
Exploration of FDSOI Back-Biasing Techniques

to Hinder Cryptographic Attacks Based on

Leakage Current

Kenneth Palma

July 2023

List of Figures

1.1 Moore’s law observational trends 14
1.2 Prospective trends on IoT nodes 16

3.1 FSM diagram . 30
3.2 Setup and hold Timing . 31
3.3 Schematic representation of the input of a D flip-flop 31

4.1 Cross-sectional view of a flip-well CMOS FDSOI pair (Figure
extracted from [1]). 49

5.1 Leakage current consumption of a standard-cell D flip-flops as a
function of absolute body bias. While this is just an example of
a particular flip-flop, it is representative of the behaviour observed. 53

5.2 Dummy cryptosystem implementing a bitwise XORing function
between the plaintext (X[0..7]) and a secret key (k[0..7]) 54

5.3 Idealized discrete body bias generator 54
5.4 PCC between the leakage current of a register array and the

HW calculated with all possible keys for a fixed body bias value
|Vbbn| = 0 V . 57

5.5 PCC between the leakage current of a register array and the HW
calculated with for all possible keys, in the presence of a random
body bias . 58

5.6 Measured leakage current vs Hamming Weight of different plain-
text X in an 8-bit register. The solid line depicts equation (4.3)
for a given register, while the markers represent measured current
values for different plaintexts displayed according to the calcu-
lated Hamming Weight with a correct key (Blue) and an incorrect
key (Red). 63

5.7 Collection of register leakage current vs Hamming Weight curves.
Each line represents a possible realization of Equation (4.3) for
different values of I0. The markers represent measured current
values for different plaintexts displayed according to the calcu-
lated Hamming Weight with a correct key 65

1

5.8 PCC between the leakage current and the Hamming Weight of
an 8-bit register array in the presence of a random body bias as
a function of the maximum number of steps 67

5.9 PCC between the leakage current and the Hamming Weight of an
8-bit register array in the presence of a random body bias, with
a fixed maximum Dynamic Range, as a function of the smax . . 68

5.10 Effect of averaging on the PCC between the Leakage Current and
the Hamming Weight of the register array in the presence of the
proposed countermeasure with a fixed, maximum body bias DR
of 1 V. It can be seen how averaging undermines the effect of the
countermeasure for large number of repeated encryption processes. 71

5.11 PCC between the numerically simulated leakage current and the
Hamming Weight of the theoretical register array under attack
for every candidate key in the presence of the proposed coun-
termeasure. The results are obtained with one single encryption
process per plaintext. 73

5.12 PCC of the numerically simulated and averaged leakage current
and the HammingWeight, with 10 encryption processes per plain-
text. 73

5.13 PCC of the numerically simulated and averaged leakage current
and the Hamming Weight, with 100 encryption processes per
plaintext. 74

5.14 PCC of the numerically simulated and averaged leakage current
and the Hamming Weight, with 1000 encryption processes per
plaintext. 74

5.15 Effect of averaging on the PCC between the Leakage Current and
the Hamming Weight of a 128-bit register array, with 8 bits under
attack, in the presence of the proposed countermeasure with a
fixed, maximum body bias DR of 1 V and different number N of
traces per plaintext. 77

6.1 PCC between the univariate leakage magnitude (Blue) and its
HW, as described in the previous chapter, and between the bi-
variate leakage magnitude Isub (Orange) and Z as a function of
smax. 87

6.2 Mean value of the random variable Z for all possible plaintexts
as a function of the round key . 88

6.3 Variance of the random variable Z for all possible plaintexts as
a function of the round key . 89

6.4 Schematic representation of the Trivium Stream Cipher 90
6.5 t1, the non-linear function under attack. The result from this

function feeds into the first bit of register Y. 90
6.6 PCC between the magnitude Isub and the Hamming Weight of

interest in the Trivium as a function of samples per plaintext . . 95

2

6.7 ϵ as a function of both Vbbn and Vbbp for LVT, flip-well transistors
at 27 ºC. Each curve represents a possible value of Vbbn, which
ranges from 0 V to 1 V, in 0.1 V increments (from top to bottom).
The horizontal red line indicates the points of zero crossing of ϵ. 97

6.8 Reduced contour map of ϵ(Vbbn, Vbbp). The lines represent the
limits where ϵ = |1| nA, encasing an area where any possible
combination of body bias values solves for ϵ ≤ |1| nA. 98

6.9 Reduced contour map of ϵ(Vbbn, Vbbp) for registers implemented
with LVT, FBB transistors at 27 ºC. The colored lines represent
the limits where ϵ = |1| nA, encasing an area where any possible
combination of body bias values solves for ϵ ≤ |1| nA. The vertical
lines showcase the inferior limits of Vbbn that can solve for the
conditions . 100

6.10 PCC between the Hamming Weight represented by the random
variable Z and the bivariate leakage power model (Equation (6.5))
under noiseless conditions in the presence of a Symmetrical (blue)
and a Current Balancing (orange) random body bias scheme,
where ϵ is systematically kept at 1 nA 102

6.11 PCC between the Hamming Weight and the bivariate leakage
power model (Equation 6.5) with non-algorithmic noise in the
presence of a Symmetrical (blue) and a Current Balancing (or-
ange) random body bias scheme, in the presence of non-algorithmic
GW noise . 103

6.12 PCC between the Hamming Weight and the bivariate leakage
power model (Equation 6.5) as a function of averaged number
of traces in the presence of non-algorithmic GW noise with a
Symmetrical (Blue) and a Current Balancing (Orange) random
body bias scheme . 104

6.13 PCC between Zn and the bivariate leakage power model with al-
gorithmic and non-algorithmic noise (Equation 6.36) as a function
of noise power under a current balancing boby bias, for different
number of N averaged traces . 105

6.14 PCC between the Hamming Weight and the bivariate leakage
power model with algorithmic and non-algorithmic noise (Equa-
tion 6.36), as a function of noise power under a a Symmetri-
cal (blue) and a Current Balancing (orange) random body bias
scheme for N = 1000 averaged traces. 106

6.15 PCC between the Hamming Weight and the bivariate leakage
power model of the Trivium with algorithmic and non-algorithmic
noise (Equation 6.39), as a function of averaged samples under
a Current Balancing (blue) and a Symmetrical (orange) random
body bias scheme for a noise power of −134 dBW. 109

3

6.16 PCC between the Hamming Weight and the bivariate leakage
power model of the Trivium with algorithmic and non-algorithmic
noise (Equation 6.39), under a Current Balancing (blue) and a
Symmetrical (orange) random body bias scheme for N = 1000
averaged traces. 110

6.17 Block system representation of the Trivium implemented as a
collection of discrete-time state space matrices. The scope saves
the total Hamming Weight of the three registers. 111

6.18 Contour map of ϵ(vbbn, vbbp) at 75 C for the registers under study
implemented with low threshold voltage, flipped well transistors.
The lines represent the limits where |ϵ(vbbn, vbbp)| ≤ 1 nA, encas-
ing an area where every possible combination of Vbbn and Vbbp

meet the imposed criterion. 114
6.19 Contour map of ϵ(vbbn, vbbp) at 27 C for the registers under study

implemented with regular threshold voltage, reverse body bias
transistors. The lines represent the limits where |ϵ(vbbn, vbbp)| ≤ 1
nA, encasing an area where every possible combination of Vbbn

and Vbbp meet the imposed criterion. 115
6.20 Contour map of ϵ(vbbn, vbbp) at 80 C for the registers under study

implemented with regular threshold voltage, reverse body bias
transistors. The lines represent the limits where |ϵ(vbbn, vbbp)| ≤ 1
nA, encasing an area where every possible combination of Vbbn

and Vbbp meet the imposed criterion. 115

7.1 Schematic representation of a two-stage CMOS Cross-Coupled
Charge Pump . 118

7.2 Layout of a designed single inverter 120
7.3 Non-overlapping two phase clock generator layout 121
7.4 Layout of the negative charge pump 121
7.5 Layout of the driver chain . 122
7.6 Full layout of the positive and negative Body Bias generator . . . 123
7.7 NMOS hysteresis comparator . 124
7.8 Pre-hysteresis stage schematic . 125
7.9 Charge-pump pulse skipping control through the hysteresis com-

parator . 126
7.10 Schematic of a threshold-referenced current source 128
7.11 Schematic representation of a PMOS threshold-referenced cur-

rent source / voltage regulator 129
7.12 Output voltage vs P-Well body bias value (Vbbp) of the circuit

depicted in Fig. 7.11. The voltage is measured at the node label
as net4. 130

7.13 Block Diagram representing the possibility of implementing a
control system to reach the desired value of Vbbp through the
circuit depicted in Fig. 7.11 . 131

7.14 Simplified schematic representation of a possible implementation
of part of the transfer loop that would enact the control system 131

4

7.15 Potential leakage current front-end sensor based on the voltage
drop experienced by a shunt resistor 132

7.16 Capacitive leakage current sensor schematic representation . . . 134
7.17 Block diagram representation of the current balancing seeking

circuit . 138
7.18 Schematic of the ideal positive voltage charge pump representing

the drivers . 138
7.19 Schematic of the ideal negative voltage charge pump representing

the drivers . 139
7.20 Diagram representation of the hysteresis comparator. 140
7.21 Contourn map of |ϵ(Vbbn, Vbbp)| for D flip-flops under study im-

plemented with RVT, RBB transistors at 80 ºC 141
7.22 Contourn map of |ϵ(Vbbn, Vbbp)| for D flip-flops under study im-

plemented with RVT, RBB transistors at 80 ºC superimposed
with its gradient function . 141

7.23 3D representation of the function |ϵ(Vbbn, Vbbp)|. 142
7.24 Schematic representation of the Overshoot detector implementa-

tion through an XOR gate. 143
7.25 Schematic representation of the comparators informing the pro-

gression of the drivers used. 143
7.26 State transition diagram of the sensor portion of the control unit 145
7.27 State transition diagram of the drivers portion of the control unit 145
7.28 Analog-Mixed simulation results of the body bias seeking circuit

at 80 ºC . 147
7.29 PCC between the Hamming Weight and the bivariate leakage

power model (Equation 7.39) as a function of averaged number
of traces in the presence of algorithmic and non-algorithmic GW
noise with Current balanced body bias (Blue) and without a cur-
rent balanced body bias (Orange) at 80 ºC 149

7.30 PCC between Zn and the bivariate leakage power model with
algorithmic and non-algorithmic noise (Equation 7.39) as a func-
tion of noise power under a current balancing body bias at 80 ºC
(ϵ = −273 pA), for different number of N averaged traces 150

8.1 Histogram depicting the distribution of ϵ for body bias values
Vbbn = −409 mV and Vbbp = 775 mV for 200 samples 153

8.2 PCC as a function of samples of Equation 8.10 at 80 C for the
different distributions obtained through a Montecarlo analysis of
registers under body bias conditions seen in Table 8.2 157

8.3 PCC as a function of samples of Equation 8.10 at 80 C for the
different distributions obtained through a Montecarlo analysis of
registers under body bias conditions seen in Table 8.2 considering
a folded distribution . 159

8.4 Boxplot for a 1000 instances of equation 8.24 for different body
bias schemes at 80 C and 1000 samples per instance 163

5

8.5 Boxplot for a 1000 instances of equation 8.24 for different body
bias schemes at 80 C and 5000 samples per instance 164

8.6 Boxplot for a 1000 instances of equation 8.24 for different body
bias schemes at 80 C and 10000 samples per instance 164

8.7 Boxplot for a 1000 instances of equation 8.24 for different body
bias schemes at 80 C and 10000 samples per instance 165

8.8 Boxplot for a 1000 instances of equation 8.24 for different body
bias schemes at 80 C and 10000 samples per instance 165

8.9 Boxplot for a 1000 instances of equation 8.24 for different body
bias schemes at 80 C and 10000 samples per instance without
considering a folded normal distribution 166

10.1 Schematic representation of the circuit implementing the capac-
itive sensing capabilities of the TtD converter. The reg! label
refers to the power pin of the registers under test 178

10.2 Vc1 (purple) and Vc0 (orange) as a function of time 179

6

List of Tables

2.1 One of 24 possible substitutions for strings of 2 bits 21
2.2 One of 8! possible permutations for strings of 8 bits. The numbers

represent the position of the bits within the string. 22
2.3 XOR truth table . 25
2.4 One of 24 possible substitutions for strings of 2 bits. The X1 and

X2 bits represent the inputs of the substitution function, while
Y1 and Y2, its outputs. 26

5.1 PCC for maximum dynamic range of the Body Bias for different
number of averaging encryption processes when smax = 25 70

5.2 Success ratio of secret key identification in numerical simulations
under different number of averaging samples 72

5.3 Theoretical and numerical simulation results of the PCC, along
the success ratio for 100 simulated attacks, for a 128 bit regis-
ter array with 8 bits under attack without countermeasure for
different number N of averaged traces per plaintext. 78

5.4 Theoretical and numerical simulation results of the PCC, along
the success ratio for 100 simulated attacks, for a 128 bit register
array with 8 bits under attack with countermeasure for different
number N of averaged traces per plaintext. 78

5.5 Forward Body Bias Registers at 80 C -Theoretical and numerical
simulation results of the PCC, along the success ratio for 100
simulated attacks, for a 128 bit register array with 8 bits under
attack with countermeasure for different number N of averaged
traces per plaintext. 79

5.6 Reverse Body Bias Registers at 27 C - Theoretical and numerical
simulation results of the PCC, along the success ratio for 100
simulated attacks, for a 128 bit register array with 8 bits under
attack with countermeasure for different number N of averaged
traces per plaintext. 80

6.1 Key Extraction Progression for different periods of the initializa-
tion phase. The pertinent bits of the Initialization Vector have
been omitted . 91

6.2 Probability Distribution of second XOR gate 94

7

6.3 Countermeasure parameters . 101
6.4 PCC - Theoretical and Numerical Simulations of a 128 bit system

in the absence of non-algorithmic noise 107
6.5 PCC - Theoretical and Numerical Simulations of a 128 bit system

in the presence of non-algorithmic noise 108
6.6 First and Second Moments of Zm 108
6.7 PCC - Theoretical and Numerical Simulations of a 128 bit system

in the presence of non-algorithmic noise 113

7.1 Drivers’ decoder truth table. The signals CD1 and CD0 represent
the drivers’ counter. 144

7.2 Simulation conditions . 146
7.3 Results from an initial simulation at 80 ºC 147
7.4 Results at varying temperatures 148
7.5 PCC - Theoretical and Numerical Simulations of a 128 bit system

in the presence of non-algorithmic noise 150

8.1 Single Driver Current Balancing Results at varying temperatures 154
8.2 Mean and standard deviation of registers’ leakage current 155
8.3 Success rate of key identification for 1000 instances of a simulated

CPA at 80 C . 167
8.4 Success rate of key identification for 1000 instances of a simulated

CPA at 50 C . 167
8.5 Success rate of key identification for 1000 instances of a simulated

CPA at 35 C . 168
8.6 Success rate of key identification for 1000 instances of a simulated

CPA at 80 C . 168

8

Contents

1 Introduction 13
1.1 Background . 13
1.2 Motivation . 14
1.3 Thesis Objectives . 16
1.4 Outline . 17

2 Fundamentals of Cryptography 19
2.1 Types of Cryptosystems . 20

2.1.1 Blockciphers . 21
2.1.2 Stream Ciphers . 22

2.2 Security in Cryptosystems . 23
2.2.1 The piling-up lemma and linear cryptanalysis 24

3 Side Channel Attacks & Countermeasures 28
3.1 Finite State Machines and Intermediate Variables 29
3.2 Differential Power Analysis Attacks 32
3.3 Correlation Power Analysis Attacks 36
3.4 Countermeasures to PAA . 38
3.5 Conclusions . 42

4 Leakage Power Analysis Attacks, Countermeasures & FDSOI
technology 43
4.1 Technology Scaling and Leakage Currents as a Side-Channel . . . 43
4.2 Countermeasures to LPA attacks 47
4.3 FDSOI Technology in Cryptosystems 48

5 Random Body Bias as a countermeasure to Leakage Power
Analysis Attacks 51
5.1 Initial Investigation & Modelling 51
5.2 CPA on Dummy Cryptosystem. Empirical approach 53
5.3 Countermeasure Modelling . 58

5.3.1 PCC without countermeasure 58
5.3.2 Random body bias scheme 61
5.3.3 Random Body Bias Analysis 64

9

5.3.4 Random Body Bias: Trace Averaging 68
5.3.5 Algorithmic Noise . 75
5.3.6 Other Conditions . 78

5.4 Conclusions . 80

6 Current Balancing Body Bias 82
6.1 Vulnerabilities to Random Body Bias Countermeasure 83

6.1.1 The AES and Random Body Bias 84
6.1.2 The Trivium and Random Body Bias 88

6.2 Current Balancing Body Bias . 96
6.3 Results . 99

6.3.1 The AES and Current Balancing Body Bias 100
6.3.2 The Trivium and Current Balancing Body Bias 108

6.4 Temperature and Other Considerations 113
6.5 Conclusions . 114

7 Current Balancing Body Bias Circuit Implementation 117
7.1 Circuit Implementation . 118

7.1.1 Body Bias Generator . 118
7.1.2 Hysteresis Control . 122

7.2 Current Balancing - Initial Exploration 127
7.2.1 Threshold-based Voltage reference 127
7.2.2 IDDq . 132

7.3 Time-to-Digital Converter . 133
7.3.1 Low vs Regular Threshold Transistors 136

7.4 Control Unit & Drivers . 137
7.5 Results . 146

7.5.1 Circuit Simulation . 146
7.5.2 PCC . 148

7.6 Conclusions . 150

8 Variability Assessment 152
8.1 Initial Approach - Montecarlo Simulations 153
8.2 Variability Analysis - Ideal Distribution 155

8.2.1 Results . 157
8.3 Variability analysis - Register Instances 158

8.3.1 Folded Normal Distribution 160
8.3.2 Results . 163

8.4 Conclusions . 168

9 Conclusions 170
9.1 Publications . 172

10

10 Annexes 173
10.1 Annex I - Perfect Secrecy . 173
10.2 Annex II - PCC Derivation Under Random Body Bias Scheme . 175
10.3 Annex III - Current Balancing Proof of Concept Design 178

10.3.1 Vref . 178
10.3.2 fs and Csense . 180
10.3.3 Charge-Pumps . 181
10.3.4 Number of Bits, nmin and nMAX 182

10.4 Annex IV - PCC for register instances under process and mis-
match variability . 184

11

Acknowledgements

This research was funded by Spanish MCIN/AEI/10.13039/501100011033, Project
PID2019-103869RB-C33 (Project VIGILANT), by Secretaria d’Universitats i
Recerca of Generalitat de Catalunya, and by the European Social Fund.

To my parents, whose sacrifice will be but a blip in the speck of existence,
never sufficiently recognized.

To my friends, whose eyes glaze with the hue of incomprehension when I
relay my new findings.

To my tutor, for his patience, guidance and confidence.
To E.B.

12

Chapter 1

Introduction

1.1 Background

A cryptographic system is a circuit which implements a cryptographic algorithm.
That is, a System on Chip (SoC), ASIC, or a microcontroller one of the functions
of which is to securely prepare information to be sent from the circuit onto, at
the very least, a second node or circuit.

For cryptography is the science that studies the secure transmission of in-
formation between communicating parties, attempting to ensure that even if
a message is intercepted during transmission its contents remain secure and
unable to produce information.

For the most part of its formalization during the 20th century, cryptography
has remained an abstract endeavour. That is to say, the development of cryp-
tographic algorithms and primitives has been a purely mathematical approach.
During this development, it sufficed to prove that a particular cryptographic
algorithm was statistically secure. With that, if no means of attacking the
algorithm could be proven and the statistical properties complied with the un-
derstanding of security at the time, an algorithm could be developed, and be
assumed secure, without ever leaving a sheet of paper.

With the boom of integrated circuits and the ever shrinking Moore’s Law [2],
cryptographic systems would be adapted and migrated into the world of digital
computation, where the throughput could be faster, the secret keys longer, and
no dedicated implementation was necessary.

But by doing so, cryptographic systems were opened to a type of vulnerabil-
ity that did not exist before. At the cusp of the 20th century, researchers realized
that the power consumption of circuits implementing cryptographic algorithms,
when studied during the execution of encryption, could leak information regard-
ing the secret key at the core of the encryption process [3] [4]. In this case, the
power consumption could be proven to be a side-channel.

A side-channel is a physical magnitude that can be measured and that some-
how ”leaks” information about the current state of a cryptosystem. The nature

13

Figure 1.1: Moore’s law observational trends

and properties of a side-channel depend on the nature and properties of the
system that implements a cryptographic algorithm. They could be heat, me-
chanical vibrations, electromagnetic emanations or, as in IC implementations,
power consumption of the circuit.

Thus, at the transition of the millennial, researchers realized that by studying
and collecting power traces of a cryptosystem executing an encryption algorithm
under distinct conditions, it could be possible to gather sufficient information
so as to derive the secret key, thus breaking the security of the system.

This research focused at the time on smart-cards, where a hefty volume of
research has been produced [5] [6]. But more complex microcontrollers, FPGA
implementations and ASIC implementations have, with time, been proven to be
vulnerable to what are called side-channel attacks.

1.2 Motivation

Thus began an arms-race between this newly gained insight into side-channel
attacks that utilized power consumption, also called Power Analysis Attacks,
and the study of means to protect circuits against them.

As the knowledge regarding the nature of power consumption as a side chan-
nel was refined, as well as with the optimization regarding their statistical and

14

informational theory analysis, power analysis attack became more efficient [7].
Thus, means to protect circuits against power analysis attacks, traditionally

called countermeasures, began to be developed in parallel. In time, a variety of
countermeasures was developed as a response to the ever growing understanding
of power analysis attacks, attempting to protect cryptographic implementations
from prying eyes. While varied in nature, countermeasures fall in roughly two
categories; those that ”disconnect” the power consumption of the cryptographic
system from the power pins through means of integrated power converters of
some kind, and those that either introduce noise or decrease the magnitudes of
the signals of interest.

With these came a myriad of challenges. Countermeasures are an additional
circuit embedded along the original cryptographic circuit, meaning that they
increase both the area and power overhead. At the same time, countermeasures
must be proven to be effective protecting against power analysis attacks. But
a multitude of elements must be taken into account, and protection in some
regards does not mean in all regards [8]. At best, a countermeasure is soundly
safe until determined otherwise.

At the same time, it was not sufficient to develop countermeasures consider-
ing only an understanding of power analysis attacks, for as technology advances
and changes, so change the nature of power consumption as a side-channel.

Perhaps the clearest example of this is that brought by the explosion of sub-
micron technology of CMOS integrated circuits. That is, at the beginning of
the inception of power analysis attacks and countermeasures, the focus point on
how to derive information regarding the inner state of cryptographic systems
was that of dynamic power. The power consumed at each rising edge of the
clock was the main source of information that could help break a cryptosystem,
and so most countermeasures were designed taking this element into account.

However, as transistor nodes entered the nanometer scale, leakage or static
power consumption became a prominent source of power consumption [9]. Not
only that, but at the beginning of the 2010’s, researchers realized that static
power consumption could also be used as a side-channel. Thus, a new vulnera-
bility was discovered, and so a new arm-race began anew.

The main focus on power analysis attacks that use leakage power as a side-
channel has been on targeted registers arrays, whose leakage current consump-
tion heavily depends on the state that is being stored. With these came new
types of countermeasures that attempted to hinder the quality of information
extracted from leakage power.

At the same time, with the prospective increase in the number of IoT nodes
featured in connected devices (Fig. 1.2) come several security questions that
need to be addressed. Side-channel attacks are invasive, in the sense that an
attacker requires physical access to the device. Isolated IoT nodes, with an un-
derstanding of being designed for low power, low latency and low computational
capacity, are particularly at risk, and thus newer security staples are required.

And just as newer transistor nodes have furthered the understanding of other
sources of vulnerabilities, newer transistor technologies present an opportunity
in the study of countermeasures .

15

Figure 1.2: Prospective trends on IoT nodes

In particular, FDSOI transistors which, given their structure, allow the ap-
plication of a wide range of body bias values without loss of functionality, present
interesting characteristics regarding their leakage power consumption [10].

First of all, their structure has been proven to diminish the overall leak-
age current that they incur by curtailing small-channel effects. At the same
time, through the modification of their body bias, FDSOI transistors can see
their threshold voltage dynamically modified and, with it, their leakage current
consumption. As such, FDSOI transistors pose an interesting opportunity to
explore in the development of countermeasures against leakage power analysis
attacks.

Nonetheless, little literature exists in this regard. As such, this thesis ex-
plores the use of CMOS FDSOI technology, through its back biasing capa-
bilities, to design countermeasures against leakage power analysis attacks of
cryptographic systems.

1.3 Thesis Objectives

Based on the notions introduced regarding the nature of cryptosystems and
side-channel attacks, the objective of this thesis is, mainly, the exploration of
FDSOI body biasing techniques to develop effective countermeasures against
leakage power analysis attacks.

While some deviations exist from the initial outline of the research plan, the
work here presented follows the spirit of its intended conception.

Thus, a systematic approach to the development of countermeasures utilizing
the properties of FDSOI technology is employed.

The overall objectives of this work are then subdivided into smaller, progres-

16

sive problems, which inform the overall structure of the subsequent chapters of
this thesis:

• Develop an understanding of the effect of body bias on the leakge current
consumption of chosen standard cells implemented in FDSOI technology.
In this work, we focus on sequential logic, namely D flip-flops.

• Based on this initial exploration, conceive of a body bias scheme that can
help hinder the secret key extraction of cryptosystems through leakage
power analysis attacks. In order to do so, the proposed countermeasure
must be able to both respond to the statistical properties of cryptosystems
and the idiosyncrasies that arise regarding their leakage power consump-
tion. At the same time, the implementation of such a countermeasure
must be feasible. Thus, two further objectives arise.

• Test the effectiveness of the proposed countermeasure under conditions
that can sufficiently represent real implementation conditions.

• Offer a proof of concept circuit capable of implementing the developed
countermeasure.

In order to do so, we rely heavily on electrical and numerical simulations
using Virtuoso ADE and Matlab.

1.4 Outline

Chapters 2 through 4 serve as a formalized and more thorough introduction, out-
lining the necessary materials to be able to understanding this work. Chapter
2 presents an introduction to cryptographic principles, notions, and mathemat-
ical derivations that will be used throughout this work. Chapter 3 formalizes
the definition of side-channel attacks as related to the power consumption of
cryptographic systems, a brief chronology and state of the art, along the coun-
termeasures that have been designed as a response. Chapter 4 summarizes
some of the studies made so far regarding leakage current consumption as a
side-channel, as well as currently existing countermeasures. At the same time,
it introduces more formally the structure and properties of FDSOI transistors,
and how they could be used to design countermeasures. It also details the ob-
jectives of this thesis, and a brief presentation of the methodology used, more
thoroughly developed in the bulk of the thesis.

Chapters 5 through 8 are the bulk of this work, presenting the analysis,
design, and implementation of various countermeasures against vulnerabilities
in static power consumption of cryptographic systems.

Chapter 5 implements within itself all the objectives summarised above,
presenting an initial exploration and implementation of a countermeasure based
on a body bias scheme, testing its effectiveness through analysis and numerical
simulations of power attacks. At the same time, the chapter also introduces

17

notions of what types of circuits could be necessary to implement it, along with
some simulations of such circuits.

Chapters 6 and onward are a response to the first introduced countermea-
sure. After its implementation, further analysis revealed that, under certain
conditions, the countermeasure proposed in Chapter 5 presents significant vul-
nerabilities and can be easily surpassed. Thus, Chapter 6 presents an analysis
on these vulnerabilities and introduces the theoretical basis of a new counter-
measure not susceptible to them, along simulations of its effectiveness. Chapter
7 then presents the design and implementation of a circuit capable of carry-
ing out the body biasing scheme theoretically described in Chapter 6. Finally,
Chapter 8 presents an analysis on the effect of mismatch and process variability
on the effectiveness of the countermeasure, once implemented with the circuit.

18

Chapter 2

Fundamentals of
Cryptography

Cryptography is the science that studies the secure transmission of informa-
tion. At its core, cryptography attempts to deal with a simple yet fundamental
precept: any message transmitted between two parties can inevitably be inter-
cepted. Cryptography is then the conversion of readily interpretable information
into a collection of symbols so devoid from its original message that despite the
certainty of its interception, cannot yield any meaning.

Communication, or the transfer of information, is assumed to take place
between, at the very least, two parties: One sender, and one receiver. Cryptog-
raphy literature has commonly referred to the aforementioned parties as Alice
and Bob. A third party is also presumed, a nefarious eavesdropper that can
readily intercept any communication between the intended parties. The com-
municating channel, or medium through which the messages are sent, is for the
purposes of this work, irrelevant.

In a supposedly secure communication, the sender (Alice) must collect the
data that they wish to transmit and modify it. The intended receiver (Bob),
on the other hand, must be able to revert the aforementioned modification
upon having received data, reverting it to its original form. The nefarious
eavesdropper, however, is supposed to be unable to perform the same task as
Bob, left only with statistically appropriate gibberish.

Thus, the emitter and intended receiver must share a common knowledge
of the process through which the data is modified. This process, at the same
time, must be reversible. The process of converting data into an inscrutable text
is called encryption, whereas its inverse, the transformation of inscrutable text
into its original form is called decryption. Further formalizing these notions, the
text or message in its original, interpretable form is called the Plaintext. The
encrypted message, which is ultimately transmitted, is called the Ciphertext.

An encryption and decryption processes are, in and of themselves, insuf-
ficiently secure, for if the method of obfuscation were to be discovered and

19

no other consideration played a role, all transmissions made in the same fash-
ion would be at risk. Thus, a mutable element within the same encryption-
decryption process should exist. This element constitutes the secret key. The
encryption and decryption processes are then dependent on the secret key, and
both Alice and Bob must be aware of the particular key used during the process.

The above discussion can be formalized as follows [11]. A cryptosystem is
formed by 5 elements, denoted as (P, C,K, E ,D) where:

• P is a finite set of all possible plaintexts.

• C, is a finite a set of all possible ciphertexts (encrypted plaintexts)

• K, the keyspace, is a finite set of all possible keys

• both E and D a function space, partitioned by the keyspace, such that,
for each element k ∈ K, there exists an element ek ∈ E and and element
dk ∈ D that define a mapping between the set of Plaintexts elements and
the Ciphertext, such that:

ek : P → C
dk : C → P

From the above discussion it can be inferred that this mapping is a bijection,
provided that |P| = |C|, where the operator | · | denotes the order, that is, the
number of elements of the sets, which we can assume equal for this text. As
such, decryption is a mapping that defines an inverse transformation for every
element of the Plaintext:

dk(ek(x)) = x ∀x ∈ P

While the plaintext and cipertext can be composed of any arbitrary collection
of symbols or letters, and the keyspace can be any manner of ruling, for the
purpose of this work it will be assumed that either three of them will exclusively
comprise strings of bits. At the same time, for an equal set order we can assume,
for simplicity’s sake, that both the plaintext and ciphertext will be of the same
length n. That is, any plaintext and ciphertext element belongs to S (x, y ∈ S),
the set of all bit strings of length n (S = {0, 1}n). This is not necessarily the
case for the secret key, which depending on the encrypting algorithm can be a
string of bits of different length than that of the plaintext. This will be further
discussed in subsequent sections.

2.1 Types of Cryptosystems

While there exist multiple and overlapping ways with which to categorize cryp-
tosystems, for the purpose of this work we will limit ourselves to some catego-
rizations that inform the development and contents of this thesis. One of the
most basic distinctions among cryptosystems is that between blockcipher and
stream ciphers.

20

2.1.1 Blockciphers

Blockcipher apply their encryption and decryption processes on indivisible units
of data (blocks of data, hence the name). Not only that, but each block of data
is encrypted utilizing the same secret key.

That is, if we consider a string of blocks of data such as:

x = x1x2x3...xm, (2.1)

where each element xi of the string (with 1 ≤ i ≤ m) informs a block of
data, the encryption process is performed element to element (block to block)
with the same secret key.

y = ek(x) = ek(x1)ek(x2)ek(x3)...ek(xm) (2.2)

At the same time, each block of data is a string of bits of the same length
(n ≥ 1). The value of n depends on the type of cryptosystem.

Two basic block ciphers are substitution ciphers and permutation ciphers.
As its name implies, substitution ciphers substitute the value of a block of data
by another possible value according to some ruling. For bit strings of length n,
where |P| = |C| = 2n, a substitution cipher is a bijective mapping such that:

πS : {0, 1}n ↔ {0, 1}n. (2.3)

Table 2.1 exemplifies a very simple substitution scheme for a bit string of
length n = 2.

While for the set of all possible bit strings of length n there are a total of 2n!
possible substitutions, in later sections it will be seen that not all substitutions
are secure.

00 10
01 00
10 11
11 01

Table 2.1: One of 24 possible substitutions for strings of 2 bits

Permutation ciphers, on the other hand, modify the positions of bits on a
string. That is, as opposed to a substitution of the whole word, an n-bit string
permutation shuffles the bits according to some rule. Permutations are, again,
bijective mappings:

πP : {0, 1}n ↔ {0, 1}n. (2.4)

However, in this case, for an n-bit string there are a total of n! possible
permutations. Table 2.2 exemplifies one possible permutation of an 8-bit string.

While it is apparent that neither of the above block ciphers make use of a
secret key composed of bits, it will be shown in later sections how permutation

21

x 0 1 2 3 4 5 6 7
πP (x) 2 3 1 5 6 7 4 0

Table 2.2: One of 8! possible permutations for strings of 8 bits. The numbers
represent the position of the bits within the string.

and substitution functions are core components of various cryptosystems in use
to this day.

2.1.2 Stream Ciphers

The other type of cryptosystems previously mentioned are stream ciphers. In
stream ciphers, the unit of encrypted data block are strings of bits of length
n=1. That is to say, each bit is encrypted separately. Not only that, but the
encryption key for each separate bit, as opposed to block ciphers, is a distinct
bit element from what is typically called the keystream, denoted as z. That is:

y = ez(x) = ez1(x1)ez2(x2)...ezm(xm) (2.5)

In most stream ciphers, the encryption process is simply an XORing between
one bit of the plaintext (x) and one bit of the keystream (k):

y1 = ez1(x1) = x1 ⊕ k1 (2.6)

The encryption, as such, is a very simple process. Thus, the principal func-
tion of the cryptosystem is to produce a secure stream of bits that compose
the keystream from an initial state, or seed. This initial state is defined by
the secret key. The stream cipher, based on the initial state and a governing
algorithm produces bits of the keystream with which the plaintext is XORed,
bit by bit.

This keystream generation is a matter of the current state of the stream
cipher (zt) and a function, called the keystream generator (g(·)). Thus, each
cycle, or unit of time, the value of the keystream is updated based on the
previous state:

zt+1 = g(zt) (2.7)

These types of cryptosystems, similar in function to a Moore Finite State
Machine, are called synchronous stream ciphers. Among the possible different
synchronous stream ciphers, one of the better studied keystream generators are
Linear-Feedback shift-registers.

Consider an n-bit register whose contents represents the state of the stream
cipher. Each cycle, the state of the register is updated according to a function:

22

z4(t+ 1) = z1(t)⊕ z2(t)

z3(t+ 1) = z4(t)

z2(t+ 1) = z3(t)

z1(t+ 1) = z2(t) (2.8)

This recursive linear relationship can be represented as a matrix linear trans-
formation

Z[T + 1] = A · Z[T] =

0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

 ·

z1(t)
z2(t)
z3(t)
z4(t)

 (2.9)

Clearly, in this case the seed or secret key would be the value of the bits z1
through z4 at time t = 0.

In this particular case the keystream is generated according to the following
expression:

z(t+ 1) = z1(t) (2.10)

While Linear Feedback stream ciphers are widely studied, or precisely be-
cause they are widely studied, they implement poor stream ciphers in as much
as they are insecure.

In general, any system that attempts to perform some sort of encryption
operation in a linear fashion can easily be broken, given the ease with which
computers can manipulate matrices. That includes operations such as substi-
tution and permutations.

For this reason, cryptosystems rely heavily on non-linear operations in order
to avoid the ease with which linear systems of equations can be solved. This
implies that neither the permutations, substitutions, or feedback elements in
keystream generators should be designed so that they can be represented as
linear operations on their inputs. This is a necessary but not sufficient condition
for security.

While it is beyond of the scope of this text to extensively derive or present
notions of security in cryptosystems, some basic principles are necessary.

2.2 Security in Cryptosystems

One of the most fundamental principles in cryptosystem design or security is the
Kerckhoff’s principle [12], which states that any cryptosystem is to be designed
assuming that the entirety of the algorithm that it implements is going to be
known. Based on this principle, all cryptosystems in use nowadays are public,
and the proposal of new cryptosystems is submitted to extensive public scrutiny

23

so as to determine whether some manner exists by which the system can be
broken.

Thus, the fundamental element that allows secure communication is the fact
that an unintended eavesdropper does not posses the key that was used to
encrypt the message.

Notwithstanding, the question remains whether the eavesdropper can be-
come an attacker and derive information from the ciphertext, assuming that
they posses all pertinent information regarding the structure and functionality
of the system.

From this notion arises the idea of perfect secrecy, derived by Shannon in
1949 [13]. While a longer derivation can be found in the Annexes (10.1), the
important notions can be summarized here.

Given a plaintext set, a ciphertext set and key space, a perfectly secret
cryptosytem is one in which the following equality holds:

P [X = x|Y = y] = P [X = x] (2.11)

Where X represents the set of possible plaintexts and Y the set of possible
ciphertext, and P [·] represents the probability that each random variable has of
adopting a specific value.

This equality implies that having access to the ciphertext does not convey
an attacker with any information regarding the original plaintext.

Under such circumstances, the conditions of perfect secrecy is met when
P [K = ki] = P [Y = y]. That is, the structure and probability distribution of
the keyspace is such that it follows that of the ciphertext space.

In the case where the order of each set |X | = |Y| = |K|, where the cryp-
tosystem is a bijection such that there is no collision between plaintext elements
(that is, ek1(x) = ek2(x) only if k1 = k2), this implies that P [K = ki] =

1
|K|

when P [Y = y] = 1
|Y| , the discrete distribution with the highest entropy.

Thus, the notion of perfect secrecy imposes a structure upon the plaintext,
ciphertext and keyspace sets, as well as upon their probability distribution.

2.2.1 The piling-up lemma and linear cryptanalysis

Consider two bits representing two independent random variables (X1 and X2)
that can adopt values 1 or 0 with probabilities:

P [X1 = 1] = p1, P [X1 = 0] = 1− p1 (2.12)

P [X2 = 1] = p2, P [X2 = 0] = 1− p2, (2.13)

and define the bias ϵ of such probability distribution as:

p1 =
1

2
− ϵ1 (2.14)

(1− p1) =
1

2
+ ϵ1. (2.15)

24

With −1/2 ≤ ϵ ≤ 1/2, where ϵ represents the “amount of probability” with
which the random variable X1 deviates from 1/2.

Given the independence of the random variables, the joint probability dis-
tributions of X1 and X2 can be expressed :

P [X1 = 0, X2 = 0] = (1− p1) · (1− p2)

P [X1 = 0, X2 = 1] = (1− p1) · p2
P [X1 = 1, X2 = 0] = p1 · (1− p2)

P [X1 = 1, X2 = 1] = p1 · p2

Consider now a new random variable that can be expressed as:

Z = X1 ⊕X2. (2.16)

That is, Z is a random variable that arises as the XORing of X1 and X2. A
truth table for an XOR function can be seen in table 2.3

X1 X2 Z
0 0 0
0 1 1
1 0 1
1 1 0

Table 2.3: XOR truth table

The probability distribution of Z can be obtained by noting that:

P [Z = 1] = P [X1 = 0, X2 = 1] + P [X1 = 1, X2 = 0]

P [Z = 0] = P [X1 = 0, X2 = 0] + P [X1 = 1, X2 = 1] (2.17)

Expressing the above equations as a function of the bias of X1 and X2 we
obtain:

P [Z = 1] = P [X1 ⊕X2 = 1] =
1

2
− 2ϵ1ϵ2 (2.18)

P [Z = 0] = P [X1 ⊕X2 = 0] =
1

2
+ 2ϵ1ϵ2 (2.19)

The piling-up lemma defines an expression for the probability of random
variables of this form for an arbitrary number of instances (Z = X1⊕X2⊕ ...⊕
Xn):

P [X1 ⊕X2 ⊕ ...⊕Xn = 0] =
1

2
+ 2k−1

k∏
i=1

ϵi (2.20)

25

In perfectly biased random variables, the value of ϵ is equal to 0, and thus
the bias of a collection of random variables that include some unbiased one, is
also equal to zero (

∏k
i=1 ϵi = 0)

With this, we have sufficient background to derive the importance of the
piling-up lemma.

Consider the substitution presented in Table 2.2, repeated here in a more
convenient way and recall that substitutions are a core component of some
cryptosystems.

X1 X2 Y1 Y2

0 0 1 0
0 1 0 0
1 0 1 1
1 1 0 1

Table 2.4: One of 24 possible substitutions for strings of 2 bits. The X1 and
X2 bits represent the inputs of the substitution function, while Y1 and Y2, its
outputs.

Out of this particular substitution we can form random variables of the form:

(a1 ·X1)⊕ (a2 ·X2)⊕ (a3 · Y1)⊕ (a4 · Y2) = 0 (2.21)

Where the different ai are constant coefficients that can adopt values of
either 1 or 0, essentially selecting whether one of the random variables has an
effect.

Consider the case X1 ⊕ Y1 = 0. We can find the bias of this expression by
noting the times it evaluates to 0 out of this particular substitution. It is easy
to see that P [X1 ⊕ Y1 = 0] = 1/2, denoting an unbiased random variable.

However, if we analyze the random variable resulting from X1 ⊕ Y2 = 0, it
can be seen that P [X1 ⊕ Y2 = 0] = 1.

Consider a very simple cryptosystem with secret key K = {k1, k2} (a two
bit key) and an encryption operation such that:

Y = πs(P ⊕K) (2.22)

That is, the encryption process first XORs in a bitwise manner the secret
key with two bits of plaintext (P = {p1, p2}). The result of this operation is
then the input of substitution function presented in Table 2.4 and the output
(Y = {y1, y2}) is the ciphertext.

Assume that we do not know the value of the secret key, but wish to obtain
it. Note that:

X1 ⊕ Y2 = P1 ⊕K1 ⊕ Y2, (2.23)

and assume that we have control over the plaintext and access to the ci-
phertext, once computed. We can then make a guess over the value of k1 and

26

run the cryptosystem for all its possible values and calculate the probability
P [P1 ⊕K1 ⊕ Y2 = 0].

In this particular case, guessing the correct key would yield
P [P1 ⊕ K1 ⊕ Y2 = 0] = 1, while guessing the incorrect key would yield
P [P1 ⊕K1 ⊕ Y2 = 0] = 0 (they essentially contain the same information).

While this example is so simple so as to be trivial, it serves to illustrate some
important notions. Firstly, as previously stated, it can be seen that not all types
of substitution are secure, even if they are purely non-linear. These types of
attacks are referred to as linear-cryptanalysis [14], because they make linear
approximations of non-linear substitution functions based on the probability
distributions of random variables formed by its input-output variables.

From this also arises the importance of designing substitution functions that
are unbiased for all the possible bit combinations. In fact, in all the work
presented in further sections, it will always be assumed that all bits follow a
discrete uniform probability distribution with unbiased probabilities which, to
an extent, also follows the principle of perfect secrecy introduced by Shannon.

In essence, the conditions of perfect secrecy impose a given structure to
the plaintext, ciphertext and keyspace elements, while the dangers of linear
cryptanalysis impose conditions on the probability distribution of intermediate
values.

At the same time, linear cryptanalysis attacks also illustrate an important
concept in what is the bulk of this thesis. Namely, that of a testing function. As
it will be seen in the following sections, Power Analysis Attacks of cryptosystems
require of a statistical model against which to contrast ”guesses” of sub-bits of
the secret key. Essentially, a distinguishing function is required.

27

Chapter 3

Side Channel Attacks &
Countermeasures

Cryptographic functions can be designed, implemented and analyzed entirely
from a mathematical perspective. Their security can be tested against diverse
methods of attack and their vulnerabilities addressed without ever leaving the
world of abstract notions. However, the moment they are implemented in phys-
ical system, some considerations appear that cannot be previously addressed.

Physical implementations of cryptosytems are subjected to the natural laws
of physics. As such, they can produce mechanical vibrations, dissipate heat,
emanate electromagnetic waves, present timing constraints in their execution,
or present distinct dynamic or static power consumption.

These physical magnitudes can, and have been proven to leak cryptographic
information of system implementations. These leaks, at the same time, can be
exploited under distinct circumstances to indirectly break physical implemen-
tations of cryptosystems through their measurement.

The diverse physical magnitudes that can leak cryptographic information
are referred to as Side-Channels, and attacks on cryptosystems engaged through
their measurement are called Side-Channel Attacks (SCA). On this thesis we
are going to focus on a subset of SCA called Power Analysis Attacks (PAA).

In Power Analysis Attacks, the Side-Channel utilized to obtain information
of the cryptosystem is the power consumption of the cryptosystem during its
encryption operation. The objective of these attacks is to obtain sufficient
information ”encoded” in the power trace of the cryptosystem that allows the
derivation of the secret key being used by the system.

For all intents and purposes, we can assume that cryptographic systems
are mostly implemented in either ASIC form, an FPGA or through a software
implementation in a microcontroller. As such, we are going to treat these circuits
mostly as being implemented in CMOS technology. All models (or all those
models known to the author) utilized to attack cryptosystems through PAA
stem from these notions.

28

One of the first formalized mentions of PAA was [3], where the authors
observed that some cryptosystems implementing modular exponentiation algo-
rithms take different times to produce an operation depending on the value of
the exponent. The authors noted that, by measuring the power consumption of
the circuit during the encryption operation, they could identify the time window
and distinguish different values of the exponent based on the time of execution.
These types of Power Analsysis Attacks are called Timing Attacks for apparent
reasons.

Shortly thereafter the authors introduced Simple Power Analysis Attacks
(SPA) and, most importantly, Differential Power Analysis Attacks (DPA) [4].
Differential Power Analysis Attacks proved to be a relatively simple and inex-
pensive, albeit somewhat intrusive method of deriving sub-bits of the secret key
of block cryptosystems, allowing the breaking of a cryptosystem with relative
ease in ways never addressed before. They will be described momentarily, but
some important notions should be addressed first.

3.1 Finite State Machines and Intermediate Vari-
ables

Encryption algorithms, when described mathematically, present an order to
their operations. However, in their description there is no sense of timing or time
consumed; simply the order in which the different functions should be applied.
On the contrary, in physical implementations, the order must be maintained
and considerations to the timing of their executions respected.

Thus, most encryption operations present variables that are the result of
previous evaluations of a function and that, at the same time, serve as the
inputs of further functions. These are typically called intermediate variables.

In a way, implementations of encryption algorithms can be thought of as a
black box of sorts. Its inputs are the plaintext and secret key, and its output
is the ciphertext. The algorithm takes a finite, albeit not immediate time to
execute and during its execution the black box processes intermediate values
that are not readily accessed.

Carrying this line of thought a bit further, implementations of encrypting al-
gorithms can be considered Finite State Machines (FSM) in which, once primed
with the inputs (plaintext and secret key), the algorithm is executed transi-
tioning from state to state. In line with the black box model, the intermediate
values never serve as an output and only when the ciphertext is computed does
the machine present it.

It is clear that, in physical implementations, these intermediate variables
must be stored, both as a result of an operation and to serve as the input of
the next step of the process. Thus, we can assume that, continuing with the
assumption of circuits implemented in digital technology, these variables are
stored in temporary flip-flops. For example, in the AES encryption algorithm,
these storing elements are represented by the state matrix, while the Trivium

29

stream cipher [15], being a shift-register, is in and of itself a storing element.

Figure 3.1: FSM diagram

Consider now an intermediate variable U . In a digital system, this interme-
diate variable will be a string of bits of length n (U ∈ {0, 1}n). The value of
this intermediate variable Uj at state Sj is a function of the same intermediate
variable and the previous state:

USj = f(USj−1
, Sj−1) (3.1)

Where f(·, ·) is a function that computes part of the encrypting algorithm.
However, at the very first state (S1), U1 depends exclusively on the input plain-
text and the secret key (Us1 = f(x, k)). Given the Kerckhoff’s principle, the
encryptying algorithm is known, so every state transition represents a function
that is known to the public. Thus, albeit indirectly, the value of U at every
possible state is also a function of the plaintext and the secret key, no matter
how complicated the relation can be (USj = fj(fj−1(...f1(x, k)...)).

In a typical cryptosystem, these intermediate variables are not readily ac-
cessed and cannot be directly observed. However, consider a function L : U → R
that maps a string of bits to a physical magnitude. This function, called a leak-
age function, informs a side-channel.

Going back to equation 3.1, whatever the function is that informs the up-
dated value of U , the datapath must respect the setup time of the storing
elements and thus the evaluation of the function f(Uj−1, Sj−1) must precede
the clock edge. Thus, the input of the storing element ”sees” the result before
it can store it (or so it should be without timing violations).

What is meant by ”seeing” the result is that, in digital circuits, the evaluation
of a boolean function is going to present either a 1 (Vdd) or a 0 (GND). As
such, the equivalent input capacitance of the register, formed by the parasitic
output capacitances of the driving element, along with the gate capacitances of
the input, must be charged or discharged.

The energy consumed by the charging of a capacitor in an RC network can
be shown to be (including resistive losses):

E = CinV
2
dd (3.2)

30

Figure 3.2: Setup and hold Timing

And the average power during a single charge cycle can be expressed as:

P = Cin · V 2
dd · fclk · α (3.3)

In this model of dynamic power consumption, the factor α, called the activity
factor, is the estimated probability that a transition from 0 to 1 will take place.
However, in the particular case of cryptographic function, it is noteworthy to
consider that α is actually a boolean function of intermediate variables:

D Q
vdd

CLK

Vdd

Cin

f(Uj−1, Sj−1)

Figure 3.3: Schematic representation of the input of a D flip-flop

α = f(Uj−1, Sj−1) (3.4)

And, since intermediate variables are functions of the plaintext and the secret
key, equation (3.3) can be expressed as:

P = Cin · V 2
dd · fclk · f(x, k) (3.5)

Resulting in a model in which the dynamic power consumed by the system is
dependent on the evaluation of a boolean function of intermediate variables; that

31

is to say, the plaintext and the secret key. Thus, power consumption informs a
leakage function of cryptographic information.

3.2 Differential Power Analysis Attacks

In their seminal paper introducing Differential Power Analysis attacks (DPA)[4],
Kocher et al. present the concept of exploiting the power trace of a crypto-
graphic system as a source of information. By introducing a shunt resistor
between the power pin and the voltage source of the system, it becomes possi-
ble to measure the voltage drop or the current flow across the resistive element,
obtaining a power trace of a cryptosystem during the execution of its encrypting
algorithm.

Simple Power Analysis (SPA) attacks rely on the interpretation of the visual
representation of the power trace to infer information on cryptographic func-
tions, such as when they begin or end, how long they take to execute, etc. DPA
attacks, on the other hand, are somewhat more involved in their execution, but
also more powerful.

Some assumptions must be made to address the manner of the attack.
Firstly, it is implied that an attacker has access to the physical device, can
perform measurements on it, and has control over the plaintext that is fed into
the cryptosystem, for as many executions as they deem necessary. This informs
a model of a strong attacker, and it is going to be maintained during the rest
of this work.

The attack is performed by carrying out a total of N experiments. That is,
N random plaintexts are introduced into the cryptosystem, and the power trace
for the execution of the algorithm measured.

For each measurement, the power trace is modelled as follows:

P (t) = PI(t) + Pa(t) + Pna(t) (3.6)

Where PI(t) stands for ”Power of Interest”, Pa for ”Algorithmic Power”
and Pna for ”Non-algorithmic Power”. This nomenclature is not necessarily
extended in the field of side-channels, but it is representative of each of the
terms and is adopted here for clarity.

Pa(t) and Pna(t) represent the power consumed by other parts of the circuit,
elaborated further in the text. The term PI(t) arises from the notions introduced
in subsection 3.1. That is, we are assuming that PI(t) is of the form:

PI(t) = Cin · V 2
dd · fclk · f(x, k) (3.7)

Where f(x, k) is a function of sub-bits of plaintext and sub-bits of the secret
key. The function, boolean in nature, and known to the attacker, evaluates into
either a 1 or a 0. This function, called the function or bit of interest, is executed
at a certain time during the encryption process τ , or time of evaluation.

Thus, equation 3.7 can be somewhat abstracted as:

32

PI(t) =

{
Cin · V 2

dd · fclk · f(x, k) when t = τ

0 when t ̸= τ
(3.8)

Thus indicating that PI(t) evaluates to 0 at any time other than the time
of evaluation. This is consistent with the notion that the function of interest
f(x, k) only consumes power at a given point in time.

Given that the attacker knows the plaintext used in each experiment, they
can calculate the result of the function f(x, k) by guessing the secret key. As
such, for each possible key guess ki, the attacker can partition the power traces
into two groups:

P1ki
(t) = {P (t)|f(x, ki) = 1}

P0ki
(t) = {P (t)|f(x, ki) = 0} (3.9)

Based on the notions introduced in section 2.2.1, we can assume that the
function f(x, k) is unbiased regardless of the secret key and plaintext intro-
duced. Thus, each partition contains approximately r1 ≈ r0 ≈ N

2 power traces
independently of the correctness of the secret key, for a total of r1 + r0 = N
partitioned traces.

If the correct key is guessed, the different power traces will be appropriately
partitioned. That is, P1(t) will contain all the power traces in which f(x, k) = 1,
and P0(t) all the power traces in which f(x, k) = 0. However, again, assuming
that the function f(x, k) is unbiased, incorrect keys will partition each group
such that they contain approximately the same number of traces that evaluate
the function of interest to 1 and 0.

At this point, each partition is averaged and subtracted.

P∆ki
(t) = P 1ki

(t)− P 0ki
(t) (3.10)

Where:

P 1ki
(t) =

1

r1

∑
r1

P1ki
(t) (3.11)

Expanding the averaged form of P∆(t) we make the following observations,
dropping, for the moment, the sub-key nomenclature ki:

P∆(t) = (P I1 − P I0) + (P a1 − P a0) + (Pna1 − Pna0) (3.12)

The term Pna represent the summation of random sources of noise, such as
Johnson-Nyquist noise, measurement noise, 1/f noise, etc. and, as such, are
modeled as a Gaussian White Noise (GWN), with a given variance σ2

na and
mean µna = 0. Thus, it can be assumed that, for a sufficiently large number of
traces N , both terms Pna1 ≈ Pna0 ≈ µna = 0, and thus vanish from equation
3.12.

33

The terms Pa refer to algorithmic noise. Algorithmic noise represents the
power consumed by the evaluation of cryptographic functions that are not the
function of interest in the attack.

As an example consider an attack on an 8-bit cryptosystem. The attack is
performed on a single bit, so at every point in time there are at least 7 bits of
the cryptosystem that introduce algorithmic noise. That is, the evaluation of
these 7 bits, which we are going to assume take place in parallel, consume power
according to an equation similar to that of 3.7:

Pa = V 2
dd · fclk ·

7∑
j=1

(Cinj
· fj(x, k)) (3.13)

Since the plaintext is chosen at random, and we can assume that the cryp-
tosystem is unbiased, each fj(x, k) is, in turn, a discrete uniform random vari-
able that can adopt either a value of 1 or 0 with equal probability. The expected
value of Pa at the time of evaluation is then, approximately:

E[Pa] = Ceq · V 2
dd · fclk · 7

2
(3.14)

Given that this notion holds regardless of how the partition of the power
traces is made for a single bit, for a sufficiently large number of experiments
we have that P a1 ≈ P a0 ≈ E[P (a)]. Thus, the second term on equation 3.12
also vanishes. This is valid for any clock period within the execution of the
algorithm, and is not limited to the time of evaluation τ of the bit of interest.

Finally, we can assume that, for incorrect keys, the partitions P1 and P0

produce an equal distribution of evaluations to 1 and 0 of the function of interest
in either partition, while a correct key will place all the evaluations that result
in a 1 in P1, and all the evaluations that result in a 0 in P0.

Thus, for incorrect keys:

(P I1 − P I0) ≈ 0 (3.15)

While, for correct keys:

(P I1 − P I0) ≈ ϵ (3.16)

This difference ϵ arises under the assumption that the circuit consumes a
distinct amount of power when it charges the input capacitances than when it
discharges them.

As such, for correct keys:

P∆(t) =

{
ϵ when t = τ

0 when t ̸= τ
(3.17)

Thus, the correct key guesses would produce spikes in the visual represen-
tation of P∆(t) at the time of evaluation of the bit of interest, identifying the
secret key.

34

In [5], the authors further develop the statistical model of DPA attacks
providing a figure for the Signal-to-Noise Ratio (SNR) of P∆(t) at the time of
evaluation:

SNR ≈
√
N · ϵ√

4σ2
na + n · ϵ2

(3.18)

Where n is the number of bits that introduce algorithmic noise and N is the
number of averaged traces.

The authors of [5] also extend the statistical model of DPA to include attacks
that target multiple bits at the same time, instead of just one bit of interest.
This presents some benefits, in that the intensity of the signal produced by
multi-bit attacks is increased by a factor of d, the number of bits targeted.

Thus, equation 3.18 becomes:

SNR ≈
√
N · d · ϵ√

4σ2
na + n · ϵ2

(3.19)

However, multi-bit DPA attacks, as outlined in the same article, present
some limitations, in that some of the traces measured cannot be used in parti-
tions, reducing the total number of measurements available. Thus, a trade-off
between signal intensity and number of available traces arises.

While these models are theoretically and, to a given extent, empirically
sound, DPA were observed to exhibit behaviours that were not sufficiently cap-
tured through these models. Specifically, two phenomena were observed: That,
at times other than the time of evaluation, ”peaks” were observed in the P∆(t)
traces, and that these peaks also occurred when evaluating incorrect keys.

These ghost peaks, as they are referred to in the literature, were studied in
different articles. In [16] the authors noted that the existence of these ghost
peaks could be a consequence of hidden correlations, either in time, algorithmic
correlation to incorrect keys, or both.

The initial models presented on DPA assume that the correct secret key, and
only the correct secret key, is statistically correlated to the power consumption
of the algorithm. Not only that, but that this correlation is exclusively present
at the time of evaluation. In a way, this treats the algorithmic noise of the
cryptographic system as a white noise, in the sense that the expected value of
the autocorrelation function of the power trace E[P∆(t) ·P∆(t− τ)] is zero for
any lag other than zero.

A series of articles ([17][18][19]) demonstrated how, depending on the S-
Boxes of substitution and permutation networks, incorrect keys can exhibit
higher correlations and differential peaks. These correlations are algorithm-
dependent.

The existence of temporal correlations could be explained, among other fac-
tors, by the fact that DPA attacks measure dynamic power and, as such, tran-
sitions between states. Since transitions depend on the initial value of the state
and the final value of the state, temporal correlations can arise between the
transition and all the previous states that inform it.

35

To address these issues, Brier et. al. [20] developed a new form of statisti-
cal analysis that improves upon the limitations of Differential Power Analysis
Attacks: Correlation Power Analysis Attacks.

3.3 Correlation Power Analysis Attacks

Correlation Power Analysis (CPA) attacks are performed similarly to DPA.
There is a function of interest, evaluated at a precise time, dependent on sub-
bits of the plaintext and sub-bit of the secret key. A large number of random
plaintexts are introduced into the cryptosystem and, for each encryption process,
the power consumed by the circuit is measured and stored.

The differences stem from the manner in which the statistical analysis is
performed. CPA attacks rely on the correlation between power consumed and
data processed, numerically established through the calculation of the Pearson
Correlation Coefficient (PCC).

The PCC, typically denoted with ρ, explores the degree to which two random
variables can be expressed linearly through each other (e.g.: Y = a ·X+ b, with
a and b being constant coefficients). Being a normalized function, it can present
values between −1 ≤ ρ ≤ 1, with the extreme cases of −1 and 1 denoting
perfect correlation, and ρ = 0 indicating the absence of any correlation (but not
necessarily independence).

Equation 3.20 depicts how to calculate the PCC between two random vari-
ables, where Cov(·, ·) denotes the Covariance function, and V ar(·) the variance
function.

ρx,y =
Cov(x, y)√

V ar(x)
√

V ar(y)
(3.20)

Regarding the manner in which the PCC is utilized to determine whether
a secret key in a cryptosystem is the correct one, suppose again that we wish
to perform an attack on an 8-bit cryptosystem. Consider, at the same time, an
attack directly on 8 bits. This is something that CPA attacks, as opposed to
DPA, can attempt without the limitations on multi-bit attacks introduced in
previous sections.

From previous sections, we know that:

P = Ceq · V 2
dd · fclk ·

8∑
j=1

fj(x, k) (3.21)

And, again, assume that each instance of fj(x, k) is a uniform discrete ran-
dom variable that can adopt values of either 1 or 0 with equal probability. That
is, P [f(x, k) = 0] = P [f(x, k) = 1] = 1/2 for every possible plaintext value of
x. This condition arises from the consideration that the internal states of the
cryptosystem are unbiased and not susceptible to linear cryptanalysis attacks.

36

The sum of the values of a boolean array or word of bits is known as the
Hamming Weight, the number of 1’s in such an array. As such, it can be seen
that equation 3.21 can be expressed as:

P = Ceq · V 2
dd · fclk ·HWf(x,k) (3.22)

And it can be seen that, at the time of evaluation, the power consumed by
the cryptographic circuit is linearly dependent on the value of the Hamming
Weight function, which depends on the plaintext and the secret key.

Under such circumstances it is possible to calculate the PCC between the
power consumed during the different experiments and the Hamming Weight of
each experiment.

The PCC becomes a key distinguisher, in that the correct key, in the absence
of algorithmic and non-algorithmic noise, will present the highest possible value
of the PCC, while all incorrect keys will have lower values. That means that, for
a sufficiently large number of experiments, having the correct key would produce
Hamming Weight values of the vector of attacked bits that would showcase a
perfectly linear correlation with the power consumed. Incorrect keys, however,
would present smaller correlation values.

This model is somewhat simplified for power analysis attacks that measure
dynamic power, since it bases its power metrics on states, rather than transi-
tions. Transitions between similar states (1 → 1 or 0 → 0) are expected not
to consume power. However, unlike DPA attacks, CPA have the capability to
model the effect of transitions appropriately by considering the bit-wise Ham-
ming Distance (HD) between two transitioning states. If the previous state is
not known, it must be approximated, such that:

P (t) ≈ Ceq · V 2
dd · fclk ·HD(x, k) (3.23)

The power model used in CPA attacks can include sources of noise, as de-
scribed in previous sections. Thus, equation 3.22 can be expressed considering
algorithmic and non-algorithmic sources of noise as:

P = Ceq · V 2
dd · fclk ·HWf(x,k) + Pa + Pna (3.24)

If for every plaintext used sufficient experiments are performed and averaged,
the same conclusions can be reached regarding the means of the different sources
of noise as described in previous sections:

E[P] = Ceq · V 2
dd · fclk ·HWf(x,k) + E[Pa] + E[Pna] (3.25)

If the number of experiments is large enough, the expected value of the
sources of noise will tend to their mean value, remaining constant across experi-
ments, even for different plaintexts. The Hamming Weight, however, will remain
a function of the plaintext and the secret key. Thus, noise can be discriminated
simply through trace averaging without the need of subtracting traces, as in
the case of DPA attacks. This reduces the magnitude of noise to be averaged,
particularly in the case of additive white gaussian noise.

37

At the same time, CPA attacks can include the effect of state transitions.
Thus, they can curtail the emergence of ”ghost peaks”, facilitating the discrim-
ination of false keys.

Not only that, but CPA multi-bit attacks do not have to discard any traces,
given that the Hamming Weight is well structured for all possible plaintexts;
that is, assuming all bits of the cryptosystem follow a discrete uniform unbiased
distribution, with each bit being independent from each other. Thus, multi-bit
attacks are much simpler to execute utilizing CPA than a DPA approach.

Further considerations regarding CPA attacks will be made in subsequent
sections, where they are employed as the primary metric to determine the ef-
fectiveness of the developed countermeasures.

While a wider variety of statistical methods of analysis to derive the secret
key beyond DPA and CPA attacks exist, they won’t be detailed here as they
are outside the scope of this work. Nonetheless, some further reading can be
found here [21]

3.4 Countermeasures to PAA

A countermeasure is any means, be them a software or hardware implementa-
tion, that attempts to hinder or outright make it impossible to obtain the secret
key of a cryptosystem through the measurement of power traces. What follows
is a non-comprehensive list of some of the countermeasures developed in the
last two decades. Most of the countermeasures presented will be just summar-
ily mentioned, with appropriate references, as they do not fully intersect with
the work developed during this thesis.

Timing Countermeasures

One of the first countermeasures to PAA ever proposed are those that can be
categorized as Timing Countermeasures [3]. We have seen in previous sections
that both in DPA and CPA attacks, it is important to be able to ascertain
the time of evaluation of the functions of interest. In any case, the different
power traces obtained during measurements should be temporarily aligned for
the attacks to be successful; that is, the attacker should be able to ”synchronize”
the different power traces so that all the times of evaluation coincide within a
single time reference frame. Timing Countermeasures attempt to randomize the
time of evaluation by introducing random halting periods of execution or dummy
operating instructions. In essence, they introduce noise in the time domain.
They are somewhat effective but can be rendered ineffective by increasing the
number of samples taken [22].

Masking

One of the most effective countermeasures proposed, that has spurred a great
volume of research, are masking countermeasures [7]. Masking countermeasures
attempt to decorrelate the data processed by the cryptosystem from the power

38

consumed by randomly ”masking” the evaluation of intermediate variables com-
puted during the encryption process.

We can assume that, at a given time during the evaluation of a Boolean func-
tion part of cryptographic primitive, an intermediate variable is to be processed
and/or stored in the system.

However, consider a bit-wise mask composed of the minimum amount of bits
required to perform masking effectively: two bits.

Before the original intermediate value uo is stored, a function is applied to
it, considering the first bit of the mask (xm1), resulting in a masked value:

um = f(uo, xm1) (3.26)

Now consider that when the algorithm must present its output, a second
function is applied to the masked intermediate value, along with the second bit
of the mask (xm2):

uo = g(um, xm2) (3.27)

The functions and the bits of the mask (xm1 and xm2) are chosen such that:

uo = g(f(uo, xm1), xm2) (3.28)

Where the functions f(·, ·) and g(·, ·) are applied at different moments in
time, so that the cryptosystem stores only the masked intermediate variable.

At the same time, the values of xm1 and xm2 are chosen at random, in a
way that makes equation 3.28 hold. Typically, f(·, ·) and g(·, ·) are equal. That
is, they represent the same function: the XOR function. Thus, equation 3.28 is
actually:

uo = uo ⊕ xm1 ⊕ xm2 (3.29)

Thus, if uo is equal to 1, xm1 ⊕ xm2 must be equal to zero, for which there
are two possible combinations, and if uo is equal to 0, xm1⊕xm2 must be equal
to one; for which there are two further possible combinations.

In the case of a two-bit mask, one bit of the mask is chosen at random during
each execution, and the other bit is chosen such that equation 3.29 holds.

The statistical effectiveness of masking countermeasures were initially stud-
ied in [23]. Further research in possible masking functions were introduced in
[24].

Weaknesses to masking countermeasures were identified in what are called
second-order PAA. More on their significance and how to perform such attacks
can be seen in [25] [26] [27].

Further studies in masking countermeasures deal with the unexpected re-
sults of digital implementation of masked substitution boxes. While theoreti-
cally secure on paper, some implementations can lead to transitional glitches
that render these implementations insecure. As a response, so called threshold
implementations were presented [8].

39

Power Equalization Techniques

Power equalization techniques attempt to eliminate the disparities between cir-
cuit power consumption depending on data processed. Going back to equations
3.17, and 3.18, repeated here for clarity, it can be seen that the information
leaked through the power consumed by the cryptosystem depends on the differ-
ent power consumed (ϵ) when a function evaluates to 1 or 0 (or rather, transi-
tions from 1 → 0 or 0 → 1).

P∆(t) =

{
ϵ when t = τ

0 when t ̸= τ
(3.30)

SNR ≈
√
N · ϵ√

4σ2
na + n · ϵ2

(3.31)

Thus, the information derived from the cryptographic attack is directly pro-
portional to the magnitude of ϵ. Then, If it were possible to devise a circuit that
would present the same amount of power consumption regardless of the value
to which they evaluated, ϵ would approach a value of 0 and the system would
cease to leak information.

This is the basis for such countermeasures.
Initially proposed as simply doubling the number of logic elements and com-

plementing the original cryptosytem, such that the complement of a crypto-
graphic primitive were also evaluated, thus evaluating always to both possible
outputs, Tiri et al. [28] observed that complementary logic, or Hamming Weight
balancing, is insufficient to mask power consumption in such a way.

As such, they proposed a logic style in which every logic cell must first pre-
charge an equal capacitance before evaluating cryptographic functions. Thus,
regardless of the logic transitions, the cell would always consume the same
amount of power.

This technology, eventually named Dual-Rail pre-charge logic, was further
developed in [29] and [30] to potentially reduce the need to tailor-design the
logic cells, allowing their implementation with any available logic library.

Other similar approaches exist [31]. However, all such countermeasures
present one mayor flaw; namely, intra-die variability of the capacitive elements
to be pre-charged can still give rise to asymmetries in power consumed [32],
requiring a heavily constrained manual design of the layout to avoid enhancing
these variabilities. As such, while these approaches might difficult the perfor-
mance of an attack, they do not fully protect against one.

Power Disconnection

Power disconnection countermeasures are based on the notion that, if the power
injected into the cryptographic circuit is separated from the circuit itself, the
attacker cannot directly read the actual power consumed by the circuit, but
that of the intermediate power injector.

40

These countermeasures use voltage converters in some way or another, be
them charge-pumps or LDO voltage regulators. Some countermeasures with
varying degrees of success can be found in [33] and [34, 35, 36, 37, 38]. In this
later series of articles the authors use charge-pumps in distinct phase configu-
rations so as to both introduce noise and attempt to decorrelate the available
power readings from the side-channel accessible by the attacker. Special men-
tions to the charge-pumps configuration presented in [39] and [40], where the
authors design a charge-pump scheme such that they reach a perfectly decor-
related side-channel, able to sustain CPA attacks without the disclosure of the
secret key.

Noise Enhancers

Noise enhancers are of particular interest to the development of this thesis.
Particularly, countermeasures based on Dynamic Voltage/Frequency Scaling
(DVFS), firstly introduced in [41].

Dynamic Voltage/Frequency scaling utilizes notions initially derived to op-
timize power consumption in digital circuits, where depending on the compu-
tational load it is possible to choose a pair of values in a power voltage - clock
frequency dyad of operational points to save dynamic power (see equation 3.3).
This allows saving power when the computational load is not critical by decreas-
ing the operational voltage and frequency, or enhancing the speed of operation
by increasing both the supply voltage and the clock frequency [42].

The authors in [41] proposed the use of DVFS as a means to decorrelate the
power consumed in cryptographic systems from the data processed by it. This
decorrelation is achieved by introducing random noise into the power profile in
the form of voltage and frequency variations. In fact, consider again equation
3.3, with two extra components related to these potential variations:

P = Cin · (Vdd +∆V)2 · (fclk +∆f) · α, (3.32)

where the variables ∆V and ∆f are random variables. Under these circum-
stances, the power traces would present both magnitude and phase noise that
would diminish the SNR metrics and, as such, the number of measurements
required to successfully perform PAA would increase, as a greater amount of
traces would be needed to average the increased noise out.

However, the proposal made in [41] presented some limitations that were
addressed in [43]; namely, the original article restricted itself to simulations of
the countermeasure that were not originally implemented. At the same time, the
authors of [43] noted that, in a system in which the voltage-frequency values were
paired, observing the change in frequencies could directly informed the change
of voltage values and, as such, the modified voltages could be derived from this
information, giving the opportunity to computationally undo the changes.

The authors of [43] then proposed that, instead of coupling the possible
voltage-frequency pairs, by fixing the frequency and only allowing the voltage
to adopt random values, the countermeasure would be more secure.

41

Further analysis of the effectiveness of the countermeasure is presented in
[44], where the authors derive the minimum increase in traces required to dis-
close the secret key depending on the number of voltage-frequency pairs avail-
able. However, no mention of the functional Dynamic Range of such possible
pairs is mentioned. That is, digital circuits will present a floor and possibly a
ceiling regarding the minimum (maximum) voltage and frequency, beyond which
the circuit loses functionality. This imposes a hard limit on the maximum effi-
cacy of the countermeasure.

3.5 Conclusions

In this chapter we have introduced the notion of Side-Channel Attacks based on
the study of power consumption of encryption algorithms during their execution,
as well as some notions regarding the use of countermeasures to protect against
them.

The conceptual introduction of side-channel states and the leakage of infor-
mation is formalized through an analogy with finite state machines, in which the
state of the cryptosystem informs its internal variables, which present distinct
physical magnitudes.

Attacks that rely on obtaining this information make use of statistical meth-
ods, viable given the probability distributions that are imposed on the cryptosys-
tem during its design. DPA was one of the first proposed methods derived to
perform power analysis attacks. They rely on the adequate partitioning of the
power traces measured according to guesses on the secret key.

While powerful, DPA techniques present some issues regarding the correct
identification of the secret key. Given the assumptions made regarding temporal
and algorithmic correlations, which the technique cannot address, the identifi-
cation of the secret key can be relatively obscured given the presence of ghost
peaks. At the same time, DPA attacks on multiple bits at once can become
complex, as the correct partinioning must be coupled with the appropriate dis-
carding of traces that cannot be used.

Correlation Power analysis, on the other hand, can address all of these issues
and thus become a somewhat more powerful and simpler key distinguisher. As
such, during the development of this thesis they will be considered the golden-
standard and be used accordingly.

42

Chapter 4

Leakage Power Analysis
Attacks, Countermeasures
& FDSOI technology

4.1 Technology Scaling and Leakage Currents as
a Side-Channel

While until recently most of the power consumed by CMOS digital circuits has
stemmed from the current surged experienced by circuit transitions, the need for
ever more complex systems and designs, with an ever increasing growth in the
number of transistors present in a given die has forced the pursue of transistors
of smaller size.

With transistors manufactured in smaller nodes it is possible to manufacture
systems of greater complexity within the same or smaller dies. However, this re-
duction in transistor size, when coupled with an increased population of CMOS
devices is translated in a steep increase in the power consumption incurred by
these newer systems, were everything to remain as is.

It is clear that the dynamic power consumption of a tightly packed design
is going to be proportional the number of digital elements that see their state
altered from one period to the other. We can then quote, yet again, equation
3.3, with a certain modification to account for the number of such elements
present:

P ∝ N · Cin · V 2
dd · fclk · α, (4.1)

where N represents the approximate total number of digital elements.
In the interest of efficiency, one would desire to decrease the total power

consumption to be as small as possible, without having to sacrifice the minimum
number of digital elements required to maintain the design within its desired
functionalities.

43

As such, two possibilities arise. Either the clock frequency is decreased,
or the magnitude of the voltage source is decreased, with the possibility of
combining both options as has been seen in in the case of DVFS.

It might not be wholly desirable to decrease the clock frequency much, under
the presumption that an increase transistor count implies a design that envisions
greater computational complexity, which would be further penalized by a slower
clock.

At the same time, the power consumption is directly proportional to the
square of the voltage source, so any reduction in voltage would significantly
impact the reduction on power consumption (though with diminishing returns).

As transistors decrease in length, it is also necessary to reduce the mag-
nitude of the voltage source, not only for power saving reasons, but because
of functionality. Given that shorter channels endure higher electric fields, it
is necessary to decrease the voltage seen at the drain so as to not surpass the
breakdown point.

The ability of CMOS transistors to source or conduct current is proportional
to powers of their overdrive voltage (Vgs − Vth). In digital circuits, particularly,
the gate-source voltage can be directly considered the input voltage Vdd. Thus,
a reduction in the magnitude of the voltage source will heavily impact the max-
imum frequency and even the functionality of transistors unless the threshold
voltage is reduced. That is, unless the threshold voltage is reduced at the man-
ufacturing level, the overdrive voltage decreases with Vdd.

However, both the reduction of the threshold voltage, as well as a reduction
in channel length, present unintended consequences. Chief among which, is the
increase in static power consumption, produced through an increase in leakage
current, specially those that arise between drain and source.

Thus, as transistors progress further into nanometric scales, the static or
leakage power consumption of circuits has increased, becoming a significant
portion of the overall power consumption of CMOS circuits.

Because of this increase in the impact of leakage power in the overall power
consumption of a circuit, it became of interest to explore whether static power
inadvertently leaks cryptographic information and whether it can be utilized as
a side-channel to perform power analysis attacks.

Initial works were produced by different authors exploiting mainly the leak-
age consumption of combinational logic gates with different input vectors [45],
[46], [47]. In 2010, Alioto et al. [9] observed that sequential logic elements (that
is, flip-flops), exhibited distinct leakage current profiles depending on the data
they were storing (either a 1 or a 0) and, with that, introduced a power model of
leakage power consumption of register arrays depending on intermediate cryp-
tographic variables.

That is, consider n flip-flops that store intermediate variables of a crypto-
graphic function. Assuming, for the moment, that there is no variability to take
into account, flip-flops that store a 1 consume, when in steady-state, a leakage
power of I1. Alternatively, flip-flops that store a 0 consume a magnitude I0 of
leakage power. We define the Hamming Weight (HW) of the register array as
the total amount of 1’s present or stored in the array. Thus, the total leakage

44

consumption of such an array can be expressed as the sum of the leakage current
of flip-flops that store a 1, and the sum of leakage current of flip-flops that store
a 0.

Ileak = n · I0 +HW · (I1 − I0) (4.2)

Defining (I1 − I0) = ϵ, the difference between the leakage current consumed
by flip-flops storing a 1 and a 0 we finally get the expression that serves as a
power model for leakage power analysis attacks on register slices:

Ileak = n · I0 + ϵ ·HW (4.3)

This power model, as opposed to the power models based on dynamic power
consumption, require certain assumptions that somewhat constraint the anal-
ysis. Firstly, we must assume, and it is shown both in [9] and in [48] that,
contrary to Dynamic power consumption, leakage current necessitates of a cer-
tain settling time before the circuit can reach its steady-state, at which point
measurements will be stable. This implies that the attacker must hope that the
standard-cell components of the technological node being attacked either settle
before the next clock edge, or a stronger attacker must be presumed, one which
is able to control the clock.

At the same time, the intensity of the signal of interest, namely, ϵ, is much
smaller than those of dynamic power, in which the current that surges to charge
input and parasitic capacitances are of much higher intensity. This implies that,
under the same noise conditions, several additional experiments are required to
be able to average the noise out and obtain significant information.

The coupling of these two facts (control over the clock or a slow clock, and
a higher number of required samples) make the performance of leakage power
analysis attacks somewhat more cumbersome.

Other elements to take into consideration are the fact that leakage currents
of CMOS circuits are particularly susceptible to variations in temperature.

Assume, for the moment, that the component I0 is a function of tempera-
ture, while the term ϵ remains somewhat constant to temperature variations.
Fluctuations in temperature given environmental factors and heat dissipation
within the circuit would introduce a level of randomness into equation 4.3.

Ileak(T) = n · I0(T) + ϵ ·HW (4.4)

As such, the magnitude I0 would become a random variable which would
introduce a certain biased noise represented by a variance σ2

I0
. Thus, this fur-

ther noise would either need to be averaged out or the experiments should be
performed under thermally controlled conditions. All these considerations have
been addressed in [49] and [50].

In reality, though, the absolute difference between |ϵ| = I1 − I0 does not
remain constant with increasing temperatures. It has been seen [51] that there
is an exponential increase in the signal intensity with increasing temperatures,

45

while noise has been observed to increase, mostly, linearly. Thus, attacks per-
formed under thermally controlled conditions at high temperatures (e.g., 80◦C)
require a smaller amount of traces to perform successful attacks.

Another element to take into account is the fact that measurements of leak-
age current consumption are to be performed with a DC coupled oscilloscope or
measurement instrument. Dynamic Power consumption, given its rapid varia-
tion or transitions, can be easily AC coupled without much loss of information
at lower frequencies. Thus, much of the lower frequency noise components that
arise within the cryptosystem itself and the measurement systems are filtered
away, reducing the overall noise floor of the measurements. Since this process
cannot be performed for stable measurements of leakage current, a DC coupled
measurement is required, accumulating the entire noise spectrum. Because of
this, the noise floor is going to be higher. As such, measurements of leakage
power consumption are not only smaller in signal intensity, but noise tends to
be higher [51]

Nonetheless, power analysis attacks that utilize leakage current as a side
channel present some advantages against certain implementations of masking
countermeasures in which the masks are simultaneously loaded onto register
arrays.

That is, consider a two-share mask that follows one of two possible equations:
b⊕m1⊕m2 = b or S(b⊕m1)⊕m2 = S(b), with S(·) being a substitution function,
and b, m1, and m2 being single bits (see Section 3.4).

Suppose that the masked plaintext (b ⊕ m1) and the second share of the
mask (m2) are loaded simultaneously on two distinct registers.

We have previously seen that at least one of the mask bits is random, and the
other bit must evaluate to a value that satisfies the equalities presented above.
We are going to assume that the equation that must be satisfied responds to
b⊕m1 ⊕m2 = b.

We are interested in evaluating the Hamming Weight of the following:

HW (b,m1,m2) = (b⊕m1) +m2 (4.5)

Thus, in the case where b = 1, we have:

HW (b,m1,m2) = 1⊕ 0 + 0 = 1

HW (b,m1,m2) = 1⊕ 1 + 1 = 1 (4.6)

And in the case where b = 0 we have:

HW (b,m1,m2) = 0⊕ 0 + 0 = 0

HW (b,m1,m2) = 0⊕ 1 + 1 = 2 (4.7)

Assuming that m1 evaluates with a discrete uniform equiprobable distribu-
tion (P [m1 = 1] = P [m1 = 0] = 1/2), it can be seen that the expected value of
the Hamming Weight when b = 1 is:

46

E[HW |b = 1] = 1 (4.8)

At the same time, the expected value of the HW when b = 0 is:

E[HW |b = 0] = 1 (4.9)

So, in principle, on multiple experiments where noise averaging is applied,
the Hamming Weights would be indistinguishable from one another and no
information would be obtained.

However, if the leakage current magnitudes were squared, the expected value
of the squared hamming weight would change. That is:

E[HW 2|b = 1] = 1

E[HW 2|b = 0] = 2 (4.10)

Thus, for an attack on n bits, the squaring of the leakage current measured
at time of evaluation and, as a consequence the squaring of the HW, linearly
transforms the contribution of the Hamming Weight to the overall power con-
sumption when multiple measurements are averaged. That is:

E[HW 2] = HW + 2 · (n−HW), (4.11)

where the first term (HW) represents the contribution of all bits of the n-
bit register that evaluate to b = 1, and the second term (2 · (n −HW)) is the
contribution of all bits of the register where b = 0.

Thus, by squaring the magnitude of the leakage current it is possible to
attack masking implementations in a simpler fashion than what dynamic power
analysis attacks allow [52][49][53].

It has also been observed that it is possible to synergically perform leakage
and dynamic power analysis attacks to extract the secret key [54].

4.2 Countermeasures to LPA attacks

Countermeasures to Leakage Power Analysis Attacks can be again categorized
according to their effect. Thus, as Power Equalization Techniques we have
articles by Zhu et al., [55], where the authors attempt to design logic cells that
consume the same amount of leakage current regardless of the input vector or
state in which the cell finds itself. Similar approaches have more recently been
made by Fadaeinia et al. in [56] and [57].

Another category of countermeasures is that of Noise Enhancers. Zhu et al.
proposed the use of Ring Oscillators to introduce random, uncorrelated leakage
current noise into the circuit, decreasing the SNR by increasing the noise floor
[58]. Yu et al, on the other hand, have proposed the use of their charge pump
schemes as a source of uncorrelated noise [59].

47

Another proposal by Yu et al. is to introduce variations into the power
supply voltage in a way that correlates to a potential false key. Since leakage
currents are exponentially dependent on the source voltage value, it is possible
to alter the leakage current profile by slightly modifying the voltage. Doing it
in a way, such that the increase/decrease of the voltage magnitude is linearly
related to the evaluation of a false secret key plus plaintext, the attacker can be
dumbfounded into extracting a false key [60]. They called this approach False
key-controlled aggressive voltage scaling (FKCAVS).

However, in [61] the authors demonstrate that by using principal component
analysis of the correlation figures obtained during an attack on circuits imple-
menting FKCAVS, it was possible to undo the effect of the false key on the
correlation parameters, obtaining the correct secret key.

4.3 FDSOI Technology in Cryptosystems

At the beginning of this chapter several potential effects of transistors’ node
shortening have been described, and how short channel effects can impact and
increase the leakage current consumption of CMOS technology presented.

Fully Depleted Silicon-On-Insulator (FDSOI) technology, given their struc-
ture, curtails some of the short-channel effects, in particular Drain-Induced
Barrier Lowering (DIBL) and accompanying punchthrough effects [62]. The
proximity of the Drain and Source in shorter nodes, as well as their extension
towards the bulk, facilitates the formation of a depletion region for each junc-
tion too large for comfort. If the channel is not properly doped [63], applying
a voltage to the drain can create a wide enough depletion region in both of the
junctions such that they overlap, forming a path for current flow regardless of
the bias applied at the gate. This phenomena is dependent on both the effective
channel length and the depth of the drain and source junctions [10].

FDSOI technology solves some of these issues by limiting the depth achiev-
able by the drain and source junctions. The effective bulk and the channel of
the transistor are separated by a thin layer of insulating material that limits the
maximum depth of the channel and, with it, that of the junctions (Fig. 4.1).

At the same time, since the bulk and the channel are electrically isolated,
a wider range of bulk biasing can be used to influence the threshold voltage of
CMOS transistors without impacting circuit functionality.

Subthreshold currents are heavily influenced by the threshold voltage value
of their transistor. In fact, it has been seen [10] that the threshold voltage of
FDSOI transistors varies linearly with the application of a body bias. Thus, it
is to be expected that the static current consumption of FDSOI transistors is
an exponential function of body bias:

Vth = Vth0 + k · Vbb

Ileak ∝ e(b·Vth(Vbb)) (4.12)

48

Figure 4.1: Cross-sectional view of a flip-well CMOS FDSOI pair (Figure ex-
tracted from [1]).

Where k and b are parameter constants.
FDSOI technology as presently conceived presents two types of transistors

depending on the doping of their wells. Flip-well transistors, as depicted in
Fig. 4.1, see their threshold voltage decreased with increasing absolute values
of body bias. Flip-Well, NMOS transistors can be biased positively, while flip-
well PMOS transistors require a negative voltage applied at their bulk terminal
if bias is to be applied. This is of particular interest for high-performance,
low-power applications, where a lower voltage supply can be offset by lowering
the threshold voltage as required simply by charging the bulk region of the
transistors of interest. This type of body biasing is typically referred as forward
body bias.

However, transistors without flip-wells, in which the bulk of N-transistors is
P-doped, and that of P-transistors are N-doped, behave the other way around.
That is, the polarities are reversed: NMOS bulk is negatively biased, PMOS
bulk is positively biased, and increasing the absolute value of body bias increases
the threshold voltage. While this biasing might decrease the current sourcing
capabilities of transistors and, as a consequence, decrease the gain of analog
systems and maximum operational frequency of digital implementations, low-
latency, portable or remote circuits might benefit greatly from it in stand-by
modes to extend their life cycle.

With this, it would be possible to modify the static leakage profile of cryp-
tosystems implemented in FDSOI technology through the modification of their
body bias. In order to bias FDSOI transistor wells, a back bias generator is
required. A back-bias generator is any device or implementation that can gen-
erate a range of desired voltages at the back-gates of FDSOI transistors, which
are modelled as capacitive loads in series with a generally small current source.

This would require both a body bias scheme and a circuit capable of driving
the body bias wells. Various possible implementations have been proposed as
body bias generating circuits:

• Push-pull networks [64][65] [66]

49

• Charge-pumps [67] [66][1]

• OTAs, either in buffer configuration or as a comparator [68] [69] [67]

Where in all the above references, a charge-pump was utilized to generate
the negative body bias.

Thus, FDSOI technologies present an opportunity to protect against LPA
attacks.

This thesis then seeks to explore how the employ of FDSOI technology, with
its capability to dynamically alter the leakage profile of CMOS circuits, can
be used to thwart leakage power analysis attacks. To the best of the author’s
knowledge, at the beginning of this thesis only one such approach had been
attempted [70].

50

Chapter 5

Random Body Bias as a
countermeasure to Leakage
Power Analysis Attacks

In the previous chapters we have offered a brief introduction into the fundamen-
tals of cryptography, power consumption of cryptographic circuits as a side-
channel, and the basic notions of Power Analysis Attacks, as well as a brief
introduction into leakage currents and FDSOI technology. The totality of these
concepts should prove enough of a stepping stone to develop an understand-
ing on how body biasing schemes could be used as a countermeasure against
Leakage Power Analysis Attacks.

In this chapter, we first explore the relationship between leakage current of
standard cell flip flops, the bit value they store, and the body bias they present.
We do so through electrical simulations that allow us to gain insight into the
circuits’ working, enough to be able to formalize an analysis and develop a
statistical power model.

With this, a first countermeasure to LPAA is presented, mathematically
modelled, and its efficiency tested against montecarlo simulations of virtual Cor-
relation Power Analysis Attacks. The countermeasure is based on the random
application of a body bias value at the beginning of each encryption process.

5.1 Initial Investigation & Modelling

We begin our approach in attempting to establish an understanding on the
effect of body bias on the leakage current profile of flip-flops. Thus, we forego
the exploration of countermeasures tailored for attacks on combinational logic.
However, it is important to note that much of the countermeasures developed
during this thesis could also be applied to such circuits.

The first step is attempting to obtain a sufficiently accurate model of how

51

the leakage current of flip-flops behaves as a function of body bias. In order
to do so, a test-bench circuit is implemented in the Virtuoso Analog Design
Environment (ADE).

Two D-flip-flops, in a 28nm FDSOI technology are used as the Devices Under
Test (DUT). The devices are powered at Vdd = 1 V, the nominal voltage for
the technology. The D input of the two devices is each connected to an ideal
voltage source, Vin1, and Vin0, with constant voltage values equal to 1 V, and 0
V respectively.

Each flip-flop is also connected to a clock source, designed to produce a
single clock pulse. After the clock pulse, one flip-flop will store a logic value of
1, while the other will store a logic value of 0.

In addition, two ideal voltage sources are used to implement the body bias
well drivers. The particular flip-flops initially studied are forward body bias,
flip-well transistors (Fig. 4.1), which means that N-transistors are biased with
a positive voltage (Vbbn), while P-Transistors are biased with a negative voltage
(Vbbp). Each CMOS logic cell has, then, two terminals through which the body
bias can be modified.

The reset terminal of each of the flip-flop is connected to an ideal voltage
source tying it to the inactive state. The output of the flip-flops is connected to
ideal capacitors of 3 fF, a figure in accordance to a low fan out in the technology.

The simulation is configured such that the current flowing onto each flip-
flop from its voltage source (Vdd) is read after a single clock pulse takes places,
loading the appropriate value onte the register.

A parametric sweep is performed on top of the transient simulation, altering
the body bias value. In this initial assessment, the positive and negative body
bias values are kept equal in the absolute sense. That is, Vbbn = −Vbbp = |Vbb|.
This is done partly to simplify the analysis and partly to guarantee that each
driving cell has equal pull-up and pull-down capabilities. After each simulation,
the values of I0 and I1 are stored, and ϵ is calculated as ϵ = I1 − I0.

The resulting curves can be seen in Fig. 5.1
It can be seen that all three curves are monotonically increasing functions

of |Vbb|, with I1(Vbb) > I0(Vbb) for all possible values of body bias within the
range.

Recall from Chapter 4 and [9] that the total leakage current consumed by a
register array of n bits can be expressed as a function of I1, I0, ϵ, and the HW
of the bits stored in the array.

Ileak(HW) = n · I0 + ϵ ·HW (5.1)

From the curves of Fig. 5.1 it can be seen that the total leakage current
consumed by a register array (Equation 4.3), initially a linear univariate function
of the Hamming Weight, now becomes a bivariate function of both the HW and
the Body Bias as well. For an initial assessment, we consider a symmetric body
bias, where Vbbn = −Vbbp = |Vbb|.

Ileak(HW, |Vbb|) = n · I0(|Vbb|) + ϵ(|Vbb|) ·HW (5.2)

52

Figure 5.1: Leakage current consumption of a standard-cell D flip-flops as a
function of absolute body bias. While this is just an example of a particular
flip-flop, it is representative of the behaviour observed.

5.2 CPA on Dummy Cryptosystem. Empirical
approach

We wish to explore the effect that a varying body bias has on the capability of
the Pearson Correlation Coefficient to distinguish between the correct key and
incorrect keys in a cryptosystem.

As such, a dummy cryptosystem is implemented in the Virtuoso ADE. The
cryptosystem is formed by an 8-bit register array that stores the result of a
dummy encryptying function. The encryptying function is formed by the bit-
wise XORing between the plaintext, an 8-bit array, and the secret key, a fixed,
deterministic 8-bit array (Fig. 5.2).

We base this dummy cryptotystem in the fashion of what is to be expected
for typical block ciphers such as the AES [71]. Generalizing block ciphers,
we expect some kind of key encryption of the plaintext (represented by the
XOR function), followed by a non-linear substitution process. This non-linear
substitution process, typically referred to as an S-Box, can be omitted in our
assessment, given that their results are isomorphic to a vector of all the XORed
plaintexts for a given key. At the same time, S-Boxes are generally implemented
either through LUT’s or combinational logic, which we are at the moment not
interested in studying.

As it stands, |Vbb| is a continuous function. However, in order to realistically

53

Figure 5.2: Dummy cryptosystem implementing a bitwise XORing function
between the plaintext (X[0..7]) and a secret key (k[0..7])

modify the body bias of the cryptosystem, we have to take into consideration
the type of available circuits that can drive the wells of the back gates of tran-
sistors. We are going to work under the assumption that, whatever the body
bias generator employed to reach a fixed value of body bias, be it a DAC, a
linear regulator or a Charge Pump, the circuit can only modify the body bias in
discrete increments of voltage. We could also expect that these discrete incre-
ments of body bias, which we will call ∆Vbb, can present some noise that make
the circuit slightly deviate from its expected voltage goal. This will, however,
not be taken into consideration in the following analysis.

In this initial idealized approach, the body bias generator is emulated with
the circuit depicted in Fig. 5.3.

Figure 5.3: Idealized discrete body bias generator

54

The function implemented by this circuit can be expressed as:

Vbb(S) = V BBq + S ·∆Vbb (5.3)

Where V BBq represents the quiescent point of the body bias, ∆Vbb the
step increment with which the body bias can change, and S is discrete random
variable that can only adopt integer values, determining the total increment of
body bias with respect from V BBq.

This produces a positive body bias for NMOS transistors. The negative body
bias for PMOS transistors is generated by multiplying the resulting Vbb(S) with
a gain of −1 with an ideal voltage controlled voltage source.

For an initial approach, V BBq is set at 0 V, ∆Vbb at 20 mV, and S is
made to adopt any integer value that guarantees functionality within the limits
of these particular FDSOI technology. The minimum and maximum absolute
values of body bias in this technology are, respectively, V bbmin = 0 V and
V bbMAX = 1 V. Thus, under these conditions, S can adopt any integer value
between s ∈ [V bbmin

∆Vbb
, V bbMAX

∆Vbb
] = [0, 50], with a probability of P [S = s] = 1

51 for
any s.

In order to be able to perform a virtual Correlation Power Analysis Attack
with leakage current as a side-channel on the dummy cryptosystem depicted in
Fig. 5.2, the following steps are taken:

• The dummy cryptosystem is implemented in the Virtuoso ADE environ-
ment under a transient simulation. Similarly to the testbench used to
obtain the curves in 5.1, a vector of input plaintexts X[0..7] is set at the
beginning of the simulation. A clock pulse then loads the resulting XOR-
ing between the plaintext and the secret key into the register array. After
some time, the leakage current of all of the flip-flops is noted.

• With 8 bits, there are 256 possible plaintexts, ranging from 0 to 255 in
decimal notation. Thus, 256 transient simulations are run, one for each
possible plaintext.

• The secret key is set to 17010 and kept the same during all the experiments.

• At the end of the 256 experiments, a vector containing 256 leakage current
values and the plaintext used is obtained, one for each run. This leakage
current vector represents the magnitude of the leakage current consumed
exclusively by the registers. Neither the XOR gates, the inverters con-
nected to the clock, or any other element is considered, thus obtaining a
representation of a system that is noiseless.

• A Hamming Weight matrix is produced in Matlab. Each entry in a column
is the result of calculating the HammingWeight of the 8-bits resulting from
the XORing of the plaintext i (representing the rows) and a prospective se-
cret key j (representing the columns). Since there are 256 plaintexts and,
with 8 bits, 256 possible keys, the matrix is a square matrix of dimension

55

256× 256. Each entry of the matrix is represented by the following func-
tion, where each column represents the HW between the 256 plaintexts
and a prospective secret key:

ai,j = HW (i⊕ j) (5.4)

• The Pearson Correlation coefficient (PCC) is calculated between the vector
of leakage currents obtained from the 256 experiments and each column
of the HW matrix.

• This procedure is repeated two times. In one set of experiments, the body
bias is kept constant, at 0 V during the 256 plaintext experiments. In
the other set of 256 transient runs, at the beginning of each simulation a
random value is chosen for S, such that the body bias becomes a random
variable. The value of S is chosen at random following a discrete uniform
probability distribution with the probabilities described above, within the
interval of possible values of [0, 50].

The correlation between the vector of leakage currents and the vectors of
Hamming Weight dependent on the secret key are calculated utilizing the PCC
in Matlab. The PCC can be calculated analytically using the expression:

ρIleak,HW =
Cov(Ileak, HW)√

V ar(Ileak) ·
√

V ar(HW)
(5.5)

Where:

Cov(Ileak, HW) = E[Ileak ·HW]− E[Ileak] · E[HW] (5.6)

The use of this analytical expression is valid when the probability distri-
bution functions of the random variables in play are known. At this point,
however, are not analytically deriving their distributions, but using simulated
samples. In this case, the sample correlation is calculated as:

ρIleak,HW =
1

N − 1

N∑
i=0

(Ileaki
− Îleak)√

V ar(Ileak)
· (HWi − ˆHW)√

V ar(HW)
(5.7)

Where the variances are also calculated from the samples.
The results for the PCC between the leakage current and the HW matrix

for the case in which the body bias is kept constant, and for the case in which
the body bias is randomized can be seen in Figs. 5.4 and 5.5.

It can be seen that, when no random body bias is applied, the secret key can
be readily identified. However, when a random body bias is applied, not only
does the maximum PCC decrease significantly, the correct secret key cannot be
properly determined.

Two conclusions can be extracted from the results depicted in the figures 5.4
and 5.4. From Fig. 5.4 it can be seen that, when the register array is analyzed
under no noise conditions, without algorithmic noise introduced by bits not

56

Figure 5.4: PCC between the leakage current of a register array and the HW
calculated with all possible keys for a fixed body bias value |Vbbn| = 0 V

pertinent to the attack, or non-algorithmic noise (the only current evaluated is
that of the registers, and there are no other sources of noise), there is a perfect
correlation (PCC = 1) between the Hamming Weight and the leakage current
consumed by the array. This means that the leakage current of the register
array can be perfectly expressed as a linear function of the Hamming Weight:

PCC = 1 → Ileak(HW) = a+ b ·HW (5.8)

This result is consistent with the expected behaviour of an ideal register
array, as informed by equation 4.3:

Ileak(HW) = n · I0 + ϵ ·HW (5.9)

On the other hand, Fig. 5.5 indicates that this perfect correlation is severely
diminished, to the point where the secret key cannot be identified.

Two other factors arise from these simulations. The first one is that the
results presented in Fig. 5.5 stem from a single experiment of 256 transients.
S, on the other hand, can adopt 51 distinct values. Being a random variable,
this number is too small to guarantee a representative distribution of S. Thus,
the results shown in Fig. 5.5 are only one of many possible realizations.

Another factor is that empirical results would not allow us to readily predict
the influence of different parameters (V BBq, ∆Vbb, and S) on the ability of a

57

Figure 5.5: PCC between the leakage current of a register array and the HW
calculated with for all possible keys, in the presence of a random body bias

potential random body bias countermeasure to hinder the identification of the
secret key. At the same time, despite the dummy cryptosystem being a simple
circuit, each run of 256 experiments takes a long time to simulate, which would
make the realisation of multiple electrical simulation unfeasible in the pursue of
trends.

Thus, in order to obtain a model of the effects of the different parameters on
the ability of a random body bias to hinder the key acquisition we cannot rely
exclusively on empirical results. Given that when appropriately evaluated, the
leakage currents of the simulated circuits present a perfect correlation, numerical
models would, in principle, present a one-to-one correspondence with electrical
simulations.

5.3 Countermeasure Modelling

5.3.1 PCC without countermeasure

In order to determine the effect of the countermeasure, we first need to establish
analytically the value of the PCC observed when no countermeasure is applied.

Consider equation 4.3 with no application of a random body bias.
We wish to calculate the PCC between the leakage current and the hamming

weight assuming that, without a random body bias, both I0 and ϵ are constants.

58

The PCC is calculated using equation 5.6 assuming that the correct secret key
is chosen. Thus, we expect the secret key to present the highest possible value
of the PCC.

The distribution of the Hamming Weight arises from the fact that the plain-
text in the dummy cryptosystem is chosen at random. This is not exactly the
case when an exhaustive simulation is considered, where all the possible values
of the plaintext are used, but considering all 256 possible values of the plaintext,
each bit ends up having a well defined distribution.

That is, consider a vector of 8 bits representing the plaintext of the dummy
cryptosystem, [x0, x1, ..., x7], with x0 being the Least Significant Bit (LSB). In
an exhaustive simulation, all 28 possible values are considered. The probability
distribution of each bit can be calculated as:

P [xi = 1] = P [xi = 0] =
28−1

28
=

1

2
(5.10)

∀i, 0 ≤ i ≤ 7

That is, each bit has an unbiased uniform discrete probability distribution.
We assume, at the same time, that each bit of the plaintext is independent from
all others.

The results stored in the register array arise from the XORing of the plaintext
with the secret key. However, the XOR operation between a random variable
with equiprobable distribution (a bit of the plaintext) with a constant (a bit of
the secret key) does not alter the probability distribution of the output.

Thus, we can define the Hamming Weight as a random variable representing
the sum of all bits of the plaintext for a given experiment:

HW = x0 + x1 + ...+ x7 (5.11)

Given the linearity of expectation, we can calculate the expected value of
the Hamming Weight as:

E[HW] = E[x0 + x1 + ...+ x7] = E[x0] + E[x1] + ...+ E[x7] (5.12)

Since each bit is independent from each other and follows an unbiased uni-
form probability distribution, we have:

E[HW] =

7∑
i=0

E[xi] =

7∑
i=0

1 · P [xi = 1] + 0 · P [xi = 0] (5.13)

And with these, the expected value of the Hamming Weight for an n-bit
array of unbiased uniformly distributed bits is:

E[HWn] =
n

2
(5.14)

59

The variance of the Hamming Weight can be similarly calculated. Under the
assumption that each bit of the plaintext is independent from all the others, we
have that:

Cov(xi, xj) = 0 (5.15)

∀i, j, i ̸= j, 0 ≤ i, j ≤ 7

Thus:

V ar(HW) = V ar(x0+x1+...+x7) = V ar(x0)+V ar(x1)+...+V ar(x7) (5.16)

For an n-bit register array it can be shown:

V ar(HWn) =

n−1∑
i=0

V ar(xi) =
n

4
(5.17)

With these, we have E[HW] and V ar(HW). To calculate the PCC we next
need to compute E[Ileak ·HW]:

E[Ileak ·HW] = E[(n · I0 + ϵ ·HW) ·HW] =

E[n · I0 ·HW + ϵ ·HW 2] =

E[n · I0 ·HW] + E[ϵ ·HW 2] (5.18)

Given that under no countermeasure conditions n, I0, and ϵ are constants:

E[Ileak ·HW] = n · I0 · E[HW] + ϵ · E[HW 2] (5.19)

We now compute E[Ileak] · E[HW], which given the above derivations can
be shown to be:

E[Ileak] · E[HW] = n · I0 · E[HW] + ϵ · E[HW]2 (5.20)

Finally, substituting equations 5.19 and 5.20 in the expression of the covari-
ance (Equation 5.6), we arrive at:

Cov(Ileak, HW) = ϵ · (E[HW 2]− E[HW]2) (5.21)

And noting that:

E[HW 2]− E[HW]2 = V ar(HW) = σ2
HW (5.22)

Cov(Ileak, HW) = ϵ · σ2
HW (5.23)

The variance of Ileak can be easily calculated as:

60

V ar(Ileak) = V ar(n · I0 + ϵ ·HW) = ϵ2 · σ2
HW (5.24)

All these lends itself to the calculation of the PCC between the Leakage
Current of the dummy cryptosystem and the Hamming Weight.

ρIleak,HW =
ϵ · σ2

HW√
ϵ2 · σ2

HW ·
√
σ2
HW

= 1 (5.25)

This result is consistent with that of Fig. 5.4 and makes evident the fact
that, under noiseless, ideal conditions the leakage current of a register array
is a linear function of the Hamming Weight, if the correct key is chosen. All
other incorrect keys will present a smaller value of the PCC. In fact, it can be
shown ([20]) that, with an attack on an n-bit key, with n′ correct key bits and
m incorrect key bits, the PCC between the leakage current consumption of a
register array and the Hamming Weight calculated with this partially incorrect
key is:

ρIleak,HWwrong = ρIleak,HWcorrect ·
(n′ −m)

n
(5.26)

n = n′ +m

This is also consistent with Fig. 5.4.
Thus, the PCC serves as a discriminant between the correct secret key and

the rest. As such, we will evaluate the effect of the countermeasure on the
resulting PCC.

5.3.2 Random body bias scheme

We would like to determine the effect of using a random value of body bias as
countermeasure on the PCC, which we are employing as a key discriminant.

In order to do that, we need to be able to parameterize the magnitudes of
I0 and ϵ as a function of body bias. Once we have obtained such a relation, we
can express I0 and ϵ as functions of a random variable (i.e. Vbb)

We begin by obtaining an expression of the different variables of interest (I1,
I0, and ϵ) as a function of body bias (Fig. 5.1). Each of the leakage current
curves obtained during the parametric sweep described at the beginning of this
chapter are fitted with the help of Matlab into a function of absolute value of
body bias.

All three curves presented in Fig. 5.1 can be fitted with an R2 of 1 into
exponential functions of body bias of the following form:

f(|Vbb|) = a · eb·|Vbb| (5.27)

Where a and b are constants for a given temperature. At the moment, all
simulations are performed at 27º C.

61

As such, the leakage current consumed by a register array stops being ex-
clusively a function of the HW, and becomes a bivariate function:

Ileak(HW, |Vbb|) = n · I0(|Vbb|) + ϵ(|Vbb|) ·HW (5.28)

Furthermore, this equation can now be expressed as:

Ileak(HW, |Vbb|) = n · a0 · eb0·|Vbb| + aϵ · ebϵ·|Vbb| ·HW (5.29)

At this point we drop the |Vbb| notation for convenience.
The next step is defining the behavior of Vbb as a random variable. This has

already been hinted at in section 5.2. At this point we justify our assumptions.
In our body biasing scheme, the body bias is going to be governed by a

discrete random variable S having a uniform probability distribution, such that:

Vbb(S) = VBBq + S ·∆Vbb (5.30)

Where S is a random variable that follows a uniform probability distribution.
We define it such that S can adopt any integer value between [−smax, smax],
where smax is the parameter of the countermeasure over which we are going to
have control.

We set VBBq at the middle of the range of allowable body bias values. In this
particular technology, with VbbMAX

= 1 V, and Vbbmin = 0 V this corresponds
to VBBq = 0.5V .

From this it can be seen that:

∆Vbb =
VbbMAX

− VBBq

smax
(5.31)

Which means that the step increase with which the body bias changes is
going to be a function of the maximum number of steps of body bias.

With all these elements into consideration, we can calculate the different
moments of S and Vbb(S):

E[S] = 0

E[Vbb(S)] = VBBq

V ar(S) =
smax · (smax + 1)

3

V ar(Vbb(S)) = ∆V 2
bb · V ar(S) (5.32)

This leaves Vbb(S) with a well defined distribution.
Finally, we can express equation 5.29 parameterized as a function of S:

Ileak(HW,S) = n · a0 · eb0·(VBBq+S·∆Vbb) + aϵ · ebϵ·(VBBq+S·∆Vbb) ·HW (5.33)

62

With this, we have an expression governing the leakage current consumption
of a register array as a function of a random body bias, parameterized with a
random variable S over which the designer has control.

The idea behind the countermeasure is that, at the beginning of each en-
cryption process, a value of S is chosen at random and independently. To obtain
a notion of what is happening, consider first the ideal case exemplified by figure
5.4, when no countermeasure is applied.

If the secret key is known, every measurement of Ileak versus Hamming
Weight for different values of plaintext X will fall in a straight line, as defined
by Equation (4.3), giving a perfect correlation with a PCC of 1 (Equation 5.25).
However, an incorrect key would produce values of Ileak outside of such curve,
reducing the linear correlation between variables according to equation 5.26
(Fig. 5.6).

Figure 5.6: Measured leakage current vs Hamming Weight of different plaintext
X in an 8-bit register. The solid line depicts equation (4.3) for a given register,
while the markers represent measured current values for different plaintexts
displayed according to the calculated Hamming Weight with a correct key (Blue)
and an incorrect key (Red).

However, if we can consider the possibility that I0, so far a constant, can
become a random variable, and that the value of ϵ varies negligibly in comparison
so as to be able to consider it constant, we obtain a collection of curves:

63

ILeak1(X, k) = n · I01 + ϵ ·HW

ILeak2(X, k) = n · I02 + ϵ ·HW

...

ILeakn(X, k) = n · I0n + ϵ ·HW (5.34)

Where I0 is now a discrete random variable that can adopt values {I01, I02, ..., I0n}
with probability P [I0 = I0i] = pi, for 1 ≤ i ≤ n.

Provided that I0 and HW are independent variables and their variances are
well defined, the PCC between the register’s leakage current and the Hamming
Weight now becomes:

ρIleak,HW =
ϵ · σHW√

(n2 · σ2
I0 + ϵ2 · σ2

HW)
< 1 (5.35)

Assuming that the attacker has no means of accessing the value I0, this
means that for a sufficiently large number of possible values of I0, having the
secret key can be indistinguishable from having an incorrect key, as the values
of Ileak do not fall in a single curve.

This is exemplified in Fig. 5.7, where a collection of such curves is shown.
Under a correct key assumption, the markers represent the correct evaluation of
the Hamming Weight for each possible plaintext. However, it can be seen that
much of the linear relation is lost.

5.3.3 Random Body Bias Analysis

Having a mathematical model of the body bias scheme and a conceptual under-
standing of how the scheme can reduce the PCC and, as a consequence, harden
the ease with which the secret key can be extracted by performing LPA, we
can derive an expression of the PCC when the countermeasure is applied. With
these, we can observe trends as a function of the countermeasure parameters,
as well as determine an overall efficiency or level of protection achieved.

In order to do so, we must calculate the PCC between the Hamming Weight
of the dummy cryptosystem that we have thus far used, and the leakage cur-
rent consumption of the cryptosystem as a function of a random body bias,
parameterized with S. That is:

ρILeak,HW =
Cov(n · I0(S) + ϵ(S) ·HW,HW)√
V ar(n · I0(S) + ϵ(S) ·HW)

√
HW

The probability distribution of the HW remains the same and so do its
moments (Equations 5.14 and 5.17 for an attack on n-bits). Thus, we calculate
the PCC as detailed in section 5.3.1. The whole derivation can be found in the
Annex (10.2)

64

Figure 5.7: Collection of register leakage current vs Hamming Weight curves.
Each line represents a possible realization of Equation (4.3) for different values
of I0. The markers represent measured current values for different plaintexts
displayed according to the calculated Hamming Weight with a correct key

With all these considerations and developments we can finally express the
PCC between the leakage current consumption of a register array and its Ham-
mingWeight in the presence of a random body bias countermeasure as a function
of:

• Technological parameters aϵ, bϵ, aI0, and bI0

• Countermeasure parameters VBBq, ∆Vbb, and smax

ρIleak,HW =
µϵσHW√

p1 + p2 + p3

p1 = σ2
HWσ2

ϵ + µ2
ϵσ

2
HW + µ2

HWσ2
ϵ

p2 = n2 · σ2
I0

p3 = 2 · n · µHW · Cov(ϵ(S), I0(S)) (5.36)

65

Results

We begin our analysis by plotting the PCC under a variety of conditions, under
the assumption that a lower PCC results in better protection against leakage
power analysis attacks.

In all our analysis we use the following:

• The technological parameters aϵ, bϵ, aI0, and bI0 are extracted using mat-
lab’s fitting tools for reverse well, fordward body bias D flip-flops simulated
at 27 ºC

• VBBq is set at the mid point of the maximum and minimum allowable
voltages for the technology (VbbMAX = 1 V and Vbbmin = 0 V, respec-
tively). Thus, VBBq = 0.5 V. This permits the body bias to span the
entire Dynamic Range symmetrically

• We assume an attack on the dummy cryptosystem depicted in Fig. 5.2
under ideal conditions, where only the leakage current of the register array
is taken into consideration, without any source of noise present.

With these, we first plot the PCC as a function of smax, noting that:

∆Vbb =
VbbMAX − VBBq

smax
(5.37)

From Fig. 5.8 we can derive some conclusions. Firstly, the application of a
random body bias does reduce the PCC. Also, the rate of reduction as a function
of smax depends on the size of the step. In this figure, the step size is fixed, such
that a larger smax brings the maximum body bias value closer to the maximum
permitted by the technology.

However, when the entire Dynamic Range is used, that is, when the body
bias can swing between VbbMAX and Vbbmin, the PCC is the same for all the
plotted possibilities, and approximately equal to ρ = 0.048, regardless of the
size of the step.

Thus, it is clear that the wider the span within the Dynamic Range (DR)
of the body bias used, the better the countermeasure performs. It is then of
interest to study the behaviour of the countermeasure assuming that the whole
DR is used, and establishing a trade-off between smax and ∆Vbb, such that:

∆Vbb =
DR

2 · smax
(5.38)

Where the Dynamic Range is fixed and defined as DR = VbbMAX − Vbbmin.
Figure 5.9 show what happens when the DR is fixed but smax and ∆Vbb

depend on each other, such that the higher smax the smaller ∆Vbb and vice
versa.

It can be seen that, for small values of smax (and large of ∆Vbb) the PCC
is at its lowest. As smax increases and ∆Vbb decreases, there is a small increase
in the PCC, which begins to stabilize at smax ≈ 20, settling at ρ ≈ 0.048, as

66

Figure 5.8: PCC between the leakage current and the Hamming Weight of an
8-bit register array in the presence of a random body bias as a function of the
maximum number of steps

previously seen. This value is consistent with that observed in Fig. 5.5, where
the PCC between the HW and the leakage current consumption of the dummy
cryptosystem under attack for the correct key is approximately 0.042. The
disparity between the theoretical result and the simulated one can be attributed
to the fact that the realization of S does not perfectly reproduce a uniform
distribution and so, some amount of noise in the PCC is expected.

Figure 5.9 also depicts the entropy of S as a function of smax, where it is
defined as:

H(S) = log2(
1

2smax + 1
) (5.39)

We choose to present these results (PCC and entropy) in the same graph to
bring attention to the fact that, even if the PCC is at its lowest when smax is
small, there is a trade-off with the entropy of the random variable S. Thus, if
S leaked information in a particular implementation of the countermeasure, it
would yield the most information for small values of smax, which might easily
undo the effect of the countermeasure.

On the other hand, as smax increases, the PCC stabilizes at relatively small
values, while the entropy of S continues to rise. It might be of interest, then,

67

Figure 5.9: PCC between the leakage current and the Hamming Weight of an 8-
bit register array in the presence of a random body bias, with a fixed maximum
Dynamic Range, as a function of the smax

when envisioning an implementation, to choose a value of smax between 20 and
50. As smax increases, ∆Vbb decreases, so designing a body bias generator with
high granularity might be difficult while not offering much more protection, and
still presenting sufficient entropy of S.

5.3.4 Random Body Bias: Trace Averaging

The metrics and plots derived in the previous sections inform us of the effect
of the countermeasure on the PCC, but not on the overall difficulty to extract
the secret key. While it is understood that a diminished PCC would hinder
the extraction of the secret key, we need to be able to determine what happens
under more realistic attack scenarios.

A random body bias acts as a noise enhancer, decorrelating the Hamming
Weight and the leakage current consumption between different plaintexts by
modyifing the floor and, to some extent, the slope of the leakage consumed by a
register array. This varying leakage current, in effect, becomes noise. As such,
this countermeasure is sensitive to trace averaging that can diminish the noise
introduced.

Thus, it is of interest to study and quantify how trace averaging affects the
capability of the countermeasure to hide the secret key.

The noise figures introduced by the countermeasure are a result of the vari-
ance of the leakage current consumption informed by the random body bias.

68

That is, those of σ2
I0
, σ2

ϵ (the variance of I0(S) and ϵ(S)) and their covariance.
Under trace averaging conditions, for every plaintext xi, the experiment or

encryption process is going to be repeated N times. Thus, we will have access
to N realizations of the random variable S, while the plaintext and, therefore,
the Hamming Weight, remains the same.

If for each experiment the magnitude of Ileak is measured, we can then
average the total number of values of Ileak.

Îleak(HW, Ŝ) =
1

N

N−1∑
i=0

Ileak(HW,Si) (5.40)

As such, as N tends to infinity, it can be expected that Ileak will converge
to its expected value, Ileak(HW,E[S]). This means that, following the notions
introduced by figures 5.6 and 5.7, Ileak would cease to represent a collection of
curves determined by the random body bias, and coalesce to a single curve. So,
it can be expected that, under a correlation power analysis attack, the PCC
tends to 1 with increasing number of averaged traces N .

Under such averaging conditions, we can expect the variances representing
the noise to diminished with N . An approximation can be made regarding the
reduction of the variance, such that:

σ2
ϵ → σ2

ϵ

N

σ2
I0 →

σ2
I0

N

Cov(ϵ(S), I0(S)) →
Cov(ϵ(S), I0(S)

N
(5.41)

Which follows from the fact that, for the sum of N independent random
variables with equal variance:

V ar(
1

N

N−1∑
i=0

xi) =
1

N2
V ar(

N−1∑
i=0

xi) =
N

N2
σ2
x (5.42)

Substituting the reduced variances into equation 5.36 we can recalculate the
PCC between the Hamming Weight and the leakage current consumption of the
register array in the presence of the countermeasure when trace averaging is
taken into account.

The results can be seen in Table 5.1 and Fig. 5.10. Figure 5.10 represents
the value of the PCC as a function of smax for different values of N , while table
5.1 depicts the value of the PCC for various values of N when smax = 25.

These results clearly show an increase of the PCC when trace averaging is
applied, with the notion that an attacker only needs to increase the number
of experiments performed to extract the secret key. Thus, the countermeasure
hinders an attack, but does not necessarily impede it.

69

Table 5.1: PCC for maximum dynamic range of the Body Bias for different
number of averaging encryption processes when smax = 25

N PCC

1 0.0476
10 0.1489

100 0.4300
1000 0.8331

We would like, however, to be able to somewhat quantify how much harder
it is to extract the secret key when the countermeasure is applied, something
that cannot be readily established only through the value of the PCC.

In order to do so, we rely on a frequentist approach, signifying the number
of traces required to be able to extract the secret key with high probability.
To be able to obtain this ”empirical” figure we would need to simulate the
dummy cryptosystem under study 256 times (one for each possible value of the
plaintext of 8 bits), multiplied by the number of averages N . This procedure
must be repeated multiple times to obtain sufficient CPA attempts that allow
us to determine the probability of extracting the secret key for a given set of
averages.

The simulation time of all these can be prohibitively high for elevated num-
bers of averages. Thus, given the deterministic nature of the leakage current
Equation (5.1) under noiseless conditions, as demonstrated by the perfect cor-
relation seen in Fig. 5.4, we opt to numerically simulate the analog behavior of
the dummy cryptosystem. The numerical simulation of the analog behavior of
the system allows us to simulate a CPA attack where each leakage current mea-
surement, for every plaintext, is repeated N times and then averaged. This can
be done given that the technological parameters of the registers under study are
known (the constants in Equation 5.33), and thus these CPA’s provide compa-
rable results to the ones that would be obtained through electrical simulations
in the Virtuoso ADE.

In order to carry out simulated Correlation Power Analysis Attacks, we
define the the leakage current equation in Matlab (Equation 5.33), with the
constant parameters aϵ, aI0 , bϵ, and bI0 extracted at 27 ºC, for flipped well,
LVT, Forward body bias D flip-flops. We assume an attack on 8-bits, as in the
dummy cryptosystem considered so far, so n = 8. We consider the maximum
dynamic range of the body bias, so DR = VbbMAX − Vbbmin = 1 V, with the
quiescent point of the body bias set at the middle of the DR, with VBBq = 0.5 V.
smax is set at 25, and the body bias step ∆Vbb is defined according to equation
5.38.

In these numerical simulations we fixed the secret key, again, at 17010. In
the simulations, we exhaust the plaintext values. That is, we iterate through
each plaintext value. For each plaintext X = i, 010 ≤ i ≤ 25510, we calculate

70

Figure 5.10: Effect of averaging on the PCC between the Leakage Current
and the Hamming Weight of the register array in the presence of the proposed
countermeasure with a fixed, maximum body bias DR of 1 V. It can be seen
how averaging undermines the effect of the countermeasure for large number of
repeated encryption processes.

the hamming weight of the value stored in the virtual register array as:

HWi =

n−1∑
j=0

xj ⊕ kj (5.43)

Where j represents the bit index of the plaintext and the secret key, and the
HW is the result of the sum of the bits stored at the array after performing a
bitwise xoring of the plaintext and secret key.

At the same time, for each of the simulations, a random realization of S = s
with the distribution and limits above described is produced, simulating the
countermeasure. Thus, for each simulation we obtain a realization of the fol-
lowing equation:

Ileak(HWi, S = s) = n ·a0 ·eb0·(VBBq+s·∆Vbb)+aϵ ·ebϵ·(VBBq+s·∆Vbb) ·HWi (5.44)

With trace averaging, every plaintext value is repeated N , each with an
independent realization of S, such that a leakage current value is obtained for

71

each one:

Il1,i(HWi, s1)

Il2,i(HWi, s2)

...

IlN ,i(HWi, sN) (5.45)

Then, the result is averaged:

Îleaki
(HWi, Ŝ) =

1

N

N∑
j=1

Ileakj,i
(HWi, sj) (5.46)

The value of Equation 5.46 is stored for each plaintext, for a total of 256
values. Finally, the PCC between the vector of 256 averaged leakage current
values and the calculated Hamming Weight according to the input plaintext
for every candidate key is evaluated as described in section 5.2 , thus numeri-
cally simulating a CPA attack in the presence of the countermeasure with noise
averaging.

Four cases are contemplated: no averaging, and 10, 100 and 1000 repeated
encryptions per input plaintext. The results can be seen in Figures 5.11 through
5.14.

It can be seen that, as the number of repeated encryptions increases, the
CPA produces results that more correctly represent the simulated case when no
countermeasure is applied (Fig. 5.4). Note also how the theoretical results as
presented in Table 5.1, are very close to the results obtained through numerical
simulations, as shown in Figures 5.11 through 5.14. Their difference is to be
expected, as we are simulating population samples of the PCC, subjected to
noise, which diminishes with increasing number N of averages.

To test the effect of increased PCC with averaging in the ability to correctly
identify the secret key, a series of 100 distinct runs are then simulated for each
collection of N averages. The amount of times the secret key presents the
highest PCC is noted. The frequency with which the secret key is disclosed for
different number of averaging encryption processes can be seen in Table 5.2.

Table 5.2: Success ratio of secret key identification in numerical simulations
under different number of averaging samples

N Success Rate

1 0
10 0.11
100 0.97
1000 1

Note that 100 repeated encryption processes appear to be enough to identify
the secret key in most instances.

72

Figure 5.11: PCC between the numerically simulated leakage current and the
Hamming Weight of the theoretical register array under attack for every can-
didate key in the presence of the proposed countermeasure. The results are
obtained with one single encryption process per plaintext.

Figure 5.12: PCC of the numerically simulated and averaged leakage current
and the Hamming Weight, with 10 encryption processes per plaintext.

73

Figure 5.13: PCC of the numerically simulated and averaged leakage current
and the Hamming Weight, with 100 encryption processes per plaintext.

Figure 5.14: PCC of the numerically simulated and averaged leakage current
and the Hamming Weight, with 1000 encryption processes per plaintext.

74

5.3.5 Algorithmic Noise

So far we have presented an analysis of the countermeasure and its simulation
results as pertaining to a targeted register array of 8-bits. A more realistic
scenario would deal with cryptosystems that presented a larger amount of bits,
of which 8 would be under attack. For example, the AES cryptosystem can
typically operate or perform encryptions on blocks of data (plaintext) of 128
bits of length, with round keys of the same length.

If only 8 of those bits are targeted, there are, at any point, 120 bits rep-
resented by a register array of the same length that are not pertinent to the
attack. Nonetheless, these 120-bit register array consumes leakage current in a
manner representative of all the analysis presented above.

Since the information conveyed by the leakage current consumption of these
120-bit register array does not elucidate information regarding the 8-bits of
the secret key under attack, it is considered noise. And given that this noise
is produced not by random physical elements (such as the brownian motion
of electrons within conductors), but by the very structure of the encrypting
algorithm, it is called algorithmic noise.

In a n+m-bit cryptosystem, with n bits under attack and m bits introducing
algorithmic noise, the total leakage current consumption of the register array
storing these n+m bits can be expressed as:

Ileak = (n+m) · I0 + ϵ · (HWn +HWm) (5.47)

Where HWn refers to the Hamming Weight of the portion of bits under
attack, while HWm represents the Hamming Weight of the bits introducing
algorithmnic noise. Under these circumstances, we assume that, much like in the
analysis previously performed, each of the m bits follows an unbiased uniform
probability distribution, and that the bits are independent from each other, so
that the expected value and variance of HWm are, respectively E[HWm] = m

2
and V ar(HWm) = m

4 .
With these, we can recalculate the PCC taking into account the effect of

algorithmic noise. In the case in which no countermeasure is applied, where
both ϵ and I0 are assumed constant, it can be shown that (without any other
sources of noise, and under a correct key assumption):

ρIleak,HWn
=

ϵ · σHWn√
ϵ2(σ2

HWn
+ σ2

HWm
)
=

√
n

n+m
(5.48)

From here, it is straightforward to calculate the PCC between the Hamming
Weight of the n bits under attack and the leakage current consumed by a n+m
bit cryptosystem in the presence of the countermeasure described in previous
sections.

We must simply take into account the changes introduced in the denominator
of Equation (5.36) (the variance of the leakage current consumed by the register

75

array) by the m bits that introduce algorithmic noise. Again, we break down
the variance of Ileak into three components V ar(Ileak) = p1 + p2 + p3, with:

p1 = V ar(ϵ(S) · (HWn +HWm))

p1 = σ2
ϵ (σ

2
HWn

+ σ2
HWm

) + µ2
ϵ(σ

2
HWn

+ σ2
HWm

) + ...

+σ2
ϵ (µ

2
HWn

+ µ2
HWm

) + 2µHWnµHWmσ2
ϵ

p2 = V ar((n+m) · I0(S))

p2 = (n+m)2 · σ2
I0

p3 = 2 · Cov(ϵ(S) · (HWn +HWm), (n+m) · I0(S))

p3 = 2 · (n+m) · (µHWn
+ µHWm

) · Cov(ϵ(S), I0(S)) (5.49)

The same analysis performed for the countermeasure in the presence of noise
averaging can be done under these new conditions. In fact, the same effect is
expected for the different variances σ2

ϵ , σ
2
I0
, and Cov(ϵ(S), I0(S))) as in Equation

5.41; namely, their values are reduced by a factor ofN , with N being the number
of samples.

The same effect can also be expected for the variance of HWm, which be-
comes σ2

HWm
/N . In the particular case with algorithmic noise but no counter-

measure applied, it can be shown that the PCC between the leakage current
and the Hamming Weight of the bits of interest (Equation (5.48)) becomes:

ρIleak,HWn
=

√
n

n+ m
N

(5.50)

With these, we can again plot the PCC as a function of smax and the num-
ber of averaged traces in the case of algorithmic noise, considering the same
conditions defined in previous section (namely, VBBq = 0.5 V, DR = 1 V, and
∆Vbb =

DR
2smax

). We consider a cryptosystem with a total of 128 bits, with n = 8
bits under attack and m = 120 bits of algorithmic noise.

The results can be observed in Fig. 5.15, where 250 times the same number
of averaged samples are required as compared to Fig. 5.10 to obtain the same
values of the PCC. Note that, in both cases, the total number of experiments
equals those noted in the legend of the figure times 256.

Note that in the case of a cryptosystem with n +m bits and an attack on
n bits of interest, noise averaging is not obtained by repeating N encryption
processes with exactly the same plaintext. Rather, we maintain the plaintext
affecting the n bits constant during the N encryption processes, but for each of

76

Figure 5.15: Effect of averaging on the PCC between the Leakage Current and
the Hamming Weight of a 128-bit register array, with 8 bits under attack, in
the presence of the proposed countermeasure with a fixed, maximum body bias
DR of 1 V and different number N of traces per plaintext.

these encryption processes a random plaintext is chosen for them remaining bits.
With these modifications, numerical simulations of a CPA can be performed as
described in section 5.3.4.

We first perform simulated CPA attacks on n = 8 bits of an 128-bit cryp-
tosystem with no countermeasures applied, to have a controlled sample and
better distinguish the effect of the countermeasure when algorithmic noise is
also considered. We then simulated again a CPA applying the countermeasure.
The results can be seen in Tables 5.3 and 5.4. The success rate noted in these
tables is the ratio of the number of times the secret key is identified out of the
100 simulated attacks.

Both tables present the value of the PCC calculated according to equations
5.50 and 5.49 (column PCC-Theo) along one realization of the PCC obtained
through a simulated CPA (Column PCC-CPA). The different values depicted
in the columns PCC-CPA are, thus, subjected to noise and can vary between
experiments, under the same conditions. However, it can be seen that, as N in-
creases, the values get closer to those obtained from the evaluation of Equations
(5.50) and (5.49), indicating that the model is representative of the expected
behavior of the circuit.

Thus, it can be seen that the countermeasure significantly increases the
number of samples required to extract the secret key, highly impeding the per-

77

Table 5.3: Theoretical and numerical simulation results of the PCC, along the
success ratio for 100 simulated attacks, for a 128 bit register array with 8 bits
under attack without countermeasure for different number N of averaged traces
per plaintext.

No Countermeasure

PCC
N Theo CPA Success Rate
1 0.25 0.17 0.61

300 0.976 0.977 1

Table 5.4: Theoretical and numerical simulation results of the PCC, along the
success ratio for 100 simulated attacks, for a 128 bit register array with 8 bits
under attack with countermeasure for different number N of averaged traces
per plaintext.

Countermeasure

PCC
N Theo CPA Success Rate
1 0.0030 0.0091 0

250 0.0470 0.0290 0.05
2,500 0.1472 0.1778 0.14

25,000 0.4328 0.4294 0.98
250,000 0.8301 0.8357 1

formance of leakage power analysis attacks on registers.

5.3.6 Other Conditions

So far our analysis has limited to the case of registers implemented with Low
Threshold Voltage (LVT), flip-well, forward body bias (fbb) transistors at 27
ºC. These transistors see their threshold voltage decreased as the absolute body
bias (positive for NMOS, and negative for PMOS transistors) increases.

In this section we present results of the effect of the countermeasure on two
distinct conditions:

• The same type of registers at 80 ºC

• Using registers implemented with FDSOI, regular threshold voltage, re-
verse body bias transistors. These transistors see their threshold voltage
increased with increasing values of |Vbb|. Thus, as opposed to registers

78

implemented with Forward bodybias transistors, the magnitudes of I0, I1,
and ϵ are monotonically decreasing functions of |Vbb| but, rather, decreas-
ing.

In both cases, it is of interest to see how µϵ, the intensity of the signal of
interest, varies as compared to the variance of Ileak, the introduced noise that
decorrelates the leakage consumption from the HW of interest.

For higher temperatures, we expect all the leakage current magnitudes to
increase, but are interested in determining whether the signal of interest in-
creases at a higher rate than the noise, and thus the attack becomes easier
(fewer samples are required), or if the opposite happens.

For regular threshold voltage, reverse body bias registers, we expect the
leakage current magnitudes to decrease, especially with increasing values of
body bias. Thus, we aim to determine whether the signal of interest decreases
faster than the noise under these conditions.

The results can be seen in Table 5.5 for the FBB, 80 ºC conditions and in
Table 5.6 for the RBB, 27 ºC experiments, where similar calculations of the
PCC and simulated CPA attacks are performed as in previous sections.

Table 5.5: Forward Body Bias Registers at 80 C -Theoretical and numerical
simulation results of the PCC, along the success ratio for 100 simulated attacks,
for a 128 bit register array with 8 bits under attack with countermeasure for
different number N of averaged traces per plaintext.

Countermeasure

PCC
N Theo CPA Success Rate

500 0.0468 0.0138 0.05
5,000 0.1467 0.1560 0.14

50,000 0.4246 0.5267 0.98
500,000 0.8290 0.8474 1

The results are worth discussing. On the one hand, there is an expectation
and empirical understanding ([51]) that higher temperatures facilitate the per-
formance of LPA attacks by enhancing the magnitudes of interest. However, it
can be seen in Table 5.5 that, when the countermeasure is applied, the noise
introduced surpasses the signal enhancement, further hindering the acquisition
of the secret key. Thus, this countermeasure offers more protection with higher
temperatures when registers implemented with LVT, FBB are used.

On the other hand, using registers implemented with Reverse body bias
transistors seems to be detrimental to the efficiency of the countermeasure, as
seen in Table 5.6 by the fact that fewer traces are required to disclose the secret
key.

79

Table 5.6: Reverse Body Bias Registers at 27 C - Theoretical and numerical
simulation results of the PCC, along the success ratio for 100 simulated attacks,
for a 128 bit register array with 8 bits under attack with countermeasure for
different number N of averaged traces per plaintext.

Countermeasure

PCC
N Theo CPA Success Rate
77 0.0467 0.0138 0.05
770 0.1462 0.1560 0.14

7,700 0.4234 0.5267 0.98
77,000 0.8280 0.8474 1

5.4 Conclusions

In this chapter, an initial investigation on the nature and relation between the
body bias of D flip-flops implemented in CMOS FDSOI transistors and their
leakage current consumption is made.

Through the information gathered, and based on the nature of Correlation
Power Analysis attacks, what they target, and how they are effective in extract-
ing the secret key of cryptosystems, a body bias scheme is proposed.

The body bias scheme introduces leakage current noise by producing a ran-
dom floor level of static power consumption at the beginning of each encryption
process. Through the modification of this floor, which effectively acts as inter-
trace noise power, the correlation between the Hamming Weight of a register
array and the static power it consumes is diminished. Thus, the possibility of
performing CPA attacks based on static current as a side-channel is hindered.

This body bias schemes serves, effectively, as a countermeasure. The effi-
ciency of the countermeasure is analyzed through the development of a statis-
tical power model of the leakage consumption of a register array. The model is
parameterized through the technological parameters of the flip-flops, and design
variables of the countermeasure. The efficiency of the countermeasure is then
compared under a variety of magnitudes for the design variables by calculating
the PCC between the HW and power model.

Limitations to the capabilities to hinder CPA attacks are demonstrated,
showcasing a floor to the minimum PCC. This is demonstrated to not be entirely
secure, as showcased by the small entropy presented in these cases. A ceiling to
the maximum PCC is also established, showcasing that beyond a certain point,
further increasing the granularity of the body bias scheme barely offers more
protection.

The statistical power model is further refined by the inclusion of sources
of algorithmic and non-algorithmic noise, recalculating the PCC under such
conditions, reaching drawing similar conclusions.

80

The possibility of undoing the effects of the countermeasure through repeated
experimentation and trace averaging is also presented, along the changes pro-
duced in the PCC when different amount of samples are considered. To complete
the picture, the efficiency of the countermeasure is then tested through numer-
ical simulations of CPA attacks in the presence and absence of the body bias
scheme, obtaining rough figures of the success rate of secret key identification.
These metric is determined for the control setting, without the use of a coun-
termeasure, and for the case of the countermeasure under varying numbers of
trace averaging. The results showcase that, while the countermeasure does not
fully protect a cryptosystem, it severely increases the number of experiments
required to disclose the secret key with high probability.

The same procedure is then repeated for the case of the same type of reg-
isters (FBB, LVT), at increased temperatures, and for registers implemented
with RBB, RVT transistors. In the case of FBB, LVT registers, an increased
temperature proves beneficial to the efforts of the countermeasure, probably
by the increase of noise that can be introduced through the body bias scheme.
Registers implemented with RBB, RVT transistors, however, suffer what could
be seen as a paradoxical effect, in that despite presenting lower magnitudes of
leakage current, leakage power attacks are more successful against them. This
could be explained through the same reasoning, an inability to introduce as
much noise, given the increase of threshold voltage with increasing body bias.

Overall, the countermeasure seems effective in its capability to reduce the
success of secret key acquisition under LPA attacks, forcing an attacker to in-
crease the number of traces to be taken significantly.

The main limiting factor of this whole analysis is that it is exclusively pre-
sented based on simulations. However, the author believes that the models
are sufficiently grounded so as to be reliable, at the very least, in the trends
presented during the analysis. This methodology limitations are, however, still
present, and further experimentation on physical implementations of the coun-
termeasure could shed more light on the true effectiveness of the countermea-
sure.

81

Chapter 6

Current Balancing Body
Bias

So far we have explored the effect that a random body bias applied at the
beginning of each encryption process can have on the ease with which the secret
key can be identified through leakage power analysis attacks.

The exploration of this potential countermeasure based on the nature of FD-
SOI technology has proved somewhat successful, particularly for low threshold
voltage, forward body bias transistors, more so as the temperature at which
the attacks take place increases. The countermeasure does not appear to be
as effective when regular threshold voltage, reverse body bias transistors are
considered, possibly due to the fact that the leakage current noise that can be
introduced with these devices is somewhat smaller.

All in all, the analysis presented does point to the countermeasure being
effective under the appropriate circumstances.

In this chapter, we explore under which conditions the countermeasure can
be nullified, in the particular cases of the AES and the Trivium stream cipher.
However, the manner of the attack that undermines the initial countermeasure
proposal can be generalized to other cryptosystems whenever these conditions
are met. We contrast the effect of this potential vulnerability with the results
of the original proposals for a random body bias countermeasure, determining
the ease with which the secret key can be disclosed when the vulnerability is
exploited.

The chapter goes on to explore another potential countermeasure based on
an alternative body bias scheme that would protect against these vulnerabilities.

82

6.1 Vulnerabilities to Random Body Bias Coun-
termeasure

The basis of the potential vulnerabilities that can undermine the countermeasure
so far presented stem from the possibility of finding a known state within the
encryption process.

The countermeasure capability of preventing the acquisition of the secret
key originates from establishing a distinct and random value of the magnitude
of the leakage current floor at the beginning of each encryption process.

However, if a known state can be derived and related to an unknown state
within the same encryption process, it might be possible to perform a ”normal-
ization” of the random body bias for each encryption process.

That is, consider that we are able to perform two measurements of the
leakage current of a cryptosystem at two different stages of the same encrypting
process, t1 and t2.

Considering that these two measurements are taken within the same encryp-
tion process, the value of the body bias is the same for both of the measurements.

Consider that the value of the Hamming Weight stored in the register array
of interest at time t1 is known, while the value of the Hamming Weight at time
t2 is unknown and depends on the secret key.

The total leakage current consumption for these two instances, considering
no sources of algorithmic or non-algorithmic noise, for an attack on n bits, can
be expressed as:

Ileak(HW,Vbb, t1) = n · I0(Vbb) + ϵ(Vbb) ·HWt1

Ileak(HW,Vbb, t2) = n · I0(Vbb) + ϵ(Vbb) ·HWt2 (6.1)

If the value of HWt1 is known for every possible plaintext, and HWt2 is
the result of an encryption process directly following the bits that conform the
result of HWt1, it is possible to perform a bivariate attack in the form of a
normalization of the noise floor by subtracting Ileak(t1) from Ileak(t2). That is:

Ileak(Vbb, t2)− Ileak(Vbb, t1) = ϵ(Vbb)(HWt2 −HWt1) (6.2)

Note how, in equation 6.2 the term n · I0(Vbb) has vanished, given that the
body bias value remains the same within the same encryption process and is thus
equal between the two equations. We have seen from the analysis presented in
the previous chapter that this term represents the main element that introduces
noise. As such, it is theoretically possible to greatly reduce the impact of the
countermeasure under such conditions.

Because the statistical relation between HWt2 and HWt1, and the fact that
HWt1 must be known for every possible plaintext, the structure of the algorithm
is not negligible when analyzing these vulnerabilities. As such, they are going
to be explored in particular, as related to two widely used cryptosystems: the

83

AES cryptosystem, a block cipher; and the Trivium cryptosystem, a Non-Linear
Feedback Shift Register (NLFSR) cryptosystem, a stream cipher.

How the random body bias countermeasure can be bypassed in each instance
will be explained along the minimum considerations required regarding each
cryptosystem.

As such, we begin our analysis on these vulnerabilities by introducing some
notions regarding the AES cryptosystem.

6.1.1 The AES and Random Body Bias

The Advanced Encryption Standard, also known as the AES, is a block cipher
capable of encrypting 128 bits of plaintext per run. It has various modes of
operating that are not going to be described here in detail, as they are not
pertinent to the discussion. However, more information on its functionality and
development can be found in [72].

The AES is an example of a substitution and permutation block cipher,
as succinctly detailed in Chapter 2. At the same time, it is what is referred
to as an iterated block cipher, meaning that the encryption process is done
through the repeated execution of the same algorithm several times. Each of
these executions is called a round.

Each round uses what is called a round key. The AES accepts three possible
key sizes, 128-, 192-, and 256-bit keys. Each key size determines the number of
rounds used to encrypt the 128 bits of the plaintext. While not really pertinent
to our discussion, we will be focusing on the 128-bit key case.

With a 128-bit key, the AES encryption process uses 10 rounds of encryp-
tions, with 11 round-keys. It is important not to confound the 128-bit secret
key with the 11 distinct round keys, despite the fact that they are all of the
same length.

All 11 round keys are derived deterministically from the secret key through
a publicly known algorithm. Through a series of shifts and substitutions the
algorithm expands the secret key into 11 round keys. The process of obtaining
the round keys from the secret key is called the key schedule, when referring to
iterated block ciphers.

The central component of attack of the AES, of interest in our analysis of
the vulnerabilities of the previously presented countermeasures, is the so-called
state matrix. The state matrix can be conceptualized as a simple register array,
a 4 × 4-byte memory element that stores the plaintext and the intermediate
values processed by the algorithm after each round of encryption.

Each round of encryption in the AES is composed of the same processes
(AddRoundKey, SubByte, ShiftRows, and MixColumns) in the following fash-
ion:

• A series of bytes, be them the plaintext or intermediate variables, are
loaded onto the state matrix.

• The content of the state matrix is XORed with the pertinent round key
(AddRoundKey)

84

• Each byte resulting from this XORing is fed into a Substitution Box (S-
Box) through the SubByte subroutine. The resulting bytes are again
loaded onto the state matrix, substituting the previous contents.

• The contents of the state matrix are first shuffled (ShiftRows) and finally
a linear transformation of the columns is applied (MixColumns), finalizing
the round

For our analysis we need only focus on the first three processes; namely, the
loading of the plaintext onto the state matrix, the XORing operation, and the
substitution operation.

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

Consider the state matrix depicted, loaded with the 16 bytes that conform
the plaintext, at the very beginning of the encryption operation, where each
cell contains 8 bits. Consider byte x0, and assume its Hamming Weight at the
moment the plaintext is loaded onto the matrix as HWt1.

Consider then both the AddRoundKey and the SubBytes operation applied
to byte x0. Both operations can be expressed as:

x′
0 = S(x0 ⊕ k0) (6.3)

where k0 denotes the portion of the secret key with which x0 is bitwise xored,
and the function S(·) represents the substitution operation. At this point x′

0 is
stored in the state matrix, and its Hamming Height can be considered to be,
following from the above discussion, HWt2.

x′
0 x′

1 x′
2 x′

3

x′
4 x′

5 x′
6 x′

7

x′
8 x′

9 x′
10 x′

11

x′
12 x′

13 x′
14 x′

15

Given that control over the plaintext is presumed, the value of x0 is known
in every instance of an attack, and the relation that arises between HWt1 and
HWt2 in the form of a subtraction is exclusively dependent on the portion of
the round key of interest, under the assumption that disclosing the totality of
a round key is equivalent to breaking the cryptosystem.

Under this condition, we can consider that, with an unknown round key, the
subtraction of HWt1 from HWt2 gives rise to a new random variable, which we
will call Z.

Z = HWt2 −HWt1 (6.4)

85

And so, equation 6.2 can be expressed as:

Isub(Vbb, Z) = ϵ(Vbb) · Z (6.5)

Under these conditions, a correlation analysis can be performed on the mag-
nitude Isub that arises from a the bivariate analysis. If we were to calculate
the PCC between the random variable Z and the subtracted leakage current
consumption, without algorithmic or non-algorithmic noise, the result would be
the following:

ρIsub,Z =
µϵ · σZ√

σ2
Z · σ2ϵ+ µ2

ϵ · σ2
Z + µ2

Z · σ2
ϵ

(6.6)

Where µϵ and σ2
ϵ are the expected value and variance of ϵ(Vbb) when a

random body bias is applied and µZ and σ2
Z are the expected value and variance

of Z.
We can take a step further and assume two properties from Z that arise from

the fact that both HWt2 and HWt1 are random variables with assumed known
expected value and variance, based on the cryptosystem properties. Namely,
we are going to assume that the expected value and variance of Z are known,
and establish computationally through a small simulation of the AES if our
assumptions hold. In the mean time, we will consider the following:

E[Z] = E[HWt2 −HWt1] = E[HWt2]− E[HWt1] =
n

2
− n

2
= 0 (6.7)

Cov(HWt2, HWt1) = 0 (6.8)

V ar(Z) = V ar(HWt2 −HWt1) = V ar(HWt2) + var(HWt1) = 2 · n
4

(6.9)

That is, we are assuming that each bit of the plaintext follows an unbiased
uniform discrete proability distribution, with bits being independent from each
other. We are also assuming that the cryptosystem does not introduce any
form of bias and, thus, we can expect both instances of the Hamming Weight
to present the moments depicted above and explained in the previous chapter.
Finally, we are assuming that while the variables HWt2 and HWt1 are not
independent, their correlation is 0 due to the effect of the AES substitution
box. We expect this last assumption to be wrong, but it does not influence the
following derivation.

With these, we can consider that µZ = 0 and that σ2
Z = n

2 , with n being the
bits of the round key under attack, in all our analysis so far, 8.

This allows Equation 6.6 to be further simplified into:

ρIsub,Z =
µϵ√

σ2
ϵ + µ2

ϵ

(6.10)

86

Note that this equation already demonstrates the effectiveness of these bi-
variate attack to heavily undermine the effect of the random body bias. The
principal element introducing noise was the term n2 · σ2

I0
which, for LVT, flip

well transistors at 27ºC is three orders of magnitude greater than σ2
ϵ .

In fact, we can plot Equation 6.10 and Equation 5.36 parameterizing the
random body bias as a function of S, with Vbbq = 0.5 V and DR = 1 V to
compare this disparity. The results can be seen in figure 6.1

Figure 6.1: PCC between the univariate leakage magnitude (Blue) and its HW,
as described in the previous chapter, and between the bivariate leakage magni-
tude Isub (Orange) and Z as a function of smax.

It can be seen that most of the effectiveness of the countermeasure is lost,
and we expect that an attack can extract the secret key with ease without need
to devote much effort to trace averaging.

We then assess our analysis regarding the moments of Z (µZ and σ2
Z). In

order to do so, we simulate the first three steps of the AES algorithm. Namely,
the loading of the plaintext, its XORing with the round key, and the substitution
through the S-Box. The value of the Hamming Weight is calculated for the
plaintext and for the result arising from the substitution process. That is,
following the nomenclature used:

HWt1 = HW (x0)

HWt2 = HW (S(x0 ⊕ k))

Z = HWt2 −HWt1 (6.11)

87

This is done for all the possible values of the plaintext, ranging from 0 ≤
x0 ≤ 255, and for all possible keys 0 ≤ k0 ≤ 255. Thus, Z is a 256× 256 matrix
of Hamming Weight Values where the rows represent the values of the plaintext,
while the columns represent the values of the round key. We can then calculate
the mean and the variance of each column, obtaining the expected value and
variance of Z for all possible values of the plaintext as a function of the round
keys. The results can be seen in Figs. 6.2 and 6.3

Figure 6.2: Mean value of the random variable Z for all possible plaintexts as
a function of the round key

It can be seen that the expected value of Z is zero for all possible plaintexts
and round keys, thus validating the initial analysis. The variance, however,
presents differing values depending on the secret key, indicating some non-zero
correlation between HWt1 and HWt2. This, however, has no impact on the
metric of the PCC and the ease with which the secret key can comparatively be
extracted.

6.1.2 The Trivium and Random Body Bias

Trivium Functionality

The Trivium is a Non-Linear Feedback Shift Register that can be used to im-
plement a Pseudo Random Number Generator or a stream cipher depending on
the requirements of the application. It was initially designed under the premise
of low power circuits (embedded systems, IoT...) that require an acceptable
level of security while maintaining as small a power consumption as possible. It

88

Figure 6.3: Variance of the random variable Z for all possible plaintexts as a
function of the round key

has, thus, been described as a light-weight cryptosystem, able to be implemented
with minimum standard cell count and area, with small power necessities. While
a certain degree of its functionality will be discussed here shortly, its full design
and implementation can be found in [15].

The Trivium is composed of three shift registers, which we will call X, Y and
Z. Each of these registers contains 93, 84, and 111 bits respectively and serve
as the memory element that stores the state of the intermediate variables to be
attacked. Thus, the trivium contains a total of 288 bits, typically numbered as
bit s1 to bit s288 (Fig. 6.4)

The Non-linear feedback elements implemented within the Trivium are car-
ried out by the combinational functions t1, t2 and t3. While these functions
are all equal in structure (see Fig. 6.5), they present as inputs different bits of
the three shift registers. What these combinational functions have in common
besides their composition is the fact that their output serves as the input to
the first bit of each shift register. Thus, function t1 feeds into the first bit of
register Y , labelled s94, t2 into the first bit of register Z (s178) and t3 feeds
into register X (s1).

Before beginning its encryption process, the Trivium undergoes what is
called its Initialization Phase. During its initialization phase, the secret key
and Initialization Vector (IV) are firstly loaded onto the Trivium. Both the se-
cret key and IV have a length of 80 bits. The secret key is loaded onto register
X, from bits s1 to s80, while the IV is loaded onto register Y , from bit s94 to
bit s173. The rest of the bits on these registers are initialized to 0. Register Z

89

Figure 6.4: Schematic representation of the Trivium Stream Cipher

Figure 6.5: t1, the non-linear function under attack. The result from this func-
tion feeds into the first bit of register Y.

is, likewise, initialized to 0, except for bits s286− s288, which are programmed
with 1’s.

After the pertinent bits have been loaded, the initialization phase continues
by undertaking 4 × 288 periods of execution in which the trivium constantly
feeds onto itself. After this number of periods, the Trivium begins producing
the keystream with which the plaintext is XORed bit by bit.

CPA of the Trivium With leakage as a side-channel

Power analysis attacks on the Trivium take place during the first 80 periods of
the initialization phase [73]. These attacks target bit s94, that is, the output of
the function t1. This bit is targeted because the output of function t1 depends
exclusively on bits of the secret key and 1 bit of the IV per period.

These attacks take place iteratively. That is, during different periods of
operation within the initialization phase, different bits of the secret key can be
attacked.

Typically, correlation power analysis attacks on the Trivium stream cipher

90

Table 6.1: Key Extraction Progression for different periods of the initialization
phase. The pertinent bits of the Initialization Vector have been omitted

Key Extraction

Absolute Relative
Periods Period (j) Function Key bits
1 to 12 j=0 to 11 k66−j 66-55
28 to 37 j=0 to 9 k66−j + k65−j · k64−j + k39−j 39-30
55 to 62 j=0 to 7 k39−j + k38−j · k37−j + k12−j 5-12
70 to 80 j=0 to 10 k24−j + k23−j · k22−j + k66−j 24-15
43 to 54 j=0 to 11 k51−j + k50−j · k49−j + k24−j 51-40
16 to 27 j=0 to 11 k78−j + k77−j · k76−j + k51−j 78-67
67 to 69 j=0 to 2 k27−j + k26−j · k25−j + k69−j 27-25
40 to 42 j=0 to 2 k54−j + k53−j · k52−j + k27−j 54-52
38 to 39 j=0 to 1 k56−j + k55−j · k54−j + k29−j 29-28
14 to 15 j=0 to 1 k80−j + k79−j · k78−j + k53−j 80-79
63 to 66 j=0 to 3 k31−j + k30−j · k29−j + k4−j 4-1

have been carried out through the measurement of dynamic power consumption
[73]. However, here we present two findings:

• How leakage current consumption of the trivium registers can be used to
perform correlation attacks.

• And how these attacks can overcome the random body bias countermea-
sure introduced in the previous chapter.

In any case, all manner of attacks focus on the output of function t1. How-
ever, instead of assessing the power consumed by the charging or discharging of
the input capacitance of register s94, we focus on the state of register Y and its
leakage current consumption.

As an example, we can analyze the first 12 periods of the initialization phase.
During these periods, the combinational block t1 evaluates according to the
following function:

t1j(K, IV) = S66−j ⊕ S171−j = K66−j ⊕ IV78−j (6.12)

Where K66 and IV78 represent, respectively, the 66th bit of the secret key
and the 78th bit of the Initialization vector, with j being the relative period of
the Trivium, as depicted in Table 6.1.

Thus, given that register Y is a shift register, we can expect that, after m
periods, with 0 ≤ j ≤ 11, m ≤ MAX(j), the Hamming Weight stored within
the register is going to be the sum of bits evaluated by function t1:

91

HW =

m−1∑
j=0

k66−j ⊕ IV78−j (6.13)

Ignoring, for the moment, the rest of bits already present or newly introduced
into the Trivium state, equation (6.13), coupled with the equation of the leakage
current consumed by a register array with a random body bias, forms a power
model similar to those explored so far. That is, the leakage current consumed
by the Trivium after m periods is:

Ileak(Vbb) = 288 · I0(Vbb) + ϵ(Vbb) ·
m−1∑
j=0

k66−j ⊕ IV78−j (6.14)

Where 288 is the total number of bits of the Trivium. Thus, equation (6.14)
can be used as the basis of a power model based on processed data by the
algorithm as a function of the secret key.

With a power model such as this, it would be possible to perform Correlation
Power analysis attacks in the manner described in previous sections. However,
algorithmic noise would be an impediment. Thus, some slight considerations
and modifications must be made.

Consider, firstly, that the Trivium does not produce algorithmic noise, that
is, that the only bits that are evaluated or produced are the outputs of function
t1. This is evidently not true, as function t2 and t3 produce each one bit of
what can be considered algorithmic noise every period of operation during the
initialization phase. However, this assumption serves to illustrate the manner
of the attack.

Consider, also, an attack on m bits of the secret key, beginning at period
i, up to period i +m. During period i the Trivium finds itself in an unknown
state, with its registers populated by bits of unknown value. We define the total
Hamming Weight of the Trivium during this state as HWi, which is an unknown
random variable.

After m periods, the Trivium will find itself in a new state. Under the
assumption of no algorithmic noise, the only new bits introduced in the trivium
registers are those produced by function t1, which depend exclusively on bits of
the secret key and the IV. Thus, this state can be defined as:

HWm = HWi +

m−1∑
j=0

fi+j(K, IV) (6.15)

Where f(K, IV) is any of the functions shown in Table 6.1. Thus, the total
leakage consumption of the Trivium during period i and period i + m can be
expressed as:

92

Ileak(Vbb)i = 288 · I0(Vbb) + ϵ(Vbb) ·HWi

Ileak(Vbb)i+m = 288 · I0(Vbb) + ϵ(Vbb) · (HWi +

m−1∑
j=0

fi+j(K, IV)) (6.16)

Given that both these states belong to the same overall execution of the
algorithm, the value of the body bias, randomly adopted at the beginning of
the encrypting process, is the same in both instances. Thus, as in the case of the
AES, it is possible to obtain a bivariate power model by subtracting the leakage
current consumed during period i from the leakage current consumed during
period i+m. Performing this subtraction leaves the following expression:

Isub = ϵ(Vbb) ·
m−1∑
j=0

fi+j(K, IV) (6.17)

Where both the term n · I0(Vbb) and the contribution of the unknown initial
state HWi cancel out. With this new expression, it is again possible to use the
PCC as a secret key discriminant, undoing the protective effect of the random
body bias countermeasure.

Algorithmic noise

The Trivium, however, does produce algorithmic noise, and thus the above equa-
tion is not representative of the reality of its operation. For ease of simplification
and a worst case scenario, we are going to consider that each bit of the Trivium
is independent from each other, and follows an unbiased uniform probability
distribution.

With this, we can consider, initially, five sources of noise:

• The edge of the shift registers, conforming three sources of noise, one for
each of the three registers. That is, as bits reach the last flip-flop of each of
the registers, they ”disappear” the following period, generating Hamming
Weight noise.

• Functions t2 and t3. These functions produce, each period, one bit of
unknown value, thus accounting for one bit per period of noise each.

While it is clear that, under the assumption of bit independence with an
unbiased distribution, the bits that reach the edge of the registers introduce
noise readily arising from this distribution, it is worthwhile to examine the
probability distribution of the bits produced by functions t2 and t3, as they
don’t necessarily produce an unbiased distribution.

We focus, then, on the probability distribution arising from the structure of
the non-linear functions as seen in Fig. 6.5. It is easy to see that an XOR gate
with equiprobable inputs produces equiprobable outputs. That is, P [a ⊕ b =

93

0] = P [a⊕b = 1] = 1/2. However, an AND gate has, under the same conditions,
probability P [Z = 1] = 1/4 and P [Z = 0] = 3/4, where Z is the output. The
output of this AND gate serves as the input for an XOR gate.

Table 6.2: Probability Distribution of second XOR gate

a b P [A] · P [B] = P [Z] Z
0 0 1/2 · 3/4 = 3/8 0
0 1 1/2 · 1/4 = 1/8 1
1 0 1/2 · 3/4 = 3/8 1
1 1 1/2 · 1/4 = 1/8 0

Table 6.2 analyzes the probability distribution of the output bit of an XOR
gate with inputs provided by another XOR gate (input a) and an AND gate
(input b). It can be seen that the output is, again, unbiased (P [Z = 0] =
P [Z = 1] = 1

2). Thus, under the imposed probability distributions of the bits
of the Trivium, the non-linear functions produce bits with a uniform discrete
equiprobable distribution.

Thus, we can assume that all sources of noise produce bits with the same
distribution.

Regarding the sources of noise, however, we can make some simplifications.
We first note that registersX and Z contain more bits than periods are necessary
to attack the entirety of the secret key. Therefore, regardless of which sub-key
bits are under attack, the bits that ”disappear” from these two registers are
deterministic within each attack and do not introduce algorithmic noise.

This is not so for register Y . Depending on how many sub-key bits are
attacked, IV bits initially loaded in position s171 reach the edge of the register
after 6 periods, introducing noise. For simplification’s sake, we are going to
assume that, regardless of the number of key bits under attack, register Y
always produces one bit of noise per period.

The inputs of functions t3 and t2 are, also, not always deterministic and,
hence, also introduce noise.

Thus, there are three possible sources of noise, each producing m random
bits, leaving Equation (6.17) post subtraction of HWi as:

HW =

m−1∑
j=0

fi+j(K, IV)±
3∑

r=1

HWr (6.18)

Where HWr are random variables representing the Hamming Weight noise
introduced, respectively, by the shift registers and the non-linear functions after
m periods of activity.

The variance of the Hamming Weight of m independent bits following an
equiprobable uniform probability distribution can be shown to be σ2

HW = m
4 .

94

Substituting Equation (6.18) into Equation (6.17) and calculating the PCC
between Isub and the Hamming Weight of the bits of interest, a worst case
scenario of the ability to distinguishing the secret key can be found:

ρISub,HW =
σHW√

σ2
HW + 3σ2

HW

=

√
m

m+ 3m
=

1

2
(6.19)

Thus, algorithmic noise can reduce the maximum PCC achievable, dimin-
ishing the ease with which the secret key can be identified.

Equation 6.19 represents the PCC when no contermeasure is applied. When
a random body bias is taken into account, the equation becomes:

ρISub,HW =
µϵ

2 ·
√
µϵ + σ2

ϵ · (4m+ 1)
(6.20)

Which, as can be seen, converges to the worst case scenario of equation 6.19
with trace averaging of the noise introduced by the countermeasure, much of
which has already been eliminated through the bivariate subtraction. In fact,
it can be seen in Fig. 6.6 that approximately 30 samples per plaintext suffice
to average out the noise introduced by the random body bias countermeasure
when the bivariate attack is contemplated. Figure 6.6 is obtained considering
LVT, FBB transistors at 27 ºC.

Figure 6.6: PCC between the magnitude Isub and the Hamming Weight of
interest in the Trivium as a function of samples per plaintext

95

6.2 Current Balancing Body Bias

With the considerations that have arisen regarding the vulnerabilities of the
random body bias countermeasure we wish to explore whether another body
bias scheme exists that can protect against leakage power analysis attack of
register slices.

We propose a new countermeasure based on a simple observation. Through-
out the text and the different analysis contemplated, it can be seen that the
PCC between the leakage magnitude and the Hamming Weight of the bits of
interest is directly proportional to the expected value of ϵ.

ρIleak,HW ∝ µϵ (6.21)

That is, the disparity between the leakage current consumed by flip-flops
storing a 1 and flip-flops storing a 0 is the main source of information leakage
regarding the internal states of the cryptosystem when contemplating leakage
power analysis attacks on register slices.

Thus, if a body bias scheme exists that can arbitrarily reduce the magnitude
ϵ = |I1 − I0|, while maintaining circuit functionality, this scheme could be used
to hinder the extraction of the secret key, not by increasing the noise present in
the cryptosystem, but by reducing the magnitude of the variable of interest.

We begin our assessment by designing a testbench for electrical simulations
where, instead of considering that Vbbn = −Vbbp, we consider both of the poten-
tial body bias values to be independent from each other. As such, we perform
transient analysis of the leakage current consumed by flip-flops storing a 1 and a
0 while performing independent and nested parametric sweeps of the magnitudes
of Vbbn and Vbbp.

During this set of parametric sweeps we obtain a series of curves representing
the leakage current consumed by a flip-flop when it is storing either possible
value. In particular, we obtain the curves of ϵ as a function of both Vbbn and
Vbbp. The results can be seen in Fig. 6.7.

It can be seen in Fig. 6.7 that there exists distinct pairs of body bias values in
which ϵ becomes arbitrarily small, as depicted by the horizontal red line located
at ϵ(Vbbn, Vbbp) = 0 A. Thus, there exists a subset of values of the xy-plane
defined by (Vbbn)× (Vbbp) where ϵ ≈ 0.

In order to better interpret the results obtained from the simulation, the dif-
ferent curves are extracted with the help of Matlab fitting tools, and represented
as a bivariate polynomial of degree n of the following form:

ϵ(Vbbn, Vbbp) = cij

n∑
i=0

n∑
j=0

V i
bbnV

j
bbp (6.22)

i+ j ≤ n

With the different cij terms being constant parameters of the polynomial
and n = 4 sufficing to fit the curves with an R2 ≈ 1.

96

Figure 6.7: ϵ as a function of both Vbbn and Vbbp for LVT, flip-well transistors
at 27 ºC. Each curve represents a possible value of Vbbn, which ranges from 0
V to 1 V, in 0.1 V increments (from top to bottom). The horizontal red line
indicates the points of zero crossing of ϵ.

We then implement an algorithm to solve this bivariate polynomial for the
collection of pairs of points Vbbn and Vbbp such that |ϵ(Vbbn, Vbbp)| ≤ C, where
C being an arbitrary constant.

Setting C = |1| nA, we obtain the following curves (Fig. 6.8).
We set the condition that C = |1| nA somewhat arbitrarily, but mostly out

of a conservative approach. At this point, without knowing exactly how such
a body bias scheme would be implemented, we do not wish to assume that
smaller values are attainable. After all, given that we are performing these
analysis mostly through numerical simulations, one could be tempted to say
that there exists values of body bias where ϵ = 0 A, and conclude that a perfect
countermeasure has been developed.

Nevertheless, Fig. 6.8 does show that pairs of values of body bias exist where
the magnitude ϵ = |I1 − I0| does become arbitrarily small, while the flip-flops
remain operational (they are able to store either value without issue).

At the same time, the two contour lines depicted in Fig. 6.8 can be pa-
rameterized as a function of each possible body bias. However, we focus on
expressing the negative body bias, Vbbp, as a function of the positive body bias
Vbbn.

97

Figure 6.8: Reduced contour map of ϵ(Vbbn, Vbbp). The lines represent the limits
where ϵ = |1| nA, encasing an area where any possible combination of body bias
values solves for ϵ ≤ |1| nA.

Vbbp(Vbbn) = a1 − b1 · Vbbn

Vbbp(Vbbn) = a2 − b2 · Vbbn (6.23)

Where the different ai and bi parameters are constants, depending on which
of the two curves is chosen.

That is, the values of Vbbp that comply with the condition that C = 1 nA
can be obtained through a linear expression of Vbbn.

This is important, as it allows the bivariate polynomial presented in Equa-
tion 6.22 to be reduced to an univariate polynomial that always solves for
ϵ ≈ |1| nA:

ϵ(Vbbn) = cij

4∑
i=0

4∑
j=0

V i
bbn · (a1 − b1 · Vbbn)

j (6.24)

i+ j ≤ 4

This vastly simplifies numerical analysis.
With this initial assessment, we can propose another countermeasure based

on a new body bias scheme, Current Balancing Random Body Bias (CBRBB).

98

For this, consider a cryptosystem that, at the beginning of each encryption
process, chooses a value of the positive body bias at random and independently.
After the random value of Vbbn is fixed, the value of the negative body bias,
Vbbp is adjusted until the condition imposed is met. That is, until Equation 6.24
solves for C ≤ 1 nA. In the limit of the condition, this is equivalent to solving
Equation 6.2 once the value of Vbbn has been randomly selected.

We assume that Vbbn follows a discrete uniform distribution, again parame-
terized as a function of smax, such that:

Vbbn(S) = VbbQ + S ·∆Vbb (6.25)

Where the different terms are defined as:

VbbQ =
Vbbmin

+ Vbbmax

2
(6.26)

DR = Vbbmax
− Vbbmin

(6.27)

∆Vbb =
DR

2smax
(6.28)

Note that depending on which of the two curves of Fig. 6.8, the values of
Vbbmin

change, as not all the values Vbbn have solutions where ϵ(Vbbn) ≤ 1 nA.
This can be seen in Fig. 6.9.

With these considerations we now have a model with which to determine
the effectiveness of this proposed countermeasure.

To do so, we solve equations for the PCC between the Hamming Weight of
the bits of interest and the bivariate leakage of the AES and Trivium (Equa-
tions 6.10 and 6.20) under noiseless assumption and in the presence of algorith-
mic and non-algorithmic noise. It is necessary to determine the expected value
and variance of ϵ under these conditions. Given the model above derived, these
can be determined numerically utilizing the following definitions.

V ar(ϵ(S)) = E[ϵ(S)2]− E[ϵ(S)]2

E[ϵ(S)] =
1

2smax + 1

smax∑
i=−smax

ϵ(Vbbn(i), a1 − b1 · Vbbn(i))

E[ϵ(S)2] =
1

2smax + 1

smax∑
i=−smax

ϵ2(Vbbn(i), a1 − b1 · Vbbn(i))

6.3 Results

In order to determine the effectiveness of the newly proposed countermeasure
we take two approaches. Firstly, we calculate and plot the PCC of the bivariate
power models of the AES and the Trivium presented above (Equations 6.10

99

Figure 6.9: Reduced contour map of ϵ(Vbbn, Vbbp) for registers implemented
with LVT, FBB transistors at 27 ºC. The colored lines represent the limits
where ϵ = |1| nA, encasing an area where any possible combination of body bias
values solves for ϵ ≤ |1| nA. The vertical lines showcase the inferior limits of
Vbbn that can solve for the conditions

and 6.20, respectively). For each of these expressions, we compute the PCC
contemplating a random body bias countermeasure. and the newly introduced
current balancing random body bias countermeasure, comparing them.

We then go on to explore the effectiveness of the countermeasure under a
variety of conditions, exploring the factors that affect the difficulty with which
the secret key can be extracted.

Finally, we perform numerical simulations of parts of the AES and the Triv-
ium under the new countermeasure to validate the theoretical results obtained
through the different calculations of the PCC.

6.3.1 The AES and Current Balancing Body Bias

In previous sections we have seen that, under a bivariate power model of leakage
consumption, the Pearson Correlation Coefficient between the magnitude Isub,
arising from the measurement and subtraction of the leakage current at two dis-
tinct temporal points, and the random variable Z, arising from the subtraction
of the Hamming Weights of interest at those two point in time, can be expressed
as:

100

ρIsub,Z =
µϵ√

σ2
ϵ + µ2

ϵ

(6.29)

This equation arises from the considerations of a a noiseless system under
correct key assumptions. In order to distinguish the two countermeasures be-
ing compared, we will refer to the initial countermeasure, the Random Body
Bias presented in Chapter 5, as Symmetric Random body bias, given that
Vbbn = −Vbbp at all times. The countermeasure presented in this chapter will be
referred as Current Balancing (CB).

To compare the effectiveness of both countermeasures, we solve Equation 6.29
utilizing the conditions shown in Table 6.3. Equation 6.29 is solved for a variety
of smax values. The results can be seen in Fig.6.10.

Table 6.3: Countermeasure parameters

Symmetric CB
Vbbn,max 1 V 1 V
Vbbn,min 0 V 0.3 V

DR 1 V 0.7 V
VbbnQ 0.5 V 0.65 V

n 8 bits

It might seem at first that current balancing body bias presents significantly
worse values (a higher PCC that can facilitate the acquisition of the secret
key). This can be explained by noting that, under noiseless assumptions, the
only source of noise is determined by the variance of ϵ and the variances of
the Hamming Weights. Since in the Current Balancing body bias scheme the
Dynamic Range of the body bias is limited, the variance of ϵ is smaller.

However, consider the case of a noisy system. That is, the leakage current
equations at times t1 and t2 now present an additive White Gaussian Noise
(WGN) component, B, with µb = 0 and variance σ2

b .

Ileak(HW,Vbb, t1) = n · I0(Vbb) + ϵ(Vbb) ·HWt1 +B

Ileak(HW,Vbb, t2) = n · I0(Vbb) + ϵ(Vbb) ·HWt2 +B

Under these conditions, the variance of Isub = Ileak(t2)−Ileak(t1) is modified
to include the variance produced by the WGN, which, considering additivity,
has a noise power of 2 · σ2

b . As such, equation 6.29 is modified to include these
sources of noise:

ρIsub,Z =
µϵ√

σ2
ϵ + µ2

ϵ + 2σ2
b

(6.30)

Figure 6.11 plots the results of the PCC for the Current Balancing and Sym-
metrical body bias schemes with a noise power of σ2

b = −134 dBW, the thermal

101

Figure 6.10: PCC between the Hamming Weight represented by the random
variable Z and the bivariate leakage power model (Equation (6.5)) under noise-
less conditions in the presence of a Symmetrical (blue) and a Current Balancing
(orange) random body bias scheme, where ϵ is systematically kept at 1 nA

noise produced by a 1 ohm shunt resistor connected to a 1 V power supply,
with measurements of up to a bandwidth of 10 MHz. This noise represents the
pre-amplifications and pre-filtering measurements obtained in settings such as
those described in [51]. Even though it is still somewhat arbitrary, it suffices,
without loss of generality, for illustration purposes.

It can be seen that the PCC for the Current Balancing case is approximately
one order of magnitude smaller than the symmetric body bias. Thus, the initial
prediction of the countermeasure behavior is, at the very least, validated by
numerical simulation.

By reducing the magnitude of µϵ adopting a current balancing body bias,
the signal of interest is ‘covered’ by sources of noise that we can expect to be
present in a real system, such as thermal noise, 1/f noise, measurement noise,
etc. Essentially, we are reducing the SNR by reducing the magnitude of the
signal of interest by choosing an appropriate body bias point.

At the same time, if we fix the value of smax to 32 and we plot the PCC
against the number of averaged traces for the same noise conditions, we can
expect to see an increase in the PCC as the noise is averaged out. However,
the rate at which the PCC increases need not be the same for both body bias
schemes.

Under noise averaging conditions, we can expect the PCC to be (with N
being the number of averaged traces per plaintext):

102

Figure 6.11: PCC between the HammingWeight and the bivariate leakage power
model (Equation 6.5) with non-algorithmic noise in the presence of a Symmet-
rical (blue) and a Current Balancing (orange) random body bias scheme, in the
presence of non-algorithmic GW noise

ρIsub,Z =
µϵ√

σ2
ϵ

N + µ2
ϵ + 2

σ2
b

N

(6.31)

The results of noise averaging can be seen in Fig. 6.12. The figure shows
that the Pearson Correlation Coefficient increases much more slowly when the
Current Balancing body bias scheme is applied. That is, non-algorithmic noise
severely dominates, and the current balancing countermeasure is much more
resilient to noise averaging.

Algorithmic noise

We can further complete our analysis by contemplating the presence of algorith-
mic noise. So far, we have only taken into account the bits of interest (n = 8),
and sources of non-algorithmic noise, in the form of GWN (B). However, attacks
on the AES will have to contend with the presence of algorithmic bits.

Thus, a more realistic scenario considers an AES cryptosystem that processes
n+m bits, with n being the the bits of interest under attack, and m the rest of
bits not pertinent to the attack that introduce algorithmic noise. In the AES,
with n = 8, m = 120.

The bivariate power model under these conditions becomes:

103

Figure 6.12: PCC between the HammingWeight and the bivariate leakage power
model (Equation 6.5) as a function of averaged number of traces in the presence
of non-algorithmic GW noise with a Symmetrical (Blue) and a Current Balanc-
ing (Orange) random body bias scheme

Isub = ϵ(S) · (Zn + Zm) +B (6.32)

Where Zn is defined in Equation (6.4) as the difference between the Ham-
ming Weight of the bits of interest n after a round of encryption and before
the round of encryption. Similarly, Zm is defined as the difference between the
Hamming Weight of the remaining m bits not pertinent to the attack after and
before the same round of encryption.

Zm = HWmt2 −HWmt1 (6.33)

As in previous discussions, HWmt2 and HWmt1 might be uncorrelated but
are not independent. In order to be able to treat them analytically, we make
some assumptions regarding the distribution of Zm.

µZm = 0 (6.34)

σ2
Zm = m/2 (6.35)

With this, it can be shown that the PCC between the bivariate power model
and Zn is:

ρIleak,Zn
=

µϵσZn√
(σ2

Zn
+ σ2

Zm
)(µ2

ϵ + σ2
ϵ) + 2σ2

b

(6.36)

104

From Fig. 6.3 we know that the variance of Zn is not exactly n/2, but rather
can adopt an approximate value between n/2−0.6 ≤ σ2

Zn
≤ n/2+0.6 depending

on the secret key. The same can be said about σ2
Zm

, where we can assume that it
can adopt an approximate value between m/2− 15 · 0.6 ≤ σ2

Zn
≤ m/2+15 · 0.6,

where 15 are the number of bytes of algorithmic noise present in the AES.
However, for ease of analysis, we will maintain the assumption of σ2

Zn
= n/2

and σ2
Zm

= m/2
We can plot Equation 6.36 as a function of non-algorithmic noise power σ2

b ,
with different numbers of averaged traces N . We assume that, under trace
averaging, the noise magnitudes of σ2

Zm
, σ2

ϵ , and σ2
b are scaled by a factor of

1/N .

Figure 6.13: PCC between Zn and the bivariate leakage power model with
algorithmic and non-algorithmic noise (Equation 6.36) as a function of noise
power under a current balancing boby bias, for different number of N averaged
traces

It can be seen in Fig. 6.13 that the magnitude of the PCC under this con-
ditions is heavily dependent on the magnitude of non-algorithmic noise power.
For small noise powers (below −160 or −170 dBW depending on the number
of averages) algorithmic noise dominates as a factor. In fact, it can be shown
that for small magnitudes of gaussian noise power the countermeasure, under
a bivariate attack, barely introduces noise. As such, the PCC between Zn and

105

the leakage current can be approximated as:

ρIleak,Zn
=

σZn√
(σ2

Zn
+

σ2
Zm

N)

=

√
n

n+ m
N

(6.37)

Thus, only when non-algorithmic noise becomes comparatively high is cur-
rent balancing body bias significantly effective.

We can further compare the effectiveness of the countermeasure considering
both algorithmic and non-algorithmic noise by plotting the Equation 6.36 as
a function of non-algorithmic noise power considering the Symmetric counter-
measure and the Current Balancing countermeasure.

Figure 6.14: PCC between the HammingWeight and the bivariate leakage power
model with algorithmic and non-algorithmic noise (Equation 6.36), as a function
of noise power under a a Symmetrical (blue) and a Current Balancing (orange)
random body bias scheme for N = 1000 averaged traces.

It can be seen in Fig. 6.14 that with a Current Balancing body bias the PCC
is much smaller for the same magnitude of noise even with the same amount of
trace averaging.

Simulated CPA

We mount a numerically simulated CPA attack on a dummy cryptosystem that
reflects the bivariate power model described above and summarized in Equa-
tion 6.32, under the countermeasure conditions established in Table 6.3.

In order to do so, we set a 128-bit secret key that represents a round key.
The dummy cryptosystem comprises a round of encryption of the AES from the
MixColumns, up to the SubBytes routine, without including the former [71].

106

That is, we consider that the whole state matrix after the MixColumns routine
is known to the attacker and directly consider this state as the input plaintext.
Each of the 16 bytes of the plaintext are then XORed with their corresponding
byte of the secret key. Each XORed byte is then fed to the AES S-Box and the
result is again considered to be stored in the state matrix.

The attack is performed on n = 8 bits (1 byte). For each input plaintext
i of interest (with 0 ≤ i ≤ 255), N realizations of Equation (6.32) are numer-
ically simulated. For each realization, the 15 remaining bytes of the plaintext
are generated at random, each bit following a uniform probability distribution.
The random variable S is also realized randomly following a discrete uniform
distribution, constraint in such a way that a random body bias value that keeps
ϵ ≈ 1 nA is obtained. Finally, for each of the N realizations, a white gaussian
noise value following the distribution described above, for a noise power of -134
dBW is also produced.

The N realizations are then averaged:

Îleak(Zni, Ẑm, Ŝ) =
1

N

N∑
j=1

ϵ(sj)(Zni + Zmj) +Bj (6.38)

Thus, a vector comprising 256 Ileak values, one for each possible plaintext
is obtained. The PCC between this vector and the vector Zn solved for each
possible 8-bit secret key is calculated.

Table 6.4: PCC - Theoretical and Numerical Simulations of a 128 bit system in
the absence of non-algorithmic noise

CB - No Gaussian noise

PCC
N Theo CPA Success Rate
1 0.239 0.196 0.6
10 0.630 0.645 1
100 0.932 0.933 1

1000 0.993 0.993 1

Tables 6.4 and 6.5 present the results of the PCC obtained for the secret key
under attack for the simulated CPA and the theoretical value obtained through
Equation (6.36) for different number N of averaged traces. It can be seen that,
in both cases, as the number of averaged traces increase, the values of the
PCC obtained through numerical simulations becomes closer to the theoretical
values. The tables also include the success rate of secret key identification for
100 independent experiments.

At the same time, Table 6.6 presents the values of the expected value and
variance of Zm for increasing number of averaged traces. As N increases, the
first and second moment of Zm more closely resemble the theoretical values

107

Table 6.5: PCC - Theoretical and Numerical Simulations of a 128 bit system in
the presence of non-algorithmic noise

CB - GWN -134 dBW

PCC
N Theo CPA Success Rate
1 0.010 -0.060 0

10 0.032 0.0325 0
100 0.100 0.0945 0
1000 0.302 0.188 0.7
5000 0.439 0.302 1

that had been previously assumed; namely, that µZm
= 0 and that σ2

Zm
= m

2 =
60, with m being the number of bits not under attack, 120 in this particular
simulation.

Table 6.6: First and Second Moments of Zm

Zm Distribution

N µZm
σ2
Zm

10 4.400 25.82
100 -0.640 66.43
1000 0.250 62.20
5000 -0.018 59.16

The results show that in the presence of the countermeasure an approxi-
mately 5 fold increase is necessary to disclose the secret key with the same
frequency.

6.3.2 The Trivium and Current Balancing Body Bias

We now develop the same theoretical and simulated analysis for the case of the
Trivium.

We first calculate the PCC of a bivariate attack with algorithmic and non-
algorithmic noise for the case of the Trivium.

ρISub,HW =
µϵ

2 ·
√

µϵ + σ2
ϵ · (4m+ 1) + 2σ2

b

(6.39)

We calculate this metric for the case of a Symmetric Random Body Bias
and a Current Balancing body bias under the conditions depicted in Table 6.3,
with a noise power of −134 dBW. Again, in the presence of noise averaing, the

108

magnitudes σ2
ϵ and σ2

b are expected to scale with a factor 1/N , with N being
the number of averaging traces measured.

The results are shown in Figs. 6.15 and 6.16. It can be seen that the results
are very similar in behaviour to the case of the bivariate power model of the
AES. That is, for the same number of averaged traces, the PCC is much smaller
in the case of CB body bias and this countermeasure is more susceptible (has a
lower value of the PCC) to the presence of non-algorithmic noise. In this case,
however, n = 8, and m = 280, for a total of n +m = 288, the total number of
bits present in the Trivium.

Figure 6.15: PCC between the HammingWeight and the bivariate leakage power
model of the Trivium with algorithmic and non-algorithmic noise (Equation
6.39), as a function of averaged samples under a Current Balancing (blue) and
a Symmetrical (orange) random body bias scheme for a noise power of −134
dBW.

109

Figure 6.16: PCC between the HammingWeight and the bivariate leakage power
model of the Trivium with algorithmic and non-algorithmic noise (Equation
6.39), under a Current Balancing (blue) and a Symmetrical (orange) random
body bias scheme for N = 1000 averaged traces.

110

Simulated CPA

We now perform a simulated CPA of the Trivium through numerical simulations
of the cryptosystem implemented in a Simulink environment (Fig. 6.17).

Figure 6.17: Block system representation of the Trivium implemented as a col-
lection of discrete-time state space matrices. The scope saves the total Hamming
Weight of the three registers.

Given the ease of Matlab to manipulate matrices, the shift registers of the
Trivium are implemented as a collection of matrices forming a discrete-time
state space. In a discrete-time state space system the state variable vector X is
updated every clock period following a system of equations such as:

X[T + 1] = A ·X[T] +B · µin[T]

Y [T] = C ·X[T] +D · µin[T] (6.40)

In our n bit shift register, the state variable X presents n+ 1 elements: the
n bits that comprise the register, and their Hamming Weight (Equation (6.41)).

In order to implement a shift register, each element xi for i > 1 adopts
the value of element xi−1, while variable x1 updates according to the input µin

(Equation 6.42)). The Hamming Weight of the shift register is the sum of all
bits present in the register.

A ·X[T] =

0 0 . . . 0 0 0
1 0 . . . 0 0 0
0 1 . . . 0 0 0
...

...
...

...
...

...
0 0 . . . 1 0 0
1 1 . . . 1 1 0

·

x1

x2

x3

...
xn

HW

(6.41)

111

Bµin =

1
0
0
...
0

 · µin CX[T] =

0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0
0 0 . . . 0 1

 ·

x1

...
xn

HW

 (6.42)

The output Y [T] of the state space system is the last bit of the shift register
(xn) and its HW, for monitoring purposes. Matrix D equals 0 in all instances.

The combinational non-linear functions of the Trivium (as seen in Fig. 6.5),
whose outputs represent the variable µin for each shift register, are implemented
using elements from the simulink boolean functions library.

By implementing a script to initialize the different state matrices it is then
possible to load the secret key, desired IV and pertinent Trivium initial state.
Once the system is prepared, it runs autonomously. To access the virtual side-
channel representing leakage current, the Hamming Weight of the whole imple-
mentation is read each period of time.

We perform the simulated attacks as described in Section 6.1.2 in accordance
with the procedures described in [73]. That is, for a given IV and an attack on
m bits, the Hamming Weight output of the discrete-time state space is read at
periods i and i+m and subtracted.

HW = HWi +HWi+m (6.43)

We then generate a leakage current virtual side-channel by calculating the
equation:

Ileak = ϵ(Vbbn(S)) ·HW +B (6.44)

We do this by randomly generating a value for S at the beginning of the
encryption process under the Dynamic Range constraints defined in Table 6.3.
We then calculate the value of ϵ with the Symmetrical body bias or the Current
Balancing body bias scheme.

Thus, depending on the countermeasure, Vbbp is obtained through two pos-
sible calculations:

Vbbp =− Vbbn Symmetric

Vbbp =a− b · Vbbn Current Balancing

As an example, we perform an attack on the first 8 periods of the initializa-
tion phase of the Trivium, attacking key bits k66 through k59. For each attack,
the Trivium is run 256 times. During each run, the pertinent bits of the IV are
initialized to a value ranging from 0 ≤ IVattack ≤ 255. The rest of the IV is
initialized to 0. Thus, the trivium is run N · 256 times, where N is the numbers

112

Table 6.7: PCC - Theoretical and Numerical Simulations of a 128 bit system in
the presence of non-algorithmic noise

CPA of Trivium

Success Rate
N Sym CB

1000 1 .45
5000 1 0.77

of averaging samples and 256 is the number of all possible plaintexts in an 8-bit
attack.

We consider in all cases a noise power of −134 dBW.
It can be seen in Table 6.7 that the CB countermeasure has a much smaller

success rate of attack for the same number of samples, and that it is more
resilient to trace averaging.

6.4 Temperature and Other Considerations

So far, temperature effects have been omitted. However, an important tem-
perature effect worth discussing is the modification of the contour lines of ϵ as
a function of temperature. Figure 6.8 shows the contour lines that met the
imposed conditions for the registers under study at 27 C. However, as tempera-
ture increases, the contour maps of ϵ vary. Figure 6.18 shows the contour map
ϵ(vbbn, vbbp) at 75 C for the registers under study. It can be seen that, while pre-
senting similar behaviour as the one at 27 C, the area that meets the criterion
is reduced.

At the same time, registers with higher threshold voltage, implemented with
non-flipped wells transistors driven through Reverse Body Bias (RBB), present
much wider areas in their contour maps even at higher temperatures (Fig. 6.19
and 6.20). This means that it is much easier to obtain a body bias point where
the conditions are met.

At the same time, note that if the countermeasure were ideal in form, that
is, if the random body bias would always produce values of ϵ = |1| nA, the
variance of ϵ, σ2

ϵ , would be 0. Thus, a random body bias would not be required,
only a system that could consistently reach the desired body bias point. This
could free the design from true or pseudo-random number generators, which
could heavily complicate the design.

At the same time, the results presented show that the countermeasure ef-
fectiveness is dependent on the magnitude of noise power present in the circuit
or measuring system. While no such analysis has been done, the magnitude of
ϵ must clearly also influence the effectiveness of the proposed scheme. In our
analysis, we have restricted the conditions to a value of ϵ ≈ 1 nA. Without a
designed and tested circuit, we do not know how much lower we can drive the

113

Figure 6.18: Contour map of ϵ(vbbn, vbbp) at 75 C for the registers under study
implemented with low threshold voltage, flipped well transistors. The lines
represent the limits where |ϵ(vbbn, vbbp)| ≤ 1 nA, encasing an area where every
possible combination of Vbbn and Vbbp meet the imposed criterion.

difference ϵ = |I1 − I0|. However, if it were possible to obtain lower values, the
countermeasure would certainly be more effective.

This is the objective and content of the following chapter, where a circuit that
attempts to obtain a body bias value that balances these currents is designed
and tested with electrical simulations.

6.5 Conclusions

In this chapter, vulnerabilities to the random body bias countermeasure pre-
sented in Chapter 5 are identified, described and analyzed for the particular
cases of the AES and the Trivium stream cipher. Some specifics are introduced
regarding the AES and Trivium structure, and, to the best of the author’s
knowledge, the first description of the use of leakage power as a side-channel to
attack the Trivium stream cipher is presented.

Through the derivation of the pertinent power models along the functionality
of the cryptosystems described, vulnerabilities to the symmetric random body
bias countermeasure are depicted, arriving at the conclusion that it might be
unwise to rely on its use to protect cryptosystems.

As a response, another possible body bias scheme is explored, one in which
the goal is not to introduce noise, but to reduce the magnitude of the signals

114

Figure 6.19: Contour map of ϵ(vbbn, vbbp) at 27 C for the registers under study
implemented with regular threshold voltage, reverse body bias transistors. The
lines represent the limits where |ϵ(vbbn, vbbp)| ≤ 1 nA, encasing an area where
every possible combination of Vbbn and Vbbp meet the imposed criterion.

Figure 6.20: Contour map of ϵ(vbbn, vbbp) at 80 C for the registers under study
implemented with regular threshold voltage, reverse body bias transistors. The
lines represent the limits where |ϵ(vbbn, vbbp)| ≤ 1 nA, encasing an area where
every possible combination of Vbbn and Vbbp meet the imposed criterion.

115

of interest, and to rely on the presence of non-algorithmic noise to hinder the
capabilities of an attacker to extract the secret key.

The countermeasure is theoretically presented and analyzed, based on the
bivariate model of the magnitude of ϵ as a function of both positive and negative
body bias. By adopting a conservative stand, the countermeasure is analyzed
in its capabilities to resist leakage power analysis attacks by formulating the
appropriate statistical power model and calculating the PCC under a variety of
conditions, including those that arise in bivariate power attacks.

Simulated CPA attacks are again produced to establish the rate of secret key
identification, showcasing that this countermeasure is, at the very least, more
protective than the symmetric random body bias counterpart under a bivariate
attack.

The conditions for this theoretical countermeasure, that seeks a low magni-
tude of ϵ, are explored for different temperatures and also RBB, RVT transis-
tors, where it can be seen that registers implemented with RBB, RVT transistors
present wider ranges of body bias where ϵ becomes arbitrarily small. Thus, their
use seems the most coherent with the purposes of this countermeasure.

Care is taken to choose a conservative stand and to not draw premature
conclusions regarding overall effectiveness until a proof of concept circuit is de-
signed and tested to determine the level to which ϵ can be effectively decreased.
However, sufficient information is present to determine that the lower value that
ϵ can achieve, the more effective the countermeasure would be.

116

Chapter 7

Current Balancing Body
Bias Circuit
Implementation

In the previous chapter we have seen that, despite the initial apparent effec-
tiveness of a random body bias countermeasure, a bivariate attack can heavily
undermine the noise introduced by the countermeasure proposed in Chapter 5.

As such, a new countermeasure is proposed in Chapter 6, based on the
possibility of diminishing the disparities in leakage current presented in flip-
flops storing distinct memory values.

This new countermeasure seeks a body bias point in which the circuit is
still functional, but the leakage of information through the side channel that is
static current is heavily diminished. Thus, rather than obscuring the secret key
through the introduction of noise, the countermeasure hinders its identification
by reducing the magnitude of the signal of interest.

Nonetheless, the analysis presented is purely theoretical, based on electrical
and numerical simulations of the parameters under fixed conditions. Thus,
while the analysis demonstrates that it is more difficult to identify the secret
key when current balancing efforts are applied, it can make no assumptions on
the feasibility of its implementation.

Thus, this chapter explores the design and implementation of a circuit that
attempts to seek a body bias point in which the leakage of information is mini-
mum.

The chapter introduces the conceptual requirements to implement such a
circuit and goes on to showcase the design procedure followed. It then continues
with the results obtained in terms of its functionality and ability to act as a
countermeasure. The chapter then explores the effect of variability arising from
process and mismatch variations of registers, seeking to determine how effective
the countermeasure is when variability arising from the manufacturing process
is taken into account.

117

7.1 Circuit Implementation

In order to implement such a system, various circuits would be necessary. The
most obvious of these, is a body bias generator, able to produce the desired
levels of body bias before each encryption process takes place.

At the same time, a sort of control system would be needed, which would
inform the body bias generator to stop increasing the body bias voltage values
once the desired value has been reached.

Finally, and perhaps the most critical given its complexities, a Digital to
Analog Converter whose input is, ideally, a true random generator that can
produce integer values between 0 and 2 · smax. Given the obvious complexities
of such a circuit, we are going to focus on the body bias generator and control
system.

7.1.1 Body Bias Generator

The studied implementation of a body bias generator within this research group
predates the development of this work. As such, not much of the theoretical
background and their overall design is going to be presented here. Some chosen
literature can be found in [74] [75].

The circuit of choosing is a CMOS cross-coupled charge pump with the
structure seen in Fig. 7.1. The depicted figure shows a two-stage Cross coupled
Charge pump.

Figure 7.1: Schematic representation of a two-stage CMOS Cross-Coupled
Charge Pump

These circuits act as voltage multipliers, with a transfer function, under ideal

118

conditions, of:

Vout = (n+ 1) · Vin (7.1)

Where n is the number of stages.
The circuit operates by transfering charge between the input Vin and fly-

capacitors CC (or between fly-capacitors), whose bottom plates are connected to
clock drivers. After a fly-capacitor has been charged, its clock signal, previously
driven low during the charge cycle, becomes high. This increases the voltage
seen by the charge stored in the capacitor, allowing it to being transferred at a
higher potential onto the next capacitor.

In our design, however, for ease of modularity, we do not employ this exact
structure. The circuit topology remains the same, but the input Vin is connected
to ground. This transforms the transfer function into:

Vout = n · Vclk (7.2)

Where n is the number of stages, while Vclk is the voltage of the clock signal
presented by the drivers.

This allows the use of the same design to generate the positive and negative
charge pumps. The positive charge pump has been seen in Fig. 7.1. This
same design can be reused for the negative charge pumps, where the only thing
needed is the mirror image of the original charge pump. By inverting the flow of
charge, the charge-pump ”extracts” charge from the load capacitor, and injects
it into ground. If the input of the positive charge pump, connected to ground,
is close to the ”output” of the negative charge pump, the charge dumped by the
negative charge pump is picked up by the positive charge pump, reducing the
possibility of generating bulk noise.

The charge pump is implemented with LVT, FDSOI transistors. The fly
capacitors are, however, bulk transistors, and are thus voltage dependent. Their
capacitance varies between 30 fF and 40 fF for an area of 4 µm2 between 0.3
and 1 V.

Initially designed for ultra low power applications, the charge pumps are
designed with a driver voltage Vclk of 0.3 V, intended to achieve a voltage of
approximately 1 V. The ideal output voltage cannot be achieved due to parasitic
capacitances [76].

Since the circuit requires to drive two sets of fly capacitors (those for the
positive charge pump and those of the positive charge pump) and two clock
phases, two sets of drivers capable of driving a total capacitance of approxi-
mately 2 · (30 + 35 + 40) fF are needed.

We first design a single inverter, including its layout, and extract it to calcu-
late the approximate total input capacitance (Fig. 7.2). We determine its input
capacitance through simulations that equalize the path effort with a reference
capacitance. The input capacitance of the inverter of Fig. 7.2 is approximately
0.6 fF.

With the input capacitance of the inverter, and the total capacitance in-
curred by the charge-pump fly-capacitors, we can optimally design the chain of

119

Figure 7.2: Layout of a designed single inverter

inverters for minimum delay. The chain of inverters ends up having 4 stages,
each subsequent stage with 4 times the driving capability of the previous one.

In order to implement the charge pumps, we also require a phase generator
able to produce two non overlapping clock phases. We base our design on the
studies presented in [77].

The layout of the non-overlapping clock generator can be seen in Fig. 7.3.
The layout of the negative charge pump and drivers can be seen in Fig. 7.4

and 7.5.
The total design, seen in Fig. 7.6, has an approximate area of 58× 72 µm2.
The double charge pump system was able to be implemented in die, and

some measurements regarding their power consumption made. With an input
voltage Vclk of 0.3 V, and an output voltage with capacitive load of |Vout| = 1.01
V (as they produce both positive and negative voltage) , the charge pumps,
including the non-overlapping phase generator and driver chain, consume a total
of, approximately, 2.4 µW.

They are able to produce any range of voltages between 0 and |1| V, although
to be able to stop at a given value a control system is required.

Thus, in principle, the charge pump can act as a body bias generator.

120

Figure 7.3: Non-overlapping two phase clock generator layout

Figure 7.4: Layout of the negative charge pump

121

Figure 7.5: Layout of the driver chain

7.1.2 Hysteresis Control

In order to be able to stop the charge pumps at a given reference value, a
control system is required. In order to do so, we opt to use a pulse skipping
control of the charge pump clocks, so as to stop the switching of the drivers and
their charge transfer capabilities. We settle for an hysteresis control to avoid
continuous switching.

Given the notion presented in this chapter, we would be interested in an
hysteresis window ∆VH such that:

∆VH = ∆Vbb =
DR

2smax
(7.3)

Thus, the charge pump limits the body bias, for any particular value, within
the range imposed by the conditions of S, pertaining to the countermeasure.
That is, for a given value of S = s, the charge pump maintains the body bias
between the values [VbbQ + s · Vbb, VbbQ + (s+ 1) · Vbb]

We derive the notions of a CMOS hysteresis comparator from [78] (see Fig.
7.7).

The problem with the utilization of these types of hysteresis comparators
is that the tail transistor can easily leave the saturation condition once the
common mode voltage of the differential input becomes too high. Thus, neither

122

Figure 7.6: Full layout of the positive and negative Body Bias generator

the hysteresis range nor the functionality is guaranteed for the entirety of the
dynamic range in which we are interested.

Thus, a pre-amplification stage is used to decouple the common voltage mode
from the hysteresis comparator. This notion is derived from [79].

The outputs of the differential pair of Fig. 7.8 feed the inputs of the hysteresis
circuit of Fig. 7.7.

Using a differential pair as a pre-amplification stage does not guarantee
functionality across the entirety of the dynamic range, but it does guarantee
a more or less constant hysteresis window. The hysteresis conditions can be
shown to be [78]:

VH = Vgs2 − Vgs1 (7.4)

Given that:

Vgs2 = Vdd −
(
1

R

)
· I2

Vgs1 = Vdd −
(
1

R

)
· I1 (7.5)

123

Figure 7.7: NMOS hysteresis comparator

Where R is the equivalent resistance of the PMOS active loads connected as
diodes of the differential pair, approximately equal to 1/gm3=1/gm4, where gm
are the transconductances. Also, for a differential pair assumed to be working
in saturation:

I2 ≈ Iss
2

− Iss ·
vd
2vov

I1 ≈ Iss
2

+ Iss ·
vd
2vov

(7.6)

This condition is valid for small values of vd, the input differential value of
the pre-amplification pair. At the same time, vov and Iss are, respectively, the
overdrive voltage of the input transistors of this stage, and the tail current.

Sustituing 7.6 into 7.5 and into 7.4 we have:

VH =
vd
vov

·R · Iss (7.7)

Solving for vd, we have:

vd =
VH

R · Iss
vov (7.8)

What Equation 7.8 tells us is that, for a given VH condition designed for
the CMOS hysteresis comparator, the actual hysteresis as seen from the pre-

124

Figure 7.8: Pre-hysteresis stage schematic

amplification stage, depends on the overdrive value of the input transistors.
For small values of vov, vd remains relatively constant, albeit with a linear
progression.

To solve the problem of saturation, we design a complementary version of
the hysteresis comparator and the differential pair with PMOS as input tran-
sistors and NMOS as active loads. A push-pull output is used for both pairs of
hysteresis + pre-amplification to produce a single ended output.

With this, we are able to implement a rail to rail hysteresis comparator with
relatively stable hysteresis window. To test the hysteresis window, we set one of
the inputs Vin2 at a given value, and sweep the value of Vin1 from (Vin2−50mV)
to (Vin2 + 50mV).

The maximum hysteresis window is obtained for Vin2 = 50 mV, with a hys-
teresis window of ∆VH = 40 mV. The minimum hysteresis window is obtained
for Vin2 = 950mV , with a hysteresis window of ∆VH = 26mV .

Although the hysteresis circuit is not implemented at the layout level, sim-
ulations of its schematic show that the circuit consumes a maximum power of
approximately 118µW.

Some results of the combination of the charge-pump plus hysteresis com-
parator can be seen in Fig. 7.9. The purple and blue waveforms represent,
respectively, the output of the positive and negative charge pumps. The green
waveform is that produced by the hysteresis comparator for a reference value of
Vref = 275 mV.

125

Figure 7.9: Charge-pump pulse skipping control through the hysteresis com-
parator

It can be seen that the circuit is able to maintain the output of the charge
pumps around a given reference value, as was intended.

126

7.2 Current Balancing - Initial Exploration

If one wishes to balance currents, it comes as no surprise that one must, some-
how, measure current. Further, since we want to reduce current disparities, it
must be possible to also compare these currents. At the same time, the result
of this comparison must be able to inform an action on the body bias of the
registers present on the cryptosystem under study. This action must, at the
same time, be well informed, responding to a requirement that arises from the
aforementioned comparison between currents.

From these succinct conceptualizations one can gather various facts and
translate them into modules of a circuit system.

With these we can posit the following requirements:

• We require a current sensor, or a voltage sensor succeeding a transducer
with a preferably linear relation between current and voltage.

• We require a driver that can charge and/or discharge the body bias wells
of the circuits of interest.

• We require a comparator of sorts.

• We require of a control unit which informs the response of the driver mod-
ule when presented with information arising from the sensor unit and/or
comparator.

The control unit and comparator can be thought of once the rest of the
implementations are known, and the drivers have already been showcased in
the previous section.

The question remains what the best or, at the very least, functional imple-
mentation could constitute the current or transducer+voltage sensor.

Initially two possibilities were explored and while we are not going to fully
detail the failed implementation of the two, we are, at the very least, going to
showcase why it fails.

7.2.1 Threshold-based Voltage reference

In [10], it was shown that the relation between the threshold voltage and the
body bias of individual transistors is linearly related. As such, one possibility to
attempt to establish a controlled system that attempts to fix both positive and
negative body bias at a certain point is to use circuits whose voltage output is
linearly dependent on both the body bias and threshold voltage.

One of these circuits are threshold-referenced current sources, that can be
utilized as voltage references (Fig. 7.10)

It can be seen ([80]) that, analyzing the lower loop through KVL, the output
current can be found as:

Iout =
VGS1

R2
(7.9)

127

Figure 7.10: Schematic of a threshold-referenced current source

This expression can be rewritten as:

Iout =
vov1 + Vth

R2
(7.10)

Where vov, assuming that transistor T1 operates in the limit of saturation,
can be expressed as:

vov1 =

√
2IIN

k(W/L)1
(7.11)

If transistors T1 is wide enough for the current flowing through it, the value
of vov1 can be made low enough so as to have little influence on Iout. Thus,
assuming that vov1 << Vth:

Iout ≈
Vth

R2
(7.12)

Consider now, the possibility, to modify the Threshold voltage of T1, and
only T1. Consider, at the same time, that the relation between the threshold
voltage of T1 is linearly dependent on its body bias, according to an expression
of the form (from [10]):

Vth = Vth0 −m · Vbbn (7.13)

128

Where m is a constant slope. In this case, Equation 7.12 could be expressed
as:

Iout =
Vth0

R2
− m

R2
· Vbbn (7.14)

And, measuring the output voltage of the circuit in 7.10 at the R2 terminal:

Vout = Vth0 −m · Vbbn (7.15)

Obtaining, thus, a circuit whose output voltage is linearly dependent on the
level of body bias applied.

The PMOS counterpart of this circuit can be seen in Fig. 7.11, and the
Vout − Vbbp relation can be seen in Fig. 7.12. In Fig. 7.12 it can be seen that
the output voltage is also a linear function of Vbbp, such that:

Voutp = Vth0p −m · Vbbp (7.16)

Figure 7.11: Schematic representation of a PMOS threshold-referenced current
source / voltage regulator

Going back to Equation 6.2, we have also seen that under certain conditions,
for an N-well body bias (Vbbn) voltage above a certain value (Fig. 6.9), the P-
Well body bias (Vbbp) required to meet the criteria of ϵ ≈ |1| nA is a linear
function of this very same Vbbn, such that:

Vbbp = a1 − b1 · Vbbn (7.17)

129

Figure 7.12: Output voltage vs P-Well body bias value (Vbbp) of the circuit
depicted in Fig. 7.11. The voltage is measured at the node label as net4.

Thus, consider a reference value of Vbbn, which we will call V bbnref , which
could be, for example, 0.5 V. Under these conditions, the required Vbbp to meet
the criteria of current balancing would be:

Vbbp = a1 − b1 · V bbnref (7.18)

Substituting Equation 7.18 into Equation 7.16 we obtain the following:

Voutp = Vth0p −m · (a1 − b1 · V bbnref)

Voutp = (Vth0p −m · a1) +m · b1 · V bbnref (7.19)

Where the first term of the right (Vth0p−m ·a1) is the y-intercept and m · b1
is the new slope.

What Equation 7.19 tells us is that when the the output voltage of the circuit
of Fig. 7.11 equals that of Vout(Vbbn = V bbnref), through the modification of
the body bias Vbbp of Transistor P0, the body bias condition of current balancing
would be met. Thus, this value of Voutp, which we can refer to as Vref , can be
used in a control system represented by the block diagram of Fig. 7.13.

Figure 7.14 depicts a simple possible implementation of the control system,
in which the transfer function is represented by the gating of the clock that

130

Figure 7.13: Block Diagram representing the possibility of implementing a con-
trol system to reach the desired value of Vbbp through the circuit depicted in
Fig. 7.11

Figure 7.14: Simplified schematic representation of a possible implementation
of part of the transfer loop that would enact the control system

feeds into a charge-pump that produces the negative body bias Vbbp. This body
bias would feed both the threshold-regulated voltage reference and the registers
of the cryptosystem, thus closing the feedback loop.

This implementation, however, has several initial drawbacks that can rapidly
make it unfeasible. First and foremost, we have seen in 6.4 that the contour lines
of ϵ(Vbbn, Vbbp) change with temperature. Thus, the reference voltage of Figs.
7.13 and 7.14 should really be a function of temperature and not a static value.
Implementing this could be extremely difficult, since this system is agnostic to
the workings of the registers under study. That is, it derives no information
directly from the registers upon which the system ultimately acts upon.

At the same time, temperature also has an effect on the output voltage
and transfer characteristic of the threshold-referenced voltage regulator. This
follows directly from the fact that the threshold voltage is in and of itself also a
function of operating temperature. Thus, even if temperature had no effect on
the leakage current of registers, it would have an effect on the value of Vref .

In reality, these two temperature effects would compound, most likely incur-
ring a significant error on the value of Vref , which, without real and dynamic
information from the system, would have to be externally set. It is then clear
that another option is required.

131

7.2.2 IDDq

Based on the previous observations made, it would be desirable to directly
measure the leakage currents of registers in order to have direct and dynamic
information on the registers’ side-channel leakage. This way, the system could
respond to temperature variations that heavily impact the magnitudes of leakage
current. However, we have to contend with the fact that the currents that we
wish to measure are very small, in the order of hundreds of picoampers to a few
nanoampers.

One simple possibility would be to place a shunt resistor between the voltage
source node and the register that it feeds (Fig. 7.15). However, this presents its
own problems. As previously stated, the currents measured are of a very small
magnitude. Thus, the resistor should present a very high magnitude, the ampli-
fication should be intense or, most likely, both. This would significantly pollute
the measurements of the leakage currents with noise, potentially diminishing
their reliability to represent leakage currents of active registers.

Figure 7.15: Potential leakage current front-end sensor based on the voltage
drop experienced by a shunt resistor

At the same time, we have to think of the register of Fig. 7.15 as a unit
under test, not part of the cryptosystem. Thus, registers that belong to the
cryptosystem do not have a shunt resistor between the current source and their
Vdd terminal. This way, the register under test sees a voltage drop at its Vdd

terminal that the cryptosystem’s registers do not experience. Because of this,
the static currents consumed by the register under test might not be fully rep-
resentative of the static currents consumed by the registers that belong to the
cryptosystem.

132

Considering that currents are of a very small magnitude, we could sacrifice
time and implement an integrating sensor. That is, use a front-end sensor
that integrates the current consumption for a given period of time, rather than
directly measuring the currents.

Currents are easily integrated through the use of capacitors, which naturally
act as transducers between charge and voltage, facilitating the implementation
of a sensing unit.

∆Vc =
1

C

∫ t=τ

t=0

Ic(t) (7.20)

Thus, by using a switching capacitor and a scheme that would first charge the
capacitor to a known voltage value and then sense the drop in voltage due to the
discharging of the aforementioned capacitor, one could measure the integrated
currents.

If the integrating time (τ) is fixed, given that our ultimate goal is to equalize
leakage currents, we would wish to be able to compare these voltage drops within
the established period of time:

(Vref − Vc1)− (Vref − Vc2) = Vc2 − Vc1

Vc2 − Vc1 =
1

C

∫ t=τ

t=0

Ic2(t)− Ic1(t)dt (7.21)

By modifying the body bias value, we could reach the desired goal of current
equalization: ∫ t=τ

t=0

Ic2(t, vbb)− Ic1(t, vbb)dt ≈ 0 (7.22)

The problem now would be how to actually implement the comparison. If
an analog design is favored, both a sample and hold circuit (to isolate the
integrated signal) and an analog comparator would be necessary. The sample
and hold would have to be very well designed to avoid charge injection and
clock feedthrough. The analog comparator would also require complex design
given the use of a 28 nm node and linearity requirements, among others. If an
alternative exists, it would be preferable.

Based on these conceptualizations, we settle for a design based on the de-
scriptions made on [81], and depicted in Fig. 7.16, implementing a Time-to-
Digital converter using an integrative front-end for the sensing of quiescent
currents.

7.3 Time-to-Digital Converter

The name Time-to-Digital converter is self-descriptive. These circuits, that
range in complexity [82], convert the time it takes for an event to take place
into a digital signal, namely, an integer bit representation.

133

Figure 7.16: Capacitive leakage current sensor schematic representation

The circuit depicted in Fig. 7.16 acts as the analog front-end of a Time-
to-Digital converter (TtDC). The sensor presents two phases, a charging phase,
and a sensing phase. During the charging phase, the power switch, controlled by
the signal CHARGE, charges the capacitor Csense to Vdd. During the sensing
phase, the switch opens, and Csense discharges itself through the leakage current
consumed by the flip-flop. The capacitor continues to discharge until the voltage
across its terminals reaches Vref , at which point, the ENABLE signal produced
by an analog comparator turns low, and the cycle begins anew.

At the same time, the ENABLE signal determines when the counting reg-
ister should count up (or, as it will be shown, down). Thus, at the end of the
sensing cycle, a bit count representing the time it took for the sense capacitor
to discharge is stored in the counting register.

With this, we have two scenarios: the register under test is storing a 1, or
the register is storing a 0. In each scenario, we assume that the leakage current
is, respectively, I1 and I0. We expect these currents to vary with Vdd and,
therefore, we expect these currents not to be constant and not to be entirely
linear (they most likely exhibit an exponential behavior as the capacitor is slowly
discharging).

Thus, even if the comparison between two measurements (when register is
storing a 1, and when it stores a 0) is perfect, we cannot guarantee that the
integrative behaviour of the leakage current as it varies due to the discharge
of Csense is fully representative of the static conditions under which leakage
current analysis attacks take place. Nonetheless, for the sake of simplicity, we
are going to assume that both I1 and I0 are constant, regardless of the voltage
across the terminals of Csense.

With these, given a value of Vref , the time it takes to discharge Csense when
the register is storing a 1 is:

134

∫ vdd

vref

dVc =

∫ t=T

t=0

I1
Csense

dt

∆Vc = I1 ·
T

Csense
(7.23)

Where ∆Vc = Vdd−Vref . Assuming that the counter is clocked at a frequency
fs, represented in Fig. 7.16 by the signal CLKDIG, and assuming that T >> 1

fs
we expect the counter to count up to the value n, where n is defined as:

n = T/Ts (7.24)

Where Ts = 1/fs and the division in 7.24 should be seen as an integer
division. Thus, isolating T from 7.24, substituting it in 7.23 and isolating n, we
have:

n1 = ∆Vc · Csense · fs
1

I1
(7.25)

Defining k as k = ∆Vc · Csense · fs, we have:

n1 =
k

I1
(7.26)

And, equivalently, for I0:

n0 =
k

I0
(7.27)

If we subtract 7.26 from 7.27 we get:

n0 − n1 = k(
I1 − I0
I1 · I0

) (7.28)

And, noting that ϵ = I1−I0, we finally arrive at an expression that is directly
proportional to ϵ:

n0 − n1 = k
ϵ

I1 · I0
(7.29)

With this, we have an integer value that is representative of the magnitude
of ϵ and can be used as a direct and dynamic observation of the static current
profile of the register under test.

There are two possibilities regarding the implementation of equation 7.29
into a system. The first one sacrifices area and power by simply doubling the
circuit depicted in Fig. 7.16. In this case, there are two copies of the same
circuit, with two registers under test, one which always stores a 1, and one that
always stores a 0. At the same time, there are two counter registers, and the
means through which to compare these two counters after the sensing phase.

135

However, another possibility is the sacrifice of time, rather than area and
power. In this case, there is only one copy of the circuit depicted in Fig. 7.16.
But now, rather than two phases of operation, there are four: Charge0 - Sense0 -
Charge1 - Sense1. During the phases Charge0 and Sense0, the register under
test stores a 0, and the counter counts up. And during phases Charge1 and
Sense1 the register stores a 1, and the counter counts down. This way, at the
end of phase Sense1, the counter has the quantity n0 − n1 directly stored in it.
This, however, doubles the measuring time. Which option is better depends on
the constraints of the overall system. In this work, however, we have opted for
the latter option.

7.3.1 Low vs Regular Threshold Transistors

In our present discussion and analysis we have, throughout the bulk of this
work, used flip well, Low threshold voltage (LVT), forward body bias transistors,
and registers implemented with this technology, as the building blocks for the
developments of various countermeasures.

However, when seeking to implement a current balancing countermeasure
utilizing a Time-to-Digital converter as a current sensor, we have to take into
account some considerations that might make the use of these transistors un-
feasible. And even if their implementation was feasible, it would be unsound.

As it was shown in section 6.4, Regular threshold voltage (RVT), non-flip
well FDSOI transistors present a wider range of pairs of body bias values Vbbn

and Vbbp where the leakage current disparity of registers is relatively small, as
compared with registers implemented with LVT transistors.

At the same time, the behaviour of transistors with increased absolute body
bias, be it, |Vbbn| or |Vbbp|, is opposite in LVT and RVT transistors. That is,
the threshold voltage of LVT transistors decreases with an increased absolute
value of body bias (Forward Body Bias -FBB), while the threshold voltage of
RVT transistors increases (Reverse Body Bias - RBB). Thus, RVT transistors
see their static current consumption decreased as body bias is incremented (in
absolute value). On the other hand, the static current consumption of LVT
transistors increases with higher values of absolute body bias.

This latter option presents a problem when dealing with the sensitivity of
the sensor, represented by equations 7.26, 7.27 and 7.29.

In essence, if the currents are too big, it is possible that the sensor ”over-
loads” and becomes incapable of producing a count. This can be seen in Equa-
tion 7.26, for example, where in the case when:

k/I1 < 1, (7.30)

the sensor cannot distinguish between any possible value of I1 that lies within
0 < I1 < k. In this case, the sensitivity can be enhanced by increasing ∆V ,
Csense, or fs.

However, the sensitivity of the comparison (Equation 7.29) is dependent
both on k, directly proportional, and on the inverse of the product of I1 and I0.

136

We can rewrite Equation 7.29 by noting that:

I1 = In +
ϵ

2

I0 = In − ϵ

2
(7.31)

Thus:

I1 · I0 = I2n −
(ϵ
2

)2
(7.32)

And if we consider that ϵ2 << I2n, then:

n0 − n1 =
k

I2n
· ϵ (7.33)

It can be seen that the overall sensitivity of the comparison is reduced by
a factor 1/I2n. Thus, by using registers implemented using LVT transistors,
as the body bias is increased to seek for a value of epsilon that is small, the
sensor might ”choke” by a reduction of its sensitivity before reaching a current
balancing condition.

This is not the only problem. If the attacker is aware of this countermeasure,
they might opt to increase the temperature at which the attack takes place. By
increasing the temperature, the sensor might, again, ”choke” even before it
begins to operate on the body bias, being rendered useless.

Thus, the sounder option would be to utilize RVT transistors, with reverse
body bias capabilities. These transistors not only present smaller leakage cur-
rents at the same body bias points and operating temperature, but they allow
the implementation of a negative feedback control, in which, in case temper-
ature increases, the overall static current might be forced to remain within a
range of values.

As such, the whole system, including the cryptosystem, is intended to be
implemented with RVT, RBB transistors. This, again, comes at the expense of
time, as the transitions between digital states of cells built with these transistors
requires longer times so as to not violate time constraints.

7.4 Control Unit & Drivers

So far we have decided on the structure and components of the front-end current
sensor, and made a case for the use of a system implemented with RVT, RBB
transistors.

With this, we have sufficient information to make a case for the overall design
of the system, presented in diagram form in Fig. 7.17.

The sensor feeds into the Digital Control Unit (DCU), where two compar-
isons take place. The results of the comparison are fed into the core of the
control unit, implemented as a Moore Finite State Machine.

137

Figure 7.17: Block diagram representation of the current balancing seeking
circuit

At the same time, the control unit determines the flow of signals that control
the order of operations.

Regarding the driving units, we use charge pumps to charge the body bias
wells to their appropriate voltage levels, whichever they may be. At this stage
of the design, we limit ourselves to idealized Charge pumps, schematically rep-
resented in Figs. 7.18 and 7.19.

Figure 7.18: Schematic of the ideal positive voltage charge pump representing
the drivers

The drivers are implemented in a way such that they are able to both charge
and discharge the body bias wells of both the Register Under Test, part of the
sensor, and the registers part of the cryptosystem, not represented here.

Thus, the Control unit affects the different drivers through signals CLKP
and V BBNUP , V BBNDOWN , V BBPUP and V BBPDOWN . When either of
the V BBx signals is driven high and CLKP is activated, the corresponding
driver, be it a charge-pump or a ground switch, is activated (Figs. 7.18 and
7.19).

138

Figure 7.19: Schematic of the ideal negative voltage charge pump representing
the drivers

At the same time, the control unit controls the 4 phases of the front-end
sensor through signals CHARGE, SET , and CLKREG (Fig. 7.16). When
Csense is fully charged, CHARGE is driven low, disconnecting the capacitor
and the Register Under Tests from the power supply. The capacitor is then
discharged by either I1 or I0 depending on the data stored in the register. The
output of the analog comparator acts as the ENABLE to the counter, driven
high until the voltage of the capacitor reaches Vref and the count stops. At
this point, CHARGE is driven high so as to restore the node to Vdd, SET is
toggled, and a pulse is sent through CLKREG to store the new value in the
register. Thus, the control unit guarantees that the sensor cycles through the
four phases Charge0 - Sense0 - Charge1 - Sense1.

The DCU implements two algorithms that govern the behavior imparted on
the drivers. The information required to inform the behaviours of the drivers is
derived from the two comparators shown in Fig. 7.17.

Hysteresis Algorithm

Comparator 1 implements an hysteresis comparator upon the value of I0. This
comparator is present following the discussion of section 7.3.1. At the end of
phase Sense0, the counter of the front-end sensor stores a value equal to:

n0 = k · 1

I0
(7.34)

This value is representative of the magnitude of I0. The digital control unit
is equipped with two comparators, each with a reference constant value (n0MAX

and n0min) against which n0 is compared (Fig. 7.20). The block noted as C rep-
resents a combinational block implementing the function C = C̄1 · C̄2 +H · (C̄1 + C̄2),
which ensures the hysteresis behaviors. If n0 is smaller than n0min, the sig-

139

Figure 7.20: Diagram representation of the hysteresis comparator.

nals V BBNUP and V BBPUP are driven high. Thus, by activating the charge
pumps, the back gates of reverse body bias transistors are charged, increasing
their threshold voltage in the process and in this manner decreasing the leakage
current consumption, until n0 > n0MAX .

This algorithm takes precedence over the one implemented through com-
parator 2. Thus, whenever the condition is met that prompts the activation of
the hysteresis portion of the circuit, both signals V BBNUP and V BBPUP are
driven high, regardless of the value of ϵ represented by n0−n1. This guarantees
that the sensitivity of the sensor is somewhat constant, even if temperature is
increased.

Current Balancing Seeking Algorithm

The current balancing seeking algorithm is based on the notions of steepest
descent algorithms. The function ϵ(Vbbn, Vbbp) is a scalar field, whose gradient
∇ϵ(Vbbn, Vbbp) is a vector field representing the direction of steepest descent.
This can be seen in Figs. 7.21, 7.22, and 7.23.

Figures 7.21, and 7.22 depict the contour lines of the function |ϵ(Vbbn, Vbbp)|
for registers implemented with RVT, RBB transistors at 80 ºC. Figure 7.22
includes the vectors representing the direction of steepest descent. Figure 7.23
showcases function |ϵ(Vbbn, Vbbp)| as a 3D representation for clarity. It can be
seen that there exist minimums, beyond which epsilon is always bigger.

We use here the notion of steepest descent not because we are choosing the
path of faster descent of |ϵ|, but because we are interested in the overshoot
condition. In steepest descent algorithms, it is a known fact that, having a wide
step can incur in convergence problems giving an overshoot over the minimum
point.

140

Figure 7.21: Contourn map of |ϵ(Vbbn, Vbbp)| for D flip-flops under study imple-
mented with RVT, RBB transistors at 80 ºC

Figure 7.22: Contourn map of |ϵ(Vbbn, Vbbp)| for D flip-flops under study imple-
mented with RVT, RBB transistors at 80 ºC superimposed with its gradient
function

141

Figure 7.23: 3D representation of the function |ϵ(Vbbn, Vbbp)|.

dϵ(Vbbn, Vbbp) ≈
∂ϵ

∂Vbbn
∆Vbbn +

∂ϵ

∂Vbbp
∆Vbbp (7.35)

In our implementation, it can be problematic to compare the value of ϵ
against a constant, static reference value, given that the conditions can vary
with temperature. Thus, instead of comparing the value of epsilon against a
given reference, we seek the overshoot condition.

We define this condition by noting that, as ϵ varies with the body bias, the
value of the sensor count can change signs:

n0 − n1 = k · ϵ

I0 · I1
(7.36)

In order to sense this change, a secondary register other than the count
register is needed.

The primary register is depicted in Figs. 7.24 and 7.25 as ϵ[n]. This register
is the count register of the front-end sensor (Fig. 7.16). At the end of the 4
phase sensing cycle, the count register stores the value n0−n1, represented here
as ϵ[n]. Here, n refers to the n period of the sensing activity. Before a new
cycle of sensing begins, the content of the count register ϵ[n] is loaded onto the
secondary register marked as ϵ[n − 1], after which register ϵ[n] is reset to 0.
Thus, at period n, after the sensing cycle is complete, the control unit compares
the contents of registers ϵ[n] and ϵ[n− 1].

These registers are implemented as signed integers. Thus, the Most Sig-
nificant Bit acts as the sign bit of the registers. To determine whether a sign

142

Figure 7.24: Schematic representation of the Overshoot detector implementation
through an XOR gate.

XOR sign change
inputs Out
a b Z
0 0 0
0 1 1
1 0 1
1 1 0

change has taken place between period n−1 and period n, an XOR gate between
the MSBs of both registers is used. It can be seen that, when the comparison
between the MSBs indicates a change in sign between two contiguous periods,
the XOR gate produces a signal (transitioning from 0 → 1 or viceversa). This
signal is fed into the control unit. When the overshoot condition is reached, the
drivers enter a stand-by phase.

Figure 7.25: Schematic representation of the comparators informing the pro-
gression of the drivers used.

The system operates in a sensing-driving cycle. That is, after each 4-phase
sensing cycle, the system enters a driving phase, informed by the result of the
comparisons that take place after the sensing. The driving is controlled by
signals signals V BBNUP , V BBNDOWN , V BBPUP and V BBPDOWN and the

143

Driver Decoder
inputs outputs

CD1 CD0 V BBNUP V BBNDOWN V BBPUP V BBPDOWN

0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

Table 7.1: Drivers’ decoder truth table. The signals CD1 and CD0 represent
the drivers’ counter.

signal CLKP .
The system begins by activating V BBNUP and keeping it activated until

the comparison |ϵ[n]| > |ϵ[n − 1]| is met (Fig. 7.25), or the overshoot condi-
tion is reached. When the condition is met |ϵ[n]| > |ϵ[n − 1]|, it means that
further keeping the current driver signal active would only increase the value of
ϵ. In this case, the system cycles to the next driver signal. The system cycles
through these signals in the order above stated: V BBNUP → V BBNDOWN →
V BBPUP → V BBPDOWN .

Another comparison ϵ[n] = ϵ[n−1] informs a time out. When the comparison
ϵ[n] = ϵ[n − 1] is met for more than four sensing-driving cycles, a time out is
signaled, automatically transition from the current driver signal to the next.

Thus, the signals are V BBNUP , V BBNDOWN , V BBPUP and V BBPDOWN

are controlled by a 21 → 4 decoder, whose input is a 2-bit counter, and whose
outputs are the signals V BBNUP , V BBNUP , V BBPUP and V BBPDOWN .

This way, the system is capable of traversing the entirety of the Vbbn × vbbp
plane, while seeking the appropriate body bias point. Recall that if the Hystere-
sis condition is met, both V BBNUP and V BBPUP become active, regardless
of the value of the counter. This is done with two OR gates, whose inputs are
the V BBxUP and Hysteresis signal.

FSM Control implementation

Figures 7.26 and 7.27 show the finite state machines controlling both the front-
end sensor and the driver.

During state setup and set settle the capacitor Csense is charged to Vdd and
the line SET (see Fig. 7.16) is driven the appropriate value to be loaded into
the register, some time is waited to ensure hold and set-up times, and the clock
pulse is sent to the register through signal CLKREG. While in state setsettle,
the sensor is forced to wait until it receives signal WAITD, issued from the
FSM controlling the drivers during its own wait state. The sensor then enters
the state count, where the signal CHARGE is driven low, disconnecting the
register under test and sensing capacitor from the power supply. In this state,
the counter counts up when the signal Toggle (T in Fig. 7.26) is 0, and down
when T = 1. When the enable signal from the front-end sensor is driven low

144

Figure 7.26: State transition diagram of the sensor portion of the control unit

Figure 7.27: State transition diagram of the drivers portion of the control unit

(Csense has reached the value Vref), the sensor enters the comparison phase,
where the comparators shown in these sections store their resulting values in
flip-flops, to be used as signals for the driver’s FSM. At this point, if T or H are
equal to 1, the FSM enters the Drive state, where it issues a the signal WAITS

for the drivers’ FSM, allowing the drivers to become active.

145

The drivers’ FSM, once active, enters the state counter, when, depending
on the information received from the comparators, increases the driver counter
(Table 7.1). It then progresses into state Do, where a single pulse CLKP (Figs.
7.19 and 7.18) is issued, charging or discharging the body bias wells according to
the state of the signals V BBNUP , V BBNDOWN , V BBPUP and V BBPDOWN .
Then, the drivers’ FSM can either enter the standby state, or the wait state,
the cycle beginning anew.

7.5 Results

7.5.1 Circuit Simulation

We implement the system in the Cadence Virtuoso ADE environment with ideal
components. The front-end sensor, excluding the counter, which is included in
the Digital Control Unit, is implemented with ideal capacitor, switches and an
ideal analog comparator (Fig. 7.16). The Register under test is an instance of
a standard cell D flip-flop, implemented with RVT, RBB transistors.

The Digital Control Unit is implemented in VHDL at the RTL level and
imported into the schematic as a behavioural block.

The drivers (Figs. 7.19 and 7.18) are also implemented with ideal compo-
nents.

We then perform analog-mixed simulation of the circuit at differing tem-
peratures under the conditions seen in Table 7.2. The complete derivation and
reasoning behind these values can be found in the Annex (10.3). The results of
the simulation at 80 ºC can be seen in Fig. 7.28.

Table 7.2: Simulation conditions

T 80 ºC
Vdd 1 V
Vref 0.8 V
fclk 250 MHz

Csense 750 fF
Rs 25 kΩ

I0MAX 15 nA
I0min 10 nA
bits 17

nHmin 2500
nHmax 3500

It can be seen in Fig. 7.28 how, initially, both Vbbn (negative curve, orange)
and Vbbp (positive curve, red) increment symmetrically due to the hysteresis
conditions. Once the hysteresis condition is met, the value of Vbbn is decreased,

146

Figure 7.28: Analog-Mixed simulation results of the body bias seeking circuit
at 80 ºC

until the condition of change of sign of ϵ is reached. At this point, the circuit
enters the driver stand-by state.

Table 7.3 showcases the values of ϵ and I0 displayed by the registers under
study under the body bias conditions reached by the body bias seeking circuit
at 80 ºC. It can be seen how I0 is kept between 10 and 15 nA (the hysteresis
conditions). It can also be seen how, with the aid of the circuit, the value
of epsilon is reduced by a magnitude of approximately 32 as compared to the
absence of a countermeasure.

Table 7.3: Results from an initial simulation at 80 ºC

CBBB No CBBB
Vbbn Vbbp Vbbn Vbbp

-409 mV 775 mV 0 V 0 V
ϵ -274 pA 9 nA
I0 12 nA 41 nA

Table 7.4 shows the results from the simulation at different temperatures.
It also includes the factor |K|, which represents the ratio of the reduction of ϵ

147

Table 7.4: Results at varying temperatures

80 ºC 50 ºC 35 ºC
Vbbn Vbbp Vbbn Vbbp Vbbn Vbbp

-409 mV 775 mV 0 V 311 mV 0 V 311 mV
ϵ -274 pA -62 pA 38 pA
I0 12 nA 8 nA 4 nA
|K| 32 51 47

when the countermeasure is applied and when its is not applied. That is:

K =

∣∣∣∣ϵnoCBB

ϵCBB

∣∣∣∣ (7.37)

As it can be seen, the countermeasure is exceedingly successful in finding a
body bias point in which the leakage currents I0 and I1 are equalized, with a
wide range of temperatures.

A synthesis of this circuit reveals an approximate area of 700 µm2.

7.5.2 PCC

In Chapter 6 we have calculated the PCC for bivariate leakage power attacks of
the AES and the Trivium under the condition that ϵ ≈ 1 nA, at 27 ºC. With
the results offered by the leakage current equalization circuit we can recompute
and plot the PCC under a variety of conditions in order to gauge the effect of
the countermeasure.

In order to do so, we solve Equation 6.36, repeated here for clarity, with
some modifications.

ρIleak,Zn
=

µϵσZn√
(σ2

Zn
+ σ2

Zm
)(µ2

ϵ + σ2
ϵ) + 2σ2

b

(7.38)

Equation 6.36 represents the PCC of a bivariate attack on the AES cryp-
tosystem, under a correct key assumption, including both algorithmic and non-
algorithmic noise.

Under our countermeasure, we are going to assume that ϵ is no longer a
random variable, but a constant. Thus, σ2

ϵ = 0, and the equation can be
rewritten as:

ρIleak,Zn
=

µϵσZn√
µ2
ϵ(σ

2
Zn

+ σ2
Zm

) + 2σ2
b

(7.39)

148

We first plot Equation 7.39 for a fixed noise power of σ2
b = −134dBW

as a function of averaged sampled at 80 ºC with (blue) and without (orange)
countermeasure.

Figure 7.29: PCC between the HammingWeight and the bivariate leakage power
model (Equation 7.39) as a function of averaged number of traces in the presence
of algorithmic and non-algorithmic GW noise with Current balanced body bias
(Blue) and without a current balanced body bias (Orange) at 80 ºC

It can be seen that the current balanced circuit is much more resilient to
attacks performed under the same temperature conditions.

Figure 7.30 showcases the Equation 7.39 a function of noise power for differ-
ent number of averaged samples. It can be seen how the reduction of ϵ implies
that, for the same noise power, the circuit is much more resilient to attacks (see
Fig. 6.13).

We also perform a simulated attack on the AES in the manner described
in Chapter 6 under these conditions (80 ºC) and note the success rate of key
identification for 100 runs under the denoted number of averaged traces. The
results can be seen in Table 7.5

It can be seen that a large number of total experiments are required to
disclose the secret key, as compared to Table 6.5, even with a success rate as
low as 20%.

With this, it can be seen that the countermeasure is highly effective in hin-
dering the secret key acquisition, even at high temperatures.

149

Figure 7.30: PCC between Zn and the bivariate leakage power model with
algorithmic and non-algorithmic noise (Equation 7.39) as a function of noise
power under a current balancing body bias at 80 ºC (ϵ = −273 pA), for different
number of N averaged traces

Table 7.5: PCC - Theoretical and Numerical Simulations of a 128 bit system in
the presence of non-algorithmic noise

CB - GWN -134 dBW

N Success Rate
1 0
10 0

100 0
1000 0.04
10000 0.20

7.6 Conclusions

In this chapter, an exploration of different possible circuits with which to imple-
ment a control circuit to achieve a body bias point that reduces the magnitude
of ϵ as much as possible is carried out.

Several circuits are contemplated and discarded, finally setting in the use of
a switched-capacitor, current sensing system in the form of a Time to Digital
Converter.

150

The functionality and parameters of interest are studied, and arguments are
made in favor of the use of registers implemented with RVT, RBB transistors.

The circuit implements two control algorithms, one that fixes the value of
I0 in an hysteresis window regardless of the operating temperature, so as to
avoid loss of sensor sensitivity; and another that seeks the body bias point that
minimizes the value of ϵ.

While some of the chosen parameter values might seem a tad arbitrary, a
conservative approach regarding timing constrains is favored. However, were the
circuit capable of operating at higher frequencies, some of the area constraints
imposed by the size of the capacitive elements might be relaxed, at the expense
of increased dynamic power consumption.

The overall design of the circuit is proven to be effective in choosing values of
body bias which greatly reduce the magnitude of ϵ, even at higher temperatures.
In conjunction with the analyses presented in Chapter 6, this would indicate a
highly effective countermeasure, as determined by the results obtained.

The main limitation of the analysis performed in this chapter is the fact that
the circuit is implemented and simulated with ideal circuits under ideal condi-
tions. Thus, some physical effects not here contemplated could unknowingly
impact the effectiveness of the countermeasure.

The second limitation to take into consideration is the fact that the body bias
value of the cryptosystem is driven according to the leakage current profile of a
single register under test. Given the effects of process and mismatch variability
that arise during the manufacturing process, having the register under test
under some given leakage current conditions does not guarantee that the rest of
registers behave similarly. These limitations are explored in the next chapter.

151

Chapter 8

Variability Assessment

In the previous chapter we have presented the design, implementation, and
some results of a circuit that seeks a body bias point in which an equalization
of the leakage currents of registers storing a 1 and a 0 occurs. The circuit
has demonstrated efficiency in hindering the acquisition of the secret key of
cryptographic systems under a bivariate leakage power attack, a type of attack
that negates use of a random body bias as a countermeasure. This efficiency
holds for differing temperatures, to different degrees.

It would then appear that the work is done, and no more considerations are
to be taken. However, an important item that is to be taken into account is the
fact that the circuit, as it stands, measures exclusively the leakage currents of
a single register, which we have called the Register Under Test throughout the
text. This poses a problem.

The current balancing circuit is not only modifying the body bias of the
register under test, but it is also actuating on the body bias of registers that we
are not directly measuring: the registers that compose the cryptosystem.

In a world devoid of stochastic processes, this would not pose a problem.
However, during the manufacturing process of a die, the different components
that comprise a chip are subjected to fluctuations in their masking and in the
diffusion of dopants and other chemicals. These fluctuations give rise to func-
tional variability within the same chip, and between distinct chips present in
the same waffer.

It then occurs that, within the same chip, the leakage current profile of
different registers might not be equal for the same given body bias point. It
might then happen that this variability could be high enough to render the
current balancing circuit obsolete.

In this chapter we explore the variability of the registers under study and
attempt to determine the extent to which these random effects that arise during
the manufacturing process have on the efficacy of the current balancing circuit.

152

8.1 Initial Approach - Montecarlo Simulations

The initial problem lays in the fact that, in order to find a current balancing
body bias point, we modify the body bias values of the register under test, and
fix that same condition for all the other registers. These registers, however,
might have different values of ϵ at the body bias values found by the current
balancing circuit, given process and mismatch variations.

In order to quantify the effects of process and mismatch variability, we em-
ploy the same circuit used in chapter 5, designed to simulate the magnitude of
ϵ for a given value of body bias at a given temperature. In this particular case,
we do not restrict ourselves to a single simulation, but perform a Montecarlo
simulation with process and mismatch variability. We set a total of 200 sim-
ulations, each set of 200 simulations at different temperatures, using the body
bias values found by the current balancing circuit (see Table 7.4). The Mon-
tecarlo simulation randomizes exclusively instances of the registers. The rest
of the components in the testbench are kept constant to eliminate confounding
variables.

With this, we obtain the approximate distribution of ϵ(Vbbn, Vbbp) under
current balancing conditions. One such distribution can be seen in Fig. 8.1 ,
for the body bias conditions present in Table 7.4 at 80 C.

Figure 8.1: Histogram depicting the distribution of ϵ for body bias values Vbbn =
−409 mV and Vbbp = 775 mV for 200 samples

With this, we can obtain the mean and standard deviation of ϵ for a given
body bias point at a given temperature. For ease of analysis we are going to
assume that the resulting distributions are Normal, which might not necessarily
be the case, but the approximation might suffice for the subsequent derivations.

153

We perform Montecarlo simulations for three different temperatures, 80 C,
50 C, and 35 C. At the same time, we test four possible body bias schemes:

• Dual Drivers Current Balancing (DDCB): This is the body bias scheme
that results from the current balancing circuit described and implemented
in the previous chapter. With DDCB, both N- and P-Wells begin at the
initial condition Vwells(t = 0+) = 0V , and the drivers charge the wells
until the current balancing condition is met.

• Single Driver Current Balancing (SDCB): This body bias scheme also
utilizes the current balancing circuit. However, in this case the P-well
(Vbbp) is tied to a constant voltage of 1 V, and the current balancing circuit
can only modify the voltage of transistor’ N-Wells (Vbbn). This body bias
scheme is explored for two reasons. The first one is that, as seen in Figs.
6.19 and 6.20, in registers implemented with RBB transistors, the value
of Vbbp which gives widest interval of Vbbn in which the magnitude of ϵ
is relatively small is Vbbp = 1 V, especially at larger temperatures. The
second reason is that, at higher values of |Vbbn|, the standard deviation of
ϵ is lower.

• |1| V: Both N- and P-Wells are tied to constant values of, respectively,
Vbbn = −1 V and Vbbp = 1 V. We test this to determine whether simply
having the system operate at the maximum body bias possible is better
as a countermeasure than implementing an entire circuit that consumes
area, power, and time.

• 0 V: In this case, the body bias for both types of wells is set to 0 V, to
have a control group.

For the case of the DDCB scheme, the body bias values are those depicted
in Table 7.4.

For the SDCB scheme, the body bias values produced by the current bal-
ancing circuit can be seen in Table 8.1.

Table 8.1: Single Driver Current Balancing Results at varying temperatures

80 ºC 50 ºC 35 ºC
Vbbn Vbbp Vbbn Vbbp Vbbn Vbbp

-600 mV 1 V -550mV 1 V -425 mV 1 V

The resulting moments (expected value and variance, expressed as standard
deviation) of the different distributions obtained under the distinc conditions
tested can be seen in Table 8.2.

Some trends can be observed. For a given scheme, the standard deviation of
ϵ, σϵ increases with temperature for all cases while, depending on the scheme,

154

Table 8.2: Mean and standard deviation of registers’ leakage current

T= 80 ºC - (nA) T= 50 ºC - (nA) T= 35 ºC - (nA)
BB Scheme µϵ σϵ µϵ σϵ µϵ σϵ

DDCB -0.21 2.73 0.07 2.04 0.23 1.09
SDCB -0.18 1.84 0.08 0.56 0.02 0.34
|1| V 2.13 1.57 .87 0.46 0.60 0.24
0 V 9.54 9.45 -3.00 1.35 -1.38 0.71

the expected value µϵ shifts, either positively for the 0 V and |1| V cases, or
negatively for the DDCB and SDCB schemes.

At the same time, it can be seen how the minimum variance of ϵ is achieved
with the maximum possible body bias value |1|. Thus, we implement the SDCB
scheme, in which one well is always set at its maximum body bias to see if it
diminishes the variance of the DDCB scheme. Not only that, but the SDCB
scheme presents the smallest mean value of ϵ of all other schemes at a given
temperature.

With this, we now need to determine how this variability affects the protec-
tion of the cryptosystem supposedly introduced by the current balancing circuit
by decreasing the magnitude of ϵ. However, ϵ is now a random variable not
because of the body bias, which is fixed for a given temperature by the current
balancing circuit, but because every instance of a register produces a random
leakage current.

8.2 Variability Analysis - Ideal Distribution

We begin our analysis by going back to the very first equation of leakage current
power model used to describe and attack on register slices of cryptosystems.
That is:

Ileak = ϵ ·HW + n · I0 (8.1)

In this equation, the assumption is that every register presents the same
magnitude of ϵ. However, with variability in mind, every instance of a register
can present distinct values of ϵ. Thus, we need to derive a different equation to
take this factor into account.

Suppose we have an instance of n registers, and that each register is statisti-
cally independent from each other. Assume, for the moment, that n = 2 for ease
of derivation. We have seen that ϵ follows an approximate normal distribution.
Thus, for an register array of two flip-flops, we have that the leakage current
consumption is a continuous random variable of the form:

Ileak(x) = ϵ1(x) · z1 + ϵ2(x) · z2 + n · I0 (8.2)

155

Where the different zi are random variables representing the bits stored in
flip-flop i. In principle, I0, here considered a constant, would also be a random
variable. However, for ease of analysis we are going to assume that I0 is a
constant term formed by the summation of the different I0i magnitudes of each
register, and assume that their variability is absorbed by the different ϵi terms.

The properties of the random variables zi have been described in Chapter 5,
but are repeated here for clarity. Each zi represents a bit value. Thus, each zi
follows a discrete random uniform distribution, with P [zi = 1] = P [zi = 0] =
1/2. Thus, µz = 1/2 and σ2

z = 1/4.
Thus, in our particular case, the Hamming Weight of the register array is

HW = z1 + z2. This way, We begin our analysis by calculating the Pearson
Correlation Coefficient between the function Ileak(x) and the Hamming Weight
stored in the array.

As described in previous chapters, the PCC is computed according to the
following equation:

ρIleak(x),HW =
Cov(Ileak(x), HW)√

V ar(Ileak(x)) ·
√

V ar(HW)
(8.3)

To calculate the PCC we again note that:

Cov(Ileak(x), HW) = E[Ileak(x) · (z1 + z2)]− E[Ileak(x)]E[z1 + z2] (8.4)

Using the fact that the random variables ϵi(x) are independent from the
random variables zi, we can calculate this equation as:

Cov(Ileak(x), HW) = E[ϵ1(x)] · σ2
z1 + E[ϵ2(x)] · σ2

z2 (8.5)

Where σ2
zi = E[z2i] − E[zi]

2. We can also use the fact that the random
variables ϵi(x) follow an approximately normal distribution with parameters µϵ

and σ2
ϵ .

Thus, similarly to what we had initially, we have:

Cov(Ileak(x), HW) = µϵ · σ2
z1 + µϵ · σ2

z2 = µϵ · σ2
HW (8.6)

The variance of Ileak(x) can be calculated using the fact that, for independent
random variables V ar(X · Y) = σ2

x · σ2
y + µ2

x · σ2
y + µ2

y · σ2
x. Thus, the PCC can

be finally calculated as:

ρIleak(x),HW =
µϵ · σHW√

σ2
HWσ2

ϵ + µ2
ϵσ

2
HW + µ2

HWσ2
ϵ

(8.7)

Ignoring, for the moment, algorithmic noise, we can assume that the samples
are populated by some form of non-algorithmic noise, and introduce a term σ2

b ,
which we are assuming is the noise produced by a 1 Ω shunt resistor operating
at 1 V for measurements up to 10 MHz, thus introducing a noise power of
-134 dBW. Also, if we consider that there is inter-trace averaging, with N
being the number of samples, we have:

156

ρIleak(x),HW =
µϵ · σHW√

σ2
HWσ2

ϵ + µ2
ϵσ

2
HW + µ2

HWσ2
ϵ +

σ2
b

N

(8.8)

8.2.1 Results

With this, we can plot some results and observe some trends. We plot Equation
8.8 for the distributions that arise at 80 C for the different body bias schemes
as a function of averaged samples.

Figure 8.2: PCC as a function of samples of Equation 8.10 at 80 C for the
different distributions obtained through a Montecarlo analysis of registers under
body bias conditions seen in Table 8.2

It can be seen that both the DDCB and the SDCB schemes are extremely
resilient to noise averaging given the distributions of the average registers, and
present a very small value of the PCC which might highly hinder the secret key
acquisition in CPA attacks.

While these results seem promising, we must introduce a new concept here
before reaching some conclusions. While these notions that are going to be
introduced might seem unjustified and somewhat arbitrary, they will be clarified
in subsequent sections. For the moment, we must slightly modify the assumption
of the distribution of ϵ(x).

157

Folded Normal Distribution

So far, we have seen that ϵ follows an approximately normal distribution. How-
ever, under certain circumstances, we cannot solve or plot equation 8.8 with this
assumption in mind, otherwise the results would not accurately represent the
PCC obtained through a correlation power analysis attack of a register array
with variability.

Instead, we must treat the probability density function of ϵ(x) as a folded
normal distribution; that is, a distribution that arises by considering the abso-
lute value |ϵ(x)|. The reasoning will be explained shortly hereafter.

Under these new conditions, both the expected value and variance of the
distribution of |ϵ(x)| are:

µ|ϵ| =

√
2σ2

ϵ

π
· e−

µ2
ϵ

2σ2
ϵ + µϵ · erf

(
µϵ√
2σ2

ϵ

)

σ2
|ϵ| = µ2

ϵ + σ2
ϵ − µ2

|ϵ| (8.9)

Where erf(·) represents the error function. With these, we can substitute
µϵ and σ2

ϵ by their new forms in Equation 8.8.

ρIleak(x),HW =
µ|ϵ| · σHW√

σ2
HWσ2

|ϵ| + µ2
|ϵ|σ

2
HW + µ2

HWσ2
|ϵ| +

σ2
b

N

(8.10)

With this, we can proceed to solve equation 8.10 for the different distri-
butions obtained at distinct temperatures for a given body bias scheme. The
results can be seen in Fig. 8.3 , where equation 8.10 is plotted as a function of
N samples for the different body bias schemes depicted in Table 8.2 at 80 C.

It can be seen that both the DDCB and the SDCB present the most resilience
against noise averaging, with the SDCB scheme being slightly better. However,
the results are not as good as the ones shown in Fig. 8.2.

Another important aspect to note of equation 8.10, as opposed to the similar
equation presented in Chapter 5 is the fact that the variance of ϵ, σ2

ϵ , does not
scale with sampling. This ‘noise’ is not introduced by a varying body bias, but
by the fact that, due to process and mismatch variability, each register consumes
different amounts of leakage current for a given body bias. Thus, the maximum
PCC has a ceiling and cannot effectively reach a value of 1 regardless of the
amount of samples that are averaged.

8.3 Variability analysis - Register Instances

In essence, the above analysis presumes that the registers under attack follow
ideally the distribution that arises from the Montecarlo simulations. However,
if attacks are performed on 8-bit register slices, their number is low enough that

158

Figure 8.3: PCC as a function of samples of Equation 8.10 at 80 C for the
different distributions obtained through a Montecarlo analysis of registers under
body bias conditions seen in Table 8.2 considering a folded distribution

no guarantee can be made regarding their true distribution. Thus, registers
must be treated as random instances of the distribution.

Consider, then, for ease on analysis, an attack on two registers. These reg-
isters, being instances of some random distribution, have fixed leakage current
consumption at a given temperature and body bias point. The total leakage
consumption of this 2-bit register array can then be expressed as:

Ileak = I1,1 · x1 + I0,1 · x1 + I1,2 · x2 + I0,2 · x2 (8.11)

Where I1,i represents the leakage current consumed by register i when it
stores a 1 (xi), and I0,i is the leakage current consumed by register i when it
stores a 0 (xi). xi is a random variable representing bit i, where xi is the bit
complement of xi.

Thus, for example, if x1 = 0 and x2 = 1, the total leakage current consump-
tion of this two bit array is:

Ileak = I0,1 + I1,2 (8.12)

Note that I1,i and I0,i are now constant parameters, being instances of the
distributions that would be obtained from a Montecarlo simulation.

If we want to obtain the PCC between the leakage current consumed by this
2-bit register array, and the HW of the bits stored within it (x1 + x2), we again
must develop the following expressions:

159

E[(x1 + x2) · Ileak]

E[Ileak]

E[x1 + x2]

V ar(Ileak) (8.13)

The complete derivation can be found in the Annexes 10.4 . Thus, for an
n-bit register array with process and mismatch variation, we have that the PCC
between the leakage current and the Hamming Weight can be expressed as:

ρIleak,HW =
1√
n
· ϵ1 + ϵ2 + ...+ ϵn√

ϵ21 + ϵ22 + ...+ ϵ2n
(8.14)

Where every ϵi is a constant, obtained from a realization of distribution
obtained from the Montecarlo simulation.

Note that Equation 8.14 better clarifies the fact that, unless all the values
of ϵi are equal, no matter how many samples are taken and averaged, the PCC
has a ceiling that depends on how much leakage current each registers consumes
for a given body bias point at a given temperature (see Fig. 8.3).

8.3.1 Folded Normal Distribution

Another point of consideration for registers under the DDCB or the SDCB,
where the mean of ϵ is relatively small as compared to their standard deviation
(Table 8.2) is the following. For some registers, ϵi could be positive, and for
other registers ϵi could be negative. In essence it is possible that some register
combinations cancel the numerator of equation 8.14, such that:

n∑
i=1

ϵi ≈ 0 (8.15)

while no such cancellation happens in the denominator.
Consider now, for the moment, the dummy cryptosystem introduced in 5.2.

In this dummy cryptosystem, the only ”cryptographic” function present is the
XORing between the plaintext and the secret key, the result of which is stored
in the register array.

Consider, under these circumstances, a single register whose leakage current
profile can be expressed as:

Ileak = I1 · x1 + I0 · x̄1 (8.16)

Assume that x1 = p1 ⊕ k1, where p1 is the plaintext bit and k1 the key bit.
Under a correct key assumption, the covariance between the leakage current and
the bit x1 can be shown to be:

160

Cov(Ileak, x1) =
1

4
ϵ (8.17)

Where ϵ = I1 − I0.
However, for an incorrect key bit; that is, for x1 = p1 ⊕ k̄1, the covariance

between the leakage current and the bit x1 is equal to Cov(Ileak, x1) = − 1
4ϵ.

Thus, for a particular register, the covariance between its leakage current and
the bit x1 can be expressed as:

Cov(Ileak, x1) = (−1)D1 · 1
4
ϵ (8.18)

Where D1 = k1 ⊕ k′1 is the Hamming Distance between the correct key
bit and another potential key bit. Under these conditions, the numerator of
Equation (8.14) becomes:

(−1)D1 · ϵ1 + (−1)D2 · ϵ2 + ...+ (−1)Dn · ϵn (8.19)

Where the vector D = Kcorrect ⊕Kincorrect. What this equation implies is
that, while in some instances the PCC between the leakage consumption and
Hamming Weight under a correct key assumption might be very small, under
process and mismatch variability it might highly correlate with a false key.
Under such conditions, finding the incorrect key implies simultaneously finding
the correct secret key, since the leakage current would be adequately correlated
to the Hamming Weight of P ⊕Kcorrect⊕Kincorrect, with P being the plaintext
vector.

An example of this can be seen in the Trivium stream cipher. Consider an
attack on 8-bits during the fist 12 periods of the initialization phase (Table 6.1).
After 8 periods, the Y register of the Trivium stores the following Hamming
Weight (disregarding algorithmic noise):

HW =

m−1∑
j=0

k66−j ⊕ IV78−j (8.20)

For m = 8.
Consider, also, that the register array in which these bits are stores has,

under a current balancing body bias scheme, the following leakage consumption:

ϵ1 = −ϵ2 = 1 nA

ϵ3 = −ϵ4 = 0.5 nA

ϵ5 = −ϵ6 = 0.25 nA

ϵ7 = −ϵ8 = 0.125 nA

The summation of these parameters leads to a total cancellation:

8∑
i=1

ϵi = 0 nA (8.21)

161

Which means that, if one where to perform an attack on the secret key,
the PCC of the correct key would appear to be 0. However, there would be
an incorrect key with which the PCC would be highly correlated. In fact, the
incorrect key with which the attack would highly correlate for the example given,
would be one with the following property:

Kcorrect ⊕Kfalse = 01010101 (8.22)

That is, there is a false key whose Hamming Distance with the correct key
is determined by variability. In this case, were one to calculate the PCC using
equation 8.14, the result would be ρ = 0 for the secret key, and ρ = 0.813 for
this false key. However, by simply XORing the false key with all the prospective
keys, the correct key would be identified.

While this introduces a layer of confusion, this implies that, under process
and mismatch variability, the PCC can be a poor predictor of protection for
register slice leakage power attacks under current balancing countermeasures
unless corrections are introduced.

Thus, it is better to consider the modification of Equation 8.14 where the
elements of leakage consumption are considered in their absolute value:

ρIleak,HW =
1√
n
· |ϵ1|+ |ϵ2|+ ...+ |ϵn|√

ϵ21 + ϵ22 + ...+ ϵ2n
(8.23)

This is why we have calculated the PCC in the previous section using the
folded normal distribution.

Considering the presence of algorithmic and non-algorithmic noise, Equa-
tion 8.23 becomes:

ρIleak,HW =
1√
n
· |ϵ1|+ |ϵ2|+ ...+ |ϵn|√

(ϵ21 + ϵ22 + ...+ ϵ2n) +
1
N (ϵ2n+1 + ...+ ϵ2m) + 4

N · σ2
b

(8.24)

Where ϵn+1 through ϵm represent the leakage consumption of the bits not
pertinent to the attack (algorithmic noise), and σ2

b is the noise power of non-
algorithmic noise (thermal, measurement noise...). N is, again, the number of
samples taken and averaged.

Note that this explanation and derivation is valid for the case where the
cryptographic function is simply the XORing between the plaintext and the
secret key. If the intermediate variables had a more complex relationship to the
plaintext and secret key, as is the case of the AES, these considerations might
not be necessary. The AES presents a non-linear function in the form of its
substitution box, such that the value stored in the state matrix ends up being
S(p⊕k), with S(·) being the substitution function. The substitution box, being
a non-linear function, might erase the potential correlation with a false key.

Thus, for the case of the AES, the absolute values of ϵi might not need to
be contemplated. At the very least, the author of this text has not been able
to find a way in which to replicate for the AES the effect considered for the

162

Trivium stream cipher under a current balancing scheme. That does not mean
that these effects do not exist, and careful considerations must be made in the
future. Nonetheless, results for both cases will be presented.

8.3.2 Results

PCC

In order to present the results, we make use of the distributions depicted in
Table 8.2. With the help of Matlab, we define a distribution object ϵ ∼ N (µ, σ),
and we simulate 1000 instances of 8-bits, each taken at random from the defined
distribution. For each of these 1000 instances, we also produce 120-bits following
the same distribution, to account for algorithmic noise. Thus, with a noise power
σ2
b = −134 dBW, we calculate equation 8.24 for a variety of N samples.

Figure 8.4: Boxplot for a 1000 instances of equation 8.24 for different body bias
schemes at 80 C and 1000 samples per instance

The results can be seen in Figs. 8.4 through 8.6. While the mean PCC is not
quite as that of Fig. 8.3, the trends observed are repeated here. In all cases, the
SDCB body biasing scheme presents the smallest PCC and resilience to noise
averaging.

We present the same results for the case of N = 10000 at 50 and 30 ºC (Figs.
8.7 and 8.8)

It can be seen that, at lower temperatures, the DDCB body bias scheme is
not quite as protective as simply maintaining the body bias at |1| V. The SDCB
scheme, however, is still the most protective one.

163

Figure 8.5: Boxplot for a 1000 instances of equation 8.24 for different body bias
schemes at 80 C and 5000 samples per instance

Figure 8.6: Boxplot for a 1000 instances of equation 8.24 for different body bias
schemes at 80 C and 10000 samples per instance

164

Figure 8.7: Boxplot for a 1000 instances of equation 8.24 for different body bias
schemes at 80 C and 10000 samples per instance

Figure 8.8: Boxplot for a 1000 instances of equation 8.24 for different body bias
schemes at 80 C and 10000 samples per instance

165

These figures are obtained considering a folded normal distribution. That
is, each instance is considered in its absolute value.

We also perform the same simulation for the case of the AES, where the
folded normal distribution is not used. The results can be seen in Fig. 8.9.

Figure 8.9: Boxplot for a 1000 instances of equation 8.24 for different body bias
schemes at 80 C and 10000 samples per instance without considering a folded
normal distribution

It can be seen in Fig. 8.9 that, even with 10000 averaged samples, both
the DDCB and SDCB schemes present mean PCC around a value of 0. In
theory, this would imply a great degree of protection. However, the author
cannot guarantee that there does not exist a way to undo the effect of the non-
linearities of the S-box onto the variabilities of the registers. In those cases, the
results of Fig. 8.9 would be those of Fig. 8.6

Simulated CPA

We next attempt to determine the difficulty with which the secret key can be
identified for the different body bias schemes. In order to do so, we again invoke
a 1000 instances of 8 registers, and perform a simulated CPA on each of the
instances.

In order to do so, we create a vector of 8 ϵ values for each of the instances:

ϵ⃗ = [ϵ1, ϵ2, ..., ϵ8] (8.25)

At the same time, we calculate the matrix of plaintext and secret key XOR
bits. That is, for each plaintext value P = i, with 0 ≤ i ≤ 255, we XOR the

166

value P with the secret key and convert the result into an 1x8 vector of bits:

Pi ⊕ k = [pi,1 ⊕ k1, pi,2 ⊕ k2, ..., pi,8 ⊕ k8] (8.26)

With this, we obtain a 256x8 matrix, one row for each plaintext value:
p1,1 ⊕ k1 p1,2 ⊕ k2 . . . p1,8 ⊕ k8
p2,1 ⊕ k1 p2,2 ⊕ k2 . . . p2,8 ⊕ k8

...
...

...
...

p256,1 ⊕ k1 p256,2 ⊕ k2 . . . p256,8 ⊕ k8

 (8.27)

Thus, we calculate the vector of leakage currents by computing the vector
product between each of the rows of plaintext-key matrix and the ϵ⃗ vector:

Ileaki
=

8∑
j=1

(pi,j ⊕ kj) · ϵj (8.28)

Obtaining a vector of leakage current consumption for each plaintext value
for a given instance of 8-bits. We then add the noise components to this vector,
averaged according to the number of samples taken. Finally, we calculate the
PCC between this leakage current vector and the Hamming Weight of each
possible plaintext-key combination.

With this, we note the amount of times that the secret key is identified.

Table 8.3: Success rate of key identification for 1000 instances of a simulated
CPA at 80 C

Folded Distribution - 80 C

DDCB SDCB |1| V 0 V
N= 1000 0.335 0.228 0.459 0.833
N= 5000 0.626 0.496 0.686 0.934
N= 10000 0.717 0.631 0.794 0.941

Table 8.4: Success rate of key identification for 1000 instances of a simulated
CPA at 50 C

Folded Distribution - 50 C

DDCB SDCB |1| V 0 V
N= 1000 0.252 0.025 0.130 0.736
N= 5000 0.521 0.121 0.482 0.900
N= 10000 0.607 0.199 0.582 0.948

167

Table 8.5: Success rate of key identification for 1000 instances of a simulated
CPA at 35 C

Folded Distribution - 35 C

DDCB SDCB |1| V 0 V
N= 1000 0.103 0.014 0.062 0.291
N= 5000 0.307 0.040 0.330 0.690
N= 10000 0.440 0.107 0.556 0.793

The results can be seen in Tables 8.3 through 8.5, for the cases in which the
folded normal distribution has been contemplated. The rate of successful key
identification more or less follows the trends observed in the boxplots of Figs.
8.4 through 8.8. At higher temperatures, both the DDCB and SDCB schemes,
specially the SDCB one are the most resilient to noise averaging. At 50 C, the
DDCB appears to be less functional than the |1| V scheme, but even then the
rate of key identification is not too high.

At lower temperatures the SDCB scheme presents a very poor rate of se-
cret key identification, a testament for, in principle, the great effectiveness of
this countermeasure to protect the cryptosystem against leakage power analysis
attacks.

Note that averaging 10000 samples implies a total of 256*10000 measure-
ments. After these huge quantity of measurements, with the SDCB body bias-
ing scheme the secret key can only be disclosed with, at most, a frequency of
0.63 at high temperatures.

Table 8.6 presents the rate of key identification for a 1000 instances extracted
with a normal distribution, disregarding the absolute value, for the potential
AES case.

Table 8.6: Success rate of key identification for 1000 instances of a simulated
CPA at 80 C

Normal distribution (AES) - 80 C

DDCB SDCB |1| V 0 V
N= 1000 0.377 0.248 0.962 0.994
N= 5000 0.590 0.512 ≈1 ≈1
N= 10000 0.628 0.575 ≈1 ≈1

8.4 Conclusions

In this chapter, the effect of process and mismatch variations regarding the
effectiveness of the current balancing circuit as a countermeasure is explored.

168

In order to do so, Montecarlo simulations are employed to extract the dis-
tribution of ϵ obtained under the conditions presented by the current balancing
circuit.

With this, a statistical power model of a register array under attack with the
considerations of variability is analyzed for different possible body bias schemes
and temperatures.

The case for the use of a folded normal distribution in the analysis is pre-
sented and taken into account in the analysis. Relying again on calculations
on the PCC and simulated CPA attacks, the scheme that presents the highest
degree of protecting for all possible conditions is the one described as Single
Driver Current Balancing. While not as resilient as the results obtained in the
ideal case of Chapter 6, the results still indicate a high degree of protection, even
at high temperatures, where the secret key cannot be disclosed more than 0.63
of the times the experiment is run, even with enormous amounts of averaged
traces.

Again, the results here presented are limited by the fact that they rely ex-
clusively on numerical simulations. The errors in the idealities presented here
might compound with the idealities of the current balancing circuit, but the
results seen are sufficiently effective so as to warrant further investigation in a
potential physical implementation.

169

Chapter 9

Conclusions

In this thesis, an exploration on the nature of leakage current consumption of
registers implemented with FDSOI as a function of their body bias has been
carried out. This assessment has been produced under the framework of under-
standing how leakage currents of bitsliced implementations of cryptosystems can
be utilized as a side-channel to perform leakage power analysis attacks. Given
the possibility to dynamically modify the threshold voltage of FDSOI transis-
tors through their fourth terminal and, indirectly, modify the leakage current
profile of registers, this work has sought to determine whether provable secure
countermeasures can be developed using this transistor technology.

In order to do so, an initial understanding of the leakage current profiles
of FDSOI registers as a function of their body bias is obtained, as detailed in
Chapter 5. The exploration goes on to determine which magnitudes have an
influence on the pearson correlation coefficient of registers implementing dummy
cryptosystems, particularly as related to their body bias.

With this, an initial countermeasure based on the random application of
a symmetric body bias level at the beginning of each encryption process is
proposed. This countermeasure is modelled to include the effect of sources of
algorithmic and non-algorithmic noise, as well as explored under different tem-
perature and technological conditions (FBB vs RBB). This initial countermea-
sure has proven to force a potential attacker to significantly increase the number
of traces required to be able to disclose the secret key, hindering attack efforts.
It is also seen that this countermeasure benefits from higher temperatures when
register are implemented with FBB transistors, while RBB transistors are pe-
nalized in this sense, given their reduced capability to introduce noise and thus
decorrelate the power traces from the data being processed; that is, the noise
they are able to introduce does not sufficiently scale with the increase of the
floor of their leakage current consumption, facilitating the attack at higher tem-
peratures.

Unfortunately, further exploration on the validity of this initial proposal
reveals certain vulnerabilities than can be exploited to render it practically use-
less. A case model is developed for two particular cryptographic algorithms,

170

the AES and the Trivium stream cipher, detailing how a bivariate power attack
that takes advantage of a known state can practically bypass the entire protec-
tive effect that a random symmetric body bias provides. This prompted further
exploration, particularly regarding the asymmetric application of a body bias,
seeking whether pair of body bias values (positive and negative) exist such that
FDSOI registers see the disparities in leakage current consumption depending
on data processed diminished. This current balancing body bias is, initially, ex-
plored from a purely mathematical perspective, relying on electrical simulation
models to extract pertinent parameters. The author is then able to determine
the validity of this approach, which not only significantly increases the number
of traces required to disclose the secret key, but also offers protection against
bivariate attacks.

This approach is taken further by designing the necessary circuits so as to be
able to implement this theoretical countermeasure in an autonomous manner.
That is, a circuit that automatically seeks a body bias point which balances the
leakage current consumption of registers, regardless of the data they store. This
is achieved through the dynamic modification of the body bias wells while the
cryptographic system is in operation. Once the circuit is implemented, simula-
tions showcase its capability to seek and maintain a body bias value that highly
decreases the leakage current disparities of circuits, achieving functionality for
a wide range of temperatures. With this proof of concept circuit and the re-
sults obtained, further statistical analysis in the form of PCC figures of merit
under the conditions obtained are performed, showcasing the success of this
countermeasure implementation in greatly hindering the ability of an attacker
to extract the secret key.

To further validate the proposed countermeasure, an analysis is performed
considering the effect of mismatch and process variability that could somehow
impact the effectiveness of the body bias seeking circuit. Montecarlo simulations
are performed to obtain the probability density functions of pertinent magni-
tudes, and a statistical model developed under the conditions obtained through
the body bias seeking circuit to consider the effect of variability. At the end, it
is determined that variability between registers within the same die does affect
the level of protection provided by the body bias seeking circuit. Nonetheless,
the countermeasure does continue to offer a great degree of protection, partic-
ularly in the case of the Single Drive Current Balancing scheme. This level of
protection varies with temperature but remains relatively high, forcing an at-
tacker to perform great many averages per trace just to be able to disclose the
secret key with poor probability.

In essence, the main objective of this thesis has been accomplished, in as
much as the work has culminated in a proof of concept circuit that acts as an
effective countermeasure to leakage current power analysis attacks for a wide
range of temperature. The circuit is simple enough so as to present low area
overhead, and while no attempts have been carried out in this work, optimization
efforts could reduce its power consumption.

Again, given its simplicity, the circuit could exist as a given module, im-
ported during the design of a cryptographic implementation, to easily garner its

171

benefits.
At the same time, the circuit does not interfere with other potential counter-

measures, which could also be applied to further the level of protection against
leakage or dynamic power attacks.

A case must be made for the use of FDSOI technology. Firstly, because the
countermeasure necessitates that the implementation be made with such tech-
nology. But also given the properties of FDSOI transistors in and of themselves.
This relatively new technology has been able to, at the very least, curtail some
short-channel effects, particularly those related to electrostatic stability of the
channel and leakage current. Thus, this technology inherently offers a certain
degree of protection against LPA as compared to other bulk technologies, given
the smaller magnitudes of static power consumption that they incur, even at
higher temperatures.

Thus, the implementation of cryptographic algorithm in low-power circuits
could greatly benefit from such a combination of FDSOI technology and current
balancing countermeasure. Among other cases, with the prospective increase
of IoT nodes populating diverse settings, such a countermeasure could offer
benefits in security sensitive applications. This extra layer of protection could
curtail some of the security issues that arise in an interconnected world, where
the ability to have a network of decentralized information ‘objects’ has taken
precedent over their security implications.

9.1 Publications

During the development of this thesis the following publications have been pro-
duced:

• K. Palma and F. Moll, ”Analysis of Random Body Bias Application in FD-
SOI Cryptosystems as a Countermeasure to Leakage-Based Power Anal-
ysis Attacks,” in IEEE Access, vol. 9, pp. 114977-114988, 2021, doi:
10.1109/ACCESS.2021.3105635.

• K. Palma and F. Moll, ”Current Balancing Random Body Bias in FD-
SOI Cryptosystems as a Countermeasure to Leakage Power Analysis At-
tacks,” in IEEE Access, vol. 10, pp. 13451-13459, 2022, doi: 10.1109/AC-
CESS.2022.3144639.

• K. Palma and F. Moll, ”Simulated Leakage Power Analysis Attack of
the Trivium Stream Cipher,” 2022 37th Conference on Design of Circuits
and Integrated Circuits (DCIS), Pamplona, Spain, 2022, pp. 01-06, doi:
10.1109/DCIS55711.2022.9970061.

172

Chapter 10

Annexes

10.1 Annex I - Perfect Secrecy

Consider a cryptosytem formed by a plaintext space (X), a key space (K), and
a ciphertext space (Y), and assume that the plaintext and key space follow a
particular probability distribution such that:

∑
i

P [X = i] = 1∑
j

P [K = j] = 1.

And for each element of the either of the above distributions, the probability
of any given element is greater or equal than zero.

The probability of the ciphertext can be defined by the above probability
distributions, in as much as any element Y = y of the ciphertext is the result
of an encryption function ek(x). Assuming that each key and plaintext element
are independent from each other, we have:

P [Y = y] =
∑

{K:y∈Y (K)}

P [K = k] · P [X = dk(y)] (10.1)

Where equation 10.1 states that the probability of obtaining a given cipher-
text element is the sum of the probability between all pair of keys and plaintext
that yield that particular element. The product is a result of their being inde-
pendent from each other.

From this it also follows that the conditional probability of obtaining a ci-
phertext element given a plaintext element can be expressed as:

P [Y = y|X = x] =
∑

{K:x=dk(y)}

P [K = k] (10.2)

173

With these notions it is sufficient to express the problem at the heart of
perfect secrecy as:

P [X = x|Y = y] =

P [X = x] ·
∑

{K:x=dk(y)}
P [K = k]∑

{K:y∈Y (K)}
P [K = k] · P [X = dk(y)]

(10.3)

Equation 10.3 represents the conditional probability of x being a particular
plaintext element given a known ciphertext element.

A perfectly secret cryptosytem is one in which the following equality holds:

P [X = x|Y = y] = P [X = x] (10.4)

That is, the probability of the plaintext distribution is not altered by having
ciphertext elements.

In the case where the order of each set |X | = |Y| = |K|, where the cryptosys-
tem is a bijection such that there is no collition between plaintext elements (that
is, ek1(x) = ek2(x) only if k1 = k2) some of the above notions can be simplified.

Considered a fixed ciphertext element y. In a bijective cryptosystem, for
each possible plaintext element xi there is only one possible key ki that yield
that ciphertext element.

Equation 10.3 then becomes:

P [X = xi|Y = y] =
P [X = xi] · P [K = ki]

P [Y = y]
(10.5)

Under such circumstances, the conditions of perfect secrecy is met when
P [K = ki] = P [Y = y].

As an example, consider a cryptosystem formed by |P| = |C| = |K| =
|{0, 1}1|, where the encrypting function is the XORing between a plaintext bit
and a key bit:

y = x⊕ k (10.6)

Assume that the bit y follows a uniform probability distribution such that:

P [Y = 1] = P [Y = 0] =
1

2
(10.7)

For a given ciphertext element (namely, y=1), there are two possible key and
plaintext combinations that yield this result. As such, as long as the keyspace
follows a discrete uniform distribution (P [K = i] = 1

|K| , 0 ≤ i ≤ 1), the con-

dition holds. Under such conditions, having access to a ciphertext element
provides an eavesdropper no further information regarding the plaintext. Note
that the condition holds only as long as each plaintext element is encrypted
with a distinct key, chosen at random, every time.

174

10.2 Annex II - PCC Derivation Under Random
Body Bias Scheme

In order to determine the PCC between the Hamming Weight and leakage cur-
rent consumption Ileak of a register array, we need to calculate the Covariance
E[Ileak ·HW], and the expected values E[Ileak] and E[HW].

Going back to equation 5.18 we can see that:

E[Ileak(S) ·HW] = E[n · I0(S) ·HW] + E[ϵ(S) ·HW 2] (10.8)

Where I0(S) and ϵ(S) are no longer constants, but random variables.
Assuming, for the moment, that E[I0(S)] and E[ϵ(S)] are well defined and

equal to, respectively, µI0 and µϵ, and taking into account that S and HW are
random variables independent from each other:

E[Ileak(S) ·HW] = n · µI0 · µHW + µϵ · E[HW 2]

E[Ileak(S)] = n · µI0 + µϵ · µHW

E[HW] = µHW (10.9)

And, finally, the covariance between the Hamming Weight and the leakage
current consumption of the register array in the presence of the countermeasure
is:

Cov(Ileak(S), HW) = µϵ · σ2
HW (10.10)

Next, we need to determine the variance of Ileak(S). The expression of the
variance of the leakage current is cumbersome. For ease of readability, it can be
broken down into three components:

V ar(Ileak) = V ar(n · I0(S) + ϵ(S) ·HW) = p1 + p2 + p3 (10.11)

Where, taking into account that HW and ϵ(S) are independent random
variables:

p1 = V ar(HW · ϵ(S)) =

= σ2
HWσ2

ϵ + µ2
ϵσ

2
HW + µ2

HWσ2
ϵ (10.12)

Where we have use the fact that HW and ϵ(S) are independent from one
another. Also:

p2 = V ar(n · I0(S)) = n2 · σ2
I0 (10.13)

And finally:

p3 = 2 · Cov(HW · ϵ(S), n · I0(S)) =

= 2 · n · µHW · Cov(ϵ(S), I0(S)) (10.14)

175

where σ2
ϵ is the variance of ϵ(S) and µI0 and σ2

I0 the expected value and variance
of I0(S).

Next we need to determine the expected value of ϵ(S), I0(S), and their
variance.

In order to do so, we use the definition of the expected value for discrete
random variables.

E[X] =

n∑
i=0

xi · P [X = xi] (10.15)

Having ϵ(S) = aϵ · ebϵ·(VBBq+S·∆Vbb), and with S being able to adopt any
integer value between −smax and smax, with probability:

P [S = i] =
1

2smax + 1

∀i,−smax ≤ i ≤ smax (10.16)

With this, we have:

E[ϵ(S)] =

smax∑
i=−smax

1

2smax + 1
· aϵ · ebϵ·(VBBq+i·∆Vbb) (10.17)

This expression can be solved as a geometric series once we have performed
an index shift. Consider m = i+ smax. Then:

E[ϵ(S)] =
1

2smax + 1
·
2·smax∑
m=0

aϵ · ebϵ·(VBBq+(m−smax)·∆Vbb) =

1

2smax + 1
· aϵ · ebϵ·VBBq · e−bϵ·smax·∆Vbb ·

2·smax∑
m=0

em·bϵ·∆Vbb

And using the fact that, for a geometric series:

n−1∑
i=0

a · ri = a · (1− rn

1− r
) (10.18)

We can finally express the expected value of ϵ(S) as:

E[ϵ(S)] =
1

2smax + 1
· aϵ · ebϵ·VBBq · e−bϵ·smax·∆Vbb · (1− ebϵ·∆Vbb·(2smax+1))

(1− ebϵ·∆Vbb)
(10.19)

The same procedure can be use to calculate the expected value of I0(S).

176

To calculate the variance of I0(S) and ϵ(S) we use the definition V ar(X) =
E[X2]− E[X]2.

We note that E[X2] can be calculated using the definition:

E[X] =

n∑
i=0

x2
i · P [X = xi] (10.20)

Which leads to:

E[ϵ2(S)] =
1

2smax + 1
· a2ϵ · e2·bϵ·VBBq · e−2·bϵ·smax·∆Vbb · (1− e2·bϵ·∆Vbb·(2smax+1))

(1− e2·bϵ·∆Vbb)
(10.21)

And the variance can be calculated by simply subtracting equation 10.19
from equation 10.21.

Note that the Covariance between ϵ(S) and I0(S) appears in Equation
(10.14). To compute it, we used the definition:

Cov(ϵ(S), I0(S)) = E[ϵ(S) · I0(S)]− E[ϵ(S)]E[I0(S)] (10.22)

Both E[ϵ(S)] and [I0(S)] are already well defined. Since each realization
of S is independent from each other, the covariance between experiments is
zero. Thus, only the intra-experiment covariance is meaningful. In this way,
the covariance can be calculated by noting that E[ϵ(S) · I0(S)] is simply:

E[ϵ(S) · I0(S)] =
1

2smax + 1

∑
i

ϵ(si)I0(si) =

1

2smax + 1
· (aϵ · aI0) · e(bϵ+bI0)·VBBq · e(bϵ+bI0)·smax·∆Vbb ·

· (1− e(bϵ+bI0)·∆Vbb·(2smax+1))

(1− e(bϵ+bI0)·∆Vbb)
(10.23)

177

10.3 Annex III - Current Balancing Proof of
Concept Design

In this section, the process and analysis with which the different parameter
values is chosen is thoroughly explained.

10.3.1 Vref

We begin our implementation of the system by determining the different pa-
rameters that govern the behaviour of the Time-to-Digital sensor.

In order to do so, we begin by implementing a testbench at the schematic
level. The schematic can be seen in Fig. 10.1, where the registers and the
sensing capacitors are connected to Vdd through a power switch. We perform
a transient simulation, whereby both the registers under test and the sensing
capacitors are connected to Vdd while the registers are loaded with a 1 and a
0. After sufficient time has passed for the circuit to settle, the power switch is
disconnected and the registers begin to slowly discharge the sensing capacitors.

Figure 10.1: Schematic representation of the circuit implementing the capacitive
sensing capabilities of the TtD converter. The reg! label refers to the power pin
of the registers under test

178

We are interested in seeing which value of ∆Vc (Equation 7.23) produces
the best quality of comparison. As stated in previous sections, as the capacitor
discharges, the value of Vdd that powers the register under test diminishes.
At some point, the register will stop behaving at nominal conditions, and its
behaviour and current profile might not be defined and/or representative of its
nominal operation.

With ∆Vc being equal to Vdd − Vref , the question at hand is which value
of Vref implements the best possible comparison. This value also affects the
sensitivity k of the TtD converter (with k = ∆Vc · Csense · fs).

To determine the value of Vref we take a reverse approach. We begin by
manually seeking a body bias point Vbbn × Vbbp at a given temperature where
the magnitude of ϵ is vanishingly small. We then set the body bias values of the
registers under test at these magnitudes, and perform a transient simulation of
the testbench schematic.

Thus, both Csense capacitors first charges to Vdd, and then are allowed to
fully discharge through the registers storing a 1 and storing a 0. The voltage
across the capacitors terminals is then measured and compared. The resulting
waveform can be seen in Fig. 10.2.

Figure 10.2: Vc1 (purple) and Vc0 (orange) as a function of time

It can be seen that, the closer Vref is to Vdd, the more similar the disparities
between Vc0 and Vc1 are at current balancing conditions. This behavior is
consistent at all temperatures examined (between 27 ºC and 80 ºC). Beyond

179

Vref = 0.8V , the rate of discharge diverges, indicating that Vref should be kept
above 0.8 V at all times.

We next perform the difference of integration of curves Vc0 and Vc1. That
is, while the sensor measures and compares the time it take discharge the ca-
pacitors, the static current that discharges the capacitors might evolve as the
capacitor is discharging. On the other hand, ϵ is measured at static conditions.
Thus, for a body bias point (manually sought) in which ϵ becomes vanishingly
small, we are interested in determining which value of Vref (above 0.8 V) pro-
duces the smallest error.

In order to do so, we compute the equation:∫ t=T

t=0

Vc0(t)− Vc1(t)dt = error (10.24)

Where the value t = 0 is the time at which the capacitors begin discharging,
and the value t = T is the time at which capacitor Vc1 has reached the desired
value of Vref .

We then compare for which value of Vref such that Vc1(t = T) = Vref the
error is smaller. We try this for Vref = 0.85 V and Vref = 0.80 V. We don’t go
any higher because then the sensor would be loosing sensitivity.

Unfortunately the results are not temperature consistent. That is, for some
temperatures, having Vref = 0.85 V produces smaller errors, but for other
temperatures having Vref = 0.80 V produces better results. As such, we finally
settle for Vref = 0.80 V, which would produce a higher value of ∆VC and, thus,
k.

10.3.2 fs and Csense

The determination of Csense and fs does not respond to any empirical un-
derstanding, but rather the sensitivity requirements of the TtD converter and
limitations of the technology. The 28 nm, FDSOI registers have been seen in
other projects within the research group to be relatively fast (up to 1 GHz of
operating frequency), particularly for the case of LVT, FBB registers operating
at nominal conditions (Vdd = 1 V). However, registers implemented with RVT,
RBB transistors become slower as their body bias increases, so a conservative
approach is initially taken with fs = 250MHz.

With this, we are left with the value of Csense, which will be determined
depending on the required sensitivity k.

We have seen that, without the hysteresis condition, the sensor can ”choke”
at given temperatures. Assuming, for the moment, a maximum operating tem-
perature of 80 ºC, and that the system begins operating at this temperature,
the sensor must be able to discriminate the leakage currents that arise at these
operating conditions. With that, we first observe which is the maximum leakage
current achieved at 80ºC, and a body bias condition of Vbbn = Vbbp = 0 V.

Under this conditions, the simulation of the registers under test bench shows
a maximum leakage current of IMAX = 42 nA. Thus, the sensor must be able

180

to, at least, detect leakage currents of up to 42 nA. The minimum sensitivity
kmin can then be calculated with the following equation, solving for n = 1.

n =
kmin

Imax
(10.25)

Under these conditions, in order for n to equal 1, kmin = IMAX . With this,
kmin = 42 · 10−9 A−1. With the conditions that ∆Vc = 0.2 V and fs = 250
MHz, Csensemin

must equal 0.84 fF.
At the same time, the value of Csense is also constrained by the Hysteresis

conditions and the desired ϵ sensitivity.
The hysteresis condition is set such that the leakage currents of registers

storing a 0 (I0) ranges between 10 and 15 nA, such that if the sensor detects
that I0 > 15 nA, the hysteresis condition is activated and kept active until
I0 < 10 nA.

Assuming the worst case regarding the value of I0 under hysteresis conditions
(that is, I0 = 15 nA), we settle for the moment for a value of Csense = 750fF .
This sets k = 3.75 · 10−5. Assuming that I1 ≈ I0 >> ϵ, the sensitivity of the
sensor can be determined as:

n0 − n1 = k · ϵ

I20
(10.26)

1 = 3.75 · 10−5 · ϵ

(15 · 10−9)2
(10.27)

With this, we have ∆ϵ = 6 pA.
Note that it might be possible to relax these conditions somewhat. Depend-

ing on the granularity of the charge pump, the step increase of the body bias
might produce changes in ϵ(Vbbn, Vbbp) greater than the minimum sensitivity of
the sensor.

In fact, if we approximate the gradient of ϵ with its total differential 7.35
and consider a granularity of the Charge Pumps such that it can only modify
the body bias through discrete increments of 50 mV, only in very narrow areas
is |dϵ| ≈ 6 pA.

At the same time, in order to keep the same level of sensitivity, there is a
trade-off between the frequency at which the sensor operates (fs) and the value
of the sensing capacity (Csense). Increasing the frequency by a factor p allows the
reduction of the required capacitance by the same factor k = ∆Vc ·p ·fs · Csense

p ,
establishing a trade-off between power and area.

Nonetheless, these values serve just to set an initial proof of concept, and
are intended to be functional rather than optimized.

10.3.3 Charge-Pumps

The charge-pumps in this initial design are approximated as the ideal switched
circuits depicted in Figs. 7.19 and 7.18.

181

Both circuits present a capacitive load Pwell and Nwell of 1 pF, connected
in parallel to the body bias wells of the register under test.

We note that, when the discharging switch is opened and the charging switch
is closed, the dynamics governing the charging of the load capacitor can be
expressed in the frequency domain as:

Ic(S) =
(Vdd − Vc)

Rswitch
· 1

S + 1
RswitchC

(10.28)

Converting to the time domain and integrating for the time the signal CLKP
is active (TP), the increase in voltage of the capacitive load can be written as:

∆Vc = C · (Vdd − Vc)(1− e−
Tp

RsC) (10.29)

With this, it can be seen that the amount of charged transferred from the
power supply to the capacitive load varies with the voltage currently present
between the capacitor terminals. Thus, for a given pulse of duration Tp, the
higher the current voltage Vc, the smaller ∆Vc is. Because of this, the granularity
of this idealized charge pump be can be solved at the point of maximum charge
transfer. That is, when Vc = 0 V.

Setting Tp at 1 ns through a counter that increments once the drivers’ FSM
enters the state Do, and having set the capacitive load to 1 pF, we must only
solve for a switch resistance that allows a maximum voltage increase of ∆Vc = 50
mV. This leaves us with a switch resistance of approximately 25 kΩ.

10.3.4 Number of Bits, nmin and nMAX

With these, we now determine the number of bits the TtD converter counter
comprises, as well as the reference values of the hysteresis comparator.

With a k = 3.75 · 10−5 A−1, and presuming a minimum detectable current
of I0 ≈ I1 = 1 nA, the number of counts the sensor can reach is:

n =
k

I0
=

3.75 · 10−5

1 · 10−9
= 37500 (10.30)

And the number of bits required to count up to this number is:

bits =
ln(37500)

ln(2)
(10.31)

This amounts to 15.20 bits, which must be rounded up to 16 and, as the bits
are signed, further to 17.

Finally, the hysteresis conditions are determined by:

nHmax =
k

Ilower

nHmin =
k

Ihigher

182

With k = 3.75 · 10−5 A−1 and the lower hysteresis condition set at 10 nA,
nHmax = 3750. Liwekise, with the higher hysteresis condition set at 15 nA, we
have nHmin = 2500.

183

10.4 Annex IV - PCC for register instances un-
der process and mismatch variability

In order to derive an expression of the PCC under an instance of two registers
under process and mismatch variation, an expression for the covariance must
be solved. In the following expressions, x1 and x2 represent the bits stored in,
respectively, registers 1 and 2; and I1,i, I0,i are the leakage current consumption
of register i when they store either a 1 or a 0. With this, we have:

E[(x1 + x2) · Ileak] =
E[x2

1 · I1,1 + x2
2 · I1,2 + x2 · x1 · I1,1 + x2 · x1 · I0,1 + x1 · x2 · I1,2 + x1 · x2 · I0,2]

(10.32)

Where we have used the fact that x1 · x1 = x2 · x2 = 0. Again, assuming
that each bit follows a discrete, uniform, unbiased probability distribution, with
E[xi] = 1/2 and V ar(xi) = 1/4, for every i, and that bits are independent from
one another, we have:

E[(x1 + x2) · Ileak] =
3

4
· (I1,1 + I1,2) +

1

4
· (I0,1 + I0,2) (10.33)

Continuing with E[x1 + x2], we have:

E[x1 + x2] = 1 (10.34)

Then:

E[Ileak] = E[I1,1 · x1 + I0,1 · x1 + I1,2 · x2 + I0,2 · x2] =

1

2
· (I1,1 + I1,2) +

1

2
· (I0,1 + I0,2) (10.35)

And, finally:

Cov(Ileak, x1 + x2) = E[Ileak · (x1 + x2)]− E[Ileak] · E[x1 + x2] =

1

4
· [I1,1 + I1,2]−

1

4
· [I0,1 + I0,2] (10.36)

This expression can be rearranged to:

Cov(Ileak, x1 + x2) =

1

4
· [I1,1 − I0,1] +

1

4
· [I1,2 − I0,2] (10.37)

184

The variance of Ileak can be solved by noting that x1 and x2 (and any
combination of their complements) are independent from each other. Thus:

V ar(Ileak) =

V ar(x1 · I1,1 + x1 · I0,1) + V ar(x2 · I1,2 + x2 · I0,2) (10.38)

With this, we have:

V ar(x1 · I1,1 + x1 · I0,1) =
1

4
· (I21,1 + I20,1 − 2 · I1,1 · I0,1) (10.39)

Which can be simplified to:

V ar(x1 · I1,1 + x1 · I0,1) =
1

4
(I1,1 − I0,1)

2 (10.40)

Thus:

V ar(Ileak) =
1

4
(I1,1 − I0,1)

2 +
1

4
(I1,2 − I0,2)

2 (10.41)

And, finally, the PCC can be expressed as:

ρ =
1
4 · (I1,1 − I0,1) +

1
4 · (I1,2 − I0,2)√

1
4 (I1,1 − I0,1)2 +

1
4 (I1,2 − I0,2)2 ·

√
1
2

(10.42)

We can now make use of the definition of ϵ. That is:

(I1,1 − I0,1) = ϵ1

(I1,2 − I0,2) = ϵ2 (10.43)

And substitute equations 10.43 into 10.42:

ρ =
1
4 · ϵ1 + 1

4 · ϵ2√
1
4ϵ

2
1 +

1
4ϵ

2
2 ·
√

1
2

(10.44)

Finally, for an n-bit register array, we have:

ρIleak,HW =
1√
n
· ϵ1 + ϵ2 + ...+ ϵn√

ϵ21 + ϵ22 + ...+ ϵ2n
(10.45)

185

Bibliography

[1] D. Justo, D. Cavalheiro, and F. Moll, “Body bias generators for ultra low
voltage circuits in fdsoi technology,” in 2017 32nd Conference on Design
of Circuits and Integrated Systems (DCIS), 2017, pp. 1–6.

[2] R. Schaller, “Moore’s law: past, present and future,” IEEE Spectrum,
vol. 34, no. 6, pp. 52–59, 1997.

[3] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,” in Advances in Cryptology — CRYPTO
’96, N. Koblitz, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996,
pp. 104–113.

[4] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 1666, pp. 388–397,
1999.

[5] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Investigations of power
analysis attacks on smartcards,” in Proceedings of the USENIX Workshop
on Smartcard Technology on USENIX Workshop on Smartcard Technol-
ogy, ser. WOST’99. USA: USENIX Association, 1999, p. 17.

[6] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Reveal-
ing the Secrets of Smart Cards, 1st ed. Springer Publishing Company,
Incorporated, 2010.

[7] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Examining smart-card
security under the threat of power analysis attacks,” IEEE Transactions
on Computers, vol. 51, no. 5, pp. 541–552, 2002.

[8] S. Nikova, C. Rechberger, and V. Rijmen, “Threshold implementations
against side-channel attacks and glitches,” in Information and Communi-
cations Security, P. Ning, S. Qing, and N. Li, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 529–545.

[9] M. Alioto, M. Poli, and S. Rocchi, “A general power model of differential
power analysis attacks to static logic circuits,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 18, no. 5, pp. 711–724, 2010.

186

[10] S. Clerc, T. Di Gilio, and A. Cathelin, ”The Fourth Terminal”, ser.
Integrated Circuits and Systems, S. Clerc, T. Di Gilio, and A. Cathelin,
Eds. Cham: Springer International Publishing, 2020. [Online]. Available:
http://link.springer.com/10.1007/978-3-030-39496-7

[11] D. R. Stinson and M. B. Paterson, Cryptography: Theory and practice,
4th ed. Chapman & Hall/CRC, 2018.

[12] A. Kerckhoffs, “La cryptographie militaire,” Journal des Sciences Mili-
taires, pp. 161–191, 1883.

[13] C. E. Shannon, “Communication theory of secrecy systems,” The Bell
System Technical Journal, vol. 28, no. 4, pp. 656–715, 1949.

[14] M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” in Advances
in Cryptology — EUROCRYPT ’93, T. Helleseth, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1994, pp. 386–397.

[15] C. D. Canniere and B. Preneel, “Trivium specifications,” eSTREAM,
ECRYPT Stream Cipher Project, vol. 2006, 2006.

[16] R. Bevan and E. Knudsen, “Ways to enhance differential power analysis,”
in Information Security and Cryptology — ICISC 2002, P. J. Lee and
C. H. Lim, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 327–342.

[17] Q. Luo and Y. Fei, “Algorithmic collision analysis for evaluating cryp-
tographic systems and side-channel attacks,” 2011 IEEE International
Symposium on Hardware-Oriented Security and Trust, HOST 2011, pp.
75–80, 2011.

[18] Y. Fei, Q. Luo, and A. A. Ding, “A statistical model for dpa with novel
algorithmic confusion analysis,” in Cryptographic Hardware and Embed-
ded Systems – CHES 2012, E. Prouff and P. Schaumont, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 233–250.

[19] Y. Fei, A. A. Ding, J. Lao, and L. Zhang, “A Statistics-
based Fundamental Model for Side-channel Attack Analysis.” IACR
Cryptology ePrint Archive, vol. 2014, p. 152, 2014. [Online]. Available:
https://eprint.iacr.org/2014/152

[20] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), vol. 3156, pp. 16–29, 2004.

[21] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to differential
power analysis,” Journal of Cryptographic Engineering, vol. 1, no. 1, pp.
5–27, 2011.

187

http://link.springer.com/10.1007/978-3-030-39496-7
https://eprint.iacr.org/2014/152

[22] C. Clavier, J. S. Coron, and N. Dabbous, “Differential power analysis in
the presence of hardware countermeasures,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 1965 LNCS, pp. 252–263, 2000.

[23] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound ap-
proaches to counteract power-analysis attacks,” Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 1666, pp. 398–412, 1999.

[24] L. Goubin and J. Patarin, “DES and differential power analysis the “dupli-
cation” method,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), vol. 1717, pp. 158–172, 1999.

[25] T. S. Messerges, “Using Second-Order Power Analysis to attack DPA re-
sistant software,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), vol. 1965 LNCS, pp. 238–251, 2000.

[26] M. Joye, P. Paillier, and B. Schoenmakers, “On second-order differential
power analysis,” Lecture Notes in Computer Science, vol. 3659, pp. 293–
308, 2005.

[27] E. Prouff, M. Rivain, and R. Bévan, “Statistical analysis of second order
differential power analysis,” IEEE Transactions on Computers, vol. 58,
no. 6, pp. 799–811, 2009.

[28] K. Tiri, M. Akmal, and I. Verbauwhede, “A dynamic and differential
CMOS logic with signal independent power consumption to withstand
differential power analysis on smart cards,” in Proceedings of the 28th
European Solid-State Circuits Conference, 2002, pp. 403–406.

[29] D. Sokolov, J. Murphy, A. Bystrov, and A. Yakovlev, “Improving the
security of dual-rail circuits,” in Cryptographic Hardware and Embedded
Systems - CHES 2004, M. Joye and J.-J. Quisquater, Eds. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2004, pp. 282–297.

[30] K. Tiri and I. Verbauwhede, “A logic level design methodology for a secure
DPA resistant ASIC or FPGA implementation,” in Proceedings Design,
Automation and Test in Europe Conference and Exhibition, vol. 1, 2004,
pp. 246–251 Vol.1.

[31] T. Popp and S. Mangard, “Masked dual-rail pre-charge logic: Dpa-
resistance without routing constraints,” in Cryptographic Hardware and
Embedded Systems – CHES 2005, J. R. Rao and B. Sunar, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 172–186.

188

[32] K. Tiri and I. Verbauwhede, “Securing Encryption Algorithms against
DPA at the Logic Level: Next Generation Smart Card Technology,” in
Cryptographic Hardware and Embedded Systems - CHES 2003, C. D. Wal-
ter, Ç. K. Koç, and C. Paar, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 125–136.

[33] A. Shamir, “Protecting smart cards from passive power analysis with de-
tached power supplies,” in Cryptographic Hardware and Embedded Sys-
tems — CHES 2000, Ç. K. Koç and C. Paar, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 71–77.

[34] W. Yu and S. Kose, “Time-Delayed Converter-Reshuffling: An Efficient
and Secure Power Delivery Architecture,” IEEE Embedded Systems Let-
ters, vol. 7, no. 3, pp. 73–76, 2015.

[35] W. Yu, O. A. Uzun, and S. Köse, “Leveraging on-chIP voltage regulators
as a countermeasure against side-channel attacks,” Proceedings - Design
Automation Conference, vol. 2015-July, 2015.

[36] W. Yu and S. Köse, “Charge-Withheld Converter-Reshuffling: A Counter-
measure Against Power Analysis Attacks,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 63, no. 5, pp. 438–442, 2016.

[37] W. Yu and S. Köse, “Exploiting voltage regulators to enhance various
power attack countermeasures,” IEEE Transactions on Emerging Topics
in Computing, vol. 6, no. 2, pp. 244–257, 2018.

[38] W. Yu and Y. Wen, “Leakage Power Analysis (LPA) Attack in Breakdown
Mode and Countermeasure,” International System on Chip Conference,
vol. 2018-Septe, pp. 238–243, 2019.

[39] C. Tokunaga and D. Blaauw, “Secure aes engine with a local switched-
capacitor current equalizer,” in 2009 IEEE International Solid-State Cir-
cuits Conference - Digest of Technical Papers, 2009, pp. 64–65,65a.

[40] C. Tokunaga and D. Blaauw, “Securing encryption systems with a
switched capacitor current equalizer,” IEEE Journal of Solid-State Cir-
cuits, vol. 45, no. 1, pp. 23–31, 2010.

[41] S. Yang, W. Wolf, N. Vijaykrishnan, D. N. Serpanos, and Y. Xie, “Power
attack resistant cryptosystem design: A dynamic voltage and frequency
switching approach,” Proceedings -Design, Automation and Test in Eu-
rope, DATE ’05, vol. 2005, pp. 64–69, 2005.

[42] P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey, “A voltage
reduction technique for digital systems,” in 1990 37th IEEE International
Conference on Solid-State Circuits, 1990, pp. 238–239.

189

[43] K. Baddam and M. Zwolinski, “Evaluation of dynamic voltage and fre-
quency scaling as a differential power analysis countermeasure,” Proceed-
ings of the IEEE International Conference on VLSI Design, pp. 854–859,
2007.

[44] S. Ordas, M. Carbone, G. Ducharme, S. Tiran, and P. Maurine, “Effi-
ciency of the rdvfs countermeasure,” in 2014 IEEE Faible Tension Faible
Consommation, 2014, pp. 1–4.

[45] J. Giorgetti, G. Scotti, A. Simonetti, and A. Trifiletti, “Analysis of Data
Dependence of Leakage Current in CMOS Cryptographic Hardware,”
in Proceedings of the 17th ACM Great Lakes Symposium on VLSI, ser.
GLSVLSI ’07. New York, NY, USA: Association for Computing Machin-
ery, 2007, p. 78–83.

[46] Lang Lin and W. Burleson, “Leakage-based differential power analysis
(LDPA) on sub-90nm CMOS cryptosystems,” in 2008 IEEE International
Symposium on Circuits and Systems, 2008, pp. 252–255.

[47] M. Alioto, M. Poli, and S. Rocchi, “Power analysis attacks to crypto-
graphic circuits: A comparative analysis of DPA and CPA,” Proceedings
of the International Conference on Microelectronics, ICM, pp. 333–336,
2008.

[48] M. Alioto, S. Bongiovanni, M. Djukanovic, G. Scotti, and A. Trifiletti, “Ef-
fectiveness of leakage power analysis attacks on dpa-resistant logic styles
under process variations,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 61, no. 2, pp. 429–442, 2014.

[49] A. Moradi, “Side-channel leakage through static power,” in Cryptographic
Hardware and Embedded Systems – CHES 2014, L. Batina and M. Rob-
shaw, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp.
562–579.

[50] S. M. Del Pozo, F. Standaert, D. Kamel, and A. Moradi, “Side-channel
attacks from static power: When should we care?” in 2015 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), 2015, pp.
145–150.

[51] T. Moos, A. Moradi, and B. Richter, “Static power side-channel anal-
ysis—an investigation of measurement factors,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 28, no. 2, pp. 376–389,
2020.

[52] J. Waddle and D. Wagner, “Towards efficient second-order power anal-
ysis,” in Cryptographic Hardware and Embedded Systems - CHES 2004,
M. Joye and J.-J. Quisquater, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 1–15.

190

[53] T. Moos, A. Moradi, and B. Richter, “Static power side-channel analysis
of a threshold implementation prototype chip,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017, 2017, pp. 1324–
1329.

[54] W. Yu and S. Köse, “Security implications of simultaneous dynamic and
leakage power analysis attacks on nanoscale cryptographic circuits,” Elec-
tronics Letters, vol. 52, no. 6, pp. 466–468, 2016.

[55] N. Zhu, Y. Zhou, and H. Liu, “Employing Symmetric Dual-Rail Logic to
Thwart LPA Attack,” IEEE Embedded Systems Letters, vol. 5, no. 4, pp.
61–64, 2013.

[56] B. Fadaeinia, T. Moos, and A. Moradi, “BSPL: Balanced Static Power
Logic,” IACR Cryptol. ePrint Arch., vol. 2020, p. 558, 2020.

[57] ——, “Balancing the leakage currents in nanometer cmos logic - a
challenging goal,” Applied Sciences, vol. 11, no. 15, 2021. [Online].
Available: https://www.mdpi.com/2076-3417/11/15/7143

[58] Nianhao Zhu, Yujie Zhou, and Hongming Liu, “Counteracting leakage
power analysis attack using random ring oscillators,” in PROCEEDINGS
OF 2013 International Conference on Sensor Network Security Technology
and Privacy Communication System, 2013, pp. 74–77.

[59] W. Yu and S. Köse, “Security-Adaptive Voltage Conversion as a
Lightweight Countermeasure Against LPA Attacks,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 7, pp. 2183–
2187, 2017.

[60] W. Yu and S. Köse, “False Key-Controlled Aggressive Voltage Scal-
ing: A Countermeasure Against LPA Attacks,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 12,
pp. 2149–2153, 2017.

[61] Y. Wen and W. Yu, “Breaking LPA-resistant cryptographic circuits
with principal component analysis,” Integration, vol. 80, pp. 1–4, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167926021000511

[62] J. Zhu, R. Martin, and J. Chen, “Punchthrough current for submicrometer
mosfets in cmos vlsi,” IEEE Transactions on Electron Devices, vol. 35,
no. 2, pp. 145–151, 1988.

[63] I. De and C. M. Osburn, “Impact of super-steep-retrograde channel dop-
ing profiles on the performance of scaled devices,” IEEE Transactions on
Electron Devices, vol. 46, no. 8, pp. 1711–1717, 1999.

191

https://www.mdpi.com/2076-3417/11/15/7143
https://www.sciencedirect.com/science/article/pii/S0167926021000511
https://www.sciencedirect.com/science/article/pii/S0167926021000511

[64] A. Quelen, G. Pillonnet, P. Flatresse, and E. Beigné, “A 2.5µW
0.0067mm2 automatic back-biasing compensation unit achieving 50%
leakage reduction in FDSOI 28nm over 0.35-to-1V VDD range,” Digest
of Technical Papers - IEEE International Solid-State Circuits Conference,
vol. 61, pp. 304–306, 2018.

[65] M. Blagojevic, M. Cochet, B. Keller, P. Flatresse, A. Vladimirescu, and
B. Nikolic, “A fast, flexible, positive and negative adaptive body-bias
generator in 28nm FDSOI,” IEEE Symposium on VLSI Circuits, Digest
of Technical Papers, vol. 2016-Septe, pp. 9–10, 2016.

[66] T. Kuroda, T. Fujita, S. Mita, T. Nagamatu, S. Yoshioka, F. Sano,
M. Norishima, M. Murota, M. Kako, M. Kinugawa, M. Kakumu, and
T. Sakurai, “A 0.9 V 150 MHz 10 mW 4 mm/sup 2/ 2-D discrete
cosine transform core processor with variable-threshold-voltage scheme,”
in 1996 IEEE International Solid-State Circuits Conference. Digest of
TEchnical Papers, ISSCC, vol. 9200, no. 11. IEEE, 1996, pp. 166–167,.
[Online]. Available: http://ieeexplore.ieee.org/document/488555/

[67] N. Kamae, A. K. Islam, A. Tsuchiya, and H. Onodera, “A body bias gen-
erator with wide supply-range down to threshold voltage for within-die
variability compensation,” 2014 IEEE Asian Solid-State Circuits Confer-
ence, A-SSCC - Proceedings of Technical Papers, pp. 53–56, 2015.

[68] A. Siddiqi, N. Jain, and M. Rashed, “Back-bias generator for post-
fabrication threshold voltage tuning applications in 22nm FD-SOI pro-
cess,” Proceedings - International Symposium on Quality Electronic De-
sign, ISQED, vol. 2018-March, pp. 268–273, 2018.

[69] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chan-
drakasan, and V. De, “Adaptive body bias for reducing impacts of die-to-
die and within-die parameter variations on microprocessor frequency and
leakage,” Digest of Technical Papers - IEEE International Solid-State Cir-
cuits Conference, vol. 1, no. SUPPL., pp. 344–345+538, 2002.

[70] R. Giterman, O. Keren, and A. Fish, “Improving the Security of a 6T
SRAM using Body-Biasing in 28 nm FD-SOI,” in 2018 IEEE SOI-3D-
Subthreshold Microelectronics Technology Unified Conference (S3S), 2018,
pp. 1–2.

[71] National Institute of Standards and Technology, “Advanced encryption
standard,” NIST FIPS PUB 197, 2001.

[72] ——, “Advanced Encryption Standard,” vol. 26, 2001.

[73] Y. Jia, Y. Hu, F. Wang, and H. Wang, “Correlation power analysis of
Trivium,” Security and Communication Networks, vol. 5, no. 5, pp. 479–
484, may 2012. [Online]. Available: http://doi.wiley.com/10.1002/sec.329

192

http://ieeexplore.ieee.org/document/488555/
http://doi.wiley.com/10.1002/sec.329

[74] G. Villar-Piqué, H. J. Bergveld, and E. Alarcón, “Survey and benchmark
of fully integrated switching power converters: Switched-capacitor versus
inductive approach,” IEEE Transactions on Power Electronics, vol. 28,
no. 9, pp. 4156–4167, 2013.

[75] M. H. Eid and E. Rodriguez-Villegas, “Analysis and design of
cross-coupled charge pump for low power on chip applications,”
Microelectronics Journal, vol. 66, pp. 9–17, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0026269216307492

[76] K. Palma and F. Moll, “Linear, time-invariant model of the dynamics of
a cmos cc-cp,” in 2019 IEEE 62nd International Midwest Symposium on
Circuits and Systems (MWSCAS), 2019, pp. 726–729.

[77] B. Nowacki, N. Paulino, and J. Goes, “A simple 1 GHz non-overlapping
two-phase clock generators for SC circuits,” in Proceedings of the 20th
International Conference Mixed Design of Integrated Circuits and Systems
- MIXDES 2013, 2013, pp. 174–178.

[78] P. E. Allen, CMOS analog circuit design, int. 2nd ed. ed., ser. Oxford series
in electrical and computer engineering. New York: Oxford University
Press, 2010.

[79] T. Saito and S. Komatsu, “A low-voltage hysteresis comparator for low
power applications,” in 2017 24th IEEE International Conference on Elec-
tronics, Circuits and Systems (ICECS), 2017, pp. 427–430.

[80] P. R. Gray, Analysis and Design of Analog Integrated Circuits, 5th ed.
Wiley Publishing, 2009.

[81] J. Vazquez and J. Pineda de Gyvez, “Built-in current sensor for ∆IDDQ
testing,” IEEE Journal of Solid-State Circuits, vol. 39, no. 3, pp. 511–518,
2004.

[82] S. Henzler, Time-to-Digital Converters, 1st ed. Springer Publishing Com-
pany, Incorporated, 2010.

[83] O. Uzun, “Speed, Power Efficiency, and Noise Improvements for
Switched Capacitor Voltage Converters - PhD,” no. June, 2017. [Online].
Available: https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=
8167&context=etd

[84] B. B. Kormann, “High-Efficiency , Regulated Charge Pumps for High-
Current Applications,” pp. 1–15, 2003.

[85] S. N. Dhanuskodi, S. Keshavarz, and D. Holcomb, “Llpa: Logic state
based leakage power analysis,” in 2016 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2016, pp. 218–223.

193

https://www.sciencedirect.com/science/article/pii/S0026269216307492
https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=8167&context=etd
https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=8167&context=etd

[86] D. Das, S. Maity, S. B. Nasir, S. Ghosh, A. Raychowdhury, and S. Sen,
“High efficiency power side-channel attack immunity using noise injection
in attenuated signature domain,” in 2017 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), 2017, pp. 62–67.

[87] Y. S. Hwang, R. L. Shih, P. H. Fu, Y. J. Hsiao, J. J. Chen, and C. C. Yu,
“A compact fast-transient charge-pump boost converter using hysteretic
compensated techniques,” 2016 IEEE International Conference on Elec-
tron Devices and Solid-State Circuits, EDSSC 2016, pp. 484–487, 2016.

[88] A. Moradi and A. Poschmann, “Lightweight cryptography and DPA coun-
termeasures: A survey,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6054 LNCS, pp. 68–79, 2010.

[89] M. B. Capino, L. N. Rivera, J. A. Hora, and J. C. Pasco, “Closed-loop
step-down fractional charge pump converter in 0.18um CMOS technol-
ogy,” 8th International Conference on Humanoid, Nanotechnology, Infor-
mation Technology, Communication and Control, Environment and Man-
agement, HNICEM 2015, no. December, pp. 1–10, 2016.

[90] B. Köpf and D. Basin, “An information-theoretic model for adaptive side-
channel attacks,” in Proceedings of the ACM Conference on Computer
and Communications Security, 2007, pp. 286–296.

[91] L. Wang, C. Wu, L. Feng, A. Chang, and Y. Lian, “A Low-Power Forward
and Reverse Body Bias Generator in CMOS 40 nm,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 7, pp. 1403–
1407, 2018.

[92] E. Trichina, “Combinational logic design for aes subbyte trans-
formation on masked data,” 2003, not published elsewhere.
e.v.trichina@samsung.com 12368 received 11 Nov 2003. [Online].
Available: http://eprint.iacr.org/2003/236

[93] P. Schaumont and K. Tiri, “Masking and dual-rail logic don’t add up,” in
Cryptographic Hardware and Embedded Systems - CHES 2007, P. Paillier
and I. Verbauwhede, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 95–106.

[94] K. S. Khouri and N. K. Jha, “Leakage power analysis and reduction during
behavioral synthesis,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 10, no. 6, pp. 876–885, 2002.

[95] Q. S. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and T. Bultan, “Syn-
thesis of Adaptive Side-Channel Attacks,” Proceedings - IEEE Computer
Security Foundations Symposium, pp. 328–342, 2017.

194

http://eprint.iacr.org/2003/236

[96] M. Alioto, L. Giancane, G. Scotti, and A. Trifiletti, “Leakage power analy-
sis attacks: A novel class of attacks to nanometer cryptographic circuits,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57,
no. 2, pp. 355–367, 2010.

[97] C. H. Wann, K. Noda, T. Tanaka, M. Yoshida, and Chenming Hu, “A
comparative study of advanced mosfet concepts,” IEEE Transactions on
Electron Devices, vol. 43, no. 10, pp. 1742–1753, 1996.

[98] S. R. Banna, P. C. H. Chan, P. K. Ko, C. T. Nguyen, and Mansun Chan,
“Threshold voltage model for deep-submicrometer fully depleted soi mos-
fet’s,” IEEE Transactions on Electron Devices, vol. 42, no. 11, pp. 1949–
1955, 1995.

[99] A. Agarwal, S. Mukhopadhyay, A. Raychowdhury, K. Roy, and C. H.
Kim, “Leakage power analysis and reduction for nanoscale circuits,” IEEE
Micro, vol. 26, no. 2, pp. 68–80, 2006.

[100] F. X. Standaert, E. Peeters, G. Rouvroy, and J. J. Quisquater, “An
overview of power analysis attacks against field programmable gate ar-
rays,” Proceedings of the IEEE, vol. 94, no. 2, pp. 383–394, 2006.

[101] G. Goos, J. Hartmanis, and J. Leeuwen, Lecture Notes in Computer Sci-
ence, 1999, vol. 1716.

[102] C. C. Hu, Modern semiconductor devices for integrated circuits. Prentice
Hall, 2010.

[103] M. Bucci, L. Giancane, R. Luzzi, G. Scotti, and A. Trifiletti, “Delay-
based dual-rail precharge logic,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 19, no. 7, pp. 1147–1153, 2011.

[104] B. Halak, J. Murphy, and A. Yakovlev, “Power balanced circuits for
leakage-power-attacks resilient design,” Proceedings of the 2015 Science
and Information Conference, SAI 2015, pp. 1178–1183, 2015.

[105] H. Lohrke, S. Tajik, T. Krachenfels, C. Boit, and J.-P. Seifert,
“Key Extraction Using Thermal Laser Stimulation A Case Study on
Xilinx Ultrascale FPGAs,” tCHES 2018, vol. 2018, Issu, no. 3, pp.
573–595, 2018. [Online]. Available: https://tches.iacr.org/index.php/
TCHES/article/view/7287

[106] H. Li, K. Wu, B. Peng, Y. Zhang, X. Zheng, and F. Yu, “Enhanced
correlation power analysis attack on smart card,” Proceedings of the 9th
International Conference for Young Computer Scientists, ICYCS 2008,
pp. 2143–2148, 2008.

[107] Y. K. Ramadass and A. P. Chandrakasan, “Voltage scalable switched
capacitor DC-DC converter for ultra-low-power on-chip applications,”
PESC Record - IEEE Annual Power Electronics Specialists Conference,
pp. 2353–2359, 2007.

195

https://tches.iacr.org/index.php/TCHES/article/view/7287
https://tches.iacr.org/index.php/TCHES/article/view/7287

[108] M. Lipski and S. Gregori, “Analysis of Charge Reuse in Switched-
Capacitor Power-Converter Drivers,” Midwest Symposium on Circuits and
Systems, vol. 2019-Augus, pp. 742–745, 2019.

[109] M. Alioto, L. Giancane, G. Scotti, and A. Trifiletti, “Leakage power anal-
ysis attacks: Well-defined procedure and first experimental results,” Pro-
ceedings of the International Conference on Microelectronics, ICM, pp.
46–49, 2009.

[110] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, 4th ed. USA: Addison-Wesley Publishing Company, 2010.

[111] J. Y. Kim, Y. H. Jun, and B. S. Kong, “CMOS charge pump with transfer
blocking technique for no reversion loss and relaxed clock timing restric-
tion,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 56, no. 1, pp. 11–15, 2009.

[112] S. Mangard, “Hardware countermeasures against DPA - A statistical anal-
ysis of their effectiveness,” Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 2964, pp. 222–235, 2004.

[113] M. Safta, P. Svasta, M. Dima, A. Marghescu, and M. N. Costiuc, “De-
sign and setup of Power Analysis attacks,” 2016 IEEE 22nd International
Symposium for Design and Technology in Electronic Packaging, SIITME
2016, no. 978, pp. 110–113, 2016.

[114] M. Liu, Demystifying Switched Capacitor Circuits. Newnes, 2006.

[115] D. Kilani, B. Mohammad, H. Saleh, and M. Ismail, “Digital pulse fre-
quency modulation for switched capacitor DC-DC converter on 65nm pro-
cess,” 2014 21st IEEE International Conference on Electronics, Circuits
and Systems, ICECS 2014, vol. 2, pp. 642–645, 2015.

[116] M. S. Makowski and A. Kushnerov, “Canonical switched capacitor con-
verters. comments, complements, and refinements,” in 2017 European
Conference on Circuit Theory and Design (ECCTD), 2017, pp. 1–4.

[117] O. A. Uzun and S. Köse, “Converter-gating: A power efficient and secure
on-chip power delivery system,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 4, no. 2, pp. 169–179, 2014.

[118] N. Mentens, B. Gierlichs, and I. Verbauwhede, “Power and fault analysis
resistance in hardware through dynamic reconfiguration,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), vol. 5154 LNCS, pp. 346–362,
2008.

196

[119] G. Ghibaudo, “Electrical characterization of FDSOI CMOS devices,” Eu-
ropean Solid-State Device Research Conference, vol. 2016-Octob, pp. 135–
141, 2016.

[120] H. W. Hwang, J. H. Chun, and K. W. Kwon, “A low power cross-coupled
charge pump with charge recycling scheme,” 3rd International Conference
on Signals, Circuits and Systems, SCS 2009, pp. 1–5, 2009.

[121] P. Corsonello, S. Perri, and M. Margala, “An integrated countermeasure
against differential power analysis for secure smart-cards,” in 2006 IEEE
International Symposium on Circuits and Systems, 2006, pp. 4 pp.–.

[122] R. Jevtic, M. Ylitolva, and L. Koskinen, “Reconfigurable Switched Capac-
itor DC-DC Converter for Improved Security in IoT Devices,” 2018 IEEE
28th International Symposium on Power and Timing Modeling, Optimiza-
tion and Simulation, PATMOS 2018, pp. 243–247, 2018.

[123] M. M. Pelicia, R. P. Coimbra, and P. B. Zanetta, “A back biasing voltage
generator for 28nm UTBB-FDSOI RVT CMOS digital circuits,” ICICDT
2018 - International Conference on IC Design and Technology, Proceed-
ings, pp. 1–4, 2018.

[124] M. S. Makowski and D. Maksimovic, “Performance limits of switched-
capacitor dc-dc converters,” in Proceedings of PESC ’95 - Power Elec-
tronics Specialist Conference, vol. 2, 1995, pp. 1215–1221 vol.2.

[125] G. Villar-Piqué, H. J. Bergveld, and E. Alarcón, “Survey and benchmark
of fully integrated switching power converters: Switched-capacitor versus
inductive approach,” IEEE Transactions on Power Electronics, vol. 28,
no. 9, pp. 4156–4167, 2013.

[126] A. R. Kazmi, M. Afzal, M. F. Amjad, and A. Rashdi, “Attacks on stream
ciphers,” pp. 373–396, 2009.

[127] P. Socha, J. Brejńık, and M. Bart́ık, “Attacking AES implementations
using correlation power analysis on ZYBO Zynq-7000 SoC board,” 2018
7th Mediterranean Conference on Embedded Computing, MECO 2018 -
Including ECYPS 2018, Proceedings, no. June, pp. 1–4, 2018.

[128] R. Li, X. Cui, W. Wei, D. Wu, K. Liao, N. Liao, K. Ma, D. Yu, and X. Cui,
“A combined countermeasure against DPA and implementation on des,”
2013 IEEE International Conference of Electron Devices and Solid-State
Circuits, EDSSC 2013, pp. 3–4, 2013.

197

	Introduction
	Background
	Motivation
	Thesis Objectives
	Outline

	Fundamentals of Cryptography
	Types of Cryptosystems
	Blockciphers
	Stream Ciphers

	Security in Cryptosystems
	The piling-up lemma and linear cryptanalysis

	Side Channel Attacks & Countermeasures
	Finite State Machines and Intermediate Variables
	Differential Power Analysis Attacks
	Correlation Power Analysis Attacks
	Countermeasures to PAA
	Conclusions

	Leakage Power Analysis Attacks, Countermeasures & FDSOI technology
	Technology Scaling and Leakage Currents as a Side-Channel
	Countermeasures to LPA attacks
	FDSOI Technology in Cryptosystems

	Random Body Bias as a countermeasure to Leakage Power Analysis Attacks
	Initial Investigation & Modelling
	CPA on Dummy Cryptosystem. Empirical approach
	Countermeasure Modelling
	PCC without countermeasure
	Random body bias scheme
	Random Body Bias Analysis
	Random Body Bias: Trace Averaging
	Algorithmic Noise
	Other Conditions

	Conclusions

	Current Balancing Body Bias
	Vulnerabilities to Random Body Bias Countermeasure
	The AES and Random Body Bias
	The Trivium and Random Body Bias

	Current Balancing Body Bias
	Results
	The AES and Current Balancing Body Bias
	The Trivium and Current Balancing Body Bias

	Temperature and Other Considerations
	Conclusions

	Current Balancing Body Bias Circuit Implementation
	Circuit Implementation
	Body Bias Generator
	Hysteresis Control

	Current Balancing - Initial Exploration
	Threshold-based Voltage reference
	IDDq

	Time-to-Digital Converter
	Low vs Regular Threshold Transistors

	Control Unit & Drivers
	Results
	Circuit Simulation
	PCC

	Conclusions

	Variability Assessment
	Initial Approach - Montecarlo Simulations
	Variability Analysis - Ideal Distribution
	Results

	Variability analysis - Register Instances
	Folded Normal Distribution
	Results

	Conclusions

	Conclusions
	Publications

	Annexes
	Annex I - Perfect Secrecy
	Annex II - PCC Derivation Under Random Body Bias Scheme
	Annex III - Current Balancing Proof of Concept Design
	Vref
	fs and Csense
	Charge-Pumps
	Number of Bits, nmin and nMAX

	Annex IV - PCC for register instances under process and mismatch variability

