UNIVERSITAT POLITECNICA DE CATALUNYA
Doctoral Programme:

AUTOMATICA, ROBOTICA I VISIO

PhD Thesis:

Visual understanding of human behavior:
3D pose, motion, actions and context

Alejandro José Hernandez Ruiz

Advisor:

Francesc Moreno Noguer, Prof.

June 2022

Abstract

Visual understanding of human behavior is a very broad topic that, in the abstract,
means understanding what a person or group of people is doing in an image or video.
In practice, it can be broken down into a series of steps: detecting people in the
image, estimating their posture and motion, recognizing objects in the environment,
recognizing the action performed, predicting the subsequent motion, and predicting
the next actions to be performed. Each of these steps is a computer vision task, and
in this thesis we will focus on the following:
- 3D action recognition, identifying actions being performed based on the move-
ments of people.
- 3D motion prediction, predicting the motion of a person based on a sequence
of previous motion.
- Program generation, generate a program with an expected target that can
adapt its behavior depending on the context.

For each of these tasks, the main contributions of this thesis are:

- A novel method for action recognition that uses a 3D CNN in conjunction with
Euclidean Distance Matrices to analyze motion sequences.

- State of the art results for motion prediction using a generative adversarial
network that can generate realistic sequences of up to 4 seconds.

- The creation of a new type of neural network, the Neural Cellular Automata
Manifold, which can generate programs in the form of cellular automata whose
behavior is learned from data.

In summary, understanding human behavior is central to many applications and is
not trivial to solve. However, we propose methods for recognizing actions, predicting
movements, and generating programs, and we have achieved very good results on
each of these tasks.

Keywords action recognition, 3D CNN, motion prediction, generative adversarial
networks, program generation, neural cellular automata.

1l

Contents

Abstract

Contents

1 Introduction

1.1 Objectives
1.2 Contributions
1.2.1 3D action recognitiono
1.2.2 Motion prediction
1.2.3 Program generation
1.3 Publications
1.4 Thesis overview

2 Definitions and Methods

2.1 Computer Vision
2.1.1 Image-likedata oo
2.1.2 Complex Behavior

2.2 Relevant Computer Vision Tasks
2.2.1 Pose Estimation o000
2.2.2 Action Recognitiono
2.2.3 Motion Prediction L.
2.2.4 Program Generation

2.3 Deep Learning Methods
2.3.1 Classification Models
2.3.2 Generative Models oo

3 3D action recognition

3.1 Related work
3.1.1 Skeleton Sequence based Methods
3.1.2 Image Sequence based Methods
3.1.3 Other Methods,

3.2 Method
3.2.1 EDMs over Transformed Skeletons
3.2.2 3D CNNs over Distance Matrices

vi

Contents

3.2.3 Network Training
3.2.4 Network Architecture Details
3.3 Experiments o 0oL
3.3.1 Datasets
3.3.2 Implementation and Training Details
3.3.3 Comparison with State of the Art
3.3.4 In-depth Analysis of DM-3DCNN
3.4 Chapter summary
4 3D motion prediction
4.1 Related work
4.2 Problem Formulation
4.3 Model
4.3.1 STMI-GAN architecture
432 Losses
4.4 Metrics for motion prediction
4.5 Implementation Details
4.6 Training Detailso
4.6.1 Data Augmentation
4.6.2 Model Parameters
4.6.3 Training Meta-Parameters
4.7 Experimentso
4.7.1 Motion Prediction
4.7.2 Occlusion Completion
4.8 Chapter summary
5 Program Generation
5.1 Related work
5.2 Neural Cellular Automata Manifold
5.2.1 Architecture Details
5.2.2 DNA-encoding
5.2.3 Dynamic Convolutions

5.2.4 Neural Cellular Automata Architecture

5.3 Experiments Lo

5.4 Chapter summary
6 Concluding remarks

6.1 3D Action Recognition

6.2 Motion Prediction

6.3 Program Generation

Bibliography

71

Chapter 1

Introduction

Understanding human behavior is one of the hottest topics in computer vision research
today. It enables a wide range of applications in multimedia, gaming, augmented
reality, video web search, automated surveillance, and human-robot interaction.

In the broadest sense, when we talk about understanding human behavior, we
are referring to general understanding of actions and its context. This would require
a general visual understanding of the world. The proposal for this ambitious task
dates back to 1966, when Papert et al. [77] proposed the summer vision project,
the goal of which was to develop a computer vision system capable of recognizing
arbitrary objects in an image and matching them with a dictionary of known objects.
And all of this was to be developed during the University summer break using 1966
computer equipment. More than 5 decades later, we are still struggling with the
common task of object perception. Although recent breakthroughs made possible by
large data sets and modern hardware have made us confident in the specific task of
object classification in single images, we are still far from having a general method
capable of understanding what these objects are for, how to interact with them, or
what their properties or materials are.

In this work, we are interested in a visual understanding task with a narrower
scope. In short, we want to be able to recognize what a person is doing in an image or
video. When we think about how people perform this task, it is usually divided into
a number of sub-tasks: Recognizing people in the picture and identifying their parts;
observing the position of those parts, the environment, and the objects involved; and
finally imagining their movement. Then we are able to recognize the action being
performed.

As a thought experiment, we can analyze our own thinking in the following
example: What action is performed in figure 1.1a? Any human would easily answer:
it is a football player chasing the ball. We can also add that the player is very close
to the goal, even if it is not visible in the image. Therefore, it is very likely that the
next action will be shooting the ball. In the picture we can also see that the player
of the opposing team is about to catch the ball. However, the other player in the

2 Introduction

upper left corner of the picture cannot take part in the action because he is too far
away. We can also see the spectators in the background very clearly and realize that
they are not involved in the action. Even more, most people would recognize the
identity of the player. Each of these steps is a relevant computer vision task, which
we will define in sec. 2.1.2.

(a) Example of human action being per-
formed:
football player running, pose by RT-CPM [11]

(b) Semantic segmentation and pose detec-
tion by the Mask R-CNN. [29]

Figure 1.1: Examples for motivation

Recognizing other people in a picture is an easy task for any human. It is also
easy for a person to recognize the body parts and their relationship to each other,
to infer movement from the pose and distance from the perspective. Also, in a
known scenario, we can recognize what specific action is being performed and make
a good estimate of the outcome of the action. For computers, each of these tasks
is very complex. As we can see in Figure 1.1b, current methods are approaching
human levels in human recognition and 2D pose estimation. The next task is then
to recognize the action being performed. The current methods for action recognition
require many assumptions or abstractions because the machines lack the necessary
background knowledge. That is, action recognition methods often assume that there
is a single person in the image, that the person is relatively close to the camera, and
that the detection of body parts is reliable enough. Moreover, people are usually
represented by a fixed skeletal shape that is perfectly symmetrical and assumed to
have all limbs. We can argue that we are still far from a general method that can
solve all these problems together and achieve human level performance.

We believe that it is crucial for action recognition to work with sequences rather
than still images, because a sequence contains more information than the sum of its
images. It is the relationship between the images through which we can uniquely
identify an action performed. Therefore, videos are the ideal medium to learn this
task. Even in a very short video, a complex action can be performed, and the
interaction of humans with their environment is very complex.

1.1 Objectives 3

Deep Learning models have recently shown excellent performance on complex
visual tasks. Their inherent complexity and tailored architecture for visual under-
standing, along with huge amounts of data and computational power, are key to
their success. These models are nowadays the most powerful tools for many of the
topics related to our thesis, such as pose estimation and human action recognition.
However, it is not a trivial task to assemble the various pieces into a general model
for action recognition. To accomplish this, we will use our own understanding of how
humans perform action recognition. This strategy follows the main idea of [27]: By
incorporating prior knowledge into the design of our models, we can obtain clearer
models that are easier to debug and improve, and that perform better in the long run.

1.1 Objectives

The main objective of this doctoral thesis is to perform visual understanding of
human actions. Visual understanding means creating models that are capable of
capturing the full complexity of human body pose and shape, as well as its evolution
in space and time.

We can divide the main objective in the following specific objectives:

1. Pose-based action recognition: our objective is to classify pose sequences into
different action categories, e.g., running, jumping, handshaking. We will extract
pose sequences from videos using SOTA methods and propose new methods
for their analysis.

2. Pose sequence prediction: after analyzing the pose, our next objective is to
predict the pose in subsequent frames. This is a challenging problem due to
free will and complex human behavior. Therefore, current methods can only
make short-term predictions for sequences of up to one second. Our goal is
to provide methods that outperform SOTA for predicting human motion by
estimating coherent poses for up to four seconds in the future.

3. Context aware pose generation: With the final objective of generating plausible
motions in a dynamic context, we aim to generate programs that can solve this
challenging task.

1.2 Contributions

1.2.1 3D action recognition

From sequences of 3D skeletal data, we can recognize human actions. To this end,
we combine a 3D Convolutional Neural Network with body representations based on
Euclidean Distance Matrices (EDMs). However, an inherent limitation of EDMs is
that they are defined up to a permutation of skeletal joints, i.e., random rearrange-
ment of joints leads to many different representations. To address this problem, we

4 Introduction

present a novel architecture that simultaneously and in an end-to-end manner, learns
an optimal transformation of the joints while optimizing the other parameters of
the convolutional network. The proposed approach achieves state-of-the-art results
on 3 challenging benchmarks, where we outperform previous LSTM-based methods
by more than 10 percentage points and also outperform other CNN-based methods
while using almost 1000 times fewer parameters.

Publication:
- 3D CNNs on distance matrices for human action recognition
A. Hernandez Ruiz, L. Porzi, S. Rota Bulo, F. Moreno-Noguer.
ACM on Multimedia Conference (ACMMM) 2017.

1.2.2 Motion prediction

Recent methods have shown promising results in predicting motion, but they are
limited to predicting plausible motion over relatively short time periods (a few hun-
dred milliseconds). They also typically ignore the absolute position of the skeleton
with respect to the camera, limiting the range of applications to those that require
only relative positions.

We propose a Generative Adversarial Network (GAN) to predict human 3D
motion using a sequence of past 3D skeletal poses. Our system provides long-term
predictions (one second or more) for both body pose and absolute position. Our
approach relies on three main contributions. First, we represent the data using a
spatio-temporal tensor of 3D skeletal coordinates, which allows us to formulate the
prediction problem as an in-painting problem. Second, we design an architecture
for learning the joint distribution of body pose and global motion, which is able to
hypothesize large portions of the input 3D tensor with missing data. Finally, we
propose two alternative metrics for motion prediction based on frequency distribution
that can capture more realistic motion patterns. Extensive experiments show that
our approach significantly improves the state of the art and also handles situations
where previous observations are corrupted by occlusions, noise, and missing frames.

Publication:
- Human motion prediction via spatio-temporal inpainting
A. Hernandez Ruiz, J. Gall, F. Moreno-Noguer.
IEEE/CVF International Conference on Computer Vision (ICCV) 2019.

1.2.3 Program generation

The most challenging objective in this work is to generate programs that can predict
human behavior given a dynamic context. The objective of such programs is to
predict the correct pose for each state, taking into account the changing environment,
to ultimately produce plausible behavior. The first step toward this ambitious

1.3 Publications 5

objective is to address the task of program generation.

Cellular Automata are a family of models of special interest because they offer
the possibility of describing any algorithm without changing its underlying construc-
tion [13]. This is possible because each cell in a CA adjusts its state according to
the context given a program. In the classical CA, the program is in fact a fixed set
of rules that must be tested by hand, limiting the applicability of the model. In
contrast, the Neural Cellular Automata [71] represents this program as an artificial
neural network that can be trained to produce the desired behavior.

This model is key to our research because with proper adaptation, each step
of the NCA could represent a state of a 3D skeleton and its context. The main
limitation is that the NCA can generate a specific behavior for a single given context.
To generalize the NCA model so that we can learn a variety of programs with a
single model, we propose the Neural Cellular Automata Manifold model. Using
Dynamic Neural Networks, we can generate NCAs that can adapt and perform
complex behavior for any given context.

Publication:
- Neural cellular automata manifold
A. Hernandez Ruiz, A. Vilalta Arias, F. Moreno-Noguer.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
2021.

1.3 Publications

- 3D CNNs on distance matrices for human action recognition

A. Hernandez Ruiz, L. Porzi, S. Rota Bulo, F. Moreno-Noguer.

ACM on Multimedia Conference (ACMMM) 2017.

Human motion prediction via spatio-temporal inpainting

A. Hernandez Ruiz, J. Gall, F. Moreno-Noguer.

IEEE/CVF International Conference on Computer Vision (ICCV) 2019.
Neural cellular automata manifold

A. Hernandez Ruiz, A. Vilalta Arias, F. Moreno-Noguer.

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
2021.

1.4 Thesis overview

- Chapter 2: Definitions and Methods. In this chapter, we present the
definitions that serve as a theoretical and conceptual framework. This is
followed by an overview of the methods that form the basis for the methods
used in this thesis. Note that this section does not discuss the state of the art

Introduction

for each task.

Chapter 3: 3D action recognition. In this chapter, we investigate the task
of human action recognition from 3D skeletal data, also known as 3D action
recognition. Here, we propose novel neural network models that use Euclidean
Distance Matrices of the skeletal data and recognize the performed actions
with high accuracy.

Chapter 4: 3D motion prediction. In this chapter, we advance our
understanding of human motion by predicting the motions of subjects longer
than any previous work. Using Generative Adversarial Networks, we are able
to learn a complex motion distribution that better represents reality.
Chapter 5: Program generation. In this chapter we address the problem
of program generation. We focus on creating a manifold of Neural Cellular
Automata models, that allow us to generate programs in the form of neural
networks.

Chapter 6: Concluding remarks. Finally, we conclude our thesis with
some remarks that compile our thoughts about the present and future work.

Chapter 2

Definitions and Methods

Long books and endless papers have been written on the subjects covered in this
section, and those works explain in much greater depth and breadth the topics we
will discuss here. Nevertheless, this section is important and necessary for two main
reasons: 1) as a technical introduction for readers who are not experts on the topics
covered in this thesis, with numerous references to the relevant original material.
2) to provide a starting point for the conversation with expert readers, allowing
us to highlight relevant aspects of previous work while giving perspective to the
contributions of this thesis.

2.1 Computer Vision

Computer vision is the "intelligent" processing of image-like data that enables
machines to perform complex behavior. Let us first define what kind of data we will
use, and then the definition of complex behavior.

2.1.1 Image-like data

Image-like data is a broad term, and the actual modality (or format) of the data
depends on the sensors used to capture it, as well as the pre-processing techniques
used. In the most common scenario, we are dealing with digital images that can
be represented as 3D tensors. The first two dimensions of the tensor represent the
plane of the image, while the third dimension encodes the color. By adding a fourth
dimension that represents time, we effectively represent a video.

Digital images are the most abundant source of data for the purpose of this work,
as the number of image capturing devices has exploded and huge datasets of this
type of data are readily available today.

Another image-like data source of interest for our purposes is 3D skeletal data.

This data is represented by a 5D tensor. In this tensor we represent the points of
interest of reality. In our case, these are the joints of a 3D skeleton that encodes the

7

8 Definitions and Methods

pose of a person. The first dimension represents the collection of joints. The next
three dimensions represent the body in 3D space, with coordinates for height, width,
and depth. And the last dimension encodes the sequence of time steps that we can
use to represent the motion of the skeleton.

3D skeletal data can be obtained from many sources, but we mainly work with
data from 3D point tracking systems, 3D skeletons from 2D + depth images (Kinect
sensor), and 3D skeletons extracted from 2D images using pose estimation models.
Recent wearable 3D body tracking systems are also compatible with the models
proposed in this work, but they were not used.

In the Cellular Automata, we have a 2D grid representing a two-dimensional
space. In this model, we treat each cell as an independent automaton. The state of
the automaton is a tensor with N arbitrary values. This results in a tensor with 2D
-+ N dimensions of a 2D world. As in the previous cases, we can add a dimension to
represent evolution over time.

2.1.2 Complex Behavior

When we defined computer vision, we introduced the concept of complex behavior. In
our understanding, complex behavior is any behavior that cannot be easily encoded
in an algorithm or set of rules, but is nevertheless a behavior expected of living
beings, such as humans, animals, or even unicellular organisms. Living beings gather
information from their environment and process it in a way that allows them to take
actions to maximize the likelihood of their survival. For example, while predicting
the movement of a cat is not a trivial task for a machine, for a mouse it is a necessary
skill to avoid being eaten. In our work, we explored several tasks, but we focused on
action recognition, motion prediction, and program generation.

To analyze the images and sequences, computer vision relies on a variety of other
fields such as geometry, physics, statistics, and machine learning. Machine learning
is a field that focuses on methods that "learn" to produce complex behavior from
data. Machine learning methods have proven to be very useful in solving computer
vision tasks. In this thesis, we will focus exclusively on machine learning methods,
and more specifically in deep learning. Deep Learning has the capability to create
complex models that can generate the complex behavior we expect. We will explain
this in more detail in Sec.2.3.

Machine learning methods allow us to solve many tasks that would otherwise be
unsolvable for a computer. If we recall the example of the football player from the
image 1.1a, in order to understand this image we would have to perform a variety of
computer vision tasks, such as:

- Action recognition: recognizing the actions being performed in an image or

video.

- Image captioning: providing the appropriate captions for an image or video.

2.2 Relevant Computer Vision Tasks 9

- Pose estimation: estimating the position of the limbs of people in the image.

- Image in-painting: fill in missing parts of an image.

- 3D object localization: estimate positions in 3D space from a 2D image or
video.

- Interaction analysis: analyze interaction between humans and objects to
correct previous estimations or help to predict possible outcomes of an action.

- Subject re-identification: identify previously seen subjects in an image.

- Motion prediction: predict the motion of a person given a initial motion
sequence.

- Action prediction: predict the most likely action to be performed.

And after performing these tasks, we can use this information to produce behavior
that would otherwise be impossible. For example, in the football player scenario, we
could add a "virtual" commentator that says something along the lines of: "Messi is
quickly approaching the goal! He’s going to shoot! He’s under pressure, but he can do
it! Common’ messi don’t hessitate!”, which means that it understands the action,
the actors, the possible outcomes and the interaction of all the elements in the scene.
In this thesis we will focus only on some of these tasks, namely action recognition,
motion prediction, and program generation.

2.2 Relevant Computer Vision Tasks

2.2.1 Pose Estimation

Pose estimation is about determining the posture of the subjects in an image. More
specifically, we want to determine the position of the joints and the orientation of
the limbs in 3D space. With this information, we can reconstruct a 3D skeleton
that represents the person in a virtual space. Although pose estimation is not an
objective of this thesis, we rely on it to process video data and obtain 3D skeletal
data that we can use for our various goals. Cao et al. [11] propose a robust method
that can perform pose detection in real time, and we use this method in Chapters 3
and 4.

Methods for pose detection are usually divided into steps for joint detection
and pose reconstruction. The first step uses a keypoint detector, a model that can
detect the points of interest for our application, i.e., the joints. Modern keypoint
detectors are usually implemented with a convolutional neural network whose output
is essentially a per-pixel classification of the different joints. We will discuss this in
more detail in section 2.3. The second step is usually performed by a combination of
optimization methods and heuristics that take the list of detected joints and link
them in the most likely way, implicitly creating the 3D skeleton’s limbs. In this
second step, we can also refine the detected joints by removing unlikely detections,
such as a foot detected above the head.

10 Definitions and Methods

2.2.2 Action Recognition

Action recognition consists in classifying image sequences (videos) according to the
behavior that the subjects exhibit. This behavior can be recognized based on the
different positions and movements of the people involved. Although context can
provide a significant amount of information, it is usually not the key to determining
the action performed. For example, in a dataset for the action running, there may
be sequences of people running in parks, on streets, football fields, etc.

There are interesting proposals that address this recognition task in an end-to-
end manner. Simonyan et al. [84] propose to use a neural network that can extract
relevant information directly from the image sequence to recognize the action. To
this end, the network splits into two branches, where one branch takes a single image
and the other branch takes the optical flow of the sequence. The idea is that one
branch can analyze the contextual information like a normal image classifier and
the other branch focuses on extracting the motion information. This was explicitly
developed for small sequences of up to 25 frames. Recognizing actions in videos is a
challenging task for several reasons:

- The subject appearance may vary during the sequence. The images may show
the subject at different distances, they may show the whole subject, or it may
be a close-up of a body part.

- The subject may be partially or completely occluded.

- There may be one or several subjects in the picture, and the action may be
determined by the interaction between them.

- It may be difficult to distinguish the subject of interest from different subjects
in the background (or foreground) that are performing different actions.

- Image based methods commonly used for this task rely more on texture
detection than on understanding objects or subjects.

- The amount of data to be processed for each sample is large given the image
resolution and video length, which make its processing computationally inten-
sive.

A common strategy to overcome or mitigate these problems is to divide the task
into two distinct sub-tasks: Pose estimation and action recognition from 3D skeleton
data. Pose estimation works as described in the previous section by generating 3D
skeletal data from image sequences. Action recognition from 3D skeleton data, also
known as 3D action recognition, consists of classifying sequences of 3D coordinates
representing joints of a skeleton in space. These sequences encode actions in terms
of their motion, i.e., we can infer whether a skeleton is jumping, running, hugging,
and many other actions just by observing its motion.

Processing action sequences in this way greatly reduces the amount of data to
be processed at each step and allows us to use more complex and specific models
for each task. In this context, the pose estimation model takes care of the problems
related to the subject appearance, occlusion and background. The action recognition

2.2 Relevant Computer Vision Tasks 11

model, on the other hand, can focus on dealing with multiple people and their
interactions. This strategy also allows us to improve our results on the general action
recognition task by implementing incremental improvements on each of the sub-tasks
separately. In this work, we focus on improving of the 3D action recognition sub-task.

2.2.3 Motion Prediction

Sometimes it is not enough to recognize the action performed, we must also predict
the motion of the subject. For example, when we drive a car, we need to anticipate
the movements of other vehicles on the road in order to adjust our own behavior.
From autonomous driving to any kind of human-machine interaction, motion predic-
tion is critical not only for performance, but also for safety.

In general, motion prediction of living subjects is a very complex problem. Not
only the state and intention of the subject, but also previous states and interactions
with the environment must be considered. Of course, all this information is usually
not available, but in certain cases it can be partially inferred from the motion se-
quence. Obviously, the time horizon of the motion prediction is a key factor for the
complexity of the task.

For this reason, short-term prediction of 400ms or less is the most common
case tackled so far [68|. At the time of this research, there is very little work that
ventures into longer time horizons up to 1000ms [63], which is considered long-term
prediction in the literature. And this is exactly the objective for this work, because
the prediction of motion for more than 1 second is needed for many applications.

2.2.4 Program Generation

The results we obtained in motion prediction were a significant improvement over
SOTA. However, we wanted to improve the performance of the model for the same
task, we wanted to increase the time horizon of the predictions, and we wanted to
include a dynamic context. In addition, we wanted to be able to predict not only
the motion, but also the actions to be performed, i.e., the model should have an
implicit understanding of what the action being performed is and how it relates to
other behaviors.

After extensive research, we have concluded that the best approach to improving
all of these goals is to learn to generate programs that can reproduce the complex
behavior of the subject while also taking context into account. We approach this
challenge using dynamic neural networks to learn to generate programs encoded in
the form of a neural network that operates in the cell grid of a Cellular Automata
model.

12 Definitions and Methods

This line of research is pushing the envelope in current research, not only in the
task of motion prediction, but in the field of Deep Learning in general.

2.3 Deep Learning Methods

Deep Learning is a family of machine learning methods that use Artificial Neural
Networks (ANNs) in combination with representation learning techniques. It is
commonly used to tackle tasks that would be difficult or impossible for a machine
using a classical algorithm. The term Deep Learning was coined by Rina Dechter in
1986, and the adjective "deep" refers to the use of a ANN with many layers. These
layers allow us to model increasingly complex functions that can be trained on data.

The Multilayer Perceptron (MLP) is perhaps the oldest model in the Deep Learn-
ing family. As can be seen in the figure 2.1, it consists of multiple layers of linear
transformations, each followed by a non-linear activation function. The classical
non-linear activation functions were the sigmoid: sigmoid(z) = (1 +e7*)7!, and
the hyperbolic tangent: tanh(z) = (€** —1)/(e**+1). The system was trained with
the backpropagation algorithm, which uses the gradients of the errors to optimize
the parameters of the network. The different components of the MLP can be viewed
as a framework that has served to develop most current Deep Learning models.
However, the model was initially very limited. One of the main problems of early
deep models was the vanishing gradient problem. In classical MLP, the norm of
the gradients decreased with each successive layer. This meant that the model
could only grow so far before the gradients could no longer flow from output to
input during backpropagation. This limited the size and complexity of the MLP.
Because of this and other shortcomings, the machine learning community preferred
other methods over the MLP for decades until the success of Convolutional Neural
Networks revitalized the field.

In machine learning, there are two broad classes of models based on their output:
Classification and Regression. Classification models predict a label given an example
(e.g., dog, car), while regression models predict a continuous value relevant to our
application (e.g., 15 degrees). We can think of generative models as a special case of
regression models whose output is a set of variables that have a complex relationship
that the model must take into account in its predictions. These models can also be
understood as multivariate regression models, but with a high degree of complexity
and non-linearity that is unattainable by classical statistical models.

2.3.1 Classification Models

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of ANN, which rely on the math-
ematical operator of convolution to perform their computations. CNNs have been

2.3 Deep Learning Methods 13

Forward Pass

=9 (= =9

Y

Class

N

FC FC FC
Backward Pass

A

Multi-Layer Perceptron Convolutional Neural Network

Figure 2.1: In the left size we can observe a diagram of the MLP. This particular MLP consists of
four hidden layers that would convert an input tensor into a class output. During training, the
MLP propagates the information in a forward pass from input to output, computes a prediction
error, and then propagates the gradients of the error backward from output to input. The hidden
layers of the MLP are linear transformations followed by nonlinearity. Since the weight matrix
contains entries to connect each neuron in one layer to each neuron in the next layer, they are also
called fully connected (FC) layers. On the right side, we can see the diagram of the CNN. Starting
with an input image, it performs two convolutions that result in tensors that are smaller in height
and width but larger in depth. The depth in this case represents the number of features extracted
by each layer. Finally, the CNN is connected to an MLP that serves as a classifier.

applied with great success to a variety of problems, but were originally developed for
image classification. LeNet [61] is one of the first successful examples of this type of
network and was used to classify the handwritten digits of the Modified National
Institute of Standards and Technology (MNIST) database. A CNN is formed by
the succession of many convolutional layers which usually end up connecting to an
MLP for classification. Figure 2.1 shows a visual representation of a CNN. Each
convolutional layer is defined as follows: Y,/ = > K., * X}, where * is the convo-
lution operator, K,,, is the convolutional kernel, and (m,n) are the input and output
channels.

In 2012, AlexNet [59] won the ImageNet LSVRC [81] challenge and made a big leap
in accuracy over previous methods. The success of AlexNet can be largely attributed
to its size, which was the largest neural network model at the time of its release.
The size of AlexNet was made possible by the use of Rectified Linear Unit (ReLU)
activations: ReLU (x) = max(zx,0), which mitigate the vanishing gradient problem.

Other important developments that helped CNNs and the field of Deep Learn-
ing in general make breakthroughs were the normalization layers, which enabled
deeper networks and better models in general. In this thesis, we use two types of
normalization layers: The batch normalization [43] layer, which tracks the statistics
of each batch of samples during training and normalizes the samples according to
those statistics. And the instance normalization [93] layer, which normalizes each
sample based on the statistics of each channel independently.

14 Definitions and Methods

bt be 41

Loop t ? t
RNN RMN —P‘ RMNN }—) RMNN —» LSTM LSTMpa| LSTM LSTM}J-P‘
) A A X
Input Input?f 7 ' !
Static View Unrolled View Static View Unrolled View
Recurrent Neural Network Long Short Term Memory

Figure 2.2: On the left, we can see a diagram of an RNN cell. An RNN cell is a self-contained
network that, in the simplest case, consists of a single layer of an MLP. The RNN cell can be viewed
as a static network with loop connections, or if it is "unrolled" on the sequence, we can view it as
a network that is cloned and processes the inputs for each time step. The main difference with
an MLP is that the RNN has a connection to itself in time, i.e. it receives two inputs, the input
tensor from a sequence of inputs and the previous output. On the right hand side, the LSTM is
very similar to a vanilla RNN, but it has gates that control the flow of information in and out of
the cell and even the information that is stored within the cell.

Residual Neural Networks

Residual Neural Network (ResNet) [31] is an important addition to CNN architec-
tures. It introduces the concept of the residual connection, which allows the network
to grow much larger than previously thought without the vanishing gradient problem.

The residual connection is essentially a linear transformation from input to
output computed in parallel to a block or section of the network. The output of
the transformation is then added directly to the output of the block. Intuitively,
we can think of this as splitting the problem into two distinct components, a linear
component and a non-linear component, each learned by one side of the network. The
principles introduced in the ResNet architecture are found in most current ANNs,
and we use them extensively in this work as well.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a subfamily of neural networks with loop
connections in their layers that allow them to process information at each step, taking
into account the output of the previous state to properly adjust their function. See
figure 2.2 for a visual representation. The sequential nature of RNNs makes them
ideal for representing and processing text and other sequential data, but they were
originally designed for processing temporal sequences. Long-Short Term Memory
(LSTM) networks [37] are an improvement over simple RNNs; they introduce gates
that control the flow of information within each layer. LSTMs have been successfully
applied to various tasks, including NLP tasks [51]. They have been shown to be a

2.3 Deep Learning Methods 15

Encoder

Autoencoder

Figure 2.3: The Autoencoder combines an encoder network and a decoder network. The encoder
converts an input image into an embedding tensor, and the decoder reconstructs the image from
that embedding tensor. The encoder and decoder are essentially CNNs that mirror each other. The
decoder contains transposed convolutions, also called deconvolutions, instead of convolutions. As
the name implies, a transposed convolution is a convolution in which the inputs and outputs are
swapped so that the image increases in height and width after each layer.

robust model, outperformed by more recent models, but still a good baseline model
for many tasks such as action recognition.

An interesting property of RNNs is that they have been shown to be equivalent
to Turing machines [42]. Neural Turing Machines (NTMs) [25] are a special type of
RNN that has been proposed for program learning in general. This is of interest to
us in the area of program generation, however NTMs can only learn a single program
at a time.

2.3.2 Generative Models

Autoencoders

Autoencoders (AE) [36] consist of two subnetworks, an encoder network and a decoder
network. The encoder network extracts features similar to a CNN trained for classi-
fication. These features are then passed to a decoder network, which reconstructs
the image passed in the input. The encoder usually has a contractive architecture
that reduces the spatial dimension while increasing the number of features. The
decoder is usually the mirror image of the encoder. It increases the spatial dimension
while decreasing the number of features. We can observe this architecture in figure 2.3.

Originally, it was thought that autoencoders must have an hourglass architecture
to learn a dense feature space, but in fact sparse autoencoders |75] have also proven
useful. Tying the weights of the network to learn symmetric features for compression
and decompression was also initially thought to be a good idea, but later proved to
be not useful and even counterproductive in the general case. These architectural

16 Definitions and Methods

skip connection

sk:p connecto‘

—— — P —
Conv Conv Deconv Deconv

Unet

Figure 2.4: The Unet is a fully convolutional autoencoder, i.e., it lacks the MLPs found at the
center of a regular autoencoder. The Unet has skip connections that pass information from the
first part of the network to layers in the second part of the network that have the same spatial
dimensions, skipping the main path of connections.

choices, which were an initial exploration of the Deep Learning field, showed that
the behavior of these models is very complex and in many cases counterintuitive,
and that sometimes the exact opposite of what is expected can improve the results.

The UNET [80] is an autoencoder architecture with skip connections between
layers of the same resolution. This is a connection similar to the residual connection,
but in this case without any kind of transformation. The skip connection, much like
the residual connection, was designed to allow the network to preserve information
across its layers. However, in this case, the goal is to maintain the spatial structure
as much as possible so that the network can use the contextual spatial information
at each step. This architecture was applied to semantic segmentation and achieved
SOTA results when published.

Autoencoders can be trained to denoise data. This is done by adding random noise
to the input and minimizing the error with respect to the clean data. When trained
in this way, they are called denoising autoencoders. To complete the information
masked by the noise, denoising autoencoders must learn the intrinsic properties of
the data. Therefore, they are forced to learn a manifold [98]. Denoising autoencoders
are considered generative models, but sampling their latent space remains a problem,
as we can see in figure 2.5. A recent development, the Implicit Rank Minimizing
AutoEncoder (IRMAE) [49], shows that adding some linear transformations to the
latent space of the autoencoder actually improves it, mitigating the sampling problem.
However, more complex models such as Variational Autoencoders or Generative
Adversarial Networks are needed to produce images that people consider to be
qualitatively good.

Variational Autoencoders

Variational Autoencoders (VAEs) [56] tackle the problem of generating images using
an autoencoder, and more specifically they aim at solving the sampling problem of

2.3 Deep Learning Methods 17

Figure 2.5: Image taken from [49]. Original caption: "MNIST/CelebA images samples from
Multivariate Gaussian with covariance estimated from training set. From left to right are images
generated from an unregularized AE, a VAE, and an IRMAE, respectively". We can observe that
the embedding space of regular AE cannot be easily sampled to generate new images. In addition,
we can state that both the VAE and the IRMAE are an improvement over the original. Finally, we
can note that the images generated by the VAE have a certain smooth appearance.

the autoencoders by constraining the model to learn an easy to sample Gaussian
distribution in its latent space. The VAEs encoder is very similar to that of the
original Autoencoder, but its output, or latent vector, is divided in two parts, these
two parts represent the mean and variance of a Gaussian distribution. In the next
step, a sample from an multivariate Gaussian distribution with diagonal covariances
is taken, and this sample is multiplied by the variance and added with the mean
values taken from the encoder output. The resulting value is passed on to the decoder
which will generate an image that probably resembles the input. VAE is trained
end-to-end, with a reconstruction loss and an additional KL-divergence loss, which
is imposed on the latent space, to avoid it from deviating too much from the original
Gaussian distribution.

The VAE model main strength is that it is very easy to generate coherent images
by sampling its latent space. The downside is that the resulting images tend to be
very soft looking, and lose many details. This can be attributed to the Gaussian space
being too harsh a constrain, but it is also due to the fact that the reconstruction
loss used is an 12 loss which minimizes at the mean value, and this might be a less

18 Definitions and Methods

]ﬂ Real / Fakeé

Random
Sample

MLP

Generator Discriminator

Generative Adversarial Network

Figure 2.6: In GANs, we have a generator subnetwork and a discriminator subnetwork. These two
networks are adversarials in their roles. The objective of the discriminator is to determine whether
the image is a real image or a generated image. The objective of the generator is to generate images
that fool the discriminator.

than ideal target for many cases.

Generative Adversarial Networks

Generative Adversarial Networks (GANs) [22] turn the Autoencoder framework on
its head, by placing the decoder in the beginning of the network and then using
the encoder as a classifier, we can train both networks in an adversarial manner.
The network is trained by taking turns. In the encoder turn, it will learn to classify
real images as real, and images generated by the decoder as fake. Because of their
roles, in GAN jargon, the encoder is called a discriminator and the decoder is called
the generator. In the decoder turn, it will learn to generate images trying to fool
the discriminator in classifying them as real. To generate images, we get a random
sample from a Gaussian distribution, and pass it to the generator as if it was the
latent tensor of an autoencoder. By repeating this alternating optimization, we can
train the two networks in an end-to-end manner.

GANs were originally proposed as a way to train robust networks, but they have
proven to be a good way to generate images [54|, motion [33| and many other data
modalities.

Dynamic Neural Networks

Dynamic Neural Networks (DNNs) are neural networks that generate other neural
networks. There are many motivations for creating a DNN, such as compressing the
size of parameters [28, 104, 110], or improving models and thus performance for a
task, such as weather prediction [57|, action recognition |7|, and video prediction [47].
But DNNs also enable entirely new tasks, such as asking the network questions about
the objects in an image [18]. We are more interested in this last line of thought

2.3 Deep Learning Methods 19

because DNNs allow us to generate networks, and networks can define programs [25],
so they are used in this thesis for just that purpose.

Chapter 3

3D action recognition

In recent years, 3D sensing technologies, and in particular RGBD cameras have
become increasingly cheap and widely available. Devices such as the Kinect or Leap
Motion, and the associated software libraries, allow for accurate 3D tracking of
human body parts with minimal effort. Because of this, human action recognition
algorithms working directly with 3D skeletal data have gained substantial popu-
larity in the research community. As in many other fields of research, remarkable
results have recently been obtained in this task by employing deep learning-based
approaches |64, 83, 96, 114, 116] exploiting large-scale datasets [83].

Human action recognition from 3D skeletal data is inherently a sequence-based
problem, which can be naturally tackled in the context of deep learning using re-
current networks. Indeed, many works |64, 83, 114, 116| propose Long Short-Term
Memory (LSTM) networks working directly on the 3D coordinates of the body
joints [64, 116] or hand-crafted geometric features derived from these [114]. An
alternative, more recent approach is that of projecting and color coding the joint
trajectories in image space [65, 103], obtaining a compact representation of the
whole skeleton sequence that can be processed using standard convolutional net-
works. This allows the authors of [65, 103] to reuse well-tested CNN architectures
(i.e. AlexNet [59]) and to exploit large scale image datasets (i.e. ILSVRC2012 [81])
to pre-train their networks, obtaining the current state of the art on a challenging
large-scale action recognition dataset [83].

Following from the success of [65, 103|, we propose a novel action recognition CNN
based on the ResNeXt architecture of Xie et al. [107]|. Differently from these works,
however, we explicitly take the temporal nature of our problem into account, by con-
structing a network composed of spatio-temporal convolution and pooling operators.
Furthermore, instead of the indirect, image-based representation employed in [65, 103],
we encode the input skeletons as sequences of Euclidean Distance Matrices (EDM)
computed over their joints. EDMs are rigid transformation-invariant representations
of sets of points, which can be effectively processed by convolutional networks, as
recently shown in [72]. Intuitively, as depicted in Fig. 3.1, convolutional neurons can
learn to respond to local EDM structures which encode the spatial configurations

21

22 3D action recognition

5
=
=
EX

EDMs

spatio-temporal
convolution

Figure 3.1: We encode sequences of skeletons in 3D space as stacked Euclidean Distance Matrices.
By performing convolution both along the spatial and temporal dimensions our network learns to
respond to the spatio-temporal dynamics of the input data.

of groups of 3D joints. By performing convolution also along the t#me dimension,
we allow the network to learn to respond to the spatio-temporal dynamics of our data.

Euclidean Distance Matrices, however, are defined up to a permutation of the
points they represent. By changing the order of the joints when computing an EDM,
the region of the skeleton associated with each local neighborhood of the matrix
would also change. This would lead the same convolutional neurons to respond in a
radically different way to the same skeleton. To sidestep this problem, we augment
our EDM representation with a learned combination of the input points. Thus, we
endow our network with the capability of selecting the most advantageous distance
matrix configuration for the purpose of classifying actions. This only adds a negligible
amount of parameters to the overall model, which can be trained end-to-end together
with the rest of the network.

In section3.3 We evaluate our network, named DM-3DCNN, on three benchmark
datasets, including the challenging and recently released NTU RGB-D [83], obtaining
competitive results w.r.t. other recent methods. On this particular dataset, we
obtain the new state of the art, surpassing previous LSTM-based approaches by an
average of 10 % accuracy and the CNN-based approach in [65] by 3 %, while using
about 1000 times fewer parameters and operations.

Contributions. To summarize, this chapter includes three main contributions. First,
we present an approach to human action recognition from 3D skeletal data represented
as sequences of Euclidean Distance Matrices. To overcome the permutation ambiguity
inherent in encoding the skeletons as EDMs, we compute the distance matrices from
a learned combination of the joints which is general enough to include all possible

3.1 Related work 23

permutations. Second, we propose a ResNeXt-inspired [107] network architecture
built from spatio-temporal convolution and pooling operators and taking sequences
of EDMs as input. Third, we evaluate our approach on three benchmarks, obtaining
the new state of the art on the large-scale NTU RGB-D dataset and surpassing
recent CNN-based approaches [65, 103] while employing three orders of magnitude
fewer parameters and operations.

3.1 Related work

Human action recognition is one of the most interesting topics of computer vision,
and it has many use cases within the academy, robotics, surveillance, games and
entertainment multimedia; because of this, the quantity and diversity of works is
impressive, and impossible to cover in a single work. We will focus then in reviewing
the works we consider relevant to this particular problem and to our approach.
The diversity of works and datasets also imply diversity in the representation of

the actions. We will consider two main representations: skeletal data sequences and
RGBD sequences.

3.1.1 Skeleton Sequence based Methods

Before the advent of the deep learning methods, most works focused in designing
representation of the movements that could be learned or hand crafted, and allowed
a simple model to classify or make inference on them.

The first type of methods are based in Support Vector Machines (SVMs), which
are simple yet powerful classifiers that can easily learn to discriminate the sequences,
when the features are able to convey the relevant information. To accomplish that,
these features need to be both invariant to changes in the viewpoint and length
of the sequence. In [50] the authors encode the sequence using temporal and view
invariant representations based on different distance measures between the joints
in a skeleton, computed in time and space dimensions. Similarly, [41] encodes
the sequence using covariance features of the joint locations in a small time win-
dow. In [106], sequences were represented by Histograms of the location of 3D
joints (HOJ3D), and in [76], by spatio-temporal Histogram of Gradients (HoGs)
in the joint angles. Another way to abstract the complexity of the movements is
to learn dictionaries to group and classify them easily [66, 115]. A very abstract
representation can be found in [97|, where the sequences are transformed into lie
groups, mapped to its lie algebra, and passed through Dynamic Time Warping
(DTW) for aligning and applied pyramidal fourier analysis. A different approach was
proposed in [86], were a Gaussian Mixture Model (GMM) was used to learn a com-
pact representation of the sequence and a hierarchical Hidden Markov Model (HMM).

Alternatively, instead of classifying the whole sequence at once, we can classify
the frames of such sequence, and then combine this classification in a global predic-

24 3D action recognition

tion. The idea is to be able to identify certain important frames or instances, that
unequivocally identify the sequences. Roughly following this idea we find a family of
methods called Multiple Instance Learning [109, 113].

More recently, a number of works leverage on the deep learning methods that
are the state of the art in many pattern recognition problems. These works focus
on creating models with deep architectures, that are capable to learn to classify
the sequences from a very simple encoding or even raw data. We can find two
main groups of architectures: those based in Recurrent Neural Networks (RNN) and
variants like the Long Short Term Memory [37] (LSTM) network; and on the other
hand the Convolutional Neural Networks (CNN) based methods.

The following models inspire their architectures by taking into account the sepa-
ration of the body into parts of interest (e.g. left and right arms/legs, and the central
part composed by torso, neck and head). The Hierarchical-RNN [17] takes each body
part as the input to a separate RNN and combines them into a unique output which
is used for classification. [116] proposes Co-occurrence LSTM, a modification of the
LSTM cell that seeks to capture the correlation between the different parts involved
in a movement. With similar inspiration, [85] proposed an LSTM with attention
model that reweighs the relevance of the joints in the input at each time frame. And
also we have the Part-aware LSTM [83], that modifies the LSTM cell to have the
input to hidden state gates explicitly separated by each body part.

One of the most important factors to measure the information in a frame is the
amount of movement. Some models build upon this idea. For instance, [96] proposes
a modified LSTM model which incorporates the magnitude of the difference with
respect to previous frame into the gating mechanisms of the cell. [64], introduces the
ST-LSTM, a modified LSTM model that scans the input in a path following fashion
over a graph, and such graph is constructed by unrolling the time component of the
input; ST-LSTM also incorporates a trust gate to the cell, that basically takes an
inverse distance measurement that reweighs the input to the empirically estimated
trust over such input.

Regarding the CNN based methods, one of the first approaches was [16], which
converted the sequences to images by representing the skeleton as a vector of pixels,
and concatenating these vectors along the temporal dimension to create a single
RGB image; this image was then fed to a CNN to perform action classification.
More recently, a group of models leverage on widely known CNN architectures like
AlexNet [59] to perform human action recognition. In these models some transfor-
mations and projections of the sequence are performed, yielding a single color image
that serves as input to the network: in [103| the 3D skeleton is projected as a 2D
image by framing it in the point of view of a camera along the X, Y or Z axis; the
temporal dimension is converted into a color code, and finally the 2D image used as
input is the superposition of all frames. It is worth to note also, that reusing known
architectures is very convenient, as it allows for efficient training, and also allows

3.1 Related work 25

for building ensemble models, that usually perform better than the single network
models; in [103] the output of three networks are combined to produce an ensemble
classifier. [65] follows a very similar approach, the main difference being that the
projection is done over a transformed coordinate system instead of the Cartesian
system, and that the ensemble model combines ten networks instead of three.

3.1.2 Image Sequence based Methods

Differently to the skeleton based methods, image sequence methods do not explicitly
model the human body. Instead they work with raw pixels, and try to find meaningful
patterns in the distributions of pixels in each frame and its transformations over the
time.

To apply convolutions over a sequence of images we can either represent the input
sequence as a 3D volume of information over which we can apply 3D convolutions,
or we can take the time dimension in the input as different channels and perform
2D convolutions. The first approach in this category was [46] which performed 3D
convolutions over the video, in a similar manner as the 2D convolutions were applied
to a single image. A number of convolutional layers were used to extract features
and the network output was produced by a dense layer and a softmax classifier. This
relatively straightforward approach is however limited however by a high computa-
tional cost. For this reason, other types of models using 2D CNNs were proposed:
the family of models comprised by stream networks [84, 101], take as input two
different representations, a single image and the optical flow of the sequence; these
two representations are passed through a parallel inference architecture, that fuses
the extracted features in its topmost layer. Another option is to represent the whole
video as a single image, by transforming its representation to a sort of histogram
over the movements in the video [7, 102]. Also worthwhile of mention models that
take mixed approaches. For instance, in [40] 2D CNNs are used to extract features,
and 3D CNNs over the computed features fuse the spatial and temporal information.

3.1.3 Other Methods

There are a few other methods that influence this work, and are important to men-
tion. In the related problem of human pose estimation, we can find [72], where the
authors show that the use of CNNs over EDMs as view invariant representation of the
skeletons produces good results. Also, we consider the ResNeXt [107] architecture,
as a reference of a top performing modern CNN architecture.

Drawing inspiration, ideas and design choices from all the works mentioned in this
section, we propose a novel method that mizes them in a sensible way and produces
excellent results for this problem.

26 3D action recognition

Action Classes

hand waving |drinking water| phone call kicking

o e Res[n;,ny,g] r
e , A
T~ //// N e }- - v . cee
R,es[32.128‘,16]]—D[R.es[321128,16]HRes[32.128,16]]—|
L;[Rcs[fi:l,?f)&lfi]]—b[Rcs[647256,16]HRCS[G4,Q56,16]H ® ® © @ oo D]

L[Ros[lZ&SlZ,lG] Ros[128,512,16]-»{Res[128,512,16] Pﬂ‘fjf;;‘g]—»[]?)rl‘l’f]—.[FC

Figure 3.2: Overview of the proposed network architecture. Skeletons from the input sequence are
transformed using a learned linear function £y and the output is used to compute a sequence of
Euclidean Distance Matrices (green blocks). The matrices are stacked to form a 3D tensor, which
is fed to a fully-convolutional network built from ResNeXt units [107] with 3D convolutions (yellow
blocks). Finally, a classifier composed of global mean pooling, dropout and a fully connected layer
with soft-max (blue blocks) is used to compute the predicted probability distribution over action
classes (red blocks). Note that we are not showing the case of multiple skeletons per frame for the
sake of simplicity.

3.2 Method

Our goal is to recognize human actions or interactions from temporal skeleton data,
1.e. sequences of human body joints encoded as 3D points varying over time. In
general, the sequences might comprise multiple human bodies, but we restrict our
focus to interactions that involve up to two actors, since this is the setting commonly
encountered in the main benchmark datasets (i.e. NTU RGB-D dataset [83] and
SBU Interaction dataset [113]).

The problem setting is given as follows. Let J be the number of skeleton joints
and let S C R be the set of all possible configurations of joints for a single body
skeleton at some fixed time. For convenience we simply call skeletons the elements of
S. Joints are given as 3D points and each skeleton forms a 3 x J matrix with joints
as columns. The input space for our action (or interaction) recognition problem is
given by X = (8 x S)b, i.e. sequences of L pairs of skeleton configurations, where L
is a fixed time-window length. We consider pairs of body skeleton in the sequence to
account for up to two actors in the scene. In case only a single actor is in the scene,
this will be repeated twice to form a pair. The set of possible actions (or interactions)
to be predicted is denoted by Y = {1,...,K} and the action recognizer is a function
fo : X — Y parametrized by 6 that assigns action labels in) to sequences of pairs
of skeletons in X'. The set of feasible parameterizations is denoted by ©.

The state-of-the-art methods for human action recognition from skeleton data
follow two main approaches: i) implementing the action recognition function fy as a
deep recurrent neural network; ii) rendering the skeleton sequences as a single image
and implementing fy as a deep CNN taking these images as input. Our solution is

3.2 Method 27

closer in spirit to the latter type of approaches, but instead of encoding the sequence of
skeletons as a single image, we retain one additional spatial dimension for representing
skeletons and introduce by construction invariance to rigid transformations. This is
indeed our first contribution that we implement by using distance matrices defined
over a learned transformation of the skeleton data. Distance matrices are in fact
invariant to rigid transformations by nature. Our second contribution consists in
adopting a deep neural network with spatio-temporal convolutional operators applied
to distance matrices extracted from skeleton data. This contrasts with the approaches
in the literature that typically rely on standard CNNs, or recurrent neural networks.

3.2.1 EDMs over Transformed Skeletons

Many approaches in the literature [17, 86, 116| do not feed the action recognizer
with the original skeleton data, but try manipulate the input to enforce some form of
invariance to rigid transformations. This is indeed empirically shown to be beneficial
to the human action recognition task. For instance, in [17] the skeletons are put
into a canonical reference system through a change of coordinates. The solution
we pursue to achieve invariance to rigid transformations is different and consists in
representing skeletons in terms of distance matrices, which are inherently invariant
to rigid transformations.

Given a 3 X M matrix Z of 3D points we define the corresponding Euclidean
distance matrix D = edm(Z) € RY*M as the nonnegative, symmetric M x M matrix
with (4, 7)th entry given by the squared Euclidean distance between the ith and
jth columns of Z. That is, D;; = ||Z; — Z;||?, where | - || is the Euclidean norm,
and Z; € R? is the ith column of matrix Z. Distance matrices are invariant to
rigid transformations (e.g. translations, rotations, reflections) applied to the original
points and thus suit well our purpose of having a representation for skeletons that is
invariant to such transformations.

However, distance matrices are not invariant to permutation. This means that the
EDM computed from a skeleton is sensitive to the ordering of the joints. In general,
permutations might exist that have a negative impact on the final performance
of the action recognition task (see Sec. 3.3.4), in particular if we aim to exploit
local structures of the distance matrix via convolutional neural networks (see next
subsection). To overcome this issue, we propose to learn a transformation of the
skeleton that is sufficiently general to represent all possible permutations, and
compute the distance matrices of transformed skeletons. By having this component
embedded into the neural network, we give the classifier the freedom of emphasizing
the importance of some joints and potentially discovering an optimal permutation
of the joints that enhances local structures in the distance matrices. At the same
time we preserve an invariance to rigid transformations in all layers that follow the
distance matrix computation. In this chapter we keep the skeleton transformation

28 3D action recognition

simple by considering a linear operator
&n(S) = SII,

acting on S, where I € R is a J x J real matrix to be learned. This transformation
encompasses permutations of joints as a special case.

Next we deal with the problem of encoding pairs of skeletons in terms of EDMs,
since our problem setting assumes up to two body skeletons in the scene. Accordingly,
let S,g € S be two skeletons and remind that S =S if a single skeleton is present.
There are different ways in which the two skeletons can be encoded using an EDM
representation. We consider the following two approaches:

- Decoupled encoding. The first approach simply encodes S and S indepen-
dently, after undergoing the transformation &yy, into edm(£(S)) and edm(gn(é)),
and stacks the two representations as they were two separate feature channels.
As a result we obtain a J x J X 2 tensor representing the two skeletons.

- Coupled encoding. The second approach concatenates the two skeletons into
a single matrix of points that we denote as S|§ € R3*? and uses the distance
matrix edm(£r(S|S)) as encoding. This yields a 2J x 2J matrix representation
for the two skeletons.

The encoding of skeleton data that we have detailed for a pair of skeletons is
actually applied to the entire sequence of skeletons. This adds also the temporal
dimension to the representations mentioned above, yielding a L x J x J X 2 tensor if
we opt for the independent encoding scheme, and a L x 2J x 2J if we apply the joint
encoding instead, where L is the temporal window length.

3.2.2 3D CNNs over Distance Matrices

The application of CNNs to distance matrices has recently proven effective to tackle
the problem of human pose regression from skeleton data [72]. Indeed, distance
matrices exhibit rich local structures (up to permutations), which can be effectively
learned by convolutional filters. In this work, we extend the ideas in [72] by consid-
ering time as an additional spatial dimension when performing convolution. This
results in a 3D spatio-temporal convolution operator which allows our network to
capture the temporal evolution of the local structures encoded by the EDMs.

Formally, given a tensor Z € RT*H*WXC and a convolutional filter w € Rt*h>wxC,
we define 3D convolution * as

Z], E E E E Wi 41 k! e H—'L’,]—l—j’ k4K ¢ »

i'=1j5'=1k'=1 c=1

(w*Z)

where the first three dimensions of Z and w are interpreted as spatial dimensions,
while C are the feature channels. In practice, 3D convolution can be used as a drop-in
replacement for 2D convolution in most networks, providing us with great flexibility

3.3 Experiments 29

when defining our architecture.

Building from these spatio-temporal convolution operators, we propose a network
architecture inspired by the recent ResNeXt of Xie et al. [107] (see Fig. 3.2). In par-
ticular, we adapt the configuration employed in [107| for the CIFAR-10 experiments,
replacing each convolution with a spatio-temporal convolution and performing the
final global average pooling both over the spatial and time dimensions. To partially
compensate for the increased number of parameters in our kernels compared to the
ones in [107], we reduce the number of filters in each layer by a factor 2. Furthermore,
differently from [107|, we perform dropout on the inputs of the final fully-connected
layer. For additional details refer to Appendix 3.2.4.

3.2.3 Network Training

Given a training set 7 C X x) we estimate an action recognition function fp : X — Y
by minimizing the regularized empirical risk

R(6;T) = 1 D U fo(X),y) + AQ(6),
‘T| (X,y)eT

over O, where ¢ :) x) is a loss function penalizing wrong predictions and €2 : © — R
is a regulariser. In our experiments, ¢ coincides with the standard log-loss and 2
with the ¢ norm.

The minimization of the empirical risk is performed using stochastic gradient
descent. Details about the hyperparameters of the optimizer are provided in the
experimental section.

3.2.4 Network Architecture Details

Following the terminology employed in [107], our network is composed of three stages
of 3 ResNeXt blocks each. Each block is obtained from the bottleneck template
1x1x1,32
3 x3x3,32 |, with cardinality C' = 16 and pre-activation structure [32|. The
1x1x1,128
network starts with a 3 x 3 x 3 convolution with 32 filters. In the second and third
block we halve the spatial resolution of the feature maps by applying a stride of
2 x 2 x 2 on the first ResNeXt block. Correspondingly, we increase the depth of the
feature maps by a factor 2. The third stage is followed by global 3D average pooling
and a fully connected layer producing the final prediction.

3.3 Experiments

In the following Sec. 3.3.3 we study the performance of the proposed action recognition
method by conducting an extensive evaluation on three benchmark datasets (see

30 3D action recognition

Sec. 3.3.1), including the recent large-scale NTU RGB-D [83]. Furthermore, in
Sec. 3.3.4 we perform an in-depth ablation study to evaluate the effects of learning
the shuffle matrix under different sets of constraints. Additional details about our
network architecture and training procedure are reported in Sec. 3.3.2.

3.3.1 Datasets

In this chapter we consider three benchmark datasets:

NTU RGB-D. The NTU RGB-D dataset [83] is, to the best of our knowledge,
the largest-scale publicly available action recognition dataset. It contains over 56
thousand sequences, captured with multiple Kinect 2 sensors, of 40 actors performing
60 different actions in 17 different setups. Each action is repeated 2 times for each
actor / setup pair and recorded from three different views at the same time. For
each sequence, both RGB-D videos and 3D skeletons with 25 joints, automatically
extracted using the Kinect 2 software, are made available. Depending on the action
class, one or two actors can be present in the same sequence at the same time.
Following the experimental protocol in [83], we consider both a cross-view and a
cross-subject setting, splitting training and testing data on the basis of, respectively,
the view from which the action is recorded or the actor performing it.

MSRC12 Gestures dataset. The MSRC12 Gesture dataset [19] contains 594
video sequences, captured with a Kinect, of 30 actors performing 12 actions. Each
sequence contains several repetitions of the action of interest, for a total of 6244 action
instances. As in [65, 103], we follow a cross-view evaluation protocol. Differently
from NTU RGB-D, the skeleton detections provided with this dataset are computed
using the Kinect v1 software, and contain skeletons with 20 joints.

SBU Interaction dataset. The SBU Interaction dataset [113] focuses solely on
actions involving two interacting actors. It contains ~ 300 sequences, subdivided in
21 sets, each containing one or two repetitions of each of 8 action classes, performed
by a different pairing of subjects from a set of 7. Skeleton detections with 15 joints,
extracted using the PrimeSense software, are provided together with the original
RGB-D video sequences. In our experiments we follow the 5-fold cross-validation
protocol also adopted in [113].

3.3.2 Implementation and Training Details

We train our DM-3DCNN network by stochastic gradient descent using the Adam [55]
algorithm, with a batch size of 32 and parameters 5; = 0.9 and 5, = 0.999. When
considering the NTU RGB-D and MSRC12 datasets, we adopt the following training
schedule: we start with a learning rate of 1073, reducing it by a factor 10 after
40 epochs and again after 60 epochs, training for a total of 80 epochs. The net-
work parameters are initialized following the method from [30]. For SBU, given its
considerably small size, we train by fine-tuning from the network trained on NTU

3.3 Experiments 31

RGB-D: we initialize all convolutional filters from the values learned on NTU RGB-D,
while learning the final fully connected classifier from scratch, and train for 300
iterations with an exponential learning rate decay from 107 to 107°. In all cases,
the regularization factor (i.e. weight decay) is set to A = 5 x 10~%. We implement

our networks using the TensorFlow [1] framework and run our experiments on a
single Nvidia GTX 1080 GPU!.

Following the experimental setting in [83], in all datasets we down-sample the
input sequences along the temporal dimension by subdividing it into 20 equally
spaced sections and randomly selecting a frame from each. During training a different
random sampling is considered each time a sequence is fed to the network, as we
observed that this provides a useful regularizing effect. As mentioned in Sec.3.2.1,
depending on the dataset, we consider up to two input skeletons at each time step.
Since the datasets considered in our experimental evaluation do not define any
explicit semantic about the ordering of the skeletons, during training we randomly
select which one is interpreted as S and S each time a sequence is loaded. The same
sampling procedure, both for sequence down-sampling and skeleton swapping, is also
performed at test time, and all results in the following are reported as the average of
the accuracy over 10 independent runs.

3.3.3 Comparison with State of the Art

Before performing our main evaluation, we conduct a set of preliminary cross-
validation experiments on held-out training data from NTU RGB-D and SBU, in
order to select which EDM encoding to use (see Sec.3.2.1). Interestingly, we observe
that for NTU RGB-D the decoupled encoding exhibits the best performance, while
for SBU the coupled encoding is favored. This is not surprising: the SBU dataset
is mostly focused on interactions, thus the cross-skeleton distances encoded in the
coupled EDM contain valuable information for our network. On the other hand,
interaction classes are a strict minority in NTU RGB-D, thus making the more
compact representation of the decoupled encoding a better fit for this dataset. Note
that we do not need to choose which encoding to use in the MSRC12 case, as it only
contains sequences with one skeleton.

NTU RGB-D. Compared to most previous datasets [19, 100, 113], NTU RGB-D
contains 1-2 orders of magnitude more data, captured with the improved Kinect 2
sensor. Nonetheless, we note that the skeleton detections provided with the dataset
still contain a substantial amount of noise, to the point that, even for a human
observer, it can be hard to recognize the actions just by looking at the skeletons.

In a first set of experiments, we compare the performance of our method against
recent LSTM-based and CNN-based approaches to human action recognition from
skeleton data. In particular, we consider: the part-aware LSTM in [83]; the spatio-

!The source code is available at: https://github.com/magnux/DMNN

https://github.com/magnux/DMNN

32 3D action recognition

Method C/Subject C/View
LSTM-based methods

Deep LSTM [83] 60.7% 67.3%

Part-aware LSTM [83] 62.9 % 70.3 %

ST-LSTM [64] 69.2% TT.T%

Multilayer LSTM [114] 64.9% 79.7 %
CNN-based methods

Liu et al. |65] single 73.5% 84.0 %
Liu et al. [65] ensemble 80.0% 87.2%
DM-3DCNN single 82.0 % 89.5%

Table 3.1: Results on the NTU RGB-D dataset.

temporal LSTM (ST-LSTM) in [83]; the multi-layer LSTM with geometric features
in [114]; the ensemble of CNNs approach in [65]|. For the method in [65] we report
both the performance of the ensemble and that of the best single network in the
ensemble. Finally, we also consider a plain 3-units LSTM baseline, as reported in [83].

Table 3.1 summarizes our results, highlight the advantages of our method when
dealing with this large and challenging dataset. Compared to the best LSTM-based
approach we observe an absolute increase in accuracy of ~ 8 % in the cross-subject
and =~ 6 % in the cross-view setting. Similarly, we obtain a ~ 2% improvement over
the CNN-based approach in [65] in both settings under exam. It is worth noting
that the networks used in [65] have a considerably larger number of parameters than
DM-3DCNN, i.e. = 6 x 107 parameters for each network in the ensemble [59] and
~ 6 x 10® overall, compared to 6.1 x 10° parameters in DM-3DCNN. This suggests
that our EDM-based encoding is indeed more effective at representing sequences of
skeletal data, compared to the image-based one adopted in [65], as our network is able
to exploit it to obtain superior performance while using ~ 1000 times less parameters.

MSRC12. In the next set of experiments, we focus our attention on the MSRC12
dataset. Here we consider two traditional approaches based on hand-crafted features,
i.e. LC-KSVD [115] and Cov3DJ [41]; and three CNN-based approaches, i.e. Du et
al. [16], Wang et al. [103] and Liu et al. [65]. The results are reported in Tab.3.2.
It is clear that the sequences in this dataset are considerably less challenging than
those in NTU RGB-D, as most methods under exam are able to achieve greater than
90 % accuracy. Among the non-ensemble models, DM-3DCNN obtains the highest
accuracy, also surpassing the ensemble of CNNs in [103]. Interestingly, DM-3DCNN
performs better than the single best CNN of [65], while being slightly surpassed
by their ensemble, at the cost of employing &~ 1000 times more parameters and,
consequently, =~ 1000 times more operations. Furthermore, differently from DM-
3DCNN, the networks in [65] also exploits a vast amount of additional data, as they
are pre-trained on the ILSVRC2012 data [81].

3.3 Experiments 33

Method Accuracy
Hand-crafted features
LC-KSVD [115] 90.2%
Cov3DJ [41] 91.7%
CNN-based methods
Du et al. [16] 84.5%
Wang et al. [103] 93.1%
Liu et al. [65] single 93.2%
Liu et al. [65] ensemble 96.6 %
DM-3DCNN single 95.8%

DM-3DCNN ensemble 96.6 %

Table 3.2: Results on the MSRC12 dataset.

Given the results of Liu et al. [65], both in NTU RGB-D (Tab. 3.1) and MSRC-12
(Tab. 3.2), it appears that an ensemble of networks, each trained on a different
representation of the skeleton sequences, can significantly outperform the single
models. This concept can easily be extended to our approach, e.g. by feeding a
different permutation of the joints to each network in the ensemble. To explore this
idea, we train five independent instances of DM-3DCNN, using the default joint
ordering and four additional permutations?, and average their output probabilities to
obtain the final predictions. The results are reported in Tab.3.2 in the “DM-3DCNN
ensemble of 57 row. Using our ensemble we are able to fill the performance gap with
the method of Liu et al. [65], while still using ~ 200 times fewer parameters. Note,
however, that in our case the relative improvement going from the single model to the
ensemble is smaller than in [65], further validating the effectiveness of our network.

Method Accuracy
Other LSTM-based methods
HBRNN [17] 80.4 %
Deep LSTM [116] 86.0 %
Co-occurrence LSTM [116] 90.4 %
ST-LSTM |[64] 93.3%
DM-3DCNN 93.7%

Table 3.3: Results on the SBU Interaction dataset.

SBU Interaction. In our final comparison with state of the art methods, we consider
the interaction-focused SBU dataset. Table 3.3 reports the results obtained with

2The permutations are selected by separating the joints in six subsets corresponding to left /right
arm, left /right leg, head and torso and randomly shuffling the subsets while keeping the order of
the joints in each subset fixed.

34 3D action recognition

NTU RGB-D

95 —
00 Original 00 Random

I0Original + & lBRandom + &

90

Accuracy %
(0.¢]
ot
[

80 H
75 I I
Cross Subject ~ Cross View

Figure 3.3: Ablation study on the NTU RGB-D dataset, comparing four different settings of
DM-3DCNN: without joint transformation, using the original permutation (Original) or a random
one (Random); with joint transformation, using the original permutation (Original + £p1) or a
random one (Random + &pp).

DM-3DCNN and four RNN-based approaches: the hierarchical recurrent network
of [17], the co-occurrence LSTM of [116] and the spatio-temporal LSTM of [64]. We
also include in the comparison a plain LSTM model as reported in [116]. DM-3DCNN
shows the highest accuracy, surpassing ST-LSTM by 0.4 %, a considerably lower
advantage when compared to that obtained in the NTU RGB-D dataset. A possible
explanation of this difference lies in the relative size of the two datasets. In fact,
SBU contains about 200 times less sequences than NTU RGB-D, suggesting that
our DM-3DCNN can be more effective at exploiting large-scale datasets compared to
the LSTM-based approach in [116].

3.3.4 In-depth Analysis of DM-3DCNN

As noted in Sec.3.2.1, the joint permutation considered when forming the EDMs to
be fed to the network can have a substantial impact on classification accuracy. To
compensate for this, we propose to calculate the EDMs on a learned linear combina-
tion &7 of the joints, which encompasses all possible permutations as special cases. In
order to validate this approach, we perform an ablation study on the NTU RGB-D
dataset and collect the results in Fig.3.3. In particular, we consider variations of
DM-3DCNN trained with EDMs computed on the original joints (Original) or their
transformation with &y (Original + £1). Learning £ produces an observable increase
in accuracy, both in the cross-subject and cross-view settings.

While &7 is in principle able to produce any permutation, we still expect the
initial ordering of the input joints to play a role, as we are learning Il by minimizing
an highly non-convex function. To test this effect, we re-run the experiments above,
this time considering a different, randomly selected permutation of the joints instead
of the original one given in the dataset. The resulting accuracies, visualized in

3.3 Experiments 35

Figure 3.4: Original skeleton points from NTU RGB-D (circular markers) end transformed points
using &p7 (cross markers). Two views are shown to better convey the 3D shape of the data. (Image
best viewed on screen)

Fig. 3.3 as Random and Random + &jp, are noticeably lower than those obtained
with Original and Original + &;7. This can be easily explained by observing that
the original permutation is not random, but instead (loosely) follows the structure
of the skeleton, keeping joints from distinct body parts close together and thus,
intuitively, producing more informative local structures in the EDMs. Interestingly,
however, when learning & our network is able to overcome the disadvantage imposed
by the random shuffling and reach the same accuracy obtained with the hand-picked
permutation.

Figure 3.5: Distance matrices corresponding to the points in Fig.3.4. Left: original points. Right:
transformed points.

Since we are not applying any constraint on the matrix II, in general & will
transform the skeletons in complex, if useful, ways. In order to gain some more
insights about the action of &1 on the points, in Fig.3.4 we plot an example of original

36 3D action recognition

and transformed skeletons from NTU RGB-D. Two main phenomena are immediately
apparent: i) the transformed points are shifted towards the origin of the coordinates
system; ii) the limbs appear to be stretched, while the torso becomes comparatively
more compressed. (ii) can be explained as the network giving more importance to
the joints in the arm and legs, which, intuitively, can be more discriminative for the
task of recognizing actions. For another perspective on the effect of £, in Fig.3.5 we
plot the distance matrices corresponding to the points in Fig.3.4. Here, the patterns
visible in the EDM of the transformed points appear to be more contrasted than
those in the original one, with stronger edges and corners.

3.4 Chapter summary

In this chapter, we are interested in human action recognition from sequences of 3D
skeletal data. To this end, we combine a 3D Convolutional Neural Network with
body representations based on Euclidean Distance Matrices (EDMs). These have
recently been shown to be very effective in capturing the geometric structure of the
human pose. However, an inherent limitation of EDMs is that they are defined up
to a permutation of the skeletal joints, i.e., a random rearrangement of the joints
leads to many different representations. To address this problem, we present a novel
architecture that simultaneously and in an end-to-end manner, learns an optimal
transformation of the joints while optimizing the other parameters of the convolutional
network. The proposed approach achieves top results on 3 benchmarks, including the
recent NTU RGB -D dataset, where we outperform previous LSTM-based methods
by more than 10 percentage points and also outperform other CNN-based methods
while using almost 1000 times fewer parameters.

Chapter 4

3D motion prediction

Recent advances in motion capture technologies, combined with large scale datasets
such as Human3.6M [44], have spurred the interest for new deep learning algorithms
able to forecast 3D human motion from past skeleton data. State-of-the-art ap-
proaches formulate the problem as a sequence generation task, and solve it using
Recurrent Neural Networks (RNNs) [20, 45|, sequence-to-sequence models [68] or
encoder-decoder predictors [10, 26].

While they show promising results, these works suffer from three fundamental
limitations. First, they address a simplified version of the problem in which global
body positioning is disregarded, either by parameterizing 3D body joints using posi-
tion agnostic angles [20, 45, 68| or body centered coordinates [10]. Second, current
methods require additional supervision in terms of action labels during training and
inference, which limits their generalization capabilities. And third, most approaches
aim to minimize the L2 distance between the ground truth and generated motions.
The L2 distance, however, is known to be an inaccurate metric, specially to compare
long motion sequences.

In particular, the use of this metric to train a deep network favors motion predic-
tions that converge to a static mean pose. Even though this issue has been raised
in 26, 45] and is partially solved during training using other metrics (e.g. geodesic
loss), the L2 distance is still being used as a common practice when benchmark-
ing different methodologies. To our understanding, this practice compromises the
progress in this field.

In this chapter we tackle all three issues. Specifically, we design a novel GAN
architecture that is conditioned on past observations and is able to jointly forecast
non-rigid body pose and its absolute position in space. For this purpose we repre-
sent the observed skeleton poses (expressed in the camera reference frame) using
a spatio-temporal tensor and formulate the prediction problem as an inpainting
task, in which a part of the spatio-temporal volume needs to be regressed. A GAN
architecture consisting of a fully convolutional generator specially designed to pre-
serve the temporal coherence, and three independent discriminators that enforce

37

38 3D motion prediction

Ground Truth Generated

Figure 4.1: Example result. Our approach is the first in generating full body pose, including
skeleton motion and absolute position in space. The predicted sequence starts from the skeleton
marked in black. Note that the generated motion is somewhat different but semantically indistin-
guishable from the ground truth.

anthropomorphism of the generated skeleton and its motion, makes it possible to
render highly realistic long-term predictions (of 2 seconds or more). Interestingly,
the L2 loss is only enforced over the reconstructed past observations and not over
the hypothesized future predictions. This way, the generation of future frames is
fully controlled by the discriminators. In fact, our model does not require ground
truth annotations of the generated frames nor explicit information about the action
being performed.

We also introduce a novel metric for estimating the similarity between the gener-
ated and the ground truth sequences. Instead of seeking to get a perfect match for all
joints across all frames (as done when using the 1.2 distance), the metric we propose
aims to estimate the similarity between distributions over the human motion manifold.

In the experimental section we show that our approach, besides yielding full
body pose, orientation and position, is also robust to challenging artifacts including
missing frames and occluded joints on the past skeleton observations. Fig. 4.1 shows
an example result of our approach.

4.1 Related work

Early approaches to modeling human motion. The inherent high-dimensionality
and non-linearity of human body motion makes building statistical models a major
challenge. Traditional approaches have addressed this task with latent variable
models such as Hidden Markov Models [8], bilinear spatio-temporal basis models [3],
Gaussian processes [94, 95, 99|, linear dynamic systems |78|, and random forests [62].
However, these models are based on relatively simple dynamics that apply only to
short-term predictions and are highly specialized to specific types of motions. Condi-
tional Restricted Boltzmann Machines [87, 90, 91| better capture the non-linearities

4.1 Related work 39

of human motion, although these systems are more complex to train and require
random sampling for inference.

Deep Learning for motion prediction. Most recent Deep Learning approaches
build on the problem formulation proposed by [91], where input motion sequences are
represented by 3D body joint angles in a kinematic tree. Motivated by their success
in machine translation problems [12, 51, 88|, RNNs are then used to predict motion
sequences of body joint angles. Fragkiadaki et al. [20], for example, introduces an
Encoder-Recurrent-Decoder (ERD) in combination with a Long Short-Term Memory
(LSTM) for this purpose. Jain et al. [45] introduced structural RNNs, an approach
that exploits the structural hierarchy of human body parts. Martinez et al. [68]
developed a sequence-to-sequence architecture with a residual connection that incor-
porates information about action classes via one-hot vectors. While these approaches
work well for the specific motion for which they were trained, they do not generalize
to other actions. More importantly, these models are only effective for the short-
term and medium-term ranges and are often outperformed by a simple zero-velocity
baseline model. This is due in part to the use of the L2 metric for both training
and evaluation. More recent approaches have different strategies to address this issue.

Li et al. [63], propose a model with an auto-regressive CNN generator and combine
the L2 loss with an adversarial loss. Gui et al. [26] completely eliminate the L2 loss
during training and use a ERD model with a combination of an adversarial and
geodesic losses. However, these works still perform evaluation using the L2 metric,
which does not capture the semantics of motion, especially for long-term predictions.
Furthermore, since motion is parameterized in terms of joint angles, the rotation and
translation of the body in space are not estimated.

Sequence completion and image inpainting. Completing missing data within a
sequence has traditionally been approached using low-rank matrix factorization [2,
105]. Deep Learning approaches have also been used for this purpose, e.g., by
RNNs [60, 67]. However, these works are not designed for future prediction.

Image inpainting is a very related problem. In the era of Deep Learning, Denoising
AEs [5] and Variational AEs [56] have become popular for denoising and completing
missing data and for image inpainting. However, these basic systems cannot handle
large portions of missing structured data. The state of the art has been significantly
advanced by GANs conditioned on partial or corrupted images [79, 111, 112]. As
we will see, our approach draws inspiration from this idea.

Metrics for evaluating human motion prediction. The fact that L2 is not
suitable for measuring similarity between human motion sequences has been recently
discussed and addressed in several papers. Coskun et al. [14] uses deep metric learning
and a contrastive loss to learn the metric directly from the data. This is arguably the
best way to semantically compare motion sequences. However, the problem with this
approach is that once the metric is trained, it is difficult to apply it to other models
because the metric was trained with a specific setting. An alternative for sequences

40 3D motion prediction

that does not require training would be to use frequency-based metrics. In [24], a
metric based on the power spectrum is proposed. This metric shows interesting
properties and seems to be suitable for comparing actions with periodic movements
such as walking. The main drawback of this approach is that it compares sequence by
sequence, which in our view is not desirable. We would like to compare distributions
of sequences instead.

For image generation, there is recent work that proposes to measure the fitness of
models based on properties of the distribution of the generated data. The Inception
Score [82] measures the entropy of the label outputs of the inception network on the
generated images. The Frechet Inception Distance [35] (FID) instead proposes to fit
two multivariate Gaussians to the activations of the inception network for the real
and generated samples, respectively. Then, the FID is determined by measuring the
distance between the Gaussian models. Following this work, we propose new metrics
based on the distribution of the frequencies of the generated samples. These metrics
have the advantage of being easy to implement and replicate, and they measure the
overall fitness of a model by considering a distribution of sequences.

4.2 Problem Formulation

We represent the human pose with a J-joint skeleton, where each joint consists of
its 3D Cartesian coordinates expressed in the camera reference frame. Rotational
and translational transformations are inherently encoded in these coordinates. A
motion sequence is a concatenation of I’ skeletons, which we will represent by a
tensor S € R¥*7*3, Let us define an occlusion mask as a binary matrix M € B¥*7*3
that determines the part of the sequence that is not observed, and which is applied
to the sequence by performing the element-wise dot product S o M = S™. Our goal
is then to estimate the 3D coordinates of the masked joints. Note that we can define
different subproblems depending on the pattern used to generate the occlusion mask
M. For example, if we mask the last frames of the sequence, we can represent a
prediction problem. If we mask certain intermediate joints instead, we represent
random joint occlusions, structured occlusions, or missing images. Our model can
solve any combination of these sub-problems.

4.3 Model

4.3.1 STMI-GAN architecture

Fig. 4.2 shows an overview of the GAN we propose, in which we pose the human
motion prediction problem as an inpainting task in the spatio-temporal domain. We
denote our network as STMI-GAN (Spatio-Temporal Motion Inpainting GAN). We
next describe its main components.

4.3 Model 41

~ Discriminator

Original
SR ETED e .
" : Generator :
frame . pesidual CNN
: H Encoder
Occluded : @F Frame Generator % Frame i Generated i :
O — Sequence " Encoder ~ U-Blocks ~ Decoder i Sequence — A - EDM - Residual CNN : Score
... DIffs — Residual CNN
Occlusion Reconstruction
Mask Losses
Adversarial

Loss
— Forward Propagation

Network Loss Function Input Output — Back Propagation

Figure 4.2: Overview of our architecture. An input masked sequence of 3D joint coordinates is fed
into a fully convolutional and time preserving generator. The output sequence is controlled by a
number of geometric constraints, including losses applied to the generator output and adversarial
losses of three independent discriminators.

< JLLLM UM AR EORAY MTH R i1 O R 1T

13 Embedding dimension 204

Figure 4.3: Motion embedding. A motion sequence of the H3.6M dataset passed through the
frame encoder. The sequence is occluded from the half onwards, with the goal of motion prediction.

Generator. The rationale for the design holds in that convolutional GANs have
been successful in image inpainting problems, which is similar to ours. A masked
human motion sequence S™, however, cannot be directly processed by a convolutional
network because the dimension corresponding to the joints (J) does not have a spatial
meaning, in contrast to the temporal (F') and Cartesian coordinates dimensions.
That is, neighboring joints along this dimension do not correspond to neighboring
joints in 3D space!. To alleviate this lack of spatial continuity problem, the generator
is placed in-between a frame autoencoder, namely a frame encoder ¢ and a frame
decoder ®¢, which are symmetrical networks. The frame encoder, operates over the
J-dimension and projects each frame SI' € R7*3 of the sequence to a one-dimensional
vector S¢, = ®¢(S) € R**! where H is the dimension of the space for the pose
embedding®. To project each frame, the encoder does not use information from

neighboring frames, being thus time invariant. We denote the encoded sequence as
Se ¢ RFXHXI'

As we can observe in Fig.4.3, the frame encoder learns to represent the sequence
as a 2D matrix, in an arbitrary space. Although the learnt space has no clear
interpretation, we can observe from the sample that it retains certain properties,
such as the temporal ordering, and a constant "zero" value for the occluded frames.
This encoded sequence is then passed through a series of generator blocks ®9, which
produces a new sequence S9 € RF*XHX1 in the embedded space. The blocks of the
generators are CNNs that process the sequence in both temporal and spatial dimen-
sions. Further details are explained in Section 4.5. Finally the decoder network ®¢

!For instance, the joint #0 is normally the hip, and its neighbors in the body graph are the
joints #1 (left hip), #5 (right hip) and #9 (spine).
28;.. denotes the i-th element of S along the first axis.

42 3D motion prediction

maps back the the transformed sequence SY to the output sequence in the original
shape Sout c RFXJXZ%'

Discriminator. To capture the complexity of the human motion distribution we
split the discriminator into three branches, capturing different aspects of the gen-
erated sequence. Each discriminator is a Residual CNN classifier that serves as a
feature extractor. These features are linearly combined to obtain a probability of
the sequence of being real. We next describe the main blocks of our model. Details
of the underlying architectures are detailed later in Sect. 4.5.

Base discriminator. The same architecture of the frame encoder ®¢, with indepen-
dent parameters, is used to process the generated sequence S°“*. The reason to reuse
such architecture is that we want a discriminator to be applied directly on the non
Euclidean representation used by the CNN blocks of the generator, in order to boost
its performance.

EDM discriminator. We introduce a geometric discriminator that evaluates the
anthropomorphism of the generated sequence S°“ via the analysis of its Euclidean
Distance Matrix, computed as EDM(S°) = D € R/, where D;; is the Euclidean
distance between joints 7 and j of S°“*. This is a rotation and translation invariant
representation [34, 73|, allowing to focus the attention of the discriminator into the
shape of the skeleton.

Motion discriminator. the Base discriminator sees the sequences as absolute
coordinates of joints in the space, and the EDM discriminator sees them as relative
coordinates w.r.t the other joints. But these discriminators are missing the joint
correlations between the absolute motion and their relative (articulated) counterpart.
Thus, we consider a third discriminator that operates over the concatenation of both,
the temporal differences of absolute coordinates ||S°“(¢) — S (¢t — 1)||; and the
temporal differences of EDM representations |[EDM(S“(¢)) — EDM(S°“(t — 1))||1,
where S°“!(¢) indicates generated the sequence at time ¢.

4.3.2 Losses

To train our network we use two main losses: 1) The reconstruction losses, that
encourage the generator to preserve the information from the visible part of the
sequence; 2) The GAN loss, which guides the generator to inpaint the sequences by
learning and reproducing the motion in the dataset. For all the following formulae, let
S be the input motion sequence, M the occlusion mask, S the generated sequence,
F number of frames and J number of joints.

Reconstruction Loss. Our default reconstruction loss computes the L2 norm over

4.3 Model 43

the generated sequence w.r.t. the visible portion of the ground truth.
Lree = [[(S™ o M) — (So M)l (4.1)

This loss is only applied over the visible part of the original and generated sequences.
By doing this, we penalize deviations from the visible part of the sequences, while
avoiding to penalize the different possible completions of the sequence.

Limb Distances Loss. [34] showed that most common actions can be recognized
from just the relative distance between the extremities, i.e. hands, feet and head.
We therefore add a loss that explicitly enforces the correct distance between these
semantically important joints.

Since this loss looks at the relative distance, instead of the absolute position, it
provides different gradients to the reconstruction loss, and encourages the network
to learn a more precise location for the limbs. Formally, if we denote by & = {i, j}
the set of limb pairs , the loss Ly, is computed as:

F
> D ISH —SHllz — ISF™ — ST Il (4.2)

f=1{ij}e€

where S™°u = §°u! o M, denoting again that this loss is only computed over the
visible part of the original sequence.

Bone Length Loss. We also enforce constant bone length of the whole generated
sequence. Its main goal is to discourage the generator to explore solutions where the
skeleton is not well formed. If we denote by B = {1, ..., I} the mean length of the B
body bones computed over the visible part of the sequence, and by By = {ls1,...,{s,}
the length of the bones at frame f, this loss is computed as

F B
'Cbone = Z Z ||Zb - lfb||2 (43)

f=1b=1

Regularized Adversarial Loss. Our adversarial loss is based on the original GAN
loss [22], with the R1 regularization described in [69]. Let Gy be the generator network,
parameterized by the variable , D, be the discriminator network, parameterized
by the variable ¢, and P, the distribution of input motion sequences. We can then
write the Discriminator Loss as:

['D :]EsoutN[Po [10g(1 - D¢(G9(S @) M)))] (44)
+Es-z, [log(Dy (x))] + 3 Es-z, [VD, ()]

The Generator Loss is as follows:

£G<97 w> = ESout,\,]po [IOg(Dw(GQ(S e} M)))] (45)

44 3D motion prediction

.
Frame Encoder Generator U-Blocks Residual CNN
%X . X . X . Conv2D
T % . A : A - Block |
Frame . © Noiselnj !
A - Generator Residual §: "4
Encoder ; < X N |
| Encoder i- U-Blocks U-Block : NN . C::\If'o |
Block - : :
SEn Attention —oo< x + Conv2DTr Block - Cat el " Conv2d
ConvlD Conv2D Block ! Block © Rell
i n N | U-Block ConvaDTr Block— : X .. Conv2D
Encoder i GonviD_ [Sigmoid U-Block | Gt : g;ﬂk &4 © Block |
Block RelU ConvlD — Conv2D Block . | Conv2D i Noiselnj :
Encoder i ComviD T U-Block Conv2DTr Block— cat : Pool + - Block © ConvaD |
H | H i
Block i Rell U-Block Conv2D Block i (Blocklieonuap © Rely
Encoder I A >—1 . ! Block © - Conv2D |
Block i I Conv2D Block . + RelU
ConvlD X Conv2D Block -1 | conv2D . ==
A X . . Block .
I . Conv2D N N Block -
x : :i Conv2D : Mean .
: 1 : A © ConviD |
Network Layer Function Input Output X . ,L . RelU |

Figure 4.4: Details of the architecture. From left to right: Frame Encoder; Generator U-Blocks;
Residual CNN. In each case we plot the general view of the block (left) and the fine detail of the
structural elements (right). The Attention function is defined as: att(z,7,7) = 77 + 2(1 — 7). The
Conv2DTr denotes Convolution 2D Transpose, also called deconvolution.

Full Loss. The full loss £ consists of a linear combination of all previous partial
losses:

£ :Arﬁrec +)\lﬁlimb +)\b[’bone +)\DED +)\G/:'G (46)

where \., \;, Ay, Ap and A\g are the hyper-parameters that control the relative
importance of every loss term. Finally, we can define the following minimax problem:

G* = arg mén max L, (4.7)

where G* draws samples from the data distribution.

4.4 Metrics for motion prediction

Our goal then is to analyze the distribution generated by our model, for which
we propose metrics that are analogue to the Inception Score [82] and the Frechet
Inception Distance [35]. With this in mind we propose the following metrics:

PSEnt measures the entropy in the power spectrum of a dataset. This metric can
give us a rough estimate of the fitness of the model. First we compute the power
spectrum of the dataset independently per each joint and axis. Each joint-axis
combination is considered a distinct feature of a sequence. Formally, the power
spectrum of a feature is computed as: PS(sy) = ||[FFT(ss)||>. We can then compute
the Power Spectrum Entropy over a dataset:

PSEnt(D) = ¢ + Z > IPS(sp)l +legIPS(sl) 49

SED f=1 e=1

where D is a dataset, s is a sequence, f is a feature, and e is frequency.

4.5 Implementation Details 45

A common characteristic of the generative models trained with the L2 loss is that
they have the tendency to regress to the mean, lowering the entropy of the generated
sequences. An entropy value lower than the expected is a telltale sign of a biased
model, whereas a higher entropy value points to a rather noisy and maybe inaccurate
or unstable model.

PSKL measures the distance (in terms of the KL divergence) between the ground
truth and generated datasets:

PSKL(C,D) =Y _||PS(C)| * log(”?ﬁ%) (4.9)

where C' and D are datasets, s is a sequence, f is a feature, and e is frequency. The
KL divergence is asymmetric, so we compute both directions PSKL(GT, Gen) and
PSKL(Gen, GT) to have the complete picture of the divergence. If both directions
are roughly equal, it would mean that the datasets are different but equally complex.
On the other hand if the divergences are considerably different, it would mean that
one of the datasets has a biased distribution.

L2 based metrics. We also measure the distance between the ground truth sequence
sq and the generated sequence sy, considering each joint (j) as an independent
feature vector.

J
1
L2(89t7 SW”) = jz Hsgt - SgenHZ (410)
f=1

In [20, 68| s is represented in Euler angles, but in our work s is in coordinates,
making it readable in millimeters. The mean is used to obtain a measure for the
complete dataset.

4.5 Implementation Details
We next describe the blocks of our architecture.?

Frame Autoencoder. The Frame Encoder (Fig. 4.4-left) is a fully connected
network with identical sequential blocks. Each block contains two consecutive fully
connected layers, and an attention mechanism [4] at the end. The fully connected
layers can also be seen as 1D convolutions with kernel size 1 along the time dimension.
The attention is performed by applying a mask over the output of the block. The
mask is a linear transformation of the input to the block, followed by a sigmoid
activation. After the blocks, a final linear transformation and an attention are ap-
plied. The architecture is similar to a VAE [56], but without the Gaussian constrains
over the output of the encoder. The decoder network is a symmetrical network to

3Code Available at: https://github.com/magnux/MotionGAN

46 3D motion prediction

the encoder, with the same number of blocks and layers, but independent parameters.

Generator U-Blocks. The goal of the generator is to produce an output that
should be indistinguishable from an unmasked input, while preserving the shape of
the sequence. To accomplish this, we use U-blocks [80] (see Fig. 4.4-center) with
convolutions that halve the spatial resolution of the input in each layer, until it
reaches a small representation. Then a transposed convolution is used to double the
resolution until it reaches again the same dimensions as the input. A key compo-
nent in this architecture are the skip connections that connect the output of the
convolutional layers to the input of the deconvolutional layers. We can think of this
architecture as an iterative refinement, in which the output of a block is refined by
the next block to produce a better final output. Following [52], we also incorporate a
noise injection layer into our convolutional blocks which makes the model prediction
non-deterministic and enriches it.

Residual CNN. We designed the architecture of our discriminator inspired on
ResNet [31] and DenseNet [39]. Our network (Fig. 4.2) branches in three discrimina-
tors, and each discriminator has a classifier, with the same architecture but separate
parameters. Their architecture (Fig. 4.4-right) consists of several consecutive blocks
with two convolutional layers and additive residual connections, similar to ResNet.
The outputs of each block are also transformed and then concatenated into a tensor.
The final output is the concatenation of the outputs of all blocks. This output is
finally passed onto a fully connected network that assigns a score.

Spatial Alignment. Since we are working over an absolute coordinate system, the
sequences have a wide range of values (from mm to m). To improve the robustness
of the generator we subtract the position of the hip joint in the first frame to all
the joints in the sequence. Then the skeleton is rotated to always face in the same
direction. The alignment is performed by a custom layer in the network before the
frame encoder, and is reversed just after the frame decoder.

4.6 Training Details

Alternating Training. We used the standard GAN alternating training: one batch
to train the discriminator without updating the generator. The next batch to train
the generator without updating the discriminator.

Mask Generation. The occlusion masks for training are randomly generated for
each batch. We have the following rules for this generation:

- The binary masks are drawn from a binomial distribution with the shapes that
correspond to future prediction, random joints occlusions, structured occlusions
or missing frames.

- Even batches are trained for future prediction, odd batches are trained in one
of the other mask modes randomly selected.

4.6 Training Details 47

- For each batch, the occlusion probability p is randomly drawn from the uniform
distribution p € [0.25,0.75].

- Some datasets contain real occlusion masks Mg which are inherent in the data.
We combine these masks with our generated masks by multiplying them M,
M =M o Mgpg.

4.6.1 Data Augmentation

In order to train a robust network, especially on small datasets, we need to augment
our data. We perform a number of transformations on the sequences, both in the
temporal dimension (random cropping and random sub-sampling) and in the spatial
dimension (height jittering and side flipping)

Random Cropping. If the dataset contains sequences with an average duration of
over 4 seconds, for each batch we select a window of f consecutive frames starting at
a random point in the sequence. In practice, the length of the window corresponds to
4 seconds. This algorithm is useful when the dataset contains very long sequences,e.g.
Human3.6M dataset.

Random Sub-Sampling. Similar to other approaches [68|, we resample the data
at a lower sampling rate. However, our sub-sampling is not deterministic; instead,
we sample randomly within fixed windows. More specifically: The sequence S is
divided into n identical windows, a sample is drawn from each window at random
with uniform probability. For example: the original dataset has a frame rate of 50hz,
the sequence length is 200, we split the sequence into n = 20 windows and draw a
random sample from each window. The resulting sequence is 20 frames long and its
sampling rate is approximately equal to 5 Hz.

Height Jittering. In small datasets, there are a limited number of subjects, leading
to significant interpersonal differences in shape and motion. To make the network
robust to different shapes, we augment the sequences by perturbing the height of the
skeleton in the training sequences. Formally, we draw a factor ¢ = U(0.7,1.3), then
multiply the z-axis (or spatial dimension of height) by this factor.

Side Flipping. Another important source of interpersonal differences in motion
is the handedness of the subject. In small datasets, it is common for most (or all)
subjects to be right-handed. For this reason, we randomly flip the sides of the
skeleton with equal probability. We do this by inverting the y-axis (or one of the
horizontal dimensions).

4.6.2 Model Parameters

Our full model contains 4,812,716 parameters, split into 2,338,268 for the generator
and 2,474,448 for the discriminator. The generator has a total of 228 layers and the

48 3D motion prediction

discriminator has a total of 173 layers. We should note that most layers have no
parameters, but perform functions such as activation or arithmetic operations.

4.6.3 Training Meta-Parameters

The model was trained using the Nadam [15] optimizer, with an initial learning rate
of 1e-3. The learning rate was stair-stepped by a factor of 10. LR was decreased
twice, at 1/3 and 2/3 of the scheduled epochs. The batch size was 128. The number
of scheduled epochs was 128, and each epoch contained 256 augmented batches.

4.7 Experiments

Datasets. In the experimental section we mainly use the Human3.6M [44] dataset.
We follow the same split used in |20, 68].

4.7.1 Motion Prediction

In this section we compare our approach to [68|, one of the baseline works in the
state of the art. From this work, we are using the residual supervised model, which
is a sequence-to-sequence model with residual connections and uses the labels as
part of the inputs. Since our model is based on Cartesian coordinates, we compute
the joint angle representation equivalent to that used by the Residual supervised
(Res.sup.) [68] model. This transformation allows us for a consistent comparison
between the two.

We next run an ablation study, using always the same generator network, but
training it with different discriminator networks. As we argued in previous sections,
we aim to capture the distribution of the Ground Truth (GT) data, and each compo-
nent in the architecture was designed with this purpose. Our hypothesis is that an
adversarial loss is better than L2 and geometric losses to train a generative network.
Even more, we argue that the complexity of the discriminator network should be
correlated with a better result in the generated sequences.

Our tested models are: NoGAN: generator network trained with the reconstruc-
tion losses over the whole sequence, and no adversarial loss. Base disc: is the
same network, but using the encoder discriminator as loss for the generated part.
+EDM disc: the network is trained using both the base and the EDM discrimina-
tors. +Motion disc: the network is trained using the base and motion discriminator.
STMI-GAN: is the full network, trained with all joint discriminators.

Every discriminator seems to be adding information to the generated distribution.
We can observe this qualitatively, and we can confirm it with the proposed metrics.
Entropy Analysis and KL distance Analysis. We should first note that the
PSEnt in the original distribution is almost identical in every one second window, at

4.7 Experiments

49

Model| PSEnt | PSKL(GT,Gen) | PSKL(Gen,GT)

0 to 1 second

Org.Data. (Val vs Train) [0.67990 0.00590 0.00572
Res.sup. [68]| 0.37492 0.03293 0.04524
NoGAN| 0.44363 0.03729 0.05040
Base disc| 0.73626 0.01198 0.01149
+EDM disc| 0.57045 0.01801 0.02131
~+Motion disc| 0.72617 0.01220 0.01141
STMI-GAN [0.68099 0.01090 0.01125
1 to 2 seconds
Org.Data. (Val vs Train)| 0.67749 0.00628 0.00611
Res.sup. [68]| 0.20975 0.10188 0.17004
NoGAN| 0.27969 0.07989 0.13743
Base disc| 0.60450 0.01559 0.01766
+EDM disc| 0.49198 0.02546 0.03315
+Motion disc| 0.72963 0.01223 0.01129
STMI-GAN [0.68328 0.01041 0.01010
2 to 3 seconds
Org.Data. (Val vs Train)| 0.67391 0.00640 0.00620
Res.sup. [68]| 0.12752 0.17402 0.33566
NoGAN| 0.34717 0.06099 0.09562
Base disc| 0.60804 0.01396 0.01611
+EDM disc| 0.45627 0.03368 0.04596
~+Motion disc| 0.72368 0.01312 0.01201
STMI-GAN [0.71778 0.01306 0.01213
3 to 4 seconds
Org.Data. (Val vs Train)| 0.67891 0.00590 0.00566
Res.sup. [68] | 0.00333 0.18692 0.37605
NoGAN| 0.26750 0.08672 0.15567
Base disc| 0.50224 0.02646 0.03460
+EDM disc| 0.41653 0.04516 0.06541
+Motion disc| 0.76111 0.01436 0.01275
STMI-GAN [0.70985 0.01108 0.01024
0 to 4 seconds
Org.Data. (Val vs Train)| 1.65373 0.01225 0.01227
Res.sup. [68]| 0.85732 0.13320 0.15644
NoGAN| 1.07468 0.10245 0.12508
Base disc| 1.58270 0.02197 0.02274
+EDM disc| 1.22901 0.08416 0.09894
+Motion disc| 1.77806 0.02434 0.02270
STMI-GAN [1.69147 0.01888 0.01801

Table 4.1: Ablation Study. Power Spectrum based metrics for different configurations of our

model.

50 3D motion prediction

approximately 0.678. This number represents the entropy of the uniform distribution,
which means that the short term frequencies are fairly uniform. The PSEnt raises
to 1.65, when we consider a 4 second time window. Such raise means that the long
term motion has a biased, and more complex frequency distribution, which is not
uniform but denser in some parts of the spectrum.

We can observe in Tab.4.1 that the Res.sup. [68] and NoGAN baselines decay in
entropy as the seconds pass. Also we see that the KL divergence grows rapidly for
the baselines and is around an order of magnitude higher than any of the GAN models.

The GAN models all seem to have a good behavior, with PSEnt values close to
the GT distribution. The Base disc model is already stable, but has some decay in
entropy towards the end of the sequence. The Motion disc model seems to be pretty
stable but it consistently overshoots on the entropy. This may be interpreted as the
model overemphazising in moving. The EDM disc model seems to be harming at a
first glance, since it considerably lowers the PSEnt, but the main point of adding
this discriminator is to prevent unexpected poses from happening. It is a regularizer
by design.

When we combine the three discriminators in the STMI-GAN model, the network
approximates closely to the expected distribution. The STMI-GAN is stable both in
PSEnt and PSKL and its performance does not decay as time passes. Indeed, it has
a PSEnt close to the GT and a low PSKL, meaning that it is not only producing the
same amount of motion but also the same kind of motion. We should note that the
Human3.6M dataset has a considerable difference between the validation and train
splits when following the standard protocol [68]. The PSKL between the validation
and train splits for the whole sequence is around 0.012, almost symmetrical, and the
PSKL between the generated distribution of STMI-GAN and validation is around
0.018, also symmetrical. This means that the distribution produced by the GAN is
almost as close as the training and validation sets are.

L2 metric experiments. To demonstrate the point that L2 metric is not correlated
with a realistic generation, we use a subset of the 120 test sequences of [20, 68,
concretely the #8, #26, #27, #88. Fig. 4.5 shows the results of our approach and
Res.sup. [68] on these sequences. Note that Res.sup. has a tendency to converge to
the same pose (see the red skeleton in the center column), which is very close to the
mean pose in the dataset. There is also the tendency to produce very small motions
(see black and red at the bottom center frame). Indeed, [68] shows that the zero
velocity baseline is often better than their model, specially for the class ’discussion’
which has high uncertainty (see last row in Fig.4.5).

When computing the L2 metric over angles as in [68] we obtain the following
results: L2 Res.sup. — (0.69, 0.36, 0.64, 0.25); L2 STMI-GAN — (1.09, 0.74, 1.33,
0.96). Despite the baseline model has a lower L2, the sequences generated by our
approach seem more diverse and realistic. These effects derive from the objectives

4.7 Experiments 51

GT Res.Sup.[24] STMI-GAN

[AREEN
bt the
wHREEY
12

/
,—===B~
=
"
_H__,__H_‘}_/#__,_____q_____‘

A A
TR

Figure 4.5: H3.6 Examples. Blue is first frame, black is first predicted frame, red is last predicted
frame. Total length is 4 secs, 2 seed + 2 predicted.

==

used to train each model. The baseline models aim to minimize the spatial distance
through the L2 loss. In our work we seek to reproduce the the distribution of human
motion, and we use a GAN for this purpose. These objectives are not always aligned,
and the L2 metric often fails to grasp the complexity of realistic human motions.

Noise Injection. It may seem that the noise injection would cause big differences
in the output of the network, but actually the expected difference in the prediction is
around 0.81mm per joint. This means that when called with the same seed sequence,
the network produces almost identical sequences, only tweaking minor aspects of
the sequence. This result confirms the effects of the noise reported in [52]. It is also
interesting to note that the difference increases with the length of the prediction,
meaning that indeed the injected noise is solving some level of uncertainty, but the
maximum difference that we have measured predicting 4 seconds is 3.02mm per
joint.

Qualitative Evaluation. We conducted evaluation with 15 person and four distinct
surveys, all of them following the same scheme: a prediction model vs the ground
truth. In the first two surveys we tested the baseline Res.sup. and STMI-GAN,
to perform relative motion prediction. In the case of our model we removed the
translation from the prediction to make it comparable. The last two surveys assess

52 3D motion prediction

2 A

Figure 4.6: Example result. Three examples of the predicted motions (left: ground truth, right:
predicted). The bluish colors are the part of the sequence that is observed. The prediction starts
after the black skeleton and corresponds to the yellow-reddish colors.

the absolute motion prediction. We use our NoGAN model as baseline vs our STMI-
GAN model. In these surveys our goal is to obtain a 50% chance of being classified
as real. More than 50% would mean that the model is "more realistic" than the
ground truth. As we can observe in Tab. 4.2 the results have a wide range of values.
This is due to the fact that the survey was sent to a diverse audience.

We can see that the baselines perform in a similar range of average values as our
model, our model being bit better. However, the baselines perform very poorly to
the trained eye, as the min score tells us. It is worth to note that while the relative
motion prediction is an easier problem compared to the absolute motion prediction,
the average score of our STMI-GAN is lower in the relative setting. This suggests
that the relative motion generation is both harder for machine learning models and
for humans. Also, the highest score on the surveys is in the max of the STMI-GAN
in absolute prediction.

| Model | Motion| Min | Avg | Max |
Res.sup [68]| Rel. | 6.25% | 31.88% [40.63%
STMI-GAN| Rel. [25.00%| 33.54% |40.63%

NoGAN| Abs. | 9.38% | 31.46% [62.50%
STMI-GAN| Abs. |15.63%(38.39%|62.50%

Table 4.2: Human Evaluation. Percentage of times that a human evaluator thought a generated
sequence was real. The min is the score of the "hardest" evaluator, who was fooled the less by the
generative models. The max is the score of the "easiest" evaluator, who was confused more often
by the model.

[Problem [Linear Int] LR-Kalman [9]] NoGAN] STMI-GAN]

Joint Occl.| 232.06 329.23 96.52 108.99
Limb Occl.| 209.45 312.40 123.07 189.09
Missing Frames| 50.42 123.05 72.67 102.03
Noisy Transm.| 94.54 308.98 98.53 110.29

Table 4.3: Occlusion Completion. We test different types of occlusion, concretely: Joint
Occlusions: joints occluded at random in each frame. Limb Occlusions: joint chains representing
limbs are occluded at random in each frame. Missing Frames: entire frames are occluded at
random. Missing transmission: data points in any dimension are occluded at random. The table
reports the L2 metric over coordinates(See 4.4).

Fig.4.6 shows three examples. The sequence on the left is easy to predict, just

4.8 Chapter summary 53

continuing the motion of picking up things off the floor. The sequence on the center
is a bit harder, as it is easy to guess that the person will continue walking, but the
person halts after a couple of steps, and this is unexpected. The sequence on the
right is challenging, because just before the generator begins its forecast, the person
stops. This makes it hard to predict as the uncertainty rises and many options are
plausible. We can see that the generator in fact guessed the action (walking) and
the correct direction, but the speed of the motion is not accurate. We consider it
however a good guess given the input.

4.7.2 Occlusion Completion

Finally, in Table 4.3 we report the robustness to different types of occlusion. In every
test we used 80% of occlusion, i.e. we are trying to recover a sequence conditioning
only on 20% of the data. The generator model is particularly robust to structured
occlusions, it produces good results even without the GAN, we hypothesize that this
is because it was trained to produce anthropomorphic guesses. When the occlusions
happen at random, linear interpolation is also a good approach, but depending on
the nature of the occlusion we may need a more robust model.

4.8 Chapter summary

In this chapter, we propose a Generative Adversarial Network (GAN) to predict
human motion given a sequence of past 3D skeleton poses. Although recent GANs
have shown promising results, they can only predict plausible motion over relatively
short time periods (a few hundred milliseconds) and generally ignore the absolute
position of the skeleton with respect to the camera. Our system provides long-term
predictions (two seconds or more) for both posture and absolute position. Our
approach relies on three main contributions. First, we represent the data using a
spatio-temporal tensor of 3D skeleton coordinates, which allows us to formulate
the prediction problem as an inpainting problem for which GANs are particularly
well suited. Second, we design an architecture for learning the joint distribution
of postures and global motions that is capable of hypothesizing large portions of
the input 3D tensor with missing data. Finally, we argue that the L2 metric,
previously considered the standard by most approaches, fails to capture the true
distribution of long-term human motion. We propose two alternative metrics based
on the distribution of frequencies that can capture more realistic movement patterns.
Extensive experiments show that our approach significantly improves the state of
the art and also handles situations where previous observations are corrupted by
occlusions, noise, and missing images.

Chapter 5

Program Generation

As a first step toward program generation for motion prediction, we explore the field
of dynamic neural networks in the context of cellular automata. Cellular Automata
is a model based on a grid representation of the world. Each cell of the grid is an
automaton or program which perceives the environment (i.e., its state and the state
of neighboring cells) and updates its state according to a fixed rule, generally a
mathematical function. The rule is the same for each cell and does not change over
time. CA models can be universal [13], meaning that they can be programmed to
emulate any other system without changing its underlying construction. Despite
their expressive power, the main drawback of CAs is that, given a particular rule,
it is impossible to predict its behavior. This means that each rule must be tried
with multiple initial states to understand its behavior, and its performance must be
observed over many iterations.

Neural Cellular Automata (NCA), recently proposed by [71], is a class of Cellular
Automata that use an artificial neural network as the update function so that the
NN parameters can be learned to obtain a desired behavior. Even more, the specific
behavior is learned without specifying the intermediate states, but by minimizing
a loss toward a target pattern, i.e., an image. The NCA approach is conceptually
different from other image generation techniques in that it aims to create a complex
program that is itself capable of generating the final image. Accordingly, its proper-
ties are different to those of a classical ANN, e.g., it can recover damaged patterns.

Although the NCA is an interesting model, its practical application is hampered
by the fact that each program must be learned individually. This is not ideal for us,
because we would like to have a model that can adapt to many different situations
and generate programs even for unseen situations. We have found a solution to this
problem by using dynamic neural networks (DNNs). As explained in section 2.3,
DNNs are neural networks that generate other neural networks, which would allow
us to model a manifold of NCA. This is consistent with our goal, as we did not want
to model a single behavior, but a manifold of behaviors. In this context, we can think
of behavior as a movement performed for a particular action and context. Thus,
by learning a manifold, each program or network in the manifold could represent a

95

o6 Program Generation

behavior.

The original NCA has another inconvenient feature, which is that it uses the
alpha or "visibility" channel in images to encode a "alive" state. While this is an
interesting feature for CA, we see it as a limitation for a model that is intended to be
applicable to many types of data. In this work, we also address the requirement of an
alpha channel of the original NCA [71], which allows for more general applicability
to any type of data in tensor form.

alaaaaaaannnD) D
eSO 00000
TYITITITIFIVIVIVIFIVI VI VI VI PL I

Figure 5.1: Growth process step by step from pixel seed image. Top, sample from the full
NotoColorEmoji dataset. Bottom, sample from the full CIFAR-10 dataset.

Our proposed model is also inspired by biology. CA models are often used to model
biological processes such as tumor growth processes [48| and infection dynamics [21].
This is no coincidence, as the CA model was originally developed to model "living"
organisms. Even more, the main inspiration of the NCA was to model the processes
of cellular differentiation in multi-cellular organisms. These processes lead to the
emergence of a whole body from a single cell. Complex organisms must also generate
different types of somatic cells and arrange them spatially to form the different tissues
while maintaining temporal stability. These three aspects, cellular differentiation,
morphogenesis, and cell growth control, are the pillars of developmental biology.
Computational methods are an essential part of developmental biology research,
so much so that the term "morphogene” itself was coined by Turing [92| decades
before it was empirically demonstrated. In the figure 5.1, we can observe how images
can "grow” starting from a single pixel, much like an organism starts from a single cell.

With these ideas from biology in mind, it was only natural to draw an analogy
between our model and living cells. Having addressed the process of morphogenesis,

5.1 Related work 57

we turned our attention to the previous step in the system, DNA coding and decoding.
In most complex organisms, DNA is protected inside a nucleus. DNA expression
outside the nucleus is carried out by the cellular machinery and regulated by tran-
scription factors (TFs). Many TFs are involved in defining the spatial arrangement
of an organism. Most of them are morphogens, soluble molecules that can diffuse
and transmit signals via concentration gradients. This biological model also inspired
our network architecture (see Fig. 5.2). In our network, we create a vector encoding
that stores information common to all cells, as in DNA. For this reason, we also
propose a way to transform our vector encoding, which was originally a conventional
continuous tensor encoding, into a DNA-like categorical encoding. It is important to
point out that this is not a necessary ingredient for our model to work, but rather a
proof of concept that allows us to test the limits of biological analogy.

The main contributions in this chapter are:

- Introducing a new type of model that can learn a space of programs in the
form of Cellular Automata, which are capable of producing desired target
patterns.(see Sec.5.2)

- Showing that the learned program’s space has generalization capabilities on the
results the programs produce.(see genetic engineering experiments in Sec.5.3)

- Showing that the encoding space is capable of learning and representing up
to 50.000 different programs simultaneously with only 512 real-valued dimen-
sions.(see CIFAR experiments in Sec.5.3)

- Introducing a new fully dynamic network architecture, which generates CA’s
parameters from NN output.(see Sec. 5.2.3)

- The architecture proposed is trainable end-to-end, without need of pre-training
any part, for datasets of different sizes and characteristics.

- Extending the capabilities of the original NCA [71] from RGBA to RGB images,
and potentially to any type of vectorial data.

- Demonstrate how to build a categorical encoding space similar to DNA, capable
of encoding the same information that a continuous encoding space while
achieving high robustness to random mutations.

5.1 Related work

Conditioning Models. Conditioning models use information either from the same
network (e.g. squeeze and excitation block [38]), from a joint network (e.g. style
network [53, 54|) or from a completely independent source (e.g. language embed-
ding [18]), to scale the internal representation channel-wise. The key part is to inject
into the network the all the information it needs to perform its task. The conditioning
is not always considered an input in the standard manner, but rather transformation
on it. We could have used the conditioning approach to embed the NCA into our
model, but this would have changed the original architecture by adding the condition-
ing layer to the CA. Such layer would also add an external source of information at
each step, which would change the definition of a CA. Because our goal is to preserve

58 Program Generation

DNA-Encoding
— (IR} 2T | o) (e
Predicted weights
" b

25 Comvoluti Normalized
Current state e °“V“’ ution Gradients
. annel-wise
Continuous- n 1D Vector Fully connected layers

Encoder § obely
- +

¢ \ N

y N

I—Neighboring States

Stochastic Update
16 Channels

Update vector New State

) | Target
Image

0|00

+ +
i |I
Visible ‘ ”
channels he
o|ofo

0|+l 0

Figure 5.2: Model overview. Beige elements contain trainable parameters while orange layers use
only predicted parameters. See Fig.5.3 for details of the architecture.

as much as possible the architecture of a CA model, this approach was not ideal to us.

Dynamic Convolutions. Instead of using conditioning to inject the information,
we opted for the dynamic convolutions, in which the weights of the convolutional
kernel are specifically computed for each sample. In previous works that use dynamic
convolutions [47, 57], the architecture forks in two paths from the input image: one
path computes the kernels while the other process the input through some fixed
convolutions before feeding applying the previously computed dynamic kernels. In
contrast, in our approach, the kernel weights are generated from an encoding which
is completely independent (and different) from the image to be processed by them.
Indeed, the image to be processed by our dynamic convolutions is the pixel seed,
which is the same for all targets.

Dynamic Networks. The formulation of our architecture makes the decoder a fully
dynamic network, in which the weights are computed on the fly for each sample. In
this perspective, it is related to the deep fried transform [110]| one shot learners [6]
and the HyperLSTM [28]. The goal in these works was to classify images or text,
which is a very different task from ours. To the best of our knowledge, our model
is the only using a fully convolutional and fully dynamic network architecture in a
generative setting.

5.2 Neural Cellular Automata Manifold

We already described in the introduction the biological inspiration of our model.
Next, we move forward to its detailed formulation. The Neural Cellular Automata
Manifold (NCAM) uses dynamic convolutions to model a space of NCAs. This space
is learned through an Autoencoder framework. Formally, our model is defined by

5.2 Neural Cellular Automata Manifold 59

the following equations:

I'={C/} Vijel
Cz'tj = f(ij_l, M,if17m(ef,0),6LF) V(k,1) € €;
M, = g(Cit, M k(e 0),0,p) V(K1) € €;
r(e',8) =P(D(e',0p),0p)
0 = {0p,0p)
€ij = ({i = oyt nab, {7 =0y, 5+ 1y}

(5.1)

where I' is the image generated at step t, ij is the color vector (RGB or RGB-Alpha)
of the pixel in position (i, j), M}; is the corresponding vector of “Morphogenes” (i.e.
invisible channels in the grid), €;; are indices of the neighborhood of the cell (3, j)
which extend n,,n, positions to each side in x and y axis, and e’ is the vector
encoding the image. f(-) and g(-) are the functions implemented as an NCA to
predict the colors and “Morphogenes”, respectively. r(e!,0) is the function that
predicts the weights of the NCA from the encoding e’ and its learned parameters 6,
which is the composition of the functions learned by the DNA-decoder D(-) and the
Parameter Predictor P(-). The learned parameters are Op, 6p and 0y, the Leak
Factor (see Sec. 5.2.1).

In order to train this model, we could simply feed it with arbitrary codes, compute
the