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Abstract

Artificial intelligence (Al) is used for various purposes that are
critical to human life. However, most state-of-the-art Al algo-
rithms, and in particular deep-learning (DL) models, are black-
box, meaning humans cannot understand how such models make
decisions. To forestall an algorithm-based authoritarian society,
decisions based on machine learning ought to inspire trust by
being explainable. For Al explainability to be practical, it must
be feasible to obtain explanations systematically and automati-
cally. There are two main methodologies to generate explanations.
Explanation methods using internal components of DL models
(a.k.a. model-specific explanations) are more accurate and effec-
tive than those relying solely on the inputs and outputs (a.k.a.
model-agnostic explanations). However, the users of the black-
box model lack white-box access to the internal components of
the providers” models. Nevertheless, the only way for users to
trust predictions and for these to align with ethical regulations
is for predictions to be accompanied by explanations locally and
independently generated by the users (rather than by explana-
tions offered by the model providers). Furthermore, those models
can be vulnerable to various security and privacy attacks target-
ing their training. In this thesis, we leverage both model-specific
and model-agnostic explainability techniques. First, we propose
a model-agnostic explainability method using random decision
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forests as surrogates. The surrogate model can explain the pre-
dictions of the black-box models in both centralized and decen-
tralized settings. In addition, it uses those explanations to pro-
tect the models from attacks that might target them. We also pro-
pose a model-specific explainability method that uses the gradi-
ents of the model to generate adversarial examples that counter-
factually explain why an input example is classified into a specific
class. We also generalize this method so that external users can
use it by training a local surrogate model that mimics the black-
box model’s behavior and using the surrogate gradients to gen-
erate the adversarial examples. Extensive experimental results
show that our methods outperform the state-of-the-art techniques
by providing more representative explanations and model protec-
tions while requiring a low computational cost.
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Resum

La intel-ligencia artificial (IA) es fa servir per a diversos proposits
que son critics per a la vida humana. Tanmateix, la majoria dels
algorismes d’IA d’tltima generaci6, i en particular els models d’a-
prenentatge profund (AP), sén models de caixa negra, en el sen-
tit que els humans no podem entendre com prenen les decisions.
Per evitar una societat autoritaria basada en algorismes, les deci-
sions basades en l'aprenentatge automatic haurien de ser explica-
bles per tal d’inspirar confianca. Perque l'explicabilitat de la IA
sigui practica, ha de ser factible obtenir explicacions de manera
sistematica i automatica. Hi ha dues metodologies principals per
generar explicacions. Els metodes d’explicacié que utilitzen com-
ponents interns dels models d’AP (també coneguts com a explica-
cions especifiques del model) sén més precisos i efectius que els
que es basen tnicament en les entrades i en les sortides (també
coneguts com a explicacions independents del model). Malau-
radament, els usuaris dels models de caixa negra no tenen accés
de caixa blanca als components interns dels models dels provei-
dors. Tot i aixi, 'Gnica manera perque els usuaris confiin en les
prediccions i perque aquestes s’alinein amb les normatives etiques
és que les prediccions s’acompanyin d’explicacions generades lo-
calment i independentment pels usuaris (en lloc d’explicacions
fornides pels proveidors de models). A més, aquests models po-
den ser vulnerables a diversos atacs a la seguretat i a la privadesa
dirigits contra llur entrenament. En aquesta tesi, explotarem les
tecniques d’explicabilitat tant especifiques del model com agnos-
tiques del model. Primer, proposem un metode d’explicacié ag-
nostic del model basat en 1'ts de boscos de decisi6 aleatoris com
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a model substitut. El model substitut pot explicar les prediccions
dels models de caixa negra en entorns centralitzats i descentral-
itzats. A més, utilitza aquestes explicacions per protegir els mod-
els dels atacs que se’ls puguin dirigir. D’altra banda, proposem
un explicador especific del model que fa servir els gradients del
model per generar exemples contradictoris que expliquen de man-
era contrafactual per que un exemple d’entrada es classifica en
una classe especifica. També generalitzem aquest metode perque
qualsevol usuari del model pugui utilitzar-lo entrenant un model
substitut local que imiti el comportament del model de caixa ne-
gra i fent servir els gradients substituts per generar els exemples
adversaris. Els nostres resultats experimentals detallats mostren
que els nostres metodes superen les téecniques d’tltima generacié
i forneixen explicacions més representatives i més proteccié del

model alhora que requereixen un cost computacional més baix.
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Resumen

La inteligencia artificial (IA) se utiliza para varios propdsitos que
son criticos para la vida humana. Sin embargo, la mayoria de los
algoritmos de IA de tltima generacién, y en particular los mode-
los de aprendizaje profundo (AP), son modelos de caja negra, en
el sentido de que los humanos no podemos entender cémo esos
modelos toman las decisiones. Para evitar una sociedad autori-
taria basada en algoritmos, las decisiones basadas en el apren-
dizaje automatico han de ser explicables para inspirar confianza.
Para que la explicabilidad de la IA sea préctica, debe ser factible
obtener explicaciones de forma sistematica y automédtica. Hay dos
metodologias principales para generar explicaciones. Los méto-
dos de explicacién que utilizan componentes internos de los mod-
elos de AP (también conocidos como explicaciones especificas del
modelo) son mds precisos y efectivos que aquellos que se basan
Unicamente en las entradas y salidas (también conocidas como
explicaciones independientes del modelo). Desafortunadamente,
los usuarios de los modelos de caja negra carecen de acceso de caja
blanca a los componentes internos de los modelos de los provee-
dores. Sin embargo, la tinica forma de que esos usuarios confien
en las predicciones y estas se alineen con las normas éticas es que
las predicciones vayan acompafiadas de explicaciones generadas
local e independientemente por los usuarios (en lugar de explica-
ciones ofrecidas por los proveedores del modelo). Ademads, estos
modelos pueden ser vulnerables a varios ataques de seguridad y
privacidad dirigidos contra su entrenamiento. En esta tesis, ex-
plotaremos las técnicas de explicabilidad especificas de modelo y
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agnosticas de modelo. Primero, proponemos un método de ex-
plicaciéon independiente del modelo basado en el uso de bosques
aleatorios de decisién como modelo sustituto. El modelo susti-
tuto puede explicar las predicciones de los modelos de caja ne-
gra en entornos centralizados y descentralizados. Ademads, uti-
liza esas explicaciones para proteger a los modelos de los ataques
que podrian tenerlos como objetivo. Asimismo, proponemos un
explicador especifico del modelo que usa los gradientes del mod-
elo para generar ejemplos contradictorios que explican de man-
era contrafactual por qué un ejemplo de entrada se clasifica en
una clase especifica. También generalizamos este método para
que cualquier usuario del modelo pueda usarlo entrenando un
modelo sustituto local que imita el comportamiento del modelo
de caja negra y usando los gradientes sustitutos para generar los
ejemplos contradictorios. Nuestros extensos resultados experi-
mentales muestran que nuestros métodos superan las técnicas de
vanguardia al proporcionar explicaciones més representativas y
mayor protecciéon del modelo, al mismo tiempo que requieren un

menor costo computacional.
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Chapter 1

Introduction

The past two decades have witnessed major advances in artificial
intelligence (Al) systems. Deep learning (DL) models and convo-
lutional neural networks (CNNs) are the cornerstones of many
modern machine learning (ML) systems due to their ability to
solve many complex tasks such as computer vision (CV), natural
language processing (NLP), and speech recognition (Deng and Yu,
2014; LeCun, Bengio, and Hinton, 2015). However, those models
are opaque decision systems because humans cannot understand
the reasoning behind their predictions. This is why they are called
black-box models (Ljung, 2001).

On the other hand, companies increasingly release market ser-
vices and products by embedding data mining and machine learn-
ing components, often in safety-critical industries such as self-
driving cars, robotic assistants, or personalized medicine (Guidotti
et al., 2019). However, by blindly relying on black-box machine
learning models, we risk leaving daily decisions that affect com-
panies (and, ultimately, citizens’ lives) to systems that we do not
understand. This impacts not only on ethics, but also on account-
ability (Joshua et al., 2017), safety (Danks and London, 2017), and
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industrial liability (Kingston, 2016).

On the other hand, ML models are often trained on data com-
piled by human analysts, who cluster these data to teach the mod-
els how to make decisions. As a result, they may containing hu-
man biases and prejudices (Guidotti et al., 2019), which may lead
the model to wrong and unfair predictions. Another inherent risk
of these ML models is the possibility of unintentionally making
wrong predictions. Those may have been learned from spurious
correlations in the training data —such as recognizing an object in
a picture by the properties of the background or lighting—, or due
to a systematic bias in training data collection —such as in the well-
known example of Ribeiro, Singh, and Guestrin, 2016, where the
animal will be classified as a wolf if the image has snow back-
ground and a husky dog if the image has grass background, be-
cause in the training pictures all the wolves were displayed in a
snowy landscape and the huskies were not-.

The lack of transparency of ML is problematic both for the in-
dividuals affected by the predictions of the models and for the
developers who train the black-box models:

¢ Individuals are affected by a growing number of automated
decisions: credit rating, loan granting, insurance premiums,
medical diagnoses, job selection, etc. While transparency
measures are being implemented by public administrations
worldwide, there is a danger that automated decisions will
become a ubiquitous black box. To protect citizens, explain-
ability requirements are beginning to show up in legal reg-
ulations and ethics guidelines, such as article 22 of the Eu-
ropean Union’s General Data Protection Regulation (GDPR)
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(Regulation, General Data Protection, 2016), which states the
right of citizens to an explanation of automated decisions on
them, and the European Commission’s Ethics Guidelines for
Trustworthy Al (European Commission’s High-Level Expert
Group on Artificial Intelligence, 2019) —which insists that the
organizations making automated decisions be prepared to
explain them at the request of the affected citizens—, and the
IEEE report on ethically aligned design for intelligent sys-
tems (Shahriari and Shahriari, 2017). Furthermore, the re-
cent EU proposal for a regulation on artificial intelligence
(nicknamed Artificial Intelligence Act (Proposal for a Regula-
tion of the European Parliament and of the Council laying down
harmonised rules on artificial intelligence (Artificial Intelligence
Act) and amending certain Union legislative acts 2021)) also em-
phasizes the explainability requirement. On the other hand,
obtaining explanations alongside predictions helps the users
understand why an ML model produces a specific predic-
tion, which increases the trust in the model and contributes
to a more transparent decision-making (Chazette, Karras,
and Schneider, 2019; Blanco-Justicia et al., 2020).

Developers would like to know how the black-box models
make predictions to ensure the algorithm considers the rele-
vant features during the training phase and that the training
data lack bias. This allows them to develop more accurate,
fair and robust models.

For explanations on black-box models to be practical and scal-
able, their generation must be automated. Existing explanation
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methods for DL models can be divided into model-agnostic meth-
ods (i.e., applicable to different types of models, including DL
models) and DL model-specific methods (i.e., for specific DL mod-
els). Although model-agnostic methods, such as LIME (Ribeiro,
Singh, and Guestrin, 2016), SHAP (Lundberg and Lee, 2017) and
LRP (Bach et al., 2015) can explain any model, they only look at
models “from the outside”, that is, without considering their in-
ternal components. In contrast, DL model-specific methods lever-
age the internal components of a DL model, such as the gradi-
ents, to generate more efficient and accurate explanations (Mol-
nar, 2020; Vermeire et al., 2022).

On the other hand, training an ML model requires a large
amount of data, which may be difficult to compile due to sev-
eral reasons, among which privacy concerns stand out. To miti-
gate this issue, two solutions have been proposed. First, the fed-
erated learning (FL) framework (Konecny et al., 2016) —which is
described in more detail in Chapter 2—, is a decentralized machine
learning technique that aggregates local models trained by a set of
participants on their private data to obtain a global model with-
out sharing the data with other participants. Second, big com-
panies that own sufficient data to train an accurate ML model
may provide paid API access to those models to other compa-
nies or end users via Machine Learning as a Service (MLaaS) plat-
forms (Ribeiro, Grolinger, and Capretz, 2015). Users can then
query those models with their own data to obtain accurate pre-
dictions.

However, like in centralized deep learning, FL and MLaaS
produce unexplainable (black-box) models. In addition, due to
their distributed architectures, they are vulnerable to security and
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privacy attacks (described in Chapter 2). To protect models against
those attacks, various methods have been proposed in the litera-
ture, such as Krum aggregation (Blanchard et al., 2017) and the
coordinate-wise median (Yin et al., 2018). Unfortunately, most at-
tack detection methods focus on improving the model’s perfor-
mance, and do not provide information in the event of an attack,
such as the identity of the attacker or the target of the attack.

1.1 Objectives

In this thesis, we aim to develop methods to automatically gener-
ate explanations for black box models” predictions, and to detect
attacks that may target those models. As such, we introduce the
following set of goals:

1. Developing a model-agnostic method based on random de-
cision forests as a surrogates to explain the predictions of
the black box models. This method can be applied both to
centralized and decentralized settings without hampering
the model’s performance. The surrogate model provides the
user with two types of explanations: i) small decision trees
that are interpretable by humans, and ii) the features” im-

portances according to their effect on the prediction made
by the black-box model.

2. Leveraging the explanations provided by the surrogate model
to detect the attack targeting the training data, and to detect
security and privacy attacks that may target the model.



UNIVERSITAT ROVIRA I VIRGILI
CONTRIBUTIONS TO EXPLAINABILITY AND ATTACK DETECTION IN DEEP LEARNING

Rami Haffar

Chapter 1. Introduction

3. Developing DL model-specific explainability methods based

1.2

on counterfactual examples (CE), which can be used with
different input data types such as tabular and images.

. Expanding the use of the method based on counterfactual

examples so that any party with API access to the black-box
model can execute it on their end, using only their local un-
labeled data.

Thesis structure

Chapter 2 gives background on centralized and decentral-
ized machine learning, and reviews works on explainability
for black-box models. It also lists the most outstanding se-
curity and privacy attacks that affect decentralized ML ar-
chitectures and the main countermeasures proposed in the
literature to tackle them.

Chapter 3 describes our proposed model-agnostic method
to explain black-box model predictions and to detect attacks
on the training data in centralized settings.

Chapter 4 describes the application of the former method to
a decentralized setting.

Chapter 5 introduces the model-specific approach based on
adversarial examples, and applies it to black-box image clas-

sification.
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* Chapter 6 discusses the application of the former method
to a scenario in which users access ML models via API ac-
cess (i.e., MLaa$S). This method counterfactually explains the
black-box model predictions regardless of the input data type.

¢ Chapter 7 summarizes the main contributions of this thesis

and presents some lines of future research.
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Chapter 2

Background and state of
the art

This chapter provides background on classical machine learning
and deep learning in Section 2.1. In Section 2.2, we discuss pre-
vious works attempting to interpret black-box models. In Section
2.3, we describe the federated learning architecture, list the pos-
sible attacks that can be orchestrated against it, and the current

countermeasures that aim to protect the model.

2.1 Machine learning

Machine learning (ML) is a field of AI that mimics the experiential
“learning” associated with human intelligence while also having
the capacity to learn and improve its analyses through the use
of computational algorithms (Bini, 2018; Naylor, 2018). These al-

gorithms use large sets of data inputs and outputs to recognize
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patterns in order to train the machine to make autonomous rec-
ommendations or decisions. After sufficient repetitions and mod-
ifications of the algorithm, the machine can take an input and pre-
dict an output (Bini, 2018; Naylor, 2018). Outputs are then com-
pared with a set of known outcomes in order to judge the accuracy
of the algorithm, which is then iteratively adjusted to perfect the
ability to predict further outcomes (Haeberle et al., 2019; Helm et
al., 2020).

2.1.1 Classical machine learning methods

In classical machine learning algorithms, models are trained on
handcrafted features, which are extracted by the developer from
the data. Also, the models are either linear or graph-based. This
makes them self-explainable, since the features are known, and
humans can analyze linear and graph-based models. This section
summarizes the best-known methods of this type.

Support-vector machines

Support vector machines (SVMs) (Gunn et al., 1998) are linear
classifiers based on the margin maximization principle. They per-
form structural risk minimization, which improves the complex-
ity of the classifier with the aim of achieving excellent generaliza-
tion performance. SVMs accomplish the classification task by con-
structing the hyperplane in a higher dimensional space that opti-
mally divides the data into two categories (Adankon and Cheriet,
2009).
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Decision trees

Decision trees (Quinlan, 1986) are decision support models that
classify patterns using a sequence of well-defined rules. They are
tree-like graphs in which each branch node represents an option
between a number of alternatives, and each leaf node represents
an outcome of the cumulative choices (Tong and Ranganathan,
2013).

Random decision forests

A random forest (Ho, 1995) is a robust machine learning algorithm
suitable for various tasks, including regression and classification.
It is an ensemble method, in that a random forest comprises many
small decision trees, called estimators or trees, each one producing
its own predictions. Then, the random forest model combines the
predictions of the estimators to produce a more accurate global
prediction.

2.1.2 Neural networks

Neural networks (NNs), also known as artificial neural networks
(ANN:Ss), are at the heart of deep learning algorithms. Their name
and structure are inspired by the human brain, mimicking the
way that biological neurons signal to one another.

Artificial neural networks (ANNSs) contain nodes (artificial neu-
rons) structured in layers: an input layer, one or more hidden lay-
ers, and an output layer. Each node connects to another and has
an associated weight and threshold, as shown in Figure 2.1. If
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the output of any individual node is above the specified thresh-
old value, that node is activated, sending data to the next layer of
the network. Otherwise, no data is passed along to the next layer
of the network (Chen et al., 2017b).

Input layer Hidden layers Output layer

()
i
W
il

% §\¢
7 N/
é \ \‘:

Input features

FIGURE 2.1: An example of input, hidden, and
output layers of a basic neural network

Deep learning neural networks

Deep learning neural networks (DNN5s) are neural networks with
multiple hidden layers and multiple nodes in each hidden layer,
which allow them to determine significantly higher complex pat-
terns than traditional machine-learning methods. DNNs have been

a crucial asset to foster Artificial Intelligence (Al) in the recent few
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years, which have achieved remarkable or yet superior to human-
level performance on image classification He et al., 2016, speech
identification Xiong et al., 2018, and reading knowledge Devlin
et al., 2018. Deep learning models consist of different input and
hidden layers:

* Convolutional layers: These layers are the core of convolu-
tional neural networks (CNN), which are most commonly
applied to analyze visual imagery and NLP (Valueva et al.,
2020). A convolutional layer contains a set of filters whose
parameters need to be learned. The height and weight of
the filters are smaller than those of the input volume. Each
filter is convolved with the input volume to compute an ac-
tivation map made of neurons. In other words, the filter is
slid across the width and height of the input, and the dot
products between the input and filter are computed at ev-
ery spatial position. There are different activation functions
such as ReLU (Agarap, 2018), Sigmoid (Pratiwi et al., 2020),
and Tanh (Karlik and Olgac, 2011). The output volume of
the convolutional layer is obtained by stacking the activa-
tion maps of all filters along the depth dimension. Since the
width and height of each filter are designed to be smaller
than the input, each neuron in the activation map is only
connected to a small local region of the input volume. That
is, the receptive field size of each neuron is small and equal
to the filter size. The local connectivity of the convolutional
layer allows the network to learn filters that maximally re-
spond to a local region of the input, thus exploiting the local

spatial correlation of the input (e.g., for an input image, a
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pixel is more correlated to the nearby pixels than to the dis-
tant pixels). In addition, as the activation map is obtained by
convolving the filter and the input, the filter parameters are
shared for all local positions. The weight sharing reduces
the number of parameters, which results in more efficient
learning and better generalization (Ke et al., 2018).

Pooling layer: A pooling layer is usually incorporated be-
tween two successive convolutional layers. The pooling layer
reduces the number of parameters and computation by down-
sampling the representation. The pooling function can be
max or average (Ke et al., 2018).

Fully connected layers: In those layers, all the inputs from one
layer are connected to every activation unit of the next layer.
In most popular machine learning models, the last few lay-
ers are fully connected layers that compile the data extracted

by previous layers to form the final output.

DL models are trained until they achieve the desired accuracy,
or for a fixed number of epochs specified by the developer. Each
time the entire training data set is passed forward and backward
through the neural network is called an epoch. Usually, the data
set is too big to be fed to the machine at once, so it gets divided
into several smaller batches. The total number of training exam-
ples present in a single batch is called batch size, and it is defined
based on the machine’s capacity. The number of batches needed to
complete one epoch is called an iteration. After finishing each iter-
ation, the model executes a back-propagation algorithm to adjust

the weights of each neuron in the network according to the loss
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calculated during the iteration and the learning rate (Ir) selected
by the developer.

In general, DL models consist of thousands or even millions
of parameters, which means they are very complex. At the same
time, while they can approximate any function, studying their
structure does not give any insights into the structure of the func-
tion being approximated. Therefore, they are considered black boxes
because the model’s behavior cannot be understood, even when one is
able to see its internal structure and weights.

2.2 Explainability methods for black-box mod-
els

Several methods in the literature have been proposed to explain
decisions made by deep learning models. They fall into two main
classes:

* Model-agnostic. The methods in this class treat the model
as a black box and can explain any ML model, including
DL models. Furthermore, they approximate the relationship
between the input and the output prediction of the black-
box model. A standard methodology for generating model-
agnostic explanations is building a surrogate model based
on simpler and more understandable machine learning al-
gorithms. This surrogate is trained to mimic the black-box
model behavior. Afterwards, the causes of the surrogate
model predictions are used as explanations of the black-box
model predictions. For example, LIME (Ribeiro, Singh, and
Guestrin, 2016) creates an interpretable linear surrogate model
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to approximate the relationship between a prediction and
the perturbed examples of the input example. Anchors (Ribeiro,
Singh, and Guestrin, 2018) approximates the relationship
between the model’s prediction and the input example us-
ing simple if-then rules. SHAP (Lundberg and Lee, 2017)
measures the contribution of each feature of an example to
the output prediction by computing Shapley values for each
feature. Unfortunately, model-agnostic methods are either
unstable (Alvarez-Melis and Jaakkola, 2018), computation-
ally expensive or prone to misinterpretation (Molnar, 2020).
Moreover, they disregard the internal components of DL mod-
els that may be useful for generating more accurate explana-

tions.

* DL model-specific. This class of methods assumes white-box
access to the DL model pipeline. They use the internal com-
ponents of the model, such as the gradients, to generate
more accurate and robust explanations. The main idea of
these methods is to identify the features of the input exam-
ple that are important to the output classification. For ex-
ample, saliency maps (Simonyan, Vedaldi, and Zisserman,
2014) highlight the pixels of an input image by visualizing
the gradient of the model prediction w.r.t. those pixels. Grad-
CAM++ (Chattopadhyay et al., 2018) highlights the regions
of important input features computed by the weighted gra-
dients of an output classification w.r.t. the final convolu-
tional layer of a DL model. Another option is to generate
counterfactual examples (CEs) to explain the predictions of

a DL model (Molnar, 2020). Counterfactual explanations



UNIVERSITAT ROVIRA I VIRGILI
CONTRIBUTIONS TO EXPLAINABILITY AND ATTACK DETECTION IN DEEP LEARNING
Rami Haffar

2.2. Explainability methods for black-box models 17

are understandable and human-friendly: if you make tar-
geted changes in the values of specific features, the predic-
tion will change from one class to another. Several black-box
methods that do not require access to the internal model
components to generate CEs have been proposed (Lash et
al., 2017; Laugel et al., 2018; Verma, Dickerson, and Hines,
2020). However, gradient-based methods perform better in
terms of the generality and accuracy of the explanations they
generate, and have much lower computational cost than meth-
ods based on black-box access (Mahajan, Tan, and Sharma,
2019; Verma, Dickerson, and Hines, 2020).

2.2.1 Requirements of the surrogate models used for ex-
plaining the black box models

As discussed in Molnar, 2020, explanations for black-box models
through surrogates should satisfy the following properties:

* Accuracy: This property refers to how well an explanatory
surrogate model predicts unseen data.

e Fidelity: The decisions of the explanatory surrogate model
should be close to the decisions of the black-box model on
unseen data. If the black-box model has high accuracy and
the explanation has high fidelity, then the explanatory sur-
rogate model also has high accuracy.

* Consistency: The explanations should apply equally well to
any machine learning algorithm trained on the same data
set.
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Stability: Decisions by the black-box model on similar in-
stances should yield similar explanations.

Representativeness: If the surrogate model can be applied to
several decisions on several instances, we can call it a highly

representative explanation.

Certainty: 1f the black-box model at study provides a mea-
sure of assurance in its predictions, an explanation of these

predictions should reflect this measure.

Novelty: It indicates the ability of the explanations of the sur-

rogate model to cover cases far from the training data.

Degree of importance: The explanation should highlight the

important features.

Comprehensibility: The explanations provided by the surro-
gate model should be understandable to humans. Depend-
ing on the target users, more or less complex explanations
can be acceptable, but short explanations are generally more
comprehensible.

No single explanation model in the current literature is able

to satisfy all the above properties (Blanco-Justicia et al., 2020). In

particular, LIME and Anchors focus on satisfying fidelity, stabil-

ity, degree of importance, and comprehensibility, whereas SHAP

focuses on fidelity, stability, representativeness, and degree of im-
portance (Molnar, 2020).
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2.3 Federated learning

Federated learning (Kone¢ny et al., 2016) is a decentralized ma-
chine learning technique that aggregates local models trained by
a set of peers on their private data to obtain a global model. Since
private data do not leave the peers’ devices, FL provides more
intrinsic privacy to the participating peers than other approaches
that require uploading the peers’ data to a central server. Another
advantage of FL systems is that the learning effort is distributed
among peers instead of being centralized in a single entity, as
shown in Figure 2.2. However, FL models are also black boxes.
In more detail, in FL a model manager (a.k.a. server) uses a learn-
ing algorithm such as FedAvg (McMahan et al., 2017) to learn a
global shared model 6 by cooperating with m participating peers.
In the beginning, the server initializes an ML model, for exam-
ple, a neural network, with parameters 69 and asks the m par-
ticipating peers to update the model by training it on their local
data with a set of predefined hyper-parameters. The main hyper-
parameters are the number of local epochs ¢, the local batch size bs
and the learning rate a. After that, following the prescribed learn-
ing algorithm, at epoch ¢ each peer p among the m participating
peers uses her private data set D, to train 6’ locally, and sends the
resulting local model ;! or the computed gradient &, back to
the server. Once the server receives the local updates, it computes
the global model 6'*! for epoch t + 1 by averaging the received
updates. This process is iteratively repeated for a fixed number of
epochs or until the global model converges.

FL is particularly vulnerable to security and privacy attacks

because the server has no control over the participating peers.
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For example, a malicious peer may spoil the learning process by
sending bad updates to the model manager. Ideally, honest peers
should be able to detect and understand such attacks, because the
dishonest behavior of one of the participants may significantly al-
ter the expected behavior of the black-box model.

Local update
Global model weights

Local data Local data Local data
set set set

Participant 1 Participant 2 Participant n

FIGURE 2.2: An example of a federated learning
model architecture

2.3.1 Attacks in federated learning

Federated learning, due to its distributed nature, is vulnerable to

a number of security attacks orchestrated by malicious peers:

* Byzantine attacks: These attacks try to prevent the model from
converging. Lack of convergence may be caused by trans-
mission errors, attackers that alter updates from other peers,
or malicious peers that submit random updates (Lamport,
Shostak, and Pease, 2019).
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* Poisoning attacks: These attacks aim at misleading the global
model into misclassifying a specific set of inputs. For ex-
ample, in a recommendation system trained via federated
learning, a possible aim would be to cause the recommen-
dation system to suggest a specific item or to recommend it
more often than due (Fang et al., 2020). In (Zhong and Deng,
2021), a powerful poisoning approach based on transferable
adversarial examples has been proposed: a surrogate model
is leveraged to create adversarial examples that can poison
a black-box deep learning model with only API access (i.e.
without knowing its structure or having access to the data it

has been trained on).

* Label-flipping attacks: In these attacks, the attacker is assumed
to have access to a part or all of a peer’s training data. The
attacker uses this access to alter (some of) the labels in the
training data (Taheri et al., 2020).

External entities may also attack the model manager and may
even mount attacks to break the privacy of the contributing peers:

 Security attacks against the model manager: Since the model
manager receives all local updates, an external attacker who
takes control of the model manager gains access to all up-
dates and can manipulate the aggregation process (Kairouz
et al., 2021). Thus, the attacker can easily carry out Byzan-

tine or poisoning attacks.

* Privacy attacks by the model manager: A powerful and hard-to-
detect privacy attack was proposed in Hitaj, Ateniese, and
Pérez-Cruz, 2017. The authors use a multi-task Generative
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Adversarial Network (GAN) for Auxiliary Identification, called
mGAN-AL The typical GAN (Goodfellow et al., 2020) con-
sists of the generator G and the discriminator D. G is trained

to generate data from the same target data distribution, while

D is trained to classify the output of G as a real or a fake data
sample. In mGAN-AI, the updates (or the model) sent by a
peer are used as a discriminator so that the model manager
can take advantage of it to generate data from the same dis-
tribution as the data owned by a participating peer. This
attack may break the privacy of the peer’s data.

2.3.2 Countermeasures against attacks

Security attacks by malicious peers can be detected (and filtered)
by the model manager, provided the manager has access to the
individual updates. Several methods to detect malicious updates
have been proposed in the literature:

* Detection of malicious peers via model metrics: This class of
methods use a custom validation set to assess the updates
sent by the participating peers. The performance metrics
(e.g., accuracy) of the model as updated by each peer are
computed on the validation set. The model manager filters
out the peer updates that yield poor performance before ag-
gregating the remaining updates to obtain the new global
model.

* Detection of malicious peers via update statistics: As the model
converges, the magnitudes of the gradients (5;“ tend toward
zero. This attack detection method checks the magnitudes of
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the updates and identifies those updates as anomalous out-
side a given range. Usually, this range is related to the in-
terquartile range of the set of updates sent by the participat-
ing peers during the training. However, since the gradients
become close to zero only when models approach conver-
gence, it is not realistic to apply this methodology through-
out the training phase (Tukey, 1977; Domingo-Ferrer et al.,
2020; Jebreel et al., 2020). In Cao et al., 2019, a different way
of filtering out label-flipping attacks by analyzing updates
is presented. The authors propose to construct a graph of
all the updates sent by the participants. This graph is built
according to the parameters of each update, and Euclidean
distances are calculated to identify updates that are not simi-
lar to the majority, which are filtered out. This method, how-

ever, requires a large number of costly operations per epoch.

* Outlier-excluding aggregation: Other countermeasures, such
as Krum aggregation (Blanchard et al., 2017) or the coordinate-
wise median (Yin et al., 2018), consist in aggregation mech-
anisms that exclude outlying values (which are regarded as
probably malicious updates). However, these countermea-
sures may reject updates from honest peers whose private
data distribution legitimately differs from that of the major-

ity.

Other measures to prevent or filter out attacks exist, but they
rely on cryptography, secure channels, and trusted hardware (Chen
etal., 2020), thereby imposing significant deployment requirements.

Some recent research works (Kim et al., 2020; Salah et al., 2019)
combine federated learning with blockchain technologies. The
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idea is to save global model parameters and weights in an un-
changeable blockchain ledger in order to ensure the security of
the global ML model. However, although the blockchain can save
the current model, it cannot protect against bad updates uploaded
by malicious participants. Furthermore, very substantial compu-
tational power is needed to create each block in the blockchain.

Even though the security countermeasures discussed above
can filter out malicious updates and thereby increase the model
accuracy, they can only be implemented on the server side, and
they do not explain the operation of the attack, that is, the data fea-
tures modified by it. In this thesis, we use surrogate models built
on the side of any participant in the training, using only their data
not only to detect but also to explain potential security attacks.

Regarding privacy attacks by the model manager, these can
be proactively prevented by the participating peers themselves by
distorting their updates via differential privacy (Wei et al., 2020) or
by securely aggregating updates of several peers before sending
them to the server (Bonawitz et al., 2017). However, differential
privacy severely deteriorates the accuracy of the learned model
(Domingo-Ferrer, Sdnchez, and Blanco-Justicia, 2021; Blanco-Justicia
etal., 2022), whereas secure aggregation is incompatible with coun-
termeasures against security attacks because it hides from the model
manager the individual updates provided by the clients (Blanco-
Justicia et al., 2021).
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2.4 Conclusion

Although NNs and DL models are opaque and require interpre-
tation, they perform better than classical machine learning meth-
ods on classification, segmentation, and detection tasks (Janiesch,
Zschech, and Heinrich, 2021), which calls for their use to accom-
plish these tasks efficiently. For this reason, there is an urgent need
to explain the predictions of these models. Previous attempts to
generate these interpretations have used either simpler models
(i.e., model-agnostic approaches), which cannot properly approx-
imate the black boxes” behavior due to their low performance, or
the internal parameters of the black boxes (i.e., model-specific ap-
proaches), which prevents the model users from generating their
local explanations. This calls for the research of an explainer that
either uses a more robust surrogate model such as random deci-
sion forests (see Section 2.1.1) or allows the user to create local
model-specific explanations without having to share the internals
of the models with all the users. Furthermore, since DL and, par-
ticularly, FL. models are vulnerable to various security and privacy
attacks that might target the model, the information provided by
some explainers can be used to detect and understand these at-
tacks.
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Chapter 3

Explaining
Misclassification and
Attacks in Centralized
Deep Learning via Random
Forests

In centralized deep learning, the training data are gathered by a
single entity, and the training of the black-box model is done lo-
cally on that entity’s side, which makes it the only one responsible
for preserving the privacy and the security of the data. Neverthe-
less, this forces all interested parties to share their data with that
central entity. Besides, some portions of the data could be wrongly
clustered or attacked to alter some of its values. Those corrupted
portions could affect the performance of the model. Furthermore,

this effect will lead the model to wrong classifications. In this
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chapter, we will focus on explaining the wrong model’s predic-
tions, and we will evaluate if the data were corrupted or not dur-
ing the training by using a model-agnostic approach based on ran-

dom forests as a surrogates.

3.1 Contributions and plan of this chapter

We present an approach that assumes that the party who gen-
erates the explanations has unrestricted access to the black-box
model and the training data set. The training data set of the sur-
rogate model can be smaller than the entire data set used to train
the black-box model: a sufficiently representative subset may be
enough.

We use random decision forests in this chapter to build our
surrogate model. Random forests (Ho, 1995) consist of a fixed
number of decision trees, each of which has a controlled depth
and a measure reflecting the feature’s importance. The surrogate
random forest will be trained on the same data used to train the
black-box model.

Single decision trees have already been employed in the lit-
erature as surrogate models (Blanco-Justicia et al., 2020; Singh,
Ribeiro, and Guestrin, 2016). The originality of our proposal lies in
using a random decision forest rather than a single decision tree.
In this forest, all trees have limited depth, but the structure of each
tree may differ. The diversity in the random decision forest makes
it possible to have trees whose predictions match the prediction
of the black-box model, even if the majority of the trees do not

match it. This allows scanning the forest for trees that agree with
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the black-box model and using these trees to explain the black-box
decision.

In this chapter, we concentrate on the cases where the black
box model made wrong predictions and aim to identify the fea-
tures involved in those predictions. For example, if some fea-
tures of the training data set were altered due to an attack, we
can identify which of the altered features were more influential in
the wrong predictions.

The rest of this chapter is structured as follows. Section 3.2
describes our surrogate model based on a random decision forest.
Then, experimental results are provided in Section 3.3. Finally, in
Section 3.4 we gather conclusions.

3.2 Random forest-based surrogate model

To fulfill the most outstanding properties listed in Section 2.2.1,
such as fidelity and accuracy, degree of importance, consistency,
and comprehensibility, we need to build a surrogate model that
can provide information about the black-box model predictions
with high accuracy while keeping complexity at bay. Random de-
cision forests described in Section 2.1.1 are a promising solution
because they are able to provide accurate predictions, and the de-
cision trees they build are intrinsically understandable (Blanco-
Justicia et al., 2020).

Moreover, one of the advantages of random forests over deci-
sion trees is that the latter become too deep to be understandable
if they have to make accurate decisions based on a large number

of features. In contrast, random forests can offer accuracy in the
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case of many features by using several trees with limited depth
and stay thus understandable.

Random decision forests also satisfy consistency because the
surrogate model does not depend on the internal structure of the
black-box model. Moreover, since forests are built from the ac-
tual data, they can explain the predictions of any black-box model
trained on the same data.

Another distinguishing trait of random forests over other clas-
sical ML models is that each tree in the forest focuses on a different
subset of features, and at least one of those trees agrees with the
black-box model prediction. Our method allows deterministically
choosing the trees/feature sets that have the greatest influence on
the predictions that match the predictions of the black-box model,
thereby yielding more accurate explanations.

When the surrogate model is trained on a fraction of the whole
training data set, it provides the feature importances vector, which
assesses the importance of each feature in the data on the predic-
tion made by the black box.

Algorithm 1 attempts to determine the causes of wrong pre-
dictions by the black-box model. First, the algorithm uses the
training data set to train the black-box and random forest models.
Second, it evaluates both models to make sure they can be com-
pared with each other. The random forest’s accuracy should not
be inferior to that of the black-box model; otherwise, the explana-
tions obtained from the random forest would be useless. Third,
for each wrong prediction of the black-box model on the test data
set, the algorithm scans the forest and stores the vector of feature
importances of each tree in the forest whose prediction coincides
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with the wrong black-box prediction. Finally, the algorithm aver-
ages all stored feature importance vectors in order to obtain a vec-
tor containing the average importance of every feature in causing
wrong decisions.

Algorithm 1 Determine the importance of features in wrong pre-
dictions
input: Data set X, CNN model model
Train_X, Test_X < Split_Train_Test(X)
Black_Box <« Train_Black_Box(Train_X)
Forest <— Build_Random_Forest(Train_X) {The accuracy of the
black-box model and the random forest are evaluated}
Score_Black_Box <+ Evaluate_Black_Box(Test_X)
Score_Forest <— Evaluate_Forest(Test_X)
Feature_Importances_List <— {} {*}This list will contain the vec-
tors of feature importances for selected trees in the forest
for Sample in Test_X do
if Predict(Black_Box, Sample) not correct then
for Tree in Forest do
if Predict(Black_Box, Sample) == Predict(Tree, Sample)
then {The vector with the feature importances of each tree
agreeing with the black-box model is appended to the list}
Append(Feature_Importances_List, Tree.Feature_Importances)
end if
end for
end if
end for{The vectors in the list are averaged to obtain the aver-
age feature importance vector}
Feature_Importances <— Average(Feature_Importances_List)
return Black_Box, Score_Black_Box, Forest, Feature_Importances

In Algorithm 1, feature importances are computed according
to Pedregosa et al., 2012, as follows. First, let us define the notion
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of impurity of a data set, which is a measure of the homogeneity
of its values. Impurity can be measured in several values, includ-
ing Gini impurity and Shannon entropy. In particular, the Gini

impurity of a data set is

L

C=Y fil—f),

i=1

where L is the number of possible different labels, and f; is the
relative frequency of values with the i-th label. Clearly, if all the
values in the data set correspond to the same label, then C = 0;
the more diverse the values, the higher C.

Now, given a decision tree, the importance of each node j in it
is

nij = ZU]‘C]‘ - Z ZUka,
keChildren,

where w; is the weighted number of samples reaching node j, C;
is the Gini impurity of the samples reaching node j, and Children;
are the children nodes of node j. Thus, the higher the homogene-
ity gain of a node, the more important it is, where the homogene-
ity gain is the reduction of impurity between the input set of the
node and its output subsets (those that go to its children nodes).
In other words, an important node is one that “neatly” classifies
the samples that reach it. Then, the raw importance of each fea-
ture i is

Z:j:node j splits on feature i nij

Z:keall nodes niy

fii =
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Finally, the normalized feature importance of each feature i is a

number between 0 and 1 computed as

fii

Zjeall features f1j '

normfi; =

From now on, in this thesis, when we mention feature impor-
tances, we will refer to normalized feature importances.

Algorithm 2 attempts to discover whether the training of a
black-box model is done on corrupted/attacked data or on clean
data, and which training features are most likely to have been at-
tacked. The algorithm takes as inputs the outputs of Algorithm 1,
that is, a trained black-box model, its reported accuracy score, a
random forest explaining the black box model, and the vector of
reported feature importances associated with the random forest.
The algorithm also takes as input a reliable test data set Test_X that
will be used to test whether the training of the black-box model
was on attacked or clean data. First, the algorithm evaluates the
accuracy of the black-box model on the reliable test data Test_X. If
the accuracy Score_Black_Box2 on Test_X is much lower than the
reported accuracy Score_Black_Box, this suggests that the black-
box model was trained on attacked data. In this case:

1. For each wrong prediction of the black-box model on the
reliable test data Test_X, the algorithm scans the forest and
stores the vector of feature importances of each tree in the
forest whose prediction coincides with the wrong black-box

prediction.
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2. The algorithm averages all stored feature importance vec-
tors in order to obtain a vector Feature_Importances2 con-
taining the average importance of every feature in causing

wrong decisions.

3. The likelihood of each feature being attacked in the training
data is proportional to the difference in the importance of
that feature in Feature_Importances2 and the reported Fea-
ture_Importances. In particular, the feature with the largest
difference is the most likely to have been attacked.

Algorithm 2 Discover the feature under attack

input: Black_Box, Score_Black_Box, Forest, Feature_Importances, Test_X
Score_Black_Box2 < Evaluate_Black_Box(Test_X)
if Score_Black_Box — Score_Black_Box2 > threshold then
Feature_Importance_List2 < {}
for Sample in Test_X do
if Predict(Black_Box, Sample)notcorrect then
for EachTreeinForest do
if Predict(Black_Box, Sample) ==
Predict(Tree, Sample) then
Append(Feature_Importance_List2, Tree.Feature_Importances)
end if
end for
end if
end for
Feature_Importance2 <— Average(Feature_Importance_List2)
Feature_Attack_Likelihoods =  |Feature_Importance —
Feature_Importance2|
return Feature_Attack_Likelihoods
end if
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3.3 [Experimental results

We applied the above-described methodology to three data sets: a
synthetic numerical data set, a real numerical data set, and a real
data set with a mix of categorical and numerical attributes. To
keep computation simple, we made a small change when testing
Algorithm 2. Instead of attacking the training data (which would
require training both the black box model and the random for-
est first with the original training data to get the real importance
of features and then again with the attacked training data), we
attacked the test data Test_X used by Algorithm 2. This avoids
re-training but has the same effect: the test data Test_X used in
Algorithm 2 depart from the data used to train the model. We can
take Test_X as the good data and the training data as having been
attacked.

3.3.1 Experiments on synthetic numerical data

We generated a data set consisting of 1,000, 000 records, each with
10 numeric continuous attributes and a single binary class labeled
using the make_classification method from Scikit learn'. We re-
served 2/3 of the records to train the models and the remaining
1/3 to test them. As a black-box model, we took a neural network
denoted by an artificial neural network (ANN) with three hidden
layers of 100 neurons each, which achieved 96.55 % classification
accuracy. We also trained a random forest with 1000 trees with a
maximum depth of 5 and an average size of 62 nodes. The for-
est classification accuracy was 90.8%; this is less than the accuracy

Ihttps://scikit-learn.org/stable/index.html
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of the black-box model but still high enough for the explanations
obtained from the random forest to be useful.

Table 3.1 shows the importances of features on the wrong de-
cisions of the black-box model, as computed by Algorithm 1. Fea-
tures are sorted in descending order of importance. Feature num-
ber 5 turns out to be the one with the most influence on wrong

decisions.

TABLE 3.1: Importance of the features of the syn-
thetic data set on wrong predictions by the black

box model
Feature name | Feature importance
X[5] 0.2916
X[1] 0.2564
X[4] 0.0924
X[6] 0.0769
X[3] 0.0646
X[9] 0.0532
X[7] 0.0462
X[0] 0.0395
X[2] 0.0394
X[8] 0.0392

Also, we ran Algorithm 2 after attacking each feature indi-
vidually with a threshold for the drop in the accuracy set to 4%.
Our attacks were sufficient to exceed the threshold for all fea-
tures. Algorithm 2 correctly detected the attacked feature in 60%
of these single-feature attacks. Table 3.2 shows the result of attack-

ing the three features with the highest importance (according to
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Table 3.1). It can be seen that the algorithm correctly detected at-
tacks on the two most important features X[5] and X[1] (the only
two whose importance is above 10%). However, the algorithm
failed when the third most important feature X[4] was attacked (it
mistook it for the second most important feature X[1]). Table 3.3
shows the performance of Algorithm 2 when the three features
with the least importance were attacked. The algorithm detected
well the attacks on the least important feature X[8] and the third
least important feature X[0]. Still, it failed for the second least
important feature X[2] (which was mistaken for the second most
important feature X[1]).

A comparison between Table 3.2 and Table 3.3 also suffices
to see that the drop in the accuracy of the black box model was
greater when the high-importance features were under attack. In-
deed, attacks on low-importance features entailed a milder degra-
dation of accuracy. This also confirms that the feature importances
identified by Algorithm 1 are coherent with the impact of those
features on accuracy.

TABLE 3.2: Attacking the three most important
features in the synthetic data set

Attacked feature | black box accuracy | Feature detected by Algorithm 2
X[5] 64.81% X[5]
X[1] 64.9% X[1]
X[4] 61.97% X[1]
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TABLE 3.3: Attacking the three least important
features in the synthetic data set

Attacked feature | black box accuracy | Feature detected by Algorithm 2
X[8] 76.45% X[8]
X[2] 73.38% X[1]
X[0] 75.99% X[0]

3.3.2 Experiments on real numerical data

To experiment with large real numerical data, we used the “PAMAP2
Physical Activity Monitoring” data set from the UCI Machine Learn-
ing Repository?. This data set contains continuous measurements
of three inertial body sensors (placed on the arm, chest, and ankle)
and a heart-rate monitor worn by nine subjects who performed
18 different activities such as walking, cycling, watching TV, etc.
First, as recommended by the releasers of the activity data set (Reiss
and Stricker, 2012), we created our data set by discarding the tran-
sient activity (e.g., going to the next activity location). Second, for
simplicity, we mapped the various types of activity into two cate-
gories indicating whether the activity involved displacement or
not (e.g., walking and cycling were mapped to “displacement”
and watching TV to “not displacement”). As a result, we ob-
tained a data set containing 1,942, 872 records of which 1,136, 540
records were labeled as “displacement” and 806,332 as “not dis-
placement”.

Each record contained 54 numerical attributes corresponding
to timestamp, label, heart rate, and 17 sensor data feeds for each

Zhttps://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activi
ty+Monitoring
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of the three inertial sensors. Given an unlabeled record, the ex-
periment’s classification task consisted of deciding whether the
subject was performing an activity involving physical displace-
ment at that instant. We used the same black-box and random
forest models as in the synthetic data set. In classifying this data
set, the black box achieved 99.9% accuracy and the forest 94.6%
accuracy. Algorithm 1 computed the importances of the various
features on wrong decisions of the black-box model: these impor-
tances ranged from 0.1616 down to 0.00017802.

We then applied Algorithm 2 with a threshold of 5% drop in
the accuracy. Only 58.97% of the attacks on single features ex-
ceeded this threshold. Algorithm 2 correctly detected the attacked
feature in 78.26% of these single-feature attacks. Table 3.4 shows
that the attacks on the three most important features were de-
tected correctly. Table 3.5 shows three examples of attacked fea-
tures with low importance: two of those attacked features were
correctly detected, but the algorithm was not able to detect the
attack on acceleration_6_x_chest.

A comparison between Table 3.4 and Table 3.5 shows that the
accuracy drop was greater when attacking a feature with high im-
portance than a feature with low importance. The exception was
acceleration_6_x_chest which, in spite of being of low importance,
caused a substantial accuracy drop and was, in fact, wrongly de-
tected by Algorithm 2 as the high-importance feature accelera-
tion_6_x_ankle. However, other than that, our proposed method
showed very promising results in detecting the importance of the
features causing the black box wrong predictions on real numeri-

cal data and in detecting attacks on specific features.
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TABLE 3.4: Attacking the three most important
features in the physical activity data set

Attacked feature black box accuracy | Feature detected by Algorithm 2
magnetometer_z_chest | 82.66% magnetometer_z_chest
gyroscope_z_ankle 76.23% gyroscope_z_ankle
acceleration_6_x_ankle | 86.25% acceleration_6_x_ankle

TABLE 3.5: Attacking the three least important
features in the physical activity data set

Attacked feature black box accuracy | Feature detected by Algorithm 2
acceleration_6_x_hand | 92.47% acceleration_6_x_hand
acceleration_6_x_chest | 86.73% acceleration_16_x_ankle
gyroscope_x_ankle 90.68% gyroscope_x_ankle

3.3.3 Experiments on real categorical data

To experiment on a real data set containing categorical data, we
used the Adult data set, which is a standard data set hosted in
the UCI Machine Learning Repository>. Adult contains 48,842
records of census income information and has 14 attributes report-
ing both numerical and categorical values.

We recoded categories as numbers for each categorical attribute
to obtain a numerical version of the attribute. We reserved two
thirds of the records to train the models and the remaining one
third to validate them. We used the same black box and forest
as in the synthetic and physical activity data sets. The black box
achieved 84.53% classification accuracy, and the forest achieved
84.42%. Table 3.6 lists the importance of features on the wrong
decisions of the black-box model, as computed by Algorithm 1.
Features are sorted in descending order of importance.

Shttps:/ /archive.ics.uci.edu/ml/data sets/adult
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TABLE 3.6: Importance of the features of the
Adult data set on wrong predictions by the black

box model
Feature name Feature importance
marital-status 0.2459
capital-gain 0.1967
relationsip 0.1902
educational-num | 0.1645
age 0.012
hours-per-week | 0.0451
capital-loss 0.0384
occupation 0.021
gender 0.0177
workclass 0.0035
native-country 0.00172
fnlwgt 0.00171
race 0.00094

We applied Algorithm 2 with a threshold 3% in the accuracy
drop. Only 53.84% of the attacks on single attributes exceeded this
threshold. Among these 53.84%, Algorithm 2 correctly detected
the attacked attribute in 85.71% of the cases. Table 3.7 shows the
results for the three most important features: attacks on them
were all correctly detected. Table 3.8 reports on three features
with low importance: two were well detected, but capital-loss
was wrongly detected. Yet capital-loss was the only attribute in
the data set whose attack exceeded the accuracy drop threshold
but was not correctly detected by Algorithm 2.

A comparison between Table 3.7 and Table 3.8 also shows that
the drop in the accuracy was greater when attacking a feature with
high importance (according to Algorithm 1) than a feature with
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lower importance.

Our approach holds promise because (i) in the case of the real
categorical data set, only one single feature was wrongly detected
as attacked by Algorithm 2; (ii) the feature importances computed
by Algorithm 1 anticipate the black-box model accuracy drop when
each respective feature is attacked.

TABLE 3.7: Attacking the three most important
features in the Adult data set

Attacked feature

black box accuracy

Feature detected by Algorithm 2

martial-status

80.96%

martial-status

capital-gain

63.62%

capital-gain

relationship

77.51%

relationship

TABLE 3.8: Attacking the three least important
features in the Adult data set

Attacked feature

black box accuracy

Feature detected by Algorithm 2

hours-per-week

81.30%

hours-per-week

capital-loss

79.18%

capital-gain

educational-num

76.48%

educational-num

3.4 Conclusions

We have presented an approach based on random decision forests
with small tree depth that provides explanations of the decisions
made by black-box machine learning models. Specifically, we have
focused on investigating and explaining wrong decisions. Algo-
rithm 1 computes the importance of the various features on the
wrong black-box model decisions. Additionally, the visualization
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of the random forest trees affords a further understanding of the
decision-making process. Finally, Algorithm 2 introduces a new
way to protect against attacks that alter the training data because

it detects which features have been attacked.
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Chapter 4

Explaining Predictions and
Attacks in Federated
Learning via Random

Forests

Federated learning (introduced in Section 2.3) allows participants
to train robust and accurate DL black-box models collaboratively.
Moreover, FL improves privacy since the participants’” sensitive
data do not leave their premises. Still, the distributed nature of FL
makes it vulnerable to security and privacy attacks, as discussed
in Section 2.3.1. Participants or even the model manager can or-
chestrate those attacks. In this chapter, we present an explainabil-
ity method that interprets the predictions of the federated black-
box models. In addition, the proposed method can detect various
attacks that target federated training with a high detection success
rate.
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4.1 Contributions and plan of this chapter

As in the previous chapter, we also use random decision forests (Ho,
1995) as black-box FL models surrogates. Those surrogates ac-
complish two tasks. The first task is to create explanations for
the predictions of the black-box FL model. Even though decision
trees are commonly used as explainability tools for DL models in
the literature, ours is the first attempt to use random forests of limited
depth to explain the (wrong) predictions of black-box models trained in a
decentralized setting. The second —and most relevant- task consists
in leveraging the random forest surrogates to detect security and
privacy attacks against FL. model training. Again, even though a
variety of FL attack detection mechanisms have been proposed in
the literature (see Section 2.3.1), our approach is novel in that we do
not only detect the attack, but we also explain its operation at the peer’s
side.

The purpose of most attacks targeting FL is to affect the model
predictions, and this usually results in lower model accuracy. There-
fore, we focus on wrong predictions by the FL. model because
they may signal possible attacks. The empirical results we report
demonstrate the effectiveness of our proposal at detecting and ex-
plaining attacks against FL.

The remainder of this chapter is organized as follows. First,
Section 4.2 describes our surrogate model based on random deci-
sion forests. Next, experimental results on the explainability per-
formance of the surrogate and the attack detection accuracy are
reported in Section 4.3. Finally, in Section 4.4 we gather conclu-

sions.
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4.2 Constructing explainable surrogate models

via random forests

In FL systems, the training data are held by the participating peers.
Therefore, the peers themselves can build surrogates of the global
FL model by leveraging the updated global model they receive at
each epoch and their data, provided the performance of this sur-
rogate satisfies the accuracy property (see Section 2.2.1), thereby
allowing peers to obtain explanations of the global model’s pre-
dictions. Again, random decision forests (see Section 2.1.1) are
suitable surrogates since they can be trained on a portion of the
data and still achieve acceptable accuracy.

Moreover, since peers can get explanations at each epoch, they
can also observe significant changes in the model’s behavior, in-
dicating attacks orchestrated by malicious entities. Thus, random
forests can equip peers with explanations and attack detection capabili-
ties.

The proposed method for extracting explanations of the pre-
dictions of the black-box model is formalized in Algorithm 3. Peers
interested in creating interpretations of black-box predictions fol-
low the learning protocol, and, at the same time, they test the
black-box model with their own data. To this end, they divide
the data they own into two parts. They use the first part to build
the random decision forest in the first epoch and to train the black-
box model at each epoch. They use the second part of the data to
test the updated black-box model they receive at each epoch and
to obtain explanations (by means of the random forest they built)
on the predictions the black-box model may give.

We again focus on the black-box model’s wrong predictions,
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which may indicate malicious manipulations and attacks. For
each wrong prediction of the black-box model on the peer’s test
data, the algorithm scans the forest and stores a vector with the
feature importances (see Section 3.2) of each tree in the forest whose
prediction matches the wrong black-box prediction. As mentioned
above, the forest diversity makes it very likely to find trees that
match the (wrong) black box predictions. Finally, the algorithm
averages all the stored feature importance vectors to obtain a vec-
tor containing the average importance of every feature causing

wrong predictions.

Algorithm 3 Computation by each peer of the importance of fea-
tures in the black box model’s wrong predictions

1: Input: Data set X owned by peer Px, epoch number
Epoch_No, black-box model Black_Box obtained via FL at the
current epoch;

2: if Epoch_No == 1 then

3. Train_X, Test_X < Split_Train_Test(X);

4:  Forest — Build_Random_Forest(Number_trees,
Max_depth, Train_X);

5: else

6:  Retrieve Test_X and Forest computed in the first epoch;

7. end if

8: Score_Black_Box < Evaluate_Black_Box(Black_Box, Test_X);

9: Feature_Importances_List < {};

10: for each Sample in Test_X do
11:  if Predict(Black_Box, Sample) not correct then
12: for each Tree in Forest do
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13: if Predict(Black_Box, Sample) == Predict(Tree, Sample)
then
14: Feature_Importances_List. Append(Tree.Feature_Importances);
15: end if
16: end for
17:  endif
18: end for

19: Feature_Importances <— Average(Feature_Importances_List);
20: Updated_Black_Box < Train(Black_Box, Train_X);
21: Return Score_Black_Box, Forest, Feature_Importances, Updated_Black_Box.

In Algorithm 3, feature importances are computed as described
in Section 2.1.1. By relying on feature importances, Algorithm 4
attempts to detect whether a malicious manipulation or an attack
happened during the training of the federated black-box model.
The idea is that the algorithm compares the changes in the fea-
ture importances across the training process. Particularly, starting
from the second epoch, the peer that built the surrogate model cal-
culates the changes in the feature importances between every two
consecutive epochs. In this way, she can monitor whether there
are big changes in the values of the feature importances, which
may indicate that an attack affecting the performance of the black-
box model is in progress. To automate the attack detection task,
she needs to compute the average of those changes from the start
of the training to the current epoch and use the successive aver-
ages as baselines for comparison at each epoch. Then, starting
from the third epoch, Algorithm 4 checks the changes in feature
importances and compares them with the average changes over
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the training epochs up to the current epoch. Since all peers up-
date the global model at every training epoch, we expect small
changes in feature importances. However, if the current changes
are greater than the threshold «, where a > 1, this may indicate
that an attack has happened. Parameter a controls how strictly Al-
gorithm 4 reacts to changes in the feature importances; the smaller
«, the more sensitive the algorithm is to small changes. Due to
how the model training naturally evolves at every single iteration
(where small changes are expected), it is not recommended to set
a < 1.2. Also, if @ > 2, the algorithm will only detect the attacks
after the model has been significantly affected. Thus, we recom-
mend values within the range 1.2 < a < 2.

On the other hand, by looking at changes at the feature level,
the algorithm is able to find out which features were attacked: it
selects those features having an impact on changes in the feature
importance greater than B, where B < 1 is the threshold to select
the affected feature according to the weight of the single feature
in the total changes in the feature importance. The set of selected
features explains how the attack operated. Since the total weight
of changes in the feature importances is normalized to 1, we rec-
ommend setting 0.15 < B < 0.4, meaning that a feature should
influence the total changes by at least 15% to be selected. This

weight can be tuned according to the number of features.

Algorithm 4 Detection by each peer of attacks on the federated
black-box model

1: Input:  Feature_Importances[]l ~ :  Max_Epochs]||1
Max_Features|, Epoch_No;
2: i = Epoch_No;
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10:

11:
12:

13:

AN U

Targeted_Features < {};
ifi > 2 then
if i > 2 then

Changes_Feature_Importances|i] =
|Feature_Importances|i] — Feature_Importances[i — 1]|; {The
operands in this subtraction are vectors with Max_Features
components}

Average_Overall_Changes_per_Epoch =
AV G(Changes_Feature_Importances|1 : i]);
{Average_Owverall_Changes_per_Epoch is a vector with
Max_Features components}

Total_Feature_Change_per_Epoch =
SUM(Average_Owverall_Changes_per_Epoch);
{Total_Feature_Change_per_Epoch is a scalar
obtained as the sum of the components of
Average_Owverall_Changes_per_Epoch  over all features
and it represents the mean of the total feature importance
changes over the epochs until the current one}

Total_Current_Changes =
SUM(Changes_Feature_Importances|i]); ~ {Scalar contain-
ing the sum of all feature importance changes in the current
epoch}

if Total_Current_Changes > a X
Total_Feature_Change_per_Epoch then

for j in Changes_Feature_Importances[i] do

Y

if Changes_Feature_Importances|i][j]
B x Total_Current_Changes then
Targeted_Features.append(Feature(jf]);
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14: end if
15: end for
16: end if

17:  end if

18: end if

19: Return Targeted_Features.

4.3 Experimental results

In this section, we report experimental results on the explanatory
usefulness of our surrogate model and on the ability of our algo-
rithms to detect attacks against FL based on two different real data
sets, one of them numerical and the other containing a mix of cat-
egorical and numerical attributes. The source code of the reported

experiments is available for reproducibility purposes!.

4.3.1 Data sets

We considered the following data sets:

* Numerical data set: We used the “PAMAP2 Physical Activity
Monitoring” (a.k.a. Activity) data set described in Section
3.3.2.

* Data set with a mix of categorical and numerical attributes: We
used the Adult data set described in Section 3.3.3.

In the experiments below, we used 100 peers, except in attack
detection, where we tried various numbers of peers (30, 50, and

Ihttps://github.com/RamiHaf /Explainable-Federated-Learning-via-
Random-Forests
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100). For the two data sets, 70% of the data were randomly split
into as many disjoint shards as the number of peers, and each peer
was assigned a different shard. Specifically, for 100 peers, each
shard from Activity consisted of 13,600 records, and each shard of
Adult consisted of 342 records.

The model manager kept the remaining 30% of the data set
for validation purposes. The model manager used this validation
data set at the end of each epoch to test the model’s performance.
At the same time, since the model was not trained on these data,
they could be used for the final evaluation of the model.

Each peer Px then further split her shard X into two parts: 70%
of the data were used as Train_X for locally training the surrogate
random forest, whereas the remaining 30% were used as Test_X
to validate the black-box model and compute the feature impor-
tances (as per Algorithm 3).

4.3.2 Results on the explainability of the predictions of
the black box model

We employed six federated black-box models with different inter-
nal structures to test the desirable properties of surrogate models
introduced in Section 2.2.1. We built them by using the Keras?
library (Gulli and Pal, 2017). The first model (black box1), which
was employed in Blanco-Justicia et al., 2020 on the same data sets,
had two hidden dense layers with 64 and 50 neurons, respectively.
The second model(black box2) had three hidden layers, each with
100 neurons. The third (black box3) contained five hidden layers,
with 100, 50, 30, 20 and 10 neurons, respectively. The fourth (black

Zhttps://keras.io/
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box4) also had five hidden layers, with 10, 20, 50, 20, and 6 neu-
rons, respectively. The fifth model (black box5) had three hidden
layers with 10, 6, and 4 neurons, respectively. Finally, the sixth
(black box6) had seven hidden layers with 10, 40, 80, 30, 10, 6 and
4 neurons, respectively. We ran these models for ten epochs. We
used the Adam optimization algorithm (Kingma and Ba, 2015),
with batch size 32 and learning rate 0.001, with five local epochs
for each peer. Using six different black-box models allowed us
to test the proposed method’s fidelity and accuracy, and compare
the explanations it provided on different model architectures per-
forming the same task. We built random forests at the peers’ side
using the command RandomForestClassifier® from the sklearn li-
brary with 1000 trees of maximum depth five and average size 62
nodes.

In what follows in this section, we report the experiments we
carried out and the results we obtained on each of the properties
listed in Section 2.2.1.

Fidelity and accuracy

Table 4.1 compares the accuracy of the six federated black-box
models after converging and the random forest surrogate. One
peer built the surrogate model on a shard from each of the two
data sets introduced above. Table 4.1 also reports the fidelity score
of the surrogate model vs each black-box model.

To train the black-box models, we used 70% of records of the
corresponding full data set, whereas the random forests were trained

Shttps://scikit-learn.org/stable/modules/generated/sklearn.ense
mble.RandomForestClassifier.html
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on 70% of the shard of that data set held by the peer. Since the
shards were created by randomly splitting the full data set, they
can be assumed to consist of independent and identically dis-
tributed data and to be representative of the full data set.

The models with simpler architecture attained higher accuracy
on the Activity data set: black box1, with only 2 hidden layers,
achieved the highest accuracy (96.55%); black box2 and black box5,
with 3 hidden layers each, reached accuracy 93.32% and 93.11%,
respectively; black box3, black box4 and black box6, with 5, 5 and
7 hidden layers, respectively, achieved lower accuracy than the
simpler models. On the other hand, for the Adult data set, black
box4, with its five hidden layers having each a small number of
neurons, attained the highest accuracy (87.56%); black box3, with
the same architecture as black box4 but with more neurons per
layer, achieved the second-highest accuracy (84.14%); the rest of
the models offered similar accuracy values, between 82.15% and
83.73%.

The fidelity reported in Table 4.1 is the absolute difference be-
tween the accuracy of each black-box model and the accuracy of
the surrogate model. The smaller the fidelity score, the closer the
performance of the surrogate model to the performance of the re-
spective black-box model. For both data sets, the fidelity score of
the surrogate model was at most 6.71%, which indicates that the
surrogate model offered good fidelity to the black-box models.

Degree of importance

Our approach specifically focuses on computing the importance
of features in the cases where the black-box model made a wrong
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TABLE 4.1: Accuracy of the black-box models

and the surrogate random forest for the Activity

and Adult data sets. The fidelity of the surrogate

model to each black box model is also displayed
(a smaller score indicates more fidelity)

Activity data set Adult data set
model name | Accuracy | Fidelity | Accuracy | Fidelity
black box1 96.55% 5.85% 82.28% 1.43%
black box2 91.32% 0.62% 82.15% 1.3%
black box3 89.33% 1.37% 84.14% 3.29%
black box4 88.58% 2.12% 87.56% 6.71%
black box5 93.11% 2.41% 83.73% 2.88%
black box6 90.74% 0.04% 83.51% 2.66%
Surrogate model | 90.7% N/A 80.85% N/A

prediction.

We compared the explanations provided by our method with
those obtained with the LIME method (Ribeiro, Singh, and Guestrin,
2016) mentioned in Section 2.2. First, LIME creates new samples
of the data (as we do with adversarial examples) by adding small
perturbations to the features of the data samples. Then, for each
sample LIME intends to explain, it labels the newly created data
samples using the black-box model and trains a linear SVM sur-
rogate model to learn the relation between the features” value and
the corresponding black-box prediction model. Finally, it classi-
fies the features into two labels: one contains the features that
support the prediction of the black box, and the other includes
the features that contribute against it. Feature importances are
computed by calculating the mean and standard deviation for the
values of the feature in the original sample and the new perturbed
samples and discretizing them into quartiles.
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Table 4.2 reports the ten highest feature importances identified
by our method (Algorithm 3) on the Activity and Adult data sets,
and the corresponding importances computed by LIME.

TABLE 4.2: Ten highest feature importances for
wrong black box1 predictions computed by a peer
using Algorithm 3 on the two data sets, and cor-
responding importances computed by the LIME

algorithm
Activity data set Adult data set

Feature Prl;?e}i}c:(s)edd LIME | Feature Pr?e}iﬁ(sfid LIME
gyroscope_z_ankle 12.38% | 3% age 18.17% | 8%
magnetometer_z_chest 11.43% 17% educational-num 15.63% 10%
acceleration_6_x_ankle 8.13% 2% capital-gain 15.24% 68%
acceleration_16_x_ankle 7.63% 0% hours-per-week 14.16% 7%
magnetometer_x_hand 6.15% 3% marital-status 9.33% 2%
gyroscope_x_ankle 5.26% 2% relationship 8.19% 3%
acceleration_6_y_chest 4.19% 1% occupation 6.47% 1%
acceleration_16_y_chest 3.90% 0% race 4.86% 0%
acceleration_6_z_chest 3.60% 2% workclass 4.41% 3%
magnetometer_z_ankle 3.53% | 4% native-country 1.61% | 4%

We can see that both LIME and our method agree on the fea-
tures having the greatest importance. The difference is that, whereas
LIME gives a dominant weight to just a single feature (magne-
tometer_z_chest for the Activity data set and capital_gain for the
Adult data set), our method prioritizes a set of features (gyro-
scope_z_ankle, magnetometer_z_chest and acceleration_6_x_ankle for
the Activity data set, and age, educational-num, capital-gain and
hours-per-week for the Adult data set).

Since no approach in the literature allows comparing two ex-
planation methods and since our proposed method is only con-
cerned with investigating the reasons for the black-box wrong
predictions, we devised an indirect comparison. Our idea was
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to evaluate the accuracy benefits obtained after removing the fea-
tures identified by the two explanation methods (ours and LIME)
as most important in wrong predictions.

To this effect, we retrained and tested the accuracy of the black
box1 model on modified versions of the data sets after removing
the features identified by each explanation method as being the
most important for wrong predictions (see Table 4.2); feature re-
moval affected only the input layer of the black-box model, but
the rest of its structure was maintained. LIME identified just one
clearly dominant feature (with importance above 10%). Thus, we
removed the single most important feature identified by LIME on
both data sets. In contrast, our method identified two features in
Activity and four features in Adult with importance above 10%,
which we removed. Afterwards, to confirm that the above fea-
ture removal was meaningful, we compared the accuracy values
obtained by removing the above most important features with
the accuracy values obtained by removing random subsets of fea-
tures.

Table 4.3 reports the resulting accuracy values for the two data
sets after removing: (i) the most important features detected by
both methods and (ii) random subsets of features. For both data
sets, removing features based on the explanations produced by
our method resulted in better accuracy than removing features
based on LIME explanations. We also see that removing the fea-
tures we identified had a significant effect on the model accuracy
(improvement from 96.55% in Table 4.1 to 99.67% in Table 4.3 for
the Activity data set, and from 82.28% in Table 4.1 to 84.15% in
Table 4.3 for the Adult data set).

In contrast, removing random subsets of features worsened
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the model accuracy with respect to Table 4.1. These results suggest
that our method yields explanations that are not only meaningful
but more meaningful than those offered by LIME.

TABLE 4.3: Accuracy of the black box1 model af-
ter removing the features with the highest impor-
tance on the wrong predictions, as identified by
the proposed method and LIME, in comparison
with the accuracy after removing random sub-
sets of features. Subsetl and Subset2 are exam-
ple random subsets. Subsetl consists of (magne-
tometer_z_chest, magnetometer_z_ankle) for the Ac-
tivity data set, and (native-country, workclass) for
the Adult data set. Subset2 consists of (accel-
eration_16_z_ankle, acceleration_6_y_chest, accelera-
tion_16_x_hand) for the Activity data set, and (re-
lationship, occupation, marital-status) for the Adult
data set.

Activity data set | Adult data set

Data set

Proposed method 99.67% 84.15%
LIME 97.38% 80.37%
Subset 1 95.65% 79.72%
Subset 2 94.75% 78.39%

Average accuracy over 15 removed

random subsets of features 95.22% 79.16%

Consistency

The surrogate model should consistently perform on any black-
box model trained on the same data set. To measure the consis-
tency of the surrogate model, we computed the Pearson correla-
tion between the set of feature importances obtained by the surro-

gate for each pair of black-box models.
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Figure 4.1 reports the correlation values for each pair of mod-
els. We can see that the correlation is very high (above 0.93) for
all pairs and perfect in many of them, which indicates that the rel-
ative importances obtained by the surrogate are consistent across
models.

Comprehensibility

The outcomes of the surrogate model should be understandable
by humans. In addition to the features’” importance associated
with wrong predictions, our method produces a collection of trees
with limited depth that are easy to interpret. In particular, to
obtain a visual representation of the behavior of the black-box
model, we can select one or several trees that agree with the pre-
dictions of the black-box model. Figure 4.2 shows the structure of
a tree selected from a random forest limited to the depth of 6 built
on a synthetic data set with ten features. In contrast, if we build
a surrogate consisting of a single tree covering the whole set of
features in the data set, we obtain the very large structure shown
in Figure 4.3, which has 20 as its maximum depth*. Notice that
in this comparison, we are just interested in the size of the trees
rather than their content. It is clear that trees in the random forest,
being smaller and shallower, are easier to understand while still
representing the behavior of the black-box model (because we can
choose the trees that best agree with the black-box model).

“We have used a synthetic data set with ten features for this illustration be-
cause using the Activity or the Adult data sets would yield a standalone tree too
large and deep to depict. E.g. for the Adult data set, we would get a tree with
depth 41.
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FIGURE 4.2: Struc-

ture of a tree from a

random forest with

depth limit 6 built

on a synthetic data
set

FIGURE 4.3: Stan-

dalone decision tree

covering the whole

set of features of
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data set used in Fig-
ure 4.2
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4.3.3 Results on the attack detection performance

In this section, we evaluate the performance of our method at de-
tecting security and privacy attacks on FL. We considered attacks
conducted by peers participating in the training or the model man-
ager himself. Moreover, we compared the performance of our
method with other attack detection mechanisms described in Sec-
tion 2.3.2.

Detection of security attacks

To test the effectiveness of our method at detecting security at-
tacks initiated by malicious peers (or even by the model manager
in case an attacker took control over her), we applied Algorithm 4
on the side of a peer during the training of the federated black
box1 model on the Adult data set. We took &« = %, which is neither
too sensitive nor too insensitive an attack detection threshold. We
considered the three types of security attacks described in Sec-
tion 2.3.2: Byzantine attack, poisoning attack, and label-flipping
attack. We ran several experiments with different numbers of par-
ticipants: 30, 50, and 100 peers. In all cases, the attack was initi-
ated by a single peer in the fourth epoch and ended in the seventh
epoch. In Byzantine attacks, malicious peers replaced 40% of their
data with random values in the same range as the original data.
In a poisoning attack, the attacker targeted three data features,
namely relationship, marital-status and capital-gain, by replacing the
original values of these features in 60% of the data samples with
random values in the same range. In a label-flipping attack, the
attacker flipped label 0 to label 1 in 50% of the samples that had
label 0.



UNIVERSITAT ROVIRA I VIRGILI
CONTRIBUTIONS TO EXPLAINABILITY AND ATTACK DETECTION IN DEEP LEARNING

Rami Haffar

64 Chapter 4. Explaining Centralized FL via Random Forests

Table 4.4 reports the difference between the average feature
importances at each epoch and the importances of the features
that were attacked. The proposed method detected attacks if there
was a significant increase in such difference between two consec-
utive epochs. In most cases, this significant difference manifests
one epoch after the attack begins. That is, the attack begins in the
fourth epoch and is detected in the fifth epoch. However, in some
cases, such as the Byzantine attack with 50 peers or the poisoning
attack with 100 peers, the attack was detected in the sixth epoch.
The reason is that the influence of the attack may not be immedi-
ately noticeable if a single peer conducts it in a large network. In
other cases, the proposed method detects security attacks in post-
attack epochs, such as the ninth or tenth epochs. This is because,
once the attack is over, model training continues on the correct
data, and the model weights undergo a big shift toward correct
predictions. This facilitates post-attack detection.

Each time the proposed method detects an attack, it reports
the features that are most suspicious of having been attacked. We
considered that a feature had been attacked if the change in its
importance accounts for more than 25% of the total changes in the
feature importances. Thus, we used = % as the threshold for de-
tecting the attacked features. Note that Byzantine and label-flipping
attacks did not aim at specific features, but rather at impairing the
overall system performance. Yet, these attacks were more effec-
tive on some features than on others, and our method reports
the most perturbed features. In the case of the poisoning attack,
however, three specific features were attacked, and our method
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reported two out of the three every time: with 30 and 100 par-
ticipating peers, marital-status and capital-gain were correctly de-
tected, whereas, with 50 peers, capital-gain and relationship were

correctly detected.

TABLE 4.4: Differences between average feature

importances and importances of attacked fea-

tures for different attacks on the Adult data set.

Values in boldface correspond to the epoch in
which the attack was detected.

Byzantine attack Poisoning attack Label-flipping attack
30 peers 50 peers 100 peers 30 peers 50 peers 100 peers 30 peers 50 peers 100 peers
Epoch 2 0.022 0.011 0.017 0.019 0.032 0.026 0.014 0.024 0.017
Epoch 3 0.005 0.017 0.012 0.004 0.003 0.004 0.003 0.001 0.006
Epoch 4 0.001 0.003 0.007 0.001 0.0003 0.001 0.004 0.004 0.002
Epoch 5 0.02 0.002 0.021 0.018 0.029 0.005 0.042 0.038 0.056
Epoch 6 0.041 0.023 0.018 0.014 0.001 0.017 0.02 0.004 0.002
Epoch 7 0.004 0.003 0.004 0.007 0.004 0.032 0.005 0.013 0.056
Epoch 8 0.002 0.005 0.004 0.001 0.0003 0.005 0.012 0.035 0.048
Epoch 9 0.018 0.013 0.009 0.004 0.036 0.008 0.003 0.05 0.005
Epoch 10 0.004 0.032 0.025 0.001 0.0007 0.027 0.024 0.006 0.002
capital-gain . . capital-gain | o ial onin capital-gain .
Reported | educational- | educational- | occupation | capital-gain | educational- n:afiml-cgtntm age v a Bg capital-gain
features num num race marital-status num occtt m‘m” ~ | relationship ucmgatiun workclass
age capital-loss relationship i i

We then calculated the performance of our method at detect-
ing attacks on the two data sets and for all types of attacks and
network configurations described above. For each case studied,
we considered different numbers of attacking peers; since the ma-
jority of the peers involved were regarded as honest, we took the
number of attackers to be between 1 and 3 — 1, where m was the
number of peers participating in the training. We used a threshold
a = 3 for all the experiments. We compared the performance of
our method against the performance of malicious peer detection
via update statistics described in Section 2.3.2, even though this
countermeasure can only be implemented on the server side. The
reason for choosing the latter method is that it is also based on

distances, and it does not require a lot of computing power. We
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considered the detection to be correct if the attack was detected
while it was taking place and one malicious peer was correctly
reported as the attacker. The duration of the attacks was four
epochs, starting at the fourth epoch, and ending at the seventh
epoch. We calculated the percentage of the cases where the two
methods being compared correctly detected suspicious activities.

Table 4.5 reports the detection rate of our proposed method
and the method based on update statistics:

¢ For the Activity data set, the detection rate of our method
was low for Byzantine attacks because these attacks did not
affect the accuracy of the model on this data set, and hence
were less noticeable. However, for poisoning and label-flipping
attacks, the detection rate of our method was above 90%.

e For the Adult data set, the detection rate was over 90% for
all numbers of peers and attacks, except for 100 peers under

Byzantine attacks, where detection was only 75.51%.

In general, the detection performance of our method improved
when there were fewer participating peers in the network. The
reason is that the effect of a single altered update is more notice-
able when fewer peers are involved in the training process.

Boldface numbers in Table 4.5 indicate the best detection rate
for a given number of peers, data set, and attack configuration.
We can see that our method outperformed the detection of mali-
cious peers via the update statistics approach for all attacks and
for all numbers of participants with one exception: Byzantine at-
tacks with 100 peers in the Activity data set. This exception is due
to the fact that Byzantine attacks with that number of peers, and
that data set had little impact on the accuracy of the black box
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model, in part because the number of attackers was small com-
pared to the number of peers.

TABLE 4.5: Attack detection rate of the proposed
method and the update statistics method on the
two data sets. The detection rate of the best-
performing method for a certain configuration of
data set, attack type and number of peers is de-

picted in boldface.
Data set | Attack type | 30 peers | 50 peers | 100 peers
Byzantine 71.42% | 41.66% | 48.97%
Activity Poisoning 100% 100% 95.91%
Label-flipping | 100% 91.66% | 93.87%
Proposed method Byzantine | 100% | 95.83% | 75.51%
Adult Poisoning 92.85% | 91.66% | 93.87%
Label-flipping | 100% 100% 97.95%
Byzantine 64.29% 37.5% 71.42%
Activity | Poisoning 28.57% | 37.5% 48.95%
. . - Label-flipping | 57.14% | 66.66% | 63.26%
Detection via statistics Byzantine | 8571% | 625% | 63.26%
Adult Poisoning 64.28% 50% 61.22%
Label-flipping | 71.42% 75% 77.55%

We also computed the false negative rate (FNR) and the false
positive rate (FPR) of attack detection. A false negative occurs
if the attack is not detected, or none of the attacking peers is re-
ported by the attack detection via update statistics method, or
none of the attacked features is reported by our method. To as-
sess the FPR, we tested both methods while training the model
without any attack; we repeated the test 50 times for each num-
ber of participating peers to calculate an accaurate error rate. Fig-
ures 4.4a and 4.4b depict the FNR for both detection methods un-
der the three attacks mentioned above (Byzantine, poisoning, and
label flipping) on the Activity and the Adult data sets, respec-
tively. The results are consistent with those of Table 4.5. Even
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though the FNR under the Byzantine attack was rather high for
our detection method, it was lower than the detection method
based on update statistics. On the other hand, under the poi-
soning and label-flipping attacks, our proposed method exhib-
ited a very low FNR compared to the other method. Figures 4.4c
and 4.4d depict the FPR for both detection methods, the three at-
tacks, and the two data sets. We can see that the attack detection
method via update statistics reports a list of malicious peers at
every round of the training even if there were no attacks, while
the FPR of the proposed method was less than 2% on the Activity
data set and less than 18% on the Adult data set. Our FPR is lower
on Activity than on Adult because the former data set has more
features, resulting in smaller changes in the importance of each
feature across the training epochs.

Although our proposed method was more efficient at detect-
ing attacks, it might fail in front of attacks that continue non-stop
from the first epoch to the end of training. In such a case, the
features” importance would not vary significantly in any single
epoch. Therefore, the attack would not be detected by the peers.
However, since the updates that an attacker following this pat-
tern would send during the whole training process would be very
different from the updates generated by honest peers (especially
in advanced stages of training), the server can detect and filter
out those malicious updates with state-of-the-art server-side at-

tack detection methods (mentioned in Section 2.3.2).
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FIGURE 4.4: FNR and FPR of attack detection
with the proposed method and with the method
based on update statistics

Detection of privacy attacks

To test the ability of our method to detect attacks against privacy,
we used the mGAN-AI attack described in Section 2.3.2. In this
attack, the model manager tries to break the privacy of a targeted
peer by generating data from the peer’s data distribution. We con-
sidered the same three scenarios with 30, 50, and 100 peers by
training black boxl on the Adult data set and we used the same
thresholds « = 3 and B = ] as in the above-mentioned experi-
ments on secunty attacks.

In this case, the model manager initiates the attack in the sixth
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epoch, when the network is close to converging. The attack gen-
erates data from the distribution of the two features marital-status
and relationship.

In Table 4.6, we can see the performance of our method in de-
tecting the mGAN-AI attack. For 50 and 100 participating peers,
our method detected the attack one epoch after it was initiated
(in the seventh epoch). For 30 peers, the attack was detected in
the eighth epoch. Our method was able to detect this attack be-
cause the model manager modified the model before distributing
it to the participants by including the data created by the gener-
ator G on the targeted peer. Because of this change, our method
was able to detect the manipulated model and make the targeted
peer aware of the attack so that she could decide to stop sharing
further updates to avoid disclosing her data. Also, our method
reported one valid target feature out of two in each case, which
made the information provided about the attack very valuable in
understanding the attacker’s intent.

4.4 Conclusions

This chapter presents an approach based on random decision forests
that explains the (mis)behavior of federated black-box models.
Our method can detect and explain attacks orchestrated by the
federated training participants. We have argued both conceptu-
ally and empirically that random forests inherently fulfill the main
desirable properties of explainable surrogate models, namely fi-
delity, accuracy, consistency, degree of importance, and compre-
hensibility.
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TABLE 4.6: Differences between average feature
importances and importances of attacked fea-
tures for the model manager’s mGAN-AI privacy
attack on the Adult data set. Values in boldface
correspond to the epoch in which the attack was

detected.
30 peers 50 peers 100 peers
Epoch 2 0.037 0.014 0.046
Epoch 3 0.006 0.006 0.017
Epoch 4 0.018 0.004 0.008
Epoch 5 0.0003 0.004 0.005
Epoch 6 0.0001 0.002 0.003
Epoch 7 0.013 0.07 0.019
Epoch 8 0.002 0.02 0.023
Epoch 9 0.015 0.022 0.003
Epoch 10 0.002 0.004 0.015
ital marital-status lationshi
Reported features marital-status hours-per-week relationsiip
age . occupation
educational-num

In particular, we have focused on investigating and explain-

ing wrong predictions. To this end, we provide decision trees that

explain such wrong predictions and report the features” impor-

tance associated with those predictions. We have shown that this

information can be leveraged to detect security and privacy at-

tacks in machine learning, specifically in federated learning. Our

method is able to discover a variety of attacks with high detection

rates, and it clearly outperforms specially tailored attack detec-

tion mechanisms based on update statistics. Moreover, unlike the

countermeasures proposed in the literature, our method cannot

only detect the attack but can also explain it by identifying the

features that seem to have been affected by it.
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Chapter 5

Explaining Image
Misclassification in Deep
Learning via Adversarial
Examples

Whereas data features are explicit in structured data (e.g., tabular
data), for other data types such as images or text, those features
are implicit. Since black-box models, such as convolutional neural
networks (CNN), extract those features by themselves, it is hard
for a surrogate model to explain the behavior of the black box
since it may learn to make the decision based on a different set of
features. To this end, in this chapter we propose a model-specific
method to explain the predictions of image classification black-

box models trained in centralized settings.
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5.1 Contributions and plan of this chapter

In this chapter, we present two methods that explain CNN-based
image classification by identifying the most influential features in
the CNN predictions. The first method assumes access to the gra-
dients of the CNN and is meant for model developers. The second
method treats the model as a black box and, therefore, assumes
that the party generating the explanations, such as a model end
user, only has access to the model predictions.

Both methods leverage adversarial examples (Nguyen, Yosin-
ski, and Clune, 2015) to generate explanations. While the first
method computes adversarial examples by directly employing the
CNN gradients, the second approach builds a simpler surrogate
model to estimate the gradients of the original model. It then uses
these estimated gradients to obtain adversarial examples. More
specifically, for each image that the CNN incorrectly classified, we
implemented an inverted adversarial attack consisting in modify-
ing the input image as little as possible so that it becomes correctly
classified. The changes made to the image to fix classification er-
rors highlight the regions that had the greatest influence in the
decisions and thus explain the causes of model misclassification.
By identifying the causes of wrong predictions, one may tailor the
model or the training data to improve the classification accuracy.

The remainder of this chapter is organized as follows. Sec-
tion 5.2 describes our methods for explaining CNN-based image
misclassification from adversarial examples. Experimental results
are reported in Section 5.3. Finally, in Section 5.4 we gather the

conclusions.
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5.2 Our proposals

We focus on generating explanations for the wrong predictions
made by CNNs by identifying the regions of the input images that
had the highest influence on those predictions. To this end, we
need a way to modify the input images towards the correct clas-
sification while keeping the number of required queries and the
computational cost at a minimum. Our choice is to use gradient-
based adversarial examples (Szegedy et al., 2014). Specifically, we
add minimal perturbations to incorrectly classified images to cre-
ate correctly classified adversarial examples. Then, by comparing
the original image with the modified image, we can find the re-
gions that had the highest impact on the wrong black-box predic-

tions.

5.2.1 Adversarial examples

An adversarial example is a sample from the same distribution
as the original data in which small, intentional perturbations of
its features cause an Al model to change its prediction (Molnar,
2020). Adversarial examples can be used to alter predictions of
various machine learning models, including state-of-the-art neu-
ral networks (Szegedy et al., 2014). Even though adversarial ex-
amples are usually employed to cause the Al models to produce
wrong predictions, in this chapter we use them the other way
around: to correct wrongly classified samples.

To create adversarial examples, we used the gradient-based
optimization approach of Szegedy et al., 2014, in which we set the
target to be the correct label for the wrongly predicted samples.
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The adversarial examples are created by minimizing the following

function with respect to r:

loss(f(x+71),1)+e€-|r], (5.1)

where f is the Al classifier, x is the original image, r is the pertur-
bation added to the pixels of x to create the perturbed image that
constitutes the adversarial example, [ is the target class label, and
€ is used to balance the distance between images and the distance
between predictions. The smaller €, the more similar is the cre-
ated perturbed image to the original image. To minimize the loss
function in Equation (5.1), the party that computes it needs access

to the model gradients.

5.2.2 Explaining model predictions on the developer’s side

To explain the wrong predictions made by the model on the de-
veloper’s side, we consider that the developer has full access to
the CNN and, more specifically, to the gradients of the model.

As shown in Algorithm 5, first, the developer splits the input
images into training and testing sets and trains the model with the
training images. Then, in the testing phase, the developer keeps
track of all the wrongly classified images. For each of these im-
ages, she tries to find the closest adversarial example that is cor-
rectly classified. The developer does this in the following way: i)
she calculates the value of the loss function between the model
prediction and the correct prediction; ii) she calculates the gradi-
ents of the model according to the image and the loss value; 3) she
modifies the image according to the gradients and the perturba-
tion ratio €. These steps are repeated until the adversarial example
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is obtained, or € exceeds the « value signaling the termination con-
dition (in the latter case, the image misclassification cannot be ex-
plained). The final step consists in comparing each original image
with its corresponding adversarial example. To draw a saliency
map that identifies the features that caused wrong predictions,
Algorithm 6 prescribes that pixels in perturbations with values
smaller than g3 + iqr - T, where 43 is the third quartile of pertur-
bations, igr is their interquartile range, and T > 0 is the relaxation
parameter, are neglected because they do not identify regions of
interest, whereas the remaining pixels are multiplied by g > 1 to
boost them in the saliency map.
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Algorithm 5 Explaining the model predictions on the developer’s
side
1: input: Data set X, CNN model model

2: Train_X, Test_X <« Split_Train_Test(X)
3: model < Train_Model (Train_X)
4: perturbations < {}
5: foriin Test_X do
6:  model_prediction < model.predict(Test_X][i])
72 €<+ 01
8:  while model_prediction # correct_prediction OR € < « do
9: loss < loss_function(model_prediction, correct_prediction)
10: gradients <— get_model_gradients(Test_X]i], loss)
11: perturbed_image < Test_X[i] — € - gradients
12: model_prediction <— model.predict(perturbed_image)
13: €<+ e€+0.1
14:  end while
15 if model.prediction = correct_prediction then
16: perturbations[i| <— perturbed_image — Test_X|i]
17:  else
18: perturbations[i] <— NIL
19:  end if
20: end for

21: return perturbations

5.2.3 Explaining model predictions on the user’s side

End users should have the right to obtain explanations about pre-
dictions made by the Al models that concern them. However, for
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Algorithm 6 Drawing the saliency maps

1: input: perturbations

2: q1,q3 = get_quartiles_of_non_NIL_perturbations(perturbations)
3: iqr < g3 —¢q1

4: for i such that perturbations[i] # NIL do

5. for pixel in perturbations[i] do

6: if perturbationsli][pixel] < q3 + igr - T then

7: perturbations[i][pixel] < 0

8: else

9: perturbations[i][pixel| <— perturbations|i][pixel] -
10: end if

11:  end for

12:  Draw(perturbationsli])

13: end for

end users, the model is a black box, and they only have access to
the model predictions. Therefore, they must create their own local
explanations.

In this chapter, we considered that the user who wants to gen-
erate explanations of an Al model must have enough data to train
a simpler CNN model, ak.a. a surrogate model. It is shown
in Hinton, Vinyals, and Dean, 2015 that knowledge of one or more
models can be compressed into another, less complex model, which
allows us to estimate the gradations of the original model using a
surrogate model.

The method we propose is formalized in Algorithm 7. First,
the user splits her data into training and testing data sets. Then
she builds a surrogate model by using the local training data set.
Afterward, she uses the test data set to identify the wrong predic-
tions to be explained. Finally, she generates the adversarial exam-
ples in a similar way as in Algorithm 5. The only difference is that
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the gradients from the surrogate model will be used instead of the
original model’s.

Algorithm 7 Explaining the model predictions on the user’s side

1: input: local data X_local , black-box model black_box, surro-
gate model local_surrogate

2: Train_X_local, Test_X_local < Split_Train_Test(X_local)

3: local_surrogate <— Train_Black_Box(Train_X_local)

4: foriin Test_X_local do

5. black_box_prediction <— black_box.predict(Test_X_localli])

6: €<+ 0.1

7. while black_box_prediction # correct_prediction OR € < «
do

8: local_prediction < local_surrogate.predict(Test_X_local[i])

9: loss < loss_function(local_prediction, correct_prediction)

10: gradients < get_surrogate_gradients(Test_X_local[i], loss)

11: perturbed_image < Test_X_local[i] — € - gradients

12: black_box_prediction <— black_box.predict(perturbed_image)

13: €< €+0.1

14:  end while

15 if black_box_prediction = correct_prediction then

16: perturbations[i] <— perturbed_image — Test_X_local[i]
17:  else

18: perturbations[i] <— NIL

19:  end if

20: end for

21: return perturbations
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5.3 Experimental results

We tested the two proposed methods introduced above on the
gender classification data set' from the Kaggle website. This data
set consists of cropped RGB images of male and female faces. The
training data set contains 23,200 female images and 23,800 male
images. The validation data set contains 5,800 images in each
class. The images are rectangular, but not all of them are of the
same size. Thus, we first resized all the images to 100 x 100 pixels.

5.3.1 Explanations for the developer

To test Algorithm 5 we used the CNN shown in Figure 5.1 with
four Conv blocks followed by six fully connected layers. Each
Conv block contained two convolutional layers and a max-pooling
layer. The output depths for Conv blocks were, respectively, 64,
128, 256, and 512. The numbers of nodes of fully connected layers
were, respectively, 2048, 1024, 512, 128, 32, and 2. We trained the
model for 20 epochs, with a batch size 64 and a learning rate 0.001.
The test accuracy was 96.3%.

The number of misclassified images in the test data set was
301, for which our method created adversarial examples. As a re-
sult, 300 of the 301 adversarial examples were classified into the
correct labels, corresponding to a success rate 99.67%, with an av-
erage of 1.96 queries per image. Figure 5.2 shows four examples of
the explanations created by Algorithm 5, in the form of saliency
maps highlighting the differences between original images and
adversarial examples.

Ihttps://www.kaggle.com/cashutosh/gender-classification-dataset
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FIGURE 5.1: Architecture of the CNN used as
original model in the experiments

In Figure 5.2, we can see that perturbations added to the orig-
inal images to create the adversarial examples are not noticeable
to the naked eye. Nevertheless, the explanations resulting from
Algorithm 5 in the form of saliency maps shed light on the most
important regions that caused the wrong predictions. For exam-
ple, in Image 1, the important pixels were those around the eyes
and the edge of the nose. In Image 2, the causes of the wrong
classification were also found in the eyes, nose, and left cheek. In
Image 3, the causes of the misclassification were mainly the left
eye and the edge of the right eye, in addition to parts of the cov-
ered forehead. Finally, the most relevant regions for Image 4 were
the left eye, the edge of the nose, and the left cheek.

5.3.2 [Explanations for the user

Testing the performance of Algorithm 7 tells whether the user
is capable of creating model explanations locally. We assumed
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Original images Adversarial examples Explanations

Image 1

Image 2

Image 3

Image 4

FIGURE 5.2: Four examples of explanations gen-
erated on the developer’s side

the user’s local data consisted of a random 10% sample of the
training data described in the previous section. With these local
data, the user trained her surrogate model. The black-box model
was the same CNN described in the previous section, whereas
the local surrogate model built by the user consisted of a CNN
with three Conv blocks followed by four fully connected layers.
Each Conv block contained two convolutional layers and a max-
pooling layer. The output depths for Conv blocks were, respec-
tively, 64, 256, and 512. The numbers of nodes of fully connected
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layers were, respectively, 1024, 256, 32, and 2. We trained the
model for 50 epochs, with a batch size 64 and a learning rate 0.001.
The test accuracy for the surrogate model was 87.78%.

The complete test data set was used to generate explanations.
Therefore, we got the same 301 misclassified images. Following
Algorithm 7, explanations were obtained as follows: i) obtain the
prediction and gradients of the local surrogate model; i) create the
adversarial example using the gradients of the surrogate model;
iii) test whether the adversarial example was correctly predicted
by using the original black-box model; iv) draw the saliency map.
Out of the 301 adversarial examples, the original black box model
correctly classified 220 images, corresponding to a 73.08% success
rate. The average number of queries to the original CNN model
per image required to create the adversarial example was 8.73.

Figure 5.3 shows the same four samples of Figure 5.2 but with
saliency maps that were locally generated using the gradients of
the surrogate model. As in the previous test, the differences be-
tween the adversarial examples and the original images are not
noticeable to the naked eye. However, the most relevant regions
of the images are similar to those obtained with Algorithm 5: in
the four images, the same regions highlighted by Algorithm 5 are
also highlighted here, even though in a less focused way due to
the less accurate surrogate model.

The number of queries per image needed to create adversar-
ial examples with Algorithm 5 was lower than with Algorithm 7:
1.96 vs 8.73. The reason is that the former algorithm uses the
gradients from the original model, whereas the latter uses the
surrogate model’s gradients. Hence, the second algorithm’s gen-
eration of adversarial examples is less accurate. However, both
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Original images Adversarial examples Explanations

Image 1

Image 2

Image 3

Image 4

FIGURE 5.3: Four examples of explanations gen-
erated on the user’s side

algorithms successfully generated explanations for the original
model’s wrong predictions, and both highlighted the same re-
gions as important.

The explanations provided by our methods can help model
developers to identify the weaknesses of the data sets used to

train the model. Specifically, for the gender classification data set,
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the eye regions are highlighted in most saliency maps as impor-
tant regions. This suggests that classification accuracy may be im-
proved by training on images where the eye region is clear. For
model users, it is important to know which features influenced
the predictions since some of the black boxes may be artificially
biased or employ features that may discriminate against some mi-
norities (Azad et al., 2021). Beyond face classification, an even
more crucial application could be to help understand medical di-

agnoses (Singh et al., 2019).

5.4 Conclusions

We have presented two methods employing gradient-based ad-
versarial examples to obtain explanations of the predictions of
CNNs in image classification.

We have reduced the number of queries needed to create the
adversarial examples by adding targeted perturbations to change
the predictions for each image. In the experiments, developer-
side Algorithm 5 required only 1.96 queries per image, whereas
user-side Algorithm 7 needed 8.73 queries per image.

The two proposed algorithms showed promising results to ex-
plain misclassification by CNNs. Moreover, both produced simi-
lar explanations on the same samples. Algorithm 5 had a higher
success rate (99.67%) thanks to using the gradients of the original
model, whereas Algorithm 7 had a lower success rate (73.08%)

due to using a surrogate.
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Chapter 6

Generating DL
Model-Specific
Explanations at the End
User’s Side

Building highly accurate DL classification models requires a large
amount of training data, whose collection and labeling involve a
significant effort (Jebreel et al., 2021). Therefore, small businesses
and ordinary users that cannot afford this effort resort to big tech-
nology companies that provide paid API access to highly accu-
rate DL models via Machine Learning as a Service (MLaaS) plat-
forms (Ribeiro, Grolinger, and Capretz, 2015), as shown in Figure
6.1. These users then query those models with their (small) data
and obtain the final classification predictions. In this chapter, we
refer to the user of a black-box model offered through a provider’s
MLaaS as an end user.

Even though end users are interested in using MLaaS with
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highly accurate DL models, they may not entirely trust such mod-
els due to the lack of transparency of DL predictions. However,
obtaining explanations alongside predictions helps end users un-
derstand why a DL model produces a specific prediction, which
increases the trust in the model and contributes to clearer decision-
making (Chazette, Karras, and Schneider, 2019; Blanco-Justicia et
al., 2020). End users may certainly obtain the explanations from
the MLaaS$ provider, but this entails blindly trusting the provider
and her explanations. To avoid the need for such blind trust,
it would be preferable for end users to be able to locally gener-
ate explanations using any explanation method they prefer, either
model-agnostic or DL model-specific.

An end user can generate explanations using model-agnostic
methods since they only require the model’s input and output.
However, it is challenging for the end user to generate (the more
accurate) DL model-specific explanations because she does not
have white-box access to the provider’s model. To the best of our
knowledge, no work enables an end user with only API access to
a remote DL classification model to generate explanations using

DL model-specific explanation methods locally.

6.1 Contributions and plan of this chapter

The originality of our proposed method lies in its being the first
proposal that generates accurate explanations on the end user’s
side using the mimicked gradients of the provider’s model. Our
approach requires the end user to have unlabeled data of size

about 0.5% of the provider’s training data, but it does not require
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FIGURE 6.1: Architecture of the MLaaS

prior knowledge of the provider’s model architecture or training
hyper-parameters.

First, the (small) unlabeled data available to the end user is
augmented (Simard et al., 1996) for it to be more representative of
the input data distribution. Then, knowledge distillation (KD) (Hin-
ton, Vinyals, and Dean, 2015) is leveraged to approximate the
provider’s model by a local surrogate model with nearly equiv-
alent accuracy. To generate DL model-specific explanations, we
leverage the surrogate model’s gradients to generate adversarial
examples (Nguyen, Yosinski, and Clune, 2015) that counterfac-
tually explain why an input example is classified into a specific
class. In addition, we design a novel method for explaining pre-
dictions on tabular data, which makes minimal changes to the
smallest number of features to generate understandable counter-

factual examples (CE).
We demonstrate the accuracy and effectiveness of our approach
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through extensive experiments on two types of ML classification
tasks: image classification and tabular data classification. Our re-
sults show accurate local explanations consistent with the expla-
nations generated by the provider’s model, which gives end users
an independent and reliable way to determine if the provider’s
predictions and explanations are trustworthy.

The remainder of this chapter is organized as follows. Sec-
tion 6.2 introduces a number of techniques and methods we lever-
age to design our solution and presents the assumptions on the
end-user data and knowledge. Section 6.3 describes our method
for generating DL model-specific explanations at the end user’s
side. Section 6.4 details the experimental setup and reports and
discusses empirical results. Finally, in Section 6.5 we gather the

conclusions.

6.2 Methods and assumptions

Data augmentation. The use of the original training data to gen-
erate virtual examples that are similar but different from the orig-
inal ones is known as data augmentation (Simard et al., 1996).
The virtual examples are used to enlarge the support of the train-
ing distribution and help the trained models generalize better.
For instance, virtual examples of an image can be defined as the
set of its horizontal reflections, rotations, and scalings when per-
forming image classification. A well-known data-agnostic and
efficient data augmentation method is the Mixup augmentation
method (Zhang et al., 2018). Mixup creates a new virtual exam-
ple from two different original training examples by applying the
same linear combination to the two examples’ input features and
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their corresponding target labels. We use a modified version of
Mixup to enlarge the unlabeled training data of end users.
Knowledge distillation (KD). Distillation methods (Hinton, Vinyals,
and Dean, 2015; Chen et al., 2017a) transfer the knowledge from a
complex “master” to a simpler “student” model.

Our goal of approximating the provider’s black-box DL model
can be viewed as a special case of KD where the end user lever-
ages some unlabeled data examples to transfer knowledge from
the provider’s model to a local surrogate model. Note that most
existing methods for KD exploit soft labels (probability vector pre-
dictions) (Hinton, Vinyals, and Dean, 2015), feature maps of the
provider’s model intermediate layers (Wang et al., 2020) or the re-
lationships between different layers or data samples (Gou et al.,
2021). However, in our case, we only have black-box access to the
provider’s model and thus access to the hard labels only. There-
fore, we use hard labels to transfer knowledge, which is shown to
be more effective than the previous approaches (Shen et al., 2021).
Assumptions. We consider a scenario where an end user u uses a
trained DL classification model f, via a prediction API of a service
provider p. Examples of such scenarios are cloud-based platforms
(e.g., AmazonML and AzureML), where the end user queries an
API with his unlabeled data and obtains the final predictions.

We assume the end user knows the input-output shape, but
knows nothing about the model architecture and training hyper-
parameters. Moreover, we assume p has used a big and represen-
tative labeled data set D, = {(x;,yé)}}i”l to train f,, whereas u
has only a small unlabeled data set D, = {x}, b (withm,, < myp).
Specifically, we assume the ratio between m, and m, to be around
0.5% and for D, and the unlabeled version of D, to be similarly
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distributed.

Assuming possession of D, by u is realistic; given the small
size and unlabeled nature of D,, it can be assumed to be already
available to the end user or even to be supplied by the provider to
build trust in his f, model.

6.3 Explaining deep learning classification model

predictions on the user’s side

We want to rid end users of the need to blindly trust the providers’
explanations and allow them to generate DL model-specific expla-
nations locally. In this way, users can reliably understand how the
providers” models make their predictions and determine whether
these predictions are trustworthy.

However, in order to generate DL model-specific explanations
for the predictions of the provider’s model f,, an end user u needs
white-box access to f,, which he does not have under MLaaS. To
remedy this, we propose a two-phase approach that first approx-
imates f, through another local surrogate model f, that has per-
formance near-equivalent to that of f, by using knowledge distil-
lation (Hinton, Vinyals, and Dean, 2015). After that, we use f,’s
internal components to generate local explanations that approxi-
mate the explanations that would be generated using the internal
components of f,. Specifically, we leverage f,’s gradients to gen-
erate adversarial examples that counterfactually explain why an
input example is classified into a specific class.

The following subsections describe in detail the design of the
proposed approach.
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6.3.1 Data augmentation and surrogate model training

In the first phase, we need to approximate the provider’s model
fp by a local surrogate model f;, having an accuracy as close to
that of f, as possible. This raises two challenges:

1. The small unlabeled data set D, available to the end user
may not be representative of the distribution of the data
D, used to train f,. Therefore, using only D, to distill the
knowledge from f, into f, may yield poor accuracy and
poor explanations based on f,.

2. u does not know the suitable model architecture and train-
ing hyper-parameters of f, that bring its accuracy close to
that of f.

Data augmentation and labeling. To tackle the first challenge,
we employ a modified version of the Mixup method (Zhang et
al., 2018) to augment D, and obtain more representative training
data. Mixup constructs a virtual input example

£=Ax' 4+ (1 - M), (6.1)

J=A+(1-A)y, (6.2)

where (x',y') and (x/,y/) are two different examples drawn
from the training data with x’ being the input example and v’ its
corresponding target label, and A ~ Beta(a,a) € [0,1], for a €
(0,00). Mixup is easy for the end user to implement, it incurs
little computation overhead, and it produces valuable augmented
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virtual image

Input image 2

FIGURE 6.2: Virtual input image generated by
mixing two original input images with A = 0.5

data that help train more robust and accurate models (Zhang et
al., 2018; Cubuk et al., 2018).

In our case, D, contains only input examples that do not have
corresponding target labels. Thus, we only compose new virtual
input examples by mixing each input example x' € D,, with other
my — 1 examples with m, = |D,|. Fig. 6.2 shows an example of
mixing two input images to construct a new virtual image.

Once we obtain the augmented data D,,, that contain both
the original input examples and the virtual input examples, we
query the provider’s API with the examples in Dy, to obtain the
augmented labeled examples Dy;;;. Note that D,y will contain

1y + <";”> 6.3)

different training examples (the original ones plus the virtual
ones obtained from pairs of original examples) that can be ex-
pected to be more representative of the training data distribution.
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Algorithm 8 describes the methodology we use to augment
the small unlabeled data set and then label it using the provider’s
model f,.

Algorithm 8 Augmenting unlabeled data and labeling the aug-
mented data
1: Input: API access to the provider’s model f,, the end user’s
unlabeled data D,,, parameter a of the beta distribution.
: Output: Augmented labeled data Djy;,.
my, = |Dy|
: Daug = H
: fori e [1,m,] do
x; < Dy [l]
Add(xi/ Daug)
forje [i+1,m,] do
xj < Dulj]
A < Beta(a, )
= Ax; + (1 - A)x;
Add(%, Daug)
end for
: end for
: Dipig = [
: for each x; € Dyyq do
Add((xk, fp(xk)), Dipta)
: end for
: return Dy

D AN

O T e S e S o Gy i G

Choosing the model architecture and training hyper-parameters.

After obtaining Dy, the end user needs to define the appropri-
ate model architecture and train hyper-parameters to distill the
knowledge from f, into the local surrogate model f,, using Dyp4.
Given the complexity of the classification task and its data dis-
tribution, it is possible to estimate a set of candidate models with
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different complexities that can solve the task (Srivastava et al.,
2021). However, we also need to find the appropriate training
hyper-parameters, such as learning rate and batch size, that max-
imize the accuracy of each candidate model.

To this end, we use the cross-validation search (CV-SEARCH)
technique to select the appropriate hyper-parameters for each can-
didate model. Specifically, we conduct CV-SEARCH by five-fold
cross-validation, which works as follows. First, the labeled train-
ing data are divided into five non-overlapping chunks for each
hyper-parameter combination. Then, the average accuracy is ag-
gregated over the validation chunks, saved, and tested in the next
hyper-parameter combination. The process is repeated five times,
each with a different validation chunk. After that, the hyper-
parameter combination that produces the best accuracy on vali-
dation chunks is selected for the candidate model.

Given the ample search space, testing out all parameter combi-
nations will take a long time. We leverage Bayesian hyper-parameter
optimization (Snoek, Larochelle, and Adams, 2012) to find the
appropriate combination efficiently. Bayesian hyper-parameter
optimization estimates the validation accuracy of certain hyper-
parameter combinations. Then the next validation hyper-parameter
combinations are chosen with high expected accuracy. The hyper-
parameters we search for are the training epochs, the learning
rate, and the batch size. The candidate model architecture and
the corresponding hyper-parameter combination with the highest
expected validation accuracy are selected to train the local surro-
gate model f,.

Note that an alternative solution to train an accurate surrogate
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model f, is to use an AutoML platform, such as Google AutoML!
or Microsoft AutoML2. These platforms have advanced optimiza-
tion algorithms determining the appropriate model architecture
and training hyper-parameters for a given task and training data.
In this case, the end user does not need to incur any effort other
than paying the AutoML provider for training the model. How-
ever, doing so also implies trusting the provider to operate the
platform honestly.

6.3.2 Generating counterfactual adversarial explanations

Once the end user obtains a trained local surrogate model f, that
is nearly as accurate as the provider’s model f,, he can use f, to
generate accurate explanations for the predictions of f,. Since f;
has almost learned the same decision boundaries as f;, explana-
tions generated using f,’s internal components can be expected
to accurately approximate the explanations generated using f,’s
internal components.

In this thesis, we explain the provider’s model by generat-
ing counterfactual explanations (Wachter, Mittelstadt, and Rus-
sell, 2017; Mothilal, Sharma, and Tan, 2020) of a specific exam-
ple. Counterfactual explanations tell us how to change the ex-
ample’s features so that its predicted label also changes. In this
way, we can understand how the model makes its predictions
and explain individual predictions. Moreover, counterfactual ex-
planations can be viewed as by-example explanations, which are
the preferable kind of explanations for end users (Molnar, 2020;

Ihttps://cloud.google.com/automl
Zhttps://www.microsoft.com/en-us/research/project/automl/
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Jeyakumar et al., 2020). We use adversarial training (Szegedy
et al., 2014; Goodfellow, Shlens, and Szegedy, 2015) described in
Section 5.2.1 to generate adversarial examples that counterfactu-
ally explain the model predictions. Adversarial examples are easy
to compute when we have white-box access to the gradients of a
DL model (Goodfellow, Shlens, and Szegedy, 2015). In fact, ad-
versarial examples are aimed at fooling the model rather than ex-
plaining it, but, in the end, they serve the same purpose as CEs by
slightly changing the features of input examples to modify their
predicted labels (Molnar, 2020).

We use the following expression to generate adversarial exam-

ples:

vo=x e S L(f(x),y.), (649)

where x is an input example (represented as a vector of features),
x, is the created adversarial example, v, is the desired class la-
bel, and parameter € is used to minimize the changes made on the
original input example to create the adversarial example. Note
that we perform a gradient descent optimization by moving the
features of the input example in the opposite direction of the gra-
dient, thus causing the model to classify the generated adversarial
example into the desired class. If we take y, as the second most
probable class label in the local model prediction vector, we will
get a CE with the fewest possible feature changes on the input
example that modify the predicted label.

Expression (6.4) works well for images because the pixel val-
ues of an image carry a lot of context and we can identify the

changed pixels and visualize them easily. However, it is more
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challenging to represent tabular data in a meaningful way be-
cause an example may consist of hundreds of (less regular) fea-
tures. Listing all feature values to describe an example is usually
not desirable for end users who look for the minimum changes
needed to change the example’s prediction. For these reasons, we
build on Expression (6.4) to design two different algorithms that
take into account the generation of appropriate explanations, ei-
ther for image data or tabular data.

Generating explanations for images. To generate an expla-
nation for a specific image x/, we create an adversarial example
x! with small pixel perturbations that cause f, to change its cur-
rent prediction ]}ip = fp(x') to another desired prediction . Fi-
nally, we visualize the generated explanations by superimposing
a heatmap on the regions of important pixels in x’ according to
the difference between x’ and x’.

Algorithm 9 describes the method we use to generate expla-
nations for image data. Given API access to the provider’s model
fp, white-box access to the trained local surrogate model f;, and
the maximum allowed value €, for the € parameter, we gener-
ate a visualized explanation for an input example x as follows.
First, we check whether the provider’s and surrogate models pre-
dict the same class for x. If f,(x) # fu.(x), we cannot go further
in the adversarial example generation. This should occur rela-
tively seldom because f, closely mimics the predictions of f,. If
fp(x) = fu(x),let probs, be the probability vector f, outputs for x.
Then, we set the desired class label y. to be the index of the second
most probable class in probs,. Choosing the second most proba-
ble class instead of the other classes guarantees that we make the
smallest possible changes to modify the actual prediction of f, on
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x. Note, that the end user can also set y. to any class label she
wants. After that, we keep repeating the gradient descent step in
Expression (6.4) until one of two following conditions is satisfied:
i) an adversarial example x. is obtained that fools f, into labeling
it as y, or ii) the maximum value €, is reached for €. Note that
we start with a small € = 0.005 and increase it by 0.005 at each
step.

Once we create the adversarial example x,, we identify the
pixel perturbations values that caused the change of the predic-
tion of f, for x to the desired class y.. We compute the absolute
values of the added perturbations perturbs = abs(x. — x). Note
that the vector perturbs has the same size as the original input
image x.

Finally, we superimpose the vector perturbs on the original im-
age x to visually explain the important pixels that cause the pre-
diction to change from f,(x) to y..

Generating explanations for tabular data. Our method gen-
erates counterfactual adversarial examples of tabular data by in-
troducing changes to a small number of attributes of an example
to modify its predicted label. These slight changes are favored
by end users when explaining tabular data predictions (Molnar,
2020): instead of overwhelming the user by changing many at-
tributes, a small number of attributes facilitates understanding the
explanation. The method is very similar to creating adversarial
examples for images with the difference of limiting the number of
changed attributes.

Given an input record x containing n attributes, we only change
c < n attributes, where c is a hyper-parameter defining the num-
ber of attributes to be changed in x to generate the CE x.. To
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Algorithm 9 Explaining predictions for image data

1: Input: APl access to the provider’s model f,, surrogate model
fu, image to be explained x, maximum allowed value €, for
€.

2: Output: Visualized explanation of x.

3: if fp(x) = fu(x) then

4. probs, <Get_Probabilities(f, (x))

Y« < argmax(probs,,2)

€ = 0.005

Xy — X

while f,(x.) # v« and € < €4y do
X, x—e ZL(ful(x),y.)

10: € < € +0.005

11:  end while

12:  perturbs < abs(x. — x)

13:  Superimpose(perturbs, x)

14: end if

choose the c attributes, we start by computing the loss gradient be-
tween the surrogate model output f,(x) and the desired output .
w.r.t. the attributes of the input record. Then, we take the L;-norm
of the computed gradient V. After that, we identify the attributes
with the highest ¢ L1-norms as the attributes to be changed when
generating x,. We do this by using a weighting vector w that con-
tains Os for the unchanged attributes and 1s for the changed at-
tributes. In this way, when we compute the gradients w.r.t. the
attributes of the input record, we only change the values corre-
sponding to the c attributes. Finally, we return the generated CE
X«. In tabular data, a similar record with slightly changed at-
tribute values counterfactually explains the attributes responsible
for changing the predicted label (Molnar, 2020; Mothilal, Sharma,
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and Tan, 2020).

Note that our method also allows the end user to choose the
attributes she prefers to change instead of making an automatic
choice. Although there is a negative view on the fairness of tabu-
lar CEs (Slack et al., 2021), some authors (Artelt et al., 2021) pro-
pose that plausible tabular CEs can be used instead of closest CEs
to improve the robustness and consequently the individual fair-

ness of counterfactual explanations.

Algorithm 10 Explaining predictions for tabular data

1: Input: API access to the provider’s model f, local surrogate
model f,, record to be explained x, maximum allowed value
€max for €, number of attributes to be changed c.

2: Output: Counterfactual example x..

3: if fp(x) = fu(x) then

4:  probs, <Get_Probabilities(f,(x))

Y« <— argmax(probs,,2)

n < Number of attributes in x

Vsl < abs(ZL(fu(x),v.)

w < Zero vector of length n

idxs < Indices of the highest c values in |V,|

10:  foridx € idxs do

11: wlidx] =1

12:  end for

13: Xy < X

14: € < 0.005
15:  while f,(x.) # y« and € < €4y do
16: X x—w-e ZL(fulx), )

17: € <+ €+ 0.005
18:  end while

19:  Return x,

20: end if
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6.4 Empirical analysis

In this section, we evaluate the performance of the proposed ap-
proach on two ML tasks: image classification and tabular data
classification. First, we show how accurate the local surrogate
models were at approximating the provider’s models. Then, we
evaluate the DL model-specific explanations generated by the sur-
rogate models and show their consistency with those generated
by the provider’s models.

Finally, we compare the visual explanations generated by our
method for image data with those generated by a model-agnostic
method (LIME (Ribeiro, Singh, and Guestrin, 2016)), which shows
that our explanations are more accurate and understandable.

Our code is available for reproducibility purposes®.

6.4.1 Experimental setup

We ran our experiments on a machine with AMD Ryzen 5 CPU
at a base speed of 3.6 GHz, 32 GB of RAM, and a GPU NVIDIA
GeForce GTX 1660 with 6 GB of RAM.

Data sets and provider models.

We evaluated the proposed approach on three data sets:

* Gender described in Section 5.3. The provider’s model was
the deep CNN used in a previous Chapter 5. The model was
trained for 10 epochs with a batch size 64, the binary cross-
entropy loss function, and the Adam optimizer (Kingma and
Ba, 2015) with a learning rate 0.001.

Shttps://github.com/anonymous16534/User-End-Explanations-of-the
-Predictions-of-Deep-Learning-blackbox-Models
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* MNIST contains 70K handwritten images corresponding to
digits 0 to 9 (LeCun et al., 1999). The images are divided
into a training set (60K examples) and a validation set (10K
examples). We used the LeNet model (LeCun et al., 2015)
as the provider’s model. It was trained for 100 epochs with
a batch size 128, the cross-entropy loss, and the same opti-
mizer and learning rate as the Gender benchmark.

* Adult described in section 3.3.3 We used 80% of the data as
training data, and the remaining 20% as validation data. The
provider’s DL model for this data set consisted of three hid-
den layers of 100 neurons each. The sigmoid activation func-
tion followed the final layer to produce probabilities. The
model was trained for 10 epochs with a batch size 128, and
the same loss and optimizer as the two former benchmarks.

Data augmentation and local surrogate models. The end user
was assigned 0.5% of each training data set’s examples without
their classification labels, which corresponds to 235 out of 47,000
images for the Gender data set, 300 out of 60,000 images for the
MNIST data set, and 195 out of 39, 073 records for the Adult data
set. These data were augmented following Algorithm 8. We set
the parameter « of the beta distribution to 0.25 for the Adult data
set, while we used a constant value A = 0.5 for the image data
sets. We found that augmenting the image data by taking the av-
erage of two images led to distilling more knowledge from the
provider’s models. Table 6.1 reports the number of samples the
user owns before and after augmenting the data.

We used four surrogate models with different architectures for
the Gender and the MNIST data sets. Surrogate 1 was shallower
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TABLE 6.1: Number of data samples owned by
the service provider and the user before and after
the Mixup augmentation

. User data before | User data after | Time needed to create
Data set | Provider data . .
augmentation augmentation each example
Gender 47,000 235 27,495 0.045 s
MNIST 60,000 300 22,893 0.0015 s
Adult 39,073 195 56,745 0.0002 s
TABLE 6.2: Architectures of the provider’s black-
box and end-user’s surrogate models used in
the experiments for the Gender classification
data set. C(3,32,3,0,1) denotes a convolutional
layer with 3 input channels, 32 output chan-
nels, a kernel of size 3 x 3, a stride 0, and a
padding 1; MP(2,2) denotes a max-pooling layer
with a kernel of size 2 x 2 and a stride 2; and
F(C(18432,2048) indicates a fully connected layer
with 18,432 inputs and 2,048 output neurons. We
used ReLU as an activation function in the hid-
den layers; Ir stands for learning rate.
M i Hyper-
odel Model architecture
parameters
C(3,32,3,0,1), C(32,64,3,1,1), MP(2,2),C(64,128,3,0,1), C(128,128,3,1,1), MP(2,2), Ir = 0.001
Provider | C(128,256,3,0,1), C(256,256,3,1,1), MP(2,2), C(256,512,3,0,1), C(512,512,3,1,1), MP(2,2), | epochs =10
FC(18432,2048), FC(2048,1024), FC(1024,512), FC(512,128), FC(128,32), FC(32,2) batch = 64
C(3,32,3,0,1), C(32,64,3,1,1), MP(2,2), C(64,128,3,0,1), C(128,256,3,1,1),MP(2,2), Tr = 0.0001
Surrogate 1 | C(256,512,3,0,1), C(512,256,3,1,1), MP(2,2), FC(36864,1024), FC(1024, 256), FC(256,32), | epochs = 10
FC(32,2) batch =128
Ir = 0.0001
Surrogate 2 Same architecture as the provider’s model. epochs =10
batch = 128
C(3,32,3,0,1), C(32,64,3,1,1), MP(2,2), C(64,128,3,0,1), C(128,256,3,1,1), MP(2,2), r = 00001
Surrogate 3 | C25651230/1), C(512,256,3,1,1), MP(2,2), C(256,512,3,0,1), C(512,512,3,1,1), MP(2,2), schs = 10
urrogate C(512,512,3,0,1), C(512,512,3,1,1), MP(2,2), FC(4608,1024), FC(1024, 256), ;‘;‘;Chs_‘lzg
FC(256,32), FC(32,2) =
C(3,32,30,1), C(32,64,3,1,1), MP(2,2), C(64,128,3,0,1), C(128,128,3,1,1), MP(2,2), I 0.0001
s e | C28256301),C256,2563,1,1), MP(2,2)C(256512,30,1), C(5125123,1,1), MPR2), | "~ 70
urrogate C(512,512,3,0,1), C(512,512,3,1,1), MP(2,2), FC(4608,1024), FC(1024,256), T;p?ch 5_’128
FC(256,128), FC(128,32), FC(32,2) atch =

than the provider’s model, Surrogate 2 had the same architecture,

and Surrogates 3 and 4 were larger than the provider’s model.
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Tables 6.2 and 6.3 summarize the architectures of these surrogate
models.

On the other hand, in the case of the Adult data set, we used
a simpler surrogate architecture than the provider’s model: the
same depth as the provider’s model but fewer neurons in each
layer. The rationale is that this classification task is simple and
does not require deep feature extraction, unlike the Gender and
the MNIST tasks. Table 6.4 depicts the details of both the provider’s
model and the surrogate model for the Adult data set.

We limited the search space of the Bayesian hyper-parameter
optimization (Snoek, Larochelle, and Adams, 2012) to find the
best hyper-parameter combination for each surrogate model quickly.
The learning rate was searched between 0.0001 and 0.01, the train-
ing epochs between 5 and 150, and the batch size between 32 and

128.
TABLE 6.3: Architectures of the provider’s black-
box and end-user’s surrogate models used in the
experiments for the MNIST data set
Model Model architecture Hyper-
name parameters
. 1r = 0.001,
P;?Véld‘fr LeNet 5 (LeCun et al., 2015) epochs = 100,
ode batch = 128
Surrogate C(1, 16,0, 2), MP(2, 0) C(16, 32, 0, 2), elj;:hg'golléo
model 1 MP(2, 0), C(32, 64, 0, 2), FC(16384, 200), FC(200, 10) bateh =128
Surrogate Ir = 0.001,
LeNet 5 (LeCun et al., 2015) epochs =100,
model 2
batch = 128
Surrogate | C(1, 64,0, 2), MP(2,0), C(64, 128, 0, 2), MP(2, 0), C(128, 256, 0, 2), e;zhg'zoibo
model 3 FC(1638400, 1024), FC(1024, 200), FC(200, 10) Eabeh = 128
Surrosate C(1, 32,0, 2), MP(2, 0), C(32, 64, 0, 128), MP(2, 0), Ir = 0.001,
- dgl , | C(64,128,0,2),C(128,128,0,2), C(128, 64,0, 2), C(64, 64,0,2), | epochs =100,
ode FC(16384, 256), FC(256, 10) batch = 128
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TABLE 6.4: Architectures of the provider’s black-
box and end-user’s surrogate models used in the
experiments for the Adult data set

Model name Model architecture Hyper-parameters
Provider model | FC(12,100), FC(100,100), FC(100,2) | Ir = 0.001, epochs = 10, batch = 128
Surrogate model FC(12, 64), FC(64, 64), FC(64, 2) Ir = 0.0001, epochs = 100, batch = 64

Evaluation metrics.

We used the following evaluation metrics to measure the per-
formance of the trained surrogate models and the generated ex-
planations:

* Accuracy: number of correct predictions divided by the total
number of predictions. We used this metric to measure and
compare the performance of the provider’s and the surro-
gate models.

e Structural Similarity Index Measure (SSIM):

similarity between two images x and y measured as

(2ptxpy + 1) (200 + 2)
(12 +u2+c1)(02+02+c)

SSIM(x,y) =

where ji, is the average of x, i, is the average of y, 02 the
variance of x, (75 the variance of y, 0y, the covariance of x and
y, and ¢ and ¢, are two variables to stabilize the division.
The values of ¢; and ¢, are calculated as

1 = (KlL)Z/ Cy = <K2L)2/

where L is the dynamic range of the pixel-values, K; = 0.01,
and K, = 0.03. We used SSIM to measure the similarity
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between the adversarial images generated by the provider’s
model and those generated by the surrogate models.

* Qverlap similarity: similarity between two records x and vy
with categorical attributes computed as

Overlap(x,y) = ¢_,wiS(xx, yi),

where d is the number of the categorical attributes, x; de-
notes the k-th attribute in x, yx denotes the k-th attribute in
y, wy denotes the weight assigned to the k-th attribute, and

1, if xp =y,
S(xk, yk) = { k= Yk

0, otherwise.

In our experiments, we set wy, = 1/d for all the attributes.
We used this metric to measure the similarity between the
counterfactual records generated by the provider’s model

and those generated by the surrogate model for tabular data.

6.4.2 Results and discussion
Accuracy of surrogate models

Table 6.5 reports the accuracy of the provider’s models and the
trained surrogate models. We can notice that all the surrogates
trained on the small non-augmented data performed very poorly
on the unseen data: their predictions were almost random guesses.
The best surrogate with the Gender benchmark achieved 53.5%
accuracy compared to 96.3% for the provider’s model; the best
surrogate with the MNIST benchmark achieved 10.35% compared
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to 99.22% for the provider’s model; and the best surrogate with
the Adult benchmark achieved 47.2% compared to 84.85% for the
provider’s model.

The reason for that poor performance is that the surrogates
overfitted the small non-representative training data sets, which
were insufficient to distill the knowledge from the provider’s model.

On the other hand, when the surrogates were trained on the
more representative augmented data, their performance was nearly
equivalent to that of the provider’s model. The best surrogate
with the Gender benchmark achieved 94.47% accuracy compared
to 96.3% for the provider’s model; the best surrogate with the
MNIST benchmark achieved 96.1% compared to 99.22% for the
provider’s model, and the best surrogate with the Adult bench-
mark achieved 84.58% compared to 84.85% for the provider’s model.
Moreover, Surrogate 1, which is simpler than the provider’s model,
achieved the highest accuracy among all the surrogates. This is
not surprising because transferring knowledge from a large “mas-
ter” DL model to a simpler “student” DL model is more effective
and produces highly regularized models (Hinton, Vinyals, and
Dean, 2015).

TABLE 6.5: Accuracy of surrogate models, with-
out and with data augmentation, compared to
the accuracy of the provider’s model

Provider | Surrogate 1 Surrogate 2 Surrogate 3 Surrogate 4
model | Non- Aug. Non- Aug. Non- Aug,. Non Aug.

aug. aug. aug. aug.

Gender | 96.3% | 53.8% | 94.47% | 43.7% | 92.89% | 48.26% | 93.86% | 49.68 | 93.35%

MNIST | 99.22% | 7.69% | 96.1% | 8.9% | 95.8% | 10.35% | 94.8% | 6.3% | 94.5%

Adult 84.85% | 47.2% | 84.58% - - - - - -

Data set
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Surrogate model explanations

In this section we compare the explanations generated by the sur-
rogate models with those generated by the provider’s models.

Image data. We generated an adversarial image for each im-
age in the Gender and MNIST data sets by using the gradients of
the provider’s model and the four surrogate models.

Then, we computed SSIM between the adversarial examples
generated by the provider’s model and those generated by the
surrogates to numerically measure their similarity. Table 6.6 re-
ports the average SSIM for the Gender and MNIST validation im-
ages. We can see that the simplest model (Surrogate 1) generated
adversarial examples with the highest similarity to those gener-
ated by the provider’s model.

On the other side, as the surrogate models got larger and deeper
(Surrogates 2, 3, and 4), the similarity between their generated ad-
versarial examples and those generated by the provider’s model
decreased. Therefore, we can conclude that choosing the simplest
model architecture, which gave the highest accuracy in the classi-
fication task, leads to a more accurate approximation of the expla-

nations generated by the provider’s model.

TABLE 6.6: Similarity between the adversarial ex-

amples generated by the surrogate models and

those generated by the provider’s model on the
Gender and MNIST data sets

Surrogate | Surrogate | Surrogate | Surrogate
Data set model1 | model2 | model3 | model 4
Gender | 96.79% 93.42% 91.81% 91.36%
MNIST | 98.27% 95.63% 93.22% 92.68%
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To visually compare the explanations generated by the surro-
gates with those generated by the provider’s models, we com-
puted the absolute perturbations added to the original validation
images (perturbs) by using Algorithm 9. We then overlaid them as
heat maps on the original images. Figure 6.3a shows two exam-
ples of these visual explanations generated for the Gender data
set. In the first example (row 1), the provider’s model wrongly
predicted the original image as male, and the added pixel per-
turbations changed its prediction to the true prediction of female.
In the example (row 2), the provider’s model correctly predicted
the original image as female, and the added pixel perturbations
changed its prediction to the wrong prediction of male.

By looking at the pixels that caused the prediction to change,
we can see that, in general, the explanations generated by the sur-
rogates were consistent with those generated by the provider’s
model: All the models, including the provider’s, identified the
pixels corresponding to the regions of the eyes, the nose, the cheek,
and, sometimes, the lips as the pixels responsible for changing
their prediction. This is in line with the literature on gender recog-
nition (Brown and Perrett, 1993; Fellous, 1997), which found that
the eyes, the nose, the cheek, and the lips are the most relevant
features for differentiating between male and female faces.

Figure 6.3b shows two examples of the explanations generated
for MNIST.

In the first example (row 1), the provider’s model wrongly pre-
dicted the original image as 0, and the added pixel perturbations
changed its prediction to the true prediction of 6. In the example
(row 2), the provider’s model correctly predicted the original im-
age as 2, and the added pixel perturbations changed its prediction
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to the wrong prediction of 1. Again, the explanations generated
by the surrogates were consistent with the explanations generated
by the provider’s model: all the models identified pixels on the
edges of the digits as the important ones. This is also in line with
previous works on digit recognition (Liu et al., 2003).

To summarize, the visual explanations generated by the sur-
rogates were understandable and consistent with those generated
by the provider’s models.

Predicted -> Changed  Original image

Provider model  Surrogate model 1 Surrogate model 2 Surrogate model 3 Surrogate model 4

male -> female

female-> male TR
-

(A) Two examples of the explanations generated for the images of the Gender
data set

Predicted -> Changed Original image Provider model ~ Surrogate model 1 Surrogate model 2 Surrogate model 3 Surrogate model 4

- B .

(B) Two examples of the explanations generated for the images of the MNIST
data set

FIGURE 6.3: Visual explanations generated by
the surrogate models in comparison with those
generated by the provider’s models

Tabular data. We generated a CE for each record in the Adult
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data set by using the gradients of the provider’s model and those
of the surrogate model. First, we used Algorithm 10 with c = n
(that is, ¢ = 12) to allow changing all the attributes when gen-
erating the examples. Then, we computed the overlap between
the records generated by the provider’s model and those gener-
ated by the surrogate model. We found that the generated records
were almost identical, with an average overlap of around 1. This
is not surprising because the accuracy of the surrogate model on
the classification task was extremely close to the accuracy of the
provider’s model (84.58% vs. 84.85%).

To generate CEs for a specific validation record while limiting
attribute changes, we used Algorithm 10 with ¢ € {1,...,12}. Ta-
ble 6.7 shows two original records, each with four generated CE.
CE 1 was generated by changing the educational number attribute
only. CE 2 was generated by allowing the attributes educational
number and age to be changed. CE 3 was generated by allowing
the attributes educational number, age, and working hours per week
to be changed. Finally, CE 4 was generated by allowing all the
attributes to be changed.

Record 1’s income was classified as < 50K by the provider’s
model. CE 1 for that record shows that we can change the original
record’s prediction to > 50K by increasing educational level from
13 to 16. This seems logical: in most cases, the higher the level of
education, the higher the income. CE 2 shows that we can change
the prediction by increasing age from 31 to 41 and educational level
from 13 to just 15. This also makes sense: in addition to the impact
of the educational level (which is lower in this case), an older age
means more working experience and, therefore, higher income.

CE 3 shows that we can change the prediction by increasing
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age from 31 to just 39, educational level from 13 to 15 and working
hours per week from 60 to 61. Certainly, higher education, higher
age, and more working hours usually correlate with higher in-
come. Finally, CE 4 shows that we can change the prediction by
increasing age from 31 to 36, educational level from 13 to 14 and oc-
cupation from craft repairer to executive managerial. This also makes
sense since, aside the age and educational level, the type of occu-
pation also impacts on the income.

On the other hand, record 2’s income was classified as > 50K
by the provider’s model. In this case, the CEs changed the at-
tribute values the other way around. CE 1 shows that we can
change the original record’s prediction to < 50K by decreasing ed-
ucational level from 14 to 7. CE 2 shows that we can change the
prediction by decreasing age from 46 to 45 and educational level
from 14 to 7. CE 3 shows that we can change the prediction by de-
creasing age from 46 to 45, educational level from 14 to 9 and work-
ing hours per week from 60 to 51. Finally, CE 4 shows that we can
change the prediction by decreasing educational level from 14 to 12,
occupation from executive managerial to handlers cleaners, marital re-
lationship from husband to not-in-family and working hours per week
from 60 to 56.

These results show that our method generated logical and un-
derstandable explanations for tabular data, which can help end
users understand which attributes influenced the predictions of
DL models. Furthermore, it gives the end users the flexibility to
specify the attributes that can or cannot be altered to change pre-
dictions.
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TABLE 6.7: Explanations provided by the pro-
posed method on two records of the Adult data
set. Symbol -’ indicates that the value of the fea-
ture did not change during the creation of the CE.

Prediction
Attribute | age | workclass | edu MS. occupation | relationship | race | gender | C.G. | C.L. | HPW. | country | original
model
— Self-emp- : Craft- ) ;
Original | 31 ; 13 | unmarried h Unmarried | White | Male | 0 0 60 us. < 50K
— not-inc repair

B[ CE1 - - 16 - - - - - - - - - > 50K
S CE2 | @ - 5 - - - - - - - - - > 50K
2 [ CE3 |39 - 15 B B - - B - B 61 - > 50K
CE4 | 36 - 14 - Exec - - - - - - - > 50K

managerial
Original | 46 | Private | 14 | married Exec- husband | White | Male | 0 0 60 us. > 50K

o~ managerial
B[ CETL B - 7 - B - - - - - B - < 50K
g CE2 |45 - 7 B - B E B B . B = Z50K
2| CE3 | 4% - 9 - - 51 - < 50K
R4 _ B N . Handlers- | Not-in- _ . i . o i < 50K

cleaners family
. .
Comparison with LIME

To illustrate the advantages of our DL model-specific method over
model-agnostic methods, we compared it with LIME (Ribeiro, Singh,
and Guestrin, 2016) in terms of runtime and quality of the expla-
nations.

Table 6.8 reports the time required to train the surrogates, to
generate the explanation of one prediction, to generate the predic-
tion of the validation set, and to train the models and generate the
explanations for both the proposed method and LIME. We can no-
tice that LIME, on average, was ten times slower than our method
to generate explanations.

The high computational runtime of LIME was due to the way
LIME generates its explanations. In order to explain the predic-
tion of a black-box model f on an image x, LIME first decom-
poses x into d superpixels (a.k.a. image patches). Then, it creates
n neighbor perturbed images x1, ..., x, by randomly turning on
and off those superpixels. After that, it queries the model to get



UNIVERSITAT ROVIRA I VIRGILI
CONTRIBUTIONS TO EXPLAINABILITY AND ATTACK DETECTION IN DEEP LEARNING

Rami Haffar

116 Chapter 6. Generating DL Model-Specific Explanations

predictions y; = f(x;). Finally, it builds a local linear interpretable
SVM model described in Section 2.1.1 in fitting the y;s to the pres-
ence or absence of superpixels. Since each coefficient of the built
model is associated with a superpixel of the image, the more pos-
itive the coefficient is, the more important the superpixel is for
the prediction. Usually, the end user explains the prediction by
highlighting the superpixels associated with the top positive co-
efficients. In our experiments, LIME created, on average, 104 and
84 perturbed images for each original image in the Gender data
set and the MNIST data set, respectively. After that, it trained a
unique local model to explain the black-box model prediction on
each validation image. In contrast, our method used the same
trained surrogate model to explain any example in 2 steps on av-
erage, which caused little computational overhead compared to
LIME.
TABLE 6.8: Runtimes for training the surrogate

models and execute the LIME algorithm, and for
generating the explanations on the Gender and

MNIST data sets
Provider | Surrogate | Surrogate | Surrogate | Surrogate
Data set Task model model 1 model 2 model 3 model 4 LIME
Training the model 1224 s 1231s 1154 s 1468 s 1471s
Gender Explaining one image 024s 0.13s 02s 024s 2.77s
Explaining the val. set 2818 s 1554 s 2331s 2784 s 32132s
Total 4049 s 2708 s 3799 s 4255s 32132s
Training the model 328s 124's 124's 192's 177 s
MNIST Explaining one image 0.03s 0.03 s 0.04s 0.05s 0.53s
Explaining the val. set 350s 330s 400 s 500 s 5300 s
Total 474 s 454 s 592s 677 s 5300 s

To compare the quality of the explanations generated by our
method vs LIME, we generated explanations using both meth-
ods for two images of the Gender and MNIST data sets. For our
method, we used Surrogate 1. Figure 6.4a shows the explanations
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generated for the Gender examples. We can see that our method
highlighted specific image pixels that caused the model’s predic-
tion. Those pixels were clear, limited, and associated with facial
features important for classifying faces (Brown and Perrett, 1993;
Fellous, 1997). On the other hand, LIME generated less clear ex-
planations, which involved many non-relevant pixels; sometimes,

it could not find explanations at all, as shown in Figure 6.4b.

Proposed method LIME

Proposed method LIME

Image 1

Image 2

(A) Two examples from the Gender data(B) Two examples from the MNIST data
set set

FIGURE 6.4: Comparison of the explanations
generated by the proposed method with those
generated by LIME

6.5 Conclusions

In the context of machine learning as a service (MLaaS), end users
do not normally have white-box access to the MLaa$S provider’s
DL models. We have presented a novel approach that enables

end users to locally generate DL model-specific explanations that
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accurately approximate the explanations the user would obtain if
she had white-box access to the provider’s model.

First, we use a modified version of the Mixup augmentation
method to enlarge the small unlabeled data set available to the
end user and make it more representative of the input data dis-
tribution. Then, we leverage knowledge distillation to build a lo-
cal surrogate model at the end user’s side that approximates the
provider’s model. Finally, we use the gradients of the surrogate
model to generate adversarial examples that counterfactually ex-
plain the prediction of the provider’s model on a specific input
example. For image data, we visualize the explanation by super-
imposing on the input example the difference between its pixels
and those of the counterfactual. For tabular data, we designed a
method that makes small changes on a few attributes to generate
counterfactuals that are understandable by end users.

Our approach only requires the end user to have access to un-
labeled data of size about 0.5% of the provider’s training data, and
it does not require any knowledge about the provider’s model ar-
chitecture or the training hyper-parameters.

Our experiments on image classification and tabular classifi-
cation data sets showed that our approach could locally generate
DL model-specific explanations consistent with those generated
by the provider’s model, thereby giving end users an indepen-
dent and reliable way to determine if the provider’s predictions

and explanations are trustworthy.
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Chapter 7

Conclusion and Future
Work

This thesis has focused on explaining the predictions of black-box
DL models, and on using these explanations to protect the mod-
els. First, we exploited random forests as surrogates to explain
the prediction of the centralized DL black-box models in Chapter
3. The explanations provided by the forests enabled us to detect
if the data were attacked or wrongly clustered, which might harm
the model. Even though the explanations were understandable
and helped with the attack detection, the surrogate model could
only be built by the model owner.

We also tested random forests” surrogates in a federated learn-
ing environment in Chapter 4, by which participants in the train-
ing process could build the surrogate model on their own using
only their local data. The generated explanations provided a nu-
merical importance to each attribute according to its influence on
the prediction. Also, the trees in the random forest surrogate pro-
vided further understanding on the reasoning of the black-box
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predictions. At the same time, the surrogate model was able to de-
tect security and privacy attacks that might target the training of
the federated learning model. Nevertheless, the surrogate model
was able to explain only the predictions of the black-box models
that take structured data as input, such as tabular data.

In Chapter 5, we proposed a more general method to obtain
explanations regardless of the input data type. This model-specific
explanation method is based on the concept of counterfactual ex-
amples using adversarial examples. Therefore, it can provide ex-
planations when using it on the model owner’s side. Addition-
ally, end users can use it to obtain explanations by leveraging a
local surrogate model that mimics the behavior and performance
of the original black-box model. The drawback is that the end user
should hold around 10% of the original training data to train the
surrogate model.

To overcome the limitation of our previous method on the data
availability, in Chapter 6, we used the Mixup data augmentation
method, which allowed end users to train their surrogates by us-
ing only a 0.5% of the original data.

7.1 Contributions and publications

Chapter 3 focuses on explaining the centralized DL predictions by
using random forests as a surrogates, and by detecting if the train-
ing data were corrupted or wrongly labeled. This work resulted
in the following publication:

¢ Rami Haffar, Josep Domingo-Ferrer, and David Sanchez. "Ex-
plaining misclassification and attacks in deep learning via
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random forests." In Proceedings of the International Conference
on Modeling Decisions for Artificial Intelligence — MDAI 2020,
pp- 273-285. Springer, 2020. CORE ranking: B.

Chapter 4 presents our work on explaining predictions of fed-
erated learning models on the participant’s side. In addition, the
explanation provided by the surrogates was used to detect secu-
rity and privacy attacks. This work resulted in the following pub-

lication:

¢ Rami Haffar, David Sdnchez, and Josep Domingo-Ferrer. "Ex-
plaining predictions and attacks in federated learning via
random forests." In Applied Intelligence (2022): 1-17. Impact
Factor: 5.086 (2nd quartile).

Chapter 5 discusses the use of counterfactual examples to cre-
ate explanations for image classification. First, the counterfactual
examples were created by adding small targeted perturbations to
alter the model predictions. Then, by measuring the difference
between the original data sample and the counterfactual exam-
ple, we were able to identify the regions with the largest influence
on the model prediction. This work resulted in the following pub-

lication:

¢ Rami Haffar, Najeeb Jebreel, Josep Domingo-Ferrer, and David
Sénchez. "Explaining Image Misclassification in Deep Learn-
ing via Adversarial Examples." In Proceedings of the Inter-
national Conference on Modeling Decisions for Artificial Intel-
ligence — MDAI 2021, pp. 323-334. Springer, 2021. CORE
ranking: B.
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Chapter 6 focuses on user-end explanations for any model ac-
cessible via MLaaS. We used adversarial examples to create coun-
terfactual examples to explain the important features in the pre-
dictions. This work resulted in the following publication:

¢ Rami Haffar, Najeeb Jebreel, David Sdnchez,and Josep Domingo-
Ferrer. "Generating Deep Learning Model-Specific Explana-
tions at the End User’s Side." In International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems. 30(Supplement-
2): 255-278 (2022) Impact Factor: 1.518 (3rd quartile).

7.2 Future work

This thesis opens new ground for research on the following lines:

* Regarding the use of random forests as surrogates (Chap-
ters 3 and 4) we plan to:

— Test the performance of the random forest surrogates
in detecting other types of attacks initiated by any par-
ticipant in decentralized training, such as multi-feature
random attacks (Liu et al., 2020) and backdoor attacks
(Yao et al., 2019).

— Try to satisfy more properties among those described in
Section 2.2.1, such as certainty —by testing the proposed
method on a black-box model that outputs a degree of
certainty alongside its final predictions—, and novelty
-by testing the explanations of the surrogate model on
data from the same domain of the training data set but
with different distributions of features—.
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- Since the proposed surrogate model is trained with a
partition of the data held by one of the participants,
we would like to test the performance of our approach
on data that are not identically and independently dis-
tributed (non-iid) (Zhao et al., 2018).

— Apply the proposed methods to fully decentralized ma-
chine learning scenarios (Lian et al., 2017), where there
isno single model manager that aggregates the updates.

* Regarding the use of counterfactual examples in Chapters 5

and 6 we plan to:

— Test the performance of the proposed approaches in ex-
plaining the predictions of black-box models trained on
non-iid data sets. Also, evaluate them when the end
user holds non-iid data to be used to train the local sur-
rogate model.

— Test the performance of our approaches on other com-
puter vision tasks, such as object detection and image
segmentation, as well as natural language processing
tasks (Petsiuk et al., 2021; Liu, Yin, and Wang, 2019).

- Experiment with different methodologies to create CEs,
such as plausible CE explanations (Artelt et al., 2021)
and CE creation by generative adversarial networks (GANSs)
(Creswell et al., 2018), in order to achieve more repre-
sentative explanations on the end user side.
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— Test the use of the explanations provided by the pro-
posed method to identify biases in the model w.r.t. dis-
criminatory features. This could satisfy the counter-
factual fairness (individual fairness) of deep learning
models (Kusner et al., 2017).
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