dynamical) yielding γ ≪ 1
or γ ≫ 1 for “natural” values of the potential. If this were the case, the way in which
the system would react to the presence of a vacuum energy would be by producing
a couple of solutions, one of which with a very small cosmological constant. In other
words, the mechanism would achieve the off-loading of one of the cosmological constants
towards the other metric. It is easy to understand that this possibility is not present
in our models (except in very finely tuned situations) for Lagrangians which are ghost
and tachyon free. To see it, just notice that the condition that makes the theory free
from rapid instabilities is

ms = mt,

where ms and mt are defined in (6.50) and (6.51). This condition fixes γ, and as it does
not involve neither the vacuum energy, nor the mass of the graviton, γ will be of the
same order as the parameters in the interaction term. This hinders the possibility of a
see-saw mechanism.

It is important to notice that, γ is also determined by the condition (6.79), which
means that in general the proportional solutions suffer from instabilities, as they are
not of the FP form. It is always possible to build a finely tuned interaction term with a
healthy solution with small cosmological constant for one of the metrics (see (5.7-5.8)),
but this is not very different from the addition of an arbitrary cosmological constant to
the original Lagrangian.

Besides the previous argument, we studied the behavior of the factor γ for specific
interaction terms, like those appearing in [ISS71] (and a slight generalization) or those
inspired in brane interactions or FP augmented of [DK02]. As expected, we did not
find the desired off-loading for a stable solution in any of these cases.

6.3. Non Covariant Mass Term in de Sitter Space

Another possible mass term for the gravitons which differs from the usual FP term and
may be still well defined is provided by Lorentz-breaking mass terms [Rub04, Dub04,
RT08]. In bigravity solutions, these non-covariant mass terms can appear when one of
the metrics is de Sitter whereas the companion background metric around which we
perform the perturbations breaks the de Sitter invariance of the first metric.

A simple possibility would be given by the Type I solutions (5.9-5.10) with p = q =
H2r2. Here we are going to perform a general analysis of the mass terms which still
preserve a SO(3) symmetry without considering a particular solution. There are two
different phases in the parameter space for the masses which are free of ghosts and
gradient instabilities. First, we will find that the possibilities which satisfy these condi-
tions for Minkowski space-time (see [Rub04, Dub04]) are also fine in de Sitter. Besides,
for the non-covariant mass term in de Sitter (and contrary to what we found in the
previous section for the covariant case) we will find that the curvature scale allows to
find regions in the space of masses which are well defined as an EFT till a scale which
goes to zero as H → 0.

Let us consider the most general minimal mass term for a graviton propagating in a
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de Sitter background which breaks the covariance to rotational invariance16,

L̃int =
1

8κ+
a(η)4{m2

0h00h
00 − 2m2

1h0ih
0i −m2

2hijh
ij +m2

3hiih
jj − 2m2

4h00h
ii} (6.80)

where we are considering a flat foliation where the metric is given by (6.53), and the
indexes are risen with the metric Ωµν . In terms of the decomposition into scalar, vector
and tensor modes of (6.57) (h+

µν ≡ hµν), the previous expression can be written as

L̃int =
1

2κ+
a(η)4

{

m2
0A

2 +
1

2
m2

1(ViVi −B∆B) +m2
3(∆E − 3ψ)2 + 2m2

4A(∆E − 3ψ)

−m2
2

(
1

4
tijtij −

1

2
Fi∆Fi + 3ψ2 − 2ψ∆E + ∆E∆E

)}

. (6.81)

Concerning the kinetic term, its form is shown in (6.58).

6.3.1. Tensor and Vector modes

The analysis of these modes proceeds in the same way as in the covariant case (see also
[Rub04]). For the tensor modes we find that their action is given by

(t)δS2 = − 1

8κ+

∫

dx4a2(η)
(

tij�tij + a(η)2m2
2tijtij

)

, (6.82)

which imposes the condition
m2

2 ≥ 0.

Regarding the vector modes, their action can be written as

(v)δS2 = − 1

4κ+

∫

dx4a2(η)
(

(Vi+F ′
i )∆(Vi+F ′

i )−a2(η)(m2
1ViVi+m2

2Fi∆Fi)
)

. (6.83)

The field Vm enters the action without time derivatives, and thus it yields a constraint,

△(Vi + F ′
i ) = a(η)2m2

1Vi ≡ m(η)2Vi (6.84)

Substituting this constraint back in the action, we can write

(v)δS2 = 2

∫

d4xa4(η)
(

m2
1F

′
i

∆

∆ −m(η)2
F ′
i +m2

2Fi∆Fi

)

. (6.85)

This Lagrangian is free of ghosts and tachyons if m2
1 ≥ 0 and m2

2 ≥ 0.

6.3.2. Scalar modes

From (6.58) and (6.81), the action for the massive scalar degrees of freedom is given by

(s)δS2 =
1

2κ+

[ ∫

d4 xa2(η){−6(ψ′ + HA)2 + 2∆ψ(2A− ψ) + 4∆(B + E′)(ψ′ + HA)}

+

∫

d4xa4(η)
(

m2
0A

2 − m2
1

2
B∆B −m2

2[(∆E)2 + 3ψ2 − 2ψ∆E]

+m2
3(∆E − 3ψ)2 + 2m2

4A(∆E − 3ψ)
)]

. (6.86)

16The covariant limit is recovered in the case m2
1

= m2
2

= m2
t , m2

3
= m2

4
= m2

s, m2
0

= m2
s −m2

t .
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6. Perturbations around Bigravity Solutions

Following [Rub04], let us first consider the case m0 = 0. In the flat case, m0 = 0 im-
plies that A appears linearly in the Lagrangian and its EoM impose a condition between
E and ψ which means that there will be just one PDoF in the scalar sector. Even if A
is no longer a Lagrange multiplier for H 6= 0, we will see that there is also one PDoF in
the scalar sector. Notice that the condition m0 = 0 is the condition which makes the FP
case m2

t = m2
s special in the Lorentz preserving case, but that other similar ghost-free

possibilities exist once the Lorentz symmetry is broken. In particular, the choice m1 = 0
corresponds to the case where B is a Lagrange multiplier and in such a case there is only
one scalar PDoF which can be well behaved [Dub04]. We will study this possibility later.

For the de Sitter case, m0 = 0 means that the kinetic term of the propagating fields
(6.68) has the values

M1(η) =
4(m2

1 − 2m2
4)∆a(η)

2

(4∆ − 3m2
1a(η)

2)H , M4 =
2m2

1a(η)
2

−4∆ + 3m2
1a(η)

2
, (6.87)

with all the other terms vanishing. Thus the kinetic term is written as

K =
a(η)2

2κ+
(M1(η)φψ

′ +M4(η)φ
′2), (6.88)

and ψ appears only linearly in the kinetic term, leaving φ (recall that φ ≡ ∆E) as the
only PDoF. Once the equation of motion for ψ is substituted in the Lagrangian and
after partial integration one finds that the kinetic term reads

K =
a(η)2

κ+

(
4m2

4(m
2
4 −m2

1)∆ + 3m2
1(m

4
4a(η)

2 + 2µ2H2)

m2
1(2∆ − 3m2

4a(η)
2)2 − 6µ2(4∆ − 3m2

1a(η)
2)H2

)

φ′2 (6.89)

where µ2 = −m2
2 + 3(m2

3 − m2
4). Notice that the denominator is always positive for

µ2 ≥ 0, and that once this condition is imposed the numerator is positive provided that
m2

1 ≥ m2
4. The first condition is related to the term which multiply the parameter H,

and thus is not present in the Minkowski case17 [Rub04]. Also notice that for µ = 0
there is no contribution from H.

The analysis of the mass term is more involved. We can write it as

V = −a(η)
4(3b2 + 9m1a(η)

2c∆ + 6d∆2 + 4m2
1e∆

3 + f∆4)

κq(∆)2
φ2, (6.90)

where

b= 3m2
1m2a(η)

2(m4
4a(η)

2 + 2µ2H),

c=−8m2
1m

2
2m

6
4a(η)

4 +m2
1m

8
4a(η)

4 − 4m2
4µ

2[4m2
2m

4
4 +m2

1(4m
2
2 −m2

4)]a(η)
2H2

+4(m2
1 − 8m2

2)µ
4H4,

d=m4
1m

4
4(13m

2
2 − 3m2

3 − 2m2
4)a(η)

4 + 8(3m2
1 − 4m2

2)µ
4H4

+2m2
1µ

2[16m2
2m

2
4 − 6m4

4 +m2
1(5m2 − 3m2

3 − 2m2
4)],

e=m2
1m

2
4(−10m2

2 + 6m2
3 +m2

4)a(η)
2 + 2(5m2

1 − 10m2
2 + 6m2

3 − 4m2
4)µH2,

f = 8m4
1(m

2
2 −m2

3).

17One can argue that for scales inside the de Sitter horizon this condition is not necessary, but we will
not make these considerations here.
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6.3. Non Covariant Mass Term in de Sitter Space

The Lagrangian will be free of gradient instabilities provided that m2
2 ≥ m2

3 and has no
unstable modes at intermediate scales. Indeed, even in the presence of unstable modes
at intermediate scales, the model can be phenomenologically acceptable if they are set
beyond the horizon [CLNS06].

To study the behaviour at intermediate momentum we can try to localize the zeros
of the numerator to see when it changes sign. Unfortunately, the numerator is of forth
degree in ∆, and the general solution of the zeros is not known. Instead, as we know
that both at high and at low momentum the numerator is positive, it is enough to
prove that the minima of the polynomial in the regime −∞ ≤ ∆ ≤ 0 are above zero to
ensure the positivity of the potential at any scale. The minima of the numerator will
be located at momenta satisfying

9

4
m1a(η)

2c/f + 3d/f∆ + 3m2
1e/f∆2 + ∆3 = 0. (6.91)

The exact solutions of this polynomial can be easily found and imposing that, when
they exist, they are either at ∆ > 0 or such that the numerator evaluated at them is
positive we find all the tachyon free possibilities. As an example one can consider the
case µ = 0. In this case the Lagrangian is simply

L =
a(η)4

κ+(2∆ − 3m2
4a(η)

2)2

(

[4m2
4(m

2
4 −m2

1)∆ + 3m2
1m

4
4a(η)

2]φ′2

+[2(3m2
4 − 2m2

3)∆
2 +m2

4(12m
2
3 − 13m2

4)∆a(η)
2 + 9m4

4(m
2
4 −m2

3)a(η)
4]φ2

)

, (6.92)

and it is enough to impose m2
3 ≥ 3

2m
2
4 to find a perfectly well defined Lagrangian.

Another interesting possibility consist of imposing m1 = 0. As we see from (6.86),
this condition transforms B into a Lagrange multiplier which fixes A as a function of ψ
(see also [Dub04]). Again, there is only one scalar PDoF whose Lagrangian is

a(η)4

2κ+(m2
2 −m2

3)H2

(
[m2

0(m
2
2 −m2

3) +m4
4]ψ

′2 + 2m2
2µ

2H2ψ2
)
. (6.93)

Notice that there are no spatial derivatives and that for m2
2 −m2

3 ≥ 0 and µ2 ≤ 0 the
previous Lagrangian is free of instabilities. The case m2 = m3 implies that no scalar
degree of freedom propagates.

Finally, in the general case (mi 6= 0) we recover the second propagating field. The
parameters in the kinetic term (6.68) are now

M1(η) =
8∆(m2

1 − 2m2
4)a(η)

2H
m2

1m
2
0a(η)

4 + 8∆H2 − 6m2
1a(η)

2H2
, (6.94)

M2(η) =
2m2

0a(η)
2(4∆ − 3m2

1a(η)
2)

m2
1m

2
0a(η)

4 + 8∆H2 − 6m2
1a(η)

2H2
, (6.95)

M3(η) =
4m2

1m
2
0a(η)

4

m2
1m

2
0a(η)

4 + 8∆H2 − 6m2
1a(η)

2H2
, (6.96)

M4(η) =
−4m2

1a(η)
2H2

m2
1m

2
0a(η)

4 + 8∆H2 − 6m2
1a(η)

2H2
. (6.97)

The kinetic term gives a positive contribution to the Hamiltonian in the range of pa-
rameters

0 ≤ m2
0 ≤ 6H2, m2

1 ≥ 0, (6.98)
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6. Perturbations around Bigravity Solutions

for which M4(η) and 4M4(η)M2(η) −M2
3 (η) are positive (see (6.74)). The same com-

ments that we made in the previous section about the kinetic term of the scalar part
apply here with the substitution of mt by m1 and m2

s −m2
t by m2

0.

Finally, once the kinetic term has been shown to be positive definite, we can look
for potential terms free of high-energy instabilities. One can show that at very large
momenta there is always a gradient instability which makes the theory ill-defined. How-
ever, and contrary to what happens in the covariant case (see before) or in the flat case
(see [Dub04]), one can make use of the curvature scale H2 to find regions in the param-
eter space where the theory is unitary. In particular, at energies ∆ inside the horizon
and such that

− ∆ ≪ m2
2

(
H

m1

)2

, (6.99)

there exists a hierarchy of parameters where the Hamiltonian is positive definite. More
concretely, if we choose m2 ∼ m3 ∼ m4 ∼M , where M is a mass scale, and

− ∆ ≫M ≫ H2 ∼ m2
0 ≫ m2

1, (6.100)

the potential reduces to

V = −a(η)2
[
(m2

2 −m2
3)φ

2 + 2(3m2
3 −m2

2)φψ + 3(m2
2 − 3(m2

3 −m2
4))ψ

2
]
, (6.101)

which is negative for

m2
2 ≥ m2

3, 2m4
2 − 9m2

3m
2
4(−6m2

3 + 9m2
4) ≥ 0.

However, whenever −∆ ≫ m2
1, as happens in the case under study, only M1(η) and

M2(η) in (6.68) do not cancel and the final Lagrangian for the scalar sector have only
one PDoF. Furthermore, the kinetic energy of this scalar is much larger than its mass,
and thus its Lagrangian is simply

L =
a(η)2m4

4

2κ+H2(m2
2 −m2

3)
ψ′2. (6.102)

The existence of other theories with a Lorentz breaking cut-off depending on H and
free from ghosts and tachyons is currently under research.
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7. Conclusions and Outlook

In this dissertation we have studied certain modifications of GR motivated by the possi-
bility of finding a consistent theory which may alleviate the problem of the cosmological
constant or may suggest new avenues to its resolution (see the introduction).

We first focused on the analysis of the local second order Lagrangians which are
ghost and tachyon free and that include spin-2 particles in their spectrum. It was
shown in Chapter 2 that for the massless case those Lagrangians must be invariant
under a subgroup of the whole Diff group. More concretely, the analysis of the vector
components of the rank-2 object hµν shows that the Lagrangian must be invariant under
the subgroup of the Diff satisfying

∂µξ
µ = 0, (7.1)

otherwise the spectrum of the sector will include ghosts. We dubbed this subgroup
TDiff. If TDiff is violated and the ghosts are not coupled to conserved matter at the
linear level the linear theory may still be unitary. Nevertheless, the linear theory is not
enough to describe gravity and one expects that the non-linear interactions will include
coupling of these modes both to matter ant to the other PDoF of the graviton itself.
This would render the theory non-unitary at the non-linear level and thus we required
the invariance under TDiff at the linear level to get a meaningful theory.

The spectrum of perturbations of the TDiff invariant theories consists of a spin-2
particle and a scalar field. The spin-2 component is always well-behaved, whereas the
Lagrangian must satisfy certain condition for the scalar part to be fine (cf. (2.37)).
The linear theory is completely equivalent to a scalar-tensor theory except for the
appearance of an integration constant. A mass term for the scalar component exists
which preserves the TDiff invariance, and for a heavy scalar field the phenomenology of
the theory coincides with that of linearized GR for energy scales below the mass scale1.

The scalar field disappears when the TDiff symmetry is enhanced in one of two
possible ways. The standard choice is to consider the full group of Diff (i.e. lift the
condition (7.1)). We showed that there is yet another possibility (which we called
WTDiff) where an additional Weyl symmetry is imposed and the condition (7.1) still
holds. In this last case, the action depends only on the traceless part of the field
ĥµν ≡ hµν − 1

nhµν . Even if both actions are not equivalent2, they yield the same
equations of motion except for an extra integration constant in the WTDiff case. This
integration constant is related to the cosmological constant (we elaborated more on this
in Chapter 4).

It is interesting to note that the similarities between both types of theories do not
extend to the case where the spin-2 components are massive. Once a Lorentz preserving
mass term is added to the action, the only ghost and tachyon free Lagrangian has the
Diff invariant kinetic term and the Fierz-Pauli (FP) mass term. There is no equivalent

1Indeed, the mass term is not protected by any symmetry, and we expect it to receive radiative
corrections that set its scale to the cut-off scale of the theory.

2We consider two actions to be equivalent if they are related by a field redefinition or by the addition
of a gauge fixing term.
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construction with a WTDiff invariant kinetic term. The root of the difference between
the massless and the massive cases is that the gauge invariance present in the WTDiff
massless case requires the imposition of a tertiary constraint which kills the extra scalar
which one would expect from a naive counting of the PDoF. Once a generic mass term
is considered, the Lagrangian is no longer gauge invariant and for a WTDiff invariant
kinetic term it is not possible to kill the ghost-like scalar degree of freedom. In this
sense, WTDiff is a more rigid theory than the standard linearized GR (see also the
comments on supersymmetric extensions).

The previous analysis can be extended to other higher spin theories. Namely, we
can look for Lorentz invariant Lagrangians of higher spin fields that yield the same
equations of motion as the standard gauge invariant Lagrangians once the appropriate
initial conditions are imposed. This is precisely what happens when one adds covariant
gauge-fixing terms to a gauge invariant Lagrangian (see e.g. [IZ]). For the bosonic field
theories, this extension can be performed and it amounts again to replacing the higher
spin field by its traceless part in the gauge invariant Lagrangians that were proposed
in [Fro78]. Both Lagrangians, which are not equivalent, yield the same EoM except for
an integration constant [SV07].

For the fermionic field of spin-3/2, we have shown in Chapter 3 that something
similar happens for the γ-traceless part of this field. First, we have shown that there
are two possible groups of gauge invariance for the generic Lagrangians which include
spin-3/2 particles in their spectrum. The presence of the gauge invariance is important
as it allows to kill some of the potentially ghost-like spin-1/2 excitation. The first of
these possibilities corresponds to the usual Rarita-Schwinger (RS) Lagrangian which is
known to propagate just the spin-3/2 polarizations and to be unitary once coupled to
a conserved source. Besides, the gauge invariance can be of a Weyl type (S-symmetry),
δψµ = γµφ, if one works directly with the γ-traceless combination (for n = 4),

ψ̂µ ≡ ψµ − 1

4
γµγ

αψα.

The Lagrangian endowed with this gauge invariance, which we called WRS Lagrangian,
yields the same propagator as the RS one once coupled to a conserved source3. Thus, we
found a Lagrangian which yields the same predictions as the standard RS Lagrangian.

A key difference between both Lagrangians is that their groups of gauge invariance
are different. We have elaborated a bit on the possibility that this might alleviate the
problem of the consistent coupling of the spin-3/2 field to the electromagnetic field,
as the algebraic constraints that appear once the RS Lagrangian minimally coupled to
electromagnetism, are not present for the WRS Lagrangian. Nevertheless, the low spin
component of the field ψ̂µ that was decoupled in the case of interaction with external
sources is turned on by this interaction, and this may spoil the unitarity of the theory.

For the massive spin-3/2 field, the results are again similar to those of the spin-2
Lagrangians. One can show that the only possibility which just propagates massive
spin-3/2 is the massive RS Lagrangian. Furthermore, one can consider mass terms that
render some of the spin-1/2 polarization massive, leaving the higher spin components
untouched.

Independently of the previous results, it is interesting to study the general Lagrangian
for spin-3/2 as a possible partner of the WTDiff Lagrangian to build a supersymmetric

3Again, and as happens once the gauge is fixed covariantly [DF76], there is an extra degree of freedom
in the WRS case which is decoupled from the sources and can be consistently set to zero.
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Lagrangian. However, as we proved in the last section of Chapter 3, the WTDiff La-
grangian does not admit a minimal supersymmetric extension. A simple argument for
this fact is that the number of off-shell and on-shell degrees of freedom of the WTDiff
case only coincide with those of the RS action, which is already the supersymmetric
counterpart of the Diff invariant action.

A general conclusion of the previous analysis is that, due to the more involved canon-
ical structure of the theory, it is difficult to deform the WTDiff Lagrangian consistently.
The two examples that we studied showed that neither the addition of a mass term for
the spin-2 polarizations nor of a minimal superpartner are possible.

The previous conclusions apply for the linearized theories. The non-linear extension
of the spin-2 Lagrangians was considered in the second part of the dissertation. For
the TDiff invariant Lagrangians, a systematic derivation of the non-linear extension is
currently absent. In Chapter 4 we found that, for the WTDiff Lagrangian, a non-linear
extension along the lines suggested by Deser in [Des70] for the Diff case seems to be
problematic. In particular, even if the method can be applied, the non-linear theory
that is found differs form GR and seems to include a scalar field in its spectrum, though
an explicit calculation has not yet been performed. Besides, it depends explicitly on the
background Minkowski metric.

The linear reducible gauge invariance related to TDiff group can be deformed non-
linearly to the subgroup of non-linear Diff transformations satisfying precisely the con-
dition (7.1). Under this subgroup, the determinant of the metric transforms as a scalar
field, which implies that non-linear invariant Lagrangians can be constructed out of
the geometrical tensors for the metric and arbitrary functions of the determinant. We
proved, following previous results, that these theories are in general equivalent to scalar-
tensor theories except for the presence of an integration constant that plays the role of a
cosmological constant. The mass term compatible with the TDiff gauge invariance also
admits a non-linear extension. As we said, this term provides a mass for the scalar com-
ponent and from a naturalness criterion, this mass should be of the order of the cut-off
of the theory. This implies that the low-energy PDoF of non-linear TDiff coincide with
those of GR.

Concerning the WTDiff linear Lagrangian, it admits a unique non-linear extension
which is also invariant under non-linear Weyl transformations. We proved that this
Lagrangian yields Einstein’s equations in the gauge |g| = 1 except for an integration
constant. This property is also shared by a plethora of TDiff invariant Lagrangians
where a term depending on the determinant of the metric is added to the GR kinetic
term. These additional TDiff invariant Lagrangians are expected to receive radiative
corrections which may make the scalar component dynamical. However, those correc-
tions also affect the mass term, which makes one expect this mass to be at the cut-off
scale of the theory. We conclude that the low-energy PDoF of GR, TDiff and WTDiff
theories are generically the same.

In the last part of Chapter 4, we studied the first order formulation of the WTDiff
invariant Lagrangian. We proved that writing the Lagrangian in terms of the vielbein
and the spin-connection is classically equivalent to the WTDiff Lagrangian written in
terms of the metric without the need of Lagrange multipliers. This allows us to couple
the WTDiff invariant Lagrangian to fermionic matter, and in particular to look for a
consistent minimal coupling with a spin-3/2 field (which we know that will not be super-
symmetric, as at the linear level we showed that there is not a minimal supersymmetric
action for both fields). Even if supersymmetry is lacking, one may hope that due to
the conditions on the EoM imposed by the gauge invariance of the RS Lagrangian (cf.
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[VN81]), the integration (cosmological) constant will be set to zero.

We have devoted the rest of the Thesis to study the concrete non-linear model of
massive gravity provided by bigravity. We have focused on the study of the systems
with two metrics with independent Einstein-Hilbert kinetic actions and coupled through
a non-derivative term preserving a “diagonal” group of diffeomorphisms. Our aim was
to extract some conclusions about the behaviour of non-linear massive gravity from this
simple set-up.

We first studied some exact solutions of the non-linear equations. For a given pair
of metrics which are solutions of the vacuum Einstein’s equations with corresponding
cosmological constants, we have derived the conditions that the interaction term must
satisfy for this pair to be a solution of the bigravity theory.

Being exact solutions of GR, these solutions are important as they constitute a simple
candidate to understand the way in which non-linearities may cure the vDVZ disconti-
nuity. We identified a particularly interesting family of solutions which are static and
spherically symmetric with respect to a common SO(3) group. Interestingly enough,
these solution depend on some integration constants that once fixed by a condition de-
pending on the potential (cf. (5.15)) make them solution for any potential. In other
words, every potential admits solutions in this family.

Another interesting point about these solutions is that they can correspond to metrics
with different global structure. In Chapter 5, we developed a method to visualize the
global structure of the bigravity system by studying the behaviour of the lightcone of
one of the metrics in the conformal diagram of the companion metric of the solution.
This allowed us to see how does the conformal structure of the first metric map into
the conformal diagram of the other metric.

A particularly interesting possibility that occurs in some of the solutions is the pres-
ence of a horizon for just one of the metrics. When the companion metric is already
geodesically complete, this rises questions about the meaning of the maximal extension
of the incomplete metric. By plotting the null-cones of the geodesically complete metric
in the Carter-Penrose diagram of the incomplete one, we provided a precise map of the
causal structure of the geodesically complete metric as seen by the incomplete one. We
showed in some detail how the geodesics of the first metric end within the incomplete
patch. This means that once the geodesically incomplete metric is maximally extended,
the new region of space-time is causally disconnected from the original space-time patch
for the geodesically complete metric. To get the full extended bimetric solution, we pro-
posed to choose a new solution of bigravity in the extended region in a way that the
system preserves causality. There is much freedom in this possible extension, and this
freedom is similar to the standard situation of GR for solutions with a Cauchy horizon.

Given the existence of two different causal structures, we investigated whether it
is possible that closed time-like curves (CTC) exist even if both metrics are globally
hyperbolic. To build these curves, we need to propagate signals using both metrics.
We showed that for the solutions considered in Chapter 5, CTC are absent even if
the global notion of time is not trivial. Indeed, it may happen that a certain Cauchy
surface is so only for one of the metrics, even if there are other common Cauchy surfaces.
We also found an apparent generic tension between geodesic completeness and global
hyperbolicity in the presence of horizons which are not shared by both metrics.

As a conclusion of our studies on global structure we can say that the possible patholo-
gies that we identified in the class of solutions of bigravity which we considered are not
worse than those found for certain solutions of GR such as anti-de Sitter or Reissner-
Nordström.
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Finally, in the last Chapter we studied how the presence of a second dynamical metric
gives rise to mass terms for a certain combination of the gravitons. We have first focused
on flat solutions which break the Lorentz invariance to a common SO(3). The analysis
of perturbations around this background reveals that the only PDoF are the tensor
components of the metrics, and they satisfy Lorentz-breaking dispersion relations with
a mass term. This fact implies corrections to the Newtonian potential between two
sources which are proportional to the square of the graviton mass and which grow
linearly with the distance to the origin. We have shown that the system is not strongly
coupled in general and that the massless limit, as expected from the absence of strong
coupling, is well defined. We see that the breaking of the Lorentz invariance by the
background allows to avoid the vDVZ discontinuity and the strong coupling of the scalar
mode4. However, there seems to be a tension between the perturbative solution and
the exact solution. Indeed, an exact solution which asymptotes to the bi-flat solution is
known but the interacting term does not give rise to a Yukawa type potential, but to a
contribution to the vacuum energy. This seems to indicate the presence of a linearization
instability or the existence of more exact solutions which coincide with the linearized
approximation at large distances.

We also analyzed in detail the perturbations around bi-de Sitter vacua. For generic
solutions we found that the spectrum consist of a massless and a massive graviton. For
proportional metrics, the theory is covariant but the mass term is not in general of the
Fierz-Pauli form. For flat space this means the loss of unitarity at energy scales of the
order of the mass scale. For the de Sitter case, one may think that the presence of a
new energy scale (associated to the curvature scale) could help to increase the cut-off
scale and to find consistent field theories with a cut-off scale larger than the mass of
the tensor modes5. Even if we found that the presence of curvature allows for a healthy
kinetic term, we showed that, in the adiabatic limit, gradient instabilities set in at the
scale of the mass of the tensor modes, which makes the theory non-unitary at this scale.

From the fact that the only Lorentz invariant mass term which is consistent in the
bi-de Sitter case is the FP mass term, we argued that a dynamical see-saw mechanism,
where the vacuum energy of one of the metrics weights very little, is not possible for
natural values of the parameters in the solution.

The previous reasonings may be successful once one admits non-covariant (or Lorentz-
breaking) mass terms for gravitons propagating in de Sitter space. The study of this
kind of Lagrangians reveals that in the presence of curvature there are new regions in
the parameter space which allows for a EFT description with a cut-off scale which tends
to the mass scale as the curvature goes to zero.

We would also like to comment a bit on the contents of the appendices. Even if they
are based on original material, we have decided to defer the discussion of this work
to the appendix due to its preliminary form or because it corresponds to the study of
very concrete models which do not add much to the main results of the dissertation. In
Appendix A, we study some issues of the quantization of TDiff invariant theories. We
first consider some aspects of the semiclassical approximation. In this approximation,
one expects the appearance of differences between Diff and WTDiff theories because the
gauge invariance of the regularization process determines the possible counterterms that

4For certain Lagrangians the linearized perturbation theory is not well defined and one is forced to
go to the next order in perturbation theory with more than just one strongly coupled mode, which
complicates the analysis.

5Something similar happens for the strong coupling scale of the FP Lagrangian.

117



7. Conclusions and Outlook

may be needed to make the theory renormalizable. A regularization scheme preserving
the Weyl and Diff invariance is not known. We propose a generalized Pauli-Villars
regularization scheme which can be used to preserve the WTDiff, Diff or just the TDiff
invariance of the theory. The structure of the counterterms may differ in those three
cases, which may imply that classically equivalent Lagrangians differ at the semiclassical
level. A particular example of the possible differences due to the regularization scheme
is provided by the Weyl anomaly. We argue that the Weyl anomaly can appear in the
Diff sector if the regularization process is consistent with the WTDiff invariance. In
other words, the anomaly can be traded from the Weyl symmetry to the Diff symmetry
group (breaking it to TDiff). The counterterms associated to this regularization will
break the WDiff symmetry to WTDiff and the EoM of the semiclassical system may
differ from those of the Diff invariant case.

We show a particular example provided by the conformal anomaly in 1+1 dimensions.
On the other hand, we could consider regularization schemes that break the symmetry
of the classical action (e.g. the Diff preserving scheme for the WTDiff invariant action).
The breaking of the symmetry by this process will generate a small scale in the problem
(maybe related to the cosmological constant), but the consistency of the model is not
clear in this case.

If we want to go beyond the semiclassical approximation and consider a quantum
theory of gravity we first have to worry about the unitarity of the theory. The first thing
we study is the existence of a nilpotent BRST transformation in the WTDiff case6. The
reducible nature of the TDiff transformation, makes the BRST transformation more
involved than in the Diff case and more fields besides the usual Fadeev-Popov ghosts
are required to get a nilpotent transformation. These new fields are the ghost-for-ghost
fields, which are required to find a covariant gauge-fixed action. It is remarkable that
the study of the BRST transformation can be phrased in terms of forms, which makes
the analysis quite straightforward. We present a minimal set of ghost-for-ghost fields
together with their BRST transformations and Grassmanian character. This is a first
step towards the covariant quantization of the WTDiff theory.

We end this Appendix with some comments on the Euclidean Quantum Gravity for-
mulation of the WTDiff theory. We show that, even if the action is Weyl invariant, it
is not bounded from below as there is a mode (a Diff which is not TDiff) which plays
the same role as the conformal mode in the Diff invariant case. This means that the
WTDiff action has no better convergence behaviour than the Diff invariant action.

Appendix B is devoted to the study of further aspects of classical unimodular gravity
and bigravity. Some well-known facts about Diff invariant theories may change once
one restricts the analysis to the TDiff subgroup. In the first part of Chapter 4 we
study some of them. We show that the condition for a metric gµν to be related to the
Minkowski metric by a gauge transformation in the WTDiff theory is that the Riemann
tensor associated to the combination ĝµν = g−1/ngµν cancels.

Furthermore, the restriction to the TDiff invariant subgroup allows more freedom to
define covariant derivatives, as the object Γραρ transforms as a vector under TDiff. We
extended the usual formalism of integration of forms on manifolds to the TDiff invariant
case, including Stokes theorem.

Concerning bigravity, we show that for a certain simple potential of bigravity, the
solutions consisting of two proportional metrics is the most general diagonal static and

6Remind that for most gauge theories, the existence of this transformation is essential to prove the
unitarity of the theory.
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spherically symmetric solution when one of the metrics is maximally symmetric. This
result is a first step in the search of more general solutions, but the general static
spherically symmetric solution of bigravity is still unknown even for simple potentials.
The knowledge of the general solution would be very important to understand why the
linear treatment does not agree with the non-linear solution for certain cases. We end
the Appendix B with some comments on possible methods to find solutions of bigravity
from solutions of ordinary GR.

7.1. Outlook

Throughout the text we have discussed some possible ways in which our analysis can
be extended. In this section we want to sketch some of them and present related ideas
left for future research.

In the linear analysis of Chapter 2, we described the spin-2 field by means of a
symmetric rank-2 field hµν . An interesting extension would be to study the ghost and
tachyon free possibilities for linear Lagrangians in the metric-affine theories of gravity7

(where the vielbein and the connection are considered as independent fields) [HMMN95].
Other possible extensions include the addition of terms with higher derivatives or the

breaking of the global Lorentz invariance. A model where the four dimensional Lorentz
invariance is consistently broken due to bulk effects was presented in [DPR07]. One
expects that the massive modes of the KK spectrum in this case will have a Lorentz
violating mass term, which may result in a model of massive gravity lacking the strong
coupling problem. Besides, the Pauli-Fierz structure of the mass term can also be
generalized if one allows for a momentum dependence in the mass parameters [dR+07].
The search of other scenarios showing this behaviour is currently under research [Bla].

Another source of consistency problems of the coupling of higher spin states appears in
the study of the properties of the S-matrix [WW80]. A first analysis seems to indicate
that also in the TDiff invariant case, the existence of a conserved source implies the
absence of massless particles of spin-2 [Bla]. However, as the energy-momentum tensor
can be conserved up to a derivative, a non-vanishing energy is allowed [Bla].

Concerning the theories with spin-3/2 fields, we have outlined a couple of lines of
future research in Chapter 3. First, it would be nice to study the (lack of) unitarity of
the theory where the WRS Lagrangian is minimally coupled to a U(1) field. Besides,
we have not studied in detail the coupling of the Rarita-Schwinger field to the WTDiff
field. One may hope that, as happens in GR (cf. [VN81]), the consistency of the
coupling implies the cancelation of the cosmological constant, even in the absence of
supersymmetry.

There are many open directions related to the non-linear extensions presented in
Chapter 4. It would be very interesting to study the possible non-linear deformations
of the TDiff algebra in a more systematic way. The most powerful formalism for the
deformation of gauge algebras is provided by their cohomological structure [Hen98] (see
also [OP65] for earlier related work) and the application of this formalism to the TDiff
case is in progress [Bla]. The presence of a relation between the gauge parameters of
the theory imposes some technical difficulties in comparison with the irreducible8 case
but the general formalism still applies [HK00, HK97].

7A general analysis for Diff and Local Lorentz invariant theories was performed in [KN86] (see also
[Sez81, NPS07] for related work).

8On the other hand, we have seen that the TDiff group can be augmented to the Diff group by the
addition of the trace of the field hµν . This field plays the role of a Stückelberg field and turns the
reducible symmetry into an irreducible one, whose quantization is much simpler. One may wonder
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As we emphasized throughout the Thesis, the structure of the constraints of the
WTDiff invariant theory differs from that of GR. The canonical formulation of the
WTDiff invariant theories, together with the interpretation of the different constraints
has not been clarified yet. Besides, the extension of the Lovelock analysis to the TDiff
or WTDiff invariant theories is still an open issue.

Another of the results that we underscored in this Thesis is the classical equivalence
of the WTDiff and the Diff invariant non-linear Lagrangians. In Appendix A we argued
that the regularization of the energy-momentum tensor at one-loop in matter fields can
be consistent with the WTDiff invariance. The structure of the counterterms will be
different from that of the regularization that preserves the Diff invariant, and one may
expect some physical difference between the Diff and WTDiff possibilities9. Besides, the
regularization procedure may break the symmetry of the theory, which may be useful
to generate a small cosmological constant.

Concerning the structure of perturbative quantum gravity, from the results of Chapter
2, we see that even if the on-shell propagators of the graviton are the same for the
WTDiff and Diff invariant theories, the off-shell propagators do not coincide in any
gauge. This means that even if the interaction terms of both theories are related, it is
far from clear that the loop computations coincide10.

There are also many interesting open problems for bigravity theories. First, the most
general static and spherically symmetric solution is not known even for the simplest
potentials. The knowledge of this solution is very important as it might help to un-
derstand the way in which the linearized solutions are matched to the non-linear ones.
For other theories of non-linear massive gravity, the exact static and spherically sym-
metric solutions is not known either. The simplicity of the bigravity Lagrangian makes
it a good starting point to try to understand some general features of this solution in
non-linear massive gravity.

Concerning the perturbation theory, there are some exact solutions of bigravity whose
perturbation theory may yield interesting results. First, if one (or both) of the metrics
of the solution has a horizon, one expects the theory of perturbations to be very different
than in GR. In particular, there is no reason to expect the no hair theorems to be still
valid. Some work in this direction has already been done for the ghost condensate, and
many differences with respect to the GR case have been found [DTZ07]. The bottom
line of these studies is that black holes physics is very different in modified theories of
GR11. A related question is the possible existence of Lorentz breaking hair for black
holes. Nevertheless, the presence of black holes in Lorentz violating theories seems to
be problematic [JW08], and this issue deserves further clarification.

Various questions arise, should one wish to consider bigravity theories as realistic.
Among those, the fact that bigravity theories may suffer from instabilities coming from
the propagation of ghost modes at the non-linear level [BD72, CNPT05] (see however
[GG05a, DK02, DKP02]).

Finally, we proposed a mechanism that may offload the cosmological constant for
one of the metrics of bigravity dynamically. This mechanism does not work for the
interaction terms and solutions that we studied, but yet it is not clear that other bigravity
scenarios (as for non-proportional accelerating solutions) may enforce it.

whether a similar possibility exists for other reducible gauge theories.
9The counterterms account for terms with higher derivatives and the equivalence of the EoM coming

from the Diff or the WTDiff invariant theories is not clear.
10As emphasized in [Far05, Unr89], the presence of a preferred form may have some consequences in

other formulations of quantum gravity (see also [Rov89]).
11A first intriguing fact is that there may be some modes that can exit the horizon
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Theories

One of the points stressed throughout this dissertation has been the existence of different
Lagrangians whose equations of motion are equivalent to Einstein’s equations (except
for an integration constant). Out of them, there are two which are fixed by gauge
invariance, namely the Diff case of GR and the WTDiff case whereas the rest consist of
adding a function of the determinant to the Einstein-Hilbert Lagrangian. The addition
of matter does not change this behaviour, which means that all of these theories are
classically equivalent1.

Even if one cannot construct a renormalizable quantum theory from the GR La-
grangian, one can pursue its quantization as an EFT [tHV74, Bur04, Don95] (see also
[Hol06]). This programme yields some testable predictions and is valid up to a cer-
tain energy scale beyond which one expects the appearance of new Physics to cure the
infinities of quantum GR.

The first step in this programme is to work out the so called “semiclassical” regime
in which the gravitational field is considered as a background where other quantum
fields propagate [BD82]. In the first part of this Appendix, we will sketch how the
analysis may be modified in the WTDiff and TDiff theories, and how the structure of
the counterterms may yield differences between the different theories at the quantum
level.

Once the gravitational field is considered as a quantum dynamical field, in some
situations we can consider it as a quantum perturbation propagating in a fixed back-
ground. The presence of low spin components appearing with the wrong sign in the
off-shell propagator, makes one worry about the unitarity of the theory. For gauge
theories, a useful way of proving the unitarity of the theory is with the help of the
BRST invariance of the gauge fixed action, and we will embark upon the search of a
possible BRST transformation for the reducible gauge theories appearing in the TDiff
and WTDiff theories.

A different approach to quantum gravity which allows to study non-perturbative
phenomena is the path integral formulation, or Euclidean Quantum Gravity [Haw]. We
will show that for the WTDiff invariant theory, the convergence of the path integral
does not seem to be better than for the (ill-defined) Diff case.

Finally, notice that string theory can also be considered in the WTDiff case by simply
substituting the background metric gµν by the combination ĝµν . Following [Pol98], one
finds that for the cancelation of the β-function,

Rµν [ĝαβ ] = 0.

These are Einstein’s equations for gµν in the gauge |g| = 1. Thus, as far as WTDiff
world volume gauge invariance is preserved we find the same result at first order in α′

as for the Diff case. This does not guarantee that higher order corrections are the same

1It is important to remark that the structure of the constraints is different for the TDiff, Diff and
WTDiff cases.
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in both cases.

This Chapter is based on unpublished results which have been presented in some
conferences or talks. They constitute a first step towards the quantization of TDiff and
WTDiff theories, but a lot of work is still needed.

A.1. Semiclassical Approximation

The standard formalism of quantum field theory in curved space-times can be easily
extended to TDiff and WTDiff invariant theories. Once the coupling of matter to gravity
is introduced (as we did in Chapter 4), the quantization techniques described in [BD82]
can be applied.

Recall also that we found the same on-shell propagators and interaction vertices for
Diff and WTDiff theories in a certain gauge. This implies that both theories yield
equivalent predictions at tree-level. In curved space-time, the renormalization of the
theory at one-loop in matter fields (which is the regime we are interested in) implies
the inclusion of geometrical higher order counterterms whose structure is dictated by
the gauge invariance preserved by the regularization process [BD82]. No regularization
scheme that preserves both the Weyl and the Diff invariance is known, which means
that the structure of the counterterms will be different for the schemes that preserve
the Diff or the WTDiff invariance. This fact may imply the discrepancy in the physical
predictions of Diff and WTDiff invariant theories at one-loop in matter fields.

We will present here a regularization scheme depending on some parameters that can
be chosen to preserve the TDiff, Diff or WTDiff and leave the study of the general
counterterms preserving the TDiff or WTDiff and their physical predictions for further
research (see also below) [Bla].

For definiteness, let us consider a scalar field coupled to gravity in a WTDiff invariant
theory. The UV divergences of the two-point function will be equivalent to those of the
Diff invariant theory in the gauge |g| = 1. To cure these divergences, we will use
a modified Pauli-Villars (PV) regularization scheme2. Recall that this regularization
method resorts to the introduction of massive fields, φi, with a Lagrangian which cancels
the UV divergences of the rest of fields. Setting the mass of these fields beyond the
cut-off of the effective field theory at hand, the theory gives sensible predictions.

The difference between the Diff and WTDiff invariant theories can be traced to the
absence of a mass term compatible with the whole WDiff symmetry. This means that
the PV regularization scheme breaks the WDiff symmetry (which is the basis of the
conformal anomaly). It is customary to choose a mass term for the regulator field
compatible with the Diff invariance,

Lm = m2

∫

dnx
√−gφ2

i . (A.1)

The addition of this mass term to any kinetic term3 yields a Lagrangian which is not
invariant under the Weyl transformation4,

gµν 7→ e2σgµν , φ 7→ f(σ, φ), (A.2)

2For the application of PV regularization in a Diff invariant way see [BD77, Vil78] (see also [AGS03]).
3By this we mean the Diff, WTDiff or WDiff invariant kinetic terms.
4A similar regularization does not exist for any field in any dimension. See e.g. [AGW84] for some

comments on mass terms for chiral fermions.
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for any function f(σ, φ). In particular, this means that the trace of the energy-momentum
of the regularized action will be different from zero in general.

To adapt the previous prescription to preserve WTDiff, Diff or just TDiff, it is enough
to modify the mass term to5

Lm = m2

∫

dnx|g|ρ/2φ2. (A.3)

For arbitrary ρ, this term is just compatible with the TDiff subgroup whereas for ρ =
n−2
n this mass term is compatible with the Weyl invariance of conformally coupled

scalar fields. Even more, for ρ = 0, if the action of the field φ depends just on ĝµν , the
regularized action is invariant under the transformation (A.2) for f = φ. Finally, for
ρ = 1, we recover the mass term (A.1).

The previous regularization procedure makes one expect the violation of the Ward
identities related to the WTDiff or Diff symmetries at the quantum level. As an example,
if all the fields are conformally coupled (including the PV fields, except for the mass
term), we expect the expectation value of the energy-momentum tensor to behave as6

∇µ〈Tµν〉 ∼ p[(1 − ρ)]~∂νA, gµν〈Tµν〉 ∼ q[(n− 2 − ρn)]~B, (A.4)

for some scalar fields A and B and p[0] = q[0] = 0.
Furthermore, the allowed counterterms required to absorb the infinities of the regu-

larization process depend on the value of ρ. For a generic ρ, the possible counterterms
will be higher order terms invariant under TDiff7. If the symmetry group preserved by
the regularization is enlarged, the possible counterterms will be fewer. For the WTDiff
preserving scheme, following [BD88], we expect those to correspond to powers of

Rασβν [g
−1/ngµν ]. (A.5)

If this is so, the arguments of Chapter (4) still apply and the equations of motion
coming from the renormalized Diff or WTDiff theories are equivalent. For counterterms
preserving different symmetries, this is not the standard case8 and the only way to tell
which of these theories describes Nature is performing experiments.

When one adopts Diff preserving regularization and renormalization schemes, one
finds the same result as in (A.4) for ρ = 1. This yields the celebrated conformal
anomaly [CD74, Duf94]. Before closing this section, we would like to present a simple
calculation at linear order in the perturbations of the metric where (as argued in the
previous paragraphs) this anomaly can be traded by an anomaly that breaks the Diff
to TDiff. To show it, we will find a local counterterm which, once added to the action,
changes the anomaly from one current to the other one. Thus, we want ∆Sc such that

gµν
δ∆Sc
δgµν

= −gµν〈Tµν〉. (A.6)

5Notice that at high enough energies, much larger than the scale of the variation of the determinant,
|g| → 1 and the mass term is independent of ρ and we expect it to be equivalent to a standard mass
term.

6Other regularization methods, such as point-splitting yield similar violations of the Ward identities
[BD82] (see also [Gua88]). Besides, the previous expectation values do not satisfy all of the Wald’s
axioms. There is no problem with this, as in TDiff invariant theories the energy-momentum tensor
is not necessarily conserved.

7Similarly, in the general analysis of possible counteterms of [DDI76], the possibilities WDiff invariant
in four dimensions but otherwise TDiff invariant were not considered.

8Recall what happens with the global V − A anomaly where the anomaly can in principle be traded
from the vector to the axial symmetry but Nature shows that the axial symmetry is anomalous
[Ber96].
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This term will break the Diff to TDiff and also the Weyl symmetry in such a way that
we recover the Weyl invariance. We will make the computation in 1 + 1 dimensions
where [Ber96],

〈T 〉 =
1

24π
R. (A.7)

The first thing that we notice is that Einstein’s equations are traceless in two dimensions.
Thus, the Einstein-Hilbert action is not an appropriate counterterm. Recall also that,
at linear level,

R = ∂µ∂νhµν − �h, (A.8)

and that the most general TDiff action with two derivatives is (see Chapter 2),

∆SLc =
1

4
∂µhαβ∂µh

αβ − 1

2
∂µhµβ∂

νhβν +
a

2
∂µhµβ∂

βh− b

4
∂µh∂

µh. (A.9)

For arbitrary a and b one gets,

δ∆SLc
δh

=

(

b− (a+ 1)

2

)

�h+ (1 − a)∂µ∂νhµν , (A.10)

which means that for a = 0, b = −1
2 we get the desired counterterm. The addition of

this counterterm to the action breaks Diff to TDiff and the conservation law for the
energy-momentum tensor is modified by

∂µ
δ∆SLc
δhµν

=
1

2
∂µ ((1 − b)∂ρ∂σhρσ + (b− a)�h) . (A.11)

The non-linear extension together with the application to other dimensions is left for
future research [Bla](see also [Gua88]).

A.2. BRST Invariance

Once the perturbations of the gravitational field are considered as quantum fields, it
is of the uttermost importance to check the unitarity of the model. A first step in
this direction for the TDiff invariant theories was taken in [Kre90, BD89, DK88] (see
also [ALV06]) where the BRST-anti BRST structure of the TDiff invariant theory was
studied. The existence of the nilpotent BRST transformation is assumed as a necessary
condition for the theory to be well-defined9. An important difference between the gauge
invariance of GR and the gauge invariance of TDiff and WTDiff is that for the TDiff
and WTDiff cases, the gauge invariance is reducible [HT94], i.e., the parameters of the
gauge transformation are not completely free, but satisfy the condition

∂µξµ = 0.

This makes the covariant quantization of the theory more involved. First, as we already
noticed in Chapter 2, the covariant gauge fixing is a bit more complicated for the TDiff
case. Even worse, the action for the Fadeev-Popov ghosts fields will have a gauge invari-
ance. This new gauge invariance must be gauge fixed, which implies the introduction

9The BRST transformation could also be nilpotent except for a gauge transformation but we will not
consider this possibility here.
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of new ghosts for ghosts whose action can also have a gauge invariance [HT94]. The
appearance of these ghosts for ghosts is not so exotic as it may seem as they also appear
in the quantization of forms. In our case, we will see that the BRST algebra can be con-
structed with a finite number of ghosts. The next step would be to check the unitarity
of the theory and calculate the gauge fixed Lagrangian and perform a one-loop calcula-
tion, but work in this direction is still in progress (see [GS05] for some comments in the
equivalence of GR and TDiff at the loop level) [Bla]. An interesting possibility would be
to see whether the formalism in [Ber02] can be extended to the TDiff and WTDiff cases.

We refer to the standard books in QFT for an introduction to BRST symmetry (see
e.g. [HT94] for a monograph an [DJ93] for a enlightening review). The BRST structure
of of the TDiff gauge invariance has been recently reconsidered in [ALV06] which we
will follow closely (for a BRST-anti-BRST formulation see also [DK88, Kre90] where
a gauge fixed action can also be found). Concerning the BRST analysis of Diff gauge
theories it can be found in [Ste77, DRM76] (see also [KO78, Lat88]). The algebraic
structure that we are going to consider at the non-linear level was studied in Chapter
4. It is summarized by the transformation,

δCξ,φgµν = 2∇(µξν) +
2

n
φgµν , (A.12)

which yields a commutator

[δCξ1,φ1
, δCξ2,φ2

] = δC
[ξ1,ξ2],(ξµ

1 ∂µφ2−ξµ
2 ∂µφ1)

(A.13)

where ∂µξ
µ
i = 0. Notice that given two transverse vector modes, its commutator is also

transverse. The transverse condition for the gauge parameter implies that the ghosts
fields related to this symmetry will also be transverse. More explicitly, the BRST
transformation for the metric is10

sgµν = cW gµν + cρ∂ρgµν + gα(µ∂ν)c
α (A.14)

where cW and cν are anticommuting variables of ghostnumber equal to one

{cα, cβ} = {cγ , cW } = 0, (A.15)

and cµ satisfies
∂µc

µ = 0. (A.16)

In the language of forms, we can write

δc1 = 0, (A.17)

where δ = (−1)n(k−1) ∗ d∗ is the adjoint operator of the exterior derivation of a k-form
in n dimensions using the Hodge star associated to the Minkowski metric11 and

c1 = cµdx
µ,

is a ghostly form with components cµ = ηµνc
ν . If we want to impose (A.16) in a local

and covariant way, we can write c1 as

c1 = δc2 (A.18)

10We will denote the BRST transformation of a field ψ by sψ.
11We follow the conventions of [Ort04].
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where c2 is a ghostly, Grassmann odd 2-form. Notice, however, that c2 is not determined
by the previous condition. In particular, the addition of a term δC3 does not change
c1. This new invariance appears also in the Lagrangian and more fields are required
to completely fix the gauge [HT94]. Remember that the BRST transformation must
satisfy the following conditions

s2 = 0, s(AB) = (sA)B + (−1)gAA(sB), (A.19)

where gA is the ghost number of A, and that it increases the ghost number by one, i.e.
gsA = gA + 1. Nilpotency of the operator s acting on the metric implies

scα = cρ∂ρc
α, scW = cρ∂ρcW , (A.20)

which can be written as

sc1 =
(−1)n

2
δ (c1 ∧ c1) , scW = (−1)nδ (c1cW ) , (A.21)

where we treat cW as a ghost function. Recall also that cµ are Grassmann numbers
which in particular means that cµcν is antisymmetric. From (A.18),

sc2 =
(−1)n

2
(c1 ∧ c1) − δc3. (A.22)

Imposing again the nilpotency of s on c2 this means that

sc3 =
(−1)n

3!
c1 ∧ c1 ∧ c1 − δc4. (A.23)

If we can find c3 and c4 within the fields which we have already introduced such that
(A.23) is satisfied, thus we have constructed a closed BRST system. The BRST trans-
formation of the field cW involves cW itself, which means that neither it nor its BRST
transformation can be used to build expressions involving just c1. This means that the
first term in the r.h.s. of (A.23) should come from terms involving just c2, and this
is not possible. Thus, we need to add a new field c3 to the theory which transforms
as (A.23) under BRST transformations. By requiring nilpotency again, this process
continues and we find

scm =
(−1)n

m!
c1 ∧ ... ∧ c1
︸ ︷︷ ︸

m

−δcm+1, (A.24)

for m < n. When we arrive to a form of maximum rank, its BRST transformation will
be given by

scn =
(−1)n

n!
c1 ∧ ... ∧ c1
︸ ︷︷ ︸

n

, (A.25)

and nilpotency follows directly, as applying again s to cn we get a n + 1 form which
cancels. Thus, for arbitrary space-time dimension n, we need 2n − (n + 1) ghosts to
close the BRST transformations which can be organized as

F dim g G

c2
(
n
2

)
1 −1

... ... ... ...
cm

(
n
m

)
m− 1 (−1)m+1

... ... ... ...
cn 1 n− 1 (−1)n+1
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where F stands for the form, dim is the number of independent components, g is the
ghost number and G stands for the Grassmannian character of the fields.

Regarding the BRST transformation for the field cW , it is already nilpotent and we
do not need to add more ghosts to the system. Despite all this apparent complication,
if we impose an appropriate non-covariant gauge fixing condition, these ghost for ghosts
can be decoupled, i.e., any reducible theory can be recast into a irreducible theory by
using appropriate independent gauge generator. However, this can yield the loss of
Lorentz covariance or space-time locality.

Concerning the antighosts, they are added as trivial pairs of antighosts satisfying

b1 = bµdx
n ≡ db2, bW (A.26)

and

sb2 = B2, sbW = BW ,

sB2 = 0, sBW = 0. (A.27)

Once we have found the previous BRST system, we can look for a gauge fixed action.
For the BRST-anti-BRST system it was already found in [Kre90]. The knowledge of
this action allows to prove unitarity and to make calculations at 1-loop level which
can differ from the usual calculations of GR. Fortunately, the ghosts for ghosts do not
appear at 1-loop, which means that the calculation is not so different from that of GR.
We think that this is a very interesting project but Ars lunga, vita brevis.

A.3. Euclidean Quantum Gravity

Finally, some words are in order about another approach to quantum gravity which can
be extended to the TDiff or WTDiff cases, Euclidean Quantum Gravity (EQG) (see
[Haw] for a review). This formulation is based on the application of the path integral
approach of field theory to GR. One of the difficulties it meets is the fact that, in contrast
to what happens for the Standard Model, the action of the Euclidean continuation of
the theory is not bounded from below. The standard way to prove this is as follows.
Given any metric gµν , we introduce a new metric related by a Weyl transformation to
the first metric

g̃µν = e2σgµν .

For any metric gµν , one can prove that the action of the new metric can be made
arbitrarily small by the choice of an appropriate σ.

The TDiff generalization allowed for more general Lagrangians which modify the ac-
tion of the conformal mode σ. In particular, this mode can be made well behaved for
certain TDiff Lagrangians [vvN82].

Concerning the WTDiff case, the fact of dealing with a unique Weyl invariant La-
grangian means that the previous Weyl transformation does not change the action, and
thus the action has a chance to be bounded from below. However, one can show that
also for the WTDiff case there is a transformation which mutatis mutandis has the same
effect as the Weyl transformation and renders the action unbounded from below. To
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see it, let us choose a foliation of the space-time into space and time M = R×Σt which
allows to decompose (at least locally) any metric as

ds2 = gµνdx
νdxµ = (N2 −NjN

j)dt2 − 2Njdx
jdt− γijdx

idxj , (A.28)

where N j = γijNj . Let us choose the Wick rotation t 7→ −iτ . To get a real metric,

we must also Wick rotate the shift fields Nj 7→ −iÑj , which also ensures the negative
definiteness of the new Euclidean metric,

ds2E = gEµνdx
ν
EdxµE = −(N2 + ÑjÑ

j)dτ2 − 2Ñjdx
jdτ − γijdx

idxj . (A.29)

The Euclidean version of the WTDiff action will be12

SWT
E =

1

2κn−2

∫

dnxE(ĝE)µνRE(ĝEαβ)µν . (A.31)

As shown in (4.37), this action can also be written as13

SWT
E [g] =

1

2κn−2

∫

dnx
√
gg

2−n
2n

(

R+
(n− 1)(n− 2)

4n2
gµν∂µ ln g∂ν ln g

)

. (A.32)

To show that this action is not bounded from below, let us consider a generic Euclidean
metric gµν and build another metric related to it by a Diff. which does not belong to
WTDiff. That is,

g̃µν =
∂xρ

∂yµ
∂xσ

∂yν
gρσ , (A.33)

with

g̃µν 6= Ω2gµν , J = det

(
∂xρ

∂yµ

)

6= 1. (A.34)

We can consider, for instance, the transformation

x0 7→ y0 = f(x0) xi 7→ yi = xi, (A.35)

which has J = ∂0f . As this transformation corresponds to a change of coordinates, the
first term in (A.32) will change with a power of J whereas the second term will involve
derivatives of the Jacobian. More concretely,

SWT
E [g̃] =

1

2κn−2

∫

dny
√
g(J2g)

2−n
2n

(

R+
(n− 1)(n− 2)

4n2

∂yµ

∂xρ
∂yν

∂xσ
gρσ∂µ ln(J2g)∂µ ln(J2g)

)

.

The previous action has a term

∫

dnxg00∂0J∂0J, (A.36)

12The sign convention is such that the linearized action around Minkowski has no ghosts. Note that
we are forgetting about the Gibbons-Hawking boundary term, which from the usual arguments of
GR can be found to be

SWT
GH = − 1

κn−2

∫

∂M

dn−1x
√
±hK[ĝµν ]. (A.30)

13We will drop the index E that indicates that we are dealing with the Euclidean extension.
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and thus, for a Jacobian that varies fast enough, the previous action can be made
arbitrarily negative (remember that gµν is negative definite).

The cosmological constant is treated differently in the EQG formulation of Diff and
WTDiff invariant theories [NvD91]. Whereas in the Diff invariant case it is a parameter
of the action of the theory, in the WTDiff invariant theory it is an integration constant
and the path integral formulation should include all the possible values for it. This
seems to select a small cosmological constant [NvD91] (see also [Unr89]).
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B. Further Aspects of Unimodular

Gravity and Bigravity

In this Appendix we will first study some formal aspects related to the gauge invariance
in TDiff invariant theories and the integration of tensor densities. Besides, we present
some technical work about some bigravity solutions which appeared in [BDG06]. Fi-
nally, we present some general methods to generate solutions of bigravity from solutions
of GR.

B.1. Comments on Gauge Issues and Fixed Volume

Manifolds

Once we assumed that the gauge invariance of our theory is not the whole group of Diff
but a subgroup of it (namely TDiff), we must reconsider many topics which are well
established in GR. We will devote this section to study some of them.

It is also interesting to note that the TDiff and WTDiff theories can be understood
as a restriction of the general metric-affine gauge theories of [HMMN95] where the local
translations are restricted to be transverse and the Weyl transformation of the GL(n,R)
acts only in the vielbein.

Let us briefly discuss some global aspects of Diff and TDiff theories. Recall that the
EoM for ĝµν of WTDiff coincide with those for gµν of GR in the gauge |g| = 1, which is
attainable locally in both theories. Thus, any solution gµν of GR is also a solution ĝµν
of WTDiff with the same matter content in this gauge1. However, when the field ĝµν
is transformed under a general Diff it is no longer a solution of the transformed EoM.
The message that we want to transmit is that even if the spaces of solutions of GR and
WTDiff coincide in the gauge |g| = 1, the different families of gauge equivalent metrics
are different. In GR, two metrics related by a Diff transformation are considered as
equivalent and if one is a solution of the EoM, the other metric is also a solution in the
transformed coordinates [Wil93]. In the WTDiff theory, the equivalent solutions are
related by a TDiff or a Weyl transformation. An immediate consequence is that the
condition for a metric to be equivalent to Minkowski in the WTDiff theory is no longer
that its Riemann tensor cancels. Instead, a metric will be flat whenever

gµν = eφ(x) ∂y
α

∂xµ
∂yβ

∂xν
ηαβ , (B.1)

1For globally non-trivial solutions of GR, we can always relate them to WTDiff invariant solutions.
To do this, it is enough to restrict to a manifold with two patches (the generalization to other
situations is trivial). Let us consider a solution built out of the two metrics g1µν , g2µν defined in the
first and second patch respectively. We can now perform a Diff such that the new metrics satisfy
|gi| = 1. Both metrics will be related in the intersection of the patches by a Diff belonging to TDiff
in these coordinates. Thus, the globally defined ĝµν will be a solution of WTDiff (see also [NvD91]).
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with det
[
∂yα

∂xµ

]

= 1. The determinant of gµν will be free and determined by φ(x),

whereas ĝµν will be related to ηµν by a TDiff transformation. Thus, the condition for
a metric gµν to be equivalent to Minkowski is

Rαµνρ[ĝστ ] = 0.

The difference between the equivalence classes of solutions of both theories may also
imply differences when one considers the gauge fixing procedure and the definition of
observables in the quantum theory [Unr89] (see also Appendix A).

The restriction in the group of symmetry means the possibility of building quantities
which are invariant under the subgroup under study but not under the original group2.
In particular, for the TDiff case, the integration of densities of any weight3 is a well
defined operation as we are going to see in the rest of this section.

The definition of integration of form densities of weight w in paracompact oriented
manifolds proceeds as the usual construction for forms (see, e.g. [Wal84]). Remember
that for a n-form α in a n-dimensional orientable paracompact manifold M we choose
an orientation ǫ and a covering {Oi} of M and define the integral (with respect to the
orientation) as

∫

M

α =
∑

i

∫

Oi

fiα, (B.2)

where {fi} is a partition of the unity subordinate to the covering and the integration in
every open is defined as usual. It can be shown that the result does not depend neither
on {Oi} nor on {fi} (but it depends on the orientation). Now, besides the orientation we
will choose also a transverse class, that is, in every open Oj of the covering we choose a
class of frames related by transformations with a unit Jacobian (notice that this defines
an equivalence relation). Given two open sets Oi and Oj , we say that their classes are
compatible if in Oi

⋂
Oj they are related by a transformation of unit Jacobian. If we

can choose transverse classes on M such that in Oi
⋂
Oj the classes are compatible

∀i, j, we say that M is a transverse manifold. Clearly, a non-orientable manifold is
always non-transverse. Besides, through a continuous coordinate transformation in Oi
we can make the Jacobian to take any value in the intersection Oi

⋂
Oj . In particular,

this means that every orientable manifold is transverse and thus both concepts coincide
even if not every atlas corresponds to a transverse class. Given a transverse class t and
an orientation we define the integral of a n-form density α over the manifold M as

∫

{M,t}
α =

∑

i

∫

Oi

fiα(t), (B.3)

where {fi} is again a partition of the unity and

∫

Oi

fiα(t) =

∫

φi(Oi)

fiα1...ndx
1
t · · · dxnt , (B.4)

2The invariance under the whole Diff group can always be recovered after the introduction of an
additional spurious field in the spirit of the Stückelberg field [AF07b, AHGS03].

3We will define a tensor density of weight w as an object T (x) ∈ T (M)p ⊗ T ∗(M)n which under a
general diffeomorphism y(x) transforms as

T ′(y) =

∣
∣
∣
∣
det

[
∂yα

∂xµ

]∣
∣
∣
∣

w

T (x).

132



B.1. Comments on Gauge Issues and Fixed Volume Manifolds

where α1...n is the component of α with respect to the basis {xt}, which must belong to
the transverse class4. Clearly, this definition not only depends on the orientation but
also on the transverse class. It is easy to prove that this definition does not depend
neither on the partition nor on the covering while we stay in the transverse class. We
can also define the external calculus in the usual way [Wal84]. Given a n-form density
α of weight w

α = αµ1···µn
dxµ1 ∧ · · · ∧ dxµn , (B.5)

we define its exterior derivative as

dα = (∂ραµ1···µn
dxρ) ∧ dxµ1 ∧ · · · ∧ dxµn . (B.6)

In other coordinates, we may write

dα= (∂ρ′αµ′

1···µ′

n
dxρ

′

) ∧ dxµ
′

1 ∧ · · · ∧ dxµ
′

n =

∂ρ′

(∣
∣
∣
∂x′

∂x

∣
∣
∣

w/2

∂µ′

1
xµ1 · · · ∂µ′

n
xµnαµ1···µn

)

dxρ
′ ∧ dxµ

′

1 ∧ · · · ∧ dxµ
′

n =

∣
∣
∣
∂x′

∂x

∣
∣
∣

w/2

(∂ραµ1···µn
dxρ)dxµ1 ∧ · · · ∧ dxµn + ∂ρ′

(∣
∣
∣
∂x′

∂x

∣
∣
∣

w/2
)

α, (B.7)

and thus, the operation is well defined only within the transverse classes and this allows
us to define the integration of the exterior derivative of a form density, always inside a
particular class. Given a manifold M of dimension n and a embedded submanifold S of
dimension m, once we choose a transverse class t on M , by restricting to S we define a
transverse class on S. To show it, take two different systems of coordinates in the same
class {xtµ} and {x′tµ}. Given a embedded oriented submanifold S there exists a one to
one map φ : S → φ(S) ⊂M . Now consider the following diagram

S
φ

//

{Qj}
��

M

{Oi}
��

R
m

R
n

where {Qj} and {Oi} are open coverings of S and M respectively. In the intersection
Qj
⋂
φ−1(Oi), we may express the coordinates on S in this open as

(y1(x1, ..., xn), ..., ym(x1, ..., xn)), (B.8)

where {xj} are the coordinates of M in the open Oi. If we consider another open Ol
such that Qj

⋂
φ−1(Oi

⋂
Oj) 6= 0 and that belongs to the same transverse class as Oi,

the coordinates on Qj are defined as

(y1(x1(x′)1, ..., xn(x′)), ..., ym(x1(x′), ..., xn(x′))) = (y′1(x′1, ..., x′n), ..., y′m(x′1, ..., x′n)).
(B.9)

If we now calculate the Jacobian of the transformation from one coordinates to the
other ones,

det
∂y′µ

∂yν
= det

∂y′µ

∂x′α
∂x′α

∂xβ
∂xβ

∂yν
= det

∂y′µ

∂x′α
det

∂xβ

∂yν
= 1, (B.10)

4Indeed, this definition of integration is valid for every object which transforms as a n-form within
the transverse class.
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where we have used the fact that

det
∂xβ

∂x′ν
= 1 ⇒ det

∂y′β

∂x′ν
= det

∂yβ

∂xα
. (B.11)

Thus we see that every transverse class on M induces a transverse class on S.

Notice that the derivation and the integration within each transverse class coincide
with the usual definitions for forms, and thus the Stokes’ theorem holds also within
these classes, i.e. ∫

{M,t}
dα =

∫

{∂M,φ(t)}
α. (B.12)

where φ(t) is the transverse class induced on ∂M by t.

The exterior derivative we have defined is only meaningful within transverse classes
and only within those does it defines a n+ 1-density form from a n-density form. We
may now add more structure to the manifold in order to define a derivative operator
which after acting on tensor densities yields tensor densities. To this end, we introduce
a connection Γσµρ on the manifold. From the fact that Γαµα = ∂µ ln

√−g transforms as
a vector under transformations inside the transverse class (i.e. under TDiff), we have
more freedom to choose the covariant derivative of tensor densities.

Let us consider two possibilities. First, we may define the covariant derivative of
tensor densities as the usual covariant derivative independently of the weights, namely,
for f , v, ω a scalar, vector and covector of weights wf , wv and wω respectively, we define

∇µf = ∂µf, ∇µv
ν = ∂µv

ν + Γνµαv
α, ∇µων = ∂µων − Γαµνωα, (B.13)

and using the Leibnitz property, extend the definition to every tensor density. This
definition, as the exterior derivative, is well defined only within each transverse class.

As a second possibility, for T a tensor density of weight wT , we can define a derivative5

operator [Ort04]

∇w
µT = ∇µT +wTΓαµαT. (B.14)

Since
Γαµα = ∂µ ln

√−g (B.15)

and g is a scalar density of weight −2, the previous covariant derivative preserves the
weight of the tensor T under the whole Diff. The curvature of both derivations coincide.
Notice that, as ∇µ is not a well defined operator, both derivations differ by a term
which is not an antisymmetric tensor density field. In particular, this means that the
expression of the exterior derivative in terms of the derivation ∇ω will be given by

dα= (∇ραµ1···µn
dxρ) ∧ dxµ1 ∧ · · · ∧ dxµn =

(∇w
ρ αµ1···µn

dxρ) ∧ dxµ1 ∧ · · · ∧ dxµn − wαΓν ρναµ1···µn
dxρ ∧ dxµ1 ∧ · · · ∧ dxµn .(B.16)

Finally, let us express the Stokes’s theorem in terms of these operators. We will use the
terminology of [Wal84]. For a vector density vµ of weight wv in a metric manifold we
can construct the form density of the same weight

αµ1···µn−1 = ǫµµ1···µn−1v
µ, (B.17)

5As we said, from the fact that Γα
µα behaves as a vector for the TDiff subgroup, we could consider

and arbitrary value for wT in this expression.
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where ǫµµ1···µn−1 is the volume element associated to the metric. We can easily prove
that

dα = ∇µv
µǫ = (∇w

µ v
µ + wvΓ

ρ
ρµv

µ)ǫ, (B.18)

which from Stokes’ theorem means that
∫

{M,t}
∇w
µ v

µǫ =

∫

{∂M,φ(t)}
nµv

µǫ̃+ ωv

∫

{M,t}
Γ ρ
ρµ vµǫ. (B.19)

Notice that for the metric, as for any tensor, both derivative operators coincide which
in particular means that the metric is compatible with both operators. This does not
happen for arbitrary wT in (B.14). Besides,

∇w
µ g = ∂µg − 2Γρµρg = 0. (B.20)

Finally, let us see the implications of the previous results for partial integration. We
will proceed in parallel with both derivative operators. Consider two tensor densities n
and m of ranks (pn, qn), (pm, qm) and eights wn and wm. If pn+ qn = pm + qm = N we
can saturate indexes of these quantities and build a scalar density of weight wm + wn.
Consider now the integral (for ∇ any derivative operator)

∫

{M,t}
mµ1···µN

∇αn
αµ1···µN ǫ =

∫

{M,t}
nαµ1···µN∇αmµ1···µN

ǫ−
∫

{M,t}
∇α(nαµ1···µNmµ1···µN

ǫ). (B.21)

As an example, let us consider the integral
∫

{M,t}
f(g)∇αv

αǫ, (B.22)

where vα is a vector (i.e. it has null weight) and f(g) is an arbitrary function of the
determinant of the metric of weight w. The previous equation will be identical to

=

{∫

{M,t} ∇α(vαf(g))ǫ−
∫

{M,t} v
α∇αf(g)ǫ

∫

{M,t} ∇w
α (vαf(g))ǫ −

∫

{M,t} v
α∇w

αf(g)ǫ,

From the compatibility of the metric (B.20) and the Stokes’s theorem we find

=

{∫

{∂M,t} nαv
αf(g)ǫ̃ −

∫

{M,t} v
α∂αf(g)ǫ

∫

{M,t} ∇w
α (vαf(g))ǫ.

For the previous particular integral, one can see that both expressions coincide. We
will choose the usual covariant operator (without any reference to the weight) as the
differential operator, which amounts to considering the density tensors as tensors. The
main result is that ∇g 6= 0 and thus terms of the sort

f(g)∇µv
µ (B.23)

are not pure boundary terms.
The choice of other derivative operators amounts to “non-minimal” coupling of the

fields to gravity. In any case, from the expression (B.15) we see that only the deter-
minant of the metric enters in this coupling and the freedom of considering arbitrary
functions of the determinant in the TDiff theory has already been considered in last
section. For the WTDiff case, the connection compatible with the combination ĝµν
satisfies Γρρα = 0, which means that there is no freedom in the choice of the covariant
derivative.
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B.2. Maximally symmetric metrics and Type II solutions

Here we show that the most general Type II solution for the potential (5.23) where one
of the metrics satisfies

Ggµν = Λgµν , (B.24)

is such that fµν = γgµν , where γ is a constant whose value is given by the equations of
motion.

From (B.24), we have KT gtt + JT grr = 0, and plugging expressions (5.9) and (5.10)
into Eqs. (5.4), we have

KT gtt + JT grr =
ζB

2r4

(
∆B2

JKr4

)v−1

(AJ − CK)(3B − 2r2) = 0. (B.25)

Since we are now assuming that B 6= (2/3)r2, it follows that

AJ − CK = 0. (B.26)

Hence, from (5.9) and (5.10) plugged into (5.3),

AT ftt + CT frr =− ζ

2B

(
JKr4

∆B2

)u

(AJ − CK)(3B − 2r2) = 0, (B.27)

and from the equations of motion

ARftt + CRfrr = 0. (B.28)

From this we obtain (see e.g. [IS78] for the explicit expressions of the Ricci tensor
components),

−B′′ +
B′2

2B
+

∆′B′

2∆
= 0. (B.29)

A first integral is given by
B′2

B
= 4a2∆ (B.30)

where a is the constant of integration.
Let us now consider the linear combination

r2T gtt + JT gθθ =− ζ

2Kr2

(
AB2C

JKr4

)v−1

(BJ − Cr2)(BK − 3AB +Ar2), (B.31)

which again must vanish if g is a is a solution of (B.24). Thus one either has

BK +Ar2 = 3AB, (B.32)

or

BJ = Cr2. (B.33)

In both cases

BT ftt + CT fθθ =
ζ

2AB

(
JKr4

AB2C

)u

(BJ − Cr2)(BK − 3AB +Ar2) = 0. (B.34)
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Note that (B.27) and (B.34) imply that T fµν = H(r)fµν . The equations of motion

require that T f must be covariantly conserved, which implies that H is a constant.
Therefore, f is a solution of Einstein’s equations with a cosmological constant.

Consider first the case when (B.32) is satisfied. From this equation and (B.26), we
can eliminate A and C as functions of B and J = K−1. We get from (B.30)

B′2

B3
=

4a2

(3B − r2)2
. (B.35)

With the change of variable
B(r) = r2F 2(r), (B.36)

the differential equation (B.30) is written as

rF ′ =
aF 2

(3F 2 − 1)
− F, (B.37)

which can be easily integrated to give

cr =
1

F

(
√

12 + a2 − a+ 6F√
12 + a2 + a− 6F

) a√
12+a2

, (B.38)

where c is an integration constant. Notice that

F (r) = (
√

12 + a2 + a)/6, (B.39)

is a solution for a > 0, c→ ∞ and for a < 0, c = 0, which means

B ∝ r2. (B.40)

In fact, as we shall see, Eq. (B.40) must hold in general. The equation of motion

BRftt + CRfθθ = 0 takes the form [IS78]

BC ′′ − CB′′ + 2∆ + (CB′ −BC ′)
∆′

2∆
= 0. (B.41)

From (B.26) and (B.32), we have

A =
BK

3B − r2
, C =

BJ

3B − r2
, (B.42)

and hence

∆ =
B2

(3B − r2)2
. (B.43)

Now, Eqs. (B.42) and (B.43) can be used in (B.41) in order to eliminate ∆ and C in
terms of B and its derivatives (as well as the known function J and its derivatives).
The derivatives of B can be eliminated from (B.30), and with this Eq. (B.41) becomes
an algebraic equation relating B and r. Substituting B = r2F 2, and then eliminating
r from Eq. (B.38), we find an algebraic equation involving only F and the integration
constants a and c. It turns out that this algebraic equation does not vanish identically.
Indeed, the first terms in an expansion in powers of F are given by

BRftt + CRfθθ = O(F 2) +
J(r)F (r)

(3F (r)2 − 1)4r

[(
√

12 + a2 − a√
12 + a2 + a

) 3a√
12+a2

c−3Λg

+
{

2a
(
√

12 + a2 − a√
12 + a2 + a

) a√
12+a2

c−1 + 9a
(
√

12 + a2 − a√
12 + a2 + a

) 3a√
12+a2

c−3Λg − 6M
}

F
]

,
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where we have used J = 1 − 2M/r + Λgr
2/3. For the zeroth and first order to cancel

identically, one needs

Λg = 0, M =
ac−1

3

(
√

12 + a2 − a√
12 + a2 + a

) a√
12+a2

, (B.44)

but then going to the next order in F the expression (B.41) does not cancel for any
value of a. Thus, F is fixed to be a constant whose value is determined by (B.41). From
this (B.40) follows.6 Now, it is easy to show that whenever B ∝ r2 both metrics must
be proportional to each other. Indeed, it follows from Eq. (B.30) that ∆ = AC = const.
and B = (a2∆)r2. Also, using JK = 1 and (B.26) we have A = ∆1/2K and C = ∆1/2J .
On the other hand, for constant ∆, Eq. (B.41) reads

BC ′′ − CB′′ + 2∆ = 0.

Using B = (a2∆)r2, C = ∆1/2J and J = 1 − 2M/r + Λgr
2/3, where M and Λg are

constants, it follows immediately that a2 = ∆−1/2, which implies B = ∆1/2r2. It is
then clear that fµν = γgµν , where γ = ∆1/2 is a constant, as we intended to show.

Next, let us consider the case (B.33). Here, we can use (B.26) and (B.30) to obtain

B′2

B3
∝ 1

r4
, (B.45)

and equation (B.45) yields

B =
γr2

(1 + αr)2
. (B.46)

Since we have assumed that g satisfies Einstein’s equations with a cosmological constant,
Eq. (B.24), T gµν should be proportional to gµν with a constant proportionality factor.
This is achieved only for α = 0 which means C = γJ . This means that both metrics
will be proportional, with

fµν = γgµν . (B.47)

This completes our proof.
As discussed in the text, the remaining equations of motion determine the constant γ

in terms of the parameters in the Lagrangian. Finally, let us propose a possible method
to generate solutions of bigravity departing from a solution of GR. Consider a family
of solutions of Einstein’s equations with or without a cosmological constant fµν(αi; Λ)
where αi are integration constants.

B.3. Methods to Generate Bigravity Solutions

These metrics transform under GCT and they are still solutions of Einstein’s equations
in the new coordinates. After identifying the new coordinates with the old ones, we find
a new family of solutions of the (vacuum) Einstein’s equations which we use to define
the metric gµν (remember that the gauge invariance of bigravity is only the subgroup of
diagonal diffeomorphisms which means that gµν and fµν are not equivalent). To get a

6Provided, of course, that the algebraic equation has any solution at all. Otherwise there simply aren’t
any solutions under the assumption (B.32). Note, in particular, from (B.38) and the subsequent
discussion, that the constancy of F can only be achieved for very special values of the integration
constants, but these turn out to be the only relevant ones.
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solution of the bigravity system we also need the traces of the matrix M to be constant.
More precisely, the second family of solutions will be given by

gµν(x) = ∂µy
ρ(x)∂νy

σ(x)fρσ(y(x);α
′
i,Λ

′), (B.48)

from which

Mµ
ν ≡ fµβgβν = fµβ(x;αi,Λ)∂βy

ρ(x)∂νy
σ(x)fρσ(y(x);α

′
i,Λ

′). (B.49)

If the first four traces of this matrix are constant then we can find conditions for these
two metrics to be a solution of bigravity.

As an example, let us consider a generic metric fµν and a constant matrix

Nν
µ = ∂µy

ν(x).

The traces of M will not be constant in general. One possible choice which produces a
constant matrix M is provided by

N = diag{λ1, ..., λ4},

and α′
i = αi. In general this produces a solution of bigravity which breaks the sym-

metries of the original metric fµν . By doing such a transformation and perturbing the
solution we can get Lorentz-breaking massive terms for the gravitons in Schwarzschild-
(A)de Sitter or Kerr space and this possibility is currently under research [Bla]. For the
Schwarzschild case, this is particularly interesting as these Lorentz-breaking perturba-
tions may constitute a new sort of hair for the black hole [Bla]. Besides, the existence
of (non-proportional) rotating solutions in bigravity is also interesting as they seem to
be problematic in other approaches to massive gravity (see, e.g [DTZ07]).

Another method for finding solutions of bigravity would be to, given a metric fµν ,
identifying a vielbein eaµ such that

fµν = eaµe
b
νηab. (B.50)

Remember that the vielbein eaµ is determined up to local Lorentz-transformations.These
local transformations allow to take any other symmetric tensor to a diagonal form (with
non-constant eigenvalues). For a bigravity system, the vielbein where both of the met-
rics are proportional, being one of them Minkowski is completely determined, and we
may call it ēaµ = Lνµ(x)e

a
ν for any vielbein eaν . It satisfies

fµν = ēaµē
b
νηab, gµν = ēaµē

b
νλa(x)ηab. (B.51)

The previous eigenvalues λa(x) will coincide with those of the matrix M in this frame.
Thus, if they have constant values there will be a potential which will have the previous
metrics as a solution. Of course, the metric gµν which we have built is not a solution of
Einstein’s equations in general. Thus, the problem of finding a solution of bigravity in
this framework translates into finding a local Lorentz transformation Lνµ(x) (which can
depend on new parameters) and four constants λi such that the metric gµν of (B.51) is
a solution of Einstein’s equations with a cosmological constant. This method has not
yet been explored. A first natural question is whether by using it, we can recover the
Type I solutions.
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C. Resumen en Castellano

C.1. Introducción

La Relatividad General (RG) describe la interacción gravitatoria en el Sistema Solar
con una precisión asombrosa. Este hecho hace que se extrapole la misma teoŕıa para
describir los fenómenos gravitatorios a escalas de longitud mayores. No obstante, cuando
las observaciones cosmológicas son analizadas en el marco de la RG, los modelos más
satisfactorios exigen la existencia de un tipo de materia dif́ıcilmente compatible con el
modelo estándar de la materia. Este tipo de materia se conoce como enerǵıa oscura.

La única forma en que la materia oscura ha sido detectada ha sido mediante el análi-
sis de los datos cosmológicos dentro del marco de la RG (véase, p.ej., [S+07, A+06,
AM+07]). Este hecho introduce una posible alternativa a la presencia de la enerǵıa
oscura: la modificación de la RG a grandes distancias (en el infrarrojo). En otras pal-
abras, si existe una escala de longitud Lir a partir de la cual la RG deja de ser válida,
es posible que la teoŕıa correcta pueda explicar los datos cosmológicos sin necesidad de
la introducción de un nuevo tipo de materia exótica. Para distancias por debajo de Lir
la teoŕıa debe ser consistente con las predicciones de la RG que han sido comprobadas
experimentalmente.

La aparición de la excala Lir puede motivarse de diversas maneras. Una primera
posibilidad es que las part́ıculas encargadas de la interacción gravitatoria (los gravitones)
sean part́ıculas masivas. Más concretamente, si consideramos la aproximación donde el
campo gravitatorio es débil (aproximación linealizada), la interacción gravitatoria viene
descrita por el intercambio de part́ıculas sin masa de spin-2 [Wei78] que, para dos masas
m1 y m2 separadas por una distancia r, dan lugar al potencial gravitorio,

V (r) ∼ m1m2

M2
P

1

r
,

donde MP es la masa de Planck. La introducción de un término de masa m para el
gravitón produce un potencial del tipo

V (r) ∼ m1m2

M2
P

e−mr

r
.

Para distancias r ≪ m−1, ambos potenciales coinciden. Sin embargo, si r & m−1, el
potencial correspondiente al gravitón masivo es más débil. Nótese que si quisiéramos
explicar este efecto sin considerar gravitones masivos nos veŕıamos obligados a intro-
ducir un tipo de materia que modificara la interacción gravitatoria a largas distancias.
Aśı pues, si m−1 es similar al tamaño del Universo, m−1 ∼ 10 Gpc, podemos esperar
que la enerǵıa oscura no sea necesaria en estas teoŕıas de gravedad modificada.

Desafortunadamente, la gravedad masiva tiene una serie de caracteŕısticas que difi-
cultan el programa anterior. En primer lugar, la estructura tensorial de la teoŕıa a orden
lineal no se corresponde con la del caso sin masa en ningún ĺımite. Este hecho hace que
exista una discontinuidad en las predicciones de ambos modelos conocida como discon-
tinuidad vDVZ [vV70, Zak70]. Esta discontinuidad entre las teoŕıas linealizadas hizo
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que, al contrastar las predicciones con los datos experimentales (como la desviación de
los rayos de luz en el campo gravitatorio solar), la teoŕıa con gravitones masivos fuera
considerada errónea para cualquier valor de la masa m [vV70].

No obstante, la teoŕıa linealizada de la gravedad no es válida para campos gravi-
tatorios fuertes. En el caso de la gravedad ordinaria, para una estrella de masa M la
distancia a la cual el campo gravitatorio es tan fuerte como para que los efectos no-
lineales de la RG sean importantes es r⋆ ∼MM−2

P . Para el caso de la gravedad masiva,
esta escala es mayor y es, como mı́nimo [AHGS03],

r⋆ &
(
m−2MM−2

P

)1/3
.

Para el Sol, con m del orden de la escala de Hubble, r⋆ es más grande que el radio del
Sistema Solar. Esto significa que la gravedad masiva puede ser una teoŕıa compatible
con las observaciones, siempre y cuando los efectos no-lineales corrijan la estructura ten-
sorial. Este hecho todav́ıa no ha sido probado, si bien hay indicios de que un mecanismo
similar funciona en situaciones cosmológicas [DDGV02]. En cualquier caso, para encon-
trar la respuesta a este problema debemos formular la teoŕıa no-lineal de la gravedad
masiva.

La extensión no-lineal de las teoŕıas que involucran gravitones no es trivial. Para el
caso sin masa, la invariancia de gauge es una herramienta de máxima importancia para
hallar la forma final de la RG. En el caso con masa esta invariancia de gauge se pierde,
si bien puede reintroducirse añadiendo campos escalares auxiliares como campos de
Stückelberg [RRA04] o mediante un mecanismo similar al mecanismo de Higgs [tH07].
Ambos formalismos sufren de la pérdida de unitariedad de la teoŕıa a orden no-lineal, lo
que hace que no sean buenos candidatos para construir una teoŕıa cuántica ni siquiera
a nivel efectivo. Es por eso importante buscar modelos consistentes no-lineales donde el
gravitón pueda adquirir masa.

Una posibilidad que resulta natural hoy en d́ıa es que los estados masivos se correspon-
dan a estados de Kaluza-Klein (KK) provenientes de dimensiones adicionales [ACF87].
Sin embargo, si queremos tener un solo estado masivo hace falta considerar escenarios
diferentes a los usuales en el estudio de dimensiones adicionales. Esto se debe a que, si
las dimensiones adicionales tienen un volumen finito, además de los modos masivos hay
un modo sin masa (gravitón sin masa). Por otra parte, el número de gravitones masivos
es infinito y, normalmente, todos tienen masas parecidas de modo que la presencia de
un solo gravitón con masa resulta complicada.

Existen escenarios con dimensiones adicionales grandes basados en brane-worlds donde
el espectro de KK tiene dos modos ligeros y el resto de modos tienen una masa mucho
mayor [Pad05, KMP01b]. No obstante, para el rango de valores donde los modelos son
viables las modificaciones a RG ocurren a distancias no observables.

Otra manera de introducir una escala Lir a partir de la cual la RG se ve modificada
es considerar al gravitón como una resonancia con una tiempo de vida finito. En esta
situación, para escalas de tiempo (y distancia) por debajo de la vida media del gravitón,
éste se comportará como una part́ıcula estable, mientras que para grandes tiempos (o
largas distancias) irá decayendo a los autoestados de la teoŕıa. Este fenómeno aparece
en el estudio de teoŕıas con branas en dimensiones adicionales grandes con volumen
infinito [DGP00b, CEH00]. En ese caso, la interacción gravitatoria en la brana está me-
diada por una resonancia construida a partir de los modos masivos de KK. Un modelo
especialmente interesante es el llamado modelo DGP [DG01].

Dado que la resonancia está construida a partir de modos masivos y éstos sufren
de la discontinuidad vDVZ, los modelos donde el gravitón es una resonancia deben
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lidiar con este problema para ser considerados como posibles candidatos a modificar la
RG de manera consistente. Para el ejemplo propuesto en [CEH00], la discontinuidad
se salva a expensas de introducir un campo de enerǵıa negativa, lo que hace que la
teoŕıa no sea unitaria. En el caso de DGP, las correcciones no lineales parecen corregir
la discontinuidad [DDGV02]. No obstante, el hecho de que los efectos no lineales sean
importantes a escalas de enerǵıa tan bajas hace que las contribuciones no lineales a las
perturbaciones cuánticas también contribuyan a escalas de enerǵıa inusualmente bajas.
Este fenómeno, conocido como acoplamiento fuerte, hace que para calcular procesos
como la atracción gravitatoria entre la Luna y la Tierra haga falta conocer los términos
no lineales, que en una teoŕıa no renormalizable (como lo es DGP) requiere conocer la
estructura ultravioleta de la teoŕıa. Existen propuestas para salvar este gran obstáculo
pero su motivación dentro del marco de la gravedad cuántica no está clara [NR04,
Dva04].

Por otra parte, las teoŕıas de gravedad modificada también han de dar lugar a predic-
ciones cosmológicas acordes con las observaciones. Un aspecto interesante del modelo
DGP es que existen soluciones que reproducen los datos experimentales de aceleración
del universo sin necesidad de enerǵıa oscura [Def01]. Desafortunadamente, estos modelos
adolecen de la presencia de estados con norma negativa (fantasmas, en la terminoloǵıa
de teoŕıa cuántica de campos).

Otra posibilidad para construir una teoŕıa no lineal donde el gravitón sea masivo
es mediante la introducción de otros campos además del gravitatorio. Si estos cam-
pos tienen soluciones clásicas no triviales es posible que al propagarse en ese fondo
el gravitón adquiera masa. Con los campos escalares, para dotar al gravitón de masa
es necesario considerar modelos con términos cinéticos no canónicos. Estos modelos
rompen la invariancia de Lorentz de la teoŕıa, lo que permite salvar las dificultades del
acoplamiento fuerte y la discontinuidad vDVZ [Dub04, AHCLM04].

La presencia de campos vectoriales no triviales automáticamente rompe la invaria-
cia de Lorentz de la teoŕıa. Como sucede para el caso escalar, para conseguir que los
gravitones sean masivos en estos casos, las soluciones clásicas han de ser no-triviales
[TR07, Gri04].

Finalmente, en esta Tesis nos hemos centrado en la teoŕıa de la bigravedad. Esta teoŕıa
consiste en la introducción de dos gravitones que interaccionan entre śı. La interacción
entre gravitones lleva, genéricamente, a la aparición de masa para uno de ellos. Dado
que ahora las soluciones de vaćıo pueden ser triviales, la teoŕıa es más sencilla para
describir gravedad masiva que las correspondientes a añadir campos escalares o vec-
toriales. Además, como veremos más adelante, disponemos de soluciones exactas para
situaciones no triviales que hacen que esperemos poder aprender más sobre la posible
resolución de los problemas de la gravedad masiva debido a efectos no lineales.

Las modificaciones anteriores a la RG aparecen a una distancia finita. Existe además
la posibilidad de hacer que esta distancia sea infinita. En otras palabras, existen modi-
ficaciones de RG que sólo cambian la naturaleza de la enerǵıa oscura (al menos clásica-
mente). Entre ellas, una alternativa a la RG es la llamada gravedad unimodular [vvN82].
Esta teoŕıa se basa en la observación de que la ecuaciones de Einstein sin traza son equiv-
alentes a las ecuaciones de Einstein excepto por una constante de integración que juega
el papel de enerǵıa oscura. Aśı, todas las predicciones clásicas son las mismas, excepto
por el hecho de que la cantidad de enerǵıa oscura viene caracterizada por una constante
de integración y no por un parámetro de la teoŕıa. Este tipo de teoŕıas con constantes
de integración arbitrarias relacionadas con la enerǵıa oscura apareceran varias veces a
lo largo de la Tesis.
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C.2. Resultados Principales de la Tesis

C.2.1. Lagrangianos Lineales con part́ıculas de Spin-2

En el caṕıtulo 2 hemos considerado el Lagrangiano local más general invariante Lorentz
y de segundo orden en derivadas parciales1,

L = LI + β LII + a LIII + b LIV , (C.1)

donde hµν es un tensor simétrico, h = ηµνhµν y hemos definido

LI =
1

4
∂µh

νρ∂µhνρ, LII = −1

2
∂µh

µρ∂νh
ν
ρ,

LIII =
1

2
∂µh∂ρhµρ, LIV = −1

4
∂µh∂

µh. (C.2)

Dependiendo de los parámetros β, a y b, el Lagrangiano anterior puede ser invariante
bajo un grupo de transformaciones locales o de gauge. Más concretamente, si considera-
mos la transfomación de gauge compatible con la simetŕıa de Lorentz más general para
el Lagrangiano (C.1), ésta ha de ser de la forma.

δhµν = 2∂(µξν) +
2

n
φηµν . (C.3)

Si ξ 6= 0, es necesario que se cumpla la condición β = 1 en cuyo caso el Lagrangiano es
invariante bajo la transformación (C.3) con

∂µξµ = φ = 0.

Estas transformaciones generan el grupo de los difeomorfismos linealizados transversos
(a los que llamaremos TDiff), que es un subgrupo del grupo de difeomorfismos (Diff).
Este subgrupo, correspondiente a una invariancia de gauge reducible, ha sido propuesto
como el grupo de invariancia de gauge necesario para que el Lagrangiano (C.1) contenga
part́ıculas de spin-2 sin masa [vvN82]. Como veremos en seguida, éste es efectivamente
el caso.

Esta invariancia de gauge puede ampliarse si los parámetros a y b cumplen la relación

b =
1 − 2a+ (n− 1)a2

(n− 2)
. (C.4)

Para a 6= 2/n, todos estos casos están relacionados por una redefinición del campo hµν
con el Lagrangiano habitual resultante de considerar el ĺımite lineal de la RG en torno
a la métrica de Minkowski, a = b = 1. La invariancia de gauge en estos casos es la de
todos los difeomorfismos linealizados, es decir, (C.3) sólo ha de cumplir la condición
φ = 0.

Por otro lado, si a = 2/n y b = (n + 2)/n2, la teoŕıa es invariante bajo las transfor-
maciones de Weyl linealizadas (φ 6= 0) y los TDiff. Llamaremos a este grupo de simetŕıa
WTDiff2.

1Por el momento trabajaremos en un espacio-tiempo de dimensión arbitraria n. Por otra parte, el
primer término está normalizado de forma que los grados de libertad tensoriales aparezcan de
forma estándar.

2Para Lagrangianos con derivadas superiores existe la posibilidad de encontrar rangos de parámetros
invariantes bajo las transformaciones (C.3) generales. No obstante, estos Lagrangianos presentan
estados con norma negativa en su espectro.
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Las dos posibles máximas extensiones del grupo de simetŕıa TDiff tienen el mismo
número de parámetros libres. No obstante, en el caso de los Diff, los parámetros apare-
cen junto a derivadas, lo que hace pensar que el número de grados de libertad f́ısicos
será menor en este caso [SV07]. Este razonamiento no es correcto ya que ambas teoŕıas
comparten las mismas ecuaciones del movimiento. Para verlo basta con darse cuenta de
que la acción invariante bajo los WTDiff puede escribirse como

SWTDiff = SDiff [ĥµν ], (C.5)

donde ĥµν = hµν − 1
nhηµν . Este hecho hace que las ecuaciones del movimiento sean

δSWTDiff [h]

δhµν
=
δSDiff [ĥ]

δĥρσ

(

δµ(ρδ
ν
σ) −

1

n
ηρση

µν

)

. (C.6)

Gracias a la identidad de Bianchi que satisface la acción invariante bajo Diff,

∂ρ

(
δSDiff [h]

δhρσ

)

= 0,

es fácil ver que las ecuaciones del movimiento de WTDiff se corresponden con

δSDiff [ĥ]

δhρσ
ηρσ = Λ.

En el gauge h = 0 (que se puede alcanzar tanto en WTDiff, como en Diff), éstas son
las ecuaciones del movimiento de la acción invariante Diff excepto por la presencia de
una constante de integración Λ.

Para el caso con β, a y b arbitrario, resulta más sencillo analizar los grados de libertad
del sistema descomponiendo las componentes del campo en representaciones irreducibles
del grupo SO(3) (ver, p. ej., [MFB92]),

h00 =A,

h0i = ∂iB + Vi,

hij = ψδij + ∂i∂jE + 2∂(iFj) + tij , (C.7)

donde ∂iFi = ∂iVi = ∂itij = tii = 0.
Si β 6= 1, no sólo hay grados de libertad vectoriales (Fi, Vi) que se propagan sino

que además éstos incluyen estados con norma negativa. Si bien a orden lineal esto no
es un gran problema puesto que podemos restringir nuestro espacio f́ısico a los estados
de norma positiva, al introducir términos de interacción uno espera que los fantasmas
se acoplen a la materia ordinaria de modo que no exista un vaćıo estable en la teoŕıa.
Por eso, la condición β = 1 es una condición necesaria para la consistencia de la teoŕıa
cuántica de las perturbaciones.

Una vez impuesta esta condición, además de los grados de libertad tensoriales el único
grado de libertad que se propaga es un escalar cuyo Lagrangiano puede escribirse como

(s)LTDiff = −Z
4

(∂µh)2, (C.8)

donde

Z ≡ b− 1 − 2a+ (n− 1)a2

n− 2
. (C.9)
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Aśı pues, si Z ≤ 0, la teoŕıa está libre de estados de norma negativa.

El análisis anterior se puede completar con la inclusión de términos de masa,

Lm = −1

4
m2

1hµνh
µν +

1

4
m2

2h
2.

Si m1 = 0 el término anterior es compatible con las simetŕıa TDiff. Su efecto es dotar
de masa al grado de libertad escalar h. Dado que no hay ninguna simetŕıa que proteja
la masa de este escalar, uno espera que dicha masa sea de la escala del regulador
ultravioleta de la teoŕıa, de modo que el escalar es naturalmente pesado y los grados de
libertad naturales de TDiff son los mismos que para WTDiff y Diff.

Para los demás casos, las polarizaciones de spin-2 del campo hµν también adquieren
masa. El análisis de los grados de libertad da como resultado que el único Lagrangiano
que no posee estados con norma negativa es el Lagrangiano de Fierz-Pauli (FP), carac-
terizado por β = a = b = 1 y m1 = m2. En este caso, sólo las polarizaciones de spin-2
se propagan.

Una vez que hemos identificado los Lagrangianos para el campo hµν que están libres
de inestabilidades, podemos preguntarnos sobre el tipo de interacción al que dan lugar.
Para ello podemos acoplar una fuente conservada3 Tµν al campo hµν y encontrar el
propagador que rige la interacción entre dos fuentes.

La primera dificultad para el caso TDiff es que no se puede imponer una condición
de gauge covariante que involucre sólo derivadas segundas. Dicha condición existe para
derivadas superiores, de modo que para TDiff consideraremos como término que fija el
gauge

Lgf =
1

2M4
(∂α∂

µ∂νhµν − �∂µhαµ)
2. (C.10)

Para los casos WTDiff y Diff consideraremos el gauge harmónico. Dado un acoplamiento
compatible con la simetŕıa bajo TDiff del tipo

Lint(x) =
1

2
(κ1T

µν + κ2Tη
µν)hµν ≡ 1

2
T µν
tot hµν , (C.11)

la interacción entre las fuentes puede leerse de la expresión [BD72]

Sint ≡
1

2

∫

dnkLint(k) =
1

2

∫

dnk Ttot(k)∗µν∆µνρσTtot(k)ρσ, (C.12)

donde ∆µνρσ corresponde al propagador de la teoŕıa, que no es más que el operador
inverso a las ecuaciones del movimiento. El resultado final es

Lint(k) = κ2
1 T

∗
µν

(
Pµνρσ2

k2 −m2
1

)

Tρσ + P0 |T |2, (C.13)

3Al contrario que en el caso sin masa, no es necesario que la fuente sea conservada. No obstante,
de no serlo puede dar lugar a la propagación de grados de libertad no unitarios. Véase también
[BD72, FVD80].
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donde los operadores4,

P2 ≡
1

2
(θµρθνσ + θµσθνρ) −

1

(n− 1)
θµνθρσ,

P0 ≡
1

g(k)

[
κ2

1aw
(n− 1)

+ 2κ1κ2

(

aw − a×√
n− 1

)

+κ2
2

[
(n− 1)aw + as − 2

√
n− 1a×

]
]

, (C.14)

representan la contribućıon de la parte de spin-2 y spin-0 respectivamente. Podemos
ahora considerar los diferentes casos que hemos mencionado.

Para el caso de gravedad masiva con término de masa de Fierz-Pauli, recuperamos el
conocido resultado

Lint = κ2
1 T

∗
µν

(
Pµνρσ2

k2 −m2
1

)

Tρσ =
κ2

1

k2 −m2
1

[

T ∗
µνT

µν − 1

(n− 1)
|T |2

]

. (C.15)

El factor (n − 1)−1 no depende de la masa y es el origen de la discontinuidad vDVZ
(compárese con (C.16) en el ĺımite invariante Diff). Para el caso TDiff, encontramos

Lint = κ2
1

[

T ∗
µνT

µν − 1

(n− 2)
|T |2

]
1

k2
−
(

κ2 +
1 − a

n− 2
κ1

)2 |T |2
Z k2 − m2

2

. (C.16)

En la ecuación anterior, el primer término se corresponde a la interacción mediada
por una part́ıcula de spin-2 sin masa, mientras que el último término se corresponde

a un campo escalar masivo con masa efectiva m2
ef =

m2
2

Z > 0 y acoplamiento κ2
ef =

−1
Z

(

κ2 + 1−a
n−2κ1

)2

. Estos parámetros están sujetos a restricciones experimentales. Por

ejemplo, para un parámetro de acoplamiento κef ∼ κ1, el grado de libertad escalar ha
de ser suficientemente masivo como para no haberse detectado con los experimentos
actuales, mef ≥ (30µm)−1 [K+07].

Finalmente, para WTDiff ó Diff, Z = 0 y la interacción gravitatoria viene descrita
por (C.16) con κef = 0.

El comportamiento anterior sólo describe la interacción gravitatoria debida a cam-
pos gravitatorios débiles (donde la aproximación linealizada es válida). Más adelante
estudiaremos la extensión de los resultados anteriores al régimen no lineal.

C.2.2. Lagrangianos para part́ıculas de Spin-3/2

Antes de comenzar a estudiar la extensión no lineal de los Lagrangianos de spin-2, vamos
a investigar cómo las ideas de la sección anterior pueden extenderse a otros campos de
spin alto. En particular, en [SV07] se demuestra cómo para campos bosónicos de spin
mayor o igual a 2 existen dos posibles Lagrangianos en términos de tensores simétricos
cuyo espectro contiene únicamente part́ıculas sin masa de dicho spin. Tal y como pasa
para spin-2, el “nuevo” Lagrangiano se puede construir sustituyendo en el Lagrangiano

4Para simplificar las expresiones usamos las siguientes definiciones:

θαβ ≡ ηαβ − kαkβ

k2
, as ≡ [1 − (n− 1)b]k2 −m2

1 + (n− 1)m2
2,

aw ≡ (1 − 2β + 2a− b)k2 −m2
1 +m2

2, a× ≡
√
n− 1

[
(a− b)k2 +m2

2

]
.
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habitual de spin alto (véase [Fro78]) el tensor simétrico por su parte sin traza [SV07].
La equivalencia entre ambos se debe a la aparición de una ligadura terciaria.

Para los campos fermiónicos descritos en términos de tensores espinoriales, existen
otro tipo de trazas asociadas a la contracción de ı́ndices tensoriales con las matrices
γµ. Una pregunta natural es si al sustituir el campo por su versión sin γ-traza en la
acción estándar considerada en [RS41] (véase también [FF78]), la acción que se obtiene
da lugar a las mismas ecuaciones del movimiento que la acción original. Para clarificar,
ese aspecto, en el caṕıtulo 3 hemos estudiado la acción covariante de primer orden en
derivadas más general para el vector spinorial de Majorana ψµ,

S(3/2) =

∫

d4x ψ̄µ (λ(γµ∂ν + γν∂µ) + ϑγµ/∂γν + ζηµν/∂)ψν . (C.17)

Además de las componentes de spin-3/2, el campo ψµ contiene otras polarizaciones
que, para una acción general, son dinámicas. Para el caso del Lagrangiano de Rarita-
Schwinger (RS) [RS41], sólo las polarizaciones de spin-3/2 se propagan debido a la
existencia de una invariancia de gauge. Aśı, de la familia (C.17), los casos que den lugar
a las mismas ecuaciones del movimiento que RS deben de poseer una invariancia de
gauge. Estudiando la transformación de gauge covariante más general,

ψµ 7→ ψµ + ∂µǫ+ γµϕ, (C.18)

es fácil darse cuenta de que sólo hay dos casos que gocen de invariancia de gauge. El
primero de ellos, con λ = −ϑ = −ζ en (C.17) y los casos relacionados con esta acción
por una redefinición del campo ψµ, se corresponde a la acción de RS. En este caso, la
acción es invariante bajo la transformación (C.18) con ϕ = 0.

El otro caso se corresponde a los parámetros λ = −ζ/2, ϑ = 3ζ/8. La acción (C.17)
para estos parámetros es invariante bajo la transformación (C.18) con /∂ǫ = 0. A esta
acción la hemos llamado WRS por la semejanza de la tranformación de gauge con una
simetŕıa de Weyl y porque, tal y como pasaba en el caso bosónico, la acción WRS se
puede hallar substituyendo en la acción de RS ψµ por su parte sin γ-traza. Es decir,
salvo un factor constante,

S(3/2)
WRS = SRS(ψ̂µ) = −1

2

∫

d4x
¯̂
ψµǫ

µνρσγ5γν∂ρψ̂σ, (C.19)

con ψ̂µ = ψµ − 1
4γµγ

αψα.
Ambos casos, RS y WRS, agotan las posibilidades de acciones con invariancia gauge.

Otra manera de demostrarlo es mediante un análisis canónico de los grados de liber-
tad. Una vez descompuesta la parte vectorial de ψµ en representaciones irreducibles de
SO(3), la estructura del término cinético de los campos revela que la condición necesaria
para que exista invariancia de gauge es

ϑ =
ζ2 + 2ζλ+ 3λ2

2ζ
. (C.20)

Las únicas acciones que cumplen esta propiedad son WRS, RS y las acciones rela-
cionadas con ella por una redefinición del campo ψµ.

El análisis de los grados de libertad de la acción de RS puede encontrarse, por ej., en
[VN81]. Para la acción WRS, de (C.19) las ecuaciones del movimiento se corresponden
a la parte sin γ-traza de las ecuaciones del movimiento de RS en el gauge γµψµ = 0,

Rµ
WRS ≡ δLWRS

δψ̄µ
=

(

δµα − 1

4
γµγα

)
δLRS(ψ̂µ)

δ
¯̂
ψµ

≡
(

δµα − 1

4
γµγα

)

Rα
RS(ψ̂µ) = 0. (C.21)
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Contrariamente a lo que ocurŕıa para el caso WTDiff, al tomar la divergencia de la
expresión anterior no recuperamos la γ-traza de las ecuaciones de RS, sino

∂µRµ
WRS = −1

4
/∂
(

γαRα
RS(ψ̂µ)

)

. (C.22)

Aśı pues, de la identidad γαRα
RS(ψ̂µ) = −2∂αψ̂α, se deduce que la combinación ∂αψ̂α

es dinámica para el caso WRS.

A pesar de esta diferencia, dado que la ecuación del movimiento para este grado
de libertad es la ecuación de Dirac, imponiendo como condición inicial la ausencia de
esta combinación, ésta se mantendrá durante la evolución del sistema, de modo que los
grados de libertad libres son los mismos que en el caso de RS5. Lo interesante de este
resultado, que es trivial a orden lineal, es que se extiende también al caso de interacción
del campo ψµ con una fuente conservada. En ese caso, tanto el Lagraniano de RS como
el de WRS dan lugar a un propagador que se corresponde con

J̄µψ̂µ = J̄µ
1

�

(

ηµν/∂ +
1

2
γµ/∂γν

)

Jν , (C.23)

siendo Jµ una corriente fermiónica conservada.

Uno de los problemas que aparece en las teoŕıas con grados de libertad de spin alto es
cómo acoplar dichos grados de libertad a otros campos consistentemente. Para el caso
de spin-3/2 sin masa, el acoplamiento electromagnético no es posible. La razón es que
la invariancia de gauge de la acción libre fuerza que se cumpla la ecuación

Fµνγ
µψν = 0,

que implica que, o bien el campo electromagnético, o bien el campo de RS son triviales.
Dado que la acción de WRS tiene otra invariancia de gauge, es posible su acoplamiento
con el campo electromagnético. No obstante, el acoplamiento excita los grados de liber-
tad de spin bajo, lo que puede arruinar la teoŕıa a nivel cuántico si éstos son fantasmas.

Finalmente, el campo de spin-3/2 es importante como compañero supersimétrico de
las part́ıculas de spin-2. Para la acción invariante Diff, al añadirle la acción de RS la
teoŕıa resultante es invariante bajo transformaciones de supersimetŕıa globales. Este es
el primer paso para construir la acción de supergravedad, que además supone un primer
ejemplo de acoplamiento consistente del campo de spin-3/2 sin masa con otro campo.
En la última parte del caṕıtulo 3 hemos estudiado la posibilidad de añadir una acción de
spin-3/2 a la acción de spin-2 invariante bajo WTDiff de forma que la teoŕıa resultante
sea invariante bajo una transformación de supersimetŕıa. El resultado es negativo: no
existe ninguna posible extensión supersimétrica mı́nima de la acción WTDiff, donde por
mı́nima entendemos que se corresponde a la adición de una acción del tipo (C.19). Para
demostrarlo, basta comprobar que ninguna transformación supersimétrica del tipo

δhµν = ǭγ(µψν) +Aηµν ǭγ
ρψρ,

δψµ =
(
B∂µh+ C∂ah

a
µ +Dγµγ

ν∂νh+ Eγµγ
α∂bh

b
α + Fσab∂ahµb

)
ǫ, (C.24)

existe para este sistema.

5La misma equivalencia se da cuando se añade un término que fije el gauge de forma covariante [DF76].
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C.2.3. Extensión no-lineal

Los resultados de las secciones anteriores se refieren a las teoŕıas linealizadas de gravedad
y spin-3/2. Para el caso de la gravedad, es bien conocido que la descripción a orden
lineal no basta para explicar todos los fenómenos gravitatorios observados, como el
perihelio de Mercurio. Además, el principio de equivalencia fuerte dice que la gravedad
debe acoplarse de manera universal a todos los tipos de enerǵıa, incluyendo la suya
propia. Este tipo de acoplamiento proviene de términos no-lineales en la acción. Para el
caso de teoŕıas de gauge, la inclusión de términos de interacción arbitrarios tiene como
consecuencia la pérdida de la simetŕıa, y con ella la propagación de otros grados de
libertad a nivel no-lineal (que en particular pueden ser fantasmas). Para que esto no
suceda, es necesario que los nuevos términos sean añadidos de forma que la invariancia
de gauge se mantenga o se deforme convenientemente. Para la acción invariante Diff,
este requerimiento, junto a una serie de hipótesis plausibles, es suficiente para construir
los términos no-lineales y llegar al Lagrangiano de la RG de Einstein.

Para los casos TDiff o WTDiff, actualmente no existe un resultado tan general. En
el caṕıtulo 4 hemos construido extensiones no-lineales usando distintos métodos. Un
primer intento para encontrar la extensión no-lineal de manera constructiva es, siguiendo
lo establecido para el caso Diff en [Des70], considerar la acción de WTDiff linealizada
en el formalismo de Palatini,

S(1) =
1

κn−2

∫

dnx
{

−ĥµν∂[µΓρρ]ν + ηµνΓρλ[µΓ
λ
ρ]ν

}

, (C.25)

donde los campos Γρµν y hµν son independientes. Las ecuaciones del movimiento de la
conexión se corresponden con ligaduras que imponen la compatibilidad de ésta con la
“métrica” ĥµν , y una vez sustituidas en (C.25) originan la acción invariante WTDiff en

función de ĥµν .
Para encontrar una extensión no-lineal de esta acción, primero hemos de concretar el

tensor enerǵıa-momento correspondiente a la acción (C.25) [BG00]. Para ello, utilizare-
mos el método de Rosenfeld que consiste en sustituir la métrica plana en (C.25) por
una métrica auxiliar de forma que la acción sea invariante bajo Diff no-lineales. Una
vez hecho esto, es fácil demostrar que la cantidad,

tµν = − 2√−γ
δS[γ]

δγµν

∣
∣
∣
γµν=ηµν

,

es simétrica y conservada y puede considerarse como fuente en las ecuaciones de Einstein
linealizadas [BG00]. Para usar esta prescripción, es necesario asumir cómo transforman
los campo hµν y Γρµν bajo estos Diff auxiliares.

Considerando ĥµν como una densidad contravariante y la conexión como un campo
vectorial, el acoplamiento al correspondiente tensor enerǵıa-momento

t̃µν = − 2√−γ
δS[γ; ĥµν ]Diff

δγµν

∣
∣
∣
γµν=ηµν

, (C.26)

puede derivarse directamente de una acción sin más que añadir a (C.25) el término

S(2) = − 1

κn−2

∫

dnxĥµνΓσρ[µΓ
ρ
σ]ν . (C.27)

La acción no-lineal en este caso es

S ≡ S(1) + S(2) = − 1

2κn−2

∫

dnxg̃µνRµν

[

Γραβ

]

, (C.28)
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donde hemos definido g̃µν = ηµν −
√

2κĥµν . Este Lagrangiano difiere del Lagrangiano
de Einstein-Hilbert para RG. Además, depende expĺıcitamente de la métrica ηµν y da
lugar a ecuaciones del movimiento diferentes a las de RG. Por último, el álgebra de la
invariancia de gauge de la que goza este Lagrangiano no es cerrada, lo que parece indicar
que el número de grados de libertad ligeros de la teoŕıa será más que para el caso de
RG. Esto supone que la teoŕıa puede ser descartada experimentalmente. No obstante,
el estudio preciso de este nuevo Lagrangiano todav́ıa no ha sido llevado a cabo.

Independientemente del análisis anterior, las teoŕıas invariantes TDiff pueden ser fácil-
mente extendidas no-linealmente gracias a que el subgrupo transverso de los Diff tiene
una extensión natural no-lineal. Una de las formas de hallarla es considerar un objeto
no-lineal f(ηµν , hµν) que se reduzca a la traza a orden lineal6. Si existe un subgrupo
de los Diff no-lineales bajo los cuales este objeto se comporte como un escalar, éste
supondrá una extensión no-lineal de TDiff. Bajo suposiciones relativamente generales,
se puede demostrar que este objeto ha de depender únicamente del determinante de
la métrica gµν ≡ ηµν + hµν . El subgrupo que deja invariante el determinante se corre-
sponde a los Diff no-lineales con Jacobiano unitario. Por su parte, la simetŕıa de Weyl
no-lineal se refiere a transformaciones del tipo

gµν 7→ eφgµν . (C.29)

Una vez contruida la invariancia de gauge no-lineal, las teoŕıas que nos interesan son
aquellas que posean una acción invariante bajo dicha invariancia de gauge. Se puede
demostrar (véase [BD88]) que los posibles términos para construir el Lagrangiano son
los términos geométricos habituales para la métrica gµν , junto a funciones arbitrarias
del determinante det gµν ≡ g,

S =

∫ (

−χ
2[g, ψ]

2κn−2
R[gµν ] + L[g, ψ, gµν ]

)

dnx. (C.30)

En general estos Lagrangianos poseen un grado de libertad escalar además de los grados
de libertad de spin-2. Para verlo, podemos hacer el análisis linealizado, en cuyo caso
encontraŕıamos un Lagrangiano tipo (C.1) con β = 1, o directamente redefinir la métrica
como ḡµν = χ2gµν , de modo que la acción sea

S = − 1

2κn−2

∫ √−ḡ R[ḡµν ] dnx+ SM +

∫

Λ dnx, (C.31)

con

SM =

∫ √−ḡ
[
(n− 1)(n− 2)

2κn−2χ2
ḡµν∂µχ∂νχ+ χ−nL[χ,ψ, ḡµν ] − χ−nΛ

]

dnx. (C.32)

Esta acción se corresponde con una teoŕıa escalar-tensor, donde la “métrica” viene
representada por la combinación ḡµν mientras que χ2 aparace como un grado de libertad
escalar. La fenomenoloǵıa de este tipo de teoŕıas es bien conocida, y en particular los
parámetros de acoplamiento y la masa del campo escalar han de satisfacer las cotas que
indicamos anteriormente.

Por otra parte, para el caso WTDiff, existe una única extensión no-lineal según este
proceso,

SWTDiff = − 1

2κn−2

∫

dnx R[ĝµν ], (C.33)

6Recordemos que los TDiff lineales dejan invariante la traza de hµν .
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donde ĝµν = |g|1/ngµν . Las ecuaciones del movimiento derivadas de esta acción son
las de la gravedad unimodular en el gauge |g| = 1. En particular, esto hace que las
ecuaciones del movimiento sean las mismas que las de RG excepto por una constante de
integración que tiene el papel de una constante cosmológica. Esta caracteŕıstica también
la comparten otras acciones invariantes bajo TDiff, del tipo

S = − 1

2κn−2

∫
[√−gR+ f(g)

]
dnx. (C.34)

No es posible distinguir entre TDiff, Diff o WTDiff a este nivel, ya que las ecuaciones del
movimiento son las mismas en los tres casos. Es cierto que para el caso TDiff, existen
términos de interacción más generales que en el caso WTDiff o Diff, y, desde el punto
de vista de teoŕıas efectivas, se espera que esos términos estén presentes en la acción
efectiva de la teoŕıa. Por otro lado, tal y como discutiremos más adelante, no está claro
que la analoǵıa clásica se mantenga a nivel cuántico donde los observables f́ısicos van
más allá de las ecuaciones del movimiento.

Independientemente de la fenomenoloǵıa de los modelos, existen determinados resul-
tados de las teoŕıas invariantes bajo Diff que se modifican para el caso TDiff. Una de las
diferencias proviene de considerar el subgrupo de transformaciones de gauge que deja
invariante la métrica de Minkowski (grupo de covarianza). Para el caso de teoŕıas in-
variantes Diff y bajo transformaciones de Weyl, este grupo es el grupo conforme [FT85],
mientras que para WTDiff, de la ecuación

e−2λ(x) ∂x
µ

∂yα
∂xν

∂yβ
ηµν = ηαβ , (C.35)

para transformaciones transversas obtenemos λ(x) = 0, y el grupo de Poincaré como
grupo de covarianza. De forma similar, una métrica será equivalente a la métrica plana
cuando el tensor de Riemann de la combinación ĝµν = |g|1/ngµν se anule. La diferencia
entre las diferentes clases de equivalencia de soluciones puede tener relevancia a la hora
de definir observables cuánticos de la teoŕıa [Unr89].

Otros aspectos geométricos, como la integración de densidades de peso arbitrario
pueden definirse en el caso de las teoŕıas invariantes TDiff como mera extensión de
las definiciones equivalentes del caso invariante Diff. Finalmente, la definición de una
derivada covariante difiere en ambos casos. Esto es debido a que, dada una conexión,
Γρµν , las componentes Γρρν se comportan como un vector bajo TDiff, de modo que,
dada una derivada covariante,

∇µv
ν = ∂µv

ν + Γνµαv
α,

se le puede añadir un término proporcional a Γρρν ,

∇w
µT = ∇µT +wTΓαµαT. (C.36)

Esto hace que ésta también sea una derivada covariante asociada a la misma conexión
y tiene consecuencias a la hora de hallar el Lagrangiano covariante asociado a un La-
grangiano linealizado.

Para el caso WTDiff la conexión es compatible con ĝµν de modo que Γρρν = 0 y no
existe la anterior degeneración.

Finalmente, recordemos que el acoplamiento entre el campo gravitatorio y los fermiones
precisa del formalismo de primer orden (o de Palatini) de la RG. La equivalencia entre
los formalismos de primer y segundo orden no está garantizada a priori, si bien para
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el caso WTDiff es fácil demostrar que ambos formalismos son equivalentes. Para ello,
consideremos la siguiente acción de primer orden en cuatro dimensiones,

S = − 1

2κ2

∫

d4x êaµêbνRµνab[ω
ab
ν ], (C.37)

donde êaµ = e−1/4eaµ, y eaµ y ω ab
ν son el vierbein y la conexión de spin respectivamente.

La variación de esta acción con respecto a ω ab
ν reporta unas ligaduras que hacen que

la conexión de spin sea compatible con el objeto êaµ, mientras que de la variación con
respecto al vierbein aparecen las ecuaciones de gravedad unimodular. Aśı, las ecuaciones
del movimiento son las mismas que las que surgen de la acción (C.33).

Esto nos permite acoplar fermiones a las teoŕıas WTDiff mediante la introducción
de la derivada covariante. Recordemos que para el caso de los campos de spin-3/2, su
acoplamiento a la gravedad en la acción de supergravedad es consistente debido a las
ecuaciones del movimiento de RG. Para el caso de WTDiff, el mismo acoplamiento
parece requerir de nuevo la imposición de todas las ecuaciones de Einstein en el vaćıo,
incluyendo la traza, lo que fijaŕıa la constante de integración de gravedad unimodular
a cero. De momento, esta posibilidad no ha sido estudiada en detalle.

C.2.4. Bigravedad: Aspectos generales y soluciones exactas

En la sección anterior hemos considerado extensiones no-lineales para las teoŕıas de spin-
2 sin masa. El caso con masa es más controvertido ya que la ausencia de invariancia de
gauge en el Lagrangiano linealizado nos deja sin ninguna pista sobre su posible extensión
no-lineal.

Una método para adivinar la estructura no-lineal consiste en introducir la invariancia
de gauge añadiendo campos de Stückelberg a la teoŕıa. No obstante, el mecanismo de
Stückelberg parece no funcionar para spin-2, en el sentido en que a orden no-lineal
aparecen nuevos grados de libertad que se propagan y que arruinan la unitariedad de
la teoŕıa [Zin07].

Otra posibilidad es añadir más campos al Lagrangiano, que pueden ser estáticos o
dinámicos. Para conseguir dar masa a las polarizaciones de spin-2 sin necesidad de
introducir un fondo dinámico, nosotros nos centraremos en la adición de un segundo
tensor simétrico de rango-2 a la métrica habitual. Esta posibilidad se conoce como
bigravedad y resulta un sistema relativamente sencillo donde algunos de los aspectos de
la gravedad masiva pueden estudiarse a nivel no-lineal.

Siguiendo el trabajo [ISS71], escribiremos la acción de bigravedad como,

S =

∫

d4x
√−g

(−Rg
2κg

+ Lg

)

+

∫

d4x
√

−f
(−Rf

2κf
+ Lf

)

+ Sint[f, g]. (C.38)

Aqúı, Lf y Lg denotan dos tipos de materia acoplados respectivamente a la métrica f
y g, y los sub́ındices f y g en los escalares de Ricci indican la métrica a la que se refiere
el objeto. De momento consideraremos únicamente soluciones de vaćıo con Lf = −ρf y
Lg = −ρg. Existe una gran arbitrariedad a la hora de introducir el acoplamiento de la
materia a la gravedad, puesto que la métrica “f́ısica” puede ser cualquier combinación
de las métricas f y g. Por simplicidad consideraremos dos tipos de materia, cada uno
acoplado a una métrica.

El término de interacción Sint rompe la invariancia de la teoŕıa bajo Diff que transfor-
man cada una de las métricas independientemente. En principio, consideraremos térmi-
nos que rompen dicha simetŕıa a los Diff “diagonales”, donde ambas métricas cambian
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de la misma manera. El término de interacción sin derivadas más general en ese caso
puede escribirse como [DK02]

Sint = ζ

∫

d4x(−g)u(−f)vV [{τn}], (C.39)

donde τn = tr[Mn], n : 1, ..., 4 se corresponden con las primeras cuatro potencias de la
matriz Mµ

ν = fµαgαν , y V es una función arbitraria. Una condición que impondremos
a la hora de elegir el potencial V es que la teoŕıa admita Minkowski como una solución
de vaćıo al menos para una de las métricas.

El término de interacción supone la aparición de una contribución en las ecuaciones
del movimiento para las métricas f y g del tipo

fµαT fαν ≡ −2√
−f

δSint
δfαν

fµα = −2ζ(g/f)u

(

vV δµν −
∑

n

n(Mn)µν V
(n)

)

, (C.40)

gµαT gαν ≡ −2√−g
δSint
δgαν

gµα = −2ζ(g/f)−v
(

uV δµν +
∑

n

n(Mn)µν V
(n)

)

, (C.41)

donde hemos introducido la notación

V (n1,...,nl) ≡ ∂lV

∂τn1 · · · ∂τnl

.

Localmente, existe un sistema de referencia donde ambas métricas son diagonales. Si
consideramos el caso donde ambas métricas son máximamente simétricas, bastará que
tanto las trazas τn como los autovalores de la matriz

∑

n n(Mn)µν V
(n) sean constantes

para encontrar una solución. En ese caso, las soluciones serán máximamente simétricas
con constantes cosmológicas

Λf = −2κfζ(g/f)u

(

vV − 1

4

∑

n

nτn V
(n)

)

+ κfρf , (C.42)

Λg = −2κgζ(g/f)−v
(

vV +
1

4

∑

n

nτn V
(n)

)

+ κgρg. (C.43)

Una clase muy interesante de soluciones la constituyen las soluciones estáticas con
simetŕıa esférica. Si la simetŕıa esférica es compartida por ambas métricas, el ansatz
más general puede escribirse como

gµνdx
µdxν = Jdt2 −Kdr2 − r2

(
dθ2 + sin2 θ dφ2

)
, (C.44)

fµνdx
µdxν =Cdt2 − 2Ddtdr −Adr2 −B

(
dθ2 + sin2 θ dφ2

)
, (C.45)

donde los coeficientes son funciones de r. Resulta interesante el hecho de que existan
soluciones de este tipo para cualquier potencial V . Más concretamente, consideremos la
solución general7

gµνdx
µdxν = (1 − q) dt2 − (1 − q)−1dr2 − r2(dθ2 + sin2 θdφ2), (C.46)

fµνdx
µdxν =

γ

β
(1 − p)dt2 − 2Ddtdr −Adr2 − γr2(dθ2 + sin2 θdφ2), (C.47)

7Soluciones más generales para términos de potencial determinados pueden encontrarse en [BCNP08].
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donde

A=
γ

β
(1 − q)−2 (p+ β − q − βq) , (C.48)

D2 =

(
γ

β

)2

(1 − q)−2(p− q)(p+ β − 1 − βq). (C.49)

Las constantes β y γ son constantes de integración arbitrarias mientras que p y q son
funciones arbitrarias de r. Para esta solución, los autovalores de M son constantes,
aśı como las trazas τn. Además, la matriz

∑

n n(Mn)µν V
(n) sólo tiene dos autovalores

diferentes, de modo que igualándolos tendremos una solución de bigravedad. Ambos
autovalores coinciden para

∑

n

nγ−n(−1 + βn) V (n) = 0, (C.50)

que determina una de las constantes de integración. La existencia de otra constante
de integración que aparece como una constante cosmológica es similar a lo que ya
encontramos en el caso de gravedad unimodular.

Dado que queremos que ambas métricas sean máximamente simétricas, han de pertenecer
a la familia de métricas Schwarzschild-(A)dS. En particular, de estas expresiones con-
cluimos que el término de interacción simplemente actúa introduciendo constantes de
integración, pero que por lo demás las soluciones exactas con simetŕıa esférica de RG
se recuperan. Sin embargo, tal y como veremos, estas soluciones no parece que se cor-
respondan con las que dan lugar a la gravedad Newtoniana en el ĺımite linealizado8.

Otro tipo de soluciones interesantes viene dado por soluciones proporcionales

fµν = γgµν , (C.51)

donde el parámetro γ viene fijado por las ecuaciones del movimiento. Una posibilidad
interesante es que, dado que las ecuaciones del movimiento involucran las escalas de
enerǵıa correspondientes a ρ y a ζ, podŕıa darse un mecanimso que hiciera que γ fuera
tal que una de las constantes cosmológicas fuera extremadamente pequeña. Desafortu-
nadamente, ese mecanismo no existe para los potenciales considerados en el rango de
parámetros donde las soluciones son estables.

La existencia de dos estructuras causales que conviven en una misma variedad hace
que determinados conceptos de RG hayan de ser adaptados. Por ejemplo, una variedad
puede ser geodésicamente completa o puede ser globalmente hiperbólica para una sola de
las métricas. Dado que ambas métricas interactúan, las perturbaciones de las métricas
se propagarán en el fondo creado por ambas métricas, de modo que serán sensibles a la
“doble” estructura global. Para intentar aclarar esta estructura, nos centraremos en las
soluciones de tipo (C.46-C.47) y dibujaremos cómo se comportan los conos de luz de
una de las métricas en el diagrama conforme de la otro métrica. Esto nos permite ver
cómo se proyecta la estructura causal de una de las métricas en la otra métrica.

Basta con ilustrar el método con un ejemplo sencillo (otros casos pueden encontrarse
en el caṕıtulo 5). Para ello, consideramos el caso donde la métrica g es Minkowski y
f es de Sitter. Para la métrica de Minkowski, las coordenadas (r, t) describen una var-
iedad geodésicamente completa, mientras que en el caso de la métrica f , es necesario

8Por otra parte, para encontrar el significado f́ısico de las diferentes constantes de integración es nece-
sario considerar la solución completa. Para el caso de una estrella, éste puede variar en bigravedad
con respecto a RG [BCNP08].
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hacer una extensión a lo largo del horizonte r = H−1. Para ello, introducimos coor-
denadas de Kruskal que describan la máxima extensión de la variedad. Para entender
a qué corresponde dicha extensión para la métrica g, en la figura C.1 hemos dibujado
los diferentes puntos del diagrama conforme de Minkowski vistos por la métrica de de
Sitter, aśı como las geodésicas nulas incompletas de de Sitter vistas según la métrica de
Minkowski. Tal y como se observa en la figura C.1, las coordenadas (r, t) sólo cubren

f g

i+i+

i−i−(r<rH)

i−(r>rH)

i0

i0 I+

I+

I−

I−

t1t1

t2

t2

i−(r=rH)

Figura C.1.: Diagrama causal de Minkowski con de Sitter. El diagrama de la izquierda se
corresponde a de Sitter con radio en el horizonte rH , mientras que el diagrama
de la derecha es Minkowski. La ĺıneas de puntos delgadas (sin flechas) son ĺıneas
de tiempo t constante. Las ĺıneas de puntos gordas (con flechas) son curvas de
radio r constante dentro y fuera del horizonte. La ĺınea continua con tres flechas
representa la trayectoria de un observador a radio constante r = rH . Las demás
ĺıneas continuas con flechas son geodésicas nulas dirigidas hacia el pasado para el
espacio-tiempo de de Sitter. La transformación de los infinitos (nulo, tipo tiempo
y tipo espacio) del espacio-tiempo de Minkowski (i±,0, I±) ha sido indicado en
el diagrama de de Sitter. Como puede observarse en el diagrama, el infinito tipo
tiempo pasado de Minkowski se ha dividido en el diagrama conforme de de Sitter.

la mitad del espacio de de Sitter máximamente extendido. La extensión de la parte de
de Sitter se hace de la manera habitual (usando coordenadas de Kruskal), mientras que
para la métrica de Minkowski, las nuevas regiones están causalmente desconectadas de
las regiones parametrizadas por (r, t). Esto nos permite añadir en las nuevas regiones
cualquier solución de bigravedad donde una las métricas sea de Sitter. En particular,
podemos considerar otra métrica de Minkowski añadida según queda claro de la figu-
ra C.2. Esta extensión es geodésicamente completa para ambas métricas pero no es
globalmente hiperbólica. Para demostrarlo basta con darse cuenta de que si trazamos
una superficie de Cauchy para todas las geodésicas tipo-tiempo de de Sitter (como,
por ejemplo, una ĺınea horizontal en el diagrama (b) de la figura C.2), esta superficie
intersectará alguna de las geodésicas tipo tiempo de Minkowski dos veces, lo que hace
que no sea una buena superficie de Cauchy para la métrica de Minkowski.

De esta forma vemos que existe una tensión entre la hiperbolicidad global y la com-
pletitud geodésica que, de hecho, es bastante más general que el ejemplo anterior. Este
fenómeno no es tan diferente a lo que ocurre en determinadas soluciones de RG donde
existen horizontes de Cauchy. En esos casos, la extensión máxima de la solución se
hace de nuevo a expensas de la hiperbolicidad global. Aśı pues, este problema de la
bigravedad también lo comparten otras soluciones muy importantes de RG como la
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f g f

(a) (b) (c)

I
I

II

II

III
III

IV

IV

Figura C.2.: Diagrama de la extensión propuesta para la solución de Minkowksi-de Sitter. La
ĺınea discontinua vertical representa una esfera de radio constante r. También
hemos dibujado diferentes geodésicas radiales de las regiones de Minkowski que
emanan del origen. En ellos, la ĺınea azul es una geodésica radial nula dirigida
hacia el futuro. Las ĺıneas verdes son geodésicas radiales de t constante, mientra
que las ĺıneas rojas son geodésicas radiales nulas dirigidas hacia el pasado. Hemos
indicado con los números latinos I, II, III y IV las diferentes regiones del
espacio-tiempo de de Sitter, y las correspondientes regiones para la métrica de
Minkowski acompañante. El diagrama no es globalmente hiperbólico.

métrica de Kerr.

El hecho de no poseer una superficie de Cauchy para ambas métricas nos puede hacer
pensar que, a pesar de que ambas métricas sean globalmente hiperbólicas, se pueden
construir curvas de tiempo cerradas usando geodésicas de ambas métricas. El análisis
de los conos de luz de las dos métricas revela que esto no ocurre para las soluciones que
estamos estudiando. La razón es que, aunque determinadas curvas que para una de las
métricas están dirigidas hacia el futuro, para la otra métrica lo están hacia el pasado,
nunca acaban de introducirse en el cono de luz pasado de la segunda métrica.

La conclusión del análisis de la estructura global de las soluciones de bigravedad es
que, si bien las soluciones pueden ser patológicas, el tipo de patoloǵıa que introducen
también aparece en determinadas soluciones de RG. Además, existen soluciones perfec-
tamente comportadas desde el punto de vista causal.

C.2.5. Perturbaciones en torno a soluciones de bigravedad

Uno de los aspectos importantes de las soluciones de bigravedad que hemos presentado es
cómo se comportan sus perturbaciones. Dicho comportamiento nos da una idea tanto de
la estabilidad de la solución como del comportamiento de la interacción gravitatoria. En
el caṕıtulo 6 hemos llevado acabo el análisis de las perturbaciones de algunas soluciones
de bigravedad.

Consideremos, en primer lugar, la solución

gµν = ηµν , fµν = γη̃µν , (C.52)
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donde

η̃µν = ηµν −
β − 1

β
δ0µδ

0
ν , (C.53)

y ηµν = diag(1,−1,−1,−1). Además de ser una solución exacta per se, esta solución rep-
resenta el ĺımite asintótico de otras soluciones con materia. Es importante destacar que
la solución (C.52) rompe la simetŕıa de Lorentz al subgrupo SO(3) espontáneamente.
Este hecho permite que el comportamiento de las perturbaciones de este sistema (que
incluirán gravitones masivos) sea muy diferente al que describimos en la introducción
(véase también [Rub04]).

Definimos las perturbaciones como9

fµν = γ−1
(
η̃µν + h µν

f

)
, (C.54)

gµν = ηµν + hgµν , (C.55)

y descomponemos los tensores hgµν y hfµν como,

hX00 = 2AX ,

hX0i =BX,i + V Xi ,

hXij = 2ψXδij − 2EX,ij − 2FX(i,j) − tXij , (C.56)

donde tXii = tXij,i = V Xi,i = FXi,i = 0 con X = f, g. Esta descomposición nos permite
estudiar cada representación irreducible de SO(3) por separado.

Para los tensores, encontramos que cumplen las siguientes ecuaciones del movimiento

ω2tgij = k
2tgij + κgM

4n2(t
g
ij + tfij), (C.57)

βω2tfij = k
2tfij + κ̃fM

4n2(t
g
ij + tfij), (C.58)

donde κ̃f = γ−1β1/2κf y y

M4 = 4ζ

(
γ4

β

)v

,

mientras que la relación de los parámetros ni con el potencial V puede encontrarse en
(6.6). De las ecuaciones del movimiento anteriores se deduce que para bajas enerǵıas
el espectro consiste en dos polarizaciones sin masa que se progagan a una velocidad
intermedia c2s =

κg+κ̃f

βκg+κ̃f
, y un modo masivo. Si n2 > 0, ambos modos son estables.

Los modos vectoriales no se propagan. Este hecho se debe a que para la solución
que estamos considerando existe una invariancia de gauge residual a orden lineal para
cualquier potencial V . Esto hace que las ecuaciones del movimiento para los vectores se
reduzcan a ligaduras.

Finalmente, los modos escalares tampoco se propagan debido a la misma razón. En
ambos casos, el hecho de que se trate de una invariancia de gauge que aparece única-
mente a orden lineal hace que estos modos se propaguen a escalas de enerǵıa (y de
tiempo) donde los términos no-lineales son importantes.

En cualquier caso, la ruptura espontánea de la simetŕıa de Lorentz nos ha permitido
obtener un espectro con un gravitón sin masa y uno masivo con sólo dos polarizaciones.
En este caso, no hay problemas de acoplamiento fuerte o discontinuidad vDVZ como

9En esta sección, todos las contracciones de ı́ndices que no estén expĺıcitamente señaladas se harán
con la métrica ηµν .
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ahora veremos.

Para estudiar el tipo de interacción al que dan lugar las perturbaciones anteriores,
introducimos el acoplamiento del campo a fuentes conservadas,

Smatt =
1

4

∫

d4x
(

λgh
g
µνT

µν
g + λfh

f
µνT

µν
f

)

, (C.59)

con ∂µT
µν
g = 0 y ηρµη̃

ρα∂αT
µν
f = 0.

Para el caso de los modos tensoriales, éstos pueden escribirse como

tgij =
λg(k

2 − βω2 + κ̃fM
4n2)T

g
ij − λfκgM

4n2T
f
ij

ω2{βω2 − (κ̃f + βκg)M4n2} + k2{(κ̃f + κg)M4n2 − (β + 1)ω2} + k4
,

tfij =
λf (k

2 − ω2 + κgM
4n2)T

f
ij − λgκ̃fM

4n2T
g
ij

ω2{βω2 − (κ̃f + βκg)M4n2} + k2{(κ̃f + κg)M4n2 − (β + 1)ω2} + k4
.

Esta expresión se reduce a la expresión de RG en el ĺımite ζ → 0. Respecto al sector
vectorial, su comportamiento es idéntico al de RG.

Finalmente, los modos escalares dan lugar a unos potenciales invariantes gauge,

∆ψg = −κgλg
4

T 00
g , ∆ψf = − κ̃fλfβ

4
T 00
f , (C.60)

y

∆Φg =− κgλg
4

(

T 00
g + T iig − 3

∆
T̈ 00
g

)

−
(
κgM

4n2

4∆

)
n2 + 3n3 − 3n0

n2 + n3 − n0

(
κgλgT

00
g + κ̃fλfβT

00
f

)
,

∆Φf =− κ̃fλfβ

4

(

βT 00
f + T iif − 3

∆
β2T̈ 00

f

)

−
(
κ̃fβM

4n2

4∆

)
n2 + 3n3 − 3n0

n2 + n3 − n0

(
κgλgT

00
g + κ̃fλfβT

00
f

)
, (C.61)

donde
Φg ≡ Ag − Ḃg − Ëg, Φf ≡ Af − βḂf − β2Ëf .

De nuevo, estos potenciales se reducen en el ĺımite ζ → 0 a los que se encuentran en RG,
lo que demuestra que no existe discontinuidad vDVZ en este caso. También se deduce
de (C.61) que la ley de Newton se ve modificada a distancias del orden de ζ, y el signo
de la corrección depende de los parámetros en la teoŕıa.

No obstante, las soluciones exactas conocidas de la teoŕıa y que asintóticamente se
reducen al sistema (C.52) no presentan este tipo de correcciones, ya que el término
de interacción sólo corrige la enerǵıa del vaćıo. Aśı pues, vemos que existe una discon-
tinuidad entre la teoŕıa lineal y la teoŕıa exacta. La razón de esta diferencia no está clara;
puede deberse a la presencia de nuevas soluciones exactas cuyo régimen asintótico se
corresponda con el régimen lineal o a la existencia de una inestabilidad de linearización
como ocurre en otros casos [Mon76].

Otro tipo de solución de bigravedad cuyas perturbaciones podemos analizar se corre-
sponde a las métricas proporcionales (C.51). Dada una solución g0

µν = Ωµν , escribiendo
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las perturbaciones como

gµν = Ωµν + hgµν , (C.62)

fµν = γ−1(Ωµν + hµνf ), (C.63)

el término de interacción a segundo orden en las perturbaciones se escribe como

L̃int = ζ(−g)u(−f)vV [{τn}] +
√−g Λ̃g

κg
+
√

−f Λ̃f
κf

= − 1

8κ+

√
−Ω

{

m2
t (h

µν
g + hµνf )(hgµν + hfµν) −m2

s(h
g + hf)

2
}

, (C.64)

donde las expresiones de ms y mt pueden encontrarse en (6.51). De la expresión anterior
se deduce que únicamente la combinación h+

µν = (hg + hf)µν es masiva. Consideremos
el caso de de Sitter,

Ωµνdx
µdxν = a(η)2(dη2 − δijdx

idx2), (C.65)

donde a(η) = −(Hη)−1, H2 = Λg/3 es constante y η ∈ (−∞, 0). El análisis de la
combinación sin masa

h−µν = (1 + κ)−1
(
hgµν − κhfµν

)
,

es similar al caso habitual de de Sitter y sólo los grados de libertad tensoriales se
propagan.

Respecto al modo masivo, la descomposición en representaciones irreducibles de
SO(3) revela que los modos tensoriales y vectoriales se comportan bien para m2

t ≥ 0
mientras que la acción de los modos escalares es más complicada. Para el caso de
Minkowski, la única posibilidad donde la teoŕıa de perturbaciones está libre de inesta-
bilidades es para ms = mt (Fierz-Pauli). En el caso de de Sitter, la presencia de una
nueva escala de longitud (relacionada con la escala de curvatura caracterizada por H)
hace pensar en que puedan existir rangos de parámetros distintos a Fierz-Pauli donde la
teoŕıa de perturbaciones esté bien definida. El análisis de los grados de libertad escalares
revela que esto no sucede, al menos en los casos adiabáticos.

Śı que ocurre, no obstante, para términos de masa que rompan la covarianza de la
teoŕıa. Este tipo de términos pueden aparecer en soluciones de bigravedad tipo de Sitter
donde las métricas no son proporcionales. En ese caso, similar al caso donde el término
de masa rompe la simetŕıa de Lorentz en el caso plano, aparecen nuevas regiones en el
espacio de parámetros sin inestabilidades que se cierran al tomar el ĺımite plano.

C.2.6. Comentarios sobre la cuantización de teoŕıas invariantes TDiff

Finalmente, en el apéndice A hemos elaborado algunos aspectos de la cuantización de las
teoŕıas invariantes bajo el grupo TDiff. Tal y como hemos dicho, a nivel clásico existen
teoŕıas equivalentes a RG y que sólo son invariantes bajo este grupo (o su extensión
WTDiff).

El primer aspecto que hemos considerado es la aproximación semiclásica donde el
campo gravitatorio se considera como un fondo sobre el cual se propagan el resto de
campos. Considerando el caso escalar, para regularizar a un loop las divergencias que
aparecen en espacio-tiempos curvados es necesario añadir contratérminos al Lagrangiano
clásico que involucran derivadas más altas de la métrica. Para las teoŕıas invariantes Diff,
estos contratérminos se eligen de acuerdo a esta simetŕıa. Para el caso TDiff o WTDiff
el tipo de contratérminos necesarios difiere del caso Diff, lo que puede hacer que las
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teoŕıas sean diferentes a este nivel. Un caso particularmente interesante lo representa
la anomaĺıa conforme. Mediante el uso de la regularización invariante bajo WTDiff, la
simetŕıa conforme se mantiene a nivel cuántico mientras que es la simetŕıa Diff la que
se rompe a TDiff. De nuevo, este hecho puede dar lugar a diferencias fenomenológicas.

El siguiente paso en la cuantización de la teoŕıa consiste en considerar las perturba-
ciones de la métrica como campos cuánticos. Dada la invariancia de gauge, es importante
fijar el gauge para poder construir una teoŕıa cuántica covariante. En el caso de TDiff,
la invariancia de gauge es reducible, lo que implica que la acción para los fantasmas de
Fadeev-Popov también tendrá una invariancia de gauge que habrá que fijar mediante
la introducción de nuevos fantasmas. Una vez introducidos todos los campos necesar-
ios, éstos han de servir para encontrar una tranformación nilpotente BRST que ayude
a demostrar la unitariedad de la teoŕıa. Para encontrar dicha transformación hemos
considerado el problema algebraico de construir una transformación BRST nilpotente
covariante a partir de las transformaciones de WTDiff. El resultado es toda una cadena
de fantasmas para fantasmas con 2n− (n+1) campos de Fadeev-Popov necesarios para
que la transformación sea nilpotente. A partir de aqúı, se puede construir la acción
covariante con el gauge fijado.

Finalmente, uno puede considerar formulaciones no perturbativas de gravedad cuánti-
ca, como la Gravedad Cuántica Eucĺıdea. Para el caso de RG, uno de los problemas
de esta formulación es la existencia de un modo conforme que hace que la integral de
caminos de los campos gravitatorios diverja. Como este modo está ausente en las teoŕıas
WTDiff, uno podŕıa esperar que la convergencia de la integral de caminos en este caso
fuera mejor. No obstante, hemos demostrado que en este caso hay un Diff que no es un
TDiff que cumple el mismo papel que el modo conforme en RG.

C.3. Conclusiones y Perspectivas

En esta Tesis hemos estudiado posibles modificaciones a la RG tanto a nivel lineal como
no-lineal. A nivel lineal nos hemos centrado en los Lagrangianos invariantes Lorentz y
estables para el campo hµν . Además del Lagrangiano estándar de RG, hemos encontrado
toda otra serie de Lagrangianos invariantes bajo un grupo de invariancia más pequeño
(TDiff) y que son fenomenológicamente equivalentes. Por otra parte, existe la posibilidad
de aumentar este subgrupo TDiff mediante una transformación de Weyl, obteniendo un
Lagrangiano donde, tal y como pasa para RG, sólo los grados de libertad de spin-2
se propagan. Para el caso con masa, la única posibilidad es la correspondiente a RG
con un término de masa de Fierz-Pauli. Seŕıa interesante intentar extender este análisis
a Lagrangianos más generales, con derivadas superiores o en el formalismo de primer
orden.

Otra extensión interesante consiste en modelos donde el término de masa depende de
la escala de enerǵıas. Este tipo de comportamiento, que se encuentra en algunos modelos
con dimensiones adicionales como [dR+07], abre la puerta a términos invariantes Lorentz
más allá de Fierz-Pauli. Seŕıa interesante caracterizar estos modelos y buscar posibles
realizaciones teóricas.

Por otra parte, hemos demostrado que para el caso de campos de spin-3/2 además de
la acción habitual de Rarita-Schwinger, existe otra acción que da lugar al mismo propa-
gador una vez acoplado a fuentes conservadas. Sin embargo, el acoplamiento de estos
dos Lagrangianos a otros campos puede dar lugar a teoŕıas que no son equivalentes.
En particular, hemos propuesto un acoplamiento electromagnético cuya consistencia a
nivel cuántico no hemos abordado. Para que la teoŕıa sea relevante es preciso demostrar

161



C. Resumen en Castellano

dicha consistencia que hemos dejado para investigaciones futuras. Por otra parte, hemos
demostrado que no existe un Lagrangiano supersimétrico a orden lineal consistente en
el Lagrangiano de WTDiff y un compañero de spin-3/2.

En lo que respecta a las extensiones no-lineales, hemos propuesto dos posibles métodos
para encontrarlas. Si bien el primer método, que nos ha conducido a una acción muy
diferente a la de RG, es constructivo, se basa en determinadas hipótesis que pueden
ser suavizadas. Para el caso invariante Diff, existen otros métodos más generales para
encontrar las extensiones no-lineales cuya implementación en los casos TDiff y WTDiff
constituiŕıa un resultado importante en el campo.

Además, hemos propuesto una extensión no-lineal intuitiva cuyo resultado son La-
grangianos correspondientes a teoŕıas escalar-tensor. Estas teoŕıas son equivalentes a
RG en un cierto rango del espacio de parámetros que, de hecho, es el natural desde el
punto de vista de teoŕıas efectivas. Para estas teoŕıas, el acoplamiento de la materia a la
gravedad goza de un mayor grado de arbitrariedad, lo que lleva a poder construir casos
donde las leyes de gravitación se vean modificadas. En particular, existen casos donde
el peso la enerǵıa del vaćıo puede ser elegida [AF07b].

En lo que respecta a la bigravedad, hemos encontrado soluciones exactas y estudiado
su estructura causal. Dicho estudio revela una serie de patoloǵıas similares a las que
ocurren en RG, aśı como la existencia de soluciones perfectamente comportadas. Incluso
para potenciales simples, no hemos sido capaces de determinar la solución estática más
general con simetŕıa esférica. Este problema, común a todas las teoŕıas de gravedad
masiva, es especialmente imporante puesto que sólo resolviéndolo seremos capaces de
entender el origen de la discontinuidad vDVZ.

También hemos estudiado las perturbaciones a algunas soluciones exactas para de-
mostrar su estabilidad y aclarar el tipo de interacción gravitatoria que aparece en esos
casos. Para el caso bi-plano la teoŕıa linealizada implica la existencia de correcciones
a las predicciones de RG que no se encuentran en las soluciones exactas. Respecto al
caso bi-de Sitter, hemos concluido que de entre los términos de masa covariantes, sólo el
término de masa de Fierz-Pauli está libre de discontinuidades. Existen otras soluciones
cuyas perturbaciones podŕıan comportarse de forma muy diferente a GR. Tal es el caso
de soluciones que incluyan un horizonte. Dada la existencia de dos estructuras causales,
la presencia de un horizonte en una de ellas es un concepto mucho más débil que en RG.
Efectos como la radiación de Hawking o los teoremas de “no hair”son muy diferentes en
el caso en que la invariancia Lorentz se rompe, de modo que seŕıa interesante considerar
perturbaciones para soluciones donde esto pase.

Finalmente, hemos indicado únicamente los primeros pasos necesarios para llevar a
cabo la cuantización de teoŕıas invariantes TDiff o WTDiff. En el caso semiclásico, queda
pendiente la construcción de los contratérminos correspondientes a la regularización
propuesta aśı como el análisis de sus posibles consecuencias f́ısicas.

En lo que respecta a la gravedad cuántica per se, el cálculo a 1-loop en gravitones
seŕıa un ejercicio muy interesante para demostrar si las teoŕıas TDiff, Diff y WTDiff
mantienen su equivalencia a nivel cuántico.
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