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Chapter 5

Adaptive Digital Baseband
Predistortion Linearization

5.1 Introduction

As it has been discussed in previous Chapters, the use of linearizers permits finding a compromise
between linearity and power efficiency. PA linearization allows the use of more efficient PAs
despite the nonlinear distortion introduced by them, since linearization techniques are aimed
at compensating this nonlinear distortion. Moreover, as reported in Chapter 2, since modern
communication standards use high speed envelope signals presenting significant bandwidths,
memory effects have to be taken into account. Among PA linearizers, digital predistortion takes
advantage of the already existing digital signal processing (DSP) devices in transmitters (to cope
with signal coding protection and modulation required in modern standards), thus reducing the
RF hardware adjustment problems. In addition, as discussed in Chapter 3, DPD is a versatile
linearization technique that takes advantage of the software defined radio (SDR) solutions,

allowing reconfigurability and being more independent of a particular RF front-end.

Memory effects do not affect equally to all linearization techniques, for example, feedback
or feedforward linearizers are less sensitive to PA behavior than DPD. Digital predistortion
linearization is quite sensitive to memory effects, which can be a drawback when trying to
cancel distortion in wideband signals, since its linearization performance is reduced. Thanks
to the envelope filtering technique it is possible to reproduce the inverse memory effects that
are generated inside the PA aiming at a later cancelation. For that reason, an overview on PA
behavioral models capable of reproducing PA nonlinear behavior and memory effects has been

previously presented in Chapter 4.

As discussed in Chapter 4, the nonlinear auto-regressive moving average (NARMA) model
is capable of reproducing both PA nonlinear distortion and dynamics. Moreover, it has the

advantage of introducing a nonlinear feedback path that may permit relaxing the complexity
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86 5.1. Introduction

of the PA model, in comparison to a model using only FIR terms. However an additional test
on its stability is a mandatory previous step that has to be performed in order to prevent the

whole system from instabilities.

The main contribution of this thesis, and the scope of the present Chapter, is to propose a
new digital baseband adaptive predistorter based in a NARMA structure whose parameters can
be easily obtained from a closely related NARMA model of the PA. This kind of model embeds
both linear and nonlinear parts, thus avoiding a cascaded Linear — Nonlinear decomposition
as in Hammerstein or Wiener models. In addition, the NARMA DPD is well suited for being
implemented by using a set of simple look-up tables (LUTs). The adaptation process of the
proposed DPD relies just on the PA NARMA model, and its stability, despite its nonlinear

feedback structure, may be assessed and ensured.

In the following, the design of a digital baseband adaptive predistorter aiming at a final
hardware implementation is presented. The experimental set-up for validating this new structure
of DPD is described in Chapter 6, while in this Chapter some previous issues related to the
identification and adaptation of the DPD are presented. Thus, this Chapter is organized as

follows:

First, a brief discussion on possible strategies for organizing and indexing look-up tables.

Then, a detailed presentation of two identification approaches: Indirect learning and Pre-

dictive Predistortion.

Finally the description of two possible configurations to perform the DPD adaptation

process: External and Real time adaptation.

Simulation results showing the linearization performance achieved with the proposed pre-
dictive NARMA based DPD will be provided for both adaptive configurations.

As an advance of the issues that will be later discussed in this chapter, Fig. 5.1 graphically
presents a general block diagram of a digital baseband adaptive predistorter. Digital baseband
predistortion is performed in a Field Programmable Gate Array (FPGA) platform by means
of a set of LUTs. The adaptation process consists in periodically calculating new predistortion
gain values that update LUT contents in the FPGA. This adaptation process can be carried
out by an external digital processing device such a personal computer (PC) or a specifically
programmed Digital Signal Processor (DSP); or alternatively, taking advantage of the parallel
processing characteristics of the FPGA device, can be performed in the same FPGA using simple

algorithms that allow real-time adaptation.
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Figure 5.1: Simplified block diagram of a transmitter with digital baseband adaptive predistortion
linearization.

5.2 Look-up Table Organization

Many years of research have dealt with predistortion techniques for memoryless PA. Recently,
several solutions already include memory effects compensation, since those are of significant
concern when considering high bandwidths with multilevel and multicarrier modulation formats.
Digital predistortion solutions have to implement the predistortion function, usually based in
a particular PA behavioral model, in a digital signal processor. An efficient way to implement
the predistortion function without an excessive computational cost is by using Look-up Tables
(LUTSs) .

In order to map the predistortion function into a LUT, some considerations regarding LUT
organization have to be taken into account, such as:
e The LUT architecture (one-dimensional or bidimensional LUTs) to deal with the discrete
complex signal’s envelope

e The optimum size of the LUT (trade-off between accuracy and memory size)

e The LUT indexing and spacing between entries within the LUT

Another issue that has to be taken into account despite it is not exclusively an issue related to
LUT organization, is the complexity of the adaptation algorithm, since it is closely related to

the frequency of the LUT updates that the DSP will allow.

In the following subsections, these issues regarding LUT organization are discussed more in

deep.
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Figure 5.2: Mapping predistortion.

5.2.1 LUT Schemes

Digital baseband predistortion handles the complex envelope of the PA input and output RF
signals. Therefore, the LUT architecture depends on the way this complex envelope is treated
in order to be predistorted. LUT based predistorters may be classified by its LUT approach
in [Sun95|:

e Mapping predistorters (2-Dimensional LUTSs)
e Polar predistorters (1-Dimensional LUT)

e Complex gain based predistorters (1-Dimensional LUT)

In Mapping Predistortion the complex input signal is represented by its Cartesian in-phase (z7)
and phase-quadrature (zg) components. By using a two-dimensional LUT both input Cartesian
components are mapped to a new constellation of Cartesian components: y; = z;+ fr(zy, zg) and
yo = zqQ + fo(xr,zq). Fig. 5.2 shows the block scheme of a mapping predistorter architecture.
Some results using mapping predistortion are reported in [Nag89, Min90, Man94]. The major
drawback with the mapping predistorter is the size of the two-dimensional LUTs, which results

in long adaptation times.

Polar Predistortion was presented by Faulkner et al. in [Fau94] and uses two one-dimensional
LUTSs containing magnitude gain and phase rotation, respectively. The principle is illustrated in
Fig. 5.2. The input signal amplitude, R;,, is used to point an address of the LUT containing an
amplitude gain factor Ryt = Fr(Ripn). Then, this factor is used to multiply the original input

signal amplitude (amplitude correction). Moreover, this gain factor is also used to multiply the
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Figure 5.3: Polar predistortion.

input amplitude and then addressing a second table containing the predistortion phase, ®,,; =
Fg(Rg). This phase is used to rotate the signal previously predistorted in amplitude (phase
correction). Both tables are one-dimensional, so the access time and the memory requirements

are reduced respect to the previous Mapping Predistortion.

Complex Gain Predistortion was presented by Cavers in [Cav90a, Cav90b] and later has
been used by many other authors, such as in [Kim05, Hel06, Gil06a, Mon07]. Instead of having
two tables with amplitude gain and phase rotation, this approach (see Fig. 5.3) has a LUT
containing complex-valued gain factors given in Cartesian form. The complex gain predistorter
uses the power of the input signal (R = |z|?) to point a unique LUT containing the complex
gains of a predistortion function, Gryr(R). The complex gain (Gryr(R)) that results from the
LUT addressing is used to predistort the input signal & by computing the complex product
y = x - Gryr(R). With only one one-dimensional table the complex gain predistortion reduces

the complexity and adaptation time in comparison to mapping predistortion.

5.2.2 LUT Size and Word Length

As we have seen before, digital predistortion schemes uses two-dimensional (2-D) or one-
dimensional (1-D) LUTs. The 2-D table method (mapping predistortion) builds a table that
is indexed by the I and Q inputs of the predistorter and stores the appropriate predistorter out-
put. The disadvantage of 2D tables is their large memory requirement and, in adaptive systems,
the large number of samples required before the table is full. The advantage of the 2-D table is
that no polar-to Cartesian or Cartesian-to-polar conversions are necessary. Complex Gain or Po-
lar methods uses two 1-D tables (amplitude-phase or I-Q gains) to correct amplitude and phase

distortion. A disadvantage of the 1-D table is that it often requires conversions between Carte-
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Figure 5.4: Complex Gain Predistortion.

sian and polar representations. Another drawback is that only phase-invariant nonlinearities can

be corrected without adding additional LUTs in parallel.

If the number of bits used to quantize the signal is represented by n:

e a full two dimensional table memory requires (2n)? entries, while

e a one dimensional table requires two tables of 2n values.

The table size has an inverse relationship with the adjacent channel interference. Each dou-
bling of the table size decreases the ACPR by 6 dB up to a limit after which increasing the
table size no longer reduces the adjacent channel interference, and may indeed degrade perfor-
mances [Shi03]. Furthermore, in adaptive systems, LUT size has an inverse relationship with the

convergence speed of the adaptation, so it is preferred to keep the LUT as small as possible.

Word length of parameters stored in memory is related to noise and accuracy of the whole
system. Since a reduction in the adjacent channel interference is desired, then the dominant noise
must not be due to quantization. The desired level of adjacent-channel-interference suppression
will set the minimum signal to quantization noise ratio (SNRq) for the table entries. SNRq first
depends on word length and then on the ratio of the peak amplitude to the RMS amplitude of
the signal. Further details on this topic can be found in [Sun96].

5.2.3 LUT Spacing

How to organize the LUT spacing has been an interesting topic of discussion for several years
[Cav97, Cav99, Muh99], since a uniform or non-uniform spacing of the LUT is closely related to

the linearization performance achieved by DPD linearizers. The so called companding function is
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Figure 5.5: Structure of a LUT based predistorter with companding function.

the responsible for deriving the spacing of the input levels in the LUT. It performs a processing of
input data for pointing the LUT in different resolution ranges (i.e, concentrating most of memory
registers for predistortion operation near to the PA compression point). Figure 5.5 shows the
basic structure of a LUT based DPD with a companding function s(-) that is responsible for the

LUT uniform or non-uniform spacing.

Therefore, if a LUT of IV; entries (see Fig. 5.5) is considered, the width of the LUT bins (d)
in the y domain will be:
d= —FF (5.1)

where r,, is defined as ry,, =| z7 |.

The most common companding functions reported in literature are:

Amplitude:
§(rm) = 1m — 8 (rm) =1 (5.2)

e Power:
S(T‘m) = T?n - Sl(rm) =21y (5.3)
e u—law (as the one used in American companders for voice telephony):

S In(T4perm)
s(rm)_W

' H 1
V= . 4
= 5 (rm) In(1+p) 14+p-ry (54)

where p = 255 (8 bits) in the North American and Japanese standards.

Caver’s optimum indexing :

S (1) = < / w(rm)l/?)dr) i)Y (5.5)
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where w(ry,) is the weighting function defined by:

2

_ ,|g'(rm)|2.pr(rm) (5.6)
12- N2 g/ (r)[*

w(rm)

where g(ry) (f(rm) - g(rm) = K) is the complex gain of the PA and p,(ry,) the signal
amplitude probability density function (pdf).

e Sub-optimum indexing [Muh99]: Considering Caver’s optimum indexing:

S (rm) = < / w(rm)1/3dr> i)' (5.7)

but defining w(ry,) = 72, - pr(rm).

The best linearity performance is achieved with Cavers optimum companding function. How-
ever, due to its computational complexity and its dependence on signal’s pdf, PA nonlinearities
and back-off can make it unsuitable. On the other hand, results reported advert that spacing
by p-law and power suffer from significant intermodulation power generation at high and low
signal levels, respectively, because their table entries are unnecessary concentrated at the other
end of the amplitude range. Amplitude spacing (uniform spacing) provides good enough results
in comparison to the optimal companding function to be a serious candidate that provides good
linearity performance with little complexity. The main drawback regarding the amplitude com-
panding approach is that the spacing distribution is fixed, while by using a sub-optimal approach

the less complex algorithm permits considering the signal characteristics (i.e. pdf).

5.3 Identification Approaches

Behavioral models describe the PA nonlinear dynamic behavior but, in order to linearize the PA,
it is necessary to obtain its inverse characteristic (envelope filtering technique). In this section
two identification approaches oriented at obtaining the PA inverse characteristic are presented.
The first one, named postdistortion and translation method, is commonly used in literature to
extract the inverse function (DPD function) of the PA in two steps. The second one is a new
identification method, the predictive predistortion method, oriented at overcoming some formal

issues that present the former one.

5.3.1 Indirect Learning: Postdistortion and Translation Method

The indirect learning or post-distortion and translation method is a commonly used technique
to identify the predistortion function [Mar03, Kim06, Din04, Cho05, Gil06a]. Its basic functioning

is schematically depicted in Fig. 5.6. In the indirect learning approach, a first postdistortion
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Figure 5.6: Block diagram of the indirect learning: postdistortion and translation method.
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Figure 5.7: General block diagram of a NARMA structure.

function is estimated using the power amplifier’s input (z4(k)) and output (ya(k)) baseband
modulated data. Once the coefficients defining the postdistortion function are estimated, they
are copied to an identical model that is used to predistort the input signal that will later fed to
the PA.

The main advantage of this identification approach consists in the fact that the postdistortion

function is obtained from direct input and output PA observations,

Fpost (G (z7)) = K - 27 (5.8)

with Fpest () and G (-) being the postdistortion and the PA nonlinear functions respectively,

and x7 the discrete complex envelope of the signal to be transmitted.

From now on, the NARMA model presented in Chapter 4 (and depicted again in Fig. 5.7)

will be considered for the post and predistortion purposes. Following the notation shown in Fig.
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5.6, the general NARMA expression is defined again as

N
ga(k) =" filzalk — 7)) Zgj (ya(k —7;)) (5.9)
=0

Therefore, the postdistortion function in the indirect learning approach (see Fig. 5.6) can be

expressed as the inverse model:

Za(k) =

A D
filya(k — 7)) Z k—1)) (5.10)

Mz

Il
=)

7

where f; and g; are estimated nonlinear functions that can be implemented with polynomials
or by using look-up tables (LUTs). In addition, 79 = 0 while 7; and 7; (7 C N) are the most
significant sparse delays of the input and the output respectively, contributing at the description
of the PA memory effects. As explained in Chapter 4, it is possible to extract these optimal delays

by means of the SA heuristic search algorithm.

To implement the predistorter function in the FPGA it is necessary to map nonlinear func-
tions f; and g; into a set of LUTs. But first these nonlinear functions defining the postdistorter
and predistorter nonlinear operation have to be calculated. For that reason, these static nonlinear

functions in (5.10) are implemented with polynomials,

Filatk— 1)) = 5 api-yalk— ) yalk — )P
=9 (5.11)
gi(xa(k —15)) = goﬁpj ~wA(k = 75) [walk — 1)

with P being the polynomial order, o, and f,; their complex coefficients respectively,
i=(0, 1,...,N), j=(1,...,D) and 79 = 0.

Expanding (5.10) with (5.11) and expressing it in a more compact matrix notation, it is

possible to rewrite (5.10) as

a(k) =210 (5.12)
Where )\: ( apo, X105, *°* &po, A1y **° ,OpP1, * " OQN, " PN, >T
—Bot,- -+ ,—PBp1, -, —bBop, -, —BprD ’
ya(k), ya(k) lyak) - yalk) lya®)" yalk —71), - yalk — 1) lyalk —m)|7,
0= - yalk—7n), - yalk — ) lyalk — )| walk — 1),
caalk =) lzatk — )|, aalk =), xalk — ) lzalk — )|

and where the superindex  denotes Hermitian.

The cost function to be minimized in order to extract the ay; and §,; complex coefficients
describing the postdistorter NARMA based nonlinear function is defined by the following equa-
tion:

I (le()?) = T (leatk) = &a(0)2) = 7 (Joath) = A7 6]") (5.13)
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The estimation error is defined as the difference between the original PA input data and the
estimated output data of the postdistorter. Different identification algorithms can be used to ex-
tract the postdistorter parameters, such gradient algorithms (Newton method, Steepest Descent,
LMS, Fast Kalman) or parametric estimation methods (Least Squares, Recursive LS, Extended
LS).

Once we have the postdistorter function identified, it is possible to map the predistortion
function in the FPGA, but to fulfill this objective it is first necessary to express the predistortion
function as a combined set of LUTs. With xr being the predistorter input and z 4 the predistorter
output (see Fig. 5.6), the predistortion function remains as an exact copy of the estimated

postdistortion function, that is:
N D
za(k) = filer(k = 7)) =Y giwalk —73)) (5.14)
i=0 j=1

Now is possible to conceive the input-output relation of the predistortion function as a Cartesian
complex product between the input/output sample (z7(k), z4(k)) and a complex gain (G rur)
that depends on the envelope of the signal. Therefore we can rewrite the static nonlinear functions
in (5.11) as:

A~

filwr(k = 7)) = ar(k = 7) - Gyp_ g, (ler(k — 7))
(5.15)

gj(xalk —1;)) = wa(k — 75) - Grur—g,; (|va(k — 75)])

This generalization is the crucial step towards a FPGA practical DPD implementation, since it
enables the DPD to be stated in terms of a Basic Predistortion Cell (BPC). A simplified block
diagram of a BPC based in a complex gain DPD with uniform spacing is shown in Fig. 5.8.
Therefore, BPCs are the fundamental building blocks from which DPD functions derived from
the NARMA model (also Volterra derivations) can be quickly mapped into a FPGA device.

Finally the input-output relation of the predistorter in (5.14) can be expressed as the com-
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Figure 5.9: Multi-LUT implementation of a NARMA based Predistorter with the indirect learning
approach.

bination of a set of LUTs,

za (k) = z7(k) - [0400 + a9 [z (k)| + - - +apo !$T(k)|P} +

LUTff.O:GLUT,fAO (‘xT(k)l)

—l—.%‘T(k — T1) . |:0401 + o171 ’.%T(k — Tl)‘ + - +ap; \xT(k — Tl)’P] +

LUT,flzGLUT_fl (|zr (k—71)])

+ar (k—71n) - [QON + oy |zp (k—7N8)| + - +apn |zr (K — TN)!P} - (5.16)

LUT-fn=Gpyp_, (27 (k=7N)])
—wa(k = 1) [Bon + Bur [walk — )| + - +8p1 [zl —m)|”] -

LUT g1=Grur—g, (lxa(k—71)|)

—wa(k = 70) - [Bop + B1p |2alk = )| + -+ +Bpp lwalk — )|

LUT gp=Grur—g,, (lxa(k—7D)I)

The predistorter input-output relation expressed in (5.16) by means of BPCs is graphically
shown in Fig. 5.9, where we can see the multi-LUT implementation that would be mapped in
the FPGA. Results showing a multi-LUT NARMA based predistorter using the indirect learning
approach can be found in [Gil06a].
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Figure 5.10: Block diagram of the Predictive Predistorter approach.

5.3.2 Predictive Predistortion Method

Despite the good results shown by the indirect learning approach (regarding linearity improve-
ment), the postdistortion and translation method assumes the commutative property for cascad-
ing nonlinear systems, which is not rigorous at all. For that reason we proposed in [Mon07] an
alternative method for identifying and adapting the predistortion function, the predictive predis-
tortion method. This method permits an identification and later adaptation of the predistortion
function that relies just on the PA NARMA model. The stability of the NARMA model, as it

has been discussed previously, may be, in any case, assessed and ensured.

The digital predictive predistortion approach follows the block diagram shown in Fig. 5.10,
where digital predistortion linearization is carried out at baseband by adaptively forcing the PA

to behave as a linear device.

The functioning of the digital PD is quite simple and intuitive. First it is necessary to perform
an identification of the low-pass complex envelope PA behavioral model, which in our case is the
NARMA model described in equation (5.9). From the NARMA model a first set of nonlinear
functions ( f; and gj) defining the PA behavior are calculated at baseband using the PA input
(24) and output (y4) discrete complex envelope data. Once we have identified the f; and 9j,
we now consider yp as the desired linearized PA output. This desired output is defined as the

signal to be transmitted (z7) multiplied by a linear gain (Ginear),

yD(k) = xT(k) - Glinear (517)

As shown in Fig. 5.10, z4(k) = xp(k) if no baseband predistortion is considered. From the PA
NARMA model expression in (5.9) it is possible to derive (5.18),

A~

N
folwa(k)) = ya(k) = > filwalk — 7))
=1

”MU

f/ ya(k —75)) (5.18)
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and solving (5.18) it is possible to obtain the necessary amplifier input Z 4 (k) in order to achieve
a certain output y4 (k). Since the desired output yp(k) is evaluated a priori (see (5.17)), then in
(5.18) y4 is replaced by yp (and the same for all delayed output samples). In other words, the
desired output yp(k) is considered as a prediction of the future value of y4(k) (current output)
and consequently, the input value of the PA (Z4(k)) that permits achieving the desired output
(ya(k) = yp(k)) is calculated. Finally, the digital PD output 24 (k) (and PA input) can be

expressed as:

N D
Ba(k) = fo ' [yp(k) = > fil@alk — 7)) + Y 9i(yn(k — 7)) (5.19)
j=1

i=1

In order to implement the predistortion function in a FPGA, it is necessary to express
it a combination of LUTs. For that reason, similarly to what has been done in the previous
subchapter, we now consider the NARMA model expressed in (5.9), expanded by means of their

polynomial expression. Hence it results

ya (k) =za(k)- [Oéo() + ao|za(k)| + - - +apo |xA(k)’P} +

LUT,fo=GLUT_f0 (lza(k)])

a:A(k — 7'1) . [0101 + a1 ]a:A(k — 7'1)| + - 4app |$A(k: — Tl)yp} +

/

~~

LUT-/i=G yp_j (lza(k=m0)))

TA (k — TN)- aoN + a1 N |xA (k —TN)| + - +apn ’.TA (k: — TN)|P —
(5 20)

LUT,szGLUT_fN (Jza(k—7n))

ya(k —11) - [ﬂm + Bt lya(k — )|+ - - +08p1 |ya(k — Tl)\P} -

LUT-g1=Grur—3, (lya(k—m1)])

valk = 70) - [Bop + Bup lyalk = )| + - +Bpp lyalk - )| |

LUT gp=Grur—5p (lya(k—p)|)

Therefore, in a similar manner as in the indirect learning approach, it is possible to rewrite the
predistortion function in (5.19) in a more convenient DPD expression, in terms of the (delayed)

complex inputs and outputs multiplied by its corresponding complex gain (Gryr
p p p p Yy p g p g uT),

za(k) = z(k) - GLUT_];O_1 (|z(k)]) (5.21)
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Figure 5.11: Predictive digital predistorter implementation with multi-LUTs.

where z(k) is defined as:

D

z(k) = yp(k) + X2 yp(k — 75) - GLur—g, (lyp(k — 75)[)—
N i=1 (5.22)
- :Zli“A(k? = 7i) - Gryr_j, (18a(k — 7))

Thanks to (5.21) and (5.22), the DPD can be mapped into the FPGA as a set of parallel and
cascade BPCs, as depicted in Fig. 5.11. Furthermore, suitable DPD operation is obtained by
just downloading the appropriate complex gain values into each BPC LUT.

5.4 Adaptation Process: Look-up Table Updates

As it has been presented in previous subsection, the predistortion function is described by
the Multi-LUT configuration in Fig. 5.11 that results from applying the predictive NARMA
predistortion method. The hardware implementation of the predistortion function is carried
out in a FPGA board, in charge of the DPD processing at the actual sample rate and thus
allowing high data throughput. The FPGA considered in the experimental set-up that will be
presented in Chapter 6, is a Xilinx Virtex-IV XC4VSX35, with the developed DPD core in
charge of predistortion running at 106MHz. An overview on the Virtex-IV family specifications
can be found in [vir07], while an insight of the Nallatech XtremeDSP Development Board-IV
is depicted in Fig. 5.12. The linearization process in itself is open loop controlled, and works

separately of the adaptation process.
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Figure 5.12: Nallatech XtremeDSP Virtex IV Development Board.

On the other hand, the adaptation process, consisting in periodically calculating new predis-
tortion values to fill the LUT contents, can be performed in both a host PC running Matlab or
in the same FPGA in charge of the real-time predistortion. Therefore, provided that the DPD
function is carried out in a FPGA device, two possible configurations to carry out the adaptation

process of the LUTs can be considered:

e External adaptation; where algorithms that will provide new updated LUTs to the DPD

function are programmed in an external device (PC or DSP).

e Real time FPGA adaptation; where the LUT contents are continuously updated (real-time)
in the same FPGA board and thus taking advantage of the parallel processing capabilities

of this device.

In the following, both adaptation configurations are presented and discussed. Besides, simu-
lation results showing the linearity performance achieved by the predictive-NARMA DPD will

be provided for both external and real-time adaptation scenarios

5.4.1 External Adaptation Description

In this kind of configuration, while predistortion is carried out in a FPGA, the more complex
adaptation algorithms are computed in an external device, such a DSP board as in [V4z06,BN05],
and thus having more relaxed adaptation time constants. For simplicity and to enhance flexibility
during the prototyping procedures, the DSP device can be replaced by an external host PC in
which Matlab is in charge of the adaptation. As shown in Fig. 5.13, it is necessary to have
a feedback loop from the PA output towards the FPGA, through the demodulator and A/D
converters, to capture the necessary data enabling the adaptation process. In the proposed
implementation, the FPGA provides the external host with buffers of predistorted and PA
output data, of 2048 I/Q samples each, from which the NARMA model is derived. The D/A
and A/D converters handle 14 bits data, at 105 MSPS as well.
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Figure 5.13: Block diagram of a DPD with external adaptation, carried out in a PC or DSP board.

The update of the LUT contents describing the DPD relies just on the PA NARMA model
defined in (5.9), since the DPD nonlinear functions of the Predictive-NARMA DPD in (5.19) are
the same as in (5.9) except for fo_ ! The PA model identification procedure is performed via the
least squares (LS) algorithm, taking advantage of using buffers of data. In the next subchapter
where real-time adaptation in the same FPGA is pretended, sample-per-sample identification

algorithms such as the LMS or Fast Kalman [Hay91] will be considered.

Therefore, considering xa the complex data vector at the DPD output (PA input - see
Fig. 5.10) and ya the corresponding time-aligned complex data vector of the PA output (and
normalized by the linear PA gain to allow signals comparison), both vectors of L samples length,
we define

aP (k) = zalk — 1) |zalk — ) (5.23)

7 (k) = ya(k — 1) lya(k — ;)7 (5.24)

Then, the NARMA input-output relation in (5.9) can be expressed in a matrix notation as

-~

ya=Qo (5.25)
where ya = [ya(0),- - ,ya(L — 1)]",
Q=[x xB0 . %OV .. BN yOL . yRLLL gD L yPD]

. . . T . . . T
Ky = [25(0), @ =D ¥R = [0, (L -1)] and

T
S:[04007"‘;aP07"'7QON7"'aaPN7 ]
—Bot,- -+, =Bp1, - ,—bop, -+, —PBPD
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Invert nonlinear
function f

Figure 5.14: Flow diagram of the external adaptation carried out in the host PC.

Hence, the Least Square (LS) solution for (5.25) is:

§=(Q"Q)'Q"ya (5.26)
where superindex H denotes complex conjugate transpose.

The adaptive process performed in the host PC is schematically depicted in Fig. 5.14 and
described by the following steps:

e In a first step, identifying by means of the LS algorithm in (5.26), new fz and g; nonlinear
functions (described in (5.9)) by monitoring current PA input (x4) and output (y4) data

vectors, as it is shown in Fig. 5.10.

e Second step: test the stability of the resulting PA NARMA model (bounds given by the
small-gain theorem) described in Chapter 4.

e Third step consists in inverting the fo memoryless nonlinear function to obtain the digital

predistorter output as it is shown in (5.19).

e The last step consists in generating all necessary LUTs to implement the predistorter
function described in (5.19). From (5.20), (5.21) and (5.22) complex gains (Gryr) are
computed and fed into the FPGA in the BPC convenient LUT form. Then, back to step

one.
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Note that at every adaptation routine, all LUT contents (BPC complex gains) are recalcu-
lated, since so do their associated nonlinear functions defining the NARMA PA model. Besides,
the computational complexity introduced by the LS algorithm, handling 2048x2048 matrixes of

complex data, makes unfeasible a real-time adaptation.

5.4.2 External Adaptation Simulation Results

To validate the predictive NARMA DPD with external adaptation, a FPGA DPD simulator
has been implemented in Matlab. This simulator emulates the DPD function as it is performed
in a FPGA, that is, by means of a set of BPCs. Moreover, a PA behavioral model based in a
Hammerstein structure has been used. This Hammerstein based PA model has been extracted
from input-output complex data obtained from a final stage 170 W peak power PA based on
the Freescale MRF21170 MOSFET transistor. A medium power PA based on the MRF21010
transistor (10 W peak power), acting as a driver, precedes the main output amplifier. This RF

chain is actually the one used for the experimental results that will be presented in Chapter 6.

By adjusting the PA quiescent point, and in order to see the compensation capabilities of
the predictive NARMA DPD, two PA modes of operation have been considered: class AB and
class B operation. Moreover, in order to handle signals with different PAPR, both multicarrier
(OFDM) and Single-Carrier (SC) test signals with root-raised cosine (RRC) filtered M-QAM

modulation schemes (roll-off of 0.22) have been taken into account.

In a first approach, the linearization performance achieved by a simple memoryless DPD
and our proposed predictive NARMA DPD have been compared. Simulation results have been
obtained after 5 iterations (LUT updates) considering buffers of 2048 samples (for both I-Q) of
modulated complex data. The predictive NARMA DPD, whose basic structure is depicted in Fig.
5.11, has been configured with 7 BPCs, in concrete: 3 FIR LUTs (LUT g1, LUT _go, LUT _g3),
3 TR LUTs (LUT_fy, LUTfo, LUT_f3) and the inverse LUT associated to fo (LUT-fy!). In
addition, back-off amplification (without DPD) has been considered in all results here presented
to guarantee a fair comparison of the linearization performance achieved with DPD. Thus, both

backed-off and linearized signals will present the same power at the PA output.

The SC 16-QAM modulation test signal presents a PAPR of around 6.5 dB. The AM-AM
characteristics for both class AB and class B PA operation modes when memoryless DPD is
applied are shown in Fig. 5.15. While in Fig. 5.16 the same AM-AM characteristics are shown
when DPD with 7 BPCs is included, that is, activating the multi-LUT configuration of our
predictive NARMA based DPD.

As shown in Fig. 5.15 and Fig. Fig. 5.16, the nonlinear behavior in a class AB PA is manifested
as a compression of the linear AM-AM characteristic near PA saturation. On the other hand, the

nonlinear behavior of a class B like PA is manifested at low input value levels and it is related
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to crossover distortion.

It is possible to observe how the use of DPD derives in a linearized AM-AM characteristic
(red line) independently whether memoryless or dynamic DPD is applied. Nonlinear distortion
compensation can also be seen in the frequency domain as a reduction of the spectral regrowth
at the PA output. Fig. 5.17 and Fig. 5.18 show the out-of-band compensation achieved for both
memoryless and multi-LUT DPD, which turn to be similar, around 5 dB reduction in class AB

amplification and at least 14 dB in class B amplification.

However, memoryless DPD cannot compensate for dispersion shown in the AM/AM charac-
teristic, while using DPD with 7 BPCs, dispersion is reduced. This dispersion compensation in
the AM-AM characteristic is directly translated as in-band compensation in the demodulated
constellation, as it is shown when comparing Fig. 5.19 and Fig. 5.20. A significant amount of

EVM reduction is achieved only when using DPD with memory compensation (7 BPCs).

Now, a test signal presenting a higher PAPR is considered. In concrete, an OFDM (with
256 subcarriers) 16-QAM modulated signal with a PAPR of around 9.5 dB. Analogously, the
AM-AM characteristics for both class AB and class B PA operation modes when considering
memoryless DPD and DPD with 7 BPCs are shown in Fig. 5.21 and Fig. 5.22, respectively.

Apparently, no significant differences can be noted with respect the results achieved with
the SC 16-QAM modulation. As it can be observed in Fig. 5.23 and Fig. 5.24 both memoryless
and multi-LUT based DPD perform well with out-of-band distortion compensation. However,
16-QAM constellations and their corresponding EVM metrics in Fig. 5.25 and Fig. 5.26 evi-
dence again the advantage of using a DPD with memory compensation capabilities with respect
a memoryless one. Moreover, in-band distortion when using OFDM appears to be more crit-
ical to PA nonlinear behavior, since backed-off amplified signals without DPD (blue) present

significantly worse EVM than SC ones.

As it turns out, a memoryless DPD, solely aimed at pre-expanding the signal to compensate
the compression effect, cannot fully pre-compensate the signal in a manner that permits dealing
with PA nonlinear dynamics. Moreover, in-band distortion cannot be equalized by memoryless
DPD unless some kind of filtering in the time domain is considered together with the nonlinear
compensation. For that reason, a significant amount of improvement in PA linearization can be

expected by using the predictive NARMA based DPD to minimize or cancel memory effects.

On the other hand, there are some significant issues derived from an external adaptation
that require attention. The external update process, where new LUTSs are calculated in host
PC using the LS algorithm, is schematically described in Fig. 5.14. As it has been explained
before, at every adaptation routine, all LUT contents (BPC complex gains) are recalculated,
what may introduce some discontinuity and reliability problems to DPD. Fig. 5.27 and Fig.

5.29 show the evolution of the EVM, considering memoryless and dynamic DPD, along several
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Figure 5.15: AM-AM characteristics for both class AB (left) and class B (right) PA operation modes
with memoryless DPD (test signal SC 16-QAM).
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Figure 5.19: 16-QAM constellation for both class AB (left) and class B (right) PA operation modes
with memoryless DPD (test signal SC 16-QAM).
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with memoryless DPD (test signal OFDM 16-QAM).
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update iterations for both SC and OFDM M-QAM modulation schemes, respectively.

On the other hand, Fig. 5.28 and Fig. 5.30 show the evolution of the out-of-band distortion
compensation in terms of ACPR, for both SC and OFDM configurations. Note that, indepen-
dently on the test signal used (SC or OFDM), at certain update iterations there are some
discontinuities or imbalances (marked with a red circle) in the ACPR and EVM evolution that

affect both memoryless and multi-LUT DPD.

These imbalances or uncertainties that degrade the DPD reliability are inherent to the
methodology used for estimating LUT contents. As explained previously, the polynomial func-
tions that model the PA are obtained from a LS linear regression. These polynomial functions
are later directly mapped into the BPC-LUTSs to achieve the suitable DPD operation. However,
as a consequence of the high PAPR of current signals, the peak probability is low and it is
difficult to get knowledge of the PA characteristic at high amplitudes. For instance, if the data
from which the polynomial coefficients are being derived does not cover all PA dynamic range,
but only a certain low-input region, the LS estimation is underdetermined. That is, there is no
reliable way to ensure that the PA behavior described by the polynomials is accurate beyond
that low-input range. Clearly, this may result in non reliable DPD operation as soon as the
input signal reaches amplitudes beyond the well estimated PA regions, for which the BPC-LUT
values are not trustworthy. Therefore the PA model estimation during the adaptation/update

procedures has to be somehow reengineered.

A possible solution to avoid uncertainties consists in performing a selective adaptation pro-
cedure, in which only data buffers presenting input PA values above a certain power threshold
are taken into account to perform the adaptation. Otherwise, data buffers are rejected, and a
new set of data buffers are recorded and so on. In such a way, the PA model functions are
estimated when the stimuli are complete enough, in the sense that they cover a wide part of the
PA dynamic range, thereby reducing the uncertainty and resulting in a reliable DPD operation.
Besides, it is possible to dynamically adjust the threshold to tradeoff between accuracy and
adaptation rate. A low threshold lowers the chances of data buffer rejection, but at the risk of
underdetermination. Inversely, an excessive value for the threshold will result in a high buffer

rejection rate, postponing the estimation.

Further details on the adaptation policy finally implemented will be provided and discussed
in the following Chapter of this thesis.

5.4.3 FPGA Real-Time Adaptation Description

Another possible configuration consists in performing both predistortion and adaptation func-
tions within the same FPGA. This is possible if we consider an iterative update of the individual

predistortion complex gains (Gryr) constituting the set of LUTs or BPCs. Therefore, taking
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Figure 5.27: Evolution of the EVM for different SC M-QAM modulation schemes considering a class
AB PA.

-20 T T T T T T T T T
—— (QPSK - DPD with 7 BPCs
—+— (PSK - Memoryless DPD
251 —%—64 QAM - DPD with 7 BPCs |
64 QAM - Memoryless DPD
—*—156 QAM - DPD with 7 BPCs
- —*— 256 QAM - Memoryless DPD
& 30
=2
o
o
@ 3s5¢
40+
_45 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Tteration number

Figure 5.28: Evolution of the ACPR for different SC M-QAM modulation schemes considering a class
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Figure 5.29: Evolution of the EVM for different OFDM M-QAM modulation schemes considering a
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Figure 5.31: Block diagram of a DPD with real-time adaptation carried out in the FPGA.

advantage of the parallel computing capabilities of the FPGA, it is possible to use the least mean
squares (LMS) algorithm [Hay91] to simultaneously update all gains involved (within BPCs) in a
predistortion execution, leaving the rest of the complex gains of the BPCs unchanged since they
have not been involved. Therefore, unlike external adaptation where all BPCs complex gains
were recalculated at every adaptation execution, it is possible to perform real-time updates in
an FPGA device without the need of a DSP or any other kind of advanced coprocessor for doing

it. This real-time adaptation configuration is schematically shown in Fig. 5.31.

A first study of the best sparse delays defining the PA model in (5.9) and a stability test
has to be carried out whatever the adaptive configuration is. Once the best sparse delays are
identified and it is ensured that nonlinear functions related to the recursive part of the NARMA
structure are consistent (stable), the PA and DPD NARMA based structures (see Fig. 5.11 and
Fig. 5.7 respectively) are mapped into the FPGA.

Similarly to (5.21) and (5.22), the NARMA PA model in (5.9) can be expressed as set of

complex products between input/output samples and their corresponding BPC complex gain:

YyaANARMA(K) = za(k) - Gy s (Joa(k)]) +
(5.27)

i ém(k =) Gryp_j, (lwalk —m)l) - é ya(k —75) - Grur—g; (lya(k —75)[)

Where, initially, complex gains (Gryr) of the BPCs are filled with 0’s or 1’s.

The update of the complex LUT Gains is performed by means of the complex LMS algorithm,
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Figure 5.32: Flow diagram of the real-time adaptation carried out in the FPGA.

where the identification error is described by

e(k) = yA,Measured(k) - yA,NARMA(k) (5.28)
and the LMS algorithm can be expresses as:
AGLUTffiUxA(k —7)]) = sz ~xa(k — 1) e(k)
(5.29)

AGLur—g,(lya(k — 15)]) = 1 - ya(k —75) - e(k)

where YA peasured 18 the measured amplifier output, ya yarara is the PA NARMA model
f

output, €(k) is the conjugate of the complex error and p (u; , M? ) is the step size that determines

the learning rate of the LMS algorithm.
Therefore, as depicted in Fig. 5.32, at every iteration step the following actions are performed
simultaneously (parallel processing) in the FPGA:
e Applying the algorithm defined in (5.27), an output sample of the PA NARMA model
(ya.NArMmA(k)) is obtained in order to create the LMS error in (5.28).
e Applying the algorithm defined in (5.21) a new DPD output sample (z4(k)) is obtained.
e All complex LUT Gains involved in the calculation of the last predistortion output sample

are updated by means of the LMS algorithm in (5.29).

After a transient period, in which all LUT Gains are continuously being updated, the PA output

converges to the desired output, achieving then the desired linear amplification.
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5.4.4 FPGA Real Time Adaptation Simulation Results

The LMS based adaptation in the FPGA has been simulated in Matlab in a similar manner as
the external adaptation solution presented before. However, while the external adaptation has
been implemented providing experimental results that will be exposed and discussed in next
Chapter, the implementation of the real-time FPGA based adaptation remains as future work

to be done.

It is feasible to implement the NARMA based Multi-LUT structure and its real-time adap-
tation in a commercial FPGA board as the Nallatech XtremeDSP, consisting in a Xilinx Virtex
XCV4SX35 connected to two analog-to-digital and two digital-to-analog converters running at
a clock of 105 MHz. Each LUT correspond to an addressable memory table which contains 512
addresses-gains, and as explained previously, every time that the content of a LUT is addressed

their content will be updated.

For testing and debugging purposes the developed predictive NARMA DPD has been as-
sessed in Matlab, making use, as in the external adaptation simulations, of a Hammerstein PA
model based in a Freescale PA (MRF21170 MOSFET transistor). The actual NARMA based
predictive DPD is formed by 3 FIR, 3 IIR terms and 2 additional LUTSs, related to fo and f; !
nonlinear functions. A total of 8 LUTSs of size 22 = 512 addresses corresponds to a total of 4096
complex Gains. Therefore, with a sample rate of 10 MSamples/second, a complex Gain update

is performed each 10~7 seconds.

Now, assuming an access to a LUT uniformly distributed, the update of a particular Gain
can be executed approximately every 512-1077 seconds. That corresponds to 512 iterations, that
is, 512 data samples. Nevertheless, the distribution of the access to a LUT follows the input
signal probability density function. For that reason, in order to ensure that all LUTs have been
updated at least once, a training signal is used during 5000 iterations. That represents 10 times
the minimum number of required iterations to update all LUT gains in the case of an access to
a LUT uniformly distributed.

Figure 5.33 shows the convergence of both identification and linearization NMSE, defined
as the error resulting from subtracting the output of the NARMA PA model (yyarna) to the
measured output (your—pa); and as the the error resulting from subtracting the desired output

(Ydesired) to the measured output (Yout—pa), respectively.

Once LUTs are trained, two types of test signals have been considered: a SC 16-QAM and
an OFDM (256 subcarriers) 16-QAM modulated signal. The PA model presents a nonlinear
distortion typical of a class AB PA.

After a short transient period, this multi-LUT DPD with real-time adaptation achieves a

steady state where it is possible to observe the achieved linearization performance. For instance,
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Fig. 5.34 shows the linearized AM-AM characteristic and dispersion compensation for both SC
and OFDM configurations in steady state. In addition, Fig. 5.35 and Fig. 5.36 show the out-of-
band and in-band nonlinear dynamic compensation achieved by the DPD with 7 BPCs, stated
in terms of ACPR and EVM respectively. Since real-time adaptation is continuously updating
(sample by sample) LUT contents, problems related with possible discontinuities or uncertain-
ties, typical of the aforementioned LS based external adaptation, are completely avoided. This
can be observed in Fig. 5.37 and Fig. 5.38, presenting the steady state evolution of the ACPR for
both SC and OFDM 16-QAM signals. Complementary Fig. 5.39 and Fig. 5.40 show the steady
state evolution of the EVM for both SC and OFDM test signals, respectively.

In order to compare the linearization performance achieved with both real-time and external
adaptive configurations, the mean values of ACPR and EVM have been also computed every 2048
samples, which correspond to the size of the buffers that are handled in the external adaptive
configuration. Compared to the external adaptation, the real-time adaptation performed in the
same FPGA already used for implementing the DPD function, has the advantage of being more
robust in front of possible uncertainties derived from a bad LS identification. On the other hand,
as we can observe in Fig. 5.38, the variance in the ACPR values is significant, thus, in order to
reduce this variance one might consider the use of alternative gradient techniques, such as the

Fast Kalman algorithm [Hay91].

5.5 Summary

In this Chapter design and implementation aspects related to Digital Predistortion have been
presented and discussed. In a first approach some basic issues regarding LUT organization have
been presented to finally introduce the particular atomic LUT structures, called BPCs, that will
conform the DPD function when it is mapped into a FPGA.

In addition, a new predictive approach to identify the DPD function has been presented,
overcoming then the classical indirect learning approach that assumes the commutative property
for nonlinear systems. The DPD function has been particularized using a NARMA scheme,
extensively presented in Chapter 4. It has been shown how it is possible to derive a NARMA
structure, based in the contribution of parallel nonlinear functions associated to delayed samples

of the input and output signal, into a set of BPCs ready to be mapped into a FPGA.

In order to obtain some results allowing a preliminary evaluation of the nonlinear and mem-
ory effects compensation achieved by our proposed DPD, a Matlab simulator emulating the
FPGA functioning has been used. Two different approaches for updating all BPCs in the FPGA
have been considered. One performs LUTs update in an external DSP while the alternative
approach consists in taking advantage of FPGA parallel processing capabilities to perform the

adaptation process in the same FPGA responsible for the real-time DPD functioning. In the



118 5.5. Summary
-10 T T T .
15 — NMSE identification (yuut_P 4" YiarmM A) |
——NMSE linearization (yuut_P o Viscics d)
=40 L 1 1 1
1000 2000 3000 4000 5000
Figure 5.33: Identification and linearization NMSE versus number of iterations.
0.7 -
o7 4]
75 g 0.6r . et
0.67 o . ” j;;.:it‘
— ot 05 r * +,
205} 1 & .
g g 0 4 | t
3 04 {3
N N ’ *
= 031 | Eos 3
Z z .
0.2 1 o2y ¥
Power Amplifier Power Amplifier
0.1 + Power Amplifier with Back-off | 0.1 + Power Amplifier with Back-off |
+ DPD with 7 BPCs + DPD with 7 BPCs
00 0.2 04 0.6 0.8 1 00 0.2 04 0.6 0.8 1

Normalized input

Normalized input

Figure 5.34: AM-AM characteristics for a SC (left) and OFDM (right) 16 QAM modulated signal
considering Back-off operation and DPD with 7 BPCs for a class AB PA.
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Figure 5.35: Power spectra for a SC (left) and OFDM (right) 16 QAM modulated signal considering
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Figure 5.36: Constellation of a SC (left) and OFDM (right) 16 QAM modulated signal considering
Back-off operation and DPD with 7 BPCs for a class AB PA.
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Figure 5.37: Steady state evolution of the ACPR for a SC 16-QAM modulation considering a class AB
PA.
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Figure 5.38: Evolution of the ACPR for an OFDM 16-QAM modulation considering a class AB PA.
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external adaptation approach the adaptation is performed independently of the real-time DPD
functioning in the FPGA and complex gains of all LUTSs are completely updated at every adap-
tion process. This may cause some continuity problems as it has been pointed out in simulation
results, making reconsider the inclusion of an adaptation policy aimed at dealing with this con-
tinuity problem derived from LUTs update. On the other hand, real time adaptation can be
performed in the same FPGA in charge of the DPD, by performing parallel updates of the
particular LUT complex gains involved in a DPD iteration. This approach may overcome the

continuity problems derived from a non real-time external adaptation.

Despite simulation results have been obtained in a noise-free Matlab environment that also
obviates digital signals quantization (no resolution limitations), some preliminary conclusion can
be drawn concerning the linearity performance achieved with our proposed DPD. Both memo-
ryless and DPD with dynamic compensation (more than 1 BPC in the multi-LUT based DPD
structure) enhance linearity when they are fairly compared with a backed-off signal without
DPD presenting the same output power. This nonlinear compensation can be appreciated in the
straightening of the AM-AM characteristic, the spectral regrowth reduction and the rotation
correction of signal constellation, becoming more evident when considering a class B mode of
operation. In addition, the advantages of using a DPD with dynamic compensation are high-
lighted in the time domain, showing a scattering reduction in both AM-AM characteristics and

signal constellation that permits reducing EVM figures by a factor of 5, approximately.

Therefore, after this encouraging preliminary simulation results, next Chapter of this thesis
will be focused on an experimental evaluation of the real distortion compensation capabilities

that can be achieved by our proposed DPD.



