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el que em sobra. El meu ésser es sent complet quan et miro i respiro.
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Abstract

This thesis explores the intersection of deep learning and spatio-temporal
forecasting, focusing on the challenges and opportunities present in ap-
plying machine learning methods to predict complex geospatial and
temporal phenomena. Specifically, we focus on two critical domains:
weather prediction and traffic forecasting.

Firstly, we delve into the nuances of encoding traffic data optimally for
deep learning models, recognizing the potential of these methods to
revolutionize mobility patterns, city planning, and freight delivery ser-
vices. Our work aims to provide a clear pathway to effectively harness
GPS data and utilize deep learning models for accurate traffic predic-
tion, thereby influencing real-world decision-making significantly.

Next, we turn our attention to weather forecasting. Given the substan-
tial impact of weather on human activities and the environment, our
aim is to establish best practices for encoding weather data for deep
learning applications. We explore various machine learning models,
assessing their performance, and identifying the most efficient and ac-
curate approach for weather prediction.

Throughout the thesis, we emphasize the urgent need for a robust bench-
mark in the field of spatio-temporal forecasting, to enable systematic
comparison of methods and accelerate research advancements. We dis-
cuss the essential components of such a benchmark, including open
data of free access, specific tasks, relevant metrics, viable baselines, and
comprehensive evaluation methodologies.

To further illustrate the practical application of these principles, we
have contributed to the scientific community by publishing two novel
benchmarks. The first is a high-resolution, multimodal weather fore-
casting benchmark, derived from satellite data, which provides com-
prehensive insights into the complexities of meteorological prediction.



8

The second is a ground-breaking high-resolution precipitation bench-
mark, which innovatively utilizes satellite to radar data at the surface
level. This latter benchmark promotes a deeper understanding of rain-
fall patterns and their potential implications.

Our exploration culminates in the organization of the Weather4cast com-
petition at the competitive venues NeurIPS, IEEE Big Data and CIKM.
This sets unprecedental benchmarks for spatio-temporal prediction in
weather domains, promoting innovative solutions in this intricate field.
By bridging the gap between deep learning and spatio-temporal fore-
casting, this thesis makes a significant contribution to both machine
learning methodologies and the accuracy of weather and traffic pre-
dictions. The findings promise to inspire further advancements in the
application of deep learning to complex spatio-temporal processes.
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Chapter 1

Introduction

The rapid advancement of computational capabilities and the ever-increasing avail-
ability of data have dramatically transformed our world, revolutionizing numer-
ous fields of study. One area of particular interest is the field of spatio-temporal
forecasting, which holds enormous potential for various applications, from urban
planning and transportation logistics to environmental studies and disaster man-
agement.

Despite this potential, the application of state-of-the-art deep learning methods
to spatio-temporal processes is still in its early stages. A significant challenge is
the absence of robust and standardized benchmarks that facilitate methodologi-
cal comparisons and foster accelerated research advancements. Furthermore, our
understanding of how to effectively leverage deep learning for spatio-temporal
processes remains limited, especially when it comes to encoding and predicting
complex phenomena like traffic and weather patterns.

This thesis is motivated by the need to bridge these gaps. We aim to establish
the foundation for effectively employing deep learning methods to tackle spatio-
temporal problems. Furthermore, we seek to foster a community-wide bench-
marking culture by providing datasets and methodologies that researchers can use
to compare and improve their methods systematically. This endeavor is not only
critical to advancing our scientific understanding but also crucial in harnessing the
transformative potential of spatio-temporal forecasting for societal benefit.

In the following sections, we pose a series of research questions that guide
our exploration and offer a detailed account of the work undertaken to answer
them. The journey that ensues provides a comprehensive study on the applica-
tion of deep learning in spatio-temporal forecasting, highlighting the successes,
challenges, and future potential of this exciting field.

1
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1.1 Research Questions

In this era, computation and data have become fundamental resources, propelling
deep learning methods to state-of-the-art status in nearly all tasks they approach.
However, in the context of spatio-temporal processes, standard benchmarks for
the at-scale application of deep learning are still lacking. Hence, the central re-
search question that frames the scope of this thesis is: How can deep learning be
effectively applied for spatio-temporal forecasting in diverse domains, such as
weather and traffic prediction?

Recognizing the breadth of this inquiry, we dissect it into more focused, specific
research questions:

The interconnectedness of geographical and temporal processes significantly
influences human activities, particularly in mobility. GPS-enabled devices collect
and monitor these mobility patterns, forming a rich dataset for traffic prediction.
Yet, the question remains: Q1: How can traffic data be optimally encoded to ex-
ploit the capabilities of deep learning algorithms for forecasting?

While data availability and appropriate formatting are crucial, they alone are
insufficient for real-world decision-making. Stakeholders —ranging from city plan-
ners to freight delivery services and citizens— rely heavily on estimated time of
arrival (ETA) provided by GPS systems. Consequently, this motivates our second
research question: Q2: How can deep learning be leveraged to accurately predict
traffic patterns and conditions?

Weather, as a geospatial and temporal process, also exerts a considerable in-
fluence on human mobility, city planning, and risk prevention. Recognizing its
criticality, we ask: Q3: What are the best practices for encoding weather data
for deep learning applications, and which models yield superior performance
in weather forecasting?

To galvanize the advancement of deep learning in spatio-temporal processes
—akin to progress in other fields— more than just data and models are required.
Establishing a common benchmark for systematic comparison of various methods
is essential. This inspires our final research question: Q4: What are the fundamen-
tal components —including tasks, metrics, baselines, and evaluation method-
ologies— necessary to assess the generalization and adaptability of deep learn-
ing models in the context of spatio-temporal forecasting?

Through these research questions, this thesis aims to explore and highlight the
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potential of deep learning in dealing with complex spatio-temporal processes, con-
tributing towards the advancement of weather and traffic forecasting.

1.2 List of Contributions

The investigation articulated in this dissertation was guided by the research ques-
tions delineated in the previous section. The exploration of these inquiries led to
a series of impactful contributions to the field of spatio-temporal deep learning,
culminating in various peer-reviewed publications that underpin the body of this
dissertation. The contributions are organized and summarized as follows:

Part I: Deep Learning for Traffic Forecasting

[C1] We devised a recurrent autoencoder model for traffic prediction that uniquely
employs multimodal input data, specifically integrating traffic and weather
inputs. This model utilizes a bifurcated loss function, operating in both the
input and an embedding space. This novel approach marked a significant
advancement in traffic prediction methodologies [Herruzo and Larriba-Pey,
NeurIPS 2019 competitions].

Part II: Open-Data Benchmarks: Multimodality, Adaptation, and General-
ization in Deep Learning

[C2] We pioneered a comprehensive open-data benchmark for weather forecast-
ing. This benchmark, which encompasses the development of a dataset, the
definition of tasks, the determination of metrics, and the construction of base-
line models, demonstrates that models with superior performance in training
locations also show enhanced generalizability to novel geospatial locations.
This underscores the benchmark’s potential for promoting transfer learning
in the realm of weather forecasting [Herruzo et al., IEEE Big Data 2021].

[C3] Extending from this foundation, we developed an advanced multimodal weather
benchmark, also open-data, designed to assess model performance under
spatio-temporal shifts and necessitating the application of super-resolution
techniques. This benchmark sets a high bar for the development of mod-
els capable of handling real-world variability and refining the precision of
weather predictions [SUBMITTED, NeurIPS 2022 competitions].
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These groundbreaking contributions not only serve as a catalyst for further ad-
vancements in spatio-temporal deep learning, but also underscore the importance
of open-data practices in fostering collaborative and inclusive scientific progress.

In the reach of this dissertation, we also contributed to other articles in the topic
of traffic forecasting and benchmarks for deep learning:

[C4] We show that traffic can be tackled as a movie completion task and compare
different models against the baseline [Kreil et al., NeurIPS 2019 competitions]

[C5] We show that an accurate traffic prediction horizon can span 60 minutes and
U-Net models are a good foundational model [Kopp et al., NeurIPS 2020
competitions]

[C6] We constructed a benchmark for traffic forecasting focused on model robust-
ness and generalizability across multiple new cities and pre/post covid mo-
bility dynamics. [Eichenberger et al., NeurIPS 2021 competitions]

Also in the reach of this dissertation, and previous to the aforementioned con-
tributions, we first explored multi-task models and the creation of benchmarks in
a different topic:

[C7] We proposed a multi-task model that can summarize a set of images into dif-
ferent categories. We created the dataset, the labeling tool, defined the met-
rics, and explored explainability methods. [Herruzo et al., BMVC Workshop
2019]

Other research contributions done while pursuing this thesis

[C8] Advances on the Spanish Meteorological Agency (AEMet) [Agudo et al., XIX
Congreso de la Asociación Española de Teledetección]

[C9] Co-organized The Landslide4Sense Competition Ghamisi et al. (2022)

[C10] Co-organized the First Workshop on Complex Data Challenges in Earth Observa-
tion [Gruca et al., CIKM 2021]
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1.3 Dissertation Outline

The remainder of this thesis is structured as follows:
Chapter 3 addresses research questions Q1 and Q2. It elucidates the methods

for encoding traffic data and creating models for predicting traffic volumes and
speeds. This chapter specifically emphasizes the consideration of multimodal data,
such as weather and time of the day, to enhance predictive capabilities.

Chapter 4 shifts focus to weather forecasting as a standalone task, addressing
research questions Q3 and Q4. In this chapter, we detail the process of establishing
dedicated methods and benchmarks for multimodal weather forecasting.

Chapter 5 further deepens the investigation into research questions Q3 and Q4.
In this chapter, we introduce the first high-resolution satellite to radar benchmark
and share insights gleaned from the development of these models.

Both chapters 4 and 5 also provide detailed information about the competitions
we organized as part of this thesis. The competitions validated the utility and
usability of the datasets, tasks, models, and metrics developed within this thesis.
Furthermore, they provided valuable insights from the research community and
demonstrated the effective application of our work.

This comprehensive approach ensures that our research findings contribute
substantially to the field of spatio-temporal forecasting, paving the way for fur-
ther advancements in this domain.



Chapter 2

Background

This chapter provides an essential background and introduces the key concepts
that will be foundational to the research presented in this thesis. As we embark on
an exploration of the interplay between deep learning and spatio-temporal fore-
casting, particularly in the context of traffic and weather prediction, it is impor-
tant to establish a common understanding of the terminology, methodologies, and
frameworks that underpin this field of study.

The chapter is structured to provide a comprehensive overview of the funda-
mental concepts, ranging from the principles of deep learning and forecasting tech-
niques to the evaluation of model performance using benchmarks, tasks, datasets,
and metrics. Additionally, we delve into advanced topics such as multitask mod-
els, multimodal data integration, and transfer learning, which play a crucial role in
enhancing the predictive capabilities of our models. By elucidating these concepts,
this chapter aims to equip readers with the necessary background knowledge to
fully appreciate the contributions and findings of the thesis.

2.1 Spatio-temporal processes

Spatio-temporal processes are a fundamental concept in various scientific disci-
plines, including geography, ecology, meteorology, and epidemiology. These pro-
cesses describe phenomena that evolve over both space and time, capturing the
dynamic interplay between spatial patterns and temporal changes. Understanding
spatio-temporal processes is essential for modeling and predicting the behavior of
complex systems, such as the spread of diseases, the movement of wildlife popu-
lations, urban mobility, and the impact of climate change on natural resources.

The importance of studying spatio-temporal processes can be illustrated through
several real-world examples. For instance, in epidemiology, the spread of infec-

6
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tious diseases such as COVID-19 is a spatio-temporal process, as the transmission
of the virus occurs in specific geographic locations and evolves over time. Sim-
ilarly, in ecology, the migration patterns of bird species are spatio-temporal pro-
cesses, as they involve the movement of birds across different regions during spe-
cific seasons. In meteorology, weather patterns such as hurricanes and tornadoes
are also spatio-temporal processes, as they develop and move across geographic
areas over time. Understanding these processes is crucial for developing effective
interventions, conservation strategies, and disaster response plans.

Definition: A spatio-temporal process is a stochastic process that describes the
evolution of a variable or set of variables over both space and time. It is char-
acterized by a spatial domain, a temporal domain, and a set of values or states
associated with each point in the spatio-temporal domain. The process captures
the dependencies and interactions between spatial and temporal components, al-
lowing for the analysis of patterns, trends, and dynamics in the data.

To illustrate this concept, let’s consider the example of temperature variation
across Barcelona city over the course of a year. In this case, the temperature vari-
ation can be described as a spatio-temporal process, where the variable of interest
is temperature, and its values change over both space and time.

In this example, the spatial domain is the city of Barcelona, which can be rep-
resented as a subset of a two-dimensional Euclidean space. The spatial domain in-
cludes all the locations within the city where temperature measurements are taken,
such as different neighborhoods, parks, and landmarks. The granularity of these
locations is known as the spatial resolution. A higher spatial resolution means
more detailed or finer spatial sampling (e.g., measurements taken at every street
corner), while a lower spatial resolution means coarser or broader spatial sam-
pling (e.g., measurements taken at the center of each city). The choice of spatial
resolution depends on the scale of analysis and the research objectives.

The temporal domain in this example is a one-year interval, starting on Jan-
uary 1st and ending on December 31st. The temporal domain includes all the time
points at which temperature measurements are recorded, such as hourly, daily,
or monthly intervals. The frequency or granularity of observations over time is
known as temporal resolution. A higher temporal resolution means more frequent
or detailed observations (e.g., samples every minute), while a lower temporal res-
olution means less frequent or coarser observations (e.g., samples every day).

Let us also explicitly enumerate the dependencies and interactions in this par-
ticular spatio-temporal process. Values at different locations in Barcelona city may
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be spatially correlated, meaning that nearby locations are likely to have similar
temperatures. Similarly, the temperature values at different times may be tempo-
rally correlated, meaning that the temperature at a given location is likely to be
similar from one hour to the next. The spatio-temporal process allows us to an-
alyze and model these correlations to understand the patterns and dynamics of
temperature variation across the city over time.

We finish this section with a mathematical formalization. A spatio-temporal
process can be represented as a function Z(s, t), where s denotes a point in the
spatial domain S, t denotes a point in the temporal domain T , and Z(s, t) repre-
sents the value or state of the process at location s and time t. The spatial domain
S is typically a subset of a Euclidean space (e.g., a two-dimensional geographic
area), and the temporal domain T is usually an interval of the real line (e.g., a time
period). The function Z(s, t) is often modeled as a random field, with specific sta-
tistical properties and dependencies that capture the spatio-temporal structure of
the process.

2.1.1 Traffic Forecasting

Traffic forecasting is the process of predicting future traffic conditions, such as traf-
fic flow, speed, and density, on transportation networks. It is a critical component
of transportation planning, traffic management, and intelligent transportation sys-
tems (ITS). Traffic forecasting models leverage historical and real-time data to es-
timate traffic states at future time intervals and specific locations on the road net-
work. These predictions are essential for mitigating congestion, optimizing traffic
signal timings, and informing travelers about expected travel times.

The key terms and definitions in traffic forecasting that are used in this thesis
are:

Traffic Flow: The number of vehicles passing a given point on a roadway per
unit of time, typically measured in vehicles per hour (vph).

Traffic Speed: The rate at which vehicles are moving on a roadway, typically
measured in kilometers per hour (km/h) or miles per hour (mph).

Traffic Density: The number of vehicles occupying a unit length of roadway,
typically measured in vehicles per kilometer (veh/km) or vehicles per mile (ve-
h/mi).

Origin-Destination (OD) Matrix: A matrix that quantifies the demand for
travel between different origin and destination pairs in a transportation network.
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Traffic Simulation: A computational model that mimics the behavior of traffic
on a road network to analyze and predict traffic conditions.

2.1.2 Weather Forecasting

Weather forecasting is the application of scientific principles and techniques to
predict atmospheric conditions at a specific location and time. It involves the
use of numerical weather prediction (NWP) models, satellite and radar observa-
tions, and meteorological data to generate forecasts of temperature, precipitation,
wind speed, and other atmospheric variables. Weather forecasts are vital for public
safety, agriculture, aviation, and various other sectors that are sensitive to weather
conditions.

Key terms and definitions in weather forecasting include:
Numerical Weather Prediction (NWP): The use of mathematical models to

simulate the behavior of the atmosphere and predict future weather conditions
based on initial observations.

Precipitation: Any form of water, such as rain, snow, sleet, or hail, that falls
from the atmosphere to the Earth’s surface.

Temperature: Temperature is a measure of the average kinetic energy of the
molecules in a substance or system. In the context of weather forecasting, tem-
perature refers to the air temperature, which is a key atmospheric variable that
affects various weather phenomena. Air temperature is typically measured in de-
grees Celsius (°C) or degrees Fahrenheit (°F) and is a fundamental component of
weather forecasts. Accurate temperature predictions are essential for agriculture,
energy consumption planning, and public health.

Atmospheric Pressure: The force per unit area exerted by the weight of the
atmosphere, typically measured in hectopascals (hPa) or millibars (mb).

Spectral Bands of Satellites: College (2020) Spectral bands refer to specific
wavelength ranges of the electromagnetic spectrum that are captured by satellite
sensors. Different spectral bands are sensitive to different features of the Earth’s
surface and atmosphere.

Visual or visible bands refers to the portion of the electromagnetic spectrum
that is detectable by the human eye. It includes wavelengths ranging from approxi-
mately 380 nanometers (nm) to 740 nm. In this range, light is perceived as different
colors, with violet at the shorter wavelengths, red at the longer wavelengths, and
other colors (blue, green, yellow, and orange) in between. Visible band imagery
from satellites is used to observe features such as clouds, land surfaces, bodies of
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water, and vegetation. Visible imagery is similar to what we see with our eyes and
is often used in true-color satellite images.

Infrared bands refer to the portion of the electromagnetic spectrum with wave-
lengths longer than visible light but shorter than microwaves. Infrared wave-
lengths range from approximately 700 nm to 1 millimeter (mm). Infrared radiation
is primarily associated with thermal energy or heat emitted by objects. Infrared
bands are further divided into categories, including near-infrared (NIR), short-
wave infrared (SWIR), mid-infrared (MIR), and thermal infrared (TIR). In weather
satellite imagery, thermal infrared bands are commonly used to measure the tem-
perature of clouds, land surfaces, and bodies of water. Infrared imagery is also
used to detect cloud heights, atmospheric moisture, and sea surface temperatures.

Microwave bands refer to the portion of the electromagnetic spectrum with
wavelengths longer than infrared radiation but shorter than radio waves. Mi-
crowave wavelengths range from approximately 1 mm to 1 meter. Microwaves can
penetrate clouds, smoke, and precipitation, making them valuable for observing
the Earth’s surface and atmosphere under various conditions. Passive microwave
sensors on satellites measure the natural microwave emissions from the Earth’s
surface and atmosphere, while active microwave sensors (such as radar) transmit
microwave pulses and measure the returned signals. Microwave imagery is used
for measuring precipitation, soil moisture, snow cover, sea ice, and ocean surface
wind speed.

Geostationary satellites are a type of Earth-orbiting satellite that maintains a
fixed position relative to the Earth’s surface. These satellites are positioned in a
geostationary orbit, which is a circular orbit located approximately 35,786 kilome-
ters (22,236 miles) above the Earth’s equator. At this altitude, the satellite’s orbital
period matches the Earth’s rotation period, allowing the satellite to remain station-
ary with respect to a specific geographic location on the Earth’s surface. As a result,
geostationary satellites provide continuous monitoring of the same region, making
them ideal for weather observation, telecommunications, and broadcasting. Geo-
stationary weather satellites are used to monitor large-scale weather patterns, track
the development of storms, and provide real-time imagery of atmospheric condi-
tions over a specific geographic area.

Polar-orbiting satellites are a type of Earth-orbiting satellite that travels in a
near-polar orbit, passing close to both the North and South Poles during each or-
bit. These satellites typically operate at much lower altitudes than geostationary
satellites, with typical orbital altitudes ranging from 700 to 800 kilometers (435 to
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497 miles) above the Earth’s surface. Due to their lower altitude and polar orbit,
polar-orbiting satellites provide global coverage and higher spatial resolution than
geostationary satellites. Each orbit takes approximately 90 to 100 minutes, and
the satellite passes over different regions of the Earth with each orbit, allowing for
comprehensive global observations. Polar-orbiting weather satellites are used for
a wide range of applications, including monitoring atmospheric temperature and
moisture profiles, measuring sea surface temperatures, observing ice and snow
cover, and tracking global weather patterns.

2.2 Benchmarks

In the context of scientific research and particularly in machine learning and deep
learning, a benchmark is a standard or point of reference against which things
may be compared or assessed. A benchmark often consists of a dataset and a set of
tasks or problems, along with evaluation metrics and sometimes baseline results
or models. Benchmarks are used to evaluate and compare the performance of
different algorithms, models, or systems under the same conditions, providing a
fair and objective measure of their capabilities.

In the field of deep learning, benchmarks have played a crucial role in driving
progress by providing researchers with common platforms for comparison and
competition. Here are a few examples of well-known benchmarks:

• ImageNet Deng et al. (2009) is a benchmark in the field of computer vision
that consists of a large dataset of annotated images and a competition (the
ImageNet Large Scale Visual Recognition Challenge, or ILSVRC). ImageNet
has been successful because it provides a large-scale, diverse, and challeng-
ing dataset for image classification and other tasks. The annual competition
has spurred many advances in deep learning, including the development of
convolutional neural networks (CNNs) like AlexNet Krizhevsky et al. (2012),
VGG Simonyan and Zisserman (2015), and ResNet He et al. (2015).

• Common Objects in Context (COCO) Lin et al. (2015) is another benchmark
in computer vision that provides a dataset and tasks for object detection, seg-
mentation, and captioning. COCO has been successful due to its focus on the
detection of objects in complex scenes with context, which is a more realistic
and challenging problem than classifying isolated images.
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• GLUE (General Language Understanding Evaluation) and SuperGLUE Wang
et al. (2019) are benchmarks for natural language processing (NLP) tasks.
They provide multiple datasets and tasks to evaluate the generalization abil-
ity of NLP models across different types of linguistic understanding tasks.
The success of GLUE and SuperGLUE comes from their comprehensive and
diverse set of tasks, which has driven the development of powerful language
models like BERT Devlin et al. (2019), GPT Radford et al. (2018) (precursor of
the well-known ChatGPT), and RoBERTa Liu et al. (2019).

These benchmarks have been successful because they provide large, diverse,
and challenging datasets; clear and meaningful tasks; and objective evaluation
metrics. They also foster competition and collaboration in the research commu-
nity, which drives innovation and progress.

2.2.1 Tasks

In machine learning, a ”task” refers to a specific problem or type of problem that a
machine learning system is designed to solve. This could include classification, re-
gression, clustering, anomaly detection, reinforcement learning, and others. Each
task is defined by a particular set of inputs and outputs, and the goal of the ma-
chine learning system is to learn a function that maps the inputs to the outputs
based on patterns in the training data.

In this thesis, we focus on tasks that involve using historical and real-time data
to make predictions about future conditions. These tasks are typically approached
as regression problems (predicting a continuous value, like traffic speed or temper-
ature) or classification problems (predicting a discrete value, like the occurrence of
a traffic incident or a severe weather event).

2.2.2 Datasets

A dataset is a collection of structured data that is used for analysis or to train, val-
idate, and test machine learning models. Each entry in the dataset, often called an
instance or example, typically consists of a set of features (or inputs) and, in super-
vised learning tasks, a corresponding label (or output). The features represent the
characteristics of the data, while the labels represent the outcome or target variable
that the machine learning model aims to predict.
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2.2.3 Evaluation Metrics

Evaluation metrics are measures used to quantify the performance or quality of a
machine learning model’s predictions. These metrics provide an objective way to
assess the model’s accuracy, precision, recall, F1 score, area under the ROC curve
(AUC-ROC), mean squared error (MSE), log loss, and many others. The choice
of evaluation metric depends on the specific task, the nature of the data, and the
business or research objectives. Evaluation metrics are essential for model selec-
tion, tuning, and validation.

For traffic speed and volume prediction, which are typically regression tasks,
the following evaluation metrics are commonly used:

• Mean Absolute Error (MAE): Measures the average magnitude of the errors
in a set of predictions, without considering their direction. It’s the average
over the test sample of the absolute differences between prediction and actual
observation where all individual differences have equal weight.

• Root Mean Square Error (RMSE): It is a quadratic scoring rule that also mea-
sures the average magnitude of the error. It’s the square root of the average
of squared differences between prediction and actual observation. The RMSE
gives a relatively high weight to large errors.

• Mean Absolute Percentage Error (MAPE): Measures the size of the error in
percentage terms. It is calculated as the average of the unsigned percentage
error.

• R-squared (Coefficient of Determination): It is a statistical measure that rep-
resents the proportion of the variance for a dependent variable that’s ex-
plained by an independent variable or variables in a regression model.

For weather forecasting the above metrics are also found in the literature to-
gether with the following additional metrics:

• Critical Success Index (CSI): The CSI measures the correctly predicted events
relative to the total number of events that were either forecasted or observed.
It’s calculated as the number of true positives divided by the sum of true
positives, false positives, and false negatives. The CSI ranges from 0 to 1,
with 1 indicating a perfect forecast. This metric is particularly useful for rare
events, as it does not consider true negatives (i.e., correctly predicting the
non-occurrence of an event) in its calculation.
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• Probability of Detection (POD) or hit rate, the POD is the proportion of ac-
tual positive events (e.g., instances of precipitation above a certain threshold)
that were correctly identified by the model. It’s calculated as the number of
true positives divided by the sum of true positives and false negatives. A
POD of 1 indicates that all actual positive events were correctly identified,
while a POD of 0 indicates that no actual positive events were correctly iden-
tified.

• False Alarm Ratio (FAR) is the proportion of predicted positive events that
were actually negative (e.g., instances where the model predicted precipita-
tion above a certain threshold, but it did not occur). It’s calculated as the
number of false positives divided by the sum of true positives and false pos-
itives. A FAR of 0 indicates that all predicted positive events were correct,
while a FAR of 1 indicates that all predicted positive events were incorrect.

2.2.4 Baseline

A baseline refers to a method, model, or metric score that serves as a comparison
point for other methods, models, or experiments.

In machine learning, a baseline model is often a simple or well-established
model that is easy to implement and understand. For example, in a classification
task, a baseline model might predict the most common class for all instances, while
in a regression task, a baseline model might predict the mean or median outcome
for all instances.

The performance of the baseline model, as measured by appropriate evaluation
metrics, provides a minimum threshold that more complex or novel models should
aim to exceed. If a complex model does not perform significantly better than the
baseline, it may not be worth the additional complexity and computational cost.

2.2.5 Benchmarks Presented in this Thesis

This thesis introduces comprehensive benchmarks constituted by data related to
traffic and weather dynamics.

These sets of data, intrinsically rich in multi-variate, spatio-temporal character-
istics, are transformed into a sequence of multi-channel images. For instance, in
the context of traffic, each pixel corresponds to the volume of vehicles and their
average speeds within a defined area. In the weather dataset, a pixel might encap-
sulate variables like temperature, precipitation, cloud coverage, among others.
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Detailed descriptions of these open datasets, along with specific tasks, evalua-
tion methods, and deep learning baseline models will be thoroughly discussed in
the corresponding chapters.

2.3 Deep Learning

Deep learning, a subfield of machine learning, focuses on algorithms inspired by
the structure and function of the brain called artificial neural networks. They con-
tain multiple layers (hence ”deep”) to model and understand complex patterns in
data. In this section, we focus on three specific types of neural networks that are
critical to our research: Convolutional Neural Networks (CNNs), Recurrent Neu-
ral Networks (RNNs), and Autoencoders. Furthermore, we shed light on essential
practices such as batch sampling and one-hot encoding, which are also concepts
required to know for our research.

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep learning models pri-
marily used for processing grid-like data such as images. CNNs utilize convolu-
tional layers, where each neuron is connected to a small, local region of the in-
put, and all neurons in the layer share weights. This weight-sharing scheme helps
CNNs process high-dimensional data efficiently, making them highly effective for
tasks like image and video recognition Lecun et al. (1998).

2.3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are designed for processing sequential data.
Unlike feedforward neural networks, RNNs maintain hidden states that capture
historical information about the sequence. At each time step, an RNN takes the
current input and the previous hidden state as input and updates the hidden state.
This allows RNNs to exhibit dynamic temporal behavior, making them suitable for
tasks such as language modeling, speech recognition, and time series prediction
Hochreiter and Schmidhuber (1997a).

2.3.3 Autoencoders

Autoencoders are a type of neural network used for learning efficient codings of
input data. They consist of two main components: an encoder that maps the input



2.4. MULTITASK MODELS 16

data to a lower-dimensional representation, and a decoder that attempts to recon-
struct the original data from this representation. The learning process minimizes
the difference (or distance) between the original input and the reconstructed out-
put, making autoencoders useful for tasks like dimensionality reduction, anomaly
detection, and learning generative models of data Ballard (1987), Goodfellow et al.
(2016).

2.3.4 Batch Sampling and One-hot Encoding

In the training of deep learning models, it is common practice to use batch sam-
pling. This involves dividing the dataset into several subsets, or batches, and up-
dating the model’s parameters based on one batch at a time. This process makes
training more manageable and efficient, especially for large datasets. Moreover,
shuffling the batches ensures that the model is not biased by the order of the data,
which can lead to more robust performance Bengio (2012), Goodfellow et al. (2016).

One-hot encoding is another essential technique in data preprocessing. It is a
method of converting categorical data into a format that can be provided to ma-
chine learning algorithms to improve prediction. This technique transforms each
category value into a new column and assigns a binary value of 1 or 0. Each integer
value is represented as a binary vector, making this method suitable for dealing
with discrete categorical values where no ordinal relationship exists Goodfellow
et al. (2016).

By understanding these deep learning concepts, we can effectively design and
train neural network models for our specific forecasting tasks.

2.4 Multitask Models

Multitask Learning (MTL) is a subfield of machine learning where multiple learn-
ing tasks are solved at the same time while exploiting commonalities and differ-
ences across tasks. This is in contrast to traditional machine learning approaches
that treat each task independently. The key idea is that by learning tasks in paral-
lel, the model can leverage the information contained in multiple related tasks to
improve generalization. This is particularly beneficial when the tasks are related
in some way, as the learning for one task can inform the learning for the others.
MTL can lead to improved learning efficiency and prediction accuracy for each
task, especially when the amount of data for each task is limited.
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As an example, consider a city with a network of roads, and suppose we have
historical data on both traffic speed and traffic volume for each road segment at
different times of day. We could train a multitask learning model to predict both
traffic speed and traffic volume for each road segment at a future time, such as the
next hour.

In this case, the model would have two tasks: speed prediction and volume pre-
diction. The model would be trained on both tasks simultaneously, with a shared
representation learning component (such as a shared neural network layer) that
captures common features relevant to both tasks, and task-specific components
(such as separate output layers) that capture features unique to each task.

The idea is that by learning to predict both speed and volume together, the
model can leverage the correlation between these two traffic parameters to im-
prove its predictions. For example, the model might learn that when traffic vol-
ume is high, traffic speed tends to be low, and vice versa. This shared knowledge
can help the model make more accurate predictions for both tasks, compared to if
it were trained on each task separately.

2.5 Multimodal Data

Multimodal data refers to data that comes from different sources or formats, or
data that represents different types of information. In the context of machine learn-
ing, multimodal learning involves building models that can process and relate in-
formation from multiple types of data.

For example, in a traffic forecasting scenario, multimodal data could include
data from road sensors (like traffic volume and speed), weather data (like temper-
ature and precipitation), and event data (like road accidents or sporting events).
Each of these data types provides a different ”mode” of information that can con-
tribute to the overall prediction task.

Another recent example a joint embedding is learned from six different modal-
ities Girdhar et al. (2023) - images, text, audio, depth, thermal, and IMU data. It
enables new generative cross-modal prompts like text and sound or image and
IMU.

The key challenge in learning from multimodal data is to effectively integrate
the different types of information, which may require sophisticated model archi-
tectures and training methods. When done effectively, multimodal learning can
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lead to more robust and accurate models by leveraging the complementary infor-
mation available in different data modes.

2.6 Generalization and Domain Adaptation

In the field of machine learning, the ultimate goal of a model is not just to perform
well on the training data, but to make accurate predictions on new, unseen data.
This ability to perform well on unseen data is known as ”generalization”. Gen-
eralization is a fundamental aspect of machine learning models, and assessing a
model’s generalization performance is crucial for understanding its effectiveness
and reliability.

Generalization is typically evaluated by training a model on a subset of the
available data (the training set) and then testing the model on a different subset of
the data (the test set) that the model has not seen during training. The performance
of the model on the test set provides an estimate of its generalization ability.

However, in many real-world scenarios, we are interested not just in a model’s
ability to generalize to unseen samples from the same distribution, but also its
ability to adapt to different but related distributions. This is known as ”domain
adaptation”. Domain adaptation is particularly relevant in spatio-temporal fore-
casting tasks, where the underlying data distributions can change over time or
across locations.

In this thesis, we introduce benchmarks that are designed to assess both the
generalization and domain adaptation capabilities of models for spatio-temporal
forecasting tasks. We train models on one spatio-temporal domain and test them
on both unseen samples from the same domain (to assess generalization) and on
samples from a different spatio-temporal domain (to assess domain adaptation).
Through these benchmarks, we aim to provide a comprehensive evaluation of
model performance in spatio-temporal forecasting tasks, taking into account both
the ability to generalize from seen to unseen data and the ability to adapt to new
spatio-temporal domains.



Part I

Deep Learning for Traffic Forecasting
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Chapter 3

Multimodal Traffic Autoencoder

This chapter is based on materials from the following peer-reviewed paper:
Herruzo and Larriba-Pey (2020). Recurrent Autoencoder with Skip Connec-

tions and Exogenous Variables for Traffic Forecasting. In NeurIPS 2019 Competi-
tion and Demonstration Track. PMLR.

3.1 Introduction

Mobility plays a vital role in our society, affecting various aspects of our daily
lives, including transportation efficiency, urban planning, and environmental sus-
tainability. With the increasing availability of data sources and advancements in
machine learning, particularly deep learning, there is a growing opportunity to
leverage these technologies to tackle mobility challenges more effectively. In this
context, machine learning offers the potential to extract valuable insights and make
accurate predictions from the vast amounts of mobility data generated by various
sources.

Accurately forecasting traffic conditions in complex urban environments poses
a significant challenge. This chapter presents a novel approach that makes core
contributions to address this task by leveraging an innovative multimodal method
for predicting speed, volume, and main traffic direction. Our approach harnesses
the power of an aggregated representation of traffic data presented as videos, al-
lowing for more accurate and comprehensive mobility forecasting.

The core contributions of this work lie in three key areas. First, we exploit the
temporal continuity and dynamics within a sequence of frames, enabling the pre-
diction of evolving traffic patterns in a lower-dimensional space. This approach
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captures the inherent relationships between past and future traffic states, enhanc-
ing the accuracy of predictions. Second, our model incorporates multimodal data,
including weather conditions, time, and seasonal information, to provide a more
comprehensive understanding of the factors influencing traffic behavior. By inte-
grating these additional variables, our approach enhances the predictive capabili-
ties of the model, resulting in more accurate and context-aware forecasts. Finally,
we introduce a novel sampling approach for sequences that ensures batch diver-
sity while parallel optimization during the training process.

Through extensive experimentation and evaluation, our approach demonstrates
significant improvements in accuracy and efficiency, providing valuable insights
for effective mobility planning and management. By leveraging the power of ag-
gregated traffic data presented as videos and incorporating multimodal informa-
tion, our method offers a promising solution for accurate and comprehensive mo-
bility forecasting in complex urban environments.

3.2 Related Work

Traffic forecasting, a crucial component of efficient transportation management,
endeavors to predict future traffic flow on various infrastructures, including roads,
bridges, railway lines, and airports Wikipedia contributors (2023). The formulation
of these forecasts necessitates the amalgamation of myriad data sources, encom-
passing current traffic patterns, the physical characteristics of the infrastructure,
and demographic information. A diverse array of devices, including loop detec-
tors, Bluetooth Mac scanners, mobile phones, and connected cars, are instrumental
in the acquisition of such data Respati et al. (2018).

This wealth of information is harnessed to build models capable of generating
predictions that illuminate the trajectory of future traffic flows. The surge in acces-
sibility to dynamic and big data, facilitated by modern technologies, has unlocked
new avenues for augmenting the precision and predictability of these traffic esti-
mations.

However, traffic forecasting is not devoid of challenges. The task has to navi-
gate substantial complexities, primarily resulting from the high dimensionality of
the large data volumes and the range of dynamics at play, such as unforeseen in-
cidents like traffic accidents Jiang and Luo (2022). Furthermore, the traffic state at
a particular location presents both spatial and temporal dependencies. Traditional
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linear time series models, including the Auto-Regressive Integrated Moving Aver-
age (ARIMA), encounter limitations in addressing such spatiotemporal forecasting
conundrums. This scenario has prompted the integration of machine learning and
deep learning methodologies, which offer significant enhancements in forecasting
accuracy.

Deep learning has emerged as a powerful tool for tackling traffic forecasting
problems, offering sophisticated mechanisms to model spatial and temporal de-
pendencies within traffic data.

Specific deep learning architectures, such as Convolutional Neural Networks
(CNNs) LeCun et al. (1989) and Recurrent Neural Networks (RNNs) or Long Short
Term Memory (LSTM) Hochreiter and Schmidhuber (1997b), have seen extensive
use in this context for spatial and temporal domains respectively. CNNs, with their
spatial invariance and ability to extract local patterns, have proven effective in
learning the spatial dependencies that exist within traffic data. On the other hand,
RNNs and, in particular, LSTMs, with their memory cells and gate mechanisms,
are adept at modeling the temporal dependencies and long-term patterns that are
inherent in time-series data such as traffic flow. Together, these models have sig-
nificantly enhanced the state-of-the-art in traffic forecasting, with improvements
in both accuracy and robustness Du et al. (2019), Chen et al. (2019).

Traffic forecasting involves the evaluation of historical traffic data, alongside
optional external factors such as weather and holidays, to predict future traffic
states. Thus, requiring multimodal data to be included in traffic models.

In the Time and Weather Aware Deep Neural Network (TW-DNN) model Ryu
et al. (2020), the authors use a multi-module DNN framework to generate reliable
long-range traffic data. It extracts features from various inputs such as weather
forecast data, time, road network information, and traffic speed and flow data.
The performance of this model has been tested in different traffic situations, in-
cluding rush hours, holidays, and heavy rains, increasing the accuracy of the sys-
tems. However, the model predicts speed and traffic flow on specific links (road
segments) in highways, as opposed to urban traffic where interaction across mul-
tiple streets happens.

A seminal piece of research that has significantly influenced our work is ”Hier-
archical Long-term Video Prediction without Supervision” [Wichers et al. 2018]. In
this study, an encoder-decoder structure is employed for predicting future video
frames. The process involves predicting within an embedded space and subse-
quently decoding to regain the original dimensionality. This dual-fold approach
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aims at minimizing both the subsequent frame output and the prediction within
the embedded space. The strategies and methodologies delineated in this work
have provided considerable inspiration for our own approach to the novel image-
like encoding of traffic forecasting.

For the development and evaluation of traffic forecasting models, the availabil-
ity of robust traffic datasets is paramount. The Traffic Flow Forecasting Dataset,
curated by the University of California Zhao et al. (2019), serves as a notable ex-
ample. This resource aids in forecasting spatio-temporal traffic volume, basing
predictions on the historical traffic volume and associated features of neighboring
locales. The dataset is rich in features, encapsulating 47 distinct variables such as
historical traffic volume sequences, day of the week, hour of the day, road direc-
tion, the number of lanes, and the road’s name. The designated task within this
dataset involves forecasting the traffic volume across all sensor locations 15 min-
utes into the future.

Traffic forecasting research typically focuses on individual road segments or
clusters of adjacent segments within a highway. However, recent methodologies
have emerged that process traffic data in a format compatible with deep learning
models originally designed for image processing. One such approach employs
Convolutional Neural Networks (CNNs) to model an entire city as a grid Jiang
and Zhang (2019). This representation facilitates traffic forecasting by efficiently
managing the high dimensionality inherent in the data and addressing spatial de-
pendencies. These attributes have proven the efficacy of CNNs in the context of
traffic forecasting, paving the way for more sophisticated, image-inspired forecast-
ing models.

3.3 The Traffic4cast Formulation

The Traffic4cast challenge frames the problem of traffic forecasting as a scene com-
pletion task over the course of a year in three distinct cities: Berlin, Istanbul, and
Moscow. This task involves projecting trajectories of raw GPS positions for each
city onto a graphical representation of the city. This representation takes the shape
of a three-channel image with dimensions corresponding to the height (495), width
(436), and channels (3). The channels represent speed, volume, and heading re-
spectively.

In the image, each pixel corresponds to a square region measuring 100m by
100m. These regions are aggregated over a time bin of 5 minutes. To represent
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a full hour of data, we stack 12 of these 5-minute time bins together. Conse-
quently, a complete day can be represented by 288 time bins, each spanning 5
minutes (24x12). Hence, the data for each city and day can be represented as a
four-dimensional tensor T

day
city [t, h, w, c] with shape (288, 495, 436, 3). Here the val-

ues are integers acting as indices for the tensor: t ∈ [0, 287] (time bin), h ∈ [0, 494]

(height), w ∈ [0, 435] (width), and c ∈ [0, 2] (channel). As a consequence, this repre-
sentation allows for this task to be framed as a video-to-video prediction.

The respective domains for the speed and volume channels are integer values
in the range of 0 to 255, while the heading channel takes on one of the values in the
set 0, 1, 85, 170, 255. The volume channel represents the count of vehicles in the
given interval and region (t, h, w), with the count being capped at certain levels to
filter out noise. These capped values are then proportionally mapped to the range
[1, 255] and rounded to the nearest integer. A value of 0 in this channel signifies
that no data is available for the given time bin.

The speed channel is calculated in a similar manner, with the only difference
being that the aggregation method is averaging as opposed to counting. Here,
a value of 0 denotes stationary vehicles, provided the volume at this location is
greater than zero.

The heading channel, on the other hand, is calculated differently. Each GPS
probe point records the heading direction in degrees (from 0 to 359), which is then
divided into four distinct heading directions; North-East (from 0 to 90, represented
as heading=85), South-East (from 90 to 180, as heading=255), South-West (from
180 to 270, as heading=170), and North-West (from 270 to 359, as heading=1). The
selected value for the heading channel is the bin with the highest count of points,
with a value of 0 being assigned when it’s impossible to determine the maximum
due to equal number of points in all directions. It’s important to note that there is
no data if and only if the volume is 0. Also note that even minor variations in car
counts, such as a difference of one vehicle, could result in a change in the value of
the heading channel. This potentially introduces noise into the data.

Figure 3.1 presents an example of conditional distributions observed within
this dataset. Notably, the heading appears to be uniformly distributed across vari-
ous speed or volume values. Conversely, the volume exhibits a narrower range as the
speed increases. This pattern is not unique to this instance; similar behaviors can
be observed across different days and in different cities.

In Figure 3.2, we illustrate the daily evolution of volume. It’s interesting to note
that the mean volume on Tuesdays in Istanbul is consistently higher than the overall
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Figure 3.1: Conditional distributions for the city of Berlin on 2018.03.14 in the val-
idation set. The figure illustrates the relationships between heading, speed, and
volume. Note the uniform distribution of heading across speed and volume, and
the narrowing range of volume values as speed increases.

Figure 3.2: Daily evolution of volume in Istanbul (represented by orange asterisks),
compared with the distribution for the same days of the week (blue dashed line
for mean and shadow for standard deviation), and with all days (continuous blue
line). The figure highlights the higher mean volume observed on Tuesdays as com-
pared to the overall daily mean. The number of days used in each aggregation is
indicated in brackets. Best viewed in electronic form.

daily mean.
The Traffic4cast dataset Kreil et al. (2020) provides 285 days for training (not to

be confused with the 288 time bins per day) , 7 for validation and 72 for testing for
each city. The training and validation sets contain information for each time bin,
but the test set only has information in 5 blocks of 12 bins (1 hour of information
for each block). The challenge’s goal is to predict the traffic for 5, 10, and 15
minutes ahead, given the information about the previous hour, five times per
day. The start times for these 15-minute prediction blocks differ slightly for the
cities of Istanbul, Moscow, and Berlin.

The problem can thus be defined as finding a function f that minimizes the loss
function L, which measures the error between the ground truth and the prediction.
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f = min
f̃∈Θ

L ( f̃ (T day
city [s−12 : s, h, w, c] ), T

day
city [s : s+3, h, w, c] ) (3.1)

The function operates on a tensor that represents a sequence of q = 12 time
bins as inputs (s− 12 : s) leading up to a given time bin (s) and aims to predict the
state of the next three time bins (s : s + 3). The parameter q could be fixed to any
integer from 1 to 12 given that the provided test sets contain 1 hour in time-bins of
5 minutes. In this work we use the whole input length q = 12.

3.4 Sampling Strategies for Video to Video

We propose three distinct sampling strategies, all of which vary based on the de-
sired sequence input length, represented as q, where q can take any value from 1
to 12. It is important to note that the output length remains constant at 3 frames
across all strategies. As a reminder, each day corresponds of 288 bins of 5 minutes,
starting from bin 0 and ending on bin 287. Figure 3.3 provides a visualization of
the methodologies.

Non-overlapping: This technique involves partitioning each day into a specific
number of non-repeated sequences. The number of sequences, Tq, is determined
by taking the ceiling of 288/(q + 3), where the ceiling function gives the smallest
integer greater than or equal to the given value. For instance, with an input length
q of 3, a day can be segmented into T3 = 48 sequences each of length 6 (3 frames
for training and 3 for testing).

Sliding Window: This approach employs every conceivable sequence of length
q + 3, initiating from frame 0, then frame 1, and continues until the last sequence
commences at frame 288 − (q + 3). For example, with an input length q of 3, the
last sequence will start at 288-(6)=282. That means that input will include times
282, 283, and 284. Then, the predicted sequence would correspond to time bins
285,286, and 287. As a comparison, the non-overlapping strategy would yield
285 days × 48 sequences / day = 13680 sequences to train per city. In contrast, the
sliding window strategy produces 285 days× (288− (3+3)) sequences / day = 80370

sequences, equating to nearly 6 times more sequences to train.
Like-test: This method restricts training to sequences with output time bins

that align with those in the test set. This would result in only a total of 285 × 5 =

1425 sequences to train.
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To instill diversity of patterns across times, days of the week or even across
cities, we use the following method. At the time of constructing each batch, our
dataset is defined as a list of pairs, each pair consisting of a ’day’ and a ’time bin’.
These pairs are shuffled at the start of every epoch, leading to batches that amalga-
mate sequences from various days, time bins and cities. This approach is expected
to expedite convergence, as batches are always unique after each epoch, a concept
elucidated by Yoshua Bengio in [Bengio 2012]. Additionally, all batch prepara-
tion and preprocessing are executed parallel to the optimization process, which
heightens the diversity and efficiency of our training. During preprocessing, data
is converted to float numbers and all values are normalized to fall within the range
[0, 1].

Figure 3.3: Sampling clips: The left image delineates the process of partitioning
a video into non-overlapping segments, each containing q + 3 frames. Despite
its simplicity and preservation of temporal continuity within each segment, this
method does not facilitate the mixing of frames from disparate segments during
training. The center image provides an overview of the sliding window methodol-
ogy, which involves indexing day and time period pairs. Subsequent q + 3 frames
are then sampled sequentially from each selected pair within a batch, enabling a
flexible combination of sequential frames from varying segments. The rightmost
image exclusively illustrates the retrieval of pairs from the test set at their specific
time periods.

In practice, these sampling strategies proved invaluable in streamlining the
model testing and training process. The non-overlapping method was instrumen-
tal in swiftly testing different architectures using a sub-sample of the dataset. The
models that showed promising performance were then trained more extensively
using the sliding window approach, which utilized all available data. Finally, the
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like-test strategy was employed to fine-tune the top-performing model, focusing
specifically on the test time bins required by the challenge.

3.5 Multimodal Model with Weather and Seasonal En-
coding

Our proposed model incorporates multimodal data, extending beyond traffic videos
to include exogenous information that could impact traffic patterns. Specifically,
we incorporate the time of day, day of the week, and both current weather con-
ditions and weather predictions for the next three time bins corresponding to the
traffic prediction horizon. These exogenous variables are matched to each frame
in the video sequence.

The weather data is sourced from World Weather Online [Weather 2019]. Im-
portantly, we note that the weather data utilized for predicting traffic is not the
a posteriori known weather, but rather, the predicted weather conditions at the
time of the input sequence. We note that the granularity of the weather data is
hourly, whereas the traffic data is recorded every 5 minutes. Therefore, we match
the weather data to the nearest time bin.

Figure 3.4 depicts the encodings used for each exogenous variable, which in-
clude both one-hot encodings and continuous values. Specifically, the day of the
week, day of the month, and day of the year are all represented as one-hot encoded
vectors of dimensions 7, 31, and 365, respectively.

The time of day is represented through cyclical continuous features. This ap-
proach efficiently captures the cyclical nature of daily patterns.

As for weather variables, we incorporate different types of data. We construct
a one-hot encoding vector that represents one of 28 possible weather states as de-
fined in [Weather 2019]. These states include, but are not limited to, conditions
such as cloudy, foggy, rainy, drizzly, and sunny.

In addition to these categorical representations, we also include continuous
variables, each normalized by its range. These variables encompass temperature
(in Celsius), ’feels like’ temperature (also in Celsius), wind speed (in km/h), pre-
cipitation (in mm), and visibility (in km).

It’s important to note that the spatial resolution for weather variables is one
data point per city per time bin. While we acknowledge that weather patterns can
vary within a city, our model uses the average conditions for simplicity. Future
work may consider higher-resolution weather data to capture intra-city variations.
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Since the resolution of the traffic data and these variables are different, they require
data fusion. This process is explained in detail in the following section.

Figure 3.4: This figure visualizes our multimodal model’s architecture, showcasing
how a diverse set of exogenous variables are encoded as inputs. This is alongside
the three types of traffic data. The included multimodal data comprise both one-
hot encodings and continuous values.

3.6 Recurrent Autoencoder with Skip Connections

In this section, we present the proposed multimodal architecture along with its
variants that we explore in our ablation studies.

3.6.1 The Model

Our model expands on the architecture proposed by [Wichers et al. 2018], which
presents a neural network capable of predicting the subsequent frame (Ft+1) in
a video sequence, given the previous frame (Ft). Utilizing an encoder followed
by a recurrent layer, the model predicts the future frame’s embedding, which is
subsequently compared to Ft+1 processed via the same encoder, leveraging an L2
loss. The embedding is then upsampled back to the original spatial resolution
using a decoder. This process involves skip connections between different layers
in the encoder-decoder tandem to fine-tune the output.

As the nature of our problem pertains to sequence-to-sequence prediction, we
generalize the above architecture to leverage the full input sequence of length q,
denoted as Xq, when forecasting the next three frames Y3. This is achieved by pro-
cessing each frame of the input sequence with the encoder iteratively and concate-
nating the resultant embeddings. A recurrent encoder then aggregates this tem-
poral information from the input sequence into a single representation. Following
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Figure 3.5: Multimodal Recurrent Autoencoder with Skip Connections. This
model incorporates an Embedding Loss and GRU layers in the encoder to enhance
low-dimensional predictions. By integrating these embeddings and skip connec-
tions (from sibling layers in the encoder), the model applies a loss function at
the same resolution as the input images, significantly improving the quality of
the decoder’s outputs. Furthermore, exogenous variables are integrated along-
side a fully connected layer, bolstering the model’s predictive capacity. Please
view it in electronic form for the best clarity. Our method code is available at
https://github.com/pherrusa7/Traffic4cast_NeurIPS_2019.

this, a recurrent decoder generates three predictions in the embedded space, de-
noted as ẽ3. These predictions are subsequently upsampled back to the original
spatial resolution (Ỹ3) using a decoder with skip connections. In addition, we in-
clude skip connections using only the final frame of the input video sequence (see
Figure 3.6). We train both the predictions in the embedded and the original spatial
resolutions using an L2 loss, weighted by α, β ∈ [0, 1]:

L = αL2, (Y3, Ỹ3) + βL2, (e3, ẽ3) (3.2)

In our design, the encoder is composed of six distinct blocks. Each of these
blocks integrates: i) two sub-blocks, each consisting of convolution, batch nor-
malization, and a ReLU activation function; ii) Max pooling; iii) and a Dropout
function with a value set at 0.5. The convolution count for each of the six blocks is
sequentially [16, 16x2, 16x4, 16x8, 16x8, 16x2].

https://github.com/pherrusa7/Traffic4cast_NeurIPS_2019
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Moreover, we have incorporated multimodal exogenous data into our model.
This data includes time-related factors such as the time of day and day of the week,
as well as weather conditions, both current and predicted for the next three time
intervals. These weather details are sourced from World Weather Online [Weather
2019]. Each frame encodes its corresponding exogenous variables along with the
predicted data for the succeeding three time periods, ensuring that the most recent
frame contains the forecast of the three target traffic frames. This exogenous infor-
mation is then concatenated with the encoder’s outputs in the embedding space.

The decoder is similarly structured with six blocks consisting of i) transposed
convolutions [Dumoulin and Visin 2016]; ii) concatenation from the corresponding
layer in the encoder; iii) Dropout set to 0.5; and iv) the same two sub-blocks as the
encoder. The number of convolutions in the decoder block is [16x8, 16x8, 16x8,
16x4, 16x2, 16x1], consecutively.

The recurrent encoder-decoder employs layers of Gated Recurrent Units (GRUs)
with unit sizes of (2048, 256, 128) and (128, 256, 2048) respectively. Frames are
initially upsampled using bilinear interpolation to 512 × 512. The output is then
adjusted to match the original size of 495×436 via cropping and a 3x3 convolution
operation followed by ReLU activation.

Throughout the remainder of this paper, our proposed model will be referred to
as the Recurrent Autoencoder All (RAE all), which includes the skip connections
(including the input), weather, and time data. The architecture of our model is
illustrated in Figure 3.5.

Figure 3.6: Illustration of skip connections utilizing solely the final frame from a
sequence, irrespective of the sequence’s length.

3.7 Model Variants and Baselines

In order to evaluate the importance of parts of the proposed model, we also eval-
uated several variations:
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• RAE not In: This model is the same as the original one but it does not use
skip connections.

• RAE not Exo: This model is the same as the original one but it does not in-
corporate exogenous variables

• RAE Clf, This model is the same as the original one for the two regression
outputs for speed and volume. However, instead of one output for the heading
channel it produces five classification outputs, making this a multitask model
in terms of two different types of objectives (regression and classification).
In this model, the regression and classification tasks are minimized with an
L2 loss and softmax cross-entropy, respectively. The seven outputs are then
combined to generate the final three channels and minimized once more with
an L2 loss. This approach is hypothesized to improve the accuracy of the
heading channel predictions.

Figure 3.7: Depiction of the proposed architecture, its modifications, and the base-
line models. The RAE not In and RAE not Exo variants highlight in red the com-
ponents that they do not incorporate; namely, exogenous variables and skip con-
nections, respectively. The RAE Clf model introduces an additional classification
layer for the heading channel, diverging from the regression approach to better
match the channel’s modality.
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Two baseline models are established for comparison. The first, referred to as
ConvLSTM, comprises three layers of Convolutional LSTM [SHI et al. 2015] with
32, 64, 64 units, respectively, followed by a tanh activation function. A final ConvL-
STM layer with three units and ReLU activation is appended, and the entire model
is trained using an L2 loss. Note that a final ReLU activation allows the model
to predict a value of 1, which aligns with the heading channel’s domain (see sec-
tion 3.3), whereas tanh would not. The second baseline, ConvLSTM+Clf, augments
the ConvLSTM model with an extra classification branch for the heading channel.
The additional loss for this model is a softmax cross-entropy, just as in the variant
RAE Clf.

A depiction of the model variants and the baselines can be seen in Figure 3.7.

3.8 Results

Our experimental results draw upon the validation set furnished by the challenge
(refer to section 3.3). This set essentially acts as a test set, given that the models
are encountering this data for the first time. We created our own validation set by
randomly selecting seven days per city from the given training set, which served
to identify the best-performing epoch snapshots. Since the test set in the challenge
lacks ground truth, local computation of performance is not feasible. At the end of
this section, we relay the score provided by the competition cloud system for our
top-performing model.

Table 3.2 presents the outcomes for the baseline models across the three cities,
with a focus on the mean square error (MSE) for all three target channels and the
accuracy (ACC) only for the heading channel. Then, ACC is computed by com-
paring the only five possible values representing directions in the ground truth
(see section 3.3) with the output of the regression task. The results indicate that
the integration of the classification task (as shown in the ConvLSTM+Clf column
in Table 3.2) significantly improves MSE in Moscow. However, the improvement
is marginal in Berlin and the performance in Istanbul actually deteriorates. Nev-
ertheless, the accuracy for the heading channel improves in two out of the three
cities, suggesting that the regression in this channel benefits from the multitasking
approach.

We experimented with using the output from the classification branch in the
ConvLSTM+Clf model as the output for the heading channel, by taking its argmax
values. This increased the ACC from 0.455 to 0.803, but also raised the MSE from
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0.012 to 0.023, which worsened the crucial metric for the challenge. Our conjecture
is that the gap between the incorrect prediction heading values is now larger when
using the default prediction minimized with MSE, as softmax cross-entropy does
not yield closer values when the correct one is not guessed (it does not take into
account inter-class similarities). Consequently, we decided not to use the classifiers
for the challenge. However, we plan to explore a classification loss with a distance
for similar classes in future work, which could assist the model in predicting the
most similar class when an incorrect prediction is made.

The baseline models were trained exclusively with the non-overlapping sam-
pling strategy, and input sequence with length q = 3, as the training time for 1
epoch exceeded 7 hours on an NVIDIA Titan RTX with 24GB. In contrast, 1 epoch
of our proposed method only required 35 minutes, primarily because the recurrent
layers operate in a much lower dimensional space. In our experiments, the weights
for the two terms in the loss function of eq. 3.2 were determined through a lim-
ited grid search, due to time constraints, in the set 0, 0.5, 0.9, 1, with the best results
achieved for α = 1 and β = 0.9. See details of the machine and main libraries used
in table 3.1.

Table 3.1: Machine and tools used for the training and evaluation of the models at
the Traffic4cast 2019 challenge.

GPU NVIDIA Titan RTX with 24GB
CPU Intel(R) Core(TM) i9-9900K @ 3.60GHz
Cores/Threads 8 cores / 16 threads
RAM 64GiB
Tools Keras, TensorFlow, NumPy

Given the time restrictions of the challenge, our remaining experiments concen-
trate solely on enhancing the performance for the city of Moscow, as the baseline
models exhibited the poorest results there. Future work will extend these compar-
isons to other cities.

Table 3.3 presents the performance of our proposed method and its variants,
as tested in Moscow. The standout model is RAE all, highlighted in bold, which
was fine-tuned from RAE not In by incorporating a new skip connection from the
final frame in the input sequence to the decoder. This addition allows the model
to be further refined. Notably, model RAE Clf demonstrates effective learning in
the heading channel, maintaining a mse of approximately 0.0144, a noteworthy im-
provement from the 0.0239 score achieved by the same approach in the baseline.
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Table 3.2: Comparative Analysis Across Three Cities: Baseline Performance. This
table illustrates the mean square error (mse) for three target channels and the ac-
curacy of the heading channel. Each model displays the number of epochs prior to
early stopping. A ’+’ symbol denotes that the ConvLSTM+Clf model commenced
training from the final snapshot of the ConvLSTM weights, with its new classifica-
tion branch initialized with random weights.

mse (acc heading), #epochs ConvLSTM ConvLSTM+Clf
Moscow 0.0126 (0.265), 3 0.0120 (0.455), +3
Istanbul 0.0090 (0.657), 3 0.0096 (0.686), +3
Berlin 0.0071 (0.536), 5 0.0071 (0.418), +1
mean 0.009618 (0.4860) 0.009603 (0.5196)

Table 3.3: Performance Comparison of Proposed Method and Variations Against
Baseline in Moscow: This table presents the global mean square error (mse) and
the accuracy of the heading channel for our proposed method and its variations,
contrasted against the baseline in Moscow city. The number of training epochs is
also displayed. A particularity is the epoch format ”10+5”, which signifies that
the model was fine-tuned for an additional 5 epochs using the weights from a
previously trained model (to the left) that underwent 10 epochs.

ConvLSTM+Clf RAE not Exo RAE not In RAE all RAE Clf
mse 0.012037 0.011873 0.011875 0.011816 0.014442
heading acc 0.455 0.469 0.453 0.437 0.508
epochs 4 10 10+5 15+3 44

Table 3.4: Results for Our Top-Performing Model, RAE all, in Moscow: This table
showcases the complete mse results in Moscow city for our premier model. As
anticipated, the MSE decreases as the predicted time bin approaches, indicating
enhanced forecast accuracy for closer time periods.

Moscow — mse: 0.011816756
volume speed heading

5 minutes 0.000095 0.005128 0.029793
10 minutes 0.000102 0.005173 0.030223
15 minutes 0.000104 0.005214 0.030514

As future work, we aim to enhance this model since our goal is for heading outputs
to belong to the five possible values in the domain strictly, factoring in a metric for
inter-class similarity.

In Table 3.4, we provide detailed metrics for each channel and target time for
the Moscow dataset. It’s evident that the prediction difficulty increases with the
length of the forecast horizon across all channels, although the performance decre-
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ment is only marginal. Interestingly, the volume channel proves to be the least
challenging, a result that aligns with our expectation given that most pixels in the
images do not cover roads, thereby frequently reflecting a volume of zero. This
detail further underscores why Moscow, which boasts a denser road network com-
pared to Istanbul or Berlin, poses a more significant challenge for accurate predic-
tion.

Our proposed architecture, when used for Moscow, along with the best base-
line for Istanbul and Berlin, achieved a mse score of 0.00981 in the challenge. We
anticipate that a broader application of our method, with training implemented for
all cities on the proposed model, will yield substantially improved performance.
Unfortunately, this could not be tested due to time and hardware constraints.

3.9 Discussion

In this study, we introduce a Recurrent Autoencoder with Skip Connections and
Exogenous Variables for Traffic Forecasting. This model is specifically designed for
a unique representation of traffic data, as introduced by the Traffic4cast Challenge
at NeurIPS 2019. This representation transmutes aggregated city traffic data into
video-like sequences of images, thereby capturing the temporal evolution of traffic
patterns.

Our method harnesses the sequential nature of the input data, effectively in-
tegrating spatio-temporal information within a compressed space and generating
the output sequence through a single inference pass. The model employs dual loss
functions to ensure robust predictions in the embedding space and high-resolution
reconstructions in the original space. We additionally integrate exogenous vari-
ables such as day of the week, time of the day, and weather conditions. A sequence
sampling strategy is proposed that operates concurrently with the optimization
process, resulting in diverse and rich batches at each training epoch. The efficacy
of our approach is demonstrated by achieving a mean squared error of 0.00981 on
the Traffic4cast Challenge test set.

Looking ahead, we plan to refine our multi-task approach that incorporates the
classification results of the heading channel as input for the regression-based pre-
diction task, ensuring that inter-class similarity is accounted for. Further work will
be conducted to explore the intrinsic properties of geographical models, with the
goal of identifying which deep learning architectures can best leverage the inher-
ent rules that characterize the data [Jonietz and Kopp 2019].
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Chapter 4

Weather4cast 2021: A New
Spatio-Temporal Benchmark

This chapter is based on materials from the following peer-reviewed paper:
Herruzo et al. (2021a). High-resolution multi-channel weather forecasting –

First insights on transfer learning from the Weather4cast Competitions 2021. In
IEEE International Conference on Big Data (Big Data), 2021.

4.1 Introduction

Understanding and monitoring the meteorological dynamics of our planet have
become critical components of our global consciousness. They have far-reaching
implications, not only for our immediate daily activities, such as agriculture and
traffic, but also for our long-term survival as we grapple with the consequences of
climate change Bauer et al. (2015). The modern age has seen significant strides in
our ability to observe and predict the weather, with weather observation emerging
as a key domain in assessing our planet’s health.

Satellite technology has transformed the field of weather monitoring. High-
resolution time series, which offer detailed observational data across time, can
now be collected by geostationary satellites like the Meteosat Second Generation
(MSG) constellation. These satellite constellations remain fixed over particular ge-
ographical regions, providing frequent updates and enabling continuous monitor-
ing Schmetz et al. (2002). This capability is essential as it supplements terrestrial
observations that are often sparse or completely absent in many regions across the
globe.

39
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Historically, satellite measurements have been employed in physics-based semi-
empirical models for estimating weather variables of interest and formulating weather
predictions. However, in recent years, with the surge of Big Data and the advent of
advanced machine learning techniques, there has been a paradigm shift in short-
term weather forecasting Ravuri et al. (2021b), Bauer et al. (2021), Sønderby et al.
(2020), Agrawal et al. (2019), Rasp et al. (2020), Berthomier et al. (2020).

Machine learning approaches have emerged as competitive alternatives to tra-
ditional mechanistic models, transforming our methods of weather forecasting.
While these innovative methods have garnered significant interest in meteorologi-
cal circles, they are also fascinating in the broader machine learning sphere, specif-
ically concerning spatio-temporal data. Weather satellite data, with its complex
and dynamic characteristics, serves as a unique application domain and experi-
mental field for developing and refining deep neural networks. These networks
seek to identify and model functional patterns inherent in dynamic stateful sys-
tems.

The successful application of machine learning techniques in weather forecast-
ing is dependent on the availability of comprehensive, high-quality reference data,
along with robust benchmarks for comparison. Ideally, these benchmarks and
datasets should capture the inherent complexity and diversity of weather patterns
across the globe, reflecting the spatiotemporal distribution shifts across different
spatial regions and time periods.

However, a closer look at the currently available shared datasets reveals some
notable limitations. Some of these datasets lack high resolution, which can under-
mine the effectiveness of machine learning algorithms Rasp et al. (2020), Schroeder de
Witt et al. (2021). Others may provide high resolution but are restricted in their ge-
ographical coverage, representing only specific regions like the United States of
America or the European Union Veillette et al. (2020b), Saltikoff et al. (2019b). This
limited diversity can hamper the development and testing of machine learning
models intended for global application.

To address this gap, we introduce the Weather4cast competitions. These com-
petitions are pioneering in that they provide common reference data and bench-
marks, specifically designed for evaluating machine learning models on multi-
channel, high-resolution weather satellite data. The challenge is constructed to
test model predictions in previously unseen locations (spatial transfer learning)
and in the year succeeding the training data period (temporal transfer learning).
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4.2 Related Work

We here outline early pioneering work in the field, related datasets, and remaining
challenges. Deep learning models have for the first time achieved competitive re-
sults in short-term forecasting / now-casting Sønderby et al. (2020), Agrawal et al.
(2019), Berthomier et al. (2020), Veillette et al. (2020b). Remarkably, the MetNet
model Sønderby et al. (2020) obtained better results than operational numerical
weather models up to 8 hours into the future. The underlying data incorporate
high-resolution satellite and ground radar precipitation measurements but are lim-
ited to the USA. Moreover, the data unfortunately have not been publicly released.

Open weather datasets currently available include: RainBench Schroeder de
Witt et al. (2021) and WeatherBench Rasp et al. (2020), with a coverage of the entire
globe but at low resolution both in space and time. EarthNet2021 Requena-Mesa
et al. (2021), high resolution in space but very low resolution in time (5 days).
OPERA radars Saltikoff et al. (2019b), with both high resolution in both space and
time but only covering the European Union (EU). SEVIR Veillette et al. (2020b), at
high temporal and spatial resolution but only covers the United States (US), and
samples on the same location are not guaranteed to be retained for longer than
4h. This implies that a certain region can’t be systematically compared with other
regions for longer periods of times. For an overview of these datasets see Table 4.1.

Conversely, the European Organisation for the Exploitation of Meteorologi-
cal Satellites (EUMETSAT) hosts an extensive database of satellite radiances and
derivative products from the Meteosat Second Generation (MSG) on their website
(archive.eumetsat.int). While these resources can theoretically be accessed without
cost, acquisition of a license is subject to approval, contingent upon the intended
use of the data and membership of the applicant’s country in the EUMETSAT con-
sortium, among other constraints. Furthermore, the process of bulk downloads is
a substantial impediment due to its extensive duration, which can range from a
week to several months. Cumulatively, these factors present significant barriers to
data access, particularly for those without specialized knowledge or resources.

4.3 The Weather4cast Formulation

4.3.1 Datasets

The dataset utilized in the Weather4cast competition originated from the Meteosat
geostationary meteorological satellites, managed by the European Organisation

https://archive.eumetsat.int/
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Table 4.1: Comparison of key weather datasets. The table lists Dataset name,
Source and sensor name, the number of Variables, spatial Resolution, Grid size
and Coverage, Sampling time, and the total number of Data points. Spatial res-
olution for satellite measurements is the best resolution achieved, as given at the
nadir, i.e., directly below the satellite. Private datasets are marked with ∗.

Dataset Source Variables Resolution Sampling Data
(Grid / Coverage)

WeatherBench ERA5 110 156 km (128×256 world) 1h 1× 1012

RainBench ECWMF
ERA5
IMERG

3
110
1

156 km (128×256 world) 3 h
1 h
30 min

2× 109

MetNet∗ GOES-16
MRMS

16
1

1 km (1024x1024 US patches) 15 min
2 min

2.3× 1013

SEVIR GOES-16
NEXRAD

5 + storm desc
1

2 km (192x192 US patches) 5 min 1× 1011

EarthNet2021 Sentinel-2
E-OBS

7
7

20 m (128x128 EU patches) 5 days
daily

2.6× 1011

Opera Opera radar 3 2 km (200 radars EU) 15 min 1× 109

Weather4cast21 NWC SAF 23 3 km (256x256 EU, N.
Africa, M. East patches)

15 min 2.3× 1011

for the Exploitation of Meteorological Satellites (EUMETSAT). This dataset encom-
passes a multitude of weather variables, meticulously derived from satellite data
by dedicated EUMETSAT Satellite Application Facilities (SAF) units, specifically
the Nowcasting (NWC SAF).1 The information contained within the Meteosat’s
second-generation images was subsequently processed via NWC SAF software,
created by a consortium of national meteorological services, which includes the
Spanish State Meteorological Agency AEMET.2

The following weather products were delineated as target variables for pre-
diction in the proposed benchmark: surface accessible temperature (which could
either be the top of a cloud or the earth’s surface), convective rainfall rate, probabil-
ity of occurrence of tropopause folding, and the cloud mask. An example of these
variables can be seen in Fig. 4.2. Moreover, the dataset included an additional 25
weather products comprising auxiliary variables like cloud type, accumulated rain
rate, pressure, alongside a selection of quality flags. Although these variables were
not required for prediction, they were available to be incorporated as supplemen-
tary model inputs by the participants.

1http://nwc-saf.eumetsat.int/nwc-saf.eumetsat.int
2Acknowledgement of the data source: The competition data contains modified AEMET/NWC

SAF products from February 2019 to February 2021.

http://nwc-saf.eumetsat.int/
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Each of the weather products was encoded as distinct channels in the weather
images, with every image consisting of a 256 × 256 pixel grid. Every pixel repre-
sented an approximate area of 4,km × 4,km. The images were captured at regular
15-minute intervals over the span of a year. Subsequently, the competition data
were divided at random, on a per-day basis, into training sets (constituting 80% of
the days), validation sets (10%), and test sets (10%).

The core dataset included training, validation, and testing sets for five distinct
geographical regions, as shown in Fig. 4.1:

• R1 – The Nile region, featuring Cairo,

• R2 – Eastern Europe, with Moscow,

• R3 – South West Europe, including Barcelona,

• R7 – The Bosphorus region, with Istanbul,

• R8 – Eastern Maghreb, including Marrakech.

On the other hand, the spatial transfer learning dataset solely included the
testing sets for an additional six regions:

• R4 – Central Maghreb, featuring Timimoun,

• R5 – South Mediterranean, with Tripoli and Tunis,

• R6 – Central Europe, including Berlin,

• R9 – The Canarian Islands,

• R10 – The Azores Islands,

• R11 – North West Europe, including London, Paris, Brussels, and Amster-
dam.

Furthermore, static geographical data, such as altitude, longitude, and eleva-
tion, were provided within separate channels for each pixel, ensuring comprehen-
sive georeferencing for the entire dataset. This detailed data specification facilitates
a thorough analysis and understanding of the unique weather patterns exhibited
across these diverse geographical regions.
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Figure 4.1: The dataset spans several selected regions marked in distinct colors.
The blue-marked regions pertain to the core challenge, where participants have
access to training data. Conversely, the orange-marked regions are exclusively
for the spatial transfer learning challenge, in which no training data is offered.
These regions are notably varied, encompassing a wide range of typical weather
conditions and spanning across a diverse geographic domain in terms of latitude
and longitude.

Figure 4.2: The illustrated examples represent target variables. Commencing from
the left, typical frames are displayed for temperature, tropopause turbulence prob-
ability, and cloud mask, specifically for region R3, which covers South West Eu-
rope.
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4.3.1.1 Processing of the Temperature Variable

EUMETSAT provides two distinct products for the variable of temperature, each
with its unique data collection methodology and limitations. The first product
presents temperature measurements taken at the surface level, although these mea-
surements are exclusively available for regions devoid of cloud cover. In instances
where clouds are present, obstructing the surface-level readings, the dataset marks
these instances as a missing value.

Conversely, the second product measures the temperature at the tops of clouds,
providing a valuable counterpoint to the surface-level data. This product simi-
larly assigns a missing value to pixels corresponding to cloud-free areas. This dual
dataset structure poses a challenge for deep learning models operating on images,
as such models typically do not handle missing values effectively.

To mitigate this issue and enable efficient utilization of the available data, we
have unified these two distinct variables into a single, cohesive dataset. This
process entails integrating surface-level temperature measurements, top-of-cloud
temperature readings, and instances where missing values are assigned due to the
presence of clouds or the absence thereof.

Figure 4.3 visualizes this process of integration, demonstrating the methodol-
ogy used to amalgamate these two disparate datasets into a unified, contiguous
temperature dataset. This fusion of data ensures that the deep learning models
can effectively operate on the entire dataset, circumventing potential difficulties
associated with missing values. Furthermore, this approach maximizes the infor-
mational value of the EUMETSAT products by leveraging both surface-level and
top-of-cloud temperature readings, providing a more comprehensive picture of the
temperature variable.

4.3.2 Tasks

The Weather4cast benchmark, building on the precedent established by our NeurIPS
2019 competition in the traffic domain Kreil et al. (2020), and also drawing inspi-
ration from Google Research’s rainfall prediction approach Sønderby et al. (2020),
Agrawal et al. (2019), revolutionizes weather forecasting by treating it as a video
frame prediction task. This approach is further enriched by incorporating two dis-
tinct yet interconnected tasks, each representing different aspects of weather pre-
diction and providing diverse challenges for the participating models. These tasks
are:
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Figure 4.3: Unification of Surface and Top Cloud Temperature Variables. This fig-
ure illustrates the process of consolidating two separate temperature readings into
a singular measure. The left panel represents the top cloud temperature variable,
which offers temperature measurements at the top of the clouds and missing val-
ues for cloud-free pixels. The middle panel demonstrates the surface temperature
variable, which provides measurements when there are no occluding clouds and
returns missing values when cloud cover is present. The right panel showcases the
unified temperature variable, derived from combining the surface and top cloud
temperature readings, providing a comprehensive measure of temperature irre-
spective of cloud presence. All values are expressed in Kelvin (K).

1. The Core Challenge: This primary task necessitates the prediction of four
selected weather parameters, namely, temperature, convective rainfall rate,
probability of occurrence of tropopause folding, and the cloud mask. The
geographical focus is centered on the core dataset regions, identified as R1,
R2, R3, R7, and R8, where comprehensive training data is provided. These
regions are visualized in Fig. 4.1 for better comprehension.

2. The Spatial Transfer Learning Challenge: This challenge expands upon the
boundaries of the Core Challenge, requiring the models to extrapolate their
predictions to six new, unseen regions (R4, R5, R6, R9, R10, and R11). Signif-
icantly, no training or evaluation data is provided for these regions, thereby
challenging the models to extend their learned pattern recognition and pre-
diction abilities to novel locations.

Under both tasks, the models are required to forecast the next 32 weather frames
(equating to 8 hours of weather, sampled at 15-minute intervals) based on the pre-
ceding 4 images (corresponding to the last 1 hour of weather). This translates into
predicting the four target weather characteristics over the entire test dataset re-
gions. The format of the prediction necessitates an array of size (32, 4, 256, 256)
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for each of the 36 test days provided, as demonstrated in Fig. 4.4. In the Spatial
Transfer Learning Challenge, models can only use 1 hour of weather data for the
36 test days.

Figure 4.4: The Weather4cast competition posed a unique task and set of challenges
to the participants. They were required to generate predictions spanning 8 hours
for four distinct variables. The core challenge required the generation of predic-
tions for locations for which training data was made available. On the other hand,
the spatial transfer learning challenge demanded predictions for regions where no
training data was provided.

4.3.2.1 Target Variables Distributions

The benchmark’s proposed target variables are inherently heterogeneous, embody-
ing a matrix of intricate correlations. A clear visualization of this complexity is de-
picted in Figure 4.5, which presents the distribution of each variable within region
3 as a representative example.

The distribution of the temperature variable appears to mimic a mixture of
Gaussians, suggesting the operation of two underlying processes. There is a higher
mean temperature associated with the surface level measurements, and a lower
mean corresponding to the temperatures at the tops of clouds. This bimodal dis-
tribution signifies the distinct temperature profiles associated with these two envi-
ronmental strata.

Contrastingly, the rainfall rate variable exhibits a zero-inflated distribution, in-
dicating that the majority of pixels across all regions typically register no rainfall,
rendering most of the dataset dry. Despite this, the distribution of rainy days dis-
plays substantial variability across different regions, hinting at regional differences
in precipitation patterns.
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Tropopause folding occurrence is quantified as a probability and demonstrates
a distribution that is skewed to the right. This skewed distribution reflects the
relative rarity of this meteorological phenomenon.

Lastly, the cloud mask variable operates on a binary system, wherein the value
of one signifies the presence of a cloud at a specific pixel, and a value of zero
denotes cloud absence. This simple binary distinction translates into a distribution
that distinctly marks the extent of cloud cover within a region.

In summary, the distributions of these target variables, as illustrated in Figure
4.5, underscore the complex, heterogenous nature of the dataset and highlight the
varied statistical patterns each variable exhibits. This richness in data and the as-
sociated complexities warrant careful consideration in the subsequent modeling
processes.

values
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std

Figure 4.5: Distribution of Target Variables in Region 3. From left to right, this
figure illustrates the distribution characteristics of the four target variables - sur-
face and top cloud temperatures, rainfall rate, tropopause folding probability, and
cloud mask. The temperature variable appears to follow a Gaussian mixture distri-
bution, with higher mean values for surface temperatures and lower mean values
for top cloud temperatures. The rainfall rate exhibits zero inflation, with most pix-
els across all regions recording no rainfall, although the distribution of rainy days
varies by region. The tropopause folding probability presents a right-skewed dis-
tribution. The cloud mask, a binary variable, indicates the presence (value 1) or
absence (value 0) of cloud cover at each pixel.

This novel structure of the Weather4cast benchmark offers a comprehensive
platform for testing and comparing different weather forecasting models. It allows
for the exploration of innovative techniques and methodologies in machine learn-
ing, weather forecasting, and spatio-temporal transfer learning, with the unique
feature of dealing with both known and unknown regions. This, in turn, con-
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tributes to the broader discourse in the field of meteorology and machine learning,
pushing the boundaries of what these models can achieve.

4.3.3 Metrics

Our proposed evaluation metric extends the standard average mean squared error,
with modifications to account for the idiosyncrasies of the data. This involves
three key steps: (i) we stabilized the score variance by employing a subsampling
approach on the measured data points to account for varying levels of missing
values in the target data derived from satellite images, (ii) we ensured all error
variables are equally weighted, and (iii) we transformed variables representing
probabilities into real number representations.

In the test dataset, the evaluation encapsulates a total of D = 36 days, with T =

32 time intervals and Tpixels = 256 × 256 total pixels. This spans across regions R1,
R2, R3, R7, and R8 in the Core Challenge (a total of NCore = 5 regions), and regions
R4, R5, R6, R9, R10, and R11 in the Transfer Learning Challenge (NTransfer = 6). The
models are tasked with predicting V = 4 target variables.

Here’s a more detailed explanation of how the error computation works:

• For the temperature variable, a fixed number of non-missing values (Ttemperature =

Tpixels −M ) are sub-sampled to stabilize the error variance, a necessary mea-
sure due to the substantial variance in the number of missing values across
different frames (up to M = 53936 missing values in an image). For the re-
maining variables (v), all pixels are utilized (Tv = Tpixels).

• The variable representing the tropopause folding probability is mapped to
a logit scale (like in a logistic regression), ensuring that the computation of
a mean squared error is meaningful. ±∞ are mapped to ±5.806, a value
distinct from the other finite values, through a data-driven approach. The
total range is subsequently normalized to [0, 1]. Listing 4.1 shows the actual
implementation in Python.

• To ensure an equitable combination of errors from different variables, we
normalize the errors of each variable by dividing it by the error of a simple
baseline model (the persistence model), w(v). This scoring scheme assigns a
score greater than 1 to predictions that perform worse than the simple per-
sistence baseline, and a score less than one to those that perform better.

https://en.wikipedia.org/wiki/Logistic_regression
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Then, the formula to compute the score for each task C ∈ {core, transfer} is
defined in Equation 4.1.

ScoreC =
1

DTNCV

D∑
d=1

T∑
t=1

∑
r∈RC

∑
v∈Variables

1

Tv × w(v)

Tv∑
p=1

(yp − ŷp)
2 (4.1)

where y and ŷ are the real and prediction values at pixel p.

Listing 4.1: Python code for logit function
def l o g i t ( x ) :

return np . log ( x/(1−x ) )

def norm logi t ( x , M = 0 . 9 9 7 , m = 0 . 0 0 3 ) :
””” l o g (M) = − l o g (m) = 5 .806 ”””

# 1 . c l i p pre − l o g i t t o a v o i d l o g ( 0 ) and l o g ( 1 / 0 )
x [ x>=1] = M
x [ x<=0] = m

# 2 . a p p l y l o g i t
x = l o g i t ( x )

# 3 . n o r m a l i z e l o g i t
M = − l o g i t (m)
x += M
x /= 2*M

return x

4.4 Associated Competitions and Provided Software

The Weather4cast datasets and benchmarks serve as a unifying force across diverse
disciplines, bridging machine learning, time series analysis, geospatial science,
meteorology, and Earth observation. These resources aim to foster collaborative
research efforts and invite insights from a broad spectrum of academic communi-
ties. As a testament to this goal, we have successfully orchestrated two scientific
competitions which were accepted at distinct conferences.

In the following section, we will detail the various stages of the competition, the
resources made available to participants, and the support mechanisms provided.
This includes a comprehensive starter kit equipped with code and baseline models,
as well as data access provisions.
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4.4.1 Weather4cast Venues 2021

We hosted 2 incremental competitions accepted in the following venues:

• Stage 1 (April 1 – June 30, 2021): The core challenge used the subset of regions
R1, R2, and R3 while the transfer learning challenge used regions R4, R5, and
R6. Selected papers were invited to present their work in the 1st Workshop
on Complex Data Challenges in Earth Observation3 at the 30th ACM Interna-
tional Conference on Information and Knowledge Management Gruca et al.
(2021b).

• IEEE Big Data Cup (July 1 – October 27, 2021): This challenge used the com-
plete dataset. The core challenge used the subset of regions R1, R2, R3, R7,
and R8 while the transfer learning challenge used regions R4, R5, R6, R9,
R10, and R11. Selected papers were invited to present their work in a special
session devoted to the challenge at the IEEE Big Data conference 4 Herruzo
et al. (2021a).

In any of the two competitions, participants could choose to take part in only
the core challenge, the transfer, or both. Participants would have to upload their
predictions for the test datasets to the leaderboard of the core and transfer learning
competitions for quick feedback on model performance.

Everyone was allowed to submit up to five predictions but could delete older
submissions to upload more – so an infinite number of submissions was possible
but only in a rate-limited fashion. As is common to avoid over-fitting in the course
of a competition, however, the final score was not based on the test dataset but on
an additional held-out test dataset (final dataset), which was released during the
last week of the competition. This final dataset contained data for the same regions
in both core and transfer competitions but for the year following the period of the
training data (temporal transfer learning).

For the final dataset scoring could only submit up to three predictions. Those
submissions could not be deleted, and the best score of these three was used to
determine the final place on the leaderboard for each participant.

3www.iarai.ac.at/CDCEO21
4http://bigdataieee.org/BigData2021/BigDataCupChallenges.html

http://www.iarai.ac.at/CDCEO21
http://bigdataieee.org/BigData2021/BigDataCupChallenges.html
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4.4.2 Weather4cast Software

We developed a website to easily access Weather4cast: (http://weather4cast.ai).
This provides the frontend and backend that enables (i) registration to the com-
petition, (ii) downloading the data, (iii) submitting predictions, (iv) monitoring
the leaderboards, and (v) interacting with other participants and organizers in the
forum sections.

In addition, in the Weather4cast GitHub repository5 we provided a starting kit
featuring:

• Data links and descriptions

• Tutorials on how to read, visualize, and save the weather movies

• Sample data loaders to input data for model training

• Tutorials on how to train and run predictions for validation benchmarks

• Baseline models implemented in PyTorch, including:

– A persistence model

– A deep learning model based on the UNet architecture Ronneberger
et al. (2015) which its variants did well in similar tasks before Choi (2019;
2020)

– An ensemble model combining several deep neural networks inspired
by Choi (2020)

• Instructions and examples of how to submit predictions to the online leader-
boards.

• An example of an inference script to compute predictions with already trained
models.

4.5 Baselines and Models

In this section, we first present our proposed model which will serve as a baseline.
Then, we describe all the Weather4cast 2021 models used in the benchmark.

5https://github.com/iarai/weather4castgithub.com/iarai/weather4cast

http://weather4cast.ai
https://github.com/iarai/weather4cast
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4.5.1 Conditional U-Net

The persistence model is a frequently used baseline in weather forecasting, rec-
ognized for its simplicity and surprisingly challenging performance to surpass
Agrawal et al. (2019). This model functions as an identity mapping, using the
present state as the forecast for all future states.

The U-Net architecture Ronneberger et al. (2015) has demonstrated remarkable
success across various applications including image segmentation Ronneberger
et al. (2015), precipitation forecasting Agrawal et al. (2019), and traffic prediction
Kreil et al. (2020), Choi (2019; 2020), Herruzo and Larriba-Pey (2020). Thus, it of-
fers a valuable point of comparison. Here, we extend and adapt this type of model
proposing a few strong baselines for the Weather4cast 2021 benchmark:

Conditional U-Net, individual for regions R1, R2, R3, R7, and R8: Standard
U-Nets have been utilized for one-hour ahead precipitation forecasting Agrawal
et al. (2019), a configuration that permits complete hourly predictions by itera-
tively incorporating the preceding hour as input. In contrast, the MetNet approach
Sønderby et al. (2020) introduced the future time to predict, t+ n, as an additional
input parameter. We found this adaptation more versatile as it permits querying
the model for any trained lead time without requiring iterative input of subsequent
predictions. Rather than adopting a one-hot encoding, as in MetNet, to represent
the future time-bins for prediction, we introduce a scalar from 0 to 1 that indi-
cates the intended prediction lead time. The scalar represents the ratio n/32 which
is appended as an extra channel to the input sequence and fed into a U-Net (in
8 hours there are 32 intervals of 15 min). The time dimension T of the tensor is
collapsed into the channels dimension C, expanding the depth of the channels:
[T,C,W,H] 7→ [T × C,W,H].

Ensemble of U-Nets: For the core challenge, individual conditional U-Nets are
trained for each of the five regions. For the spatial transfer learning challenge,
predictions for the additional regions are produced by averaging the outputs of all
five U-Nets.

These baseline models were implemented using NumPy Paszke et al., PyTorch
Paszke et al., and PyTorch Lightning Falcon et al. (2019), with a batch size of 32 and
utilizing a Tesla V100 (see table ??). We set the training to 10 epochs with early stop-
ping implemented after 3 epochs without improvement, using the best-performing
epoch for subsequent inference. The Adam optimizer Kingma and Ba (2017) was
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employed with a learning rate of 10−3. All associated code and model weights can
be accessed on our GitHub repository at github.com/iarai/weather4cast.

Table 4.2: Machine and tools used for the preparation, training and evaluation of
the models for the Weather4cast 2021.

GPU 8x Tesla V100-PCIE-32GB
CPU 2x Intel(R) Xeon(R) Gold 6146 CPU @ 3.20 GHz
Cores/Threads 12 cores / 24 threads (per CPU)
RAM 754Gi (Samsung DDR4-2600)
Tools PyTorch, PyTorch Lightning, NumPy

4.5.2 Weather4cast 2021 Models

The top-scoring model in both the core and transfer learning competitions was a re-
current convolutional network employing residual units as opposed to traditional
convolutions, as proposed by Antifugue Leinonen (2021a). A notable feature of
this architecture was its capacity to maintain comparable performance with a 75%
reduction in the number of parameters, achieved by implementing a shallower ver-
sion of the network. The findings indicated that performance improvements were
largely attributable to an increase in training data, particularly in the spatial trans-
fer learning task, which saw an enhancement of over 5%. Alternative techniques
also contributed to improvements, albeit marginally. These techniques included
replacing the Adam optimizer Kingma and Ba (2017) with AdaBelief Zhuang et al.
(2020), using two separate models conditioned on a rain rate threshold, and utiliz-
ing an ensemble of models, the latter being the second most significant factor for
improvement.

The second-ranking model utilized an ensemble of U-Net models with densely
connected blocks, similar to the architecture used in Stage-1 Choi (2021). In ad-
dition to the target variables, all other extra variables were also inputted to the
model. Separate models were trained for each target variable, using mean square
error for numerical variables and binary cross entropy for the binary variable cloud
mask. Each model utilized all training regions as input.

The third-ranking model in both competitions was developed using a variant
of the U-Net architecture, referred to as a Variational U-Net. This model introduces
a probabilistic layer that samples from a normal distribution at the bottleneck, and

https://github.com/iarai/weather4cast
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includes data augmentations such as rotations and flips, along with the applica-
tion of model ensembles Kwok and Qi (2021a). Two ensemble strategies were em-
ployed: one utilized predictions from distinct models trained from scratch, while
the other used predictions from the same model at different training epochs. The
results underscored the importance of ensembles for enhancing performance in
both competitions. Moreover, the findings showed that fine-tuning models for new
training regions proved to be just as effective as initializing training from scratch
with all regions, a crucial insight for the efficient scalability of models globally.

The model that secured the fourth place in both competitions was notewor-
thy, however, the specifics of its methodology remain unpublished as of now. The
fifth-place model in both competitions, developed using a Visual Transformer, was
based on a U-Net encoder-decoder scheme. Each block within this model was re-
placed with Swin-Transformers Bojesomo et al. (2021), which were adapted to 3D
patches to encapsulate time. The model concurrently produced all target variables.
One version of the model contained more parameters (achieved by enhancing the
depth of U-Net) and incorporated extra variables as inputs. Conversely, the sec-
ond version used 20% fewer parameters and solely utilized the target variables as
inputs. Intriguingly, the first version performed superiorly in the core competition,
while the second was more effective in the spatial transfer learning competition.
The larger Visual Transformers were found to exhibit a higher tendency towards
overfitting, particularly when applied to unseen regions. This indicates a balance
that must be struck between model complexity and its capacity to generalize.

4.6 Results

The Weather4cast competition has emerged as a robust benchmark for the de-
velopment and comparison of machine learning models in the realm of weather
forecasting. Several models have proven their ability to meet the competition’s
main challenge of predicting high-resolution, multi-channel weather patterns for
an eight-hour period in regions for which comprehensive training data is available.
In addition, Weather4cast has introduced a pioneering benchmark framework for
both temporal and spatial transfer learning, thereby enabling the creation of mod-
els with superior generalization. Such models are better poised to robustly capture
the key patterns underpinning observed weather phenomena. This robustness is a
critical factor for practical applications and the discovery of these essential patterns
can provide insightful revelations about the physical dynamics of weather.
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Model performance in this competition was consistent with results seen in re-
lated tasks, such as video encoding Kreil et al. (2020) and the Stage 1 competition of
Weather4cast Gruca et al. (2021b). U-Net-like architectures demonstrated their util-
ity in the core challenge of predicting eight hours of high-resolution, multi-channel
weather. However, the model that clinched the top position employed a recurrent
convolutional model incorporating residual units. The competition also witnessed
the successful deployment of Variational Autoencoders and Visual Transformers,
which yielded competitive results.

Table 4.3 provides a comparison of the top five models against baselines. No-
tably, the performance ranking was consistent between the core prediction chal-
lenge and the spatial transfer learning challenge, suggesting that the ability to gen-
eralize to new spatial locations largely depends on the extent to which weather
patterns are accurately learned in regions where ample training data is available.
The best model was able to reduce the error relative to the Persistence baseline by
53% and relative to the U-Net baseline by 30% in the core challenge. In the spa-
tial transfer learning challenge, the error reduction relative to an ensemble of five
U-Net models as baseline was 27%. Furthermore, the performance difference be-
tween the top two models and the next best models was significantly larger in the
transfer challenge than in the core challenge, underlining the superior generaliza-
tion capabilities of the top two models.

Stage 2 of the competition offered additional training data from new regions
which, according to several participants, significantly improved model perfor-
mance, especially in the spatial transfer learning challenge Leinonen (2021b), Kwok
and Qi (2021b). An important question to explore is the extent to which this perfor-
mance boost is attributed to the sheer increase in training set size versus the added
diversity in the data. An in-depth exploration can be accomplished through exper-
iments with training sets sub-sampled for size equal to the Stage-1 training sets.
In addition, the incorporation of pre-trained models has proven to be an effective
strategy to leverage additional data, as exemplified by the variational autoencoder
deployed by Kwok and Qi (2021b).

Table 4.4 offers a comparison of the input data used by each model, the strategy
for feeding different regions into models, and the application of any data augmen-
tation. The winning model did not necessitate static data like latitude, longitude
or variables other than the target variables for achieving impressive performance.
However, other teams reported benefits from the inclusion of additional inputs. It
was unanimously reported that substantial benefits were derived from training a
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Table 4.3: Errors of the models’ predictions on the leaderboards (the lower the bet-
ter). The first column displays the prediction error score in the core competition
and its improvement compared to a basic U-Net model. The last column shows the
error scores for the spatial transfer learning competition and compares improve-
ments achieved relative to (i) a basic U-Net trained only in one region and (ii) an
ensemble of U-Nets using all five training regions. Interestingly, ranks from the
core challenge align with ranks from the transfer challenge: Models performing
better in the core challenge thus also generalized better to new locations. Observe
that the top two models show greater performance in spatial transfer learning,
showcasing their superior generalization capabilities.

Username Final Core
(w.r.t. U-Net %)

Final Transfer
(w.r.t. U-Net R1 — Ens R1,2,3,7,8 %)

antifuge 0.4728 (30.3) 0.4323 (37.3 — 26.6)
sungbinchoi 0.4801 (29.2) 0.4376 (36.5 — 25.7)
Michael Fish Forecasting 0.4856 (28.4) 0.4603 (33.2 — 21.8)
moto 0.4935 (27.3) 0.4611 (33.1 — 21.7)
ai4ex 0.4985 (26.5) 0.4619 (33.0 — 21.5)
U-Net, individual, R1,2,3,7,8 0.6785 (0.0)
Persistence 1 (-47.4) 1 (-45.1 — -69.9)
U-Net Ensemble R1,2,3,7,8 0.5887 (14.6 — 0.0)
U-Net Transfer from R1 0.6892 (0.0 — -17.1)

single model covering all locations, with the two top submissions training separate
models for each prediction target variable.

All the top three submissions employed model ensembles, which consistently
outperformed the predictions from the single model with the best validation score
Kwok and Qi (2021b), Leinonen (2021b), Choi (2021). Notably, Kwok and Qi (2021b)
demonstrated that weights from different epochs of training a single model can be
used directly to generate an ensemble of models. Each individual model in this
setup utilized the weights learned at a specific epoch. The highest performing in-
dividual models were then aggregated into an ensemble prediction, with the final
result calculated by averaging. This innovative approach suggests that the advan-
tages of ensemble models can be harnessed without incurring additional training
costs. Finally, the team’s ultimate submission comprised a combination of inde-
pendently trained models and models derived from earlier training epochs.
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Table 4.4: Combination of data features used by the participants (in order of the
leaderboard ranks). The table illustrates the different strategies used by the mod-
els. It highlights a unique approach adopted by the two top-performing models:
each of these employed a separate model for each variable, a distinct departure
from the typical approach taken by other models, which encapsulated all vari-
ables into a single, unified model. Interestingly, the third and fifth-ranked models
achieved additional performance improvements through the use of data augmen-
tation techniques, a strategy that was not explored by the top two models. The
term ’both’ is used in the table to indicate models that compared results with and
without a specific feature. Although not explicitly shown in the table, it was unan-
imously recognized that a crucial factor behind the individual improvements of
each model was the strategy of training all regions within a single model. This ap-
proach marked a significant departure from the baseline, which utilized a distinct
model for each region.

Static Data Extra variables Model per variable Data augmentation
antifuge no no yes no
sungbinchoi no yes yes no
Michael Fish Forecasting yes yes no yes
moto n/a n/a n/a n/a
ai4ex both both no yes
U-Net baselines yes no yes no

4.7 Discussion

This thesis chapter presented a novel benchmark for weather prediction, known as
the Weather4cast, which treated weather forecasting as a video frame prediction
task. It is composed of a high-resolution, multi-channel dataset collected from a
constellation of geostationary satellites to present two main challenges: the Core
Challenge and the Spatial Transfer Learning Challenge.

In the Core Challenge, models were tasked to predict four weather parame-
ters—temperature, convective rainfall rate, probability of occurrence of tropopause
folding, and the cloud mask—in selected regions with comprehensive training
data. The Spatial Transfer Learning Challenge, on the other hand, pushed models
to extrapolate their predictions to unseen regions without training or evaluation
data. Both tasks required models to forecast the next 8 hours of weather based on
the preceding 1 hour of weather data.

We successfully evaluated the value introduced by our benchmark through the
Weather4cast competition, which served as a proving ground for various machine
learning models, highlighting the effectiveness of U-Net-like architectures and re-
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current convolutional models for this task. Notably, the winning model of the com-
petition was a recurrent convolutional model incorporating residual units, demon-
strating a high level of performance in predicting multi-channel weather patterns
for an eight-hour period.

Interestingly, the competition’s results suggested that the ability to generalize
to new spatial locations largely depends on the extent to which weather patterns
are accurately learned in regions with abundant training data. This indicates that
capturing the key dynamics of weather phenomena in familiar territories is crucial
to enabling robust forecasting in unfamiliar regions.

The competition also highlighted the potential benefits of data diversity over
mere volume, as the inclusion of training data from new regions appeared to sig-
nificantly improve model performance, especially in the Spatial Transfer Learning
Challenge. The exploitation of pre-trained models was also recognized as an effec-
tive strategy for leveraging additional data.

The use of ensemble models was another significant trend among the top sub-
missions. All the top three submissions employed model ensembles, which consis-
tently outperformed single models. Moreover, it was demonstrated that ensemble
models could be harnessed without incurring additional training costs by using
weights from different epochs of training a single model.

In conclusion, the Weather4cast competition benchmark has proven instrumen-
tal in enhancing machine learning models to handle robust spatio-temporal predic-
tions, thereby advancing the field of weather forecasting. This confluence not only
contributes to the development of more efficient algorithms but also promotes in-
novative approaches to understanding and predicting complex weather patterns.
Thus, this endeavor is dual-purpose, bolstering machine learning methodologies
while also refining the accuracy and reliability of weather prediction - a synergy
that promises to drive further advancements in both domains.

The related competition and its leaderboards continue to be available and open
for new submissions on the Weather4cast website 6.

4.8 Author Contributions

The work encapsulated in this chapter reflects a collaborative effort involving var-
ious contributors whose inputs were invaluable in bringing the project to fruition.

6Core Challenge leaderboard www.iarai.ac.at/weather4cast/competitions/ieee-big-data-core-final
Spatial Transfer Learning Challenge Leaderboard www.iarai.ac.at/weather4cast/competitions/ieee-
big-data-transfer-learning-final

https://www.iarai.ac.at/weather4cast/competitions/ieee-big-data-core-final/?leaderboard
https://www.iarai.ac.at/weather4cast/competitions/ieee-big-data-transfer-learning-final/?leaderboard
https://www.iarai.ac.at/weather4cast/competitions/ieee-big-data-transfer-learning-final/?leaderboard
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The novel Weather4cast benchmark, a cornerstone of this research, was the origi-
nal concept of the author, P. Herruzo. Herruzo was also responsible for initiating
and coordinating contact with data providers AEMet, and transforming raw data
into the final distributed dataset.

Herruzo also invented, trained and validated all the deep learning baselines
provided in the benchmark.

Moreover, Herruzo spearheaded the creation of the scientific competition con-
tent, crafting the proposal drafts for CIKM and IEEE Big Data competitions, and
developing the software for the Weather4cast competition and for automatic leader-
board evaluation. Herruzo performed the initial analysis and provided insights
into the models, and was responsible for drafting the manuscript of the published
article.

In his analysis, Herruzo identified a one-to-one correlation between the per-
formance of models in familiar and new areas. This observation underscores the
crucial role of data quantity and quality in the successful generalization of models.

The engagement with IARAI team members A. Gruca, S. Hochreiter, M. Kopp,
and D.P. Kreil was crucial in refining the project’s focus and improving its execu-
tion. They contributed substantially to the selection of benchmark variables, pro-
vided insights on the competition’s goals, had invaluable input on the metrics, and
offered critical feedback and editing suggestions for the articles and competition
proposals.

The collaboration with AEMet (L. Lliso, X. Calbet, P. Rı́podas) was instrumental
to this research. They supplied the raw data essential for the competition, shared
their meteorological expertise to help define the benchmark’s evaluation process,
and contributed constructive criticism and refinements to the articles and compe-
tition proposals.

While the majority of the work was carried out by P. Herruzo, the collective in-
tellectual and practical contributions of the mentioned individuals and institutions
significantly enhanced the study’s overall quality, depth, and impact. During this
work’s publication, P. Herruzo was a member of IARAI.



Chapter 5

Weather4cast at at NeurIPS 2022:
Super-Resolution Rain Movie
Prediction under Spatio-temporal
Shifts

This chapter is based on materials from the following peer-reviewed paper:
[PENDING] Weather4cast at NeurIPS 2022: Super-Resolution Rain Movie Pre-

diction under Spatio-temporal Shifts. In NeurIPS 2022 Competition and Demon-
stration Track. PMLR.

5.1 Introduction

In the preceding chapter, we introduced Weather4cast 2021, a new benchmark
constituting a host of unique challenges, an exceptional dataset, and pioneering
deep learning models. These models achieve state-of-the-art performance in mul-
timodal weather forecasting with high spatio-temporal resolution. Additionally,
we affirmed the scientific community’s interest in this benchmark by successfully
orchestrating scientific competitions and publishing the results in peer-reviewed
papers.

The assembly of data, comprehensive study of related literature, model train-
ing, and delineation of significant challenges and metrics were made feasible through
the joint effort of a diverse team. This collaborative group consisted of deep learn-
ing scientists, meteorologists, infrastructure experts, and data scientists. Renowned
entities such as the Spanish Meteorology Agency (AEMet) and the Institute of Ad-
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vanced Research in Artificial Intelligence (IARAI) were integral contributors to this
committee.

Our meticulous investigation brought to light an unaddressed void within the
scientific community that holds the potential to significantly impact both meteo-
rology and machine learning. Presently, there are no efficient models capable of
predicting terrestrial precipitation using only satellite-observed spectral radi-
ances. Surface-level weather radars are sporadic, with complete non-existence in
some developing nations. However, these regions are within the purview of satel-
lites. Therefore, the development of precise models utilizing data gathered from
space to predict surface-level precipitation could aid in preparing for and mitigat-
ing severe rainfall across the globe.

This area of research is of particular interest to both the European Space Agency
(ESA) and the OPERA Network, which supervises and maintains the network of
weather sensors across Europe. In this pivotal chapter, we align ourselves with
these international agencies to address this grand scientific challenge, one with
clear, immediate practical implications.

5.2 Related Work

In the realm of meteorological forecasting, Convolutional Neural Networks, as im-
plemented in MetNet Sønderby et al. (2020) and MetNet-2 Espeholt et al. (2021),
have been instrumental in enhancing physical models for both short-term (4 hour)
and medium-term (12 hour) predictions. In fact, in a comparison, meteorologi-
cal experts exhibited an 89% preference for the predictions generated by a deep
generative model Ravuri et al. (2021a). Despite these advances, there remains a
challenge concerning access to the high-resolution data essential for training such
models.

Contemporary model architectures such as Graph Neural Networks Lam et al.
(2022), Transformers Bi et al. (2022), and U-Nets Kaparakis and Mehrkanoon (2023),
have primarily been constrained to publicly available resources. A key example in-
cludes the ECMWF ERA5 reanalysis archive Hersbach et al. (2020), which offers a
range of variables at multiple vertical levels across the globe, albeit at lower res-
olutions (1,h, ∼ 30,km). These limitations align with those encountered in other
common datasets in the domain Rasp et al. (2020), Schroeder de Witt et al. (2021).

The CloudCast dataset Nielsen et al. (2021) represents an advancement, provid-
ing 10 distinct cloud-related variables at 15 min intervals and ∼ 4km resolution.
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We have further enriched this resource by including 22 additional, more general-
ized multimodal variables in the Weather4cast 2021 dataset and benchmark Her-
ruzo et al. (2021b).

The SEVIR dataset Veillette et al. (2020a), offering both satellite and high-resolution
radar data, is unfortunately confined to the United States. While it has been em-
ployed in learning satellite-to-radar translation (at the same timestamp) and radar-
to-radar prediction, its utility for satellite-to-radar prediction remains untapped.
Recently, Generative Adversarial Networks have leveraged this dataset to refine
U-Net predictions Hu et al. (2022).

As of our current understanding, the Weather4cast 2022 dataset represents a pi-
oneering effort by integrating raw spectral bands from satellite sensors and ground-
based high-resolution precipitation radar data across diverse geographical regions
and varied time frames. This inclusion facilitates the establishment of the first-ever
satellite-to-radar forecasting benchmark.

5.3 The Weather4cast 2022 Formulation

5.3.1 Datasets

The dataset is primarily assembled from two primary data sources: spectral bands
derived from satellite observations and ground-based high-resolution precipita-
tion radar. Both of these datasets are encoded as time-sequential image arrays,
allowing for clear visualization and analysis of meteorological patterns over time.

To augment this data and provide additional context, we have included to-
pographical information regarding the elevation of the terrain for each respective
data point. This is crucial for understanding the impacts of geographical features
on local weather patterns. Furthermore, we have provided geographical coordi-
nates, specifically latitude and longitude, for each pixel. This granular localization
information allows for precise mapping and identification of weather phenomena,
thereby enhancing the applicability and relevance of our findings in practical me-
teorological forecasting.

5.3.1.1 Meteosat Second Generation SEVIRI Data

The Meteosat Second Generation (MSG) series of geostationary meteorological
satellites are managed by the European Organisation for the Exploitation of Mete-
orological Satellites (EUMETSAT). Each satellite in this series is equipped with the
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Table 5.1: Key characteristics of the SEVIRI instrument on board the Meteosat Sec-
ond Generation (MSG) satellites from EUMETSAT. The table presents important
details regarding the spectral channels, spatial resolution, and specific spectral
characteristics associated with each channel.

Channel Central Spatial Spectral Type
Number Wavelength Resolution Zone of

(µm) (km) Characteristic Channel
1 0.635 3 Solar Visible Window (VIS)
2 0.81 3 Solar Visible Window (VIS)
3 1.64 3 Solar Infrared Window (VIS)
4 3.90 3 Solar/Thermal Infrared Window (VIS/IR)
5 6.25 3 Thermal Infrared H2O Absorption (WV)
6 7.35 3 Thermal Infrared H2O Absorption (WV)
7 8.70 3 Thermal Infrared Window (IR)
8 9.66 3 Thermal Infrared O3 Absorption (IR)
9 10.80 3 Thermal Infrared Window (IR)

10 12.00 3 Thermal Infrared Window (IR)
11 13.40 3 Thermal Infrated CO2 Absorption (IR)
12 Broad Band 1 Visible/Infrared Solar Window (VIS)

(0.4–1.1)

Spinning Enhanced Visible Infra-Red Imager (SEVIRI) instrument Shcmetz et al.
(2002). This sophisticated device boasts twelve channels that continuously moni-
tor the Earth across the visible and near-infrared (VIS), thermal infrared (IR), and
water vapor absorption band (WV) spectrums.

Each of the eleven channels equipped with narrow spectral band filters offers
a spatial resolution of approximately 3 km at nadir (the point on the ground that
is directly below an observer or sensor in space). A detailed breakdown of the
specific characteristics of each spectral channel can be found in Table 5.1. Given
the geostationary orbit of the MSG satellites, they maintain a consistent viewpoint
over the Earth’s disk from a fixed location along the celestial equator. This po-
sitioning allows the SEVIRI instrument to generate images of 3712 × 3712 pixels
for each of the eleven channels every 15 minutes, in its nominal mode. The data
utilized in this research pertains to the MSG satellite positioned at zero degrees
longitude, operating in nominal mode.

To visually demonstrate the capabilities of the SEVIRI instrument and the rich-
ness of the data it captures, Fig. 5.1 presents an ’Air mass’ RGB composite im-
age generated by this satellite. This image exemplifies the high-resolution, multi-
spectral data collected by the MSG satellites and the potential insights this data
offers for advancing our understanding of atmospheric dynamics and improving
weather forecasting models.

In collaboration with EUMETSAT, we introduced a modest amount of noise to
the original Meteosat sensor data. This modification enabled us to re-distribute the
assembled dataset, with multiplicative noise deemed most appropriate given the



5.3. THE WEATHER4CAST 2022 FORMULATION 65

Figure 5.1: The ’Airmass’ RGB composite image, crafted using a blend of data from
four distinct channels (5, 6, 8, and 9) of the SEVIRI instrument, was sourced from
the MSG satellite stationed at zero degrees longitude. This representative image
was captured on August 20, 2019, at 10:00 Coordinated Universal Time (UTC).

.

range of data under review. Our sensitivity analyses confirmed that this addition
had an inconsequential effect on the baseline predictions.

5.3.1.2 Weather Radar Data from the OPERA Project

Weather radars are a fundamental tool in the measurement of precipitation due
to their ability to cover large areas, provide a three-dimensional structure of pre-
cipitation systems, and track these systems over time. When combined to form a
network, these radars can monitor an even larger domain.

However, it’s worth noting that radar precipitation measurements are subject
to various sources of error. These include challenges associated with beam broad-
ening and the increased distance to the Earth’s surface as the distance from the
radar site increases. Additional errors may arise from echoes originating from non-
meteorological targets, beam blockage due to terrain (such as mountains), signal
attenuation by rain (especially heavy rain), and the anomalous propagation of the
beam under certain atmospheric conditions. A comprehensive discussion of the
advantages and disadvantages of using weather radar for precipitation measure-
ment, as compared to other sources of precipitation data, as well as an overview of
the current state of the art in radar research, can be found in Sokol et al. (2021).
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Despite these limitations, the distinctive characteristics of precipitation radar
make a radar network an optimal choice for meteorological services conducting
nowcasting and issuing weather warnings. Often, radar data is augmented with
information from other sources like rain gauges and satellite data. In the context
of this study, radar data serves as the reference point and is treated as the ”ground
truth” for the precipitation field.

The radar data used in this work are 2D composites sourced from the Oper-
ational Programme for the Exchange of Weather Radar Information (OPERA), a
project run by EUMETNET (www.eumetnet.eu). OPERA generates 2D compos-
ites of instantaneous surface rain rates, maximum reflectivity, and one-hour rain-
fall accumulations. Specifically, for this study, we utilized the instantaneous rain
rate composites provided every 15 minutes from February 2019 to 2021.

Radar reflectivity was converted into precipitation intensity in the 2D compos-
ites using the Marshall-Palmer Z–R relationship, employing coefficients a = 200

and b = 1.6 Marshall et al. (1947). Further details about the OPERA project can be
found in Huuskonen et al. (2014) and Saltikoff et al. (2019a).

5.3.2 Data Compilation and Harmonization

The compilation of data for this study required careful consideration and manipu-
lation due to the distinct geographical projections of our primary data sources: the
OPERA radar network data and the Meteosat Second Generation (MSG) SEVIRI
data.

OPERA radar data is structured in the Lambert Azimuthal Equal Area projec-
tion, with each pixel representing an area of 2000 × 2000 meters. This projection
type is chosen for its property of preserving the area relative to the Earth’s sur-
face. Conversely, MSG data utilizes a geostationary projection, where the pixel
size grows larger as the distance from the sub-satellite point increases. The area
covered by an MSG pixel scales from 3000 × 3000 meters at the sub-satellite point
to irregularly shaped pixels with a side size exceeding 24 km, as seen over locations
like Iceland.

The differing formats posed a challenge in the integration of the datasets. For
the convenience of model training, we performed a transformation of the OPERA
data into a geostationary grid, allowing it to match the geographical layout of the
MSG data. The restructured OPERA and MSG data, both rendered as 2D images,
could then be seamlessly combined.

www.eumetnet.eu
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During the reprojection process, however, certain informational discrepancies
may arise, primarily due to the variable and larger size of MSG pixels compared
to those of OPERA. To address this issue, we elected a dense destination grid in
which each MSG pixel was subdivided into 36 smaller units, with each side of the
satellite pixel divided by a factor of 6.

Figure 5.2 exemplifies this reprojection process, showing a scene of approxi-
mately 30 × 30 km near Amiens, France. This figure illustrates the MSG grid, the
reconfigured OPERA grid, and the result of reprojecting the OPERA pixels onto
the final grid (highlighted in cyan).

Figure 5.2: Diagram Illustrating the Reprojection Process: The illustration delin-
eates the transformation of data from the OPERA radar network to a geostationary
grid to align with the MSG SEVIRI data. The green lines represent the boundaries
of the original MSG pixels, while the magenta lines mark out the smaller destina-
tion grid cells into which the OPERA data is reprojected. The colored squares rep-
resent the original OPERA pixels, each one holding specific precipitation data. The
reprojection process ensures that both datasets are geographically matched, en-
abling them to be more effectively combined for analysis. The left image presents
the original location of the OPERA data, while the right image displays the OPERA
data post-reprojection, now situated in its newly adapted geostationary projection.

The dimension of the dense grid was selected based on an evaluation of the
information loss occurring in a forward and backward reprojection of the OPERA
data. The chosen 6× 6 grid exhibited negligible information loss, even in the most
unfavorable areas.

Notably, in the dataset provided for the competition, the MSG pixels are not
further divided into 6 × 6 smaller units. Instead, each MSG pixel corresponds to
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6× 6 reprojected OPERA pixels. This distinction ensures consistency and usability
within the competition dataset.

5.3.3 Geographical Context and Rainfall Variability: Criteria for
Region Selection

Precipitation variability across Europe is largely influenced by seasonality, as high-
lighted by Zveryaev Zveryaev (2004). However, this variability is additionally
modulated by an array of local and distant climate patterns as investigated by
Karagiannidis Karagiannidis et al. (2008). Complicating the matter further, the in-
creasing global warming, driven by human activities, is anticipated to intensify
rainfall extremes across the continent, a point stressed by King King and Karoly
(2017). Hence, the prediction of high-impact weather events becomes increasingly
crucial.

context

target

Figure 5.3: The diagram on the left illustrates the spatial context (highlighted in
yellow), wherein satellite radiances are provided, and the target region (high-
lighted in red), which is the focus for rainfall predictions. The diagram on the right
provides a snapshot of longitude-latitude maps for the eleven MSG band radiances
for the context of patch 15, along with the OPERA binary mask ground truth (GT)
using a threshold of 0.2 mm/hour (displayed at the bottom right). Within the
MSG images, darker areas indicate lower values, while black represents rain in the
OPERA image.

In our investigation, for a defined area of interest (with the size 252 × 252 as
per the OPERA data reprojected to geostationary pixels), we offer a wider spatial
context. This context area encloses a square region six times larger than the area of
interest, rendered in the same geostationary projection, as illustrated in Figure 5.3
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(left). This relative size of the context is determined to encapsulate nearby weather
systems which could potentially affect the target patch with rainfall in subsequent
hours. Figure 5.3 (right) offers a comparative visual representation of satellite radi-
ances and the binary rainfall mask for OPERA at a given time point. This figure un-
derscores how the different bands provide diverse perspectives of the same scene
and how the binary mask is not directly correlated with the radiance patterns.

Before selecting the target patches for the competition, we aimed to categorize
them based on the monthly frequencies of rainfall events. Our objective in de-
termining the target patches was specifically to include those regions where rain
events are not only significant but also typically infrequent. The aim of this selec-
tion criteria was to ensure our dataset would adequately represent less frequent
rain events and offer a broad spectrum of precipitation patterns for examination.

5.3.3.1 Selection and Characterization of Target Patches

Our selection process for the target patches was guided by a dual desire: to encap-
sulate a wide range of rain events across the entire spectrum of rain rates, and to
ensure that even the relatively infrequent, yet intense rain events were adequately
represented in our study.

To categorize the rain rates, we adhered to the standard meteorological clas-
sification as specified by the (WMO) World Meteorological Organization (2018).
This classification divides rain rates into four distinct categories: no rain (0-0.1
mm/hour), low rain (0.1-2.5 mm/hour), moderate rain (2.5-7 mm/hour), and heavy
rain (greater than 7 mm/hour). This approach is congruent with the methodolo-
gies followed by other research in the field, such as that by Ravuri et al. (2021b).

Armed with this categorical breakdown, we proceeded to calculate the monthly
frequencies of rain events for each category, within every potential region of inter-
est. We considered data spanning from February 2019 until December 2021 for
this analysis. We meticulously evaluated these frequencies, with special attention
to regions that reported a higher frequency of rain events. Interestingly, we ob-
served that the moderate and heavy rain events were considerably rarer and their
monthly frequencies exhibited high volatility, reflecting the inherent seasonal pat-
terns of precipitation.

To determine the final selection of target patches for the competition, we sought
a balance. We wanted to include regions prone to frequent but less intense (low)
rainfall, alongside regions that experienced less frequent but more intense rainfall.
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Figure 5.4: These charts illustrate the probability maps (%) for low rain rates, as
recorded by the OPERA network between 2019 and 2021, for the months of January
(left) and July (right). The values are displayed for square areas of the same size as
the prediction outputs. Areas outside the OPERA coverage are shaded in grey.

This balance was key to ensuring a representative dataset that offered a compre-
hensive overview of different rainfall scenarios across the European domain.

Figure 5.4 underscores the geographical and temporal variability of low rain
rate occurrences across the OPERA domain. It highlights the differences in rainfall
patterns between the boreal winter and summer seasons.

During winter, a higher probability of rain (>12%) is evident across the British
Isles, Northern Europe, the Alps, and Eastern Europe. Conversely, the summer
months reveal a dominance of dry conditions across southern Europe, barring the
Alpine region. Rain events also decrease in frequency across higher latitudes dur-
ing this period. This contrast reaffirms the significant seasonal variability within
the European domain Karagiannidis et al. (2008). It also shows the imbalance be-
tween rain and no-rain events, especially in southern regions.

This extensive analysis culminated in the selection of several target patches for
both the core and the transfer learning challenges, which formed the data provided
to competition participants. The locations of these selected regions are shown in
Figure 5.5.

Through this rigorous process of characterization and selection, we ensured
that our dataset would be able to capture the broad spectrum of rain events across
Europe, while providing a challenging benchmark for the development of robust
and accurate rainfall prediction models.
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Figure 5.5: This map displays the locations of the competition regions across Eu-
rope. The Core regions used in Stages 1 and 2 are denoted by a ’b’ and shown in
blue. The Extended Core regions, used only in Stage 2, are denoted by an ’r’. The
Transfer learning regions are indicated in red.

5.3.4 Tasks

The benchmark task focuses on the prediction of rainfall events over a future pe-
riod of 8 hours, which is broken down into 32 individual time slots. Each time slot
corresponds to a 15-minute increment. The predictive model is to be fed with data
from the preceding hour, consisting of four 15-minute time slots, each represented
by 11-band spectral satellite images. These spectral bands encompass the visible
light (VIS), water vapor (WV), and infrared (IR) ranges.

The region of interest for the predictive model is confined to an area of 42× 42

pixels within the satellite imagery. This specific area is enveloped by a larger spa-
tial context represented by a square area of 252 × 252 pixels. This setup implies
a dual-task for the predictive model. Firstly, the model needs to accurately fore-
cast the weather conditions, specifically rainfall events, over the ensuing 8 hours.
Secondly, it has to perform a ”super-resolution” operation, in which the lower-
resolution satellite data (one pixel in the satellite imagery corresponds to six pixels
in the output) must be transformed into a higher-resolution prediction, equivalent
to ground-radar reflectivity.

In addition to the satellite imagery, the model also utilizes static geographical
information about the area of interest. These static variables include the latitude,
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longitude, and elevation. To emulate the inherent stochasticity and unpredictabil-
ity of meteorological phenomena, a slight random noise is incorporated into the 11
spectral bands of the satellite images.

The task essentially sets a benchmark for machine learning models in the do-
main of meteorological forecasting, particularly in the aspects of time-series pre-
diction, super-resolution image processing, and working with both dynamic and
static input data.

5.3.5 Evaluation Metric

In the context of the benchmark designed for predicting precipitation events, the
evaluation metric needs to account for the core challenge of predicting rain occur-
rences, rather than the precise amount of rainfall. This specificity is based on the
nature of the dataset and the fact that rainfall events are relatively rare. To this
end, we have chosen to use the Intersection over Union (IoU), a metric frequently
used in the field of computer vision for assessing the accuracy of models involved
in object detection and segmentation tasks.

IoU is calculated by taking the ratio of the area of overlap between the pre-
dicted and actual rainfall areas to the area of union of these two. This metric is
specifically tailored to target the accurate prediction of rainfall events by focusing
on the correct prediction of rain-affected pixels.

To generate a single evaluative value for each model’s prediction, we calculated
IoU values for each region separately and then computed the average of these
values across all regions. This process provides a comprehensive overview of the
model’s performance over a diverse range of regions.

The calculation of the final metric involves the elimination of certain data points
from each region. Specifically, pixels outside of the OPERA coverage or those with
missing data, represented by –9,999,000 and –8,888,000 values respectively, were
removed prior to computation. The former represents instances where the region
of interest extends over a sea area, thus exceeding the coverage of ground radar.
The latter is associated with errors that may occur during the collection of OPERA
radiance data.

Additionally, in order to avoid the misidentification of cluttering echoes and
artefacts, and to account for the satellite’s limitations in detecting precipitation,
a threshold of 0.2 mm/h was established for rainfall detection. This amendment
further unbalances the dataset, decreasing the frequency of rain events and thereby
amplifying the challenge of the prediction task.
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5.4 Associated Competitions and Provided Software

The weather forecasting benchmark described earlier offers a significant stepping
stone for developing advanced machine learning models capable of accurately pre-
dicting meteorological events. It sets the stage for a unique blend of tasks: time-
series prediction, super-resolution image processing, and the fusion of dynamic
and static data. However, the true capabilities of a benchmark are realized only
when it is put to the test in a real-world context. For this reason, the benchmark
was transformed into a competition format. Organizing a competition enables the
evaluation of the models’ performances against each other and allows for the ex-
ploration of novel, innovative approaches that may not have been previously con-
sidered. The associated competition was accepted for inclusion in the highly com-
petitive NeurIPS 2022 conference, reflecting the importance and relevance of this
domain.

5.4.1 Weather4cast 2022 at NeurIPS

Building upon the theoretical foundation of the weather forecasting benchmark,
the Weather4cast 2022 competition was designed to encourage practical advance-
ments in this field. The competition was conducted in two stages.

During the first stage, which ran from August 1 to November 18, 2022, partic-
ipants were given access to 2019 data for three regions. The purpose of this stage
was to kickstart the model development process and to test the performance of the
models in a relatively controlled setting. To provide participants with a sense of
their models’ standing, a public leaderboard was updated regularly with the per-
formance of each model against the competition baseline and other submissions.

The second stage of the competition commenced on October 14, 2022, and con-
cluded on November 18, 2022. This stage introduced two additional challenges,
which further stretched the capabilities of the participating models. The Extended
Core Challenge expanded the geographical scope by providing 2020 data for the
initial three regions and four new regions. The Transfer Learning Challenge tested
the adaptability and generalizability of the models by providing 2021 data for all
seven regions and introducing three additional unknown regions. Public leader-
boards were maintained throughout this stage to continue providing participants
with comparative feedback.
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The final evaluation of the models was performed on undisclosed data. This
approach ensured an objective assessment of each model’s predictive capabilities
and its potential for application in real-world scenarios.

5.4.2 Weather2cast 2022 Software

To assist participants in the competition and to provide a foundation upon which
they could build their models, the Weather2cast 2022 software was provided 1.
This starter kit contained essential code for data loading and exploration, as well
as a baseline model for initial training.

The baseline model was a modified version of a 3D variant of the U-Net 2,
a renowned architecture for image segmentation tasks. This served as a point of
departure for the participants, who were encouraged to modify and improve upon
this baseline in their submissions. See table 5.2 for details about the hardware and
tools that we used.

Table 5.2: Machine and tools used for the Weather4cast 2022 benchmark.

GPU 8x Tesla V100-PCIE-32GB
CPU 2x Intel(R) Xeon(R) Gold 6146 CPU @ 3.20 GHz
Cores/Threads 12 cores / 24 threads (per CPU)
RAM 754Gi (Samsung DDR4-2600)
Tools PyTorch, PyTorch Lightning, NumPy

By furnishing participants with these resources, the competition aimed to lower
the barrier to entry, particularly for those who might be new to the field or who
might not have had previous experience with similar tasks. It also helped ensure
that all participants had a fair and equal start, fostering a spirit of innovation and
advancement.

5.5 Results

Our competition attracted significant global participation, with thirty teams from
over a dozen countries submitting more than 1,600 entries. Impressively, over 900
of these submissions outperformed the benchmark set by a simplistic 3D U-Net
model. The first pilot stage garnered the majority of these submissions, while the

1Weather4Cast starter toolkit: https://github.com/iarai/weather4cast-2022
2ELEKTRONN3 - Neural Network Toolkit: https://elektronn3.readthedocs.io/en/

latest/

https://github.com/iarai/weather4cast-2022
https://elektronn3.readthedocs.io/en/latest/
https://elektronn3.readthedocs.io/en/latest/
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more extensive main competition brought in nearly half as many entries. The ded-
icated leaderboard for transfer learning received around 100 submissions, with
approximately 60 models being assessed on the held-out test datasets.

Teams participating in the competition were encouraged to prepare short re-
search papers that could be presented at the NeurIPS conference. More details
can be found on the competition’s website at www.weather4cast.org. Notable
achievements and interesting models from the competition are described bellow.

WeatherFusionNet developed by team FIT-CTU, utilizes three distinct modules
to estimate rainfall from satellite data. The key idea is to fuse the outputs of the
modules using a U-Net architecture for final prediction Pihrt et al. (2022).

Model Ensemble for Probabilistic Rain Prediction by team meteoai, leverages en-
semble method for predicting rain, incorporating preprocessing strategies and a
focus on loss functions to optimize performance Li et al. (2022).

Team team-name developed a method using Vision Transformers with config-
urations to enhance various model performances and baseline-specific improve-
ments Belousov et al. (2022).

The SImple baseline for weather forecasting using spatiotemporal context Aggregation
Network (SIANet) proposed by team SI-Analytics, is an end-to-end model based
solely on CNNs. SIANet achieved high standings in all stages of the competition
through the implementation of innovative strategies Seo et al. (2022b).

RainUnet, developed by team KAIST-CILAB, is a hierarchical U-shaped net-
work utilizing a Temporal-wise Separable block to capture interframe correlations.
They further enhance the model’s performance through preprocessing strategies
and context-specific prediction Park et al. (2022).

Lastly, the Region-Conditioned Orthogonal 3D U-Net by team KAIST AI is a mod-
ified 3D U-Net architecture incorporating region information during propagation.
Several training strategies were also employed to further enhance the performance Kim
et al. (2022).

5.6 Discussion

In Table 5.3, we highlight the average Intersection over Union (IoU) scores for the
top-performing teams and compare the characteristics of their winning models
with a our baseline model.

Most high-performing models utilized dedicated preprocessing steps, lever-
aging either Earth observation domain knowledge or standard machine learning

www.weather4cast.org
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Table 5.3: Top ranked teams and key features. *ex-aequo

Rank Team avg IoU Preprocess Ensemble Physics-based Transformer
1 FIT-CTU .316 ✓ × ✓ ×
2 meteoai .307 ✓ ✓ × ✓
3* SI Analytics .305 ✓ × ✓ ×
3* TEAM-NAME .300 × ✓ × ✓
4 KAIST-CILAB .287 ✓ × × ×
5 KAIST-AI .274 ✓ × × ×
- Baseline .254 × × × ×

techniques. For instance, standard data augmentation was used to counter the sig-
nificant imbalance between the rain and no-rain classes. Domain knowledge was
also exploited for application-specific data augmentation, such as the estimation
of physical properties like wind speed from cloud movement as additional model
input.

Certain satellite bands from the Visible (VIS) or Water Vapor (WV) channels
were discarded based on domain knowledge, thereby reducing the input data and
improving computational efficiency.

Team meteoai Li et al. (2022) reported that incorporating static information, such
as geographical coordinates and elevation, did not significantly enhance model
performance. Other top-ranked teams did not report similar trials, suggesting that
the role of static information in the dynamics of weather patterns remains an open
research question.

Several top-ranking models prominently featured state-of-the-art machine learn-
ing techniques. Transformers were utilized for spatio-temporal modelling in the
second and third best-ranking solutions. Additionally, ensemble models known
for their robustness and efficiency were also effective. Meanwhile, incremental
improvements to the baseline model were sufficient to elevate prediction perfor-
mance and rank highly. For instance, team KAIST AI Kim et al. (2022) show-
cased the effectiveness of Feature-wise Linear Modulation (FiLM) layers Perez
et al. (2018), which modify the output of neural networks by applying an affine
transformation to intermediate features.

Interestingly, the winners of the core and transfer learning challenges differed.
Most teams applied the same model to both challenges. However, team SI-Analytics
took a distinct approach for the transfer learning challenge by applying geometric
data augmentation and test-time ensemble models with a spatio-temporal smoother
loss, earning the first position on the leaderboard and the special Transfer Learning
Award by the Scientific Committee Seo et al. (2022a).
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Models that incorporated physics knowledge delivered the best and third-best
results in the core prediction challenge and the best performance in the transfer-
learning challenge. Therefore, the development of models that combine the strengths
of machine learning and application domain knowledge seems promising for fu-
ture research.

In summary, this chapter introduces a significant new benchmark, established
in the context of a successful competition held at NeurIPS. The competition fos-
tered a diverse set of innovative approaches to tackle the challenges of weather
prediction, demonstrating the feasibility and value of community-based efforts in
advancing scientific understanding in this complex field. This newly introduced
benchmark provides a robust reference point for future investigations, catalyzing
further advances in weather forecasting. Looking ahead, we anticipate this re-
source will continue to stimulate new research, drive methodological innovations,
and contribute substantially to our growing body of knowledge in the domain of
meteorological prediction.

5.7 Author Contributions

This chapter heralds a remarkable collaborative achievement, realized through the
joint efforts of various entities and individuals, including UPC, IARAI, AEMet,
and the European Space Agency’s Phi-Lab.

P. Herruzo, the author, played a crucial role in the creation of the innovative
Weather4cast 2022 benchmark, which centers around satellite to radar data. Her-
ruzo was instrumental in fostering partnerships with data providers, including
AEMet, and led the project’s multi-party coordination until his departure on May
23, 2022.

Throughout his involvement, Herruzo made substantial contributions to the
project’s pillars, including the transformation of raw data into an initial dataset
and the construction of original deep learning baseline models. Moreover, he was
at the helm of the associated scientific competition, drafting the NeurIPS 2022 com-
petition proposal and laying the groundwork for the Weather4cast 2022 competi-
tion software.

Herruzo played a vital role in conducting initial analyses, offering insights into
the baseline models. He also authored the literature review section of the pub-
lished article. He provided extensive feedback and meticulous polishing of the
final manuscript.
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Despite leaving the project, Herruzo acknowledges the importance of the ad-
ditional refinements made in his absence. These included defining the compe-
tition’s regions, evaluating competitor models, and managing the competition.
These post-departure adjustments were crucial to the project’s successful comple-
tion. Nevertheless, the fundamental scaffolding of Herruzo’s work continues to be
integral to the project’s eventual success.



Chapter 6

Research Findings and Conclusions

In this final chapter, we revisit the original research questions posed at the begin-
ning of this thesis and provide a concise summary of their answers. We invite
readers to refer to the specific chapters for more detailed insights and findings.
Subsequently, we present the main conclusions derived from our research endeav-
ors and discuss potential avenues for future work and research.

6.1 Research Question Analysis and Findings

In this section, we present a comprehensive analysis of the original research ques-
tions and offer a concise overview of the key findings discovered throughout this
thesis.

Q1: How can traffic data be optimally encoded to exploit the capabilities of
deep learning algorithms for forecasting?

In this thesis, our primary focus lies in exploring the realm of multimodality
in traffic forecasting. We recognize that traffic patterns are influenced by various
factors and, therefore, aim to leverage multiple data sources to enhance prediction
accuracy. Specifically, we incorporate additional data such as weather information
and seasonal patterns to capture the complexity of traffic dynamics. Our research
demonstrates the encoding of traffic data as images and the integration of weather
information with different spatiotemporal resolutions into deep neural networks.
We found that combining these data sources at different stages of the network
allows us to effectively capture the interplay between traffic and weather factors,
even when the data sources have different resolutions. This approach enables us to
uncover valuable insights and improve the accuracy of traffic forecasting models.

Q2: How can deep learning be leveraged to accurately predict traffic patterns
and conditions?

79
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We found that Convolutional neural networks (CNNs), originally developed
for image processing, can be effectively applied to traffic data when it is encoded as
images. By employing CNNs, we are able to capture spatial dependencies within
the traffic data, allowing the model to learn meaningful representations of traffic
patterns and extract relevant features for accurate prediction. To account for the
temporal dynamics of traffic, we also utilize recurrent neural networks (RNNs)
to capture temporal dependencies and capture the evolving nature of traffic over
time. Furthermore, we highlight the importance of multimodal data integration by
incorporating additional data sources, such as weather information and seasonal
patterns, at different spatio-temporal resolutions. This approach enhances the pre-
diction capabilities of the models by concatenating the multimodal information
at various stages of the network. Our findings highlight the potential of leverag-
ing deep learning techniques for traffic forecasting tasks, enabling more informed
transportation management strategies.

Q3: What are the best practices for encoding weather data for deep learning
applications, and which models yield superior performance in weather forecast-
ing?

Our research shows that carefully selecting and preprocessing weather vari-
ables such as temperature, precipitation, and cloud cover, we can create input
representations that capture the relevant spatio-temporal information into images.
The encoding of weather data as sequences of images has allowed us to exploit
the strengths of deep learning models in capturing complex weather patterns and
making accurate predictions. Furthermore, we have extensively evaluated differ-
ent deep learning architectures and model configurations to identify those that
yield superior performance in weather forecasting. The winner models seem to
be those that incorporate convolutional and recurrent neural networks, which are
able to capture both spatial and temporal dependencies in the data. Interestingly,
the same type of architecture has been found to be effective in traffic forecasting,
suggesting that these models may be well-suited for spatio-temporal prediction
tasks in general.

Through our investigation, we have established a set of recommended practices
for encoding weather data and identified the deep learning models that demon-
strate the highest predictive capabilities.

Q4: What are the fundamental components —including tasks, metrics, base-
lines, and evaluation methodologies— necessary to assess the generalization
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and adaptability of deep learning models in the context of spatio-temporal fore-
casting?

In order to assess the generalization and adaptability of deep learning models
in spatio-temporal forecasting, we have developed fundamental components that
form the basis for comprehensive evaluations. These components include specific
forecasting tasks, relevant evaluation metrics, viable baseline models, and rigorous
evaluation methodologies.

We found that by defining well-defined tasks and associated metrics, we can
objectively measure the performance of deep learning models in different forecast-
ing scenarios. This involves defining datasets from locations and/or time periods
that are not represented in the training data, thereby challenging the models to
adapt to distribution shifts. Through this approach, we have gained insights into
the generalization capabilities of the models and their ability to adapt to new en-
vironments. Our findings suggest that as models improve their performance on
known locations or time periods, their ability to generalize to unfamiliar scenarios
also tends to improve.

Additionally, the establishment of baseline models enables the comparison of
novel approaches against established benchmarks. Our research has also con-
tributed to the development of evaluation methodologies that account for the unique
challenges of spatio-temporal forecasting, ensuring robust and reliable assessments
of model performance. These fundamental components collectively provide a
framework for evaluating the generalization and adaptability of deep learning
models in spatio-temporal forecasting.

6.2 Conclusions and Future Work

This thesis embarked on an ambitious exploration of deep learning methodologies
applied to spatio-temporal processes, centering on the intricate domains of traffic
and weather forecasting.

We have delved into the challenges associated with encoding traffic data for
deep learning, recognizing the transformative potential of these methodologies
in shaping mobility patterns, streamlining city planning, and optimizing freight
delivery services. We aimed to elucidate a clear and efficient pathway to harness
GPS data, offering insights into how to employ deep learning models for accurate
traffic prediction.
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Similarly, we addressed the complex task of weather forecasting. Given the
enormous impact of weather on human activities and the environment, we set out
to establish best practices for encoding weather data and identify effective deep
learning models to perform superior weather prediction.

Underpinning this investigation was the recognition of the critical need for a
robust and comprehensive benchmark within the realm of spatio-temporal fore-
casting. We proposed an assemblage of benchmark components, including care-
fully selected tasks, relevant metrics, strong baselines, and thorough evaluation
methodologies, to enable a systematic comparison of models and accelerate ad-
vancements in the field.

The apex of our exploration was the organization of the Weather4cast compe-
tition. This competition has served as an effective proving ground, establishing
benchmarks for spatio-temporal prediction in both weather and traffic domains,
and inciting a wave of innovative solutions in these intricate fields.

In conclusion, this thesis has made significant strides in bridging the gap be-
tween deep learning and spatio-temporal forecasting. By offering innovative solu-
tions for traffic and weather forecasting, we have not only contributed to the de-
velopment of machine learning methodologies but have also honed the accuracy
and reliability of spatio-temporal predictions.

Looking ahead, we anticipate this work will serve as a springboard for future
research in this domain. Future efforts should aim to improve the limitations of
the work presented. First, improving the scalability and efficiency of the proposed
models, explore the potential of other deep learning architectures, and continue
refining the proposed benchmark to better reflect real-world complexities. For in-
stance, the datasets presented in this thesis could potentially serve for other tasks
such as anomaly detection, extreme events warnings, data imputation, and uncer-
tainty estimation.

Moreover, we hope to extend the application of our findings to other spatio-
temporal processes such as seismic activity prediction, urban planning, and envi-
ronmental monitoring. The lessons learned from traffic and weather forecasting
may provide valuable insights for these and other domains.

In essence, we envisage our research to be a catalyst, inspiring further advance-
ments in the application of deep learning to complex spatio-temporal processes.
We look forward to seeing how our findings will be leveraged and built upon
in the future to further the impact of deep learning on our understanding of the
world.
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ciación Española de Teledetección), 2022. URL https://repositorio.aemet.

es/handle/20.500.11765/14291.

D. H. Ballard. Modular learning in neural networks. In Proceedings of the Sixth
National Conference on Artificial Intelligence - Volume 1, AAAI’87, page 279–284.
AAAI Press, 1987. ISBN 0934613427.

P. Bauer, A. Thorpe, and G. Brunet. The quiet revolution of numerical weather
prediction. Nature, 525(7567):47–55, Sept. 2015. ISSN 1476-4687. doi: 10.1038/
nature14956. URL https://www.nature.com/articles/nature14956.

P. Bauer, P. D. Dueben, T. Hoefler, T. Quintino, T. C. Schulthess, and N. P. Wedi.
The digital revolution of Earth-system science. Nature Computational Science, 1
(2):104–113, Feb. 2021. ISSN 2662-8457. doi: 10.1038/s43588-021-00023-0. URL
https://www.nature.com/articles/s43588-021-00023-0. Number:
2 Publisher: Nature Publishing Group.

Y. Belousov, S. Polezhaev, and B. Pulfer. Solving the weather4cast challenge via
visual transformers for 3d images, 2022. URL https://arxiv.org/abs/

2212.02456.

Y. Bengio. Practical Recommendations for Gradient-Based Training of Deep Architec-
tures, pages 437–478. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

83

http://arxiv.org/abs/1912.12132
https://repositorio.aemet.es/handle/20.500.11765/14291
https://repositorio.aemet.es/handle/20.500.11765/14291
https://www.nature.com/articles/nature14956
https://www.nature.com/articles/s43588-021-00023-0
https://arxiv.org/abs/2212.02456
https://arxiv.org/abs/2212.02456


BIBLIOGRAPHY 84

ISBN 978-3-642-35289-8. doi: 10.1007/978-3-642-35289-8 26. URL https:

//doi.org/10.1007/978-3-642-35289-8_26.

L. Berthomier, B. Pradel, and L. Perez. Cloud Cover Nowcasting with Deep Learn-
ing. 2020 Tenth International Conference on Image Processing Theory, Tools and Ap-
plications (IPTA), pages 1–6, Nov. 2020. doi: 10.1109/IPTA50016.2020.9286606.
URL http://arxiv.org/abs/2009.11577. arXiv: 2009.11577.

K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian. Pangu-weather: A 3d
high-resolution model for fast and accurate global weather forecast, 2022. URL
https://arxiv.org/abs/2211.02556.

A. Bojesomo, H. Al-Marzouqi, and P. Liatsis. Spatiotemporal swin-transformer
network for short time weather forecasting. In G. Cong and M. Ramanath, ed-
itors, Proceedings of the CIKM 2021 Workshops co-located with 30th ACM Interna-
tional Conference on Information and Knowledge Management (CIKM 2021), Virtual
Event, QLD, November 1-5, 2021, CEUR Workshop Proceedings. CEUR-WS.org,
2021. in press.

C. Chen, K. Li, S. G. Teo, X. Zou, K. Wang, J. Wang, and Z. Zeng. Gated
residual recurrent graph neural networks for traffic prediction. Proceedings
of the AAAI Conference on Artificial Intelligence, 33(01):485–492, Jul. 2019. doi:
10.1609/aaai.v33i01.3301485. URL https://ojs.aaai.org/index.php/

AAAI/article/view/3821.

S. Choi. Traffic map prediction using UNet based deep convolutional neural net-
work. arXiv:1912.05288 [cs, stat], Nov. 2019. URL http://arxiv.org/abs/

1912.05288. arXiv: 1912.05288.

S. Choi. Utilizing UNet for the future traffic map prediction task Traffic4cast chal-
lenge 2020. arXiv:2012.00125 [cs, eess], Nov. 2020. URL http://arxiv.org/

abs/2012.00125. arXiv: 2012.00125.

S. Choi. Utilizing unet for the future weather prediction: Weather4cast 2021’. In
G. Cong and M. Ramanath, editors, Proceedings of the CIKM 2021 Workshops co-
located with 30th ACM International Conference on Information and Knowledge Man-
agement (CIKM 2021), Virtual Event, QLD, November 1-5, 2021, CEUR Workshop
Proceedings. CEUR-WS.org, 2021. in press.

https://doi.org/10.1007/978-3-642-35289-8_26
https://doi.org/10.1007/978-3-642-35289-8_26
http://arxiv.org/abs/2009.11577
https://arxiv.org/abs/2211.02556
https://ojs.aaai.org/index.php/AAAI/article/view/3821
https://ojs.aaai.org/index.php/AAAI/article/view/3821
http://arxiv.org/abs/1912.05288
http://arxiv.org/abs/1912.05288
http://arxiv.org/abs/2012.00125
http://arxiv.org/abs/2012.00125


BIBLIOGRAPHY 85

P. G. C. College. Electromagnetic waves, 2020. URL https://phys.

libretexts.org/Courses/Prince_Georges_Community_College/

PHY_2040%3A_General_Physics_III/03%3A_Electromagnetic_

Waves/3.1%3A_The_Electromagnetic_Spectrum#:˜:text=or%20HD%

20format.-,Microwaves,300%20MHz%20and%20300%20GHz. Accessed:
2023-05-08.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.

org/N19-1423.

S. Du, T. Li, X. Gong, and S.-J. Horng. A hybrid method for traffic flow forecasting
using multimodal deep learning, 2019.

V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning,
2016.

C. Eichenberger, M. Neun, H. Martin, P. Herruzo, M. Spanring, Y. Lu, S. Choi,
V. Konyakhin, N. Lukashina, A. Shpilman, N. Wiedemann, M. Raubal, B. Wang,
H. L. Vu, R. Mohajerpoor, I. Kim, L. Hermes, A. Melnik, R. Velioglu, M. Vieth,
M. Schilling, A. Bojesomo, H. Al Marzouqi, P. Liatsis, J. Santokhi, D. Hillier,
Y. Yang, J. Sarwar, A. Jordan, E. Hewage, D. Jonietz, F. Tang, A. Gruca, M. Kopp,
D. Kreil, and S. Hochreiter. Traffic4cast at neurips 2021 – temporal and spatial
few-shot transfer learning in gridded geo-spatial processes. In H. J. Escalante
and K. Hofmann, editors, Proceedings of the NeurIPS 2021 Competition Track, vol-
ume forthcoming of Proceedings of Machine Learning Research. PMLR, 2022.

L. Espeholt, S. Agrawal, C. Sønderby, M. Kumar, J. Heek, C. Bromberg, C. Gazen,
J. Hickey, A. Bell, and N. Kalchbrenner. Skillful twelve hour precipitation fore-
casts using large context neural networks. arXiv preprint arXiv:2111.07470, 2021.
URL https://arxiv.org/abs/2111.07470v1.

https://phys.libretexts.org/Courses/Prince_Georges_Community_College/PHY_2040%3A_General_Physics_III/03%3A_Electromagnetic_Waves/3.1%3A_The_Electromagnetic_Spectrum#:~:text=or%20HD%20format.-,Microwaves,300%20MHz%20and%20300%20GHz
https://phys.libretexts.org/Courses/Prince_Georges_Community_College/PHY_2040%3A_General_Physics_III/03%3A_Electromagnetic_Waves/3.1%3A_The_Electromagnetic_Spectrum#:~:text=or%20HD%20format.-,Microwaves,300%20MHz%20and%20300%20GHz
https://phys.libretexts.org/Courses/Prince_Georges_Community_College/PHY_2040%3A_General_Physics_III/03%3A_Electromagnetic_Waves/3.1%3A_The_Electromagnetic_Spectrum#:~:text=or%20HD%20format.-,Microwaves,300%20MHz%20and%20300%20GHz
https://phys.libretexts.org/Courses/Prince_Georges_Community_College/PHY_2040%3A_General_Physics_III/03%3A_Electromagnetic_Waves/3.1%3A_The_Electromagnetic_Spectrum#:~:text=or%20HD%20format.-,Microwaves,300%20MHz%20and%20300%20GHz
https://phys.libretexts.org/Courses/Prince_Georges_Community_College/PHY_2040%3A_General_Physics_III/03%3A_Electromagnetic_Waves/3.1%3A_The_Electromagnetic_Spectrum#:~:text=or%20HD%20format.-,Microwaves,300%20MHz%20and%20300%20GHz
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://arxiv.org/abs/2111.07470v1


BIBLIOGRAPHY 86

W. Falcon et al. Pytorch lightning. GitHub. Note: https://github.
com/PyTorchLightning/pytorch-lightning, 3:6, 2019.

P. Ghamisi, O. Ghorbanzadeh, Y. Xu, P. Herruzo, D. Kreil, M. Kopp, and S. Hochre-
iter. The landslide4sense competition 2022, 12 2022.

R. Girdhar, A. El-Nouby, Z. Liu, M. Singh, K. V. Alwala, A. Joulin, and I. Misra.
Imagebind: One embedding space to bind them all. In CVPR, 2023.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

A. Gruca, P. Herruzo, P. Rı́podas, A. Kucik, C. Briese, M. K. Kopp, S. Hochreiter,
P. Ghamisi, and D. P. Kreil. CDCEO’21 - First Workshop on Complex Data Challenges
in Earth Observation, page 4878–4879. Association for Computing Machinery,
New York, NY, USA, 2021a. ISBN 9781450384469. URL https://doi.org/

10.1145/3459637.3482044.

A. Gruca, P. Herruzo, P. Rı́podas, A. Kucik, C. Briese, M. K. Kopp, S. Hochre-
iter, P. Ghamisi, and D. P. Kreil. Cdceo’21 - first workshop on complex data
challenges in earth observation. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, CIKM ’21, page 4878–4879,
New York, NY, USA, 2021b. Association for Computing Machinery. ISBN
9781450384469. doi: 10.1145/3459637.3482044. URL https://doi.org/10.

1145/3459637.3482044.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition,
2015.

P. Herruzo and J. L. Larriba-Pey. Recurrent Autoencoder with Skip Connec-
tions and Exogenous Variables for Traffic Forecasting. In NeurIPS 2019 Com-
petition and Demonstration Track, pages 47–55. PMLR, Aug. 2020. URL http:

//proceedings.mlr.press/v123/herruzo20a.html. ISSN: 2640-3498.

P. Herruzo, L. Portell Penadés, A. Soto, and B. Remeseiro. Towards objective de-
scription of eating, socializing and sedentary lifestyle patterns in egocentric im-
ages. In BMVC Cardiff 2019, 2019.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1145/3459637.3482044
https://doi.org/10.1145/3459637.3482044
https://doi.org/10.1145/3459637.3482044
https://doi.org/10.1145/3459637.3482044
http://proceedings.mlr.press/v123/herruzo20a.html
http://proceedings.mlr.press/v123/herruzo20a.html


BIBLIOGRAPHY 87

P. Herruzo, A. Gruca, L. Lliso, X. Calbet, P. Rı́podas, S. Hochreiter, M. Kopp,
and D. P. Kreil. High-resolution multi-channel weather forecasting – first in-
sights on transfer learning from the weather4cast competitions 2021. In 2021
IEEE International Conference on Big Data (Big Data), pages 5750–5757, 2021a. doi:
10.1109/BigData52589.2021.9672063.

P. Herruzo, A. Gruca, L. Lliso, X. Calbet, P. Rı́podas, S. Hochreiter, M. Kopp, and
D. P. Kreil. High-resolution multi-channel weather forecasting – First insights
on transfer learning from the Weather4cast Competitions 2021. In 2021 IEEE
International Conference on Big Data (Big Data), pages 5750–5757, Dec. 2021b. doi:
10.1109/BigData52589.2021.9672063.

H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater,
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imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 32. Curran Associates, Inc., 2019.
URL https://proceedings.neurips.cc/paper_files/paper/2019/

file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf.

http://arxiv.org/abs/2003.12140
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf


BIBLIOGRAPHY 94

O. W. Weather. Weather data and api, 2019. URL https://www.

worldweatheronline.com/developer/. Accessed: 2019-07-30.

N. Wichers, R. Villegas, D. Erhan, and H. Lee. Hierarchical long-term video pre-
diction without supervision. In ICML, 2018.

Wikipedia contributors. Transportation forecasting — Wikipedia, the free encyclo-
pedia, 2023. URL https://en.wikipedia.org/wiki/Transportation_

forecasting. [Online; accessed 21-May-2023].

World Meteorological Organization. Guide to instruments and methods of obser-
vation. Technical Report WMO No. 8, 2018.

L. Zhao, O. Gkountouna, and D. Pfoser. Spatial auto-regressive dependency in-
terpretable learning based on spatial topological constraints. ACM Trans. Spatial
Algorithms Syst., 5(3), aug 2019. ISSN 2374-0353. doi: 10.1145/3339823. URL
https://doi.org/10.1145/3339823.

J. Zhuang, T. Tang, Y. Ding, S. Tatikonda, N. Dvornek, X. Papademetris, and J. S.
Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed gra-
dients, 2020.

I. I. Zveryaev. Seasonality in precipitation variability over europe. Journal of Geo-
physical Research: Atmospheres, 109(D5), 2004. doi: https://doi.org/10.1029/
2003JD003668.

https://www.worldweatheronline.com/developer/
https://www.worldweatheronline.com/developer/
https://en.wikipedia.org/wiki/Transportation_forecasting
https://en.wikipedia.org/wiki/Transportation_forecasting
https://doi.org/10.1145/3339823

	Introduction
	Research Questions
	List of Contributions
	Dissertation Outline

	Background
	Spatio-temporal processes
	Traffic Forecasting
	Weather Forecasting

	Benchmarks
	Tasks
	Datasets
	Evaluation Metrics
	Baseline
	Benchmarks Presented in this Thesis

	Deep Learning
	Convolutional Neural Networks
	Recurrent Neural Networks
	Autoencoders
	Batch Sampling and One-hot Encoding

	Multitask Models
	Multimodal Data
	Generalization and Domain Adaptation

	I Deep Learning for Traffic Forecasting
	Multimodal Traffic Autoencoder
	Introduction
	Related Work
	The Traffic4cast Formulation
	Sampling Strategies for Video to Video
	Multimodal Model with Weather and Seasonal Encoding
	Recurrent Autoencoder with Skip Connections
	The Model

	Model Variants and Baselines
	Results
	Discussion
	Author Contributions


	II Open-Data Benchmarks: Multimodality, Adaptation, and Generalization in Deep Learning
	Weather4cast 2021: A New Spatio-Temporal Benchmark
	Introduction
	Related Work
	The Weather4cast Formulation
	Datasets
	Processing of the Temperature Variable

	Tasks
	Target Variables Distributions

	Metrics

	Associated Competitions and Provided Software
	Weather4cast Venues 2021
	Weather4cast Software

	Baselines and Models
	Conditional U-Net
	Weather4cast 2021 Models

	Results
	Discussion
	Author Contributions

	Weather4cast at at NeurIPS 2022:  Super-Resolution Rain Movie Prediction under Spatio-temporal Shifts
	Introduction
	Related Work
	The Weather4cast 2022 Formulation
	Datasets
	Meteosat Second Generation SEVIRI Data
	Weather Radar Data from the OPERA Project

	Data Compilation and Harmonization
	Geographical Context and Rainfall Variability: Criteria for Region Selection
	Selection and Characterization of Target Patches

	Tasks
	Evaluation Metric

	Associated Competitions and Provided Software
	Weather4cast 2022 at NeurIPS
	Weather2cast 2022 Software

	Results
	Discussion
	Author Contributions

	Research Findings and Conclusions
	Research Question Analysis and Findings
	Conclusions and Future Work

	Bibliography




