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Abstract 
 
 
 

Grid Computing is defined as a heterogeneous, distributed and shared system where 
applications are solved in dynamic, multi-institutional virtual organizations (VOs). This key 
concept involves the inherent ability to negotiate resource-sharing arrangements among a set of 
participating parties (providers and costumers) and then to use the resulting resource pool for 
some purpose. Basically, the Grid should integrate and coordinate resources and users that live 
within different control domains. Besides, it is built from multi-purpose protocols and interfaces 
that address such fundamental issues as scheduling, security, resource discovery, and resource 
allocation. Finally, the Grid allows its constituent resources to be used in a coordinated fashion 
to deliver various qualities of service, relating for example to response time, throughput, 
availability and/or co-allocation of multiple resource types to meet complex user demands, so 
that the utility of the combined system is significantly greater than that of the sum of its parts. 

Large-scale Grids are formed by thousands of nodes sharing multiples kind of resources 
(computing, networking, software applications, high-technology instruments, etc) and therefore, 
the total amount of shared resources become millions of individual entities that most be 
adequately integrated and coordinated for solving multi-disciplinarian problems. In this dynamic, 
heterogeneous and geographically dispersed environment, Resource Management (RM) is 
regarded as a vital component of the Grid Infrastructure. 

Grid Resource Management (GRM) coordinates and shares multiple kinds of resources 
efficiently; and, in the above mentioned environments, GRM faces several challenges that make 
the implementation of practical systems a very difficult problem. Among these challenges we 
would like to emphasize the fact that GRM systems must fulfil strict functional requirements from 
heterogeneous, and sometimes conflicting, domains (e.g., the users’, applications and networks 
domains). In addition, GRM systems must adhere to non-functional requirements that are also 
rigid, such as reliability and efficiency in terms of time consumption and load on the host nodes. 

The aim of this thesis is to design and implement a new Grid Resource Management 
methodology, where non-massive resources owners would be able to share their resources and 
integrate human collaboration across multiple domains regardless of network technology, 
operative platform or administrative domain. 
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This thesis proposes a distributed and heuristic policy-based resource management 
architecture for large-scale Grids. The resource management architecture proposed herein is 
composed of four main building blocs: services management, resource discovery and 
monitoring, resource scheduling and jobs allocation and activation. The Grid Services 
Management (GSM) and Jobs Allocation and Activation (JAA) are supported by means of a 
Policy-based Grid Resource Management Architecture (PbGRMA). This architecture is able to 
identify service needs arising from diverse sources during the deployment and management of 
Grid Services, such as requirements demanded by customers, applications and network 
conditions. Afterwards, the PbGRMA merges these requirements into deployment policies for 
the corresponding Grid Services. The Grid Resource Discovery and Monitoring (GRDM) is 
supported by the introduction of the SNMP-based Balanced Load Monitoring Agents for 
Resource Scheduling (SBLOMARS), in which network and computational resources are 
monitored by distributed agents. This allows for a flexible, heterogeneous and scalable 
monitoring system. The Grid Resource Scheduling (GRS) is based on the Balanced Load Multi-
Constrained Resource Scheduler (BLOMERS). This heuristic scheduler represents an alternate 
way of solving the inherent NP-hard problem for resource scheduling in large-scale distributed 
networks by means of the implementation of a Genetic Algorithm. 

Finally, based on the outcome of both the GRDM and GRS, the PbGRMA allocates the 
corresponding Grid Services by means of its interfaces with Globus ToolKit Middleware and 
Unix-based CLI commands along of any large-scale Grid Infrastructure.  

The synergy obtained by these components allows Grid administrators to exploit the 
available resources with predetermined levels of Quality of Service (QoS), reducing 
computational costs and makespan in resource scheduling while ensuring that the resource 
load is balanced throughout the Grid. The makespan of a schedule is the time required for all 
jobs to be processed when no one job could be interrupted during its execution and each node 
can perform at most one operation at any time. 

This new approach has been successfully tested in a real large-scale scenario such as 
Grid50001. The results presented along this Thesis show that our general solution is a reliable, 
flexible and scalable architecture to deploy and manage Grid Services in large-scale Grid 
Infrastructures. Moreover, the substitution of the heuristic algorithm approach used into the Grid 

Resource Scheduling (GRS) phase by other non-heuristics selection algorithms could make our 
solution useful in smaller Grid Infrastructures. 

                                                 
 
1The Grid5000 is an initiative of the French Ministry of Research, and is supported by the ACI GRID action, INRIA, 

CNRS and RENATER. 
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Chapter 1 
 
 
 
 
 

 
INTRODUCTION 

 
 
 
 
 
 
Today, computing systems are involved in nearly all human activities. This evolution on 

computational systems started when typical typewriters were replaced by personal workstations, 

home phones landlines were replaced by mobile phones with versatile features and 

sophisticated digital devices are used rather than simple electronic appliances. With so much 

change, the need to enable communication mechanisms between technological resources was 

inevitable. The communication between them improves their specific and individual aims in 

terms of time, cost and effectiveness. As a result of the inevitable necessity of communication 

mechanisms between computational systems, networks of computers were implemented. 
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Networks of computers are everywhere: mobile phone networks, corporate networks, 

factory networks, campus networks, home networks, in-car networks, on board networks in 

airplanes and trains. Unfortunately, computing networks started speaking their own languages 

and communication between them became difficult. Therefore, the possibility to exploit every 

network’s advantages at the highest level was limited. This was inefficient, because computing 

systems could not perform more work that the one directly assigned. 

When networks of computers were created to collaborate between each other, there was a 

clear improvement in the performance of every computational system forming these networks. 

This improvement was due to the fact that complex tasks were distributed along different parties 

of the network and then each of them executed a small number of these tasks, achieving faster 

results without overloading one system of the entire network. It was then that computing 

systems started to exchange dynamic information regarding activities and processes that they 

had to perform. Then they could coordinate these activities between each other and facilitate 

the work because it is shared between all the parties in the network. This concept marked the 

beginning of distributed systems. 

Unfortunately, the simple fact of implementing a distributed system is not enough to 

guarantee an improvement of the resources consumption of the network. It is also necessary to 

implement efficient communication mechanisms and coordination entities in charge of 

distributed computing applications trough all the entities forming the network. A good example of 

this inherent problem can be found in any network of computers. For instance, workstations in a 

typical services enterprise are doing nothing 90% of the time [Scott_93]. The vast majority of the 

machines are used mostly for word processing, web browsing, downloading, etc. Not exactly 

stuff which grinds the processors or anything. At night, none of the computers are used at all. 

This means that there is a huge amount of processor power going to waste in these networks. 

This waste can be seen around the world. There is a huge amount of un-harnessed power 

to be taken advantage of. At the same time, there are many tough problems which ordinary 

computers cannot solve. In order to improve the communications mechanisms between 

networks of computers, the formal concept of the distributed system has been introduced. A 

distributed system is a collection of independent computers that appear to the users of the 

network as a single computer in which hardware or software components located at networked 

computers communicate and coordinate their actions only by message passing [Tan01]. 

Distributed systems like SETI@home [SETI] or RC5 [RC5]split up difficult tasks and tough 

problems to run on home PCs during screensaver time or when the processor is idle, and then 

collate all the information they receive back. These systems are traditionally based on the 

premise that many heads are better than one. 
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Grid Computing is an extraordinary example of the distributed systems concept. A Grid 

uses the resources of many separate computers connected by a network (usually the Internet) 

to solve large-scale computation problems. Most Grids use idle time on many thousands of 

computers throughout the world. Such arrangements permit handling of data that would 

otherwise require the power of expensive supercomputers or would have been impossible to 

analyze. Grid Computing is a type of parallel and distributed system that enables the sharing, 

selection, and aggregation of geographically distributed autonomous resources dynamically at 

runtime depending on their availability, capability, performance, cost, and users' quality-of-

service requirements [Buy02]. 

 

1.1 GRID COMPUTING 
 
The Grid Computing [Fos01] concept was introduced to denote a proposed form of 

distributed computing that involves coordinating and sharing computing, application, data, 

storage, or network resources across dynamic and geographically dispersed organizations. Grid 

technologies promise to change the way organizations solve complex computational problems. 

Nevertheless, it is an evolving area of computing, where standards and technology are still 

being developed to enable this new paradigm. The impact of Grid Computing in the academic 

and industrial sectors is growing every day, although it was originally understood as an 

emerging technology that provides an abstraction for resource sharing and collaboration across 

multiple administrative domains. Currently, the development of standards such as the Open 

Grid Service Architecture (OGSA) [Fos02a] along with the introduction of new paradigms such 

as the Semantic Grid [Bac04] is leading the Grid towards an environment that is not only suited 

for computational-intensive applications, but also for computing scenarios typical of distributed 

systems. These standards and emerging paradigms include service and information providing, 

multimedia environments and pervasive computing. For these and other reasons, Grid 

Computing is becoming an interesting and challenging environment supporting both old and 

new services for cooperative applications. 

The essential mode to implement Grids is through Virtual Organizations (VOs) [Fos03]. 

These are groups of individuals, institutions and organizations collaborating to share the 

resources that they own in a controlled, secure and flexible way, usually for a limited period of 

time. This sharing of resources involves direct access to computers, software, and data. The 

coordinating and sharing of resources inherent in Grid networks introduces challenging resource 

management problems due to the fact that many applications need to meet stringent end-to-end 

performance requirements across multiple network instances. Furthermore, they should also 
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guarantee fault tolerance and network level Quality-of-Service (QoS) [ITU00] parameters as well 

as arbitrate conflicting demands. 

Therefore, resource management systems are an important entity in charge of managing 

the shared resources and controlling various applications running in a distribute way along the 

members of a VO. These management frameworks have very heterogeneous environments to 

handle, they should be compatible with the emerging Grid Services definitions [Cza06]] and they 

have to be aware of the innovations in Web Services technology [Ved02], in order to fulfil the 

implicit requirements by New Generation of Grids (NGG) [NGG06]. 
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1.2  RESOURCE MANAGEMENT IN LARGE-SCALE GRIDS 
 
The concept of resource management makes use of a set of terms that are convenient to 

keep in mind in order to clarify the reading of this thesis. These terms are defined below: 

 

 Job: A user-defined task that is scheduled to be carried out by an execution subsystem. 

In OGSA, a job is modelled as a manageable resource, has an endpoint reference, and 

is managed by a job manager. Some examples are executing certain application, 

storage users data and forward data packages through the network. 

 Resource: It is something that is required to carry out an operation. Some examples are 

disk space, CPU cycles per second, available memory, and end-to-end performance 

metrics. 

 Computational Node (node): This is an entity where different resources are physically 

allocated. The node is the identification point for any resources, so a node should have 

at least one resource shared to being considered part of the Grid Infrastructure. 

 Grid Infrastructure: It is the whole set of resources shared for building a specific Grid. 

 Web Services: A software system designed to support interoperable Machine-to-

Machine interaction over a network. The W3C Web service definition encompasses 

many different systems, but in common usage the term refers to clients and servers that 

communicate using XML messages that follow the SOAP standard and written based 

on the Web Services Description Language (WSDL) [Ved02]. 

 Grid Services: In general use, a Grid Service is a Web service that is designed to 

operate in a Grid environment, and meets the requirements of the Grid(s) in which it 

participates [Fos02a]. 

 Scheduling: The mapping of jobs to resources. 

 Workflow: This is the ordering of a set of jobs for a specific user. 

 Grid Scheduling: It is the mapping of individual Grid Services to network and computer 

resources, while respecting Service Level Agreements (SLAs). 

 Scheduling Constraints: scheduling constraints can be hard or soft. Hard constraints 

are rigidly enforced. Soft constraints are those that are desirable but not absolutely 

essential. Soft constraints are usually combined into an objective function (Policies). 
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 Scheduling Targets: The goals to be fulfilled after the scheduling process. They may 

consist of the minimisation of maximum latency, minimisation of the cost to users, 

maximisation of the profit, maximisation of personal or general utility, maximisation of 

resource utilisation, fairness, minimisation of variance, maximisation of robustness and 

predictability, minimisation of broken SLAs, etc. 

 Scheduling Data: A variety of data that are necessary for a scheduler to describe the 

jobs and the resources: job length, resource requirements estimates, time profiles, 

uncertain estimate, etc. 

Once familiarized with the terminology that we will use in the thesis, it is also important to 

understand what the general concept of Resource Management in Large-scale Grids is about. 

The term "resources" covers a wide range of concepts including physical entities like 

computation, communication systems, storage devices (databases, archives and instruments), 

individuals (people and their expertise), capabilities (software packages, brokering and 

scheduling services) and frameworks for access and control [Nab04]. Based on these 

requirements for Grids, it is clear that a key activity to improve the functionality of various 

applications running in dispread will be to design fast, efficient, scalable and reliable resource 

management architectures. 

Grid Resource Management (GRM) is the central component of a Grid system. It involves 

managing of computational resources across multiple administrative domains. The main 

activities are to accept requests from users, match users’ requests to available resources to 

which the users have access and schedule the matched resources. 

Currently, Grids are sets of computational resources working together to reach parallel 

targets based on the principle of using their resources so long as they are available. The most 

complex activity for GRM is to schedule numerous computing, network and storage resources in 

order to reduce procurement, deployment, maintenance, and operational costs. 

As defined in [Nab04] the term "Resource Management" refers to the operations used to 

control how capabilities provided by Grid resources and services are made available to other 

entities, whether users, applications or services. Resource management is concerned with the 

manner in which these functions are performed, such as when request operations start or how 

long it takes to complete. 

In summary, Grid Resource Management is defined as the process of identifying 

requirements from several sources, monitoring resources in real time, matching resources to 

services and users’ requirements, allocating applications to available resources following some 

quality of service policies, and scheduling resources over time in order to run customers’ 

applications as efficiently as possible. 
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1.3 MOTIVATION OF THE THESIS 
 
Grid Resource Management (GRM) is regarded as a vital component of the Grid 

Infrastructure. It faces several challenges that make the implementation of practical systems a 

problem. Among these challenges we would like to emphasize the fact that GRM systems must 

fulfil strict functional requirements from heterogeneous and sometimes conflicting domains (e.g., 

the users’, applications and networks domains). In addition, GRM systems must adhere to non-

functional requirements that are also rigid, such as reliability and efficiency in terms of time 

consumption and load on the host nodes.  

GRM is a very challenging area where plenty of research projects are working on better 

solutions to this matter. Grid Resource Management is the most active part of Grid Computing, 

which also deals with security, data transfer and services virtualization [Jan07]. In Chapter 2, we 

will describe some of the most active and important Grid Resource Management approaches. 

Despite the work done, none of the proposed solutions has proven to be good in all facets 

that ideally a GRM system should exhibit. The following are the non functional properties that 

can be used to rate a GRM solution:  

 

• Scalability: Scalability means the ability of the GRM architecture to either handle growing 

amounts of resources (network, computational, human, etc.) in a graceful manner, or to be 

readily enlarged. The scalability of the architecture is essential in large-scale Grids 

because these Grids are formed by thousand of individual entities. 

• Flexibility: Flexibility is the ability offered by Grid Resource Management systems to adapt 

(self-adapt) to resource state, new resources, incoming standards and changing 

technology. 

• Heterogeneity: Heterogeneity is the ability to handle any type of resource regardless of its 

supporting platform, designer, provider or administrative domain owner. In Grid Computing 

heterogeneity is also an important issue, but some research projects do not take it so 

much into account based on the fact than their resources are homogenous or at least the 

have some standards for integrating new resources. 

• Efficiency: Efficiency is the capability of a GRM system or architecture to keep at 

reasonable levels the time consumed to manage the Grid. Efficiency is also related to keep 

balanced the load offered to the managed resources.  

 

Scalable systems have been addressed through resource management methodologies 

based on decentralized or hybrid schemes. Moreover, future solutions should be able to handle 
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incoming new devices and resources at the Grid. More specifically we can mention approaches 

based on distributed mechanisms such as P2P technologies [Ram05] or decentralized 

management agents [Nad06]. 

In terms of flexibility and efficiency, current GRM systems research is focused mostly on 

solving either one or the other of the two main problems at hand. The first of these is concerned 

with evenly balancing resource loads throughout a Grid. In this area, plenty of researchers have 

proposed a wide range of technologies with varying degrees of success. The second problem, 

however, involves shortening the makespan. The makespan of a schedule is the time required 

for all jobs to be processed by a set of unknown resources. For quite some time, a 

comprehensive solution addressing both of these problems proved elusive. In other words, a 

load-balanced solution with a minimal makespan was necessary. 

Heterogeneity is a challenging issue in Grid Computing. We could affirm that most of the 

current solutions do not solve it because they are based on the assumption of a priori 

knowledge of device types and resources that the GRM should handle to facilitate network 

administrators tasks. Obviously, this solution is not possible in real large-scale Grids. New 

methodologies should be able to handle heterogeneous resources following the most common 

standards such as SNMP [Sta99], XML [Sch03] or Web Services [Ved02]. 

It is worthwhile to mention that although some Grid Resource Management projects are 

apparently excellent alternatives to be taken as de-facto standards, They have have important 

problems and failures. In fact, they may overload workstations or servers where they are being 

executed. Others are not heterogeneous in terms of the kind of resources they can handle or 

the processing time needed to perform the resource management process of the received 

services is quite long when hard constraints1 or soft constraints2 have to be considered. Both 

types of constraints are demanded by customers through requesting Grid Services. 

Grid Services are Web Services [Ved02] with improved characteristics and features. Web 

services enable interoperability via a set of open standards, which distinguish them from 

previous network services such as Java’s Remote Method Invocation (RMI) [Gro01], the 

Common Object Request Broker Architecture’s (CORBA), or the Internet Inter-ORB Protocol 

(IIOP) [Orf00]. Web Services are platform independent and are commonly used for building 

emerging Service Oriented Architectures (SOAs) [Tho05]. 

Grid services can be “stateful” or “stateless”. An instance of a service is stateless if it 

cannot remember prior events and an instance of service is stateful if it can remember prior 

                                                 
 

1 Hard constraints are specific applications and resource requirements that must be fulfilled 
2 Soft constraints are management policies for resource utilization, deadlines and response time 
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actions (this implies variables within service that can maintain values between accesses). They 

are also “transient” or “non-transient”. A transient service instance is one that can be created 

and destroyed (usually, they are created for specific clients, which they do not outlive). An 

instance of a service is non-transient (persistent) if it outlives its client. Web Services are non-

transient. They don’t support service creation and destruction. 

In summary, resource management in large-scale Grids is a very challenging area where 

new methodologies are needed to improve current approaches in order to offer better solutions 

to small, medium and big companies who are not exploiting their resources at optimal level. 

With Grid Computing as a network technology, these companies will increase their efficiency 

and they will reduce their response time in all processes that are part of their business. 
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1.4 CONTRIBUTIONS OF THE THESIS 
 
We propose an alternative solution to the state of the art in terms of Grid Resource 

Management, by means of splitting and distributing the resource management process in four 

main phases. We have introduced novelty contributions in each one of these phases in order to 

improve current systems or methodologies and cover the required features (efficiency, 

scalability, heterogeneity and flexibility) for Grid Resource Management in large-scale Grids. 
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Figure 1.1 Grid Resource Management phases proposed in this thesis 

 

The first phase is Grid Services Management (GSM) where both hard and soft constraints 

should be identified as requirements of certain Grid Services. The second one is Grid Resource 

Discovery and Monitoring (GRDM) where resources offering their individual capacities to the 

Grid under certain conditions are discovered and monitored in real time. The third one is to 

schedule received applications into the set of available resources carrying out both constraints 

the hard ones and soft ones, it is known as Grid Resource Scheduling (GRS). The fourth and 

last phase is Grid Jobs Allocation and Activation (JAA), which is in charge of allocating received 

jobs into the selected set of available resources including files staging and cleanup. In the 

schema on Figure 1.1 we show the orchestration of these phases. 
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These phases are not sequential at all. The GRDM is running all time and reporting 

resource availability information through its graphical interface. On the contrary, the rest of the 

phases are waiting to receive inputs from higher level entities (Figure 1.1). 

Grid Services Management (GSM) and Jobs Allocation and Activation (JAA) phases are 

solved by a Policy-based Grid Resource Management Architecture (PbGRMA) [Maga07a]. On 

one hand, this architecture identifies Grid Services requirements from three different sources: 

the users’ QoS needs, resource provider’s availability (i.e. amount of resources free to execute 

new services) and service specifications according to Open Grid Services Architecture (OGSA). 

On the other hand, the PbGRMA merges these requirements creating a Grid Domain Level 

policy for the corresponding Grid Service. It is the starting point of the Grid Resource 

Management process. It is also worthy to mention that we have made this PbGRMA compatible 

with Globus Middleware [Bor05] and Linux CLI [Wee04] to allocate and execute Grid Services 

along with large-scale Grid Infrastructures. 
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Figure 1.2 Current business model for Grid Services Management 
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PbGRMA has been successfully used in other environments such as Active Networks 

[Sal03]. This architecture is characterized by a reliable and autonomous deployment, activation 

and management of Grid Services. Although applicable to any user profiles, our system is 

essentially intended for non-massive resource owners accessing large amounts of computing, 

software, memory and storage resources. Unlike similar architectures, it is able to manage 

service requirements demanded by users, providers and services themselves. This architecture 

is also able to manage computational resources in order to fulfil QoS requirements based on a 

balanced scheduling of resources exploitation. It is flexible because it is able to self-extend by 

incorporating management components and policies interpreters needed to control multiple 

infrastructures regardless operative platform or network technology. 
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Figure 1.3 Business model proposed for Grid Services Management 
 

One of the most important contributions in our Policy-based Grid Resource Management 

System design is that simplifies the communication between Grid Services Customers (GSCs), 

Grid Services Repositories and Grid Infrastructure Providers (GIPs). The current process for 
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deploying Grid Services on Grid Infrastructures involves a set of sequential steps which require 

the interaction of the clients many times. Normally, the GSC has to first invoke a service name 

registry, then request a service instantiation and finally he receives the Grid Service handler. 

These interactions are shown in Figure 1.2. 

The solution proposed into the PbGRMA simplifies this process from the GSC’s and GIP’s 

point of view. It is designed to retrieve the Grid Service handler from the UDDI Registry and the 

Grid Service requirements from the Grid Service Descriptor Server on behalf of the GSCs. In 

Figure 1.3 we are illustrating the business model evolution that we are proposing in our solution 

in order to simplify Grid Services deployment in large-scale Grids. 

We face the Grid Resource Discovery and Monitoring (GRDM) phase by introducing our 

SBLOMARS architecture that stands for SNMP-based Balanced Load Monitoring Agents for 

Resource Scheduling [Maga07b]. SBLOMARS monitoring system is a set of autonomous, 

distributed SNMP-based monitoring agents, which are in charge of generating real-time and 

statistical resource availability information for every resource and entity forming the Grid. So far, 

SBLOMARS is able to monitor processor, memory, network (interface level), memory, storage, 

applications and network (end-to-end networking traffic) for different architectures such Unix-

based systems, Solaris, Microsoft-based and Macintosh systems. It is also self-extensible to 

multi-processor platforms as well as storage cluster systems. Its design is based on SNMP 

technology to achieve higher levels of heterogeneity and also based on autonomous distributed 

agents for scalability purposes in large-scale Grids.  

SBLOMARS monitoring agents [Maga07b] consist of a set of distribute resource monitoring 

agents which are constantly capturing end-to-end network and computational resources 

performance. SBLOMARS faces the scalability problem by the distribution of the monitoring 

system into a set of sub-monitoring instances which are specific to each kind of computational 

resource to be monitored. Current monitoring systems GridRM [Bak05], Grid Monitoring [Bal03] 

and  ReMos [Dew04] fail when new components are integrated into the Grid Infrastructure and 

some others fail when heterogeneous resources are operating into the Grid, thus laking of 

heterogeneity. Our approach reaches a high level of heterogeneity by means of the integration 

of the Simple Network Management Protocol (SNMP) that is commonly supported in almost any 

platform. SBLOMARS has been designed as a full independent and autonomic system. It could 

be re-configured by itself based on the performance load in its hosting nodes. SBLOMARS also 

introduces the concept of dynamic software structures, which are used to monitor everything 

from simple personal computers to complex multiprocessor systems or clusters with multiple 

hard disk partitions. These features make our approach novel compared with similar monitoring 

systems such as Ganglia [Mas04] or MonAlisa [Leg04]. In contrast to current monitoring 
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approaches, SBLOMARS integrates an end-to-end network-level monitoring technology; namely 

the CISCO IOS® IP Service Level Agreements [Cis06] that allows users to monitor end-to-end 

network-level performance between routers or from any remote IP network device. 

The Grid Resource Scheduling (GRS) phase searches and matches jobs’ requirements 

with resource availability. In other words, it determines which resources are best for executing a 

specific job, application or service. Our approach covers this phase by introducing the Balanced 

Load Multi-Constrain Resource Scheduler (BLOMERS) [Maga07c]. This scheduler makes use 

of the real-time and statistical resource availability information generated by SBLOMARS 

monitoring agents. BLOMERS implements a heuristic approach in order to tackle with the 

scalability problem and makes use of statistical resource availability information to do 

scheduling  with load-balancing constraints. 

The BLOMERS scheduler [Maga07c] deals with several conditions. It selects a set of 

candidates’ resources from a poll, keeping individual resource performance comparatively 

balanced in all nodes of the Grid. This condition has been added in order to satisfy the 

computational resource load balancing. In BLOMERS approach, we propose to find a sub-

optimal solution to the problem of scheduling computational resources. BLOMERS scheduling 

system is based on a Genetic Algorithm (GA) [Pag05] in charge of resource selection, as a part 

of the resource manager system. So far, BLOMERS is already implemented and running in both 

a local small-scale test-bed and a real large-scale test-bed. It has been compared from 

quantitative and qualitative points of view in the following paper [Maga07d]. We have also 

executed scheduling experiments in the Grid5000 test-bed [Cap05] as a complementary activity 

for this approach. 

BLOMERS as a heuristic-based resource scheduler has important contributions regarding 

makespan saving and balancing the resource load along the Grid. These contributions are 

possible because of the integration and combination of two methodologies for generating the 

new set of candidates (recombination operators). In heuristic models, the number of solutions to 

check, in order to see if they are matching resources requirements, is reduced by means of 

selecting smaller patterns from the full set of resources available in the Grid. Normally, 

heuristics solutions fail to apply their recombination operators because they do not take into 

account the statistical usability of the resources. In our approach we are using statistical 

information from SBLOMARS monitoring agents in order to improve our new possible 

resources. 
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1.5 STRUCTURE OF THE THESIS 
 

This thesis is composed by seven Chapters and three Appendixes as follows: 

Chapter 1 introduces the Thesis, providing a general outline of Grid Computing technology 

and the resource management problem in large-scale Grids. We also state the motivations of 

the Thesis and its main contributions to solve the inherent problems in resource management. 

Chapter 2 contains a review of the literature related to Grid Resource Management. In this 

Chapter we will describe some of the most important and active projects which are working on 

improving resource management in Grid Computing. 

Chapter 3 describes the first contribution of the Thesis, the Policy-based Grid Resource 

Management Architecture (PbGRMA). We will describe the mechanisms implemented in this 

architecture to cover two of the four proposed resource management phases, Grid Services 

Management (GSM) and Jobs Allocation and Activation (JAA). 

Chapter 4 describes the second contribution of the Thesis, the SNMP-based Balanced 

Load Monitoring Agents for Resource Scheduling in Large-scale Grids (SBLOMARS). These 

distributed monitoring agents are solving the second phase proposed in this Thesis, the Grid 

Resource Discovery and Monitoring (GRDM). 

Chapter 5 describes the third and last contribution of the Thesis, the Balanced Load Multi-

Constrain Resource Scheduler in Large-scale Grids (BLOMERS), a heuristic approach to solve 

the NP-hard problem for scheduling huge amount of network and computational resources in 

Grids. 

Chapter 6 contains evaluations scenarios and examples for each one of the contributions 

of the Thesis. In this Chapter we will describe the experiments executed to show the 

advantages of our approaches and contributions. 

The thesis ends with Chapter 7, where the main results of the thesis are summarised. In 

this Chapter we also express our conclusions and the future work that could be done in this 

area. 

Appendix A is a full Grid Computing background in order to offer introduction information 

on the Grid Computing field for new researchers on this area. 

Appendix B is a brief background of Genetic Algorithms technology. It is important to read 

this information to understand the terminology and fundamentals of this approach. 

Appendix C is a list of the research publications by the author of the thesis. 
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Chapter 2 
 
 
 

 
REVIEW OF THE LITERATURE 

 
 
 
 

2.1 INTRODUCTION 
 
 

Grid Computing in distributed systems world was formulated in the last decade. It referred 

to an envisioned advanced distributed computing paradigm with capabilities to ultimately assist 

in solving complex science and engineering problems beyond the scope of existing computing 

infrastructures [Fos03]. The concept has evolved considerably since that time. Grid computing 

is gaining a lot of attention within the IT industry and some others [Ram03]. Although it has been 

used within the academic and scientific community for some time, standards, enabling 

technologies, toolkits, and products are becoming available that allow businesses to use and 

reap the advantages of Grid Computing.  
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The growing popularity has also resulted in various kinds of ‘Grids’, commonly known as 

Data Grids, Distributed Computational Grids, High Performance Computing Grids, Cluster Grids 

and Enterprise Grids, among many others [Fos02b]. Efforts are in progress to converge the 

concepts related to the architecture, protocols, and applications of these grids to formulate a 

single paradigm: The Grid. 

This chapter summarizes the evolution of the Grid Computing concept along the last years 

and proposes taxonomy of the types of Grids, which currently are the most commonly 

implemented. It is worth understanding this taxonomy because Resource Management features 

and requirements are different for each one of these Grids. Moreover, we will describe the main 

factors, which we have used to decide the type of Grid that we finally have worked on 

(Distributed Computational Grids). Nevertheless, the focus is on the management functions that 

should be performed by the Grid Resource Management (GRM) systems in Distributed 

Computational Grids. Once we have highlighted the most critical of these activities, we will 

explain what work has been done on them in order to perform the GRM process in large-scale 

computational Grids. In addition, we will go through the different lines proposed to generalize 

the resource management problem. 

The purpose of this chapter is to describe our main motivation to improve resource 

management systems. These systems are intended to be in charge of executing most of the 

resource management operations on behalf or their users. They must provide support for some 

form of scheduling, monitoring, allocation and discovering computational and networking 

resources. They also should provide mechanisms for interfacing Grid Service Customers 

(GSCs) with Grid Infrastructure Providers (GIPs) as well as identifying and allocating of Grid 

Services, which have been demanded by GSCs 

There are many architectures and different global aims in the Grid world. Beyond the fact 

that it would be ponderous to perform a review of the existing literature in all these architectures, 

it would not be possible to design a full and generic Grid Resource Management System 

covering all issues related to all of these types of Grids. During this research we discovered that 

Distributed Computational Grids are the least used and implemented grid architectures. 

Moreover, this type of Grid needs sophisticated mechanisms to perform management activities 

mainly because the amount of targeting resources is very large. Distributed Computational 

Grids are also called Large-scale Computational Grids. For all these considerations, we decided 

to focus our research on this type of grid. 
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Large-scale Computational Grids are composed of thousands of nodes that share multiple 

kinds of resources (e.g., computational and network resources, applications, instruments, etc.). 

Therefore, the total number of shared available resources comprises thousands of individual 

entities that must be adequately integrated and coordinated to enable the solution of multi-

disciplinary problems. 

This Chapter is composed of five sections. After Introduction, Section 2.2 describes our 

taxonomy proposal for current Grid Computing methodologies. Section 2.3 illustrates current 

Resource Management Architectures in Large-scale Distributed Computational Grids. In Section 

2.4 we proceed to explain Resource Management Functions and the review of the literature on 

each one of them. Finally, Section 2.5 concludes this Chapter. 
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2.2 A TAXONOMY OF GRID COMPUTING 
 

The article in [Fos02b] lists the three fundamental and basic characteristics that may be 

significant in determining whether a distributed computing system meets the requirements to be 

considered as a Grid. According to [Fos02b], such a system qualifies as a Grid, which: 

 

I. Coordinates resources that are not under centralized control. 

II. Utilizes standard, open, general-purpose protocols and interfaces. 

III. Promises to deliver non-trivial qualities of service. 

 

The most common description of Grid Computing includes an analogy to a power grid. 

When you plug an appliance or other object requiring electrical power into an outlet, you expect 

that there is power of the correct voltage available, but the actual source of that power is not 

known. Your local utility company provides the interface into a complex network of generators 

and power sources and provides you with (in most cases) an acceptable quality of service for 

your energy demands. Rather than each house or neighbourhood having to obtain and maintain 

its own generator of electricity, the power grid infrastructure provides a virtual generator. The 

generator is highly reliable and adapts to the power needs of the consumers based on their 

demand. 

The vision of Grid Computing is similar. Once the proper kind of infrastructure is in place, a 

user will have access to a virtual computer that is reliable and adaptable to the user's needs. 

This virtual computer will consist of many diverse computing resources. But these individual 

resources will not be visible to the user, just as the consumer of electric power is unaware of 

how their electricity is being generated. To reach this vision, there must be standards for Grid 

Computing that will allow a secure and robust infrastructure to be built. Standards such as the 

Open Grid Services Architecture (OGSA) [Fos02a] and incoming technologies provide the 

necessary framework where businesses will build their own infrastructures. Over time, these 

infrastructures will become interconnected. This interconnection will be made possible by 

standards such as OGSA, Web Services and the analogy of Grid Computing to the power grid 

will become real. 

According to this light summary of the evolution in the Grid Computing concept [Jac06], 

Grids are used in a variety of ways to address various kinds of application requirements. Often, 

Grids are categorized by the type of solutions that they best address. In our analysis we have 

identified four primary types of Grids which are summarized below. Of course, there are no hard 

boundaries between these Grid types and often Grids may be a combination of two or more of 

these. 
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2.2.1 High Performance Computing Grids 
 

These Grids can be considered as the archetype of a Grid. Due to the complexity of many 

scientific problems, it is frequently impossible to obtain an analytical solution. Instead search 

heuristics are used to solve many optimization problems and simulation is often the method of 

choice to determine the behaviour of a complex process. These methods require more 

computing resources in order to solve more complex problems. In this type of grid, most of the 

machines are high-performance servers. The most publicly known Grid projects fall into this 

scenario in which different computing sites of scientific research labs collaborate for joint 

research. Here, compute-intensive and/or data-intensive applications are executed on the 

participating High Performance Computing (HPC) resources, which are usually large, parallel 

computers or cluster systems. The total number of participating sites in this Grid project is 

commonly in the range of tens or hundreds; the available number of processing nodes is in the 

range of thousands. Most people active in Grid research originate from this community and 

have these kinds of Grid scenarios in mind. 

 

2.2.2 Distributed Computational Grids 
 

Distributed Computational Grids are also called Scavenging Grids. This kind of Grid is most 

commonly supported by a large number of desktop machines. Machines are scavenged for 

available CPU cycles and other resources. Owners of the desktop machines are usually given 

control over when their resources are available to participate in the Grid. Grid computing has 

emerged as an important new field, distinguished from conventional distributed computing by its 

focus on large-scale resource sharing, innovative applications, and high-performance 

orientation [Cab07]. 

Distributed Computational Grids aggregate substantial computational resources in order to 

solve problems that cannot be solved on a single computational system [Fos00]. These 

aggregated resources might comprise the majority of the supercomputers in the country or 

simply all of the workstations within a company. Here are some contemporary examples: 

 

• Distributed interactive simulation (DIS) is a technique used for training and 

planning in the military. Realistic scenarios may involve hundreds of thousands of 

entities, each with potentially complex behaviour patterns. Yet even the largest 

current supercomputers can handle at most 20,000 entities. In recent work, 

researchers at the California Institute of Technology have shown how multiple 

supercomputers can be coupled to achieve record-breaking levels of performance. 

Review of the Literature                                                                                                               20



  

 

 
A Distributed and Heuristic Policy-based Management 

Architecture for Large-Scale Grids 

 
 
 

• The accurate simulation of complex physical processes can require high spatial 

and temporal resolution in order to resolve large-scale details. Coupled 

supercomputers can be used in such situations to overcome resolution barriers 

and hence to obtain qualitatively new scientific results. Although high latencies can 

pose significant obstacles, coupled supercomputers have been used successfully 

in cosmology [Nor96], high-resolution chemistry computations [Nie96], and climate 

modelling [Mec99]. 

 

2.2.3 Data Grids 
 

Data grids [Che05] are being built around the world as the next generation data handling 

systems for sharing, publishing, and preserving data residing on storage systems located in 

multiple administrative domains. A data grid provides logical namespaces for users, digital 

entities and storage resources to create persistent identifiers for controlling access, enabling 

discovery, and managing wide area latencies. A data grid provides virtualization mechanisms 

for resources, users, files, and metadata. Each virtualization mechanism implements a location 

and infrastructure-independent name space that provides persistent identifiers. 

Data grids are perfect for organizations that need a collaborative work environment despite 

having diverse, distributed resources where data resides across multiple business and/or 

organizational domains. Data grid services allow users to access and manipulate data residing 

at sites around the world. Data can be retrieved from any location on the grid, and can be 

deposited or replicated to any location with space. A data grid is responsible for housing and 

providing access to data across multiple organizations. Users are not concerned with where this 

data is located as long as they have access to the data. For example, you may have two 

universities doing life-science research, each with unique data. A data grid would allow them to 

share their data, manage the data, and manage security issues such as who has access to 

what data. 

 

2.2.4 Per to Per Systems (P2P) 
 

Another common distributed computing model that is often associated with or confused 

with Grid Computing is Peer-to-Peer computing (P2P). In fact, some consider this another form 

of Grid Computing. A detailed analysis and comparison of grid computing and peer-to-peer 

computing is provided in [Iam03]. 
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2.3 RESOURCE MANAGEMENT ARCHITECTURES IN 
  LARGE-SCALE DISTRIBUTED COMPUTATIONAL GRIDS 

 

So far, we have explained the main differences between Data Grids, High Performance 

Grids and Large-scale Computational Grids. We have considered it extremely important to 

explain these differences before introducing the most fundamental Grid Resource Management 

(GRM) initiatives, which are based on the type of Grid being managed. As we have mentioned 

before, in our research we have focused on Resource Management for Large-scale 

Computational Grids. Therefore, we will highlight the main features and requirements of the Grid 

Resource Management System in Large-scale Computational Grids. 

In Large-scale Computational Grids, the resource manager is one of the most critical 

components of the Grid, since it is responsible for handling applications requirements, selecting 

resources and scheduling jobs in complex environments [Min04]. Grid Resource Management 

(GRM) in Large-scale Distributed Computational Grids is the process of identifying 

requirements, matching resources to applications, allocating those resources, and scheduling 

and monitoring resources over time in order to run applications as efficiently as possible. 

GRM process involves many details in its context. Basically, there are three involved actors 

in this definition. The first ones are Grid Service Customers (GSCs). They are the end users of 

the Grid. The second ones are Grid Infrastructure Providers (GIPs). They offer computational 

and networking resource such as processor, storage, bandwidth, memory and software. The 

last are Grid Services Repositories (GSRs). They are mainly databases where Grid Services 

are defined based on OGSA and WS-RF standards. They support the scalable evolution of Grid 

Services in heterogeneous domains and stand for the reliable functionality of Grid Services in 

real large-scale distributed computational Grids. These actors and their mutual interactions are 

shown in Figure 2.1. The Grid Resource Management mediates between GIPs (also called 

resource owners), GSCs (who are the customers) and GSRs (databases with Grid Services 

resource properties documents). 

In managing the complexities present in Large-scale Computational Grids, traditional 

approaches are not suitable as they attempt to optimize system-wide measures of performance. 

Traditional approaches use centralized policies that need complete state information and a 

common resource management policy, or decentralized consensus-based policy. Due to the 

complexity in constructing successful Grid environments, it is impossible to define an acceptable 

system-wide performance matrix and common fabric management policy. Therefore, 

hierarchical and decentralized approaches are suitable for Grid resource and operational 

management [Buy99]. Within these approaches, there exist different models for management 

and regulation of supply and demand for resources [Buy103].  

Review of the Literature                                                                                                               22



  

 

 
A Distributed and Heuristic Policy-based Management 

Architecture for Large-Scale Grids 

 
 
 

Grid Service
Customers

(GSCs)

Grid Infrastructure Providers
(GIPs)

A:1 – Service “X” is on 147.10.1.13

Web-Service
Description Language

Q:1 - Where is Grid Service “X”?

Q:2 – How can I use Grid Service “X”?

Q:3 – Can you host Service “X”?

Q:4 – Can you host Service “X”?

A:2 – Service “X” is

Described by WSDL …

A:3 – I am busy at the moment

A:4 – I am almost idle

Grid Service
Repositories

(GSRs)

Grid Service
Customers

(GSCs)

Grid Infrastructure Providers
(GIPs)

A:1 – Service “X” is on 147.10.1.13

Web-Service
Description Language

A:2 – Service “X” is

Described by WSDL …

A:3 – I am busy at the moment

A:4 – I am almost idle

Q:1 - Where is Grid Service “X”?

Q:2 – How can I use Grid Service “X”?

Q:3 – Can you host Service “X”?

Q:4 – Can you host Service “X”?

Grid Service
Repositories

(GSRs)

 

Figure 2.1 Large-scale Grid Resource Management actors 

 

Large-scale Computational Grid environments contain heterogeneous resources, local 

management systems (single system image OS, queuing systems, etc.) and policies, and 

applications (scientific, engineering, and commercial) with varied requirements (CPU, I/O, 

memory, and/or network parameters). The Grid Infrastructure Providers (GIPs) and Grid Service 

Consumers (GSCs) have different goals, objectives, strategies, and demand patterns [Buy99]. 

More importantly, both resources and end-users are geographically distributed with different 

time zones. A number of approaches for resource management architectures have been 

proposed and the prominent ones are centralized, decentralized, hierarchical and mixed (better 

known as hybrid architectures). 

 

2.3.1 Centralized Resource Management 
 

A Central Resource Management System will be responsible for all the coordination and 

management issues, and will act as a middleware. It will receive the request from a client and 

broadcast to agents to ask which machine is best suitable for executing the application. After 

getting the responses from agents, the manager will apply the most suitable machine algorithm; 

will be developed in first stage of project to select a machine based upon the information 

received. Now the coordination between real client and the best machine will start to execute 

the application, either through the manager or direct coordination. 
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Unfortunately, this approach has fewer advantages. Its implementation is quite simple 

because only one centralized system is required and the control and vision of the resources is 

controlled from only one point. The performance of this approach is more reliable and fast when 

the requesting client is close to the central manager in terms of time, and when the connection 

between manager and client is rich in bandwidth. 

This management system lacks fault tolerance, when the manager goes down, the overall 

scenario fails to perform. If many clients request to execute an application at same time, the 

server faces/manager faces the bottleneck in responses to the agents. Because if there are ‘n’ 

machines under a manager and any machine appears to ask for its application execution, a 

manager will generate ‘n’ possible requests to check who the best machine is and will have ‘n’ 

possible responses from agents. So imagine if 5 clients request a manager to find the best 

machine. Then it will generate 5*n requests and will receive 5*n responses from clients plus 

some extra time to apply rules and policies to select the best machine. This will put a mess of 

burden on the manager, and in our case we wish our manager to provide a service 

transparently to a client so that the client may not come to know that the particular application 

was executed on his machine or on a remote machine. Finally, this approach introduces more 

overhead on the network, as it requires more useless traffic roaming to check agents. If the 

central manager is far away, communication delay and communication bandwidth issues effects 

the performance.  

 

2.3.2 Decentralized Resource Management 
 

In a fully Decentralized Resource Management approach there are no dedicated resource 

controller machines, the resource requestors and resource providers directly determine the 

allocation and scheduling of resources. Logically there are as many different request and job 

queues as there are resource requestors and resource providers in the Grid. 

In general, Decentralized Resource Management systems may lead to instability because 

of the lack of global perspective. The major drawback of a fully decentralized design is the 

increase in latency time and communication overhead to locate the requested object. 

Decentralized Resource Management systems integrate several subsystems and have a 

composite life cycle. The independent subsystems of these systems consist of uniform 

components, which are capable of interacting with each other to perform global functions. 

However, nothing monitors or controls these subsystems in an integrated manner. The 

monitoring system is only a subsystem and, like an organ in a living organism, there is no 

hierarchy of subsystems. 
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Figure 2.2 Decentralized Grid Resource Management system 

 

2.3.3 Hierarchical Resource Management 
 

In Hierarchical Resource Management Systems, the entities and components are 

organized in a hierarchy. High-level resource entities are managed at higher levels and lower-

level, smaller sub-entities are managed at lower levels of the hierarchy. A Hierarchical Resource 

Management System is structured by a plurality of agents and sub-managers connected to 

lower communication networks and an integration manager connected to a higher 

communication network. Each of the sub-managers functions as an agent to the integration 

manager and functions as a manager to each agent. 

On one hand, these systems avoid bottleneck at one server/manager (as compared to 

Central Resource Management systems), as it will not be the only machine in the overall 

network to entertain a client.  Suppose if we have 5 managers and n clients, we call allocate 

responsibility to manager for machines depending on the rules and policies that we will design. 

For instance, a simple rule could be “Manager A” is responsible for n/5 machines. They provide 

quicker response to a client’s request to find a machine for application execution. The network 

overload is fewer busy as less useless traffic than real one, to check agents. The application’s 

execution is done in faster time due to the use of the nearest machine below the primary 

manager. 
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On the other hand, they need complex architectures from implementation prospective. 

When the primary manager fails to find a suitable machine, that is overhead from a performance 

point of view because the time will be considered unused as the higher manager will have to 

follow the same practice to find a machine for a client. Therefore, time spent by the lower 

manager will be wasted. 
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Figure 2.3 Hierarchical Grid Resource Management system 

 
2.3.4 Hybrid Resource Management 
 

Hybrid Resource Management is the newest alternative to the previous ones. In Hybrid 

Resource Management systems, local agents are controlling and monitoring shared resources 

and distributed resource managers are interacting with these agents in order to perform 

management operation like scheduling and evaluation. Basically, these systems integrate both 

solutions, the decentralized and the centralized, been the local agents the centralized system 

and the distributed resource managers the decentralized system. These systems could be very 

similar to decentralized systems but the main difference between decentralized systems and 
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hybrid systems is that, when a request is sent by a customer to find a best possible node to 

perform certain application or job, that request is received by every manager in the network and 

compared between all possible alternative in order to select the best one. 

Hybrid management systems have the potential to dissolve perennial interface problems 

and create an environment that's customer focused. Real-time management operations are 

performed in hybrid resource management systems due to the fact that resources are on-fly 

monitored by decentralized agents. Therefore, hybrid resource management systems get real-

time information about resources status. In these systems the bottleneck that central resource 

management systems have is avoided. Moreover, if one manager goes down, it does not affect 

the overall performance of the resource management system. Time wasted in Hierarchical 

Resource Management Systems is avoided when each individual manager starts to find out an 

available resource. Then, a faster service is offered to the customer. These systems adjust its 

Quality of Service (QoS) levels depending on the agreements between GSCs and GIPs. Finally, 

resource reservation requests are performed based on feasibility, optimality and stability 

analysis of the available resources. It also evaluates if a resource reservation request may be 

granted or not. 
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Figure 2.4 Hybrid Grid Resource Management system 
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Making hybrid management systems work presents some challenges, among them sorting 

out the contractual relationships and interdependencies between agents and hierarchical 

managers. These are complex architectures to design and implement. Hybrid Resource 

Management Systems have more media usability as compared to hierarchical resource 

management systems. They do have a notion of relative importance of real-time information of 

the managed entities (basically, resources). An important drawback is that final customers as 

well as resources owners have no high level and dynamic control over resource allocation. In 

our approach we have developed a hybrid solution in order to reach the proposed objectives of 

this system. 

 

2.3.5 Classification of Current Grid Resource Management Architectures 
 

In a nutshell, the presented analysis around these four solutions clearly shows that the 

most challenging methodology is the Hybrid Resource Management approach. It is also a very 

few exploited initiative. In Table 2.1, we are mapping the Grid Resource Management Systems 

of the most important current Grid Architectures with the type of Grid on their domain and the 

resource management approach. In just a few architectures the hybrid approach is adopted. 

The main reason is the low need of this type of solution on current projects. These projects have 

designed ad-hoc solutions for their resources infrastructure and then they are quite limited to 

only their environments. Although hybrid systems are better for GRM, implementation 

methodologies need to be improved. In future sections we will describe these methodologies 

and the main drawback of the current solutions. 
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TABLE 2.1. CLASSIFICATION OF CURRENT GRID RESOURCE MANAGEMENT ARCHITECTURES 

Architecture Grid Type GRM Approach 
 

AppLe [Ber97] 

 

Distributed Computational Grid 

 

Decentralized with heuristic 

resources estimation 

DataGrid [Che00] Data Grid Hierarchical with predictive 

heuristic resources estimation 

Condor [Tha05] Distributed Computational Grid Centralized and Hybrid 

monitoring instances 

Globus [Bor05] Data, High Performance and 

Distributed Computational Grid 

Hierarchical 

Javelin [Nea00] Distributed Computational Grid Decentralized 

Legion [Cha99] Distributed Computational Grid Hierarchical 

MOL [Buy01] Distributed Computational Grid Decentralized 

NetSolve [Cas97] High Performance Grid Decentralized 

Ninf [Nak99] High Performance Grid Decentralized 

Nimrod-G [Buy00] High Performance Grid Decentralized 

PUNCH [Kap99]H High Performance Grid Decentralized with predictive 

pricing models and rescheduling 

and Hybrid monitoring instances 
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2.4 RESOURCE MANAGEMENT FUNCTIONS IN LARGE-SCALE 
DISTRIBUTED COMPUTATIONAL GRIDS 

 
Fundamental to the success of a Grid is the ability to discover, allocate, negotiate, monitor, 

and manage the use of resources (computational and network-accessible capabilities) in order 

to achieve various end-to-end or global qualities of service, offer transparent services to final 

users in optimal times and balance the resource load along the full infrastructure. We must 

develop methods for managing resources/services across separately administered domains, 

with the resource heterogeneity, loss of absolute control, and inevitable differences in policies 

that result. 

  An ability to handle services requirements, resource discovery, resource monitoring, 

resource selection, job scheduling and job activation that influence computing performance are 

essential issues in Grid Computing. These activities are all related to one general concept, 

which is well known as the Grid Resource Management (GRM) process. Academic and industry 

researchers are working on better solutions to perform as efficiently as possible any of the 

before-mentioned activities in Grid Computing. The literature about GRM approaches is quite 

lengthy. Currently, we can find books [Nab04] [Fos03], taxonomy documents [Kra02], [Zan05] 

and obviously plenty of academic research papers proposing and explaining new methodologies 

and ideas to improve the GRM process. 

Moreover, all this research is mainly supported by international projects that are normally 

financed by government institutes. The most active projects working on improving GRM 

approaches are: 

 

 World Wide Grid (WWG)  [http://www.gridcomputing.com/] 

 NASA Information Power Grid (IPG)  

 Micro Grid  

 Alliance Grid Technologies  

 EuroGrid  

 NorduGrid  

 TeraGrid  

 GridCAT  

 OGSA Config  

 CRO-GRID Infrastructure  

 EGEE  

 World Community Grid  
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Despite this huge list of projects and research initiatives there are some issues unsolved in 

Grid Resource Management for Large-scale Computational Grids. In order to understand these 

issues, we have classified in our study the GRM functions in four phases: Grid Services 

Requirements, Grid Resource Discovery and Monitoring, Grid Resource Scheduling, and Jobs 

Allocation and Activation. In the following sub-sections we will describe the most important 

functions of these four GRM phases. Then we will highlight the most significant unsolved issues 

and finally we will explain why current proposals are not enough to properly cover the non-

functional requirements1 of the large-scale GRM. 

 

2.4.1 Grid Services Specifications and Requirements 
 

Two forces are leading the development of Grid Computing Services: The Globus Alliance, 

which oversees the Globus Toolkit [Bor05]; and the Global Grid Forum [GGF07], which is 

creating a set of open standards for Grid technologies and applications. The GGF includes 

academics, researchers, and small and big technology companies. The GGF's major efforts 

include the Open Grid Services Architecture (OGSA). The trend of OGSA is that every job 

running on the Grid no matter its complexity or simplicity is represented as a Service. This 

representation is currently known as Grid Services [Cza06]. 

 Grid Services will be provided to users without any kind of distinctions related to network 

technology, operative platform and administrative domain. As a result, there have been 

significant increases in management complexity of the OGSA-based Grid Services provision, 

mainly because Grid Resource Management systems have to deal with the yet elusive rapid 

and autonomous creation, deployment, activation and management of the emerging Grid 

Services.  

Grid Services incorporates Web Services [Ved02] standards to facilitate communication 

among heterogeneous resources. Grid Services expect that Web services mechanisms will 

become the interface for Grid Computing. These services are defined in terms of Web Services 

Description Language (WSDL) interfaces, and provide the mechanisms required for creating 

and composing sophisticated distributed systems. These mechanisms include code 

encapsulation and interface characterization, lifetime management, reliable remote invocation, 

credential management, and notification. Discovery services, like the Universal Description, 

Discovery, and Integration (UDDI) service, provide for locating services based on their 

                                                 
 
1 Section 1.3 of the thesis defines these requirements. 
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functional characteristics, and then provide the detailed descriptions of the data types and 

interfaces needed to make use of those services. 

Current Grid Service Customer’s (GSCs) applications are becoming Grid Services when 

they are introduced into the Grid. Therefore, Grid Services are GSC’s software, which is 

standardized through OGSA mechanisms. In these mechanisms it is possible to find detailed 

information about resources requirements to deploy and execute Grid Services. Moreover, 

GSCs will request certain Quality of Service (QoS) requirements for the requested Grid 

Services. These requirements should be satisfied by Grid Infrastructure Providers (GIPs). 

Otherwise, Grid Service Customer’s (GSCs) Grid Services will not be neither deployed nor 

executed. 

Therefore, three sources of Grid Service requirements, which will be considered as Grid 

Service constraints along this thesis, are showing up here: the OGSA-based constraints, QoS 

constraints and GIPs’ capabilities constraints. Detailed information about these three sources of 

requirements is in Chapter 3. 

Solutions for accomplishing Grid Services taking into account these three sources of 

requirements are needed. Current approaches have limitations, particularly related to high-

bandwidth, network re-configuration, reliability, scalability, flexibility and persistence. Moreover, 

it is necessary that there be a major entity in charge of providing high-level management to 

allow quick and autonomous deployment, activation and reservation of Grid Services in a 

transparent way from the GSCs point of view. In this field, some projects appeared with 

proposals to improve the management of Grid Services, projects such Condor-G [Tha05], 

Control Architecture for Service Grids [Gra02], Data Grid [Che05] and Nimrod-G [Buy00]. 

Policy-based middleware systems for Grid Services were presented in [Yan02] and [Maga04], 

involving technologies as active networks and the GARA architecture but without any constrains 

regarding OGSA compatibility. Some of the above developments are just functional 

improvements within the context of their respective projects, whilst Condor-G and G-QoSM 

[Ali04] have the drawback of not being completely autonomous. Although G-QoSM is coping 

with similar features that are presented in this paper, it is not very flexible. It bases its reliability 

on a central component, the middleware Grid Resource Manager (GRM), which may present 

overload problems for large amounts of Grid Service requests [Cza06]. 

There are a number of Grid Middlewares that are available, and they implement 

mechanisms to manage (fulfil en lugar de manage) some of the mentioned Grid Services 

requirements. Globus Toolkit (GT4) [Bor05] is the most frequently used. It contains elements of 

all of the OGSA core service areas except for self-management. It will be used as the core 

service layer for the National Science Foundation TeraGrid project [Ter05]. It is also used in the 
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bioinformatics Grid GeneGrid [Kel05], and GridCast [Cas07], a Grid to support the delivery of 

multi-media for the BBC. Unfortunately, GT4 is too complex to implement in large-scale Grids. 

gLite [Gli07] also implements mechanisms to integrate Grid Services Requirements. It 

supports research in high-energy physics. gLite is used in the “Enabling Grids for E-SciencE” 

EGEE project [Ege07] and the LHC Computing Grid [Lhc07]. Another large physics project is 

the Open Science Grid OSG [Osg07], which uses elements of GT4 and gLite. The Legion 

system, which is one of the oldest software platforms for Grid computing, is being redeveloped 

as a web SOA by the University of Virginia and is being used in the Global Bio Grid [Bio04]. 

Regardless of the huge amount of Grid Resource Management Systems available [Nab04], 

there are still missing some flexible architectures from the users’ point of view which are able to 

collaborate with the other GRM phases (monitoring, scheduling and allocation), in order to offer 

transparent deploying of Grid Services into GIPs. Our approach goes one step further, offering 

the ability to handle the management requirements of grid services by means of the Policy-

based Grid Resource Management System [Maga07a].  

Policy-based Management is an excellent alternative solution that meets the presented 

sources of requirements of Grid Services. In Policy-based Management approaches, the 

support for distribution, automation and dynamic adaptation of the behaviour of the managed 

system is achieved by using policies [Ver00]. The main benefits of using Policy-based 

technology are improved scalability and flexibility for the management system. Scalability is 

improved by uniformly applying the same policy to large sets of devices and objects, avoiding 

the strenuous task of re-coding. Moreover, the decision-making ability that traditionally existed 

on centralized (more intelligent) management entities is embedded in each policy. Hence, there 

is a severe reduction in the management information that may propagate in the network since 

the intelligence now exists in the point where it is needed. Flexibility is achieved by separating 

the policy from the implementation of the managed system. Policy can be changed dynamically, 

thus changing the behaviour and strategy of a system, without modifying its implementation or 

interrupting its operation. Separating the policy from the manager entities also enhances the 

flexibility. Although the implementation of the managers may alter, the management principles 

remain untouched, as they were originally defined in the policies. 

 

2.4.2 Grid Resource Discovery and Monitoring 
 

Grid Resource Discovery and Monitoring involves analysing which resources are available 

on the Grid Infrastructure. It is an important aspect of the overall efficient usage and control of 

the Grid. The Grid resource discovery and monitoring should be able to monitor any kind of 

resources of interest that can include all manner of network devices, sensors, computing 
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servers, storage servers, software and applications. The Grid requires that a broad range of 

data be monitored and collected for a huge variety of applications that users are demanding. 

The most complex activity in this area is to develop heterogeneous mechanisms to monitor 

and discover any kind of shared resources. We obviously are assuming that monitoring will be 

done based on a highly distributed architecture because the amount of resources is too big to 

be controlled by centralized mechanisms. We could classify in three methodologies any of the 

existing Grid Resource Discovering and Monitoring systems. These methodologies are: Pull, 

Push and Hybrid. 

The Push methodology is simply pushing data from itself to the monitoring system. This 

can be done periodically, or by request from the monitor system asynchronously. The 

advantage of this methodology is that the monitoring system’s load can be reduced to simply 

accepting and storing data, and it does not have to worry about timeouts for communication 

calls, parsing Operating System (OS) specific call results, etc. The disadvantage of this mode is 

that the logic for the polling cycle/options are not centralized at the monitoring system, but 

distributed to each remote node. Thus changes to the monitoring logic must be pushed out to 

each node. 

On the Pull methodology, one or more processes in the system actually poll the system 

elements in some thread. During the loop, devices are polled via agents’ calls (e.g. SNMP, IP 

SLA), resources can be accessed via remote communication protocols such as telnet and SSH 

to execute scripts or dump files or execute other OS-specific commands, applications can be 

polled for state data, or their state-output-files can be dumped. The advantage of this mode is 

that there is little impact on the host/device being polled. The host's CPU is loaded only during 

the poll, and the rest of the time the monitoring function plays no part in CPU loading. The main 

disadvantage of this mode is that the monitoring process can only do so much in its time, and if 

polling takes too long, the intended poll-period gets elongated. An intermediate methodology 

between pull and push is the hybrid approach, where the System Configuration determines 

where monitoring occurs, either in the monitoring system or agent. This is especially useful 

when setting up a monitoring infrastructure for the first time, and not all monitoring mechanisms 

have been implemented. 

Grid Resource Discovery and Monitoring yields two main classes of data: current state 

information and event reporting (e. g. failure notifications). State information is best suited to be 

delivered using the pull model, meaning that an entity interested in the data must actively ask 

for it. Event information however is best delivered using the push model where the component 

that generated the event arranges for a notification to be sent to all interested parties. Therefore 

it is desirable for a monitoring service to support both push and pull data delivery models. 
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In order to evaluate how functional and efficient a Grid Resource Discovery and Monitoring 

System in large-scale Computational Grids is, there are some essential features that it should 

take into account, which are independent of the methodology implemented (push, pull, hybrid). 

These features are: Non-Intrusively, Heterogeneity, Flexibility and Scalability. Basically, the 

resource monitoring and discovering system should be minimal intrusively in the monitored 

resources. Otherwise, the monitored information will not be the real one because of the 

resources consumed by the monitoring system. Grid Resource Discovery and Monitoring also 

should be as more heterogeneous as possible. It means that resources from different 

technologies, manufactures and platforms have to be monitored at any time without specific 

configuration. We are aware that is almost impossible to build a system able to identify any kind 

of resources and starts properly process to monitoring their behaviour but it is worthwhile to 

design novel systems to cope with the resources heterogeneity. 

Obviously, scalability is essential in the resource monitoring system. A non-scalable design 

is not functional in large-scale Grids. Agents-based and P2P-based approaches are the most 

common solutions. Finally, resource-monitoring systems need flexible mechanisms to modify 

their “polling periods”. The polling periods are the intervals of time between every measure from 

the monitoring system to the resources in order to get the resources availability information. It is 

an important feature because most of the current monitoring approaches for large-scale Grids 

are based on non-flexible polling periods [Mas04] and [Bak05]. This is a drawback on these 

systems. With fixed polling periods, the monitoring methodology will be consuming more 

resources because is not smart enough to decrease its polling periods when the resources are 

in idle. Moreover, the fixed methodology could offer false information when resources have 

highly activity. Therefore, dynamic monitoring is a great solution. The complication on this 

alternative is the programming of the methodology. The algorithms to decide when decrease or 

increase the polling periods are quite complex to design. Therefore, revolutionary designs are 

needed in this area to offer flexible Grid resource-monitoring systems. 

Grid Resource Discovering and Monitoring systems could report instantaneous or 

statistical resources availability information. We are also assuming that any Grid Resource 

Discovering and monitoring system for Large-scale Computational Grids guaranteed real-time 

information. Monitoring systems failing in offering real-time information are not functional for this 

type of Grid. 

 

• Instantaneous: This approach offers resource availability information constantly in 

real-time every determinate interval of time (polling period).  
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• Statistical: In this approach, the monitoring system is not offering just snapshot 

information of the resources availability. In this case, the monitoring system is also 

offering an average of the resource availability information. This methodology is 

currently used for post-analysis of the resources performance more than pre-

scheduling analysis. 

 

Unfortunately, none of the current resource schedulers are supporting their scheduling 

decisions based on statistical information [Nab04]. Here we have a great research area to offer 

better resource availability information for scheduling proposes. The disadvantage for this kind 

of monitoring systems is that they need more storage capacity and stronger analysis algorithms 

for the statistical information. In a flexible solution, as we are proposing in this thesis, the 

algorithm’s analysis could be simplified because of the distribution of the sources of information. 

We believe that monitoring activity should not be specifically designed for any technology 

(Grid, P2P, Specific Distributed Systems, etc). The following approaches fail in fulfilling these 

couple of conditions. We will present an alternative solution that we have considered as a good 

alternative for those Grid Resource Management Systems which monitoring times or 

methodologies are not as good as their developers could desire. 

A lot of work has been done in Grid Monitoring. Due to space constraints, we cannot 

discuss all of them, but definitely the best summary so far, is presented in [Zan05]. Currently, 

SNMP-based monitoring agents have been implemented by many researchers to solve different 

problems [Pav04] [Sub00]; each system has its own strengths and weaknesses. However, for 

resource monitoring and management, we believe that none fulfil the criteria that are desired in 

emerging generation networks [Sch03]. GridLab [GridLab] aims to enable applications to fully 

exploit dynamically changing computational resources. In order to accomplish this, a variety of 

mechanisms have been developed such as notifications about changes of job states, complex 

workflow support, multi-criteria user-preference driven and prediction-based selection of the 

best resources, submission of jobs with time constraints, and many others. The capability of a 

dynamic adaptation has been achieved using job migration and pointing techniques. 

One of the most similar approaches to SBLOMARS has been presented in [Bak05]. 

GridRM is also a generic monitoring architecture that has been specifically designed for the 

Grid. It was developed joining several technologies and standards like Java (applets, servlets 

and JDBC), SQL Databases, Grid Monitoring Architecture and it follows several 

recommendations by Open Grid Forum. SBLOMARS could be more competitive base on its low 

resources consumption and its availability to offer at any moment reliable information regarding 

Review of the Literature                                                                                                               36



  

 

 
A Distributed and Heuristic Policy-based Management 

Architecture for Large-Scale Grids 

 
 
 
availability of computational resources. GridRM uses the Mercury grid monitoring system 

[Bal03] to deliver trace data to the host of visualization and PROVE [Bal01] visualizes trace 

information on-line during the execution of the grid applications. Unfortunately, they are oriented 

to monitor application performance instead of resources monitoring and their two fixed layers 

structure is a scalability lack. 

MonAlisa [Leg04] is a distributed monitoring service based on JINI/JAVA and WSDL/SOAP 

technologies, which provides monitoring information from large and distributed systems to 

higher level services that require such information. It could be argued that JINI is using 

multicast, which is not always available, and places scalability limits. Although, MonAlisa is a 

well justified flexible system, it runs remote scripts in Grid resources get behavioural 

information, this mainly causes an extra traffic in the network. 

The Monitoring and Discovery Service (MDS), constitutes the information infrastructure of 

the Globus Toolkit [Bor05]. Globus was designed and implemented as part of the Open Grid 

Services Architecture (OGSA) [Fos02a]. The Lightweight Directory Access Protocol (LDAP) 

[Ldap07] is adopted as a data model and representation, a query language and a transport 

protocol for MDS. However, LDAP features a non-declarative query interface that requires 

knowledge of the employed schema. In addition, the performance of OpenLDAP’s update 

operation, which is by far the most frequently used, has been very much criticized. 

Many other approaches could be found on the literature. NetLogger [Tie02] is both a 

methodology for analyzing distributed systems, and a set of tools to help implement the 

methodology. It provides tools for distributed application performance monitoring and analysis. 

Remos [Dew04] aims to allow network-aware applications to obtain relevant information about 

their execution environment. It defines a uniform heterogeneous interface that addresses 

statistical information and efficiency for these environments. Finally, Java Agents for Monitoring 

and Management [Law00] is a distributed set of sensors that collect and publish monitoring 

information regarding computational systems. These systems have been presented for different 

frameworks and some of them are not available any more. 

There are also alternative solutions based on heuristic methodologies to improve real-time 

monitoring mechanism. A-GAP [Gon06] addresses the problem of continuous monitoring in 

distributed systems. It is a generic aggregation protocol with controllable accuracy objectives for 

large-scale network environments. A-GAP allows for continuously computing aggregates of 

local variables by creating and maintaining a self-stabilizing spanning tree and incrementally 

aggregating the variables along the tree. A-GAP can reduce the overhead significantly when 

allowed a modest error in estimating an aggregate. Heuristic solutions in the monitoring 
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functions are functional when they are independent systems because the minimal error could 

drastically deteriorate the resource selection phase in the Grid Resource Management process. 

 

2.4.3 Grid Resource Scheduling 
 

Jarek Nabryski et al. define grid resource scheduling, as the process of making scheduling 

decisions involving resources over multiple administrative domains [Nab04]. This process 

includes searching multiple administrative domains to use available resources from the Grid 

Infrastructure in order to satisfy Grid Services hard and soft constraints demanded by Grid 

Services Customers (GSCs). 

Therefore, scheduling is the fact of assigning available resources on the Grid Infrastructure 

for requested Grid Services. A Grid Service could be scheduled on a single resource or a set of 

them at a single site or multiple sites. Grid Services are anything that needs a resource, from a 

bandwidth request to an application or to a set of applications. The term resource means 

anything that can be scheduled: a machine, the disk space, a QoS network, and so forth.  

Grid Services require the coordinated processing of complex workflows, which includes 

scheduling of heterogeneous resources within different administrative domains. A typical 

scenario is the coordinated scheduling of computational resources in conjunction with data, 

storage, network and other available Grid resources, like software licenses, experimental 

devices, etc. The Grid scheduler should be able to coordinate and plan the workflow execution. 

That is, it should reserve the required resources and create a complete schedule for the whole 

workflow in advance. 

Jobs submitted to Grid resource schedulers are evaluated based on their service 

constraints and then allocated to the respective resources for execution. This will involve 

complex workflow management and data movement activities to occur on a regular basis. In 

order to make the best use of an available resource, part or all of the resources may have to be 

reserved in advance. Depending on the resource, an advance reservation can be easy or hard 

to do and may be done with mechanical means or human means. Moreover, the reservations 

may or may not expire with or without cost. 

We have classified current resource schedulers as static and dynamic approaches. This 

choice indicates the time at which the scheduling decisions are made. In the case of static 

scheduling, information regarding all resources in the Grid as well as all the tasks in an 

application is assumed to be available by the time the application is scheduled. By contrast, in 

the case of dynamic scheduling, the basic idea is to perform task allocation on the fly as the 

application executes. This is useful when it is impossible to determine the execution time, 
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direction of branches and number of iterations in a loop as well as in the case where jobs arrive 

in a real-time mode. 

Current Grid Resource Scheduling systems only support interactive jobs by trying to start 

them immediately and returning an error if that is not possible. A better approach would be to 

schedule the job as normal (probably with some time constraints, like it should be started only 

during work hours). Before really starting the job the broker could then check if the user is on-

line at the moment, and postpone the job if the user is not available. 

Due to the fact that dynamic scheduling is usually applied when it is difficult to estimate the 

cost of jobs are coming online dynamically, which is actually the case in our solution, A good 

example of these scenarios is the job queue management in some scheduling systems like 

Condor [Tha05] and Legion [Cha99]. Since the cost for an assignment is not available, a natural 

way to keep the whole system health is balancing the loads of all resources. The advantage of 

dynamic load balancing over static scheduling is that the system need not be aware of the run-

time behaviour of the application before execution. It is particularly useful in a system where the 

primary performance goal is maximizing resource utilization, rather than minimizing runtime for 

individual jobs. According to how the dynamic load balancing is achieved, there are four basic 

approaches [Fan06] [Nab04]: 

 

I. Unconstrained: In the unconstrained approach, the resource with the currently 

shortest waiting queue or the smallest waiting queue time is selected for the 

incoming task. This policy is also called Opportunistic Load Balancing (OLB) 

[Sak04] or myopic algorithm. The major advantage of this approach is its simplicity, 

but it is often far from optimal. An unconstrained solution is Condor-G. It allows the 

user to treat the Grid as a local resource. The same command-line tools perform 

basic job management such as submitting a job, indicating executable input and 

output files and arguments, querying a job status or cancelling a job. Condor-G can 

cooperate with the following middleware: Globus Toolkit 4 [Bor05], Unicore 

[Ram02] and NorduGrid [Nor07], and it can submit jobs to Condor-G [Tha05], PBS 

and Grid Engine (SGE / N1GE) [Kis05] scheduling systems. Therefore, there are 

not constrained related to the Grid Service involved in this scheduling systems 

because user is controlling directly the resources assigned by the scheduler. 
 

II. Balance-constrained: The balance-constrained approach attempts to rebalance 

the loads on all resources by periodically shifting waiting tasks from one waiting 

queue to another. In a massive system such as the Grid, this could be very costly 
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due to the considerable communication delay. So some adaptive local rebalancing 

heuristic must be applied. For example, tasks are initially distributed to all 

resources, and then, instead of computing the global rebalance, the rebalancing 

only happens inside a “neighborhood” where all resources are better 

interconnected. This approach has several advantages: the initial loads can be 

quickly distributed to all resources and started quickly; the rebalancing process is 

distributed and scalable; and the communication delay of rebalancing can be 

reduced since task shifting only happens among the resources that are “close” to 

each other. A scheduling algorithm of this type is proposed and evaluated in 

[Chen02]. 

 

III. Cost-constrained: An improved approach to balance-constrained scheduling is 

cost-constrained scheduling. This approach not only considers the balance among 

resources but also the communication cost between tasks, this cost is the latency 

between jobs from the same Grid Service running in distributed nodes. Instead of a 

blind job exchange, jobs will be checked to determine their mutual communication 

costs. If the communication cost brought by a task shift is greater than the 

decrease in execution time, the task will not move; otherwise, it will be moved. This 

approach is more efficient than the previous one when the communication costs 

among resources are heterogeneous and the communication cost to execute the 

application is the main consideration. It is also flexible, and can be used with other 

cost factors such as seeking lowest memory size or lowest disc drive activity, and 

so on. In [Kur04], authors propose a scheduling policy based on these concepts, 

but the objective of the rescheduling phase in their case is not for load balancing 

and cost optimizing, but rather for guarantee certain efficiency deploying the Grid 

Services into the Grid. An example of cost-constrained load-balancing mechanism 

is the WMS scheduler. It is based on a metascheduler developed in LHC 

Computing Grid (LCG) and submits jobs to computational grids through Condor-G. 

Therefore the functionality of job management and its interoperability is almost the 

same as in the case of Condor-G. There are two approaches to job scheduling. 

The first one is based on the usage of Condor-G as an intermediary that pushes 

jobs into computational units. The second one, called the “pull model“, expects the 

computational grid to take a job from a queue and schedule it for execution. 
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IV. Heuristic-constrained: The challenge in Grid resource scheduling is to reduce the 

time of completing the process. In fact, the scheduling problem in dynamic and 

large-scale Grids is a typical NP-hard problem, which in practice has to be solved 

by heuristics methodologies. Actually, some proposals were designed for large-

scale distributed computing Grids [Gar00] but some of them fail in real 

environments. Many heuristic algorithms have been proposed to deal with specific 

cases of job scheduling but they fail, or behave inefficient, when applied to other 

problem domains. An important family of these heuristic solutions is based on 

Genetic Algorithms (GAs), which apply evolutionary strategies to allow for a faster 

exploration of the search space. GAs have proven to be successful in getting better 

distribution of the jobs through the entire network [Zom01]. Many researchers have 

investigated GAs to schedule tasks in homogeneous [Ahm01] and heterogeneous 

[Pag05] multi-processor systems with remarkable success. 

 

Generally, approaches to resource scheduling depend strongly on the architecture of the 

whole system, which, in turn, depends on the underlying middleware used. On one hand, the 

most of the current architectures are mainly based on Globus Toolkit 4.0 and UNICORE 

systems. On the other hand, the remaining solutions presented are Service-Oriented 

Architectures (SoA) [Tho05]. The main difference between Globus Toolkit and UNICORE is that 

the former is more “horizontal” than the latter in terms of their functionality. On the contrary, in 

the service-oriented approaches, there are a group of services that can communicate with each 

other instead of a monolithic application. All approaches give additional functionality but also 

cause some difficulties. Globus provides a wide set of low level mechanisms that contain many 

tools needed for efficient resource management and scheduling, such as an information system 

(MDS), the resource allocation manager (GRAM), and so on. In contrast, there are many 

reservations concerning Globus feasibly. It does not provide high-level mechanisms such as 

management of workflows and so forth. UNICORE provides high-level tools and high security 

standards. 

Challenging issues from a grid resource scheduling perspective include the need to co-

schedule what are often scarce and expensive resources, the scalability of protocols and 

algorithms to tens or hundreds of thousands of nodes, latency-tolerant algorithms, and 

achieving and maintaining high levels of performance across heterogeneous systems. Actually, 

we will demonstrate in Chapter 6 that these contributions are reached in our solution. 
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2.4.4 Jobs Allocation and Activation 
 

The Jobs Allocation and Activation are the final activities on the Grid Resource 

Management process. It provides the user to access the Grid resources in order to run and 

terminate jobs remotely. The queued job is sent to the selected resource through standard 

interfaces such as: Globus Toolkit, Condor, and Linux CLI. Once the job has been assigned, 

these interfaces create a job manager instance to handle the job process for future information 

(status and results). 

The job allocation activity consists of transferring the data or information that should be 

processed to the node or nodes selected by the Grid Resource Scheduling activity. On the other 

hand, the job activation activity consists of executing the corresponding code and offering the 

adequate mechanisms to get the result back to the appropriate management instance. For 

instance, let’s assume the problem of calculating the inverse of a 25 x 50 Matrix M. Therefore, 

the job allocation activity sends the matrix data to the selected node (only one node in this 

example) and stores this information on the node’s buffer memory. The job activation activity 

executes the operations matrix software (Grid Service) and selects the inverse operation of the 

Matrix M. The resulting 50 x 25 Matrix M’ is sent back to the resource manager instance in 

charge of this job.  

Job Allocation and Execution may be as easy as running a single command or as 

complicated as running a series of scripts and may or may not include setup or staging. When 

the job is finished, the user needs to be notified. Often, submission scripts for parallel machines 

will include an e-mail notification parameter. For fault-tolerant reasons, however, such 

notification can prove surprisingly difficult. Moreover, with so many interacting systems one can 

easily envision situations in which a completion state cannot be reached. And of course, end-to-

end performance monitoring to ensure job completion is a very open research question. 

Some systems require users to manage intermediate data transfer in the allocation 

process, rather than providing automatic mechanisms to transfer intermediate data. We 

categorize approaches of automatic intermediate jobs allocation into centralized, mediated and 

peer-to-peer [Yia06]. 

 

• Centralized: Basically the centralized approach transfers intermediate data 

between resources via a central point. For example, the central workflow activation 

engine can collect the activation results after task completion and transfer them to 

the processing entities of corresponding successors. The centralized approach is 

easy to implement and suits workflow applications in which large-scale data flow is 

not required. 
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• Mediated: Rather than using a central point for the mediated approach, the 

locations of the intermediate data are managed by a distributed data management 

system. For example, in the Pegasus system, the intermediate data generated at 

every step are registered in a replication catalog service [Ven06], so that input files 

of every task can be obtained by querying the replication catalog service. The 

mediated approach is more scalable and suitable for applications that need to keep 

intermediate data for later use. Jobs allocation and activation systems designed 

under Policy-based Management technology are classified under this category. 

Although, they could appear quite centralized approach, their hierarchical design 

supports high levels of scalability. Moreover, the distribution of their components 

also improves the flexibility and scalability of the full architecture. 

 

• Peer-To-Peer: This approach transfers data directly between processing 

resources. Since data is transmitted from the source resource to the destination 

resource without involving any third-party service, it significantly saves the 

transmission time and reduces the bottleneck problem caused by the centralized 

and mediated approaches. Thus, it is suitable for large-scale intermediate data 

transfers. However, there are more difficulties in deployment because it requires a 

Grid node to be capable of providing data management services. In contrast, 

centralized and meditated approaches are more suitably used in applications such 

as bio-applications, in which users need to monitor and browse intermediate 

results. In addition, they also need to record them for future verification purposes  

 

In large-scale Distributed Computational Grids, the simple act of submitting a job can be 

made very complicated by the lack of standards. Some systems, such as the Globus GRAM 

approach [Cza98, Glo07a], wrap local scheduling submissions but rely heavily on local-

parameter fields. Ongoing efforts in the Global Grid Forum [GGF07, Glo07b] address the need 

for common APIs [Glo07c]. Most often, a user will run scp, ftp or a large file transfer protocol 

such as GridFTP [All02] to ensure that the data files needed are in place. In a Grid setting, 

authorization issues, such as having different user names at different sites or storage locations, 

as well as scalability issues, can complicate this process. 

In comparison with before-mentioned Grid Job Allocation and Activation management 

approaches and methodologies, Policy-based Management (PbM) could be introduced again to 

solve many of the Grid Job Allocation and Execution issues. PbM offers a more flexible and 
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customisable management solution allowing each resource to be configured on the fly, for a 

specific application tailored for a customer. Policy-based technology allows for enhancing the 

management architecture dynamically, for the introduction of new applications or device specific 

policies, tailored to realise complex tasks, and for the automation of network management 

tasks. Therefore, Policy-based solutions should be highly flexible. They also have to offer 

mechanisms to auto-extend its management activities, which are normally named as action and 

conditions interpreters. The Policy-based Grid Resource Management architecture described in 

Chapter 3 shows how this approach can be used to overcome many management problems 

inherent in the Grid Jobs Allocation and Activation phase. 
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2.5 CONCLUSIONS 
 

Grid Resource Management (GRM) is regarded as a vital component of the Grid 

infrastructure. Its main function is to coordinate and share multiple kinds of resources efficiently; 

and, in the above-mentioned approaches, GRM faces several challenges that make the 

implementation of practical systems a very difficult problem. Among these challenges we would 

like to emphasize the fact that GRM systems must fulfil strict functional requirements from 

heterogeneous, and sometimes conflicting, domains (e.g., the users’, applications and networks 

domains). In addition, GRM systems must adhere to non-functional requirements that are also 

rigid, such as reliability and efficiency in terms of time consumption and load on the host nodes.  

Grid Resource Management problem has been solved by means of centralized, 

decentralized, hierarchical and sometimes hybrid approaches. On one hand, centralized and 

hierarchical approaches fail when the number of resources increases or when resources 

maintain certain mobility in the Grid. On the other hand, decentralized approaches are 

considered better solutions mainly for heterogeneous networks, no matter the level of resource 

mobility presented. The most important disadvantage is the complexity of their implementation. 

Thus, a level of fusion is required to improve efficiency and functionality in current approaches. 

Therefore, hybrid systems are everyday getting more attention from both communities, 

academic and commercial. 

An opportunity to improve current GRM systems is found in the requirements of 

management of Grid Services. Current solutions do not take into account the all three sources 

of Grid Services requirements explained in this Chapter. Some of these solutions are Service 

Oriented Architectures (SOA) [Tho05] and Grid Services requirements from OGSA standard are 

involved in the scheduling decisions but GSCs requirements are not always taken into account 

or GIPs are deprecated because of the assumption of resources are always available. 

Current Resource Discovering and Monitoring systems are not flexible. Most of them are 

based on fixed polling periods. We believe that resources consumed by the monitoring system 

could be reduced if the polling periods are allowed to be auto-adjustable. Moreover, it is 

possible to reduce the number of detection change failures because a flexible monitoring 

system could reduce its polling periods and then to get more information about resource 

availability. 

Current GRM systems research is focused mostly on solving either one or the other of the 

two main problems at hand. The first of these is concerned with evenly balancing resource 

loads throughout a Grid; and, in this area, plenty of researchers have proposed a wide range of 

technologies with varying degrees of success. The second problem, however, involves 

shortening the makespan. The makespan of a schedule is the time required for all jobs to be 
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processed by a set of unknown resources. For quite some time, a comprehensive solution 

addressing both of these problems proved elusive. In other words, a load-balanced solution with 

a minimal makespan was necessary. The approach we present in this thesis provides such a 

solution. 

In order to achieve an optimal solution between these two problems, we believe that 

monitoring activity should be decentralized and allocated on the Grid Infrastructure (resources 

available) and therefore should be almost unperceived for the hosting node and should not be 

specifically designed for any technology (Grid, P2P, Specific Distributed Systems, etc). GRM 

approaches presented in this Chapter fail in fulfilling at least one of these two conditions. Our 

research in this thesis was driven by this aim and we finally concluded with an alternative to 

current GRMS that represents a step ahead of the state of the art. 
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Chapter 3 
 
 
 
 
 

 
POLICY-BASED GRID RESOURCE MANAGEMENT 

ARCHITECTURE 
 
 
 
 
 
 

3.1 INTRODUCTION 
 
 
Grid Computing promises to change the way organizations tackle complex computational 

problems. Nevertheless, Grid Computing is an evolving area, and standards and technology are 

still being developed to enable this new paradigm. The sharing of resources inherent in Grid 

networks introduces challenging resource management problems due to the fact that many 

applications need to meet stringent end-to-end performance requirements across multiple 

computational resources (memory, processor, storage, etc). Furthermore, they should also 

guarantee fault tolerance and network level Quality-of-Service (QoS) parameters, as well as 

arbitrate conflicting demands. 
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From the users point of view, Grids should be completely transparent. They just need to 

send the information data to be processed by a specific application and receive their results 

based on Service Levels Agreements. Grid Service customers specify applications by means of 

Grid Services. 

In this chapter we will show that Grid Services are becoming more popular in the Grid 

Community. Grid Services are the standard protocol and mechanism to completely automate 

the Grid Resource Management Process. For this reason a new Grid Computing generation is 

emerging, where schema conversion technologies via common meta-models and ontologies are 

required to allow data to be moved between storage resources and be shared between tools 

with different data format requirements. These novel schemas and models are based on on-line 

libraries for conversion and mapping, to be used in a variety of scientific, social and business 

domains. 

At the same time, there are other innovations with significant impact on Grid Computing, 

like the creation of mechanisms to handle a large number of heterogeneous resources 

(computing, storage, networks, services, applications, etc.), the adequate use of data from a 

wide variety of sources and technical domains, the necessity of designing and implementing 

new techniques to allow for the interoperability between different data sources is constantly 

growing. One of the key challenges will be the co-ordination and orchestration of resources to 

solve a particular problem or perform a business process. 

This chapter explains why the current generation of Grid Resource Management systems 

relies heavily on the program designer or the user to express their requirements in terms of 

resource usage. Such requirements are usually hard-coded in a program using low-level 

primitives. But the Grid needs to handle resources in a more dynamic way. In other words, grid 

applications will require the co-ordination and orchestration of grid elements at run time. Two of 

the most important grid features are management autonomy and fault-tolerance. These require 

redundant resources (computation, data base, network), and also an autonomous and self-

regulatory model that ensures the proper working of the management architecture by itself. 

Flexibility and scalability are crucial; solutions should be able to support Grids consisting of 

billions of nodes. This requirement immediately stresses the importance of finding an 

appropriate trade-off between Grid Services Customers (GSCs), Grid Services Repositories, 

and Grid Infrastructure Providers (GIPs). 

This chapter describes our proposed Policy-based Management Architecture which is in 

charge of controlling the communication workflow of the Grid Resource Management process. 

The components and interfaces of this architecture are detailed explained as well as their main 

functionalities. 
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The structure of this chapter is as follows:  In section 3.2 we briefly describe Police-based 

Management technology. Section 3.3 is an overview of our Policy-based Management proposal 

for solving the Grid Services Management and Jobs Allocation and Activation phases. We 

explain the deployment and activation process of Grid Services using our proposal in Section 

3.4. Finally, Section 3.5 concludes this chapter. 
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3.2 POLICY-BASED MANAGEMENT SYSTEMS 
 

Policy-based Management (PbM) [Stra03] is a very suitable paradigm to manage complex 

heterogeneous environments, such as Grid Computing (Figure 3.1). The Policy-based Grid 

Resource Management Architecture (PbGRMA) presented hereafter, is a realization of this 

paradigm. 
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Figure 3.1 Core architecture of policy-based management technology 

 

In policy-based management approaches, support for distribution, automation, and 

dynamic adaptation of the behaviour of the managed system is achieved using policies. 

“Policies are derived from the goals of management and define the desired behaviour of 

distributed heterogeneous systems and networks” [Ver01]. The main benefits of Policy-based 

technology are improved scalability and flexibility for the management system. 

Scalability is improved by uniformly applying the same policy to large sets of devices and 

objects, avoiding the strenuous task of re-coding. Moreover, the decision making ability that 

traditionally existed on centralized management entities, is embedded in each policy. Hence, 

there is a severe reduction of the management information that may propagate in the network, 

since the intelligence now exists in the point where it is needed. 
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Flexibility is achieved by separating the policy from the implementation of the managed 

system. Policies can be changed dynamically, thus changing the behaviour and strategy of a 

system, without modifying its implementation or interrupting its operation. Flexibility also is 

enhanced by separating the policy from the management entities. Although the implementation 

of the managers may change, the management principles remain untouched, as they were 

originally defined in the policies.  

Current Policy-based solutions for accomplishing Grid Services management requirements 

have limitations, particularly related to high-bandwidth, network re-configuration, fault-tolerance, 

reliability, scalability, flexibility and persistence. In this chapter we will attempt to give an 

explanation of the methodology implemented in our approach to solve most of these limitations. 

The Policy-based Grid Resource Management Architecture (PbGRMA) presented in this 

chapter covers two of the phases of the Grid Resource Management process; namely, Grid 

Services Management, and Jobs Allocation and Activation. In the first phase, our approach 

goes one step further, offering the possibility of handling hard and soft constraints involving Grid 

Services Management. Hard constraints are specific applications and resource requirements 

that must be fulfilled in order to run a job that belongs to a Grid Service. Soft constraints are 

management policies for resource utilization, deadlines, and response times. In the second 

phase, we will obtain a reliable Jobs Allocation and Activation system by means of an extension 

of our previous Policy-based Management System (FAIN-PbMS) [Sal03]. We have extended 

the dynamic components and interfaces (Policy Decision Points – PDPs and Policy 

Enforcement Points PEPs) of the FAIN-PbMS to make it compatible with Globus Toolkit 

Middleware and then to allocate Grid Services along large-scale Grid Infrastructures. 

One the most important contributions of our Policy-based Grid Resource Management 

Architecture design is that it simplifies communication between Grid Services Customers 

(GSCs), Grid Services Repositories, and Grid Infrastructure Providers (GIPs). It is designed to 

retrieve the Grid Service handler from the UDDI Registry, and the Grid Service requirements 

from the Grid Service Descriptor Server in name of the GSCs. In Figure 3.2 we illustrate the 

business model evolution that we are proposing in our solution in order to simplify Grid Services 

deployment in large-scale Grids. 
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Figure 3.2 Evolution of the business model proposed for Grid Services Management 
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3.3 OVERVIEW OF THE POLICY-BASED RESOURCE MANAGEMENT 
SYSTEM IN LARGE-SCALE COMPUTATIONAL GRIDS 

 

In Chapter 1 we have defined Grid Resource Management activity as a process with four 

main phases: Grid Services Management (GSM), Grid Resource Discovery and Monitoring 

(GRDM), Grid Resource Scheduling (GRS), and Jobs Allocation and Activation (JAA). The 

PbGRMA is the structure of the proposed Grid Resource Manager system. It is in charge of the 

GSM and JAA phases. However, the PbGRMA is also somehow controlling the monitoring 

system and the scheduling system. Although, these two components are independent from the 

PbGRMA, they need to be part of a higher level architecture that would be sending them 

requests of Grid Services. In section 3.4, we describe the interactions between the PbGRMA 

with the monitoring system (SBLOMARS) and the scheduling system (BLOMERS). 

The proposed Policy-based Grid Resource Management Architecture (PbGRMA) 

[Maga07a] is an extension to the Grid Computing environment of our previously conceived 

architecture [Sal03].. Although applicable to any user profiles, the system is essentially intended 

for non-massive Grid Service Customers (GSCs) accessing large amounts of computing, 

software, memory, storage, and even network resources. The PbGRMA deals with three 

different sources of resource requirements: users’ QoS needs, Grid Infrastructure Providers’ 

(GIP) resource availability information, and Grid Services Repositories’ (GSRs) specifications 

set by both standards, Web Services – Resource Framework (WS-RF) [Cza06] and Open Grid 

Services Architecture (OGSA) [Fos02a].  

The PbGRMA is designed as a hierarchically distributed architecture consisting of two 

levels: the Grid-Domain Management System (GDMS) and the Grid-Node Management System 

(GNMS). This hierarchical approach is shown in Figure 3.3. These proposed hierarchical levels 

combine the benefits of management automation with a reduction in management traffic and the 

distribution of management monitoring activities. The GDMS is in charge of managing resources 

from dispersed domains, which are commonly recognized as Virtual Organizations (VOs). The 

GNMS is in charge of managing resources inside the domain. It could be the case that more 

than one GNMS is used in one domain. This case is justified when the amount of resources in 

one domain is quite large. This capability assures a high level of scalability. 
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Figure 3.3 The hierarchical structure of the proposed Policy-based Grid Resource 

Management Architecture (PbGRMA) 
 

This architecture is also capable of managing computational resources in order to balance 

resource exploitation along the Grid. It reaches a high level of scalability by extending itself its 

management components and policies interpreters needed to control multiple infrastructures 

regardless of network technology, operative platform, or administrative domain.  

In the following sub-sections we will describe the design and architecture details of our 

proposed approach. We also include a sub-section where we explain the format of the Grid 

Service Policies in order to offer standard interfaces to external components such as the Inter-

Domain Management system. 

 

3.3.1 Grid Services Requirements 
 

Grid Services are basically Web Services [Ved02] with improved characteristics and 

features. Normally, the customer must first invoke a service name registry, then request a 

service instantiation, and finally receive the Grid Service handler. These interactions are shown 

in Figure 3.2(a). Nevertheless, this approach involves many interactions from customers, and 

the most critical is that they have to find available resources by themselves. One of the most 
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important contributions of our Policy-based Grid Resource Management Architecture design is 

that it simplifies communication between Grid Services Customers (GSCs), Grid Services 

Repositories, and Grid Infrastructure Providers (GIPs). It is designed to retrieve the Grid Service 

handler from the UDDI Registry and the Grid Service requirements from the Grid Service 

Descriptor Server in name of the GSCs. Figure 3.2(b) illustrates the business model evolution 

that we are proposing in order to simplify the Grid Services deployment in large-scale Grids. 

Therefore, PbGRMA deals with three different sources of resource requirements which will 

be considered as Grid Service constraints in this thesis: 

 

I. Quality of Service (QoS) Constraints: In our approach, Grid Service 

Consumers (GSCs) can express QoS needs per service to deploy within the Grid 

Infrastructure. These requirements are introduced through a Graphical User 

Interface (GUI) within the Policy Editor. Also service-level management 

applications, according to the TMN layered structure [TMN00], can introduce 

policy information through an API given by the Policy Editor component. This 

allows the framework to be part of a complete stack of management services. 

II. Computational and Network Resources Constraints: Resource availability is 

the amount of computational (cpu, memory, storage and application) and network 

(estimated bandwidth between nodes executing jobs from the same service) 

resources that are free to execute jobs forming Grid Services. This mechanism 

allows Grid Infrastructure Providers (GIPs) to balance the computing and 

networking load along the virtual organization. 

III. Open Grid Services Management Constraints: Grid Services based on 

OGSA standards offer interfaces (WS – Resource Properties Document) with a 

wide variety of information regarding terminology, concepts, operations, WSDL, 

and XML needed to express the resource properties projection, its association 

with the Web service interface, and the messages defining the query and update 

capability against the properties of a WS-Resource. The PbGRMA, through its 

Service Descriptor component, reaches the corresponding WS-Resource 

Properties Document per Grid Service to deploy in order to generalize and 

facilitate the Grid Resource Management process. 

 

These three sources of requirements are important to highlight due to the fact that the 

PbGRMA is the only architecture that offers this advantage. Current Policy-based Grid 
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Management Systems [Yan02] [Maga04] only focus on some of these sources of requirements, 

but our approach is able to merge all of them in only one Domain-Level Grid Service Policy. 

The Policy Editor is the entry point of the management architecture. It is the recipient of 

policies that may have been the result of network operator management decisions or Service 

Level Agreements (SLAs) between Grid Infrastructure Providers (GIPs) and Grid Services 

Consumers (GSCs). The SLA requires reservation of resources per Grid Service as well as 

configuration of the network topology, which is automated by means of policies sent to the Grid-

Domain Management System (GDMS). Network-level policies are processed by the GDMS 

Policy Decision Points (PDPs), which decide when policies can be enforced. When enforced, 

they are delivered to the GDMS Policy Enforcement Points (PEPs) that map them to element 

level policies, which are, in turn, sent to the Grid-Node Management Systems (GNMSs). GNMS 

PDPs perform similar processes at the element level. Finally, the GNMS PEPs execute the 

enforcement actions at the Grid Infrastructure. 

Once the information is introduced, the first task realized by the architecture is to 

authenticate1 the user who is accessing the architecture. The authentication task is realized by 

a special object within the Policy Editor component. The next step is to build an XML policy 

(Domain-Level Grid Service Policy) using the received information. This task is developed within 

the Policy Manager component (Figure 3.6). In order to understand the following steps to handle 

domain-level policies by the PbGRMA, it is important to explain the core policy-based 

management activities. These activities are related to creating, removing, deploying, and 

managing every policy instance created by the Policy Manager. In the following section we 

explain these activities in detail. The use of XML as the format to specify policies in our 

approach is due to the fact that the Open Grid Forum (OGF) has resolved that communications 

between Grid components should be based on XML format as per the schemas presented in 

the following reference [OGF] 

 
3.3.2  Core Policy-based Management Activities 

 

Within the GDMS and GNMS, we identify common activities that are called core 

management activities (Figure 3.3). The aggregate of these common activities represents 

another novelty of our policy-based approach. The impact of this architectural conception is that 

Grid Domain and Grid Node implementations inherit from the core, instantiating its features in 

order to cope with the specific management functionalities at each level. The following diagram 

                                                 
 

1 This thesis is not intended to study concrete security mechanisms; hence, they will only be 
introduced. 
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introduces, through a set of use cases, the basic functionalities of these core policy-based 

management activities. All the functionalities represented by this case are supported by the 

Policy-based Grid Management Architecture, and therefore by both the Grid Domain and Grid 

Node Management Systems which extend from it. 
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Figure 3.4. Uses case for the Policy-based Grid Resource Management Architecture 

 
  

Policy Processing: This is probably the most important use case for a Policy-based 

System. It represents the basic policy processing functionality. That is, the ‘provision policy’ use 

case encompasses all functionalities realized in our management architecture each time a 

policy is introduced in the system. The activity workflow diagram in Figure 3.4 shows the main 

functionality within the deployment of new Management Instances. 

Management Instance is a very important concept in the PbGRMA. When a policy is 

processed, at least one couple of PDP and PEP is needed to analyze policy conditions (PDPs) 

and execute the consequent actions (PEPs). The PbGRMA is able to auto-extend basic pairs of 

PDP-PEPs (e.g. QoS PDP-PEPs and Service PDP-PEPs) in order to simplify the scalability 

issues in the architecture. When a new couple of PDP-PEP is extended, we call this new 

extension a Management Instance. In Figure 3.6 below we show QoS and Service PDPs in red 

boxes, and use green boxes for their corresponding PEPs. 

First, the pre-processing functionality, which is realised outside any management instance, 

checks the identity of the actor that intends to use the management system, through its 

credentials, and de-multiplexes the policy to the corresponding management instance. A 

management instance can be seen as a sandbox where all components running have the same 

owner. Each management instance has, at least one component: the Instances Manager. This 

component will be described in more detail later on (Section 3.3.3). 
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Once the policy is dispatched to a particular management instance, the steps that will be 

followed are as follows: 

• Check the authoring actor rights within the management instance. Each management 

instance has an associated profile. Here, we define what the actor is allowed to do and the 

maximum amount of resources that can be allocated. This profile has been implemented 

as an XML schema used to validate the incoming request in the form of XML policies. In 

this way we claim that our system is secure. GSCs will not be able to request a Grid 

Service that has not previously been authorized and agreed to between GSC and GIP. 

• Extend the management functionality through the download of new components 

(Management Instances) to correctly process the policy. This feature is explained by the 

use case titled, ‘Deploy Management Functionality.’ This activity confers a degree of self-

configuration to our PbGRMA. 

• Where necessary, extend the management functionality of the PDP by upgrading the 

action and condition interpreters. The ‘Extend PDP Functionality’ Use Case further 

explains this functionality. In this way, our system is flexible and scalable. This property 

allows the system to be auto-customized. It brings high levels of flexibility and scalability to 

the entire architecture. Also, for this one and the above mentioned property we claim that 

the PbGRMA is autonomous. 

• Execute the core policy functionality. These are:  

o Store policy in the repository 

o Check policy syntax and semantic conflicts 

o Make decisions about when a policy should be enforced based on events 
received through the event processing functionality 

o Enforce decisions 

 

 

Policy-based Grid Resource Management Architecture                                                             58 



  

 

 
A Distributed and Heuristic Policy-based Management 

Architecture for Large-Scale Grids 

 
 

check 
identity

wait for
policies

forward to
management instance

check access
rights

check if needed
PDP/PEP are installed

download & 
install PDP/PEP

no

make
decisions

yes

enforce
decisions

store 
policies

success
fail

fail
success

Management
Instance

check 
identity

wait for
policies

forward to
management instance

check access
rights

check if needed
PDP/PEP are installed

download & 
install PDP/PEP

no

make
decisions

yes

enforce
decisions

store 
policies

success
fail

fail
success

Management
Instance

  

Figure 3.5 Workflow diagram for policy provision and management 
 

Policy Management: As we have explained before, the PbGRMA is able to auto-

extend some management capabilities, called Management Instances, when unforeseen 

management actions are needed at development time. For this reason, it requires an 

appropriate mechanism to add new functionality at run-time. Once the management system 

detects that it must be extended, it requests the Repository component (Figure 3.6) to 

instantiate the required functional domain. Detailed explanation regarding Architecture 

Extensibility is given in sub-section 3.3.2 of this chapter. 
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Figure 3.6 Components and interfaces of the Grid Domain-level Management System 
(GDMS) into the Policy-based Grid Resource Management Architecture (PbGRMA) 

 
 

3.3.3 Components of the Policy-based Grid Management System 
 

The components of the proposed PbGRMA for Grid Services Management are illustrated in 

Figure 3.6. They have been developed in order to support service deployment, decision-making 

with regards to resources control, policy provisions, communication interfaces with WS-

Resource Framework, and Inter-Domain Communication respectively. We proceed now to 

present the details of all of them. As the Grid-Domain Management System (GDMS) and Grid-
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Node Management System (GNMS) have similar functionality and components, we focus on the 

GDMS and, wherever applicable, we note the differences between them. 

 

1. Policy Editor: It exists only at the network level. It offers a GUI (Figure 3.7) and a tool-

set in the form of templates and wizards for the composition of policies. These are generic 

enough to accommodate different types of policies, thus exploiting the extension capabilities of 

the architecture. The policy editor permits creation and modification of management policies in a 

graphically assisted environment, while supervising the deployment of such policies within the 

network. To enhance the manipulation of the policy information, the Policy Editor incorporates 

interpreters enabling the translation of the XML structures into graphical elements that represent 

each of the policy components. Such graphical elements are then hierarchically arranged in a 

tree panel, providing the view of the policy layout. 

 

Figure 3.7 The PbGRMA policy editor 

In the policy view, it is possible to conduct fine-grain operations: for example, selection of a 

tree element causes its associated attributes to be displayed in a property sheet so that they 

can be viewed or changed. In the tree view, new elements may be added directly into the policy 

structure. This process is easily performed by selecting one of the available policy components 

(rule, condition, or action) in the toolbar, and subsequently clicking on the desired point in the 
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tree. Once the policy is considered to be complete, deployment is initiated from the policy editor 

menu. A validation process is automatically carried out before actually deploying the policy, and 

the user is informed of any problems. During the policy creation process, the editor gathers and 

displays reports sent by the different entities involved in the enforcement chain, which allows 

detection and location of any fault or conflict that may arise, and facilitates its solution. 

 

2. Policy Manager: It is a vital component of the architecture. The Policy Manager is in 

charge of creating Domain-level policies, and basically starting the policy creation process, in 

order to deploy a required Grid Service. The role of the Policy Manager component is to provide 

a higher layer abstraction (or adaptation) that offers a global view of Grid resources to the upper 

layer Grid Services or applications in a more QoS deterministic way. The Policy Manager 

receives the SLA that has been agreed upon between GIPs and GSCs. This input, together with 

Grid Service resources and topological requirements received from Service Descriptor 

Component, is used to start the Grid Resource Management process. Figure (3.8) illustrates the 

sequence of events explained above. 
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Figure 3.8 The workflow of the creation of a Domain-level policy 
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In this component the Domain-level Policies are created. There will be only one Domain-

level policy per Grid Service requested. We can clearly identify these policies because they 

simply merge the three source of requirements mentioned at the beginning of this section. 

These policies have a very high level of abstraction and they need to be refined in detailed 

policies which are named Node-level Policies. We will describe these policies in detail on sub-

section 3.3.4. 

 

3. Service Descriptor: The Service Descriptor is compatible with the OGSA standard. It is 

designed to retrieve the Grid Service Requirements from the Grid Services Factory as well as 

the Grid Service Instance, and it is one of the most important components in our design. It 

simplifies communication between the customer of a Grid Service and the Grid Services 

Factory; normally, the customer must first invoke a service name registry, then request a service 

instantiation, and finally receive the Grid Service Handler. All these interactions are integrated in 

this component in order to save communication time, as well as to retrieve the Grid Service 

Requirements to generate the corresponding service allocation for the client.  

This component is designed to retrieve the Grid service resource requirements from the 

WS-Resource Properties Document. In fact, it integrates a set of processes usually entrusted to 

the user of a Web Service, namely, to invoke a service name registry, to request a service 

instantiation, to check whether the WSDL definition of the Web Service Interface is a declaration 

for a WS-Resource properties document and, finally, to retrieve all the properties elements from 

this one. 

 
4. Instances Manager: It is the core component of the architecture. The Domain Manager 

receives Domain-level Policies to be dispatched to the appropriate Policy Decision Point (PDP). 

If the corresponding PDP is not installed, it requests its download and installation. In this way, 

the management functionality of the system can be dynamically extended at run-time when it is 

needed. The Instances Manager also controls the lifecycle of these PDPs/PDPs.  

The Instances Manager is also contacts the Policy Conflict component in order to ensure 

that the received policies do not have deployment issues between them. The Domain Manager 

also acts as a control point, as it has all the necessary information to understand the policy 

processing state. As an example, imagine that two different policies must be deployed, but the 

second is only deployed if the first is successfully enforced. In this case, the Domain Manager 

keeps the second one in a halt state until it receives notification of the first policy’s successful 

enforcement. 

 

 

Policy-based Grid Resource Management Architecture                                                             63 



  

 

 
A Distributed and Heuristic Policy-based Management 

Architecture for Large-Scale Grids 

 
 

 

GSC Policy
Editor

Policy
Manager

Instances
Manager Repository

“X”
PDP

1: requestService()

2: forwardRequest()

3: setPolicy()
4: downloadCode()

5: createPDP

6: setPolicies()

GSC Policy
Editor

Policy
Manager

Instances
Manager Repository

“X”
PDP

1: requestService()

2: forwardRequest()

3: setPolicy()
4: downloadCode()

5: createPDP

6: setPolicies()

 

Figure 3.9 Dynamic  installation of Policy Decision Points (PDPs) 
 

5. Policy Conflict Detection: When policies arrive at specific PDP they should be 

checked for possible conflicts against other policies previously processed within that PDP. 

These component is essential because the PbGRMA has multiple PDPs, each covering a 

particular functional domain (e.g. QoS, Grid Service, etc.). 

 
6. Policy Decision Point (PDP): The PDP component checks for possible syntactic and 

semantic conflicts in policies, solves detected conflicts, makes decisions about when a policy 

should be enforced, forwards the policies that need to be enforced to PEP components, 

answers requests for decisions about configuration actions coming from the managed device, 

and controls the policy validity period in order to uninstall expired policies 

 
7. Policy Enforcement Point (PEP): The functionality of the Policy Enforcement Point 

here is slightly different from that defined within the IETF [IETF]. Here, they receive policies and 

translate them into the appropriate commands offered by the API of the managed device, for 

instance in the commands of the Globus Toolkit [Bor05]. In this way the management 

framework is able to support heterogeneous managed devices, only installing the appropriate 

PEP component for a particular type of managed device. Since the ratio of management 
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stations versus managed devices is not necessarily one-to-one but one to many, the PEPs need 

to distribute the commands to the appropriate managed devices. 
 

8. BLOMERS Scheduling System: In Chapter 5 of this thesis we will explain BLOMERS 

design implementation and features. Here we would only introduce the reader on the role that 

the scheduler plays in the full Policy-based Grid Management Architecture.  

The role of the resource scheduler focuses mainly on assessing resource utilization. This 

component maintains information about the nodes and links of the system, and can compute 

possible end-to-end routes for a given service, based on network topology and resource 

information obtained by the monitoring system. The main role of the RM is to determine a 

suitable path for the installation of an end-to-end service.  

This component is implemented as a stand-alone system. We have been attempting in this 

research to split the core activities of the Grid Resource Management Process into independent 

systems. BLOMERS (Balanced Load Multi-Constrained Resource Scheduler) is one of these 

components. The scheduling process is done by means of the implementation of a heuristic 

methodology such as Genetic Algorithms (GAs). This approach works in parallel in two ambits: 

Firstly, it starts different populations (set of resources to match with jobs received) per kind of 

resource (e.g. memory, storage, processor, etc). Secondly, it starts other populations per level 

of QoS that has demanded any Grid Service Consumer. 

The procedure is triggered by the QoS PDP, which calls the getSelectedPopulation 

operation, providing all the resource and topological requirements of the service. Looking at its 

internal database, BLOMERS tries to find suitable sets of resources in the Grid, which satisfy 

the requirements given by the QoS PDP. If the search is not limited by other constraints, e.g. 

choose shortest path, a set of different paths will result. All of these paths are candidates for the 

deployment of the jobs that form a Grid Service. The selected paths fulfil the resource and 

topological requirements of the service. However, a service can have additional requirements, 

which can be extracted from the service descriptor. BLOMERS does not have access to such 

information, as this lies within the domain of the ServicePDP, so the ServicePDP makes the 

final decision. If for some reason the Grid Service cannot be successfully deployed, the QoS 

PDP can roll back the process by setting the status of this service to “FAILED”, which leads to 

the removal of all information associated with it. BLOMERS will start any process to offer a new 

path of resources as candidates to execute the corresponding job. 
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9. SBLOMARS Monitoring System: In chapter 4 of this thesis we will explain 

SBLOMARS design implementation and features. Here we only wish to introduce the reader in 

the role that the scheduler plays in the full Policy-based Grid Management Architecture. 

The SNMP-based Balanced Load Monitoring Agents for Resource Scheduling in Grids 

(SBLOMARS) are logically and physically distributed in the overall Grid Infrastructure (i.e. Grid 

Resources). The monitoring system effectively collects analyses and provides the necessary 

information needed by the BLOMERS resource scheduler to make appropriate decisions. This 

distributed monitoring system involves a set of autonomous and distributed monitoring agents, 

which generate real-time and statistical availability information for every resource and entity 

composing the Grid. 

SBLOMARS is able to monitor processor, storage and memory use, network activity at the 

interface level, services available (an updated list of applications installed), and end-to-end 

network traffic. This can be done across different architectures, including Solaris, Unix-based, 

Microsoft-based, and even Macintosh platforms. Moreover, SBLOMERS is self-extensible to 

monitor multi-processor platforms to huge storage units. Specifically, it is designed around the 

Simple Network Management Protocol (SNMP) to tackle the generality and heterogeneity 

problem, and is also based on autonomous distributed agents to facilitate scalability in large-

scale Grids. 

SBLOMARS helps solving the scalability problem by the distribution of the monitoring 

system into a set of sub-monitoring instances which are specific to each kind of computational 

resource monitored. Therefore, it deploys a single software thread per type of resource to be 

monitored, independently of the amount of such resources. This is worthy of mention because 

many monitoring systems fail when they try to handle new resources that have been added to 

the system. As we mentioned before, every resource is monitored by independent software 

threads that start again after a certain amount of time, becoming an infinite cycle. The cycle-

timing is defined by local or remote administrators through booting parameters at the beginning 

of its execution. SBLOMARS automatically re-configures their polling times (calls to SNMP 

daemon) in an autonomous way. SBLOMARS increases or decreases the interval times 

between consecutive interrogations to the same resource based on the state of the monitored 

devices. This feature is important where the overload caused by any monitoring system is not 

affordable by the hosting nodes. 

SBLOMARS also introduces the concept of dynamic software structures, which are used to 

monitor from simple personal computers to complex multiprocessor systems or clusters, even 

with multiple hard disk partitions. These features make our approach novel compared with 

similar monitoring systems, such as Ganglia [Mas04] that is restricted to general resources and 
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not when they are fragmented. Another novelty in our monitoring system is that SBLOMARS 

integrates an end-to-end network-level monitoring technology. It is the CISCO IOS® IP Service 

Level Agreements, which allows users to monitor end-to-end network-level performance 

between switches, routers, or from either remote IP network device. 

 

10. Inter-Domain Manager (IDM): The IDM is in charge of implementing end-to-end 

negotiation of service deployment into separate Grid nodes that belong to different 

administrative domains, managed by different organizations. Each Grid Node Management 

System (GNMS) only manages a single Grid Node. A Grid Domain Management System 

(GDMS) oversees these GNMSs, and the IDM is located within the GDMS. We adopt the Java 

Remote Method Invocation (RMI) as the communication channel for the distributed system. 

In our design, we established a repository that maps a destination address to an IDM, i.e., 

a ‘many-to-one’ relationship. As such, a GDMS must register a list of destination addresses 

within its domain on a repository that has a well-known address, so that this repository can 

provide a discovery mechanism for mapping destination addresses to their respective IDM. 

Within a GDMS, the IDM interfaces with two other key components, i.e., the Policy Manager and 

the Instances Manager. 
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Figure 3.10 Simplest form of Inter-Domain Interaction 
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The effect of an inter-domain view can be described with the example represented in 

Figure 3.10, where we have two domains called Enterprise and University. The BLOMERS Grid 

Resource Manager will invoke the relay (Context, ServiceDescriptor) method on the IDM in the 

University Domain .Context represents the ingress IP and the destination IP of the reserved 

route between both domains.. For ServiceDescriptor, it would be sufficient to input the service 

component name. The Resource Manager should have no problem extracting this information 

from the Grid Domain-level Policy information that it has. The intra-domain process is stalled at 

this point. At the other end, the IDM in Enterprise Domain will request the IDM in University 

Domain to extend the Resources Activation in the neighbouring domain. The deployService 

(ServiceName, VANNode[], Credential) method of the Policy Manager component will be 

invoked by the IDM in University Domain. The VANNode array is a pair of ingress-destination IP 

address abstracted from the context information obtained from the Policy Manager. The IDL 

description for the GDMS interface is shown in Figure 3.11. 

 

 #ifndef _idm_IDL_ 
#define _idm_IDL_ 
module nms { 
   module idm { 
      typedef string IPAdd; 
      typedef string QOSParameters; 
      struct Context {Domain-level QoS policies 
         IPAdd ingress; 
         IPAdd destination; 
            }; 
            struct QoS { 
                  QOSParameters bandwidth; 
                  QOSParameters cpu; 
                  QOSParameters memory; 
            }; 
            // Provides method for inter-domain reservation 
            interface Requestor { 
                  exception InvalidRequest {}; 
                  void reserve((in 
org::ist_pbgrm::network::netasp 

::ServiceDescriptor descriptor, 
                    n Context c)) raises ((InvalidRequest)); 
               String trade((in QoS q)) raises 
((InvalidRequest)); 
            }; 
            /** Gets the correct IP address of the NMS and port 
                  interface Repository { 
                  exception MappingNotFound {}; 
     IPAdd getLocation((in IPadd destination))  
     raises ((MappingNotFound)); 
                  void setLocation((in IPadd destination)); 
            }; 
      }; 

 

 

Figure 3.11 IDL Description for the Inter-Domain Communication Process 
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11. Policy Enforcement Point (PEP): It receives policies and translates them into the 

appropriate commands offered by the API of the managed device, for instance in commands of 

the Globus Toolkit. In this way the management framework is able to support heterogeneous 

managed devices, only installing the appropriate PEP component for a particular type of 

managed device. 

 

12. Policy Repository: The primary role of the database is to meet the management 

framework software component’s needs. Typical information stored in the database could be 

policies, domain components, profiles, access rights, topological information, etc. The policy 

repository is supported on a LDAP directory, there is only one LDAP directory per Grid Domain 

Management System, which provides content-based policy searches and distribution 

transparency. These features make it suitable for providing scalable storage solutions in 

network-wide systems, such as the Fain management system [Sal03]. 

In general, accessing LDAP directories from Java applications is enabled through the use 

of the JNDI (Java Naming and Directory Interface) API. JNDI offers an abstract view of the 

LDAP directory, hiding the LDAP specific operations under a standardized interface suitable for 

interacting with different storage services that follow a similar approach. The following diagram 

illustrates the basic building blocks of the repository. 
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Figure 3.12 Policy repository access interface structure 
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The LDAP directory might be accessed directly from the PDP internal components or 

through an intermediate cache that would improve the overall efficiency. 

• A reduced set of requirements have determined the policy repository design, 

namely: hard and soft constraints. 

• Access to the repository shall be technology transparent. Neither LDAP nor JNDI 

specific issues shall be exposed to the outside components visiting the policy 

database. 

• A centralized component (controller) shall organize the directory look-ups. 

• The policy directory shall provide searching mechanisms based on policy, 

condition or action-specific attributes.  

 

As a design decision to enhance performance, only essential look-up attributes are stored 

in the directory. Since only java applications are intended to access the directory, the impact of 

such decisions on interoperability is limited. 

The policy directory basically consists of a database access controller and a series of state 

factories and object factories appropriate for the different policy classes. The database access 

controller provides a simple query interface for efficient database searching operations. The 

main responsibility of the controller is to locate the requested policies, retrieve them, and return 

them in an appropriate format. The controller is also in charge of directing the storage process 

according to the specified hierarchical relationships. 

The state factories and objects factories are merely format translators that convert java 

objects into LDAP entries and vice versa. Each class that may be stored in the repository must 

implement the Storable Interface that contains operations for providing hierarchical information 

not contained in the schema, and its identifier (a distinguished name that must be obtained, so 

that there is no collision when storing the entry in the directory).  

The policy schema defines the type of policy classes that can be stored in the LDAP 

database and the valid attributes for each of them. The hierarchical relationships existing 

between the classes is not reflected in the schema but maintained on the directory structure 

itself (as in the case of a file-system). 

 

3.3.4 Flexibility and Extensibility of the Architecture 
 

One of the most important features in the PbGRMA is its ability to self-extend its 

management capabilities in order to handle new functional activities, which are identified in our 

context as Management Instances. We would remember that a management capability is the 

ability of the PbGRMA to manage a set of actions that are related to the same target. 
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In the PbGRMA we have implemented two management capabilities, which are, “Service 

Deployment” and “Quality of Service.” Another management capability could be the ability to 

offer, “Fault Tolerance,” in the deployed services. In our approach, these management 

capabilities are known as Functional Domains. 

 

 
 

Figure 3.13 Policy repository class diagram 
 

The ability to offer these management capabilities requires implementation of several 

mechanisms and management actions. These actions are known as functional activities. 

Therefore, a management capability involves a set of functional activities. In our approach, the 

mechanisms to extend new management capabilities are implemented, and we will describe this 

process in the following paragraphs. Fault Tolerance is not yet implemented in the PbGRMA but 

its integration is quite simple, due to the fact that the architecture offers the necessary 

mechanisms to extend it from the Domain Manager component. 
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When a functional domain is already deployed (QoS PDP or Service PDP), not all the 

functional activities are guaranteed to be available. These functional activities rely on specific 

Conditions Interpreters that are produced when an Action is accepted. We have reduced the 

number of functional activities alive in the first deployment of the management architecture in 

order to reduce the overhead of the management architecture. This is to save the maximum 

amount of resources needed to continue executing the PbGRMA. 

We will clarify this feature by means of an example. A Grid Service Costumer is requesting 

a, “Video Decoding Service.” The user contacts the Policy Editor component to deploy the 

specific service policy. Once the processes taking place in the PbGRMA are completed 

(collaboration between SBLOMARS, BLOMERS and Domain Manager), the service is ready to 

be deployed along the Grid Infrastructure, through the Grid Node Management System PEPs. 

So far, only the Service PDP (functional domain) has been used by the architecture to deploy 

the requested service because there are no QoS policies requested. When a QoS policy is 

implicated, the architecture needs to extend a new functional domain, incorporating the QoS 

PDP. Although the new domain has been incorporated, some activities inside this domain are 

not yet available. The PbGRMA follows the same philosophy, because it only deploys the 

instances which are required to execute all management policies. 

Therefore, the PbGRMA is dynamically extensible at two distinct granularity levels, the 

PDP-PEP (Functional Domain Level) and the Action-Condition Interpreters (Functional Activities 

Level). In both cases, the extension might be triggered during the policy processing if the 

system requires a component not yet installed. In the following paragraphs we will describe both 

extensions of the PbGRMA. 

 

I. Extending Management Functional Domains: It is the first level of extensibility in this 

approach. When a new management domain is required, and it is not already installed on the 

system, a new functional management domain deployment process is triggered automatically by 

the PbGRMA. This action is one of the main activities of the Domain Manager component. The 

first instance is the Domain Manager, which is responsible for forwarding received policies to 

the appropriate Domain Policy Decision Point (PDP). If the corresponding PDP is not installed, 

the Domain Manager requests the Repository to download and install it, thereby extending the 

management functionality of the system as required. 

The sequence diagram in Figure 3.14 illustrates how the aforementioned extension is 

achieved. Then a request is raised to the Repository that initiates the installation of that 

component. Once the PDP is ready, the Domain Manager forwards the policy to it normally. 

Sometimes it is possible to deploy more than only one Domain PDP but it will depend of the 
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requirements into the Domain Policy that is trying to be executed. Often, the needed functional 

extension would not require the introduction of a complete management service. but just the 

extension and/or modification of one already available. It means than some components of the 

already installed Doamin PDPD could be added or removed. 
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Figure 3.14 Extending management domains 

 

II. Extending Management Functional Activities (Action-Condition Interpreters): The 

dynamic installation of new Action and Condition Interpreters is another option for extending 

management functionality, in addition to the installation of PDPs previously described. Two key 

classes within the PDP component are the action and condition interpreters. They provide 

action and condition processing logic for groups of policies handled by the PDP. Each PDP has 

at least one action and condition interpreter, although they might have more. Within each PDP, 

although drawn separately, there is a generic Action Interpreter class and a Class Loader class. 

The generic Action Interpreter class receives all requests to Action Interpreters and de-

multiplexes them. When a requested Action Interpreter object is not found, it interacts with the 

Repository to download the needed code. Figure 3.15 shows the interactions occurring when 

this happens. 
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III. Removing Management Domains and Interpreters: Any new deployed instance has a 

limited lifetime. It is a counter that is decremented once the component has finished its 

corresponding management activities. Once the deadline is reached the component is removed 

from the system. Therefore, this facility contributes to the system autonomy.  
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Figure 3.15 Extending management actions – Conditions interpreters 

 

3.3.5 Structure of the Management Policies  
 

Domain level policies and node level policies are expressed in XML (eXtensible Markup 

Language) [XML] and transmitted using SOAP (Simple Object Access Protocol). SOAP permits 

the transmission of policies as plain XML, ensuring interoperability.  

Data-types are supported, and there is the ability to specify relationships and 

constraints between different elements of a document. The architecture presented takes 

advantage of the properties of the XML Schema to reflect the access rights of users in relation 

to management functionality. That is, the framework is capable of dynamically creating, as a 

result of management policy enforcement, restricted XML Schemas for particular users against 

which XML user policies are validated. When a user obtains certain management 
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responsibilities from the network operator, by means of delegation, it is effectively assigned one 

or more restricted XML Schemas, which delimit the types of policies and the policy action and 

condition values allowed to that user. The policy structure used in our approach is based on the 

IETF Policy Core Information Model [IETF] though simplified by defining as mandatory only 

those features essential for policy processing. Hence, the size of policies is considerably 

reduced (around five times smaller than following the PCIM model) and their processing is 

simpler.  

A section of the policy schema used in our evaluation tests is depicted in Figure 3.16. 

The policy rule consists of seven elements. First, the PolicyRuleName uniquely identifies the 

policy within the management infrastructure. Hence, in addition to the policy type identifier, a 

sequence number is included. 

 
<xsd:schema targetNamespace=http://nmg.upc.edu/~emagana/pbma_Schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http:// nmg.upc.edu/~emagana/pb_Schema ">
<xsd:element name="PolicyRule">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="PolicyRuleName" type=“format_Type”/>
<xsd:element name="PolicyRoles" type= “… ”/>
<xsd:element name="UserInfo" type= “… ”/> 
<xsd:element name="PolicyRuleValidityPeriod" type= “… ”/> 
<xsd:element name="PolicyDomain" type= “… ” minOccurs=“1”/>
<xsd:element name="Conditions" type= “… ” minOccurs=“1” maxOccurs="unbounded"/>
<xsd:element name="Actions" type= “… ” minOccurs=“1” maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:schema targetNamespace=http://nmg.upc.edu/~emagana/pbma_Schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http:// nmg.upc.edu/~emagana/pb_Schema ">
<xsd:element name="PolicyRule">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="PolicyRuleName" type=“format_Type”/>
<xsd:element name="PolicyRoles" type= “… ”/>
<xsd:element name="UserInfo" type= “… ”/> 
<xsd:element name="PolicyRuleValidityPeriod" type= “… ”/> 
<xsd:element name="PolicyDomain" type= “… ” minOccurs=“1”/>
<xsd:element name="Conditions" type= “… ” minOccurs=“1” maxOccurs="unbounded"/>
<xsd:element name="Actions" type= “… ” minOccurs=“1” maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>  
Figure 3.16 Policy schema example 

 

The PolicyRoles element identifies the roles to which the policy applies. That is, all 

network elements developing a role listed in the policy are expected to respond to it.  

UserInfo contains the identifier of the user that is introducing the policy into the framework. 

This identifier is used to select the restricted XML Schema against which the user policy should 

be validated.  

The policy expiration date is contained within the PolicyRuleValidityPeriod element. The 

expiration date is usually given with the day and hour the policy starts and finishes being valid. 

Nevertheless, filters specifying concrete months, days, and hours during which the policy is not 

valid can be also introduced.  

The PolicyDomain element is used for the correct processing of policy sets. A policy set is 

a group of policies that should be processed in a particular way, i.e. atomically, sequentially, etc. 
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The Conditions element includes all policy conditions. Conditions can be either compound 

or simple and refer to an hour of the day, an IP flow, a concrete notification, or a managed 

device status. The modules needed to monitor these conditions, if any, are also extracted from 

the Conditions element information. This element is optional.  When not included, the framework 

interprets that the policy action should be enforced directly.  

The Actions element contains the action type and parameters, as well as information 

about the module responsible for enforcing this action. At least one Actions element is 

mandatory in all policies, but there can be more than one. The defined policies have been 

categorized according to the domain of management operations, policies that belong to a 

specific domain are processed by dedicated Policy Decision Points PDPs and PEPs. 
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3.4 OVERALL VIEW OF THE GRID RESOURCE MANAGEMENT PROCESS 
 

The Grid Service management process starts when an authorized user requests a Grid 

Service to the PbGRMA through the Policy Editor Interface. At this time the client will specify the 

name of the requested Grid Service and the QoS requirements for its deployment, if they are 

required. Once the PbGRMA receives the client request, it exchanges information related to the 

service in order to process the resources service requirements (Figure 3.17). 

 

I. Service Level Agreement (SLA): Previous to any Grid Service request, every GSC has 

concluded a SLA with at least one GIP. In this agreement a specific QoS level will be satisfied 

for every service running on their provider’s infrastructure. We assume that QoS is quantified in 

levels like, “diamond,” “gold,” “silver,” and “bronze”. 
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Figure 3.17 Use case for deployment and management of Grid Services 
 
II. Grid Services Management (GSM) Phase: Our architecture merges requirements from the 

client, the provider’s resources availability, as well as the service specification requirements, 

and creates the Grid Domain Level (GDL) Policy for the corresponding Grid Service. This 

feature is one of the most important novelties in this approach. In the context of this work, the 
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Policy Manager must contact the Service Descriptor in order to receive the Grid service 

specifications, which will be extracted from WS-Resource properties document. This document 

has been associated with the WSDL porType defined by Grid Service Instance requested via 

UDDI Registry. In Figure 3.18 we show fragments of the above-mentioned documents, which 

were used during the evaluation phase described on Chapter 6. The process of building the 

Domain-level policy also involves the integration of two other features. The OGSA compatibility 

and Inter Domain communication. We will describe these communication processes in the 

following two paragraphs. 
 

A. OGSA Compatibility: As previously stated, the proposed architecture is 

compatible with OGSA. The Service Descriptor Component uses XML requests to 

tag service data, SOAP to transfer it through the network, WSDL for describing the 

services available, and finally UDDI is used for listing what services are available. 

SOAP, as a data communication format, offers different advantages in order to 

extract the information necessary for our architecture. Essentially, we parse the 

SOAP files into the OGSA Policy Descriptor and extract the Grid Service 

specifications mentioned above. The Service Descriptor sends back the parsed 

information in Java format to be processed by the Policy Manager and to create 

the GDL Policy. 

 

<!-- ========== WSDL Interface for Newton’s Method Application  ============ -->
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://nmg.upc.es/Newton'sMethodExample" ...>

<wsdl:types>
<xsd:schema 

<xsd: import 
targetNamespace="http://nmg.upc.es/NewtonsMethodExample_Properties"

<xsd:attribute name="ResourceProperties" type="xsd:Newton's Method"/>
...

<!-- == WS-Resource Properties Document for Newton’s Method Application  == -->
<wsdl:portType name="Newton's Method" 

wsrp:ResourceProperties= "intf:GenericMethodProperties">
<xsd:sequence>

<xsd:element maxDistribution="5" minDistribution="1" name=" " …
<xsd:element amountMinMemory="20" amountMaxMemory="250" name=" "...
… "wsa:EndpointReferenceType"/>

</wsdl:portType>  
Figure 3.18 WSDL and WS-RF interfaces. 
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B. Inter-Domain Communication: Just in the case the requested service needs 

resources that belong to different administrative domains, the Policy Manager 

contacts the Inter Domain Manager to start the resources negotiation with the 

other domain. Due to the fact that communications are always under XML format, 

there should not be problems regarding communication amongst management 

entities. At this time, the second domain is starting its own resource management 

and scheduling processes. 

 
III. Grid Resource Discovery and Monitoring (GRDM) Phase: The Policy Manager (PM) 

sends the just created GDL Policy to the Domain Manager. It later evaluates the conditions of 

the policy and tries to match them with the available resources in the Grid Infrastructure of its 

local domain. In order to complete these functions, it first has to analyze the QoS of the 

requested service. To do so, it contacts the BLOMERS Resource Scheduler, whose task is to 

analyze the network topology and resources information received from the SBLOMERS 

Monitoring System. The checking of available resources is realized for every resource involved 

in the establishment of a service into the Grid topology (i.e. memory, bandwidth, storage, etc). 

 

IV. Grid Resource Scheduling (GRS) Phase: BLOMERS tries to find a suitable set of Grid 

nodes that satisfies the requirements given by the GDL Policy. If the search is not limited by 

other constraints, a set of different nodes will result. All these Grid nodes are candidates for the 

allocation of the service because they fulfil the resource and topological requirements 

expressed in the GDL Policy. However, a service has additional requirements specified in the 

Grid Service Data. BLOMERS does not have access to such information because this lies within 

the domain of the Service PDP. Therefore, the Domain Manager decides the set of final nodes 

to allocate the service. 

 

V. Grid Nodes Configuration – Grid Node Level Policy Creation: At this time, the Domain 

Manager has to decide which resources will be part of the final set of Grid nodes that will be 

configured to execute the Grid service with the specified QoS level. In this component, an 

appropriate algorithm carries out the selection of the best nodes and forwards the policy to the 

QoS PDP. Next, the QoS PDP sends the decision to its corresponding PEP. The QoS PEP will 

transform the request into a set of appropriate Grid Node Level QoS Policies (one policy for 

each of the Grid nodes selected) and it will send the policy into the GNMS of the established 

nodes. Once the QoS policy is enforced, the GNMS calls an activation method of the local node 

interfaces for each node (i.e. Globus Toolkit Primitives), thus ending the configuration process. 
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VI. Jobs Allocation and Activation (JAA) Phase: Since the enforcement of the QoS policies 

has successfully terminated in all nodes, the Domain Manager starts processing the activation 

policies by forwarding them to the corresponding PDP, to be evaluated. If there are no 

conditions or actions to be processed at the domain level, it forwards the policy to the PEP of 

the involved Grid Nodes. The activation PEP enforces the policy that assigns the resources 

using the interfaces offered by local node interfaces at each node. The result of the Grid 

resources activation is forwarded back to the Grid Domain Level through the Grid Node Level 

for control and fault management purposes. At this time, the service requested is running with 

the agreed QoS level. The SBLOMARS Monitoring System updates the QoS PDP with resource 

utilization. Therefore, in case one or more of the Grid Resources can not offer part or the totality 

of their committed capacity, the PbGRMA will restart the Grid Service Management Process to 

find new Grid Resources which offer similar capabilities. 
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3.5 CONCLUSIONS  
 
 

In this chapter we have described how our approach performs the complete Grid Resource 

Management (GRM) process. The Policy-based Grid Resource Management Architecture 

(PbGRMA) presented in this chapter is mainly in charge of solving the first and last phases in 

the Grid Resource Management process, which are the Grid Resource Management (GRM) 

and the Jobs Allocation and Activation (JAA) phases. Therefore, we start and close the loop for 

Grid Services deployment and management by means of an architecture based on policies.  

The presented PbGRMA is integrating three sources of Grid Services requirements: users’ 

requirements in QoS terms, Grid Services specifications based on the OGSA standard and Grid 

resources availability to maintain certain load balance along the Grid Infrastructure. 

In this chapter we have explained the features, implementation details, and advantages of 

the PbGRMA. In particular, we described how our approach is able to deploy and to manage 

Grid Services instances into heterogeneous networks configured such as Grid Infrastructure. 

The PbGRMA extracts the service requirements from different sources and collects information 

about resource availability in the Grid Infrastructure Providers domain through the SNMP-based 

Balanced Load Monitoring Agents for Resource Scheduling (SBLOMARS). Finally, it schedules 

Grid Services on best available computational resources by means of the Balanced Load Multi-

Constrained Resource Scheduler (BLOMERS), getting load balancing through all of the nodes. 

Although our approach is focused on Grid environments, where the wide range of nodes 

will offer small amounts of resources, the solution is not limited to this domain of users/clients. 

The whole architecture is completely scalable and flexible in terms of the type of elements to be 

managed. Also, it is Web Services Resource-Framework oriented. This feature guarantees that 

our approach follows current Open Grid Forum (OGF) standards. 

One of the most innovative aspects in our solution is its ability to auto-extend many of its 

management capabilities. The PbGRMA auto extends Domain-level and Node-level 

components such as Policy Decisions Points and Policy Enforcements Points. The PDP 

components are also self-extended in Actions and Conditions Interpreters. This solution offers a 

great level or granularity, thus helping to scale properly. Moreover, the auto-configuration of the 

architecture to deploy or remove new Management Instances improves the resource used by 

the management system. For all these properties we claim that our PbGRMA is an autonomous 

management system.  

On the side of drawbacks, The PBGRMA lacks of simplicity. This system is not very easy 

to deploy without the proper knowledge of their components and the structure of the system. 

The interfaces with SBLOMARS and BLOMERS are based on XML standards. It means that 
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transformation of the information from XLM-based documents to policy language and even 

software language is a very hard activity. In fact, such transformations could take long time. 

Unfortunately, this is the price to pay for keeping the solution with high levels of standardization. 
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Chapter 4 
 
 
 

 
 

RESOURCE DISCOVERY AND MONITORING 
IN LARGE-SCALE GRIDS 

 
 
 
 
 
 
 
 

4.1 INTRODUCTION 
 
Resource discovery and monitoring is defined as the process of dynamic collection, 

interpretation, and presentation of information about hardware and software systems. It is one of 

the crucial activities in the Grid Resource Management (GRM) process. There are several kinds 

of discovering and monitoring: monitoring of resources (availability), network monitoring 

(connectivity), and jobs monitoring (status of jobs).  In this chapter we will describe our research 

in resource and network monitoring. Jobs monitoring is outside of the scope of this thesis. 
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As we described in the first chapter, Grid Computing started as a technology to offer high-

performance computing to external users with high-throughput applications needs. Up to the 

present, this technology has received exceptional acceptance from academic and commercial 

areas, becoming a focus of research in many institutes, universities, and enterprises. Over time 

the Grid has modified its initial objectives to become a technology where non-massive resource 

owners would be able to share their resources and integrate human collaboration across 

multiple domains, regardless of network technology, operative platform, or administrative 

domain. This novel technology is known as Large-scale Distributed Computational Grids.  

This evolution was adopted by all research areas inside GRM. The area of GRDM was one 

of them.  Eventually, the ability to monitor distributed computing components becomes critical 

for enabling high performance computing in a large complexly distributed environment, such as 

Grid Computing. However, achieving performance in a Grid environment is often difficult. The 

Grid itself does not provide a stable platform. Its environments are dynamic, heterogeneous, 

and subject to frequent faults. Timely and accurate dynamic performance information is required 

for a variety of tasks, such as: performance analysis, performance tuning, performance 

prediction, scheduling, fault detection and diagnosis, etc. 

The aim of this chapter is to describe the contribution of the thesis to resource discovering 

and monitoring in Grid Computing. The material incorporated herein describes the design and 

functionality of the SNMP-based Balanced Load Monitoring Agents for Resource Scheduling in 

Large-scale Grids (SBLOMARS). The open distributed monitoring system covers the GRDM 

phase of the Grid Resource Management process proposed in this thesis. 

The structure of this chapter is as follows:  After this Introduction, in Section 4.2, we briefly 

describe the Grid Resource Discovering and Monitoring process and the current standards 

accepted by the Open Grid Forum (OGF). Section 4.3 is an overview of our SBLOMARS. In this 

section we will describe the design, implementation, functionality, and main features of our Grid 

monitoring system. In Section 4.5 we present the conclusions of this chapter. 
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4.2 GRID RESOURCE MONITORING AND DISCOVERING 
 

We have explained that discovering and monitoring of network and computational 

resources in Grid Computing are not simple activities. Actually, the Open Grid Forum (OGF) 

[OGF], which is the new organization that resulted from the merger of the Global Grid Forum 

(GGF) and the Enterprise Grid Alliance (EGA), is working in autonomous specific groups to 

define standard mechanisms to improve and generalize resource discovering and monitoring in 

Grid Computing. In their last draft [Tie03] they have detailed features and recommendations for 

Grid Monitoring1 systems or architectures. Below is a summary the most important of them: 

 

I. Minimizing Latency: As previously stated, performance data is typically relevant 

for only a short period of time. Therefore, it must be transmitted from where it is 

measured to where it is needed, with low latency. 

 

II. Handling High Data Rates: Performance data can be generated at high data 

rates. The performance monitoring system should be able to handle such 

operating conditions. 

 

III. Reducing Overload: If measurements are taken often, the measurement itself 

must not be intrusive. Further, there must be a means of monitoring facilities to 

limit their intrusiveness to an acceptable fraction of the available resources. If no 

mechanism for managing performance monitors is provided, performance 

measurements may simply measure the load introduced by other performance 

monitors. 

 

IV. Increasing Security: Typical user actions will include queries to the directory 

service concerning event data availability, subscriptions for event data, and 

requests to instantiate new event monitors, or to adjust collection parameters on 

existing monitors. The data gathered by the system may itself have access 

restrictions placed upon it by the owners of the monitors. The monitoring system 

must be able to ensure its own integrity and to preserve access control policies 

imposed by the ultimate owners of the data. 

 

                                                 
 
1 Discovering and Monitoring will be referred to as monitoring from this point onward. 
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V. Being Scalable: This is one of the crucial requirements of Grid Monitoring and 

Discovering.  Because there are potentially thousands of resources, services, and 

applications to monitor, and thousands of potential entities that would like to 

receive this information, it is important that a performance monitoring system 

provide scalable measurement, transmission of information, and security. 

 

In order to meet these requirements, a monitoring system must have precise local control 

of the overhead and latency associated with gathering and delivering the, “resources availability 

information”. We understand resources availability information in the context of this thesis as the 

information reported by a monitoring entity about the state of specific resources, such as 

amount of memory, CPU cycles per second used, and storage capacity. In the Grid, the amount 

of resources availability information will be directly proportional to the amount of resources 

available on the Grid. Typically, there is a huge amount of resources in the Grid, and searches 

of this space will have unpredictable latencies. These potentially large latencies must not impact 

every request for performance information. Instead, searches should be used only to locate an 

appropriate information source or sink, whereas operations with a more predictable latency 

should be used to transfer the actual performance information. 

The proposed core Grid Monitoring Architecture from the OGF consists of three main 

components, as shown in Figure 4.1. Grid monitoring architecture is designed to handle 

performance data transmitted as time-stamped (performance) events. An event is a typed 

collection of data with a specific structure that is defined by an event schema. Performance 

event data is always sent directly from a producer to a consumer. The Producer makes 

performance data available (performance event source). The Consumer receives performance 

data (performance event sink). The importance of this architecture is that the Grid monitoring 

system presented in this chapter is grounded on it..  

Directory Service supports information publication and discovery. Producers (and 

consumers that accept control messages) publish their existence in directory service entries. 

The Directory Service, or Registry, is used to locate producers and consumers. Note that the 

term, “Directory Service,” is not meant to imply a hierarchical service such as LDAP [LDAP07]; 

any lookup service could be used. The directory service serves to bootstrap communication 

between consumers and producers, as entries are populated with information about understood 

wire protocols and security mechanisms. 
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Figure 4.1 Grid Monitoring Architecture specified by the OGF 
 

Consumers can use the directory service to discover producers of interest, and producers 

can use the directory service to discover consumers of interest. Either a producer or a 

consumer may initiate the interaction with a discovered peer. In either case, communication of 

control messages and transfer of performance data occur directly between each 

consumer/producer pair without further involvement of the directory service. 

 

4.2.1 Monitoring and discovering requirements in Computational Grids 
 

Resource discovery and monitoring in large-scale Computational Grids involves 

determining which computational resources are available to be assigned in order to execute a 

specific job, application, service, etc., without interfering with their owners’ activities. It is very 

important that Grid Resource Monitoring Systems [Zan05] offer resources availability information 

reliably, and thus, following resource management phases should be able to keep as balanced 

as possible resources load through all networks. Therefore, there is an inherent need for novel 

monitoring systems in charge of sensing computational resources (memory, processor, storage, 

networking and software applications) as well as monitoring and tracking network-level end-to-

end performance. 

The challenge and complexity in large-scale Computational Grids is quite different from 

those in other types of Grids. Due to the fact that the amount of resources required to monitor 

and discover have been drastically increased, the heterogeneity and diversity found in these 

systems is greater and more extended. Monitoring systems for large-scale distributed systems 

have basically three main goals: First, they should report resources availability information when 
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certain applications or services are running, by means of graphical interfaces or threshold 

alarms. Secondly, they must support users in finding and keeping track of resources of interest; 

this is the main purpose of Grid Information Services (GIS) [Cza01]. Finally, they should provide 

mechanisms to help Grid Resource Management decide which resources certain jobs will be 

executed in, in order to have a minimum performance impact on the Grid Infrastructure (GI). 

A Grid monitoring system that is restricted to a command-line interface may fail to provide 

easy accessibility to the monitoring information. It is beneficial for the front-end of any grid 

monitoring system to utilize the client-server model of the Internet, and be able to provide up-to-

date information transparently and comprehensively to a client, while performing all the major 

tasks at the various layers of the backend.  

Conclusively, an effective model for a Grid monitoring system should be globally 

distributed, as decentralized as possible, and capable of providing access to information in a 

ubiquitous manner. This work describes design, development, and implementation of such a 

prototype Grid monitoring system. 

 

 

Resource Discovery and Monitoring in Large-scale Grids                                                       88 



  

 

 
A Distributed and Heuristic Policy-based Management 

Architecture for Large-Scale Grids 

 
 

4.3 OVERVIEW OF THE SNMP-BASED BALANCED LOAD MONITORING 
AGENTS FOR RESOURCE SCHEDULING 

 

Large-scale Grid Resource Monitoring and Discovery is addressed by our new SNMP-

based Balanced Load Monitoring Agents for Resource Scheduling (SBLOMARS). This 

distributed monitoring system involves a set of autonomous and distributed monitoring agents, 

which generate real-time and statistical availability information for every resource and entity 

composing the Grid.  

The distributed monitoring agents composing the SBLOMARS approach are pieces of 

software that act for a user or other program in a relationship of agents and managers 

(client/server mode). These monitoring agents constantly capture end-to-end network and 

computational resources performance (processor, memory, software, network, and storage) in 

large-scale distributed networks. The resources availability information collected is translated to 

standard reports, which are used by a heuristic resource scheduler to determine a job's 

requirements and match them to available resources, spreading work between many 

computers, processes, hard disks, or other resources in order to get optimal resource utilization 

and decrease computing time around the Grid. 

SBLOMARS is already capable of monitoring processor, storage and memory use, network 

activity at the interface level, services available (an updated list of applications installed), and 

end-to-end network traffic. This can be done across different architectures, including the Solaris, 

Unix-based, Microsoft-based, and even Macintosh platforms. Moreover, SBLOMERS is self-

extensible and can monitor from multi-processor platforms to huge storage units. Specifically, it 

is designed around the Simple Network Management Protocol (SNMP) to tackle the generality 

and heterogeneity problem, and is also based on autonomous distributed agents to facilitate 

scalability in large-scale Grids. 

SBLOMARS addresses the scalability problem by distributing the monitoring system into a 

set of monitoring agents specific to each kind of computational resource to monitor. Therefore, it 

deploys a single software thread per type of resource to be monitored, independently of the 

amount of such resources. This is worthy of mention because many monitoring systems fail 

when they try to handle new, “hot-plug,” resources that have been added to the system. As we 

mentioned before, every resource is monitored by independent software threads that start again 

at certain intervals, becoming an infinite cycle. The cycle-timing is defined by local or remote 

administrators through booting parameters at the beginning of its execution. 

The SBLOMARS monitoring system automatically re-configures its polling periods (calls to 

SNMP daemon) in an autonomous way. SBLOMARS increases or decreases the time interval 

between consecutive information requests based on the state of the monitored devices. This 
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feature is important where the overload caused by any monitoring system is not affordable by 

the hosting nodes. 

The distributed monitoring system reaches a high level of generality by means of the 

integration of SNMP [Sta99], and thus, offers a wide ability to handle heterogeneous operating 

platforms. We are aware that integration with SNMP technology is not enough to assure high 

levels of heterogeneity, but we are presenting a distributed monitoring system design with an 

exhaustive study of the SNMP incompatibilities. These incompatibilities are related to data 

formats, objects not implemented, and objects with heterogeneous formats in their data 

structure. Moreover, this monitoring system integrates an end-to-end network-level monitoring 

technology that is also consulted by means of SNMP calls. It is the CISCO IOS® IP Service 

Level Agreements (CISCO IP SLAs) [Cis06], which allows users to monitor end-to-end network-

level performance between switches, routers, or from either remote IP network device. 

The security of the distributed monitoring system is granted by means of two factors. The 

first is the fact that SBLOMARS will be deployed on nodes belonging to secure virtual 

organizations. Then, there is a high level of security from external intruders. Unfortunately, 

internal users could still modify, intentionality or not, some monitoring parameters on neighbour 

nodes. Therefore, the second security factor is the implementation of version three of the SNMP 

protocol (SNMPv2). 

SBLOMARS monitoring system has been designed in a flexible manner. This basically 

means that the monitored information about resources availability is refreshed in self-adjustable 

intervals of time. It also means that the monitored resources availability information is shown in 

flexible and dynamic software structures (software structures developed to keep in the memory 

buffer, for each type of resource, both the amount of used and the amount of available 

resources since the last polling period), which are used to monitor simple personal computers to 

complex multiprocessor systems, or clusters with multiple hard disk partitions. Therefore, 

SBLOMARS is a distributed monitoring system with minimal overload on the performance of the 

hosting nodes. This feature assures a high level of reliability in computing devices with minimal 

computational resources, such as mobile devices (i.e. laptops, PDAs, etc). 

In summary, our approach is stronger than typical distributed monitoring systems in three 

essential areas: First, it reaches a high level of generality via the integration of SNMP 

technology, and thus, we are offering an alternative solution to handle heterogeneous operating 

platforms. Second, it solves the flexibility problem by implementation of complex dynamic 

software structures, which are used to monitor simple personal computers to robust 

multiprocessor systems or clusters, even with multiple hard disks and storage partitions. Finally, 

it deals with the scalability problem by the distribution of the monitoring system into a set of 
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monitoring agents, which are specific to each kind of computational resource to monitor. In the 

Evaluation chapter, we will present the performance tests of the processor and memory 

overload implied for our resource monitoring and discovering system. These results highlight the 

fact that the overload of the SBLOMARS monitoring agents is quite affordable. They also show 

that the SBLOMARS monitoring system offers excellent advantages to resource schedulers, 

allowing them to perform scheduling in shorter times and distributing the jobs through all 

available resources in a very fair way. 

 

4.3.1 Design and architecture of the SBLOMARS Monitoring System 
 

In the SBLOMARS monitoring system, each targeted network and computational resource 

(memory, processor, network, storage, and applications) is considered as an autonomous 

shared entity. This means that a host/node forming a Grid could be sharing all its computational 

resources (fully-public), just some kind of them (partially-public), or none of them (fully-private). 

In Figure 4.2 we show the kinds of resources that the SBLOMARS monitoring agents are able to 

monitor. It is important to mention that monitoring agents are instances from the SBLOMARS 

monitoring system, but each kind of resource-specific agent implements specific algorithms to 

get precise information regarding the resource’s usability. 

 

 
Figure 4.2 SBLOMARS Monitoring Agents distribution per kind of resource 

 

The SBLOMARS monitoring system identifies the shared sources in every node of the Grid 

and deploys a set of monitoring agents for these specific resources. It could be better explained 
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with an example. In real organizations, resource owners could share all of their network and 

computational resources or just some of them. This is possible because SBLOMARS instances 

a monitoring agent for each resource to share. Therefore, some workstations could offer only 

memory resources, and other ones could share their storage resources. This is quite common in 

current distributed organizations. Moreover, a user sharing storage resources could only share 

part of them. This does not mean that the user is sharing all its storage capacity. For instance, 

in workstations it is normal to have two hard disk partitions. The operating system is running in 

the first one, and the user’s information is located in the second one. This user will share only 

the second partition, because he/she does not want to loose the control of the primary partition. 

A diagram showing the main components and interfaces of the SBLOMARS monitoring 

agents is presented in Figure 4.3. We now will describe the functionality of each component and 

their mutual interactions.. 

The (1)Principal Agent Deployer is the main component of the overall monitoring system. 

It deploys a specific monitoring agent for each kind of resource to be monitored. It offers a 

generic user interface that can be used to specify the timing between every invocation of the 

SNMP-MIBs, as well as the number of invocations between every statistical measurement. We 

have named this functionality as the setting up of the polling periods. Basically, this component 

starts a monitoring agent for every resource to monitor. For instance, if a certain machine with 

two hard disks, one micro-processor, two network cards (wireless and wired), and one bank of 

memory will need six monitoring agents in total, then the Principal Agent Deployer will start six 

monitoring agents (two for the hard disks, one for the CPU, two for the network cards, and one 

for memory) with different polling period configurations and, obviously, each monitoring agent 

will retrieve different OID values from the node SNMP Agents. In chapter 6 (Overall System 

Evaluation) we will explain this deployment process in a real large-scale scenario. 

The (2)Resource Monitoring Agents component is instantiated in as many classes as 

there are different kinds of resources that must be tracked. We currently have six different 

monitoring agents.  These are: memory, processor, software, storage, network interfaces (at 

resource level), and end-to-end network connectivity (at network level). These agents are 

independent each other due to the fact that SBLOMARS can reduce the overload caused by its 

monitoring activity when a Grid Node is only sharing some of its resources, but not all of them. 

In other words, when a workstation is just sharing its storage capacity, SBLOMARS will 

instantiate only the sub-agent for monitoring storage devices. This ensures that SBLOMARS 

overload is only what is needed to monitor this resource. Another monitoring alternative based 

on the deployment of as many monitoring agents as resources discovered on the workstation 

would cause an unnecessary overload on its hosting nodes. 
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Figure 4.3 The SBLOMARS components and interfaces 

 
The (3)Resource Discovery component registers the kinds of resources available in the 

hosting node. We understand as hosting node, the workstation or server where SBLOMARS is 

being executed. It stores that information in the (4)Network-Map Database and broadcasts its 

existence in order for it to be caught by higher level resource schedulers. 

The (5)Real-Time Reporter component generates real-time resource availability 

information for each kind of resource. It publishes this information by means of Dynamic 

Software Structures and offers accessibility to these structures through network socket 

connections [Yad07]. These structures are available to scheduling systems (e.g. the BLOMERS 
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scheduler) or any other external instances which need to know the resources behaviour in real-

time. We will thoroughly describe dynamic software structures in following sub-sections. 

The (6)Statistical Reporter component generates statistical resource availability 

information for each kind of resource. It publishes this information by means of the XML-based 

Monitoring Reports, and offers accessibility to these structures through network socket 

connections [Yad07]. The statistical reports are later used in the resource selection phase to 

determine, in advance and by means of a heuristic approach, which resources are more likely to 

be the optimal solution for the fulfilment of any user’s request. 

The SBLOMARS has been implemented in Java [Rus06]. In Figure 4.4 we have depicted a 

class diagram of the designed core architecture. We have exploited the object-oriented 

approach that this programming language offers to deploy a single thread per type of resource 

to be monitored, independent of the amount of such resources. This is worth mentioning 

because many monitoring systems fail when they try to handle new, “hot-plug,” resources that 

have been added to the system.. 

Among the most distinguishing aspects of the SBLOMARS in comparison with similar 

systems we can mention the following. First, it deploys monitoring agents in independent 

threads for each type of resource to be monitored. This adaptability implies that Grid Nodes may 

share just some of their resources and not necessarily all of them. Second, the SBLOMARS is 

able to monitor any amount of shared resources, regardless of software limits (i.e. available 

memory). This is possible because the SBLOMARS automatically manages its memory buffer to 

make it as long as necessary or to reduce it when necessary. We can see, then, that 

deployment of the SBLOMARS monitoring agents is feasible across a wide range of node types, 

from simple desktop computers to complex multi-processor servers. Lastly, the SBLOMARS 

self-configures its polling periods (time interval between consecutive retrieval of values from the 

SNMP-MIBs) automatically. In fact, the SBLOMARS increases or decreases the polling periods 

according to the state of the monitored resources. We are now going to describe how the 

SBLOMARS gets realistic and tangible resource availability information from Object Identifiers 

(OIDs) values from the Simple Network Management Protocol (SNMP) daemon. 

 

 

Resource Discovery and Monitoring in Large-scale Grids                                                       94 



  

 

 
A Distributed and Heuristic Policy-based Management 

Architecture for Large-Scale Grids 

 
 

PrincipalAgentDeployer

software.start ()
processor.start ()
memory.start ()
network.start ()
storage.start ()

ResourceDiscovery

getCommunity ()
getHostName ()

addressIP : String

HistoricalReport

software_elements : int
processor_elements : int
memory_elements : int
storage_elements : int
network_elements : int

getting_elements ()
write ()
print ()
buffwrite.flush ()
… ()

processorParameter : Vector
cycle_duration : int
average_cycles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

ProcessorAgent

memoryDetails : Vector
processorDetails : Vector
networkDetails : Vector
softwareDetails : Vector
storageDetails : Vector

getCPUUsed ()
getMemoryUsed ()
getStorageAvailable ()
getInOctets ()
… ()
… ()

SblomarsAgent

memoryParameter : Vector
cycle_duration : int
average_cycles : int

storageParameter : Vector
cycle_duration : int
average_cycles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

agent.start ()
agent.getParameters ()
agent.sleep ()

StorageAgent MemoryAgent

networkParameter : Vector
cycle_duration : int
average_cycles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

NetworkAgent

RealTimeReport

parametersDetails : Vector

createVector ()
removeVector ()
… ()
… ()

1

∞ ∞

∞ ∞

∞

1 1

1

1
1

softwareParameter : Vector
cycle_duration : int
average_cicles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

SoftwareAgent

∞

∞ ∞

∞ ∞ ∞

∞

PrincipalAgentDeployer

software.start ()
processor.start ()
memory.start ()
network.start ()
storage.start ()

ResourceDiscovery

getCommunity ()
getHostName ()

addressIP : String

HistoricalReport

software_elements : int
processor_elements : int
memory_elements : int
storage_elements : int
network_elements : int

getting_elements ()
write ()
print ()
buffwrite.flush ()
… ()

processorParameter : Vector
cycle_duration : int
average_cycles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

ProcessorAgent

memoryDetails : Vector
processorDetails : Vector
networkDetails : Vector
softwareDetails : Vector
storageDetails : Vector

getCPUUsed ()
getMemoryUsed ()
getStorageAvailable ()
getInOctets ()
… ()
… ()

SblomarsAgent

memoryParameter : Vector
cycle_duration : int
average_cycles : int

storageParameter : Vector
cycle_duration : int
average_cycles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

agent.start ()
agent.getParameters ()
agent.sleep ()

StorageAgent MemoryAgent

networkParameter : Vector
cycle_duration : int
average_cycles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

NetworkAgent

RealTimeReport

parametersDetails : Vector

createVector ()
removeVector ()
… ()
… ()

1

∞ ∞

∞ ∞

∞

1 1

1

1
1

softwareParameter : Vector
cycle_duration : int
average_cicles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

SoftwareAgent

∞

∞ ∞

∞ ∞ ∞

∞

PrincipalAgentDeployer

software.start ()
processor.start ()
memory.start ()
network.start ()
storage.start ()

ResourceDiscovery

getCommunity ()
getHostName ()

addressIP : String

HistoricalReport

software_elements : int
processor_elements : int
memory_elements : int
storage_elements : int
network_elements : int

getting_elements ()
write ()
print ()
buffwrite.flush ()
… ()

processorParameter : Vector
cycle_duration : int
average_cycles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

ProcessorAgent

memoryDetails : Vector
processorDetails : Vector
networkDetails : Vector
softwareDetails : Vector
storageDetails : Vector

getCPUUsed ()
getMemoryUsed ()
getStorageAvailable ()
getInOctets ()
… ()
… ()

SblomarsAgent

memoryParameter : Vector
cycle_duration : int
average_cycles : int

storageParameter : Vector
cycle_duration : int
average_cycles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

agent.start ()
agent.getParameters ()
agent.sleep ()

StorageAgent MemoryAgent

networkParameter : Vector
cycle_duration : int
average_cycles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

NetworkAgent

RealTimeReport

parametersDetails : Vector

createVector ()
removeVector ()
… ()
… ()

RealTimeReport

parametersDetails : Vector

createVector ()
removeVector ()
… ()
… ()

1

∞ ∞

∞ ∞

∞

1 1

1

1
1

softwareParameter : Vector
cycle_duration : int
average_cicles : int

agent.start ()
agent.getParameters ()
agent.sleep ()

SoftwareAgent

∞

∞ ∞

∞ ∞ ∞

∞

 

Figure 4.4 Diagram of classes of the SBLOMARS Monitoring System 

 
4.3.2 The SBLOMARS interfaces with SNMP-MIBs 

 
The Simple Network Management Protocol (SNMP) [Sta99] involves nodes acting as 

management stations (managers) and nodes acting as managed entities (agents). Agents have 

access to management instrumentation; run a command responder application and a 

notification originator. A manager contains a command generator and a notification receiver. 

Management entities control and monitor managed elements. Examples of managed entities 

are routers or hosts. To convey management information between the managed and the 

management entities the Simple Network Management Protocol is used, based on the 

connectionless transport protocol UDP. It is important to note that in the context of our thesis, 

the role of SNMP managers will be assigned to the monitoring agents instantiated by the 

SBLOMARS monitoring system. 
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Monitoring and controlling functions are achieved by requests sent to the SNMP agents 

and by notifications emitted by the SNMP agents. Management information is abstracted in a 

Management Information Base (MIB). Objects in MIBs are organized in a way that is described 

by the Structure of Management Information (SMI). The language used to describe MIB objects 

is a reduced set of ASN.1 [ANS] constructions. This only allows existence of scalars and two 

dimensional arrays in the MIBs. Extension of management information is also possible by 

creating new MIBs or augmenting existing ones. While traditional SNMP-based configuration 

management enables a device-by-device configuration of network elements, the increasing size 

and complexity of them has turned configuration into a more difficult task. The increase in size 

means more devices to configure, the increase in complexity means that devices are of different 

types, and from different vendors, and perform far more operations. 
Our monitoring agents will retrieve the required information by contacting specific objects of 

the available MIBs. Currently, there are many implemented MIBs around Internet community. 

Any network/resource element provider implements customized MIBs for their new elements. In 

the SBLOMARS we have used HOST-RESOURCES-MIB [Sta99], UC-DAVIS-MIB [UCDSN], 

INFORMANT-MIB [SNINF] and CISCO-RTTMON-MIB [Cis06], which are standard and well-

known MIBs for networking and computing resources. The first two mentioned MIBs are 

configured by default when the SNMP has been installed in the system. The other two are 

private MIBs, but with open free access. This means that before using the SBLOMARS it is 

necessary to confirm that these MIBs are already installed in the system. We then ensure that 

any platform will be monitored by our approach, once it has implemented the above mentioned 

MIBs. The SBLOMARS also uses alternative open standard MIBs in order to offer full 

computational resource availability, but it is out of the scope of this thesis to mention all of them. 

The most important method in the SBLOMARS is the one to retrieve a specific OID value 

from the SNMP daemon. Figure 4.5 is a fragment of code as an example of the GET operation 

from the SBLOMARS monitoring agent to the OID: .3.6.1.2.1.25.6.3.1.2. This OID is not a final 

value yet, but the root of three where the names of the installed software in the node are 

allocated. This value could also be accessible by the next identifier: “hrSWInstalledName”. 

We have highlighted the GET operation in order to show that it is compatible with the three 

SNMP versions (1, 2 and 3) and we also want to demonstrate that the SBLOMARS is 

independent of the OID-MIBs. This means that the SBLOMARS could be improved by adding 

new functionalities through new MIBs without modifying the core software. It would only be 

necessary to add the corresponding methods for the new OID values. 
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public String getSoftwareName(int i) { 

String oid = ".1.3.6.1.2.1.25.6.3.1.2."+i; 
String softwareName = ""; 
try { 
softwareName =  this.snmpget(version,comm,host,oid); 

 …} 
…} 
 

 private String snmpget( 
int version, String comm, String host,   String oid){ 
  SnmpTarget target = new SnmpTarget(); 
  if (host != null) 
target.setTargetHost( host );   
  if (community != null)  
   target.setCommunity( comm ); 
  if (version != 0) {   
if(version == 2){ 

     target.setSnmpVersion( SnmpTarget.VERSION2C ); 
else if(version == 1) 
   target.setSnmpVersion( SnmpTarget.VERSION1 ); 
else if(version == 3) 

target.setSnmpVersion( SnmpTarget.VERSION3 ); 
 else { 

       System.out.println("Invalid Version Number"); 
      } 
 } 
 target.setObjectID d); (oi
 sOut = target.snmpGet();  

        return sOut;  
        } 

  

 

Figure 4.5 Interface to retrieve MIB Object values by the SBLOMARS Monitoring Agents 

 

The above code is an example to demonstrate the flexibility of the SBLOMARS approach. 

The SBLOMARS monitoring agents retrieve values from not just one specific OID, but rather 

from a sequence of OID values. In SBLOMARS just the root of the lists of possible values is set, 

and then it checks for the full list of values available in the three OID values. 

One of the main proposed objectives in the SBLOMARS was to handle a wide variety of 

operating systems (OS). The simple use of standards like SNMP does not guarantee success in 

this objective. SNMP implementations are often hampered by a variety of different problems. 

SNMP managers run into trouble if a device is sending non-standard traps. Although, SNMP is 

a standard protocol, some people have modified the formats of their traps to suit special needs. 

They might, for example, have added an extra field to their traps to transmit a particular piece of 

additional data. If this change was not properly documented, it can cause trouble later. 

Therefore, it is not possible to ensure that all platforms will be monitored by our approach 

without explaining the multiple differences and incomplete data between platforms/resources 

even when standard MIBs are utilized.  
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The whole set of differences found is too large to describe. Basically, there are three kinds 

of conflicts or incompatibilities. The first one occurs when MIBs are implemented for certain 

operating systems, but not implemented for others. Actually, this kind of incompatibility is the 

most frequent. This is present mainly between Microsoft Windows-based and Unix-based 

platforms. It is clear that we cannot modify the kernel from all operating systems in order to 

make our software compatible. The best solution that we have found is to improve our software 

in order to be adaptable with these issues. 

 
      public String getMemoryCached() {  

 String oid=".1.3.6.1.4.1.9600.1.1.2.5.0"; 
try { 

memCached =  Integer.parseInt(this.snmpget(oid)); 
  } 
catch ( Exception ex )  
  { 

System.out.println("Exception Getting Memory Cached  
Unix: " + ex.getMessage()); 

  } 
  return memCached; 
 } 
 
 
public long getMemoryCachedUnix() { 
  String oid=".1.3.6.1.4.1.2021.4.15.0"; 
    try { 

memCached =  Integer.parseInt(this.snmpget(oid)); 
  } 

       catch ( Exception ex )  
  { 

System.out.println("Exception Getting Memory Cached  
Unix: " + ex.getMessage()); 

  } 
    return memCached; 
} 

 
Figure 4.6 Pseudo code to request heterogeneous MIBs object values 

The fragment of code in Figure 4.6 shows how the SBLOMARS solves these kinds of 

incompatibilities. In this example the SBLOMARS offers the amount of Cache-Memory for 

Microsoft Windows-based and Unix-based platforms. The getMemoryCached() uses an OID 

from Informant-MIB [SNINF] and the getMemoryCachedUnix() method uses the UC-Davis-MIB 

[UCDSN]. This solution is an exhaustive one. We have only highlighted these two platforms 

because they are the most common ones, but the SBLOMARS offers the amount of Cache-

Memory in Mac-based and Solaris-based platforms as well. 

The second kind of conflict occurs when the same MIBs show similar requested values in 

different formats. Even though the two different operating platforms use the same MIB, the 

content needs to be translated. An example of this would be an application residing in the US 
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that is communicating with an application in the UK. The date format (from mm/dd/yyyy to 

dd/mm/yyyy) in the messages between the two MIBs needs to be translated even though they 

use the same data representation or OID format. 

The simplest example of this incompatibility is when the monitoring agents expect to 

receive ASCII Strings but instead receive Hexadecimal Strings. Thereby, we have implemented 

the necessary mechanisms to convert Hexadecimal values to ASCII values and vice versa. This 

solution is not as trivial as it sounds. It was necessary to determine in advance the traps format 

for ASCII strings in different operating systems, as well as their corresponding versions or 

distributions. We filtered all received traps until we received an identification string for each 

available system and then we converted these data strings into standard format by means of a 

XLM parser. In Figure 4.7 we illustrate the implemented method for the translation of 

Hexadecimal Strings to ASCII Strings. 

The last kind of conflict is found between different distributions, even by the same 

operating system. For instance, Debian and Ubuntu are similar distributions of Linux. Although 

in both the HOST-RESOURCES-MIB has been developed, the object getSoftwareName is not 

implemented. Therefore, there are no alternative options to get this value. On the contrary, 

Fedora, a similar Linux distribution, has already implemented this object. 

In the SBLOMARS we have solved all the above-mentioned issues by means of different 

actions. Sometimes we have implemented exhaustive mechanisms to cover all possible 

differences between values or formats and in other solutions we have implemented translators 

of the OID values formats to generic formats. In the above examples we highlighted each one of 

the solutions adopted in the SBLOMARS monitoring agents. 

 

 

 
    

  public String getSoftwareInstalledDate(int i) { 
String oid = ".1.3.6.1.2.1.25.6.3.1.5."+i; 
try { 
    softwareInstalledDate = this.snmpget(oid); 
    temporal_string = softwareInstalledDate; 

          StringTokenizer st = new StringTokenizer(temporal_string); 
     while (st.hasMoreTokens()) 
  {  
  String token_string = ""; 
  if (Label == "") { 
    counter = 2; 
    while (counter != 0) { 
    token_string = token_string + st.nextToken(); 
    counter --; 
  } 
        token_string =     
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        Integer.toString(Integer.parseInt(token_string, 16)); 
        } 
        else { 
   token_string =  
         Integer.toString(Integer.parseInt(st.nextToken(),16)); 
  } 
  if (st.hasMoreTokens())   
    Label = Label + token_string; 
  } 
    softwareInstalledDate = Label; 
  } 
  catch ( Exception ex )  
  { 
    System.out.println 
             "Problems Getting Software Date: " +  

      ex.getMessage()); 
        softwareInstalledDate = ""; 
  } 
    return softwareInstalledDate; 
 } 

 
Figure 4.7 Pseudo code to request heterogeneous MIB object formats 

 
 

4.3.3  Configuration of the polling periods in the SBLOMARS 
 
The SBLOMARS monitoring agents are flexible in two aspects: First, the SBLOMARS 

implements dynamic software structures that have been introduced during the overview section 

of this chapter. These structures are detailed in sub-section 4.3.4 due to the fact that they are 

among the standard data interfaces we have designed.  

The second aspect where the SBLOMARS reaches flexibility is presented when it re-

configures its polling periods automatically. We understand polling period as the rate at which a 

given MIB object is read to calculate a specific performance metric, such as Storage Capacity 

(e.g. the total amount of capacity in MB of a hard disk). In fact, the SBLOMARS increases or 

decreases the time interval between every consecutive polling based on the state of the 

monitored devices. This feature in the SBLOMARS monitoring system was designed because 

current monitoring systems for distributed networks such as Ganglia [Mas04] have fixed polling 

periods, which causes some information regarding resources availability to be lost. This 

happens when some performance events between consecutive measures are simply not 

detected.  

In our design we have considered this issue. This means that when a resource is being 

used quite frequently, the time between every trap will be decreased and the amount of 

monitored information will be much greater. But if a resource is not being used for a long period 
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of time, the time between every get operation will be increased and the amount of monitored 

information will be less. Consequently, network overload will be reduced significantly.  

 
4.3.4  Distributed Monitoring Agents data interfaces 

 
As shown in Figure 4.3, the SBLOMARS outputs are presented in two formats: XML-based 

Monitoring Reports containing statistical resource availability information, and Dynamic 

Software Structures containing real-time resource availability information.  

The first format, XML-based Monitoring Reports, is designed to be compatible with external 

systems such as resource schedulers, systems for information forecasting, and resource 

analyzers. In our general approach, the statistical resource availability reports are used for our 

heuristic resource scheduler system to determinate in advance which resources have a higher 

probability of being optimally selected for any users’ request. 

The statistical reports are developed by means of the XML standard [XML]. Figure 4.8 

shows an example corresponding to storage capacity in a workstation with two hard disks, but 

the second one has two partitions. The SBLOMARS instantiates monitoring agents for each 

device, so, in this case, there are three instantiated monitoring agents. 

In order to generate these reports, the Statistical Reporter component is called by the 

corresponding monitoring agent to translate the collected data to standard formats. The 

monitoring agents are in charge of sending the resource availability information from the last 

polling period to the Statistical Reporter, which collects this information until a previously 

specified (through Principal Agent Deployer component) number of values are collected, then 

the Statistical Reporter calculates the average of all the values and generates the XML-based 

report. 
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<?xml version="1.0" encoding="UTF-8" ?>
<!-- Edited with Agent SBLOMARSXML v1.0 …
<!-- Monitoring Resources Service xmlns:xsi= …
<Monitoring_Storage_Available_Information

Device_Type Device_Type
Number_of_Elements Number_of_Elements
Storage_Device
Label Label
Space_Total Space_Total
Space_Available Space_Available
Space_Used Space_Used
Space_Used_Percent Space_Used_Percent
Storage_Device

Storage_Device
Label Label
Space_Total Space_Total
Space_Available Space_Available
Space_Used Space_Used
Space_Used_Percent Space_Used_Percent
Storage_Device

Storage_Device
Label Label
Space_Total Space_Total
Space_Available Space_Available
Space_Used Space_Used
Space_Used_Percent Space_Used_Percent

Storage_Device
Monitoring_Storage_Available_Information

>
< >Storage</ >
< >3</ >
< >
< >C:\ Label: Serial Number f010b634</ >
< >21476171776</ >
< >6833168384</ >
< >14643003392</ >
< >68</ >
</ >

< >
< >G:\ Label:Disco local Serial Number 302e</ >
< >10733957120</ >
< >3095842816</ >
< >7638114304</ >
< >71</ >
</ >

< >
< >H:\ Label:SHARED Serial Number 48f893</ >
< >34290843648</ >
< >13172244480</ >
< >21118599168</ >
< >61</ >

</ >
</ >

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Edited with Agent SBLOMARSXML v1.0 …
<!-- Monitoring Resources Service xmlns:xsi= …
< >

< >Storage</ >
< >3</ >
< >
< >C:\ Label: Serial Number f010b634</ >
< >21476171776</ >
< >6833168384</ >
< >14643003392</ >
< >68</ >
</ >

< >
< >G:\ Label:Disco local Serial Number 302e</ >
< >10733957120</ >
< >3095842816</ >
< >7638114304</ >
< >71</ >
</ >

< >
< >H:\ Label:SHARED Serial Number 48f893</ >
< >34290843648</ >
< >13172244480</ >
< >21118599168</ >
< >61</ >

</ >
</ >

                                                

Monitoring_Storage_Available_Information
Device_Type Device_Type
Number_of_Elements Number_of_Elements
Storage_Device
Label Label
Space_Total Space_Total
Space_Available Space_Available
Space_Used Space_Used
Space_Used_Percent Space_Used_Percent
Storage_Device

Storage_Device
Label Label
Space_Total Space_Total
Space_Available Space_Available
Space_Used Space_Used
Space_Used_Percent Space_Used_Percent
Storage_Device

Storage_Device
Label Label
Space_Total Space_Total
Space_Available Space_Available
Space_Used Space_Used
Space_Used_Percent Space_Used_Percent

Storage_Device
Monitoring_Storage_Available_Information  

Figure 4.8 XML-based report of storage availability information 
 

The XML-based Monitoring Reports (Figure 4.8) have a great advantage in terms of 

standardization, but they come at a great computational cost. The activity of creating XML-

based files by means of whatever programming language requires considerable CPU usage. 

Moreover, parsing the content of the information2 is normally quite slow and also 

computationally expensive.  

The SBLOMARS monitoring agents include an alternative format for interface resource 

behaviour information. We have designed a set of dynamic structures which are self-extensible 

regardless the number of new components they involve. We have named this solution Dynamic 

Software Structures.  They contain real-time resource availability information. In order to 

facilitate the scalability of the SBLOMARS monitoring agents, these structures are able to add 

system components as needed, reducing the load where necessary. The Dynamic Software 

Structures (Figure 4.9) are software structures that keep in the memory buffer real-time 

 
 
2 Parsing is the process of analyzing a sequence of tokens to determine its grammatical 

structure with respect to a given grammar structure
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resource behaviour information from the last polling period. This information remains available 

until the next resource availability information request. This is another advantage of this 

approach; any external instance could get this information from the memory buffer in a faster 

way than accessing the XML-based reports directly. As we have mentioned before, the polling 

period is assigned by the local or remote node administrator (resource owners) at the moment 

of configuring the monitoring agents in the Principal Agent Deployer component.  

 

DynamicDynamic Software Software StructuresStructures

[0] “Number of Element”
[0] Element ID (String)
[1] Total Space Available (Long – Bytes)
[2] Total Space Free (Long – Bytes)
[3] Total Space Used (Long – Bytes)
[4] Total Space Used (Long – Bytes)
[5] … (Available when it could be requiered)
…
…

[1] “Number of Element”
[0] Element ID (String)
[1] Total Space Available (Long – Bytes)
[2] Total Space Free (Long – Bytes)
[3] Total Space Used (Long – Bytes)
[4] Total Space Used (Long – Bytes)
[5] … (Available when it could be requiered)
…
…

[N] (As long as the number of resource are available
on the monitored node)

DynamicDynamic Software Software StructuresStructures

[0] “Number of Element”
[0] Element ID (String)
[1] Total Space Available (Long – Bytes)
[2] Total Space Free (Long – Bytes)
[3] Total Space Used (Long – Bytes)
[4] Total Space Used (Long – Bytes)
[5] … (Available when it could be requiered)
…
…

[1] “Number of Element”
[0] Element ID (String)
[1] Total Space Available (Long – Bytes)
[2] Total Space Free (Long – Bytes)
[3] Total Space Used (Long – Bytes)
[4] Total Space Used (Long – Bytes)
[5] … (Available when it could be requiered)
…
…

[N] (As long as the number of resource are available
on the monitored node)

 
Figure 4.9 Dynamic Software Structure example 

 

The fastest and easiest way to access these structures is through network socket 

connections. These connections are between the Real-Time Reporter component and any entity 

consulting this information (e.g. the BLOMERS scheduling system). Another alternative could be 

by means of CORBA objects or RMI instances. At any rate, defining the implementation is 

unimportant because any system could adopt the methodology that is best for its own 

objectives, what is crucial to describe is the ability to add a new server connection for each sub-

monitoring agent executing on the host node. This means that SBLOMARS opens a new 

network socket connection per monitoring agent in order to interface the real-time resource 
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behaviour information. In Figure 4.9 we show an example of the virtual view from a Dynamic 

Software Structure about real-time storage behaviour information. 

Although, the use of XML standard is well justified in different works [Pra04] and [Kli04], the 

computational cost is much less when the parsing activity is unnecessary. Our approach is able 

to handle both XML-based Monitoring Reports and Dynamic Software Structures. 

 
4.3.5  Distributed Monitoring Agents and CISCO IP SLA integration 

 

We have explained how SBLOMARS is able to offer resource availability information about 

computational resources in a large-scale distributed network, such as the Grid. This information 

is not enough to decide which resources should be reserved for certain jobs. We also need to 

know the network performance between nodes running a set of jobs which belong to the same 

application or service. Moreover, the full process of Grid Services Management will be improved 

once end-to-end network-level information is included. In order to tackle this important issue, 

SBLOMARS implements the necessary mechanisms to interface with CISCO IOS® IP Service 

Level Agreements MIB [Cis06]. This is commonly known as CISCO-RTTMON-MIB (Round-Trip 

Monitoring MIB). 

SBLOMARS offers end-to-end jitter, packet loss rate, bandwidth, and delay average 

between a Cisco Switch/Router and any IP point. SBLOMARS could also be configured to 

monitor end-to-end links with different classes of service (DiffServices) [Nic98]. In figure 4.13 we 

show a snapshot of the web-based SBLOMARS graphical interface showing network 

information between two Cisco Switches with three different classes of service (VoIP, 

Multimedia Streaming, and Best Effort).  

Basically, Cisco IOS IP SLA uses active monitoring, which includes the generation of traffic 

in a continuous, reliable, and predictable manner. Cisco IOS IP SLAs actively send data across 

the network to measure performance between multiple network locations or across multiple 

network paths, as we show in Figure 4.10. It uses the timestamp information to calculate 

performance metrics such as jitter, latency, network, and server response times, packet loss, 

and voice quality scores.  
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Figure 4.10 Traditional SLAs versus Cisco IOS IP SLAs 
 

The user defines an IP SLA’s operation (probe) within Cisco IOS. In Figure 4.12 we show 

the graphical interface that SBLOMARS includes (this interface has been developed as a part of 

this research) to create and deploy these probes. In this interface we have included 

measurement characteristics such as packet size, packet spacing, protocol type, Diff-Serv Code 

Point (DSCP) marking, and other parameters. The operations are scheduled to generate traffic 

and retrieve performance measurements. The data from the Cisco IOS IP SLA’s operation is 

stored within the RTTMON MIB and is available for Network Management System applications 

to retrieve network performance statistics. Cisco IOS IP SLAs is configured to monitor per-class 

traffic over the same link by setting the DSCP bits. A destination router running Cisco IOS 

Software is configured as a Cisco IOS IP SLA’s Responder, which processes measurement 

packets and provides detailed timestamp information. The responder can send information 

about the destination router’s processing delay back to the source Cisco router. Unidirectional 

measurements are also possible using Cisco IOS IP SLAs. 

 

   
public int getJitter(String [] oIDValRTTMon) { 

try { 
 
jitterSum = sumOfPositiveDS + 
   sumOfNegativeDS + 
   sumOfPositiveSD + 
 
 
  sumOfNegativeSD; 

jitterNum = numOfPositiveDS + 
   numOfNegativeDS + 
   numOfPositiveSD + 
 
 
  numOfNegativeSD; 

avgJitter = jitterSum/jitterNum; 
 
…} 

…} 
 

Figure 4.11 Pseudo code to calculate average jitter by SBLOMARS 
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Cisco IOS IP SLAs provides a proactive notification feature with an SNMP trap. Each 

measurement operation can monitor against a pre-set performance threshold. Cisco IOS IP 

SLAs generates an SNMP trap to alert management applications if this threshold is crossed. 

Several SNMP traps are available: round-trip time, average jitter, one-way latency, jitter, packet 

loss, and connectivity tests. Administrators can also configure Cisco IOS IP SLAs to run a new 

operation automatically when the threshold is crossed. 

When a set of probes have been deployed through our SNMP-GUI, CISCO IOS IP SLAs 

starts to collect metrics regarding network performance and, as we mentioned before, it stores 

them in the CISCO-RTTMON-MIB. All these values are not functional network monitoring 

information yet. There are some interpretations and calculations that SBLOMARS has to make 

in order to get proper networking performance metrics. Our monitoring agents retrieve the 

fundamental values to get the jitter, delay, packet loss,and bandwidth. We show an example to 

get Average Jitter. (DS is destination to source, SD is source to destination and the result is 

given in milliseconds) in the following segment of code in Figure 4.11. 

 

 

Figure 4.12 SBLOMARS graphical interface with IP SLA probes 
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End-to-End Network Performance
Monitoring by SBLOMARS

SW1 - SW2
DSCP 46 (Ex. VoIP, DICOM)

DSCP 25 (Ex. Streaming, HL7)

DSCP 0 (Best Effort)

End-to-End Network Performance
Monitoring by SBLOMARS

SW1 - SW2
DSCP 46 (Ex. VoIP, DICOM)

DSCP 25 (Ex. Streaming, HL7)

DSCP 0 (Best Effort)

 

Figure 4.13 Monitoring of three end-to-end service class links by SBLOMARS 

 
4.3.6 Deployment of the SBLOMARS monitoring system 

 
The deployment of the SBLOMARS Monitoring System is done in every node participating 

into the Virtual Organization (VO). Actually, the Grid is constituted of all these entities, and the 

VO is just the way they are organized. The distribution of SBLOMARS is done in the following 

way. The software code is broadcasted along the Grid. Once the nodes have received the code, 

they start the SBLOMARS monitoring agents, through scripts written into the code itself. This 

activity is very similar to what occurs when a software disk is inserted into the CD-ROM driver. 

When the deployment process has finished, every node forming the Grid is identified by a 

unique ID. These IDs are stored in a configuration file (network map), which is dynamically 

updated when new nodes are added or removed from the network. This file is the source of 

information that the resource scheduler (e.g. the BLOMERS) uses to know which nodes could 

be asked about their resource availability. The ID format includes an IP Address and a port 

number. The SBLOMARS monitoring system opens a new port for each resource monitored. 

Therefore, when a workstation is sharing two hard disks and one processor, the IDs will be as 

follows (Figure 4.14): 
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Storage_0  ID_0: 147.83.106.199:6400 

Storage_1  ID_1: 147.83.106.199:6401 

Processor_0  ID_XXX: 147.83.106.199:6600 

... 

... 

 

Figure 4.14 Single node Network Map File example  
 

Regarding identification of the resources located in the same Grid, there is one network 

map file containing all the IDs from these resources. This file is managed by the resource 

scheduler. The resulting file has the following structure (Figure 4.15): 

 

   
Storage_0  ID_0: 147.83.106.199:6400 

Storage_1  ID_1: 147.83.106.199:6401 

Processor_0  ID_2: 147.83.106.199:6600 

Memory_0  ID_3: 147.83.106.145:6200 

Storage_0  ID_4: 147.83.106.145:6400 

Processor_0 ( ID_5: 147.83.106.145:6600 

Memory_0 ( ID_6: 147.83.106.115:6200 

Memory_1 ( ID_7: 147.83.106.115:6201 

Storage_0 ( ID_6: 147.83.106.115:6400 

Processor_0 ( ID_XX: 147.83.106.115:6600 

... 

... 

Figure 4.15 Three nodes (VO) Network Map File example 
 

The process of creating the network map is also triggered by the Resource Scheduling 

system (BLOMERS). It will be described in detail in the next chapter, when we describe our 

scheduling approach. We claim that this solution is a hybrid architecture because the monitoring 

and discovering phase is distributed and the scheduling phase is semi-centralized. Figure 4.16 

shows the distribution of our monitoring agents (small red triangular-shaped items inside of any 

computer) in a real network. 
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Figure 4.16 The SBLOMARS deployment  in two Virtual Organizations 
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4.4 CONCLUSIONS  
 
 
In this chapter we have presented SBLOMARS (SNMP-Based Load Balancing Monitoring 

Agents for Resource Scheduling), an open, free and heterogeneous monitoring system 

developed for this research work. The SBLOMARS offers a pure decentralized monitoring 

system in charge of constantly capturing computational resource performance based on 

distributed agents for multi-constraint resource scheduling in large-scale distributed networks. 

Also, it has been integrated with CISCO IOS® IP Service Level Agreements (IP SLA) 

technology, which allows users to monitor end-to-end network-level performance between 

routers and switches or from either remote IP device, by means of SNMP mechanisms. 

The SBLOMARS monitoring system is a set of autonomous and distributed monitoring 

agents, which generate real-time and statistical availability information for every resource and 

entity composing the Grid. The SBLOMARS is currently able to monitor processor, storage, and 

memory use, network traffic at the interface level, services available (an updated list of 

applications installed), and end-to-end network traffic. This can be done across different 

architectures, including the Solaris, Unix-based, Microsoft-based, and Macintosh platforms. 

Moreover, the SBLOMERS is self-extensible to monitor multi-processor platforms to huge 

storage units. Specifically, it is designed around the Simple Network Management Protocol to 

tackle the generality and heterogeneity problem, and is also based on autonomous distributed 

agents to facilitate scalability in large-scale Grids. 

The security of the distributed monitoring systems is also tackled. First of all, SBLOMARS 

is meant to be deployed on nodes which belong to secure virtual organizations. Then, there is a 

high level of security from external intruders. Unfortunately, internal users could modify, 

intentionally or not, some monitoring parameters on neighbour nodes. To cope with this problem 

we rely on the SNMP protocol version 2 (SNMPv2) [Sta99]. Nevertheless, we are aware that 

security issues are not fully covered to protect this monitoring system from malicious users. This 

is an area of potential future work. 

We have shown some graphical and textual snapshots of resource availability information 

reports used to represent resources behaviour. However, in Chapter 6 we will present the full 

set of results obtained from the evaluation trials. 

In respect to similar solutions found in the literature, SBLOMARS is a Grid discovery and 

monitoring system offering high levels of generality through the integration of SNMP technology, 

and thus, an excellent solution for heterogeneous operating platforms. The SBLOMARS is also 

flexible because it implements complex dynamic software structures, which are used to monitor 

from simple personal computers to robust multiprocessor systems, or even clusters with multiple 

 

Resource Discovery and Monitoring in Large-scale Grids                                                       110 



  

 

 
A Distributed and Heuristic Policy-based Management 

Architecture for Large-Scale Grids 

 
 

hard disks and storage partitions. Finally, the scalability problem is covered by the distribution of 

the monitoring system into a set of sub-monitoring instances which are specific to each kind of 

computational resource to be monitored (processor, memory, software, network, and storage). 
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Chapter 5 
 
 
 
 

 
BALANCED LOAD MULTI-CONSTRAINED RESOURCE 

SCHEDULER IN LARGE-SCALE GRIDS 
 
 
 
 
 

5.1 INTRODUCTION 
 
The third phase of the Grid Resource Management (GRM) process proposed in this thesis 

is Grid Resource Scheduling (GRS). In this phase, when Grid Services need to be allocated on 

available resources, the scheduling system searches and matches a  job's requirements (hard 

and soft constraints) with resource availability information in order to select the most 

“appropriate” of them. The term appropriate is related to the proper satisfaction of Grid 

Infrastructure Providers (GIP) resources usage policies as well as Grid Services Customers 

(GSC) quality of service policies to maintain high levels of reliability and load-balancing of the 

Grid Infrastructure. 
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In other words, it involves assigning computational and networking resources that belong to 

the GIPs to execute Grid Services across one or multiple administrative domains in a way that 

minimizes the execution time of a particular Grid Service or a set of them. This period of time 

that we are working to minimize is commonly known as makespan. As we mentioned in the 

Introduction, Grid Services address fundamental issues in distributed computing relating to how 

to name, create, discover, monitor, and manage the lifetime of stateful services. Grid Services 

are defined in terms of standard WSDL (Web Services Definition Language) with minor 

extensions, and exploit Web Services binding technologies such as SOAP (Simple Object 

Access Protocol) and WS-Security (Web Services Security).  

Grid scheduling is intrinsically more complicated than local resource scheduling because it 

must manipulate large-scale resources across management boundaries. In such a dynamic 

distributed computing environment, resource availability varies dramatically. So scheduling 

becomes quite challenging. Moreover, the Grid Resource Scheduling process should satisfy the 

Quality of Service level demanded by the GSCs and the resource usage evenness along the 

whole Grid Infrastructure. 

In this chapter we will describe our approach covering the GRS phase in the Grid Resource 

Management process. In this approach we go one step forward in the state of the art related to 

current resource scheduler systems, because our proposed system does not just minimize the 

execution time of a particular set of jobs, but we also propose a resource scheduling system 

that is capable of balancing resource load through all the entities forming the Grid. 

In this chapter we will introduce the Balanced Load Multi-Constrained Resource Scheduler 

(BLOMERS). This resource scheduling system implements a heuristic approach in order to 

tackle with the scalability issue. In following sub-sections we will explain in detail the motivation, 

the architecture, and the operational procedure of the proposed GRS. 

The structure of this Chapter is as follows:  After this introduction, Section 5.2 briefly 

describes the Grid Resource Scheduling process, the specific terminology used in this context, 

and the most important methodologies used to design a scheduling system. Section 5.3 is an 

overview of our Balanced Load Multi-Constrained Resource Scheduler. In this section we will 

describe the advantages of using Genetic Algorithms in our scheduling system approach. Then 

we will describe the design, implementation, functionality, and main features of our heuristic 

scheduling system. Finally, in Section 5.5 we present the conclusions of this chapter. 

 

Balanced Load Multi-Constrained Resource Scheduler in Large-scale Grids                        113 



  

 

 
A Distributed and Heuristic Policy-based Management 

Architecture for Large-Scale Grids 

 
 

5.2 GRID RESOURCE SCHEDULING 
 

In traditional resource scheduling, scheduling is defined as the allocation of jobs to 

resources over time, taking into account some performance measure criteria subject to the 

satisfaction of constraints [Don06]. Therefore, we must clarify how Grid scheduling differs from 

traditional scheduling in order to propose new methodologies or use the current ones.  

There is clear evidence that Grid Scheduling differs in fundamental ways from traditional 

distributed systems resource scheduling. The fundamental difference is the dynamic nature of 

resources and constraints in the Grid environment; here is where new methodologies with multi-

constraints (hard and soft) are needed. Current methods employed to schedule computational 

resources within the Grid Infrastructure are unsuitable for the demands of a wide variety of 

potential Grid Services. The enormous facilities and potential of Grids Systems cannot be 

realised until fundamental development of powerful new scheduling algorithms has taken place. 

Traditionally, conventional scheduling systems, or batch schedulers are queue-based, and 

provide only one level of service, namely, "run this when it gets to the head of the queue," which 

basically means whenever you can do it, just do it. 

Developments in Grid Management Systems have presented different scheduling 

approaches. Here are the most important ones:  

 
I. Deadline Models: A user submits a single, self-contained job to the scheduler and 

wants to get the results of the job back by a certain deadline. 

II. Multi-jobs Composite: A complex set of sub-jobs must be orchestrated in such a 

way as to respect any dependence between sub-jobs. 

III. Economical Models: A user submits a single, self-contained job to the scheduler 

and wants to get the results of the job back at a certain price. 

IV. Resource Brokers: A resource broker contacts multiple resources to locate the 

"best" resource for the needs of a client. 

In our approach, resource scheduling is performed based on a Resource Broker 

methodology. In large-scale distributed computational grids the amount of resources available is 

extremely large. It is important to know the details of the problem that the scheduling model 

chosen should solve. Basically, the scheduling problem is described as the selection of “n” 

number of resources which satisfy hard and soft “k” number of constraints requested by Grid 

Services’ users. The result of scheduling is a selection of “l-k” resources showing the temporal 

assignment of operations of orders to the resources to be used. 
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In our resource scheduling solution, we consider a flexible job shop problem. Each 

operation can be performed by some machines with different processing times, so that the 

problem is known to be NP hard. The difficulty is to find the best assignment of a job to a 

resource in terms of minimizing the total elapsed time (makespan). 

The following sub-sections will describe the scheduling problem in detail for large-scale 

scavenging or distributed computational Grids. Basically, it involves solving for the optimal 

schedule under various constraints, different resource availability and characteristics of the jobs. 

We will also describe the analysis process done on this problem during this research in order to 

justify our heuristic methodology. 

 
5.2.1 The scheduling problem 

 
The scheduling problem is formally represented by a set of jobs J={j1,j2,...,jn} and a set of 

resources R={R1,R2,...,Rm}. Each job Ji must be performed between a starting time (Ts) and 

deadline time (Td). The execution of each job requires the use of a set of computational 

resources (R1, R2, R3, …, RN) which belong to the Grid Environment (Ge), practically a set of 

nodes N={N1, N2,...,Nn} sharing their resources . The set of nodes and resources available in 

any Grid Environment (Ge) is represented by the following matrix (5.2.1). 

 

Ge  =     (5.2.1) 
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5.2.2 Searching procedure 

 

The scheduler search procedure is at the core of the scheduling methodology; the 

procedure examines the set of available resources, generates a number of candidate resources, 

evaluates the candidate resources to select a final set of resources to be allocated and 

communicates the results. The procedure takes as input the set of resources (Ge) as well as the 

scheduling constraints. To find reasonable resources, the search procedure identifies Candidate 

Resources (Cr) and generates a schedule for resource needs. The final schedule is the best of 

these candidate resources. The (5.2.2) is the combinatorial number equation; it denotes the 
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number of ways to choose k items from n items, regardless of order. In the context of this work, 

n is a number of selected resources that satisfies demanded hard constraints from the whole set 

of resources (k). 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟
⎠
⎞

⎜
⎝
⎛=

)!(!
!

knk
n

k
nCr     (5.2.2) 

 
To guarantee that the optimal Cr will be identified an exhaustive search over all possible 

unique resource combinations would be required. However, as we demonstrate below, the cost 

of such a search is prohibitive. In fact, for an exhaustive search, all subsets from size one to the 

size of the entire resources set must be included in the search. For a resource pool of size "n" 

the number of distinct Cr that must be included is: 
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Two important ways to characterize the effectiveness of an algorithm are its space 

complexity and time complexity. Space complexity is expressed by the amount of memory that 

is necessary to execute an algorithm. On the other hand, time complexity deals with determining 

an expression of the number of steps (computational cost) needed as a function of the problem 

size (magnitude of the scheduling problem based on the amount of resources available and the 

amount of constraints to satisfy). Since the step count measure is somewhat coarse, one does 

not aim at obtaining an exact step count. Instead, one attempts only to get asymptotic bounds 

on the step count. Asymptotic analysis makes use of the "O" (Big Oh) notation [And00]. The 

performance of an algorithm is obtained by computing the total number of occurrences of each 

operation when running the algorithm. This performance is evaluated as a function of the input 

size "n", and is to be considered as bigger than the multiplicative constants involved in the 

algorithm equation.  

O-Notation gives an upper bound for a function to within a constant factor, as we illustrate 

in Figure 1. We write f(n) = O(g(n)) if there are positive constants "n" and "c" such that to the 

right of "n0", the value of f(n) always lies on or below cg(n). 
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Figure 5.1 O-Notation behaviour graph 

 
The complexity of an algorithm is a function g(n) that gives the upper bound of the number 

of operations (or running time) performed by an algorithm when the input size is n. There are 

two interpretations of upper bound. 

 
1. Worst-case Complexity: The running time for any given size input will be lower than 

the upper bound, except possibly for some values of the input where the maximum is 

reached. 

2. Average-case Complexity: The running time for any given size input will be the 

average number of operations over all problem instances for a given size.  

 
Because it is very difficult to estimate the statistical behaviour of the input, most of the time 

we content ourselves with a worst case behaviour. Most of the time, the complexity of g(n) is 

approximated by its family O(f(n)) where f(n) is one of the following functions: 

 

• n (linear complexity) 

• log n (logarithmic complexity) 

• na where a≥2 (polynomial complexity) 

• an (exponential complexity). 

 

In this approach we should find the complexity equation of the scheduling problem 

representation, in order to find the viability of any solution. In this sub-section we have 

represented the scheduling problem and we have obtained equation (5.2.3). Now this equation 

needs to be developed under the O (Big Oh) notation to obtain a representative system for 
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measuring the performance of our scheduling algorithm. We are assuming that the number of 

ways to choose "k" items from "n" items, regardless of order, is represented as follows: 
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Based on the binomials series [And00], which indicates that: 
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If we assume that "n" belongs to the positive integer numbers (N) and "x" belongs to the 

real numbers (R), we obtain the following sub set of equations: 
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In any scheduling system, it is essential to allocate at least one resource. Therefore is 

unnecessary to involve the combination when cero resources will be searched. Thus, 

eliminating the first one of the addition in (5.2.8), we have: 
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We note the relationship between (5.2.3) and (5.2.10). Then, we obtain the simplification of 

(5.2.3) by means of: 
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The final step is to apply algorithms analysis in (5.2.11) based on "O" notation as well as its 

properties. Then, we finally obtain the complexity equation (5.2.13) of the scheduling problem in 

Grid Environments. 
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Once the complexity of an algorithm has been estimated, the question arises whether this 

algorithm is optimal. An algorithm for a given problem is optimal if its complexity reaches a lower 

bound over all the algorithms solving the problem. Based on the following table, this is how  

scheduling in Grid Computing is a NP-hard problem. Moreover, the large-scale distributed 

computational Grids that we are targeting in this thesis make this algorithm more complex. We 

have used this analysis in order to look for alternative solutions for this problem. 

TABLE 5.1 VALUES OF THE MOST COMMON ALGORITHM COMPLEX FUNCTION 

N Log(n) n*log(n) N2 2n 
1 0 0 1 2 

5 0.7 3.5 25 32 

10 1.0 10 100 1024 

20 1.3 26 400 1,048,576 

50 1.7 85 2,500 1.12590*1015 

100 2.0 200 10,000 1.26765*1030 

200 2.3 460 40,000 ..................... 

500 2.7 1,349 250,000 ..................... 

1,000 3.0 3,000 1.0*106 ..................... 
For example, to perform a schedule search in a pool set of 20 resources it would be 

necessary to perform a number of searches given by (5.2.13) for n=20. The resulting value is 

approximately 1x109. We see that, even for a reasonably sized resource pool, and when the 

mapping process is time intensive, the enormous size of the search space makes an exhaustive 

search simply unfeasible. The above table better justifies this statement. 
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As a conclusion of this algorithm analysis, we can summarize that it is computationally very 

expensive to analyze the whole set of possible alternatives to find a balanced load solution and 

also solve an optimization problem for each one. Therefore, we are proposing in this chapter 

that the Grid Resource Scheduling phase might have to use heuristics to obtain close to optimal 

solutions in a more efficient manner.  

A real environment is more complex than the example we have outlined here. The 

computation might have a structure that reflects interdependencies among tasks, and we have 

to consider communication delays for data transfers and coordination overheads. Nevertheless, 

the example discussed here highlights the importance of implementing an heuristic approach for 

solving the scheduling problem in large-scale Grids. 

The next phase in the presented research methodology is to find a sub-optimal solution to 

the problem of scheduling resources for grid environments. We have demonstrated that if we 

have "n" resources, and if a job can be scheduled into any number of resources from 1 to "n", 

the total number of possible allocations grows exponentially (5.2.11). Thus, it is computationally 

expensive to analyze all possible allocations and solve an optimization problem for each one. In 

this case, the Grid's resource scheduler might have to use "heuristics methods" to obtain a near 

to optimal solution in a more efficient manner. 

A wide range of different heuristic methods have been proposed [Rev95], which all have 

some basic component aspects in common. In general, a representation of partial and complete 

solutions is required. An objective function is needed, which either estimates the costs of partial 

solutions or determines the costs of complete solutions. The most crucial component of 

heuristics methods is the control structure which guides the solution algorithm. Finally, a 

condition for terminating the iteration process is required. Prominent heuristic methods are, 

among others, Simulated Annealing [Kir83], Tabu Search [Glo93] and Genetic Algorithms 

[Bac93]. The first two have been developed and tested extensively in combinatorial 

optimization. Genetic Algorithms have their origin in continuous optimization. Their theoretical 

foundation is not well suited for discrete scheduling problems, but in problems with amounts of 

resources are among the best. Heuristic methods do not guarantee an optimization of the 

problem proposed, but there are mechanisms to have some estimate of how good or bad a 

heuristic solution is. This is a matter that has occupied a fair amount of attention in our research, 

and it is possible to identify at least three techniques to determine the efficiency of heuristic 

methods, which are Analytical Methods [Fis80], Empirical Testing [Law85] and Statistical 

Inference [Rev95].  

We have used the Analytical and Empirical methods in order to test our scheduling 

systems. In Chapter 6 (Evaluation) we describe these experiments in detail. 
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5.3 OVERVIEW OF THE BALANCED LOAD MULTI-CONSTRAIN 
RESOURCE SCHEDULING SYSTEM 

 

In the proposed research, a new resource scheduling system for large-scale Grids is 

presented. In the following sub-sections we will describe the motivation, design, and 

architecture of BLOMERS: Balanced Load Multi-Constrained Resource Scheduler. 

This approach works out the third phase of the proposed Grid Resource Management 

(GRM) process, which is usually named resource scheduling. We have named it Grid Resource 

Scheduling (GRS). This phase has the responsibility of efficiently matching flexible customer 

requirements with available resources throughout the Grid in an affordable time, without 

impacting node performance, and while maintaining the resource load balance.  

In large-scale Grids it is very hard to select best suitable resources manually to allocate 

user jobs in order to achieve a high utilization of the entire set of available resources in the Grid. 

A scheduler in Grid Computing must cope with system boundaries and manage available 

resources independent of outside restrictions. The proposed Balanced Load Multi-Constraint 

Resource Scheduler (BLOMERS) implements a heuristic methodology approach in order to 

improve the scalability problem and by means of statistical resource availability information, it 

schedules in a network and resource load-balanced way. Therefore, this approach is not just 

another resource scheduling system but it is a solution to improve machine utilization with high 

levels of load balancing. This will be demonstrated in a real large-scale scenario. 

The BLOMERS system [Maga07c] deals with several conditions. Basically, it selects a set 

of candidate resources from a poll, keeping individual resource performance comparatively 

balanced in all nodes of the Grid. This condition has been added in order to satisfy 

computational resource load balancing. In the BLOMERS approach, we propose a sub-optimal 

solution to the problem of scheduling computational resources in large-scale Grids, whose 

distinguishing feature is that it makes use of a Genetic Algorithm (GA) . 

 

5.3.1 Genetic Algorithms in Large-scale Computational Grids 
 

Genetic Algorithms (GA) is a search technique used in computing to find exact or 

approximate solutions to optimization and search problems. Genetic algorithms are categorized 

as global search heuristics. They are a particular class of evolutionary algorithms (also known 

as evolutionary computation) that use techniques inspired by evolutionary biology such as 

inheritance, mutation, selection, and crossover (also called recombination). 

Genetic algorithms are implemented as a computer simulation in which a population of 

abstract representations (called chromosomes, genotype or the genome) of candidate solutions 
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(called individuals, creatures, or phenotypes) to an optimization problem evolves toward better 

solutions. Traditionally, solutions are represented in binary as strings of 0s and 1s, but other 

encodings are also possible. A more detailed description and explanation of the theory behind 

GAs is described on Appendix B. 

In Genetic Algorithms (GAs) each chromosome represents a solution, using strings of 0’s 

and 1’s. Each bit typically corresponds to a gene. This is called binary encoding. The values for 

a given gene are the alleles. A chromosome in isolation is meaningless.  We need to decode 

the chromosome into phenotypic values. In Figure 5.2 we show the before-mentioned 

components used on the GA area. Figure 5.3 shows an example of the evolution of the 

populations from a generation N to generation N+1. 

 

 

Figure 5.2 Codification of the resource ID by means of binary code 

 
GA differs from traditional search/optimization methods [Gar00] in the following aspects: 

 GAs search a population of points in parallel, not only a single point. 

 GAs use probabilistic transition rules, not deterministic ones. 

 GAs work on an encoding of the parameter set rather than the parameter set itself. 

 GAs do not require derivative information or other auxiliary knowledge - only the 

objective function and corresponding fitness levels influence search. 

There are well known differences between Genetic Algorithms and other heuristics 

approaches [Rev95]. We have chosen GAs as our heuristic solution in the BLOMERS system 

because this kind of algorithm is a search algorithm based on the conjecture of natural selection 

and genetics. The features of genetic algorithm are different from other search techniques in 

several aspects. First, the algorithm is a multi-path that searches many peaks in parallel, hence 

reducing the possibility of local minimum trapping. Secondly, GAs work with a coding of 

parameters instead of the parameters themselves. The coding of a parameter will help the 
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genetic operator to evolve the current state into the next state with minimum computations. 

Thirdly, GAs evaluates the fitness of each string to guide its search instead of the optimization 

function. GAs only needs to evaluate objective function (fitness) to guide its search. There is no 

requirement for derivatives or other auxiliary knowledge. Finally, GAs explore the search space 

where the probability of finding improved performance is high. 

 

 

Figure 5.3 Evolution of Populations in Genetic Algorithms 
 

The key step in the any Genetic Algorithm-based solution is the evolution mechanism. It is 

the moment when new populations (set of candidate solutions) are created by the algorithm. 

The BLOMERS uses probabilistic rules to evolve a population from one generation to the next.  

The generations of the new solutions are developed by two genetic recombination operators: 

  

 Crossover: Combining parent chromosomes to produce children chromosomes. 

Crossover combines the “fittest” chromosomes and passes superior genes to the next 

generation. Crossover takes parent-pairs from selection step and creates a new 

population. 

 Mutation: Altering some genes in a chromosome. Mutation   ensures   the   entire   

state-space will be searched, (given enough time) and can lead the population out of a 

local minima. Mutation makes “slight” random modifications to some or all of the 

offspring in the next generation. 
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The use of both genetic recombination operators helps our resource scheduler approach to 

fairly distribute jobs with available resources. Crossover is applied when resources from the 

same domain are requested and Mutation is used when resources from different domains are 

also requested. Using both operators we have found it easier to balance the resources load in 

the Grid Infrastructure. Moreover, the originality of any GA implementation is found in these 

operators. The internal algorithms for performing the new population mechanisms (Crossover 

and Mutation) are completely different from one design to the other. These are the tuning 

components of the Genetic Algorithm to be customized for any specific approach. Therefore, 

during this research we have worked on the implementation of these algorithms, and we will 

thoroughly describe them in following sub-sections. We will also describe detailed examples of 

these operators in our resource scheduler system. 

Finally, it is worth mentioning that BLOMERS scheduling system needs both real-time and 

statistical resource availability/behavioural information. Otherwise, it will not be functional at all. 

The BLOMERS obtains this information from SBLOMARS (monitoring agents), but that does not 

mean that BLOMERS simply accepts data from SBLOMARS. It could receive the same kind of 

resource availability/behavioural information from alternative monitoring systems like the Globus 

MDS [Bor05] or Ganglia [Mas04]. 

 

5.3.2 The BLOMERS Genetic Algorithm Design 
 

In this section we will describe our approach to perform the Grid Resource Scheduling 

(GRS) phase in Large-scale Grids. We now come to the third phase in the proposed Grid 

Resource Management process. 

In the BLOMERS approach, we propose to find a sub-optimal solution to both scheduling 

computational resources and load-balancing resources problems in large-scale distributed 

computational Grids. The algorithms for reduction of the makespan and fair load along all 

involved resources are truly new contributions at the Grid Resource Management area; we 

consider these approaches as novel functionalities in the scheduling process. This scheduling 

process is part of the Grid Resource Management System, which is embedded into a Policy-

based Grid Resource Management Architecture, which has been thoroughly described in 

Chapter 3. 

The genetic algorithm for resource selection has to deal with several conditions [Fos99]. 

Basically, it should select a set of candidate resources from a poll, keeping individual resource 

performance comparatively equal in all nodes of the distributed system. This condition has been 

added in order to satisfy computational resource load balancing. Finally, the resource selection 
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algorithm needs to keep the relative operations’ sequences, known as precedence constraint of 

the type i  j. This constraint is defined as: data generated by task i are required to start task j. 

Despite what most people believe, Genetic Algorithms are a very simple methodology to 

solve NP-hard problems. The flowchart for our algorithm design is shown in Figure 5.4. 

Basically, there are two fundamental activities in this flowchart. The first one is the valuation of 

the generated population and the second one is reproduction into a new population. 

 

Start Initialization of
Population

Valuation
(Fitness value)

Reproduction

StopSolution
Found?

yes

no

Start Initialization of
Population

Valuation
(Fitness value)

Reproduction

StopSolution
Found?

yes

no

 
Figure 5.4 The Flowchart of BLOMERS Genetic Algorithm Design 

 
 
The pseudo code of the heuristic resource scheduling algorithm and its description are as 

follows: 
 

 
CleaningBuffer (Pk)  
Initialize (k, Pk); 
Evaluate (Pk); 
     Do  
       { 
       Select_Resource_Candidates (Pk);   
       Crossover (Pk); 
       IF Evaluate (Pk+1) == Minimal Constraints; 
          Ends Do-While; 
       ELSE  
          Mutation (Pk); 
       IF Evaluate (Pk) == Minimal Constraints; 
          Ends Do-While; 
          } 
Deliver (k_solution); 

Figure 5.5 BLOMERS genetic algorithm pseudo code 
 

BLOMERS uses a collection of solutions (population) from which better solutions are 

produced using selective breeding and recombination strategies. The first population is created 

randomly by means of the Initialize (k, Pk) method. Where k is the kind of resource to analyze 
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and Pk is the population of k resources selected. The presented genetic algorithm works with 

several threads in parallel, one for each kind of resource available. SBLOMARS monitoring 

agents offer a socket connection per resource monitored. We will describe the BLOMERS 

algorithm in general because each software thread has the same architecture and functionality. 

The method Initialize (k, Pk) calls a random method to select the first population of our 

solution. BLOMERS is implemented in JAVA code; we have used the primitive random function 

in this method. Once the first population has been initialized, a first simple evaluation of this 

population is done. Normally, the first population is never selected as a candidate solution, but it 

is the main entry to create the new populations. The Select Resource Candidates (Pk) method 

bounds the initial populations and applies two simple genetic operators, such as Crossover 

(Pk) and Mutation (Pk). These methods are used to construct new solutions from pieces of the 

old one in such a way that the population (Pk) steadily improves.  

 

5.3.3 Encoding Solution of the BLOMERS Genetic Algorithm. 
 

In the design of our Genetic Algorithm into the resource scheduler we first need to show 

the code used to represent our resources in the Grid Infrastructure. In Section 5.3.1 we 

explained that GAs works with coding of parameters instead of real values. In BLOMERS every 

kind of resources performs a selection independently of the other kinds of resources. This 

means, for instance, that storage resource availability information is analyzed in a different 

parallel software thread than the software thread analyzing memory resource availability 

information. This programming philosophy is very similar to the one used in the design and 

implementation of the SBLOMARS monitoring system. 

Moreover, in Chapter 4 we describe how the SBLOMARS monitoring agents represent 

resources through IDs. These IDs are stored in a configuration file (network map), which is 

dynamically updated when new nodes are added or removed from the network by SBLOMARS 

monitoring system itself. BLOMERS scheduling system uses this network map file and 

translates it into as many lists as kinds of resources available (memory, storage, processor, 

etc.).  

The best way to explain the encoding design of the Grid resources is through the following 

example. In Figure 5.6 and Figure 5.7 we show XML-based reports generated by SBLOMARS 

monitoring system. In these reports we clearly see all available shared resources in two 

Pentium IV workstations. The first one has 512MB of RAM memory, one hard disk with two 

partitions, and Windows XP as the Operating System. The second one has 1GB of RAM 

memory, one hard disk with only one partition, and Linux Ubuntu 6.10 as Operating System. We 
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show these reports in order to explain how SBLOMARS and BLOMERS interface with each 

other and translate this information into resource identifiers (IDs). 

<?xml version="1.0" encoding="UTF-8" ?>
<!-- edited with Agent SBLOMARS XML v1.0 (http://nmg.upc.edu/~emagana) by TSC (UPC) -->
<!-- Monitoring Resources Service xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance -->
<Report_Period_Time

Operative_System
Monitoring_Information

Device_Type
Number_of_Elements Number_of_Elements
Storage_Device

Label Label
Space_Total Space_Total
Space_Available Space_Available
Space_Used Space_Used
Space_Used_Percent Space_Used_Percent
Storage_Device

Storage_Device
Label Label
Space_Total Space_Total
Space_Available Space_Available
Space_Used Space_Used
Space_Used_Percent Space_Used_Percent
Storage_Device
Device_Type

Device_Type
Number_of_Elements Number_of_Elements

Processor_Device
Kind Kind
Percentage_Used Percentage_Used
Processor_Device

Device_Type Device_Type
Number_of_Elements Number_of_Elements

Memory_Device
Kind Kind
Memory_Total Memory_Total
Memory_Available Memory_Available
Memory_Used Memory_Used
Memory_Used_Percent Memory_Used_Percent
Memory_Device
Device_Type

Device_Type
Number_of_Elements Number_of_Elements

Network_Device
Label Label
Speed Speed

In_Octets In_Octets
Out_Octets Out_Octets
BW_Percentage_Used BW_Percentage_Used
Network_Device

Device_Type
Monitoring_Information

Operative_System
Report_Period_Time

> 10 
< > WindowsXP

< >
< > Storage 

< >2</ >
< >

< >C:\ Label: Serial Number f010b634</ >
< >21476171776</ >
< >9658118144</ >
< >11818053632</ >
< >57</ >
</ >

< >
< >G:\ Label:Disco local Serial Number 302e56e2</ >
< >10733957120</ >
< >1011720192</ >
< >9722236928</ >
< >91</ >
</ >
</ >

< > Processor 
< >1</ >

< >
< >Hardware: x86 Family 6 Model 6 Stepping 2 AT/AT COMPATIBLE</ >
< >9</ >
</ >
< >Memory</ >
< >1</ >

< >
< >RAM</ >
< >1073205248</ >
< >578220032</ >
< >358166528</ >
< >40</ >
</ >
</ >

< > Network_Interfaces
< >1</ >

< >
< >Adaptador Ethernet 3Com 3C900COMBO</ >
< >10000000</ >

< >3591930</ >
< >1117971</ >
< >0</ >
</ >

</ >
</ >

</ >
</ >

<?xml version="1.0" encoding="UTF-8" ?>
<!-- edited with Agent SBLOMARS XML v1.0 (http://nmg.upc.edu/~emagana) by TSC (UPC) -->
<!-- Monitoring Resources Service xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance -->
< > 10 

< > WindowsXP
< >

< > Storage 
< >2</ >
< >

< >C:\ Label: Serial Number f010b634</ >
< >21476171776</ >
< >9658118144</ >
< >11818053632</ >
< >57</ >
</ >

< >
< >G:\ Label:Disco local Serial Number 302e56e2</ >
< >10733957120</ >
< >1011720192</ >
< >9722236928</ >
< >91</ >
</ >
</ >

< > Processor 
< >1</ >

< >
< >Hardware: x86 Family 6 Model 6 Stepping 2 AT/AT COMPATIBLE</ >
< >9</ >
</ >
< >Memory</ >
< >1</ >

< >
< >RAM</ >
< >1073205248</ >
< >578220032</ >
< >358166528</ >
< >40</ >
</ >
</ >

< > Network_Interfaces
< >1</ >

< >
< >Adaptador Ethernet 3Com 3C900COMBO</ >
< >10000000</ >

< >3591930</ >
< >1117971</ >
< >0</ >
</ >

</ >
</ >

</ >
</ >

Report_Period_Time
Operative_System

Monitoring_Information
Device_Type

Number_of_Elements Number_of_Elements
Storage_Device

Label Label
Space_Total Space_Total
Space_Available Space_Available
Space_Used Space_Used
Space_Used_Percent Space_Used_Percent
Storage_Device

Storage_Device
Label Label
Space_Total Space_Total
Space_Available Space_Available
Space_Used Space_Used
Space_Used_Percent Space_Used_Percent
Storage_Device
Device_Type

Device_Type
Number_of_Elements Number_of_Elements

Processor_Device
Kind Kind
Percentage_Used Percentage_Used
Processor_Device

Device_Type Device_Type
Number_of_Elements Number_of_Elements

Memory_Device
Kind Kind
Memory_Total Memory_Total
Memory_Available Memory_Available
Memory_Used Memory_Used
Memory_Used_Percent Memory_Used_Percent
Memory_Device
Device_Type

Device_Type
Number_of_Elements Number_of_Elements

Network_Device
Label Label
Speed Speed

In_Octets In_Octets
Out_Octets Out_Octets
BW_Percentage_Used BW_Percentage_Used
Network_Device

Device_Type
Monitoring_Information

Operative_System
Report_Period_Time

 

Figure 5.6 Workstation A - XML-based Report Generated by SBLOMARS 
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<?xml version="1.0" encoding="UTF-8" ?>
<!-- edited with Agent SBLOMARS XML v1.0 (http://nmg.upc.edu/~emagana) by TSC (UPC) -->
<!-- Monitoring Resources Service xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance -->
<Report_Period_Time

Operative_System
Monitoring_Information

Device_Type
Number_of_Elements Number_of_Elements
Storage_Device

Label Label
Space_Total Space_Total
Space_Available Space_Available
Space_Used Space_Used
Space_Used_Percent Space_Used_Percent
Storage_Device
Device_Type

Device_Type
Number_of_Elements Number_of_Elements

Processor_Device
Kind Kind
Percentage_Used Percentage_Used
Processor_Device
Device_Type Device_Type
Number_of_Elements Number_of_Elements

Memory_Device
Kind Kind
Memory_Total Memory_Total
Memory_Available Memory_Available
Memory_Used Memory_Used
Memory_Used_Percent Memory_Used_Percent
Memory_Device
Device_Type

Device_Type
Number_of_Elements Number_of_Elements

Network_Device
Label Label
Speed Speed

In_Octets In_Octets
Out_Octets Out_Octets
BW_Percentage_Used BW_Percentage_Used
Network_Device

Device_Type
Monitoring_Information

Operative_System
Report_Period_Time

> 10 
< > Linux_Ubuntu 6.10 

< >
< > Storage 

< >1</ >
< >

< >/ root</ >
< >21476171776</ >
< >9658118144</ >
< >11818053632</ >
< >43</ >
</ >
</ >

< > Processor 
< >1</ >

< >
< >Hardware: x86 Family 6 Model 6 Stepping 2 AT/AT COMPATIBLE</ >
< >9</ >
</ >
< >Memory</ >
< >1</ >

< >
< >RAM</ >
< >1073205248</ >
< >578220032</ >
< >358166528</ >
< >46</ >
</ >
</ >

< > Network_Interfaces
< >1</ >

< >
< >Adaptador Ethernet 3Com 3C900COMBO</ >
< >10000000</ >

< >21930</ >
< >21930</ >
< >0</ >
</ >

</ >
</ >

</ >
</ >

<?xml version="1.0" encoding="UTF-8" ?>
<!-- edited with Agent SBLOMARS XML v1.0 (http://nmg.upc.edu/~emagana) by TSC (UPC) -->
<!-- Monitoring Resources Service xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance -->
< > 10 

< > Linux_Ubuntu 6.10 
< >

< > Storage 
< >1</ >
< >

< >/ root</ >
< >21476171776</ >
< >9658118144</ >
< >11818053632</ >
< >43</ >
</ >
</ >

< > Processor 
< >1</ >

< >
< >Hardware: x86 Family 6 Model 6 Stepping 2 AT/AT COMPATIBLE</ >
< >9</ >
</ >
< >Memory</ >
< >1</ >

< >
< >RAM</ >
< >1073205248</ >
< >578220032</ >
< >358166528</ >
< >46</ >
</ >
</ >

< > Network_Interfaces
< >1</ >

< >
< >Adaptador Ethernet 3Com 3C900COMBO</ >
< >10000000</ >

< >21930</ >
< >21930</ >
< >0</ >
</ >

</ >
</ >

</ >
</ >

Report_Period_Time
Operative_System

Monitoring_Information
Device_Type

Number_of_Elements Number_of_Elements
Storage_Device

Label Label
Space_Total Space_Total
Space_Available Space_Available
Space_Used Space_Used
Space_Used_Percent Space_Used_Percent
Storage_Device
Device_Type

Device_Type
Number_of_Elements Number_of_Elements

Processor_Device
Kind Kind
Percentage_Used Percentage_Used
Processor_Device
Device_Type Device_Type
Number_of_Elements Number_of_Elements

Memory_Device
Kind Kind
Memory_Total Memory_Total
Memory_Available Memory_Available
Memory_Used Memory_Used
Memory_Used_Percent Memory_Used_Percent
Memory_Device
Device_Type

Device_Type
Number_of_Elements Number_of_Elements

Network_Device
Label Label
Speed Speed

In_Octets In_Octets
Out_Octets Out_Octets
BW_Percentage_Used BW_Percentage_Used
Network_Device

Device_Type
Monitoring_Information

Operative_System
Report_Period_Time

 

Figure 5.7 Workstation A - XML-based Report Generated by SBLOMARS 

 

Figure 5.8 is a representation of the network map file considering that only these two 

workstations are our Grid Infrastructure. Actually, in this table we show four files, BLOMERS 

scheduling system generates one network map file per kind of resource that is discovered in 

collaboration with SBLOMARS monitoring system. 
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 STORAGE  PROCESSOR  

 ID_0: 147.83.106.199:6400  ID_0: 147.83.106.199:6000  

 ID_1: 147.83.106.199:6401  ID_1: 147.83.106.201:6000  

 ID_2: 147.83.106.201:6400  …  

 …    

     

 MEMORY  NETWORK INTERFACES  

 ID_0: 147.83.106.199:6200  ID_0: 147.83.106.199:6800  

 ID_1: 147.83.106.201:6200  ID_1: 147.83.106.201:6800  

 …  …  

     

Figure 5.8 List of Shared Resource from Workstation A and Workstation B 

 

The encoding of resource availability information is based on Figure 5.8. In our approach 

we substitute these referenced IDs (0, 1, 2, …, N) by a 10-bits binary code. The binary code 

used is just the binary representation of the ASCII number which represents the IP address and 

the port of the resource available within the Grid Infrastructure. In order to maintain the 

scalability of the scheduler, we have implemented a dynamic coding system. Therefore, each 

Chromosome represents a resource, using strings of 0’s and 1’s. The Population is the number 

of Chromosomes available to test. In Figure 5.9 we illustrate a coding example from the 

STORAGE network map file from Figure 5.8. 

 

 STORAGE  CHROMOSOME  

 ID_0: 147.83.106.199:6400  0000 0000 00  

 ID_1: 147.83.106.199:6401  0000 0000 01  

 ID_2: 147.83.106.201:6400  0000 0000 02  

 …  …  

     

Figure 5.9 Encoding Example of Storage Resource from Workstations A and B 
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5.3.4 Crossover Operation 
 

Here, selected individuals are randomly paired up for crossover (sexual reproduction). This 

is further controlled by the specified crossover rate and may result in a new offspring individual 

that contains genes common to both parents. New individuals are injected into the current 

population. Crossover operators in our approach exchange substrings of two parents to obtain 

two offspring. In BLOMERS scheduling system the crossover operator combines useful parental 

information to form new and hopefully better performing offspring. Such an operator can be 

implemented by choosing a point at random, called the crossover point, and exchanging the 

segments to the right of this point. For example, let: 

 

    CHROMOSOME  

 ID: 24 Parent 1 = 0000 0110 00  

 ID: 49 Parent 2 = 0000 1100 01  

 … …  …  

Figure 5.10 Example of the Random Selection of Two Chromosomes Population 

 

And suppose that the crossover point has been chosen randomly as indicated by the red 

colon. The resulting offspring would be: 

 

    CHROMOSOME  

 Storage_0  ID_24: 147.83.106.199:6400 Parent 1 = 0000 0110 00  

 Storage_1  ID_45: 147.83.106.167:6401 Parent 2 = 0000 1100 01  

Figure 5.11 Example of Population Evolution Before Crossover Operation 

 
And suppose that the crossover point has been chosen randomly as indicated by the dark-

red colon. The resulting offspring would be: 

 

    CHROMOSOME  

 Storage_1  ID_25: 147.83.106.199:6401 Child 1 = 0000 0110 01  

 Storage_0  ID_44: 147.83.106.167:6400 Child 2 = 0000 1100 00  

Figure 5.12 Example of Population Evolution After Crossover Operation 
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In the example shown in Figures 5.11 and 5.12, Child 1 and Child 2 will be the resulting 

population. The advantage of using the proposed crossover operation is that we can select 

individuals from the same Virtual Organization. Here, the selection mechanism takes into 

account neighbour nodes when they are not processing high amounts of tasks. We illustrate this 

operator by the algorithm in Figure 5.13. 

 
Crossover (Pk); 
     { 

Start While 
Choose randomly two parents (chromosomes). 
Extract the last bit from Parent 1 
Extract the last bit from Parent 2 
Exchange last bit Parent 1 with last bit Parent 2 
Substitute the last bit of Parent 1 with last bit of Parent 2 
Store the resulting chromosome as Child 1 
Substitute the last bit of Parent 2 with last bit of Parent 1 
Store the resulting chromosome as Child 2 
Check with SBLOMARS the last average value of Child 1 
If last average value is less than 30% (QoS Policy) 
     Then, Child 1 is chosen. 
Otherwise, change Parent 1 and Start While 
Check with SBLOMARS the last average value of Child 2 
If last average value is less than 30% (QoS Policy) 
     Then, Child 2 is chosen. 
Otherwise, change Parent 1 and Start While 
End while. 

      } 
Deliver (k_solution); 

Figure 5.13 Crossover Operation Algorithm Implemented in BLOMERS 

 
5.3.5 Mutation Operation 

 

In this step, each individual is given the chance to mutate based on the mutation probability 

specified. If an individual is to mutate, each of its genes is given the chance to randomly switch 

its value to some other state. In BLOMERS resource scheduler algorithm the mutation operator 

randomly alters each Chromosome with a small probability, typically less than 1%. This operator 

introduces innovation into the population and helps prevent premature convergence on a local 

maximum. 

The evolution is terminated when the population attains certain criteria, such as simulation 

time, number of generations, or when a certain percentage of the population shares the same 

function value. In our approach a clear example is as follows: 
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    CHROMOSOME  

 Storage_1  ID_25: 147.83.106.199:6401 Parent 1 = 0000 0110 01  

    MUTATION  

 Storage_N  ID_57: 147.83.206.199:6401 Child 1 = 0000 1110 01  

Figure 5.14 Example of Population Evolution with Mutation Operation 

 
In this example, Child 1 will be the resulting population. The difference from the previous 

operation is that the mutation operation helps to move from one Virtual Organization or 

Administrative Domain in the Grid towards others with similar resource availability information. 

In Grid 5000 test-bed, we have applied the mutation operation to move from one cluster (Lyon) 

to the next one (Bordeaux). In this part, we present a new mutation operator, called the 

controlled mutation operator, designed especially for our parallel jobs encoding, as it can 

balance the machine loads. The algorithm of this operator is presented In Figure 5.15. 

 
 
Mutation (Pk); 
     { 
     Start While 
     Choose randomly one chromosome (Parent 1) 
     Select the bit 5 and 6 from the chosen chromosome 
     If bit == 0 
          Then, bit = 1; 
     Otherwise 
          bit = 0;  
     If last average value is less than 30% (QoS Policy) 
          Then, Child 1 is chosen. 
     Otherwise, change Parent 1 and Start While 
     End while. 
     } 
Deliver (k_solution); 
 

Figure 5.15 Mutation Operation Algorithm Implemented in BLOMERS 

 

5.3.6 Selection Mechanism 
 

Here the performance of all the individuals is evaluated based on the fitness function, and 

each is given a specific fitness value. Here it is important to mention that the higher the value, 

the bigger the chance of an individual passing its genes to future generations. Through the 

overview section of this Chapter, we have mentioned that Genetic Algorithm could apply several 
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selection methods. In BLOMERS scheduling system we have chosen the Elitism selection, in 

order to distribute jobs as fairly as possible. 

In the proposed and implemented Elitism selection method, we have chosen a group of 

individuals from a population. This group is composed of seven individuals that are selected at 

random from the population, and the best (normally only one, but possibly more) is chosen. The 

best is the one that uses, at the moment of the scheduling, the least amount of its shared 

resources.  

This methodology is considered an exhaustive search. In this case, the exhaustive 

methodology for scheduling does not consume exponential times, as we have demonstrated in 

previous sub-sections, because the number of resources to compare is restricted to the 

offspring population. This population, as we said before, is composed of only seven 

Chromosomes (candidate resources). 

Fitness is a measure of how well an algorithm has learned to predict the outputs from the 

inputs. The goal of the fitness evaluation is to give feedback to the learning algorithm regarding 

which individuals should have a higher probability of being allowed to multiply and reproduce, 

and which of them should have a higher probability of being removed from the population.  

 This algorithm is faster than other heuristic methodologies, and could be better adapted to 

heterogeneous parameters, but the most important advantages are that it avoids failing into a 

local minima solution, and it can be run in parallel. We made use of this advantage to design our 

genetic algorithm in many threads as many resource devices have been found on the VO. 

Our approach is not as effective as exhaustive search approaches, but it is faster and 

lighter in terms of computing performance impact. Basically, every genetic algorithm has a 

selection probability (Ps) function based on its “fitness value” for each solution. The coefficient 

between the fitness value of a specific solution and the summary of all the fitness values of the 

same one is the selection probability for this solution: 

 

( )
∑ =

= N

i
if

ifiPs
1

)(
)(                   (5.3.1) 

 
Applying this methodology is not a simple task. The genetic algorithm needs to be adapted 

according to the requirements of the application and the environment in which it will be working. 

The information to analyze for each search will be adaptable to resource availability and the 

conditions for this adaptation are completely different in each design, which ensures the novelty 

and originality of this approach. 
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5.3.7 Interface between BLOMERS and SBLOMARS 
 

It is clear that one of the most important activities to perform the full Grid Resource 

Management (GRM) process is to create the network map of the discovered available shared 

resources. The network map creation process is triggered by the BLOMERS scheduling system. 

Each monitoring agent is in charge of reporting its activity to BLOMERS. In this process 

BLOMERS has an open socket connection which listens to all agents running on the Grid 

Infrastructure. The objective of this mechanism is to create a database of all agents that are live 

on the Grid. This database is the first reference to create the network map file once the resource 

scheduler starts to ask the monitoring agents about their resource availability. The pseudo code 

shown in Figure 5.16 illustrates the implemented interface between SBLOMARS and 

BLOMERS systems. 

 

 public RegisteringProcessorAgents () { 
   try { 
      System.out.println("Listening in Port: " + ... ); 
  listen_socket = new ServerSocket(resource_manager_port);  
  registering = new ProcessorAgentsFile (); 
  } 
   catch (IOException e) { 
   System.out.println("Exception Creating Server Socket: "); 
 } 
} 
 
public void thread_Calling_Sockets () { 
   try { 
 while (true) { 
 System.out.println("Registering of Processor Agents"); 
 Socket skCliente = listen_socket.accept();  
 InputStream in = skCliente.getInputStream(); 
 ObjectInputStream receive = new ObjectInputStream(in); 
 Object received = receive.readObject(); 
 String iPAddress = received.toString(); 
 System.out.println("Processor Agent: " + iPAddress); 
 registering.generate_vector(iPAddress); 
 skCliente.close(); 
 in.close(); 
 receive.close(); 
   } 
} catch( Exception e ) { 
   System.out.println( e.getMessage() ); 
   } 
} 
 

SortingVector (String iPAddress, Vector _directions) { 
 this.ipAddress = iPAddress; 
 this.directions = _directions; 
 } 
  
public void thread_Sorting_Vectors() { 
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 System.out.println(ipAddress); 
 int flag = 1; 
 if (!directions.isEmpty()){ 
 for (int i=0; i<directions.size(); i++) { 
  String checking = (String)directions.get(i); 
  if (checking.compareTo(ipAddress) == 0) { 
  flag = 0; 
  break; 
 } 
 } 
       if (flag == 1) 
       directions.addElement(ipAddress); 
 } 
 else 
  directions.addElement(ipAddress); 
  callingVector (directions); 
    } 
  
public void callingVector (Vector _directions) { 
 ProcessorAgents returnVector = ProcessorAgents (); 
 returnVector.refreshingVector (_directions); 
   } 

Figure 5.16  BLOMERS Scheduling System Code for Sorting Resources IDs Values from 
Multiple SBLOMARS Monitoring Agents. 

 

It is worth mentioning that the SortingVector method is crucial in this interface. This is 

because the amount of resource references, actually the IP Address of every resource with the 

corresponding port to access its availability information, is quite large, and the activity of sorting 

this database is very important. We have implemented the bubble sorting methodology for this 

interface. This methodology is very efficient in sorting such structural information. The 

justification for the implementation of this methodology is the need to avoid repeating the 

references of resources that have already registered in the database. It This is a common 

problem because in order to have a discovery system that is reliable we must have register calls 

sent from SBLOMARS monitoring agents to BLOMERS resource scheduler quite often. Then 

we ensure that our approach will be aware of resources that have recently been integrated with 

the Grid Infrastructure, and also the BLOMERS scheduler will be aware of the resources that 

are not more available to be taken into account in the process of generating the new population 

of the Genetic Algorithm. 

In Figure 5.17 we illustrate a typical scenario where BLOMERS scheduling system is 

interfacing with SBLOMARS monitoring agents. The solution presented in this thesis is a hybrid 

architecture, the monitoring and discovering phase is a distributed solution where monitoring 

agents (SBLOMARS) are spread along the network, and the scheduling phase is a semi-
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centralized solution where Genetic Algorithms (BLOMERS) are performing matches of 

resources with available load-balancing resources. 
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Figure 5.17 BLOMERS Distribution in Virtual Organizations 
 

The network map has a virtual view for the SBLOMARS monitoring agents as follows: 

 

Storage_0 ID_0 147.83.106.199:6400 

Storage_1 ID_1 147.83.106.199:6401 

Processor_0 ID_2 147.83.106.199:6600 

Memory_0 ID_3 147.83.106.145:6200 

Storage_0 ID_4 147.83.106.145:6400 

Processor_0 ID_5 147.83.106.145:6600 

Memory_0 ID_6 147.83.106.115:6200 

Memory_1 ID_7 147.83.106.115:6201 

Storage_0 ID_8 147.83.106.115:6400 

Processor_0 ID_9 147.83.106.115:6600 

… ID_N-1 … 

… ID_N … 

Figure 5.18 Example of a Network-Map File View by BLOMERS 
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This information is collected by BLOMERS resource scheduler through socket interfaces 

with SBLOMARS monitoring agents. Therefore, it is very important to understand how the 

mechanism works to collect all this information and to create the corresponding network map 

file. There is only one network map per virtual organization or sub-network, as we have 

illustrated in Figure 5.18. 

We show the pseudo code for the socket interface implemented by SBLOMARS monitoring 

agents. This socket interface is redundantly implemented by each agent running on the hosting 

node. Thereby, we would have as many socket interfaces as resources available on the hosting 

node. The pseudo code for this interface is illustrated in Figure 5.19. 

 

 public String Sblomars_Interface_BLOMERS (String node) { 
try{ 
String [] finalValues = new String[3]; 
HOST = node; 
System.out.println( "Inicia Socket Client" ); 
Socket skCliente = new Socket( HOST , PUERTO ); 
System.out.println("Calling SBLOMARS by BLOMERS"); 
System.out.println("Calling to: " + HOST); 
System.out.println("Using Port : " + PUERTO); 
InputStream in = skCliente.getInputStream(); 
ObjectInputStream receive = new ObjectInputStream(in); 
Object received = receive.readObject(); 
Vector newvalue = new Vector () ; 
newvalue = (Vector) received; 
finalValues = (String []) newvalue.get(0); 
percentage = finalValues [2]; 
System.out.println(percentage); 
skCliente.close(); 
in.close(); 
receive.close(); 

    } 
    catch( Exception e ) { 
    System.out.println( e.getMessage() ); 

    } 
    return percentage; 
 } 

 

Figure 5.19 Interface Code Implemented in SBLOMARS Monitoring System 

 

On the other hand, there should be an entity or interface in charge of contacting with the 

socket interfaces implemented by the monitoring agents in order to collect the resource 

availability information. In this interface, there should be only one instance per resource to 

request availability information. Therefore, the same interface could work for all the resources 

available on the Grid Infrastructure. The pseudo code for this interface is shown in Figure 5.20. 
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 public int getting_port () 
   { 
      int port = 0; 
      GettingPorts ports = new GettingPorts (); 
      try { 
         //Configuration Files 
         String config = "ports.conf"; 
         String resource = "processor"; 
         port = (ports.initFromFile(config, resource)); 
         } 
     return port; 
   } 
 
public void refreshingParameters (Vector parameters) { 
      //System.out.println("New Parameters"); 
      cpuParameters = parameters; 
   } 
 
public void closingSocket () { 
      //System.out.println("Closing Socket Memory"); 
      try { 
         listen_socket.close(); 
        } 
      catch (Throwable e) { 
      System.out.println("Exception Socket:" e.getMessage()); 
      } 
   } 
 
public void requestingValues Thread() { 
    try { 
       while (true) { 
       //System.out.println("Parametros CPU"); 
       Socket skCliente = listen_socket.accept(); 
       OutputStream out = skCliente.getOutputStream(); 
       ObjectOutputStream sendStream = ObjectOutputStream(out); 
       Vector v = proc_agent.cpuParameters; 
       sendStream.writeObject(v); 
       skCliente.close(); 
       out.close(); 
       sendStream.close(); 
       } 
   }  
} 

 

Figure 5.20 Interface Code Implemented in BLOMERS Scheduling System 

 

The most important method from the above extracts of the BLOMERS scheduling system 

interface with SBLOMARS monitoring system is requestingValues. In this method BLOMERS 

is able to contact the monitoring agent in charge of reporting availability information for a 

specific resource (i.e. amount of memory free in the cluster university.edu). 

This interface is the one most frequent called by the Genetic Algorithm. This is because the 

GA needs real-time resource availability information in order to calculate the fitness value for 

this specific resource. Therefore, this interface is called several times by the algorithm.  
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5.4 CONCLUSIONS  
 

In summary, scheduling computational resources in Grid Computing is a matter that 

requires significant innovations to improve the efficiency of the actual mechanisms 

implemented, mainly because the Grid behaviour is constantly variable, resources availability is 

always unpredictable, their performance is highly unstable, and the amount of resources to 

compute is undetermined in most cases. The current methods employed to schedule jobs on 

computing resources within the Grid are unsuitable for the demands of a wide variety of 

potential Grid applications. The enormous potential of the Grid cannot be realized until 

fundamental development of powerful new scheduling algorithms has taken place. In this thesis 

we have investigated and developed a novel scheduling methodology that address the critical 

issues of flexibility and re-negotiation of user requests, and seeks to address the problem of 

handling uncertainty and imprecision in both computing resources and user requirements. The 

heuristic methodology presented will be exploited in order to use and apply the most appropriate 

of its advantages to achieve better performance of the Grid Resource Management process 

(GRM) in the environment of a Grid Management Architecture based on policies. 

In this chapter we have described the main features and design details of our resource 

scheduler approach to solve the inherent NP-hard problem of scheduling computational 

resources in large-scale Grids. 

We have illustrated the need for implementing alternative solutions of the job-shop 

scheduling problem for large-scale Grids. In a real scenario where plenty of resources are 

available and Grid Services have complex requirements, the solution was complex, and we 

have demonstrated that it is a typical NP-hard problem with the following equation to calculate 

the computational cost of the exhaustive solution: 

 

( )12)( −= nOxf  

 

It is extremely expensive, in terms of computational cost, to find the optimal solution for the 

scheduling problem. Therefore, we have looked for alternative solutions which, though 

considered sub-optimal, carry a much lower computational cost than the previous well-known 

heuristic methodologies.  

The solution described in this Chapter is known as the Balanced Load Multi-Constrained 

Resource Scheduler (BLOMERS). BLOMERS implements a Genetic Algorithm, which offers a 

parallelism to multi-constraint service requests avoiding enclosure into local minima. 
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BLOMERS solves the Grid Resource Scheduling (GRS) phase of the Grid Resource 

Management (GRM) process proposed in this thesis. In this phase, the scheduling system 

searches and matches hard and soft constraints with resource availability information in order to 

select the most “appropriate” of them. 

It covers multi-constraint (hard and soft constraints) service requirements, which are: user 

requirements (QoS, deadlines, etc.), service needs (memory, storage and software 

requirements), and resource-load balancing throughout the Grid. 

In our solution the most appropriate resources to be selected are those that satisfy the Grid 

Services hard and soft constraints, which we have detailed in this research. Also, the secondary 

policy for selection of resources is the balancing of the resources’ usability in the whole Grid. 

We have described how the BLOMERS system implements two mechanisms to generate 

new populations. The first is by means of the mutation mechanism. This mechanism helps our 

scheduler to generate an offspring which is in the same sub-network as its parents. The 

motivation of this mechanism is to search resources that are shared on workstations relatively 

close to the one previously chosen. Because the probability of similar resources on workstations 

in the same sub-network is quite high(I don’t understand this sentence and so can’t edit it...) that 

looking for these resources into different sub-networks. 

The second one is the crossover mechanism. This mechanism helps our scheduler to 

generate an offspring which is not in the same sub-network as its parents. It could be the case 

that the resources used in a determinate sub-network are highly selected and the whole Grid 

could be unbalanced. Therefore, we have implemented the crossover mechanism to guarantee 

that shared resources from external sub-networks, which can be also different virtual 

organizations, will also be considered in the fitness process. 

Therefore, BLOMERS improves resource load-balancing and reduces the makespan in any 

scheduling. It is an important contribution of our research because the most important 

approaches on this area only focus on reducing the makespan of the scheduling process but do 

not maintain resource usability in a balanced way. 

BLOMERS exhibits excellent performance. It is able to schedule large numbers of services 

in real scenarios, and guarantees a balanced load throughout the Grid. The makespan 

measured is less than those of the round-robin and least used algorithms. In Chapter 6 we will 

show a graphical comparison of these three algorithms. 
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Chapter 6 
 
 
 
 

 
OVERALL SYSTEM EVALUATION 

 
 
 
 
 
 

6.1 INTRODUCTION 
 

In previous chapters, we have described the four proposed phases in the GRM process. 

We have also explained that these phases require the intervention of three main systems, which 

are the Policy-based Grid Resource Management Architecture (PbGRMA), the SNMP-based 

Balanced Load Monitoring Agents for Resource Scheduling (SBLOMARS), and the Balanced 

Load Multi-Constrained Resource Scheduler (BLOMERS). In this Chapter we will provide a set 

of evaluation experiments for these three systems. Once the evaluation of each system is 

performed, we will evaluate the full performance of the general approach presented in this 

thesis into the Grid5000 [Grid5000], which is a real, large-scale test-bed. 
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Regarding the SBLOMARS monitoring system, we will show the low overhead caused by 

its agents on the hosting workstations or servers. There is also a demonstration of the flexibility 

of this approach as well as its heterogeneity. We have run some experiments to demonstrate 

how scalable SBLOMARS monitoring system is, and finally we will show the amount of storage 

resources consumed by the XML-based reports (statistical resources availability information) in 

twenty-four hour, seven day experiments. 

We will show the advantages of the BLOMERS scheduling system compared with 

alternative scheduling algorithms and we will estimate the average fitness of individuals (groups 

of available resources) matching a required schema (constraints for resource load balancing 

and minimizing makespan). A similar performance evaluation of BLOMERS is also included as 

the performance evaluation done for SBLOMARS. An analytical evaluation will be presented in 

order to demonstrate how good the BLOMERS scheduling system is compares with classical 

selection mechanisms such as random selection. 

The Policy-based Grid Resource Management Architecture will be evaluated in this chapter 

in two parts. The first is intended to show how well the PbGRMA performs in isolation. This 

means that we will run some performance tests to check the reliability of the system when it is 

executing the Grid Services Management (GSM) phase of the GRM process. We obtain positive 

results by measuring the elapsed times during the process of merging the three sources of 

constraints (quality of service needs, computational-networking resource availability, and Grid 

Services specifications) which form the Domain-Level Grid Service Policy. 

The second part of the PbGRMA evaluation is intended to show the full GRM process 

functionality in a real large-scale scenario. In this case we will be able to demonstrate how the 

Jobs Allocation and Activation (JAA) phase is executed. The scenario is the Grid 5000 test-bed. 

Section 6.2 is an overview of the Grid 5000 architecture and functionality details. The evaluation 

of the full GRM process will help to support our claims regarding the reliability, heterogeneity, 

and scalability of the four-phase PbGRMA presented in this thesis. 

The structure of this chapter is as follows: Subsequent to this Introduction, in Section 6.2 

we briefly describe the Grid 5000 test-bed and the workflow required to deploy experiments on 

it. Section 6.3 presents an evaluation of the SBLOMARS monitoring system. In Section 6.4 we 

present the evaluation of the BLOMERS scheduling system. In Section 6.5 the evaluation of the 

PbGRMA is presented in isolation and also running in the Grid 5000 test-bed. In Section 6.6 we 

present the conclusions of this chapter. 
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6.2 THE GRID 5000 TEST-BED DESCRIPTION 
 

One of the requirements of this research was to execute the Grid Resource Management 

process in a real, large-scale scenario. Therefore, we decided to do our testing in an 

experimental test-bed, namely the Grid5000 [Grid5000]. This is a French Ministry of Research 

Grid initiative partially financed by INRIA, the ACI GRID incentive action, CNRS, and 

RENATER. 

Large-scale distributed systems like Grids are difficult to study only from theoretical models 

and simulators. Most Grids deployed at large scale are production platforms that are 

inappropriate research tools because of their limited reconfiguration, control, and monitoring 

capabilities. Nevertheless, Grid5000 is designed to provide a scientific tool for computer 

scientists similar to the large-scale instruments used by physicists, astronomers and biologists. 

This platform currently involves 3000 nodes located in 10 different sites in France. These 

nodes are linked through 1 and 10Gbits links (Figure 6.1). We evaluated our approach on 

different Grid scenarios (micro Grid of nodes geographically located on one site, Enterprise 

small-scale Grids with few dozens of nodes located on a reduced number of sites, and large 

scale Grids with 10 sites and a few hundred nodes). Different time frames were also considered 

(from a few hours to a few days). 

 

Figure 6.1 Number of Nodes and Sites in the Grid5000 Test-bed 1
 

                                                 
 
1This figure was taken from www.grid5000.fr  
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The Grid5000 workflow is depicted in the below graph (Figure 6.2). This sequence of 

activities is the same for every user of the test-bed. In our case we followed this workflow to set 

our experiments up. The transmission of our experimental parameters is done by “SSH” 

connections. The execution and the collection of the information are also done by means of 

SSH connections. There is no other alternative due to security mechanisms implemented by the 

administrators of the Grid5000. 
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Figure 6.2 Grid5000 workflow for deploying experiments 

 
In the first instance, we have configured our Grid Infrastructure by means of two basic tools 

available in the Grid 5000 test-bed. The first is the OAR 2.0 [OAR] software, which is a resource 

manager (or batch scheduler) for large clusters. It allows cluster users to submit or reserve 

nodes either in an interactive or a batch mode. This tool was used to reserve our nodes from the 

rest of nodes available in Grid5000. It is wothy of mention that this test-bed is in use by many 

Universities and research centers, therefore the number of experiments running every day is 
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quite high. The second tool used in this experiment was the KADEPLOY 2.1.5 [KAD]. It is a fast 

and scalable deployment system for cluster and grid computing. It provides a set of tools for 

cloning, configuring (post installation), and managing a set of nodes. It currently successfully 

deploys linux, BSD, Windows, Solaris on x86 and 64 bits computers. 

We need both tools because nodes available in Grid5000 need to be reserved, configured, 

and finally deployed. In order to understand the set of steps followed to set up the Grid scenario 

for our experiments we will describe these steps in detail. It is important to highlight that 

GRID5000 is a collection of nodes from nine sites in France. Due to the fact that Gridd5000 is a 

private test bed, there is only one way to access these nine sites, and that is through a cluster 

front-end per site. This design guarantees the security of the full test bed. From this front-end 

any authorized user can reserve any amount of resources available, but must follow some 

administrative policies. Therefore, the set of steps are as follows: 

 

I. Cluster Front End connection:  In this step, client access at any of the nine available 

clusters through a Secure Shell (SSH) connection. The names of these clusters are as 

follows: 

a. Lyon 

b. Bordeaux 

c. Grenoble 

d. Lille 

e. Nancy 

f. Orsay 

g. Rennes 

h. Sophia 

i. Toulouse 

  

II. Perform Nodes Reservation: Once the authorized user is remotely connected to 

one of the available clusters. It is necessary to deploy a reservation command by 

means of the OAR tool. A reservation is a time slot in the future that we want to 

reserve to then connect to once it's time. The following command reserves 12 

nodes for 5 hours starting at 11am on April 27, 2007: It is important to highlight that 

resources are transparent for the final user in Grid Coputing philosophy. Grid 5000 

testbed was designed under the same fundamentals, therefore there are not 

necessity for the final users to know which exactly nodes are using for executing 

their Grid Services 
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# oarsub -r "2007-04-27 11:00:00" -l walltime=5, nodes=12 

 

III. Checking Environments: When a reservation is performed, the client receives a 

notification regarding the status of the reservation. The client also receives a 

reservation ID, which will be used in further processing. In order to know the 

names of the nodes reserved, it is possible to have a list of these nodes. This list is 

allocated in the following variable: 

 
$OAR_FILE_NODES 

 

IV. Deploying Nodes: This is the final step to complete both processes, the 

reservation and configuration on the Grid5000 test-bed. In this step the 

KADEPLOY tool is used to deploy a pre-selected configuration of the Operating 

System that is required to start the individual experiments. It means that every 

node will be running the configuration of the operating system selected for these 

experiments. 

 
# kadeploy -e environment_name -m node -p partition_device  

 

So far, the set of nodes reserved is ready to perform any experiment that the client wants 

to deploy.  
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6.3 SBLOMARS EVALUATION 
 

SBLOMARS is an approach by which software agents are constantly capturing end-to-end 

network information (jitter, packet loss ratio, delay, etc.) and computational resources 

performance (processor, memory, software, network and storage) in large-scale distributed 

networks2.  

The distributed monitoring agents approach monitors resource behaviour, but only in local 

resources. This means that SBLOMARS agents must be installed in workstations or servers 

which have been required to be monitored. Therefore, performance evaluation of the monitoring 

agents is very important. In the following sub-section we will describe the experiments to 

evaluate the overload of SBLOMARS in terms of memory, cpu cycles, and number of live 

threads deployed. These are typical performance metrics used to analyze the performance of 

software components. 

 

6.3.1 Performance Evaluation 
 

The objective of this test was to analyze the processor and memory consumption of the 

SBLOMARS software package on its hosting node. Also, we were interested to observe the 

self-management capability of its software threats. Consequently, we proceeded installing the 

SBLOMARS in a Pentium IV with 512MB of RAM and Ubuntu Linux 6.10 OS.. The following 

results are reported by means of the Java Profiler [JAPRO]. This programmer’s tool can obtain 

a variety of system’s information, among which we can find our data of interest; Java Profiler 

helps software developers find performance bottlenecks, pin down memory leaks, and resolve 

threading issues.  

Figure 6.3 is a twenty-four hours snapshot for the percentage of CPU usage by 

SBLOMARS in its hosting node. The SBLOMARS package and Java Profiler run at the same 

time on the same workstation. It does not matter that other applications could be running on the 

hosting node because Java Profiler is configured to only measure resource usage by 

SBLOMARS.  

As can be observed, SBLOMARS represents an insignificant overload in the hosting 

workstation. During a twenty-four hour experiment, the SBLOMARS average CPU usage was 

                                                 
 

2 In Chapter 4 of this thesis, we have described the motivation, design, and architectural 
details of the SNMP-based Balanced Load Monitoring Agents for Resource Scheduling 
(SBLOMARS). 
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7,78% and  crossed an arbitrary set threshold of twenty percent of total CPU capacity of the 

workstation only five times.  

The CPU usage peaks shown in Figure 6.3 were due to self-reconfigurations of the 

SBLOMARS agents polling times.  In he first, second and fifth peaks, the polling time was 

increased, whereas in the other two it was decreased. When the polling period is increased, the 

amount of information generated per resources is decreased. When the polling period is 

decreased the amount of resource availability information generated is proportionally increased. 

Therefore, peaks on CPU performance are presented when the monitoring system performs 

these re-configurations. SBLOMARS CPU percentage usage normally oscillates between one 

and eight percent. In System performance could be briefly affected, but in general there is not 

noticeable overload. A proper evaluation of the reconfiguration functionality in SBLOMARS 

monitoring system is presented in section 6.3.2. 

 

1 2 3 4 51 2 3 4 5

 

Figure 6.3 Percentage of the hosting node CPU used by the SBLOMARS software package 
 

As far as memory consumption is concerned, Figure 6.4 reveals fluctuations from 1.0Mb to 

almost 2.0Mb for the same observation period. In Figure 6.4 we are also showing the amount of 

memory used (1.0MB), committed (memory reserved by the program itself) and maximum 

amount of memory available.. Keeping in mind that the RAM in the test node is 512 MB, we can 

say that the SBLOMARS impact is negligible  despite the fat that the monitoring agents are non-

stopping (they are sensing the corresponding resource without stopping)). A non-stopping 
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system should handle their memory consumption perfectly. Once a system fails in this activity, 

there is no opportunity to be used in large-scale Grids. 

 

 

Figure 6.4 Memory usage by the SBLOMARS software package 

 

So far, we have stated that SBLOMARS deploys a set of monitoring agents for each kind of 

resource to monitor. For instance, a total of five monitoring agents are instantiated in a 

workstation with two hard disks, one containing two partitions; one bank of memory, and only 

one CPU.. From a software perspective, each agent instance is a software threat, Therefore, it 

is important to realize that SBLOMARS is controlling these software threads. Figure 6.5 shows 

the evolution of the total number of software threads. Misbehaviour would be a constant growth 

of the number of such threats. Nevertheless, it is clear that we have a constant average trend as 

many threads appear and disappear from the monitoring system. Therefore we conclude that 

SBLOMARS will never overload its hosting node capacity. 
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Figure 6.5 SBLOMARS software threads management 
 

In summary, SBLOMARS monitoring agents do not affect hosting system performance 

despite their continuous resource performance sensing. This statement is based on the fact that 

SBLOMARS does not consume CPU and memory resources that could affect the normal 

performance of its host node. In addition, it also efficiently controls the process of creating and 

removing instances (software threads) from the host node. 

 

6.3.2 SBLOMARS Flexibility Evaluation 
 

Flexibility was defined as the ability to adapt to new resources, resource state, incoming 

standards and technology. SBLOMARS reaches a high level of flexibility in two ways: The first 

becomes visible through the implementation of the dynamic software structures, which have 

been described in Chapter 4. These structures confer flexibility because they automatically 

handle new resources in the Grid Infrastructure. This is part of the discovery functionality in our 

design.. The second aspect where the SBLOMARS system grounds its flexibility is through the 

self-reconfiguration of its monitoring agents polling periods. As already stated, SBLOMARS 

increases or decreases the interval times between consecutive readings of a given variable 

based on the state of the monitored devices. This feature in SBLOMARS monitoring system 

was designed because current monitoring systems for distributed networks such as Ganglia 

[Mas04] have fixed polling periods. 

In order to evaluate the first aspect of the flexibility feature, we deployed SBLOMARS in 

Athlon, a common storage server unit with Ubuntu Linux 6.10, with three hard disks (Drive C, 

Drive D, and Drive H) and an external memory disk.. We wanted to demonstrate SBLOMARS 

capacity to start new sub-monitoring agents (as we described in the Overview section) when 

new resources are plugged into the SBLOMARS host node. 
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Figure 6.6 shows the evolution of the capacity used in each disk in this server, for a period 

of five hours. The experiment consisted in connecting and disconnecting the external disk at 

different time epochs (at  1:00pm, and at 3:00pm for a period of half an hour). SBLOMARS was 

able to automatically identify when this device was connected or disconnected and start or stop 

the corresponding monitoring agent. The importance of this experiment is not just to 

demonstrate the ability of SBLOMARS monitoring system to perform a new instance when the 

storage device appears and disappears, but that SBLOMARS keeps the statistical information 

of this resource in order to be analyzed if this device should be shared into the distributed 

network. So far, no other resource monitoring system has offered this advantage. 

In order to evaluate the second flexibility aspect, we need to remember that SBLOMARS 

re-configures its polling periods automatically. In fact, SBLOMARS increases or decreases the 

interval times between consecutive readings of a given variable based on the state of the 

monitored devices in order to reduce the probability of events misdetection . The device state is 

fixed arbitrarily by means of two thresholds set on its average usage. If the resource reflects a 

usage above the higher threshold the polling time is decreased and if the usage is below the 

lower usage threshold the polling time is increased. The algorithm is restricted to decrease or 

increase the polling period no more than three consecutive times. This restriction is because 

reducing more than one third part of the initial polling period could causes some degree of 

instability of the monitoring systems mainly when the polling period is continually increasing. In 

other words, the fact of do not limiting the number of times than the algoriothm modifes its 

polling period could reach infinite values and eventually a memory overload. The code of the 

algorithm in charge of increasing and decreasing the polling periods is shown in Figure 6.7 
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Figure 6.6 Evolution  of the used storage capacity over a five hours observation time for a 
four disks storage system.  
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if (averagePercentage 
 alarmThresholdPositive++; } 

> 40) { 

    
if (averagePercentage < 20) { 
 alarmThresholdNegative++; } 
    
if (alarmThresholdPositive >= 1) { 
 alarmThresholdNegative = 0; 
 alarmThresholdPositive = 0; 
 if ( breakingFlagReconfigurationNegative != 0) 
      breakingFlagReconfigurationNegative--; 
      breakingFlagReconfigurationPositive++; 
      if (breakingFlagReconfigurationPositive <= 2) {  
  if (_duration > 5) { 
  System.out.println("Re-Configuration NEGATIVE"); 
  reconfiguringFile creatingFile = new reconfiguringFile (); 
  int duration = (_duration*50)/100; 
String newValues [] = {"timingValuesProcessor.conf", 
Integer.toString(duration), Integer.toString(processor_cicles)}; 
 creatingFile.write(newValues); } 
 } 
if (alarmThresholdNegative >= 1) { 
 alarmThresholdPositive = 0; 
 alarmThresholdNegative = 0; 
 //Calling Re-Configuration Method – modifying values from File 
 if (breakingFlagReconfigurationPositive != 0) 
      breakingFlagReconfigurationPositive--; 
      breakingFlagReconfigurationNegative++; 
      if (breakingFlagReconfigurationNegative <= 2){ 
  if (_duration < 60) { 
  System.out.println("Re-Configuration POSITIVE"); 
  reconfiguringFile creatingFile = new reconfiguringFile (); 
  int duration = _duration*2; 
String newValues [] = {"timingValuesProcessor.conf", 
Integer.toString(duration), Integer.toString(processor_cicles)}; 
 creatingFile.write(newValues); } 
 } 
 

 

Figure 6.7 SBLOMARS algorithm for self-adjusting the polling period 

 

Figure 6.8 plots the CPU usage measured by SBLOMARS  in one of the nodes from the 

GRID5000 test-bed (node-20.toulouse.grid5000.fr). This graph was created using a fixed 20 

second polling time, thus inhibiting its self-configuration capability.  On the other hand, Figure 

6.9 shows the result of the same experiment in the same node but with the self-configuration 

capability activated. Comparing both figures, specifically in the time intervals a), b) and c), we 

conclude that allowing the self-configuration capability, SBLOMARS is detecting usage events 

that otherwise would be missed.   
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Figure 6.8 CPU capacity usage results with fixed polling times  
 

 
a) b) c)a) b) c)

 

Figure 6.9 CPU capacity usage results with auto-configured polling times 
 

It’s clear that reducing the polling periods will result in an increase of data exchange 

through the network and this may cause overload. Thus, allowing self-reconfiguration we 

pretend to avoid it and at the same time keep low the misdetection event probability. 

Nevertheless we have to show that this self-reconfiguration capability is not seriously impacting 

on the hosting node performance. With this purpose in mind, we did an experiment consisting of 

varying the polling time through 10, 20, 30, 40, 60, and 120 seconds. The results are shown in 

Figure 6.10 where we have plotted SBLOMARS CPU usage versus time. Vertical red lines 

indicate when the re-configuration of the polling time has taken place. When SBLOMARS uses 

its shortest polling interval, the maximum CPU used by it less than 7% of the total capacity of its 

host node. This supports the statement that SBLOMARS is not an overload factor when it is 
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monitoring resources which normally present quite active behaviour, such as CPU or Network 

Interfaces. 

 

 

Figure 6.10 SBLOMARS processor overload with polling time self-configuration activated 

 
 
6.3.3 SBLOMARS Heterogeneity Evaluation 

 

SBLOMARS is capable of monitoring heterogeneous systems. As proof of this assertion 

we designed an experiment intended to collect resource availability information from systems 

with three different operating systems: Windows XP, Linux Debian, and Solaris 8. Figure 6.11, 

shows the CPU behaviour of three nodes (every node is running under the before-mentioned 

Operating Systems). SBLOMARS was able to show CPU performance of any node regardless 

of their operating system. The heterogeneity was also demonstrated during the experiments on 

the Grid5000 test-bed, which is a heterogeneous platform. 

 

 

Figure 6.11 SBLOMARS CPU monitoring results of different platforms 
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6.3.4 SBLOMARS Scalability Evaluation 
 

The scalability evaluation of SBLOMARS monitoring agents was performed in the 

Grid50003 test-bed. In this case we used 180 nodes belonging to this Grid, each one with 

different architectures. A process generator was used to dispatch processes along the Grid in 

order to emulate real conditions for all the nodes involved, so as to ensure results approaching 

real Grid Environments. SBLOMARS was previously installed in all nodes by means of remote 

scripts that copy, compile, and execute the SBLOMARS code. Connectivity was achieved by 

means of “SSH” sessions. Figure 6.12 shows the availability results of six out of the 180 

intervening nodes along seven hours of test.  The colour of the traces in each picture are for the 

available CPU (blue), memory available (orange), network cards communication rate (yellow), 

storage available (cyan). A threshold arbitrarily set to 50% is shown as a red line. 

From this test we conclude that SBLOMARS gets real-time usability information about any 

type of resource from 180 nodes without any problem for the duration of the experiment.  

Grid 5000 CPU Resource Performance
Monitoring by SBLOMARS

Grid 5000 CPU Resource Performance
Monitoring by SBLOMARS

 
Figure 6.12 Graphical Interface snapshot of the SBLOMARS System in the Grid5000 test-

bed 

                                                 
 
3Information about Grid 5000 node architectures can be found in www.grid5000.fr
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In addition to the setup of an experiment like this one, it is necessary to carry out three 

additional phases to get information from the SBLOMARS system. The first one is the 

Configuration of the monitoring agents. In this activity each node will receive the parameters 

used by SBLOMARS to configure its environment. These parameters are the initial polling 

period, the activation of the flexibility mechanisms, and the number of traps needed to generate 

a statistical report. The second phase consists of sending the Activations command to every 

node where SBLOMARS has been configured. The last phase is to Collect some resource 

behaviour information from different nodes. These activities are part of SBLOMARS 

functionality. Therefore, we have also tested how good the scalability is in each one of these. 

Figure 6.13 shows the time required to configure all nodes running SBLOMARS in the 

Grid5000 test-bed. This is the time taken by the first of the above-mentioned phases. We 

started with just five nodes and then we increased the number of nodes in increments of five 

until we reached 115 nodes.4.  

The resulting graph shows that SBLOMARS increases the configuration time in a fair way.. 

This time is increased steadily because of the network traffic in the test-bed. We cannot control 

the traffic between clusters which form the Grid5000 and the communication between nodes is 

not easily controlled. Fortunately, this does not affect our results, as we show in Figure 6.13, 

Figure 6.14 and Figure 6.15. 
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Figure 6.13 SBLOMARS configuration time vs the number of nodes in the Grid5000 

 

                                                 
 
4 Unfortunately, for administrative reasons and scheduling times, in this experiment we were not 

able to reserve more nodes in Grid5000 
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We performed the same experiment with regards to the Activation phase, Figure 6.14 

shows that the time required by the Activation phase is independent of the number of active 

nodes.  
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Figure 6.14 SBLOMARS activation time vs the number of nodes in the Grid5000 

 
Finally, we also tested the scalability of SBLOMARS at the Collection phase. with an 

experiment with the same structure as the previous one. The collection process is between the 

SBLOMARS agents and the entity requesting resources availability information. The requesting 

entity could be a user or administrator who wants to know resource behaviour information in 

certain nodes. Results of Figure 6.15 show an oscillating behaviour. This is attributed to the fact 

that the Grid5000 test-bed has a high level of networking activity that we could not remove for 

our experiments.. Nevertheless the trend of the average remains constant regardless of the 

number of nodes in the experiment. 
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Figure 6.15 SBLOMARS collection time vs the number of nodes in the Grid5000 
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6.3.5 SBLOMARS Storage Needs Evaluation 

 

In Chapter 4 of this thesis, we have explained that SBLOMARS generates reports about 

statistical resource availability to be used in the scheduling phase of the Grid Resource 

Management process. These reports are done in a flexible way, because the number of reports 

is inversely proportional to the time between polling times. When SBLOMARS is configured, it is 

necessary to specify the number of values of each variable that have to be collected to generate 

a statistical report. When this number is small the number of reports will be bigger. For instance, 

if in one hour SBLOMARS issues a total of 360 polls and a statistical report needs 10 values of 

a variable to be created, there will be a total of 36 statistical reports, whereas if reports are 

generated every 2 polls, the total number of statistical reports in one hour will be 180.  

These reports are expressed in XML-based documents, which require certain space to be 

stored. Therefore, it is also important to know the total space used by these reports in a real 

scenario. In Table 1, we present for each type  of resource, the polling time, the total amount of 

reports generated, and the total space used by these reports in one of the nodes of the 

Grid5000 test-bed. Some resources are more active than others and there is not necessary to 

set the same polling period for all of them. These values apply for a time interval of twenty-four 

hours due to the fact that the SBLOMARS agents automatically clean the memory buffers after 

this period, rewriting from the oldest to the newest document. This avoids the possibility of filling 

the system buffer and storage devices with monitoring reports. 

TABLE 6.1. STORAGE USED BY THE SBLOMARS DATABASE 

Resource Polling  
Time (s) 

Total # of Reports Space Used 
(MB) 

Processor 10 8640 3,52 
Memory 60 1460 0,576 
Network 30 2880 1,143 
Storage 300 288 0,357 
Software 1800 48 0,212 
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6.4 BLOMERS EVALUATION 
 

In Chapter 5 we presented the Balanced Load Multi-Constrained Resource Scheduler 

(BLOMERS) as a resource scheduling system that implements an heuristic approach (Genetic 

Algorithms) in order to improve the scalability problem and, by making use of real-time and 

statistical resource availability information generated by SBLOMARS, it schedules jobs in such 

a way that network activity and resource load remain balanced throughout the Grid. 

Heuristic methods do not guarantee an optimization of the scheduling problem. 

Fortunatelly, there are mechanisms that calculate estimations of how good a heuristic solution 

is. Analytical Methods [Fis80], Empirical Testing [Law85], and Statistical Inference [Rev95] are 

among the most well known.  

In the following sub-sections we will describe the analytical evaluation of the BLOMERS 

approach. In particular, the empirical evaluation was done using the Grid 5000 test-bed 

comparing BLOMERS with the Round-Robin scheduling and Least Average algorithms. The 

statistical inference and empirical evaluation were left out of the scope of this thesis. 

 

6.4.1 Analytical Evaluation 
 

Evaluating the BLOMERS approach, corresponds to estimating the average fitness of 

individuals (group of available resources) matching a required schema (conditions for resource 

load balancing and minimizing makespan).  

Be n(H, k) the number of individuals in the population  (Pk) matching schema H at 

generation k. If fitness proportional selection is used, and ignoring the effects of crossover and 

mutation, the expected number of individuals matching H at generation k + 1 is: [Fis80] 
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Where (Pk) ∩ H denotes the individuals in Pk matching H; f(i) denotes the fitness of i, and 

f(k) denotes the average fitness of the population at time k. Expression 6.1 can be rewritten as: 

 

),(
)(

),())1,(( kHh
kf

kHukHnE =+
 

 

(6.2) 

 

 

 

Overall System Evaluation                                                                                                        159 



  

 

 
A Distributed and Heuristic Policy-based Management 

Architecture for Large-Scale Grids 

 
 

∑
∩∈

=
HkPi kHn

ifkHu
)( ),(

)(),(  
 

(6.3) 

 

 

The function u(H, k) is the average fitness of individuals matching H at time k. If we denote 

by Dc(H) and Dm(H) the probability that an individual matching H at generation k will be 

disrupted by crossover or mutation and not match H at generation k + 1, and assume crossover 

and mutation to work independently of each other, a lower bound on E(n(H, k + 1)) is: [Fis80] 
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Here we ignore the beneficial effects of crossover and mutation. The disruption 

probabilities Dc(H) and Dm(H) depend on the details of the operators used, but for the classical 

choice of one-point crossover, Dc(H) will increase with the length of H. Assuming the mutation 

process mutates the individual bits with equal probability, Dm(H) will increase with the order of 

H and the number of all possible solutions in H (combinations possible of H). Equation (4.4) is 

known as the schema theorem [Hol75]. More in-depth discussions of the schema theorem, as 

well as other theoretical approaches to genetic algorithms and evolutionary computation, can be 

found in [Rev95].  

Figure 6.15 presents the effectiveness of the BLOMERS resource selection algorithm 

versus a random resource selection algorithm based on the above formulae. This effectiveness 

is given in percent and represents how close to the best one is, as established from the network 

administrator view. In summary, the BLOMERS approach has better performance than a 

random search algorithm. Also, we can observe in Figure 6.15 that genetic scheduling improves 

when the number of resources available is increasing, contrary to the random algorithm whose 

performance is getting worse. 
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Figure 6.16 BLOMERS vs the Random Selection Algorithm based on analytical evaluation 
 

6.4.2 Performance Evaluation 
 

In order to analyze the BLOMERS performance impact on its hosting node we have 

performed similar experiments to those effectuated with the SBLOMARS monitoring system. 

With this in mind, we installed BLOMERS resource scheduler into a Pentium IV workstation with 

512MB of RAM memory and Ubuntu Linux 6.10 OS.  

The performance results were obtained by means of the same Java Profiler programmer’s 

tool [JAPRO]. In the current experiment, we observe BLOMERS at the resource scheduling 

phase. The resource scheduler will receive a set of constraints every sixty seconds from the 

jobs that need to be matched with available computational resources from 120 nodes. In order 

to simplify this experiment we have avoided the use of SBLOMARS by emulating the 

information about availability of the resources. This information was previously obtained by 

SBLOMARS monitoring agents into the Grid5000 text-bed. The whole experiment lasted for two 

hours. 

Figure 6.17 is a snapshot of the CPU used by BLOMERS running the above mentioned 

experiment for two hours. Average CPU usage is about 6% with peaks rising about 15%. 

Nevertheless, the impact on other processes running in the same workstation is negligeable 

because these peaks last for no more than 7 s as illustrated by Figure 6.18. It is clear that 

BLOMERS resource scheduler does not have priority versus other processes. Therefore, any 

new process to be executed will not be queued by the CPU broker. Despite of these positive 

results, BLOMERS will not be executed full-time as a background process with SBLOMARS. In 

any Virtual Organization there will be running a scheduling system inside a server with a global 

view of the entire Grid Infrastructure. 
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Figure 6.17 Percentage of CPU used by BLOMERS 

 

7 sec.7 sec.

 

Figure 6.18 CPU used by BLOMERS in 1 minute time span 

 

It is also important to ascertain memory consumption when the scheduling phase is 

activated. In Figure 6.19 we show the amount of memory that BLOMERS needs to perform its 

functionality during the same two hours of the previous experiment. 
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In BLOMERS, memory consumption is higher than SBLOMARS because the new 

populations (sets of possible solutions) are stored in memory.  

 

 

Figure 6.19 Memory used by BLOMERS in its hosting node 
 

The BLOMERS performance evaluation is concluded with the analysis of the number of 

threads deployed by this system. In Figure 6.20 we show that BLOMERS only deploys 11 or 12 

threads to perform its scheduling activities. These relatively low values are obtained because 

BLOMERS does not perform analysis of the multi-constraint requirements from Grid Services. 

This analysis is part of the Instances Manager functionality, which is embedded in the Policy-

based Grid Resource Management Architecture (PbGRMA). 

 

 

Figure 6.20 Evolution of the BLOMERS software threads 
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6.5  COMPARISON OF SBLOMARS AND BLOMERS WITH OTHER 
APPROACHES 

 

We believe that a quantitative performance comparison is unfair for other resource 

manager approaches; it is ponderous to deploy several resource management systems running 

the same applications in order to compare them.  Due to the differences in the ways our system 

and the other existing scheduling systems are triggered, quantitative analysis and comparison 

are not practical. However, we present a qualitative analysis comparing our scheduling 

approach with other scheduling mechanisms or systems. Therefore, a features comparison is 

the fairest way to highlight the advantages and disadvantages inherent in these systems.  

In Chapters 4 and 5 of this thesis, we have explained that SBLOMARS and BLOMERS are 

independent, but cooperating to carry out the Grid Resource Management process. Therefore, 

we need to compare both systems together with current monitoring and scheduling alternatives. 

In fact, most of the latter have implemented both functionalities (monitoring and scheduling) into 

the same architectures. Table 2 and Table 3 show this collation with the aim of illustrating the 

differences between different architectures. We clearly see that SBLOMARS distributed 

monitoring agents and BLOMERS resource scheduling algorithms are quite competitive, 

because they offer a fully distributed Grid Resource Management approach. The main facts to 

highlight for our approach are: Its ability to handle different resource constrains (resource 

requirement sources), the wide range of computational resources to monitor, its fully distributed 

architecture, which allows a high level of scalability, and its heuristic implementation in the 

resource scheduling phase, which increases its ability to minimize the makespan in every 

service requested. 

 

TABLE 6.2. FEATURES COMPARISON WITH MOST COMMON GRID MONITORING SYSTEMS. 

SBLOMARS MONALISA GANGLIA NETLOGGER 
ADVANTAGES: 

 
• Real Time and 

Historical Monitoring 
• Scalability 
• Reduction of Taffic 
• Pre-Scheduling 
• Resource 

Heterogeneity 
• Resource Flexibility 
• Adaptable to External 

Tools (RRDTool) 
• Users and 

ADVANTAGES: 
 

• Real Time and 
Historical 
Monitoring 
Information 

• Scalability 
• Adaptable to 

External Tools 
(RRDTool, 
Ganglia) 

• Adaptable to 
External 

ADVANTAGES: 
 

• Real Time 
Monitoring 
Information 

• Multicast Channel 
• Clusters 

Heterogeneity 
• Scalability 

ADVANTAGES: 
 

• Real Time and 
Historical 
Monitoring 

• Scalability 
• Resource 

Heterogeneity 
• Resource 

Flexibility 
• Users 

Requirements 
• Applications 
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Applications 
Requirements 

• QoS Requirements 

Schedulers 
(Condor, LSF) 

Requirements 

DISADVANTAGES: 
 

• Mainly oriented to 
large-scale Grids 

• SNMP Required 
• Every resource should 

be running an Agent 

DISADVANTAGES: 
 

• Introducing 
monitoring traffic 
on the Network 

• Complex 
Installation 

• SNMP Required 
• Resource 

Flexibility 

DISADVANTAGES: 
 

• Non Historical 
Information 

• TCP Traffic added 
• Every resource 

should be running 
an Agent 

DISADVANTAGES: 
 

• Not adaptable to 
External Tools 

• Not Pre-scheduling 
• QoS is not included 

 
 

TABLE 6.3. FEATURES COMPARISON WITH MOST COMMON GRID SCHEDULERS. 

BLOMERS  CONDOR-G GRIDRM 
ADVANTAGES: 

 
• Real Time and Historical 

Monitoring 
• Scalability 
• Reduction of Monitoring Traffic 
• Pre-Scheduling 
• Resource Heterogeneity 
• Resource Flexibility 
• Adaptable to External Tools 

(RRDTool) 
• Users and Applications 

Requirements 
• QoS Requirements 

ADVANTAGES: 
 

• Resource Heterogeneity 
• Resource Flexibility 
• Users Requirements 
• Applications 

Requirements 
• QoS Requirements 

(Administrator View) 
• Globus Adaptability 

ADVANTAGES: 
 

• Distributed System 
• Scalability 
• Fault Tolerance 
• Security 
• Resource 

Heterogeneity 
• Users Requirements 

DISADVANTAGES: 
 

• Mainly oriented to large-scale 
Grids 

• SNMP Required 
• Every resource should be running 

an Agent 

DISADVANTAGES: 
 

• Not oriented to large-scale 
Grids 

• It assumes one entry point 
into the grid 

• Multi-domain Issues 

DISADVANTAGES: 
 

• Not oriented to large-
scale Grids 

• Limited information 
about resources 

• Scalability Issues 
 

 

In spite of the above mentioned difficulties to qualitatively compare different systems in the 

same environment there is a particular case that for its simplicity we would not dismiss. It is the 

case of the Round-Robin and Least Average Used resource selection algorithms. Both 

algorithms can be easily implemented and therefore this is an opportunity for comparison with 

the BLOMERS approach.  
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I Due to space limitations we cannot include all sets of results and we present only a 

sample in Figure 6.21. This experiment reveals the behaviour of the three scheduling algorithms 

under comparison; namely BLOMERS (blue trace), Round Robin (Yellow trace) and Least Used 

(Orange trace) in the process of scheduling a system processor.  

. The analysis of the complete set of results reveals that BLOMERS is closer to the ideal 

goal of a scheduler than the other two. In fact, the ideal situation should be when the number of 

times that this threshold is crossed tends to zero; here we show that BLOMERS is the best.  

BLOMERS, beside of reducing the makespan for the entire scheduling process as other 

schedulers do, goes a step further because the resource load all over the Grid is much better 

than with other algorithms 

 

 

Figure 6.21 BLOMERS Vs the Round-robin and the Least Average Used scheduling 
algorithms 
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6.6 PBGRMA EVALUATION 
 

The evaluation of the Policy-based Grid Resource Management Architecture (PbGRMA) 

was done in two phases. The first one was performed when the necessary components were 

adapted and implemented to improve our initial PbMA [Sal03] at the Grid Computing Domain. 

This process, detailed in [Maga05] and [Maga07a], can be considered an evaluation of the 

system in isolation of the SBLOMARS and BLOMERS systems. The second phase was 

performed on the Grid 5000 test-bed. In this phase the SBLOMARS and BLOMERS systems 

were used as well.  

 

6.6.1 PbGRMA Performance Evaluation in Isolation 
 

To evaluate the architecture in isolation, we used a set of heterogeneous nodes (i.e. Intel® 

and AMD®) with different operating platforms (Windows 2000 and Linux Fedora 4), as well as 

different amounts of resources to share, such as our Grid Infrastructure. The only homogeneous 

feature of these nodes is that all of them have Globus Toolkit 2.4 installed, and they have been 

signed by the same Certificate Authority (CA), our own CA, and not the standard Globus-CA, for 

security reasons. A random process generator was used to dispatch processes to the network 

nodes so that we could emulate normal “working day” conditions for all the nodes involved, to 

ensure results resembling real Grid environments. The entire architecture was programmed in 

Java platform. The components of the PbGRMA were CORBA objects. Policies were expressed 

in XML, and the interfaces were implemented with the standard Interface Definition Language. 

The Grid Service selected to be distributed along the Grid environment was the Newton's 

Method [Cha00], a generalized process to find an accurate root of the equation f (x) = 0. This 

method has many physical and astronomical applications and was selected because of the 

number of the algorithm’s iterations is considerable (therefore the amount of processing 

resources needed is really significant) and also because this method is quite general, which 

means that performing these experiments with other Grid Services would generate similar 

results. 

The following experiments intents to show how effective the PbGRMA is when an 

application is running in only one node instead of being distributed in the maximum amount of 

nodes. The distribution criteria for this application were to match the maximum amount of parts 

that the requested Grid Service is able to be distributed with the amount of existing nodes in the 

Grid Infrastruture. This information was obtained from the WS-DL and WS-Resource Properties 

documents that we are showing in Figures 6.23 and 6.24 respectively. 
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The first results are shown in Figure 6.22. In this experiment we plotted the percentage of 

resources (processor, memory, and storage) used by Newton's application during five 

sequences, with around one thousand iterations for each one of them (i.e. the same application 

will be executed five times in order to obtain a more precise result). It is clear that during the 

application processing time, the resources are at their maximum capability and any other 

process will be queued and executed after completing the equation. In this experiment the 

PbGRMA is contacting neither SBLOMARS nor BLOMERS to perform these operations. 

Therefore, it does not have visibility of the resources availability; we just wanted to show that 

PbGRMA is able of distributing OGSA-based Grid Services in a fixed configuration network like 

the one used in these experiments.  

In this example, the total time is around seventy seconds (70,000ms), whilst in some 

astronomic applications it could reach days in simulation. 
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Figure 6.22 Resources’ performance with a best effort management policy. 
 

The following test in our evaluation process consists of the insertion of a QoS Policy in the 

above-described scenario. In this test, the policy demands the maximization of resource 

exploitation in a minimal amount of time (QoS level policy). To obtain this level of efficiency, the 

PbGRMA used different nodes for each application sequence, with a maximum of five nodes 

(Figure 6.24). These service requirements were obtained from both Web Services Description 

Language and the Web Services Resource Properties documents, presented in Figure 6.23 and 

Figure 6.24 respectively. 
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<!-- ========== WSDL Interface for Newton’s Method Application  ============ -->
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://nmg.upc.es/Newton'sMethodExample" ...>
<wsdl:types>

<xsd:schema 
<xsd: import 

targetNamespace="http://nmg.upc.es/Newton'sMethodExample_Properties" ...
<xsd:attribute name="ResourceProperties" type="xsd:Newton's Method"/>
...

</xsd:schema>
</wsdl:types>

 

Figure 6.23 The Web Service Description Language interface for the Newton’s method 

 

<!-- == WS-Resource Properties Document for Newton’s Method Application  == -->
<wsdl:portType name="Newton's Method" 

wsrp:ResourceProperties= "intf:GenericMethodProperties">
<xsd:sequence>

<xsd:element maxDistribution="5" minDistribution="1" name=" " …
<xsd:element amountMinMemory="20" amountMaxMemory="250" name=" "...
… "wsa:EndpointReferenceType"/>

</wsdl:portType>

 

Figure 6.24 The Web Service Resource Properties Document for the Newton’s method 
 

The Grid nodes continue their normal activity until the system detects that the percentages 

of used resources are at low levels in some of them. At this moment, their resources can be 

shared with any client within the Grid Infrastructure. The PbGRMA distributes the application to 

the set of selected nodes and remotely executes the applications. Figure 6.25 plots the 

resources monitoring activity in one of the selected nodes. In order to compare the new 

processing time versus the previous graph, we have selected the same node. The analysis of 

this graph illustrates the benefits of our approach because the system offers substantial savings 

on time and used resources. Moreover, this graph shows the time needed by the server to 

gather the results provided by the other selected servers and to obtain the final result.  
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Figure 6.25 Resources’ performance with Golden QoS management policy 
 

 

 

 

Overall System Evaluation                                                                                                        170 



  

 

 
A Distributed and Heuristic Policy-based Management 

Architecture for Large-Scale Grids 

 
 

6.6.2 PbGRMA Performance Evaluation in Grid5000 
 

To evaluate the full PbGRMA, we have used 74 nodes belonging to the Grid5000 test-bed. 

They were configured following the workflow presented in section 6.2 of this chapter.. We used 

the same random process generator to dispatch processes along the Grid. The application 

selected was also the Newton's Method implementation, but with extra set-up parameters, 

which make the application heterogeneous in terms of CPU and Memory requirements. The 

reason behind this choice was to guarantee that a large number of resources would be needed, 

and that a significant load would be placed on the Grid, based on the fact that the algorithm 

used in this process requires a considerable number of iterations. The entire experiment lasted 

for 6hrs. Each scheduling algorithm worked for 120 minutes (2hrs), receiving 30 jobs every 60 

seconds. In Figure 6.26 we show the CPU percentage used by six out of the 74 nodes during 

the experiment, with three different scheduling algorithms as follows: 

 

• BLOMERS: This algorithm is described in detail in Chapter 5. It is based on a Genetic 

Algorithm and SBLOMARS monitoring agents. This algorithm selects the nodes whose 

processor threshold is not more than 50%.  

• Round-robin: This algorithm schedules every job received to the next available node 

from a list of nodes available. Once the list has been completed, this approach sends the 

next job to the first node of the list, and goes on. It then generates several cycles per 

scheduling. 

• Least Used: This algorithm schedules based on the average of the least used node. 

Based on the statistics generated per SBLOMARS monitoring agents it selects the least 

used on average and sends the next job received 

 

We have argued during the development of this research that SBLOMARS monitoring 

agents and BLOMERS resource scheduler working together could improve scheduling times 

(makespan) and load-balancing on the Grid Infrastructure. We have compared how good the 

load-balancing feature in our approach is against other scheduling algorithms. The processor 

behaviour of six nodes from the Grid5000 platform is plotted in Figure 6.26, as a function of the 

scheduling algorithm used (remaining experiment graphs can be consulted in [Maga06]). 

Vertical red lines represent the border between each scheduling algorithm, and the horizontal 

red line shows the threshold used for the BLOMERS selection policy.  
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The blue area represents the performance of the CPU when BLOMERS scheduling 

systems is being used by the PbGRMA. Considering that, in an ideal case, the number of times 

the threshold is crossed should be zero, it is apparent that BLOMERS is the scheduler closest 

to this goal. On the contrary, the round-robin and least average used algorithms cross in many 

more times the threshold of the 50% of resources used. It is clear that BLOMERS is a very 

effective load balancing scheduling algorithm. 

 

Grid 5000 CPU Resource Performance
Monitoring by SBLOMARS

 

Figure 6.26 SBLOMARS Graphical Interface snapshot of the CPU usage in the Grid5000 
test-bed with the full GRM process managed by the PbGRMA. 

 

Alternatively, we measured the time required by the Grid Resource Scheduling (GRS) 

phase in an incremental scenario. We have one hundred and eighty nodes as a Grid 

Infrastructure. We started the experiment with just five nodes, and we increased, in increments 

of five, the number of nodes in the experiment. At the end of the day, the makespan required in 

our architecture is relatively constant. This is a guarantee that the scalability of the architecture 

is preserved. In Figure 6.27 illustrates the before-mentioned results.  
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Figure 6.27 Time required to match available resources with required constraints by the 
Blomers system vs the number of nodes in the Grid5000 test-bed 

 

Having shown the good load-balancing and scalability properties of our approach, we now 

proceed to investigate the impact of the management system. In these experiments we will 

show the reliability and performance of the Allocation and Activation (JAA) phase in our 

proposed Grid Resource Management process.  

In this experiment BLOMERS performs the scheduling activities. The SBLOMARS is 

running as usual on each node forming the Grid Infrastructure for this experiment. This reserved 

Grid Infrastructure involves 180 nodes from four different clusters: Lyon, Lille, Bordeaux and 

Nancy. As we have highlighted before, these clusters are heterogeneous. The full experiment 

was four hours long. We constantly requested a variable number of Grid Services (newton’s 

application), which were split up in small jobs. In our system there is not a component in charge 

of splitting Grid Services into smaller jobs. We are considering as new Grid Services every 

application that is going to be run over the Grid Infrastructure. Grid Services were requested at 

the rate of fifty per minute. In each Service, the QoS level was fixed and the experiment was run 

in four intervals, each one lasting for  one hour and each one with a specific  QoS policy. 

In Figure 6.28 we show the average processor load results for the total of 180 nodes 

(green trace)..The amount of CPU used in average for the 180 nodes involved in this 

experiment was graphed in four segments of one hour each one of them. During every hour a 

different QoS policy was enforced staring from Diamond (blue), Golden (black), Silver (Orange) 

and Bronze (pink). Whereas the Diamond QoS Policy exhibits the best performance for the 

overall Grid, performance at the Bronze policy level is marginal. Obviously, the computational 

cost increases for  higher QoS level policies, but it seldom crosses the threshold shown in the 

graph. 
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Figure 6.28 The CPU average used by the four QoS policies Vs. the amount of CPU 
consumed by every QoS policy level 

  

Finally, Table 3 shows the elapsed averaged times measured during the whole Grid 

Resource Management process. In order to measure these elapsed times we have performed a 

separate experiment that consisted in the completion of the four phases of the GRM process; 

namely, Grid Services Management, Grid Resources Discovery and Monitoring, Grid Resource 

Scheduling, and Jobs Allocation and Activation. The Grid Services Management phase, where 

the Domain-Level policy is created, is just 750ms which is very short for the full phase. This 

interval is due to the parsing time needed, because Grid Services are described in standard 

XML format [XML]. The time consumed by the Grid Resource Discovery and Monitoring 

(GRDM) phase is not applicable because the time spent between SBLOMARS and BLOMERS 

communication-flows is part of the Grid Resource Scheduling (GRS).The GRS phase is 

completed in five seconds, considering the amount of jobs received that were around 36000 per 

hour and the number of nodes considered (180) in the Grid 5000 test-bed we clearly show that 

this phase is highly competitve. The Jobs Allocation and Activation (JAA) phase took almost the 

double of the GRS because the network conditions in the test-bed. Wwe did not considered 

networking metrics as a part of our experiment. We can improve this times integrating 

networking metrics as hard constraints for the Grid Services. We show with this times that no 

matter the size of the Grid Infrastructure, the full deployment and management of Grid Services 

will remain within these intervals. It was also demonstrated by the experiments shown in 

sections 6.3.4. and 6.4.1. The scalability of the the entire architecture is also shown and 

guaranteed by these results. The driving force to improve this architecture will be the possibility 

of reducing these times, which in turn are directly proportional to the efficiency of the Policy-

based Grid Resource Management Architecture.  
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The times presented in Table 6.3 are high competitive because large-scale infrastructures 

like Grid5000 normally deploy Grid Services in longer times that the ones obtained by our 

general approach [Gri5000]. 

TABLE 6.4. AVERAGE CONSUMING TIMES BY GRID RESOURCE MANAGEMENT PROCESS 

Actions Timing 
Grid Services Management (GSM) 750 ms 
Grid Resource Discovery and Monitoring (GRDM) N/A 
Grid Resource Scheduling (GRS) 5525 ms 
Jobs Allocation and Activation (JAA) 10125 ms 
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6.7 CONCLUSIONS  
 
In this Chapter we have summarized the experiments done to analyze the three systems 

forming our proposal for Grid Resource Management process.  

A set of experiments were aimed to evaluate the performance, flexibility, heterogeneity, 

and scalability of our SNMP-based Balanced Load Monitoring agents for Resource Scheduling 

in Large-scale Grids (SBLOMARS). Specifically, it was very important to demonstrate that the 

SBLOMARS approach is heterogeneous and flexible, because these two features make it truly 

novel compared to current monitoring systems for distributed systems and Grids.  Moreover, it 

was essential in our research to deploy our SBLOMARS monitoring agents in a real large-scale 

scenario, such as Grid5000.  

Results of the above tests reveal that SBLOMARS shows a great advantage in front of its 

competitors in terms of heterogeneity because it is able to monitor heterogeneous operating 

platforms (Linux, Windows, Solaris, and Macintosh). It also performs very well no matter the 

number of instances (new monitoring agents) that it has to deploy. On the other hand, 

SBLOMARS shows a powerful capacity to perform monitoring activities regardless of the 

architecture or complexity of the nodes forming the network. This was demonstrated by running 

SBLOMARS for long intervals of time, in at least one-hundred and eighty nodes from seven of 

the nine clusters forming the Grid5000 test-bed. Finally, SBLOMERS scales very well because 

in spite of the increase of the number nodes in the Grid, the time to trigger the monitoring 

agents and the time to collect their information remains quite stable. 

Different sets of experiments were conducted to analyze our Balanced-load Multi-

Constrained Resource Scheduler (BLOMERS). This heuristic approach is based on a Genetic 

Algorithm, as we have explained in detail in Chapter 5 of this thesis. Following the most 

common mechanism to evaluate an heuristic algorithm, we have estimated the reliability in 

terms of makespan of the BLOMERS resource scheduler. We have also evaluated the 

performance of the algorithm running some scheduling jobs for a long period of time. Finally, we 

have deployed our algorithm on the Grid5000 test-bed to perform experiments regarding 

makespan and load-balancing. We obtained very good results because BLOMERS keeps a 

very good level of load-balancing along the Grid Infrastructure compared at least with the 

Round-Robin and the Least Average Used algorithms.  

In this chapter we have also included an evaluation of the Policy-based Grid Resource 

Management Architecture in two steps. The first was with an isolated system, and the second 

showed it with working together with SBLOMARS and BLOMERS . In the evaluation of the 

architecture in isolation, we demonstrated its compatibility with external components or 

middleware. We have interfaced this architecture with Globus ToolKit 2.4 and performed several 
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experiments to distributed Grid Services, which are described through WSDL and WS Resource 

Properties documents as a standard workflow implied by the Open Grid Forum (OGF). 

Although our PbGRMA is focused on Grids where a wide range of nodes will offer small 

amounts of resources, the solution is not only limited to this domain of users/clients. Results, 

presented in the last experiments of this chapter show the advantages of our architecture. In 

fact, the reduction in processing time is around the 57%, and the percentage of resources used 

per second in all the Grid Infrastructure is much greater than in other approaches. Therefore our 

environment is more efficient in terms of resources used. We claim that this is a feasible 

solution for small business and industrial users wishing an automatic and self-managing 

effective access to massive amounts of computing, network, and storage resources, reducing 

procurement, deployment, maintenance, and operational cost. 

The second step of the evaluation process for the PbGRMA was performed in order to 

evaluate the reliability of the whole architecture. This means that the three components were 

deployed in the Grid5000 test-bed. Based on these experiments, it is clear that our approach is 

a reliable architecture with good scalability and heterogeneity. In addition we have proved other 

of its relevant capabilities like QoS constrained deployment and management of Grid Services 

without overloading the management instances and that it is a standard approach, due to the 

fact that the OGSA standard was taken into account in our design and implementation. 

This chapter also helps to explain how it is possible to use Grid5000 test-bed. We have 

mentioned several times that one of the most important activities in our research was to 

evaluate our architecture in a real, large-scale Grid.  
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Chapter 7 
 
 

 
CONCLUSIONS AND FUTURE WORK 

 
 
 
 
 
 

7.1 INTRODUCTION 
 
Grid Resource Management (GRM) is regarded as a vital component of the success of the 

concepts behind Grid Computing because it is intended to efficiently manage the coordination 

and sharing of multiple computational and networking resources. But GRM faces several 

challenges that make the implementation of practical management systems a very difficult 

problem. Moreover, GRM systems must fulfil strict functional requirements from heterogeneous, 

and sometimes conflicting, domains (e.g., user applications, and network domains) [Nab04]. In 

addition, GRM systems must adhere to non-functional requirements that are also challenging, 

such as reliability and efficiency, in terms of time consumption and load balancing of the 

resources shared by the Grid Infrastructure.  
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In this thesis we have highlighted that current GRM systems research is focused mostly on 

solving either one or the other of the two main problems at hand. The first is concerned with 

evenly balancing resource loads throughout a Grid. In this area, researchers have proposed a 

range of technologies with varying degrees of success [Kra02]. The second problem involves 

shortening the amount of time, from start to end, needed for completing a set of. Up to now, a 

comprehensive solution addressing both of these problems proved elusive; In other words, a 

load-balanced solution with a minimal makespan did not yet exist. The method we presented in 

this thesis provides such a solution. Our approach involves splitting and distributing the 

resource management process into four main phases: Grid Services Management (GSM), Grid 

Resource Discovering and Monitoring (GRDM), Grid Resource Scheduling (GRS), and Jobs 

Allocation and Activation (JAA). These four phases are materialized in framework composed of 

three main independent but cooperating systems to perform the Grid Resource Management 

(GRM) process. 

The GSM and JAA phases are supported by means of a Policy-based Grid Resource 

Management Architecture (PbGRMA) [Maga07a]. This architecture is able to consider service 

needs arising from diverse sources during the deployment and management of Grid Services, 

such as customer requirements, applications, and network conditions. The synergy obtained 

through these components allows Grid administrators to exploit the available resources with 

predetermined levels of Quality of Service (QoS), reducing computational costs and makespan 

in resource scheduling, while ensuring that the resource load is balanced throughout the Grid. 

The GRDM phase is supported by the SNMP-based Balanced Load Monitoring Agents for 

Resource Scheduling (SBLOMARS) [Maga07b], in which network and computational resources 

are monitored by distributed agents. This allows the design of a flexible, heterogeneous, and 

scalable monitoring system. The GRS phase is based on the Balanced Load Multi-Constrainted 

Resource Scheduler (BLOMERS) [Maga07c]. This heuristic scheduler represents an alternative 

for solving the inherent NP-hard problem for resource scheduling in large-scale distributed 

networks.  

The remainder of the chapter is structured as follows: Section 2 outlines a review of the 

contributions presented in this thesis. In this section we also highlight some drawbacks of the 

three main contributions of this research work; namely PbGRMA, SBLOMARS and BLOMERS. 

Finally, Section 7.3 presents future work and also shows some new research that could be 

exploited as a continuation of this work. 
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7.2 REVIEW OF CONTRIBUTIONS 
 

In this section we will describe the main contributions presented in this thesis.  

 

7.2.1 Policy-based Grid Resource Management Architecture (PbGRMA) 
 

 

The PbGRMA is a management solution conceived with a granularity of two levels. The 

Grid Domain Management System (GDMS) and the Grid Node Management System (GNMS). 

In the context of this thesis, we have understood Virtual Organization (VO) as a Grid Domain 

level. Therefore, it will be necessary to deploy one PbGRMA per VO existing in the full Grid 

Infrastructure. System scalability is ensured thanks to this two level management approach.. 

The introduction of a complex system such as a Policy-based system in the Grid 

Computing area was to simplify the current communication process between the three main 

actors intervening at the deployment process of Grid Services. These actors are Grid 

Infrastructure Providers, Grid Services Customers, and Grid Services Repositories. A Policy-

based solution perfectly fits the fussy requirements of the Grid Services deployment workflow. 

This is due to the flexibility and scalability properties exhibited by policy-based management 

systems. PbGRMA offers an excellent portal for the deployment of high-level policies. The 

whole architecture handles different levels of QoS with excellent performance. 

One of the most important aspects of our solution is its ability to self-extend many of the 

management capabilities exhibited by management systems. In fact, the proposed PbGRMA 

makes autonomous decisions to extend Domain-level and Node-level components such as 

Policy Decision Points and Policy Enforcement Points. The PDP components are also 

autonomously extended by means of appropriate Action and Condition Interpreters. This 

solution offers a high level or granularity, thus making it more scalable.. Moreover, the self-

configuration capability of the proposed architecture to deploy or remove new Management 

Instances improves the efficiency of the management system in terms of computational 

resource usage.  

This Policy-based architecture offers the perfect solution to add as many service 

management requirements as needed. Our solution admits up to three main sources of such 

requirements. Namely, user quality of service requirements, Grid Services specifications based 

on OGSA and WS-RF standards, and Grid resources availability to maintain certain load 

balance along the Grid Infrastructure. This has never been accomplished before. 
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On the other hand, the PbGRMA is also in charge of executing the last phase of the GRM 

process presented in this thesis; namely the JAA, fitting the needs dictated by heterogeneous 

architectures to allocate and activate Grid Services.  

 

7.2.2 SNMP-based Balanced Load Monitoring Agents for Resource 
Scheduling (SBLOMARS) 

 
The Resource Monitoring and Discovery phase is aimed at determining which resources 

are available to be assigned to execute a specific job, application, or service. The management 

challenge here is determining how to deal with a very large number of resources that are not 

controlled by a unique centralized administrator, in order to avoid a scalability weakness. 

In most common architectures, computational resource monitoring is integrated with a 

resource selection mechanism (resource brokers and scheduling systems). It implies that for 

any new scheduling, a new monitoring request must also be addressed to all nodes participating 

in the same network domain. Therefore, regardless the monitoring mechanism implemented 

(pull, push, or hybrid), the resource selection mechanism will be delayed by the resource 

monitoring activity. In these integrated systems, we mainly found scalability issues. Moreover, 

the network traffic generate by these integrated systems will be increased by all the monitored 

data going from computational and networking resources to resource management points.  

In our proposal, this phase is addressed by introducing our SNMP-based Balanced Load 

Monitoring Agents for Resource Scheduling (SBLOMARS) architecture. This set of autonomous 

monitoring agents generates real-time and statistical availability for resources and entities 

composing the Grid. Thanks to its conception, SBLOMARS is able to deal with any resource 

type, of any size, supported by any operative system. 

The distributed monitoring system reaches a high level of generality by means of the 

integration of the Simple Network Management Protocol (SNMP) [Sta99] and thus, it has a 

powerful ability to handle heterogeneous operating platforms due to generalized support of such 

protocol. Nevertheless, we are aware that only adopting the SNMP technology is not enough to 

assure full systems interoperability. Data formats, objects not implemented, and objects with 

heterogeneous style in their data structure may create incompatibilities. Therefore, we 

undertook a distributed monitoring system design with an exhaustive study of the SNMP 

incompatibilities. Moreover, our monitoring system integrates the CISCO IOS® IP Service Level 

Agreements (CISCO IP SLAs), an end-to-end network-level monitoring technology allowing 

users to monitor end-to-end performance between switches, routers, or any IP network device.  

Security is a must in a distributed monitoring system. SBLOMARS is secure because it is 

deployed on nodes belonging to secure virtual organizations. This creates a high level of 
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protection against external intruders. In addition, SBLOMARS supports the security 

mechanisms of SNMP version 2 (SNMPv2) to prevent any intentional or unintentional 

modification of monitoring parameters from local users. Nevertheless, this level of security is 

currently not enough to satisfy the security requirements that Grid Computing administrators 

demand. In the future work section we will describe our intention to improve this security 

mechanism.  

SBLOMARS monitoring system exhibits a self-configuring design in the sense that the 

monitored information about resource availability is refreshed adaptively instead of on a periodic 

basis. Moreover, the information about the amount of resources available is presented in flexible 

and dynamic software structures, which can be used to monitor from simple personal computers 

to complex multiprocessor systems or clusters with multiple hard disk partitions. Therefore, 

SBLOMARS is a distributed monitoring system with minimal overhead and performance 

degradation of its hosting nodes. This feature ensures a high level of reliability in computing 

devices with minimal computational resources, such as mobile devices (i.e. laptops, PDAs, etc). 

SBLOMARS also reduces the amount of traffic injected to the network. This is because it 

calls the SNMP daemon to collect resource availability information locally, which means that 

there is no traffic between SBLOMARS and the management system. On the other hand, the 

management system is calling the SBLOMARS monitoring agents only when needed. 

SBLOMARS was successfully tested in a large-scale Grid platform, the Grid5000.  Our 

results showed that SBLOMARS is flexible and scalable in managing large-scale 

heterogeneous distributed systems. Moreover, it could also be useful for small-scale distributed 

systems because, as we have shown in Chapter 6, regardless the number of devices to 

monitor, SBLOMARS remains functional and scalable. 

 

7.2.3 Balanced Load Multi-Constraint Resource Scheduler (BLOMERS) 
 
Resource Scheduling for Grid Computing involves determining which resources are best 

suited for executing a specific job, application or service. Our presented solution covers this 

phase by introducing the Balanced Load Multi-Constraint Resource Scheduler (BLOMERS). 

BLOMERS implements a heuristic approach in order to overcome the scalability problem and, 

by making use of the real-time and statistical resource availability information generated by 

SBLOMARS monitoring system, it schedules jobs in such a way that network activity and 

resource load remain balanced throughout the Grid. 

In this scheduling system we have designed and implemented a Genetic Algorithm for 

improving efficiency in actual scheduling algorithms for Grid Computing. The implemented 

resource scheduling system based on Genetic Algorithms is able to search for a sub-optimal set 
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of resources for any requested Grid Service, starting the matching process from a set of 

resources, rather than from just one at a time. This parallelism has been introduced to avoid the 

Genetic Algorithm be trapped on local minima, which means that the scheduling system will be 

searching and matching the whole set of shared resources from the Grid Infrastructure at any 

given time. 

It is worth mentioning that BLOMERS achieves much of its breadth by ignoring information 

that does not concern payoff. Other methods rely heavily on such information, and therefore 

solve problems where the necessary information is not available or is difficult to obtain, which 

causes them to break down. In this case, the information ignored must be carefully selected, 

and should always be modified for each type of application. We face a difficult problem due to 

the fact that each heuristic technique could be customized in different ways depending on their 

main targets and the optimization degree required for the application to execute. 

The BLOMERS scheduling system deals with several conditions. Basically, it selects a set 

of candidate resources from a poll, keeping individual resource performance comparatively 

balanced in all nodes of the Grid. This condition has been added in order to satisfy 

computational resource load balancing. It covers multi-constraint (hard and soft constraints) 

service requirements, which are: user requirements (QoS, deadlines, etc.), service needs 

(memory, storage and software requirements), and resource-load balancing throughout the 

Grid.  

BLOMERS improves resource load-balancing and reduces the makespan in any 

scheduling. This is an important contribution of our research because the most important 

approaches in this area only focus on reducing the makespan of the scheduling process but do 

not maintain resource usability in a balanced way. BLOMERS exhibits excellent performance. It 

is able to schedule large numbers of services in real scenarios, and guarantees a balanced load 

throughout the Grid. The makespan measured is less than those of the Round-Robin and Least 

Used algorithms.  

Unlike other resource scheduling systems, BLOMERS is highly customizable. In our 

algorithm parameters like thresholds, end-to-end network performance, statistical resource 

availability information, and software available are controlled by the administrator of the 

scheduling system. BLOMERS allows modification of the before-mentioned parameters in order 

to offer better adaptability of the Grid Infrastructure being managed. BLOMERS was designed 

using two re-combination methods, crossover and mutation, instead of only one, like most of the 

current systems. The implementation of these two methods helps to deal with Virtual 

Organizations of different sizes, from small organizations with less than a hundred resources, to 

multinational organizations with thousands of resources. 
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On the other hand, BLOMERS is an excellent scheduling system when the number of 

resources is quite large. Some of our results shown in Chapter 6 indicate that with hundreds of 

resources to analyze, the scheduling algorithm is better than others.  

 
7.2.4 Full System Approach Conclusions 

 
In this thesis we have presented a solution distributed in three components. In past 

sections we have presented the main features, contributions, and drawbacks of each 

component, but we didn’t explain the benefits and contributions of the approach as a whole 

architecture. It is important that each of the three components exhibits good behaviour in 

isolation. Though, when they work together they reach their maximum potential, and stronger 

than similar solutions [Maga07d], [Nab04] and [Maga06].  

The most important benefits of the system approach conceived in this research are 

obtained in environments where the amount of resources is large, such as large-scale Grids 

[Cap05]. In summary, we claim that the main distinguishing features of the complete system are 

as follows: 

 
 A fully distributed architecture consisting of three independent components: 

SBLOMARS, BLOMERS, and PbGRMA. 
 The whole architecture is completely scalable and flexible in terms of the amount and 

type of elements to be managed. 
 It is Web Services Resource-Framework [Ved02] oriented. This feature guarantees 

that our approach follows current Open Grid Forum (OGF) standards. 
 It covers multi-constraint service requirements, which are: user requirements (QoS, 

deadlines, etc.), service needs (memory, storage, and software requirements), and 
resource-load balancing throughout the Grid. 

 It is a distributed self-adapting system that manage a wide range of computational 
devices (i.e., it can handle a high level of heterogeneity). 

 It is a flexible system that is able to manage from simple personal computers to robust 
multiprocessor systems or clusters, even when multiple hard disks and storage 
partitions are integrated. 

 It offers a parallelism solution to multi-constraint service requests avoiding enclosure 
into local minima solutions. 

 It improves resource load-balancing and reduces the makespan in scheduling 
resources. In Chapter 6 we demonstrate that BLOMERS improves effectiveness by 
almost 60% (this represents how close the solution selected is to the best one as 
established from the network administrator view) versus other scheduling algorithms 
when the amount of resources is greater than one hundred. 
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The strength of this research is that it provides evaluation results of the full process in a 

realistic large-scale scenario, the Grid5000 test-bed. Summarizing these results, we argue that 

our solution has very good performance, because it does not have a significant negative impact 

on the performance of the hosting nodes. We also claim that our solution is flexible and 

scalable.  We ran several experiments with different amounts of resources, and we got similar 

results with all of them [Maga07d] and [Maga07e]. 

Besides the good properties above described we have to say that the solution presented in 

this thesis is complex. The system is not easy to deploy without proper knowledge of the 

components and the structure of the system. The interfaces between PbGRMA, SBLOMARS, 

and BLOMERS are based on XML standards; This means that transformation of the information 

from XML-based documents to policy language that commonly is named as parsing processI is 

complex to do and therefore it consumes high levels of time and resources. 
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7.3 FUTURE WORK 
 

 

This section outlines possible future work on relevant topics addressed in this thesis, as 

well as possible alternatives to improve them.  

There are many constraints included in the scheduling process, but current evaluation 

results do not yet include the effect of network latency and other communication impairments. 

As an immediate future work, we are including network performance between end-to-end edge 

routers as an entry parameter for our genetic algorithm. We expect that this will offer better 

scheduling solutions when resources with high latencies or jitter have to be managed 

SBLOMARS monitoring system is ready to monitor and report end-to-end networking 

availability. In Chapter 4 we have presented the graphical interface implemented in this 

monitoring system which represents networking real-time behaviour. Unfortunately, Grid5000 is 

not the best scenario to deploy these experiments. It is because links between Grid nodes are 

private links and the amount of network traffic than these links have to support is completely 

insignificant. Therefore, there are no networking constraints that could modify the scheduling 

decisions made by BLOMERS scheduling systems. In world-wide networks, networking issues 

are very important. We plan to deploy new scheduling evaluations tests on different network 

scenarios in order to include networking constraints in the scheduling process. 

As future work, we plan to improve the security aspects. Currently we are working with 

version two for the SNMP server configuration. We have realized that better security 

mechanisms should be integrated in this research. The SNMP version 3 is a string solution 

which keeps our architecture secure. We will implement the necessary mechanisms to integrate 

SNMPV3 with SBLOMARS. We are also planning to merge SBLOMARS and BLOMERS 

approaches with autonomic gateways [Cha05]. We expect that this conception will help 

distributed systems and Grids designers to evaluate and monitor more precisely the usage of 

their network resources. 

Novel distributed paradigms are becoming increasingly popular. Cloud Computing [Ric07] 

is one of them. It is a computing paradigm shift in which computing is moved away from 

personal computers, or an individual application server, to a "cloud" of computers. Users of the 

cloud only need to be concerned with the computing service being requested, because the 

underlying details of how it is achieved are hidden. This method of distributed computing is done 

by pooling computer resources and managing them via software (rather than by a human). The 

architecture behind cloud computing is a massive network of "cloud servers" interconnected as 

if in a grid running in parallel, sometimes using the technique of virtualization to maximize the 

computing power per server. We are planning to study the reliability of our full system approach 
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in this new area. We think that one of the most challenging issues is the management of virtual 

environments and virtual resources. Very recently we have started looking at this field using 

Planet-lab [Bav04].  

 

 

Table of Contents                                                                                                                       187 



  

 

 
A Distributed and Heuristic Policy-based Management 

Architecture for Large-Scale Grids 

 
 

 
 
 
 
 
 

Appendix A 
 
 
 
 

 
GRID COMPUTING TECHNOLOGY 

 
 
 
 
 
 
 

A.1 INTRODUCTION 
 
The Grid term was coined in the mid 1990s to denote a proposed distributed computing 

infrastructure for advanced science and engineering [Fos01]. Considerable progress has since 
been made on the construction of such an infrastructure but the term Grid has also been 
conflated, at least in popular perception, to embrace everything from advanced networking to 
artificial intelligence. The Grid is an abstraction allowing transparent and pervasive access to 
distributed computing resources. Other desirable features of the Grid are that the access 
provided should be secure, dependable, efficient, and inexpensive, and enable a high degree of 
portability for computing applications. 
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Today Internet can be regarded as a precursor to the Grid, but the Grid is much more than 
just a faster version of the Internet, a key feature of the Grid is that it provides access to a rich 
set of computing and information services. Many of these services are feasible only if network 
bandwidths increase significantly. Thus, improved network hardware and protocols, together 
with the provision of distributed services, are both important in establishing the Grid as an 
essential part the infrastructure of society in this century. 

Currently, the Grid is not transparent or pervasive, and computing tasks do not routinely 
describe their requirements, when a computing task is submitted to the Grid one or more 
resource brokers and schedulers decide on which physical resources the task should be 
executed, possibly breaking it down into subtasks that are satisfied by a number of distributed 
resources. 

 
A.1.1 Virtual Organizations 

  
The original motivation for the Grid was the need for a distributed computing infrastructure 

for advanced science and engineering, with a pronounced emphasis on collaborative and multi-
disciplinary applications. It is now recognized that similar types of application are also found in 
numerous other fields, such as entertainment, commerce, finance, industrial design, and 
government. Consequently, the Grid has the potential for impacting many aspects of society. All 
these areas require the coordinated sharing of resources between dynamically changing 
collections of individuals and organizations. 

This has led to the concept of a Virtual Organization (VO) [Fos02a], which represents an 
important mode of use of the Grid. The individuals, institutions, and organizations in a VO want 
to share the resources that they own in a controlled, secure, and flexible way, usually for a 
limited period of time. This sharing of resources involves direct access to computers, software, 
and data. Examples of VO include: 
 
• A consortium of companies collaborating to design a new jet fighter. Among the resources 

shared in this case would be digital blueprints of the design (data), supercomputers for 
performing multi-disciplinary simulations (computers), and the computer code that performs 
those simulations (software). 

• Physicists collaborating in an international experiment to detect and analyse gravitational 
waves. The shared resources include the experimental data and the resources for storing 
it, and the computers and software for extracting gravitational wave information from this 
data, and interpreting it using simulations of large-scale gravitational phenomena. 

 

APPENDIX A                                                                                                                               189 



  

 

 
A Distributed and Heuristic Policy-based Management 

Architecture for Large-Scale Grids 

 
 

 
A.1.2 The Consumer Grid  

 
Support for VOs allows computing and information resources to be shared across multiple 

organizations. Within a VO sophisticated authorization and access control policies may be 
applied at various levels (individual, group, institution, etc) to maintain the level of control and 
security required by the owners of the shared resources. In addition, the members of a VO are 
working together to achieve a common aim, although they may also have different subsidiary 
objectives. 

The consumer grid represents another mode of use of the Grid in which resources are 
shared on a commercial basis, rather than on basis the basis of mutual self-interest. Thus, in 
the consumer grid paradigm of network-centric computing, users rent distributed resources, and 
although many users may use the same resources, in general, they do not have common 
collaborative aims. In the consumer grid, authentication and security are still important issues 
since it is essential to prevent a user's information, code, and data being accessible to others. 
But authorization to access a resource derives from the user's ability to pay for it, rather than 
from membership of a particular VO. 

In the consumer grid, scheduling is done "automatically" by the invisible hand of 
economics. Supply and demand determines where jobs run through the agent negotiation 
process, no other form of scheduling is required. The users seek to minimize their costs subject 
to constraints, such as obtaining results within a certain time, and the suppliers seek to 
maximize their profits. For the concept of the consumer grid to become a reality the 
development of secure and effective computational economies is essential. In the consumer 
grid all resources are economic commodities. Thus, users should pay for the use of hardware 
for computation and storage. 

If large amounts of data are to be moved from one place to another a charge may be made 
for the network bandwidth used. In the future it seems likely that Grid Computing will be based 
on a hybrid of the virtual organization and consumer grid models. In this scenario hardware, 
software, and data repository owners will form VOs to supply resources. Collaborating end-user 
organizations and individuals will also form VOs that will share resources, but also “ rent”  
resources outside the VO when the need arises. The consumer grid model applies to the 
interaction between supplier VOs and user VOs. 
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A.1.3 Grid Architecture 
 
In defining Grid Architecture, we start from the perspective that effective VO operation 

requires that we be able to establish sharing relationships among any potential participants.  
Interoperability is thus the central issue to be addressed.  In a networked environment, 
interoperability means common protocols. Hence, the Grid architecture is first and foremost 
protocol architecture, with protocols defining the basic mechanisms by which VO users and 
resources negotiate, establish, manage, and exploit sharing relationships.  

A standards-based open architecture facilitates extensibility, interoperability, portability, 
and code sharing; standard protocols make it easy to define standard services that provide 
enhanced capabilities. We can also construct Application Programming Interfaces and Software 
Development Kits to provide the programming abstractions required to create a usable Grid. 
Together, this technology and architecture constitute what is often termed Middleware ("the 
services needed to support a common set of applications in a distributed network 
environment"), although we avoid that term here due to its vagueness. 

A protocol definition specifies how distributed system elements interact with one another in 
order to achieve a specified behavior, and the structure of the information exchanged during this 
interaction.  This focus on externals (interactions) rather than internals (software, resource 
characteristics) has important pragmatic benefits.  VO's tend to be fluid; hence, the mechanisms 
used to discover resources, establish identity, determine authorization, and initiate sharing must 
be flexible and lightweight, so that resource-sharing arrangements can be established and 
changed quickly.  Because VO's complement rather than replace existing institutions, sharing 
mechanisms cannot require substantial changes to local policies and must allow individual 
institutions to maintain ultimate control over their own resources. 

The Grid Architecture [Fos01] and the subsequent discussion organize components into 
layers, as shown in Figure A.1, components within each layer share common characteristics but 
can build on capabilities and behaviours provided by any lower layer. In specifying the various 
layers of the Grid architecture, it follows the principles of the "hourglass model" [Fos03].  The 
narrow neck of the hourglass defines a small set of core abstractions and protocols (e.g., TCP 
and HTTP in the Internet), onto which many different high-level behaviours can be mapped (the 
top of the hourglass), and which themselves can be mapped onto many different underlying 
technologies (the base of the hourglass). By definition, the number of protocols defined at the 
neck must be small.  In Grid architecture, the neck of the hourglass consists of Resource and 
Connectivity protocols, which facilitate the sharing of individual resources. 
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Protocols at these layers are designed so that they can be implemented on top of a diverse 
range of resource types, defined at the Fabric layer, and can in turn be used to construct a wide 
range of global services and application-specific behaviours at the Collective layer so called 
because they involve the coordinated ("collective") use of multiple resources. 

 

 

Figure A.1 The GRID Architecture 

 

A.2 GRID RESOURCE MANAGEMENT TECHNOLOGIES BACKGROUND 
 

Over the past several years there have been a number of projects aimed at building 

“production” Grids. These Grids are intended to provide identified user communities with a rich, 

stable, and standard distributed science environment. By “standard” and “Grids” we specifically 

mean Grids based on the common practice and standards coming out of the Global Grid Forum 

(GGF) (www.gridforum.org) [GGF07]. 

There are a number of projects around the world that are in various stages of putting 

together production Grids that are intended to provide this sort of persistent cyber infrastructure 

for science. These are the UK’s e-Science program [Uke07], the European DataGrid [Dat07], 

several Grids under the umbrella of the DOE Science Grid [Doe07], and (at a somewhat earlier 

sage of development) the Asia-Pacific Grid [Asp07]. 

In addition to these basic Grid infrastructure projects, there are a number of well advanced 

projects aimed at providing the sorts of higher-level Grid services that will be used directly by 

the scientific community. Some of the important infrastructure components of these Grids are 

described below. 
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A.2.1 Grid Middleware Projects 
 

The following projects have successfully provided U.S. and international projects with the 

advanced tools to easily access numerous grid functionalities, such as computation, 

visualization, and storage resources. You can interact with various grids or have one 

customized to work with your own grid. 

We are presenting these projects because they are performing one or more of the 

management activities in the GRM process. Unfortunately, most of these approaches work 

under the assumption that user is the one in charge of individually select the resource to use in 

order to execute their applications.  

 

Globus Toolkit: Globus Toolkit [Bor05] is a collection of tools that provides the basic 

services and capabilities like security, resource management, information services, etc. required 

for grid computing. Resource Management System of Globus consists of resource brokers, 

resource co-allocators and resource manager or GRAM [Cza98]. The resource requests are 

specified in extensible resource specification language (RSL). Globus has a decentralized 

scheduling model. Scheduling is done by application level schedulers and resource brokers. 

Application specific brokers translate the application requirements into more specific resource 

specification. Resource Brokers are responsible for taking high-level RSL specification and 

transforming them into more concrete specification (this process is called 

specialization).Requests can be passed to multiple Brokers. Transformations done by the 

brokers' results in a request in which the locations of the resources are completely specified. 

The Resource Brokers discover resources by querying the information service (MDS) for 

resource availability. MDS is a LDAP based network directory (Metacomputing Directory 

Services). MDS consists of two components Grid Index Information service (GIIS) and Grid 

resource information service (GRIS). GRIS provides resource discovery services. GIIS provides 

a global view of the resources by pulling information from the GIIS's. Resource information on 

the GIIS's is updated by push dissemination. Globus has a hierarchical name space 

organization.  

The transformed resource requests from resource brokers are passed to the co-allocator. 

Co-allocator takes care of multi-requests, multi request is a request involving resources at 

multiple sites which need to be used simultaneously, and passes each component of the 

request to appropriate resource manager and then provides a means for manipulating each 

resultant set of managers as a whole. The Co-allocation of resources is done by the DUROC 

component Globus. The resource manager interacts with local resource management systems 

to actually schedule and execute the jobs. The implementation of the resource manager in 
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Globus is called GRAM. GRAM authenticates the resource requests and schedules them on the 

local resource manager. Each user is associated with a UHE (user hosting environment) on the 

execution machine. All the jobs from a user are directed to the user's UHE, which starts up a 

new Managed Job Factory service (MJFS) instance for every job. The MJFS communicated 

with the clients by starting up two instances of File Stream Factory Service (FSFS) for standard 

input and output. MJFS and FSFS are persistent services. When a system starts up after a fault 

all the UHE which were running before crash are started up. There is also a Sweeper task which 

runs every two hours and recovers any crashed UHE. The information about the UHE is 

obtained from gridMapfile which stores the status (Active, Inactive) of the UHE's in the system, if 

a nonexistent UHE is marked active in the gridMapfile it indicated that the UHE crashed. After a 

UHE is restarted all the persistent services in it (MJFS and FSFS) are recovered. 

 

GLite: It is the next generation middleware for grid computing, born from the collaborative 

efforts of more than 80 people in 12 academic and industrial research centers as part of the 

EGEE Project. gLite [Gli07] provides a bleeding-edge best-of-breed framework for building grid 

applications tapping into the power of distributed computing and storage resources across the 

Internet. 

 

Ninf-G: It is a Japanese project developing programming middleware which enables users 

to access various resources, such as hardware, software, and scientific data on the grid with an 

easy-to-use interface. Ninf-G [Nak99] is open source software that supports development and 

execution of grid-enabled applications using Grid Remote Procedure Call (GridRPC) on 

distributed computing resources. 

 

NorduGrid: NorduGrid Middleware [Nor07] is also known as Advanced Resource 

Connector (ARC), is an open source software solution distributed under the GPL license, 

enabling production-quality computational and data grids. ARC provides a reliable 

implementation of the fundamental grid services, such as information services, resource 

discovery and monitoring, job submission and management, brokering and data management, 

and resource management. Most of these services are provided through the security layer of 

the GSI. The middleware builds upon standard open source solutions like OpenLDAP, 

OpenSSL, SASL and Globus Toolkit (GT) libraries. 

 

OGSA-DAI: The OGSA-DAI [Fos02a] project focuses on the development of middleware to 

assist with the access and integration of data from separate sources through the grid. The 
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project works closely with the Globus, OMII-Europe, NextGRID, SIMDAT, and BEinGRID, 

ensuring that the OGSA-DAI software works in a variety of grid environments. 

 

A.2.2 Grid Monitoring Projects 
 
There are lot of works has been done in Grid Monitoring. For time limitation, we can not 

discuss all of them, but definitely the best summary so far, is presented in [Zan05]. Currently, 

SNMP-based monitoring agents have been implemented by many researchers to solve different 

problems [Yan02] [Maga04], each system has its own strengths and weaknesses. However, for 

resource monitoring and management, we believe that none fulfil the criteria that are desired in 

emerging generation networks [NGG07]. GridLab [GridLab] aims to enable applications to fully 

exploit dynamically changing computational resources. In order to accomplish this, a variety of 

mechanisms have been developed such as notifications about changes of job states, complex 

workflow support, multi-criteria user-preference driven and prediction-based selection of the 

best resources, submission of jobs with time constraints, and many others. The capability of a 

dynamic adaptation has been achieved using job migration and pointing techniques. 

Monitoring resources and applications is the key to the success of grids. Through an easy-

to-use interface, these sophisticated tools help users gather, catalogue, and monitor various 

types of resources. Moreover, systems administrators are also able to monitor the health of their 

grids. These evolving grid projects list a few of the open source options. 

 

Open Grid Forum – Grid Monitoring Working Group: The Global Grid Forum (GGF) 

[GFF07] has proposed a general architecture for monitoring Grids. They have defined important 

concepts, which have been used along this chapter. The first of them is a Producer. Basically, 

we have used this concept to define our monitoring agents. A monitoring agent is a program 

that generates a time-stamped performance-monitoring event. The second one is a directory 

service, which is used to publish the location of the information provider and its associated 

sensors. This allows the users to discover information provider and it is known as Directory 

Service. Finally, the Information Consumer, which is any program that receives data from a 

producer. We believe important to mention this approach because SBLOMARS follows the main 

recommendations from this forum. 

 

Grid Resource Manager (GridRM): One of the most similar approaches to SBLOMARS 

has been presented in [Bak05]. GridRM is also a generic monitoring architecture that has been 

specifically designed for the Grid. It was developed joining several technologies and standards 

like Java (applets, servlets and JDBC), SQL Databases, Grid Monitoring Architecture and it 
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follows several recommendation by Open Grid Forum. SBLOMARS could be more competitive 

base on its low resources consumption and its availability to offer at any moment reliable 

information regarding availability of computational resources.  

GridRM uses the Mercury Grid Monitoring System to deliver trace data to the host of 

visualization and PROVE [Bal01] visualizes trace information on-line during the execution of the 

grid applications. Unfortunately, they are oriented to Application Monitoring instead of Resource 

Monitoring and their two fixed layers structure is a scalability lack. GRM is a semi-on-line 

monitor that collects information about an application running in a distributed heterogeneous 

system and delivers the collected information to the PROVE visualisation tool. The information 

can be either event trace data or statistical information of the application behaviour. Semi-on-

line monitoring means, that any time during execution all available trace data can be required by 

the user and the monitor is able to gather them in a reasonable amount of time. GirdRM 

consists of three main components: client library, local monitor process and main monitor 

process. 

 

PROVE: It has been developed for performance visualisation of Tape/PVM trace files. It 

supports the presentation of detailed event traces as well as statistical information of 

applications [Bal01]. It can work both off-line and semi-on-line and it can be used for 

observation of long-running distributed applications. Users can watch the progress of their 

application and realise performance problems in it. PROVE communicates with the main 

monitor of GRM and asks for trace collection periodically. It can work remotely from the main 

monitor process. With the ability of reading new volumes of data and removing any portion of 

data from its memory, PROVE can observe application for arbitrary long time. 

 

The Ganglia Distributed Monitoring System: The Ganglia distributed monitoring system 

[Mas04] is a scalable distributed monitoring system for high-performance computing systems 

such as clusters and Grids. It is based on a hierarchical design targeted at federations of 

clusters. It is based on a hierarchical design targeted at federations of clusters. It leverages 

widely used technologies such as XML for data representation, XDR for compact, portable data 

transport, and RRDtool for data storage and visualization. It uses carefully engineered data 

structures and algorithms to achieve very low per-node overheads and high concurrency. The 

implementation is robust, has been ported to an extensive set of operating systems and 

processor architectures, and is currently in use on thousands of clusters around the world. It has 

been used to link clusters across university campuses and around the world and can scale to 

handle clusters with 2000 nodes. 
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Each node monitors its local resources and sends multicast packets containing monitoring 

data on a well-known multicast address whenever significant updates occur. Applications may 

also send on the same multicast address in order to monitor their own application-specific 

metrics. Ganglia distinguishes between built-in metrics and application-specific metrics through 

a field in the multicast monitoring packets being sent. All nodes listen for both types of metrics 

on the well-known multicast address and collect and maintain monitoring data for all other 

nodes. Thus, all nodes always have an approximate view of the entire cluster’s state and this 

state is easily reconstructed after a crash. 

 

Monitoring Agents using a Large Integrated Services Architecture: Monitoring Agents 

using a Large Integrated Services Architecture (MonAlisa) [Leg04] is a distributed monitoring 

service based on JINI/JAVA and WSDL/SOAP technologies, which provides monitoring 

information from large and distributed systems to higher level services that require such 

information. It could be argued that JINI is using multicast, which is not always available, and 

places scalability limits. Although, MonAlisa is a well justified flexible system, it runs remote 

scripts in Grid resources get behavioural information, this mainly causes an extra traffic in the 

network. Unlike this approach, SBLOMARS do not add monitoring traffic between resources 

forming the Grid. SBLOMARS offers end-to-end network monitoring with less impact in the 

network performance than MonAlisa does. 

 

Globus Heartbeat Monitor and Monitoring and Discovery Service: The Globus 

Heartbeat Monitor (HBM) [Bor05] was designed to provide a simple but reliable mechanism for 

detecting and reporting the failure (and state changes) of Globus system processes and 

application processes. The HBM module has been deprecated in the Globus toolkit. A daemon 

ran on each host gathering local process status information. A client was required to register 

each process that needed monitoring. Periodically, the daemon would review the status of all 

registered client processes, update its local state and transmit a report (on a per process basis) 

to a number of specific external data collection daemons. These data collecting daemons 

provided local repositories that permitted knowledge of the availability of monitored components 

based on the received status reports. The daemons also recognised status changes and 

notified applications that registered an interest in a particular process. The HBM was capable of 

process status monitoring and fault detection. HBM was unable to monitor resource 

performance, just availability, was based on a non-standard message format and required 

component daemons to be ported to all the available platforms used with a Grid. 
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The Monitoring and Discovery Service (MDS), constitutes the information infrastructure of 

the Globus Toolkit [Bor05]. Globus was designed and implemented as part of the Open Grid 

Services Architecture (OGSA) [Fos02a]. The Lightweight Directory Access Protocol (LDAP) 

[Ldap07] is adopted as a data model and representation, a query language and a transport 

protocol for MDS. However, LDAP features a non-declarative query interface that requires 

knowledge of the employed schema. In addition, the performance of OpenLDAP’s update 

operation, which is by far the most frequently used, has been very much criticized. 

 

NetLogger: Distributed System Performance Tuning and Debugging: NetLogger 

[Tie02] is both a methodology for analyzing distributed systems, and a set of tools to help 

implement the methodology. It provides tools for distributed application performance monitoring 

and analysis. It provides tools for distributed application performance monitoring and analysis. 

The toolkit enables users to debug, tune and detect bottlenecks in distributed applications. 

NetLogger components include client libraries, data monitoring, storage, retrieval and 

visualisation tools, and an open messaging format. The NetLogger messages can comprise of 

string, binary or XML encoded formats. The client library allows developers to add calls to 

existing source code so that monitoring events can be generated from their applications (events 

can be sent to file, network server, syslogd, or memory). The visualisation tool provides a 

means for event logs to be analysed. The storage and retrieval tools include a daemon to 

combine NetLogger events from multiple sources to a single central host and an event archive 

system. NetLogger provides a means to debug, tune and detect bottlenecks in distributed 

applications with a common messaging format. NetLogger requires source code modification, 

there is a single data collection repository, so scalability will be an issue in a Grid environment, 

and it appears that there is no security within the system. 

 

Resource Monitoring System (REMOS): The Remos (REsource MOnitoring System)  

[Dew04] aims to allow network-aware applications to obtain relevant information about their 

execution environment. It defines a uniform heterogeneous interface that addresses statistical 

information and efficiency for these environments. Remos aims to balance information accuracy 

(best-effort or statistical information) with efficiency (providing a query-based interface), to 

manage monitoring overheads. Remos consists of multiple (SNMP-based) collectors, which 

gather information about the network. Remos permits applications to obtain monitoring 

information in a portable manner, using platform independent interfaces, however it appears to 

lack any security mechanisms. 
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Java Agents for Monitoring and Management (JAMM): Finally, Java Agents for 

Monitoring and Management [Law00] is a distributed set of sensors that collect and publish 

monitoring information regarding computational systems. These systems have been presented 

for different frameworks and some of them are not available any more. Gateways allow clients 

to control or subscribe to a number of monitoring sensors, provide multiplexing/de-multiplexing 

and information filtering tasks. Loggers control the operation of sensors, and manage 

subscriptions for sensor output. Sensors execute on host systems, parse output from processes 

and transmit monitoring information to subscribers. A data collector combines data from multiple 

sensors into a single file for real-time visualization and analysis. A centralised directory service 

is required for event consumers to locate (registered) event producers. JAMM uses a 

subscription-based, event notification approach for monitoring processes executing on hosts. 

The central directory service is implemented using a hierarchy of replicated LDAP servers. Java 

based sensors can be implemented as active objects, permitting sensors to be added, removed 

dynamically or reconfigured, while non-Java sensors must be installed on each host. With 

JAMM, it appears that sensors are key aspects of concern. If the sensor is pure Java then there 

is only a limited amount of real system data that can be collected without resorting to native 

system calls. 

 

A.2.3 Grid Resource Schedulers 
 

A number of schedulers for grid computing systems have been developed [Fan06]. 

However only a few (Nimrod-G, GrADS and Condor would seem to (a) be at a relatively 

advanced stage of development and (b) have wide spread operational deployment by current 

Grid operators. It is interesting to note that, at the time of writing the Globus [Bor05] project is 

the current favourite grid computing toolkit, having been adopted by IBM, HP, etc. and thus 

many of the smaller scheduling projects have now either been integrated into Globus, or 

abandoned in favour of it. 

 

Globus Resource Management Architecture (GRMA): Globus resource management 

architecture consists of information service that is responsible for providing information about 

the current availability and capability of resources, co-allocator which is responsible for 

coordinating the allocation and management of resources at multiple sites, manager that is 

responsible for taking RSL (Resource Specific Language) specification, and GRAM [Glo07a] 

(grid resource allocation management) that is responsible for managing local Iesource. The 

previous resource management approaches as Globus don’t solve an optimal resource 

selection problem that is caused when the number of resources that satisfy user’s demand is 
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much more than the number of resources that User needs. Also, they don’t provide fault 

tolerance service to guarantee the efficient job execution after job allocation. In Globus, a 

noticeable flaw is the lack of support for fault tolerance. To date, grid applications have either 

ignored failure issues or have implemented fault detection and response behavior completely 

within the application. The support for fault tolerance has consisted mainly of fault detection 

services or monitoring system. 

 

Globus Architecture for Reservation and Allocation (GARA): The most well known 

technology available to reserve and allocate low-level resources such as memory, processing or 

storage is the Globus Architecture for Reservation and Allocation (GARA) [Fos99]. It enlarges 

the Globus resource management architecture basically in two ways: the first one is to generate 

an architecture with the ability of co-reserving resources and the second one is to generate a 

generic resource object in order to manage heterogeneous resources. 

 

Figure A.2 The GARA Architecture 
 

The GARA architecture allows applications appropriate access to end-to-end Quality of 

Service (QoS). To do so, it provides a mechanism for making QoS reservation for different types 

of resources, including disks, computers and networks. GARA provides management for 

separately administered resources. In Figure A.2 we show the GARA's architecture, which 

consists of three main components, the information service, local resource managers and co-

allocation/reservation agents. The information service allows applications to discover resource 

properties such as current and future availability. Local resource managers have been 

implemented for a variety of resource types, this explains the use of term "resource manager" 

rather than the more specific "bandwidth broker", although each one implements reservation, 

control and monitoring operations for a specific resource. 
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The reservation and allocation agents compute the resource requirements and send the 

request to the Globus Resource Allocation Manager. The GRAM takes the request, 

authenticates it and if successful forwards it to the local scheduler in order to allocate or serve 

the resource and finally returns the job handle to GARA. 

The support for heterogeneous resources is provided by a generic resource object that 

encapsulates network flows, memory blocks, disk blocks, and even processes. The support for 

advanced reservation is allowed by separating the reservation from allocation. For immediate 

resource allocation, the requested allocation is performed at the time of reservation, but in the 

case of advance reservation only a reservation handle is returned and the resources need to be 

reserved at the service start time. A new entity that is called Co-reservation Agent provides this 

advanced functionality. Its function is similar to the co-allocation agent one, except that after 

calculating the resource requirement for advanced reservation, it does not allocate but simply 

reserves the resources. GARA provides a simple, uniform interface for making advance 

reservations for any type of supported resource. The API provides functions for creating, 

modifying, binding, claiming, canceling, and monitoring reservations. Although it is as uniform as 

possible, different resources require different parameters. To accommodate these different 

needs within a single API, the create function call accepts a Resource Specification Language 

(RSL) string to specify the parameters for single reservation.  

 

Condor-G: The Condor-G system [Tha05] combines the inter-domain resource 

management protocols of the Globus Toolkit and the intra-domain resource management 

methods of Condor to allow the user to harness multi-domain resources as if they all belong to 

one personal domain. Condor-G handles all aspects of discovering and acquiring appropriate 

resources regardless of their location; initiating, monitoring and managing execution on those 

resources; detecting and responding to failure and notifying the user of termination. 

Condor-G is a resource management system designed to support high-throughput 

computations by discovering idle resources on a network and allocating those resources to 

application tasks. The main function of Condor-G is to allow utilization of machines that 

otherwise would be idle thus solving the wait-while-idle problem. A cluster of workstations 

managed by Condor-G is called a condor pool. Jobs submitted by the users are queued by 

Condor-G and scheduled on available machines in the pool transparently to the user. 

Condor-G selects a machine from the pool to run a user job, it can also migrate a running 

job from one machine to another until it is completed. Condor-G has a centralized scheduling 

model. A machine is the condor system (Central Manager) is dedicated to scheduling. Each 

condor work station submits the jobs in its local queue to the central scheduler which is 
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responsible for finding suitable resources for the job execution. The information about suitable 

available resources to run the job (execution machine information) is returned to the job 

submission machine. A shadow process is forked on the submission machine for each job, 

which is responsible for contacting and staging the job on the execution machine and monitoring 

its progress. Condor-G supports pre-emption of running jobs, if the execution machine decides 

to withdraw the resources Condor-G can pre-empt the job and schedule it on another machine 

thus providing for resource owner autonomy. The resource information needed for making 

scheduling decisions is also stored on the central Manager.  

 

Nimrod-G: The Nimrod-G [Buy00] is the most interesting of all the current grid meta-

schedulers. As part of the GRid Architecture for Computational Economy (GRACE) project. 

Nimrod-G also supports quality of service based scheduling (e.g. on the basis of deadlines and 

budgets). This grid-enabled resource management and scheduling mechanism provides a 

simple declarative parametric modelling language for expressing parametric experiments. 

Specifically, it supports user-defined deadline and budget constraints for schedule optimizations 

and manages the supply and demand for resources in the Grid using a set of resource trading 

services. 

Nimrod-G is grid-enabled resource management and scheduling system based on the 

concept of computational economy. It was designed to run parametric applications on 

computational grid. It uses the middleware services provided by Globus Toolkit but can also be 

extended to other middleware services. Nimrod-G uses the MDS services for resource 

discovery and GRAM APIs to dispatch jobs over grid resources. The users can specify deadline 

by which the results of there experiments are needed. Nimrod-G broker tries to find the 

cheapest resources available that can do the job and meet the deadline. Nimrod uses both 

static cost model (stored in a file in the information database) and dynamic cost model 

(negotiates cost with the resource owner) for resource access cost trade-off with the deadline. 

 

Legion: Legion [Cha99] is a reflective, object-based operating system for the Grid. It offers 

the infrastructure for grid computing. Legion provides a framework for scheduling which can 

accommodate different placement strategies for different classes of applications. Scheduler in 

Legion has a hierarchical structure. Users or active objects in the system invoke scheduling to 

run jobs, higher level scheduler schedules the job on cluster or resource group while the local 

resource manger for that domain schedules the job on local resources. Scheduling in Legion is 

placing objects on the processors. The resource namespace is graph based. 
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Scheduling framework acts as mediator to find a match between the placement requests 

and processors. When a job request is submitted, appropriate scheduler for the job is selected 

from the framework. Selection of the scheduler can be made by the user explicitly or attributes 

of the Class Object of the application can be used to specify the scheduler for the objects of that 

class. Object specific placement constraints are also specifies as attributes on the class object. 

Resource owners also specify security and resource usage policies using class Object 

attributes. Scheduler Object uses this information in making scheduling decision. Co-allocation 

of resources is not supported. The enactor object is responsible for enforcing the schedule 

generated by the scheduler object; more than one schedule is generated, if a schedule fails 

another one is tried until all the schedules are exhausted. Information about resources in the 

grid is stored in database object called a collection. For Scalability there could be more than 

collection object and collections can send and receive data from each other. Information is 

obtained from resources either by pull or push mechanism. Users or Schedulers query the 

collection to obtain resource information. 

 

Grid Resource Agreement and Allocation Protocol Working Group: The International 

Global Grid Forum (GGF) [Gra07a] is working on better solutions for scheduling applications 

with QoS through its Grid Resource Agreement and Allocation Protocol Working Group 

(GRAAP-WG), which is concerned with various issues relating to resource scheduling and 

resource management in Grid environments. To make use of distributed resources within the 

Grid at the same time to solve a problem a Super-Scheduling Service is necessary. Through 

this service access to and use of various resources managed by different schedulers in use 

within a Grid will be possible. The Grid Resource Allocation Agreement Protocol Working Group 

addresses the protocol between a Super-Scheduler (Grid Level Scheduler) and local 

Schedulers necessary to reserve and allocate resources in the Grid as a building block for this 

service. This working group has produced a "state of the art" document, laying down properties 

for advanced reservation in Grids [Gra07b]. This is a document which is designed to catalogue 

the advance reservation functionality which is available in current scheduling systems. 
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GENETIC ALGORITHMS BACKGROUND 

 
 
 
 
 
 
 
 
 

B.1 GENETIC ALGORITHMS BACKGROUND 
 
 

Genetic Algorithms (GAs) were firstly proposed by John Holland in 1975 [Hol75]. Genetic 

Algorithms are search algorithms based on the mechanics of the natural selection process 

(biological evolution). The most basic concept is that the strong tend to adapt and survive while 

the weak tend to die out. That is, optimization is based on evolution, and the "Survival of the 

fittest" concept. 
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Every organism has a set of rules, describing how that organism is built up from the tiny 

building blocks of life. These rules are encoded in the genes of an organism, which in turn are 

connected together into long strings called chromosomes. Each gene represents a specific trait 

of the organism, like eye colour or hair colour, and has several different settings. For example, 

the settings for a hair colour gene may be blonde, black or auburn. These genes and their 

settings are usually referred to as an organism's genotype. The physical expression of the 

genotype - the organism itself - is called the phenotype. 

When two organisms mate they share their genes. The resultant offspring may end up 

having half the genes from one parent and half from the other. This process is called 

recombination. Very occasionally a gene may be mutated. Normally this mutated gene will not 

affect the development of the phenotype but very occasionally it will be expressed in the 

organism as a completely new trait. 

GAs have the ability to create an initial population of feasible solutions [Rev95], and then 

recombine them in a way to guide their search to only the most promising areas of the state 

space. Each feasible solution is encoded as a chromosome (string) also called a genotype, and 

each chromosome is given a measure of fitness via a fitness (evaluation or objective) function. 

The fitness of a chromosome determines its ability to survive and produce offspring. A finite 

population of chromosomes is maintained. 

A genetic algorithm is a search technique used in computing to find exact or approximate 

solutions to optimization and search problems. Genetic algorithms are categorized as global 

search heuristics. They are a particular class of evolutionary algorithms (also known as 

evolutionary computation) that use techniques inspired by evolutionary biology such as 

inheritance, mutation, selection, and crossover (also called recombination). 

Genetic algorithms are implemented as a computer simulation in which a population of 

abstract representations (called chromosomes or the genotype or the genome) of candidate 

solutions (called individuals, creatures, or phenotypes) to an optimization problem evolves 

toward better solutions. Traditionally, solutions are represented in binary as strings of 0s and 1s, 

but other encodings are also possible. 

The evolution usually starts from a population of randomly generated individuals and 

happens in generations. In each generation, the fitness of every individual in the population is 

evaluated, multiple individuals are stochastically selected from the current population (based on 

their fitness), and modified (recombined and possibly randomly mutated) to form a new 

population. The new population is then used in the next iteration of the algorithm. Commonly, 

the algorithm terminates when either a maximum number of generations has been produced, or 

a satisfactory fitness level has been reached for the population. If the algorithm has terminated 
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due to a maximum number of generations, a satisfactory solution may or may not have been 

reached. 

 

The most important parameters in GAs: 

 

 Entities Encoding 

 Population Size 

 Evaluation Function 

 Selection Methods 

 Evolution Methods 

 

B.1.1  Entities Encoding 
 

A GA manipulates populations of chromosomes, which are string representations of 

solutions to a particular problem. A chromosome is an abstraction of a biological DNA 

chromosome. A particular position or locus in a chromosome is referred to as a gene and the 

letter occurring at that point in the chromosome is referred to as the allele value or simply allele. 

Any particular representation used for a given problem is referred to as the GA encoding of the 

problem. The classical GA uses a bit-string representation to encode solutions. Bit-string 

chromosomes consist of a string of genes whose allele values are characters from the alphabet 

{0,1}. For problems where GAs are typically applied, solution sets are finite but so large that 

brute-force evaluation of all possible solutions is not computationally feasible. It is not 

uncommon for a GA to be operating on bit strings of length 100, giving a solution space 

consisting of 2100–1030 individuals. 

The interpretation of these strings is entirely problem dependent. For example, a bit string 

of length 20 might be used to represent a single integer value (in standard binary notation) in 

one problem, whereas, in another, the bits might represent the presence or absence of 20 

different factors in a complex process. It is a strength of GAs that common representations can 

be used in this way for a multiplicity of problems, allowing the development of common 

processing routines and operators and making it faster and easier to apply GAs to new 

situations. On the other hand, the consequence is that the chromosome encoding alone will 

contain only limited problem-specific information. Much of the meaning of a specific 

chromosome for a particular application is encoded in the second component of a GA, the 

fitness function. 
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B.1.2  Population Size 
 

An initial population is created from a random selection of solutions (which are analagous 

to chromosomes). This is unlike the situation for Symbolic AI systems, where the initial state in a 

problem is already given instead. Determining the size of the population is a crucial factor. 

Choosing a population size too small increases the risk of converging prematurely to a local 

minima, since the population does not have enough genetic material to sufficiently cover the 

problem space. A larger population has a greater chance of finding the global optimum at the 

expense of more CPU time. The population size remains constant from generation to 

generation. 

 

B.1.3  Evaluation Function 
 

A value for fitness is assigned to each solution (chromosome) depending on how close it 

actually is to solving the problem (thus arriving to the answer of the desired problem). (These 

"solutions" are not to be confused with "answers" to the problem, think of them as possible 

characteristics that the system would employ in order to reach the answer.). 

The fitness function is a computation that evaluates the quality of the chromosome as a 

solution to a particular problem. By analogy with biology, the chromosome is referred to as the 

genotype, whereas the solution it represents is known as the phenotype. The translation 

process can be quite complicated. In timetabling and manufacturing scheduling GAs, for 

example, a chromosome is translated into a timetable or set of scheduled activities involving 

large numbers of interacting resources. The fitness computation will then go on to measure the 

success of this schedule in terms of various criteria and objectives such as completion time, 

resource utilisation, cost minimisation and so on. This complexity is reminiscent of biological 

evolution, where the chromosomes in a DNA molecule are a set of instructions for constructing 

the phenotypical organism. A complex series of chemical processes transforms a small 

collection of embryonic cells containing the DNA into a full-grown organism, which is then 

“evaluated” in terms of its success in responding to a range of environmental factors and 

influences. 

 

B.1.4  Selection Methods 
 
A GA uses fitness as a discriminator of the quality of solutions represented by the 

chromosomes in a GA population. The selection component of a GA is designed to use fitness 

to guide the evolution of chromosomes by selective pressure. Chromosomes are therefore 
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selected for recombination on the basis of fitness. Those with higher fitness should have a 

greater chance of selection than those with lower fitness, thus creating a selective pressure 

towards more highly fit solutions. Selection is usually with replacement, meaning that highly fit 

chromosomes have a chance of being selected more than once or even recombined with 

themselves. The traditional selection method used is Roulette Wheel (or fitness proportional) 

selection. This allocates each chromosome a probability of being selected proportional to its 

relative fitness, which is its fitness as a proportion of the sum of fitnesses of all chromosomes in 

the population. There are many different selection schemes. Random Stochastic Selection 

explicitly selects each chromosome a number of times equal to its expectation of being selected 

under the fitness proportional method. Tournament Selection first selects two chromosomes 

with uniform probability and then chooses the one with the highest fitness. Truncation Selection 

simply selects at random from the population having first eliminated a fixed number of the least 

fit chromosomes. 

Those chromosomes with a higher fitness value are more likely to reproduce offspring 

(which can mutate after reproduction). The offspring is a product of the father and mother, 

whose composition consists of a combination of genes from them (this process is known as 

"crossing over". 

 

B.1.5  Evolution Methods 
 

GAs use probabilistic rules to evolve a population from one generation to the next. The 

generations of the new solutions are developed by genetic recombination operators: 

 

 Biased Reproduction: Selecting the fittest to reproduce. This method is the 

hardest of all of them. In this case just the best organisms are selected but this 

methodology could affect further generations or the new offspring. It is really not 

very recommended because there is a great level of probability to fall down into a 

local minima. 

 

 Crossover: Combining parent chromosomes to produce children chromosomes. It 

combines the "fittest" chromosomes and passes superior genes to the next 

generation. Mate each string randomly using some crossover technique. For each 

mating, randomly select the crossover position(s). (Note one mating of two strings 

produces two strings. Thus the population size is preserved). 
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 Mutation: Altering some genes in a chromosome. It ensures the entire state-space 

will be searched, (given enough time) and can lead the population out of a local 

minima. Mutation is performed randomly on a gene of a chromosome. Mutation is 

rare, but extremely important.  As an example, perform a mutation on a gene with 

probability .005. If the population has g total genes (g = string length * population 

size) the probability of a mutation on any one gene is 0.005g, for example.  This 

step is a no-op most of the time. Mutation insures that every region of the problem 

space can be reached.   When a gene is mutated it is randomly selected and 

randomly replaced with another symbol from the alphabet. 
 

Reproduction

Population Evaluation
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Selection

Deleted 
Members

Parents

Children

New
Generation

Generation
Evaluated
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Modification
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Members

Parents

Children

New
Generation

Generation
Evaluated

 
Figure B.1 The Cycle of Life of the Genetic Algorithms 

 

 

After recombination, resultant chromosomes are passed into the successor population. The 

processes of selection and recombination are then iterated until a complete successor 

population is produced. At that point the successor population becomes a new source 

population (the next generation). The GA is iterated through a number of generations until 

appropriate topping criteria are reached. These can include a fixed number of generations 

having elapsed, observed convergence to a best-fitness solution, or the generation of a solution 

that fully satisfies a set of constraints. 
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There are several evolutionary schemes that can be used [Bac93], depending on the 

extent to which chromosomes from the source population are allowed to pass unchanged into 

the successor population. These range from complete replacement, where all members of the 

successor population are generated through selection and recombination to steady state, where 

the successor population is created by generating one new chromosome at each generation 

and using it to replace a less-fit member of the source population.  

The choice of evolutionary scheme is an important aspect of GA design and will depend on 

the nature of the solution space being searched. A widely used scheme is replacement-with-

elitism. This is almost complete replacement except that the best one or two individuals from the 

source population are preserved in the successor population. This scheme prevents solutions of 

the highest relative fitness from being lost from the next generation through the nondeterministic 

selection process. If the new generation contains a solution that produces an output that is close 

enough or equal to the desired answer then the problem has been solved. If this is not the case, 

then the new generation will go through the same process as their parents did. This will 

continue until a solution is reached (Figure B.1). 
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B.2 THE STANDARD GENETIC ALGORITHM 
 

The standard genetic algorithm proceeds as follows: 

 
1. Choice of Alphabet. 

2. Choose initial population  

3. Evaluate the fitness of each individual in the population  

4. Repeat  

1. Select best-ranking individuals to reproduce  

2. Breed new generation through crossover and mutation (genetic operations) and 
give birth to offspring  

3. Evaluate the individual fitnesses of the offspring  

4. Replace worst ranked part of population with offspring  

5. Until <terminating condition>  
 

An example of the distribution of individuals (solution) from one generation to the next one 

is shown in Figure B.2 and Figure B.3. 

 
Figure B.2 Distribution of Individuals in Generation 0 

 
Figure B.3 Distribution of Individuals in Generation N 
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