
Chapter 6

Pre/Post-Distortion Algorithms

If the amplifier exhibit nonlinear characteristics invariable with time, which is a reasonable
assumption in many low-power cases, a fixed pre-distorter is enough to achieve a good
linear performance. However, power amplifiers operating under more stringent conditions
may undergo slow but significant changes in their AM/AM and AM/PM characteristics
basically due to factors like temperature, age of components, power level, biasing vari-
ations, frequency changes and so on. This means that, given the requirements of some
applications, a pre-distorter must be an adaptive nonlinear processor, capable of following
the changes in the HPA characteristics.

6.1 Adaptive scheme for PD, basic definitions

As seen in section 2.2.1, the response of RF High Power Amplifiers (HPA) can be char-
acterized as a type of complex non-linear multiplicative distortion which is (whenever a
frequency-independent approach has been justified) only dependent on the modulus uI(t)
of the input to the HPA base-band signal bI(t) = uI(t)e

jαI(t) in the form

bO(t) = bI(t)GHPA(uI(t)) (6.1)

which is also expressed in terms of the modulus and phase non-linearities as

|bO(t)| = |bI(t)| · |GHPA

(
uI(t)

)
| = A

(
uI(t)

)
(6.2)

arg{bO(t)} = arg{bI(t)}+ arg{GHPA

(
uI(t)

)
} = αI(t) + Φ

(
uI(t)

)
(6.3)

with bO(t) the base-band signal at the HPA output, A(·) and Φ(·) the AM/AM and
AM/PM transfer characteristics, respectively.

When the presence of the memory effect of analog stages is considered, the HPA
model should also include a base-band equivalent time delay parameter ∆, in order to
represent the memory effect introduced along the up-conversion (U/C) plus HPA plus
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120 6.1. Adaptive scheme for PD, basic definitions

down-conversion (D/C) chain. In such a case, the amplifier operation in (6.1) can be
reexpressed as

bO(t) = bI(t−∆)GHPA(uI(t−∆)). (6.4)

This approximation for representing the distributed electronic delays by a concen-
trated time shifting parameter is reasonable, provided that the response of the filters
within U/C and D/C be sufficiently flat in the band of interest. This is a common and
technologically feasible assumption which, as seen in previous chapters, leads to useful
simplifications on the signal model. Thus, since the unknown time delay ∆ constitutes a
nuisance parameter for digital base-band pre-distortion, it must be compensated. On one
hand, time delay has been shown to be somewhat dispensable information for estimating
the AM/AM nonlinearity (in [37] it is shown that AM/AM characteristic can be obtained
from the probability density function of the input and output modulus), but on the other
hand it still proves to be particularly critical for the estimation and compensation of the
AM/PM distortion, where the estimation of ∆ will be required.

In this section we aim to propose and evaluate adaptive schemes focusing on the
efficient estimation of the inverse HPA characteristics for their application in base-band.
For this purpose, our choice is to operate a fast coarse time delay estimation (TDE)
algorithm (like [54],[39] and [38]) previously to PD estimation, in order to reduce to a
minimum (less than one sample period) the misalignment between the reference signals
used in the adaptive structure and to preserve the major part of the available degrees of
freedom for the adaptation of the PD coefficients regardless of major time corrections.
Thus, the forthcoming algorithms will be devised to operate adaptive PD estimation
independently from time alignment.

6.1.1 Basic schemes for PD estimation: Pre-distortion vs. Post-
distortion

Let us consider the basic adaptive schemes shown in figure 6.1 where two alternative
linearization structures are defined by positioning the nonlinear compensation block to
operate either as a post-distorter or as a pre-distorter. These structures can be considered
as counterparts in the sense that, as shown in section 2.2.1, whenever the coefficients
defining the ‘pre’ or ‘post’ operation are such that the PD block optimally approaches the
inverse HPA complex gain

P (·) = G−1
HPA(·),

the compensation error signals epost(t) and epre(t) are both minimized 1. However, two
different expressions for the compensation error signal are obtained from these structures.

1In the figures we refer to signal blocks using discrete-time vector notation. This will be useful in later
algorithm derivations.
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Figure 6.1: Basic adaptive PD schemes.

Assuming a perfect discrete-time alignment, or equivalently, a memoryless HPA operation
in figures 6.1(a) and 6.1(b), we force b∆̂x [n] = bx[n]. Thence, the error signal we obtain for
each case is

epost[n] = bx[n]− by[n]P (|by[n]|) (6.5)

epre[n] = bx[n]− bp[n]G (|bp[n]|)
= bx[n]− bx[n]P (|bx[n]|)G

( ∣∣bx[n]P (|bx[n]|)
∣∣ ) (6.6)

whence we can obtain different expressions for the squared error signal which will
constitute the cost function needed for the optimization of the pre/post nonlinear gain
P (·).

As it is well known, optimization algorithms based on the steepest descent method,
perform a downhill gradient search for a minimum in a cost function (normally the squared
error). The dependence of the cost function on the estimated coefficients should ideally
be quadratic, otherwise, higher-order dependence may increase the risk of convergence
to a sub-optimal minimum within a local neighbourhood. Hence, it becomes clear that
the error signal in (6.6), associated to a pre-distortion structure, is not well conditioned
for this kind of minimization, since the cost function based on epre[n] will feature higher
order dependence with respect to the coefficients of any descriptive model of the non-
linear function P (·). This is because the HPA gain function G(·) is itself a nonlinearity
(it generates higher order products) and therefore the squared error signal |epre (α, n) |2,
where α is a vector containing the coefficients that completely describe P (·), has many
local minima. In these conditions, the treatment of the gradient could involve almost un-
tractable algebraic expressions. In turn, the post-distortion structure yields (6.5) which is
a better conditioned expression for the error, as will become more clear in the forthcoming
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derivations. Therefore, our solution proposal will be to implement a previous training of
the coefficients in α using a post-distortion scheme and subsequently apply the optimum
estimated value of this PD vector to set the pre-distortion gain that finally introduces the
pre-correction of the input signal. Thence, two general remarks arise at this point:

1. Post-distortion is a good choice for defining a well conditioned structure for the
adaptive training of the linearizer coefficients. However, its implementation at the
transmitter implies dealing with high power analog signal and/or stages.

2. Pre-distortion allows several ways for its digital implementation in base-band but,
in general, does not provide the most suitable structure for the adaptive estimation
of the inverse characteristics by means of a steepest descent based technique.

For these reasons, we will concentrate our analysis on the adaptive structure of figure
6.1(a). Therein, the correction error signal epost[n] is measured during the training stage
to adapt the set of complex coefficients α = [α0 · · ·αNc−1] that characterize the estimated
inverse HPA gain function P (·). Note that P (·) is a modulus-dependent multiplicative
complex gain that can be operated either in the form of a post-distorter or a pre-distorter
using the same set of estimated coefficients α. Therefore, from now on, we will refer the
pre/post distorter stage as PD, making explicit the difference whenever necessary. Finally,
along with the comparison between the pre/post distortion structures, it is also worthy
to focus our attention on the information used to construct the error signals in a general
linearization problem. In appendix 6.D we review an important property regarding the
error signal considered in our PD schemes.

6.1.2 Pre/post distortion block definition

Like the HPA transfer function in (6.1), the PD function in figure 6.1(a) will be modeled
(now in discrete time) as a modulus-dependent multiplicative complex gain according to

bp[n] = by[n]P (|by[n]|) = by[n]P (uy[n])

= by[n]

(
Nc∑
k=1

λk (uy[n])αk

)
= by[n]λT(uy[n])α (6.7)

where the vector λ(·) = [λ0 · · ·λNc−1]
T is called the bin activation function and contains,

for each value of the input modulus uy[n] = |by[n]|, the proportional contribution of
each triangular activation (membership) function from the set shown in figure 6.2(a).
These functions interpolate (using α) the complex PD factor that multiplies the input
data by[n] producing the PD output bp[n]. For any given ck ≤ uy[n] < ck+1, with
k ∈ {0, 1, . . . , Nc − 2}, one or at most two consecutive triangular membership functions
will be activated (with values ranging from 0 to 1) through their corresponding elements
λ(k−1) and λ(k), while all the remaining terms will be set to zero, thus defining a null
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contribution for their respective elements from α.

Once the error signal in the adaptive system of figure 6.1 has converged to a minimum,
the PD coefficients in vector α are expected to approximate the inverse complex gain
characteristic G−1

HPA[·] of the HPA. Thus, a perfect non-linear compensation would be
expressed as a linear transference

bp[n] = k · bx[n] = by[n]P (|by[n]|) (6.8)

with a constant gain factor k.

In the same figure 6.2, the characteristic points ck are called the centroids and are
grouped within a vector c = [c0 . . . cNc−1]. Each centroid is associated to one triangular
activation function λk and its respective PD coefficient αk. The centroids also define
the division of the whole dynamic range into NI = Nc − 1 activation intervals of width
∆k = |ck − ck−1| for k = {1, 2, . . . , NI}. As a design criterion, since the dynamic response
of a real HPA is up-bounded by the saturation output amplitude Asat, we can assume
that in the case shown in figure 6.1(a) there will be no input data beyond cNc−1 = Asat
at the post-distorter input. Hence, for simulations, we can restrict the maximum
dynamic range for the PD input to be [c0, cNc−1] = [0, 1[. Nevertheless, since the same
assumption does not always hold for the operation of a pre-distorter, whose input may
exceed Asat according to the input signal variance, some definitions regarding the treat-
ment of out-of-range inputs will be later included in the algorithm implementation section.

6.1.3 Definition of activation functions

From the membership functions shown in figure 6.2, we define three types of input acti-
vation with dependence on the input modulus u.

Activation of type 1:

This activation is associated to the set of Nc triangular membership functions shown in
figure 6.2(a) which are respectively assigned to each centroid-gain coefficient pair (αk, ck).
Therefore, this activation can be also referred as the centroids or coefficients activation.

Here, for a given input amplitude u0 to the PD block, with 0 ≤ u0 < Asat, the elements
of an activation (column) vector λ(u0) = [λ0(u0) · · ·λNc−1(u0)]

T are defined according to
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Figure 6.2: Activation functions used for PD gain interpolation. The input range to the pre/post
distorter is divided into NI intervals defined by a set of Nc = NI +1 centroids. In (a),(b)and (c),
the vertical axis is the membership degree for a given input modulus u to the PD block. In (a)
we observe the set of Nc triangular fuzzy membership functions, associated to each complex PD
gain coefficient from α. In (b) and (c) the membership of a given input is jointly defined through
positive-negative slope activation functions for each interval. In (d) we show an example of the
aspect of a PD gain curve with the trained coefficients that interpolate the PD gain factor for
any given value of the input modulus.
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λk(u0) =



u0 − ck−1

∆k
; ck−1 ≤ u0 < ck , ∀ k ≥ 1

1− u0 − ck
∆k+1

; ck ≤ u0 < ck+1 , ∀ k ≤ Nc − 2

0 ; otherwise

(6.9)

where a three piece expression has been necessary to consider the activation of any element
in λ(u0) accounting for the particular evaluation of the outermost activation functions λ0

and λNc−1. This definition corresponds to a first-order fuzzy distribution of the input data
along the activation vector of length Nc, so that one or at most two consecutive elements
in λ will be activated for a given u0. In any case, the activation vector λ(u0) should fulfil

sum {λ(u0)} = 1 ; for 0 ≤ u0 < Asat. (6.10)

If all the intervals are defined to have the same width ∆fix = Asat/(Nc−1) and a long
stream of input samples u is considered, this type of activation leads to the construction
of the soft histogram of the input modulus to the PD [61].

The activation functions of type 1 are suitable for applying PD as indicated in equa-
tion (6.7). However, when using this kind of activation definition we do not distinguish
whether the gain coefficients αk are being activated from the right or from the left,
according to the position of the input data u0 with respect to the center ck. Besides,
since the triangles associated to each λk may not be symmetric around their centers,
using only this kind of activation definition may result in a lack of information for some
specific calculations. Therefore, a more elaborate activation scheme is provided after the
next example.

Example of activation type 1:

LetAsat = 1 and consider the input range uniformly divided into NI = 4 intervals
defining the vector of Nc = 5 centroids, c = [ 0 0.25 0.5 0.75 1 ]. Given the input
amplitude vector

u0 =


0

3/8
9/16
1/2

15/16

 =


0
0.375
0.5625
0.5
0.9375

 (6.11)

with length N = 5, the corresponding type 1 activation matrix Λ(u0), size (N × Nc),
whose rows are the activation vectors λT (u0(i)) for each sample in u0, will result in
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Λ(u0) =


λT (u0(1))

...

λT (u0(N))

 =


1 0 0 0 0

0 0.5 0.5 0 0

0 0 0.75 0.25 0

0 0 1 0 0

0 0 0 0.25 0.75

 (6.12)

Activation of type 2:

In figures 6.2(b) and (c) we show two sets of positive and negative slope activation func-
tions which now contain complementary information to describe the activation for a given
input amplitude u0 provided that 0 ≤ u0 < Asat. We define two simultaneous activation
vectors f+ and f− whose elements are given by

f+
k (u0) =


u0 − ck−1

∆k
; ck−1 ≤ u0 < ck

0 ; otherwise

(6.13)

and

f−
k (u0) =


1− u0 − ck−1

∆k

; ck−1 ≤ u0 < ck

0 ; otherwise

(6.14)

for k = {1, · · · , Nc − 1}. Each piece-wise expression above determines that for a given
input u0 at most one element in each vector will be activated. The extreme case occurs
when u0 = ci which determines an all-zeros vector f+ = 0 while the total activation is
associated to the element f−

i+1 = 1. By examining figure 6.2 we can easily observe the
following relations regarding this type of activation distribution and the previous one:

f−
k + f+

k = λk−1 + λk = 1 ; for 1 ≤ k ≤ Nc − 1 (6.15)

and

λi(u0) =


f−

1 (u0) ; i = 0

f+
Nc−1(u0) ; i = Nc − 1

f+
i (u0) + f−

i+1(u0) ; otherwise.

(6.16)

According to this, the activation type 1 can be constructed as a specific combination
of the positive/negative slope activation vectors f+ and f− (type 2). These vectors now
convey the information about the right or left hand activation of each coefficient αk with
respect to the centroid ck. Such information will be useful later in defining the diferential
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variations of the interpolated curve for an optimization algorithm.

Example of activation type 2:

Considering the same conditions of the previous example given for activation type
1, the corresponding type 2 activation matrix A(u0), size (N × 2Nc − 2), is defined by
inserting the elements of both activation vectors f−(u0(i)) and f+(u0(i)) corresponding to
the i-th sample from u0 into the i-th row as follows:

A(i)(u0) = [f−
1 (u0(i)) f

+
1 (u0(i)) · · · f−

NI (u0(i)) f
+
NI (u0(i))]. (6.17)

Thence, the resulting type 2 activation matrix for the given example is

A(u0) =


1.0 0 0 0 0 0 0 0
0 0 0.5 0.5 0 0 0 0
0 0 0 0 0.75 0.25 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0.25 0.75

 (6.18)

Activation of type 3:

Since the input dynamic range of the PD has been divided into NI intervals, using the
previous definitions in (6.13) and (6.14) we can calculate the interval activation vector as

f(u0) = f+(u0) + f−(u0) (6.19)

which is a vector of length NI containing the absolute measure (1 for the activated interval
and 0 for the rest) of the interval activation for a given input 0 ≤ u0 < Asat. Thus, if all
the intervals are defined to have the same width ∆fix = Asat/(Nc − 1) and a long stream
of input samples u is considered, this type of activation leads to the construction of the
simple histogram of the input modulus to the PD.

Example of activation type 3:

With the same previous conditions, the corresponding type 3 activation matrix F(u0),
size (N × NI), is defined by combining the elements of both activation vectors f−(u0(i))
and f+(u0(i)) corresponding to the i-th sample from u0 into the i-th row of F(u0) as
follows:

F(i)(u0) =
[
(f−

1 (u0(i)) + f+
1 (u0(i))) · · · (f−

NI (u0(i)) + f+
NI (u0(i)))

]
. (6.20)

Thence, the resulting type 3 activation matrix for the example under consideration is

F(u0) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

 (6.21)
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PD gain considering saturating input amplitudes: (a) to define linear unitary transference, (b)
to define clipping response and (c) to define null output when the input exceeds saturation.

For inputs beyond the saturation amplitude, that is, for u > Asat, we can consider
three alternative PD responses by arbitrarily defining the extension of the upper activation
function of type 1, λNc−1(u). This is equivalent to defining an additional type 2 activation
function f−

NI+1 for this region. These alternatives are shown in figure 6.3 and are defined
as follows:

f−
NI+1(u0 ≥ Asat) =



1 ; linear transfer

1

S(u0)
; clipping

0 ; null output

(6.22)

In the expression defining a clipping response for the transfer function over saturation,
if S(u0) = |u0|, we obtain the hard clipping response shown in the figure 6.3(b). The soft
clipping response, marked in dashed line, can be obtained, for instance, by adjusting the
parameters γ and ν of a function S(u0) = 1 + γ(u0 − Asat)ν . In any case, the resulting
value for the activation of f−

NI+1 will be associated to the last coefficient αNc−1. Therefore,
the activation f+

NI , which is zero for u0 > Asat, can be directly replaced by the resulting
value of f−

NI+1 at the corresponding position in the activation matrix. This allows us to
perform the vectorial operations without requiring an additional column in the activation
matrices already defined.
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6.1.4 PD gain based on linear interpolation

In figure 6.2(d), an example for a trained set of estimated inverse gain coefficients has
been represented considering only their absolute values |αk| (AM/AM inverse). However,
the PD operation over the complex base-band data by[n] must be carried out considering
both the modulus and phase of the complex PD coefficients αk to compensate for the
AM/AM as well as the AM/PM distortion.

In general, the modulus-dependent complex PD gain, as represented in figure 6.2(d),
can be obtained in terms of the type 1 or type 2 activation functions and by means of
linear interpolation through the complex PD coefficients in vector α according to

P (uy) =
ck − uy

∆k
αk−1 +

uy − ck−1

∆k
αk (6.23)

= λk−1(uy) αk−1 + λk(uy) αk (6.24)

= f−
k−1(uy) αk−1 + f+

k (uy) αk (6.25)

where ck−1 ≤ uy < ck. Now, using (6.23) we can obtain the output of the PD block for the
input modulus uy. From (6.7), and skipping the discrete time dependence for simplicity,
we can express the PD output as the input-to-output complex transference

bp = P(by) = byP (uy) = by

(
ck − uy

∆k
αk−1 +

uy − ck−1

∆k
αk

)
= uye

jαy

(
ck − uy

∆k

αk−1 +
uy − ck−1

∆k

αk

)
= ejαy

(
uy

(
ckαk−1 − ck−1αk

∆k

)
︸ ︷︷ ︸

(a)

+u2
y

(
αk − αk−1

∆k

)
︸ ︷︷ ︸

(b)

)
. (6.26)

The inverse characteristics for the Saleh model were presented in section 2.2.1.
Therein we obtained the inverse transfer characteristics (figure 2.3) as well as the
corresponding inverse gain (figure 2.5) for this model. The use of linear interpolation
with a reduced number of characteristic points will logically introduce a fitting error
when approaching these continuous inverse curves. Nevertheless, from the expression
obtained in (6.26), we observe that using simple linear interpolation to describe the PD
gain leads to a 2nd order interpolation in terms of the I/O transfer approximation. This
results advantageous since it allows a better fitting to the shape of the inverse transfer
curve, thus reducing the minimum adjusting error achievable with a given number of
interpolation coefficients. In the expression above, the term denoted (a) controls the
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Figure 6.4: (a) Theoretical inverse AM/AM PD gain curve with Nc = 8 coefficients α for
linear interpolation. (b) Linear and 2-nd order interpolated inverse AM/AM transfer curves. (c)
Fitting error with respect to the ideal inverse AM/AM transfer characteristic.

linear part of the interpolation. Considering that ck > ck−1 the positive/negative sign
of (a) will depend on the complex difference αk−1 − αk. In turn, the term (b), which
determines the contribution of the quadratic interpolation, is totally dependent on such
difference: the greater the difference αk−1 − αk (in modulus or phase), the greater the
influence of the quadratic interpolation term. As an example, in figure 6.4(a) we depict
the theoretical inverse PD gain for the Saleh model using 8 coefficients obtained from
the expression (2.39). Then, using these coefficients, we construct the resulting inverse
AM/AM transfer characteristic according to (6.26). The inverse AM/AM transfer so
obtained appears in figure 6.4(b) where the zooming box shows the 2nd order inter-
polation effect with respect to the linear link of the estimated coefficients of the PD
curve. Hence, figure 6.4(c) shows the absolute errors associated to the linear (used for
reference) and 2nd order AM/AM PD approaches with respect to the theoretical PD curve.

Since ck = ck−1 + ∆k, rearranging terms in equation (6.26) we obtain

bp = ejαy

(
uy

(
αk−1 −

ck−1(αk − αk−1)

∆k

)
+ u2

y

(
αk − αk−1

∆k

))
(6.27)

= ejαy

(
uy

(
αk −

ck(αk − αk−1)

∆k

)
+ u2

y

(
αk − αk−1

∆k

))
(6.28)
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where we can clearly observe that as well as uy → ck−1 in (6.27) or uy → ck in (6.28), the
resulting quadratic term will tend to a null value while the gain will be specified by the
corresponding coefficient αk−1 or αk.

6.1.5 Optimum PD set calculation

The former definitions, though generals, use notation restricted to the pre/post distortion
of single scalar inputs. Hereafter we will consider that at any instant [n] an input signal
column vector

bx[n] =
[
bx[n]bx[n− 1] · · · bx[n−N + 1]

]T
= [bx1 · · · bxN ]T

corresponding to a single sampled OFDM symbol in base-band, is fed into the adaptive
system of figure 6.1(a). Then, the column vectors by[n] and bp[n] will define the discrete
output of the HPA and the PD block respectively. According to the notation used in figure
6.1, in the forthcoming derivations the dependence of signal vectors on discrete-time [n]
will be assumed implicit in order to simplify the expressions. Thus, equation (6.7) can
be extended to vector notation using the same PD gain coefficients vector α to pre/post
distort the elements within the column vector by = [by1 · · · byN ]T as follows:

bp = diag{Λ(uy)α}by (6.29)

or equivalently

bp = diag{by}Λ(uy)α. (6.30)

where uy = [|by1| · · · |byN |]T . According with the previous definitions given in section
6.1.3, in the above expressions for PD, the input-modulus dependent matrix Λ(uy) is a
type 1 activation matrix also called the coefficients activation matrix and defined by

Λ(uy) =

 λT
1
...

λT
N

 (6.31)

which is an (N×Nb) sparse array containing a fuzzy pattern of the activation of coefficients
in α, which is dependent (for each instant [n]) on the N -length input modulus vector uy.
The i-th row in Λ(uy) corresponds to the activation vector λT

i which is dependent on the
modulus of the i-th element in uy according to (6.9). Thence, Λ(uy) is an information
distribution matrix (IDM) such that each row should fulfil the condition (6.10), while
the sum along its columns gives a set of Nc values that compose the soft histogram [61]
approximation to the bin activation probability which can be considered an estimation
of the PDF of the input modulus uy. Now, assuming that the activation matrix Λ is
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implicitly dependent2 on the vector uy and by defining the diag{·} vectorial operation,
the expressions (6.29) and (6.30) can be further developed as

bp = diag{Λα}by =

(
N∑
i=1

δiδ
T
i ΛαδTi

)
by (6.32)

and

bp = diag{by}Λα =

(
N∑
i=1

δiδ
T
i byδ

T
i

)
Λα (6.33)

where

δi : size (N × 1), is a pinning vector (i-th term set to one and the rest to zero) used
to build (N × N) diagonal matrices from a column vector as shown in (6.32) and
(6.33).

Λ : size (N ×Nc), is the coefficients activation matrix.

α : size (Nc × 1), is the PD complex gain coefficients vector.

Our purpose is now to formulate the optimization of α and, therefore, we select the
expression in (6.33) for convenience. Let us define the diagonal matrix

Dy = diag{by} =

N∑
i=1

δiδ
T
i byδ

T
i . (6.34)

Hence, the error signal for the simplified system in figure 6.1(a) can be expressed as the
N -length column vector

epost = bx −DyΛα. (6.35)

Now, the squared error |epost|2 = eHpostepost is given by

|epost|2 = (bx −DyΛα)H (bx −DyΛα)

= bHx bx − bHx DyΛα−αHΛTDH
y bx

+ αHΛTDH
y DyΛα. (6.36)

The minimization of |epost|2 in terms of α can be formulated by evaluating the gradient
∇α∗|epost|2. Thus, from (6.36), we have

∇α∗|epost|2 = −ΛTDH
y bx + ΛTDH

y DyΛα (6.37)

= −ΛTdiag{b∗
y}bx + ΛTdiag{bybHy }Λα (6.38)

= −ΛT (b∗
y � bx) + ΛTdiag{Ryy}Λα (6.39)

2In general Λ will be assumed dependent on the input modulus vector at the PD block.
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where � stands for the element by element Shur-Haddamard product. Note that in equa-
tion (6.39), only the main diagonal of the autocorrelation matrix Ryy is considered. Then,
using the equivalence diag{bybHy } = diag{b∗

y}diag{by} = DH
y Dy, we set ∇α∗ |epost|2 = 0

in (6.38) obtaining

−ΛTdiag{b∗
y}bx + ΛTdiag{bybHy }Λα = 0

−ΛTDH
y bx + ΛTDH

y DyΛα = 0

−(DyΛ)Hbx + (DyΛ)H(DyΛ)α = 0

thus resulting in the final optimum set of PD gain coefficients

αopt =
[
(DyΛ)H(DyΛ)

]−1
(DyΛ)Hbx (6.40)

Now, provided that the squared error given in (6.36) corresponds to a quadratic cost
function with respect to the coefficients α, a typical LMS updating structure can be
considered for the iterative estimation of the optimum set of PD coefficients. The general
updating equation is

αn+1 = αn − µ∇α∗|epost|2 (6.41)

where the gradient of the squared error is required for each iteration. Thence, in order
to provide to the PD algorithm a more direct measure of the gradient, involving less
computational load than calculating (6.39) at each iteration, an alternative expression for
∇α∗|epost|2 is needed. Therefore, from (6.37) and (6.35) the gradient can be expressed as

∇α∗|epost|2 = −ΛTDH
y (bx −DyΛα)

= −ΛTDH
y epost

= −ΛTdiag{b∗
y}epost = −ΛT (b∗

y � epost). (6.42)

This new expression can be easily calculated from the signal vectors acquired at each
iteration and clearly implies less operations than (6.39). Hence, the updating equation for
the estimation of αopt is finally

α(n+1) = α(n) + µΛT (b∗
y � epost) (6.43)

To perform this algorithm, the distribution of the centroids is first defined as uniform
within the input range to the PD, [0, Asat]. This implies that the saturation input
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amplitude is a known data. The maximum input amplitude Asat is sometimes provided
as a nominal design parameter for each specific HPA. Nevertheless, some drifts in the
HPA characteristics and specifically in the saturation point are normally expected due to
several factors like working temperature, power supply level, average input power, output
load matching, etc. Therefore, it is recommendable that the estimation of the input Asat
be frequently updated to suitably design the activation functions distribution along the
input amplitude axis.

Results evaluating the influence of the adaptation step µ, the IBO at the input of the
PD, the number of intervals and the distribution of the input modulus are shown later in
chapter 7.
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6.2 Advanced adaptive strategies for PD

In the previous section we operated a basic optimization algorithm to search for the
best set of PD gain coefficients α that minimizes the MSE. In the PD scheme therein
presented, the centroids were uniformly distributed along the valid input range of the PD
processor [0, Asat[. However, the uniform distribution of symmetrical activation functions
of type 1 does not account for the probability distribution of the input signal modulus
employed by the adaptive algorithm. As a result of this, we observed a slow adaptation
of those gain coefficients associated to centroids located at low probability regions.
Moreover, the MSE converged (again slowly) in average to a floor also presenting large
error peaks due to the presence of non-compensated low probability inputs.

The number of centroids can be seen as a limited resolution resource that must be
optimally distributed. Using a minimum number of centroids to achieve a given level
of nonlinear distortion compensation reduces the computational complexity in the PD
estimation and execution. In this sense, another implementation goal will be to use signal
blocks of reduced length to avoid huge increments in the computational load due to the
calculation of the activation matrices.

In the results obtained for the basic PD scheme with fixed and uniformly distributed
centroids, once the MSE has converged to a floor, we still observe a high peak residual
error which cannot be further reduced since the coefficients α have been optimized for
the given fixed set of centroids. Comparatively, the probability of activation in some
intervals is dramatically inferior than in others. Specifically, intervals which are closer
to the saturation region present a very low activation probability. These bins require
a long stream of input samples to assure the minimum activation that provides good
conditions to update their respective gain coefficients through the adaptation algorithm.
Low-probability input values are responsible for the peak error events which in turn
are associated to important degradations in the data transmission performance (BER,
MER). A first conclusion arises from considering these results:

The use of symmetrical activation functions of type 1 (triangular) with a uniform
distribution of centroids to span the input dynamic range of the PD is not optimal for
signals whose envelope has a non-uniform PDF.

A first strategy to confirm this hypothesis would be to adapt the centroid allocation
according to the PDF of the input signal modulus. Maintaining the total number of
centroids fixed, a higher density of centroids could be defined for those regions of the input
range where the input probability density is larger. In order to completely cover the input
range, including the lowest probability regions, the positions of the outermost centroids
can be defined as constants at c0 = 0 and cNI = Asat while the remaining centroids are
adapted. Simulations (see results in appendix 6.B) evaluating this first strategy reported
worse results than the case where a uniform centroid distribution was used. The cost
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function converged to a higher mean error floor even featuring higher peak error values
due to the excessive concentration of resolution points at high probability regions in
detriment of the lower probability regions of the input. The only improvement observed
was a reduction in the peak to mean error ratio. In the aforementioned test, according to
the Rayleigh distribution considered, very few centroids were assigned to interpolate the
near-to-saturation region of the PD curve. At this region the AM/AM PD characteristics
of HPAs normally feature significant and rapid variations with respect to input variations.
Therefore, interpolation of such part of the curve using few coordinate points will logi-
cally involve a high fitting error when low probability inputs activate these wider intervals.

These considerations on the use of the PDF as the only criterion to place centroids lead
us to the conclusion that the optimum allocation of centroids along the input amplitude
axis defined in figure 6.2 depends mainly on two factors:

a) The probability density function of the input signal amplitude to the PD.

b) The nonlinear characteristic of the HPA.

When regarding the minimization of the MSE (or the error power), some trade-offs
associated with the above factors can be pointed out:

• A denser grid of centroids in those regions along the amplitude range where the
signal envelope has more probability density will result in more resolution and
better approximation of the PD curve. This may, of course, reduce the error power
for input events taking place in such regions.

• A denser grid is, however, only necessary in the high probability regions if the PD
characteristic under estimation features rapid variations in amplitude or phase. A
flat PD response within a given region of the input can be well approximated by
linear interpolation using few coefficients, thence, although the input PDF is high
within such intervals, squandering resolution resources by assigning an excessive
number of centroids to approach the PD in that region is not justified.

Hence, minimization of the error power may require higher interpolation resolution in
regions of smaller probability where the PD characteristic presents higher local variations.
The question that we could formulate is then: What is the combination between the
distribution of Nc centroids in c and an equal number of gain coefficients in α that
provides the minimum error power to interpolate the inverse nonlinear characteristics
in our PD scheme? To solve this, in this section we propose an adaptive algorithm
formulation for the joint estimation of these two vectors (centroids and gain coefficients)
with a minimum MSE criterion. The reader will probably realize that the oncoming
proposal can be related to some vector quantization criteria as those included in [63]
where it is shown, in general terms, how an optimal nonlinear interpolation can be
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Figure 6.5: Block diagram of the PD system. The post-distortion block operation depends on:
the estimated gain coefficients set α, and the centroids distribution c.

formulated at a low complexity cost and disregarding ad-hoc interpolation techniques.

To begin, let us redefine in more detail the model on which our formulation will be
based on. This is shown in the figure 6.5 and corresponds to the post-distortion opera-
tion described in (6.7). The digital post-distorter in the figure estimates the set of gain
coefficients α that, in association to a set of activation functions λ (type 1), define the
instantaneous I/O error

e = bx − by λT(uy) α (6.44)

and minimize the following cost function

J = E
{∣∣ bx − by λT(uy) α

∣∣2} (6.45)

which is the scalar expression for the expected I/O error power. Here, the discrete
time dependence with [n] has been assumed for the sake of brevity. Furthermore, the
activation functions, as defined previously in section 6.1.3, feature a dependence on the
input modulus to the PD block, uy = |by|. This will be made explicit (as λ(uy) above)
whenever needed for algorithm interpretation. Thus, this dependence will usually remain
implicit along the forthcoming derivations in order to abbreviate the expressions.

After some algebra, the scalar cost function in (6.45) can be converted to

J = E
{
|bx|2

}
− 2Re

{
αTE {b∗xbyλ}

}
+ αHE

{
|by|2λλT

}
α. (6.46)

Now, denoting the expected input power as σ2
x = E {|bx|2} and defining

r = E {b∗xbyλ} (6.47)

and
R = E

{
|by|2λλT

}
(6.48)

the expression of the cost function becomes

J = σ2
x − 2Re

{
αT r

}
+ αHRα (6.49)

= σ2
x −αHr∗ −αT r + αHRα. (6.50)
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The gradient with respect to the set of gain coefficients can be expressed from this last
expression as

∇αHJ = Rα− r∗. (6.51)

Setting this gradient to zero we obtain the optimum

αo = R−1r∗ (6.52)

for a fixed set of centroids c. Nonetheless, here it is important to note that this optimum
set of gain coefficients is expressed in terms of R and r which in turn are dependent on
the centroid distribution c as it is clear from the definitions given in (6.47) and (6.48)
since the expected activation λ(uy) will be determined by the centroid positions with
respect to the PDF of the input modulus.

Now, from the definitions in (6.48) and (6.9), the elements in R = RT are all real

valued and (R−1)
H

= (R−1)
T

= R−1. Using these properties we replace (6.52) in (6.50)
obtaining

Jmin(c)
∣∣
αo

= σ2
x − rHR−1r (6.53)

which minimizes J for the αo determined for a specific centroid distribution c. Therefore,
we can aim to further reduce the value obtained through (6.53). This can be done by
operating over the term M(c) = rHR−1r where a new set of centroids c can be found in
order to maximize

c = argmaxc(M(c)) = argmaxc(r
HR−1r).

Along with this first criterion, we can introduce in the cost function (6.50) the relation
found in (6.52), now rearranged as r = Rα∗

o, thus obtaining an alternative expression for
the error minimization

Jmin(c,α) = σ2
x −αHRα (6.54)

where the optimum α now depend on the centroid distribution in c through the matrix
R(c). This new approach suggests an alternate maximization of

M(c,α) = αHRα

where, if M(c,α) is increased through iterations, J(c,α) will converge since it is by
definition positive. For this purpose, a general alternate iteration procedure for the min-
imization of the difference of non-constant terms in (6.49) is now proposed. First, for a
given set cn−1 (where n is the iteration index) we have Rn−1 and rn−1. At the next iter-
ation we can maintain, for instance, the centroid set fixed, that is, cn = cn−1. Hence, we
update the vector α so that αn = αn−1 + ∆α. Thus, αn can be calculated to minimize

αn = argminα
(
αHRnα− 2Re

{
αHrn

})
(6.55)

where Rn = Rn−1 and rn = rn−1. Then, maintaining the gain coefficients fixed at the
next iteration, that is, αn+1 = αn, the set of centroids is updated so that cn+1 = cn+∆c.
This is done according to the minimization

cn+1 = argminc

(
αH
n Rαn − 2Re

{
αH
n r
})
. (6.56)
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Note that the general procedure described above results similar to the Generalized Lloyd-
Max algorithm for Vector Quantization [64][65] where alternate minimization is performed
between the representation vectors, in this case α, and the assignment regions, which are
determined here by the centroid vector c. This scheme is specially suited to the PD
estimation previously described in section 6.1.5, where the adaptation of α according to
(6.55) has been already defined through equations (6.40) to (6.43). Therefore, we will now
lay the foundations for the required procedure for the general minimization expressed in
(6.56).

6.2.1 Optimization of centroid distribution

In this section our interest will be centered in finding a model to estimate the gradient of
the cost function J expressed in (6.45) with respect to the centroid distribution. Finding
such an analytical model will allow us to implement the alternate optimization expressed in
(6.56). For this purpose, let us first consider the gradient of the cost function with respect

to the k-th element in the centroid vector. Thus, the partial derivative ∇ckJ(c) = ∂J(c)
∂ck

,

derived from (6.46), gives

∇ckJ(c) = E
{
|by|2∇ck(α

HλλTα)− 2Re
{
αT b∗xby∇ck(λ)

}}
.

Then, developing the factor

∇ck(α
HλλTα) = 2Re

{
αT∇ck(λ)λTα∗}

this gradient becomes

∇ckJ(c) = E
{
2Re

{
|by|2αT∇ck(λ)λTα∗}− 2Re

{
αT b∗xby∇ck(λ)

}}
= 2Re

{
E
{
αT∇ck(λ)

(
byλ

Tα− bx
)∗
by

}}
= −2Re

{
E
{
αT∇ck(λ)e∗by

}}
(6.57)

where including a straight measure of the conjugated error reduces the problem to finding
a closed expression for the gradient ∇ck(λ(uy)). This can be done by resorting to the
definition of the activation functions of type 1 in terms of the functions of type 2. By
observing the relations between type 1 and type 2 activation functions, it is clear that the
gradient ∇ckλ can be evaluated as

∇ckλ = ∇ckf
+
k +∇ckf

−
k +∇ckf

+
k+1 +∇ckf

−
k+1.
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The separate gradient terms showing the dependence on u, the input modulus to the PD,
are given by

∇ckf
+
k = ∇ck

(
u− ck−1

ck − ck−1

)
= − u− ck−1

(ck − ck−1)2
= − 1

∆k
f+
k

∇ckf
−
k = ∇ck

(
ck − u
ck − ck−1

)
=

u− ck−1

(ck − ck−1)2
=

1

∆k
f+
k

∇ckf
+
k+1 = ∇ck

(
u− ck
ck+1 − ck

)
=

u− ck+1

(ck+1 − ck)2
= − 1

∆k+1

f−
k+1

∇ckf
−
k+1 = ∇ck

(
ck+1 − u
ck+1 − ck

)
= − u− ck+1

(ck+1 − ck)2
=

1

∆k+1

f−
k+1.

As seen in section 6.1.3, each activation function of type 2 is specifically associated to
one gain coefficient from α according to the index k and the sign of its slope. Therefore,
the product αT∇ck(λ) included in (6.57) can be calculated using the expressions above
as

∇ck(α
Tλ) = αk∇ckf

+
k + αk−1∇ckf

−
k + αk+1∇ckf

+
k+1 + αk∇ckf

−
k+1

= − αk
∆k

f+
k +

αk−1

∆k

f+
k −

αk+1

∆k+1

f−
k+1 +

αk
∆k+1

f−
k+1

=
(αk−1 − αk)

∆k
f+
k +

(αk − αk+1)

∆k+1
f−
k+1.

Inserting this result into the gradient expression in (6.57) we obtain

∇ckJ(c) = −2Re

{
E

{
bye

∗
(

(αk−1 − αk)
∆k

f+
k +

(αk − αk+1)

∆k+1
f−
k+1

)}}
(6.58)

where we observe that the gradient with respect to the k-th centroid considers two
activation contributions: from its left and from its right. The centroid gradient is
steered by the conjugate error and its sensitivity is proportional to the coefficient
differences at each interval normalized to their respective bin widths. However, if
we consider the calculation of this gradient at each learning step, we note that the
activation of f+

k and f−
k+1 never takes place simultaneously. Therefore at each iteration

only one of the terms in (6.58) will contribute to updating the centers through the
steepest descent algorithm or to approximate the expectation in (6.58) through averaging.

We tested the applicability of this expression through simulations and found that this
structure features some major disadvantages which are pointed out below.

- The variations of the gradient with respect to the centroid ck have not been assumed
to be influenced in any way by the variations with respect to other centroids. This
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is equivalent to operating over each centroid position independently from the rest
and assuming the risk of breaking the basic relations between centroids which, by
definition, should be a monotonously increasing set of values within a well defined
range [0, Asat].

- In the formulation, we restricted c1 = 0 and cNI = 1. Under adequate conditions, this
fixes the positions of the outermost centroids and allow the remaining intermediate
ones to be iteratively updated within the valid range. However, the rest of the
centroids have not been in any way restricted to remaining within [0, Asat] through
the minimization process. Therefore, some of them may be forced by the gradient
to run beyond saturation or to become negative values when the gradient tends to
a local minimum or when the error diverges.

- The inclusion of a minimum inter-centroidal distance ∆min has not been considered.
Therefore, two or more consecutive or non-consecutive centroids could merge into a
single one making the cost function converge to a suboptimal local minima.

- Furthermore, even if a ∆min is considered between consecutive centroids, the struc-
ture defined for adaptation does not necessarily avoid eventual centroid-crossings
which occur when the condition ck−1 < ck is no longer valid although the consecu-
tive centroids maintain the minimum distance defined between them. Thus, for the
PD estimator considered, which is based on linear interpolation, centroid scrambling
is logically unacceptable.

- Concluding, the use of an alternate adaptive structure based on ∇ckJ(c) requires
some heuristics in order to guarantee the convergence of the cost function to the
absolute minimum.

A good solution to these drawbacks can be implemented if, instead of the gradient
with respect to ck, shown in (6.57), we calculate the gradient with respect to an indirect
measure of the inter-centroid distance from which the centroid positions can be recovered
while the basic conditions of monotonicity and range are respected. For instance, if we
use directly ∆k, some of these problems are still present, however, when the evaluation of
the argument in (6.57) is based on finding ∇∆k

(αTλ(u)) we obtain

∇∆k
(αTλ(u)) = αT ∂λ(u)

∂∆k

= αk−1
∂f−

k (u)

∂∆k

+ αk
∂f+

k (u)

∂∆k

and, since f+
k + f−

k = 1, this can be equivalently expressed as

∇∆k
(αTλ(u)) = (αk − αk−1)

∂f+
k (u)

∂∆k

. (6.59)

Hence, the gradient of the cost function in (6.58) takes the form

∇∆k
J(c) = −2Re

{
E

{
bye

∗(αk − αk−1)
∂f+

k (u)

∂∆k

}}
. (6.60)
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This last expression considers only the contribution of the effectively activated interval
for the calculation of the gradient estimation. In the next section we normalize ∆k and use
it in this last gradient construction to formulate in more detail all the needed restrictions
that provide a robust convergence to the optimal PD estimation.
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6.2.2 ELASTIC∗ centroid allocation algorithm

Three related types of activation functions were previously defined in section 6.1.3 for
input amplitudes to the PD within the interval [ck−1, ck[. Now, preserving the structure
shown in figure 6.2, let us redefine the distance between any pair of consecutive centroids
as a positive non-null number given by

∆k = |ck − ck−1| = δ2
k + ∆min (6.61)

where δ2
k is a control parameter for adapting the distance ∆k, while ∆min is a small

constant that sets the minimum distance between consecutive centroids. Let the first
centroid be fixed at the origin: c0 = 0. Then, the remaining ones, from k = 1 to k = NI ,
can be calculated as

ck =
k∑
�=1

(δ2
� + ∆min) = k∆min +

k∑
�=1

δ2
� . (6.62)

Hence, the maximum input range in which the PD will operate is defined by fixing the
last centroid as

cNI = Asat =

NI∑
�=1

∆� = NI∆min +

NI∑
�=1

δ2
� . (6.63)

Each interval width can also be expressed in proportional terms when normalized with
respect to the total amplitude range, this is expressed as

Pk =
∆k

Asat
=

δ2
k + ∆min

NI∑
�=1

(δ2
� + ∆min)

. (6.64)

The adaptive centroid allocation can be formulated in terms of these interval propor-
tions since any updating of the set P = [P1 . . . PNI ] will lead to a corresponding update
of the centroid positions (and vice versa) through the following relation:

ck = Asat

k∑
�=1

P�. (6.65)

The purpose of iteratively adapting the proportional value of each interval instead of
the interval width itself, is to maintain the total range [0, Asat] unmodified provided that
the condition in (6.63) is true for any centroid distribution fulfiling ck > ck−1. This last
condition was guaranteed when we included the minimum distance ∆min in (6.61).

From (6.13) and (6.65), the positive slope function of type 2 that accounts for the
activation of the k-th interval, can be expressed in terms of the proportions in P as

f+
k =

u−
k−1∑
�=1

P�Asat

PkAsat
. (6.66)

∗ELastic Allocation of a Set of Two-dimensional Interpolation Centroids.
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Equations (6.64) and (6.66) are key in that they introduce the inter-dependence
between centroids. On the one hand, the definition of any Pk considers the summation
of all interval widths as the normalization factor. On the other hand, the activation
function f+

k is now defined considering a cumulative summation of the proportions of
inferior intervals and not only the centroids limiting the k-th interval. Additionally, any
increment in Pk will require a distributed reduction over the rest of the intervals to
account for the condition in (6.63). As a result of this, the next formulation will produce,
for each given activation function f+

k , a gradient vector that will determine proportional
updates in the inter-centroid distances ∆k along the whole centroid distribution. This
will produce the reallocation of all other centroids within the range. We will refer
henceforth to this property as the elastic adaptation of the centroids, hence the name of
the proposed algorithm.

With the given definitions, particularly since the centroids ultimately feature depen-
dence on the parameter δ according to (6.62), we can reformulate the gradient in (6.60)
now taking into account that any activated f+

k (u) features a dependence on variations in
any interval width along the valid range. Thence, the gradient can now be expressed as

∇δiJ(c) = −2Re

{
E

{
bye

∗(αk − αk−1)
∂f+

k (u)

∂δi

}}
(6.67)

wherein, as we similarly defined in (6.59), we must provide a closed expression for

∇δi(α
Tλ) = (αk − αk−1)

∂f+
k

∂δi
. (6.68)

Here, for a given k, the gradient will consider the contributions from all the intervals.
This is done by applying the index i from 1 through NI and solving the partial derivative
according to the chain rule

∂f+
k

∂δi
=

NI∑
�=1

∂f+
k

∂P�

∂P�
∂δi

. (6.69)

A detailed formulation for this chain rule is presented in appendix 6.A where the
following intermediate solutions are found:

∂f+
k

∂P�
=



0 ; � > k

− 1

Pk
f+
k ; � = k

− 1

Pk
; � < k

(6.70)

and

∂P�
∂δi

=


− 2δi
Asat

P� ; � �= i

2δi
Asat

(1− P�) ; � = i.

(6.71)
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Thus, the final expression for (6.69) is the following piece-wise function:

∂f+
k

∂δi
=

2δi
PkAsat

·



f+
k Pk +

k−1∑
�=1

P� − 1 ; for i < k

f+
k Pk +

k−1∑
�=1

P� − f+
k ; for i = k

f+
k Pk +

k−1∑
�=1

P� ; for i > k

(6.72)

The updating of the centroid vector c = [c0 · · · cNc ] is then implemented using equa-
tions (6.67),(6.68) and (6.72). Recall that, according to the range constraint, the positions
of the first and the last centroids in c should not be modified. Therefore, the iterative
process described in (6.56) can be suitably implemented by updating the intermediate
distance parameters contained in the vector δ = [δ1 · · · δNI ] according to

δ(n+1) = δ(n) − µ∇̂δiJ(c) (6.73)

with ∇̂δiJ(c) the raw gradient estimation obtained by ignoring the expectation operator
in (6.67). The centroids will be updated at each iteration with the adapted values within
δ through the relation in (6.62).

The initial conditions for the algorithm are stated by defining first the minimum
distance as

∆min = ε
Asat
NI

where we take a small proportion ε of the interval’s width considering the uniform distri-
bution of the Nc centroids along the range [0, Asat]. Then, the elements within the vector
δini are initialized as

δini =

√
Asat
NI

(1− ε)

Vectorial extensions of the presented equations were used to implement the alternate
optimization algorithm as a block-oriented process considering an N -length OFDM sym-
bol as the input to the adaptive system at each iteration. Results for a preliminary test
evaluating the behaviour of the ELASTIC algorithm in presence of two different nonlin-
earities are shown next in the appendix 6.C.
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6.A Appendix: Gradient evaluation for elastic allo-

cation of centroids

Using

Pk =
∆k

Asat
=

δ2
k + ∆min

NI∑
r=1

(δ2
r + ∆min)

(6.74)

and

f+
k =

u−
k−1∑
r=1

PrAsat

PkAsat
(6.75)

we must evaluate
∂f+

k

∂δi
=

NI∑
�=1

∂f+
k

∂P�

∂P�
∂δi

. (6.76)

For i �= � we have

∂P�
∂δi

∣∣∣∣
i�=�

= − 2δi(δ
2
� + ∆min)(

NI∑
r=1

(δ2
r + ∆min)

)2 = − 2δi
Asat

P� (6.77)

and if i = �

∂P�
∂δi

∣∣∣∣
i=�

=
2δ�

NI∑
r=1

(δ2
r + ∆min)

− 2δ�(δ
2
� + ∆min)(

NI∑
r=1

(δ2
r + ∆min)

)2 =
2δ�
Asat

(1− P�) (6.78)

In turn, for the evaluation of
∂f+

k

∂P�
three conditions must be considered. First, by

observing the definition in (6.75), it is clear that for � > k

∂f+
k

∂P�

∣∣∣∣
�>k

= 0 (6.79)

while for � = k

∂f+
k

∂P�

∣∣∣∣
�=k

= − 1

P 2
k

(
u−

k−1∑
r=1

PrAsat

)
Asat

= − 1

Pk
f+
k (6.80)

and for � < k

∂f+
k

∂P�

∣∣∣∣
�<k

= − 1

Pk
. (6.81)
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Then, from (6.76) and applying the intermediate results above, we obtain

∂f+
k

∂δi
=

k∑
�=1

∂f+
k

∂P�

∂P�
∂δi

=
∂f+

k

∂Pk

∂Pk
∂δi

+

k−1∑
�=1

∂f+
k

∂P�

∂P�
∂δi

= − 1

Pk
f+
k

∂Pk
∂δi
− 1

Pk

k−1∑
�=1

∂P�
∂δi

. (6.82)

To evaluate (6.82) we use (6.77) and (6.78). Thus, for i = k we obtain

∂f+
k

∂δi

∣∣∣∣
i=k

=
1

Pk
f+
k

2δk
Asat

(Pk − 1) +
2δk

PkAsat

k−1∑
�=1

P�

=
2δk

PkAsat

(
f+
k Pk +

k−1∑
�=1

P� − f+
k

)
(6.83)

while, for i < k

∂f+
k

∂δi

∣∣∣∣
i<k

=
1

Pk
f+
k

2δiPk
Asat

− 1

Pk

(
∂Pi
∂δi

+
∑
� �=i

∂P�
∂δi

)

= f+
k

2δi
Asat

− 1

Pk

(
2δi
Asat

(1− Pi) +
2δiPi
Asat

−
k−1∑
�=1

2δiP�
Asat

)

=
2δi

PkAsat

(
f+
k Pk +

k−1∑
�=1

P� − 1

)
(6.84)

and for i > k we get

∂f+
k

∂δi

∣∣∣∣
i>k

=
1

Pk
f+
k

2δiPk
Asat

+
1

Pk

k−1∑
�=1

2δiP�
Asat

=
2δi

PkAsat

(
f+
k Pk +

k−1∑
�=1

P�

)
. (6.85)
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Therefore,we can summarize

∂f+
k

∂δi
=



2δi
PkAsat

(
f+
k Pk +

k−1∑
�=1

P� − 1

)
; for i < k

2δi
PkAsat

(
f+
k Pk +

k−1∑
�=1

P� − f+
k

)
; for i = k

2δi
PkAsat

(
f+
k Pk +

k−1∑
�=1

P�

)
; for i > k.

(6.86)
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6.B Appendix: Test for centroid allocation using the

PDF of the input signal to the PD
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(order statistics)
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PD

���( , )c

Figure 6.6: Scheme for adaptive PD where the optimization algorithm of section 6.1.5 is applied
to estimate the PD gain coefficients α while the centroid distribution is adapted according to a
PDF estimation at the input of the PD block.

The test included in this appendix is solely intended to show that the use of the prob-
ability distribution of the input data as an absolute criterion for the centroid distribution
adaptation is not optimal and can even lead to results worse than the use of a simple
uniform centroid distribution to interpolate the PD curve. In figure 6.6 a signal generator
is used to drive the input of a nonlinear HPA. For this block, we used the normalized
Saleh model whose characteristics appear in section 2.2.1.
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Figure 6.7: Test results for a uniform centroid allocation. In (a) we present the resulting set of
estimated gain coefficients using a uniform distribution of Nc = 17 centroids. In (b) we observe
the evolution of the mean square adaptation error signal e which is measured in dB with respect
to the input power. The gain coefficients converge after 2500 iterations (each iteration considers
a block with 128 data samples). Note that the MSE still registers high peak error values after
convergence due to the large fitting errors near the saturation region.
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Figure 6.8: Test results for evaluating the PDF-based centroid allocation. In (b) we see the
MSE evolution for the estimation of the PD gain coefficients of figure (a) where the adapted
centroid distribution is denser in the higher probability regions. The MSE converges to a level
30 dB worse than the level achieved previously using the uniform centroid distribution of figure
6.7(a). Then, in (c) and (d) we tested the reallocation of two coefficients from the dense group
to improve the resolution of the PD curve in the lower probability region. Two centroids were
reallocated when the difference between the estimated input and output PDFs was under a
given threshold at the iteration n=1360. This resulted in a significant improvement of the MSE,
indicating that low probability signal values also introduce an important degradation of the
adaptation error.
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6.C Appendix: Test for ELASTIC using an input sig-

nal with uniform PDF and two different HPA

models
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Figure 6.9: Basic adaptive architecture for the PD estimation of two different nonlinearities
using the ELASTIC algorithm.

In this appendix, a preliminary test to observe the behaviour of the ELASTIC algo-
rithm in presence of two different models of nonlinear HPAs is considered by applying,
to the adaptive PD block in figure 6.9, a complex signal with uniform distribution in
its modulus and phase components. The first HPA considered in this test is the Saleh
model which has been extensively described in section 2.2.1. The multiplicative gain
characteristics of such model, and the corresponding theoretical inverse gain curves for
AM/AM and AM/PM PD, where shown in figures 2.5 and 2.3 and will be used here as a
reference.

We also test an alternative to Saleh’s model by replacing the AM/AM characteristic in
(2.26) by a different nonlinearity while preserving the same AM/PM nonlinear distortion
expressed in (2.27). The new resulting AM/AM nonlinearity is an arbitrary3 nonlinear
function given by

Aκ[u] =
arctan

(
κ
(
u− 1

2

) )
2 arctan

( κ
2

) +
1

2
(6.87)

whose corresponding inverse transfer function is

A−1
κ [u] =

1

κ

[
tan

(
(2u− 1) arctan

( κ
2

))
+

1

2

]
. (6.88)

Then, according to the formulations in section 2.2.1, and specifically in equations (2.36)
and (2.39), the direct and inverse gain associated to the above transfer expressions can

3It has not been designed to fit the characteristics of any specific nonlinear device.
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be respectively obtained as

Gκ[u] =
Aκ[u]

u
(6.89)

G−1
κ [u] =

A−1
κ [u]

u
. (6.90)

Here it is worthy to mention that although the AM/PM characteristic for this alternative
HPA model remains the same as Saleh’s AM/PM presented in (2.27), the inverse AM/PM
function is different since the AM/PM PD depends on the inverse AM/AM as expressed
in (2.34). Thence, the inverse AM/PM for the new model is obtained as

Ψκ[u] = −Φ
[
A−1
κ [u]

]
(6.91)

which does not correspond to the same inverse AM/PM for the Saleh model in (2.27)
that can be obtained through (2.34).

Henceforth, we will refer to this new nonlinearity as the Kappa model. The AM/AM
transfer characteristics for different values of κ are depicted in figure 6.10(a) while
their corresponding direct and inverse gain curves appear in figures 6.10(b) and 6.10(d)
respectively. For the curve identification test we choose κ = 10 whose associated
theoretical transfer characteristics are depicted in figure 6.10(c). This setting will allow
us to observe the behaviour of the coefficients facing a gain morphology significantly
different in comparison to the PD gain shown in figure 2.5. Since the rapid variations
of this new model coincide with the flat part of Saleh’s PD gain, the coefficients and
centroids may tend to move and concentrate in a distinct way according to the new
nonlinearity.

In the figures included in this appendix, we observe the results obtained by driving
the input of the PD with a signal bin[n] = uin[n]ejφin[n] whose modulus and phase have
uniform PDFs

Puin
=

{
1/M ; 0 ≤ u ≤ M

0 ; otherwise

and

Pφin
=

{
1/2π ; −π ≤ φ ≤ π

0 ; otherwise

respectively.
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Figure 6.10: Alternative “κ” nonlinearity model to evaluate the ELASTIC PD algorithm. (a)
AM/AM transfer curves for different values of the parameter κ. (b) the corresponding modulus-
dependent gain curves. (c) direct and inverse transfer characteristics for κ = 10 (used in the
present evaluation).(d) ideal PD gain curves associated to the set in figure (b).
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Figure 6.11: Evolution of AM/AM PD gain
coefficients using a test input signal with uni-
form distribution in [0, 1] and the Saleh model
for the HPA. Note that the adaptation of
these four centroids (which initially are uni-
formly spaced) starts at n = 1000.
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Figure 6.12: Adaptation of AM/AM PD
coefficients before initiating centroid reallo-
cation. The PD gain coefficients converge
quite rapidly (500 iterations approximately)
to their estimated optimum values.
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Figure 6.13: Evolution of the AM/PM PD
gain coefficients associated to those in figure
6.11.
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Figure 6.14: Adaptive reallocation of cen-
troids using the uniform PDF and the Saleh
model. Note that outermost centroids remain
fixed and the inner two centroids adapt their
position using ELASTIC.
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Figure 6.15: (a) Estimated PD gain coefficients for the uniform input test using the Saleh
model for the HPA. Note that, since the input PDF in this case is uniform, the centroid density is
determined by the variations of the HPA’s characteristics, thus assigning low resolution to the flat
part of the PD gain curve and higher resolution to the near-saturation zone. The theoretical PD
gain characteristics, calculated from eqs.(2.39) and (2.40), are shown in dash line for reference.
The circles mark the estimated PD coefficients related to the optimized centroid distribution.
In (b), the adaptation error evolution illustrates the good convergence of the algorithm. During
the first 1000 iterations, the centroids are fixed in a uniform initial distribution and only the
gain coefficients are adapted. Then, the centroids become adaptive which results in a MSE 12dB
better than the level achievable without centroid adaptation. Note that, the convergence times
for the initial adaptation of the PD gain coefficients and centroids appearing in the figures,
should be estimated considering only half of the iterations since the alternate adaptation has
been performed from the beginning and, therefore, the coefficients α where updated only at odd
iterations n = 1, 3, 5, . . . for n < 1000.
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Figure 6.16: Evolution of the AM/AM PD
gain coefficients using a test input signal with
uniform distribution in [0, 1] and the Kappa
model for HPA. Note that the adaptation
of centroids (which initially are uniformly
spaced) starts at n = 2500.

0 500 1000 1500 2000 2500 3000 3500
0.5

1

1.5

2

2.5

3

3.5

4

4.5
PD Coefs Adaptation (modulus)

iterations

A
M

/A
M

 P
D

 g
a

in

start centroid adaptation 

uniform centroid distribution 

Figure 6.17: Adaptation of the AM/AM PD
coefficients before initiating centroid realloca-
tion. The PD gain coefficients approximately
converged to the optimum values for the case
of uniform centroid distribution.
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Figure 6.18: Evolution of the AM/AM PD
gain coefficients associated to those in figure
6.16 for Kappa HPA model.
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Figure 6.19: Centroid adaptation using the
uniform PDF signal and Kappa nonlinear
model for the HPA.
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Figure 6.20: (a) Estimated PD gain coefficients for the uniform input test with the Kappa
nonlinearity. Note that, in this case, the centroid distribution is determined by the variations
in the HPA’s characteristics, thus assigning low resolution to the flat part of the PD gain
curve, which is now in the middle, and higher resolution to both the low amplitude and near-
saturation zones. Although the curve variation in this last region is much smaller, the error power
associated to sub-compensated samples in this region is high and, therefore, the variations on
the left part of the PD curve should be significantly more accentuated to force the second
centroid to move leftwards. The arrows in the figure show the directions followed by the centroid
adaptation to emphasize the difference with respect to the previous test using the Saleh model.
The theoretical PD gain characteristics, calculated from eqs.(6.90) and (6.91), are shown in dash
line for reference. The circles mark the estimated PD coefficients related to the optimized centroid
distribution. In (b), the adaptation error evolution shows the convergence of the algorithm.
During the first 2500 iterations, the centroids were fixed in a uniform initial distribution and
only the gain coefficients were adapted. The MSE improvement in this case registered around
4dB with respect to the achievable level without adapting the centroids.
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6.D Appendix: Equivalence between data and signal

squared errors for PD estimation
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Figure 6.21: Block diagram of a general HPA linearization scheme. The adaptation of the
post-distorter (PD) may depend on two different squared error measurements: M-QAM data
(εD) or base-band signal (εS).

In figure 6.21, a basic linearization scheme is shown, where the input of a post distortion
(PD) device is driven by the distorted base-band signal from the output of a non-linear
HPA, thus expecting to obtain a global linear response. The base-band modulation and
demodulation of M-QAM data is considered a general N -length block oriented discrete
process (like the basic OFDM generation previously described), which is represented by
the matrices A and B respectively. Then, from this structure, two different input-output
error signal vectors with length N , can be acquired, namely: The M-QAM data error
eD = dy − dx, and the base-band signal error, given by eS = bz − bx. Here, dy = Bbz
is the demodulated data at Rx, and bx = AHdx is the base-band input vector to the
HPA, which is expected to be identical to bz after linearization with the PD. The square
error can be then calculated from these data–signal error vectors as the squared norms:
εD = eHDeD and εS = eHS eS respectively, providing two alternative scalar compensation
parameters to adjust the post-distorter device through an adaptive algorithm.

In general, it is reasonable to say that the error signals used for PD coefficients adap-
tation should be defined in terms of the signals directly affected by the non-linear distor-
tion under consideration. However, if in the case shown in figure 6.21, the modulation-
demodulation process is characterized as a unitary-linear transformation, with the matri-
ces A and B such that,

AHB = BAH = I(N×N) (6.92)

and
AHA = BHB = I(N×N) (6.93)

then, we can straightforwardly formulate the equivalence,

εD = eHDeD = ‖dy − dx‖22 = ‖B bz − dx‖22 = ‖B [ bz −AHdx︸ ︷︷ ︸
eS

]‖22

= ‖(B eS)
HB eS = eHS BHB︸ ︷︷ ︸

I

eS = eHS eS = εS. (6.94)
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whence we may observe that, although the HPA and the PD operate over the base-band
signal, the signal error εS can be used as a linearization performance parameter, equivalent
to the data error εD. Thus, the use of base-band signal samples (time domain) to construct
the adaptation error, leads us to a PD estimation that considers the correction of the non-
linear distortion of the symbol constellation (frequency domain). This equivalence, based
on the conditions (6.92) and (6.93), is in agreement with the OFDM signal model described
in section 3.1.1 where the base-band modulation is implemented through the fast Fourier
transform. When formulating such equivalence between error signals, we must be careful
and recall that this property do not apply for the use of the data error εD to perform
data PD. This is because data pre-distortion is a technique that, unlike the signal PD
considered in this case, only compensates the distortion at the specific sampling times and,
therefore, does not provide good compensation of the out-of band nonlinear distortion.
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