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Abstract

Obesity has become exceedingly pervasive, a resultant of amplified food
availability and reshaped human behavior stimulated by urbanization. It poses as a
major challenge for human metabolic physiology testing the limitations of metabolic
plasticity; an adaptive capacity against internal or environmental stressors. A
stressor persisting and turning into a chronic situation, diminishes the ability to
adapt, thus debilitating metabolic plasticity. In the face of the various strategies for
combatting obesity, it has become increasingly crucial to further advance the
understanding of obesity-associated metabolic adaptations at a systemic and a

tissue-specific level.

Committed towards this purpose, the LiMa (Lifestyle Matters) project aimed at an
integrative multidisciplinary approach addressing phenotypical and functional
transitions induced by obesity and weight loss. A combined nutritional and exercise
intervention was implemented on a mouse model of diet-induced obesity in order
to evaluate metabolic plasticity and interpret the crosstalk among tissues and its
manifestation systemically. An assessment of several parameters, systemically and
in major tissues dictating metabolic responses, revealed an impressive capacity to
overcome the impairment induced by obesity. However, a lack of plasticity
emphasized by a deteriorating mitochondrial function in epididymal white adipose

tissue (eWAT) was evident in our study.

The aim of this doctoral thesis is to gain further insight on metabolic plasticity of
formerly obese mice by adding on to the description of the phenotypes of the
experimental groups and by focusing on different depots of white adipose tissue and
their stromal vascular fraction. A lipidomic study identified lipid profiles as tissue-
specific, and reported lipidomes of liver and skeletal muscle reflective of energy
balance contrary to eWAT lipidome, which was reflective of the content of the
administered diet. With the attention shifted towards adipose tissue, eWAT seemed
to be more susceptible than the other adipose tissue depot investigated -
subcutaneous white adipose tissue (SWAT) - to damage initiated by high-fat feeding.
This vulnerability was highlighted by an intense inflammatory profile, as indicated

by the M1 proinflammatory phenotype of infiltrating macrophages in eWAT and the
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presence of crown-like structures surrounding adipocytes, together with worsening
of mitochondrial function of adipose-derived stem cells in eWAT. Moreover, other
macrophage subtypes seem to participate in eWAT expansion and remodeling,
including M2a macrophages induced by HFD, which are involved in endocytic
processes, as well as M2b macrophages, controlling the intensity of inflammatory
reactions, and M2c macrophages, involved in the phagocytosis of apoptotic
adipocytes. eWAT remodeling also involved significant changes in the composition
and appearance of the extracellular matrix, with HFD increasing the expression of
both collagens and proteoglycans involved in fibrosis, such as COL1, COL3 or COL6,
and lumican and versican, respectively. Notably, intervention studies aimed at
reducing body weight (exercise and decreased feeding) reverted, though only
partially, the matrisome of eWAT while the macrophage population recovered the

original, lean phenotype upon weight loss.

Hence, data from previous LiMa studies combined with data from this doctoral
thesis illustrate visceral white adipose tissue as the most affected tissue in the
progression of obesity. In addition, the deterioration in its mitochondrial function
despite improvements in tissue morphology hints at mitochondrial health as a key

determinator of the state of metabolic plasticity.
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1.1 Adipose tissue

Adipose tissue previously recognized solely for its energy storage capacity, is
now considered a complex endocrine organ contributing to systemic (whole body)
metabolism and energy balance. The traditional view of the function of adipose
tissue is that of a long-term fuel reservoir which, during nutritional deprivation, can
mobilize and release its content of triglycerides into fatty acids to be oxidized by
other organs. In 1994, a critical discovery, that of leptin, lead to shifting the interest
in adipose tissue from just a passive site for energy storage to an endocrine organ
(1). Leptin is a hormone produced mainly by adipocytes and acts both centrally -
having receptors in the hypothalamus - and peripherally affecting multiple organs
(1,2). This finding paved the way for the identification of a large number of factors
with hormonal properties emphasizing on the role of adipose tissue in physiological

homeostasis and metabolic regulations (2).

1.1.1 Adipose tissue: form and structure

Adipose mass or fat mass can range from 5 to 60% of total body weight (3).
This fat mass and its distribution is affected by sex (4), race (5) and age (3). Adipose
tissue is categorized on the basis of its anatomic location and major cell type
constituent. In mammals, two main types of adipose tissue exist: white adipose
tissue and brown adipose tissue representing, respectively, more than 95% and
between 1 to 2% of the adipose mass of (1). A third type of adipose tissue, beige or
brite adipose tissue, has been also identified (6). The remaining adipose mass is
attributed to several small adipose depots that are closely associated with other
anatomic structures performing diverse organ-specific functions (2,7). Some
examples of these depots are dermal adipose tissue (2,7), facial adipose tissue (7),

mammary adipose tissue (8,9), bone marrow adipose tissue (10,11), etc...

Morphological and functional heterogeneity among adipose depots has been
observed and explored. The 3 most discussed adipose tissue types - white, brown

and beige - are differentiated primarily by the type of adipocytes - fat cells - they
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consist of. While adipocytes are the major components of the different types of
adipose tissue; other cell types which form the stromal vascular fraction (SVF) of the
tissue can vary between types of tissues and depots, affecting the morphology and

function of the tissue.

White adipose tissue (WAT):

The primary function of WAT is to regulate energy homeostasis through the storage
of excess energy as triglycerides (TAG) (12). The white yellowish color of WAT is
due to its major cell type component, the white adipocytes. These polygonal cells
characterized by unilocular large lipid droplets (LD) and low mitochondrial density.
The LD occupies about 95% of the volume of the cell forcing the nucleus and all other
organelles to the periphery of the cell (3,12,13). Thus, a white adipocyte size ranges
between approximately 20 to 200 pm depending of the volume of the LD (3).

Brown adipose tissue (BAT):

Unlike white adipocytes, brown adipocytes are multilocular, with multiple small LDs
and high mitochondrial density (7). The main role of BAT is non-shivering
thermogenesis, to dissipate energy in the form of heat through uncoupled
mitochondrial respiration (2,7,14). Brown adipocytes are primarily found around
interscapular, axillary, paravertebral and perirenal sites (12). In humans and other
large mammals, it was thought that the main BAT depot- interscapular- is restricted
to neonatal and early childhood periods and to adults who are chronically exposed
to extreme cold (7,12). But this conception has changed when new technologies in
imaging revealed active BAT in adult humans at several discrete anatomical sites,

essentially in the upper trunk (15,16).

Beige or brite adipose tissue:

This tissue resides within WAT and in rodents it has been identified mainly in
inguinal WAT. It consists of adipose cells that, upon cold exposure, adrenergic
stimulation or local hyperthermia via heat stress factor 1 activation (17), are
capable of transforming into brown-like adipocytes (2,7,12,14). These brite (“brown
in white”) adipocytes are morphologically similar to both white and brown
adipocytes; they can have either one large unilocular LD or multiple smaller ones
and their mitochondrial density is intermediate and prone to an increase upon

stimulation (12).
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Adipose tissue origins

Even though, both white and brown adipocytes are dependent of similar
transcriptional factors for development, such as peroxisome proliferator-activated
receptor y (PPARY) and many others, their origins differ (14). Most WAT formation
begins in utero and its further development is stimulated after birth when
adipocytes are needed for energy storage (18). It is assumed that most white
adipocytes originate from mesenchymal progenitor cells of the mesoderm. But
white adipocytes from different depots seem to have different origins. For example,
neuroectoderm seems to be the origin of white adipocytes of the craniofacial region
and hematopoietic cells acting through the myeloid lineage in bone marrow adipose
tissue (14,18). When tracing the origins of brown adipocytes found in BAT depots,
these cells were found to be of myogenic lineage expressing the transcription factor,

Myf5 (14,18,19).

Adipose tissue distribution

The distribution of adipose tissue in humans and mice is quite similar. The
different depots are distinguished by their distinct anatomical locations (1-5,7).
WAT is distributed throughout the body but can be categorized into two main
subpopulations, subcutaneous white adipose tissue (sWAT) and visceral white
adipose tissue (VWAT). sWAT, as it suggests, is the WAT located under the skin in
several body regions. Not only, it can also be found interspersed between skeletal
muscles forming the intramuscular fat. The most common and most studied depots
of sSWAT in humans are the abdominal, femoral and gluteal (7,12) and in mice the
inguinal WAT (iWAT) found anterior to the upper site of the hind limbs. vWAT
surrounds many organs intra-abdominally providing protective padding. vWAT is
differentiated according to the organ it envelops; omental WAT surrounds the
stomach and the spleen, mesenteric WAT forms a web that supports the intestines,
perirenal WAT covers the kidneys, gonadal WAT is attached to uterus and ovaries

in females and the epididymis and testis in males, etc... (12).
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Figure 1: Adipose tissue distribution in (A) humans and (B) mice (adapted from (2)).

Other discrete and small WAT depots with distinct origins and functions have been
detected (2,7). Dermal adipose tissue (dWAT) scattered within dermal layers closely
to hair follicles is involved in hair development, pathogen resistance and skin wound
healing (2,7). Two types of bone marrow adipose tissue (BMAT) can be
distinguished, the constitutive and the regulated. The constitutive or yellow BMAT
develops in the distal skeletal bones such as distal tibia or tail vertebrae in mice.
While the regulated or red BMAT is dispersed in the spine and proximal skeletal
limb bones. BMAT is important in the regulation of bone metabolism and
osteoblastic activity (10). It was also found to be crucial for the secretion of
circulating adiponectin- a hormone essential in regulation of glucose levels and in
fatty acid breakdown- during caloric restriction (10,11). As for mammary adipose
tissue, the governing type of adipocytes is known as pink adipocytes because of their
unique function and morphology. Pink adipocytes have an apical surface with
microvilli and they have the ability to secrete milk as well as store large amounts of
lipids in the mammary glands. These cells arise in females from subcutaneous WAT
during pregnancy and lactation periods (20). Another type of adipocytes present in
sWAT, specially iWAT, is the brite adipocytes or the inducible brown adipocytes
(12). These cells are distinct from classical brown adipocytes which form BAT
depots. Brown fat is mainly distributed around cervical-interscapular, paravertebral
and perirenal regions (3). In humans, interscapular BAT (iBAT) is found in the

thorax region, chest and abdomen as well.
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1.1.2 Stromal vascular fraction

In addition to all previously mentioned, the heterogeneity of the adipose
tissue extends to its stromal vascular fraction (SVF). Adipocytes are the primary
constituents of this tissue, but a multitude of other cell types in the SVF contribute
to its physiology and function including vascular cells, stem cells, endothelial cells,

preadipocytes and a variety of immune cells.

Stem cells to adipose derived stem cells

First recognized in the 1950s while experimenting on the bone marrow, stem
cells are unspecialized cells with clonogenic potential giving them the ability to self-
replicate or differentiate into multiple cell lineages. Stem cells are at the center of
the development and regeneration of tissues and organs (21,22). Stem cells exist in
early embryonic stages and in adult organisms. With each step, developmental
potency is decreased; a pluripotent SC can differentiate into more cell types than a
unipotent SC. Multipotent SCs like mesenchymal stem cells give rise to specialized
cells of the tissue they are isolated from. Precursor cells or adult stem cells are
imbedded within a certain tissue and are activated to replace specialized cells for
tissue regeneration and repair (21-23). Mesenchymal stem cells, hematopoietic,
epithelial, neural, hepatic and pancreatic stem cells are all examples of progenitor

cells (23).

Mesenchymal stem cells (MSCs) are a heterogenous population of adherent
fibroblast-like cells with the ability to grow rapidly or differentiate into bone,
cartilage and fat cells (24). In the field of regenerative therapies for the past few
years, these cells have become a huge interest due to their availability and versatility
(21,24). The most studied MSCs are the ones extracted from the umbilical cord and
peripheral blood considering the non-invasive procedures performed to acquire
these cells. MSCs have been isolated and explored from many other adult and fetal
tissue or fluids including some that require a more invasive approach such as bone

marrow, muscle, cartilage, tendons, synovial fluid and amniotic fluid (21,25,26).
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Figure 2: Stem cells classification. It can be according to the stem cells differentiation potency or
sources of energy.

A direct correlation exists between the availability of MSCs in a specific tissue and
its blood vessel density (26). A key characteristic of MSCs is the expression of
mitogenic proteins that induce cell proliferation and angiogenesis (26). MSCs
secrete growth factors and chemokines activating cell multiplication such as
transforming growth factor alpha (TGFa), insulin-like growth factor (IGF-1),
hepatocyte growth factor (HGF), and basic fibroblast growth factor (FGF-2) (26).
Vascular endothelial growth factor (VEGF), IGF-1, and angiopoietin-1 amongst
others are produced and released to recruit endothelial lineage cells and stimulate
vascularization (27). MSCs also have anti-inflammatory and anti-apoptotic
properties (24,28-31). They secrete immunomodulatory cytokines such as TGF-31,
HGF, nitrous oxide, interleukin 6 (IL-6), IL-10 and thus suppress the proliferation
and function of several pro-inflammatory immune cells like T cells, macrophages
and dendritic cells (24,28,29). Also, some of the cytokines produced by MSCs like
VEGF, TGF-B1 and HGF have the capacity to reverse apoptosis of endothelial cells
(30,31). For the identification of MSCs, the International Society for Cellular Therapy
(ISCT) has limited the criteria to the following 3 minimum. MSCs have to be plastic

adherent in standard culture conditions, and they ought to show a differentiation
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potential towards adipocytes, osteoblasts and chondrocytes under corresponding
stimulation. They also have to express non-specific markers - cluster of
differentiation 105 (CD105), CD90 and CD73 - and lack the expression of class Il
major histocompatibility complex (MHC-II) molecules, mainly Human Leukocyte
Antigen- DR (HLA-DR), and non-specific markers - CD34, CD45, CD11b or CD14,
CD79a or CD19 (32).

Due to the appeal of regenerative medicine worldwide, research on MSCs has been
focused on adipose-derived stem cells (ADSCs) since they seem to be advantageous
in comparison to other MSCs. ADSCs are abundant, they can be harvested in large
quantities by a minimally invasive procedure and they rapidly grow and proliferate
(21,32). In comparison to other MSCs and specifically to bone marrow mesenchymal
stem cells (BMMSCs), ADSCs show higher autocrine activity through growth factors
and immunomodulators (32,33) and more delayed signs of senescence (32,34).
ADSCs from younger donors display a higher proliferation rate compared to ADSCs
from older individuals but their differentiation capacity remain the same between
both age groups (34). A negative impact on their functionality has been shown to
occur in long term expansion cultures and in response to cryopreservation (35). The
scientific consensus agrees on a low expression in the SVF population of the
following markers - CD13, CD29, CD44, CD73, CD90, CD105 and CD106 -that

becomes increasingly pronounced with cultured ADSCs (36).

Immune cells

Within WAT, immune cells are deemed crucial in tissue physiology and
function. The profile of immune cells present in each WAT depot contributes to its
morphology and regulatory adaptations and defines its involvement in metabolic
processes, both in health and pathology (37-41). Immune cells in WAT can be
classified as innate or adaptive immune cells. Innate immune cells include
neutrophils, eosinophils, different subtypes of macrophages, natural killer cells and
innate lymphoid cells (ILC) while adaptive immune cells encompass various
subtypes of T and B lymphocytes. The abundance of the different immune cell types
and their function varies between depots and between healthy and dysfunctional

WAT.
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The most abundant immune cell type in WAT is adipose tissue macrophages (ATMs)
accounting for 50% of WAT immune cells and 15% of SVF (37-39). Both in health
and pathology, ATMs content in VWAT is more pronounced than in sWAT (37).Ina
steady state, ATMs are the resident macrophages already found in WAT and they
have several functions contributing to the physiology of the tissue. They are
involved in many processes such as scavenging, regulating angiogenesis and
remodeling of the extracellular matrix (ECM) (39). One of their important roles as
scavenger cells is to help in the turnover of adipocytes. Occasionally, ATMs form
crown-like structures (CLS) around dying adipocytes but are unable to engulf them
entirely due to differences in size. Thus, ATMs form extracellular acidic
compartments that allows, through lysosomal enzymes, the liberation of free fatty
acids (FFA) from the dying adipocytes into the macrophages for further processing
(42). In a healthy state, the predominant ATM population is M2 macrophages that
express genes like interleukin-10 (/L-10), mannose receptor C type 2 (Mrc2) and
chitinase 3-like-3 (Chi3I3, Ym1) and that are characterized by surface markers
CD206 mainly in mice and CD163 in humans. M2 macrophages recognized for
driving immune regulation and tissue remodeling can be divided into 4 different
subtypes: M2a, M2b, M2c and M2d. Each M2 phenotype has distinctive markers and
specialized function (detailed in section 1.3). On the other hand, in obesity,
proinflammatory M1 macrophages predominate (detailed in section 1.3). Most
ATMs in animals and humans are characterized by surface markers F4/80 and/or

CD68 (