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ABSTRACT

Nowadays, authorities monitor the concentrations of regulated air pollutants in order to
assist in decision-making processes, e.g., for the implementation of traffic restrictions,
and mitigate the effects of air pollution. For this purpose, they deploy high-precision
instrumentation, the cost of which makes the number of sensors deployed over a region
very low. The advent of air pollution low-cost sensors (LCSs) has opened up the pos-
sibility of complementing the authorities’ instruments with more measurement points.
Unfortunately, LCSs present inaccuracies, which makes it difficult to include them in a
regulated way for decision-making processes of authorities.

In recent years, enabling technologies such as the internet of things (IoT) and ma-
chine learning (ML) have allowed the improvement of the data quality of LCSs. There-
fore, this thesis is devoted to the improvement of the data quality of air pollution moni-
toring LCS networks focusing on two aspects; i) the improvement of data quality at node
level using ML-based sensor calibration, and ii) the improvement of the sensor network
data quality by using measurements from the network sensors with a graph-based ap-
proach.

In the first part of the thesis, the improvement of the data quality of individual sen-
sors is investigated. First, it is evaluated how the sensor sampling affects the representa-
tiveness of the samples. Then, the use of ML techniques, both linear and nonlinear, for
the in-situ calibration of LCSs is analyzed. The in-situ sensor calibration task can be seen
as a supervised ML learning problem, so techniques such as multiple linear regression
(MLR) or support vector regression (SVR) are evaluated. The evaluation shows how non-
linear techniques improve the quality of pollution estimates significantly. In addition,
given the inaccuracies present in LCSs and the difference that exists from one sensor to
another of the same manufacturer, the inclusion in the calibration of multiple sensors
measuring the same pollutant is investigated. Thereby, the proposed multisensor cali-
bration approach based on ML results in increased calibration accuracy.

The second part of the thesis focuses on the quality of the data reported by a sensor
network once deployed over an area. A graph-based approach is proposed to describe
the existing relationships between sensors using a graph topology and represent the net-
work measurements as signals defined on the graph, as realized in the graph signal pro-
cessing (GSP) field. First, different techniques have been evaluated to correctly learn
the relationships between sensors in a network that can contain both LCSs and high-
precision nodes. The most suitable option has proven to be the data-driven GSP model
based on signal smoothness. Then, different signal reconstruction techniques coupled
with the graph have been studied in order to reconstruct pollution measurements re-
ported by different sensors in a network. Kernel-based techniques and those based on
the weights of the Laplacian have been the most effective ones. Once these main com-
ponents have been studied, a graph-based data reconstruction framework has been pro-
posed for different post-processing applications that appear in LCS networks, e.g., miss-
ing value imputation and virtual sensing. The results have shown how this framework
allows for dealing with a wide variety of applications and scenarios that can occur in
this context with precision. Finally, another important aspect of this type of network has
been addressed, which is the detection of outliers. The Volterra graph-based outlier de-
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tection (VGOD) has been proposed, using a graph learned from the data and a signal re-
construction model based on the Volterra series, to detect and locate outliers. Therefore,
the proposed algorithm has been proven to improve the monitoring and maintenance
of heterogeneous air pollution sensor networks by identifying abnormal measurements
and malfunctioning sensors. All in all, this graph-based approach can be seen as a mon-
itoring tool to evaluate and maintain the sensor network data quality over the lifetime of
a deployment.



RESUMEN

Hoy en día, las autoridades vigilan las concentraciones de contaminantes atmosféricos
regulados para ayudar en los procesos de toma de decisiones, por ejemplo, en la aplica-
ción de restricciones de tráfico, y mitigar los efectos de la contaminación atmosférica.
Para ello, despliegan instrumentación de alta precisión, cuyo coste hace que el número
de sensores desplegados en una región sea muy reducido. La aparición de sensores de
contaminación atmosférica de bajo coste (LCS) ha abierto la posibilidad de complemen-
tar los instrumentos de las autoridades con más puntos de medición. Desafortunada-
mente, los LCS presentan imprecisiones, lo que dificulta su inclusión de forma regulada
en los procesos de toma de decisiones de las autoridades.

En los últimos años, tecnologías como el internet de las cosas (IoT) y el aprendizaje
automático (ML) han permitido mejorar la calidad de los datos de los LCSs. Por lo tanto,
esta tesis está dedicada a la mejora de la calidad de los datos de las redes de LCS de
contaminación atmosférica, centrándose en dos aspectos: i) la mejora de la calidad de
los datos a nivel de nodo utilizando calibración de sensores basada en ML, y ii) la mejora
de la calidad de los datos de la red de sensores utilizando mediciones de los sensores de
la propia red mediante un enfoque basado en grafos.

En la primera parte de la tesis se investiga la mejora de la calidad de los datos de
los sensores de forma individual. En primer lugar, se evalúa cómo afecta el muestreo de
los sensores a la representatividad de las muestras. A continuación, se analiza el uso de
técnicas ML, tanto lineales como no lineales, para la calibración in-situ de LCSs. La tarea
de calibración de sensores in-situ puede considerarse un problema de aprendizaje de
ML supervisado, por ello se evalúan técnicas como la multiple linear regression (MLR)
o support vector regression (SVR). La evaluación muestra cómo las técnicas no lineales
mejoran significativamente la calidad de las estimaciones de contaminación. Además,
dadas las imprecisiones presentes en los LCS y la diferencia que existe de un sensor a otro
del mismo fabricante, se investiga la inclusión en la calibración de múltiples sensores
que miden el mismo contaminante. De este modo, el enfoque propuesto de calibración
multisensor basado en ML permite aumentar la precisión de la calibración.

La segunda parte de la tesis se centra en la calidad de los datos medidos por la red de
sensores una vez desplegada en un área. Se propone un enfoque basado en grafos para
describir las relaciones existentes entre los sensores mediante la topología del grafo y re-
presentar las medidas de la red como señales definidas en el grafo, tal y como se realiza
en el campo del graph signal processing (GSP). En primer lugar, se han evaluado diferen-
tes técnicas para aprender correctamente las relaciones entre sensores de una red que
puede contener tanto LCSs como nodos de alta precisión. La opción más adecuada ha
resultado ser el modelo de GSP basado en el smoothness de la señal. A continuación, se
han estudiado distintas técnicas de reconstrucción de señal acopladas al grafo con el fin
de reconstruir las medidas de contaminación obtenidas por los distintos sensores de la
red. Las técnicas basadas en kernel y las basadas en los pesos del Laplaciano han sido las
más efectivas. Una vez estudiados estos componentes, se ha propuesto un framework de
reconstrucción de datos basado en grafos para diferentes aplicaciones de post-procesado
que aparecen en las redes de LCSs, por ejemplo, la imputación de valores perdidos y los
sensores virtuales. Los resultados han mostrado cómo este framework permite abordar
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con precisión una amplia variedad de aplicaciones y escenarios que pueden darse en
este contexto. Por último, se ha investigado otro aspecto importante de este tipo de re-
des, la detección de valores atípicos. Se ha propuesto el algoritmo Volterra graph-based
outlier detection (VGOD), que utiliza un grafo aprendido a partir de los datos y un mo-
delo de reconstrucción de señal basado en las series de Volterra, para detectar y localizar
valores atípicos. Se ha demostrado que el algoritmo propuesto mejora la monitorización
y el mantenimiento de redes heterogéneas de sensores de contaminación atmosférica al
identificar medidas anómalas y sensores que funcionan mal. En definitiva, este enfo-
que basado en grafos puede considerarse una herramienta de supervisión para evaluar
y mantener la calidad de los datos de una red de sensores durante un despliegue.
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1
INTRODUCTION

We do not inherit the earth from our ancestors.
We borrow it from our children.

Native American Proverb

Nature is suffering severe damage during the last years and climate change is already a
reality. The enormous development of industries, as well as the high use of fossil fuels,
makes air pollution a concerning problem. Nevertheless, air pollution not only affects
nature but also the citizens of large and small cities and animals, causing respiratory
problems and cardiovascular diseases among others. Nowadays, technological advances
are providing new tools to reduce pollution and mitigate its effects. In fact, the Internet
of Things (IoT) technologies in conjunction with air pollution low-cost sensors (LCSs)
can enable the efficient measurement of pollution levels at different scales, both at city
and national levels. This monitoring is a core element for government agencies to take
action and raise citizen awareness of pollution.

This thesis provides the knowledge to improve the low-cost sensor calibration via
machine learning (ML) techniques, and thus the accuracy of these sensors which is the
weakness of this technology. It shows how a branch of artificial intelligence, machine
learning, can enhance the calibration of such sensors. In addition, this thesis explains
the findings on how to analyze sensor networks from the point of view of graph theory
and graph signal processing (GSP). The findings of this work show how graphs can be
a good tool to describe highly complex networks such as air pollution sensor networks.
Thus, showing how the graph can be inferred, and how it can help in conjunction with
signal reconstruction techniques to maintain the data quality of the network data, as well
as help in the detection of outlying measurements. This chapter introduces the classical
approach towards air pollution monitoring, then it explains the main challenges of air
pollution monitoring with LCSs and the issues related to sensor networks for air pollu-
tion monitoring. This chapter poses the different research questions that are answered
throughout the thesis and finally, the contributions of this thesis are listed.

1.1. OUTDOOR AIR POLLUTION

O UTDOOR air pollution is becoming a serious problem for the environment and pub-
lic health, with various studies pointing out the different harmful consequences

1
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for human beings, such as cardiovascular problems, respiratory problems, or neuronal
problems [1, 2]. In fact, the World Health Organization (WHO1) reports that about 4.2
million people die each year from exposure to air pollution. The WHO states that 9 out
of 10 people periodically breathe air that exceeds the limits established by organizations,
being the least developed countries the most affected. The impact of pollution not only
affects people’s health but also contributes to climate change. According to NASA2, dif-
ferent record figures have been reached during the last years, e.g., carbon dioxide (CO2)
levels are at their highest since 650000 years ago, nineteen of the planet’s hottest years
have occurred since 2000, among others. One of the main causes is the greenhouse ef-
fect, being carbon dioxide one of the main gas contributors, as well as methane (CH4)
and tropospheric ozone (O3). The effects of climate change are undeniable and many
nations have agreed on objectives for the coming years (2030 agenda3) to reduce pollu-
tion and slow or even reverse the effects of climate change. These data are very alarming,
given the impact on health and the clear impact on climate change. Therefore, the main
objective of the governing authorities is to undertake policies to reduce the levels of air
pollution in order to mitigate the negative effects on health and nature. Thus, different
criteria and thresholds have been defined to evaluate air quality and to be able to imple-
ment the necessary measures in each case.

There are many air pollutants, but the ones most studied and most present in our
daily life are; particulate matter (PMx ), tropospheric ozone, nitrogen dioxide (NO2), and
sulfur dioxide (SO2). The PMx corresponds to different types of fine particles in sus-
pension in the air, they can be classified in particles of less than 10 microns PM10 and
particles of 2.5 microns or less (PM2.5). O3 is an indirect pollutant formed by chemical
reactions of gaseous precursors such as volatile organic compounds (VOC) and nitro-
gen oxides in conjunction with sunlight. NO2 is basically generated in combustion pro-
cesses, which is why its levels can be higher in cities and large avenues with heavy traffic.
In order to mitigate the effects of these pollutants, it is first important to be able to mon-
itor the levels of pollution. As a reference, the WHO defines different thresholds (Table
1.1) that should not be exceeded, and if they are exceeded, authorities should take action
to mitigate pollution levels.

Table 1.1: Air pollution thresholds defined by the WHO in its latest guidelines [3].

PM10 15 µgr/m3 (annual mean) 45 µgr/m3 (daily mean)
PM2.5 5 µgr/m3 (annual mean) 15 µgr/m3 (daily mean)
O3 100 µgr/m3 (8-hour mean)
NO2 10 µgr/m3 (annual mean) 200 µgr/m3 (hourly mean)
SO2 40 µgr/m3 (daily mean)

Since different organizations such as the European Union (EU), the U.S. Environ-
mental Protection Agency (EPA), or the WHO have established thresholds above which
pollution levels are considered harmful, the different countries’ authorities have built

1https://www.who.int
2https://climate.nasa.gov/
3https://sdgs.un.org/2030agenda

https://www.who.int
https://climate.nasa.gov/
https://sdgs.un.org/2030agenda
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Figure 1.1: Catalonia map with the air quality monitoring network. On the bottom is an example of
government-deployed high-precision instrumentation, a reference station. On the right, an IoT node mount-
ing LCSs.

air quality monitoring networks to monitor the concentration levels at different scales.
These networks consist of very precise but at the same time very expensive instrumen-
tation4, in the order of 100k euros. Given their high economic cost, the number of in-
struments deployed by the government over the different regions is scarce, and although
they may cover some major streets in large cities, there are no pollution measurements
on a finer-grain scale. This can be a problem given that the governments need more fine-
grained air pollution measurements in order to put in action measures to effectively mit-
igate the effects of air pollution events, detect air pollution hotspots, raise citizen aware-
ness, or perform better air pollution forecasting among others. As an example, the fol-
lowing Figure 1.1 shows the different reference stations (government instrumentation)
deployed by the Spanish government to monitor air pollution in the area of Catalonia. As
it can be seen, many reference stations are concentrated in the larger cities, yet the num-
ber of stations is too few to properly monitor pollution levels. Another clear example of
the need for pollution monitoring in order to take measures are several European cities
such as Paris5, where the new energy laws of 2015 allow the local authorities to place
restrictions on the circulation of vehicles in different parts of the city, as a consequence
of pollution episodes.

Definition 1 Reference stations are stations equipped with high-precision instrumenta-
tion, capable of measuring ground-truth6 levels of pollutants with high accuracy. They
are usually assembled by governments and used in a regulated manner according to EU
guidelines, in the case of European countries, and the number of deployed stations is usu-
ally scarce due to their high price.

4Throughout the thesis we refer to this government instrumentation as high-precision instrumentation, refer-
ence instrumentation, or reference stations interchangeably.

5http://www.airuse.eu/
6We refer to the pollution concentrations measured by reference stations as true concentrations or ground-

truth concentrations interchangeably.

http://www.airuse.eu/
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Approach to overcome reference station limitations: An alternative approach pro-
posed years ago that allows an increase in the resolution of pollution measurements is
the use of LCSs in conjunction with IoT-enabling technologies, explained in the next sec-
tion 1.2. Therefore, LCSs can be deployed in conjunction with government instruments
to form a more extensive sensor network and provide more fine-grained measurements.

1.2. LOW-COST SENSORS AND THE INTERNET OF THINGS

L OW-COST sensors provide a cheaper alternative to high-precision instrumentation
since these sensors can be mounted on nodes featuring IoT technologies, unfortu-

nately, at the cost of questionable data quality. Because of that, the quality of the data
provided by such sensors has been in the spotlight during the last years [4], and many
studies have been focused on evaluating the quality of these sensors to check whether
they can meet the data quality requirements to include them in a regulated manner [5].
Nevertheless, LCSs seem to be the most feasible technology that can help increase the
resolution of air pollution monitoring networks [6]. Thus, in conjunction with reference
stations, LCSs can be deployed to obtain measurements at a finer scale to obtain more
specific restriction policies.

Definition 2 An air pollution low-cost sensor is a cheap sensing device designed to mea-
sure air pollution concentration levels. However, given their low-cost nature, these sensors
suffer from imprecision, leading to data quality problems. Although there is a wide va-
riety of sensors, with different purposes, generally they have been designed for consumer
or industrial applications so they may not meet the necessary government data quality
requirements.

There are different LCS technologies, among the most important are; metal-oxide
sensors (MOX), electrochemical sensors (EC), and optical sensors. MOX sensors mea-
sure gas concentrations by measuring the change in resistance due to the effect of the
pollutant. The EC sensors work by gas diffusion, when the gas reaches the working elec-
trode of the sensor an electrochemical reaction is produced. Finally, optical sensors are
widely used for measuring particulate matter concentrations and proceed by measuring
how light scatters due to the presence of particles.

In recent years, there has been a growing trend and interest in the deployment of
sensing nodes equipped with LCSs for various applications such as air quality monitor-
ing [5]. This is due to the rise of IoT-enabling technologies, so it has become possible
to create nodes capable of capturing, processing, and transmitting data to databases us-
ing microcontrollers and internet connection. Therefore, both technologies can enable
the capture, processing, transmission, and storage of air pollution measures. The col-
lected air pollution data can be used for dissemination to increase citizen awareness of
pollution [7, 8], it can also be used to place gas emission restrictions to mitigate pollu-
tion effects, forecast future concentrations, detect air pollution hotspots, for early warn-
ing purposes in cases of extreme contamination, and it can even be used for research
purposes. Table 1.2 explains different use cases for air pollution monitoring networks.
Figure 1.2 shows different possible scenarios for the applications described, where sen-
sor networks can be deployed into a city to deal with these applications. An example
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Figure 1.2: Example of monitoring sensor networks’ final applications, such as early warning, citizen aware-
ness, or air pollution forecasting.

of an IoT node that incorporates low-cost sensing technology to capture air pollution
measurements is the Captor node [9]. Figure 1.3 shows a version of the Captor node, its
main architecture, where MOX sensors measure O3 concentrations, an Arduino works
as processing unit to process and transmit the data, and a modem 3G enables internet
connection and data transmission to a central database.

Table 1.2: Examples of different final applications for an air pollution monitoring sensor network.

Applications Goal

⋆Air pollution forecasting Air pollution monitoring and forecasting is important to carry out
measures to prevent and mitigate pollution effects, as well as to fore-
see future pollution episodes.

⋆Detection of air pollution
hotspots and early warning

Monitoring is also important to detect air pollution hotspots, where
thresholds defined by different organizations are frequently ex-
ceeded, so that actions can be taken to reduce air pollution events
or to alert citizens. It is also important to detect extreme pollution
events in order to warn first-responders and citizens to take effective
measures in time.

⋆Creation of air pollution maps Measurements can be used to extrapolate the observed values to un-
observed locations, obtaining an air pollution map for an area.

⋆Citizen Awareness It is also important for citizens to be aware of the most polluted sites
in order to modify their routine habits to avoid possible harmful ef-
fects.

⋆Enhancement of CFD models As a novel application, the introduction of sensor network informa-
tion can help refine computational fluid dynamics (CFD) models for
the creation of very accurate simulation models.

Limitation of LCSs: Although LCSs present an economically feasible alternative to
high-cost instrumentation, their accuracy is limited and has been the subject of study in
recent years. Therefore, in order to implement the various use cases mentioned above
using low-cost heterogeneous sensor networks for air quality monitoring, it is essential
to address the problem of data quality in LCSs.

LCSs present several data quality problems. Firstly, they can be inaccurate as the
manufacturer usually provides the sensors calibrated in chambers, which is a controlled
environment, and secondly, this calibration may not be correct depending on the sen-
sor’s deployment location. In fact, several studies support that sensors should be cali-
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Figure 1.3: Captor node architecture; an IoT sensing node mounting several low-cost air pollution sensors and
a processing unit capable of capturing and transmitting data.

brated in conditions similar to those of its deployment, so requiring an in-situ calibra-
tion [10, 11]. There are other factors that influence the quality of the sensors, such as
possible aging or drift problems. Given the dependencies of the sensors on the environ-
ment they are deployed in, and the varying nature of the environmental conditions, it is
advisable to recalibrate the sensors to avoid drift or bias problems, either periodically or
opportunistically [12].

To improve the accuracy of LCSs for air pollution monitoring, it is common to re-
formulate the sensor calibration problem as a supervised ML problem, where sensor
values are compared with ground-truth values from a reference station where they are
collocated.

Definition 3 A machine learning-based in-situ sensor calibration is based on the fact
that given a set of sensor measurements x ∈RN , where N is the number of measurements,
and a set of ground-truth values y ∈ RN , a function f : R → R is learned so that yi ≈
f (xi ); i = 1, .., N . Different machine learning algorithms assume different characteristics
for the regression function.

Before sensor calibration can be formulated as a supervised ML problem, representa-
tive measurements need to be obtained from LCSs at a temporal granularity equal to that
of the reference station in order to synchronize their values. In addition, these measure-
ments may go through different pre-processing stages, such as sensor sampling, filtering
and subsequent aggregation to a desired temporal granularity. Some works indicate that
the sensor sampling frequency can impact the power consumption of the node or even
the quality of the measures. This way, we can pose the first research question of this
thesis:

(R.Q.1.1): Which pre-processing steps are required prior to the calibration of a low-cost sen-
sor? What effect does sensor sampling have on the calibration quality and energy
consumption of the sensing node?



1.3. SENSOR NETWORKS AND GRAPH SIGNAL PROCESSING

1

7

In recent years, several authors have proposed and evaluated the use of different ma-
chine learning techniques for in-situ LCS calibration, improving the sensors’ data quality
[13]. Both linear and nonlinear models have been tested [14–16], but none of the meth-
ods has been proven to be superior. In this specific field, we can already define the next
research question we wish to answer:

(R.Q.1.2): How much do nonlinear methods improve the calibration of ozone sensors com-
pared to linear methods? How much data do they need ? How do they work in the
long term?

This question poses the second goal of the thesis, which is evaluating the perfor-
mance of different supervised ML algorithms (linear and nonlinear) for LCS calibration.
This way, the results show which is the best calibration method depending on the cali-
bration time available and can be useful for future practitioners.

LCSs are not only inaccurate but also exhibit variability from unit to unit [8]. Thus,
there has been some attempt to use different sensors of the same pollutant to improve
pollution estimates [17]. Since different sensors may not contain exactly the same infor-
mation, and sometimes replicated sensors are mounted in sensing devices to improve
the devices’ robustness, sensor fusion is plausible. Here is where the third question we
want to answer arises:

(R.Q.1.3): Does having replicated sensors on a node improve the calibration accuracy? Is it
possible to perform a calibration based on data fusion and machine learning?

This question raises the third goal of the thesis, which is to perform data fusion-based
sensor calibration by applying a ML method over an array of sensors. Indeed, since a
sensing node can include more than a sensor, given their low price, the calibration can
be performed taking advantage of all of them.

All the efforts of this thesis are based on improving the accuracy and data quality of
LCSs, both in their in-situ calibration and their subsequent deployment in sensor net-
works to obtain more reliable measurements and to be able to carry out the different use
cases of this type of network.

1.3. SENSOR NETWORKS AND GRAPH SIGNAL PROCESSING

T HE main purpose of calibrating the sensors is their subsequent deployment to mon-
itor the pollution over an area of interest. These nodes, which mount LCSs, are

equipped with IoT technology so that the sensors can form a sensor network and the
captured data can be transmitted from node to node or to a centralized database. The
low economic cost of this type of sensor can lead to the deployment of large amounts
of sensors, thus dramatically increasing the spatial resolution of the official air pollution
monitoring network. Therefore, a sensor network may be able to obtain measurements
at street level, building blocks, and other finer or coarser scales. This finer level of data
resolution may allow the use of more customized policies depending on the characteris-
tics of each pollution zone. Following this line, Motlagh et al. [6] explain how the future
of air pollution monitoring is based on the formation of sensor networks, where LCSs
and high-precision instrumentation coexist. Since LCSs are deployed to complement
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and benefit from the reference stations available in an area, the study of this kind of het-
erogeneous network -high-precision and low-precision nodes- can be quite complex.
For instance, as reference stations always measure the ground-truth levels of pollution,
they can provide assistance in detecting if a LCS is malfunctioning or in correcting sensor
drifts [18].

There are a variety of studies that make use of geospatial models in order to extrapo-
late the values measured by the sensing nodes to obtain pollution maps [19]. Geostatis-
tical models such as Kriging or Inverse distance weighting (IDW) are models that oper-
ate over a continuous field, and therefore have been used to create pollution maps and
other applications such as correction or recalibration of sensors deployed in a network
[18]. All these models have as a common feature the assumption of spatial correlation,
or that the geographical distance between observations governs the correlation between
measurements. However, this can be a limitation for heterogeneous networks, where
LCSs of different accuracy coexist with high-accuracy nodes.

It may not only be of interest to create contamination maps from sensors, but the
sensors may be distributed in critical points, where contamination may have a great im-
pact, and it is not necessary to extrapolate those values but to know the contamination as
accurately as possible in those points. Therefore, a very important aspect in the deploy-
ment and use of sensor networks is the quality of the data they provide in order to carry
out the different use cases seen in the previous section 1.2. For instance, we can calibrate
in-situ a few LCSs, and then deploy them in schools, avenues, and places where we have
a clear interest in measuring air pollution. Indeed, we can use the sensor network (infor-
mation from other sensors) to mitigate common sensor errors such as; lack of data due
to sensor malfunction, sensor precision loss, or estimating air pollution concentrations
in places where there is no physical sensor (i.e., virtual sensor). Thus, sensors can ben-
efit from the other sensors jointly deployed in order to impute missing data, recalibrate
sensors or create virtual sensors. To this end, given the heterogeneity of these networks,
a data-driven approach to model these networks and carry out the above-mentioned
applications seems to be a good approach.

The recent emergence of the GSP field translates the ideas and methods from clas-
sical signal processing to signals defined over graphs [20, 21]. Therefore, defining some
operations such as signal filtering, signal reconstruction, signal convolution, or cluster-
ing over the vertices of a graph. In this way, a graph signal is defined as the map x : V →R

[22], where V is the set of vertices of the graph, and xi represents the signal value at the
i -th node. Some operations like the graph discrete Fourier transform (GDFT) or low-
pass filtering can be applied using the network topology. Given the high flexibility that
graphs exhibit in modeling highly complex structures, the conjunction of graphs, ma-
chine learning, and graph signal processing techniques seems to be a very good option
for air pollution sensor networks. In this way, a graph can define the existing relation-
ships between nodes, which need not be based on the distance between them, and ben-
efit from machine learning techniques that make use of the graph topology to perform
some tasks (e.g. signal reconstruction) to carry out different applications and maintain
the quality of the network data.

Definition 4 A graph G is a mathematical structure defined by the triplet G = {V ,E ,W},
where V = {1, . . . , N } is the set of vertices of the graph, E ⊂ V ×V is the set of edges defined
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Figure 1.4: The different chronological steps in a sensor network deployment analyzed throughout the thesis.
Ultimately, the goal is to increase the sensors’ accuracy via in-situ calibration, afterwards, when the sensor
network is deployed for different purposes (e.g., air pollution forecasting or citizen awareness) the goal is to
maintain the network data quality and thus its reliability.

as E = {ei j : i , j ∈ V ∧Wi j ̸= 0}, and the weight matrix W ∈RN×N defines the edges’ weights
between vertices. So, a graph describes a set of vertices that are somehow related.

Maintaining data quality through ML techniques and signal processing over the graph
representing a sensor network is investigated in this thesis to provide solutions to sensor
network data quality issues during the deployment. This second part of the thesis un-
ravels several research questions that open the door to the joint use of pollution sensing
networks, graphs, and ML. Figure 1.4 shows the chronological order of the different steps
that are the object of study in this thesis. The first step is the in-situ calibration of the
sensors, then the sensors are deployed over an area of interest forming a sensor network
in order to start the air pollution monitoring campaign. Then, the graph G describing
the network can be inferred from the data or using a distance-based function. Once the
underlying relationships between the sensors are learned, the neighboring information
of the sensors (described by the graph) can be used to perform different applications to
maintain the quality of the air pollution measures.

The first step in the use of graph-based techniques is to obtain the graph G that de-
scribes the sensor network. There are several techniques to learn the underlying rela-
tionships between the different nodes of a network [23, 24]. Statistical techniques such
as graphical lasso, which aims to estimate the precision matrix of the data, techniques
based on the geographical distances between sensors using a distance-based similarity
function, or GSP techniques that assume the smoothness of the data over the graph. A
clear example of learning the graph from the data is when we have three sensors, for in-
stance, two placed in schools and one in an avenue. Clearly, even if a school is nearby
the avenue the data coming from the two schools can follow similar patterns since they
have similar conditions.

(R.Q.2.1): What different techniques are best suited to infer a graph for a sensor network? Can
neighboring nodes be used to reconstruct sensor measurements using the graph and
signal reconstruction techniques?
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These questions related to how to effectively infer a graph for air pollution moni-
toring and the signal reconstruction performance provide the necessary information to
decide which algorithm to use when learning a graph. The goal here is to evaluate the
best method for graph inference, as well as the ability to reconstruct a node’s signal given
its neighboring information. Then, given the relationship learned between the different
nodes of the network, solutions to common applications of sensor deployments can be
provided by reconstructing the signal from the different nodes, applications such as; im-
puting missing values, creating virtual sensors or sensor fusion. This graph-based ap-
proach allows to use information from neighboring nodes, Figure 1.5, which may con-
tain useful information for the signal reconstruction task.

Figure 1.5: Notion of node neighborhood. This picture depicts the idea of using the graph topology to flow
information from similar nodes to reconstruct sensor measurements.

In fact, the main objective of using a graph-based approach is to use the informa-
tion provided by the network topology and the relationships between sensors. That is, a
node xi

7 will benefit from the measurements of the sensors in its neighborhood N (xi ).
Thus, we can define the neighborhood of a sensor xi as the set of nodes connected to
it N (xi ) = { j : ei j ∈ E }. Figure 1.5 shows the neighborhood definition for a sensor xi

that includes nodes x j , xz , xw and the idea that the information from these neighboring
nodes can be used to reconstruct the signal from node xi .

Definition 5 Graph signal reconstruction (GSR), also known as graph signal recovery, is
the task of finding the regression function f : V → R that interpolates the graph signal
at a set of unobserved/missing nodes {xu : u ∈ U ∧U ⊂ V } given a set of observed nodes
{xm : m ∈M ∧M ⊂ V }.

GSR is a key tool in this graph-based setting, therefore, we can evaluate the use of
different signal reconstruction techniques and check how they perform on air pollution
networks.

(R.Q.2.2): How do different graph signal reconstruction techniques perform in air pollution
monitoring networks? What is specific about them? What problems can they pose?

7Throughout the thesis xi is used to denote a sensor/node as well as its measurement (or the value of a graph
signal at that node) interchangeably.
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This study provides the necessary information to select a GSR model to be used in
conjunction with the graph learning process to reconstruct air pollution sensor mea-
surements in this type of network.

Once we know how to infer a graph for a sensor network and how to use neighboring
information for signal reconstruction, the third graph-related question rises:

(R.Q.2.3): For which applications can the signal reconstruction using the sensor network data
be used?

The aim of this question is to apply the graph methodology to solve some common
sensor post-processing applications mentioned above; missing data imputation, virtual
sensing, or data fusion, to help maintain and enhance the quality of the network data.
Hence, the thesis provides knowledge about graph inference, GSR techniques, and ap-
plications to solve using the proposed graph-based data reconstruction framework.

Finally, this thesis addresses one of the most important problems in a sensor net-
work, which is the detection of outliers or malfunctioning sensors [25]. The data need
to be reliable since it can be consumed for applications, e.g., to put in action prevention
measures, so the detection of sensors with measurements that deviate from normality is
very important. Furthermore, since the signal reconstruction of a node uses the signals
from neighboring nodes, it is important to detect which sensors may be malfunctioning
or which are unreliable measurements in order not to be involved in the reconstruction
of a node’s signal. Besides, for monitoring and maintenance operations, a methodology
is necessary to detect malfunctioning sensors.

(R.Q.2.4): Can we approach one of the most important data quality problems, such as the de-
tection and location of outliers or erroneous sensors, using the graph information?

This research question leads directly to the development of an outlier detection algo-
rithm to improve the monitoring of heterogeneous sensor networks by detecting anoma-
lous measurements and faulty sensors.

Summarizing, while the first part of the thesis is focused on improving the sensor
data quality via in-situ sensor calibration through machine learning, the second part of
the thesis is focused on enhancing the sensor network deployment stage and maintain-
ing the data quality using graphs and machine learning.

1.4. THESIS STRUCTURE, CHALLENGES, AND CONTRIBUTIONS

T HIS section describes the structure of the thesis and the resulting publications that
answer the different questions posed in the previous section. The different sec-

tions are arranged chronologically, i.e., pre-processing, sensor calibration, and sensor
network modeling, and a direct relationship between the different publications and the
research question they answer is shown. In order to make the document understandable
to the reader, the different parts that address the different questions to be solved contain
the technical background necessary to understand the different results obtained and the
models used. This way, an expert reader can refer directly to the chapter of interest and
skip the technical background if necessary.



1

12 1. INTRODUCTION

1.4.1. THESIS STRUCTURE

This thesis is structured in a very simple way, as it follows the chronological steps of the
deployment of an air pollution measurement network; pre-processing, in-situ sensor
calibration, and assessment of the sensor network data quality using graphs. Figure 1.4
summarizes the different studied aspects in the chronological order of a sensor network
deployment.

• Introduction: The introduction gives a brief explanation of the existing problems
with air pollution LCSs and sensor networks. Different questions are posed to ad-
vance the state-of-the-art and the different publications derived from these ques-
tions are described.

• PART I: Machine learning-based in-situ sensor calibration: The first part com-
prises the investigation of the first task in the deployment of a sensor network,
which is the in-situ calibration of sensors. First, the different pre-processing stages
are studied, as well as their impact on the sensor calibration. Then, a calibra-
tion based on machine learning is studied and different techniques, both linear
and nonlinear, are evaluated in terms of calibration accuracy. Thirdly, a multisen-
sor data fusion calibration using more than one sensor measuring the same phe-
nomenon is studied. Machine learning is used to merge the sensor measurements
and the proposed procedure shows an increase in calibration accuracy compared
to using only one sensor. In this way, having more than one sensor would not only
increase robustness but also accuracy.

• PART II: Graph-based analysis of air pollution sensor networks: The second part
of the thesis focuses on the study of sensor networks to maintain the network data
quality. This is the second natural step after the in-situ calibration, deploying the
sensors forming a network and using the network measurements to detect events
and maintain the quality of the data provided by the different sensors. For the
analysis of this type of network, the use of a discrete model such as graphs is pro-
posed. Thus, graph signal processing is used to learn the graph and apply machine
learning techniques on top of the graph topology to perform signal reconstruction
tasks. These techniques are shown to be useful for maintaining network data qual-
ity in different scenarios, e.g., missing value imputation or outlier detection.

1.4.2. SUMMARY OF CHALLENGES

Table 1.3 shows a brief summary of the different challenges posed in both the in-situ
sensor calibration and the graph-based sensor network analysis. In addition, the pro-
posals and the investigations that answer each of the formalized research questions are
shown, as well as the technologies used to address these questions.

1.4.3. LIST OF PUBLICATIONS

This section shows different published articles that have resulted directly from the re-
sults of the Ph.D. and answer the different questions posed above. In addition, articles
indirectly related to the thesis in which we have collaborated are also detailed.
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Table 1.3: Summary of challenges and proposals addressed in this thesis.

Area Challenge Proposal Technology

In-situ Calibration

Low-cost sensor pre-processing and
impact of sensor sampling scheme

R.Q.1.1
Study the sensor pre-processing pipeline

and evaluate the impact of the sensor sampling
ML

Low-cost sensor calibration R.Q.1.2
Compare linear and nonlinear machine

learning algorithms for calibration
ML

Use of replicated sensors
in the sensor calibration

R.Q.1.3
Machine learning-based sensor fusion via

linear and nonlinear supervised algorithms
ML

Graph-Based
Analysis of

sensor networks

Can we represent an air pollution
sensor network as a graph ?

R.Q.2.1
Evaluation of graph learning techniques

(data-driven and distance-based) for sensor
networks

GSP & ML

Which signal reconstruction
techniques can be used in an

air pollution paradigm ?
R.Q.2.2

Compare the performance of three
graph signal reconstruction techniques

for air pollution networks
GSP & ML

Can network data be used to solve
common applications that arise

in air pollution networks ?
R.Q.2.3

Propose a graph-based
data reconstruction framework
for missing imputation, virtual

sensing and data fusion

GSP & ML

Since data quality is of major concern,
how can we detect outliers ?

R.Q.2.4
Propose an unsupervised graph-based
decision process for outlier detection

GSP & ML

JOURNAL PAPERS

Machine Learning-Based In-Situ Sensor Calibration

1. Ferrer-Cid, P., Barcelo-Ordinas, J. M., & Garcia-Vidal, J. (2022). Raw Data Collected
From NO2, O3 And NO Air Pollution Electrochemical Low-Cost Sensors. Data in
Brief, 45, 108586. [First JIF in June 2023]

This paper describes the high-frequency electrochemical low-cost sensor data ob-
tained during the January-April of 2021. The data set consists of two sensing nodes
measuring O3, NO2, and NO at a sampling frequency of 0.50 Hz using Alphasense
electrochemical sensors. This data set allows for exploring the impact of the sam-
pling frequency on the sensor calibration. This data set has been used in chapter
2.

2. Barcelo-Ordinas, J. M., Ferrer-Cid, P., Garcia-Vidal, J., Viana, M., & Ripoll, A. (2021).
H2020 project CAPTOR dataset: Raw data collected by low-cost MOX ozone sen-
sors in a real air pollution monitoring network. Data in Brief, 36, 107127. [First
JIF in June 2023]

This article describes in detail all the data collected for the H2020 Captor project
during the 2017 tropospheric ozone campaign. Thus, open data is encouraged by
making public all the data necessary for other researchers and institutions to use
the published data and support their investigations. Part of this data set has been
used for the experiments of chapters 3, 4, 5, 6, 7, and 8.

3. Ferrer-Cid, P., Paredes-Ahumada, J.A, Allka, Xhensilda, Guerrero-Zapata, M.,
Barcelo-Ordinas, J.M., & Garcia-Vidal. J. (2023). A Data-Driven Framework For
air Quality Sensor Networks. Submitted to IEEE Communications Magazine.

This article shows the need to improve the quality of data from LCSs in order to feed
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user applications with reliable data, chapter 1. It is proposed a layered data-driven
framework to describe different tasks that need to be performed at different levels
to ensure data quality. This article includes several of the techniques described and
elaborated throughout the thesis.

4. Ferrer-Cid, P., Garcia-Calvete J., Main-Nadal A., Ye Z., Barcelo-Ordinas, J. M., &
Garcia-Vidal J. (2022). Sampling Trade-Offs in Duty-Cycled Systems for Air Qual-
ity Low-Cost Sensors. Sensors MDPI. [Q2, IF=3.847]

This article studies one of the most important aspects of pre-processing for low-
cost air pollution sensors, sensor sampling (R.Q.1.1). The effect of sensor sampling
on both calibration quality and energy consumption in terms of duty cycle is stud-
ied. The results are explained in chapter 2.

5. Ferrer-Cid, P., Barcelo-Ordinas, J. M., Garcia-Vidal, J., Ripoll, A., & Viana, M. (2019).
A comparative study of calibration methods for low-cost ozone sensors in IoT
platforms. IEEE Internet of Things Journal, 6(6), 9563-9571. [Q1, IF=9.936]

This paper answers question (R.Q.1.2) showing the performance of linear (multiple
linear regression) and nonlinear machine learning methods (K-nearest neighbors,
random forest, and support vector regression) for the in-situ calibration of air pol-
lution low-cost sensors. The experiments and results are explained in chapter 3.

6. Ferrer-Cid, P., Barcelo-Ordinas, J. M., Garcia-Vidal, J., Ripoll, A., & Viana, M. (2020).
Multisensor data fusion calibration in IoT air pollution platforms. IEEE Internet
of Things Journal, 7(4), 3124-3132. [Q1, IF=9.471]

This investigation goes one step further by showing the possibility of using repli-
cated sensors by means of sensor fusion using machine learning for sensor calibra-
tion. It answers the question (R.Q.1.3) and shows the potential improvements of us-
ing several sensors for the prediction of ozone concentration levels. The methodol-
ogy and results derived from the multisensor data fusion calibration are explained
in chapter 4.

Graph-Based Analysis of Air Pollution Sensor Networks

7. Ferrer-Cid, P., Barcelo-Ordinas, J. M., & Garcia-Vidal, J. (2021). Graph learning
techniques using structured data for IoT air pollution monitoring platforms.
IEEE Internet of Things Journal. [Q1, IF=10.238]

Question (R.Q.2.1) is answered in this publication by showing the use of different
graph learning techniques for homogeneous and heterogeneous low-cost sensor
networks. Graph signal processing-based techniques are shown to be the best for
graph inference and posterior graph signal reconstruction. The methodological
aspects as well as the results of applying this graph-based approach are detailed in
chapter 5.

8. Ferrer-Cid, P., Barcelo-Ordinas, J. M., & Garcia-Vidal, J. (2022). Graph Signal Re-
construction Techniques for IoT Air Pollution Monitoring Platforms. IEEE Inter-
net of Things Journal. [Q1, IF=10.238]

This publication presents different graph signal reconstruction techniques that can
be applied to IoT air pollution platforms for signal reconstruction and data quality
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maintenance purposes (R.Q.2.2). This paper evaluates the graph-based framework
coupled with different graph signal reconstruction techniques as well as shows
a clustering-based methodology to overcome scalability issues and shows a drift
compensation application of the graph signal reconstruction. The results are ex-
plained partially in chapter 6 and 5.

9. Ferrer-Cid, P., Barcelo-Ordinas, J. M., & Garcia-Vidal, J. (2022). Data reconstruction
applications for IoT Air Pollution sensor networks using graph signal processing.
Elsevier, Journal of Network and Computer Applications. [Q1, IF=7.574]

This publication presents how different applications such as missing value impu-
tation, virtual sensing, and data fusion, can be approached using the graph-based
methodology shown earlier, answering the question (R.Q.2.3). This paper inves-
tigates how the graph-based framework allows for dealing with a wide variety of
online post-processing applications that may appear in this type of network. The
results are explained in chapter 7.

10. Ferrer-Cid, P., Barcelo-Ordinas, J. M., & Garcia-Vidal, J. (2022). Volterra Graph-
Based Outlier Detection for Air Pollution Sensor Networks. IEEE Transactions on
Network Science and Engineering. [Q1, IF=5.033]

Question (R.Q.2.4) is answered in this publication by proposing a graph-based un-
supervised outlier detection method with localization capabilities for air pollution
sensor networks. The different components of the outlier detection process and the
different experiments conducted on air pollution sensor networks are explained in
chapter 8.

RELATED PAPERS

• Barcelo-Ordinas, J. M., Ferrer-Cid, P., Garcia-Vidal, J., Ripoll, A., & Viana, M. (2019).
Distributed multi-scale calibration of low-cost ozone sensors in wireless sensor
networks. Sensors, 19(11), 2503.

This previous study analyzes the in-situ calibration of a set of low-cost metal-oxide
ozone sensors using multiple linear regression. In addition, the effect of the chang-
ing climatic conditions during sensor deployment is analyzed. Finally, a technique
based on geostatistical Kriging is developed to mitigate sensor drift using informa-
tion from nearby reference stations.

• Ferrer-Cid, P., Barcelo-Ordinas, J. M., & Garcia-Vidal, J. (2022). Regularized Mul-
tidomain Data-Driven Signal Reconstruction. Submitted to Pattern Recognition
Letters.

This article opens a related branch of research where the use of orthonormal trans-
form matrices to reconstruct signals, in this case, signals from air pollution sen-
sors, is studied. A regularized solution is elaborated that takes into account two
transforms that can provide complementary information.
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2
LOW-COST SENSOR

PRE-PROCESSING

Everything is theoretical impossible,
until it is done.

Robert A. Heinlein

The main purpose of the in-situ calibration of sensors is to improve their data quality as
well as to translate raw measurements into air pollution concentrations. Nevertheless,
before machine learning (ML) techniques can be applied, there are different aspects of
sensor signal pre-processing that can affect the quality of the subsequent calibration as
well as there exist other metrics of interest in the deployment of internet of things (IoT)
nodes that mount low-cost sensors (LCSs). LCSs are often mounted on IoT nodes that
participate in a sensor network to measure pollution concentrations in an area of in-
terest. In order to obtain the measurements, LCSs need to be calibrated in-situ and for
this purpose, their data need to be pre-processed by first taking measurements from the
sensor, filtering them, and aggregating them to the periodicity of the reference instru-
mentation to perform the in-situ calibration. In addition, attention has recently been
paid to the power consumption of the sensing nodes that mount this type of sensor, ei-
ther to reduce consumption or to maximize the lifetime of the monitoring campaign in
the case of battery-powered nodes. Thus, duty cycle strategies, which are defined by the
sampling frequency of the LCSs, can be applied to these nodes to maximize the lifetime
of the nodes.

The purpose of this chapter is to describe the different pre-processing steps com-
monly used for sensor calibration and measurement acquisition, as well as to study how
sensor sampling frequency affects both the calibration quality and the sensing node
power consumption. The chapter is organized as follows; section 2.1 introduces the
main aspects of LCS pre-processing for air pollution, section 2.2 describes the differ-
ent pre-processing stages for air pollution estimation using LCSs. Section 2.3 describes
the data sets used and the experiments carried out. Finally, section 2.4 concludes the
chapter. This chapter presents the findings made in the article “Sampling Trade-Offs in
Duty-Cycled Systems for Air Quality Low-Cost Sensors“, MDPI Sensors, [26].
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2.1. LOW-COST SENSOR PRE-PROCESSING FOR AIR POLLUTION

ESTIMATION

G OVERNMENTS measure air pollution in order to introduce prevention and mitiga-
tion measures. These measurements are obtained by means of high-precision in-

strumentation, called reference stations, whose high price makes the number of active
stations in certain regions scarce. LCSs have revolutionized the paradigm of air pollu-
tion monitoring because of their low price, but at the expense of the quality of their data.
Therefore, most research activities have focused on the evaluation and improvement of
their data quality [4, 8]. Given the progress in improving the quality of data from these
sensors, it is considered that the future of air quality monitoring lies in heterogeneous
sensor networks where reference stations and LCSs coexist [6]. Moreover, studies have
been carried out to verify whether LCSs can obtain accurate measurements so that they
can be included in a regulated way for air quality monitoring [4, 8, 14].

LCSs often come uncalibrated, or the manufacturer has calibrated them in a cham-
ber with specific characteristics, making in-field calibration necessary. In the field of
LCSs, calibration is performed in uncontrolled environments [10, 11]. This calibration is
called in-situ, as the LCSs are placed next to a reference station (government instrumen-
tation) for a calibration period in order to train a calibration model that improves the
data quality of these sensors and provides air pollution estimates [14, 15]. The most ap-
plied and studied techniques for in-situ calibration have relied on supervised ML mod-
els, ranging from linear to nonlinear models [15, 16, 27]. Nevertheless, in order to apply
a supervised ML model the sensor signal pre-processing steps are very important as the
reference stations usually report hourly data that are the result of an aggregation of sam-
ples during this period1 [14, 28, 29]. Therefore, in order to obtain representative sensor
measurements in the same time granularity as the reference station, the sensor must be
sampled by the IoT node, these samples must be filtered to avoid outliers and erroneous
measurements, and aggregated at the time granularity of the reference instrumentation.
Concas et al. [12] describe the most critical pre-processing steps for LCSs for air pollu-
tion monitoring, including the sensor sampling and aggregation stages.

LCSs are mounted on IoT nodes participating in a sensor network to perform an air
quality measurement campaign. Therefore, depending on the needs and characteris-
tics of the node deployment, the nodes may be required to be battery-powered. Indeed,
the fact of having battery-powered nodes allows increasing the degree of network het-
erogeneity, being able to have mobile nodes carried by pedestrians or cars. This plays
an important role as it implies the need to implement a duty-cycled sensing system to
maximize the lifetime of the nodes and the measurement campaign. The selection of the
duty cycle is not trivial given the response times that the different sensors may have be-
fore being able to correctly sample the sensor as well as the effect that this sampling may
have on the quality of the calibration and the subsequent estimation of concentrations.
Usually, the sensor response time is specified by the manufacturer. In fact, most sensor
calibration studies assume a high sampling frequency without taking into account en-
ergy consumption constraints [29–31]. In addition, it is worth studying whether differ-

1European’s reference station sample collection and its validity is described in the European directive
2008/50/EC.
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ent air pollution phenomena require different sampling frequencies. Some works have
mentioned the existence of the trade-off between the sensor sampling frequency and the
power consumption2 in air pollution IoT nodes [32–37].

The problem of data aggregation and duty-cycle in air pollution monitoring nodes
is different from the problem of data aggregation in sensor networks [38]. In these air
pollution sensing nodes, sensors are calibrated individually and the data aggregation is
performed in the nodes’ sensing system by aggregating measured samples every time
interval, so the aggregation is not performed in the network. For instance, Table 2.1
shows different sampling periods for air pollution LCSs. These samples need to be fur-
ther aggregated into the time resolution of the reference instrumentation to perform the
calibration and to compare the air pollution estimates with the actual air pollution con-
centrations. Thus, the goal is to minimize the duty cycle of the sensing system while
maintaining the sensor calibration quality. Therefore, the sensor sampling strategy, i.e.,
how many samples and how often are taken, is crucial to obtain good aggregated data.

In the context of air pollution LCSs, the trade-off between the sensor sampling strat-
egy and the node’s power consumption has been studied taking into account the quality
of the estimations of sensors already calibrated [32, 34–37, 39]. Becnel et al. [33] propose
a low-cost pollution monitoring station for airborne PM, temperature, relative humidity,
light intensity, carbon monoxide, and nitrogen oxide, that performs a duty cycle scheme
when the node operates battery-based. However, the calibration analysis is performed
only for the case when the node is connected to an unlimited power supply.

Table 2.1: Sensor sampling periods used in the literature.

Work Pollutants Sampling Period (Ts)

Mijling et al. [30] NO2 1 min
Sahu et al. [40] O3, NO2 1 min
Ali et al. [32] CO,NO2,PM 1 min
Becnel et al. [33] CO,NO2,PM1,

PM2.5, PM10

1 min

Nowack et al. [41] NO2, PM10 30 s
Bigi et al. [16] NO, NO2 20 s
De Vito et al. [42] NO2, O3, NO 20 s
Si et al. [28] PM2.5 6 s
Mead et al. [43] NO 5 s
Han et al. [29] O3, NO2,

CO, SO2

2 s

Mead et al. [43] CO, NO2 1 s
Astudillo et al. [31] O3, CO 1 s

Summarizing, in this chapter, we describe the different steps of the sensor data pro-
cessing pipeline, before going deeper into the calibration techniques using ML (next
chapter 3). In addition to explaining these steps, we analyze the trade-offs between sen-
sor sampling, a critical step in battery-powered nodes, the duty cycle, and the quality of
the data resulting from sensor calibration.

2The terms power consumption and energy consumption are used interchangeably throughout the chapter.
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Figure 2.1: Sensor data processing pipeline; from sensor sampling to ML estimation. First, sensors are sam-
pled, then the samples collected during this period are filtered to eliminate possible outliers. The resulting
samples are aggregated to be sent to the central server. There, the air pollution concentrations are estimated
using the calibration models previously trained during the in-situ calibration. The trained ML calibration
model could also be deployed at the node, obtaining air pollution estimates at the edge.

2.2. SENSOR DATA PROCESSING STAGES

I N this section, we explain the different data processing steps needed to produce air
pollution estimates from LCS measurements. We focus on the case where LCSs are

mounted on IoT nodes that have a power supply, storage capacity, computing resources,
and transmission capabilities to transmit measures to a central server where the data is
further processed. Therefore, during the different stages, we analyze the operations that
can be performed at the edge3 (at the node) and the operations performed at the central
server.

The pre-processing steps can be split into; sensor sampling, data filtering, and data
aggregation. In this way, a few measurements are sampled from the LCSs, then the mea-
surements are filtered in order to remove outliers, and these measurements are aggre-
gated into the desired time resolution for monitoring or sensor calibration purposes.
The aggregation stage is required during the calibration period in order to synchronize
the measurement obtained by the LCS and the reference station so an ML model can be
trained. Figure 2.1 shows the usual sensor data processing pipeline where the different
stages are identified.

In this specific paradigm, the value of the reference station produced every hour is
the aggregation of different samples taken during that hour at a frequency that we as-
sume to be higher than the Nyquist frequency corresponding to the time variation of the
measured phenomenon. If the sampling frequency of the LCS is also higher than the
Nyquist frequency, we can expect the errors in the calibration process to be essentially
independent of the sampling frequency of the LCS However, if the frequency sampling
of the LCS falls below the Nyquist frequency, we can expect this undersampling to intro-
duce an additional source of error in the calibration process that can have a large impact
on the accuracy of the measured values during sensor operation.

Data pre-processing has a big impact on the subsequent representation of the data,
it can affect the sensor calibration and the subsequent estimates. As mentioned above,
having the data synchronized with reference stations, in the environment where the
node will be deployed, allows for calibrating the sensors, and detecting drifts, aging

3We emphasize which are the operations that can be performed on the node taking into account possible
computation resources constraints.
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or outliers [44, 45]. Table 2.2 shows the notation and the sampling parameters used
throughout the chapter.

Table 2.2: Sensor sampling parameters and their definition.

Parameter Definition

Ts Required time to take a sensor measure
Tsen Sensing node sampling period
Ns Number of samples taken every sampling period
Tr Sensor response time before valid measurements
Tref Reference data period
DC Sampling strategy duty cycle
Ton Time the microcontroller is switched on to collect sensor samples

The process for obtaining measurements in air pollution sensors is as follows (Figure
2.1):

1. Sensor sampling: The sensing node samples the sensor every Tsen seconds. For
this value to be representative, it may be necessary to wait for a sensor response
time Tr, and take a sequence of Ns measurements.

2. Filtering: Apply a filtering algorithm to remove outliers and smooth the measure-
ments

3. Aggregation: Aggregate the filtered measurements into a representative sample
every Tsen seconds. This step is performed to obtain air pollution measurements
at a certain time resolution during the deployment. Besides, measurements can
later be synchronized with the reference data for calibration purposes.

The microcontroller can go into sleep mode until it has to collect samples again and
switch off the sensing board if necessary. A sensing node can manage an array of sen-
sors, each with its own electronic board, whereby the node reports a vector, each Tsen,
containing the air pollution sensor values (e.g. NO2, O3, NO) and environmental val-
ues (e.g. temperature and relative humidity). Two strategies are possible: i) a packet is
generated with the sample vector every Tsen, or ii) if energy savings are desired in the
communication subsystem and the application only needs values every Tref, a second
aggregation is carried out and transmitted every Tref.

Once the sensor measurements are aggregated, these are transmitted to the central
server for calibration or air pollution concentration estimation purposes. The reference
data and the sensor data need to be synchronized to apply supervised ML models for
calibration [14–16]. There exist linear and nonlinear models, such as multiple linear re-
gression (MLR), k-nearest neighbors (KNN), support vector regression (SVR), and artifi-
cial neural networks among others. In the case of having the calibration model trained
on the cloud, the aggregated samples are used to obtain the final air pollution estimates.
Alternatively, an edge computing approach can be followed where the calibration model
already trained is stored on the nodes in order to transmit the final air pollution esti-
mates to the cloud. Therefore, in this chapter, we use the MLR, KNN, and SVR to evaluate
the effect of the sensor sampling on the calibration and data quality without giving too
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many details about the calibration models, as this is the main topic of the next chapter
3.

2.2.1. SENSOR SAMPLING

At this stage, the Ns samples that are part of the representative sample Tsen are taken. We
focus on taking samples from a single sensor. In the case that the sensing node is respon-
sible for an array of sensors, the microcontroller can run the sampling process in paral-
lel, activating all the sensor boards simultaneously and polling them using a round-robin
strategy. Moreover, the sensing node’s architecture, several sensors attached to different
controller boards, may permit the implementation of specific sampling frequencies for
each sensor. To obtain the representative measurement at instant Tsen the microcon-

Figure 2.2: Assumed sensor sampling scheme. xi are the sensor measurements while yi are the reference
instrument measurements. Every Tsen, the controller waits for the sensor response time Tr and collects the
Ns samples to be aggregated. Then, these Ns samples are aggregated into measurements every Tsen seconds,
which can be further aggregated into Tref seconds to synchronize them with the reference values.

troller wakes up the sensor board and takes Ns consecutive samples (Figure 2.2). In this
case, the duty cycle is (Ns ·Ts)/Tsen. However, there are air pollution sensors that have a
response time of Tr, so it is necessary to wait for Tr before collecting valid measurements.
Indeed, this response time may vary from one sensing technology to another, and it can
be seen as a user-defined parameter specifying the amount of time to wait before col-
lecting a measure to prevent the collection of incorrect measurements. In this case, the
duty cycle DC is computed as:

DC = Ton

Tsen

Ton =Tr + (Ns ·Ts)

Ton ≤Tsen

(2.1)

The number of samples Ns that make up the value generated every Tsen seconds impact
the duty cycle of the sensing node and the quality of the data estimated by the ML al-
gorithm. The value of Tsen has an impact on; i) the number of packets to transmit, ii)
the duty cycle of the sensing system (and consequently the node’s power consumption),
and iii) the quality of the values estimated by the ML algorithm. In the experiments sec-
tion 2.3, we evaluate the impact that the sampling scheme has on the sensor calibration
quality and the duty cycle.



2.2. SENSOR DATA PROCESSING STAGES

2

25

2.2.2. DATA FILTERING
Once Ns sensor samples have been collected for each sensing node’s sampling period
Tsen, these must be filtered in order to remove outliers and smooth the data. The z-score
is a well-known technique for removing outliers and extreme values [29]:

zi = |xi − x̄|
sx

(2.2)

Where the measurements are assumed to follow a Gaussian distribution and x̄ is the
sample average of the set of measurements x and sx is their sample standard deviation.
Then, this z-score is thresholded to eliminate outliers, a common threshold is 2 stan-
dard deviations. Other signal filtering techniques (e.g., moving average or Chebyshev
filtering) can be useful to eliminate abrupt changes in the signal and smooth the data
trend. For instance, Mijling et al. [30] eliminate samples that deviate a given percent-
age from the sample mean. The filtering process is necessary given that signals sampled
from LCSs are noisy and may present outliers, in which case, the subsequent aggrega-
tion would be affected and, consequently, the quality of the estimated data would be
degraded.

This filtering can be performed at the node since these techniques only involve some
basic operations, then, the filtered measurements can be further aggregated. The z-score
is used as a filtering technique to remove extreme values in the experiments section 2.3.

2.2.3. DATA AGGREGATION
The filtered Ns measurements are aggregated into a single measurement every period
Tsen. Different statistics can be used for this aggregation, the most common are the sam-
ple mean and median. Nevertheless, these statistics may be affected by the number of
measurements aggregated. A small number of samples may affect the representative-
ness of the aggregated sample and produce biased results. Hence, the number of sam-
ples collected in the sampling stage can impact the quality of the aggregation and the
subsequent air pollution estimation or sensor calibration. This aggregation can be per-
formed at the node to minimize the number of measurements to be transmitted. In the
experiments section 2.3, we use the mean as aggregation technique.

The aggregated measurement can be included in a vector of measurements from all
sensors on the node, and can be transmitted to the central server where the ML algo-
rithm can estimate the pollution value with granularity Tsen. The reference stations, be-
ing connected to the power supply, usually take continuous Tsen values and aggregate
those values into hourly values (Tref = 1h), which are the ones displayed in the appli-
cations. If we want to save energy in the communications system, we can do a second
aggregation with the Tsen values to match the values of the reference stations Tref val-
ues. This allows having a heterogeneous network of reference stations and LCS nodes
that can spatially measure a pollutant in an area as the two types of nodes have the same
time granularity. For sensor calibration purposes the Tsen measures need to be aggre-
gated into the Tref granularity to train a supervised ML model.

Nonetheless, nodes with LCSs that have a response time of more than a minute, and
that also use batteries and implement a duty cycle to save energy in the sensing subsys-
tem, will not be able to produce Tsen values in the same way as reference stations.
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2.3. EXPERIMENTAL EVALUATION

I N this section, we evaluate the impact of the sampling parameters on the quality of
the sensor calibration. We study the impact of the Tsen and the number of samples Ns

on the sensor calibration quality. We also evaluate how the duty cycle and the quality of
the data evolve in the case where the sensor has response time and in the case where it
does not have response time Tr. The different sampling strategies are simulated by sub-
sampling the raw sensors’ signals (Tsen=2s). Since reference values are available hourly,
the periods Tsen tested are less than or equal to one hour Tsen≤1h. To do so, we evaluate
two different sampling strategies:

(A) Intensive strategy that tries to mimic the reference data gathering process as much
as possible by taking Ns samples uniformly every Tsen seconds.

(B) Flexible strategy that allows duty cycle implementation where every period Tsen a
sensor response time Tr is waited and Ns consecutive samples are taken.

In order to evaluate the different strategies, data obtained from the experimental
Captor 4 IoT node, whose sampling frequency allows to simulate different sampling
strategies, are used. The characteristics of the node and the data sets used for the exper-
iments are explained in section 2.3.1. The comparison of the two sampling strategies is
done by testing different sampling periods for the sensing node Tsen, as well as different
number of samples collected in these periods Ns. To carry out this experiment, we use
raw two-second signals from the sensors and simulate the different sampling settings
by subsampling these raw signals. Once the sensor data have been pre-processed, a 10-
fold cross-validation procedure is performed to evaluate the sensor calibration quality,
so discussing the resulting goodness-of-fit metrics, duty cycles, and power consumption
implications.

The data sets are randomly split into 75% of the data for training and the remaining
25% is used as testing set. The randomized selection is introduced so that the training
conditions are representative of the testing, avoiding the implicit effect of out-of-date
and inaccurate calibration models [11, 12]. Further explained in next chapter 3.

2.3.1. CAPTOR NODE & DATA SETS
For this chapter, we use the data obtained with an experimental air pollution IoT node
called Captor 4. The Captor is made up of a central processing unit based on a Raspberry
PI and different gas monitoring shields attached via an I2C communication bus. The
gas monitoring shield integrates two Alphasense sensors controlled by an Arduino Nano
microcontroller unit (MCU) responsible for collecting samples from the LCSs attached.
Each gas sensor is supplied by the manufacturer with an individual sensor board [46].
The output of the individual sensor board is further amplified by a factor of x2, in order to
reduce quantifying errors, and sampled by the analog-to-digital converter of the Arduino
Nano MCU.

Two Captor nodes have been deployed for four months at a reference station in Palau
Reial, Barcelona (Spain). Captor node labeled as 20001 mounted one Alphasense OX-
B431 O3 sensor, one Alphasense NO2-B43F NO2 sensor, one Alphasense NO-B4 NO sen-
sor, and a DHT-22 temperature and relative humidity sensor. Captor node labeled as
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Figure 2.3: On the left, a Captor 4 collocated at Palau Reial reference station. On the middle, a Captor 4 image
with the different components annotated and its deployment site. On the right, the sensing shield that the
Captor 4 mounts with its different components.

20002 mounted one Alphasense OX-B431 O3 sensor, one Alphasense NO2-B43F NO2

sensor, and a DHT-22 temperature and relative humidity sensor. Given the availabil-
ity of high-frequency measurements (0.5 Hz), different sensor sampling policies can be
simulated by subsampling these data sets4.

Table 2.3: Description of the data sets used for the experiments. Ts is the sensor sampling period.

Node Label Sensor Deployment Period Ts

20001 O3 2021/01/15 - 2021/05/15 2 s
NO2 2021/01/15 - 2021/05/15 2 s
NO 2021/01/15 - 2021/05/15 2 s

20002 O3 2021/01/15 - 2021/05/15 2 s
NO2 2021/01/15 - 2021/05/15 2 s

Each of the low-cost electrochemical sensors provides measurements for the work-
ing electrode and auxiliary electrode in analog-to-digital converter units. The temper-
ature sensor collects measurements in degrees Celsius (◦C ), and the relative humidity
sensor collects measurements in percent humidity (%). Table 2.3 summarizes the dif-
ferent sensor data used in the experiments. The two nodes were placed at a reference
station for 4 months, from 2021/01/15 to 2021/05/15. The average concentrations mea-
sured by the reference station at Palau Reial (Barcelona) from 2021/01/15 to 2021/05/15
are 57.46, 19.87, and 4.28 µgr/m3 for O3, NO2 and NO, with standard deviations of 23.79,
15.31 and 11.74 µgr/m3 respectively. The NO2 and NO present important concentration
peaks above 100 µgr/m3. Reference station’s values are available hourly, so the reference
data period Tref is equal to one hour. The reference station’s data can be downloaded
from the government’s open data web [47], while the raw Captor sensory data have been
made public on Zenodo’s website [48].

4We emphasize that the sensing boards were not put to sleep, and therefore, the effect that turning the sensor
on and off may have on aging or sample quality has not been studied.
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(c) Sensor 20001 NO forward fea-
ture selection CV R2.

Figure 2.4: Forward stepwise feature selection for the different sensors of node 20001 using the MLR as estima-
tion method. The horizontal axis indicates the variables added to the model from left to right. Bands indicate
average CV R2 95% confidence interval.

2.3.2. DEFINING THE CALIBRATION MODELS: FEATURE SELECTION
In order to analyze the quality of the calibration, it is first necessary to define the sensor
array to be used in the calibration, since the node in question may have measurements
of O3, NO2, NO, temperature, and relative humidity. The machine learning-based sensor
calibration is studied in more detail in the following chapter 3. At the moment, we use
the MLR as calibration method and we select the best subset of sensors for calibration
using a forward stepwise feature selection procedure. The forward stepwise feature se-
lection is a wrapper method (model dependent) that proceeds by adding the feature that
improves the model’s performance the most at a time until all features are included. This
procedure is done to take into account the different correlations and cross-sensitivities
present between LCSs and it is dependent of the predictive model. Figures 2.4.a), b),
and c) show the results for the forward feature selection for the MLR and Captor 20001
sensors5. The results for the O3, Figure 2.4.a), show that including the NO2 sensor the
R2 increases about 0.44 (from R2=0.53 to R2=0.97), while the NO introduces no further
improvement. This is reasonable since the electrochemical Alphasense O3 sensor mea-
sures both O3 and NO2 so the NO2 sensor needs to be introduced to compensate for its
effect. Regarding the NO2 calibration, Figure 2.4.b), the NO2 achieves an R2 of 0.79 by its
own and the introduction of the O3 sensor slightly improves the calibration by more than
0.14 R2. Finally, the NO sensor benefits from introducing the O3 sensor to the calibration,
improving the CV R2 from 0.72 to 0.84.

Table 2.4: Best subset of sensors found via forward stepwise feature selection for the MLR.

Target Sensor Best Subset

O3 O3, NO2, T, and RH
NO2 NO2, O3, T, and RH
NO NO, O3, T, and RH

Table 2.4 shows the resulting arrays of sensors used for the calibration of each one of

5Temperature and relative humidity sensors are always included in sensor calibration since these are impor-
tant correctors for environmental conditions [18].
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(c) Captor 20001 NO CV R2 for dif-
ferent Tsen and Ns.

Figure 2.5: Average CV R2 and 95% confidence intervals for different sampling settings using MLR. Solid lines
denote the strategy that the Ns samples are taken consecutively after a sensor response period (strategy A), and
the dotted lines denote the strategy that the Ns samples are taken uniformly at Tsen (strategy B).

the sensors. For instance, for the O3 sensor calibration, it is necessary to use the array
of sensors {O3,NO2,T,RH}. We take these sensor arrays as the baseline for all calibration
models (linear and nonlinear), even though, feature selection could be done for each
one of the models and sensors.

2.3.3. SENSOR SAMPLING IMPACT: Tr≈0
In this section, we explore the ideal case where the sensor has negligible response time
Tr≈0, allowing to compare strategies A and B. The experiment performed compares the
calibration quality of the different sensors assuming different sampling periods Tsen,
from 2 s and 1 min to 60 min, and different number of samples measured per period
Ns={1,5,10}. Sampling strategy A (uniform sampling) is only possible when the sensor’s
response time is small or negligible as in this case.

Figure 2.5.a) shows the CV R2s and their 95% confidence intervals for different sam-
pling strategies for the O3 calibration. Solid lines denote sampling strategy B while dashed
lines denote sampling strategy A. As for the uniform sampling strategy (A), it is observed
that for Ns>1 any period is sufficient to keep the quality of the calibration constant, only
in the case Ns=1 (where strategies A and B coincide) a deterioration of the calibration
is observed, with the R2 is reduced by 0.1. This trend for strategy A can also be seen in
the calibration of NO2 and NO, 2.5.b) and c), where for Ns={5,10} the calibration quality
is maintained for different Tsen, although in these cases for Ns=5 we see a slight reduc-
tion of R2 as Tsen increases. Regarding consecutive sampling B, it can be seen that for
Tsen≤10min there is little worse in terms of R2. From this point, the R2 starts to decrease
until it reaches a CV R2 of 0.87. Sampling strategies Tsen={30min,60min} and Ns=1 im-
plies that the sensor is sampled one or twice, so the data aggregation and filtering stages
may be affected and the resulting measurement biased. The difference between taking
one, five, or ten samples is not significant until we sample every 30 to 60 min. When we
take few samples, Ns=1, the confidence intervals are larger since the calibration qual-
ity may exhibit larger variability due to the low number of samples. As an example,
for Tsen=5min and Ns=1, the aggregation to obtain the measurement every Tref is ob-
tained averaging 12 samples, so in this case and for lower sampling periods one sample
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is enough to produce a good aggregation estimate. Nevertheless, when the sampling pe-
riod is larger Tsen≥5min the data quality may not be maintained even when taking more
than one measurement per sampling period. For instance, if Tsen=30min and Ns=10,
there are 20 samples participating in the aggregation at instant Tref (more than the 12
samples with Tsen=5min and Ns=1) but they are less representative. In other words, it
is better to sample fewer measurements more distributed over the period Tref, than to
sample more measurements consecutively but fewer times at Tref.

Figure 2.5.b) shows the results for the NO2 calibration. In this case, for sampling
strategy B, it is observed how the Tsen has a larger impact on the R2. Actually, the R2

is maintained for Tsen≤10min, with R2 around 0.94. However, the NO2 calibration is
observed to worsen more for large sampling periods than the O3 calibration since at
Tsen=30min the R2 is reduced to 0.86, and at Tsen=60min to 0.75. Moreover, in this
case, the number of samples taken every sampling period also has a larger impact on the
R2, where for Tsen=60min taking one or five samples may result in a more than 0.03 R2

difference. In addition, since NO2 is a less smooth signal than O3, with few samples per
Tsen interval, there is greater variability, which explains the higher confidence interval
values for Ns=1.

Finally, for the NO calibration, Figure 2.5.c), it is observed an even larger impact of
the sampling strategy on the goodness-of-fit of the calibration. The NO is a phenomenon
that naturally presents more abrupt changes in the measurements which causes the dif-
ferent calibrations to have large confidence intervals. A similar decreasing trend as for
O3 and NO2 R2 is observed, but in this case, the calibration quality starts to worsen for
Tsen≥5min the R2 meaning that the NO phenomena may present larger frequencies so a
more intensive sampling scheme is needed. Moreover, the same happens with the num-
ber of samples, the gap in performance between taking one sample and five is the largest
of all three pollutants. The NO signal contains many peaks so even sampling Ns samples
in a row for an instant that does not pick up such peaks may be unrepresentative. Re-
garding the confidence intervals, both sampling schemes suffer from large confidence
intervals due to the variability of the phenomenon. Thus, even when taking samples
uniformly, pollution peaks or important events may not be captured. Therefore, in the
case of signals with high variability, and high bandwidth, it is logical to sample at more
points.

To sum up, we can conclude that it is better to take more than one sample Ns>1 if the
sampling period is large (Tsen≥10min), so that the aggregation is more representative
and the data filtering more effective. However, in the case of having a lower sampling
period, fewer samples are enough to obtain a high R2 since the aggregation at each Tref

will be more representative and the data filtering more effective. Moreover, as observed
with the different decreasing trends of the R2 with the Tsen, different sensors may require
different sampling schemes to achieve a certain data quality if a duty cycle system is
implemented. For instance, the performance gap between sampling schemes A and B
for Tsen=30min and Ns=5 is of 0.02 R2 in the O3 case, 0.05 R2 in the case of the NO2, and
0.08 R2 in the NO case.
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(b) Captor 20001 NO2 CV R2 for dif-
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Figure 2.6: Average CV R2 and 95% confidence intervals for strategy B and different duty cycles with a sensor
response time equal to 2 min (Tr=2min) using MLR.

2.3.4. SENSOR SAMPLING IMPACT: Tr≈2min

The previous case where the sensor response time Tr was negligible is not common in
air pollution LCSs. Therefore, in this section, we take into account a response time of
about 2 minutes Tr=2min since the response time of some sensors can reach up to 80
seconds, see section 2.3. In the case of wanting to save energy by implementing a duty
cycle scheme, the sampling strategy A would not be longer feasible since a response time
of 2 minutes does not allow uniform sampling in Tsen periods and would imply having
the sensing system always powered on. Thus, in an energy-constrained sensing system,
strategy B is the most feasible and the one studied in this section.

The results of the duty cycle for a 2 min sensor response time (Tr=2min) and there-
fore with a Tsen>2min are shown in Figure 2.6. Recall that low duty cycles correspond
to large Tsen and fewer samples taken in the interval Tref resulting in a shorter time that
the node is measuring. The effect of a low duty cycle is observed in Figures 2.6.a), b) and
c), where low R2 are obtained for low duty cycles. In all three cases, O3, NO2 and NO,
the quality of the calibration stabilizes from duty cycle equal to DC=0.20 (Tsen=10min).
Therefore, a sampling period of about five or ten minutes guarantees the representative-
ness of the sampled data. When the physical phenomenon presents large variability, as
in the case of NO, the confidence intervals are larger. However, large Tsen periods with
one single sample introduce more variability, as observed in the confidence intervals of
sampling strategies with Ns=1. In this case, it is better to take more samples, slightly
increasing the duty cycle, since the sensor response time is the one that dominates the
duty cycle. It is also observed, as seen previously, that the CV R2 for the O3 sensor sta-
bilizes before that of NO2, and that of NO2 before that of NO, showing how different
sensors may require different duty cycles in order to maintain good data quality.

It is important to mention how in-situ calibration using a sensor array forces the sen-
sors included in the sensor array to have aggregated data with the same time granularity.
Therefore, the sampling of the sensor that requires the highest sampling frequency sets
a lower bond for the rest of the sensors used in the sensor array.
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2.3.5. POWER CONSUMPTION: Tr≈2min
The difference in power consumption between the two sampling strategies is propor-
tional to the difference in their corresponding duty cycles. Thus, the different duty cy-
cles are used to compare the power consumption of the different configurations for sam-
pling strategy B. The duty cycle corresponds to the ratio between the time the subsystem
is turned on to measure samples (Ton) and the total sampling period (Tsen). Moreover,
since the consumption of the different components of the sensing system may be differ-
ent, one can decide to send only the microcontroller to sleep mode or send the micro-
controller to sleep and switch off the sensors6.

Table 2.5: Average CV R2 for sampling strategy B (Tr=2min) obtained with the multiple linear regression, k-
nearest neighbors, and support vector regression models for the different sensors and duty cycles.

Sensor
DC=1.00 DC=0.10 DC=0.03

MLR KNN SVR MLR KNN SVR MLR KNN SVR

20001 O3 0.97 0.96 0.98 0.95 0.94 0.96 0.87 0.86 0.88
20001 NO2 0.94 0.94 0.96 0.89 0.90 0.92 0.75 0.77 0.78
20001 NO 0.90 0.95 0.97 0.82 0.89 0.90 0.56 0.66 0.60
20002 O3 0.97 0.96 0.98 0.94 0.93 0.95 0.84 0.84 0.85
20002 NO2 0.92 0.92 0.94 0.88 0.89 0.91 0.74 0.76 0.78

The results for the duty cycles, Figures 2.6.a), b) and c), showed that the O3 and NO2

sensors were able to achieve a good calibration accuracy with a duty DC≈0.10, intro-
ducing very little improvement at higher duty cycles rates, whilst, in the case of the NO
sensor, a slightly higher duty cycle was required (DC=0.15). Thus, the duty cycle can be
reduced about seven or ten times (DC=0.15 and DC=0.10) while maintaining a calibra-
tion quality as good as in the continuous powered case (DC=1) so reducing the power
consumption considerably and allowing the use of battery-powered systems.

Table 2.5 compares the average CV R2 obtained for the different sensors, the three
different ML algorithms, and different duty cycles (with Tr≈2min); duty cycles equal to
1.0 ({Tsen=2s,Ns=1}), 0.10 ({Tsen=20min,Ns=1}), and 0.03 ({Tsen=60min, Ns=1}). For
the studied case so far (MLR calibration), for duty cycles of 0.10 the sensor calibration
worsens by about 0.02-0.08 R2, in the worst case, the NO sensor drops from 0.90 to 0.82
R2. The NO sensor is seen to need a higher duty cycle, about 0.15, this confirms what was
observed above with the sampling period of the NO, so that its data quality is not reduced
so much. On the other hand, in the extreme case where the node is only powered on
once, with a resulting duty cycle of 0.03, the R2 worsens approximately by 0.10 R2 in the
case of the 20001 O3 sensor, and in the case of the 20001 NO sensor by 0.34 R2. Thus, the
power consumption can be reduced up to ten times (DC=0.10) by slightly reducing the
quality of sensor calibration.

Regarding the nonlinear sensor calibration models, Table 2.5, it can be seen that
these nonlinear models do not improve the MLR performance very much for the O3 and
NO2 sensors since the sensors’ responses are very linear, except for the NO sensor where
these nonlinear models are able to improve the calibration around 0.07 R2. Nevertheless,
in terms of calibration quality with respect to the duty cycle, the nonlinear models show

6This option has not been evaluated since depending on the sensing technology this switch-off may incur in
the need to wait a longer time for the sensor to measure correctly.
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the same decreasing trend of the R2 with the duty cycle since the impact of the duty cycle
is on the representativeness of the data and does not depend on the ML model used.

To sum up, the experiments show how for the gas sensors analyzed and different
sensor response times the duty cycles required to obtain good data quality may vary.
Moreover, lower sensor response times may result in more efficient duty cycles, so the
hardware components limit the power saving achieved in the sensing system. In these
precise experiments, assuming response times in the order of two minutes, duty cycles of
0.1 can be achieved, calibrating with hourly reference values, and maintaining the qual-
ity of the calibrated data. Otherwise, duty cycles between 0.01 and 0.02 can be achieved
if sensor response times are negligible.

2.4. CONCLUDING REMARKS & FUTURE WORK

I N this chapter, we have reviewed the pre-processing steps of LCSs; from sensor sam-
pling to air pollution estimation. We have reviewed the stages of sensor sampling,

filtering to remove outliers, data aggregation (for synchronization with reference instru-
mentation or obtaining data at the desired granularity), and the production of air pollu-
tion estimates by machine learning. In this way we have answered the first research item
raised in the introduction chapter 1:

(R.Q.1.1): Which pre-processing steps are required prior to the calibration of a low-cost sen-
sor? What effect does sensor sampling have on the calibration quality and energy
consumption of the sensing node?

Within the pre-processing stages, we have investigated in detail the effect of the sen-
sor sampling strategy on calibration quality and duty cycle (and consequently power
consumption). The sampling strategy has an important effect on the calibration quality
since it determines the amount of collected samples to be used for filtering and sub-
sequent aggregation, thus affecting the representativeness of the aggregated data pro-
duced by the sensor. The results of the experiments carried out show how in the common
case of having a sensor response time a duty cycle can be applied by sampling samples
consecutively in each measurement period. In this way, the calibration quality can be
maintained (±0.03 R2) using a duty cycle of 0.15, thus reducing the energy consumption
about seven times compared to having the node always plugged in. Moreover, depend-
ing on the bandwidth of the measured phenomenon different sampling frequencies may
be required, resulting in specific sampling strategies for sensor phenomena. Finally, the
different calibration models have suffered the same loss of quality due to the sampling
strategy, which means that sensor sampling affects the representativeness of the sam-
ples and that regardless of the calibration model used there is a loss of quality in the
calibration.

In conclusion, in the practical case of a node’s design where different sensing tech-
nologies, with different sensor response times to the ones shown in this work, are used,
it would be necessary to characterize the most appropriate duty cycle based on the de-
signer’s needs, the sensors used, and how the sensors are calibrated.

More concisely we can summarize the conclusions as:
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Duty-Cycle: Sampling strategy impact

• The sensor sampling strategy directly affects the quality of the sensor calibration
and the duty cycle.

• Using a flexible sampling strategy, duty cycles can be reduced up to seven times
while maintaining the quality of the sensor calibration.

• Sensors measuring different phenomena may require different sampling frequen-
cies.

• The sensor calibration model used does not affect the loss of data quality due to
sampling.

• Different sensor technologies and hardware designs may implement more efficient
duty cycles.

• Prior to a sensor deployment, a fast-sampling experiment such as the one shown
in the chapter can be used to design the duty cycle necessary to meet the needs of
the particular deployment sensor.

In future research, it may be interesting to use signal reconstruction or compressed
sensing techniques to elaborate more efficient and tailored duty-cycle strategies. In this
way, a duty cycle could be designed depending on the correlations present in the mea-
sured data. Finally, it is not only interesting to study the duty cycle at the node level
but also at the sensor network level where, depending on the measured phenomenon,
strategies can be developed to reduce the overall consumption of a sensor network.

Practical Tip !

In the case of wanting to deploy a node with a duty-cycle system, a previous study can be
done, while the node is collocated in a reference station, to determine the exact duty cycle
according to the needs and required data quality.

□ From now on, we assume that the sensor data has been pre-processed and that we
only have available the final aggregated measurement and, consequently, we focus on the
sensor calibration stage.
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LOW-COST SENSOR CALIBRATION

FOR AIR POLLUTION MONITORING

An expert is a person who has made all the
mistakes that can be made in a very narrow field.

Niels Bohr

Low-cost sensors (LCSs) are known for their low accuracy compared to high-precision
instrumentation. In addition, they are known to suffer from various problems that cast
doubt on whether their data quality is good enough for regulated air quality monitoring
applications [4, 49]. Lately, a trend to improve their accuracy consists in the application
of supervised machine learning (ML) techniques to calibrate the LCSs while placed next
to high-precision instrumentation that provides ground-truth values of pollution [15,
27].

The objective of this chapter is to show the effectiveness of different supervised ML
methods for the calibration of LCSs. The use of linear models such as multiple linear re-
gression (MLR) and nonlinear models such as support vector regression (SVR) are stud-
ied. These models are applied to real data sets of an IoT node, the Captor node, which
contains low-cost tropospheric ozone sensors [9]. In addition, their long-term accuracy
as environmental conditions change is studied.

The chapter is organized as follows; section 3.1 shows describes the state-of-the-art
methodologies used for sensor calibration and section 3.2 describes the state-of-the-art
machine learning models for sensor calibration. Then, section 3.3 describes the differ-
ent machine learning techniques evaluated for calibration, and section 3.4 shows exper-
imental results. Finally, section 3.5 concludes the chapter. This chapter presents the
findings made in the article “A comparative study of calibration methods for low-cost
ozone sensors in IoT platforms“, IEEE IoT-J, [50].

3.1. CALIBRATION OF AIR POLLUTION LOW-COST SENSORS

A IR quality monitoring has become a key task in order to take action and mitigate the
possible effects of pollution. Recent advances in both low-cost sensing technologies

and the internet of things allow the possibility of using nodes spread over an area to cap-
ture pollution measurements [51]. But, one of the most important points is the accuracy

35
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of these sensors [4, 49]. Several studies argue that the accuracy of LCSs, as well as their
variability, do not meet the accuracy levels required by agencies to be used in decision-
making processes [7]. Therefore, one of the most important challenges that exist with
this low-cost sensing technology is the data quality.

Although the accuracy of these sensors is one of the most important challenges, it
has also been highlighted the fact that LCSs can be the key piece in the measurement
of pollution in cities, helping to increase the resolution provided by reference stations1.
Thus, given the limited number of deployed reference stations, LCSs can be the tool that
complements the measurements of regulatory stations according to Snyder et al. [49].
For instance, Rajasegarar et al. [52] propose the joint use of LCSs for measuring PM and
reference stations, showing the improvement in the estimation given a large density of
LCSs. Hence, even though the LCSs may not be enough accurate to provide reliable at-
mospheric estimates, they can provide good coarse estimations and their data can be
used for several applications such as awareness purposes [5, 53]. One example of ap-
plication is the H2020 Captor project, where sensing nodes were placed in volunteers’
homes to capture O3 measures [9]. Despite of the accuracy of these measures, the moni-
toring campaign could provide measures to raise citizen awareness about pollution lev-
els in three different areas (Spain, Italy, and Austria).

The methodology that has gained importance during the last years to increase the re-
liability and accuracy of LCSs is the in-situ sensor calibration. Penza et al. [54] show the
use of calibrated LCSs deployed in conjunction with the official monitoring network to
calculate air quality indexes (AQI). Similarly, Spinelle et al. [55] evaluate the performance
of different calibrated sensors to check whether they meet the uncertainty required by
governments. There are several issues that hinder the deployment of LCSs, including the
need to recalibrate the sensors as the environmental conditions of the deployment lo-
cation change, as well as taking into account sensor aging or manufacturing variability
[7]. In order to improve the quality of the data reported by LCSs, supervised ML tech-
niques are used to calibrate these sensors [14, 42, 56]. Zimmerman et al. [15] calibrate
NO2 LCSs using the random forest (RF) algorithm, achieving an important improvement
with respect to linear calibration models.

To mitigate sensor data quality issues, different calibration methodologies have been
studied [10, 11]. These strategies depend on what resources are available (e.g., the avail-
ability of reference instrumentation) and the type of network to be deployed. More pre-
cisely, Table 3.1 shows a brief summary of the different sensor calibration approaches
used in the literature. As it can be seen, there are many different methodologies for sen-
sor calibration, and the exact configuration always depends on the characteristics of the
sensor network to be used and the resources available in the area of interest. For exam-
ple, in the case of a mobile sensor network [57], where the sensors are mounted on pub-
lic transport, apart from the pre/post calibration, an opportunistic calibration can also be
performed when a sensor is sufficiently close to a reference station during a certain time
window.

Apart from pre/post calibration, other studies make use of recalibration techniques to

1Throughout this thesis the terms reference station, reference instrumentation, and high-precision instrumen-
tation are used interchangeably to denote the instrumentation that provides air pollution ground-truth con-
centrations.
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Table 3.1: Calibration approaches summarized from [10].

Description

Area of interest
Micro The sensor is optimized for a specific location.

Macro The sensor is optimized for an area of interest.

Number of sensors
Single sensor Only one sensor involved in the calibration.

Several sensors More than one sensor involved in the calibration.

Available ground-truth data
Non-blind Ground-truth values available.
Semi-blind Indirect access to ground-truth values.

Blind Ground-truth values not available.

Position reference station
Collocated/In-situ Sensor placed close to a reference station for calibration.

Multi-hop Sensor calibrated using nodes already calibrated.
Model-based Sensor calibrated using reference model at a location.

Calibration frequency
Pre/Post Sensor calibrated before and after deployment.
Periodic Sensor is periodically calibrated.

Opportunistic Sensor is calibrated when ground-truth values are avail-
able.

Mode of operation
Offline Sensor is calibrated when it is not operating.
Online Sensor is calibrated while in operating mode.

Mode of calibration processing
Centralized Calibration model optimized in a central server.
Distributed Calibration model optimized using sensor node collabora-

tion.

deal with long-term quality problems [58, 59]. For example, Wei et al. [59] study the effect
of drift and changing environmental conditions on sensors. Saukh et al. [58] mounted
nodes on buses to opportunistically recalibrate sensors when a bus passed near a refer-
ence station, thus mitigating long-term calibration problems. Among all possible cali-
bration settings, in this thesis we focus on the following one:

Micro → Single/Several sensors → Non-blind → In-situ → Pre/Post → Offline → Centralized

This corresponds to the most common approach where a sensor is used to sense the
pollution concentrations at a specific location (micro), one or more sensors are involved
in the calibration (single/several sensors), the sensors are collocated at a reference station
to be calibrated using an ML algorithm (in-situ and non-blind), the calibration model
optimization is performed at a centralized server before the sensor deployment (offline
and centralized). Finally, the model is transferred to the sensing node to be deployed
or the sensors’ measures are sent to the central server to apply the previously trained
models (pre/post, offline, and centralized).

The most recent work has addressed the calibration of LCSs using ML techniques.
Hence, these powerful modeling techniques can help to improve the quality of data pro-
vided by the sensors. Therefore, the rest of this chapter is focused on the study of differ-
ent ML techniques, both linear and nonlinear, to investigate how much they can improve
sensor calibration.
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3.2. MACHINE LEARNING-BASED IN-SITU CALIBRATION

R ECENT studies regarding the LCS in-situ calibration are based on the application
of supervised ML techniques [16, 60]. Given the increasing interest in ML and its

proven ability to learn highly complex nonlinear functions, these mathematical models
are an ideal candidate for obtaining calibration models. For instance, Spinelle et al. [27]
use from linear techniques such as multiple linear regression to nonlinear techniques
such as artificial neural networks to calibrate NO2 and O3 sensors. Similarly, other tech-
niques such as random forest have been used on LCSs [15]. Bigi et al. [16] compare the
performance of three ML models (multiple linear regression, support vector regression,
and random forest) applied to NO and NO2 LCSs. The results showed a better perfor-
mance of the nonlinear techniques as well as the benefit of introducing different corre-
lated sensors in the calibration, where NO2 and NO are introduced to benefit from each
other measurements. Other research, use ML techniques to derive a generalist sensor
calibration model, but more importantly, conclude that each sensor needs to be cali-
brated individually given the intrinsic variability that exists from sensor to sensor from
the same manufacturer [56]. In general, the different studies show the existence of cross-
sensitivities and correlations between sensors, so that, for the prediction of a pollutant
there are sensors of other phenomena that can influence the calibration. Therefore, one
of the most common configurations in calibration is the use of several sensors, to take
into account other influential factors in the target sensor response.

Definition 6 Cross-sensitivity is an effect that occurs when a sensor has interference in
its readings caused by the presence of other pollutants different than its target gas. As an
example, an O3 sensor may react to other gaseous species, such as NO2, so its readings may
be influenced by another pollutant.

Several studies mention the importance of using an array of sensors to calibrate sen-
sors such as; O3, NO2, CO, or CH4 [58, 60]. Another example of sensor calibration using
an array of sensors shows the inclusion of correlated pollutants in the calibration [14].
Thus, taking benefit from cross-correlations and cross-sensitivities present between dif-
ferent gas pollutants. Wei et al. [59] show the dependence of temperature and relative
humidity on the evolution of low-cost electrochemical sensors. Moreover, in order to
calibrate an electrochemical NO2 sensor, an O3 sensor, temperature and relative humid-
ity are also required. However, the performance of different ML techniques is still to be
tested, as well as different technical aspects such as the number of samples required to
train the model, or the performance in the long term. The required number of samples
per model is important since it imposes a calibration period and most of the applica-
tions rely on a pre/post sensor calibration. These aspects are of great interest in this field
due to the specific calibration methodology used for low-cost sensing technologies.

Definition 7 Sensor array: in the context of sensor calibration, a sensor array is defined
as the use of several P sensors in the calibration of a sensor or in the estimation of a pollu-
tant. In this way, a sensor array is introduced into a sensor calibration mechanism to take
advantage of the cross-sensitivities and cross-correlations present, improving the overall
estimation.
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Figure 3.1: Machine learning-based in-situ LCS calibration. LCSs are placed next to reference instrumentation
for a calibration period to train the ML-based calibration model.

Recalling from chapter 1, the in-situ calibration can be seen as a supervised learning
task. Indeed, given a training set obtained during a sensor calibration period X∈RN×P ,
where N is the number of collected samples and P is the sensor array size2, and the cor-
responding ground-truth values provided by a reference instrument y∈RN , the goal is to
find the function f :RP→R that approximates the ground-truth concentrations given the
sensors readings, i.e., yi≈ f (xi ). Different ML techniques assume different characteris-
tics for the regression function f (·). For instance, the multiple linear regression assumes
that the regression function is linear in its covariates xi . Another example is random
forests, which assume that the function is the average output of an ensemble of decision
trees, which have been decorrelated.

Figure 3.1 shows the overall process for the in-situ LCS calibration. First, the sen-
sor is collocated near a reference station for a calibration period to obtain the set of tu-
ples {(x1, y1), . . . , (xN , yN )} so that the regression function f (·) can be learned using a ML
model. Once the pre-deployment calibration is done, the trained ML model is saved and
the sensor is deployed at a specific location of interest to capture air pollution concen-
tration levels during a monitoring campaign. The object of study of this part of the thesis
are the ML models to be used during the sensor calibration and air pollution estimation.

3.3. MACHINE LEARNING MODELS

T HIS subsection briefly introduces the different ML techniques studied for sensor cal-
ibration. The multiple linear regression (MLR), the K-nearest neighbors (KNN), the

random forest (RF), and the support vector regression (SVR). For a more detailed discus-
sion of these methods refer to [61].

3.3.1. MULTIPLE LINEAR REGRESSION
The multiple linear regression is the extension of the classical linear regression for the
case where more than one feature is used (P≥1). X∈RN×P corresponds to the set of
sensor observations, where N is the number of observations and P is the number of
features per observation. Usually, in the sensor calibration paradigm, more than one

2Throughout the thesis we use the terms sensor array, features, and predictors interchangeably to refer to the
sensor measures introduced to the calibration model.
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sensor measurement is involved in the calibration, for instance, the ozone can be cali-
brated using the ozone sensor, the temperature sensor, and the relative humidity sen-
sor xi=[xO3i

, xtempi , xr hi ]. Now, given the set of tuples {(x1, y1), . . . , (xN , yN )} the multiple
linear regression assumes that the response variable y can be explained using a linear
combination of the features x:

yi = f (xi )+ϵi , i = 1, . . . , N (3.1)

yi =β0 +
P∑

j=1
β j xi j +ϵi , i = 1, . . . , N (3.2)

Where β are the model’s coefficients to be learned and ϵ is the error term. These coeffi-
cients are obtained by least squares, minimizing the residual sum of squares (RSS). Now,
using matrix notation, the RSS and the coefficients β can be obtained as follows:

RSS(β,y,X) =∥y−Xβ∥2
2 (3.3)

∂RSS

∂β
=−2XTy+2XTXβ (3.4)

β̂=(XTX)−1XTy (3.5)

The resulting equation for the coefficients β̂ is known as the normal equation. Once the
coefficients are learned from the data, the model can be used for future predictions. The
linear model is well-known for its interpretability since if the data is standardized the
learned coefficients can be interpreted as the feature importance.

3.3.2. K-NEAREST NEIGHBORS
The k-nearest neighbors is a method that belongs to a different family of methods, the
dictionary-based. These models are characterized by the training data being the model
itself. In this case, the model’s output ŷi is obtained by averaging the response values of
the K nearest points in the training. So, the model’s prediction can be written as:

ŷi = 1

K

∑
j∈N (i )

y j , i = 1, . . . , N (3.6)

Where N (i ) denotes the neighborhood of data point i. As it may be noticed, a distance
metric d(xi , x j ) is needed to define the notion of the closeness of two different data sam-
ples xi and x j . The Minkowski distance is a distance metric, which has a governing pa-
rameter ρ ∈R, that generalizes other well-known distance metrics such as the euclidean
distance and the Manhattan distance:

d(xi ,x j ) =
(

P∑
k=1

|xi k −x j k |ρ
) 1
ρ

(3.7)

Given the distance function, the model is learned by obtaining the hyperparameters
minimizing the cross-validation mean squared error (MSE). Indeed, the model has two
different hyperparameters that are not learned and need to be supplied to the model, the
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K ∈ N+ and ρ. Cross-validation strategies are required to find the most suitable values
for these parameters.

MSE(y, ŷ) = 1

N

N∑
i=1

(yi − ŷi )2 (3.8)

3.3.3. RANDOM FOREST
The random forest is a ML method that belongs to the group of ensemble models. An en-
semble method is a model formed by a combination of more than one individual model,
whose outputs are aggregated to form a unique response. Indeed, a random forest is
an ensemble of decision trees, which have been decorrelated, and whose output is the
average of its decision trees:

ŷi = 1

Ntr ee

Ntr ee∑
t=1

ŷi t ; i = 1, . . . , N (3.9)

Where N is the number of samples, Ntr ee is the number of trees, and ŷi t is the output of
t-th tree for the i -th sample. Let’s give a brief introduction to decision trees before we
delve into the random forests. A decision tree divides the output space into regions R,
so the algorithm needs to find the splitting points and splitting variables. Each node of
a decision tree takes a feature and splits a region according to the feature value. Once a
leaf is reached the output is the average output of the region ŷRi = 1

|Ri |
∑

x j ∈Ri
yx j . For

all this, the depth of a tree is an important parameter, pruning techniques exist to avoid
constructing extremely complex trees. The key relies on the selection of splitting points,
which can be obtained using a greedy algorithm finding the best variable x j and the best
splitting value S at each point, and a pruning methodology to avoid overfitting.

The idea behind an ensemble model is to obtain noisy unbiased models whose aver-
age can improve the variance of the estimation. In order to increase the noise and thus
improve the performance of the overall ensemble, two randomization steps are intro-
duced to decorrelate the decision trees; i) each one of the decision trees is trained with
a bootstrap sample of the training set, and ii) at each decision node of a tree a random
subset of features are taken into account as candidate splitting variables.

All in all, the random forest model has three important hyperparameters; i) Ntr ee the
number of trees of the ensemble, ii) D the maximum depth for the decision trees, and
iii) Ptr ee the number of random features to take into account at each decision node.

3.3.4. SUPPORT VECTOR REGRESSION
The support vector regression falls into the class of kernel methods. The aim of kernel
models is to implicitly transform the data into a large high-dimensional feature space
where data points are predicted or classified better. The core element is the kernel map
k : RP×RP → R that given two data points xi , x j computes a similarity metric between
them. Then, the goal is to transform the data points to a larger dimensional space using
a feature map φ : RP→RZ , where Z>d , and then compute the similarity between data
points in that enlarged feature space. However, these operations in such a large space
can be computationally intractable, this is where the kernel trick appears. The kernel
trick avoids the explicit computation of the feature maps and states that inner products
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of mapped points can be computed implicitly using a kernel function:

k(xi ,x j ) =<φ(xi ),φ(x j ) > (3.10)

Where < ·, · > denotes the inner product of two vectors and k(·, ·) is a valid kernel func-
tion. In conjunction with the kernel trick, the representer theorem states that there exists
a function ŷ that minimizes the empirical risk and belongs to a kernel Hilbert space H

and can be expressed as a linear combination of the kernel evaluated at the different
training data points, ŷi=∑N

j=0α j k(xi ,x j ). More precisely, the support vector regression
is analogous to the support vector machine for regression where the points that are far
from the regression plane are penalized. This is achieved by using the ϵ-insensitive error
function, where those points with residual smaller than the ϵ are not taken into account:

Eϵ(y, ŷ) =
{

0 , if |y − ŷ | < ϵ
|y − ŷ |−ϵ ,else

(3.11)

The output of the support vector regression can be defined as:

ŷ(x) =
N∑

i=0
(α̂∗

i − α̂i )k(x,xi )+b (3.12)

Where the parameters α̂∗
i and α̂i are found by optimizing a convex quadratic optimiza-

tion problem. Ultimately, several design choices are left; i) the value for the ϵ, ii) the
kernel map to use, for instance, the radial basis function (RBF) kernel is a well-known
choice that produces an infinite dimensional feature space, iii) the possible parameters
of the kernel function, and iv) a constant C present in the objective function that penal-
izes the samples not well predicted.

3.3.5. NONLINEAR MODELS’ HYPERPARAMETERS
The performance of nonlinear models using a specific set of data is linked to their hy-
perparameters’ values. These hyperparameters can not be set a priori, but a validation
procedure is needed to select the hyperparameters’ values that generalize to the test set,
and therefore best fit the problem. There exist different techniques for model selection,
such as train-validation-test split and cross-validation (CV). Throughout this chapter,
the 5-fold cross-validation is used because it is one of the most widely used methods
and it is applied in the training, thus taking advantage of the whole data set. The differ-
ent hyperparameters mentioned throughout the section are listed in Table 3.2.

Table 3.2: Nonlinear models’ hyperparameters.

Hyperparameters

MLR None
KNN k: number of neighbors, p: Minkowski distance power

RF Ntr ee : number of trees, D: maximum depth, Ptr ee : number of features
SVR C: penalization, γ: scale RBF kernel,ϵ: width ϵ-insensitive error

Algorithm 1 depicts the ML-based in-situ LCS calibration using an array of sensors.
For this purpose, the set of sensors’ measures and reference values during the calibra-
tion period are needed, X∈RN×P , ytr∈RN , as well as the ML model f (·) and a range of
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values for its hyperparameters Ω. First, data is standardized, then the model’s param-
eters are selected by means of cross-validation. Finally, the definitive model is trained
using the best hyperparameters found during cross-validation and it is further used for
air pollution estimation.

Algorithm 1 Sensor array calibration.

Input: {Xtr ,ytr , f (·),Ω}
1: X̄tr ← Standardization(Xtr )
2: ȳtr ← Standardization(ytr )
3: hyp ← Cross_Validation( f (·), X̄tr , ȳtr ,Ω) ◁Model Selection
4: f̂ ← Train_Model( f (·), X̄tr , ȳtr ,hyp) ◁Model Training
5: while xnew do ◁ Prediction Phase
6: x̄new ← Standardization(xnew )
7: ˆ̄ynew ← f̂ (x̄new )
8: ŷnew ← Unstandardization( ˆ̄ynew )
9: RETURN ŷnew

10: end while

3.4. EXPERIMENTAL EVALUATION

T HIS section evaluates the different ML models described in the previous section in
the framework of in-situ LCS calibration. First, the different data sets used for the

evaluation are detailed. And secondly, different experiments are performed to effectively
compare the different ML models in the sensor calibration setting3.

The different experiments elaborate on the performance of the different ML tech-
niques applied to the data sets obtained in the H2020 Captor campaign. Three different
experiments are performed:

(A) Short-term performance: data is randomly split into training set Xtr and test set
Xt s , 75% of the data and 25% of the data respectively. Then, a 5-fold CV procedure
is performed using the training set in order to obtain the best-performing hyper-
parameters for each model. Finally, the performance of every model is compared
using the test set. This procedure evaluates the performance of the sensor cali-
bration short-term, i.e., in the posterior weeks of the in-situ calibration, where the
environmental conditions are similar to those seen during the calibration. This is
achieved by randomly sampling the training and test set.

75 %Train/ 25%Test Split → 5-fold CV over Train → Compare models over Test

(B) Calibration period size impact: a similar procedure to the short-term experiment
is performed but after the train/test split, training subsets of increasing size are
selected for sensor calibration. For instance, one week of data for training, two
weeks for training, three weeks, etc.

X weeks Train/ 7 weeks Test → 5-fold CV over Train → Compare models over Test

3A python implementation of the mentioned ML methods for in-situ calibration is available at
https://bitbucket.org/sans-rg/iot-calibration-software.

https://bitbucket.org/sans-rg/iot-calibration-software
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(C) Long-term performance: is a common evaluation of the sensor calibration. The
sensor is calibrated using a few weeks of data, then the sensor is deployed at the de-
sired location during the monitoring campaign. The goal is to observe the models’
performance as the environmental conditions of the deployment location change
with respect to the training conditions. Here the train/test split is not randomized.

4 weeks Train/Rest for Test → 5-fold CV over Train → Compare models over Test day by day

3.4.1. DATA SETS
The data used in this chapter for the study of the various ML techniques for calibration
mentioned above consist of data captured by the H2020 Captor project nodes during the
summer of 2017. The different IoT nodes were deployed in different testbeds in Spain,
Austria, and Italy. In fact, the whole platform was made up of sixty IoT nodes. Two types
of nodes were deployed; the Captor and the Raptor. The Captors are nodes containing
an Arduino Yun as processing unit, together with a 3G modem to send the data to a cen-
tralized database, four ozone MOX sensors SGX Sensortech MICS 2614, a temperature
sensor, and a relative humidity sensor, all connected to an external power supply. The
different nodes provide measures every 30 minutes. In order to obtain a representative
half-hour value a hundred samples are taken during this interval and the top and bottom
ten percentiles are removed and the rest is averaged to obtain the final measurement.
MOX sensors SGX Sensortech MICS 2614 have a load resistor and a variable resistor. The
variable resistor changes with the ozone concentrations, and the sensor values sr aw are
obtained by measuring the load resistor voltage (VL):

sr aw = RL(1− Vcc

VL
) (3.13)

Where RL is the load resistor and Vcc is the input voltage. The captor nodes assemble
tuples of the form {Timestamp, xs , xT , xRH } and send them via a 3G connection to an IoT
repository using a REST web service.

On the other hand, the Raptor node was built at the Universite Clermont Auvergne
(UCA) and is equipped with a Raspberry Pi as a processing unit, an Alphasense OX-B431
electrochemical ozone sensor, an Alphasense NO2-B43F electrochemical nitrogen diox-
ide sensor, a temperature sensor, and a relative humidity sensor. The sampling interval
is also half an hour. The Raptors nodes mount both ozone and nitrogen dioxide sen-
sors since the Alphasense OX-B431 sensors measure both phenomena simultaneously.
Therefore, nitrogen dioxide measures are required to be subtracted from the ozone elec-
trochemical sensor, then the raw ozone sensor output sr awO3

for the electrochemical
sensors is defined as:

sr awO3
= (sW EO3

− sAEO3
)− (sW ENO2

− sAENO2
) (3.14)

Where sW E corresponds to the working electrode (WE) reading and sAE corresponds to
the auxiliary electrode (AE) reading. The deployment of the nodes for ozone monitoring
was carried out using a pre/post calibration strategy where the nodes were placed at
reference stations in locations close to where they were to be deployed for calibration.
Then, mainly at the end of July and August 2017, the calibrated nodes were deployed
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at the volunteer’s house to perform the ozone measurement campaign. Some of the
nodes stayed longer at the reference stations to perform research tasks. In this study,
the data from the nodes that remained collocated next to the reference instruments for
a long period of time are used because the ground-truth ozone values are available and
the models can be evaluated correctly. More specifically, Table 3.3 summarizes the data
used in the study, separating the data from metal-oxide sensors from the nodes with
electrochemical sensors.

Table 3.3: Summary of the different data sets used for the in-situ calibration evaluation.

Node Name Sensor Labels Sensor Type Calibration Place Period # Samples

Captor C17013 s1,s2,s3,s4 MICS 2614 Manlleu (Spain) 08/05/2017-04/10/2017 6745
Captor C17016 s1,s2,s3,s4 MICS 2614 Vic (Spain) 26/05/2017-05/10/2017 6149
Captor C17017 s1,s2,s3,s4 MICS 2614 Tona (Spain) 08/05/2017-05/10/2017 6944
Raptor R69-17 s1 OX-B431 MonteCucco (Italy) 06/07/2017-11/10/2017 1797
Raptor R308-17 s1 OX-B431 Weiz Bahnhof (Austria) 07/06/2017-27/09/2017 1439
Raptor R69-18 s1 OX-B431 MonteCucco (Italy) 20/06/2018-26/09/2018 2295
Raptor R202-18 s1 OX-B431 Colli Euganei (Italy) 18/06/2018-30/09/2018 2254
Raptor R212-18 s1 OX-B431 Osio Sotto (Italy) 26/06/2018-25/09/2018 2148

All in all, the experiments are performed over twelve metal-oxide ozone sensors and
five electrochemical ozone sensors. Captor nodes are named; C17013, C17016, and C17017.
Raptor nodes are named; R69-17, R308-17, R69-18, R202-18 and R212-18. The captured
data are comprised between the months of May and October 2017 and 2018. Further ex-
planation of the data set of the whole H2020 Captor monitoring campaign can be found
in [9].

3.4.2. SHORT-TERM PERFORMANCE

In this section, we show the calibration performance in the period close to the calibra-
tion. This is done by randomly splitting the data set into 75% for training and the 25%
left for testing. In fact, the design matrix X is defined as:

X =


xO31

xT1 xRH1

xO32
xT2 xRH2

· · ·
· · ·

xO3N
xTN xRHN

 (3.15)

So, X ∈ RN×P , where P = 3 is the number of regressors, xO3 are the values of the ozone
sensor, the xT are the temperature sensor values, and the xRH are the relative humidity
sensor measures. This way, the samples of the training set become {(yi , [xO3i

, xTi , xRHi ])}N
i=1,

so to calibrate the real ozone concentrations yi the sensor measurements mentioned
above are used. The relative humidity and temperature are correction factors commonly
used in the literature [10, 11].

Four different error metrics are used to compare the performance of the different
models. The root-mean-squared error (RMSE), the centered-root-mean-squared error
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(CRMSE), the mean bias (MBias) and the coefficient of determination (R2):

RMSE(y, ŷ) =
√√√√ 1

N

N∑
i=1

(yi − ŷi )2

CRMSE(y, ŷ) =
√√√√ 1

N

N∑
i=1

[(yi − ȳ)− (ŷi − ¯̂y)]2

MBias(y, ŷ) = 1

N

N∑
i=1

(yi − ŷi )

R2(y, ŷ) =1−
∑N

i=1(yi − ŷi )2∑N
i=1(yi − ȳ)2

Where ŷi is the prediction of a ML model for a sample xi . Figure 3.2.a) shows the test
RMSE and R2 obtained for the twelve MOX sensors present in the three Captor nodes
that are the object of study. First, it can be observed that there is a large variability in
performance between sensors, the RMSEs range between 9.50-19.00 µgr/m3 and the R2s
range between 0.75 and 0.95. Thus, results show how LCSs are often affected by variabil-
ity resulting from the manufacturing process. Indeed, lower values of RMSE correspond
to larger R2 values, meaning that the ML models are able to explain a large proportion
of the variability of the ozone concentrations. Now, looking at the difference in perfor-
mance between the linear (MLR) and nonlinear models, it is observed that the nonlinear
models are able to reduce the RMSEs around 2.00-4.00 µgr/m3 and the R2 is increased
by approximately by 0.05 with respect to the MLR. This shows the superiority of the non-
linear methods with respect to the linear model.

Figure 3.2.b) shows the target diagram for the same methods, this diagram has the
normalized mean bias (MBias) as the y-axis and the normalized centered-root-mean-
squared error (CRMSE) as the x-axis. This representation allows observing the decompo-
sition of the error in terms of MBias and CRMSE. σo is the standard deviation of the ref-
erence values y, CRMSE<0 denoteσo>σŷ , i.e., reference values standard deviation larger
than the standard deviation of the predicted values. The target diagram shows that the
term dominating the error is the CRMSE since all four models have a normalized mean
bias near to zero. This means that the error is mainly composed of the variance com-
ponent. Therefore, the models exhibit almost no biases due to the representativeness of
the training set, with representative data of different environmental conditions. Again,
the MLR is the method that shows the largest CRMSE/σo with near -0.50, while the non-
linear models are able to reach a normalized CRMSE of -0.20. Since the RMSE can be
decomposed as RMSE2 = CRMSE2 +MBias24, the CRMSE is the component that domi-
nates the error. Now, let’s take a look at the results of the five electrochemical sensors of
the Raptor nodes in Figure 3.2.c). The same pattern is observed as with the MOX sen-
sors, the test RMSEs range between 10.00-25.00 µgr/m3 while the test R2 range between
0.70-0.94. Apart from the same pattern in the error, the same variation from sensor to
sensor is also observed. The MLR is the worst performing method and the nonlinear

4The decomposition RMSE2 = CRMSE2 +MBias2 is related to the variance-bias trade-off present in the error.
The ideal case corresponds to an unbiased estimator with small variance.
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(a) Captor nodes (RMSE and R2). (b) Captor nodes (target diagram).

(c) Raptor nodes (RMSE and R2). (d) Raptor nodes (target diagram).

Figure 3.2: Test RMSE, R2, and target diagram for Captor nodes C17013, C17016, and C17017 (twelve MOX
sensors) and Raptor nodes R69-17, R308-17, R69-18, R202-18, and R212-18 (five EC sensors).

ones are able to improve the RMSE around 2.00-4.00 µgr/m3, although in the specific
case of the sensor with label 1, it can be observed how the SVR and the RF outperform
the KNN. The target diagram for the raptor nodes, Figure 3.2.d), is similar to the case of
the captor nodes, where the error is mainly composed by the normalized CRMSE and
the normalized mean bias of the methods is almost zero.

All in all, we have observed; i) there is a large variability in performance from sen-
sor to sensor, probably due to the manufacturing process, ii) the nonlinear methods are
able to reduce the RMSE 2.00-4.00 µgr/m3 with respect to the linear model, iii) there is
no large difference in performance between the three nonlinear methods (KNN, RF, and
SVR) compared in the experiment. However, the SVR obtains the best performance for a
very small difference, and iv) the target diagrams show the contribution of the normal-
ized CRMSE to the normalized RMSE, whereas the models show an almost negligible
normalized mean bias. This means that having large data sets with representative data
for different environmental conditions produces models with almost no bias.
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3.4.3. CALIBRATION PERIOD SIZE
Sensor calibration corresponds to the use of ML techniques for a special case, where in-
situ sensor data to carry out the calibration are scarce. Thus, for an air pollution mon-
itoring campaign, sensors are first placed for a short calibration period at a reference
station to be calibrated and then deployed. However, nonlinear models usually demand
a higher amount of data than linear models. In order to compare the performance of
different calibration models with respect to the calibration period size Figure 3.3 depicts
the experiment performed. The test set is set to the last seven weeks of the data sets,

Figure 3.3: Setting for the impact of the calibration period size experiment. While the test set remains fixed the
size of the training set is increased one week at a time.

and the training set is increased one week at a time from the start of the test set to the
beginning of the data set. This way, the resulting models can be compared using the
same data set, and the proximity of the train and test set do not influence the results,
i.e., to keep the training set as representative as possible of the test set. For illustrative
purposes, we show the results of the experiment for a metal-oxide sensor (C17016-s4)
and an electrochemical sensor (R69-18) since the same pattern is observed for the other
sensors.

Figure 3.4.a) shows the results for the metal-oxide sensor, where the difference in er-
ror between the MLR and the nonlinear methods is clear. The RMSEs obtained are quite
steady, in fact, the error of the nonlinear methods with training sets of size of one and
two weeks is quite unstable, but the error stabilizes with four to seven weeks of train-
ing. These variations are not observed with the MLR, as the difference in error between
a training set of two weeks and a training set of three weeks is very small. The differ-
ence in the methods is clearer looking at the results for the Raptor node in Figure 3.4.b).
The error of the nonlinear models seems to become stable with three or more weeks of
calibration. The difference in test RMSE is smaller in the case of the MLR, where the
difference in RMSE between two and three weeks of training is very small. Therefore,
nonlinear models are shown to require more training data.

3.4.4. LONG-TERM PERFORMANCE
So far we have seen how nonlinear models improve the calibration of LCSs in the short
term, consequently improving their data quality, it is now time to look at how the sen-
sors perform over longer deployment periods. The performance of long-term calibration
models is one of the most important issues in air pollution monitoring with LCSs. The
long-term performance of sensors can be affected by many factors [45, 62]. First of all,
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(a) Captor node 17016 sensor 4. (b) Raptor node R69 2018.

Figure 3.4: Test RMSE for the impact of the calibration period size experiment, where the training set is in-
creased one week at a time.

the fact that calibration data are scarce and may not represent the environmental con-
ditions of the deployment site [18]. Secondly, LCSs are known to suffer from drift [45]
and other problems such as aging that can affect the quality of the data captured. And
lastly, since some pollutants such as ozone are seasonal, environmental conditions may
change during the deployment period, examples include temperature changes, ozone
concentrations being higher than those seen during training, etc. The ozone concen-
tration values during the summer of 2017 in the places where the Captor nodes C17013,
C17016, and C17017 were placed ranged from 0.00-200.00 µgr/m3. Actually, concentra-
tions during the sensor calibration period (training set) are lower than those seen over
the months of July and August. The concentrations observed for the three locations can
almost reach 200.00 µgr/m3. In this way, LCSs are known to suffer from a problem called
concept drift, where the calibration models become outdated as the environmental con-
ditions to which the sensors are exposed change over time [12]. This is a common situ-
ation in sensor calibration, where the training data for the calibration are scarce and are
data captured for a small time period before the deployment of the sensors.

Definition 8 Concept drift refers to the case where the data distribution changes dynam-
ically over time. In ML and time series analysis, this problem is known as data set shift
or non-stationarity, where the data distribution during the test set can differ from the dis-
tribution seen in the training set. This causes the learned sensor calibration models to
become outdated.

Figure 3.5, shows the ozone empirical distributions for the three different locations,
as it is observed, the training distributions differ with respect to the testing ones.

In order to check the sensor calibration performance in the long term, we set the cal-
ibration period to the four first weeks of the data sets, and we evaluate the accuracy of
the models’ predictions day by day. This setting allows for checking how the error met-
rics evolve over time. This precise evaluation allows observing how their performance
change as the estimation moves away from the calibration period. This may mean that
the environmental conditions with respect to the calibration have changed, observe dif-
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Figure 3.5: Ozone concentration empirical distributions for the three different locations. Training is set to the
four first weeks and the testing is set to the remaining weeks (∼16 weeks).

ferent concentrations, or even if the sensor is evaluated over a long period of time see
drift or aging. More formally, we define the design matrix X for the training as:

Xwi =
[
xO3wi

,xRHwi
,xTwi

]
; X =


Xw1

Xw2

Xw3

Xw4

 ∈RNtr ×3 (3.16)

Where the sub-index wi indexes the data belonging to the i -th week of the data sets.
Figure 3.6 shows the day-to-day RMSE for the different calibration models for sensor
C17016-s4. As it can be seen, there is a lot of variability from day to day, it does not seem
that any of the four methods is able to perform much better than the others. This is
partly due to the fact that ozone concentrations peak in the hottest months, mainly in
July and August, and the calibration was performed under much lower ozone conditions
in May and June. During the days of September, the error seems to be similar to the error
after the calibration period since the concentrations in September and June can be quite
similar.

Figure 3.6: Daily test RMSEs for the long-term prediction for node C17016-s4.

To check how the performance of the different models evolves with time the best
monitoring tool is the target diagram. The target diagram allows us to evaluate the two
types of errors; CRMSE and mean bias. Several studies claim the need to recalibrate the
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LCSs deployed in an area in order to maintain data quality [7]. Therefore, in this ex-
periment, we show how the mean bias and CRMSE evolve over time for three different
methodologies. First, we use the methodology used so far, where a pre-deployment cal-
ibration is performed and then the sensor is evaluated as time progresses. Second, we
use a technique we call "augmented training" that simulates doing a pre-deployment
calibration and then taking the sensor every three weeks for one week at a reference sta-
tion to add one week of data to the training set. In this way, data are added containing the
weather conditions prior to deployment and also current conditions with the weeks we
augment the training set. In the real case, this technique increases maintenance costs
as the sensor has to be placed periodically at a reference station, and also a week of
monitoring data is lost, which can be critical for applications such as extreme event de-
tection and early warning. And finally, we simulate a constant "recalibration" where the
four previous weeks of the test week are used as training and each week the ML model
is retrained with the four previous weeks. This technique is not feasible since the sen-
sor would always be recalibrated, but it allows us to eliminate the impact of changing
environmental conditions with respect to the training conditions.

Figures 3.7.a), d), g), and j) show the evolution of the CRMSE and Mean bias for the
pre-deployment calibration for the four different ML models and the sensor C17016-
s4. Blue dots denote the earlier stage of the deployment (late June) and the red dots
denote the latest stage of the deployment (late September). The first thing observed is
that the four models behave similarly, as the CRMSE and mean bias increase over time,
but the nonlinear models exhibit less variance than the MLR. The variance of the target
concentrations is sometimes overestimated and underestimated (positive and negative
x-axis). The bluest and the reddest points correspond to similar environmental condi-
tions, which is why the mean bias and CRMSE are smaller. This is because the condi-
tions during the calibration period (May and June) are similar to the conditions during
late September. Those points corresponding to the days of July and August tend to have
increasing CRMSE and increasing mean bias. It is to say, as time evolves, and the envi-
ronmental conditions change during the summer, the models start having more mean
bias and more CRMSE. Indeed, at a given time, the points start falling out of the unit
circle, this means that the trained models behave worse than the null model5, so models
start suffering from bias and excessive variance and become wrong.

Figures 3.7.b), e), h), and k) show the same results for the augmented training tech-
nique. In this case, the models also suffer from a large mean bias and CRMSE as time pro-
gresses but it can be seen how some points are more centered around the MBias≈0.00.
This shows, that augmenting the training set with a week every three weeks can miti-
gate a little bit the effects in the long-term, but in general, the training set may not be
representative enough to cope with the environmental changes (e.g. episodes of ozone
pollution, high temperatures, etc.) produced during the summer. Again, the four models
behave similarly.

Finally, Figures 3.7.c), f), i), and l) show the results for the recalibration strategy. Here,
the bias and CRMSE problem is improved as most of the points lay around MBias≈0.00.
So that, the bias problem is reduced and there are only a few or no points that fall out-
side the circle, so the models do not degrade as much as in the initial case. Moreover,

5The null model corresponds to constant prediction using the average concentrations of the training ŷi = ȳtr .



3

52 3. LOW-COST SENSOR CALIBRATION FOR AIR POLLUTION MONITORING

(a) MLR (three weeks of training
size).

(b) MLR (training size augmented). (c) MLR (recalibrated).

(d) KNN (three weeks of training
size).

(e) KNN (training size augmented). (f) KNN (recalibrated).

(g) RF (three weeks of training size). (h) RF (training size augmented). (i) RF (recalibrated).

(j) SVR (three weeks of training
size).

(k) SVR (training size augmented). (l) SVR (recalibrated).

Figure 3.7: Long-term prediction: target diagram for Captor node C17016 (sensor s4). The left column corre-
sponds to the pre-deployment calibration, the center column corresponds to the augmented training setting,
and the right column corresponds to the continuous recalibration case.
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(a) MLR (three weeks of training
size).

(b) MLR (training size augmented). (c) MLR (recalibrated).

(d) KNN (three weeks of training
size).

(e) KNN (training size augmented). (f) KNN (recalibrated).

(g) RF (three weeks of training size). (h) RF (training size augmented). (i) RF (recalibrated).

(j) SVR (three weeks of training size). (k) SVR (training size augmented). (l) SVR (recalibrated).

Figure 3.8: Long-term prediction: target diagram for Raptor R212-18. The left column corresponds to the
pre-deployment calibration, the center column corresponds to the augmented training setting, and the right
column corresponds to the continuous recalibration case.

the nonlinear models also exhibit less variance since the points are more grouped to-
gether around a certain CRMSE and the MBias≈0.0. This basically shows how having a
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representative training set reduces the problems derived from the long-term prediction.
However, this methodology is not feasible in practice given that the calibration periods
are overlapped in order to have four weeks of representative data and predict the follow-
ing week.

The long-term results for the Raptor R212 2018, Figure 3.8, are similar to the results
of the Captor with small variations. First, Figures 3.8.a), d), g), and j) show that in this
case the variance of the concentrations is usually underestimated (CRMSE<0.0) and that
the models also suffer from bias but in this case negative bias MBias<0.0. Again, the
nonlinear methods exhibit less variance than the linear method. The performance of
the augmented training set approach, Figures 3.8.b), e), h), and k), is almost the same as
the original case, only some points exhibit less bias but in general the improvement is
very small. Finally, the recalibration strategy shown in Figures 3.8.c), f), i), and l) reduces
the bias problem since most of the errors have a bias close to zero MBias≈0.0.

After having seen the long-term performance of metal-oxide and electrochemical
sensors, we have observed that; i) calibration models start suffering from bias in the
long-term predictions. This is mainly due to the change in the environmental condi-
tions, ii) having scarce training data can lead to bias problems. The results of the short-
term show that with a large and representative training set the bias has almost no contri-
bution to the RMSE, and iii) the recalibration strategy reduces the long-term prediction
problems. However, this technique may be infeasible as the maintenance costs and loss
of data are too large. Smart recalibration strategies are required to deal with long-term
performance.

3.5. CONCLUDING REMARKS & FUTURE WORK

T HIS chapter has evaluated the use of ML models for the LCS calibration setting. This
ML-based calibration has proved to be one of the most valid options to improve the

quality of the data measured by LCSs. In this way, we have tackled the second research
question raised in this thesis:

(R.Q.1.2): How much do non-linear methods improve the calibration of ozone sensors com-
pared to linear methods? How much data do they need? How do they work in the
long term?

A lot of effort has been put during the last years into the application of ML for sen-
sor calibration [15, 16]. Some studies show the superiority of nonlinear models [27]. In
this chapter, we have compared four ML models (MLR, KNN, RF, and SVR) using real data
from H2020 Captor tropospheric ozone measurement campaigns of two different sensor
technologies; metal-oxide and electrochemical. We have seen the ability of these mod-
els to predict short-term and long-term concentrations, seeing the limitations of this
ML-based in-situ calibration in the long term. We have also studied the training size (or
calibration time) required for each of the models to be able to predict in the short term.
In short, we have answered the three corresponding questions, giving enough informa-
tion for future projects and applications of these models in air pollution measurement
campaigns.

Summarizing, we highlight the most important aspects observed in each of the sec-
tions:
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Short-term performance

• Nonlinear models outperform the linear model by 2.00-4.00 µg r /m3. Among the
nonlinear models, there is no clear better model, but the SVR seems to perform
slightly better by a very small margin.

• All models show no biases in the short-term performance, so the variance (CRMSE)
is the term that contributes most to the error.

• There is a large variability in performance from LCS to LCS, probably due to the
manufacturing process.

Training set size

• Nonlinear models require at least four calibration weeks, while the linear model
requires at least three weeks.

Long-term performance

• All four models start degenerating after a few weeks and the bias starts dominating
the error. The models become less accurate as the environmental conditions differ
from the conditions in the training.

• None of the four models seems to work better than the other.

• The recalibration strategy seems to overcome this bias problem, yet its operational
costs are high. However, it shows that when training the models with similar envi-
ronmental conditions to the test, the long-term problems are reduced.

Future trends will focus on adaptive techniques and recalibration techniques to ad-
dress the problems of long-term performance. Thus, the study of ML techniques will
continue and will be used in conjunction with specific methodologies for sensors in or-
der to reduce bias problems or sensor drifts. In fact, some research is already making
use of techniques based on opportunistic recalibration and period recalibration [58]. As
future research, it is interesting to study more complex calibration models with the abil-
ity to take into account further patterns present in air pollution phenomena. In the next
chapter, we focus on how to take advantage of the intrinsic sensor variability to improve
the ML-based calibration.

Practical Tip !

In the case of deploying a node with the highest possible data quality, one can place the
sensor for approximately four weeks at a reference station to train in-situ a supervised
nonlinear machine learning model and perform recalibration stages in the long term.

□ For part III of the thesis, the LCSs are assumed to be calibrated in-situ using a ma-
chine learning approach.





4
MULTISENSOR LOW-COST SENSOR

CALIBRATION

The best way to predict the future is to invent it.

Alan Kay

As we have seen so far, low-cost sensors (LCSs) calibrated by machine learning (ML)
techniques provide good estimates for monitoring air pollution gas species. Although all
sensors of the same family measure a certain gas, it has been found that there is vari-
ability from sensor to sensor, possibly due to their low-cost nature and manufacturing
process. Therefore, using an array of sensors of the same type can provide a good al-
ternative to calibrating a single sensor. In fact, sensors of different gases have already
been used in calibration in order to take advantage of the cross-sensitivities and correla-
tions present between pollutants and sensors [14–16]. In addition, a first attempt to use
several tropospheric ozone sensors in the calibration process by linear regression has
already been studied [17].

Throughout this chapter, we study the fusion of sensors, which measure the same
phenomenon, for the estimation of air pollution concentrations. Thus, a LCS calibration
scheme is developed using a multisensor data fusion approach, where different LCSs are
used to estimate the pollutant, showing how the performance changes as sensors are
added. Furthermore, sensors from two different technologies widely used in the field of
air monitoring, metal-oxide (MOX) sensors and electrochemical (EC) sensors, are fused.

The outline of this chapter is organized as follows; section 4.1 explains the state of the
art regarding sensor fusion for air pollution estimation. Then, section 4.2 describes the
methodology used for the multisensor data fusion approach. Section 4.3 describes the
data sets used and the experiments’ results. Finally, section 4.4 concludes the chapter.
This chapter presents the findings made in the article “Multisensor data fusion calibra-
tion in IoT air pollution platforms“, IEEE IoT-J, [63].

4.1. SENSOR FUSION USING LOW-COST SENSORS

S ENSOR fusion has been widely used in the context of wireless sensor networks (WSN)
[38]. In the WSN paradigm, sensor fusion is based on the aggregation of data in or-

der to reduce the number of messages sent through the network, as well as its energy
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consumption. In the field of location and activity tracking using sensors, sensor fusion
is defined as the integration of information from different sensors to combine the data
provided by different sensors. Therefore, the fusion of measurements from inertial units
of measurement (IMU) sensors using complementary filters and Kalman filters has been
proposed [64]. In a similar way, Wu et al. [65] use a sensor fusion approach to combine
different sensor time series in order to recognize daily activities. Data fusion techniques
have also been used to improve the data reliability, and lower the detection error proba-
bility, by combining data from different distributed sources [66, 67].

In the air pollution monitoring field using LCSs, Barcelo-Ordinas et al. [10] define
the term multisensor data fusion as: "combination of information from two or more data
sources (sensors) into a single one that provides a more accurate description than that of
any of the individual data sources". In this line, the use of several LCSs (sensor array) for
sensor calibration or air pollution estimation has proven to be effective, taking advan-
tage of the cross-sensitivities and cross-correlations present in the sensors measuring
different phenomena [11, 15].

There are several examples of the use of sensor arrays for the calibration of LCSs. Bigi
et al. [16] calibrated low-cost NO and NO2 sensors using an array of one NO and one
NO2 sensor, feeding this array into linear and nonlinear ML models. Spinelle et al. [55]
used an array of NO2 and O3 to calibrate an O3 sensor using an artificial neural network.
Similarly, Zimmerman et al. [15] used an array of CO, NO2, O3 and CO2 sensors for the
calibration of these sensors, using linear and nonlinear techniques. Mailings et al. [68]
used a wide variety of ML techniques for calibration using a sensor array, for example,
they calibrated a CO sensor using an array of CO, SO2, NO2, O3, CO2, T, and RH sensors.
Lately, Zaidan et al. [69] used an array of PM2.5, T, and RH to create CO2 virtual sensors.
Hence, the use of sensor arrays has not been limited to the calibration of LCSs, but also
for the creation of virtual sensors and air pollution proxies. Although the use of sen-
sor arrays has been studied previously, sensors for different pollutants have always been
included. In our case, we study the use of a sensor array composed of sensors measur-
ing the same pollutant, trying to take advantage of their inaccuracies and nonlinearities
caused by the manufacturing process to improve the calibration with respect to using a
single sensor. It is to say, combine the information provided by different sensors mea-
suring the same phenomenon but with different noise and errors.

Multisensor data fusion techniques are widely used for many applications [70, 71].
For instance, fusion by weighted averages has been used for ultrasonic and infrared sen-
sors with uncorrelated errors [72], and also in tracking applications with correlated er-
rors [73]. Avery et al. [74] defined the optimal weight for a weighted averages fusion
with correlated errors. As mentioned in the previous paragraph, data fusion using ML
introducing the sensor array as features has been used for air pollution. Nevertheless,
only one case has studied the use of a sensor array with sensors of the same pollutant
to improve the estimation using multiple linear regression [17]. Thus, a set of up to four
metal-oxide ozone sensors have been fused using multiple linear regression, showing
improvements in estimation accuracy. The rest of the chapter is devoted to the use of
sensor arrays of different sizes (multisensor data fusion calibration) to improve air pol-
lution estimation, taking into account the possible problems that arise when dealing
with correlated sensors. In the following section, we explain the different multisensor
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techniques evaluated as well as the multisensor data fusion framework proposed for in-
situ calibration, showing the problems that arise when using highly correlated sensors
in the calibration.

4.2. MULTISENSOR DATA FUSION CALIBRATION

T HE purpose of using a multisensor calibration scheme is to use different sensors for
the estimation of an air pollutant, therefore taking benefit of correlated sensors that

bring additional information to the calibration model. As mentioned in the previous
section 4.1, there exist several works that introduce complementary sensors into the cal-
ibration to boost it up [14, 15, 69]. However, we use the fact that LCSs have large vari-
ability within the same family of sensors, due to their low-cost nature [18]. Hence, it is
interesting to implement a multisensor calibration scheme where several sensors mea-
suring the same phenomenon are introduced to complement each one’s inaccuracies
and to obtain a more precise calibration model.

A multisensor in-situ calibration setting is defined by having a sequence of tuples
{(yi ,xi )}N

i=1, where yi ∈ R is a sample of the values recorded by the reference instrumen-

tation, xi ∈ RP are a sample of the P sensors’ values introduced in the calibration. The
proposed multisensor approach corresponds to the specific case where Ps of the sen-
sors introduced in the calibration measure the same air pollutant, 1 ≤ Ps ≤ P . It should
be noted that using sensors that are highly correlated with each other can lead to multi-
collinearity problems, so these problems must be addressed before the multisensor data
fusion calibration can be performed.

4.2.1. MULTICOLLINEARITY
Multicollinearity occurs when two or more predictors of a ML model can be linearly
described from other predictors of the model with a certain accuracy. Although multi-
collinearity does not have direct implications on the predictive quality of the ML model,
it can affect its interpretability, as well as it can hinder the training process of some non-
linear models, where the ideal case would be the use of independent predictors.

Definition 9 Multicollinearity: given a set of predictors X = {xp }P
p=1, multicollinear-

ity occurs when two or more predictors {xi , x j } are strongly correlated and can be de-
scribed linearly fairly well using the rest of the predictors. The extreme case occurs when a
predictor can be exactly described using a linear combination of the rest of the features
xi = βT X−i , in this case, predictor xi does not introduce any new information to the
model.

In order to avoid possible problems, it is important to diagnose whether the data suf-
fer from multicollinearity so that actions can be taken. There are many techniques to
measure the degree of multicollinearity present in the data (e.g., non-significant regres-
sion coefficients or the moment matrix condition number) but in this work, we use the
variance inflation factor (VIF):

VIF(xi ) = 1

1−R2
i

(4.1)

Where R2
i corresponds to the coefficient of determination where the predictor Xi is re-
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gressed with respect to the rest of the predictors. This VIF can be interpreted as the effect
of the multicollinearity on each one of the predictors. As a rule of thumb, it is checked
whether VIF(xi ) > 10 to detect predictors that may be affected by multicollinearity.

To perform the experiments to test the multisensor data fusion calibration, five dif-
ferent data sets have been used, which are explained in more detail in section 4.3.1.
These data sets consist of different sensors that coincided during a calibration period
in a reference station, making possible the introduction of different sensors in the multi-
sensor calibration. Table 4.1, shows the correlation for some of the sensors that compose
the first and the second data sets. It can be seen how the different tropospheric ozone
sensors exhibit a high correlation between them, since they measure the same atmo-
spheric phenomenon, but far from being a perfect correlation. Even though the Pearson
correlation coefficient ρ can reach 0.99 or 0.98, in most cases the correlation between
two sensors can be around 0.8 and even much lower in some cases (e.g., ρ =0.60). This
correlation opens the door to the possible benefits of multisensor calibration, although
it also shows the possible existence of multicollinearity problems in the calibration mod-
els.

Table 4.1: Pearson correlation coefficient (ρ) map for some sensors of data set 1 (left) and data set 2 (right).

ref s1 s2 s3 s4 s5 s6 s7 s8 Temp RH
ref
s1 0.92
s2 0.89 0.98
s3 0.92 0.99 0.97
s4 0.92 0.98 0.95 0.98
s5 0.68 0.87 0.84 0.85 0.87
s6 0.48 0.63 0.6 0.63 0.58 0.59
s7 0.87 0.96 0.96 0.97 0.93 0.82 0.73
s8 0.88 0.98 0.98 0.97 0.95 0.87 0.64 0.97

Temp 0.77 0.59 0.52 0.6 0.64 0.37 0.17 0.52 0.5
RH -0.66 -0.54 -0.49 -0.57 -0.57 -0.39 -0.32 -0.52 -0.49 -0.82

ref s1 s2 s3 s4 s5 s6 s7 s8 Temp RH
ref
s1 0.87
s2 0.74 0.95
s3 0.42 0.60 0.66
s4 0.90 0.94 0.89 0.67
s5 0.63 0.91 0.90 0.65 0.80
s6 0.68 0.92 0.97 0.68 0.83 0.91
s7 0.81 0.95 0.90 0.47 0.81 0.86 0.91
s8 0.79 0.95 0.89 0.42 0.81 0.88 0.90 0.98

Temp 0.66 0.33 0.11 0.09 0.44 0.06 0.07 0.27 0.28
RH -0.82 -0.68 -0.49 -0.18 -0.69 -0.48 -0.47 -0.63 -0.64 -0.83

In order to show if multicollinearity problems exist and to see how many sensors can
be affected by this problem, the following experiment has been performed; i) random
subsets § ⊆ X of an increasing size of sensors have been selected (i.e., as if they were
predictors), ii) the VIF has been calculated for each of the chosen sensors, iii) the per-
centage of sensors with a {VIF(xi )>10 : xi ∈ §} has been calculated, and iv) the average
percentage and its confidence interval have been calculated for ten repetitions of each
predictor set size. Figure 4.1 shows the experiments’ results for data sets one and two.
It can be seen how for subsets of four sensors about 40-70% of the sensors in the model
have a VIF greater than 10, indicating multicollinearity problems. Thus, approximately
two out of four sensors present multicollinearity problems. In addition, the results indi-
cate a clear upward trend, where the more sensors are added to the calibration the more
sensors suffer from multicollinearity, with as many as 80% to 90% of them.

These results indicate the potential problems with the correlation between sensors,
and the possibility that it may affect the training process of some ML models. One of
the most common solutions is the extraction of features that are independent of each
other so decorrelating the predictors used. An example is the use of principal compo-
nent analysis (PCA) to obtain orthogonal variables that do not present multicollinearity
problems. In this approach, we use an alternative to PCA, the partial least squares (PLS),
to obtain a set of orthogonal features and avoid learning problems. In the next section
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Figure 4.1: Average percentage of sensors with a VIF > 10, for subsets of sensors of increasing size. Bands
indicate 95% confidence intervals for the average, calculated as a t-student.

4.2.2, the different methods for multisensor data fusion are explained, as well as the pro-
posed method and the details of the use of the PLS to overcome multicollinearity. The
experiments conducted to evaluate the different methods are explained in detail in sec-
tion 4.3.

4.2.2. PROPOSED MODEL & OTHER MODELS

In this section, we explain the different models used for in-situ calibration and multisen-
sor calibration. We focus on sensor data fusion using ML techniques, i.e., the objective is
to learn the function f f us :RP →R whose input features are an array of sensors xi ∈RP :

yi ≈ f f us (xi ) (4.2)

Where y ∈ RN is the set of ground-truth values provided by a reference instrument, and
the goal is to learn the function f f us (·) using a ML model. Specifically, in this chapter we
test three different models:

• Sensor array calibration: calibration using a simple sensor array, which is com-
posed of only one target pollutant sensor (Ps =1).

• Multisensor data fusion with weighted averages: the multisensor calibration (Ps >1)
is performed as a linear combination of the sensors’ air pollution estimations,
where the weights are computed based on the variances of the sensors’ errors ob-
tained during the training phase.

• Multisensor data fusion with machine learning: this is the proposed methodol-
ogy, where a sensor array (with Ps >1) is used to obtain derived PLS components
that are orthogonal to avoid multicollinearity issues. Then, the derived compo-
nents are introduced as features into a ML model, obtaining a multisensor estima-
tion.
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(a) Sensor array calibration scheme. (b) Multisensor data fusion with weighted aver-
ages scheme.

Figure 4.2: Calibration schemes for the sensor array calibration and the data fusion approach using weighted
averages.

SENSOR ARRAY CALIBRATION

In this case, the one studied in the previous chapter 3, the features introduced in the ML
model are an array of sensors that includes a single sensor of the target pollutant, Ps =1.
An example of an array can be the one studied in the previous chapter, where the nodes
collect measurements and form tuples such as {sO3 , sT , sRH } where we have a reading for
the ozone sensor sO3 , a reading for the relative humidity sensor sRH , and a reading for the
temperature sensor sT . These tuples are then fed directly into a ML model, which can
be either linear (MLR) or nonlinear (e.g., RF or SVR). This technique has been studied
in the previous chapter 3, where ozone sensors have been calibrated using these tuples.
To test the calibration, the data sets are divided into a training set (i.e., data collected
during the calibration period) and a hold-out test set. Three steps are performed for
calibration and prediction; i) a 10-fold CV process is performed over the training set to
obtain the best set of hyperparameters for the nonlinear models, ii) models are trained
using the whole training set and the best hyperparameters, and iii) trained models are
applied over the test set. Figure 4.2.a) summarizes the process described for sensor array
calibration where four ML models (MLR, KNN, RF, and SVR) are tested for calibration.
Algorithm 1 in chapter 3 describes in detail all the ML-based calibration process, which
goes from the training data Xtr to the final air pollution estimates ŷnew .

MULTISENSOR DATA FUSION WITH WEIGHTED AVERAGES

Sensor fusion has already been studied in many areas, including infrared sensors for
target tracking applications [72–74]. One of the classical and most interpretable methods
is the sensor fusion using weighted averages. Weights wp ∈ R are obtained depending
on whether the measurement errors, ϵp = ŷcalp − y, are correlated or uncorrelated. To
perform this type of sensor fusion, we assume that the Ps sensors to be fused have been
previously calibrated, having for each time step i the tuples {yi , (ŷi ,cal1 , . . . , ŷi ,calPs

)}N
i=1,
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where yi are the ground-truth measurements of the reference instrument. Then, the
estimation is obtained as follows:

ŷi =
Ps∑

p=1
wp ŷi ,calp , i = 1, . . . , N (4.3)

Where the linear combination coefficients fulfill
∑

p wp = 1. The optimal weights ŵ for
the case of uncorrelated errors are [72, 74]:

ŵi =
(σ2

i )−1∑Ps
j=1(σ2

j )−1
(4.4)

Where σ2
i is the sample variance of the error produced by the i -th sensor, ϵi . The ob-

tained linear estimator is the best in the sense that it is unbiased and efficient [74]. Nev-
ertheless, there is a problem, as we have seen in the previous section, the sensors to be
fused have a very high correlation with each other. Therefore, we must assume that the
errors are correlated. To include these correlations present in the errors, we obtain the
sample covariance matrix Σϵ of the errors, where the diagonal di ag (Σϵ) = {σ2

1, . . . ,σ2
Ps

}
are the error variances of the different sensors. The optimal weights are obtained as [74]:

wi =
∑Ps

j=1(Σϵi j )−1∑Ps
j=1

∑Ps
k=1(Σϵ j k )−1

(4.5)

Figure 4.2.b) shows the sensor fusion process for in-situ calibration using weighted aver-
ages. First, the Ps sensors are calibrated in-situ using a ML model f (·), obtaining the
estimates ŷcal . Then, given the estimates of these models, and the reference values
y, the error covariance matrix Σϵ is calculated, from which the optimal fusion weights
ŵ are derived. Finally, during the testing phase, the sensor values are estimated ŷcal

and then the combination of the different estimates is performed ŷi = ŵTŷi ,cal , where
ŷi ,cal = [ŷi ,cal1 , . . . , ŷi ,calPs

]T. It should be noted that although the estimator is unbiased,
if one of the models starts to become biased, the combination will also be biased.

MULTISENSOR DATA FUSION USING MACHINE LEARNING

In this chapter, we propose the multisensor data fusion using ML, which means that we
introduce a multisensor array {sO31, . . . , sO3PS , sT , sRH } into a ML model, which can be ei-
ther linear or nonlinear. This approach is entirely feasible given the LCSs price, which in
general for both EC and MOX sensors is under 100 euros. For instance, the Captor node
(the one used to obtain the data sets for this chapter) contains four tropospheric ozone
metal-oxide sensors, raising its cost to around 300 euros. This means that, with a reduced
cost overrun, more than one sensor can be mounted on an IoT node, so that redundancy
and resilience can be achieved and the monitoring can continue even if a sensor fails
(using simple sensor array calibration) or even improve the accuracy of the estimates
(making multisensor data fusion with all the sensors). The idea behind this is to directly
feed the raw values of the sensors into a ML model and let the model find the corre-
sponding importance of each of the sensors automatically so that the estimation is as
accurate as possible. In this way, given the multisensor array {xi P1 , . . . , xi PS , si T , si RH }N

i=1
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and the ground-truth values of the reference station where the sensors have been placed
y ∈RN , a calibration can be performed to estimate the concentrations using ML models.
In this particular case, we test the models seen in the previous chapter 3 (MLR, KNN,
RF, and SVR). Similarly, ML techniques have been used to calibrate sensors using sensor
arrays containing sensors of other pollutants that are correlated with the target pollu-
tant [14–16]. Previously, Barcelo-Ordinas et al. [17] proceeded with the fusion of a small
subset of ozone sensors using MLR. Here, we evaluate in more detail the multisensor cal-
ibration approach; i) how linear and nonlinear models affect such calibration, ii) what
is the optimal number of sensors to introduce in the fusion (we have about twenty sen-
sors to calibrate), and iii) what happens when fusing ozone sensors from two different
technologies (EC and MOX).

The first step in multisensor calibration using ML is to solve the multicollinearity
problem, see previous section 4.2. Although multicollinearity does not necessarily affect
the quality of the estimates, in the linear case it only hinders the interpretation of the co-
efficients and increases their variability, and in the case of nonlinear models it can hinder
the model training process. For instance, in the case of k-nearest neighbors, having mul-
ticollinearity can give too much priority to some variables in the calculation of distances
and make the interpretation of the results difficult. One of the most widely used solu-
tions in the literature is the use of features derived from the original predictors that are
independent of each other. An example is the use of Principal Components Analysis re-
gression where a subset of derived components is used as features and the regression is
calculated [75]. In this case, we opt for the Partial Least Squares (PLS) procedure since its
objective is twofold; i) obtaining orthogonal components and ii) obtaining components
correlated with the response variable. In fact, the PLS procedure reduces to obtaining or-
thogonal components φ̂i (i.e., < φ̂i ,φ̂ j >= 0), where the m-th component can be found
as:

max
φ̂m∈RP

Corr2(y,Xφ̂m)Var(Xφ̂m)

s.t. ∥φ̂m∥ = 1

φ̂
T
mΣ̂φl = 0, l = 1, ..,m −1

(4.6)

Where Σ̂ ∈ RP×P is the sample covariance matrix. Then, we can compute the projection
of the variables onto those derived components as:

P = XΦ (4.7)

Where Φ = [φ̂1, . . . ,φ̂κ] ∈ RP×κ, κ are the number of PLS components kept, X ∈ RN×P is
the matrix of sensor measurements, and P ∈RN×κ is the matrix of the projected variables.
Specifically, in this case we use the P components for the simple fact of introducing or-
thogonal features to the nonlinear training algorithms. Thus, it is decided to keep all the
components (κ = P ) in order to keep all the information, however small, introduced by
the sensors measuring the same phenomenon. Therefore, the resulting design matrix is
P = XΦP , whereΦP = [φ̂1, . . . ,φ̂P ]. Then, the function f :RP →R is estimated so that:

yi ≈ f (pi ), i = 1, . . . , N (4.8)

Figures 4.3.b) and c) show a small example of the subspaces obtained with the PLS pro-
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(a) Multisensor data fusion calibration using a
machine learning scheme.

(b) Variables’ projection to
the first two PLS components
using data set 1 including
only four sensors.

(c) Variables’ projection to
the first two PLS compo-
nents using data set 1 includ-
ing only eight sensors.

Figure 4.3: On the left, the scheme for the calibration using multisensor data fusion with ML. On the right, an
example of the projection of the variables in the first two PLS components.

cess using data set 1 with four and eight sensors. It can be observed the projection of
the different variables into the first two PLS components, all the variables have a high
contribution to these components. It is also observed by looking at the different angles
between the projections and the components that the first component is closely related
to the different sensors, although not all of them are in the same way, which is logical
since they do not have a perfect correlation. It can also be seen how the temperature is
related to the second component and the relative humidity has an inverse relationship
with the temperature. In short, the first component can be associated with the ozone
measured by different sensors.

Figure 4.3.a) shows the multisensor fusion process using supervised ML. First, the
different PLS components ΦP are obtained, then the samples are projected onto the
subspace generated by these components, and the model f (·) is trained using these pro-
jections PP ∈ RN×P . During the deployment period, first, the samples x are projected
(p) and then the estimation ŷ is obtained using the trained model. Algorithm 2 explains
the whole process in more detail, showing all required steps needed to go from the raw
sensor data x to the air pollution estimates ŷ.

The following section explains the different experiments carried out to evaluate the
accuracy of the sensor fusion approach for sensor calibration.

4.3. EXPERIMENTAL EVALUATION

In this section, we show the experiments performed to evaluate the multisensor data
fusion calibration. The goal is to evaluate whether sensor fusion can obtain an improve-
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Algorithm 2 Multisensor data fusion calibration using ML.

Input: {Xtr ,ytr , f (·)}
1: X̄tr ← Standardization(Xtr )
2: ȳtr ← Standardization(ytr )
3: ΦP ← PLS(ȳtr , X̄tr )
4: PP ← X̄trΦP

5: hyp ← Cross_Validation( f (·),PP , ȳtr ) ◁Model Selection
6: f̂ ← Train_Model( f (·), X̄tr , ȳtr ,hyp) ◁Model Training
7: while xnew do ◁ Prediction Phase
8: x̄new ← Standardization(xnew )
9: p ← x̄T

newΦP

10: ˆ̄ynew ← f̂ (p)
11: ŷnew ← Unstandardization( ˆ̄ynew )
12: RETURN ŷnew

13: end while

ment with respect to the results of a sensor array in-situ calibration [14, 15, 30, 69]1. More
specifically, we describe the different data sets used to evaluate the methods and we ex-
plain the results obtained. Given the available data sets, multiple MOX ozone sensors,
and in some cases even an EC ozone sensor, two experiments have been performed:

(A) Fusion of sensors of the same technology: the objective is to evaluate the accu-
racy of the fusion of sensors of the same technology. The first two data sets contain
about twenty MOX sensors that were placed at the same site for a few weeks.

(B) Fusion of sensors of different technologies: the objective is to evaluate the ac-
curacy of the fusion of sensors from different technologies to see whether they
provide complementary information to each other. The other three data sets used
contain four MOX sensors and one EC sensor, allowing the inclusion of an EC sen-
sor in the sensor fusion.

The sensor array calibration scheme has been used when only one ozone sensor was
present in the calibration and the two multisensor techniques (weighted averages and
ML) have been used for scenarios with more than one ozone sensor introduced in the
calibration. To evaluate the different models, the different data sets have been randomly
divided into 75% of the data for model selection and training, and 25% as hold-out test
set to evaluate the performance of the different models used. 75% of the data are used
for the selection of models’ hyperparameters by 10-fold cross-validation and the final
model is trained with these same data. Then, the performance of the different fusion
models and ML algorithms is compared in terms of root-mean-squared error (RMSE) on
the test set.

The aim is to evaluate how the RMSE evolves as more sensors are added to the mul-
tisensor data fusion calibration. Thus, it is possible to see how much the addition of

1A python implementation of the proposed data fusion method for in-situ calibration is available at
https://bitbucket.org/sans-rg/iot-sensor-fusion/.

https://bitbucket.org/sans-rg/iot-sensor-fusion/
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more sensors improves and to evaluate whether it is feasible to use more than one sen-
sor. To do this, first, we find which is the best sensor of the data sets using the sensor
array calibration, we name the best sensor as sbest . Then, to evaluate the performance
of the multisensor calibration with two sensors, we create random subsets of sensors of
size two that always include the best sensor sbest . Then, for subsets of three sensors, the
best sensor sbest is fixed and the other two are randomly chosen, and so on. Hence, we
define the random subset of selected sensors of size k as Sk = {s ∈Sk : Sk ⊆S ∧|Sk | =
k ∧ sbest ∈Sk }. The average test RMSE is used as the performance metric, as well as the
95% confidence interval of these averages computed as a t-student.

4.3.1. DATA SETS

Two different nodes have been used, obtaining different data sets. First, Captor nodes,
as mentioned in the previous chapter, developed by UPC, have been used as IoT nodes
to collect air pollution measurements. These nodes have an Ardunio Nano as microcon-
troller unit, a 3G modem to send data to the cloud, four ozone MICS 2614 Sensortech
sensors, a temperature sensor, and a relative humidity sensor. Different nodes were de-
ployed during 2017, 2018, and 2019 (their labels start with the year of deployment, e.g.,
C19000 of 2019), where they remained at reference stations for calibration tasks and to
validate the accuracy of the different sensors. In fact, three separate testbeds were cre-
ated in Spain, Austria and Italy, within the framework of the European H2020 program.
More than twenty-five sensor nodes were deployed to make a measurement campaign
and raise social awareness of air pollution [8].

The Captor node has collected measurements every 1 minute, where it has read the
measurements from the different sensors, and these measurements have been aggre-
gated in one-hour periods in order to be synchronized with the reference station mea-
surements and to be able to perform the calibration. In this way, tuples {timestamp,
s1, s2, s3, s4, sT , sRH } have been obtained, where the ozone sensor measurements are in
kΩ, the temperature measurements are in degrees Celsius (◦C ) and the relative humid-
ity measurements are in percentages (%). These tuples results are sent to be stored in
a central database. As an exception, the C19000 node mounted an EC ozone sensor Al-
phasense OX-B431 and an Alphasense NO2-B43F.

The other nodes used in the study are called Raptors, and were developed by the
University of Clermont also within the framework of the H2020 Captor program. In this
case, the node architecture was similar but with a Raspberry Pi as processing unit, and
with EC ozone sensors. In addition, the node was separated in a server to be inside the
houses and the client to collect the pollution measurements outdoors. Samples were
also obtained with the same temporal resolution, i.e., 1 hour. Table 4.2 shows the main
characteristics of the data sets, the stations where the sensors were matched for calibra-
tion, the year, and other characteristics. In the case of fusion by MOX sensors, data sets
one and two have twenty-eight and twenty-four sensors respectively. In the case of EC
fusion, there is one EC sensor and four metal-oxide sensors. The Palau Reial station is an
urban station in Barcelona, Spain. The others are from a more inland area of Catalonia.
As for the sizes of the data sets, the shortest corresponds to one month of data and the
longest corresponds to three months of data.

All data used have been made available contributing to open data initiatives. The
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Table 4.2: Data sets used to evaluate the multisensor data fusion calibration.

Data Set Reference St. Year Node Labels Technologies # Sensors # of Samples
Label Name

1 Manlleu 2017 C17001, C17002, C17003, C17005, MOX 28x MICS 2614 918
C17010, C17011, C17013

2 Tona 2017 C17006, C17007, C17012, C17014, MOX 24x MICS 2614 1395
C17017, C17027

3 Tona 2017 R69-17 EC 1x OX-B431 + 1x NO2-B43F 2366
C17017 MOX 4x MICS 2614

4 Tona 2018 R69-18 EC 1x OX-B431 + 1x NO2-B43F 933
C18017 MOX 4x MICS 2614

5 Palau Real 2019 C19000 EC 1x OX-B431 + 1x NO2-B43F 1179
C19027 MOX 4x MICS 2614

data from the reference stations of Catalonia (Spain) are available on the government’s
open data website 2. Data from the 2017 H2020 CAPTOR air quality monitoring cam-
paign are available [9]. The rest of the data are available for download on the following
page3.

4.3.2. SENSOR FUSION CALIBRATION: SAME SENSING TECHNOLOGY

In this experiment, data sets 1 and 2 corresponding to the sensors located at the refer-
ence stations of Manlleu and Tona (Spain) have been used. Given that each of these data
sets contains twenty-four and twenty-eight sensors respectively, it is possible to test the
multisensor data fusion with many sensors. First, Figure 4.4.a) shows the results for the
multisensor calibration with different ML models applied to data set 1 (Manlleu data
set). It can be seen how for the single sensor calibration, scenario corresponding to the
sensor array calibration with the best sensor sbest of the sensor set S , the MLR is able to
obtain 10.50 µgr/m3 and the nonlinear models are able to reduce this error down to 9.50
µgr/m3, without seeing a clear outperforming nonlinear model. This result is in agree-
ment with the one obtained in the previous chapter, where the nonlinear models provide
an improvement over the MLR. Secondly, we observe that the general trend is the same
for all four ML models, the RMSE decreases as we add sensors to the calibration. The
main differences are observed as soon as sensors are added to the calibration, where the
nonlinear models actually benefit more from adding more sensors. Specifically, we see
how SVR is the model that observes a greater improvement as MOX sensors are added to
the calibration, going from obtaining 9.50 µgr/m3 with one sensor to obtaining around
5.30 µgr/m3, reducing the error 4.00 µgr/m3 with a total of four sensors. A similar trend
is also observed for the other models, but they do not improve their RMSE as much as
sensors are added. In fact, at the other extreme, the MLR is only able to reduce by about
1.00 µgr/m3 by adding four sensors to the calibration, indicating that when performing
an MLR calibration the overhead of adding sensors may not be feasible for the small im-
provement that occurs. The most important thing to note is that with around four or
six sensors introduced in the calibration, the RMSE stops improving significantly, this
means that up to four sensors can produce a worthwhile improvement, e.g., 4.00 µgr/m3

in the case of calibration with SVR.

2Catalonia air pollution open data web.
3Raw sensor data is available at the research group page http://sans.ac.upc.edu/?q=node/231.

https://mediambient.gencat.cat/es/05_ambits_dactuacio/atmosfera/qualitat_de_laire/vols-saber-que-respires/
http://sans.ac.upc.edu/?q=node/231
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(a) Average test RMSE for data fusion
by ML using data set 1.

(b) Average test RMSE for data fusion
by weighted averages using data set 1.

(c) Average test RMSE for data fusion
by ML using data set 2.

(d) Average test RMSE for data fusion
by weighted averages using data set 2.

Figure 4.4: Average test RMSE for 10 repetitions with random subsets of sensors (always including the best
sensor sbest ) and bands indicating 95% confidence intervals. Results for in-situ calibration via sensor fusion
using data sets 1 and 2.

On the other hand, Figure 4.4.b) shows the results of the fusion using weighted av-
erages with each of the ML models used for the individual calibration of each of the
sensors. It can be seen how in the case of having a single sensor, sbest , the models have
the same error as in the previous case since it corresponds to the sensor array calibration
of the best sensor. Regarding the trends, we can see how the error improvement trends
are very different in the case of the nonlinear models with respect to the previous case.
Besides, it is also observed that for the linear model the trend is very similar, this means
that fusing the k sensors by MLR has a performance similar to having the sensors cali-
brated individually and then combining these measurements by weighted averages (see
section). This makes sense since the combination of sensors using weighted averages is
still a linear model, so the linear combination of something predicted with MLR is simi-
lar to putting the raw values of the sensors in the fusion with multiple linear regression.
As for the weighted average fusion of calibrated data with nonlinear methods, we see
that the fusion loses the efficiency seen previously, the RMSE improvement is much re-
duced compared to the best seen in the multisensor data fusion with ML. This is because
weighted averages of calibrated values with nonlinear models have much less flexibility
than inputting all raw values to a ML nonlinear model and letting the model do the fu-
sion as efficiently as possible. That is, the fusion (Figure 4.4.a)) with nonlinear models
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is able to overcome the multicollinearity problem and take advantage of important and
complementary information from each of the sensors used in the calibration.

Figures 4.4.c) and d) show the same results for data set 2. Figure 4.4.c) shows the re-
sults of the ML fusion, where the main difference is in the performance of the sensor ar-
ray calibration. That is, in the case k = 1, the different models have a very different error,
on the one hand, the MLR obtains about 8.50 µgr/m3 while the SVR obtains about 5.10
µgr/m3. On the other hand, it is also observed that the improvement when introducing
sensors is lower than in the case of the first data set, although there is the same tendency
where the nonlinear models have a more significant improvement when adding sensors
while the linear model improves much less. As an example, we see how the SVR obtains a
test RMSE of 5.10 µgr/m3 with one sensor and is able to improve up to 3.50 µgr/m3 with
four sensors and can approach 2.50 µgr/m3 test RMSE by adding more sensors. As for
the optimal number of sensors, we see how with four or six sensors the improvement is
significant. The other nonlinear models (KNN and RF) have a trend very similar to SVR,
but as they obtain more error with a single sensor, they are not able to reach around 2.50
µgr/m3 test RMSE like SVR. As for the fusion with the weighted averages, Figure 4.4.d),
it is observed the same trend as with the data set 1 where the fusion with calibrated data
with the MLR obtains a trend in the improvement very similar to the multisensor data
fusion with MLR. On the other hand, the fusion of calibrated data with nonlinear models
does not show much improvement, unlike those seen in data set 1, the initial error is the
same, but the improvement when adding sensors is not significant.

In short, the results indicate that including more than one MOX sensor in the cali-
bration improves the performance of the calibration resulting in reductions of 20-40% of
the RMSE, and the fusion using nonlinear ML models greatly increases the improvement
over a weighted average fusion.

4.3.3. SENSOR FUSION CALIBRATION: DIFFERENT SENSING TECHNOLOGY

In this second experiment, the calibration by multisensor data fusion is evaluated when
ozone sensors of different technology (EC and MOX) are introduced. For this purpose,
data sets 3, 4 and 5 are used, since they contain one EC and four MOX sensors. This con-
figuration is perfect because as we have seen in the previous section 4.3.2, introducing
four sensors in the calibration is already enough to improve the calibration performance
a lot. Therefore, first the fusion of the four MOX is evaluated without taking into account
the EC sensor (as in the previous experiment), and then the EC sensor is used as baseline
and the MOX sensors are added one by one. The sensor array calibration performance
using only the EC ozone sensor is denoted in dotted lines.

First, Figure 4.5.a) shows the results for the multisensor calibration of data set 3 us-
ing ML. On the left side, the fusion using only MOX sensors, we see how the SVR is the
method that performs the best (as in the previous cases), with one sensor it obtains a
test RMSE of 9.70 µgr/m3 while with four sensors it obtains an error of 8.70 µgr/m3.
Even so, the calibration using four MOX sensors does not improve the simple sensor ar-
ray calibration using only the EC sensor, which obtains an RMSE of 8.00 µgr/m3, there
is a difference between the accuracy of the EC sensor and the MOX sensor. Then, on the
right (EC + MOX fusion) the fusion between the EC sensor and at least one MOX sensor
greatly improves the test RMSE. In the case of the SVR the error is able to go down from



4.3. EXPERIMENTAL EVALUATION

4

71

8.00 µgr/m3 to 6.40 µgr/m3 with only two sensors (one EC and one MOX), then adding
more MOX sensors improves the error a little more to an error of 5.80µgr/m3. The results
for the weighted averages fusion, Figure 4.5.b), show the same trend as in the previous
experiment, where the fusion using data calibrated with MLR works well, but in the case
of weighted averages fusion using data calibrated with nonlinear models the improve-
ment is not significant at all. In addition, in the case of fusing an EC sensor with a MOX,
there is also an improvement, but not the same as with the ML fusion, the error with SVR
is reduced from 8.00 µgr/m3 to 7.20 µgr/m3.

(a) Average test RMSE for MOX fusion and EC + MOX
fusion for data set 3, using ML fusion.

(b) Average test RMSE for MOX fusion and EC + MOX
fusion for data set 3 using weighted averages fusion.

Figure 4.5: Average test RMSE for data set 3 using just one EC sensor and data fusion average test RMSE using
one EC sensor and several MOX sensors. Bands indicate 95% confidence intervals for the mean.

Figure 4.6.a) shows the same results for data set 4. First, we see how MOX fusion only
obtains a significant improvement from 27.50 µgr/m3, in the case of SVR and one sen-
sor, to 23.75 µgr/m3 in the case of four MOX sensors and the same model. However, it
can be seen that the estimates in this data set have a much larger error than in the pre-
vious case. More specifically, an RMSE of 19.00 µgr/m3 is obtained with the SVR and the
sensor array calibration with the EC sensor. If we look at the results of merging the two
technologies we see very different results, where combining them practically does not
improve the estimation, and neither does adding more sensors. In the case of weighted
average fusion, Figure 4.6.b), we observe the same trend, where fusing EC sensors with
MOX sensors does not improve the prediction. This basically tells that when one of the
fused technologies performs much worse than the other, the fusion is not better since it
will be dominated by the sensor that performs well.

Finally, the results for data set 5, Figure 4.7.a) and b), show the opposite case to the
previous one, MOX sensors performing better than the EC sensor. First, Figure 4.7.a),
shows the fusion by ML where we see the same trend of decreasing error as we add more
sensors in the multisensor data fusion calibration. For example, in the RF case, the er-
ror with one MOX sensor is 17.70 µgr/m3 and the error with four MOX is 16.60 µgr/m3,
reducing the RMSE by 1.10 µgr/m3. In the subplot on the right (EC + MOX fusion). Fig-
ure 4.7, we see how the EC sensor performs worse than the MOX sensors, obtaining an
RMSE of 19.60 µgr/m3 for the RF and the sensor array calibration sensor. Then, we see
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(a) Average test RMSE for MOX fusion and EC + MOX
fusion for data set 4 using ML fusion.

(b) Average test RMSE for MOX fusion and EC + MOX
fusion for data set 4 using weighted averages fusion.

Figure 4.6: Average test RMSE for data set 4 using just one EC sensor and data fusion average test RMSE using
one EC sensor and several MOX sensors. Bands indicate 95% confidence intervals for the mean.

(a) Average test RMSE for MOX fusion and EC + MOX
fusion for data set 5 using multisensor data fusion ap-
proach.

(b) Average test RMSE for MOX fusion and EC + MOX
fusion for data set 5 using weighted averages fusion
approach.

Figure 4.7: Average test RMSE for data set 5 using just one EC sensor and data fusion average test RMSE using
one electrochemical sensor and several MOX sensors. Bands indicate 95% confidence intervals for the mean.

how adding the EC sensor to the MOX fusion does not improve significantly with respect
to the case of having only MOX sensors. Specifically, fusing an EC sensor with a MOX sen-
sor only improves over having a single MOX sensor by 0.60 µgr/m3. As for the weighted
averages fusion, Figure 4.7.b), we see the same trends as in the previous case, where the
fact of fusing the two technologies does not incur a significant improvement since the EC
sensor has much worse performance than the MOX sensors. It is observed that the fusion
by weighted averages of RF-estimated data is not performing well, indicating a possible
sensor obtaining a bad estimation, thus, increasing the confidence bands. Moreover, as
we have seen in the other experiments, the fact of merging by means of weighted aver-
ages of the calibrated sensors with nonlinear models does not offer any improvement,
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even in the case of the RF it is observed that the error worsens.
In short, the results indicate that the fusion of two technologies (in this case EC and

MOX sensors) works better the similar their performances are. In fact, in the case of
having a similar error, the fusion of an EC sensor and a MOX sensor has achieved an
improvement of 2.00 µgr/m3 in the RMSE over having a single sensor.

4.4. CONCLUDING REMARKS & FUTURE WORK
In this chapter, we have investigated the in-situ calibration of LCSs in the case where the
sensor array includes more than one sensor measuring the same air pollutant. Thus, the
research question posed at the beginning of the thesis has been solved:

(R.Q.1.3): Does having replicated sensors on a node improve the calibration accuracy? Is it
possible to perform a calibration based on data fusion and machine learning?

The purpose has been to take advantage of the inaccuracies and variability that LCSs
have, due to their low-cost nature, to check whether sensors can provide complementary
information to each other. Using experimental data from both MOX and EC ozone sen-
sors, it has been observed that the correlations between sensors are not perfect and that
the inclusion of different sensors can provide benefits. For this purpose, the multisensor
data fusion calibration with ML has been proposed, where firstly new independent fea-
tures have been derived from the sensors by means of partial least squares to overcome
the multicollinearity problems. Then, these derived variables have been introduced to
a ML model to produce the final calibration. The results have shown how adding more
than one sensor of the same technology (MOX) in the fusion significantly improves the
calibration performance, and can improve up to 3.00 µgr/m3 by adding four sensors.
In the case of merging two different technologies (EC and MOX), it has been observed
that the improvement occurs when the two technologies have a good performance, so
with one sensor of each technology a significant improvement is obtained. On the other
hand, when one of the two technologies has a bad performance, the fusion practically
does not benefit the calibration model.

The multisensor data fusion approach has proven to be useful since LCSs have a very
low price (e.g., about 40$ in the case of the Sensortech MICS 2614), so adding more than
one sensor in a monitoring node not only adds robustness to the system to continue
measuring in case of sensor failure, but all sensors can be used to enhance the node’s
calibration. Thus, it is feasible to add up to four sensors in a node to improve the accu-
racy of the calibration in exchange for a slight increase in the node’s cost.

Multisensor data fusion calibration

• The multisensor data fusion approach using ML has proven to be superior to the
weighted averages fusion approach.

• Among the ML models used to perform data fusion, the nonlinear models have
outperformed the linear model, especially the SVR has performed better than the
others in most cases.

• This approach has proven to be feasible, as using a few sensors (e.g., four sensors)
has improved the air pollution estimation significantly. Given the low price of these
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sensors, introducing up to four sensors adds a small additional cost in exchange for
improved data quality and robustness.

Fusion of sensors of the same technology

• The fusion of sensors of the same technology has resulted in an increase in calibra-
tion quality. In particular, the inclusion of up to four MOX sensors has reduced the
RMSE by 3.00 µgr/m3.

Fusion of sensors of different technology

• The fusion of sensors of different technologies (in this case MOX and EC) is ben-
eficial in the case that both technologies have a similar performance. The results
show that one sensor of each technology is sufficient to reduce the RMSE by more
than 1.50 µgr/m3.

• In the case that one of the two technologies performs significantly worse than the
other, the improvement is limited by the latter. Thus, the fusion does not provide a
significant improvement over the better-performing sensor.

As a future trend, it would be interesting to see how using a multisensor calibration
approach can help in the long-term prediction. In fact, having more than one sensor in
a node could help detect if any of the sensors have drifted or could help compensate for
the errors of these sensors. In fact, the regulated introduction of multiple sensors not
only to improve the accuracy but to increase the overall reliability of pollution estimates
is another aspect to study of the multisensor approach.

Practical Tip !

Given the inaccuracies of LCSs, in the case of wanting to improve the accuracy of pollution
estimates and even the resilience of the device, one can mount at least two sensors on the
node, whether they are of the same technology or not, and perform a multisensor calibration
based on machine learning.
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5
REPRESENTING AIR POLLUTION

SENSOR NETWORKS WITH GRAPHS

Scientists have become the bearers of the
torch of discovery in our quest for knowledge.

Stephen Hawking

Low-cost sensors (LCSs) have been the focus of study for the past few years [4, 8, 76,
77]. In fact, a major research topic has been the improvement of data quality by in-situ
calibration of sensors with machine learning (ML) techniques [12, 14, 15, 78]. The objec-
tive of having nodes with good data quality, when deployed together with high-precision
government nodes, is to increase the spatial resolution of the monitoring networks to
carry out different applications and try to use these data in a regulated way for different
actions. Thus, the cornerstone of the practical use of sensor networks formed by LCSs is
the quality of their data. So far, the main paradigm has been to improve the quality of
each sensor individually, using in-situ calibration, and then deploying sensors that have
good data quality [11, 12]. Nevertheless, this type of network can present problems in
the long-term as sensors tend to suffer from inaccuracies, data loss due to sensor mal-
function, and anomalous measurements, among others [12]. Therefore, it is important
to be able to monitor and maintain the data quality of a sensor network that has been
deployed. In recent years, different works have analyzed data from air quality sensor
networks, using geostatistical techniques such as Kriging to create air pollution maps
of an area or to create virtual sensors [53, 79, 80]. More recently, with the rise of graph
signal processing (GSP), graphs have been used to cluster measurements from ozone
sensor networks [21]. Yet, little work focuses on evaluating and maintaining the qual-
ity of network data through data analysis techniques. Therefore, in this thesis, we focus
on the maintenance of the data quality of a sensor network, in particular, we employ
graph-based models, combining the graphs representing the sensor network with GSP
techniques and ML techniques.

In this chapter, we show the main techniques for inferring a graph that represents the
relationships between the different pollution sensors that form a sensor network. First
of all, section 5.1 introduces the problem and the presented approach. Then, section 5.2
shows the main fundamentals of graph signal processing in order to develop the rest of

77
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the chapter. Section 5.3 shows the different graph inference techniques used, the exper-
imental setup, and the results. Finally, section 5.5 concludes the chapter. This chapter
presents the findings made in “Graph learning techniques using structured data for IoT
air pollution monitoring platforms“, IEEE IoT-J, [81], and some results of “Graph Signal
Reconstruction Techniques for IoT Air Pollution Monitoring Platforms“, IEEE IoT-J, [82].

5.1. DATA QUALITY, SENSOR NETWORKS, AND APPLICATIONS

T HE quality of the data provided by LCSs has been the main concern in recent years [8,
76, 83]. This has been the cornerstone since their main use is focused on increasing

the spatial resolution provided by reference stations. In this way, different applications
can be carried out using measurements from deployed sensor networks. In addition,
these data can be used for future studies to increase public awareness and to be able to
introduce measures in a regulated way in the creation of prevention and containment
measures. Williams et al. [4] discusses the ability of LCSs to produce accurate values.
Similarly, Castell et al. [53] highlight the LCSs’ lack of accuracy for being used in a regu-
lated way, with necessary in-field sensor evaluation. Thus, data quality is one of the most
important challenges in order to be able to include measurements from these deployed
sensors in the development of new environmental policies. In fact, Niu et al. [84] show
the importance of the data quality in a Chinese testbed but remark that data can be used
in a complementary way to the data from government instrumentation. Besides, Rai et
al. [7] mention that LCSs allow increasing the air pollution monitoring spatial resolu-
tion, however, they emphasize that the data quality is a major concern. Indeed, chapter
3 already shows the need for sensor recalibration for long-term air pollution monitoring
campaigns. All in all, the calibration of LCSs has been the main research task in order to
improve the quality of the data provided by these nodes.

5.1.1. IMPROVING LOW-COST SENSOR DATA QUALITY: SENSOR CALIBRA-
TION

As mentioned in the previous chapters, sensor calibration using ML techniques has gained
importance in recent years [8, 12, 14, 15, 85]. In fact, all kinds of techniques have been
applied, from linear models such as multiple linear regression [8, 14], to nonlinear mod-
els such as random forest [15, 16], support vector regression [86] or artificial neural net-
works [14]. In addition to increasing data quality by calibrating the sensors, other tech-
niques such as feature selection have also been studied. In this way, it is intended to
introduce measurements from different sensors, which may contain cross-sensitivities
and cross-correlation, that can benefit and improve the calibration of a specific sensor
[87]. Once the LCSs have been individually calibrated at a reference station they are
deployed over the area of interest. The deployed nodes can be either static sensors or
mobile sensors [88]. The calibration performed, i.e., the models obtained in the calibra-
tion can be used throughout the whole air pollution monitoring campaign, with possible
data quality problems, and recalibration schemes can be performed to keep the calibra-
tion models updated [58].
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5.1.2. LOW-COST SENSOR NETWORK DEPLOYMENT: USE CASES

Once the nodes with LCSs have been calibrated, they are deployed in the area of interest
with different purposes, some common uses are (see chapter 1); i) to increase the spa-
tial resolution of the reference stations and provide pollution measurements at specific
points of interest where there are no measurements, ii) to use the measurements from
the LCSs together with the measurements from the reference stations in the area to cre-
ate pollution maps and to extrapolate the observed values to the whole area of interest,
and iii) to create virtual sensors in locations where a LCS could not be deployed. In all
cases, the quality of the data collected by the LCSs is crucial, in the first case, to obtain
accurate measurements of the location where we are interested in measuring concen-
trations, in the second case, because these data are used in conjunction with those of
the stations to create pollution maps, and in the third case, to obtain accurate virtual
sensors. Schneider et al. [19] used a geostatistical method, universal Kriging, to create a
pollution map by mixing information from a dispersion model and NO2 measurements
from LCSs in the city of Oslo, Norway. The results showed good predictive ability com-
pared to reference stations. Likewise, Van Zoest et al. [89] used a spatio-temporal Kriging
to create an air pollution NO2 25-meter resolution map in the city of Eindhoven, Nether-
lands. Ahangar et al. [90] compared the use of a dispersion model for modeling PM2.5

with the use of geostatistical tools applied directly to the observation made by the net-
work, showing better results for the dispersion model. Continuing with the importance
of data quality, Crawford et al. [91] showed how LCSs can help to detect and evaluate
the evolution of volcanic emissions, thus showing the use of LCSs in the measurement
of extreme events or natural disasters. Apart from the use of Kriging techniques, there
are also works where the inverse distance weighting (IDW) model is used to model pollu-
tion concentrations [92]. In the same way, we can see how pollution maps can be created
using spatial extrapolation methods using the measurements of an area of interest [93,
94].

Land use regression (LUR) has also been a tool used in the extrapolation of LCS mea-
surements and the creation of virtual sensors. Nori et al. [94] predicted urban exposure
NO2 concentrations using LUR. Similarly, Weissert et al. [95] combined LUR with LCSs
to create a NO2 air pollution map with 50-meter resolution with good results, showing
the possibility to detect pollution hotspots with this technique. Coker et al. [96] showed
the performance of land use regression combined with ML techniques for a particulate
matter LCS network deployed in Uganda. Indeed, the authors mentioned the impor-
tance to use data quality control measures in the deployment of LCSs in order to im-
prove the data reliability and air pollution exposure estimates in places where govern-
mental reference stations are scarce or nonexistent. Hofman et al. [97] used different
spatio-temporal techniques for the creation of air pollution maps. More precisely, they
used the Air Variational Graph Autoencoder (AVGAE) to perform matrix completion and
air pollution extrapolation. They mentioned the need for accurate sensors in order to
create maps with good data quality. All these cases where concentrations at a particular
location are predicted using different techniques can alternatively be interpreted as the
creation of virtual sensors at the predicted locations.
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5.1.3. SENSOR NETWORK DATA QUALITY: GRAPH-BASED APPROACH

As we have seen, the key to the different applications of LCSs is the reliability and quality
of the data [98, 99]. Data quality is important to obtain good measurements at the area of
interest where the sensors have been placed and to accurately assess exposure, possible
hotspots, or extreme pollution episodes. In fact, most research highlight the dependence
between the successful application and the quality of the sensors deployed. However,
the state of the art is mostly focused on improving the data quality by in-situ calibration
techniques, i.e., improving the quality of each sensor individually and deploying them
in the expectation of having a good quality during the air pollution measurement cam-
paign.

Therefore, in this chapter, we propose to model deployed heterogeneous LCS net-
works, with LCSs and reference stations, using graphs. Basically, the sensors are de-
ployed together to measure a phenomenon over an area of interest, so the different net-
work nodes can be related to each other, and this relationship can be exploited by using
the information from similar nodes. For instance, in the case of having a LCS near or
in similar conditions to a reference station, there is a relationship between these two
and the information from the station can benefit the information from the LCS. Thus,
the signal at a node can be reconstructed, either because the sensor has missings or has
produced erroneous measurements, by means of the measurements of similar sensors.

Recently, the field of GSP has emerged, opening the door to the use of signal process-
ing techniques on signals defined on graphs [20, 21]. Thus, these tools are ideal to be ap-
plied on pollution sensor networks and to be able to apply signal processing techniques
and improve data quality. In fact, Jablonski et al. [100] modeled a network of ozone ref-
erence stations in Poland using a graph, then they applied spectral clustering to group
the stations according to their relations. But in order to apply different techniques, such
as clustering or signal reconstruction, one must first infer the different relationships in
a network, which is the objective of the study in this chapter. Discrete models, such as
Gaussian Markov random fields (GMRF), which can be interpreted as undirected graphs,
have also been used in the prediction of PM concentrations [101]. Regarding geospatial
models, Song et al. [102], compared the use of Gaussian geospatial models and Gaussian
Markov random fields for modeling PM2.5 concentrations.

In short, GSP and ML tools offer a good combination to model and control the qual-
ity of data from a sensor network. The first step in using these techniques is to find the
graph that models the measurements and relationships between the different sensors in
the network. During the last few years, the creation of graphs has gained importance for
the representation and analysis of sensor networks, such as heterogeneous networks for
air quality monitoring. The most classical method for the creation of such relationships
is based on the assumption that closer sensors will be more strongly related due to a
spatial correlation of the measured phenomenon [21, 103]. Therefore, the relationship
between sensors can be defined as a decreasing exponential function dependent on the
geographical distance between the nodes. More recently, graph inference techniques
based on measured network data have been developed [104–106]. The most commonly
used criterion has been the smoothness of the graph with respect to the measured sig-
nals. Similarly, GMRF inference has also been used to infer graphs, e.g., Friedman et al.
[107] proposed the Graphical Lasso to infer the precision matrix of the data assuming
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Figure 5.1: Heterogeneous sensor network deployment and posterior graph inference phase to obtain the
graph topology G .

that these form a GMRF. Actually, Dong et al. [24] classified graph learning models into;
i) statistical models based on Markov random fields (MRF), ii) models based on GSP, and
iii) models derived from physical processes (e.g., diffusion).

In this chapter, we compare the ability of graphs to model heterogeneous sensor net-
works, comparing different graph learning techniques on heterogeneous network data.
In order to compare the different graphs’ performance, we use the main application, sig-
nal reconstruction, where the signal from different nodes of the network is reconstructed
using their neighboring nodes, defined by the connections of the graph. This task is re-
ally important in maintaining the network data quality since it allows for imputing miss-
ing values, improving sensor estimates, detecting drifts, creating virtual sensors, etc. The
following section deals with the fundamental aspects of GSP, which necessary to under-
stand the remaining sections. Figure 5.1 depicts the graph-based approach to describe
heterogeneous air pollution sensor networks.

5.2. FUNDAMENTALS OF GRAPH SIGNAL PROCESSING

I N this section, we introduce the GSP framework, restricting ourselves to the knowledge
necessary to be able to develop and understand the techniques of this thesis. From the

definition of a graph to the definition of graph signal smoothness. The complementary
knowledge for the other chapters will be explained as the concepts appear. For more
information on GSP processing in general refer to [20, 21, 23, 103].

First, we define a graph G as the triplet G = {V ,E ,W}, where V = {1, . . . , N } is the set of
nodes and its cardinality |V | = N is the number of nodes in the network. The weight
matrix W ∈ RN×N defines the edges’ weights. The edge set E is defined as E = {ei j :
i , j ∈ V ∧Wi j ̸= 0}, so an edge ei j ∈ E denotes a connection between node xi and node
x j . Depending on the characteristics of the network and the graph, the W matrix may
have different characteristics. Roughly speaking, we can classify graphs into directed and
undirected. In the undirected case, Wi j = W j i , so that the matrix W is symmetric, WT =
W. Nonetheless, in the case where the graph is directed, i.e., ∃(i , j ) : Wi j ̸= W j i , the W
matrix is not symmetric. There are more general cases, such as the case of multigraphs,
where more than one edge is allowed between two nodes, being E a multiset.

The weight matrix W is not the only matrix that can be used to describe a graph.
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Table 5.1: Some useful properties of Laplacian matrices for undirected graphs. PSD denotes a positive semi-
definite matrix.

Laplacian L Normalized Laplacian LN

Symmetric PSD Symmetric PSD
λi ≥ 0 λi ≥ 0
L1 = 0 L1 = 0

#(λi = 0) ≡#components #(λi = 0) ≡#components
0 =λ1 ≤ ·· · ≤λN ≤ 2

tr (LN ) =∑
i λi =

∑
i Di i tr (LN ) =∑

i λi = N

The adjacency matrix A ∈ BN×N , which simply indicates the existence of a relationship
between two nodes, can also be used to describe a graph G . A weight matrix can be
converted to an adjacency matrix by setting:

Ai j =
{

1 if Wi j ̸= 0
0 if Wi j = 0

(5.1)

In addition, there is also the notion of Laplacian matrix L ∈RN×N that can be interpreted
as the negative discrete Laplace operator in matrix form and has been intensively studied
in graph theory and spectral graph theory [108]. Now, the Laplacian matrix L and its
normalized version LN can be computed from the weight matrix W as:

L = D−W (5.2)

LN = D−1/2LD−1/2 (5.3)

Where D is the degree matrix, which is a diagonal matrix whose diagonal is defined as
Di i = ∑

j Wi j . As mentioned, both the Laplacian L and the normalized Laplacian LN

are symmetric and positive semidefinite matrices, meaning that all their eigenvalues are
nonnegative (λi ≥ 0). Besides, the normalized Laplacian has a trace equal to the number
of nodes of the graph, tr (LN ) = N . Another interesting property is that the multiplicity
of the Laplacian L eigenvalue equal to zero (λi = 0) is equal to the number of connected
components of the graph and the eigenvalue spectrum for the normalized Laplacian
matrix is 0 = λ1 ≤ ·· · ≤ λN ≤ 2. Summarizing, Table 5.1 denotes some basic properties
of these Laplacian matrices. There exist other Laplacian matrices (e.g., random walk
Laplacian) that we do not cover in this thesis.

Before continuing it is important to define the notion of a signal defined over a graph,
it is defined as the map x : V → R, that maps a vertex index to a real value [21, 103].
Thereby, xi ∈ R is regarded as the value of the graph signal at the i -th node. Another
basic concept is that of graph shift, this operator consists of the translation of a signal
shift in the classic signal processing [21]. In this case, the graph shift is defined as the
multiplication of the graph shift operator (GSO) S ∈ RN×N by a signal defined on the
graph x ∈RN :

x[1] = Sx (5.4)

The resulting shifted signal x[1] ∈RN can be seen as the result of a diffusion process where
the value at the i-th vertex is defined by a linear combination of the value at that vertex
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and the signal at the neighboring sensors. The neighborhood of a node can be defined as
the set of nodes that are connected to that node via an edge, N (xi ) = { j : j ∈ V ∧Wi j ̸= 0}.
The result of the signal shift will depend on the definition of the GSO, in fact, in the field
of GSP the adjacency A, the weighting matrices W, and Laplacian matrices L have been
used as GSO [21, 22]. For instance, in the case of having a linear graph representing
a discrete-time signal, where the adjacency matrix is defined as At ,t+1 = 1, the graph
shift is equivalent to the shifting of the discrete signal in the classic signal processing
framework.

Once we have the notions of signal x defined over a graph and the notion of graph
shift, we can move on to the definition of signal smoothness. The Laplacian quadratic
form, also known as total variation (TV) or Dirichlet energy, is a measure of graph signal
smoothness with respect to the underlying graph topology defined by its Laplacian L:

TV(x,L) = xTLx =∑
i , j

Wi j (xi −x j )2 (5.5)

This quantity is a measure of signal smoothness, where the lower the more smooth the
signal is. This notion of smoothness is further used when defining the graph discrete
Fourier transform (GDFT), as well as an objective function for graph learning tasks, sig-
nal reconstruction, and other applications. Basically, it is the weighted summation of
squared differences between the values of connected nodes, the more similar the values
xi and x j the lower the Laplacian quadratic form. Signal smoothness can be used as an
indicator of how well a signal fits a graph and vice versa, how well the graph fits a signal.

Now, the concept of GSO and signal smoothness allows for defining the GDFT. In
fact, the basis of the GDFT are obtained from the eigendecomposition of the graph shift
operator. From now on, we assume S = L, so the eigendecomposition of L, since it is a
PSD symmetric matrix, is defined as:

L = UΛU−1 (5.6)

where U ∈ RN×N is the matrix of eigenvectors, whose columns are the corresponding
eigenvectors ui ∈ RN , and Λ ∈ RN×N is a diagonal matrix containing the eigenvalues λi

associated to the eigenvectors ui . Now, the eigenvectors ui are defined as the GDFT
basis and their corresponding eigenvalues λi correspond to the frequencies. Indeed, the
frequencies λi are the smoothness of the corresponding eigenvectors:

λi = uT
i Lui , i = 1, . . . , N (5.7)

Then, we can sort the eigenvalues in increasing order 0 ≤ λ1 ≤ ·· · ≤ λN , where larger
eigenvalues indicate larger frequencies. In fact, we can see how the eigenvector u1 as-
sociated to the constant frequency (λ1 = 0) is a constant signal since its TV(u1,L) = 0.
Moreover, high frequencies (large eigenvalues) will have a higher quadratic form of the
eigenvector, indicating that high frequencies correspond to high-frequency GDFT basis
where the values between neighboring nodes are more disparate. The graph discrete
Fourier transform of a graph signal x and its inverse graph discrete Fourier transform
(IGDFT) are defined as [21, 103, 109]:

X = GDFT{x} = U−1x (5.8)

x = IGDFT{X} = UX (5.9)
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Figure 5.2: Example of the GDFT and IGDFT applied to a graph signal defined over a sensor network via a
Laplacian matrix L.

Given that the eigenvector matrix is an orthonormal matrix, then U−1 = UT. Thus, X ∈
RN corresponds to the GDFT of the signal x defined on the graph, where the first com-
ponents correspond to the Fourier coefficients of the low frequencies and the last com-
ponents of the transformed signal X correspond to the Fourier coefficients of the high
frequencies. As an example, Figure 5.2 shows the GDFT and IGDFT process for a sig-
nal defined on a graph representing a sensor network. The example shows the GDFT
coefficients of a signal whose low-frequency coefficients have a higher magnitude than
the high-frequency coefficients, which means that the signal has no abrupt changes be-
tween the values of neighboring nodes. Finally, the signal filtering operation can also be
translated into graph setting [21, 109]. In a very naïve way, one could define a low-pass
filter by calculating the GDFT of a certain graph signal x and setting the coefficients of
the high frequencies to zero from a certain cut-off frequency λc :

Yk =
{

Xk λk ≤λc

0 λl >λc
(5.10)

In a more formal way, the filtering of a signal on a graph in the spectral domain can be
defined as Y = G(Λ)X, where G(·) is the graph transfer function defined as a function of
the eigenvaluesΛ of the graph. This graph transfer function can be expressed as a linear
combination of the powers of Λ. Conversely, applying the IGDFT, a filter can be defined
in the vertex domain as the linear combination of the powers of the shift matrix S (in this
case the Laplacian L):

Y = G(Λ)X =
N∑

i=0
hiΛ

i X [FrequencyDomain] (5.11)

y = f(L)x =
N∑

i=0
hi Li x [VertexDomain] (5.12)
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Where hi ∈ R are the taps of the filter. Depending on the application, one transfer func-
tion or another can be designed. There are more techniques such as the z-transform or
signal convolution, but since they are not necessary for the development of this chapter
we skip them. For more information on the mentioned techniques and other techniques,
refer to literature surveys [21, 103, 109].

5.3. SENSOR NETWORK GRAPH INFERENCE

I N this section, we define the main problem addressed in this chapter, the sensor net-
work graph inference. This problem has been of special interest during the last decade,

with a multitude of methods with different assumptions to obtain the topology of the
graph in which the signals are defined [23, 24].

Definition 10 Graph learning task: the graph learning or network topology inference
task can be defined as the inference of the graph G representing the network. This can be
achieved by obtaining a GSO, either the adjacency matrix A, the weight matrix W or the
Laplacian matrix L, which defines the edges E of the graph and their weights.

There are many techniques, some based on prior information, such as the geograph-
ical information (e.g., the distance between the i-th and j-th nodes di j ) of the different
nodes of the network. Other techniques are based on obtaining a graph that adapts to
the signals already collected by the network. In short, there are many techniques, and
here we compare three of the best known to see their effectiveness for air pollution sen-
sor networks. First, we review statistical techniques such as graphical Lasso, where the
data collected by the network are assumed to come from a GMRF whose precision ma-
trix describes the relationships between nodes. And secondly, we study GSP techniques
where the Laplacian (used as GSO) is obtained from the geographical information of the
nodes or from a training set following a smoothness criterion.

5.3.1. MOTIVATION
Sensor networks for measuring air pollution are complex. In this thesis, we approach
the data quality of a sensor network from a graphical model and GSP perspective. This
allows us to model a network in a discrete way, the opposite case of the creation of maps
that try to infer a continuous field representing the pollution in space, where we focus
on each of the network nodes and their data quality. In fact, the main challenges of this
type of sensor network are:

(a) The existence of heterogeneous networks where two types of sensors coexist, LCSs
and high-precision government instrumentation. Both nodes, with different types
of data quality,

(b) These type of network measure pollutants that may have spatial variability or may
contain more complex relationships defined by anthropogenic emissions and lo-
cation conditions,

(c) Similarly, spatial correlation may not hold in the case of heterogeneous networks
where LCSs may be more similar to other sensors depending on their deployment
conditions regardless of the geographical distance.
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Thus, the use of graphs G to describe sensor networks have the following advantages:

(I) Explicitly describes the relationship between different sensors in the network. That
is to say, a kind of feature selection for each sensor to define the neighboring sen-
sors of each node. Graphs are known to ease the interpretability of ML models
[110],

(II) Takes advantage of the information contained in the neighborhood (network data)
to correct data in the different sensors by means of GSP and ML techniques,

(III) The application of GSP and ML tools on this type of network, e.g., spectral cluster-
ing, graph signal filtering, outlier detection, etc.

5.3.2. APPROACHES

In this section, we describe the two main approaches compared for the inference of the
graph G representing the sensor network. First, we evaluate statistical techniques such
as graphical Lasso [107]. Second, we study the use of more recent GSP techniques, where
we obtain the topology of the network G either by using prior information such as the
distance between nodes, or by obtaining a smooth graph with respect to the data col-
lected by the network. Since the relationship between the measurements of two sensors
of a pollution network is mutual, i.e., if sensor xi is related to sensor x j then it makes
sense that sensor x j has the same relationship with sensor xi , we opted for the use of
undirected graphs.

STATISTICS

In the case of statistical graphical models such as GMRF, the objective is to find the joint
distribution of the network variables as a zero-mean Gaussian defined by the precision
matrix Θ ∈ RN×N (inverse of the covariance matrix Σ). This precision matrix is found to
guarantee conditional independence between the variables. Meinshausen et al. [111]
proposed a neighborhood selection algorithm to find Θ. This precision matrix encodes
the graph topology G since the conditional independencies work as a neighborhood (or
feature) selector finding similar nodes in the network that need to be connected. Fried-
man et al. [107] developed the graphical Lasso, which is the most remarkable model
since it forces the sparsity of the precision matrix to reduce the number of edges of the
graph and is the model used as statistical-based.

The graphical Lasso assumes that the underlying network variables xi follow a GMRF,
so every node xi can be seen as a random variable over the graph G , {xi : i ∈ V } that satis-
fies the pairwise Markov property and the joint-distribution of vertex-indexed variables
follows a zero-mean Gaussian distribution with precision matrixΘ.

Definition 11 The pairwise Markov property states that two vertices that are not con-
nected in the graph (ei j ∉ E or Wi j = 0) are conditionally independent given all other
vertices in the graph, xi ⊥⊥ x j |V \ {i , j }. Similarly, the precision matrixΘ encodes the con-
ditional independencies, where Θi j = 0 implies that variables xi and x j are conditionally
independent given the rest of variables.
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The main focus of statistical topology inference is on the inference of the precision
matrix since its entries have direct correspondence with the conditional independen-
cies and partial correlations of each variable. In fact, the adjacency matrix of the graph
A can be obtained using conditional independencies encoded by the precision matrix
as {Ai j = 1 : Θi j ̸= 0}. The first attempt at estimating the entries of the precision matrix
dates back to Dempster et al. [112] who developed the covariance selection. Since this
solution can present problems with large graphs, Friedman et al. [107] developed the
graphical Lasso which learns a sparse precision matrix. The graphical Lasso solves an
l1-regularized maximum likelihood problem, where the l1-norm of the precision matrix
is used as the convex relaxation of the l0-norm, which minimizes the number of nonzero
entries. Thus, forcing sparsity results in graphs with smaller and more selective neigh-
borhoods.

argmax
Θ

log det(Θ)− tr(Σ̂Θ)︸ ︷︷ ︸
log-likelihood GMRF

−λ∥Θ∥1︸ ︷︷ ︸
sparsity

(5.13)

The optimization problem formulated above is the convex problem solved by the
graphical Lasso algorithm. The first term corresponds to the log-likelihood of the GMRF,
where Σ̂ is the empirical covariance matrix, while the second term is a sparsity-promoting
term of the precision matrix weighted by the hyperparameter λ ∈ R. The l1-norm of the
matrix ∥·∥1 is the convex relaxation of the l0-norm, which minimized the number of en-
tries different than zero. λ controls the penalizes the sparsity of the precision matrix,
larger λ values will incur in more sparse precision matrices. It is important to note that
the matrix Θ, which contains the partial correlations ρ, cannot be used directly as the
weight matrix W of the graph as it may contain negative values, leading to an invalid
weight matrix. However, as mentioned above, the precision matrix Θ can be used to
define the adjacency matrix A of the network.

GRAPH SIGNAL PROCESSING

The other alternative recently defined in the field of GSP [23, 24] consists of defining a
valid Laplacian matrix either from its definition (L = D−W) or by solving an optimization
problem with the objective of finding a Laplacian that satisfies certain conditions. Thus,
in this thesis we explore two cases; i) the use of prior information such as the graph
distance between nodes and ii) the learning of the graph from the data by optimization.

Distance-based graph
This is the most common type of network used in most applications [20, 103, 109]. In
fact, it is based on the assumption that nodes that are close in space tend to be related
(e.g., correlated). In a similar way, Kriging techniques and inverse distance weighting
(IDW) use the distance between the different nodes of the network and the points at
which concentrations are predicted. This type of graph has been used to represent tem-
perature networks, pollution networks, and other phenomena due to their simplicity
and lack of data requirements [100, 113]. Likewise, this type of graph has been very pop-
ular in fields such as semi-supervised learning and manifold learning [108].

To explicitly create the weight matrix W of the network, a similarity function δ : V ×
V → R between two nodes of the network is necessary to obtain the different weights.
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There are different ways to create the nodes’ relationships using the geographical infor-
mation but the most important ones use as similarity function a decaying exponential
function as a function of the distance between two nodes di j . Then, in order to explic-
itly manipulate the density of the network, a threshold T H can be applied to eliminate
all the edges of the network whose distance between nodes is greater than T H . This
serves as thresholding to eliminate the effect of distant nodes with very small weights.
Accordingly, we can define the weight matrix W as:

Wi j =
{

e−
di j
2τ i f di j ≤ T H

0 i f di j > T H
(5.14)

Where the decaying exponential function, δ(i , j ) = e−
di j
2τ , is the radial basis function

(RBF) defined by the distances, τ ∈R is the scale of the RBF kernel, and di j is the Haver-
sine distance between two nodes. It is quite straightforward to see that di j = d j i , then the
graph obtained is symmetric. Next, obtaining the combinatorial symmetric Laplacian is
straightforward from its definition. In a similar way, in other distance-based options, in-
stead of using a threshold to reduce the graph density, a nearest-neighbor approach is
used to define the connectivity of the graph [103].

Smoothness-based graph
Lately, there has been a growing interest in the inference of the weight matrix or Lapla-
cian from a set of graph signals [23, 24, 105]. The framework of graph learning within GSP
consists of inferring a valid shift matrix S (that meets the requirements to be a shift ma-
trix) that conforms to the relationships present in the observed graph signals X ∈RN×Ns ,
where N is the number of nodes and Ns is the number of graph signals, and has cer-
tain sparsity characteristics. Thus, we can define a general framework to learn the shift
matrix S from graph signals X such as:

min
S∈S

F(S,X)+λR(S) (5.15)

Where F(·, ·) is a criterion that evaluates a learned shift matrix S with respect to the ob-
served graph signals X, R(·) is a regularization function that penalizes the number of the
edges of the resulting shift matrix S, λ ∈ R is a hyperparameter that controls the regu-
larization term, and S is the set of valid shift matrices. A shift matrix S is said to be
valid if it fulfills its corresponding properties (see Table 5.1). Although different F(·, ·)
criteria can be used, GSP is built under the assumption that signals over a graph tend
to be smooth relative to the underlying graph. Thus, in the case of learning the Lapla-
cian L, the total variation in matrix form F(L,X) = TV(X,L) = tr (XTLX)1 is a good cri-
terion to evaluate the fit of the graph on the observed signals. Thus, a smooth graph
with respect to the signals will imply that two nodes xi and x j connected by a signif-
icant weight (Li j or Wi j ) will tend to have similar values. As well, it is possible to ob-
tain a graph that makes the signals low-pass over the graph since smooth signals imply
that the energy of the signal is concentrated in the lowest GDFT components given that

1tr (XTLX) corresponds to the matrix-form of the total variation.
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xTLx = xTUΛU−1x = GDF T {x}TΛGDF T {x} and Λ = di ag (λ1, . . . ,λN ) where the eigen-
values are sorted in increasing order 0 ≤ λ1 ≤ ·· · ≤ λN . Thus, minimizing the total vari-
ation penalizes signals with more energy in the highest-frequency components. More-
over, the regularization term R(·) is also important to control the topology of the learned
graph and its complexity. Thus, this term is used to penalize more complex or dense
graphs using criteria such as the Frobenius norm of the shift matrix ∥S∥F or the l1,1 ma-
trix norm ∥S∥1, where the former penalizes the magnitude of the entries of the shift ma-
trix and the latter is used as a convex relaxation of the l0-norm to penalize the number of
entries different from zero, so penalizing the sparsity of the matrix.

There are different works that focus on graph inference from a set of graph signals
using smoothness as a criterion and penalizing the complexity of the graph [23, 104,
105]. Egilmez et al. [106] even proposed to learn a generalized precision matrix Θ for
a GMRF by restricting it to be a valid Laplacian. Among the most prominent works, we
focus on the work of Dong et al. [104] where a valid Laplacian L is directly inferred using
a latent factor analysis approach. The proposed optimization problem is a not jointly
convex problem that can be solved iteratively:

min
L,Y

∥X−Y∥2
F︸ ︷︷ ︸

d at a f i del i t y

+α tr (YTLY)︸ ︷︷ ︸
smoothness

+β∥L∥2
F︸ ︷︷ ︸

spar si t y

s.t. tr (L) = N ,

Li j = L j i ≤ 0, i ̸= j ,

L ·1 = 0.

(5.16)

Where X ∈ RN×Ns are the training graph signals and Y ∈ RN×Ns are their filtered version.
Thus, the first term of the objective function penalized the data fidelity, i.e., the filtered
version of the signals Y are as similar as possible to the original graph signals X. Then,
the second and the third term jointly penalize the complexity of the obtained Laplacian
L, first penalizing the smoothness tr (YTLY) of the Laplacian with respect to the signals
and then penalizing the Frobenius norm ∥L∥2

F of the Laplacian. α ∈ R and β ∈ R are the
hyperparameters controlling the sparsity of the Laplacian matrix. As for the constraints
on the problem, the first constraint (tr (L) = N ) prevents obtaining the trivial solution
and forces the sum of the diagonal to be N ,

∑
i Li i = N , as in a normalized Laplacian.

The second constraint (Li j = L j i ≤ 0) forces the matrix to be symmetric and with non-
positive values in the off-diagonal elements. And finally, the last constraint (L · 1 = 0)
forces the sum of the rows to be zeros so that they are normalized. All these restrictions
make the Laplacian a positive semidefinite (PSD) matrix and a valid Laplacian.

Given the different methods explained in this section, the next section describes how
to use these methods with air pollution sensor network data, as well as the methodology
used to evaluate the different graph learning techniques.

5.3.3. GRAPH SENSING: GRAPH LEARNING & SIGNAL RECONSTRUCTION
Once we have seen some of the most common techniques for inferring the graphs of a
sensor network, we explain how to exploit these graph topologies in air pollution sensor
networks and the methodology undertaken to compare the different models. First of all,
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it should be taken into account that these graphs can be used to maintain the quality of
the data from this type of sensor (see section 5.1), i.e., all the existing relationships in a
network can be used to flow information from one sensor to another and thus benefit
each sensor in the network. Thus, in order to maintain the quality of the data from the
different sensors that make up the network, we can distinguish two different tasks:

(A) Graph learning: infer the graph G = {V ,E ,W or L} that represents the network
in order to obtain the implicit relationships between the different sensors of the
monitoring network xi , i ∈ V . For instance, we are interested in knowing which
sensors are related to a low-cost tropospheric ozone sensor xi that has been de-
ployed in an area, i.e., we are interested in finding out if there are other sensors
that follow a similar trend to this one and even the existence of a reference instru-
ment related to this one. It is to say, the graph describes the set of sensors related
to every sensor via the neighborhood N (xi ), i ∈ V and the weights of these rela-
tionships via WiN (xi ) or LiN (xi ).

In this way, once a sensor network is deployed for an air pollution monitoring cam-
paign, it is possible to assess the graph that represents the network during the first
weeks since it is assumed that the sensors tend to be non-problematic during the
first weeks of deployment.

(B) Signal reconstruction: the topology inferred for the graph (W or L) serves as a
feature selector to select the neighborhoods N (xi ) of the different sensors, i.e.,
similar sensors. Therefore, these relationships can be used to reconstruct the sig-
nal xi ∈ R in the i -th node using the signals of the nodes in its neighborhood
xN (xi ) ∈ R|N (xi )| since they are related. A clear example is the case where a ref-

Figure 5.3: Neighborhood information can be used to reconstruct sensor signals.

erence station or a LCS has not reported data for a certain hour, then this value
can be imputed using the signals from the nodes similar to the conflicting sen-
sor, which are potentially non-problematic. There are different ways to perform
this signal reconstruction, but in this chapter, we explore two precise yet inter-
pretable techniques to perform the reconstruction. In this way, we can define the
objective of reconstructing the signal xi at a certain time step t using the function
f :R|N (xi )| →R as:

x̂i = f (xN (xi )), ∀i ∈ V (5.17)

Then, a simple but at the same time very flexible and effective estimator is to as-
sume that the signal can be modeled as a weighted average of the neighborhood
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signals:
x̂i = f (xN (xi )) ≈

∑
j∈N (xi )

wi j x j , ∀i ∈ V (5.18)

In this chapter, we explore two possible approaches for the estimator f (xN (xi ));
supervised learning and graph-based semi-supervised learning.

B.1) Supervised machine learning approach: Since the learned Laplacian matrix L
encodes the resulting adjacency matrix A, these adjacencies Ai j can be used
as feature selector, where neighbors j ∈N (xi ) of a i -th node are used as co-
variates to regress the value of the target node xi . In this way, one can define
a ML model that predicts the value of the node xi using the neighboring sig-
nals xN (xi ). This implies, that in the case where only the target node xi needs
to be reconstructed, N different models are needed (one per network node),
but in the case where any node can fail, 2|N (xi )|−1 different models per net-
work node are needed. Thus, assuming the estimator to be a weighted aver-
age makes MLR the most feasible model for this scenario, where the function
f :R|N (xi )| →R to be estimated has the form:

x̂i = f (xN (xi )) ≈β0 +
∑

j∈N (xi )
βi j x j , ∀i ∈ V (5.19)

Where the vector of coefficients β are the coefficients that weight the sum of
the signals x j .

B.2) Semi-supervised learning approach: an alternative previously studied in the
field of graph semi-supervised learning is the Laplacian interpolation, de-
fined by Belkin et al. [108], which is also a graph signal reconstruction model.
This is a transductive method, which estimates the value at the unobserved
nodes {x j : j ∈ U }, where U is the set of unobserved/to be reconstructed
nodes (there can be more than one) from the observed nodes {x j : j ∈ M },
where M is the set of observed nodes. The objective function to be mini-
mized is the total variation:

min
x̂∈RN

x̂TLx̂

s.t . x̂i = xi , ∀i ∈M
(5.20)

Where the cost function minimized is the total variation TV(x̂,L), and x̂U are
the values of the missing nodes. The problem is restricted to obtaining graph
signals where the observed measurements have the same value (constraint).
Solving this optimization problem we can observe that the estimator for xU

is obtained as:
x̂U =−L−1

UU LUM xM (5.21)

This results in a linear estimator where the weights of the linear combina-
tion are: β = −L−1

UU
LUM . This formulation is very useful since it is con-

vex, has an analytical solution, is flexible (it allows more than one missing
for a timestep), and uses as the objective function the criterion with which
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the Laplacian has been learned (in the case of the smoothness-based Lapla-
cian)2.

Definition 12 A transductive method is a method that, given specific train-
ing data or observations, infers a function for specific test cases. An example is
graph signal reconstruction models, where the unobserved measures are esti-
mated from the observed ones.

METHODOLOGY

Here we explain the methodology used to implement the different graph learning (graph-
ical Lasso and graph signal processing based) and signal reconstruction (supervised and
semi-supervised) models for air quality monitoring network data. To do so, we highlight
the particularities of air pollution sensor network data and how they are solved. Figure
5.4 shows the proposed methodology, where it can be seen the different options avail-
able for graph learning as well as the required input data and hyperparameters for every
model, and the inputs required for the two signal reconstruction approaches.

Figure 5.4: Graph learning and signal reconstruction methodology for the different models applied to air pol-
lution sensor networks. Both the supervised and semi-supervised approaches are described.

Graph Inference
In an air pollution monitoring campaign using heterogeneous networks of LCSs, an in-
situ calibration of the LCSs is first performed at stations close to their deployment site
[6, 8]. Then, in the network deployment phase, the nodes mounting the LCSs are placed
at the respective points of interest and measurement of the network. At this point, just
during the first weeks of deployment, the graph describing the implicit relationships be-
tween the different sensors can be learned, since it is assumed that their functioning is
correct for at least this small period after the beginning of the deployment. Once this is
done, the learned graph can be used for signal reconstruction purposes to maintain the
data quality as at the initial deployment.

2A similar method minimizing the graph total variation has been proposed from the graph signal processing
perspective, where instead of using the Laplacian matrix L any graph shift operator S can be used [113].
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In this case, where all the data from the air pollution monitoring campaign is avail-
able, the first step is to split the data X into training and testing, Xtr and Xt s . Since the
average concentrations at each node can be different, we standardize all variables rep-
resenting the network nodes’ data. Then, the training data along with a graph learning
model and its hyperparameters are used to learn the graph. Figure 5.4 summarizes the
different graph estimation processes evaluated and Table 5.2 shows the hyperparame-
ters of the different methods along with their role in the graph learning process and their
range of values. First, we learn the network topology with one of the different algorithms,
the training set Xtr, and its corresponding hyperparameters. A 5-fold cross-validation
(CV) procedure is applied to the training to find the optimal hyperparameters leading to
a graph which together with the reconstruction method obtain a minimum average CV
RMSE. The result is a precision matrixΘ for the graphical Lasso method, a weight matrix
W for the distance-based method, and a Laplacian L for the smoothness-based method.
Since these three matrices are related, we can obtain for each method a matrix of ad-
jacencies A and a Laplacian L that can be used by the signal reconstruction methods.
The resulting three matrices can be interpreted as feature selectors, using an adjacency
matrix A with edges for the sensors that are connected. Then, with both the adjacency
matrix A obtained by the graphical Lasso and the weights matrix W obtained from the
distances, the Laplacian L can be obtained using the combinatorial Laplacian formula.

Table 5.2: Different method’s hyperparameters to learn the network topology along with the role they play in
the learning process.

Method Parameters Role

Graphical Lasso λ Controls the precision matrix sparsity.

Distance-based graph
τ Gaussian kernel parameter.

Threshold (TH)
Radius (in meters) in which edges are taken
into account, controls sparsity.

Smoothness-based graph
α

Smoothness penalization constant. Controls
sparsity of the Laplacian and smoothness.

β
L1-norm Laplacian penalization constant.
Controls the sparsity of the Laplacian.

Signal Reconstruction Training
Regarding the signal reconstruction with MLR, we need to select the set of features for
every regression model, one model per node (N ). So, we use the weight W or adjacency
matrix A, to find the neighborhood of the i-th node N (xi ), that is, the nodes that are con-
nected to the i -th node are used as features. Now, the signal reconstructed in the i -th ver-
tex, x̂i , is a linear combination of the signal measured in the neighborhood xN (xi ). Since
the signals measured at the nodes are highly correlated given that all sensors measure
the same phenomena, even though they are located at different geographical positions,
the problem of multicollinearity may arise. To avoid multicollinearity, we use the partial
least squares (PLS) method to obtain components that are orthogonal to each other and
make a dimensional reduction to avoid ill-posed conditioned matrix problems.

In the first phase, the training data of the neighbors of the i -th vertex, Xtr,N (xi ), are
used together with the data of the i -th node to obtain the PLS components and the load-
ing matrix P ∈ RN×N . The loading matrix P is now used to project the training regres-
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sors, Xtr,N (xi ), onto the PLS components XPLS
tr,N (xi ). The goal is to keep only a few com-

ponents until the condition number of the moment matrix XPLST
XPLS is small enough

to reduce possible multicollinearity problems [114]. To obtain the coefficients wk of the
linear regression, we train the linear model with the projections of Xtr,N (xi ) as regressors
(XPLS

tr,N (xi )) and with xtr,i as the dependent variable. Finally, by taking new data from the
test data set and projecting it to the PLS components, we can reconstruct the x̂ts,i sig-
nal from neighboring node signals Xts,N (xi ). The disadvantage of this method is that to
reconstruct the signal in the i -th vertex xi , we need all the values of the signals in its
neighborhood. If there is missing data from any neighboring node for a given instant,
then it is not possible to reconstruct the signal at that instant. Hence, if we are inter-
ested in reconstructing N nodes of the network, using the same constructed graph we
will create N linear regression models to be able to reconstruct the signal in those nodes.
Another clear disadvantage is that for the calculation of the loading matrix P the val-
ues of the neighboring nodes Xtr,N (xi ) and the training values of the target node Xtr,i are
needed, that’s why as with the regression model we have to obtain a loadings matrix for
each different node signal reconstruction model.

Now, regarding the signal reconstruction using the Laplacian interpolation, we as-
sume that we know the structure of the graph through the Laplacian, we know the value
of the signal in m<N vertices, and we have gaps, missing or corrupted values in the
other N −m vertices. Let’s call x̂ the signal to be estimated since we know x and the set
of nodes M where the values are known. The aim of the interpolation process is to esti-
mate x̂ such that x̂i = xi for those vertices where xi is known (i ∈ M ). For this, we solve
the optimization problem shown in eq. (5.20). This method does not need a training
phase and can be applied directly to reconstruct the signal when values are missing in
time step K, given the set of observed nodes M , or when we want to include a virtual
sensor, a case that represents a sensor where graph node has no data at all. Thus, for this
case, the Laplacian matrix L allows the calculation of all weights for all possible signal re-
constructions, even allowing the reconstruction of different nodes simultaneously (e.g.,
different nodes have missing samples at the same instant).

5.4. EXPERIMENTAL EVALUATION

I N this section, we describe the data sets used for the experiments and we show the
results of the comparison of the different graph inference models applied to the four

data sets described in section 5.4.1 using the methodology explained in the previous
section 5.3.3. We split the experiments into three blocks; reference station networks, the
heterogeneous H2020 Captor network, and the analysis of the methodology scalability.
In this way, we explore:

(A) Reference station networks, where we compare the different graph inference mod-
els and signal reconstruction techniques applied to high-precision instrumenta-
tion networks. We use 100% of the data sets to perform a 5-fold CV and show the
CV results to analyze the behavior of the graphs in terms of signal reconstruction
performance,

(B) Heterogeneous low-cost sensor network H2020 testbed, where we simulate the
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real application case, where 66% of the data is used as training to perform CV and
obtain the hyperparameters and the graph describing the network. Then, we apply
the graph and the signal reconstruction on the different nodes of the network in
the test set (33% of the data) to simulate possible signal reconstructions during the
air monitoring campaign,

(C) Scalability, where the scalability of the proposed graph-based approach is ana-
lyzed and a clustering-based approach is proposed to overcome possible issues.

5.4.1. DATA SETS
In order to compare the different graph inference methods and their application, we use
two different types of real data sets; networks of governmental reference stations and a
heterogeneous network of LCSs. The monitoring networks contain high-precision in-
strumentation to accurately measure an area of interest. Therefore, we use data from
the Spanish government monitoring network, for the Barcelona metropolitan area, used
for pollution measurement and compliance with European regulations. These data are
open and available to any user via the web. To test the effectiveness of the methods we
have used data for three different pollutants; tropospheric ozone (O3), nitrogen dioxide
(NO2), and particulate matter 10 µm (PM10). Thus, these three data sets are listed in
Table 5.3, with their characteristics, where the data cover a period of five months be-
tween 01/01/20019 to 30/05/2019 representing what would be an air monitoring cam-
paign with measurements at a temporal resolution of one hour and a number of nodes
varying from thirteen to twenty.

Table 5.3: Data sets 1, 2, and 3 use reference stations in Barcelona, Spain, and data set 4 uses three reference
stations and five LCSs deployed in the H2020 CAPTOR project in Spain.

Data set ID Pollutant # Nodes Temporal resolution # Samples Period

1 O3 15 1 h 2775 01/01/2019 - 30/05/2019
2 NO2 20 1 h 2526 01/01/2019 - 30/05/2019
3 PM10 13 1 h 2595 01/01/2019 - 30/05/2019
4 O3 8 30 min 2831 18/06/2017 - 16/09/2017

As for the data set of the heterogeneous network of LCSs, we used data from a hetero-
geneous network deployed by the European Captor H2020 project in the Vic area (Cat-
alonia) during the summer of 2017 to carry out a tropospheric ozone monitoring cam-
paign. The data set consists of three reference stations and four SGX Sensortech MICS
2614 O3 sensors distributed over the deployment area. The same nodes explained in
the previous chapters were used, using Arduino Yun as microcontroller, a 3G modem to
send the data to a central database, and four ozone and temperature and relative humid-
ity sensors. For the deployment, the sensors of the Captor nodes were calibrated in-situ
with MLR during the first weeks where they were placed in reference stations (Vic, Tona,
and Manlleu) near their deployment area. Once calibrated, they were placed at the sites
of interest. Table 5.3 shows the characteristics of this fourth data set, constituted by eight
nodes, with samples collected during three months and an hourly resolution of 30 min-
utes.

Ultimately, these data sets comprise a wide variety of data; different pollutants, net-
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works with reference stations, and heterogeneous networks with in-situ calibrated LCSs
and reference stations.

5.4.2. REFERENCE STATION NETWORKS

We apply the different methodologies explained in section 5.3.3 to the data sets of the
reference stations in the Barcelona area (data sets 1, 2, and 3), which correspond to the
air pollutants; O3, NO2, and PM10. For illustrative purposes, we select the results from
the O3 (data set 1). Figure 5.5 shows the CV performance of the three methods in obtain-
ing the network topology and the performance of the two signal reconstruction meth-
ods. Figures 5.5.a) and d) show the optimal parameters for choosing the best topology
using graphical Lasso and reconstructing the signal using linear regression and Lapla-
cian interpolation respectively. Figures 5.5.b) and e) and 5.5.c) and f) show the optimal
parameters for the choice of the best topology using the distance-based method and
the smoothness-based method with both linear regression and Laplacian interpolation
respectively. First, we analyze the relationship between the hyperparameters of each
model with the final number of edges in the resulting graph (graph density) and with the
signal reconstruction performance denoted by the root mean square error (RMSE) value
obtained by each method. Then, we compare the performance of the models, discussing
their advantages and disadvantages. The RMSE used to select the best hyperparameters
is the average of the cross-validation RMSE of all the nodes participating in the network,
that is, we reconstruct each of the network nodes one by one during each CV test fold.
Thus, the choice of the graph inference method depends on how well the signal recon-
struction model performs on top of the inferred graph.

GRAPHICAL LASSO

Figures 5.5.a) and d), dotted orange curve, show the graph’s number of edges as a func-
tion of the λ hyperparameter for the graphical Lasso method. Indeed, recalling the
graphical Lasso formulation, the larger the λ value the more penalization is added to the
l1-norm of theΘ. It can be seen that asλ approaches 1.0, the number of edges decreases,
becoming the precision matrix more and more sparse, and then in the 10−4 value (there
is almost no regularization of the matrix) producing a totally connected graph. However,
we can also observe a hump effect for λ values between 10−4 and 0.35 producing an in-
creasing number of edges trend as theλ value increases. This hump effect observed forλ
values between 10−4 and 0.35 is produced by poor conditioning of the empirical covari-
ance matrix Σ̂ when solving the graphical Lasso method and has already been reported
in other studies [115]. This problem appears because the graphical Lasso algorithm uses
the inverse of the empirical covariance matrix as an initial guess, so that, the inverse of
an ill-conditioned matrix may produce the unstable results observed. An ill-conditioned
moment matrix COV[X] = E[XXT] (for the case of standardized variables) may be caused
by the presence of multicollinearity, indeed, Heinävaara et al. [115] explain how this
problem can lead to bad conditioning of the covariance matrix Σ̂ and thus to the insta-
bility of the results. A condition number above thirty cond(Σ−1) > 30 indicates that the
regression may suffer from severe multicollinearity [116]. For all this, only values of λ
for which the initial guess of the covariance matrix Σ has a condition number less than
thirty are taken into account, thus obtaining a stable solution. This, together with the
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(a) Validation metrics for O3
reference stations with graphi-
cal Lasso and linear regression
procedure.

(b) Validation metrics for O3 reference
stations with the distance-based graph
and linear regression procedure.

(c) Validation metrics for O3 reference
stations with the smoothness-based
method and linear regression proce-
dure.

(d) Validation metrics for O3
reference stations with graph-
ical Lasso and Laplacian inter-
polation procedure.

(e) Validation metrics for O3 reference
stations with the distance-based graph
and Laplacian interpolation proce-
dure.

(f) Validation metrics for O3 reference
stations with the smoothness-based
method and Laplacian interpolation
procedure.

Figure 5.5: Average cross-validation RMSE and average number of edges of the different techniques applied to
data set 1. The shaded area corresponds to hyperparameter values that produce ill-posed problems (condition
number of the initial guess greater than 30) for the graphical Lasso.

PLS procedure, reduces the effects of multicollinearity.

From the results of the CV grid search shown in Figure 5.5, Table 5.4 shows the best
configuration for each model corresponding with the hyperparameters producing the
lowest average CV RMSE. The minimum average RMSE value with graphical Lasso and
the linear regression method is 11.96 µgr/m3, and is produced with a λ value of 0.375
and an average number of edges in the graph of 89.4 edges, while with Laplacian inter-
polation, the minimum RMSE is produced with λ of 0.792 and RMSE of 13.26 µgr/m3

and 57.2 edges on average, Table 5.4. Overall, the MLR signal reconstruction obtains the
lowest CV RMSE at the cost of a denser graph (larger number of edges) than the best
configuration for the Laplacian interpolation reconstruction method. The same behav-
ior is observed for the other two pollutants (NO2 and PM10), Table 5.4. Nevertheless, the
performance gap between the MLR and Laplacian interpolation is less significant than in
the O3 case. Regarding the signal reconstruction capability of the different air pollutants,
in terms of R2 the O3 gives better values than NO2, which in turn is better than the PM10

values. Figure 5.6.a) shows the empirical distribution of the CV RMSEs of the reference
stations for the best graphical Lasso configurations. As it can be seen from the three con-
taminants and the two reconstruction methods, the distributions are positively skewed
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with some reference stations with large RMSEs compared to the distribution mode. This
means that there may exist sensors in a network that are not related to other sensors, so
they cannot benefit from reconstruction using network data, producing worse estimates.
It is observed that the distribution mode of the Laplacian interpolation reconstruction is
larger than the MLR case, with more extremely bad-performing sensors (long right tails).

Definition 13 The density of a graph G can be defined as the ratio between the graph edge
number and the maximum number of possible edges. We define the density of a graph as:

D(G ) = |E |
|V |(|V |−1)/2

(5.22)

Table 5.4: Best CV metrics for data sets 1, 2, and 3 respectively applying the different graph learning and signal
reconstruction models.

O3 NO2 PM10

RMSE # Edges R2 RMSE # Edges R2 RMSE # Edges R2

Graphical
Lasso

LR 11.96 89.4 0.70 11.39 109.0 0.66 9.11 61.2 0.46
Lap.Int 13.26 57.2 0.54 12.75 53.2 0.57 9.50 60.2 0.45

Distance
Graph

LR 11.90 101.0 0.71 11.23 190.0 0.67 9.02 76.0 0.48
Lap.Int 13.94 103.0 0.62 12.89 140.0 0.56 9.50 77.0 0.45

Smoothness
Graph

LR 11.84 102.2 0.71 11.23 190.0 0.67 9.00 40.4 0.49
Lap.Int 12.08 71.2 0.71 11.81 56.0 0.63 9.04 70.2 0.50

(a) RMSE distribution ob-
tained with the graphical
Lasso.

(b) RMSE distribution
obtained with the distance-
based graph.

(c) RMSE distribution ob-
tained with the smoothness-
based graph.

Figure 5.6: Empirical RMSE distributions for the best configurations for the different graph learning and sig-
nal reconstruction methods. The continuous lines draw the linear regression while the dotted lines draw the
Laplacian interpolation. The black, orange, and red lines represent O3, NO2, and PM10 respectively.

DISTANCE-BASED METHOD

Recalling the formulation of a distance-based graph, this method uses two hyperparam-
eters; τ is a Gaussian kernel normalization parameter, and the threshold of the distance
T H that controls the sparsity of the resulting weight matrix W. The units of τ and T H
are in meters. Figure 5.5.b) and e), dotted orange and gray curves with crosses, show
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that larger threshold values T H allow for denser graphs. Line colors correspond to dif-
ferent τ values, the orange curve is obtained for a high τwhile the gray curve is obtained
for a smaller τ. By increasing the distance threshold T H we are increasing the num-
ber of neighbors a node has, and therefore the number of edges of the graph increases.
Secondly, for those neighboring nodes which are within the radius T H meters, a large
τ value will assign a small weight, while a small τ value will assign a large weight. This
makes large values of τ produce more connected networks with more edges than smaller
values of τ. The lowest CV RMSE value obtained with linear regression is 11.90 µgr/m3

with 101 edges, with a T H of 33710 meters and a τ of 1580 meters. The lowest RMSE
value with Laplacian interpolation is 13.94 µgr/m3 with 103 edges, with a T H of 35817
meters and a τof 2360 meters. We can see that the signal reconstruction method with lin-
ear regression produces less RMSE than the Laplacian interpolation method with similar
values in the number of edges for O3 and PM10. For NO2, the RMSE value is also lower for
linear regression, but in this case with a higher number of edges. This means that with
similar graphs, the MLR is capable of weighting the different sensors accordingly for sig-
nal reconstruction, while the distance between the nodes may not correctly weight the
different signals for reconstruction. Again, the prediction capabilities of the different
pollutants in terms of R2 give better values for O3 than NO2, which in turn is better than
the PM10 values. The empirical distributions of the nodes CV RMSE in Figure 5.6.b) show
the same trend as with the graphical Lasso where some reference stations cannot be well
reconstructed using network data, showing low efficiency in capturing the relationships
between nodes. This means that defining edges based on distances, or using a distance
threshold as a feature selector, may include non-important relationships between sen-
sors or exclude important relationships between sensors.

SMOOTHNESS-BASED METHOD

The smoothness-based optimization problem uses two hyperparameters; theα controls
the signal smoothness and the sparsity of the Laplacian matrix, and the β penalizes the
Frobenius norm of the Laplacian matrix L. The joint combination {α,β} controls the
sparsity and smoothness of the graph. Low values of β and large values of α, orange
curves with crosses in 5.5.c) and f), promote sparser graphs and smooth representations.
This is because the Frobenius norm of L tends to be small whenβ increases, and decreas-
ingβ has the opposite effect. Besides, whenα increases the total variation of the training
signals with respect to the graph tr(YTLY) is more penalized, promoting both sparse and
smooth solutions. Regarding the average CV metrics, the lowest RMSE value achieved
with linear regression is 11.84 µgr/m3 with 102 edges, an α of 10−4, and a β of 0.15.
The lowest RMSE value achieved with Laplacian interpolation is 12.08 µgr/m3 with 71
edges, an α of 10−4, and a β of 0.05, being the best performing Laplacian interpolation
of the three graph inferring techniques. Again, we can see that the signal reconstruc-
tion method with linear regression produces less RMSE than the Laplacian interpolation
method with sparser graphs for O3 and NO2. For PM10, the RMSE value is also lower for
linear regression, but in this case with a higher number of edges. In general, R2 gives
better values for O3 than NO2, which in turn is better than the PM10 values.

Finally, Figure 5.6.c) shows the distributions of the RMSEs obtained with the smooth-
ness -based graph. The same trend is observed for all methods and contaminants, a posi-
tively skewed distribution, showing some stations that cannot be reconstructed with less
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error. Although, in this case, we can observe how the Laplacian interpolation is able to
obtain RMSEs similar to the linear regression since the modes of the distribution coin-
cide, except for the stations that cannot be well predicted.

DISCUSSION OF THE SIGNAL RECONSTRUCTION METHODS COUPLED WITH GRAPH TOPOL-
OGY INFERENCE

Regarding the performance of the different signal reconstruction methods, it is worth
mentioning that the learned topology acts as a feature selector for the reconstruction,
which has a large impact on the performance. Thus, the covariates for each signal re-
construction task are defined as x̂i ∼ xN (xi ), whereby the connectivity of the graph and
its density play an important role. In this experiment, we have selected the best graph,
with its hyperparameters, based on the minimum average CV RMSE obtained, to obtain
a graph whose superimposed signal reconstruction has a good performance. As an ex-
ample, Figure 5.7.a), shows the 57-edge target graph learned with graphical Lasso for the
O3 data set can be observed.

The effect of the hyperparameters of the different models on the connectivity of the
network is very diverse. In the case of the graphical Lasso, as mentioned above, mul-
ticollinearity produces erratic effects for low values of λ, requiring the diagnosis of the
condition number to check the validity of the results. In the valid range of λ, we see
how the range [0.75, 0.85] is very sensitive producing abrupt changes in the number of
edges of the graph. In the case of the distance-based method, the number of edges |E |
is directly governed by the defined threshold T H , which eliminates edges at more dis-
tant nodes. Thus, by increasing the value of the T H we are inducing connections to
more distant sensors, which may or may not be related to the node in question. This ef-
fect can also be seen as increasing the neighborhoods of the nodes N (xi ) by increasing
the spherical-shaped neighborhood with radius T H . As we have observed from the pair
{τ,T H } the threshold is the one that has the greatest impact on the reconstruction of the
nodes. Finally, in the case of the smoothness-based graph, we see that it is the model
that best adapts to the graph signals presented by the network, and consequently, it is
the graph that works best with the Laplacian interpolation. In this case, the tuple mod-
els jointly the fit of the graph to the data and the graph density. In Figures 5.5.c and f)
it can be seen how the graph density is very sensitive to the value of the alpha, although
the sensitivity of the graph is given by the ratio (alpha beta), where we see that for higher
alphas increasing the beta only implies a small increase in the number of edges.

To see the ability of the different models to find the correct neighborhood N (xi )
of each of the sensors, depending on the density of the graph, we conduct an experi-
ment allowing an increase of 0.5 µg r /m3 in the RMSE to obtain the best model allow-
ing sparser solutions. For simplicity, we show the results for the O3 data set, where the
graphical Lasso model with linear regression goes from 11.96 with 89 edges to 12.45 with
57 edges, and with Laplacian interpolation it is not able to lower the number of edges.
The distance-based graph with linear regression goes from 11.90 µgr/m3 with 101 edges
to 12.42 µgr/m3 with 74 edges, and with Laplacian interpolation goes from 13.94 µgr/m3

with 103 edges to 14.36µgr/m3 with 65 edges. Finally, the smoothness-based model with
linear regression goes from 11.84 µgr/m3 with 102 edges to 12.44 µgr/m3 with 31 edges,
and with Laplacian interpolation goes from 12.08 µgr/m3 with 71 edges to 12.43 µgr/m3
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with 33 edges. As the results show, the smoothness-based graph with Laplacian interpo-
lation allows a large reduction in the number of edges (from 71 to 33) in exchange for a
small increase in error. Thus, there is a trade-off between reconstruction performance
and graph density. This is of particular interest since in some situations optimality can
be relaxed in exchange for a sparser graph. For example, in the case of a distributed
data reconstruction, where each node has to communicate its value to its neighbors, it is
interesting to have as sparse a network as possible to minimize the communication cost.

We can see that in general, although by very little difference, the MLR is able to ob-
tain a better RMSE than the graph signal reconstruction model. This makes sense given
a fixed graph structure, with different neighborhoods, the MLR is the best linear mini-
mum mean squared error (MMSE) estimator for a fixed topology (fixed set of features).
On the other hand, we see how the Laplacian interpolation method has a superior er-
ror in general with respect to the MLR, although in the case of the smoothness-based
graph, we see how it is able to obtain an error similar to the MLR with a sparser graph,
without being suboptimal. Thus, although the Laplacian interpolation is suboptimal, in
the sense of mean squared error, it can result in a better performance for sparse graphs
being able to obtain a more efficient trade-off between error and graph density than in
the case of the graphical Lasso with MLR. Thus, Laplacian interpolation represents an
efficient alternative to MLR with better results in the case of sparse graphs.

ADVANTAGES SEMI-SUPERVISED/GRAPH SIGNAL RECONSTRUCTION SETTING

The use of supervised models for data reconstruction represents a clear disadvantage
from an engineering point of view. Given the heterogeneity of these contamination sen-
sor networks, there can be a large number of sensor missings or gaps due to malfunc-
tioning or under maintenance. Therefore, it would be necessary to have another pre-
processing model to be able to impute the possible missings values in the neighborhood
of a sensor or to train all the possible models taking into account that any node can fail,
resulting in 2|N (xi )|−1 combinations per node, which is not feasible. In the case of using
a missing value imputation method, its performance would directly impact the perfor-
mance of the signal reconstruction. On the other hand, the Laplacian interpolation is a
graph-based semi-supervised learning method (or graph signal reconstruction method)
that allows adapting naturally to this setting where any set of nodes can have missing
and be estimated using the available neighbors. Thus, this semi-supervised alternative
provides robustness and resilience in the reconstruction and maintenance of data from
a sensor network.

To see how important it is for the reconstruction methods to be flexible with respect
to the presence of missings, Table 5.5 shows the different missings percentages for the
three reference station data sets. We can see how each station has on average between
1.66-2.60% of missings. This means that the loss of data or the presence of missings is
not only a problem that can affect low-cost sensors but also affects the reference instru-
mentation. Given the high heterogeneity of this type of network and the possible sensing
and communication failures that may occur, the presence of missings is very common.
The problem is that the percentage of incomplete samples (i.e., with missings) will de-
pend on the size of the neighborhood of each sensor. Assuming a complete dense graph
(100% of density), we have that the neighborhoods of each of the sensors include all the
other sensors, N (xi ) = V \ i , then if there is a node that presents a missing for a time t ,
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the sample is incomplete. The last column of Table 5.5 shows how with a complete net-
work about 21.88-28.87% of the samples are incomplete, which is a very high percentage.
This means that in the case of using a supervised model for signal reconstruction there
would be three options; i) remove the sample, which would reduce the network monitor-
ing capability, ii) impute the missing values using an imputation method, affecting the
subsequent reconstruction, and iii) have another model trained that does not include
the missing sensor, computationally infeasible. It is also possible to mitigate the impact
of missings by controlling the network density and thus obtaining a better data cleans-
ing technique. For a sparse graph, having a missing value in a node xi only affects the
neighborhood of that node N (xi ), the other nodes can be reconstructed as usual since
they have a neighborhood without missings. Thus, considering a graph with a density
of 50%, the number of samples that are affected by missings is reduced to 10.73-15.87%
of the samples (Table 5.5) since even if a node has missings, the nodes that are not in
its neighborhood can be reconstructed in a natural way. In view of this, the smoothness
method promotes sparsity and the Laplacian interpolation method naturally fits the sit-
uation of simultaneously estimating the missing nodes and the target node.

Table 5.5: Reference stations with incomplete observations

Avg. % missings
per station

% incomplete samples
graph with ∼50% edges

% incomplete
samples

Data set 1 1.66 10.73 21.88
Data set 2 1.90 15.87 28.87
Data set 3 2.60 12.00 26.94

Just as an example of how Laplacian interpolation can handle missings, we performed
an experiment with the smoothness-based graph and data set 1 (O3) where a 5% ran-
dom loss occurs in all nodes in the test phase. The result is shown in Table 5.6, and as it
can be seen, the average RMSE has increased slightly from 12.08 (see Table 5.4) to 12.15
µg r /m3, but the reconstruction has been possible in all nodes with a small increase of
the RMSE, showing the resilience provided by using a smoothness-based graph coupled
with a semi-supervised signal reconstruction method.

Table 5.6: CV RMSE with 5% of missing data at each node (during each test CV fold) using the smoothness-
based graph inference and the Laplacian interpolation.

Mean RMSE Std RMSE Max RMSE Min RMSE

12.15 2.70 19.28 8.07

5.4.3. HETEROGENEOUS LOW-COST SENSOR NETWORK: H2020 CAPTOR

The previously studied data sets correspond to reference station networks where the dif-
ferent nodes are high-precision instruments. In this section, we use a heterogeneous
network with three reference stations, called Vic, Tona, and Manlleu, and five metal-
oxide LCSs monitoring O3 that have been calibrated in-situ before the deployment. This
type of heterogeneous network with LCSs allows us to evaluate:
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(a) Network topology learned with the graphical Lasso
with 57 edges and λ = 0.5, area of Barcelona.

(b) Network topology learned
with the smoothness method
with 18 edges, α = 0.0017 and
β = 0.6319, low-cost CAPTOR
network.

Figure 5.7: On the left is the metropolitan area of Barcelona with several ozone reference stations. On the
right is the area of Manlleu, Vic, and Tona, where the CAPTOR network was deployed. Reference stations are
depicted in yellow and LCSs in blue.

1. How a heterogeneous network with a mix of reference stations with accurate val-
ues and low-cost nodes with less accurate measurements behaves when using a
graph with a topology learned from structured data, and

2. The quality of the estimates using the network data to see if their accuracy is com-
parable or better than that of a LCS calibrated in-situ and deployed at that location.
This would allow applications such as recalibration or multi-hop calibration [10].

SIGNAL RECONSTRUCTION AND GRAPH INFERENCE PERFORMANCE IN A HETEROGENEOUS

NETWORK

Table 5.7 shows the test set results for the heterogeneous sensor network. The table
shows specifically the error obtained in the reconstruction of the reference station nodes
(to compare with the three LCSs deployed at the same location) as well as error statistics
for the whole network reconstruction. The first thing we notice is that the models be-
have in a similar way when we have a heterogeneous network of nodes than when we
had only reference stations giving accurate values. Signal reconstruction using linear
regression gives slightly better results than Laplacian interpolation, and in general, the
smoothness-based graph learning method with reconstruction based on Laplacian in-
terpolation gives good results with few edges. It is important to note the disadvantage
of the distance method. It can be observed first that the number of edges is the high-
est among the three methods, and that with Laplacian interpolation the RMSE is very
high, in the order of 20 µgr/m3. This is because when using distances the neighbor-
hoods may not be well defined, using nearby LCSs. In this sense, both the graphical
Lasso and the smoothness-based methods are effective in inferring the relationships of
the data captured by the nodes regardless of the proximity of the nodes. Thus, distance-



5

104 5. REPRESENTING AIR POLLUTION SENSOR NETWORKS WITH GRAPHS

based graphs may suffer from erroneous edges and weights given the high level of het-
erogeneity of this type of network. In contrast, data-driven graph learning models work
for both homogeneous and heterogeneous networks because they are based entirely on
the measurements. Figure 5.7.b) shows the learned graph with an 18-edge target with
the smoothness-based model.

Table 5.7: Test set results for Captor data set 4, including the corresponding results for the reference stations
nodes of Manlleu, Vic, and Tona.

Manlleu RMSE Vic RMSE Tona RMSE Mean RMSE Std RMSE Max RMSE Min RMSE # Edges
Graphical

Lasso
LR 11.72 10.08 11.41 11.79 1.63 15.10 9.92 16

Lap.Int. 12.02 10.21 12.09 11.80 0.85 12.94 10.21 14
Distance

Graph
LR 12.79 9.77 12.22 11.43 1.15 12.79 9.77 25

Lap.Int. 20.60 20.10 18.55 15.94 3.50 20.60 12.04 28
Smoothness

Graph
LR 12.06 9.77 11.71 11.46 1.06 12.72 9.77 28

Lap.Int. 11.82 10.11 11.59 11.65 0.85 12.72 10.11 18

In-situ LCS 10.85 11.30 12.21

NETWORK PREDICTION VERSUS in-situ LOW-COST SENSOR

The idea is to test the network’s ability to predict O3 concentrations at points where it
has not been possible to deploy a sensor or where a recalibration can be performed
due to the drift or aging of the sensors. To do this, we place a LCS at a point, e.g., at
the reference stations, and compare the value given by the sensor with the predicted
value using the different signal reconstruction models at that point. This sensor is iden-
tified in Table 5.7 with the label in-situ LCS. It is observed in Table 5.7 that except for
the distance-based model with Laplacian interpolation, the rest of the models are ca-
pable of making an estimation with similar accuracy as having a LCS. Therefore, in the
situation of having a reference station at a site during the graph learning period, and
then becoming unavailable during the testing (may have moved to another site or it may
not be available) the signal reconstruction estimations would produce similar results to
having a pre-calibrated LCS on the same location. This may be due to the effect of the
presence of reference stations in the neighborhood of the target node, which shows the
potential of this methodology to recalibrate sensors without relocating the node in a ref-
erence station or increase the spatial resolution by including virtual sensors in the net-
work. Taking a look at the learned graph for the Captor network, Figure 5.7.b), it is seen
how the reference stations are mostly connected to other reference stations, given that
the smoothness-based methods rely on the measured data and LCSs may not perform as
similar to the reference stations. Thus, the real concentrations at one reference station
can be reconstructed mainly using the real concentrations measured by other reference
stations and to a lesser extent thanks to LCS measures.

5.4.4. SCALABILITY
In this section, we analyze the scalability of the methodology shown in section 5.3.3, for
the case of the smoothness-based graph learning methods and Laplacian interpolation,
where the main components are graph learning and graph signal reconstruction tasks.
Regarding the graph learning model, we use a model that iteratively solves a quadratic
program that scales quadratically with the number of nodes of the network N and per-
forms matrix inversion operations. In addition, this model has two hyperparameters,
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{α,β}, which need to be found by 5-fold cross-validation. In the case of the graph signal
reconstruction model, the model used (Laplacian interpolation) has as the most expen-
sive operation a matrix inversion or a matrix multiplication depending on the number
of observed nodes, |U | << |M |. The Laplacian interpolation does not have any hyper-
parameters (contrary to other cases that we will see in the following chapter 6), so the
resulting hyperparameters are denoted as Ω = {α,β}. Thus, the most computationally
expensive process is graph learning since it is a quadratic program that scales with the
number of nodes in the network. The more hyperparameters the more dimensions the
grid search to be performed in the cross-validation will have and the more expensive it
will be. During the prediction phase, the only task that involves a higher computational
cost is the graph signal reconstruction.

Once the hyperparameters are selected and thus the graph learned, it is not neces-
sary to use a training set to train the graph signal reconstruction method, since these
are transductive methods, where only the values of the set of observed nodes xM are
needed to interpolate the unobserved ones xU at time instant t . In the test set, the cost
of the predictions will depend on the computational complexity of the graph signal re-
construction. To speed up the reconstruction, if the set of nodes does not vary, the signal
reconstruction coefficients can be calculated once and applied at different time instants
t . However, if this set changes, which is a common situation where some of the nodes
may have missing values and need to be reconstructed, the signal reconstruction coef-
ficients must be recalculated. If cross-validation becomes extremely computationally
expensive, a greedy approach can be carried out, where a graph with a desired level of
sparsity is first obtained, and then cross-validation is performed only for the hyperpa-
rameters of the reconstruction method.

The most demanding task is graph learning since it involves iteratively solving a con-
vex problem, and the complexity of this problem scales quadratically with the number of
nodes N. However, as we are dealing with air pollution data, there exist spatial patterns
and correlations between sensors, so the graph learning problem can be split to learn a
number of disjoint subgraphs without having a large impact on the performance. Thus,
we propose to find the approximation of a large graph as a set of disjoint subgraphs with
a small impact on the signal reconstruction error. In a similar problem, Stein et al. [117]
propose a cluster-based methodology to solve the Kriging scalability issues, learning a
single Kriging model per cluster. Therefore, given the correlations present in our data, a
clustering-based approach to partitioning the graph learning problem is a good strategy
to cope with the scalability problem.

Given the spatial correlation of certain pollutants (e.g. O3 and NO2) and the as-
sumption that sensors with different variability patterns should be weakly connected,
we divide the reference stations into C clusters and learn C Laplacians independently,
resulting in C disjoint subgraphs. Figure 5.8 shows the graph learning process for large
graphs, where using the normalized time series of each of the nodes xi ∈ RP , where P is
the number of training samples, a clustering algorithm can be applied to the N nodes to
find C clusters. The number of clusters can be decided in several ways, e.g., unsuper-
vised metrics such as the Calinski-Harabasz or the Silouhette index [118]. Depending
on the specific data set the size of the clusters may vary, but the computational com-
plexity improvement will always depend on the size of the largest cluster, the smaller the
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Figure 5.8: Clustering methodology for the graph learning and signal reconstruction scheme. In this precise
example, the number of clusters is set to three, C = 3.

greater the improvement, as the subgraph learning can be solved in parallel. The perfor-
mance of the solution will always depend on the localization of the pollutants and the
dependencies present in the data. In addition, the resulting Laplacians Li can be treated
independently or joined together in a Laplacian in the form of a block-diagonal matrix:

L =


L1 0L2

. . .0
LC

 (5.23)

Algorithm 3 describes this cluster-wise procedure, where a different Laplacian Li is learned
for each cluster of nodes Ci , with their corresponding α and β hyperparameters. Once
the Laplacians are learned, the graph signal reconstruction f(·) can be applied in a cluster-
wise manner, since nodes from different clusters are not connected. Algorithm 3 shows
how this cluster-wise graph learning and signal reconstruction methodology can be ap-
plied, where {α,β} are the set of graph learning hyperparameters for each one of the
clusters, X is the training set of graph signals, f(·) is the signal reconstruction model, hyp
are the possible graph signal reconstruction model hyperparameters, and C is the num-
ber of clusters. The different hyperparameters hyp and the number of clusters C can be
set by cross-validation and inspecting cluster-quality indexes, respectively.

In order to show an experiment applying algorithm 3, we used three data sets of air
pollution sensors comprising reference stations in the area of Catalonia, Spain. These
data sets have a total of 46, 60, and 33 nodes for O3, NO2, and PM10 respectively. More
information about these data sets is available in the next chapter 6 since these are used
as baseline for the experiments. The objective of the experiment shown below is to com-
pare the average R2 obtained in the node-to-node reconstruction when using a single
graph and when using three disjoint graphs.

Figure 5.9.a) shows the results for reconstructing each one of the nodes learning three
Laplacians (one per cluster) with the O3 data set using the hierarchical clustering algo-
rithm (colors denote the clusters obtained), which is a widely studied algorithm for clus-
tering air pollution time series [118], using the euclidean distance, and the ward linkage
criterion. The results show a cluster of well-defined nodes that have a very good aver-
age CV R2, 0.80, another that has a good average R2 with 0.7, and another set of stations
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Algorithm 3 Cluster-wise graph learning and signal reconstruction.

Input: {α,β,X, f(·),hyp,C }
1: X̄ ← Standardization(X)
2: C1, ...,CC ← Clustering(X̄,C ) ◁ ↑ Scalability
3: for i = 1 to C do
4: Li ← Graph_Learning(αi ,βi , X̄Ci

)
5: end for
6: while xnew do ◁New sample collected
7: U ← Get_Unobserved_Nodes(xnew )
8: M ← V \U

9: x̄new ← Standardization(xnew )
10: for i = 1 to C do
11: x̄newCiU

← f(x̄newCiM
,Li ,hypi ) ◁ Reconstruction

12: end for
13: xnew ← Unstandardization(x̄new )
14: return xnew
15: end while

(a) O3 data set. (b) NO2 data set. (c) PM10 data set.

Figure 5.9: Results for a clustering example, with C =3, applied to three data sets, comprising the reference
stations of the Catalonia area, using the Laplacian interpolation.

that cannot be reconstructed well (R2 of 0.30). Looking further into the results, we see
how the cluster that is best predicted (blue cluster) is the one corresponding to an area
with the highest density of reference stations while the second one (red cluster) has a
few stations nearby. Furthermore, it can be observed how the clustering algorithm is
able to group the nodes that do not benefit from the neighborhood information, it is to
say, related nodes are grouped together and the remaining cluster contains those sen-
sors that do not belong to any other cluster. However, we note that unrelated nodes can
be included in the same cluster but still the graph learning algorithm will take care of as-
signing the weights corresponding to those relationships. Regarding the NO2 and PM10,
Figures 5.9.b) and c) respectively, we see how the R2 has worsened a little from 0.42 to
0.40 and from 0.26 to 0.20 with respect to learning the whole graph. In the case of the
NO2, there is only one cluster that has a good average CV R2 (red cluster), which corre-
sponds and some other reference stations located nearby. The other clusters have sen-
sors whose reconstruction is not so good, it can be observed that they are much more
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distributed stations, a less spatially dense network. In the case of PM10, it is observed
that in one of the clusters R2=-1.17, with a negative value, which means that the model
does not follow the trend of the data, and therefore fits worse than if there was a null
model. In general, none of the clusters obtains a good R2, given the difficulty of predict-
ing PM10, thus we can observe that the clustering results in one very large cluster (red)
and two other small clusters, since in general the relationships between PM10 nodes are
not well defined. These clusters correspond to nodes that cannot be reconstructed given
their location and lack of influential neighboring information.

Table 5.8: Comparison of the average R2 using one single graph and a graph per cluster.

Data set Original R2 Cluster R2 Problem size reduction

O3 0.66 0.67 ↓ 47.83%
NO2 0.42 0.40 ↓ 48.33%
PM10 0.26 0.20 ↓ 24.24%

Table 5.8 shows the average CV R2 using a signal graph and using clustering method-
ology to improve the scalability. The coefficients of determination are mostly main-
tained or are slightly lower, so the scalability is improved at almost no signal reconstruc-
tion cost. The "problem size reduction" label indicates the reduction in the size of the
resulting graph learning with respect to the original case, in the cluster-based learning
case, the size is defined by the size of the largest cluster, which will be the computational
bottleneck. Therefore, the problem size is reduced to around 24-48%, meaning that the
largest cluster is of size 75-52% of the original graph, in almost all cases. As a summary,
it is suggested that the problem of graph learning can be broken down into C problems
with C clusters with the most similar reference stations, thus eliminating connections
between subgraphs without a large impact on the signal reconstruction performance.

5.5. CONCLUDING REMARKS & FUTURE WORK

I N this chapter, we have reviewed the first question regarding the analysis of air pollu-
tion sensor networks using graphs, which addresses the first aspect to be taken into

account when analyzing this type of network data:

(R.Q.2.1): What different techniques are best suited to infer a graph for a sensor network? Can
neighboring nodes be used to reconstruct sensor measurements using the graph and
signal reconstruction techniques?

In short, we have introduced a graph-based methodology for analyzing air pollu-
tion sensor networks, where a graph is learned to describe the existing relationships be-
tween the different sensors that compose the monitoring network. In this way, we have
shown the main graph inference techniques in order to reconstruct the network mea-
surements using both supervised (MLR) and semi-supervised (Laplacian interpolation)
ML models. We have shown the importance of taking advantage of the relationships be-
tween nodes in a network, where the concentrations in the neighborhood of a sensor
have been shown to provide information about the concentrations in that sensor. Three
graph learning methodologies have been studied. The first one, the graphical Lasso,
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Figure 5.10: Graphs provide an accurate, yet flexible solution to air pollution sensor network analysis.

has been affected by the multicollinearity present in this type of network. Even so, this
data-driven method has been able to obtain the sensor neighborhoods that have pro-
vided a good estimation by multiple linear regression. The method based on geodesic
distances, based on prior information, has resulted in the worst performance in terms of
network data reconstruction. That is because the low-cost air pollution sensor networks
represent complex relationships that can be conditioned by many factors (e.g., location,
emission sources, etc.) then the distances do not correctly represent the relationship
between the sensors in the network. Finally, the graph signal processing method based
on the smoothness of the graph signal has been the model that has obtained both the
best neighborhood for the sensors and the best description of the relationships between
sensors, resulting in a good reconstruction using both supervised and semi-supervised
models.

As for the use of network information, through signal reconstruction, we have seen
how O3 and NO2 can be approximated quite well using the concentrations of neighbor-
ing sensors (i.e., in nearby locations or related sensors). In addition, results obtained in
the H2020 Captor Heterogeneous network have shown that by learning the sensor re-
lationships correctly, network nodes can be reconstructed with an accuracy similar to
that of a LCS. That is, if we have a reference station at a site and learn the relationships
between the concentrations at that site and its neighboring sensors, they provide an es-
timate similar to that of a LCSs. Regarding the scalability of the framework, we have
observed how graph learning can be approached cluster-wise by dividing the network
into C clusters to learn C disjoint graphs. The bottleneck of the improvement in scala-
bility relies on the size of the largest cluster. We have carried out an experiment where
we have observed, with C = 3, how the average error in the signal reconstruction is very
similar to using a single graph, C = 1, indicating how similar nodes can be grouped and
dissimilar nodes do not need to participate in the signal reconstruction.

Ultimately, the GSP-based/semi-supervised methodology has been the most effec-
tive, since the smoothness-based method has been able to obtain the best graph for
signal reconstruction, including the sparser solutions. The reconstruction by means of
Laplacian interpolation has proved to be very practical in the case of this type of network,
where any node can present missings, even the reference instrumentation. Therefore,
graphs have proven to be an effective alternative for the reconstruction of network data,
flexible to adapt to failures in any node of the network, and simple and interpretable.
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Graphical Lasso

• Has been seen to suffer from multicollinearity, so that for dense graphs the results
are not reliable.

• λ hyperparameter allows for controlling the density of the obtained graphs, pro-
ducing well-conditioned results.

• It has learned meaningful relationships for less dense graphs, resulting in good sig-

nal reconstruction results.

Distance-Based

• It has not been effective in learning relationships between air pollution network
sensors since these may have complex relationships not well defined by distances.

• Sensors’ neighborhoods have not been correctly discovered.

Smoothness-Based

• It has been able to learn relationships between significant sensors from the data.
α and β hyperparameters allow the inference of graphs with different degrees of
connectivity and smoothness.

• It has been able to obtain sparse graphs describing correctly the relationships be-
tween sensors, being able to obtain a near-optimal signal reconstruction by means
of Laplacian interpolation.

• Its performance together with the Laplacian interpolation has proven to be the

most efficient model in signal reconstruction, being able to adapt to the case in

which any of the nodes may present missings.

Signal Reconstruction Performance

• O3 and NO2 concentrations have been well approximated using concentrations
from neighboring sensors.

• Given the learning of the correct relationships between network sensors, the results

for the O3 show a performance in the reconstruction of the network data similar to

the low-cost sensors’ performance.

Scalability

• The most demanding task is the graph learning optimization problem which scales
quadratically with the number of network nodes N .

• A cluster-wise methodology can be applied to improve scalability by dividing the

node set into C clusters using a clustering algorithm to learn C disjoint graphs.

As for future work on graph learning techniques for air pollution sensor networks,
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it would be interesting to study the case of mobile sensor networks where the graphs
can be dynamically adapted according to the network needs to take advantage of the
evolving relationships between mobile sensor measurements.

Practical Tip !

Right after the deployment of a sensor network, one can use a data-driven smoothness-
based graph learning model to infer the graph representation of the network and benefit
from sensor relationships. In the case of a large network, a cluster-based approach can be
used to speed up the graph learning.

□ From now on, we assume that the smoothness-based graph learning method is the
most suitable algorithm for this kind of network and we use this graph inferring algorithm
for the rest of applications and studies.





6
GRAPH SIGNAL RECONSTRUCTION

TECHNIQUES FOR IOT SENSOR

NETWORKS

Religion is a culture of faith;
science is a culture of doubt.

Richard P. Feynman

In the previous chapter, we have seen how air pollution sensor networks can be repre-
sented by graphs and how their measurements can be interpreted as signals defined over
graphs. In fact, different techniques to learn a graph that represents a sensor network in
order to reconstruct the measurements of the different network nodes have been tested.
The next step is to explore different graph signal reconstruction (GSR) techniques that
can be used to take advantage of the information from network sensors in a joint way in
order to perform data quality maintenance tasks. Therefore, following the same graph-
based approach, we evaluate different GSR models, coming from different fields, such
as semi-supervised learning, signal processing, or kernel methods, and assess their ef-
fectiveness in the reconstruction of O3, NO2, and PM10 measurements in environments
where any sensor may need to be reconstructed [108, 119, 120].

This chapter is structured as follows; section 6.1 describes the need for GSR models
and their applicability in air pollution sensor networks. Section 6.2 describes the differ-
ent models tested and section 6.3 presents the experiments carried out. Finally, section
6.4 concludes the chapter. This chapter presents the findings made in “Graph Signal
Reconstruction Techniques for IoT Air Pollution Monitoring Platforms“, IEEE IoT-J, [82].

6.1. GRAPH SIGNAL RECONSTRUCTION FOR SENSOR NETWORKS

G RAPHS have proven to be a good tool to represent the sensor network measure-
ments and enable the interpretation of network measurements as signals defined

over graphs [21, 100]. In this way, by means of a network topology, it is possible to take
advantage of information from similar sensors in order to flow information from the net-
work to the sensors of interest. The topology corresponds to the first cornerstone of the
graph signal processing-based framework, where the relationships between sensors and
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the neighborhoods of each one of them are defined. The second cornerstone is the signal
reconstruction model, in this case, we refer to GSR since it allows for taking advantage
of the information defined by the graph and the network measurements to reconstruct
sensor measurements.

There are a large number of direct applications for generating a graph with reference
stations and LCSs and overlaying a signal reconstruction mechanism in which several
of the network nodes participate. The principle behind this technique is to obtain the
relationships between the network sensors by means of a graph learned from the data,
resulting in a smooth structure with respect to the measured data. So, the data mea-
sured by the different sensors can be used by signal reconstruction methods to obtain
estimates and maintain the quality of the network data, e.g., the imputation of missing
values. It is known that sensors can be calibrated with supervised ML methods using
arrays of sensors [15, 27, 78]. If one of the array measurements is missing, the concen-
tration of the pollutant cannot be estimated and a gap in the measurements occurs [121,
122]. This measurement can be estimated using sensor neighbors that measure the same
phenomenon and that is highly correlated with the data from the sensor that has the
missing value, i.e., like a spatial interpolation. Other examples where signal reconstruc-
tion methods can be applied overlaid on a graph constructed from the data are sensor
drifts [18, 123], the creation of virtual sensors [124] and the creation of proxies [69, 121,
122]. The deterioration of the data quality of these network sensors can be mitigated if
during the network deployment, a sensor’s signal is reconstructed using other sensors,
which are potentially non-problematic, and are highly correlated with the problematic
sensor. Hence, GSR for air pollution sensor networks is key to harnessing network infor-
mation and maintaining data quality, where unobserved nodes (e.g., sensors with miss-
ing samples, drifting sensors, etc.) are reconstructed from a subset of observed nodes
in the graph, also including places where there are no physical sensors (virtual sensors)
[121, 124].

Virtual sensors are nodes in which it is difficult to deploy a physical sensor, and in
which the value of the pollutant is estimated from values in the vicinity [125]. Thus,
GSR can also help maintain network data quality by obtaining virtual sensor estimates
when any of the nodes are under maintenance or have been relocated. This application
is studied in detail in the next chapter 7.

All in all, signal reconstruction is, therefore, a key technique to benefit from the mea-
surements of similar sensors, including reference stations, which can correct data for
multiple applications. Indeed, this signal reconstruction can be seen as a form of spa-
tial interpolation at the precise location of the nodes when nodes do not coincide in the
same locations. Thus, a node’s signal is reconstructed using other spatially distributed
sensors’ measurements.

6.1.1. GRAPH SIGNAL RECONSTRUCTION: STATE OF THE ART

There is a wide variety of GSR models coming from different fields, in fact, we can define
GSR as a model that uses the observed network measurements and the network topology
described by the graph to complete the unobserved measurements. Indeed, there are
methods from the field of semi-supervised learning such as the Laplacian interpolation
(interpolated regularization from Belkin et al. [108]) that use the Laplacian of the graph
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Figure 6.1: Graph signal reconstruction setting, where at a given time instant t a graph signal x defined over
a learned graph topology G presents gaps, unobserved nodes U , and these gaps are completed using a graph
signal reconstruction model f (·).

to extrapolate the observed values to those that are not, maximizing the smoothness of
the resulting signal. Other techniques, based on signal processing, use the Fourier trans-
form assuming certain signal’s transform support to recover the full signal given some
measurements [119]. Some other works, address the GSR task from the kernel point of
view, kernelizing the signal reconstruction estimator and obtaining the kernel ridge re-
gression (KRR) [120]. Moreover, matrix completion methods are a well-known family of
methods, which are transductive, that complete the missing entries of the data matrix
assuming that it has a lower rank representation; e.g. the kernelized probabilistic matrix
factorization (KPMF) [126] that uses graph kernels to factor the matrix. In addition, an-
other recent field that has benefited from graph signal processing (GSP) tools are graph
neural networks (GNN). Here, the definition of the convolution operator through graph
filtering operations allows the development of convolutional neural networks in irregu-
lar domains such as graphs. Among the neural networks developed we find ChebyNet
[127], which approximates convolution filtering through a Chebyshev polynomial filter,
or the inductive graph neural network Kriging (IGNNK) [128], a 2-layer diffusion con-
volution neural network that allows reconstructing any of the nodes through a subnet-
work selection scheme during the training. However, the two last techniques need to
be further developed given that matrix completion methods do not naturally fit into the
problem of signal reconstruction, as for each new sample they need to be retrained. Be-
sides, there does not exist much literature about graph neural network architectures for
GSR in cases where data is limited. We restrict the comparison of reconstruction meth-
ods to linear models since nonconvex models usually require more data, which are often
unavailable in LCS deployment environments. Moreover, nonconvex models are more
difficult to adapt to environments where any subset of nodes can have missing data.

6.1.2. GRAPH SIGNAL RECONSTRUCTION IN AIR POLLUTION SENSOR NET-
WORKS

Recently, GSR models have been applied to data from particulate matter (PM) sensor
networks [129, 130]. The matrix completion problem has also been tackled using varia-
tional graph autoencoders (VGAE) applied to NO2 and PM data sets [131]. Graph con-
volutional recurrent neural networks have also been used for PM data [132]. However,
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as mentioned above, the matrix completion approach to signal reconstruction, or the
need for graph neural networks for large amounts of training data, can make it diffi-
cult to use these models in LCS network deployments with limited data. This remains
an open field of research as there is little work on signal reconstruction in sensor net-
works, which may have their own data requirements, computational requirements, as
well as the need for real-time prediction for monitoring applications. Furthermore, in
most cases, GSR models for air pollution are applied to graphs created from the geodesic
distances of the nodes [129, 131, 132]. However, in the previous chapter 5 we have evalu-
ated the effectiveness of different graph learning techniques, where graphs learned from
data in air pollution sensor networks resulted to be most precise technique given the
complexity of air pollution correlations between different sites as well as the variability
of LCSs. Thus, we chose to learn the graph from the data upon which we apply different
GSR techniques.

6.1.3. GRAPH SIGNAL RECONSTRUCTION SCENARIOS & MOTIVATION
Regarding the use of GSR models for structured measurements of air pollution moni-
toring sensor networks, we can differentiate two scenarios in the signal reconstruction,
which we name supervised and semi-supervised:

A) Supervised scenario or the scenario where a subset of network nodes are to be
predicted from a fixed set of observed nodes. In this case, a GSR model can be
trained as if it were a supervised machine learning model. Moreover, supervised
ML models could be used if no loses are assumed.

B) Semi-supervised scenario or the scenario in which any node may have missing
data and consequently the subset of unobserved nodes or nodes to be reconstructed
may vary from one time instant to another. Hence, the reconstruction model has
to be flexible and transductive, in order to deal with possible missings and a vari-
able set of observed nodes. This scenario is the one studied in this chapter because
of its importance in LCS networks, where these nodes are prone to failures, and re-
construction of any node may be required.

To sum up, in this chapter, we opt for the use of linear GSR models superimposed on
a graph learned from the data, given their low data and low computational requirements.
This allows extending the use of these techniques to both sensor deployment environ-
ments where the data may be scarce, and to environments where any node could fail.

6.2. GRAPH SIGNAL RECONSTRUCTION MODELS

I N this section, we describe the different GSP models studied in this chapter, but first
we briefly review the notation necessary to understand these models. We shall define

the graph upon which we will apply the different models as G = {V ,E ,W}. We learn the
Laplacian matrix L ∈ RN×N by means of the smoothness-based optimization problem
defined in [104]. We recall from the previous chapter how the smoothness-based model
has turned out to be the best graph learning model for this type of sensor network.

The goal of graph learning is to obtain the implicit relationships between sensors
that form the air pollution monitoring network so that the graph can be used later to
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flow information between similar sensors.
Once we have defined the graph G on which the signal reconstruction models will be

applied, we can define the purpose of using signal reconstruction. Signal reconstruction
can be used to maintain the data quality of a network. Estimates can be obtained for
a sensor that may present problems (e.g., missing value, sensor malfunction, drift, etc.)
using information from its neighboring sensors. In addition, in a worst-case scenario,
such estimation can also be performed when information is partial, i.e., there is more
than one sensor whose signal needs to be estimated or presents missing data.

Given the set of network nodes V = {1, . . . , N }, where N is the number of nodes/sen-
sors, we consider the problem of having a subset of observed nodes M ⊆ V , for which
their corresponding measures are available, being |M | = M the number of observed
nodes. The aim is to estimate the subset of unobserved nodes U = V \ M using a GSR
model that regresses the function f : RM → RU , where |U | =U is the number of unob-
served nodes, assuming a certain structure for the regression function f (·). Depending
on the regression criterion the resulting graph signal x̂ ∈ RN will minimize the smooth-
ness of the signal with respect to the graph TV(x̂,L) or minimize the mean squared error,
among others. Now, we enumerate and describe the different GSR models analyzed:

1) Laplacian interpolation: also known as graph interpolated regularization1 by Belkin
et al. [108]. This model estimates the set of unobserved measures xU = {xu : u ∈U }
by minimizing the quadratic form of the Laplacian given the set of observed mea-
sures xM = {xm : m ∈M } so that the resulting graph signal x̂ is smooth with respect
to the Laplacian L. The optimization criterion is defined as:

min
x̂∈RN

x̂TLx̂

s.t. x̂m = xm , ∀m ∈M ,
(6.1)

The estimator above corresponds to the linear combination of the neighbors’ mea-
surements, xN (xu ), of the target sensor xu weighted by the values of the Laplacian
LuN (xu ). For further details about this model refer to the previous chapter 5.

2) GSP low-pass reconstruction: in the field of signal processing, sparse signal re-
covery using an orthogonal transform is a common technique [119]. Precisely, an
orthogonal transform, e.g., the discrete Fourier transform (DFT), is usually used
assuming that a signal x is bandlimited in that transform domain and that the
support of the transform is known and low-pass. This can be translated to graph
signals where the notion of frequency defined for the graph discrete Fourier trans-
form (GDFT) can be used [22]. Therefore, this technique recovers the set of un-
observed values xU assuming that the GDFT coefficient vector of the signal x is
sparse and of low-pass nature, meaning that it has K non-zero components cor-
responding to the K lowest frequencies (smallest eigenvalues λi of L). Recall that
the Laplacian matrix admits the eigendecomposition L = UΛU−1, the GDFT of a
graph signal x can be computed as:

X = U−1x (6.2)
1Lately, this problem has been redefined within the graph signal processing context by replacing the Laplacian

matrix by a graph shift operator [113].
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Now, a K -sparse GDFT coefficient vector of the following form is to be recovered:

X = [X0, . . . , XK−1,0, . . . ,0]T (6.3)

For this purpose a subset of measurements xM are used to recover the sparse co-
efficient vector by solving the following system:

xM = UMK XK (6.4)

Depending on whether M > K or M < K , eq. (6.4) corresponds to an overdeter-
mined or undetermined system of equations. Generally, M > K , the system is
overdetermined so the solution of the above system in the least squares sense is
given by XK = U†

MK xM , where U†
MK = (UT

MK UMK )−1UT
MK is the matrix pseudo-

inverse of UMK . The nonzero coefficients are obtained this way, and after ap-
pending the corresponding zero coefficients, the inverse graph discrete Fourier
transform (IGDFT) x̂ = UX is computed to obtain the complete set of measure-
ments x̂ ∈ RN at all vertices i ∈ V . For the case, M < K the solution is computed
using the right pseudoinverse, while for M = K the solution is computed by matrix
inversion.

3) Kernelized graph signal reconstruction: Romero et al. [120] introduced the ker-
nelized ridge GSR. As in the case of classical linear regression, given a set of noisy
observations {xm= g (m)+ϵm : ∀m∈M }, the kernel regression estimates the under-
lying function g : V →R in a reproducing kernel Hilbert space (RKHS) H , which is
a space of functions f :V →R:

H =
{

f : f (i ) =
N∑

n=1
αnk(i ,n),αn ∈R

}
(6.5)

Where k:V ×V →R is a graph kernel map that defines some similarity between nodes.
After some manipulation and the application of the representer theorem, which
states that the solution can be expressed as a linear combination of the kernel map
values of the observed nodes ĝ (i )= ∑

m∈M
ˆ̄αmk(i ,m). The kernel ridge regression

(KRR) problem is defined as:

α̂M = argmin
α̂M ∈RM

1

M
∥xM −KMMαM ∥2︸ ︷︷ ︸

MSE

+µαT
M KMMαM︸ ︷︷ ︸
RK HS nor m

(6.6)

Where the mean squared error (MSE) is used as the loss function, the regulariza-
tion term is the RKHS norm of the solution g (·). This problem has a closed-form
solution:

α̂M = (KMM +µMIM )−1yM (6.7)

The key to the successful application of kernel-based GSR is in kernel selection.
Thus, based on the assumption that the signal evolves smoothly over the graph,
graph kernels that capture such prior information can be used, a common choice
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is the diffusion kernel (KRR-DIFF) where r (λ)= eσ
2λ/22:

K = r †(L) = Ur †(Λ)U−1 (6.8)

The vertex-covariance kernel (KRR-COV) can also be used, which is based on the
covariance instead of graph structure, which turns out to be the local linear min-
imum mean squared error (LMMSE) estimator on a Markov random field (MRF)
[120]. Since the actual covariance matrix Σ is unknown, the graphical lasso has
been used to estimate the covariance matrix Σ̂ throughout the experiments. Given
the presence of multicollinearity in air pollution data (see chapter 5) and that the
covariance matrixΣ has to be estimated, the result is suboptimal, i.e., MSE(Σ̂, x̂) ≥
MSE(Σ, x̂).

Definition 14 A linear minimum mean squared error (LMMSE) estimator is an es-
timator minimizing the MSE with the strict form of a linear estimator. This means,
given two random variables y and x the conditional expectation can be expressed
as E[y |x] =β0 +βx, where the estimator β,β0 is LMMSE if it minimizes the MSE.

Given the analytical form of the solution for the methods described above, it can be
noticed how the reconstruction of any of the methods corresponds to a linear combi-
nation xU=βxM of the observed nodes {xm : m∈M }. Hence, Table 6.1 shows how the
β coefficients are calculated for the different reconstruction models. As it can be seen,
the main operations correspond to a matrix inversion and multiplication; in the case of
Laplacian interpolation (Lap.Int.) the β are calculated by the Laplacian L, in the case of
GSP by the Laplacian eigenvector matrix U, in the case of the kernelized ridge regression
with diffusion kernel (KRR-DIFF) by a pre-computed kernel matrix K, and in the case of
the kernelized ridge regression with the vertex-covariance kernel (KRR-COV) by the data
covariance matrix Σ̂.

Table 6.1: Equivalence of the models to a linear model. xU are the unobserved values and xM are the observed
ones.

Model: xU =βxM

Lap.Int β=−L−1
UU

LUM

GSP β= UU K (UT
MK UMK )−1UT

MK
KRR-DIFF β= KU ·ΦT(ΦKΦT +µMIM )−1

KRR-COV β= Σ̂U ·ΦT(ΦΣ̂ΦT +µMIM )−1

As it can be seen in the table above, the different models can be computed using lin-
ear algebra, which makes them computationally tractable for the semi-supervised sce-
nario studied in this thesis, where the set the unobserved nodes U may change from
time to time3.

2There exist other graph kernels such as the Laplacian kernel (r (λ) = 1+σ2λ), the diffusion kernel (r (λ) =
eσ

2λ/2) or the p-step random kernel (r (λ) = (a −λ)−p , a ≥ 2).
3A python library implementing the methods mentioned above is available at https://bitbucket.org/sans-

rg/ieee-graph-signal-reconstruction/.

https://bitbucket.org/sans-rg/ieee-graph-signal-reconstruction/
https://bitbucket.org/sans-rg/ieee-graph-signal-reconstruction/
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6.3. EXPERIMENTAL EVALUATION

I N this section, the different GSR models described in the previous section 6.2 are
evaluated in a semi-supervised environment, where any node may need to be recon-

structed. More precisely, in this section we: i) describe the data sets used in the subse-
quent experiments, ii) describe the methodology to learn the graph, as well as the results
of learning the graph depending on the GSR model used, iii) experiment with the indi-
vidual reconstruction of each node of the network (U = 1), and iv) experiment with the
reconstruction of random subsets of nodes of increasing size (U>1), simulating different
simultaneous reconstructions on different nodes, i.e., simulating unavailable nodes.

In order to carry out the different experiments, i.e., train the GSR model and learn the
graph, we proceed as follows; i) we use 100% of the data set for cross-validation (CV), ii)
we perform a grid search over the graph learning hyperparameters and the signal recon-
struction hyperparameters via 5-fold CV, iii) in each of the folds we learn the graph using
the training data and we reconstruct each one of the nodes in the validation set and re-
port the average root-mean-squared error (RMSE) between all nodes, and iv) report the
CV metrics for the best-performing hyperparameters and graph topology. From now on,
all metrics reported throughout the chapter are CV metrics.

6.3.1. DATA SETS
This section introduces the data sets used for the comparison of the GSR methods de-
scribed above. Nowadays, there are many open data initiatives to promote transparency
and encourage research. The Spanish government carries out the measurement of air
pollution levels by means of reference stations, which are worth thousands of euros
given their high accuracy, and makes such data openly available. Hence, data captured
by reference stations4 in the area of Catalonia, Spain, over an area of 32,108 km2 have
been selected for three pollutants; tropospheric ozone (O3), nitrogen dioxide (NO2) and
particulate matter 10 (PM10). In this chapter, unlike the previous chapters, with the ex-
ception of the scalability experiment in the previous chapter 5, we use a reference station
network deployed over a large area, such as the area of Catalonia, Spain. This allows us
to evaluate the reconstruction capability of the different instruments depending on their
location and the number of neighboring sensors.

Table 6.2: Summary of the data sets used to carry out the different experiments throughout the chapter.

Data Set Pollutant # Nodes # Samples Period Mean (µgr/m3) Pooled STD. (µgr/m3)

1 O3 46 1155 2019/01/01 - 2019/05/31 66.84 28.61
2 NO2 60 983 2019/01/01 - 2019/05/31 23.46 16.52
3 PM10 33 709 2019/01/01 - 2019/05/31 20.11 11.51
4 O3 8 2612 2017/06/18 - 2017/09/16 64.92 34.84

These pollutants exhibit different spatial behavior, which allows for studying the sig-
nal reconstruction under various spatial conditions. In addition, the use of reference
stations over a large area makes it possible to investigate the feasibility of building a large
network and the application of these methods. Table 6.2 shows the characteristics of the

4These data are available at http://mediambient.gencat.cat/ca/05_ambits_dactuacio/atmosfera/
qualitat_de_laire/vols-saber-que-respires/descarrega-de-dades/.

http://mediambient.gencat.cat/ca/05_ambits_dactuacio/atmosfera/qualitat_de_laire/vols-saber-que-respires/descarrega-de-dades/
http://mediambient.gencat.cat/ca/05_ambits_dactuacio/atmosfera/qualitat_de_laire/vols-saber-que-respires/descarrega-de-dades/
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Figure 6.2: Graph learning and GSR pipeline. The graph learning model and the GSR model may have different
hyperparameters. Both the graph and the signal reconstruction model can be used to recover an incomplete
graph signal (U ≥ 1).

data sets used, and Figure 6.4 presents the location of the reference stations for the data
sets. Moreover, Table 6.2 shows the means for the pollutants as well as the pooled stan-
dard deviation to better interpret the error measures in the following sections. These
three data sets will be used to show the ability to reconstruct signals in an air pollution
monitoring network in a regional area such as the metropolitan area of Barcelona, Spain.

6.3.2. LEARNING THE GRAPH

Figure 6.2 shows the pipeline for the graph learning and posterior GSR of any graph sig-
nal. First, given a training data matrix Xtr, corresponding to a set of training graph sig-
nals, and the graph learning method with its hyperparametersα andβ, we get the Lapla-
cian matrix L that describes the relationships between the nodes. Then, given a GSR
model and its hyperparameters - none for the Laplacian interpolation, K for the GSP,
µ and σ2 for KRR-DIFF and µ for KRR-COV - we can reconstruct a graph signal at any
time t given a subset of observed nodes M . Actually, this is the methodology performed
during the CV, where the graph G is learned using the training set of that fold and the
nodes in the validation set, of the same fold, are reconstructed. The four GSR models are
transductive, it is to say, the coefficients for the reconstruction can be calculated given
a set of observed nodes to reconstruct the unobserved ones, but if the set of observed
nodes changes (e.g. some nodes have missings) the model needs to be recalculated to
reconstruct the new set of unobserved nodes. It is important to note that the different
GSR models have different hyperparameters, structures, and objective functions, so it is
possible that the graph selection depends on the signal reconstruction model, making
its selection linked.

There are then two blocks of hyperparameters; one corresponds to graph learning
and the other to signal reconstruction. Therefore, it is possible that for a given graph,
with a certain number of edges, two methods perform in a different way. For this rea-
son, CV is done with all the hyperparameters, both for the graph learning and for the
signal reconstruction, since as mentioned before the performance of the reconstruction
method can be associated with the obtained graph. To illustrate this, Figure 6.3 shows
the average CV RMSE for each of the methods given the graph obtained. That is, the
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average RMSE of CV for each α and β and the hyperparameters of the signal reconstruc-
tion method that have obtained the lowest error (the best K for GSP, the best µ andσ2 for
KRR-DIFF and the best µ for KRR-COV). The case of the kernelized ridge regression with
the vertex-covariance kernel is a special case, where the covariance matrix is estimated
using the graphical Lasso algorithm with a different λ hyperparameter values, thus ob-
taining an adjacency matrix (given the precision matrix Θ = Σ−1) but not a Laplacian
matrix.

(a) O3 data set. (b) NO2 data set. (c) PM10 data set.

Figure 6.3: Average CV RMSE obtained for graphs with a different number of edges and the best signal recon-
struction hyperparameters. The line in green corresponds to the Lap.Int., the blue line corresponds to GSP,
and the red and black lines correspond to KRR-DIFF and KRR-COV respectively.

The same trends can be seen in the three plots in Figure 6.3. The Laplacian interpola-
tion gets its best error for a low number of edges, increasing later as the number of edges
in the graph grows. The KRR-DIFF finds its lowest RMSE, similar to that of the Laplacian
interpolation, but with a larger number of edges. The GSP reconstruction shows great
instability for very sparse graphs, but its best error is obtained as the density of the graph
increases. Finally, the case of KRR-COV shows great instability due to the multicollinear-
ity present in the data, as mentioned in the previous chapter 5, in many cases, it is not
possible to obtain the complete graph with the graphical Lasso due to this problem since
the matrix that is the object of manipulations may be ill-posed. Also for similar graphs,
the error can vary a lot, but the best error seems to be obtained with 50% of the edges. So,
for a low number of edges, the Laplacian interpolation and KRR-DIFF are the best, the
KRR-COV seems to obtain its best error with a relatively small number of edges, and the
low-pass-based reconstruction needs a large number of edges (around 100%) to obtain
its best performance. Moreover, the KRR-DIFF is the most stable method, being able to
maintain a good performance independently of the graph, its number of hyperparam-
eters favor this effect being able to adapt better. On the other hand, the GSP and the
KRR-COV are the ones that show more variability for sparse graphs and the Laplacian
interpolation works the best for sparse graphs. Although the KRR-COV is the best linear
estimator for all three data sets, Figure 6.3 shows how for sparse graphs (<25% of the
edges) the other methods produce a lower error. This is because the smoothness-based
graph learning method is able to find a better set of neighbors per node for signal recon-
struction than graphical Lasso, so although KRR-COV is optimal given a dense graph, it is
not able to obtain the best performance for sparse graphs. In summary, each method be-
haves differently for a graph, so the graph learning task must be coupled with the signal
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Table 6.3: CV performance metrics for the different air pollutant data sets and reconstruction methods.

Method
O3 NO2 PM10

RMSE MAE R2 # Edges RMSE MAE R2 # Edges RMSE MAE R2 # Edges

Lap.Int. 12.41 9.51 0.66 216.80 8.72 6.44 0.42 369.80 8.16 5.66 0.26 297.60
GSP 13.43 10.44 0.56 1035.00 9.03 6.73 0.26 1761.20 8.54 5.99 0.16 528.00

KRR - DIFF 12.02 9.21 0.69 614.40 8.49 6.27 0.46 1514.00 8.10 5.61 0.29 481.80
KRR - COV 11.72 8.98 0.71 328.80 8.23 6.04 0.50 638.40 8.03 5.51 0.30 198.00

reconstruction model in the CV procedure.

6.3.3. SIGNAL RECONSTRUCTION PERFORMANCE: U=1
Let us see the result of learning the graph and performing signal reconstruction given
that the data of all node neighbors are available, i.e., the number of unobserved nodes
|U | = U = 1 is one for each reconstruction. The average CV metrics used are the aver-
age metrics for the reconstruction of each one of the network nodes. Table 6.3 shows
the minimum average CV RMSE between stations, the average CV mean absolute error
(MAE), as well as the corresponding average CV coefficient of determination R2, and the
average number of edges for the data sets and signal reconstruction methods. The meth-
ods appear to perform similarly as in the previous experiment, with KRR-COV being the
best and GSP the worst. For the O3, we can observe how the GSP is the worst method
obtaining an R2 of 0.56 with a complete graph (1035 edges) and the KRR with vertex-
covariance kernel is the best model obtaining R2 of 0.71 and 328.8 edges on average, fol-
lowed by the KRR-DIFF that obtains a similar performance with a denser graph (614.40
edges on average) and the Laplacian interpolation whose best performance is obtained
with a sparse graph. The same trend is observed for the NO2 where the KRR-COV obtains
the best performance with an R2 of 0.50 and 638.40 edges on average and followed by the
KRR-DIFF and Laplacian interpolation that obtain a denser and a sparser graph respec-
tively. Finally, the reconstruction methods applied to the PM10 data set obtain the worst
results with R2s around 0.16-0.3, but this time the KRR-COV performs the best with an
average R2 of 0.30, and the sparsest graph with 198.0 edges on average. As it has been
observed, the Laplacian interpolation obtains a good performance with a sparse graph
(approximately density of 25%) and the KRR-COV with a slightly denser graph, but al-
though the KRR-DIFF obtains its minimum with a dense graph, in figure 6.3, it can be
observed how it obtains a similar performance for sparse graphs. Thus, the three meth-
ods work well with sparse graphs, being the Lap.Int. and the KRR-DIFF the ones that
work better with sparse graphs.

O3 and NO2 can be estimated quite well by reconstructing the graph signal, but PM10

can not. The reason is that PM10 is more heterogeneous in the area of study than O3

and NO2, which makes it difficult to estimate using neighboring nodes. This means that
PM10 hotspots can appear instantaneously in one exact location with little repercussion
in nearby locations, requiring denser sensor networks to have related sensors. Among
the methods, the KRR-COV obtains the best results as it can be interpreted as the local
LMMSE estimator on a Markov random field. Nevertheless, as the covariance matrix is
estimated and the data suffer from multicollinearity, the result is suboptimal and the
graphical Lasso has not been able to obtain the covariance matrix with all dependen-
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cies (100% of the edges). However, the KRR-DIFF performs almost as well as KRR-COV,
followed by Laplacian interpolation which also shows good results.

The Laplacian interpolation has been able to obtain an error close to the optimal
local linear estimator (KRR-COV) since the smoothness of the Laplacian matrix with re-
spect to the training data is a criterion of the graph learning optimization problem. As
for the resulting graphs, the GSP method obtains the best performance with 100% of
the edges. On the other hand, the Laplacian interpolation obtains its best performance
with 21% of the edges (with respect to the complete graph) for O3, 21% of the edges for
NO2 and 56% of the edges for PM10. This is an interesting result since these methods al-
low obtaining a low RMSE with a small number of edges, which makes the graph sparse
when the number of nodes is increased. Furthermore, in the previous section 6.3.2, it
has been observed that the vertex-covariance method is no longer the best model for
sparse graphs, with approximately less than 25% of the edges.

Figure 6.4: Plots representing the CV result for the data sets using the Laplacian interpolation method. Top
figures show the graphs obtained with node color denoting the average CV R2 for each station. The nodes
highlighted in red denote reference stations with a CV R2 below 0.5. The bottom figures show the empirical R2

distribution of the graphs above.

Figure 6.4 shows the graphs obtained by the CV procedure using the Laplacian in-
terpolation method as the reconstruction method. The color of the nodes denotes the
average CV R2 of the given stations. As shown in Table 6.3, despite having an average
R2 of 0.66, many of the stations in areas with a high density of stations (e.g. Barcelona
area) have an R2 around 0.8. Thus, ozone values in denser areas of similar reference sta-
tions can be estimated effectively. The same is observed for NO2, although it presents a
lower spatial correlation, some reference stations obtain a coefficient of determination
larger than 0.7. Finally, PM10 can not be approximated quite well using similar reference
stations as most stations get an R2 smaller than 0.6.

The results show a good prediction for most of the stations. Figure 6.4 shows the
location of the nodes, some of them are far away from others or far from zones with a
density of stations. In the same figure, we can observe the reference stations highlighted
in red, which are those with a CV R2 smaller than 0.5. In the case of O3, these are the most
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distant stations, and only 10 out of 46. In the case of NO2, they already represent a larger
percentage of the network stations with 19 stations out of 60, and are more distributed.
Finally, in the case of PM10 the bad reconstructed stations represent the majority, 22
stations out of 33. This represents the idea that O3 and NO2 are more predictable due
to their homogeneity. This result indicates that if we look at the individual RMSE of the
stations instead of the global one, those stations that are in a high-density area achieve a
high R2 and, therefore, a good estimate, while those that are more distant and, therefore,
do not have many neighbors, do not take advantage of the nodes of the network as much.
As an example, if we considered as outliers the stations with low R2 and kept them out of
the calculation, the average R2 with the KRR-DIFF would improve from 0.69 to 0.78 for
O3 and from 0.46 to 0.65 in the case of NO2.

6.3.4. SIGNAL RECONSTRUCTION PERFORMANCE: U>1
The previous section 6.3.3 showed the CV error for the reconstruction of the signal of a
reference station (U = 1) when the others were available. In this section, we experiment
with a semi-supervised setting, estimating multiple nodes at the same time (U>1), since
we want to reconstruct several stations at once or we want to reconstruct some nodes
that have missing data. This scenario is of special interest in the air pollution monitor-
ing paradigm since in a heterogeneous network there will always exist malfunctioning
nodes, nodes with data losses, nodes in maintenance, and even the presence of virtual
sensors. That is why the GSR model needs to be flexible to couple with the absence of
data in neighboring sensors and estimate the signal in all nodes given a learned graph
topology. Given a fixed set of hyperparameters, those found in the previous section 6.3.3,
we calculate the CV error as done in the previous section, but instead of reconstructing
one node, selecting a random incremental percentage of nodes to be estimated simulta-
neously, as if they were virtual sensors during the validation set, and perform ten repeti-
tions.

(a) O3 data set. (b) NO2 data set. (c) PM10 data set.

Figure 6.5: Average CV error and its 95% confidence interval calculated as a t-student for several percentage of
observed nodes M and ten repetitions.

Figure 6.5 shows the average CV error with bands indicating its 95% confidence in-
terval computed as a t-student for the different signal reconstruction methods and data
sets. Figure 6.5.a) shows the results for the O3 data set. First of all, we can observe how
the GSP low-pass based reconstruction is the method that has the highest error with a
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95% of nodes available with 13.45 µgr/m3 followed by a large difference by the Lapla-
cian interpolation method with 12.22 µgr/m3. In the previous section (100% of nodes
available), the Laplacian interpolation (12.41 µgr/m3) already outperformed the GSP
method (13.43 µgr/m3). Moreover, as the percentage of available nodes decreases, the
GSP low-pass-based method is the reconstruction method whose error increases faster,
rising from 60% of nodes available. Thus, this method seems to be unable to gener-
alize to the semi-supervised setting. The Laplacian interpolation and the kernelized
ridge regressions are performing the best with a large difference. With 95% of the nodes
available, the kernelized ridge regression with a diffusion kernel obtains a CV RMSE of
11.91 µgr/m3 and the KRR with the vertex-covariance kernel obtains a CV RMSE of 11.50
µgr/m3, clearly, the KRR-COV is the lower-bound of KRR-DIFF and Laplacian interpola-
tion, and the three follow the same trend as the percentage of available nodes increases.
In these latter cases, the error is slightly smaller than in the previous section probably
due to the random selection of subsets of nodes, but it is noticed that with a high per-
centage of nodes available 95-80% the error increases from 11.91 to 12.34 µgr/m3 in the
KRR-DIFF case, and from 11.86 to 12.27 µgr/m3 in the vertex-covariance case. Finally,
the error of all the reconstruction methods seems to grow significantly from 40% of avail-
able nodes. In addition, there is also a factor that can affect the performance when sev-
eral nodes are missing, which is the graph density D(G ) or the number of neighbors per
node |N (xi )| (i.e., average graph degree), so that for sparse graphs the available number
of neighbors for each node {N (xi ) : i ∈ M } will be smaller. Each of the signal recon-
struction models obtains the best performance for a different degree of graph density,
so the number of edges can affect in this semi-supervised scenario. Thus, in addition to
taking into account the optimal signal reconstruction performance when choosing the
best graph, denser graphs can also be chosen for cases with extensive data losses.

In Figure 6.5.b) the same results can be seen for the NO2 data set. The GSP low-pass-
based method is the worst performing method, 8.66 µgr/m3, with a high percentage of
nodes available (95%). The two KRR methods obtain similar errors, 8.03µgr/m3 and 7.75
µgr/m3 respectively, in the case of NO2, the difference between the two is even less than
in the case of O3. The kernel ridge regressions and the Laplacian interpolation methods
show a similar pattern, the error with 95% of the nodes (57 nodes) is less than the av-
erage error of all the nodes (section 6.3.3) due to the random node subset selection. As
the percentage of available nodes decreases the error increases, although the increase is
moderate, the GSP low-pass method degrades considerably from 60% nodes available,
and for the kernel-based methods the error increase is produced from 40% to 20%, go-
ing from 9.57 µgr/m3 to 10.19 µgr/m3 and 9.33 µg r /m3 to 9.98 µgr/m3 for KRR-DIFF
and KRR-COV respectively. In summary, the kernelized ridge regressions and the Lapla-
cian interpolation perform similarly, and these methods get lower average R2 for the NO2

data since its concentrations are less smooth than the O3.

Finally, Figure 6.5.c) shows the results for the PM10 data set. Again, the methods
follow the same trend, where as the percentage of available nodes increases the error de-
creases. It is worth remembering that in subsection 6.3.3 the PM10 has been observed
not to be predictable using neighboring concentrations, achieving a maximum aver-
age CV R2 of 0.3 with the KRR-COV. Therefore, the same results are maintained in the
semi-supervised case where the worst method is the GSP-based low-pass reconstruction
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and the best is the KRR-COV followed closely by its similar with diffusion kernel and the
Laplacian interpolation. With a 20% of nodes available the methods get an error of 13.32
µgr/m3 with GSP, 9.17 µgr/m3 with Laplacian interpolation, 8.95 µgr/m3 with KRR-DIFF
and 8.81 µgr/m3 with KRR-COV.

In summary, we can conclude that Laplacian interpolation and kernel-based meth-
ods are robust and efficient in reconstructing the signal when an acceptable percent-
age (>60%) of nodes are available, and that efficiency decreases as fewer nodes become
available.

6.3.5. SIGNAL RECONSTRUCTION: SCALABILITY
Similar to the previous chapter 5 where clustering was proposed as a measure to improve
the scalability of graph learning and signal reconstruction, here we show the complexity
of the different reconstruction models studied in this chapter.

Table 6.4: Methods’ cost along with their hyperparameters.

Method Cost Hyperparameters Observations

Graph learning
Iterative algorithm, requires solving
iteratively a quadratic program and

a matrix RN×N inverse
α, β Easy to tackle cluster-wise

Lap. Int
Matrix inversion or multiplication

(depending on if |U | << |M |) None LUU may be singular

GSP
Matrix inversion or multiplication

(depending on if K << |M |) K
Needs L = UΛUT decomposition

once: O (N 3)

KRR-DIFF
Matrix inversion or multiplication

(depending on if |M | << |U |) µ, σ2 Kernel matrix K only needs to be
computed once: O (N 3)

KRR-COV
Matrix inversion or multiplication

(depending on if |M | << |U |) µ
Kernel matrix K only needs to be

computed once: O (N 3)

Table 6.4 shows the costs and the required hyperparameters for the methods. It is
important to mention that the learning of the graph is linked to the training of the recon-
struction method since their hyperparameters are selected by means of a 5-fold CV. In
this way, the more hyperparameters, the more dimensions the grid search will have and
the more cost the CV will have. For instance, learning the graph for signal reconstruction
by Laplacian interpolation will only require two hyperparameters (α andβ) for the graph
learning and none for the signal reconstruction method, and the CV will be faster than
with the other GSR models. The graph learning task is solved by iteratively addressing
a convex optimization problem that scales quadratically with the number of nodes N ,
so that, it is the most expensive task in the learning process. On the other hand, learn-
ing the graph for signal reconstruction with kernel ridge regression and diffusion kernel
will require four hyperparameters (α, β, µ and σ2) and, therefore, will be the one that
the grid search will take the longest. Similarly, to apply the kernel ridge regression with
vertex-covariance kernel the covariance matrix needs to be estimated with the graphical
lasso, which has one hyperparameter, implicitly learning a graph.

One way to speed up the CV is to fix the graph and then do the grid search on the
hyperparameters of the GSR model, resulting in a suboptimal result as we have already
seen how the choice of the graph is linked to the signal reconstruction model. As in the
previous chapter 5, the simplest way to improve scalability is to use the cluster-based
approach.
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6.4. CONCLUDING REMARKS & FUTURE WORK

I N this chapter, we have analyzed the performance of different GSR techniques that
can be coupled to the data-driven graph learning technique. Indeed, we have focused

on the particular environment of IoT sensor networks where any node can suffer losses,
ergo, the subset of sampled nodes can vary at each time instant t . Thus, we have tackled
the second research question posed regarding the application of graph techniques for
air pollution sensor networks:

(R.Q.2.2): How do different graph signal reconstruction techniques perform in air pollution
monitoring networks? What is specific about them? What problems can they pose?

First, we have analyzed the performance of the different GSR models depending on
the graph (and its sparsity) used. The results have shown how the different techniques
require a different graph, in the case of Lap. Int. the best performance is obtained for
a sparse graph, the GSP obtains the best performance for a dense graph, the KRR-DIFF
is quite inverse to the graph used, and the KRR-COV presents instability in the graph
learning.

Secondly, we have investigated the performance of the models in scenarios where
only one node is reconstructed and in scenarios where a subset of nodes is reconstructed,
U=1 and U>1. First, we have observed how Laplacian interpolation and KRR have been
able to obtain the best performance compared to GSP reconstruction. Furthermore, it
has been observed that O3 and NO2 can be correctly predicted with these methods as
opposed to PM10. The reason is the higher correlation between reference station data
for O3 and NO2, while PM10 data are more local and with a lower correlation between
stations. The KRR with the vertex-covariance kernel is the method that has worked best
because it is the minimum local linear estimator, but the Laplacian interpolation and
KRR with diffusion kernel work better for sparse graphs. Afterwards, we have studied the
reconstruction with an increasing percentage of nodes to be estimated at the same time
(e.g. nodes with missings) to simulate the semi-supervised learning paradigm. Again,
the kernel methods and Laplacian interpolation outperform the other method and pro-
duce very good results when 0-40% of the nodes are missing, with little increase in the
average error. Thirdly, we have also shown the complexity of the different GSR models
along with their hyperparameters.

Graph Signal Reconstruction For Air Pollution IoT Signals

• The selection of the best graph and best graph signal reconstruction hyperparam-
eters is coupled.

• Lap. Int. obtains the best performance for sparse graphs, GSP for dense graphs,
KRR-COV for denser graphs than the Lap.Int., and the KRR-DIFF for denser graphs
but its performance is quite invariant to the graph.

• O3 signals can be better reconstructed than NO2 signals, while PM10 signal obtain
a poor signal reconstruction given the low correlation between sensors’ measure-
ments.

• Kernel regression methods and Lap.Int. outperforms the GPS-based method.

• When more than a node is reconstructed, U>1, the average error increases a little



6.4. CONCLUDING REMARKS & FUTURE WORK

6

129

for 0-40% of unobserved nodes, while for >40% unobserved nodes the error in-
creases significantly.

In short, we have seen how different linear GSR techniques adapt to the scenario of
low-cost air pollution sensor network signals given their flexibility to deal with varying
unobserved node sets.

As future work, it would be interesting to study the adaptation of novel nonlinear
techniques such as graph neural networks for this scenario. In an environment such as
LCS networks where; i) any node can present problems, ii) there are limited calibration
data or training data for the models, and iii) as time progresses the sensors in the net-
work may present problems. Transfer learning approaches could be useful to augment
the training data sets and enhance the data requirements for the graph neural network
settings.

Practical Tip !

In the case of signal reconstruction using related sensor measurements, kernel ridge re-
gression and Laplacian interpolation are the most recommended techniques, with Laplacian
interpolation being the simplest (in terms of the number of hyperparameters) and most
effective technique for sparse graphs.





7
MAINTAINING SENSOR NETWORK

DATA QUALITY VIA DATA

RECONSTRUCTION

What you learn from a life in science
is the vastness of our ignorance.

David Eagleman

So far we have seen how most of the research has been based on the application of in-situ
sensor calibration techniques to improve the accuracy of low-cost sensors (LCSs) [15, 16,
133]. Data quality has been reported as an important issue in air pollution LCSs, how-
ever, their low cost allows to considerably increase the spatial resolution of governmental
networks formed by reference stations [6]. Therefore, there are many data quality prob-
lems that occur in LCSs during the lifetime of the deployment of these networks, prob-
lems such as the appearance of missing values, potentially caused by communication
problems or temporary failures in the nodes, or the presence of virtual sensors, either
because the sensor in question is under maintenance, has been relocated for mainte-
nance, or because there is no physical sensor in that location. For all these reasons,
post-processing techniques for heterogeneous sensor network data are important in or-
der to deal with this variety of applications and provide accurate measurements so that
the monitoring can be more reliable and these data can be used for different final appli-
cations.

Previously, graphs have allowed for describing the relationships between the differ-
ent sensors in a heterogeneous sensor network. Consequently, in this chapter, we study
how a framework based on learning a data-driven graph and using a graph signal recon-
struction (GSR) model provides the necessary flexibility to deal with a wide variety of
post-processing applications that may arise in heterogeneous air pollution sensor net-
work deployments. Firstly, section 7.1 introduces the problem and poses the main con-
tribution and goals of this chapter. Then, section 7.2 explains different post-processing
applications studied in the literature. Section 7.3 describes the proposed framework as
well as its range of applications. Section 7.4 explains the experiments carried out and the
corresponding results. Finally, section 7.5 concludes the chapter. This chapter presents
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the methodology and results explained in “Data reconstruction applications for IoT air
pollution sensor networks using graph signal processing“, Elsevier JNCA, [134].

7.1. DATA QUALITY IN HETEROGENEOUS AIR POLLUTION SEN-
SOR NETWORKS

G OVERNMENTS deploy high-precision instrumentation, called reference stations, in
different cities to monitor pollution and to be able to determine different kinds of

measures. These stations are capable of measuring and providing data for multiple reg-
ulated pollutants such as O3, NO2, NO, PM10, etc. The problem lies in the price of the
stations, which can cost tens of thousands of euros, which makes the number of stations
deployed in a territory small. Thus, the spatial resolution of the monitoring network,
defined as the number of stations available in an area, is small (e.g., measurements at
neighborhood or district level).

There are different ways to increase the spatial resolution of an air pollution moni-
toring network in an economically viable way but at the cost of a worse accuracy in the
measurements. LCSs in conjunction with enabling internet of things technologies (IoT)
have presented an economically viable solution to this problem since these sensors cost
around tens of euros. Therefore, the main line of research during the last years has been
based on the improvement of the data quality of this type of sensors [4, 53]. In this way,
nodes mounting LCSs can coexist with reference stations creating heterogeneous net-
works with a higher spatial resolution but with higher care of the network data quality
[6]. The main challenge in the deployment of LCSs has been the in-situ calibration of
these sensors, since they have to be calibrated at stations close to their deployment loca-
tion due to their high dependence on environmental conditions, e.g., temperature and
relative humidity [10, 11, 27].

Another alternative to increase the spatial resolution of a monitoring network is the
creation of virtual sensors, thus increasing the resolution without the need to physically
have more sensors [125]. Virtual sensing techniques can be based on the use of ma-
chine learning models or physical models. Some examples would be the use of machine
learning techniques, graph-based models, consensus algorithms, physical models, etc.
Besides, in the context of low-cost air pollution sensor networks, the use of virtual sens-
ing is not limited to increasing the spatial resolution, but in providing measurements for
sensor applications such as sensor recalibration, drift or aging correction, or the creation
of boundary data for numerical simulation models.

Definition 15 A virtual sensor for air pollution monitoring can be defined as a mathe-
matical model that estimates the air pollutant concentrations of interest without the need
to have a sensor physically located in a location. Virtual sensors are also named soft sen-
sors and digital twins in some fields, these terms have lately been used to denote algo-
rithms capable of simulating an entity.

In conclusion, monitoring and maintaining data quality in heterogeneous networks
is very important and challenging. In fact, this type of network can present a large num-
ber of data quality issues, such as data loss, the presence of virtual sensors, node main-
tenance, node relocation, etc. The loss of contamination measurements at a specific
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Figure 7.1: Scheme of a heterogeneous air pollution sensor network where different data quality issues may
arise, such as missing data, the presence of virtual sensors, the relocation of sensors, or the presence of sensors
under maintenance.

location can be caused by several issues, such as loss of sensor data, a node under main-
tenance, the node has been relocated to another site, communication or hardware fail-
ures, etc. Thus, there is a great need to deal with all these post-processing applications
that may arise in such heterogeneous networks. Figure 7.1, shows an example of a het-
erogeneous sensor network deployed in an area of interest where the nodes may present
different challenges.

The advent of graph signal processing (GSP) has posed the opportunity to use several
signal processing tools on signals defined over graphs [21, 100]. Besides, graphs have
been successfully applied in air pollution sensor networks (see chapter 5). Thus, the use
of graphs over networks containing correlated sensors allows different post-processing
applications to be addressed using the network data instead of using only the sensor
data itself. Thus, in the previous chapters, we have seen different techniques to create
a graph for an air pollution sensor network. Consequently, it is possible to use GSR to
reconstruct data even if there are missings in the network. In this chapter, we propose
a graph-based data reconstruction framework, the parts of which have been discussed
in the previous chapters, that is able to perform different post-processing applications
to guarantee the quality of the network data. In this way, we pose the different post-
processing applications as data reconstruction problems and show how the graph-based
framework is able to deal with this range of applications.

7.2. LOW-COST SENSOR POST-PROCESSING APPLICATIONS

I N this chapter, we place special emphasis on the two most important post-processing
applications in air pollution sensor networks; missing value imputation and virtual

sensing. These two tasks provide robustness and resilience to the sensor network by
providing measurements in scenarios where there are data losses, there are no physical
sensors, there are nodes under maintenance, etc.

7.2.1. MISSING VALUE IMPUTATION
The missing value imputation task can be seen as a way to fill the data gaps through
estimations. Quinteros et al. [135] compare approaches such as mean imputation, con-
ditional mean imputation, K-nearest neighbor imputation, multiple imputations, and
Bayesian principal component analysis imputation for reconstructing an incomplete air
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quality data set. The objective was to use the data from the data set itself to perform the
imputation. Based on this idea, many methods are based on the use of the entire data
set through matrix completion methods. Liu et al. [136] propose the use of low-rank
matrix completion methods for missing imputation of air pollutants given their strong
spatial correlation. Okafor et al. [137] compare different machine learning-based impu-
tation methods applied to sensors’ time series and evaluated the impact of the imputa-
tion on the posterior sensor calibration, showing the superiority of Variational Autoen-
coders (VAE). Mondal et al. [138] develop a missing value imputation method for sensor
networks based on spatio-temporal GSR via Sobolev smoothness. Matrix factorization
techniques have also been used for data reconstruction for missing value imputation
[139].

In general, matrix completion methods may not be well suited for real-time missing
imputation since these techniques use the entire data set for gap estimation. In addi-
tion, models based on supervised machine learning may also present problems in cases
where any node in the network may have missing data, making the network measure-
ments incomplete.

7.2.2. VIRTUAL SENSING

The most popular trend in virtual sensor creation has been the application of supervised
machine learning models. Zhang et al. [140] use k-means to cluster highly correlated
nodes, identifying potential relationships for the creation of virtual sensors. Matusowsky
et al. [124] create a machine learning-based virtual sensor to impute data or to use it as a
substitute for a faulty sensor. Thus, this virtual sensor created from the other nodes using
a multi-layer perceptron (MLP) algorithm served as a substitute for a sensor, providing
high-accuracy results. Aiello et al. [141] show a machine learning-based algorithm for
creating virtual sensors where a physical air pollution sensor cannot be placed. They
trained a land use (LUR) regression-based framework to increase the number of sen-
sors in a network so that the spatial resolution is increased. Fung et al. [121] define a
proxy for black carbon as a virtual sensor using a feature selection scheme. Besides, they
added robustness to the model by greedily adapting the covariates present in the model
depending on the available set of sensors. Zaidan et al. [122] create a proxy based on
a Bayesian neural network and a mutual information-based sensor selection scheme to
avoid overfitting. Finally, Zaidan et al. [69] show a general methodology to calibrate LCSs
and create virtual sensors for black carbon and carbon dioxide.

Overall, virtual sensors can be used for different applications, e.g., missing value im-
putation in the case of creating a virtual sensor for a faulty sensor, and are usually based
on supervised machine learning techniques. Therefore, the main limitation of super-
vised machine learning-based models for data imputation or virtual sensor creation is
their lack of flexibility, given that any sensor of the network can present missings, several
models should be trained to fit several sensor availability scenarios. In the worst case, a
complete graph, this would result in the creation of 2N−1−1 models per network sensor,
although feature selection schemes could be used. In addition, some models may not
use information from other nodes that have correlated data or that have more accurate
data such as reference stations.
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7.3. GRAPH-BASED DATA RECONSTRUCTION FRAMEWORK

I N this section, the graph-based data reconstruction framework is introduced as well
as the different sensor post-processing applications.

This data reconstruction framework is composed by two elements; a graph G and
a GSR model f : RM → RU . As explained in the previous chapter 5 there are different
techniques to infer a graph for a sensor network, some based on training data X ∈ RN×P

(being N the number of network nodes and P the number of graph signals) and some
based on prior information (e.g., geodesic distance between nodes di j ). Thus, any valid
shift matrix S ∈ RN×N can be learned, either the Laplacian L ∈ RN×N , the weight ma-
trix W ∈ RN×N , or the adjacency matrix A ∈ RN×N . From one of them, the rest can be
computed (chapter 5, section 5.2). These matrices define the topology and set the per-
formance of the GSR model f (·). The graph signals x ∈RN are defined as the concentra-
tions predicted or measured by the different nodes of the network at a time instant. In
the case of the LCSs, these concentrations are the result of the machine learning model
trained in-situ before the sensor network deployment [8, 10, 11, 14].

Figure 7.2: Graph-based data reconstruction pipeline; from graph learning and hyperparameter selection to
data reconstruction applications.

Figure 7.2 shows a general methodology for training the graph-based data recon-
struction framework. Using a graph learning model, a GSR model f (·), the respective
hyperparameters of these models hyp, and a training set of graph signals X ∈RN×P 1, the
best graph for the reconstruction of the network sensors’ signals can be obtained. This is
done in the following way, a grid search of two sets of hyperparameters is performed us-
ing a 5-fold CV procedure. On the validation set, each network node xi is reconstructed
one by one assuming that all its neighbors are available, and the average RMSE is calcu-
lated, the same methodology as in previous chapters 5,6. The result of the CV procedure
is a graph that on average has the lowest RMSE in the reconstruction of each of the nodes
of the network. In fact, the CV procedure is used to find the minimization arguments in
eq. (7.1):

G , f = argmin
G , f

RMSE(X, f(X)) (7.1)

In the following subsections, we describe the graph learning and GSR models as well as
the details of the application of the framework.

1In the case of using a graph based on prior information (e.g., distances) training data are not necessary.
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7.3.1. GRAPH LEARNING
As studied in the previous chapter 5, there are different techniques for graph construc-
tion, some based on data such as graph signal smoothness-based or graphical lasso and
others based on prior information such as distances [23, 24]. Thus, the goal is to create an
undirected graph G = {V ,E ,W}, which describes the existing relationships between the
measurements of the different nodes. We focus on undirected graphs since the relation-
ships between measurements are reciprocal. An undirected graph implies a symmetric
shift matrix ST = S. Each graph learning model has a set of hyperparameters, which we
call hyp, shown in the previous chapter 5. The distance-based graph allows for adding a
new node at any time, simply by relating it to the others in the network. However, we opt
for a data-driven method based on graph signal smoothness, as in the previous chapters
this model together with a semi-supervised learning signal reconstruction model has
been the most effective model for this type of network. Thus, we learn a graph G , whose
structure makes the training signals X smooth with respect to it. Dong et al. [104] uses
the graph signal smoothness criteria to define the following non-convex optimization
problem:

min
L,Y

∥X−Y∥2
F +α tr (YTLY)+β∥L∥2

F

s.t. tr (L) = N ,

Li j = L j i ≤ 0, i ̸= j ,

L ·1 = 0.

(7.2)

Where ||·||F denotes the Frobenius norm and tr (·) denotes the trace of a matrix. In addi-
tion, [104, 105] show how these methods scale well in sparse matrix applications, which
are the cases considered in this chapter. Indeed, Dong et al. [104] mention the use of al-
ternating direction method of multipliers (ADMM) optimization methods to overcome
possible scalability issues and learn larger graphs. Besides, we have already shown in
chapter 5 how a cluster-wise strategy alleviates possible scalability problems.

7.3.2. SIGNAL RECONSTRUCTION
The reconstruction of the signal or the concentrations of a node xi can be approached
from different perspectives (see chapter 5). More intuitively, a supervised machine learn-
ing model can be applied, where the value of the node of interest xi is regressed on the
node’s neighbors N (xi ), obtaining the function f : R|N (xi )| → R. An example is the use
of multiple linear regression (MLR) to predict the values at each of the nodes xi in the
network. In the case of having to reconstruct two nodes xi , x j simultaneously, whose
neighborhoods overlap N (xi )

⋂
N (x j ) ̸= ; and i ∈ N (x j ), a multivariate multiple lin-

ear regression can be performed with the two neighborhoods as covariates. This ap-
proach has a couple of drawbacks; i) the need to discover the neighborhoods of each of
the nodes of the network, as they mark the covariates of the models, and ii) in the case of
missings, with the need to have different combinations of covariates depending on the
availability of sensors or an imputation mechanism. This MLR approach is the LMMSE
in case the neighborhood is correctly selected, but has problems in case of missing data.
The other alternative that best fits this scenario, in which any node can have data gaps,
is the graph-based semi-supervised learning or GSR paradigm. Where a graph signal is
defined as x : V →R, and the objective is to regress a GSR function f :RM →RU , where U
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is the number of nodes to reconstruct and M is the set of nodes observed. We define the
set of nodes that have missings in a time step t as U ⊂ V and the set of nodes that have
available values as M = U c . Then, we can use for example the Laplacian interpolation
since it uses as shift matrix S the Laplacian matrix L learned earlier [108]. This method
allows reconstructing any set of nodes U :

min
x̂∈RN

x̂TLx̂

s.t. x̂i = xi ,∀i ∈M
(7.3)

The above expression is convex and has closed form solution:

x̂U = f (xM ,L) =−L−1
UU LUM xM (7.4)

As it can be noticed in case only one node is to be reconstructed |U | = 1 and there are no
missing data, only the neighborhood of that node N (xi ) is required for the reconstruc-
tion. However, if several nodes are to be reconstructed (e.g., because of missing data)
|U | > 1, then the required input data is the union of the neighborhoods

⋃
i∈U N (xi ).

Hence, practically, the necessary data to reconstruct a node’s signal is bounded since
all nodes may not be required, so the signal reconstruction could be implemented in a
distributed manner.

7.3.3. APPLICATION AND DEPLOYMENT
The implementation and deployment details of this framework are important to be ap-
plied in real-time on an air quality monitoring network2. We can divide the different
tasks into three stages:

1. LCSs are calibrated in-situ at nearby reference stations of the deployment site.
Thus, before the sensor network deployment, the machine learning models are
trained to predict air pollution concentrations from LCSs’ raw measurements in
a centralized server [10, 11, 14, 16, 42, 133]. Given that applying these calibrated
models is computationally inexpensive, these trained calibration models can be
stored in the central server or in the nodes, so that, the nodes can send air pol-
lution concentration measurements instead of raw measurements, following an
edge computing paradigm [10].

2. Since the data collection nodes send samples to a central server, the graph can
be computed during the first weeks of deployment, where it is assumed that the
deployed sensors work correctly. The graph is learned by solving the optimization
problem of eq. (7.2) using a CV procedure explained previously.

3. During the lifetime of the sensor network deployment, different applications (e.g.,
missing value imputation or virtual sensor creation for sensor maintenance) can
be carried out in real-time using the data reconstruction framework. This set up
would correspond to a data monitoring platform in a centralized server or imple-
mented in a distributed manner.

2A python implementation of the proposed graph-based data reconstruction framework is available at
https://bitbucket.org/sans-rg/jnca-graphdatareconstruction.

https://bitbucket.org/sans-rg/jnca-graphdatareconstruction
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Distributed approach: the graph construction and signal reconstruction can be per-
formed in a centralized or a distributed manner. The nodes report hourly air pollution
concentrations, so to build the graph in a distributed manner, each node needs to do
hourly flooding of the measured air pollutant concentrations (e.g., using a low-duty cy-
cle flooding protocol [142]) during the training period of the graph, which is about three
weeks. Then, the graph can be learned at any of the nodes or the central server and re-
distribute the learned topology to all the nodes. After the graph learning, flooding is no
longer necessary, and the nodes in the distributed solution only report their hourly air
pollutant concentration to the neighbors defined by the graph so that these measures
are available in case of required signal reconstruction. The typical and most efficient
solution in this type of sensor network is for the signal reconstruction operations to be
performed by a centralized network monitoring tool, so the cost in bandwidth and en-
ergy consumption is minimal for the sensor nodes.

Framework effectiveness: it should be noted that the performance of data reconstruc-
tion will always depend on the existing relationships in the network. In other words, a
network with sensors that have no relationships between them cannot benefit from us-
ing data from other deployed sensors. Along the same lines, Heimann et al. [143] stated
that in order to distinguish between local emissions and the global emission pattern a
dense network of sensors is needed. Moreover, during the CV process used for graph
selection, it can already be observed whether any sensor in the network can be recon-
structed less efficiently by looking at its CV metric. In addition, as more sensors in the
network have gaps in the data, the reconstruction performance may also deteriorate as
more missing sensors means fewer neighbors available for reconstruction.

7.3.4. POST-PROCESSING APPLICATIONS

In this section, we explain the different applications that can be carried out using the
data reconstruction framework. We explain the different stages of the deployment of
an air pollution monitoring sensor network; from in-situ calibration to sensor post-
processing applications. Prior to deployment of heterogeneous sensor network for air
pollution monitoring, LCSs are calibrated in-situ by being collocated at a reference sta-
tion or reference instrument near the location of the node deployment for a calibration
period, Figure 7.3.a). After this calibration process, the node is deployed in an area par-
ticipating in the monitoring network. For more information about the machine learning-
based in-situ calibration refer to chapter 3.

From now on, we assume a monitoring network in which reference stations that give
accurate values of the pollutants coexist with nodes mounting LCSs that give less ac-
curate values, and these LCSs have been pre-calibrated using in-situ calibration [6]. In
this sensor network scenario, we are interested in performing a signal reconstruction at
a given node or location for several reasons: i) there is a LCS or a reference station that
has not captured all the values of a time series, and we want to estimate the missing
values, ii) there is a LCS node that needs to be recalibrated due to drifts or changes in
atmospheric conditions from when it was calibrated, iii) to provide robustness when the
physical sensor fails or is under maintenance, iv) to estimate a virtual sensor because
we need values at points where we do not have a LCS, for example, to feed a computa-
tional fluid dynamics (CFD) model that builds a simulated air pollution transport model
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at small or large scale.

(a) In-situ calibration and missing value imputation
cases.

(b) Virtual sensor and data fusion cases.

Figure 7.3: Description of different sensor pots-processing applications, and its corresponding graph-based
data reconstruction setting, that arise in heterogeneous sensor networks; in-situ calibration, missing value
imputation, virtual sensing, and data fusion.

We now explain the different applications, and their configuration in the graph-based
data reconstruction framework, which allow us to address the problems explained in the
previous paragraph. First of all, we address the missing value imputation via signal re-
construction, which allows for filling data gaps produced in a network sensor. Secondly,
virtual sensing via data reconstruction is addressed to obtain estimates in a place where
there is no physical sensor or to obtain estimates of a sensor presenting some kind of
problem (e.g., under maintenance or a drifted sensor). Finally, we explore a data fusion
case, in which two nodes are placed in the same location and the estimation of one sen-
sor can be improved by reconstructing the data of the sensor located at the same place,
i.e., creating a virtual sensor at the same place where there exists a sensor. Among the
different applications we find:

i) Missing value imputation: in a monitoring network, both reference stations and
LCSs usually do not report all data [122, 135], resulting in gaps in the sensors’ time
series. In the previous chapter 5, we reported a variable percentage of losses in
the reference instrumentation of Barcelona (Spain) in the range of 1.5-3.0% of the
data. Thus, heterogeneous sensor networks, including LCSs, are expected to pro-
duce the same or a large number of incomplete network measurements. The two
most common types of missings in sensor measurements are missings completely
at random (MCAR) and missings at random (MAR). MCARs are the ones addressed
in most of the literature where the missings pattern is random. In contrast, the
MAR corresponds to missings due to some cause, these missings usually depend
on the other sensors, such as the loss of consecutive samples because the sensor
is under maintenance, which can be imputed by creating a virtual sensor to fill the
data. This scenario can also be seen as a missing not at random (MNAR) since the
missings will not always depend on the other observed sensors but on some un-
derlying cause, e.g., maintenance or sensor removal. Figure 7.3.a), case A, shows
the architecture for completing the missing data xi in the i -th node from its neigh-
boring values xN (xi ). To estimate the missing data, either from a LCS or reference
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station, we need to apply a GSR model using the learned graph topology.

ii) Virtual sensing : we consider as virtual sensor a vertex of the graph in which we
want to estimate air pollution concentrations without having a physical sensor or
to replace the physical sensor estimates. Figure 7.3.b), Case B, shows the virtual
sensing setting. To do this we have to add a vertex xi in the graph in the place
where we would place the target sensor. To train the graph we need to place a LCS
or mobile reference station to train the graph and calculate the graph G that will
relate the vertex representing the virtual sensor to its neighbors. In case you do
not have a sensor to learn the graph, you could use a distance-based graph using a
function that depends on the distance to the other nodes [109]. Once the graph G

is obtained, we can remove the sensor or the mobile reference station to estimate
the values of the virtual sensor. A supervised or semi-supervised method can now
be used to reconstruct the signal xi on the virtual sensor xi from its neighboring
values xN (xi ). A special case is a proxy in which we consider that the estimation of
the target node is made from the measurements of other pollutants. A key differ-
ence with case A is that in case B there is no data at the target node during the net-
work deployment (i.e., there may not even be a physical sensor at the node where
the signal is reconstructed, or the sensor is under maintenance) or the sensor pro-
vides erroneous data, whereas in case A, there is sensor data, with gaps, during the
network deployment.

iii) Data fusion: in the data fusion scenario, the value of the concentration at one
point is estimated from several sensors, including a sensor that may be located at
the target location. An example is a LCS, which gives inaccurate data or drifted
data, and improves its estimates with sensors in its neighborhood. Figure 7.3.b),
Case C, show the data fusion setting in which two nodes xi , x j share the same
location, so that they can be included in each other’s neighborhood j ∈ N (xi ).
Note that this scenario reassembles the virtual sensing case since it can be seen as
the creation of a virtual sensor, yet, in this case, two nodes share the same loca-
tion so estimates of the virtual sensor are likely to include measurements from the
location-sharing node. For instance, we could locate a mobile reference station
next to a LCS during the graph learning stage and create a virtual sensor for this
reference station, which will no longer be available during the network deploy-
ment. Finally, in this case, both supervised and semi-supervised methods can be
used to estimate the fusion of sensors that give the final concentration value. The
main difference between this case and case A, is that in this case there can be two
nodes at the same geographical location (e.g., case of a mobile reference station
and a LCS, or several LCSs; chapter 4) and the target sensor can have data gaps or
no data at all (i.e., as a virtual sensor).

The methodology for constructing the graph and reconstructing the signal is the
same for all three cases, but the role and participation of the nodes in each phase is
different. In the graph inference phase, we need the network nodes to train the graph,
whether they are reference stations, mobile high-precision instruments, or a LCSs. Whilst,
in the reconstruction phase, we reconstruct the data of a network node, regardless of its
purpose or application.
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7.4. EXPERIMENTAL EVALUATION

T HE performance of the proposed data reconstruction network is evaluated for the
three different post-processing applications. To do so, we use a data set collected

from the heterogeneous H2020 Captor network during the 2017 summer. In the next
section 7.4.1, we explain in detail the characteristics of this data set. This data set is
similar to the one used in the previous chapters, but here we also use the LCSs placed at
the reference stations.

For the different data reconstruction applications evaluated, we perform three dif-
ferent scenarios in which a subset of the network nodes is reconstructed to evaluate dif-
ferent data availability cases:

(A) Scenario 1: the nodes located at the reference stations are reconstructed one by
one, assuming the other reference stations and sensors are available.

(B) Scenario 2: the nodes located at two of the reference stations are reconstructed
simultaneously, assuming the other reference station and sensors are available.

(C) Scenario 3: the three nodes located at the reference stations are reconstructed
simultaneously, assuming only LCS information is available.

These scenarios are performed to evaluate the possible case in which different nodes
of the network must be estimated, either because they have data gaps, malfunction, or
they are virtual sensors. In addition, they also allow for evaluating how the presence of
reference stations affects the reconstruction of LCS nodes. To evaluate the different sce-
narios and applications, the experiments have been performed offline. We compare our
approach with two data reconstruction techniques. The reconstruction by probabilistic
matrix factorization (PMF) [139] and the spatio-temporal missing value imputation by
Sobolev-based GSR using a distance-based graph [138].

7.4.1. DATA SET

For the analysis of the different applications described above, we use the data set of the
heterogeneous network H2020 Captor [9]. This data set consists of three reference sta-
tions and eight LCSs measuring O3 deployed during the summer of 2017. Three of these
sensors remained at the reference stations throughout the summer. Table 7.1 summa-
rizes the different data set characteristics.

This data set is unique since it includes data taken from a real deployment of low-cost
air pollution sensors in conjunction with official reference stations, and therefore allows
the study of all three applications mentioned above. Although the size of the network is
small, the aim of this chapter is to show the feasibility of these techniques to solve the
three cases. Figure 7.4 shows the location of these nodes over the deployment area: blue
dots denote the reference stations -Manlleu is located at the top, Vic at the middle, and
Tona at the bottom- and yellow dots denote LCS nodes. All sensing nodes underwent
an in-situ calibration process at the nearest reference station of the deployment location
using multiple linear regression (MLR) algorithm [8].
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Table 7.1: Data set summary statistics.

Sensors 8 LCSs & 3 reference stations
Period 07/2017 - 09/2017
# Samples 2612 samples
Time Resolution 30 minutes
Avg. Concentration 80 µgr/m3 with peaks ∼150µgr/m3

Figure 7.4: Graphical representa-
tion of the connectivity resulting
from a Laplacian matrix.

7.4.2. GRAPH LEARNING
The graph is learned using the methodology explained in the previous section 7.3 and
previous chapters 5 and 6, where a 5-fold CV is performed on the network data to find the
hyperparameters {α,β} that produce the minimum average CV RMSE. Then, in the data
reconstruction case, the learned graph can be used both to impute the values of a node
of the network and to produce an estimate of a virtual sensor corresponding to a graph
node. The next section, delves into the details of the application of the graph-based data
reconstruction framework on the H2020 Captor data set for the different post-processing
applications described previously. Figure 7.4 shows the graph obtained for the network
composed of the three reference stations and five LCSs, case B, with a total of 18 edges
and a density of 64.29%.

7.4.3. MISSING VALUE IMPUTATION
In this first experiment, we explore the framework’s ability to reconstruct missing mea-
surements. An example can be the real-time reconstruction of measurements where the
network data is displayed in a monitoring application and in the case of missings, an
estimation must be given. Therefore, in this experiment we focus on case A, missing
value imputation. To do so, we simulate a completely at random (MCAR) missings sce-
nario where a percentage of sensor data is randomly lost. This type of missing is the
most commonly addressed in the literature [137, 138]. In addition, we also explore the
case where this type of missing occurs simultaneously in different nodes of the network
(scenarios 1, 2, and 3). Specifically, we use the network configuration with LCSs at the
reference stations (eight LCSs) and we miss a percentage of the testing data. Then, we
compare the reconstructed values with the values of the sensors that have lost data.

Figure 7.5.a) shows the missing value imputation performance for the three methods
when a sensor (in this case Manlleu sensor) loses data completely at random. The RMSE
compares the predicted data with the model against the data obtained by the LCS, so if
there are no losses, this RMSE has to be zero. As we can see in Figure 7.5.a) the RMSE
value increases with the percentage of losses for all methods. The extreme case is a 100%
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(a) Imputation results for Manlleu
sensor.
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(b) Imputation results when both
Manlleu and Vic LCSs have data
gaps.
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(c) Imputation results when the
three LCSs present data gaps.

Figure 7.5: Missing value imputation performance with respect to the percentage of missing data. The curve
in orange is the average R2 and the gray curve is the average RMSE obtained with the three different methods.
The shaded area corresponds to the mean 95% confidence interval. The horizontal axis indicates the total
percentage of samples lost by the sensor.

of lost data that would correspond to the case of obtaining the values for a virtual sen-
sor, and its error corresponds completely to the imputation method performance. In
general, the actual percentage of data lost in a reference station is usually low, 2-3% of
data loss per station (chapter 5), but as the size of the network increases the chances
of having an incomplete sample increase. However, there may be situations where the
sensor reports incorrect data involving a higher percentage, such as a malfunction that
lasts until the node is repaired. The PMF has a similar performance to the proposed
method with worse performance for large missing ratios. The Sobolev-based method is
able to improve the imputation performance of our proposed framework for low miss-
ing rates. This result makes sense since the Sobolev-based method takes into account
the spatio-temporal correlations, so for small missing completely at random gaps (i.e.,
potentially non-consecutive) the temporal relationships allow to improve the estima-
tion with respect to the proposed framework. Nevertheless, the disadvantage of these
methods (matrix completion methods) is that they do not adapt naturally, or their per-
formance is not as good, in real-time imputation where all the data are not available a
priori. As the percentage of missings increases the proposed framework performs better
since it does not include the temporal component. In the extreme case, 100% of miss-
ings, these consecutive missings can be seen as a case of missings at random (MAR) or
missings not at random (MNAR), where the proposed framework is able to improve the
RMSE of the Sobolev-based method by 3.50 µgr/m3. Thus, in the case of consecutive
missings (e.g, sensor failure for some time), the proposed framework works better. In
case of 100% of losses, the reconstruction using the proposed framework obtains RMSEs
of 12.00, 11.09, and 12.85 µgr/m3 and MAEs of 9.26, 8.62, and 10.08 µgr/m3, for Manlleu,
Vic and Tona sensors.

Figures 7.5.b) and c) show the cases where more than one sensor have losses during
the same instant of time, which makes the signal reconstruction difficult because it de-
creases the number of sensors in the vicinity that can participate in the reconstruction.
With two sensors with missing data, Figure 7.5.b), the RMSE still remains similar to sce-
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nario 1, while with three missing sensors, Figure 7.5.c), the difficulty of the imputation
increases. As for the performance of the three methods, the same trends as in the case
of missings in a single sensor are observed, where as the ratio of missings increases the
gap between the error of the Sobolev-based and the proposed framework increases, be-
ing the proposed framework the most effective. Nevertheless, it should be noted that
this worsening in the reconstruction would be compensated by the average neighbor-
hood size. We consider this situation a challenge to investigate with a real data set with
a greater number of LCSs.

7.4.4. VIRTUAL SENSING
In this experiment, we produce estimates to create a virtual sensor, this means that there
may not be a physical sensor at the node where we reconstruct the signal, or there may
be a malfunctioning node, under maintenance or relocated, where the virtual sensor
measurements replace those of the sensor. This case can also be seen as a case of MAR
or MNAR, where the data loss is caused by some factor such as sensor malfunction, data
loss due to sensor maintenance, sensor relocation, or the absence of a sensor.

For this case, we use the network consisting of five LCSs and the three reference sta-
tions. This setting allows us to estimate virtual sensor measurements at the reference
station nodes and compare them with the measurements provided by the LCSs located
at the same stations.

Table 7.2: Virtual sensing (case B) test set results for the different scenarios and different methods.

Scenario Nodes Method
Target Location

# EdgesManlleu Vic Tona
RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

1 5 LCSs + 2 Ref.Stat. Proposed 11.92 8.67 0.88 10.02 7.70 0.92 11.38 8.99 0.87 18
Sobolev 20.35 16.91 0.64 21.09 17.75 0.63 18.75 15.46 0.65 19

PMF 14.51 11.15 0.82 11.74 9.15 0.89 13.04 10.37 0.83 -
2 5 LCSs + Tona Ref.Stat. Proposed 15.02 11.34 0.81 12.86 10.30 0.86 - - - 18

Sobolev 24.63 20.74 0.48 23.57 19.87 0.54 - - - 19
PMF 17.20 13.55 0.75 14.39 11.13 0.83 - - - -

2 5 LCSs + Manlleu Ref.Stat. Proposed - - - 11.59 8.34 0.89 13.03 10.10 0.83 18
Sobolev - - - 24.04 20.33 0.52 23.00 19.35 0.47 19

PMF - - - 13.41 10.15 0.85 14.71 11.32 0.78 -
2 5 LCSs + Vic Ref.Stat. Proposed 12.00 8.76 0.88 - - - 11.61 9.31 0.87 18

Sobolev 20.48 17.04 0.64 - - - 18.84 15.52 0.64 19
PMF 15.20 11.66 0.80 - - - 13.98 11.34 0.80 -

3 5 LCSs Proposed 24.25 18.66 0.49 23.29 18.53 0.55 21.57 16.76 0.53 18
Sobolev 26.27 22.78 0.41 27.47 23.35 0.38 23.77 20.04 0.43 19

PMF 25.69 20.44 0.43 25.70 20.91 0.46 23.50 19.27 0.45 -

Table 7.2 shows the results obtained for the reconstruction of each of the reference
stations, indicating the available nodes for the data reconstruction, and the correspond-
ing data reconstruction method used. Regarding the proposed method, RMSE values of
11.92, 10.02, and 11.38 µgr/m3 and MAE values of 8.67, 7.70, and 8.99 µgr/m3, are ob-
tained for the reference stations of Manlleu, Vic, and Tona respectively. These values are
similar to the values obtained by the LCSs placed in those stations, case of in-situ cali-
bration (Table 7.3), with RMSE values of 10.85, 11.30, and 12.21 µgr/m3, and MAE values
of 8.04, 8.58 and 8.48 µgr/m3. Therefore, air pollution concentrations at one station can
be approximated using neighboring nodes. In this case, the state-of-the-art Sobolev-
based reconstruction model obtains a much lower performance, obtaining test RMSEs
of 20.35, 21.09, and 18.75 µgr/m3, while the PMF is able to obtain a good performance
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obtaining test RMSEs of 14.51, 11.74, and 13.04 µgr/m3. In the case of virtual sensing,
including the temporal component worsens the estimation since the reconstruction is
performed at consecutive times. In addition, the construction of the data-driven graph
also gives an advantage in terms of reconstruction performance over the distance-based
graph used by the Sobolev-based method since heterogeneous air pollution sensor net-
works contain complex relationships which are not well defined by distances.

For scenario 2, Table 7.2 shows the results of predicting two virtual sensors simul-
taneously with only one reference station available. The obtained test RMSE values are
still in the same range as in scenario 1 for the proposed framework. In the worst case,
Manlleu and Vic estimate, the RMSE increases by about 3.00µgr/m3. Whereas in the best
case, Manlleu and Tona estimation, the error increases only about 0.30µgr/m3, since Vic
station is available and close to both Tona and Manlleu. Finally, for scenario 3, Table 7.2
shows the performance of estimating three virtual sensors simultaneously. In this case,
the performance is worse as there are fewer neighbors with which to predict the signal
and all are LCSs. Logically, as more nodes in the network lose data, less information is
available and data reconstruction is less accurate (see chapter 6, section 6.3.4).

In short, some state-of-the-art methods have been able to obtain similar perfor-
mance in the case of MCAR missings, case A, with superior performance of the Sobolev-
based model for low data losses, but in the case of virtual sensing, the Sobolev-based
model has not been able to obtain a performance similar to the proposed framework.
Thus, learning a graph from the data and reconstructing the graph signal without con-
sidering the temporal trend allows for dealing with a larger variety of post-processing
applications that arise in heterogeneous networks of LCSs for air pollution monitoring,
where there can be random losses, consecutive losses, and even no data at all. In the
following case, data fusion, we only show the results for the proposed framework since
it also corresponds to the case of estimating a node with no data at all, and a distance-
based graph does not allow for multiple sensors at the same location.

7.4.5. DATA FUSION

Finally, in the case of data fusion (Case C), we evaluate the signal reconstruction when
the neighborhood of a node N (xi ) includes a sensor located at the same location (di j =
0). Thus, for the reconstruction, information from other locations and from the same
location of the target node is fused, leading to faulty sensor compensation and improve-
ment of LCS estimates. As an example, when calibrating a LCS with a mobile instrument
we could add a node in the graph representing the instrument and reconstruct its signal
using the LCS located at the same place and other neighboring sensors. We recall that
the neighborhood selection is performed by learning the graph, then the use of the LCS
x j from the same site will depend on whether it is included in the neighborhood of the
mobile instrument ( j ∈N (xi )).

Data fusion results in Table 7.3 show the advantage of using a physical sensor placed
at the target location merged with neighboring sensors. The effect of fusing sensor data
is better when some of the neighbors are reference stations that have reference air pol-
lution concentration values. These true values allow the correction of the LCS error. For
example, it can be observed in Table 7.3, scenario 1, how data fusion outperforms the
in-situ calibration performance, obtaining RMSEs of 9.55, 8.59, and 9.73 µgr/m3 respec-
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Table 7.3: Data fusion (case C) test set results for the different scenarios using the proposed framework and
the in-situ calibration.

Scenario Nodes
Target Location

# EdgesManlleu Vic Tona
RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

1
5 LCSs + Manlleu LCS

+ Vic and Tona Ref.Stat.
9.55 7.11 0.92 - - - - - - 22

1
5 LCSs + Vic LCS

+ Manlleu and Tona Ref.Stat.
- - - 8.59 6.68 0.94 - - - 22

1
5 LCSs + Tona LCS

+ Manlleu and Vic Ref.Stat.
- - - - - - 9.73 7.05 0.91 11

2
5 LCSs + Manlleu and Vic LCSs

+ Tona Ref.Stat.
10.28 7.91 0.91 9.79 7.89 0.92 - - - 14

2
5 LCSs + Vic and Tona LCSs

+ Manlleu Ref.Stat.
- - - 9.22 7.07 0.93 10.16 7.29 0.90 14

2
5 LCSs + Manlleu and Tona LCSs

+ Vic Ref.Stat.
9.38 7.02 0.92 - - - 9.79 7.18 0.90 14

3 5 LCSs + Manlleu, Vic and Tona LCSs 12.06 8.93 0.87 12.15 9.45 0.88 11.81 8.09 0.86 16
In-situ

calibration
Manlleu, Vic and Tona LCSs 10.85 8.04 0.90 11.30 8.58 0.89 12.21 8.48 0.85 -

tively, improving up to 2.70 µgr/m3.
For scenario 2, Table 7.3, the data fusion also shows good results, improving the in-

situ calibration although it does not manage to reduce the error as much as in the case
where all the neighbors are available. Despite that a neighboring station may not be
available, we do have the LCS that is located at the target node’s location. For instance,
estimating Vic and Tona simultaneously produces RMSEs of 9.22 and 10.16 µgr/m3, so it
does not improve as much as in the first scenario (8.59 and 9.73 µgr/m3) but it reduces
the in-situ test RMSE at least 1.60 µgr/m3.

Finally, Table 7.3 scenario 3 (when no reference stations are available), data fusion
performs worse than the in-situ calibration given that none of the reference stations
are available and the estimation relies on the LCSs placed there. However, the obtained
RMSEs of 12.06, 12.15, and 11.81 µgr/m3 respectively, and MAEs of 8.93, 9.45, and 8.09
µgr/m3 respectively, are not much larger than in the in-situ calibration. However, only
taking into account neighboring LCSs worsens the signal reconstruction. In conclusion,
the use of reference stations improves data fusion in the LCS estimation. Nevertheless,
the use of neighboring LCSs along with the target sensor does not improve the estima-
tion if the neighboring sensors are not more accurate than the collocated sensor.

7.4.6. DATA FUSION APPLICATION: ERROR COMPENSATION
The occurrence of aging or noise is an important source of error in LCSs [12]. Here,
we show how the data fusion scenario can help mitigate the error or noise present in a
faulty LCS. As an example scenario, we use the sensor network composed of all the LCSs
(eight sensors) and simulate a mobile reference station in Manlleu using this reference
station. Then, we introduce 30% white Gaussian noise to the LCS in Manlleu in the test
set. Using the data reconstruction framework, Manlleu’s reference station signal can be
reconstructed using the faulty sensor and the related neighboring LCSs. These estimates
can replace the measurement obtained by the faulty sensor placed in the same location.
Thus, it can be checked whether the combination of a faulty sensor with potentially non-
faulty LCSs can mitigate the sensor’s noise.

Recall that under optimal conditions, the Manlleu LCS obtained a test RMSE of 10.85
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Figure 7.6: Manlleu’s LCS Gaussian error compensation using the data fusion scenario.

µgr/m3 (Table 7.3). As shown in Figure 7.6, the faulty LCS obtains an RMSE of 15.89
µgr/m3. Using the data fusion scenario, the RMSE is reduced from 15.89 to 14.14µgr/m3,
thus, neighboring LCSs can partially compensate for the error introduced in the LCS.
Note that the graph learned with this scenario connects the Manlleu reference station
with the LCS in Manlleu and the LCSs in Tona and Vic, allowing the data fusion to be
effective. Otherwise, in the case of not having relationships between other sensors apart
from the faulty sensor, the fusion would not improve the accuracy of the estimates pro-
duced by the faulty sensor.

7.4.7. VIRTUAL SENSING APPLICATION: DRIFT COMPENSATION

The presence of drifts, either produced by the sensor itself or by an out-of-date calibra-
tion model (concept drift, see chapter 3), is a potential source of long-term error in a
LCS network deployment. In this section, we show an example where the data recon-
struction framework can be used to create a virtual sensor that produces estimates that
can replace a faulty LCS or can be used to recalibrate the faulty sensor. In this case, the
data reconstruction framework helps to maintain the quality of the network data by pro-
viding virtual sensor estimates that can replace or correct the drifting measurements.

For this experiment, we use the sensor network composed of two reference stations
(Manlleu and Tona) and six LCSs (including Vic LCS). Afterwards, we introduce Gaussian
noise of increasing magnitude with time, ϵt∼N ( t

T x̄,0.25) to Vic’s LCS. We investigate two
possible scenarios; both neighboring reference stations and LCSs are available, and only
neighboring LCSs are available. These scenarios allow for investigating the impact of
having precise instrumentation in the neighborhood available. Figure 7.7.a) shows the
disposition of the network nodes as well as the graph’s edges learned using the data re-
construction framework. As it is observed, the drifting LCS is connected to the two ref-
erence stations and four LCSs. Figure 7.7.b) shows the estimations of the created virtual
sensor when all neighboring nodes are available (including reference stations) and when
only LCSs are available. The drifted LCS produces an RMSE of 29.40 µgr/m3, the RMSEs
are computed with respect to the normal behavior of the sensor. The performance of the
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(a) 19-edge graph learned
from the H2020 Captor
data.

(b) Results for simulated drift compensation in two scenarios; using refer-
ence stations and LCSs, and using only LCSs.

Figure 7.7: Example of a virtual sensor creation to replace a faulty LCS using the graph-based data reconstruc-
tion framework. Both scenarios, reference stations available and only LCSs available, are simulated.

virtual sensor created by using all its neighbors, including the two reference stations, is
good obtaining an RMSE of 11.10 µgr/m3, showing the benefits of having precise instru-
mentation nearby to correct possible seasonal changes. Finally, it has been simulated the
unavailability of the two reference stations. Even in this case, the virtual sensor is able to
improve the RMSE from 29.40 to 18.30 µgr/m3 only using neighboring LCSs, indicating
the possibility of mitigating drifts using only neighboring LCSs. It is worth mentioning
how in the case of correcting drifting sensors, the inclusion of the sensor measurements
itself could result in an error accumulation over time. Therefore, in the case of creating
virtual sensors, it is better to use only neighboring nodes.

7.5. CONCLUDING REMARKS & FUTURE WORK

W HILE throughout the previous chapters we have evaluated different techniques to
create graphs and reconstruct signals for air pollution LCS networks, in this chap-

ter, we have seen how different post-processing applications that arise in heterogeneous
LCS networks can be carried out using a graph-based data reconstruction framework.
Thus, we have approached the third question posed about graph-based sensor network
analysis:

(R.Q.2.3): For which applications can the signal reconstruction using the sensor network data
be used?

We have proposed a graph-based data reconstruction framework composed of a graph
learning stage based on a graph signal processing smoothness-based criterion and a
graph signal reconstruction stage based on the Laplacian interpolation. Both stages pro-
vide the framework with high flexibility to deal with different sensor network data post-
processing applications that appear in heterogeneous networks of LCSs for air pollution.
Among the different possible applications, we have investigated the use of the frame-
work in; missing value imputation, virtual sensing, and data fusion. To summarize, in
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the case of missings completely at random, the performance of the proposed framework
has similar performance to the state-of-the-art models, although these have better ac-
curacy in the case of low missing rate percentages. This is due to the fact that the matrix
completion-based models use the temporal component of the sensor with missings, so
in small data gaps they are superior. However, matrix completion methods can present
more difficulties in their real-time application. In the case of larger data gaps, approxi-
mating to the case of virtual sensing, the proposed framework performs obtains a good
performance. In the case of virtual sensing, the proposed model performs better than
the other models, being slightly better than the probabilistic matrix factorization. This
case may represent the case of 100% loss, so models including the temporal component
of the sensor itself tend to accumulate the error in the reconstructed sensor. Finally, in
the case of data fusion, we have presented a scenario that allows combining information
from a sensor at one location and sensors from other locations in order to improve the
sensor estimation. The results show how combining information from different sensor
locations improves individual sensor estimation.

In short, the proposed framework, although it may not be optimal for some appli-
cations (e.g., missing value imputation) presents the necessary flexibility to deal with
different applications that arise in this type of network that may require real-time pro-
cessing. Therefore, this framework could be applied in monitoring platforms to guar-
antee the quality of the network data in real time. More precisely, we can present the
conclusions as follows:

Missing Value Imputation

• The proposed framework has obtained similar performance to two state-of-the-art
models for MCAR missings.

• For a low percentage of MCAR, the state-of-the-art model has performed slightly
better than the proposed method, while for large percentages the proposed frame-
work performed better.

• The proposed method has shown the ability to deal with simultaneous missings
with a performance similar to the state-of-the-art models.

Virtual Sensing

• The creation of virtual sensors has shown a quality of estimation similar to that of
LCSs.

• The proposed framework has shown a better performance than the other models,
as this case can be seen of a 100% of losses, with the ability to deal with simultane-
ous virtual sensors.

• The availability of the neighborhood has had a great impact on the data reconstruc-
tion quality.

• Virtual sensing using the data reconstruction framework has successfully produced
estimates for a drifting sensor.
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Data Fusion

• The data fusion results have been shown to outperform the estimation of in-situ
calibrated LCSs.

• The data fusion scenario has been successfully applied to the compensation of a
noisy LCS.

As a future work, it would be interesting to investigate the creation of air pollution
proxies, having sensor networks composed of different air pollutant sensors and with
sensors coinciding at the same location, using the graph-based approach. It would also
be interesting to study how the virtual sensing case can be used to recalibrate and re-
locate sensors, as well as the study of more advanced graph-based data reconstruction
techniques that could fit this particular scenario.

Practical Tip !

In order to monitor and maintain the quality of data of a sensor network, one can use the
graph-based data reconstruction framework as a real-time monitoring tool. Thus, miss-
ing samples can be completed, virtual sensors can be obtained during maintenance/re-
calibration periods, and other situations where it is necessary to obtain estimates for the
affected sensors.
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GRAPH-BASED SENSOR NETWORK

OUTLIER DETECTION

An experiment is a question which science poses to Nature,
and a measurement is the recording of Nature’s answer.

Max Planck

In previous chapters, we have seen how low-cost sensors (LCSs) tend to suffer from er-
rors and inaccuracies, which must be considered in the analysis of sensor network data
[4, 8]. Firstly, in-situ calibration techniques have been used to improve the data qual-
ity of these sensors [14, 15]. Once calibrated and deployed, we have investigated how
graphs can describe the complex relationships that exist between the different sensors
of a heterogeneous sensor network. In fact, we have proposed a graph-based approach
to different applications that arise in this type of network such as; missing value impu-
tation, virtual sensing, or drift compensation. However, there remains another very im-
portant aspect of the monitoring of the measured network data, which is the detection
of erroneous measurements that may indicate a malfunctioning sensor or corrupt mea-
surements. Recently, this aspect has gained interest given the attention paid to LCSs and
especially their performance in terms of data quality in order to be able to carry out reg-
ulated measurement campaigns [144]. Actually, this outlier detection aspect is of special
interest in this type of network in order to increase the reliability of the data and monitor
how the network is working and carry out maintenance operations if necessary. More-
over, in addition to guaranteeing the performance of the data reconstruction by means
of the graph, we need to detect those measurements that are considered incorrect or of
very low quality. In this chapter, we approach the monitoring of the sensor network data
from the graph-based outlier detection perspective, detecting anomalous measurements
using the graph describing the relationships between the different network nodes.

This chapter is structured as follows; section 8.1 presents the need for outlier detec-
tion models for LCS networks. Then, section 8.2 presents the proposed Volterra graph-
based outlier detection model and section 8.3 evaluates its performance. Finally, section
8.4 concludes the chapter and presents future research directions. This chapter presents
the findings made in “Volterra Graph-Based Outlier Detection for Air Pollution Sensor
Networks“, IEEE TNSE, [145].

151
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8.1. HETEROGENEOUS SENSOR NETWORK DATA QUALITY ISSUES

H ETEROGENEOUS low-cost sensor networks are the future of fine-scale air pollution
monitoring networks, but they face data quality problems [6, 146]. Specifically,

throughout this thesis we have approached the data quality issue from two points of
view; the improvement of LCSs data quality by in-situ machine learning-based calibra-
tion, and the maintenance of sensor network data quality by means of graphs. Thus,
throughout chapters 1, 2, 3, and 4, we have studied the improvement of the data provided
by LCSs using ML techniques to ensure good data quality at sensor level. Afterwards,
during chapters 5, 6, and 7 we have studied how many problems can exist in hetero-
geneous monitoring networks given the reliability of LCSs, and how graphs can help to
exploit the existing correlations between network nodes and provide tools to deal with
a wide variety of post-processing applications (e.g., missing value imputation, virtual
sensing, drift compensation).

In the following, we review the LCSs data quality problems and their possible con-
sequences, and also highlight the need for outlier detection tools as well as enumerate
different state-of-the-art outlier detection techniques.

8.1.1. LOW-COST SENSORS DATA QUALITY
LCSs represent an economically feasible alternative to increase the spatial resolution of
air quality monitoring networks. As it is well known, high-precision instruments de-
ployed by governments have a high economic cost, being impossible to measure pollu-
tion at a very fine scale. Therefore, the first limitation of these sensors that is their need
for calibration has been studied in great detail, making use of both linear and nonlinear
supervised ML techniques [14–16, 31, 147]. For more information on improving the data
quality of LCSs using machine learning, see chapters 1, 2, 3, and 4.

In an air quality monitoring campaign using LCSs, once these LCSs have been cali-
brated in-situ, they are deployed in the different locations of interest forming a sensor
network. So much effort has been put into improving data quality so that these sensors
can meet minimum quality guarantees to be used in a regulated manner so that govern-
ments can take preventive measures and action against pollution episodes [4, 83, 148].
Although in-situ calibration improves the sensor data quality substantially, there are still
more problems concerning the quality of these sensors. These problems arise when IoT
nodes mounting LCSs form a sensor network for an expected long-term air quality mon-
itoring campaign.

During the sensor network deployment is when other data quality issues arise. Even
though the sensors have been calibrated in-situ, these sensors are known to suffer from
aging, drift, and concept drift problems as time passes and environmental conditions
differ from those observed during the calibration period [12, 18, 144, 149]. Therefore,
LCSs tend to produce errors in such network deployments. In addition, it should be
noted that these sensors mounted on IoT devices are of low-cost nature or simply not
very resilient to the environment where they are deployed, generating data quality prob-
lems such as the occurrence of missings due to communication system or sensing sys-
tem failures, erroneous measurements, etc.

In addition, as we have seen in the previous chapter 7, the sensor network data can
be used to carry out post-processing applications such as data imputation [138] or the
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creation of virtual sensors, among others, and in different applications such as the cre-
ation of air pollution maps [19, 150]. That is, the network can work cooperatively to cor-
rect information using the own sensor network measurements, so it is essential to detect
whether a sensor has anomalous measurements in order not to take it into account and
not to propagate this error to other measurements in the network.

In short, it is necessary to identify anomalous measurements and malfunctioning
sensors in order to carry out replacement measures, estimation, or recalibration using
the other sensors in the network. In the following section, we explain the use of outlier
detection techniques for air pollution sensors as well as different state-of-the-art tech-
niques.

8.1.2. DETECTION OF OUTLIERS & SENSOR ERRORS

So far, we have highlighted the need to detect anomalous measurements and erroneous
sensors in order to prevent the performance of various applications from degrading and
to carry out replacement, maintenance, estimation, and recalibration actions if nec-
essary. Therefore, we study outlier detection processes to detect anomalous measure-
ments in air pollution sensors.

Definition 16 Outlier detection is the process of detecting measurements that are differ-
ent from the rest of the data, which we call outlying or anomalous measurements, in some
statistical sense. For instance, an outlying measure may be an extreme value of the statis-
tical distribution observed during a period of time. In the case of multivariate measure-
ments, it may be that the joint distribution of the measurements differs from the previously
observed distribution, e.g., the distance between the observed values and historic data is
large. And in the case of spatial data, i.e., data from a sensor network measuring a phe-
nomenon, a measurement may be an extreme value of the spatial distribution considered
normal.

There exists a great variety of algorithms for the detection of outliers of different na-
tures, Table 8.1 describes some of them. In our scenario, unsupervised models are the
cornerstone since there is no prior information on which measurements may be outliers
and it is also assumed that the sensors work well at least for a period after the calibra-
tion and deployment of the sensor network. Hence, this task can be seen as unsuper-
vised novelty detection since the training data is assumed to not include outliers, so the
training distribution is learned. We also distinguish between local or univariate detec-
tors and global or multivariate detectors. The local ones make use of the distribution of
the sensor itself or other sensors and are able to detect which sensor has an anomalous
measurement, as is the case of z-score techniques [151]. In the case of global or multi-
variate models, it is no longer detected which is the sensor with an anomalous measure-
ment but it is known that the joint measurements (seen as a sample) of the network are
anomalous, such as the use of principal components analysis (PCA), widely used in this
field [152–154], or other ML techniques [155–158]. There are also local models based on
residuals, i.e., the difference between a sensor measurement and a model’s prediction,
that allow identifying the anomalous sensor, models based on spatial statistics [159] and
others based on graphs [160].
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In our case, and given the proposal of this thesis, we opt for the graph signal pro-
cessing (GSP) paradigm. Indeed, the growing field of GSP has shown its flexibility in de-
scribing this type of network as well as providing classical signal processing techniques
for their analysis [21, 103]. This field mainly relies on the assumption of signal smooth-
ness, assuming that similar sensors will be strongly connected while non-similar sensors
will be weakly connected or disconnected. The interpretation of the measurements as a
signal defined over a graph allows the calculation of the Fourier basis and the interpreta-
tion of the different frequency components through the graph discrete Fourier transform
(GDFT)[22]. The search for high frequencies to detect outliers has already been used for
outlier detection, as the magnitude of the high frequencies is increased due to abrupt
changes in similar nodes [161]. That is why the description of the topology by means of
a graph and the subsequent application of filtering or anomalous frequency detection
techniques are good candidates for this type of sensor network. More recently, Xiao et
al. [160] developed a third order nonlinear polynomial graph filter (NPGF) to implement
a residual-based outlier detector, with good results in the detection and localization of
daily mean temperature outliers. These residual GSP-based techniques offer great out-
lier detection capabilities in the sensor network realm since they can locate which is the
abnormal sensor measurement.

Table 8.1: Summary of different outlier detection methods used in the literature. "Local" refers to the capabil-
ity of locating the outlying sensor while "global" refers to identifying an outlying network measurement as a
whole.

Class Realm Method Definition References

Local Statistics z-score zi = |xi−meanx|
σx

[155, 162]

Local Spatial Median Algorithm zi = |xi−medianx|
σx

[162]

Local Spatial Weighted z-algorithm

{
S(xi ) = |xi − 1

|N (xi )|
∑

j∈N (xi ) w j x j |
zi = |S(xi )−meanS |

σS

[163]

Local Graph-based Graph-Spatial outlier

{
S(xi ) = |xi −mean j∈N (xi )x j |

zi = |S(xi )−meanS|
σS

[164]

Local Statistics Residual-Based

{
R(xi ) = |xi − f (xi )|
zi = |R(xi )−meanR|

σR

[159]

Local Machine Learning Autoencoders R(x) = |x− fdecoder(fencoder(x))| [157, 158]
Local GSP NPGF R(x) = fNPGF(x)−x [160]
Global Spectral PCA Residual-Based ∥xi −Pk PT

k xi∥ [152, 154]

Global Machine Learning LOF LOFk (x) =
∑

y∈Nk (x) l r dk (y)

|Nk (x)|l r dk (x) [165]

Global Machine Learning KNN KNNk (x) = 1
k

∑
i∈N (x) d(x,xi ) [144]

Global GSP High-Frequencies ∥Uh(Λ)UTx∥ [161]
Global GSP Total Variation TV(x,L)=xTLx [166]

STATISTICAL OUTLIER DETECTION IN AIR POLLUTION MONITORING NETWORKS

Univariate outlier detection models are the most simple and commonly used models in
most applications to filter out outliers and ensure good data quality. In particular, unsu-
pervised detection of outliers is difficult in air quality sensors given their data variability
and the underlying air pollution patterns [167, 168]. The simplest univariate models are
based on statistics, such as the z-score, evaluating whether a sensor measurement corre-
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sponds to an extreme value of the distribution observed during training [155, 159]. These
models only take into account the distribution of the investigated sensor itself, thus ex-
plicitly identifying which sensors have anomalous measurements. Instead of inspecting
the data distribution, the spatial distribution of the data has also been proposed to com-
pare values at different sensors which are related in some manner. In fact, in the field of
spatial outlier detection, a commonly used statistic is the difference between the value of
one sensor and the mean or median value of its neighboring sensors, without the need
for a training stage [151]. Shekhar et al. [164] extended this idea to the graph setting,
where the spatial relationships between nodes are described with a graph, instead of us-
ing the nearest nodes. Kou et al. [163] proposed a spatial outlier detection statistic based
on a weighted average of the defined nodes’ neighborhoods. A combination of these
techniques are residual-based methods, where a reconstruction model is fitted, and the
observed value is compared to the value predicted by the model (potentially from neigh-
boring sensors) [159]. The benefit of all these techniques is that they compute a statistic
per sensor, so the identification of the sensor that is causing the anomaly is implicit. Yet,
most of these models are too simple to capture outliers that depend on other sensors
jointly deployed (or other variables).

MACHINE LEARNING-BASED OUTLIER DETECTION IN AIR POLLUTION MONITORING NET-
WORKS

More recently, outlier detection models based on ML have gained interest, where mul-
tivariate models take into account all features or sensors’ measurements at the same
time. In multivariate methods, the measurements of all sensors in the network are re-
garded as a data sample. In this way, ML methods such as local outlier factor (LOF) [169]
or k-nearest neighbors (KNN) [144] have been used to detect whether an observation is
anomalous. Basically, the distance between the different multivariate samples is used
as outlierness statistic since normal samples should be close to observed samples dur-
ing a training phase. In addition, within the field of neural networks, many studies have
been carried out using autoencoders to detect anomalies [157, 158]. As a residual-based
model, the outlier detection via autoencoders is performed by inspecting the difference
between the reconstructed vector with the observed values. Another common approach
is that of spectral decomposition, where principal component analysis (PCA) assumes
that normal data patterns are contained in the components that explain more informa-
tion, and anomalous changes affect the components with less information. Further-
more, Harkat et al. [152] showed how to identify which sensor is anomalous from the
vector norm of the principal components corresponding to the noise. However, most
multivariate models do not naturally identify which sensor (or feature) is causing the
anomaly, thereby limiting their use in this field.

GRAPH SIGNAL PROCESSING-BASED OUTLIER DETECTION

In this particular case, we want to explore outlier detection techniques based on GSP
given its applicability to air pollution sensors (see previous chapters 5, 6, and 7). Al-
though there is no specific literature for GSP-based outlier detection techniques for air
pollution sensors, there are for other types of sensor networks measuring other phe-
nomena. The main assumption to be used in the GSP setting is that the measurements
are smooth with respect to the graph, where similar nodes will be strongly connected
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by the graph and non-similar nodes will be weakly connected or even disconnected, so
anomalous measurements reduce the signal smoothness and increase the amplitude of
the high frequencies.

In particular, Egilmez et al. [161] showed the analogous GPS-based approach to
outlier detection via PCA. They used graph signal filtering and the graph Fourier trans-
form to detect an increase in high frequencies. Therefore, anomalous sensor measure-
ments tend to increase the high-frequency GDFT components’ amplitudes. Similarly,
Gopalakrishnan et al. [166] directly used the signal smoothness, represented by the total
variation (TV), as a statistic to determine whether a graph signal is anomalous, or at least
different from the signals already observed in the training phase. Unfortunately, as with
the multivariate models, those models that treat graph signals as a sample (i.e. treating
all measurements observed at a time step as one sample) indicate that the entire sample
is anomalous, but give no clue of the sensors that are producing the anomalous values.
Graph neural networks have also been used for the detection of outliers in the context of
telemetry data [170]. Despite their prediction capability, neural networks are nonconvex
models that present optimization difficulties when being fed by little training data [171,
172], requiring specific training methodologies (e.g., transfer learning schemes). Hence,
their use is limited in the field of low-cost air pollution sensor networks, where the data
available for training are scarce. To overcome this problem, Xiao et al. [160] used a con-
vex nonlinear polynomial graph filter (NPGF) to reconstruct graph signals (temperature)
and used a threshold on the differences of the reconstructed and the original signal to
detect and locate the outliers. Therefore, this residual-based method has proven to be
a good alternative to other graph signal processing (GSP) methods, as it is able to lo-
cate the abnormal sensors by inspecting the errors produced. Moreover, the NPGF has
proven to be a convex alternative to neural networks with better outlier detection capa-
bilities [173]. A shortcoming of these methods lies in the way the graph is constructed.
Most of the proposed methods use as shift matrix a matrix whose weights are calculated
using a function that decays exponentially with the distance between nodes, and does
not take into account the correlation of the measured data [22, 160].

Figure 8.1: Graph-based sensor outlier detection for air pollution monitoring networks. A necessary feature is
the identification of the sensor that is producing the anomaly in order to carry out different actions, e.g., virtual
sensing or sensor replacement.

8.1.3. MOTIVATION & APPROACH
As we have seen previously, graphs offer great capabilities when applied to air pollu-
tion sensor networks. In addition, there exist a wide variety of outlier detection methods
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based on GSP. Therefore, a proposal for unsupervised outlier detection for the detection
and localization of outliers in this type of sensor based on GSP is feasible. Moreover,
residual GSP-based techniques offer great outlier detection capabilities in the sensor
network realm since they can locate which is the abnormal sensor measurement.

However, heterogeneous air pollution monitoring sensor networks present their own
challenges. Table 8.2 describes the different needs and characteristics of these networks
and the proposed approach to deal with each one of them. For instance, sensors are first
calibrated and then deployed, so they may report data at the granularity of the reference
instruments, e.g., hourly, which makes the amount of data to train an anomaly detection
model limited. Signals may also depend on emission sources such as vehicle traffic or
industry. Most studies build graphs based on the geographical distance between nodes,
although this approach performs well for some phenomena, networks that measure air
pollution and other phenomena can be very complex. Therefore, as shown in chapter
5, the use of graphs learned from the data, resulting in a smooth structure with respect
to the measured data, is a good candidate for these air pollution sensor networks, and
the one we use for the outlier detection process. This approach is based on the fact of
having a network of sensors where there are implicit relationships between the sensors
that compose it, so that the different sensors can benefit from the information of other
sensors. This idea is in line with Heimann et al. [143], where they explained that a dense
network of sensors is needed to distinguish local air pollution emissions from regional
emissions. To sum up, we rely on having a graph that is smooth with respect to the
sensor measurements and that relationships between sensors exist, so sensors deployed
in sparse areas without any information from nearby sensors cannot benefit from the
network data nor from the graph modeling the network.

Table 8.2: Heterogeneous LCS networks for air pollution needs and requirements for outlier detection.

Requirements Proposed Solution
1 Identification of the anomalous val-

ue/sensor.
−→ Residual-based model with an indica-

tor function.
2 Complex relationships between air

pollution sensors
−→ Graph learned from the data

3 Little data availability for training −→ Convex GSR model
4 Non-stationarity of air pollution sig-

nals
−→ Adaptive outlier detection procedure

In conclusion, in order to benefit from the advantages of the GSP field and the in-
trinsic topology defined by a sensor network, we approach the problem of unsupervised
sensor outlier detection from a graph-based perspective. Thus, we propose the Volterra
graph-based outlier detection (VGOD), an unsupervised outlier detection process that
first learns the graph encoded by the sensor network data, and then detects the outliers
using a residual-based method based on a Volterra-like GSR model [174]. Indeed, this
model poses three advances with respect to the literature:

1. Outlier detection methods for air pollution sensor networks are scarce, previously
used methods include LOF, KNN, and statistical methods [144, 155, 159]. Here, we
propose a more complex graph-based outlier detection mechanism with localiza-
tion capabilities, which allows the identification of outliers as in the case of drifting
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LCSs in heterogeneous air pollution sensor networks.

2. While most previous work on graph-based outlier detection has used a graph distance-
based graph [160, 161], we propose to use a graph learned from data. As discussed
in chapter 5, graphs learned from network data best describe complex networks
than those using functions that decay exponentially with distance, such as low-
cost heterogeneous sensor networks for air pollution monitoring. The choice of
the shift matrix S defines the nodes’ neighborhoods N (xi ) = { j : Si j ̸= 0} and has
impact on the signal reconstruction model as it participates in the shifting of the
graph signals.

3. We apply a GSR model based on the classical Volterra series defined by Xiao et
al. [174]. In fact, Volterra-like models have already been successfully applied to
graphs [174, 175]. This model is similar to the NPGF model [160], which has proven
a good performance in outlier detection but requires fewer parameters to learn.
This means a better computational response when reconstructing the signal.

8.2. VOLTERRA GRAPH-BASED OUTLIER DETECTION ( VGOD)
PROCESS

I N this section, the Volterra graph-based outlier detection process is described; from
the smoothness-based graph learning, the GSR model based on the Volterra series,

to the residual-based outlier detection and the adaptation to deal with non-stationary
signals. The sensor network is described by means of a graph G defined as the triplet
G = {V ,E ,S}, where V = {1, . . . , N } and N is the number of sensors, S ∈ RN×N is the shift
matrix (e.g., L or W), and E = {ei j : i , j ∈ V ∧ Si j ̸= 0} is the corresponding set of edges
defined by the shift matrix S. Recall that a graph signal is defined over the set of vertices
as x : V →R.

8.2.1. GRAPH LEARNING: SMOOTHNESS-BASED

The first step consists of learning the underlying implicit relationships between the sen-
sors {xi : i ∈ V } composing the network by discovering the graph G that best fits the
network data. So, given a set of training graph signals in matrix form X = [x1, . . . ,xP ],
where X ∈ RN×P and P is the number of signals, the goal is to learn a graph shift ma-
trix S (e.g., S = L, S = W, or A) that fits the training data according to some criterion. As
mentioned in chapter 5, it is interesting to learn the Laplacian matrix L since its eigen-
decomposition provides the Fourier basis for performing the GDFT, and its quadratic
form TV(x,L) = xTLx provides the signal smoothness criterion. Thus, signal smoothness
is a good criterion for learning a graph that maintains coherence between the measure-
ments of the different sensors given their complex relationships, so a graph smooth with
respect to the measures. Therefore, edges between sensors measuring similar or related
measures are encouraged, while edges between dissimilar sensors are penalized. As we
have seen throughout the thesis, we have opted for the model defined by Dong et al.
[104] since it promotes smooth graphs according to the training data. Therefore, the
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graph learning optimization problem1 is defined as:

min
L,Y

∥X−Y∥2
F +α tr (YTLY)+β∥L∥2

F

s.t. tr (L) = N ,

Li j = L j i ≤ 0, i ̸= j ,

L ·1 = 0.

(8.1)

Where Y ∈ RN×P is a filtered version of the data matrix X, and α ∈ R and β ∈ R are the
model’s hyperparameters (see chapter 5 for further details). The graph G is only required
to be learned once, using the training data X, given that it is assumed that deployed sen-
sors will work well for a certain period of time right after the deployment and those re-
lationships are considered to be the correct ones given that no sensor worsen is present.
Thus, the temporal distribution of the measurement may change, but the relationship
between the sensors, when working properly, is expected to be maintained over time, so
a change in anthropogenic emissions may result in outliers.

It is important to emphasize that in the case of LCSs, which present quality variabil-
ity and need to be calibrated before deployment, a data-driven graph has an advantage
over a distance-based graph. The graph where the shift matrix S is constructed from the
distances di j can actively include a poor quality sensor xi , since the weight Si · does not
depend on how well the sensor is calibrated. In contrast, a poorly calibrated sensor xi

will participate little in the outlier detection since it will be poorly related to the other
well-performing sensors (Li j≈0), resulting in a better definition of the neighborhood
N (xi ) and weights Li · by a Laplacian L learned directly from the data.

8.2.2. GRAPH SIGNAL RECONSTRUCTION: VOLTERRA SERIES
An important part of the outlier detection models based on the residuals, let us define
the residual of a signal x as R(x) = x− f(x), is the signal reconstruction model f : RN →
RN . In the VGOD mechanism, we propose the use of a model based on the Volterra
series2, recently defined by Xiao et al. [174]. For understanding purposes, we will now
explain the relationship of the used model with the classical Volterra discrete model. The
classical discrete Volterra model can be defined as:

y(t ) = h0 +
D∑

d=1

b∑
τ1=a

· · ·
b∑

τd=a
hd (τ1, . . . ,τd )

d∏
j

x(t −τ j ) (8.2)

Where x(t ) ∈ R is a discrete signal defined at different time steps t ∈ N, hd (·) ∈ R are
the different learnable parameters of the model, D ∈ N is the order of the Volterra se-
ries, and x(t −τ j ) can be seen as a signal shift by τ j as in classical discrete signal pro-
cessing. This model is known for being nonlinear and memory-based since the out-
put y(t ) depends on the inputs at previous times x(t −τ) in a nonlinear way. Similarly,
Franz et al. [176] proposed the kernelized version of the Volterra series, where the vector

1The authors of [104] provide the implementation of the graph learning problem.
2A python implementation of the proposed VGOD mechanism along with an implementation of the

Volterra model [174] and the graph learning problem [104] using the CVXPY library are available at
https://bitbucket.org/sans-rg/ieee-tnse-outlier-detection/.

https://bitbucket.org/sans-rg/ieee-tnse-outlier-detection/
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x = [x(t −a), . . . , x(t −b)]T contains all shifted versions of the signal to take into account,
being 0 ≤ a ≤ b. Then, the Volterra series can be represented in form of a basis expansion
φ(x) = [φ0(x), . . . ,φD (x)]T, where φD (x) are the D-th order monomials of the signal and
its shifted versions.

Equivalently, the notion of signal shift [103] has been extended to the GSP paradigm
by applying a graph shift matrix S to a graph signal x, x[1]=Sx. The graph weight matrix
W and the Laplacian matrix L have been widely used as the graph shift operator in the
literature [21, 103]. In the specific case of a circular graph, the graph shift is equivalent to
the signal shift in discrete signal processing. In this way, we define the Volterra-like graph
model in terms of a linear combination of nonlinear basis functionsψ····· :RN →RN , this
model describes the interactions between the signal at node xi with the shifted versions
of the signal at that node (L j x)i in the following way:

f(x) = h0 +
D∑

d=1

K−1∑
kd=0

· · ·
K−1∑
k1=0

hd (kd , . . . ,k1)ψd ,kd ,...,k1
(x) (8.3)

Where D is the order of the Volterra series, K ∈N is the maximum number of shifts to be
applied (model depth), h0 ∈RN and hd (kd , . . . ,k1) ∈RK d

, for d = 1, . . . ,D , are the parame-
ters to be learned, andψd ,k1,...,kD

(x), for d = 1, . . . ,D , are the basis functions representing
the interactions defined as:

ψ1k1
(x) = Lk1 x

ψ2k2k1
(x) = (Lk2 x)⊙ψ1k1

(x)
...

ψDkD ...k1
(x) = (LkD x)⊙ψ(D−1)kD−1...k1

(x)

(8.4)

Where ⊙ is the Hadamard product and ki = 0, ..,K − 1. For instance, the second order
interactions take into account the interactions between the values at one node xi (and
its shifted versions) and the values at that node in its shifted versions (L j x)i ∈ R. As an
example, the value at the i-th vertex xi for the third order expansion is computed as:

xi =h0i +
K−1∑
k1=0

h1(k1)(Lk1 x)i

+
K−1∑
k2=0

K−1∑
k1=0

h2(k2,k1)(Lk2 x)i (Lk1 x)i

+
K−1∑
k3=0

K−1∑
k2=0

K−1∑
k1=0

h3(k3,k2,k1)(Lk3 x)i (Lk2 x)i (Lk1 x)i

(8.5)

The expression above is the same for all vertices i ∈ V , it actually resembles the expres-
sion of the classical Volterra model for discrete signals, but in this case, since we are
dealing with a graph signal x, the different parameters h·(·) are shared across all nodes
and applied to graph signals x.

Finally, we need to define a training scheme and a loss function Loss(x, f(x)). The
GSR model used for outlier detection is trained to recover the original signal x given a
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perturbed version of it x̃=x+ ϵ, acting as a denoising model, and the following convex
objective function is minimized to find the model’s coefficients h:

min
h

Ntrain∑
i

∥xi − f(x̃i )∥2
2 (8.6)

Where Ntrain ∈ N is the number of training signals. Thus, the loss function used corre-
sponds to the residual sum of squares (RSS). When an unusual perturbation is present in
a signal the model will incur a larger error, being capable of identifying the anomalous
node given the residuals R(x)=|x−f(x)|. This problem constitutes a convex optimization
problem since it is linear with respect to the coefficients of the model h, so its optimiza-
tion is easier than in nonconvex models such as neural networks. This is of special in-
terest in cases such as the monitoring of air pollution heterogeneous sensor networks,
where the training periods used to learn the models may be relatively small. We also
expect the choice of the shift operator S to have a very high impact on the model. In
general, for many signals, the distance between nodes does not have to be a good choice
for generating the shift operator.

This training scheme could be seen as a form of denoising autoencoder, where we
have an overcomplete autoencoder whose code dimension is the number of basis expan-
sions, assumed to be larger than the number of nodes, and noise is introduced so that
the model learns the latent patterns of the data and avoids learning the identity function,
acting as a regularization. Figure 8.2 shows an example of the use of the Volterra-like GSR
for the detection of outliers in a real O3 graph signal.

Figure 8.2: These figures represent an example of the use of the Volterra-like GSR to detect outliers. The left
figure shows a standardized graph signal x̄ while its next figure shows the residuals of reconstructing the unal-
tered graph signal x̄. Then, a perturbation (δ= 1.0) of one standard deviation is introduced to sensor number
four and now (right figure) the reconstruction residuals indicate the introduced outlier since the error is above
the predefined threshold T H .

8.2.3. OUTLIER DETECTION: INDICATOR FUNCTION
Once we have learned the graph Laplacian L and we have trained the GSR model f(·),
we need to identify and locate outliers. The objective is not only to evaluate whether
the graph signal is an outlier R(x) but to locate which sensor/measurement is an outlier
Ri (x).

The identification of outliers is done through the inspection of the signal reconstruc-
tion residuals R(x) ∈RN , i.e., the difference between the observed signal x and the recon-
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structed signal f(x):
Ri (x) = ∣∣xi − fi (x)

∣∣ ,∀i ∈ V (8.7)

Normal samples are supposed to have small residuals since the model has been trained
with a similar pattern, while abnormal samples tend to have larger residuals, as they
deviate from the normal pattern seen during the training. Then, using a thresholding
value, T H ∈R, an indicator function can be implemented:

Ii (x) =
{

1 ,Ri (x) > T H
0 ,Ri (x) ≤ T H

,∀i ∈ V (8.8)

Where Ii (x)=1 indicates that the sensor xi is the suspicious one. Other outlier scoring
metrics can be used to detect outliers, for instance, if we were not interested in locating
the error, but in indicating whether the whole sample is an outlier, using the l2-norm of
the residual ∥R(x)∥2 could be useful to find abnormal graph signals. The threshold value
T H can be defined depending on the application target performance, i.e., the maximum
false positive rate (FPR) or the minimum true positive rate (TPR) required by the appli-
cation [160, 161].

In order to define the optimal threshold, once the GSR model f (·) has been trained,
we select a set of training samples Xth , which are normal, and we add a small pertur-
bation ϵ to a random subset of samples selecting a random perturbed node per sample,
X̃th = Xth +ϵ. Five repetitions are performed, then, inspecting the residuals R(X̃th) the
threshold T H is selected via a grid search so that the true positive rate is maximized
without exceeding a desired maximum false positive rate f pr :

max
T H∈R

TPR(R(X̃th),T H)

s.t. FPR(R(X̃th),T H) ≤ f pr
(8.9)

8.2.4. ADAPTIVE ALGORITHM: VGOD
Once we have all the algorithm components we can define the VGOD. We emphasize
that both for graph learning and signal reconstruction the data are standardized. Fi-
nally, although the GSR model can be trained correctly using a few weeks of data, air
pollution data can suffer from a problem known as data set shift, commonly known as
non-stationarity in the field of time series analysis. This is because the data present in
the training set may not be representative of the testing set (or the posterior deploy-
ment conditions), e.g., mean concentrations may vary from month to month. This phe-
nomenon is also known as concept drift in the field of sensor calibration [12]. Therefore,
special care must be taken when applying the GSR model. A common approach to over-
come this problem consists of updating the detection model periodically with new data
[177]. For example, we can incorporate into the training set the samples predicted as
normal during the test phase, and retrain the signal reconstruction model every time we
have W normal samples. This increases the computational burden, but as we are solving
a convex optimization problem the increase remains bounded. However, it is important
to keep the complexity of the models limited, i.e., their depth or number of learnable pa-
rameters, so that it is feasible to retrain periodically. Recall that the threshold T H used
by the indicator function can also be recomputed along with the signal reconstruction
method to better adapt to the non-stationarity nature of the data.
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Figure 8.3: General view of the VGOD process. First, the graph is learned, then the GSR model and the thresh-
old T H are updated adaptively. Finally, outliers are detected by inspecting the signal reconstruction residuals
R(x).

Definition 17 A non-stationary time series is one that is not strictly stationary nor weakly
stationary. Lets us define the sensor’s readings xt for t = 1, . . . ,T as a realization of a
stochastic process, where each xt is a realization of a random variable. Thus, a weak-sense
or wide-sense stationary process is the one whose first moment and correlation function is
invariant to time, and the second moment remains bounded. Thus, in order for a process
to be non-stationary it must not meet any of these conditions:

E [xt1 ] =E [xt1+∆], ∀t1,∆ ∈N (8.10)

E [xt1 xt2 ] =E [xt1+∆xt2+∆] ∀t1, t2,∆ ∈N (8.11)

E [x2
t ] <∞ (8.12)

Algorithm 4 Volterra Graph-Based Outlier Detection(VGOD).

Input: {α,β,Xtr ,K ,D, f pr,ϵ,W }
1: X̄tr ← Standardization(Xtr )
2: L ← Graph_Learning(α,β, X̄tr )
3: f(·) ← Reconstruction_Model(X̄tr ,K ,D)
4: T H ← Define_Threshold(f(·), X̄tr , f pr,ϵ)
5: r ec ← 0
6: while xnew do ◁Detection Phase
7: x̄new ← Standardization(xnew )
8: R(x̄new ) ←| x̄new − f(x̄new ) |
9: if Ri (x̄new ) > T H then

10: xnew,i is outlier !
11: else ◁ Adaptive Phase
12: Xtr ← {Xtr ,xnew }
13: r ec ← r ec +1
14: if r ec =W then
15: X̄tr ← Standardization(Xtr )
16: f(·) ← Reconstruction_Model(X̄tr ,K ,D)
17: T H ← Define_Threshold(f(·), X̄tr , f pr,ϵ)
18: r ec ← 0
19: end if
20: end if
21: end while
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Figure 8.3 summarizes the overall outlier detection process developed while algo-
rithm 4 gives a precise description of the process3. The outlier detection process param-
eters are; {α,β} hyperparameters to control the graph learning algorithm, the training
data Xtr , model depth K , model order D , acceptable maximum false positive rate f pr
to define the threshold, the perturbation ϵ to be introduced to define the threshold, and
the model updating window size W . {α,β,K ,D} are hyperparameters that are obtained
based on the training data Xtr , while { f pr,ϵ,W } are user-defined parameters that de-
pend on the specific data domain on which the algorithm is used.

8.3. EXPERIMENTAL EVALUATION

T HIS section evaluates the performance of the proposed VGOD algorithm (Section
8.2) applied to real air quality monitoring data sets. The proposed model is com-

pared with other state-of-the-art outlier detection methods, some with and some with-
out localization capabilities. Actually, for comparison purposes we use; i) outlier detec-
tion algorithms that do not allow localization, such as the frequency-based GSP [161],
the local outlier factor (LOF) [169], and the k-nearest neighbors (KNN) [144], and ii)
models based on reconstruction residuals and GSP, such as the linear graph filter (LGF,
f(x)=h0+∑K−1

i=0 h1i Si x) [22] and the third order NPGF model with a distance-based graph
[160]. NPGF is the model that most closely resembles VGOD, since it is a residual-based
model based on GSP. In this case, it is also an adaptive method, which uses a shift matrix
S based on geodesic distances, and uses a more complex optimization model in terms of
the number of learnable parameters. Check Table 8.1 to review how the different outlier
scores are computed.

The following sections describe the data and the different experiments performed:

(A) Experimental data: the different data sets used for outlier detection experiments
are introduced. These data sets include a real heterogeneous LCS network and two
governmental reference station sensor networks of small and medium size.

(B) Model training & Selection: the different models’ hyperparameters are described
for both global and residual-based models, as well as the selection process of their
hyperparameters and the different training schemes used.

(C) Outlier detection over the training set: outliers are simulated on the training of
the data set D.1. The different models are applied non-adaptively on the training
data set, i.e., they are trained using the training data set and the detection is also
performed on the training data set. This simulates the best case, where the data
distribution in the detection phase does not change. Such experiments allow us to
analyze which parameters internal to the models will be used later in testing, e.g.,
the model depth K.

(D) Outlier detection over the testing set: outliers are simulated in the testing of the
data sets D.1 and D.2. The models are applied adaptively, as shown in the VGOD

3A python implementation of the VGOD as well as the graph learning method used are available at
https://bitbucket.org/sans-rg/ieee-tnse-outlier-detection/.

https://bitbucket.org/sans-rg/ieee-tnse-outlier-detection/
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algorithm 4 since the data distribution changes over time (i.e. non-stationary time
series).

(E) Sensor drift detection: a sensor drift is simulated in the testing set of data set D.3. A
malfunctioning sensor, which is a common situation with sensor network deploy-
ments, can be simulated since the data set D.3 contains both LCSs and reference
stations. Again, the models are applied adaptively to detect and locate the drifting
sensor.

(F) VGOD scalability: the scalability of the two best performing graph-based models,
the GSR model using the Volterra-based model and the NPGF model, are com-
pared.

The data sets are divided into 60% of the data for training, and the remaining 40% for
testing. Thus, mimicking the real case where the outlier detection model is trained just
after the sensor network deployment and applied sequentially throughout the deploy-
ment lifetime. The perturbations δ added to simulate the outliers have no units since
these perturbations are introduced to the standardized data. Indeed, it is fairer to add
perturbations proportional to the standard deviation of each of the sensor nodes, which
can be quite different.

8.3.1. EXPERIMENTAL DATA
To study the performance of the proposed outlier detection process for air pollution data
sets, we use two different types of data. First, we use two data sets provided by the Span-
ish government consisting of forty-three nodes deployed in the Catalonia area, and four-
teen nodes deployed in the Barcelona city area. These data are public and can be down-
loaded at the Catalonia open data web page4. In this way, we can simulate outliers and
assess how outlier detection works for tropospheric ozone sensor networks. Secondly,
we use a data set collected by a heterogeneous network consisting of five LCSs and three
reference stations, deployed during the summer of 2017 for the H2020 Captor project, to
detect drifting sensors. Summarizing, we experiment with the following three data sets:

1. Spanish air pollution reference station network for O3 for Barcelona city area: this
data set is composed of fourteen nodes, capturing hourly tropospheric ozone data
between the months of January and May of 2019, with a total of 2798 samples.

2. Spanish O3 reference station network for Catalonia: this data set is made up of
forty-three nodes in the area of Catalonia capturing hourly tropospheric ozone
data between the months of January and February of 2021, with a total of 1076
samples.

3. H2020 Captor network [9]: this data set is formed by eight nodes, five LCSs and
three reference stations, deployed in the area of Catalonia (Spain) during the sum-
mer of 2017 to capture half-hourly tropospheric ozone concentration levels. This
data set has a total of 2368 samples.

4https://analisi.transparenciacatalunya.cat/en/Medi-Ambient/Qualitat-de-l-aire-als-punts-de-
mesurament-autom-t/tasf-thgu
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Table 8.3: Statistics of the data sets used.

Data Set Label Pollutant # Nodes # Samples Period Resolution Mean (µgr/m3) Pooled STD. (µgr/m3)

D.1 O3 14 2798 2019/01/01 - 2019/05/31 1 h 45.32 31.78
D.2 O3 43 1076 2021/09/01 - 2021/11/01 1 h 50.79 25.72
D.3 O3 8 2368 2017/06/18 - 2017/09/01 30 min 68.82 35.14

These data sets are similar to those used in previous chapters and are representative
of air quality monitoring networks. The first two data sets correspond to governmental
reference stations, while the third corresponds to a hybrid network of governmental ref-
erence stations and low-cost sensors. Table 8.3 shows the statistical characteristics of the
three data sets.

In addition, heterogeneous data from the Captor network allows us to explore one
of the most important outlier detection applications in sensor networks, the detection
of drifting or malfunctioning sensors. Large air pollution monitoring sensor networks
can be reduced to smaller subnetworks using clustering techniques (as seen in chapter
5). This reduces the computational cost, without losing the ultimate goal of the graph-
based method, which is to detect anomalies using neighboring nodes selected with an
algorithm that learns the connectivity of the graph based on a smoothness criterion.

8.3.2. MODEL TRAINING & SELECTION

In this section, we explain the hyperparameters required for each model, how to train
the different models, from the graph learning and the signal reconstruction, to how to
define the thresholds. As mentioned earlier, we assume that the sensors have no out-
liers during the graph learning and signal reconstruction training phases since these are
expected to work well at least during a period of the sensor network deployment, i.e.,
poorly calibrated sensors may not be deployed. This allows casting the outlier detection
problem to an unsupervised novelty detection problem, where we know the distribu-
tion of normal data. The different resulting hyperparameters for the different models
are summarized in Table 8.4.

Table 8.4: Models’ hyperparameters along with the input data required for each of them.

Model Inputs Hyperparameters
Shift Matrix S Data

Linear Graph Filter (LGF) [22] W Xtr Depth (K )
Third Order NPGF [160] W Xtr Depth (K )
VGOD L Xtr {α,β}, Depth (K ), Order(D)
Frequency-based GSP [161] L Xtr Variance kept (τ)
Local Outlier Factor (LOF) [169] Xtr Neighbors (Nlo f )
K-nearest Neighbors (KNN) [144] Xtr Neighbors (Nknn)

GRAPH LEARNING

Residual-based models require a shift matrix S to perform the GSR, for example, the
weight matrix W or the Laplacian matrix L. The state-of-the-art models LGF and NPGF
use a distance-based weight matrix W as defined in [22], to define the relationships be-
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tween the different network sensors:

Wi j = e
−d 2

i j√∑
n∈N (xi ) e−d 2

i n
∑

m∈N (x j ) e
−d 2

j m

, ∀i , j ∈ V (8.13)

The VGOD process uses a Laplacian matrix learned from the network data using a sig-
nal smoothness criterion [104], i.e., based on the data collected during the training. As
seen in chapter 5, air pollution sensor networks encode highly complex relationships,
which are best described by a data-driven graph, thus learning the Laplacian matrix im-
plies learning more meaningful relationships. The Laplacian matrix L is learned from
the data using the training set Xtr and the values of the hyperparameters {α,β}, which
control the sparsity of the graph in the smoothness-based graph learning criterion. In
this case, we choose a graph with a medium density, so that smoothness is promoted
and all nodes have enough neighboring information to detect the outliers. In fact, dif-
ferent graph topologies have been tried with different levels of sparsity and the one with
medium sparsity performed the best although there is little difference. Depending on
the data set, the user can perform a grid search over the graph learning hyperparameters
to fine-tune the graph to be learned. For further information on how to select the learn
the graph Laplacian L and the effect of the hyperparameters {α,β} refer to chapter 5.

GRAPH SIGNAL RECONSTRUCTION

The second step is to train the signal reconstruction models to learn to remove noise,
as if it were a signal denoising task, by taking the training set Xtr and adding artificial
noise ϵ to a variable percentage of nodes for each signal, so using as input an artificially
perturbed version X̃tr of the training data, as mentioned in section 8.2.2. Regarding the
hyperparameters of the GSR models, we have the filter depth K , which indicates the
maximum number of shifted versions of the signal taken into account and therefore con-
trols the model complexity. As a rule of thumb, the maximum value of K is set at most
to the degree Nm of the minimal characteristic polynomial of the shift matrix S, that is
K≤Nm≤N . As the graph diameter in dense graphs is low, and we want the models to ex-
trapolate to the test set, we explore simple models with small depths. The model based
on the Volterra series [174] also includes the model order D , which indicates the maxi-
mum degree of interactions to take into account. This parameter drastically affects the
complexity of the model as well as the number of parameters of the model. But in this
experiment, we only take into account the third order model, D=3, so that we can fairly
compare this model with the third order NPGF shown in [160]. The best filter depth K
value is found by adding artificial outliers randomly in the training, and obtaining the K
that corresponds to the best true positive rate, best false positive rate, and the least com-
plex model so that it generalizes better, a common procedure used in the literature [160,
161] and similar to the threshold T H selection procedure. The selection of the best K is
done according to the outlier detection results over the training set, next section 8.3.3.

Once the GSR models are trained, we find the corresponding threshold T H for each
model above which the residual Ri (x) considers that sensor xi is a possible outlier. The
selection of the threshold can be done in different ways, but the most common choice
depends on the false positive rate (FPR) or false alarm, and the true positive rate (TPR)
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or probability of hit required by the application. Since the outlier detection process is
used to maintain the network data quality, the TPR is maximized and the acceptable
rate of false positives is set to 10%. This is achieved by introducing artificial outliers in
a set of training samples and selecting the T H that maximizes the TPR (section 8.2.3).
In the paradigm of sensor data quality, it is important to have a high sensitivity (true
positive rate) and the fact of having any false positive does not imply any costly action
(e.g. sensor replacement). The decision on the value of W is shown in section 8.3.4,
where the adaptive application of the different models (adaptive phase, algorithm 4) is
explained.

Xtr
(1)=⇒ X̃tr = Xtr +ϵ

(2)=⇒ min
h

RSS(Xtr , f(X̃tr ))
(3)=⇒max

T H
TPR(R(Xtr +ϵ2),T H)

s.t. FPR(R(Xtr +ϵ2),T H) ≤ 0.1

TRAINING OF GLOBAL MODELS

As for the global models, the frequency-based GSP needs the Laplacian L, the training
data Xtr , and the τ hyperparameter, which indicates the amount of variance retained
by the selected frequencies as the normal components of the signal. The LOF uses the
training data Xtr , and the number of neighbors Nl o f to take into account to compute
the outlier score. Finally, the KNN uses the training set Xtr as a dictionary to compute
distances, and the number of neighbors Nknn to consider when computing the distance.
The hyperparameters and the thresholds for these models are selected in the same way
as in the case of residual-based models, by introducing artificial outliers to a set of train-
ing samples and selecting the best set of hyperparameters promoting models with lower
complexity to avoid overfitting.

8.3.3. TRAINING SET PERFORMANCE
This section shows the results of applying the different models in a non-adaptive way
over the training so that the models are trained and applied to the same data. This pro-
cess allows exploring the best case, where the data distribution does not change as the
opposite of the adaptive case, and allows different hyperparameters to be examined and
set as a baseline for testing. This step is important since it is similar to the adaptive pro-
cess where the models are trained adaptively and the threshold T H is also recomputed
periodically.

The different models are trained with different possible values for their hyperparam-
eters, Table 8.4. As mentioned in the previous section 8.3.2, some of the VGOD hyper-
parameters have already been fixed to reduce the complexity of the model; i) a graph
with medium density, which can be defined a priori and ii) D = 3 to be able to com-
pare with the NPGF model and to bound the complexity of the model. Thus, the only
tested parameter for the VGOD is the filter depth K . To evaluate the outlier detection
performance over the training set, 30% of the training set is perturbed by adding dif-
ferent outlier perturbations δ at random, and ten repetitions are performed. The sign
(+1,-1) of these perturbations is also selected at random. We also use this perturbation
mechanism for the testing set results. For illustrative purposes, only the results over the
first data set D.1 are shown given that some global models are known to have difficulties
with high-dimensional outlier detection problems (data set D.2).
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(a) Outlier detection using the LGF.
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(b) Outlier detection using the third
order NPGF.
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(c) Outlier detection using the
VGOD process with the third order
Volterra-based graph model.

Figure 8.4: Average true positive rates results for ten different repetitions and different perturbation magni-
tudes (|δ|) using the residual-based models.

Figures 8.4.a), b), and c) show the average TPR for the different residual-based mod-
els and a FPR of ∼10%. As for the depths of the models, it can be seen how from K =4
onwards the improvement for all three models is very little. Therefore, K =4 seems to be
a good choice to keep the models’ complexity bounded. In fact, for perturbations of one
standard deviation (|δ|=1) the LGF obtains a 27% TPR, the NPGF obtains around a 44%
TPR, and in the case of the VGOD the TPR is 52%. Therefore, using the combination of
a graph learned from the data and the Volterra-based reconstruction outperforms the
other two residual-based models using the distance-based weight matrix. Looking at
the VGOD results, Figure 8.4.c), it is observed that with a perturbation of |δ|=1.0 stan-
dard deviation obtains a TPR of 52%, with perturbations of |δ|=1.25 standard deviations
the TPR reaches 69%, and with perturbations of |δ|=2.0 standard deviations it can detect
almost all the outliers with a TPR of 95%. Recall that in this case, one standard deviation
is approximately 31 µgr/m3, this means that measurements with deviations around 39
µgr/m3 (1.25 σ) are effectively detected with a 69% TPR. This value is particularly good
since air pollution sensing nodes exhibit large variability both with respect to their own
measurements and with respect to the measurements of the other sensors in the net-
work, so stating that a measurement is an outlier can be challenging. Hence, this outlier
detection process provides the necessary tools to detect outlying measures and sensors.
Indeed, the proposed model can slightly improve the results of the NPGF even when this
has larger depths (K > 4).

Now, Figure 8.5 compares the TPR for the residual-based models, with K =4, with the
TPR for the three global models (frequency-based GSP, LOF, and KNN) with their best
hyperparameters. It is clearly seen that the nonlinear residual-based models perform
better than the global models. Indeed, VGOD is able to improve the detection rate by
more than a 10% for perturbations greater than |δ|=0.75 standard deviations. The NPGF
improves the results of LOF by a 5% of TPR for perturbations in the range of |δ|=0.5-1.5
standard deviations. The frequency-based GSP has a similar performance to the LGF,
since they both use the high-frequency components of the signal to detect outliers, but
the LGF performs slightly better than the frequency-based GSP for high-magnitude per-
turbations. The KNN is observed to have a similar performance to GSP and LGF, with
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Figure 8.5: Average true positive rate for the different models for data set D.1.

slightly higher detection capabilities for large perturbations. In addition to their lower
detection capabilities, global models are not able to localize which one of the sensors
in the network is producing the outlier, and this limits their application in real sensor
network deployment scenarios. In the following section, we show the detection results
using the adaptive algorithm, as well as the localization abilities of the models for two
different data sets, D.1 representing a small-size network and D.2 representing a mid-
size network.

8.3.4. TEST SET PERFORMANCE

Once we have seen how the different models work on the training, let’s check how they
work when applied adaptively, as for algorithm 4, on the test set. As already mentioned,
in non-stationary environments it is necessary to update the models by introducing
samples with the new data distribution to adapt them. To this end, we use a time window
of 10 samples (W =10), which is equivalent to recalculating the model once ten samples
are considered normal. This approach is feasible for hourly measurements since, in the
best case, the model would need to be recomputed every ten hours. Smaller time win-
dows (e.g. W =1) could lead to problems depending on the data availability, the model’s
complexity, and the required training time. However, when feasible, smaller time win-
dows can increase the detection capabilities of the models. In the adaptive approach, we
add the new samples considered non-outliers to the training set. This is a user-defined
parameter since its value will always depend on the specific data domain of the appli-
cation and data resolution. In addition to recalculating the model, we recompute the
threshold T H using the latest samples collected. We apply the same adaptive procedure
for all models, global and residual-based. Similarly to the previous experiment, pertur-
bations of different magnitude δ are applied to 30% of the test set, and five repetitions
per perturbation magnitude are performed.

Table 8.5 shows the average TPRs and FPRs for the selected models and perturbations
of different magnitude δ. The same trend is observed as in the training results but with
slightly lower TPRs in general. Firstly, in the case of the true positive rates, the VGOD pro-
cess is the best method followed by the NPGF, in particular, the VGOD is able to improve
the NPGF by about 2.5-11% TPR for outliers in the range between |δ|=1.0-2.0 standard



8.3. EXPERIMENTAL EVALUATION

8

171

Table 8.5: Average outlier detection results over the test set with δ standard deviation perturbations for data
set D.1.

Model
|δ|=0.0 |δ|=0.5 |δ|=1.0 |δ|=1.25 |δ|=1.5 |δ|=2.0

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

LGF [22] 0.0 0.19 0.20 0.18 0.31 0.15 0.41 0.14 0.56 0.13 0.80 0.12
Third order NPGF [160] 0.0 0.19 0.24 0.17 0.40 0.13 0.54 0.13 0.64 0.12 0.82 0.12
Third order VGOD 0.0 0.18 0.23 0.16 0.41 0.13 0.56 0.12 0.71 0.12 0.91 0.13
LOF [169] 0.0 0.15 0.20 0.15 0.32 0.15 0.45 0.14 0.61 0.15 0.84 0.16
KNN [144] 0.0 0.15 0.18 0.16 0.26 0.16 0.36 0.16 0.49 0.16 0.83 0.16
Frequency-based GSP [161] 0.0 0.15 0.19 0.15 0.34 0.15 0.48 0.15 0.61 0.15 0.78 0.16

deviations. In general, VGOD and NPGF are better able to detect outliers with smaller
perturbations, e.g. in the range of |δ|=1.0, thus showing better sensitivity in these ranges
than LGF, LOF, KNN, and frequency-based GSP. For large perturbation values (|δ|=2.0),
all methods show a similar high ability, in the order of 78-84%, to detect outliers, except
VGOD which goes up to 91%, outperforming all other methods. Then, the NPGF is able
to improve the GSP model and the LGF by about 10% TPR for perturbations in the range
1.0-1.5 standard deviations, but this difference in performance is smaller with respect to
the LOF, where it only improves by 5% in TPR. Finally, all global models as well as the
LGF behave in a similar way, with the LOF being the model that obtains a better TPR for
large disturbances.

On the other hand, Table 8.5 also shows the FPR committed by the different mod-
els. In fact, given the non-stationarity of the test set, we can see FPRs around 15-19%
for |δ|=0, although in the case of the residual-based methods (LGF, NPGF, and VGOD)
these FPRs are reduced to 12-14% as the magnitude of the outliers increases. That is, as
outliers are larger in magnitude the residual-based models have better sensitivity and
also produce fewer false positives. Depending on the characteristics of the data set and
the computational capabilities, the adaptive window W can be reduced to improve the
models’ results.
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(a) Localization rate test set results for the three
residual-based models for data set D.1.
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(b) Localization rate test set results for the three
residual-based models for data set D.2.

Figure 8.6: Average localization rate test set results for the three residual-based models and the small-sized
sensor network D.1 and mid-sized network D.2.

Now, let’s see how the residual-based models work with respect to the localization of
the sensor that has the outlier. This step is very important in sensor networks in order
to carry out actions to mitigate the effects of the outlier, actions such as the imputation
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of the sensor measurement using a virtual sensor, the removal of the measure, and even
the replacement of the malfunctioning sensor. Figure 8.6.a) shows the true localization
rate results for the test set, this rate is defined as the precise detection of the outlying
sensor, where the localization rates are slightly smaller than the detection rate, mean-
ing that sometimes the models fail in locating the specific outlying sensor. However, the
results show how VGOD outperforms the NPGF and the LGF. For perturbations of 1.0
standard deviation (1σ) the two nonlinear models behave similarly with a location rate
of about a 37%. Nevertheless, as the perturbation magnitude increases the performance
gap between the three models also increases, leading to a localization rate of 70% with
1.5 standard deviation perturbations with the VGOD process, more than 10% higher lo-
cation rate than the others.

Figure 8.6.b), shows the outlier localization results for the data set comprising the
Catalonia reference stations (D.2). In this case, we have focused on a subset of the net-
work nodes given that some violate the assumption made for the model to work, i.e.,
nodes that are not related to any of the network nodes due to their geographical loca-
tion. The same trend as in the previous case is verified, where the nonlinear models have
a better localization for outliers of magnitude in the range |δ|=1.0-1.5 standard deviation.
However, the gap between the localization performance of the VGOD and the NPGF is
larger in this case for outliers of magnitude in the range |δ|=1.0-2.0 standard deviations
since the network is very heterogeneous, and a graph learned from the data captures
better the relationships between nodes. Besides, distance-based graphs worsen the per-
formance in this case given that when there are nodes that although they are close they
are not correlated, then the relationships between these sensors are not well-defined by
distance-based graphs.

The sensor network represented by the D.2 data set includes sensors whose relation-
ships are not well defined by distances, which is a common scenario in air pollution
sensor networks whose nodes are deployed in specific locations with high concentra-
tions of air pollution, and whose signals are highly dependent on ambient conditions
and other pollutants. Therefore, outlier detection models using distance-based graphs
do not work well in that case given that the GSR stage is distorted by erroneous sensor-
to-sensor relationships. This problem does not happen with a graph learned from the
data since uncorrelated sensors are weakly connected to other sensors or disconnected,
proving to be a more robust alternative for these air pollution monitoring networks.

8.3.5. SENSOR ERROR DETECTION: DRIFT DETECTION

We evaluate how the proposed model can be used to detect a common type of error in
LCS networks, the sensor drift. In this way, we observed the pattern generated by the
outlier detection models and how this can enable replacement or recalibration actions
to maintain the quality of the network. Since an outlier detection model detects sam-
ples that have unusual behavior, this technique can be further used to detect specific
sensor errors by the inspection of the outlier detection results. Here, we use the data set
of a real heterogeneous network deployment, D.3, composed of three reference stations
(high-precision nodes) and five LCS nodes. To this end, we add an offset of increasing
magnitude in one of the LCSs, as ϵt∼N(2.0/t ,0.1) and t ∈ (0,2.0]. Figure 8.7 shows the
result of applying the VGOD mechanism, where sensor 3 is the drifted sensor, and the
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model is able to detect the simulated drift after its magnitude nearly becomes 0.5 stan-
dard deviations. Although some false positives can also be observed (13%), the pattern
observed for sensor 3 is very different from the others, thus identifying a malfunction-
ing sensor. In addition, a filter could be used to reduce the false positive rate and help
detecting this specific type of error, an example is the use of the exponentially weighted
moving average (EWMA) to eliminate false positives and filter this type of pattern as a
malfunctioning sensor but it would introduce a delay in the detection [152]. The ob-
tained TPR for the VGOD is 78% and a FPR of 13%, the linear graph filter obtained a TPR
of 58% and a FPR of 10%, and finally, the NPGF obtained a TPR of 70% and a FPR of 13%.
Again our proposed model outperforms the other two graph-based models. This exam-
ple shows the importance of these graph-based techniques that enable the localization
of the faulty sensor. In fact, given the localization capability of this model, this type of
sensor malfunction can be detected, and the sensor can be replaced or can undergo a
recalibration process.
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Figure 8.7: Outlier detection results for a drifted sensor (sensor 3) over the H2020 Captor data set (data set D.3)
using the VGOD algorithm.

8.3.6. SCALABILITY
In previous sections, we have observed how the graph and residual-based nonlinear
models, VGOD and NPGF, have obtained a good performance in the detection of out-
liers. In addition, both methods allow the localization of which sensor produces outliers,
an aspect of great interest in this type of sensor network. Given the adaptive nature of
the algorithms and the need to retrain the GSR models, the scalability and complexity
of the reconstruction models are important for their application in this real scenario.
Therefore, in this section we compare the scalability of the core element of the VGOD,
the Volterra-based GSR model [174], with the third order NPGF [160].

There are two main differences between the VGOD and the third order NPGF for
outlier detection: i) the authors in [160] use a shift operator built from a distance-based
function between nodes, and we propose to use a shift operator that is built using the
data measured by the nodes, and ii) the authors in [160] use the NPGF, whose structure
is similar to the Volterra-based model but the higher order interactions differ. Indeed,
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the number of NPGF parameters for a degree of interaction D and depth K is Nmodel =
(N +K +K 2 +∑D−2

i=1 K 2N i ), while the number of the parameters for the Volterra-based

model is (N +∑D
i=1 K i ). Table 8.6 compares the number of parameters for third order

models (D=3) with models’ depth four (K =4), for different network sizes N .

Table 8.6: Number of parameters for third order NPGF and third order Volterra model, with K = 4.

Model N=10 N=50 N=100

Third order NPGF 190 870 1720
Third order Volterra model 94 134 184

In order to show how the number of model parameters of both, the GSR Volterra
model and NPGF model, affect the solving time of the convex problem in equation (8.6)
we perform the following experiment: given a certain depth K =4, we simulate data sets
with an increasing number of nodes N and an increasing number of samples P . To do
this, we simulate the sensors coordinates in the unit square as cx ,cy∼U (0,1), and define

a weight matrix by the distance-based radial basis function Wi j = e
−d2

i j
2∗0.5 , where di j is the

distance between sensor xi and sensor x j . The samples are generated as a zero-mean
multivariate Gaussian with precision matrix equal to the Laplacian pseudoinverse with
noise injected on the diagonal, x∼N (0,L† +σIN ). Then, for each pair (N ,P ) we perform
five repetitions to calculate the average solving time. Figure 8.8 shows the optimization
solving times for both models. In fact, the Volterra-based model is invariant to the num-
ber of nodes in the network, resulting in much lower solving times as the number of
network nodes increases. The opposite happens with the third order NPGF, where the
solving time increases dramatically as the number of nodes increases. For instance, for
1000 samples and 46 nodes the third order NPGF takes almost eight minutes, while the
third order Volterra model takes just over one minute.
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Figure 8.8: Optimization problem solving times, using the Splitting Conic Solver (SCS) for the third order
Volterra-based and the third order NPGF models.

Moreover, in this particular case, where the objective function of the GSR model is set
to the residual sum of squares (RSS) the model can be trained in the least squares sense
using matrix pseudoinverse. Hence, we can avoid the use of a generic convex solver that
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although they are easy to use they may be less efficient than a matrix pseudoinverse. We
can formulate the problem in matrix form, where y = vec(X), y ∈ R(N ·Ntr ai n ), we recall
X ∈ RN×Ntr ai n and X̃exp ∈ R(N ·Ntr ai n )×Nmodel where Nmodel is the number of parameters
(here we use D = 3) and X̃exp is defined as:

X̃exp =



IN IN . . . IN

ψ1,1(x1)T ψ1,1(x2)T . . . ψ1,1(xNtr ai n )T

...
... . . .

...
ψ1,K (x1)T ψ1,K (x2)T . . . ψ1,K (xNtr ai n )T

ψ2,1(x1)T ψ2,1(x2)T . . . ψ2,1(xNtr ai n )T

...
... . . .

...
ψ2,K (x1)T ψ2,K (x2)T . . . ψ2,K (xNtr ai n )T

ψ3,1(x1)T ψ3,1(x2)T . . . ψ3,1(xNtr ai n )T

...
... . . .

...
ψ3,1(x1)T ψ3,1(x2)T . . . ψ3,1(xNtr ai n )T



T

(8.14)

Where ψ·,·(xi ) ∈ RN are column vectors representing the basis functions defined in sec-
tion 8.2.2 and IN ∈ RN×N is the identity matrix. Now, we can define the RSS problem in
vector-matrix form as:

y = X̃exp h

ĥ = X̃†
exp y

(8.15)

Where h ∈ RNmodel is the vector of concatenated parameters h = [hT
0 ,hT

1 , . . . ,hT
D , ]T and

hi ∈RK i
. Recall, that the pseudoinverse can be faster than a generic convex solver but it

can also struggle with large matrices since the pseudoinverse, which may be computed
via singular value decomposition (SVD), can be challenging in a high-dimensional set-
ting.

In short, it has been observed how the difference in the number of parameters of the
Volterra model and the NPGF really affects the computation time. And this computation
time can be an important parameter given the need to adaptively retrain the model to
deal with the non-stationarity of the data.

8.4. CONCLUDING REMARKS & FUTURE WORK

I N this chapter, we have proposed an outlier detection algorithm based on graph signal
processing, called Volterra graph-based outlier detection algorithm. The results have

shown the ability of residual-based and graph signal processing-based models to de-
tect and locate sensor outliers, which is important in this particular field, where locating
sensors with abnormal measurements can lead to further replacement or recalibration
actions. In this way, we have tackled the following research question throughout the
chapter:

(R.Q.2.4): Can we approach one of the most important data quality problems, such as the de-
tection and location of outliers or erroneous sensors, using the graph information?
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The proposed outlier detection process consists of three stages; i) learning a graph
based on the measured data, ii) a GSR model based on the Volterra series, and iii) the
subsequent inspection of the residuals of the signal reconstruction task to identify and
locate the outlying measurements. This process allows not only for detecting an out-
lier in a sensor network sample but also localizing the sensor that produces the outlier,
which is of great importance in the air pollution sensor network realm so that measure-
ment replacement or recalibration actions can be done.

In summary, the VGOD method uses a shift matrix that is constructed using the mea-
sured data, unlike other graph-based methods that use shift matrices based on func-
tions that decay exponentially with the distance between nodes. This aspect is key to
the method as the shift matrix actively participates in two modules of the outlier de-
tector, i) the selection of the graph edges and therefore of the neighbors of a node, and
ii) in the GSR model. This feature improves the detection and localization of outliers.
The second differential aspect is the use of the Volterra series as a signal reconstruction
method, which improves the computational performance by requiring fewer parameters
than other nonlinear methods, such as the NPGF.

The VGOD process has been compared to three state-of-the-art global outlier de-
tection methods that detect but do not allow localization, the frequency-based GSP, the
k-nearest neighbors (KNN), and the local outlier factor (LOF), and to two models based
on reconstruction residuals and graph signal processing that detect and allow localiza-
tion, the linear graph filter (LGF) and the third order NPGF model with a distance-based
graph. The results show that VGOD increases the detection rate by at least 10% over
the other models and has better localization of the sensors producing the outliers than
the other two graph-based models. In addition, it is shown that the VGOD reconstruc-
tion model requires less training time than its closest graph-based competitor, the NPGF.
Therefore, the proposed mechanism improves both outlier detection and model scala-
bility with respect to NPGF.

Finally, the VGOD graph-based detection model has been applied to sensor drift de-
tection in a low-cost heterogeneous sensor network. The results show the ability of the
proposed method to detect the outlying samples and locate the drifting sensor, thus al-
lowing the identification of the drifting sensor for a possible replacement or sensor re-
calibration. The results show hoe this method can be used as monitoring tool to asses
the quality of the measures and the health of the sensors.

The most relevant aspects and advantages of the VGOD are defined below:

Sensor Outlier Detection and Localization

• The VGOD performs well with respect to the state of the art in the detection and
localization of outliers in air pollution sensor networks.

• The graph learned from the data offers better detection and robustness of the
VGOD for highly heterogeneous sensor networks with complex relationships and
possible sensors without relationships with other sensors.
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Low-Cost Sensor Drift Detection

• VGOD has been successfully applied to the detection of a drifting sensor in a het-
erogeneous network of LCSs. The results have shown better detection and localiza-
tion metrics than the state-of-the-art models. In this way, the VGOD can also help
in the detection of erroneous sensors for further actions, such as recalibration and
sensor replacement.

Scalability

• The signal reconstruction element of the VGOD, the Volterra-like model, has a
smaller number of parameters than the NPGF and a lower complexity, which makes
it more suitable for the online/adaptive training of the model, allowing more fre-
quent retraining without the need for large computational resources. In addition,
the reduced complexity of the model avoids possible overfitting problems.

The weaknesses of the method refer to the two main assumptions for the model to
work: i) in the case of having a network with sensors deployed in sparse areas without
significant relationships, the method may not be able to detect outliers in those sensors,
and ii) the mechanism needs the graph to be learned from correct sensor values, so it is
assumed that the sensors will function well during the training phase.

As future work, it would be interesting to study the applicability of graph neural net-
works for air pollution LCS network outlier detection, with specific training methodolo-
gies to deal with small training data sets and the need for periodic retraining.

Practical Tip !

In the case of wanting to detect anomalous measurements or malfunctioning sensors to carry
out replacement or recalibration actions, one can run the VGOD adaptively in real time in
order to carry out actions to maintain the quality of the network data. Outlier detection
can be seen as monitoring tool to assess the data quality and health of the sensors. This
can be used in conjunction with the data reconstruction framework to mitigate data quality
issues and provide data robustness and completeness.





9
CONCLUSIONS

T HROUGHOUT the different chapters, the conclusions and future work specific to the
problems dealt with have been given. Here, we describe the more general conclu-

sions to list the contributions made during the thesis. Thus, we see how the studies
carried out contribute to the field of low-cost sensors for air pollution monitoring.

The paradigm of air quality monitoring using low-cost sensors is a field in constant
progression and has seen great advances over the last decade. The main focus of atten-
tion has been the use of mature enabling technologies, such as machine learning and
the internet of things, to improve the quality of data that these sensors provide. In par-
ticular, the main focus has been on improving the quality of the data in order to meet
minimum accuracy requirements for using low-cost sensors in conjunction with regu-
lated governmental instrumentation to measure regulated pollutants.

In this line, many researchers have started using machine learning techniques to cal-
ibrate low-cost sensors. It has also been established that the future of air quality mon-
itoring networks lies in the creation of heterogeneous networks where high-precision
instruments coexist with a large number of low-cost sensors to improve the spatial reso-
lution of measured pollutants.

Throughout the course of this thesis, we have studied the improvement of the quality
of the data obtained in a network of low-cost sensors for air quality monitoring. From
the study of sensor sampling and the improvement of sensor calibration using machine
learning techniques, to the use of the data obtained by a sensor network to perform
post-processing tasks that allow for monitoring and maintaining the quality of the data
measured by the network. In this way, we have addressed both the quality improve-
ment of the individual sensors prior to deployment and the maintenance of the quality
of the sensor network estimations over the lifetime of the network deployment. Figure
9.1 shows the topics of the different chapters as well as the findings produced.

PART I: Machine Learning-Based In-Situ Sensor Calibration

This first part of the thesis has been focused on individual sensor data quality improve-
ment using machine learning-based calibration. Firstly, the pre-processing and sam-
pling of low-cost sensors have been studied. Secondly, given the raw values of the sen-
sors, the application of machine learning techniques for the calibration of these sensors
has been studied. And finally, refining this calibration, the multisensor data fusion cal-
ibration by means of machine learning, introducing more than one target sensor in the
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calibration model, has been proposed.

• Sensor sampling & pre-processing : we have analyzed which are the pre-processing
stages of the sensors before obtaining air pollution estimates. We have evaluated
the effect that sampling has on the quality of calibration and the data quality, al-
lowing us to establish duty cycle techniques to efficiently measure air pollution
and reduce energy consumption. The results have shown how data quality and
representativeness can be maintained with an energy-saving duty cycle.

• Machine learning-based in-situ calibration: once the phenomenon has been sam-
pled and the sensor measurements have been collected, we have evaluated the use
of supervised machine learning techniques to calibrate in-situ the sensors against
reference instrumentation. Both linear and nonlinear models have allowed the
improvement of the data quality and estimates, with the nonlinear models being
more accurate at the expense of needing more data to train. In addition, it has
been observed the need to recalibrate the sensors, i.e., to retrain the calibration
models periodically so that the estimates do not worsen due to model outdated-
ness.

• Multisensor in-situ sensor calibration: apart from calibrating a sensor by means
of a sensor array containing the sensor itself and other sensors to compensate for
cross-sensitivities and cross-correlation, low-cost sensors contain imperfections
that make it possible to introduce more than one sensor of the same family in
the calibration. Thus, we have introduced the multisensor data fusion calibration
where more than one sensor of the same pollutant is used to improve the esti-
mation of the pollutant by using machine learning. The results have shown how
introducing up to four sensors of the same pollutant or combining sensors of dif-
ferent technologies can improve the calibration of the sensors and the subsequent
pollution estimation.

Ultimately, as a result of the various points mentioned above, the improvement of
data quality and the estimation of pollution concentrations by means of machine learning-
based techniques has been deepened. Now, once we have been able to produce more ac-
curate pollution estimation values, we have left the individual study of the sensors and
moved on to the study of the measurements of the sensor network as a whole. Thus, we
have studied how to use network data to maintain the quality of the data over the lifetime
of the deployment.

PART II: Graph-Based Analysis of Air Pollution Sensor Networks

In this second part of the thesis, we have focused on the monitoring of the pollution
measurements produced by a sensor network. For this purpose, we have used a novel
approach based on graph signal processing, describing the relationships between sen-
sors distributed in a region by means of a graph, and interpreting each measurement
obtained by the network at an instant of time as a signal defined on the graph. Given
the growing interest in graph signal processing, this approach has enabled the applica-
tion of different techniques from the field of signal processing and machine learning to
perform tasks such as data-driven graph learning or network data reconstruction. This
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approach has allowed addressing different post-processing applications that appear in
this type of sensor deployment, where the quality of the measured data can be affected
by long-term problems, such as node malfunctioning, node maintenance or relocation.
Therefore, this approach has made it possible to take advantage of the data measured by
the network to maintain the quality of the data, thus overcoming possible data quality
issues during the lifetime of the network deployment.

• Graph learning techniques for air pollution sensor networks: in this first chap-
ter, we have studied which are the best techniques to learn a graph that represents
the measurements of a network of air pollution sensors. For this purpose, we have
compared graph inferring techniques based on graphical lasso, geographical dis-
tance, and graph signal smoothness notion. To compare them, we have analyzed
the efficiency of data reconstruction, where the graph acts as a feature selector se-
lecting the neighborhoods of each sensor. The results show that the data-driven
approach based on the smoothness of the signals is the most suitable technique
since it allows obtaining a Laplacian matrix that describes the existing relation-
ships between sensors. In addition, we have shown how clustering can be used to
mitigate scalability problems.

• Graph signal reconstruction techniques for air pollution sensor networks: once
it had been seen that the best way is to learn the graph from the data, different
graph signal reconstruction techniques from different families have been stud-
ied; semi-supervised learning, signal processing, and kernel methods. The exper-
iments performed mimic the real case where any node in the network can present
data gaps, even different sensors at the same time. The results have proven that
kernel-based graph signal reconstruction and Laplacian interpolation to be supe-
rior, with Laplacian interpolation being the simplest (requiring fewer hyperparam-
eters) and with good performance for sparse graphs.

• Graph-based data reconstruction framework to maintain air pollution sensor
network data quality: in this chapter, we have dealt with different post-processing
applications that arise in this type of sensor network, where nodes may fail, may
be under maintenance, may be relocated, and may present data gaps. Therefore,
using the smoothness-based graph and signal reconstruction by Laplacian inter-
polation, we have presented a graph-based data reconstruction framework that
allows for dealing with a large set of applications to maintain data quality. This
framework presents great flexibility, since any node can be imputed in real time,
and also because the nature of the graph signal processing tools allow a distributed
implementation. The results have shown that in some applications such as miss-
ing value imputation, the proposed framework can obtain a slightly lower perfor-
mance than specific imputation algorithms, but it is more versatile and achieves
better performance in other tasks, such as virtual sensing and data fusion. In this
way, this graph-based data reconstruction framework allows for maintaining the
quality of the network data facing different problems that may arise in an accurate,
interpretable, and efficient way.

• Graph-based outlier detection for air pollution sensor networks: once the data
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quality problems had been tackled by data reconstruction, there was still the de-
tection of anomalous measurements. In the same context, we have proposed an
outlier detection algorithm, the Volterra graph-based outlier detection, that uses
the measurements from the sensors distributed in a region by means of a graph
and a Volterra-like graph signal reconstruction model. The implemented algo-
rithm has shown great detection and localization capabilities of the sensor/mea-
surement causing the outlier. It has also proven its ability to detect malfunctioning
sensors, e.g. drifting sensors. Hence, this algorithm is very useful for this type of
network where detecting the sensor that produces the outlier measurement allows
for carrying out the proper actions; data imputation, recalibration, replacement,
or maintenance.

In short, in this second part of the thesis, we have seen how graphs are a good tool
to represent sensor networks for air pollution monitoring. In addition, the topology de-
scribed by the graph provides information about the relationships between sensors and
allows using data from other sensors distributed in a region in a simple and efficient way.
Hence, we have discussed and experimented how a graph-based approach can be use-
ful to maintain and monitor the quality of the data provided by a sensor network, which
may have low-cost sensors and high-precision nodes, in order to increase the reliability
of the network measurements. Furthermore, graph signal processing is a fast-growing
field so this approach will benefit from future methodologies and techniques.

In conclusion, in the first part, we have improved the low-cost sensor data quality
individually, using machine learning techniques in calibration. Whilst, in the second
part we have combined graph signal processing techniques with machine learning to
maintain and monitor the quality of the estimates produced by a sensor network.

Generally speaking, there are two branches for future work. First, the study of more
advanced calibration techniques that can adapt to the particularities of in-situ calibra-
tion of low-cost sensors such as the data available for calibration, for instance using
transfer learning or pre-trained models. The study of adaptive techniques to deal with
the problem of concept drift and relocation could have a large impact on the opera-
tional costs associated with the deployment of a low-cost sensor network. Secondly, it
could be said that, to the best of our knowledge, this thesis has opened the possibility
of applying graph signal processing to the specific case of heterogeneous air pollution
sensor networks and the different tasks required. Thus, future work can elaborate more
specific graph-based algorithms to reconstruct signals, graph learning models specific
to the mobile sensor network case, or even the application of specific graph neural net-
work methodologies over the whole framework described during the second part of the
thesis. Besides, it would also be interesting to study other applications that can be ap-
proached using this graph-based framework, e.g., sensor clustering, sensor placement,
or other air pollution-specific tasks. All in all, we believe that this graph-based frame-
work can be seen as a sensor network monitoring tool, which will be further exploited
and investigated to be included in data quality-ensuring pipelines for different kinds of
applications.
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Figure 9.1: General overview of the different thesis chapters and the main challenges addressed.
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sparse signal reconstruction and its applications in signal processing”, Circuits,
Systems, and Signal Processing, vol. 38, no. 3, pp. 1206–1263, 2019.

[120] D. Romero, M. Ma, and G. B. Giannakis, “Kernel-based reconstruction of graph
signals”, IEEE Transactions on Signal Processing, vol. 65, no. 3, pp. 764–778, 2016.

[121] P. L. Fung et al., “Input-adaptive proxy for black carbon as a virtual sensor”, Sen-
sors, vol. 20, no. 1, p. 182, 2020.

[122] M. A. Zaidan et al., “Mutual information input selector and probabilistic ma-
chine learning utilisation for air pollution proxies”, Applied sciences, vol. 9, no. 20,
p. 4475, 2019.

[123] S. De Vito, E. Esposito, N. Castell, P. Schneider, and A. Bartonova, “On the robust-
ness of field calibration for smart air quality monitors”, Sensors and Actuators B:
Chemical, vol. 310, p. 127 869, 2020.

[124] M. Matusowsky, D. T. Ramotsoela, and A. M. Abu-Mahfouz, “Data imputation in
wireless sensor networks using a machine learning-based virtual sensor”, Journal
of Sensor and Actuator Networks, vol. 9, no. 2, p. 25, 2020.

[125] L. Liu, S. M. Kuo, and M. Zhou, “Virtual sensing techniques and their applica-
tions”, in 2009 International Conference on Networking, Sensing and Control, IEEE,
2009, pp. 31–36.



9

194 BIBLIOGRAPHY

[126] T. Zhou, H. Shan, A. Banerjee, and G. Sapiro, “Kernelized probabilistic matrix fac-
torization: Exploiting graphs and side information”, in Proceedings of the 2012
SIAM international Conference on Data mining, SIAM, 2012, pp. 403–414.

[127] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering”, Advances in neural information
processing systems, vol. 29, pp. 3844–3852, 2016.

[128] Y. Wu, D. Zhuang, A. Labbe, and L. Sun, “Inductive graph neural networks for
spatiotemporal kriging”, arXiv preprint arXiv:2006.07527, 2020.

[129] K. Qiu, X. Mao, X. Shen, X. Wang, T. Li, and Y. Gu, “Time-varying graph signal
reconstruction”, IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 6,
pp. 870–883, 2017.

[130] S. Wang, Y. Li, J. Zhang, Q. Meng, L. Meng, and F. Gao, “Pm2. 5-gnn: A domain
knowledge enhanced graph neural network for pm2. 5 forecasting”, in Proceed-
ings of the 28th International Conference on Advances in Geographic Information
Systems, 2020, pp. 163–166.

[131] T. H. Do et al., “Graph-deep-learning-based inference of fine-grained air quality
from mobile iot sensors”, IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8943–
8955, 2020.

[132] V.-D. Le, “Spatiotemporal graph convolutional recurrent neural network model
for citywide air pollution forecasting”, TechRxiv, 2021.

[133] D. Hagan et al., “Calibration and assessment of electrochemical air quality sen-
sors by colocation with regulatory-grade instruments”, Atmosph. Measurement
Tech., vol. 11, no. 1, pp. 315–328, 2018.

[134] P. Ferrer-Cid, J. M. Barcelo-Ordinas, and J. Garcia-Vidal, “Data reconstruction ap-
plications for iot air pollution sensor networks using graph signal processing”,
Journal of Network and Computer Applications, p. 103 434, 2022.

[135] M. E. Quinteros et al., “Use of data imputation tools to reconstruct incomplete
air quality datasets: A case-study in temuco, chile”, Atmospheric environment,
vol. 200, pp. 40–49, 2019.

[136] X. Liu, X. Wang, L. Zou, J. Xia, and W. Pang, “Spatial imputation for air pollutants
data sets via low rank matrix completion algorithm”, Environment international,
vol. 139, p. 105 713, 2020.

[137] N. Okafor and D. Delaney, “Missing data imputation on iot sensor networks: Im-
plications for on-site sensor calibration”, 2021.

[138] A. Mondal, M. Das, A. Chatterjee, and P. Venkateswaran, “Recovery of missing
sensor data by reconstructing time-varying graph signals”, arXiv:2203.00418, 2022.

[139] A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factorization”, Advances
in neural information processing systems, vol. 20, pp. 1257–1264, 2007.

[140] M.-Z. Zhang, L.-M. Wang, and S.-M. Xiong, “Using machine learning methods to
provision virtual sensors in sensor-cloud”, Sensors, vol. 20, no. 7, p. 1836, 2020.



BIBLIOGRAPHY

9

195

[141] G. Aiello, V. Chetta, M. Del Coco, E. Giangreco, S. Pino, and D. Storelli, “A vir-
tual augmentation for air quality measurement sensor networks in smart cities”,
in 2019 IEEE International Symposium on Measurements & Networking (M&N),
IEEE, 2019, pp. 1–6.

[142] S. Guo, L. He, Y. Gu, B. Jiang, and T. He, “Opportunistic flooding in low-duty-cycle
wireless sensor networks with unreliable links”, IEEE Transactions on Computers,
vol. 63, no. 11, pp. 2787–2802, 2013.

[143] I. Heimann et al., “Source attribution of air pollution by spatial scale separation
using high spatial density networks of low cost air quality sensors”, Atmospheric
Environment, vol. 113, pp. 10–19, 2015.

[144] T.-B. Ottosen and P. Kumar, “Outlier detection and gap filling methodologies for
low-cost air quality measurements”, Environmental Science: Processes & Impacts,
vol. 21, no. 4, pp. 701–713, 2019.

[145] P. Ferrer-Cid, J. M. Barcelo-Ordinas, and J. Garcia-Vidal, “Volterra graph-based
outlier detection for air pollution sensor networks”, IEEE Transactions on Net-
work Science and Engineering, 2022.

[146] N. Zimmerman, “Tutorial: Guidelines for implementing low-cost sensor networks
for aerosol monitoring”, Journal of Aerosol Science, vol. 159, p. 105 872, 2022.

[147] S. Munir, M. Mayfield, D. Coca, S. A. Jubb, and O. Osammor, “Analysing the per-
formance of low-cost air quality sensors, their drivers, relative benefits and cal-
ibration in cities—a case study in sheffield”, Environmental monitoring and as-
sessment, vol. 191, no. 2, p. 94, 2019.

[148] G. Miskell, J. A. Salmond, and D. E. Williams, “Solution to the problem of cali-
bration of low-cost air quality measurement sensors in networks”, ACS sensors,
vol. 3, no. 4, pp. 832–843, 2018.

[149] J. Li, A. Hauryliuk, C. Malings, S. R. Eilenberg, R. Subramanian, and A. A. Presto,
“Characterizing the aging of alphasense no2 sensors in long-term field deploy-
ments”, ACS sensors, vol. 6, no. 8, pp. 2952–2959, 2021.

[150] L. Weissert et al., “Low-cost sensor networks and land-use regression: Interpo-
lating nitrogen dioxide concentration at high temporal and spatial resolution in
southern california”, Atmospheric Environment, vol. 223, p. 117 287, 2020.

[151] D. Chen, C.-T. Lu, Y. Kou, and F. Chen, “On detecting spatial outliers”, Geoinfor-
matica, vol. 12, no. 4, pp. 455–475, 2008.

[152] M.-F. Harkat, G. Mourot, and J. Ragot, “Sensor failure detection of air quality
monitoring network”, IFAC Proceedings Volumes, vol. 33, no. 11, pp. 529–534, 2000.

[153] M. F. Harkat, G. Mourot, and J. Ragot, “Sensor fault detection and isolation of an
air quality monitoring network using non linear principal component analysis”,
in 16th IFAC World Congress, Citeseer, 2005, pp. 4–8.

[154] T. Yu, X. Wang, and A. Shami, “Recursive principal component analysis-based
data outlier detection and sensor data aggregation in iot systems”, IEEE Internet
of Things Journal, vol. 4, no. 6, pp. 2207–2216, 2017.



9

196 BIBLIOGRAPHY

[155] V. Van Zoest, A. Stein, and G. Hoek, “Outlier detection in urban air quality sensor
networks”, Water, Air, & Soil Pollution, vol. 229, no. 4, pp. 1–13, 2018.

[156] Z. Wang, J. Feng, Q. Fu, S. Gao, X. Chen, and J. Cheng, “Quality control of online
monitoring data of air pollutants using artificial neural networks”, Air Quality,
Atmosphere & Health, vol. 12, no. 10, pp. 1189–1196, 2019.

[157] D. Gong et al., “Memorizing normality to detect anomaly: Memory-augmented
deep autoencoder for unsupervised anomaly detection”, in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp. 1705–1714.

[158] S. Pidhorskyi, R. Almohsen, D. A. Adjeroh, and G. Doretto, “Generative proba-
bilistic novelty detection with adversarial autoencoders”, arXiv:1807.02588, 2018.

[159] H. Wu et al., “Probabilistic automatic outlier detection for surface air quality mea-
surements from the china national environmental monitoring network”, Advances
in Atmospheric Sciences, vol. 35, no. 12, pp. 1522–1532, 2018.

[160] Z. Xiao, H. Fang, and X. Wang, “Nonlinear polynomial graph filter for anoma-
lous iot sensor detection and localization”, IEEE Internet of Things Journal, vol. 7,
no. 6, pp. 4839–4848, 2020.

[161] H. E. Egilmez and A. Ortega, “Spectral anomaly detection using graph-based fil-
tering for wireless sensor networks”, in 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2014, pp. 1085–1089.

[162] C.-T. Lu, D. Chen, and Y. Kou, “Algorithms for spatial outlier detection”, in Third
IEEE International Conference on Data Mining, IEEE, 2003, pp. 597–600.

[163] Y. Kou, C.-T. Lu, and D. Chen, “Spatial weighted outlier detection”, in Proceedings
of the 2006 SIAM international conference on data mining, SIAM, 2006, pp. 614–
618.

[164] S. Shekhar, C.-T. Lu, and P. Zhang, “Detecting graph-based spatial outliers: Al-
gorithms and applications (a summary of results)”, in Proceedings of the seventh
ACM SIGKDD international conference on Knowledge discovery and data mining,
2001, pp. 371–376.

[165] G. Lewenfus, W. Alves Martins, S. Chatzinotas, and B. Ottersten, “On the use of
vertex-frequency analysis for anomaly detection in graph signals”, Anais do XXXVII
Simpósio Brasileiro de Telecomunicações e Processamento de Sinais (SBrT 2019),
pp. 1–5, 2019.

[166] K. Gopalakrishnan, M. Z. Li, and H. Balakrishnan, “Identification of outliers in
graph signals”, in 2019 IEEE 58th Conference on Decision and Control (CDC), IEEE,
2019, pp. 4769–4776.

[167] A. Gaddam, T. Wilkin, M. Angelova, and J. Gaddam, “Detecting sensor faults, anoma-
lies and outliers in the internet of things: A survey on the challenges and solu-
tions”, Electronics, vol. 9, no. 3, p. 511, 2020.

[168] Z. Zhang, A. Mehmood, L. Shu, Z. Huo, Y. Zhang, and M. Mukherjee, “A survey on
fault diagnosis in wireless sensor networks”, IEEE Access, vol. 6, pp. 11 349–11 364,
2018.



BIBLIOGRAPHY

9

197

[169] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying density-
based local outliers”, in Proceedings of the 2000 ACM SIGMOD international con-
ference on Management of data, 2000, pp. 93–104.

[170] L. Xie, D. Pi, X. Zhang, J. Chen, Y. Luo, and W. Yu, “Graph neural network approach
for anomaly detection”, Measurement, vol. 180, p. 109 546, 2021.

[171] G.-J. Qi and J. Luo, “Small data challenges in big data era: A survey of recent
progress on unsupervised and semi-supervised methods”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2020.

[172] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable effec-
tiveness of data in deep learning era”, in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 843–852.

[173] Z. Xiao, H. Fang, and X. Wang, “Anomalous iot sensor data detection: An efficient
approach enabled by nonlinear frequency-domain graph analysis”, IEEE Internet
of Things Journal, vol. 8, no. 5, pp. 3812–3821, 2020.

[174] Z. Xiao, H. Fang, and X. Wang, “Distributed nonlinear polynomial graph filter
and its output graph spectrum: Filter analysis and design”, IEEE Transactions on
Signal Processing, vol. 69, pp. 1–15, 2021.

[175] G. Leus, M. Yang, M. Coutino, and E. Isufi, “Topological volterra filters”, in ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), IEEE, 2021, pp. 5385–5399.

[176] M. O. Franz and B. Schölkopf, “A unifying view of wiener and volterra theory
and polynomial kernel regression”, Neural computation, vol. 18, no. 12, pp. 3097–
3118, 2006.

[177] C. O’Reilly, A. Gluhak, M. A. Imran, and S. Rajasegarar, “Anomaly detection in
wireless sensor networks in a non-stationary environment”, IEEE Communica-
tions Surveys & Tutorials, vol. 16, no. 3, pp. 1413–1432, 2014.


	Abstract
	Resumen
	Acknowledgements
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Outdoor air pollution
	Low-cost sensors and the Internet of Things
	Sensor networks and Graph Signal Processing
	Thesis structure, challenges, and contributions
	Thesis structure
	Summary of challenges
	List of publications


	I Machine Learning-Based In-Situ Sensor Calibration
	Low-Cost Sensor Pre-Processing
	Low-cost sensor pre-processing for air pollution estimation
	Sensor data processing stages
	Sensor sampling
	Data filtering
	Data aggregation

	Experimental evaluation
	Captor node & Data sets
	Defining the calibration models: Feature Selection
	Sensor sampling impact: Tr0
	Sensor sampling impact: Tr2min
	Power consumption: Tr2min

	Concluding remarks & Future work

	Low-Cost Sensor Calibration For Air Pollution Monitoring
	Calibration of air pollution low-cost sensors
	Machine learning-based in-situ calibration
	Machine learning models
	Multiple linear regression
	K-nearest neighbors
	Random forest
	Support vector regression
	Nonlinear models' hyperparameters

	Experimental evaluation
	Data sets
	Short-term performance
	Calibration period size
	Long-term performance

	Concluding remarks & Future work

	Multisensor Low-Cost Sensor Calibration
	Sensor fusion using low-cost sensors
	Multisensor data fusion calibration
	Multicollinearity
	Proposed model & Other models

	Experimental evaluation
	Data sets
	Sensor fusion calibration: Same Sensing Technology
	Sensor fusion calibration: Different Sensing Technology

	Concluding remarks & Future work


	II Graph-Based Analysis of Air Pollution Sensor Networks
	Representing Air Pollution Sensor Networks With Graphs
	Data quality, sensor networks, and applications
	Improving low-cost sensor data quality: Sensor Calibration
	Low-cost sensor network deployment: Use Cases
	Sensor network data quality: Graph-Based Approach

	Fundamentals of graph signal processing
	Sensor network graph inference
	Motivation
	Approaches
	Graph sensing: Graph Learning & Signal Reconstruction

	Experimental evaluation
	Data sets
	Reference station networks
	Heterogeneous low-cost sensor network: H2020 Captor
	Scalability

	Concluding remarks & Future work

	Graph Signal Reconstruction Techniques for IoT Sensor Networks
	Graph signal reconstruction for sensor networks
	Graph signal reconstruction: State Of The Art
	Graph signal reconstruction in air pollution sensor networks
	Graph signal reconstruction scenarios & Motivation

	Graph signal reconstruction models
	Experimental evaluation
	Data sets
	Learning the graph
	Signal reconstruction performance: U=1
	Signal reconstruction performance: U>1
	Signal reconstruction: Scalability

	Concluding remarks & Future work

	Maintaining Sensor Network Data Quality Via Data Reconstruction
	Data quality in heterogeneous air pollution sensor networks
	Low-cost sensor post-processing applications
	Missing value imputation
	Virtual sensing

	Graph-based data reconstruction framework
	Graph learning
	Signal reconstruction
	Application and deployment
	Post-processing applications

	Experimental evaluation
	Data set
	Graph learning
	Missing value imputation
	Virtual sensing
	Data fusion
	Data fusion application: Error Compensation
	Virtual sensing application: Drift Compensation

	Concluding remarks & Future work

	Graph-Based Sensor Network Outlier Detection
	Heterogeneous sensor network data quality issues
	Low-cost sensors data quality
	Detection of outliers & Sensor errors
	Motivation & Approach

	Volterra Graph-Based Outlier Detection (VGOD) process
	Graph learning: Smoothness-Based
	Graph signal reconstruction: Volterra Series
	Outlier detection: Indicator Function
	Adaptive algorithm: VGOD

	Experimental evaluation
	Experimental data
	Model training & Selection
	Training set performance
	Test set performance
	Sensor error detection: Drift Detection
	Scalability

	Concluding remarks & Future work


	Conclusions
	Bibliography

