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Abstract

Traditionally, multiple access schemes in multi-user communications systems have been designed
either connection-oriented or traffic-oriented. In the first ones, the goal was to provide as many
orthogonal channels as possible, each one serving a different connection. That is the motivation
of the so-called FDMA, TDMA and CDMA solutions. On the other hand, random access tech-
niques, which started with the so-called ALOHA protocol, aim to statistically multiplex a shared
communication medium by means of exploiting the random and bursty nature of transmission
needs in data networks. Most of the multiple access solutions can be interpreted according
to that classification or as a combination of those approaches. Notwithstanding, modern sys-
tems, such as the digital satellite communications standard DVB-RCS or the broadband wireless
access WiMAX, have implemented a multiple access technique where users request for transmis-
sion opportunities and receive grants from the network, therefore requiring dynamic bandwidth
allocation techniques.

The concept of dynamic bandwidth allocation is wide and involves a number of physical and
link layer variables, configurations and protocols. In this Ph.D. dissertation we first explore the
mathematical foundation that is required to coordinate the distinct layers of the OSI protocol
stack and the distinct nodes within the network. We talk about decomposition techniques focused
on the resolution of convex programs, which have elegantly solved many problems in the signal
processing and communications fields during the last years. Known schemes are reviewed and
a novel decomposition methodology is proposed. Thereafter, we compare the four resulting
strategies, each one having its own particular signalling needs, which results in distinct cross-layer
interactions or signalling protocols at implementation level. The results in terms of iterations
required to converge are favourable to the proposed method, thus opening a new line of research.

Finally, we contribute with two practical application examples in the DVB-RCS and WiMAX
systems. First, we formulate the dynamic bandwidth allocation problem that is derived from the
multiple access schemes of both systems. Thereafter, the resulting Network Utility Maximization
(NUM) based problem is solved by means of the previous decomposition mechanisms. The goal is
to guarantee fairness among the users at the same time that Quality of Service (QoS) is preserved.
In order to achieve that, we choose adequate utility functions that allow to balance the allocation
towards the most priority traffic flows under a common fairness framework. We show that in
the scenarios considered, the novel proposed coupled-decomposition method reports significant
gains since it reduces significantly the iterations required (less iterations implies less signalling)
or it reduces the time needed to obtain the optimal allocation when it is centrally computed
(more users can be managed). We further show the advantages of cross-layer interactions with
the physical and upper layers, which allow to benefit from more favourable adjustments of the
transmission parameters and to consider the QoS requirements at upper layers.
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In general, an efficient implementation of dynamic bandwidth allocation techniques in De-
mand Assignment Multiple Access (DAMA) schemes may report significant performance gains
but it requires proper coordination among system layers and network nodes, which is attained
thanks to decomposition techniques. Each new scenario and system adds another optimization
challenge and, as far as we are able to coordinate all the variables in the system towards that
optimal point, the highest will be the revenue.



Resumen

Tradicionalmente, las técnicas de acceso múltiple en sistemas comunicaciones multi-usuario han
sido desarrolladas o bien orientadas a conexión o bien orientadas al tráfico. En el primer caso,
el objetivo es establecer tantos canales ortogonales como sea posible con el fin de asignarlos
a los usuarios. Esta idea motivó el diseño de las estrategias más conocidas, como son FDMA,
TDMA y CDMA. Por otro lado, los métodos de acceso aleatorio que tuvieron sus inicios en
el famoso ALOHA pretenden compartir estad́ısticamente un mismo medio de comunicación
sacando provecho de la necesidad de transmitir la información en ráfagas, caso habitual en
las redes de datos. De este modo, muchos de los sistemas actuales se pueden enmarcar dentro
de dicha clasificación si además tenemos en cuenta posibles soluciones h́ıbridas. No obstante,
sistemas modernos como el DVB-RCS en el entorno de las comunicaciones digitales por satélite
o WiMAX en el acceso terrestre de banda ancha han implementado mecanismos de petición y
asignación de recursos, los cuales requieren de una gestión dinámica de éstos en el sistema (a lo
que llamamos distribución dinámica del ancho de banda en sentido amplio).

El concepto anterior incluye múltiples variables, configuraciones y protocolos tanto de capa
f́ısica como de capa de enlace. En esta tesis se exploran en primer lugar las bases matemáticas
que permiten coordinar las distintas capas de la división OSI de los sistemas y los diferentes
nodos dentro de la red. Nos referimos a las técnicas de descomposición centradas en problemas
de descomposición convexos, los cuales han aportado, durante los últimos años, soluciones ele-
gantes a muchos problemas dentro de los campos del procesado de la señal y las comunicaciones.
Revisamos los esquemas conocidos y proponemos una nueva metodoloǵıa. Acto seguido, se com-
paran las distintas posibilidades de descomposición, cada una de las cuales implica distintas
formas de establecer la señalización. En la práctica, son dichas descomposiciones las que dan
lugar a las diferentes interacciones entre capas o los protocolos de control entre los elementos
de red. Los resultados en cuanto a número de iteraciones necesarias para llegar a la solución
óptima son favorables al método propuesto, el cual abre nuevas ĺıneas de investigación.

Finalmente, se contribuye también con ejemplos de aplicación, en DVB-RCS y en WiMAX.
Planteamos el problema de gestión de recursos resultante del acceso múltiple dispuesto en cada
uno de los sistemas como un problema de maximización de utilidad de red (conocido como
NUM en la bibliograf́ıa) y los solucionamos aplicando las técnicas anteriores. El objetivo será
garantizar la equidad entre los usuarios y preservar, al mismo tiempo, su calidad de servicio.
Para conseguirlo se deben seleccionar funciones de utilidad adecuadas que permitan balancear
la asignación de recursos hacia los servicios más prioritarios. Mostraremos como en los escenar-
ios considerados, el uso del método propuesto conlleva ganancias significativas en términos de
iteraciones necesarias en el proceso (y por lo tanto, menos señalización) o bien menos tiempo
de cálculo en un enfoque centralizado (que se traduce en la posibilidad de incluir más usuarios).
También se muestran las ventajas de considerar interacciones entre capas, ya que se pueden
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ajustar los parámetros de capa f́ısica con el objetivo de favorecer los tráficos más prioritarios o
bien extraer los requerimentos de servicio de valores t́ıpicamente disponibles en capas superiores.

En general, la implementación eficiente de técnicas de gestión dinámica de recursos en el
acceso múltiple de los sistemas puede aportar ganancias importantes pero necesita de una buena
coordinación entre capas y elementos de red. La herramienta matemática que lo hace posible está
en las técnicas de descomposición. Cada nuevo escenario y sistema introduce un nuevo reto de
optimización y la capacidad de guiar las variables del sistema hacia el punto óptimo de trabajo
es lo que determinará su rendimiento global.



Resum

Tradicionalment, les tècniques d’accés múltiple en sistemes de comunicacions multi-usuari han
estat desenvolupades o bé orientades a la connexió o bé orientades al tràfic. En el primer cas,
l’objectiu és establir tants canals ortogonals com sigui possible per tal d’assignar-los als usuaris.
Aquesta idea va motivar el disseny de les estratègies més conegudes, com són FDMA, TDMA
i CDMA. Per altra banda, però, els mètodes d’accés aleatori que s’iniciaren amb el conegut
ALOHA pretenen compartir estad́ısticament un mateix medi de comunicació aprofitant la neces-
sitat de transmetre la informació a ràfegues que s’origina en les xarxes de dades. Aix́ı, molts dels
actuals sistemes es poden encabir dins d’aquest esquema si a més a més, tenim en compte combi-
nacions d’aquestes. No obstant, sistemes moderns com el DVB-RCS en l’entorn de comunicacions
digitals per satèl·lit o el WiMAX en l’accés terrestre de banda ampla implementen mecanismes
de petició i assignació de recursos, els quals requereixen una gestió dinàmica d’aquests en el
sistema (és el que s’anomena distribució dinàmica de l’amplada de banda en un sentit ampli).

L’anterior concepte inclou múltiples variables, configuracions i protocols tant de capa f́ısica
com de capa d’enllaç. En aquesta tesi s’exploren en primer lloc les bases matemàtiques que
permeten coordinar les diferents capes de la divisió OSI dels sistemes i els distints nodes dins
la xarxa. Ens referim a les tècniques de descomposició focalitzades en problemes d’optimització
convexa, els quals han aportat, durant els últims anys, solucions elegants a molts problemes dins
dels camps del processament del senyal i les comunicacions. Revisarem els esquemes coneguts
i proposarem una nova metodologia. Acte seguit, es comparen les diferents possibilitats de de-
scomposició, cadascuna de les quals implica diferents maneres d’establir la senyalització. A la
pràctica, són aquestes diverses opcions de descomposició les que infereixen les diferents interac-
cions entre capes o els protocols de control entre elements de la xarxa. Els resultats en quant a
nombre d’iteracions requerides per a convergir a la solució òptima són favorables al nou mètode
proposat, la qual cosa obra noves ĺınies d’investigació.

Finalment, es contribueix també amb dos exemples d’aplicació, en DVB-RCS i en WiMAX.
Formulem el problema de gestió de recursos resultant de l’accés múltiple dissenyat per cadas-
cun dels sistemes com un problema de maximització d’utilitat de xarxa (conegut com a NUM
en la bibliografia) i el solucionarem aplicant les tècniques anteriors. L’objectiu serà garantir
l’equitativitat entre els usuaris i preservar, al mateix temps, la seva qualitat de servei. Per
aconseguir-ho, cal seleccionar funcions d’utilitat adequades que permetin balancejar l’assignació
de recursos cap als serveis més prioritaris. Mostrarem que en els escenaris considerats, l’ús del
mètode proposat comporta guanys significatius ja que requereix menys iteracions en el procés
(i per tant, menys senyalització) o bé menys temps de càlcul en un enfoc centralitzat (que es
tradueix en la possibilitat d’incloure més usuaris). També es mostren els avantatges de con-
siderar interaccions entre capes, ja que es poden ajustar els paràmetres de capa f́ısica per tal
d’afavorir els tràfics més prioritaris o bé extreure els requeriments de servei de valors t́ıpicament
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disponibles en capes superiors.

En general, la implementació eficient de tècniques de gestió dinàmica de recursos trebal-
lant en l’accés múltiple dels sistemes pot aportar guanys significatius però implica establir una
bona coordinació entre capes i elements de xarxa. L’eina matemàtica que ho possibilita són les
tècniques de descomposició. Cada nou escenari i sistema introdueix un nou repte d’optimització
i la capacitat que tinguem de coordinar totes les variables del sistema cap al punt òptim en
determinarà el rendiment global.
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Chapter 1

Introduction

1.1 Motivation

Since the irruption of modern wireless communications with the first generation of mobile tele-

phony, one of the major issues to be solved in the design of these systems was the management

of multiple users accessing to the system at the same time. At the very beginning, the design

was strongly influenced by the connection-oriented philosophy that prevailed in the switched

core networks. Note that at the time, all the effort was devoted to the provision of voice services

and thus, the idea of establishing a dedicated and permanent end-to-end connection was mean-

ingful, since the connection would be, in principle, used during the most of the call duration. In

that sense, the goal was to define multiple ‘virtual channels’ within the air interface so that the

access network could work similarly to the core network. Depending on the available research

and technology at each time, that virtual channelization has been achieved in basically three

different ways (from oldest to newest): i) assign part of the radio-frequency spectrum to each

user, ii) allocate a different portion of the time to each user and iii) transmit all the time using

all the available spectrum but differentiating users thanks to orthogonal modulations. A brief

review on those topics is provided in Chapter 2.

However, the introduction of a novel network philosophy, i.e. packet-oriented, changed things

completely. Assuming services with large inactivity periods (as for example web browsing or e-

mail), it made no sense to create permanent and dedicated connections. The new approach was

to organize the information in packets of bits and to share the links in the network in order

to transport packets from different users. Each packet must contain the destination address so

that it can be correctly routed through the nodes in the network. Nowadays, the widely spread

Transfer Control Protocol (TCP) in combination with the Internet Protocol (IP) and multiple

works that discuss about the convergence of systems at an IP-like level is a contrasting proof

about the interest on packet networks. This new philosophy also influenced the access networks

and some multiple-access protocols performed a contention-based statistical multiplexing of the
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2 1.1. Motivation

wireless link in order to adapt the access technique to the packetized and bursty nature of the

traffic. A pioneering example of traffic-based multiple access protocols is the well-known ALOHA

network developed in the Hawaiian islands in 1970.

Notwithstanding, both multiple access techniques have its pros and cons. In one hand, in

connection-oriented solutions, one can dimension the ‘virtual channels’ within the system in

order to provide the desired level of Quality of Service (QoS) to the end-users. However, in case

that a single connection is intended to support multiple services with different QoS requirements,

there may be over-provisioning of resources as far as the design must necessarily accommodate

the most demanding services (note that other services do not take advantage of the extra resource

allocation). Moreover, a dedicated connection strategy is also inefficient when it manages traffic

types that have long non-activity periods, which leads to a waste of resources, too. Furthermore,

it is unfair since some users may be blocked whereas others do not take full advantage of their

own connections. On the other hand, in contention-based solutions, users try to access the

channel at the time that they have information to be sent and hence, they are statistically

multiplexed. However, it is known that such mechanisms lead to a poor utilization of the multi-

user channel and do not asses well the issues of fairness among users and QoS management.

Dynamic Bandwidth Allocation (DBA) techniques can interpreted as hybrid solutions between

connection-based and contention-based strategies and they are good candidates to exploit the

bandwidth of the system, supporting QoS requirements and guaranteeing fairness among users.

In the last years, many problems within the communications and signal processing fields

have been expressed as convex programs and elegantly solved thanks to the well-established

convex optimization theory. Motivated by the advantages that convex optimization provides,

this work explores the implementation of DBA strategies in the framework of convex program-

ming. Furthermore, since the performance metrics under study depend, in the most general case,

on parameters that are either spread over the network elements or over distinct variables within

the same element (that may belong to different layers in the protocol stack), the development

of distributed optimization techniques plays a very important role. In the first case, for exam-

ple when we try to find the optimal rates of service flows within a given network, distributed

techniques avoid gathering information at a central node (which implies excessive network sig-

nalling). In the second case, when we further try to jointly adjust the capacity of each link (that

depends on parameters in the physical layer), distributed techniques guide us in the process of

establishing the required messaging between layers on the protocol stack. Therefore, exploring

the universe of decomposition possibilities within the convex programming framework has also

been part of the motivation of the following work.
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1.2 Outline of the Dissertation

In this Ph.D. dissertation we study Dynamic Bandwidth Allocation as a technique that allows

us to dynamically allocate radio resources in response to the current transmission needs of users

accessing a given system. The concept of bandwidth is interpreted in a wide sense throughout

this work (analogue to radio resource) and it does not necessarily mean a portion of the radio-

frequency spectrum. For example, from a network perspective, it just means a portion of the

total rate capacity of a given link (assumed fixed) and it does not take into account any dynamic

adjustment of the transmission parameters. In a wider view that includes communication issues,

DBA also tunes the parameters at the physical layer in order to attain a more favourable

allocation. Throughout this text, DBA is framed as a convex optimization problem and, as

motivated in the previous section, we are interested in solutions that are distributed and, if

possible, efficient in terms of computational time. The text is organized as follows.

In Chapter 2 we review multiple access techniques and we introduce all the theoretical issues

that will be considered later on in the specific DBA schemes. Those issues are cross-layer design,

fairness formulation and the Network Utility Maximization (NUM) framework. Thereafter, we

detail a literature review on the DBA-related works in two systems aiming to support mul-

timedia applications: the Digital Video Broadcasting (DVB)-Return Channel Satellite (RCS)

as a multimedia satellite platform and the Worldwide Interoperability for Microwave Access

(WiMAX) as the terrestrial wireless solution for the broadband access in the mid-range.

Chapter 3 includes theoretical work about convex decomposition techniques to solve the

NUM problem, which allow us to attain distributed algorithms in practice. We begin the chap-

ter by reviewing some basics in convex optimization and thereafter, we present known decom-

position techniques. The first ones, primal and dual decomposition, have been widely used in

many research papers. On the contrary, the third one, which is the Mean Value Cross (MVC)

decompositions method, has been recently introduced in the wireless community and proposes

a combination of primal and dual decompositions in a single approach. Finally, we introduce

our proposed method, the coupled-decompositions method. It also combines primal and dual

decompositions as the MVC decomposition method but using a radically different structure. We

compare our scheme with the previous strategies and it shows significant advantage in terms of

iterations required to reach the solution.

In Chapter 4 we analyze how the multiple access is defined in DVB-RCS and we propose

an specialized framework to organize the standardized Multi Frequency (MF)-Time Division

Multiple Access (TDMA) frame. Thanks to the application of the previous decomposition results

we derive a computationally efficient solution. Even given that the DVB-RCS scenario allows

us to perform a centralized optimization, the proposed method is still superior when compared

to known efficient techniques such as the bisection method. We further show that our solution
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allows a proper bandwidth utilization when we take into account cross-layer information from

the physical layer in the resource allocation process. Finally, we exemplify that the resulting

solution responds to a fairness criteria and that it provides mechanisms to balance resources

towards the most priority services.

Chapter 5 contains another application of the results in Chapter 3 to the computation of

a DBA multiple access in the uplink of a WiMAX system. Within the general DBA model

described in Section 2.4.2, we focus on the flow control part, thus assuming fixed link capacities

in the network. Resources are distributed, as in the previous case, according to requests and

to services priorities. The main difference is in the network topology considered. Whereas in

the DVB-RCS case we assumed a Point-to-MultiPoint (PMP) network, in this case we consider

a tree-deployed structure, which is a particular case of a WiMAX mesh network. Using the

coupled-decomposition method, it is possible to globally solve the flow allocation problem using

reduced inter-node signalling. Indeed, it is only required inside the sub-pieces in which we divide

the whole network. Furthermore, the resulting strategy is in accordance with the definition of

centralized scheduling in the standard document.

Finally, Chapter 6 ends this Ph.D. dissertation with a summary of the work and some

conclusions. We also outline some open issues to be dealt with in future research.

1.3 Research Contributions

This thesis collects all the work that has been carried during the last three years. Most of the

results have been published in one book chapter, one international journal and some international

conference papers. In the following we list the contributions at each chapter.

Chapter 3

Part of the results within the chapter have been published in the following international confer-

ence papers:

• A. Morell, G. Seco-Granados, M.A. Vázquez-Castro, “Computationally Efficient Cross-

Layer Algorithm for Fair Dynamic Bandwidth Allocation”, in Proceedings of the 16th

International Conference on Computer Communications and Networks 2007, ICCCN’07,

pp.13-18, August 2007.

• A. Morell and G. Seco-Granados, “Distributed Algorithm for Uplink Scheduling in WiMAX

Networks”, to appear in Proceedings of IEEE Broadnets 2008.

• G. Seco-Granados, M.A. Vázquez-Castro, A. Morell and F. Vieira, “Algorithm for Fair
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Bandwidth Allocation with QoS Constraints in DVB-S2/RCS”, in Proceedings of the IEEE

Global Telecommunications Conference 2006, GLOBECOM’06, pp.1-5, November 2006.

Chapter 4

The results within the chapter have been published in the following book chapter, international

journal and international conference papers:

• T. Pecorella, G. Mennuti (chapter editors), N. Celandroni, F. Davoli, E. Ferro, A. Gotta,

S. Karapantazis, A. Morell, G. Seco-Granados, P. Todorova and M.A. Vázquez-Castro

(authors in alphabetical order), “Dynamic Bandwidth Allocation”, chapter in Resource

Management in Satellite Networks: Optimization and Cross-Layer Design, edited by G.

Giambene, ISBN 0-387-36897-3, Springer Science+Bussiness Media, 2007.

• A. Morell, G. Seco-Granados and M.A. Vázquez-Castro, “Cross-Layer Design of Dynamic

Bandwidth Allocation in DVB-RCS”, IEEE Systems Journal, Volume 2, Number 1, pp.

62-73.

• A. Morell, G. Seco-Granados and M.A. Vázquez-Castro, “Enhanced Dynamic Resource Al-

location for DVB-RCS: a Cross-Layer Operational Framework”, in Proceedings of Military

Communications Conference 2007, MILCOM’07, Orlando, October 2007.

• M. Luglio, F. Zampognaro, A. Morell and F. Vieira, “Joint DAMA-TCP protocol opti-

mization through multiple cross layer interactions in DVB RCS scenario”, in Proceedings

of the International Workshop on Satellite and Space Communications, IWSSC’07, pp.

13-14, September 2007.

• A. Morell, G. Seco-Granados, M.A. Vázquez-Castro, “Joint Time Slot Optimization and

Fair Bandwidth Allocation for DVB-RCS Systems”, IEEE Global Telecommunications

Conference 2006, GLOBECOM’06, pp.1-5, November 2006.

• A. Omari, G. Seco-Granados, M.A. Vázquez-Castro, A. Morell, A. Lyhyaoui and N. Rais-

souni, “Analysis of the Efficiency and Delay of Bandwidth Request Algorithms in DVB-

RCS”, in Proceedings International Workshop on Satellite and Space Communications,

IWSSC’06, pp. 165-169, September 2006.

Chapter 5

The results within the chapter have been published in the following international conference

paper. Furthermore, an international journal paper has been submitted.
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• A. Morell, G. Seco-Granados and J.L. Vicario, “Fair Adaptive Bandwidth and Subchannel

Allocation in the WiMAX Uplink”, submitted to the special issue on “Fairness in Ra-

dio Resource Management for Wireless Networks” of the EURASIP Journal on Wireless

Communications and Networking.

• A. Morell and G. Seco-Granados, “Distributed Algorithm for Uplink Scheduling in WiMAX

Networks”, to appear in Proceedings of IEEE Broadnets 2008.

Other Research Contributions

The author of this Ph.D. dissertation has contributed as the main author in other research

contributions whose content is not included in the present document. These contributions are:

• A. Morell, A. Pascual-Iserte and Ana I. Pérez-Neira, “Fuzzy Inference Based Robust Beam-

forming”, Elsevier Signal Processing, Volume 85, pp. 2014-2029, October 2005.

• A. Morell, A. Pascual-Iserte, A.I. Pérez-Neira and M.A. Lagunas, “Robust Scheduling in

MIMO-OFDM Multi-User Systems Based on Convex Optimization”, in Proceedings of the

1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive

Processing (CAMSAP), pp. 13-15, December 2005.

• A. Morell, A.I. Pérez-Neira and N. Martin, “Fuzzy-Inference-Based Robust Beamform-

ing”, in Proceedings of the Information Processing and Management of Uncertainty in

Knowledge-Based Systems 2004, IPMU’04, pp. 1627-1634, Perugia (Italy), July 2004.

Finally, other research works where the author has contributed are:

• A.I. Pérez-Neira, M.A. Lagunas, A. Morell and J. Bas, “Neuro-Fuzzy Logic in Signal

Processing for Communications: from Bits to Protocols”, chapter in Lecture Notes in

Computer Science, ISBN 3-540-31257-9, pp. 10-36, ed. Springer Verlag Berlin Heidelberg,

2005.

• J.L. Vicario, A. Morell, A. Bel and G. Seco-Granados, “Optimal Power Allocation in

Opportunistic Relaying with Outdated CSI”, in Proceedings of IEEE Sensor Array and

Multichannel Signal Processing Workshop (SAM), 2008.

• J. Albiol, J.M. Alins, J.M. Cebrián, J. Mata, A. Morell, C. Morlet, G. Seco-Granados, M.A.

Vázquez-Castro and F. Vieira, “IP-Friendly Cross-Layer Optimization of DVB-S2/RCS”,

in Proceedings of the ESA Workshop on Signal Processing for Space Communications,

2006.



Chapter 2

Dynamic Bandwidth Allocation

Dynamic Bandwidth Allocation (DBA), as considered in this work, is a relatively recent concept

closely connected to the development of new communication services and systems. It is the

natural evolution of the old Dynamic Channel Assignment (DCA) schemes that date from the

early 70s, where the goal was to dynamically allocate system channels to the base stations so as

to adapt to varying channel, interference and traffic conditions [And73]. By those days (and more

or less until the early 90s), the list of accessible telecommunication services (excluding broadcast

radio and television) by most of the population in developed countries was monopolized by the

phone voice service. It was in that time when the wireless segment began to complement the wired

telephone network and when the Internet started to be used. Those were two great technical

steps forward at the end of the past century, with great social and economical repercussion. As

mobile phones became more and more popular, one of the main concerns of system designers was

to enable the coexistence of as many radio signals as possible in the wireless channel. Therefore,

the distinct strategies should provide some type of orthogonality between signals so as to be able

to distinguish them. In market terms, this increased revenue for the companies that operated the

service because more users (clients) would use the network and pay for that. However, there was

very little concern on the service itself because the interest was only in a single one: the voice.

So much so that when Europe designed the second generation of mobile telephony, the Global

System for Mobile Communications (GSM), still in use, the Short Message Service (SMS) was

added without expecting the popularity it finally reached.

In parallel, Internet arrived to the home user and the broadband access was enabled thanks

to the family of Digital Subscriber Line (DSL) or cable technologies. Much attention has been

paid to DSL (using OFDM modulation) since it allows us to take advantage of the available

bandwidth in the old copper pairs without substituting them whereas the cable solution has

an important deployment cost. Moreover, the third generation of mobile telephony, known as

Universal Mobile Telecommunications Systems (UMTS), provides potential broadband access

to IP services such as Voice over IP (VoIP), videoconference or simple web browsing. Therefore,

7
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Figure 2.1: Classification of multiple access strategies.
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voice is no longer the only service of interest and a new challenge appears: how to effectively

manage the set of present and future services that may have different network requirements.

Note, for example, that a latency of about a second does not bother the potential user that

is surfing the Internet but will definitely exasperate an individual talking over VoIP. Roughly

speaking, we identify two big problems in the new scenario, namely: i) the classical one, which

is to boost the capacity of the network and ii) the efficient management of services with distinct

requirements from the network.

Let us now review the mechanisms that communication systems use to enable the coexistence

of the users in the network, i.e. the so-called multiple access techniques. We classify them into

connection-oriented and contention-oriented multiple access techniques. In connection-oriented

mechanisms, the concern is about how to coordinate the transmission of the multiple users

without taking into account the nature of the transported traffic and the services within. It is

for example the case in most still in use wireless telephony systems, such as GSM in Europe or

cdmaOne in the United States, where the goal is to enable as many simultaneous connections

(calls) as possible. On the other hand, contention-oriented techniques are designed responding

to the nature of the traffic in datagram packet networks [Cer78], e.g. Internet Protocol (IP). See

the classification in Figure 2.1.

Among the connection-oriented techniques, we distinguish:

• Frequency Division Multiple Access (FDMA): In this case, orthogonality among signals

is granted by transmitting them in distinct frequency bands, the subchannels. In general,

each user accessing the network is assigned a subchannel where it transmits. Due to tech-

nological impairments in the transceiver equipment, e.g. subchannel selection filters, it is

necessary to keep some guard interval between adjacent subchannels, which introduces

inefficiency in bandwidth utilization. It is possible to counteract such inefficiency using

the Orthogonal Frequency Division Multiplexing (OFDM) modulation principles in the

so-called Orthogonal Frequency Division Multiple Access (OFDMA) technique [Kof02].

The idea is to allow adjacent subchannels to overlap but keeping the orthogonality of the

transmitted signals. The implementation of OFDM and OFDMA has not been possible

until the digital age.

• Time Division Multiple Access (TDMA): In TDMA, all users transmit using the whole

available bandwidth in the system. In order to keep orthogonality among signals, only one

user accesses the channel at a given time. Time is divided in TDMA in frames and the

time within each frame into slots. In general, one users employs one time slot per frame to

complete its transmission, so that it uses a portion of the total. As in FDMA, it is necessary

to fix a time guard interval between adjacent time slots in order to avoid collisions.

• Code Division Multiple Access (CDMA): In CDMA all users benefit from the whole system
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Figure 2.2: Connection-oriented multiple access. Top left: FDMA and TDMA. Top right: CDMA. Bot-
tom: SDMA.

bandwidth and transmit during all the time [Pic82]. Orthogonality is attained thanks to

the code signals that modulate the user waveform. Each user has its own code and it is

orthogonal to the codes employed by the other users. This option is more efficient than the

previous ones but its implementation in real systems is also more difficult since it requires

in general finer synchronization and good power control mechanisms.

• Spatial Division Multiple Access (SDMA): The development of multiple antennas tech-

niques [Pau97] introduced an extra dimension also in the multiple access problem since

mobile users in a wireless network can be separated depending on their spatial position.

In this way, simultaneous transmission in the same bandwidth, time and code is possible

if the users are spatially spread out. Therefore, SDMA has to be applied in combination

with the other techniques (hybrid strategies are also possible) rather than as a stand-alone

solution.

Figure 2.2 summarizes the connection-oriented multiple access techniques. Note that the goal in

all the previous approaches is to organize the transmitting resources in order to provide as many

connections as possible. In general, the larger the resource subspace is, the better the system

performance may be. Therefore, adding the code and space dimensions to the classic time and

frequency resources provides better usage of the radio-frequency spectrum.
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However, connection-oriented access techniques do not match well to the bursty nature of

the packets in data networks. Note that it makes no sense to reserve resources and to establish a

connection that is going to be used only during some intervals of time. The previous approaches

may be dramatically inefficient and contention-oriented techniques (also refereed to as random

access solutions) are designed to better accommodate such type of packetized traffic [Gol05, Sec.

14.3].

Random access techniques began with the pioneering work of Norman Abramson at the

University of Hawaii in 1970. A novel packet radio network was deployed to communicate the

university campuses using the ALOHA protocol. The idea was pretty simple and intuitive:

any transmitter in the network was allowed to transmit a radio packet as soon as it became

available. When the traffic load in the system is low, this simple strategy performs well because

the wireless channel is used by a single transmission with high probability. As the load increases,

the probability that two packets from different transmitters collide increases. In that case, the

collided transmitter waits for a random time to retransmit the packet. Note that when the

traffic load is significantly high, this mechanism will cause system starvation. It is known that

the maximum achievable throughput in a network using ALOHA is only 18%. In other words,

the data rate in the network is the 18% of the data rate that a single user would achieve on

the system [Gol05, Sec. 14.3]. The ALOHA protocol was upgraded with its slotted version or S-

ALOHA. Time is divided into slots and a transmitter is allowed to transmit only at the beginning

of each slot. In this way, the throughput of the system is doubled since the probability of having

a collision is reduced. However, it is still less than 40%.

Another performance upgrade in the ALOHA protocol was achieved by the so-called Carrier

Sense Multiple Access (CSMA) solution, which is nowadays widely used. Within this approach,

terminals sense the channel to identify when it is busy. If the result is affirmative (busy), all

the terminals wait a random backoff period before retrying transmission. This random waiting

time is crucial to avoid all terminals to transmit after the current packet in the channel is

completely sent. CSMA is used as the access protocol in wired LANs. It is also used in wireless

LANs with some modifications that adapt to the particularities of the wireless channel. It is the

CSMA/Collision Avoidance (CSMA/CA) technique [Gol05, Sec. 14.3].

However, the actual convergence trends of the different traffic types into a single IP-based

network requires modifications of the multiple access techniques in order to give an adequate

solution to the new situation. Note that CSMA has acceptable performance in traditional LAN

services such as web browsing, File Transfer Protocol (FTP) or Simple Mail Transfer Protocol

(SMTP) applications but it may not capture the more stringent Quality of Service (QoS) require-

ments of services like Voice over IP (VoIP) or video streaming, which demand for more regular

transmission opportunities. As an example, assume a congested LAN where one terminal wishes

to establish a VoIP conference. In principle, there is no mechanism that guarantees the regular
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transmission of the VoIP packets since the multiple access is contention-based and the other

players have the same chances to access the channel. The Demand Assignment Multiple Access

(DAMA) constitutes a recent methodology that takes into account this new paradigm. As de-

picted in Figure refDBAfigOverview, it can be regarded as an evolution of both contention-based

and connection-based mechanisms. The interested reader can find in [Zan97, Sai97] two general

scope communications that discuss the need of good Radio Resource Management (RRM) tech-

niques in modern wireless networks to provide a certain degree of QoS.

DAMA may be interpreted from a functional perspective as an intermediate point between

the two previous basic strategies as well. The idea is that terminals request resources to the net-

work depending on the traffic in their MAC queues. Thereafter, the network allocates resources

using a certain distribution criterion. Potentially, it is possible to set up a ‘virtual’ connection

when the traffic type requires it, as it is the case of VoIP or videoconference or, on the contrary,

it is also possible to perform statistical multiplexing of data packets as in random access solu-

tions. Maybe the first occurrences of DAMA techniques in the literature can be associated to

the DCA implementations [Rap79] that date from the 70s. A wider and modern vision of the

concept is described in [Hac00], where several DAMA protocols are analyzed in the context of

ATM wireless networks. In this thesis, we focus on DAMA strategies that are implemented by

means of Dynamic Bandwidth Allocation (DBA) techniques and we do it from a mathematical

optimization perspective.

2.1 Cross-Layer and Dynamic Bandwidth Allocation

As stated before, a DAMA strategy is adequate to preserve the QoS requirements of the service

flows within the system. In many cases, these QoS definitions are not explicitly available at the

MAC layers of the network elements, where DBA techniques usually run. For example, when we

have IP implementing DiffServ (Differentiated Services), the requirements about QoS are found

in the different classes in which the traffic is divided at the third Open Systems Interconnection

(OSI) layer [Zim80]. Hence, potential interactions between the MAC and the higher layers in

the system in order to obtain this information are of interest. An specific example about DAMA

with DiffServ, from the satellite field, is found in [Ada02]. Other interactions may be useful, too,

as it is the case of information exchange from PHY to MAC layer and viceversa in systems that

use adaptive PHY layers. Without considering such interaction, dynamic bandwidth allocation

manages the fixed link rate capacities seen from the MAC layers of the terminals in order to

optimize a certain network performance metric. But if it is possible to adjust also the PHY

layers of the terminals, then the network may attain some extra performance because PHY and

MAC layers are jointly optimized according to the traffic conditions in the network. See those

relations in Figure 2.3.
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Figure 2.3: Potential cross-layer interactions in DBA.

All these interactions among OSI layers having the objective of optimizing a given system

performance metric appear in the literature under the so-called nomenclature of cross-layer

interactions and cross-layer optimization [Ber04, Sha03]. The need of breaking the traditional

layering of systems, which so good results had shown, emerged with the new era of mobile wireless

communications. As discussed in [Sha03], communications links in old wired networks were seen

as bit pipes that provided a constant data rate with some seldom random errors. Therefore, the

mission of communication engineers was to provide the best possible data pipes, ideally getting

close to the Shannon limit [Sha48]. The job was in part attained with the discover of turbo

decoding by Berrou et al. in 1993 [Ber93]. On the other hand, network engineers handled the

allocation of packets into the bit pipes or, in other words, packet scheduling. Relevant issues were,

among others, traffic balancing or QoS provision. The situation changed with the introduction of

mobility in the networks, mainly due to two big differences between fixed and wireless channels:

• The short-term channel variation: because of the multi-path component in most wire-

less scenarios, communication links are not well modelled with the pipe-like vision. The

channel induces fast variations over time, frequency and location. To exemplify it with

numbers, coherence times [Gol05, Sec. 3.3.3] in wireless channels can be in the order of

few milliseconds.

• The large-scale channel variation: when the channel is measured in mean value, it may

happen that some users are favoured (from the point of view of channel gain) in front of

the others if they are in better locations or if they are not in hostile interference scenarios,

for example. A global view of any communication system that aims to provide certain QoS

to its users should take this fact into account and respond with an adequate balancing of

network resources.
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In the following, we exemplify the utility of cross-layer solutions with two illustrative works

in the literature. In the first one, the performance of the Transmission Control Protocol (TCP)

applied over wireless links is studied [Sha03]. The problem is focused on the congestion control

mechanism of TCP, which is based on a measure of the packet losses in order to estimate

the congestion status of the routers through the network. Whereas TCP works well for wired

networks, where losses are mainly due to congestion, it fails in the wireless environment since

the nature of the channel also causes packet losses. The result is a significant reduction in system

throughput [Xyl99]. A possible solution is to apply good channel encoders in combination with

an Automatic Repeat reQuest (ARQ) [Lin84] strategy with the objective of smoothing the

variations of the channel. However, further improvement is achieved by distinguishing the nature

of packet losses, i.e. wether they are due to congestion in the internet or they respond to a bad

channel status. The authors in [Kun03] asses the performance of the previous approach using

Explicit Congestion Notification (ECN) in TCP. Finally, a review on cross-layer approaches that

interact with layers below TCP for wireless scenarios can be found in [Tia05, Gia06].

A second example is a pioneering cross-layer work from Knopp and Humblet, which is de-

scribed in [Kno95]. The scenario is the uplink of a single cell multi-user communications system.

The authors obtain the optimal power control of the users in the cell under a total power con-

straint. The goal is to maximize the sum-rate capacity and as a result, it is found that only

the user with the best channel condition should transmit using the whole available bandwidth.

Therefore, the multiple access of the system is implicitly derived from a PHY layer design and a

practical implementation requires the knowledge of the channel condition of all users at the MAC

layer. However, the previous solution has an important fairness drawback. Because of the large-

scale channel variation, it is reasonable to consider the situation where a user is permanently

in bad channel condition during a long period of time. The solution is terribly unfair respect

to the other users, although a global system view in terms of sum-rate capacity is maximized.

In order to avoid that situation, some definitions of fairness have been adopted by the scientific

community. In the next section, we review them motivated by the fact that part of the work

in this thesis is aimed to provide fair dynamic bandwidth allocation (alternatively scheduling)

mechanisms.

2.2 Fairness and Dynamic Bandwidth Allocation

In general, formal fairness definitions are necessary to explicitly say how competing users are

assumed to share the resources available in a given system, as it is the case in scheduling or DBA.

The results we present in this section have an important contribution from the work of Kelly, who

introduced the concept of proportional fairness [Kel98] and also discussed about the differences

with max-min fairness [Kel97], which was the most common criterion at the time. Both works
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Figure 2.4: Network example.

are devoted to the optimization of the end-to-end rates in a fixed wired network achieving

fairness among users. Later on, the concept was generalized in [Mo00] with the definition of

(p, α)-proportional fairness.

Let us consider the problem of end-to-end rate control of N users over the internet. As

proposed in [La02], the problem can be formulated as

max
{ri}

∑N
i=1 Ui(ri)

s.t. Ar ≤ c
ri ≥ 0

, (2.1)

where r = [r1, . . . , rN ]T is the vector that contains the rates of all users. The functions Ui(ri)

aim to measure the utility perceived by the ith user when it is allocated a rate ri. Finally, the

bottlenecks in the network are explicitly considered in the matrix A, whose entries are either 0 or

1. Each row in the matrix reveals which user flows share the available capacity in the bottleneck.

The vector c groups those available network capacities. A simple example from [La02] is depicted

in Figure 2.4 with 3 users and 2 bottlenecks. Note that users 1 and 3 share the link capacity c1

whereas users 2 and 3 share the link capacity c2, so that

[
1 0 1
0 1 1

]⎡⎣ r1

r2

r3

⎤
⎦ ≤

[
c1

c2

]
. (2.2)

A rate allocation r� is said to be max-min fair [Ber87, Sec. 6.5] if it is feasible, i.e. it attains

the constraints imposed by the network (ri ≥ 0 and Ar ≤ c in the previous formulation), and if

it is not possible to increase any of the rates within r�, say r�
j , without decreasing another rate

r�
p < r�

j . The max-min fairness approach tends to allocate more resources to flows with smaller

rates. Note that any increase in one of the rates within r�, even a large one, will not be attained

under a max-min fair criterion if it implies a reduction of another rate, even if the reduction is

small. In the network of Figure 2.4, if the capacity vector is fixed to c = [c1, c2]T = [1, 1]T , then

the max-min solution is r = [12 , 1
2 , 1

2 ]T = and the total throughput in the network is 3
2 . In that

situation, a relaxation of the max-min criterion, i.e. if we allow a certain reduction in r3, involves

an increase in network throughput because the reduction in r3 implies the same increase in both

r1 and r2. Note that the maximum network performance is achieved with r3 = 0 and a total

throughput of 2, but then the solution is totally unfair.



16 2.2. Fairness and Dynamic Bandwidth Allocation

Motivated by this trade-off between fairness and throughput, Kelly introduced in [Kel97] the

proportional fairness criterion in order to attain the desired compromise. A vector r† is said to

be proportionally fair if it is feasible and if for any other feasible rate allocation r‡, the sum

of relative changes is not positive. In other words, r† (feasible) is proportionally fair when it

attains
N∑

i=1

r‡i − r†i
r†i

≤ 0, ∀r‡ s.t. r‡i ≥ 0,Ar‡ ≤ c. (2.3)

If we use this new fairness vision with the previous example, we realize that the optimal flow allo-

cation is now r = [23 , 2
3 , 1

3 ]T = and that the network throughput is 5
3 . Therefore, an intermediate

solution between max-min fairness and maximum sum-rate is achieved.

From a practical point of view, in connection with the formulation in (2.1), it is desirable to

find explicit expressions of the utility functions that allow us to find the optimal fair allocation

of resources within the network by means of solving the mathematical programming problem.

Kelly proved in [Kel97] that using the following utility functions in (2.1),

Ui(ri) = log(ri), (2.4)

the proportionally fair solution is attained. Note that with this utility functions, the objective

of the optimization problem considered is the aggregation of the logarithms of the rates. An

equivalent problem is found by replacing that with the product of the rates as

max
{ri}

∏N
i=1 ri

s.t. Ar ≤ c
ri ≥ 0

, (2.5)

since the transformation of the objective function in (2.5) with a monotone increasing one does

not change the point r where the optimum value is attained [Boy03, Sec. 4.1.3]. In this case,

transforming
∏N

i=1 ri with the logarithm function gives (2.1) in combination with (2.4) as a

result (since the feasible rates are positive, the value within the logarithm is always positive

and the transformation is well-defined). Furthermore, it is known from game theory [Mut99]

results that the maximization of the product of competing resources attains the so-called Nash

Bargaining Solution (NBS) [Maz91, Yäı00] and hence, it verifies the axioms of linearity, irrelevant

alternatives and symmetry of the solution. Therefore, we can conclude that NBS is equivalent

to the proportional fair approach.

Finally, the authors in [Mo00] generalize the proportional fairness criterion to (p, α)-

proportional fairness. They also contribute with analytical expressions of the corresponding

utility functions to attain it. A feasible rate vector r† is said to be (p, α)-proportionally fair

(where p = [p1, . . . , pN ]T and α are positive real numbers) if, given any other feasible rate vector

r‡, it holds that
N∑

i=1

pi
r‡i − r†i
(r†i )α

≤ 0, ∀r‡ s.t. r‡i ≥ 0,Ar‡ ≤ c. (2.6)
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Figure 2.5: Different degrees of fairness in the definition of utility functions.

Note that for p = [1, . . . , 1]T and α = 1, the criterion reduces to proportional fairness. The

utility functions in this case are defined as

Ui(ri; pi, α) =

{
pi log (ri), α = 1

pi
r
(1−α)
i
1−α , α �= 1

. (2.7)

When p = [1, . . . , 1]T and α −→ ∞, it is shown in [Mo00] and [Kel97] that the resulting

optimal rate allocation after solving (2.1) tends to the max-min fair rate vector. On the other

hand, when α −→ 0, problem (2.1) formulates a maximum sum-rate approach. Therefore, it

is the convexity of the utility functions what fixes the degree of fairness of the solution. See

in Figure 2.5 three different plots of Ui(ri; pi, α) for α = 0.1, α = 1 and α = 3 (always with

pi = 1). Note in the figure that as α increases, the utility attained at low rates diminishes

more severely and therefore, much attention is required to avoid that low-rate situations. It is

thus in accordance with the max-min fairness criterion. On the other hand, the concavity of the

functions reveals that at the high-rate regime, lower utility gains are achieved for a fixed increase

in rate, so that the maximization of the aggregate of utilities in (2.1) forces the distribution of

resources, as it is expected in a fair approach. This is true in general except for low α values,

where the utility function tends to be linear in the rate. The criterion is then to allocate as

much rate as possible to the flows regardless any fairness consideration in order to operate at

the maximum network throughput point.
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In summary, there is no unique criterion to define fairness, but a series of them are explicitly

characterized with the utility functions in (2.7). Furthermore, some flows can be prioritized in

front of the others within a specific fairness framework (fixed by α) by particular adjustment

of the scale thanks to the parameters {pi}. In general, proportional fairness (α = 1) provides a

nice trade-off between fairness and resource utilization (network throughput).

2.3 DBA in Relation with Network Utility Maximization and

Distributed Computation

Our work about DBA throughout this thesis is mathematically modelled using the Network

Utility Maximization (NUM) framework. It is a nomenclature recently adopted to refer to the

type of problems that arise, in general, in network resource allocation. A basic NUM formulation

has been introduced in (2.1) and the philosophy is to maximize the aggregated utility of the users

(that measure their satisfaction) given the physical limitations imposed by the current system

(constraints in the optimization problem). Traditionally, the interest was to provide distributed

solutions that allow to compute the optimal resource allocation without the need of gathering

all the information in a central node in the network. The motivation is to reduce signalling

requirements and to provide scalable approaches that may operate also with large networks.

The reader can fin examples of that in [Low99, Mo00, La02, Low03].

Most of the works in the extensive NUM literature achieve distributed solutions by means

of managing the dual version of the problem, or in other words, making a dual decomposition,

which we review in Section 3.2.2. The motivation is that it attains a fully decoupled approach in

the sense that each node in the network is configured with only local information. An example

of that can be found in [Low99], where the authors demonstrate the viability of that type of

approach in static and slow time-varying network conditions. Dual-based techniques are often

indistinctly called price-based strategies because dual variables can be interpreted as prices

under a resource-price framework, whereas resources are identified with primal variables. We

also discuss this issue in the next chapter. Another interesting example is found in [Low03],

where it is shown that the TCP protocol that controls the end-to-end rates in the network can

be viewed as a pure dual decomposition of a NUM problem.

The works of Palomar and Chiang in [Pal06, Pal07] review and expand the number of avail-

able decomposition possibilities, always from a convex decomposition perspective. They show

that primal decomposition, reviewed in Section 3.2.1, has to be considered in addition to dual

decomposition. Moreover, hybrid approaches that combine both techniques in a multi-level de-

composition strategy are also feasible. For example, one can split the main NUM problem into

several subproblems with a dual decomposition and then use a second problem splitting (for

instance primal decomposition) in order to solve each of the subproblems at the highest level. In
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Figure 2.6: Vertical and horizontal decompositions.

[Pal07] they also contribute with application examples of more sophisticated NUM formulations,

all of them solved with the multi-decompositions perspective. In those formulations, they include

issues such as power control, multipath routing or QoS. Specifically, the first one assumes that

the network is power-limited and that the capacities of the links depend on the power allocated

to them. Therefore, optimization takes into account two groups of variables: rates and powers.

It is a good example of a joint optimization of parameters that belong to distinct OSI layers in

order to attain a common goal, which is the system performance measured as aggregated utility.

There are a number of works that extend the NUM formulation to obtain a joint optimiza-

tion of several system parameters in a cross-layer design [Xia04, Zha06, Joh06]. A recent paper

by Chiang et al. [Chi07] takes into account both cross-layer system design and distributed opti-

mization among the elements in the network in a quite ambitious approach. The basic idea is to

generalize the NUM formulation including the relevant parameters in all layers as variables hav-

ing a common performance objective. Thanks to decomposition techniques, the global problem

is distributed among layers (vertical decomposition) and among network elements (horizontal

decomposition), as Figure 2.6 depicts, with several subproblems. The signaling required to coor-

dinate such decompositions will show the adequate interfaces among layers and among network

elements. It is thus a reverse engineering view of the traditional layering of systems. The paper

contains a good summary of existing examples, key methodologies and future challenges.

In this thesis, we review the known decomposition methods: primal and dual decompositions

(and hybrid techniques) [Pal06] and also a combined primal-dual approach known as Mean Value

Cross (MVC) decomposition (introduced in the NUM context in [Joh06]). We also develop a

novel solution to decompose the NUM problem in a mixed primal-dual scheme, which is different
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to the MVC decomposition and provides significant gains in terms of computational efficiency.

Note that each strategy induces different control protocols and different signaling requirements

from the reverse engineering point of view in [Chi07] and therefore, our contribution provides

an additional exploration path in the design.

Up to this point we have motivated the use of dynamic bandwidth allocation in combination

with a DAMA technique to provide an adequate response to modern traffic characteristics and

QoS requirements. Furthermore, we have reviewed the pieces that have a significative role in

our work, namely: distributed NUM, fairness definitions and cross-layer solutions. Since we will

propose DBA solutions in the context of Digital Video Broadcasting (DVB)-Return Channel

Satellite (RCS) and Worldwide Interoperability for Microwave Access (WiMAX) standards in

Chapters 4 and 5, respectively, next we make a literature review of existing DBA solutions

therein.

2.4 Applications of Dynamic Bandwidth Allocation

2.4.1 DBA in Digital Video Broadcasting-Return Channel Satellite

Dynamic Bandwidth Allocation has been considered in the satellite return channel of the DVB

standard [ETS05a, ETS03c] as a potential measure to efficiently distribute the valuable spec-

trum and to provide adequate QoS according to traffic requirements. The authors in [Ibn04] re-

view available technologies and open issues in the design of high-speed mobile communications.

Among others, they identify the interest in good dynamic bandwidth allocation techniques as

part of the resource management. Two particularities appear in the design of DBA strategies for

DVB-RCS in contraposition to other existing systems. First, the satellite channel varies in time

even in fixed scenarios, which is basically due to the phenomena that take place at the Earth’s

troposphere (rain, snow, . . . ). Although it is not as aggressive as in most wireless terrestrial

systems that operate in rich scattering environments, it is important to take it into account

since it directly reports on the effective transmission rates of the ground station to satellite

links. DVB-RCS uses adaptive coding to counteract the channel variability and therefore, each

coding rate fixes a different bit rate. We will assume that once the coding rate is correctly set-up,

the channel can be considered quasi-error-free. Second, there is a large propagation delay when

transmitting to a Geostationary Earth Orbit (GEO) satellite, which implies about half a second

of Round Trip Time (RTT). It is quite large if we compare it with terrestrial systems and, as

we discuss later, it also influences the DBA design.

Regarding satellite bandwidth allocation in general, two main philosophies are distinguished

in the literature, namely: i) static allocation and ii) dynamic allocation [Cel03, Pie05]. The DVB-

RCS standard document [ETS05a] includes both. Within a static approach, terminals receive a
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certain amount of resources, which remain constant during the connection’s lifetime. However,

note that each terminal can dynamically manage its portion of bandwidth (depending on the

information flows that use the static link) without involving the sub-satellite network. In other

words, DBA techniques can still be used in this case for scheduling issues within each terminal.

On the other hand, a dynamic approach focuses the already described process whereby users

request resources (in the DVB-RCS scenario we consider a central node in the network which

is referred to as Network Central Controller or NCC that collects those demands) and receive

grants indicating the allocation. Note that the information available at the NCC to compute

the allocation is the collection of requests from all the terminals and the available resources

(known since all the information is centralized). Furthermore, we can differentiate three possible

strategies within dynamic allocation. From less flexible to more flexible solutions:

• Fixed allocation, where each terminal requests a rate capacity to be able to transmit at

its maximum source rate. If the satellite capacity can not satisfy all requests, then the

capacity is somehow shared. The most simple way to do it is by means of performing

a proportional allocation, although more elaborate decisions can be taken. In general, we

consider that the validity period of each allocation is large when compared to more flexible

solutions. As it will be discussed in Chapter 4, radio resources are organized in DVB-RCS

in a Multi Frequency-Time Division Multiple Access (MF-TDMA) frame. The work in

[Kifl06] contributes with a number of strategies to attain an efficient frame utilization

under a fixed-like allocation approach.

• Mixed DBA and fixed allocation techniques, when part of the satellite capacity is dedicated

to perform a fixed allocation whereas the remaining part is used to statistically multiplex

the flows of the users. Operating in shorter time-scales, this DBA part is intended to absorb

the traffic burstiness.

• Full DBA techniques, aiming to exploit the whole satellite capacity in order to attain both

good tracking of traffic variation and efficient utilization of radio resources. Examples of

full DBA strategies using different performance criteria and different ways to solve the

underlying optimization problem can be found in [Lee04, Alo05, Cel06, Ros06].

In real life, a mixed strategy seems to be the most adequate solution since both the fixed

allocation and the full DBA have its pros and cons. A fixed allocation is clearly inefficient from

the point of view of resource utilization because significant amounts of satellite capacity are lost

in the silent periods. On the contrary, it has advantage in terms of delay and signalling. Since

there is no need to negotiate a resource allocation before a transmission occurs, this extra delay

is avoided. Note that this delay is at least the RTT, which is a relatively high value in GEO

satellites. Furthermore, the request-grant process involves signalling and it is avoided using a

fixed allocation. Therefore, a compromise solution might be to use a fixed allocation for traffic
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types that require stringent QoS provisioning and that generate traffic in a periodic basis and

to statistically multiplex traffic types that are more bursty in nature. Note that bandwidth

utilization is not severely compromised because we do not squander the fixed allocation portion.

DVB-RCS defines several ways to request capacity (detailed in Chapter 4) and among them,

Constant Rate Assignment (CRA) can be explicitly employed for fixed allocation purposes. The

multiplexing task is then associated to the remaining types of request.

However, related research lines in the literature do not exclusively focus their attention on the

best possible way to react to the requests emitted by the terminals. Some of them also consider

how requests are generated [Chi04b, Pri04, Pie05] and how this generation influences the system

behaviour. In order to help the explanation, let us consider in Figure 2.7 a generic architecture

of a DVB-RCS terminal implementing Internet Protocol (IP) with differentiated services, which

has been inspired by [Pie05]. The IP data flow to be transmitted through the satellite is classified

and regulated, which results in various queues that map distinct IP service or priority classes.

The IP packets within the queues are then scheduled and segmented into MAC layer units in

order to be conveyed at this lower layer. Without loss of generality, a number of queues at the

MAC layer are defined as well to represent the priority classes at that level. Finally, the MAC

scheduler makes an ordered selection (following a given criterion) of the contents in the queues

to be sent to the air interface.

Note that each terminal drains its queues depending on the amount of PHY layer resources it

can use to transmit, which definitely configures its link capacity. Thanks to a DAMA technique

implemented by means of a DBA solution, the satellite spectrum (or part of it) is statistically

shared among users. As depicted in the figure, it is necessary to gather information about the

MAC queues (basically length and priority) at a DBA control module, who requests capacity

to the NCC and receives the assignments in the Terminal Burst Time Plan (TBTP) table.

The works in [Pri04, Pie05] show that the intuitive solution of requesting just the length in

the queues works well for non-congested states, i.e. when the satellite capacity is able to fulfill

all the requests. Notwithstanding, the average queue length can be reduced if control theoretic

mechanisms are implemented to track a reference queue length value. The result is that in

congested states, the requests are computed as the input rate plus an extra demand that depends

on the queue length. The authors also propose a modification on their scheme to cope with free

capacity assignments, which are capacity grants that have not been previously requested (this

occurs when some satellite capacity is left unused). However, as discussed in [Nea01], free capacity

assignments must be carefully studied in combination with the Transfer Control Protocol (TCP)

since they may introduce unexpected degradation.

Finally, we can further distinguish within DBA techniques between reactive and proactive

strategies. Note that all the solutions that we have introduced up to this point, which are

classified as reactive techniques, aim to respond to the current status of the queues but they
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do not try to anticipate to traffic dynamics. A major drawback of reactive approaches with

GEO satellites is that, due to the high RTT value, the requests may not represent the actual

QoS needs. Free capacity assignments are intended to counteract this fact and they can be

useful, for example, to send an HyperText Transfer Protocol (HTTP) request without waiting

for the completion of a resource request/allocation phase [Nea01]. In general, proactive schemes

try to anticipate to future traffic requirements to paliate the RTT problem. In [Chi04b] the

authors introduce an adaptive traffic predictor implemented with a Recursive Least Squares

(RLS) adaptation scheme [Hay96, Ch. 13] that adjusts the parameters of the Auto-Regressive

(AR) model [Hay96, Ch. 2] proposed for the input traffic flow.

Our DBA proposal for DVB-RCS in Chapter 4 is focused on how the resources available in

the MF-TDMA of the satellite are distributed for a given resources request. We do not consider

how requests are generated and we concentrate our attention in supplying a DBA framework that

provides a proper set-up of the shared spectrum taking into account the PHY layer configuration

of the satellite terminals and allowing to balance the resulting allocation towards the most

prioritized flows under a global fairness criterion. A mathematical representation of the situation

as a NUM problem and the novel decomposition technique developed in Section 3.3 allows us to

attain the optimal allocation and to obtain it efficiently (in terms of computational time).

2.4.2 Distributed Scheduling in WiMAX Networks

Similarly to what happens in DVB-RCS, the multiple access in the WiMAX [IEE04, IEE06]

uplink also responds to a DAMA solution, where there is a process of requesting and granting

transmission opportunities. The interested reader can find a good review on the PHY and MAC

layer aspects of WiMAX in [And07, Ch. 8, Ch.9]. Notwithstanding, we notice that the WiMAX

scenario is more rich due to the following issues: i) the network topology and ii) the PHY layer

reconfigurability.

Regarding network topology, a Point-to-MultiPoint (PMP) structure is always assumed in

the DVB-RCS satellite subnetwork. In any case, satellite terminals may distribute their capacity

among various users to which are connected, for example, through a Local Area Network (LAN)

or a Wireless LAN (WLAN). WiMAX, as the broadband wireless solution for the medium

distance, also considers PMP and optionally, a mesh network configuration. In mesh mode,

terminals do not need to communicate directly to the Base Station (BS) as they do in PMP

mode. Therefore, a global optimal network operation (given some performance metric) requires in

general a more complex formulation and practical strategies to attain it, which implies searching

for adequate distributed solutions. Finally, we want to remark the interest in tree-deployed

topologies. They are an intermediate case between PMP and general mesh networks and have

been considered in WiMAX deployments that build the backhaul transport network [Lee06b,
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Hin07].

The WiMAX standard includes four different PHY layers that are based on a single carrier,

an Orthogonal Frequency Division Modulation (OFDM) or an Orthogonal Frequency Division

Multiple Access (OFDMA) architecture. All the solutions offer different reconfiguration possi-

bilities and thus, it is possible to send information at a number of distinct rates. Since WiMAX

is envisaged for both fixed and wireless scenarios working at the microwave band, where channel

fluctuations may be significant, PHY layer reconfigurability allows to track those variations and

to make the best possible channel use (almost reaching Shannon capacity [Sha48]). Among oth-

ers, the standard includes adaptive coding and modulation, power control, subcarrier allocation

in OFDM/OFDMA [Won99, Kiv03] or Multiple-Input-Multiple-Output (MIMO) [Ale08] tech-

niques. Always in relation with the multiple access in the system, DBA is found in the literature

according to two distinct interpretations (possibly mixed): i) assuming fixed link capacities, the

goal is to distribute the bandwidth among the information flows in order to sustain the QoS

definitions and ii) considering non-empty MAC queues to be drained, the goal is to operate the

network at a proper multi-user rate point in the network capacity region [Cov91, Ch. 14] in

order, for example, to achieve maximum network throughput.

If we search for an integrated QoS provisioning, one approach does not exclude the other.

In fact, the goal is to balance the available bit rate at each link towards the most priority flows

and, at the same time, to select a feasible rate point in the network that allocates more resources

to the links transporting such priority flows. It is a joint vision of DBA that responds to the

previously discussed vertical decomposition of [Chi07] and, in general, to cross-layer designs. In

this joint direction goes the work in [Sol06] for a single-carrier WiMAX network. The authors

use a NUM formulation similar to (2.1) and extend it to a proper selection of the link capacities

as

max
{ri},c

∑N
i=1 Ui(ri)

s.t. Ar ≤ c
c ∈ C
ri ≥ 0

, (2.8)

where ri is the rate of the ith flow, A is the routing matrix and C is the set of all feasible

link rates, i.e. the capacity region of the network. The authors divide the problem into a flow

allocation problem (solving {ri} for fixed c) and a scheduling problem that updates the link

rates in order to find the optimal value of (2.8). They make use of the Mean Value Cross (MVC)

decomposition method (described in Section 3.2.3) to attain a vertically distributed solution.

The works about DBA in WiMAX that have appeared in the literature can be understood

as particular solutions to smaller problems considering parts of the aspects included in the

general framework in (2.8). Depending on the PHY-layer considered and on the network topology,

researchers put more stress on some network issues than in others. For example, the works in
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[Erw06, Niy07] put the emphasis on the flow control part of two distinct network topologies. In

particular, [Niy07] assumes a mesh topology and formulates the flow control using game theory

and attaining a Nash bargaining solution. Papers [AY07, Mak07] provide algorithms to optimize

the sum-rate in a single-cell OFDMA WiMAX system by allocating subcarriers to users in the

OFDM modulation and by performing bit and power allocation. On the other hand, the concern

in [Tao05, Wei05, Du07] is to find a proper routing tree and scheduling in mesh mode in order to

minimize interference among transmissions (possibly allowing concurrent transmission), which

allows us to enhance the network throughput or to reduce the length of the scheduling cycle.

We define the length of the scheduling cycle as the number of time slots required to complete

all pending transmissions.

In summary, the challenge is to be able to provide practical mechanisms that allow us to

jointly optimize as many system variables as possible (i.e. including scheduling, flow control,

power allocation, . . . ). Therefore, we need to cope with general formulations that include these

variables in the PHY and MAC layers (and possibly higher layers), as it is the case in (2.8).

In that context, distributed computation techniques are crucial to split the optimization into

the distinct layers and network elements and hence, to define future cross-layer interactions and

protocols. In our DBA contribution in Chapter 5, we concentrate on the flow control problem

(as an important piece in more sophisticated formulations) in PMP and tree-deployed WiMAX

mesh networks. More precisely, we show that it is possible to attain a fully distributed and time

efficient computation thanks to the coupled-decomposition method described in Sec. 3.3.



Chapter 3

Unified Decompositions Framework
in Convex Programming

This chapter is devoted to the main theoretical contribution of this thesis: a framework to for-

mulate and efficiently solve DBA problems. The results herein have been derived using a special

mixture of two distinct lines of thought in the mathematical optimization community, namely

convex optimization theory and mathematical decomposition theory. The former defines an im-

portant type of problems in optimization with many real application examples in engineering

(see for example [Boy03, Part II], [Dat99, Ch. 5] and [Ger05, Ch. 8]). The latter provides some

results that allow us to split some specific optimization problems into several smaller (and more

tractable) problems (from now on the subproblems). We review both theories before describing

our proposed method.

3.1 Review of Convex Optimization Theory

In order to write a formal definition of a convex optimization problem (or convex program),

consider first the following representation of a general optimization problem,

min
x

f0(x)

s.t. fi(x) ≤ 0 1 ≤ i ≤ m
hi(x) = 0 1 ≤ i ≤ p

, (3.1)

where x ∈ R
n are the optimization variables and f0(x) is the objective function. The problem

is constrained through the functions fi and hi on the variables in x. The first ones are called

inequality constraints while the second ones are the equality constraints. In case there were none

of them, the problem is said to be unconstrained and it is a classic problem in the optimization

literature, strongly related to the numerical resolution of nonlinear equations. A good reference

can be found in [Den83].

A particularization of (3.1) conducts to the definition of a convex optimization problem.

27
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More precisely, if the functions f0 . . . fm are convex functions of the variables and the functions

h1 . . . hp are affine (linear) functions, then the problem is said to be convex. A function f :

R
n −→ R is convex if, for any two points in its domain, x and y, and any scalar θ ∈ [0, 1],

it holds: i) the domain of the function is a convex set, i.e. θx + (1 − θ)y ∈ dom f and ii)

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). That is, the value of the function at any point within

the line segment between x and y is always under the segment that connects the points f(x)

and f(y). Note that some well-studied problems in the literature fall or can be arranged into

a convex representation. For example, when all the functions fi and hi are affine (linear), we

talk about linear programs (LP), or when the objective function is quadratic and the constraint

functions are linear, it is a quadratic program (QP).

The goal in convex optimization problems (and in all optimization problems in general) is

to find the optimal solution to the problem, which we denote as x∗. The optimal solution is the

point in the domain of the optimization problem that attains the minimum possible value of the

objective function, i.e., p∗ = f(x∗), and accomplishes all (equality and inequality) constraints.

A formal definition of the domain of the problem is the set of points where the objective and

constraint functions are defined, i.e.,

D =
m⋂

i=0

dom fi ∩
p⋂

i=1

dom hi (3.2)

A subset of the domain of the problem is the feasible set and it contains all the feasible

points of the optimization problem. A feasible point is a point in D that accomplishes all the

constraints. On the contrary, an unfeasible point belongs to D but does not satisfy at least

one constraint. Therefore, the optimal solution is always inside the feasible set. In the case

the feasible set is empty, we say that the optimal value of the problem p∗ = +∞. Regarding

inequality constraints, we distinguish between those that are satisfied with equality in a given

point inside the feasible set and those that are not. We call active constraints to the first ones

and inactive constraints to the second ones.

Such convex optimization problems have attracted much attention in the last decades with

many application examples. See some of them in [Boy03, Part II]. Also in the communications

community, the convex way of representing and solving problems has inspired lots of works and

it has been the tool to deal with problems that had not been solved previously. A good example,

among others, is the work of D.P. Palomar [Pal03].

From a practical point of view, we have good numerical procedures to compute convex

problems. This implies that if it is possible to write a given problem in convex form, we can

say that it is readily solved. Many works that can be found in the literature are devoted to

transforming original non-convex problems to their equivalent convex representations. This is not

always possible and there is not a systematical procedure to do so, requiring some handcrafted
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work.

3.1.1 Numerical Algorithms to Solve Convex Problems

Convex problems can be sometimes solved analytically thanks to the optimality conditions of

the solution. These are well defined in the so-called Karush-Kuhn-Tucker (KKT) conditions,

which we review later. In this section, we want present an overview of the numerical algorithms

that are used in convex problems, and maybe the most famous ones are the family of interior

point methods. They were initially proposed for linear programming by Karmarkar in 1984 and

generalized for convex problems in [Nes94]. As one of the major contributions of this thesis is a

novel algorithm specialized in a particular case of convex problems, a brief idea of interior-point

methods will give the reader some perspective about the topic.

In the sequel, a basic interior-point method, the barrier method, is presented. Further details

to the ones exposed here can be found in [Boy03]. Consider a reformulation of (3.1) that implicitly

includes the inequality constraints in the objective function:

min
x

f0(x) +
∑m

i=1 I−(fi(x))

s.t. Ax = b
, (3.3)

where A ∈ R
p×n with rank(A) = p < n, the functions fi (i = 0 . . . m) are assumed to be twice

differentiable and I− : R −→ R is the indicator function for the non-positive real numbers:

I−(u) =
{

0 u ≤ 0
∞ u > 0

. (3.4)

Note that the indicator functions enforce to search the optimal solution inside the feasible set

and also to keep the objective function of the redefined problem equal to f0(x) in the feasible

set.

The logarithmic barrier method approximates the indicator function as

Î−(u) = (−1
t
) log (−u) (3.5)

which is twice differentiable and a smooth functions of the variable u. The reader can find in

Figure 3.1 two different plots of the indicator function for two values of the parameter t, namely

t = 0.5 and t = 2. Note that as the value of t increases, the approximation resembles more and

more the indicator function.

The basic idea of the method is quite simple and intuitive. Assuming that good numerical

methods to solve unconstrained convex problems are available and well studied (e.g. Newton-like

methods[Boy03, Fle80]), the idea of the barrier method is to solve a sequence of unconstrained

minimization problems in such a way that, in the last iterations, the problem resembles as

much as desired the original problem. In practical terms, the method first uses a non-accurate
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Figure 3.1: Approximations of the indicator function.

approximation of I−(u), i.e. with a low value for t and computes the solution. This is used as

the initial guess to solve the next unconstrained problem, that uses an increased value of t. The

equivalent problem to (3.3) that is solved at each iteration (from [Boy03])

min t f0(x) + φ(x)
s.t. Ax = b

(3.6)

where φ(x) = −∑m
i=1 log (−fi(x)) with domφ = {x ∈ R

n|fi(x) < 0, i = 1, . . . ,m} is called

the logarithmic barrier of the problem. The name of the method comes from the use of those

mathematical barriers that avoid to find a solution outside the feasible set and that slightly

modify the objective function inside the set (assuming a high value for the parameter t).

Then a summary of the method is [Boy03]:

given an strictly feasible x, t := t0 and μ > 1

repeat

1. Compute x∗(t) by solving (3.6) with initial guess x

2. Update x = x∗(t)

3. Stopping criterion: quit if the optimal solution is found

4. Increase t, t := μt
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In numerical optimization, the stopping criterion defines when the optimal solution has

been found so that the iterations can be stopped. Typical stopping criteria decide to finish the

iterative procedure when |f0(xn+1)−f0(xn)|
|f0(xn+1)| < ε or ||xn+1−xn||

||xn+1|| < ε or both. However, depending

on the operating principles of each particular method, other criterions can be designed. In the

previous examples, n indexes iterations and ε is the tolerance of the method.

After this brief review of a particular case of an interior point method, note that the method is

clearly dependent on the parameters t and μ, which are defined arbitrarily (the interested reader

can find some guide on the design of the parameters in [Boy03]). Furthermore, the performance

in speed of convergence of the algorithm is affected by a proper or improper choice. This fact

is not an exclusive feature of the barrier method and it is quite common among numerical

optimization procedures (in interior point methods and even in Newton-like methods). Although

it is something unavoidable in most cases, that dependance on user-defined parameters is not

desirable. An interesting issue from that point of view is to contribute with methods that are

non-parameter dependant. We achieve this with the novel method proposed in this thesis.

3.1.2 Duality Theory in Convex Optimization

Once convex problems have been formally defined and once some flavour about how to solve

them numerically (using interior-point methods) has been given, it is the turn now to introduce a

different (but related) perspective to look at optimization problems in general. In this occasion,

duality theory is introduced. It is not specific to convex optimization problems and allows to

formally formulate any optimization problem using an alternative representation. In that sense,

the reader can think about the possibility of having two versions of the same problem, namely

the primal and the dual problem (hence the name of dual). The primal problem is already defined

in (3.1) and the dual problem is derived using the Lagrange dual function. Thanks to duality

theory applied to convex problems, many useful optimality conditions have been derived. These

are summarized in the so-called KKT conditions, which have provided most of the analytical or

semi-analytical solutions to convex problems in many areas of interest.

Consider again the problem in (3.1) and define the Lagrangian function of the problem as

L(x,λ,ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νihi(x) (3.7)

with domL = D×R
m×R

p. The set of variables λ and ν are the Lagrange multipliers associated

to the constraints. More precisely, λi is associated to fi(x) ≤ 0 and νi is associated to hi(x) = 0.

Note that the Lagrangian function is the objective function of the original problem additively

augmented by the constraints of the problem (each one scaled by its corresponding multiplier).
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From the Lagrangian function, the Lagrange dual function (or just dual function) is defined

as the minimizer of L(x,λ,ν) over the variables in x. Hence, g : R
m × R

p −→ R,

g(λ,ν) = inf
x∈D

L(x,λ,ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +
p∑

i=1

νihi(x)

)
(3.8)

In the case the Lagrangian is unbounded below in x, the dual function takes the value −∞. We

say that the values (λ,ν) with λ � 0 and g(λ,ν) > −∞ are dual feasible.

Both the Lagrangian in (3.7) and the dual function in (3.8) are not exclusive definitions of

convex problems. They are valid for all type of problems. However, some useful results appear

when convex problems are considered. A key point now is that the dual function is a concave

function of the dual variables (λ and ν), even if the original problem is not convex, as it is the

point-wise minimum of a family of affine functions of (λ,ν) [Boy03].

Proof. Consider that f1(λ) and f2(λ) are two concave functions over the variable λ and define

f(λ) = min {f1(λ), f2(λ)} (3.9)

with domf = domf1 ∩ domf2. We want to prove first that f(λ) is also a concave function

of λ. This fact is easily verified form the definition of concavity. For any two given points in

dom f, λ1, λ2, and any scalar θ, 0 ≤ θ ≤ 1, we already know

fi(θλ1 + (1 − θ)λ2) ≥ θfi(λ1) + (1 − θ)fi(λ2), i = 1, 2 (3.10)

The definition is also verified with the function f as

f(θλ + (1 − θ)λ) = min {f1(θλ1 + (1 − θ)λ2), f2(θλ1 + (1 − θ)λ2)}

≥ min {θf1(λ1) + (1 − θ)f1(λ2), θf2(λ1) + (1 − θ)f2(λ2)}

≥ θ min {f1(λ1), f2(λ2)} + (1 − θ)min {f1(λ1), f2(λ2)} = θf(λ1) + (1 − θ)f(λ2)

(3.11)

Note also that min {f1(λ), f2(λ), f3(λ)} = min
{

min {f1(λ), f2(λ)}, f3(λ)
}

. Recursively ap-

plying this result, it is derived that the point-wise minimum of any number of concave functions

is also concave. The dual function is then a family of affine functions of λ and ν (indexed by all

the points x ∈ D) and hence, concave. �

Example 1 : Consider the problem

min 3(x − 2)2 − log y
s.t. x + y ≤ 1

(3.12)

with primal variables x and y and D = R×R++. In Figure 3.2 the reader can find a plot of the

objective function (left) and a contour plot of the same function together with the constraint

x+y = 1 (right). Note that the optimal values of the problem (x∗, y∗) can be obtained graphically

in this small example.
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Figure 3.2: Objective function and contour plot + constraint for Example 1.

The Lagrangian function of the problem is

L(x, y, λ) = 3(x − 2)2 − log y + λ(x + y − 1) (3.13)

Forcing the partial derivative of L(x, y, λ) with respect to x (or y) equal to zero, we obtain the

following minimizers of the Lagrangian, which are functions of the multiplier λ:

x∗(λ) =
12 − λ

6
, y∗(λ) =

1
λ

(3.14)

Finally, the substitution into the Lagrangian gives the dual function, which in this case is:

g(λ) =
−λ2

12
+ log λ + λ + 1 (3.15)

It is easily verified that the dual function is concave. In Figure 3.3, g(λ) is represented and the

maximum value of the function is marked as λ∗.

An important property of the dual function is that it is a lower bound of the optimal value

of the problem p∗. That is, for any λ � 0 and any ν, it holds that

g(λ,ν) ≤ p∗. (3.16)

Given a feasible point x� for the problem in (3.1) and λ � 0, then

L(x�,λ,ν) = f0(x�) +
m∑

i=1

λifi(x�) +
p∑

i=1

νihi(x�) ≤ f0(x�), (3.17)

since
∑p

i=1 νihi(x�) = 0 for a feasible x and
∑m

i=1 λifi(x�) ≤ 0 for a feasible x and λ � 0. It

is also true that

g(λ,ν) = min
x∈D

L(x,λ,ν) ≤ L(x�,λ,ν) ≤ f0(x�) (3.18)
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since the dual function chooses a minimizer of the Lagrangian in the set D, that includes the

feasible set. And as (3.18) is valid for every feasible point, it also holds for f0(x∗) = p∗.

In the light of the previous result and as the dual function is concave, it makes sense to find

the best under-estimator of p∗ from a dual point of view. We refer to it as d∗ and it is obtained

as the solution of the following convex optimization problem

d∗ = max
λ,ν

g(λ,ν)

s.t. λ � 0
(3.19)

Note that the constraints are convex and that to maximize a concave function g(λ,ν) is equiv-

alent to minimize −g(λ,ν), which is convex. We have shown that

d∗ ≤ p∗. (3.20)

We refer to the quantity |p∗ − d∗| as the duality gap. When the duality gap is zero, we say that

strong duality holds. Otherwise, we have weak duality.

All the results discussed up to now about Lagrange duality hold even when the problem under

study is not convex. When the previous analysis is applied to convex problems, we reach a central

result of great importance in convex optimization. It establishes that, under some technicalities

(usually called constraint qualifications), the duality gap reduces to zero [Boy03]. A simple

version of the constraint qualifications is Slater’s condition, that is satisfied if the problem in (3.1)

has at least one strictly feasible point (if fi(x†) < 0, i = 1, . . . ,m and hi(x†) = 0, i = 1, . . . , p,

then x† is strictly feasible). Constraint qualifications are not hard to accomplish and most convex

problems exhibit strong duality.
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Assuming that strong duality holds, convex problems can be solved by minimizing the primal

problem in (3.1) or, equivalently, one can solve the dual problem in (3.19). In other words, given

the optimal values for the dual, λ∗ and ν∗, the primal optimal point x∗ is readily found as the

minimizer of the Lagrangian.

Let us suppose that we have both primal (x∗) and dual (λ∗,ν∗) optimal values and that we

have strong duality. Then,

d∗ = g(λ∗,ν∗) = L(x∗,λ∗,ν∗)
= f0(x∗) +

∑m
i=1 λ∗

i fi(x∗) +
∑p

i=1 ν∗
i hi(x∗) = p∗ = f0(x∗), (3.21)

and as
∑p

i=1 νihi(x) = 0 for any feasible point (also for x∗), it must hold that

λ∗
i fi(x∗) = 0, i = 1, . . . ,m (3.22)

since λi ≥ 0 and fi(x) ≤ 0 in the feasible set. The set of conditions in (3.22) are called comple-

mentary slackness conditions. From slackness conditions, we know that if λi > 0, then the ith

inequality constraint is active, i.e. fi(x) = 0. Conversely, if the optimal solution is not bounded

by the ith inequality constraint, then λi = 0 and the Lagrange function is not augmented by

fi(x).

Note also from (3.21) that d∗ = p∗ = g(λ∗,ν∗). Taking into account the definition of the

dual function in (3.8), we can conclude that the gradient of the Lagrangian must vanish at

(x∗,λ∗,ν∗). With that last condition and grouping previous results, we can formulate the KKT

conditions for convex problems (whenever strong duality holds):

fi(x∗) ≤ 0, i = 1, . . . ,m
hi(x∗) = 0, i = 1, . . . , p

λ∗
i ≥ 0, i = 1, . . . ,m

λ∗
i fi(x∗) = 0, i = 1, . . . ,m

∇f0(x∗) +
∑m

i=1 λ∗
i∇fi(x∗) +

∑p
i=1 ν∗

i ∇hi(x∗) = 0.

(3.23)

In practical terms, KKT conditions are very useful to find analytical solutions to convex

problems.

3.2 Review on Decomposition Methods

The philosophy under decomposition methods [Ber99, Las02] is very simple: the idea is to split

an optimization problem into several smaller problems, which are usually called the subproblems,

and let a master problem to be in charge of coordinating all the subproblems so as to achieve

the global optimum. Therefore, all decomposition techniques require some signalling between

the subproblems and the master problem.
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This approach is advantageous in many cases since it is easier to solve each of the subprob-

lems separately than to attack the original problem as a whole. There are, however, additional

motivations in some application examples within the communications area, where decomposi-

tion methods have attracted much attention in the recent years due to the fact that distributed

solutions have been used to cope with some problems that are still of interest. A good example

of that can be found in the works of Chiang [Chi07] and Palomar (see [Pal07] and references

therein).

In the sequel, two basic decomposition methods are revisited, namely primal decomposition

(also known as decomposition by right-hand side allocation [Ber99]) and dual decomposition

(also referred to as Lagrangian relaxation of the coupling constraints or decomposition using a

pricing mechanism [Ber99, Las02]). Finally, a more recent approach that combines both primal

and dual decompositions, the Mean Value Cross (MVC) decomposition method, is revisited

[VR83, Hol92, Hol97, Hol06].

3.2.1 Primal Decomposition

A primal decomposition strategy is adequate for separable problems of the form

min
{yj ,xj}

∑J
j=1 fj(xj)

s.t. xj ∈ Xj, j = 1, . . . , J
Ajxj � yj, j = 1, . . . , J∑J

j=1 yj � b

(3.24)

with variables {xj,yj}. Here, fj : R
nj −→ R and Xj are subsets in R

nj . Furthermore, Aj is a

r × nj matrix with real entries and b, {yj} ∈ R
r.

Note that for fixed values of {yj}, the problem is fully separable. A primal decomposition

technique makes use of this fact. Equivalently to (3.24), we can write

min
{yj}

∑J
j=1 min

xj ∈ Xj

Ajxj � yj

fj(xj)

s.t.
∑J

j=1 yj � b, yj ∈ Yj, j = 1, . . . , J

(3.25)

where the subsets Yj take into account that the inner minimization problem,

p(yj) =
min fj(xj)
s.t. Ajxj � yj, xj ∈ Xj

(3.26)

has at least one feasible solution. The inner minimization problems are usually called the sub-

problems, and they depend on the values taken by the variables yj with dom pj = Yj.

Using this definition, the original problem in (3.24) is rewritten as

min
∑J

j=1 pj(yj)
s.t.

∑J
j=1 yj � b, yj ∈ Yj, j = 1, . . . , J

(3.27)
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and is usually called the master problem. Note that with this approach, the master problem fixes

the variables yj so as to achieve the optimum of the problem given the coupling constraint. Using

these values, the subproblems fix, at their turn, the local variables xj. Often in the literature

a resource allocation interpretation is given to this strategy. Imagine that the total quantity of

available resources is b and that it has to be distributed among some entities, the subproblems.

Under this point of view, the master problem decides the allocation of the available resources

while the subproblems are in charge of achieving the highest revenue with the granted values of

the shared means.

Up to this point, no convexity assumptions have been made, so the discussion above is

valid for all kind of problems in the form of (3.24). However, from a practical point of view,

the interest is in finding the optimal solutions to the problem. In the sequel, a pretty simple

numerical method, the subgradient method, is reviewed to attain the optimal solution when the

subsets Xj are convex and the functions fj(xj) are also convex.

The subgradient method is in fact an adaptation of the gradient projection method [Ber99,

Sec. 2.3] to the problem in (3.27). In short, the gradient projection method iteratively finds

the solution to the problem by: i) moving the current solution towards a descent direction (the

opposite of the gradient) and ii) projecting the solution onto the feasible set. In the case under

study, a deeper insight into the functions pj(yj) is required. We need to certify that the subsets

Yj are convex, which is required by the gradient projection method. Another issue is to define

and to be able to numerically evaluate a gradient (or a similar function) of pj(yj) at any point

in Yj. Note that, in general, any descent-type method will find local solutions to the problem

under study. However, if the problem is convex, a local solution is also global [Ber99, Prop.

2.1.1]. Since it is assumed that fj(xj) are convex, it is also important to establish the convexity

of p(yj).

In order to answer the questions above, let us rewrite the jth subproblem in (3.26) in a more

general form [Ber99, Sec. 5.4.4] (subindex j is omitted in the subsequent analysis).

p(y) = min
x ∈ X

gi(x) ≤ yi, i = 1, . . . , r

f(x). (3.28)

with dom p = Y as above. The functions gi(x) are convex and define the feasible set of the

problem for a given1 y. Note that we can interpret that representation as a perturbation on the

general representation of a convex problem, with tightened or loosened constraints. That is, if

yi > 0, then we are loosening the ith constraint; otherwise, when yi < 0, we are tightening the

ith constraint. When y = 0, the problem resembles to the initial formulation in (3.1).

1They shall not be confused with the dual function g(x).
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Lemma 1 Given the problem in (3.28), i holds that: i) the subset Y is a convex subset and ii)

the function p(y) is convex over Y.

Proof. See [Ber99]. To verify it, take any two points inside Y, y1 and y2, any scalar α ∈ [0, 1] and

ε > 0. Then choose any two points inside X , i.e. x1,x2 ∈ X , that satisfy: i) g(xi) � yi, i = 1, 2

and ii) f(xi) ≤ p(yi) + ε, i = 1, 2. Assuming convexity of X , f and {gi}, it holds that [Ber99]

p (αy1 + (1 − α)y2) ≤ αp(y1) + (1 − α)p(y2) + ε. (3.29)

Since p (αy1 + (1 − α)y2) < +∞, αy1 + (1 − α)y2 ∈ Y and Y is a convex set. And taking the

limit ε −→ 0, (3.29) converts into the definition of a convex function, so the primal subproblems

are convex functions with convex domains. �

To finally complete the subgradient method, a gradient of the primal subproblems at any

point inside the corresponding domains is required. In the general case, the subproblems are

convex but non-differentiable, so the existence of a gradient is not guaranteed. However, it is

possible to resort to a more general definition of the concept, the subgradient. It does not require

differentiability and suits for our purposes. From [Las02, Appendix 2], a vector s(x0) is said to

be a subgradient of f at the point x0 if it holds

f(x) ≥ f(x0) + s(x0)T (x − x0) (3.30)

and thus, the subgradient is the slope of a supporting hyperplane of f at x0, even if the function is

non-differentiable. When f is differentiable at any point x, then it holds that s(x) = ∇f(x). See

Figure 3.4. Note in the figure that it is possible to define other subgradients at x0 accomplishing

(3.30).

We assume now that strong duality holds in the problem (3.28) and that a dual optimum is

attained at the point λ∗ for the unperturbed problem (i.e., y = 0). Take any feasible point x

for the perturbed problem (i.e., g(x) = [g1(x), . . . , gr(x)]T � y) and it holds

p(0) = g(λ∗) ≤ f(x) +
r∑

i=1

λ∗
i gi(x) ≤ f(x) + λ∗T y (3.31)

since the dual function is always an under-estimator of the optimum value of the problem and

λ � 0. And since x can be any point in X , we can choose the one that gives the optimum value,

p(y). We finally get

p(0) ≤ p(y) + λ∗T y (3.32)

from where (together with (3.30)) we see that −λ∗ is a subgradient of p at the point y = 0. The

result is easily extensible to any value of y, y�, after the application of the change of variables

y′ = y − y� to the perturbed problem in (3.28) and the previous derivation in (3.31)-(3.32).

Therefore, we can establish that:
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Figure 3.4: Illustration of the subgradient concept.

−λ∗(y�) is a subgradient of p(y) at the point y = y�.

Using the subgradient, problem (3.27) can be iteratively solved using the conditional gradient

method [Ber99, Sec. 2.2] by just replacing the gradient with the subgradient. Therefore, it is

of interest to find the subgradient of the objective function of the problem, i.e.
∑J

j=1 pj(yj).

Using the previous relation between the subgradient and the Lagrange multipliers, it is readily

established that a subgradient of the function at the point [y1, . . . ,yJ ]T is:

s
[y1,...,yJ ]T

⎛
⎝ J∑

j=1

pj(yj)

⎞
⎠ = −[λ∗

1(y1), . . . ,λ
∗
J(yJ)]T (3.33)

from what the updates of the subgradient method are given by the equation (k indexes iteration

number)

yk+1 = [yk − αksk]† (3.34)

where [·]† denotes the projection on the constraint set
{

y = [y1, . . . ,yJ ]T |∑J
j=1 yj = b,yj ∈ Yj

}
and αk is a positive step size. The projection of a given point on a set finds out the point in

the set that is closer to the given point (in any defined distance function). Note that in the case

where the point is already in the set, the projection is the same point. For more information

about projections on sets, please refer to [Boy03, Sec. 8.1].

Resorting to the results on the gradient projection methods [Ber99, Sec. 2.3], there are several

possibilities to set up the step size in a manner that convergence of the algorithm is guaranteed.

Maybe the most used ones in practice are the constant step size, the constant step length and

the diminishing step size [Pal07]. In the constant step size,

αk = α, k = 0, 1, . . . (3.35)
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whereas in the constant step length,

αk =
α

‖sk‖ , k = 0, 1, . . . (3.36)

For the diminishing step size, we set up αk such that

αk −→ 0,
∞∑

k=0

αk = ∞, (3.37)

for example [Pal07]

αk =
1 + m

k + m
k = 0, 1, . . . (3.38)

where m is fixed and nonnegative. Note that in all cases the speed of convergence will depend

on a user-defined parameter (αk), which is generally not optimized to guarantee the maximum

speed of the algorithm. Therefore, it is desirable to avoid such procedures when possible so as

not to slow down the obtention of solutions.

3.2.2 Dual Decomposition

A dual decomposition strategy is adequate for separable problems of the form

min
{xj}

∑J
j=1 fj(xj)

s.t. xj ∈ Xj, j = 1, . . . , J∑J
j=1 hj(xj) � b.

(3.39)

Here, hj : R
nj −→ R

r and b ∈ R
r.

Different to a primal decomposition, in this occasion the problem is separated thanks to

a Lagrangian relaxation of the coupling constraint [Ber99, Sec. 6.4.1]. The corresponding dual

function is

q(μ) =
J∑

j=1

min
xj∈Xj

{
fj(xj) + μT hj(xj)

}− μT b (3.40)

Note that the dual function is separable, each part associated to a different xj . Taking this

into account we define the subproblems, that are expressed as qj(μ), where

qj(μ) = min
xj∈Xj

{
fj(xj) + μT hj(xj)

}
(3.41)

It is assumed at this point that it exists a vector xj for all j and μ that attains the minimums

above. We refer to those vectors as x∗
j(μ) and replacing them in the equation above, the dual

subproblems are finally rewritten as

qj(μ) = fj(x∗
j (μ)) + μT hj(x∗

j(μ)) (3.42)
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and the dual master problem becomes

max
μ

q(μ) =
∑J

j=1 qj(μ) − μT b

s.t. μ � 0
(3.43)

As in the primal decomposition, we can numerically solve the dual master using a subgradient

method. To do so, the subgradient of the dual subproblem qj(μ) at the point μ is required.

Consider now one of the subproblems, qk(μ), and for any value of μ, x∗
k(μ) is the minimizer of

(3.41). Note that qk(μ) is the dual function of the following optimization problem

min
xk∈Xk

fk(xk)

s.t. hk(xk) � 0
(3.44)

From the definition of the dual function, it is verified that

qk(μ) ≤ fk(x∗
k(μ

0)) + μT hk(x∗
k(μ

0))
= fk(x∗

k(μ
0)) + μ0T

hk(x∗
k(μ

0)) + (μ − μ0)T hk(x∗
k(μ

0))
= qk(μ0) + (μ − μ0)T hk(x∗

k(μ
0))

(3.45)

where the inequality holds since the dual function chooses the point in Xk that minimizes the

Lagrangian in (3.41) and so, any other point will attain the same value or higher.

Since (3.45) is valid for any μ0 ∈ R
r, we can conclude that hk(x∗

k(μ
0)) is a subgradient of

the dual subproblem k at μ0, which is readily verified from the subgradient definition in (3.30),

and therefore

sμ0,k qk = hk(x∗
k(μ

0)), qk(μ) ≤ qk(μ0) + (μ − μ0)T sμ0,k (3.46)

With this last result, it is easy to compute a subgradient for the dual master and to finally

determine the subgradient method for dual decomposition. A subgradient of the dual master at

a point μ0, sμ0, is given by

sμ0 =
J∑

j=1

sμ0,j − b (3.47)

and the iterates of the method use an updating equation that resembles the one in primal

decomposition,

μk+1 = [μk + αksk]+ (3.48)

where k indexes iterations. Note that the projection on the feasible set is easier this time since

the master dual problem only requires μ � 0. Therefore, the projection is readily solved by

fixing the negative values of μk + αksk to 0. More formally,

[a]+ =
{

a, a > 0
0, a ≤ 0

(3.49)

Finally, αk is the step size of the method as in primal decomposition and the same results and

conclusions can be drawn.
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3.2.3 Mean Value Cross Decomposition

In this section we review the cross decomposition method developed by Holmberg and Kiwiel

and described in their relatively recent paper [Hol06] when applied to convex programs. Previous

steps of this mixed proposal for other types of problems can be found in [VR83, Hol92, Hol97].

The technique is designed to solve some special types of convex problems with a wider framework

than in primal or dual decompositions, and thus, problems suiting such strategies can also be

embedded in the Mean Value Cross (MVC) decomposition method. Conceptually speaking, the

philosophy of the technique is quite different from the preceding solutions due to two main

reasons:

• The way the problem is separated is different (as will be seen in the problem formulation).

• The idea is to update primal and dual variables at the same time while information among

primal and dual visions of the problem is interchanged. Note that in primal decomposition,

the goal is to iteratively move towards the optimal values for the primal variables, whereas

in dual the decomposition the goal is the equivalent in the dual domain of the problem.

Consider the following problem formulation,

min
x,y

c(x) + d(y)

s.t. A1(x) + B1(y) � b1

A2(x) + B2(y) � b2

x ∈ X
y ∈ Y

(3.50)

where c : R
n1 −→ R, d : R

n2 −→ R, A1 : R
n1 −→ R

m1 , B1 : R
n2 −→ R

m1, A2 : R
n1 −→ R

m2

and B2 : R
n2 −→ R

m2 are convex functions. The sets X and Y are also convex and compact. It

is further assumed that strong duality holds.

Note that all the functions in (3.50) depend only on one subset of primal variables, either

x or y. If, for example, we define x = [xT
1 , . . . ,xT

J ]T , A1(x) = Ax, B1(y) = −y, b1 = 0

and A2(x) = B2(y) = b2 = 0, 2 then we have a primal decomposition-type structure but

without explicit separation of the variables within x. Similarly, if we set A1(x) =
∑J

j=1 hj(xj),

B1(y) = 0, b1 = b and A2(x) = B2(y) = b2 = 0, then the structure coincides with the one

suitable for a dual decomposition.

Construct now the partial Lagrangian function of the problem (3.50) as

L(x,y,μ) = c(x) + d(y) + μT (A1(x) + B1(y) − b1) (3.51)

2The set of constraints
PJ

j=1 yj � b is included in Y.
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and minimize it over the variable x, including the constraints that have not been taken into

account in the Lagrangian definition, to obtain the function K(y,μ),

K(y,μ) = min
x

L(x,y,μ)

s.t. A2(x) ≤ b2 − B2(y)
x ∈ X

(3.52)

Note that the problem is convex given that μ � 0 and that for a fixed value of y, it coincides

with the definition of the dual function of (3.50) according to the Lagrangian definition in (3.51).

Therefore, as stated in [Hol06], it is intuitively true that K(y,μ) is a convex function of y given

μ and a concave function of μ given y. Primal and dual subproblems, as defined by Holmberg

and Kiwiel, make use of this fact.

The primal subproblem is defined as

p(y) = max
μ

K(y,μ)

s.t. μ � 0
(3.53)

whereas the dual subproblem is defined as

d(μ) = min
y

K(y,μ)

s.t. y ∈ Y (3.54)

Since strong duality holds and since the primal subproblem (for a fixed value of y) can be

interpreted in terms of the maximization of a dual function (i.e., it is in fact a dual problem for

a fixed y), it is possible to attain the same optimal value by solving the corresponding primal

problem, which is
p(y) = min

x
c(x) + d(y)

s.t. A1(x) ≤ b1 − B1(y)
A2(x) ≤ b2 − B2(y)

x ∈ X
(3.55)

The complete expression for the dual subproblem for a fixed value of μ is (by substitution)

d(μ) = min
x,y

c(x) + d(y) + μT (A1(x) + B1(y) − b1)

s.t. A2(x) + B2(y) ≤ b2

x ∈ X
y ∈ Y

(3.56)

Once the subproblems (primal and dual) are fully described, a possibility to solve the whole

problem is to define the master problems associated to the subproblems. In that way, we finally

have to options: i) solve from a primal-only perspective or ii) solve from a dual-only perspective.

The master problems are defined as:

p∗ = min
y

p(y)

s.t. y ∈ Y (3.57)
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for the primal and
d∗ = max

μ
d(μ)

s.t. μ � 0
. (3.58)

Both are convex optimization problems [Hol06] that verify p∗ = d∗ due to strong duality. When

evaluated not in the optimum, the primal subproblem is an over-estimator of the optimum and

the dual subproblem is an under-estimator of it [Hol06]. In other words, it holds that

d(μ) ≤ d∗ = p∗ ≤ p(y) (3.59)

and the result is consistent with the duality results in Section 3.1.2.

Note that this approach is conceptually the same as in primal or dual decompositions with

some important differences regarding the structure of the problem: in the MVC decomposition

method, the separability of the problem in some subgroups of variables (except for a coupling

constraint or a coupling variable) is not exploited as it happens with the previous techniques.

Although the formulation is in principle more general (in the sense that more types of convex

programs fulfill the MVC decomposition approach), it lacks for specialization (a distributed so-

lution is not naturally derived as in primal/dual decompositions). As it will be discussed later,

primal and dual decomposition techniques are suitable for parallel computing as the subprob-

lems can operate independently with some signaling with the master problem, which coordinates

the global problem. Such parallelization is sometimes an important feature, since it enables to

perform distributed solutions. These are very interesting in application problems where central-

izing operations needs great effort. The works within network optimization are an example of

this issue [Pal07].

Consider again the master problems in (3.57) and (3.58). Now, instead of keeping the same

philosophy as in primal or dual decompositions, the MVC decomposition method proposes to

skip the usage of master problems and to update primal (y) and dual (μ) variables among primal

(3.55) and dual (3.56) subproblems. That is, once the primal subproblem in (3.55) is solved (for

a given value of y), the dual variables μ, related to the constraint A1(x) ≤ b1 − B1(y), are

readily found. These are then used (with some modifications) as an input to the dual subproblem

in (3.56). Once it is solved, the primal variables y are obtained at no cost as its minimizers.

And finally, the circle is closed by feeding again the primal subproblem with the new values of

y (with some modifications).

As noted, primal and dual variables are not directly passed between subproblems and instead,

it is required to average a new value with all past results previously to the exchange. More

formally,

μ̄k =
1
k

k−1∑
i=0

μk−1 and ȳk =
1
k

k−1∑
i=0

yk−1 (3.60)

where k indexes iterations. Note that the method implicitly defines an step-size ( 1
k ) for each

new contribution to the mean value, and it diminishes as the number of iterations increase. The
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same problems that primal and dual decomposition methods had, related to the choice of the

step-size also appear in this case. In practical terms, the smoothing approach slows down the

speed of convergence of the technique (it is further discussed later on in this chapter).

To end this review of the method, let us summarize it in an algorithmic form:

Take starting points μ0 � 0 and y0 ∈ Y and let k = 1.

Repeat

1. Let μ̄k = 1
k

∑k−1
i=0 μk−1 = 1

k μk−1 + k−1
k μ̄k−1 and compute d(μ̄k) as in (3.56). Get yk

as an inner minimizer of d(μ̄k).

2. Let ȳk = 1
k

∑k−1
i=0 yk−1 = 1

k yk−1 + k−1
k ȳk−1 and compute p(ȳk) as in (3.55). Get μk

as the inner Lagrange multiplier of p(ȳk).

3. k = k + 1.

Until p(ȳk) − d(μ̄k) < ε.

Note that the stopping criterion of the method is defined using a measure of the duality gap,

that is, the difference between the primal and dual versions of the problem. It is assumed that

the duality gap is zero since strong duality holds. For further details on the MVC decomposition

method, please refer to [Hol06].

3.3 Proposed Coupled-Decomposition Method

Once the decomposition methods in the literature have been reviewed, it is now turn to develop

the coupled-decomposition method that we propose in this thesis, which is our major theoretical

contribution. Conceptually speaking, it can be classified in between primal/dual decomposition

methods and the MVC decomposition method. From the former, we get the way the problem is

separated (in a master problem with several subproblems). From the latter, the idea of combining

both primal and dual decompositions in a single method is shared3.

Note that, as it has already been discussed in the previous chapter, it is also possible to create

several decomposition layers within certain types of problems. To exemplify it, imagine that the

primal or dual subproblems derived through decomposition of the original optimization problem,

at their turn (and whenever it is possible), are solved by performing a second decomposition

(primal or dual) running at a lower level. The idea, well exposed in [Pal07], should not be confused

with our proposal here, where both decompositions intertwine as in the MVC decomposition
3The idea of the coupled-decomposition method was autonomously conceived. We related it to the works in

[VR83, Hol92, Hol97, Hol06] when a reviewer mentioned them.
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method. Moreover, the decomposition we propose here can replace either the primal or the dual

decomposition (if the formulation of the problem suits) in a multi-layer decomposition strategy.

In that sense, it is not an excluding technique and the benefits of the method must be interpreted

not only as an isolated procedure but also in combination with others.

3.3.1 Description of the Method

Consider now the following convex problem formulation

min
{xj},y

∑J
j=1 fj(xj)

s.t. xj ∈ Xj, j = 1, . . . , J
hj(xj) ≤ yj, j = 1, . . . , J

Ay � c
y ∈ Y, Y = Y1 × . . . × YJ

(3.61)

where fj : R
nj −→ R and hj : R

nj −→ R are convex functions of xj , Xj and Y are convex and

compact subsets, A = [a1, . . . ,ar]T is a r × J (r ≤ J) matrix with entries ak,l ∈ {0, 1} and

rank(A) = r and c ∈ R
J . The subsets Yj are defined as the images of the subsets Xj through

the functions hj(xj), i.e. hj : Xj −→ Yj , ∀j. Note that the constraint y ∈ Y is redundant since

Y collapses the information already available in the subsets Xj. Notwithstanding, it is necessary

to derive the proposed method and hence, we include it in (3.61). We further assume that strong

duality holds, i.e., for every point y in the domain, there exists a point xj in the interior of Xj

that attains hj(xj) < yj for every j = 1, . . . , J with Ay ≺ c and y in the interior of Y.

In short, the coupled-decomposition method intertwines the primal/dual subproblems that

would be obtained with a primal/dual decomposition. However, the connection is not direct

and we need to introduce the novel dual/primal projection elements instead. A complete block

diagram of the method can be found in Figure 3.5. We do not define at this moment the variables

that appear in the figure because they will be next introduced while we describe all the steps

within the proposed strategy.

From Primal Projection to Dual Projection: the Primal Subproblems

Assume now that the values of y are fixed in (3.61), with y ∈ Y (ŷ in Figure 3.5). Then, the

problem clearly decouples into J subproblems depending on the variables xj,

min
xj

fj(xj)

s.t. xj ∈ Xj ,
hj(xj) ≤ yj

. (3.62)

We refer to this subproblems as the primal subproblems for the coupled-decomposition method.

The corresponding optimal solutions xp∗
j (yj) can be attained in the general case using numerical
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Figure 3.5: Block diagram of the coupled-decomposition method.

methods (e.g. interior point methods, see Section 3.1.1). However, in some cases, they can also

be found analytically using the KKT conditions in (3.23).

As stated before, there is certain similarity in formulation between the subproblems in pure

primal decomposition and the subproblems in the proposed technique. However, there are slight

differences in the way we use them. In the first case, the interest was in extracting information

from the subproblems in (3.26) in order to coordinately advance towards the optimal solution

in the master problem of (3.27). More precisely, a subgradient 4 for the master problem was

readily computed from the subgradients extracted from the subproblems, which were obtained

at no cost given the Lagrange multipliers related to the constraints Ajxj � yj ; c.f. (3.33). In the

cross decompositions method, the goal is to use that dual information provided by the primal

subproblems to optimize the original problem in (3.61) from a dual perspective. In that sense,

the method resembles the MVC decomposition method. However, the interchange of information

from primal to dual and viceversa differs from the smoothing mean value applied there.

Assume now that the minimizers of the primal subproblems (3.62) are attained at the points

xp∗
j (yj) and let us represent the subsets Xj by an arbitrary number Kj of constraints of the type

4A subgradient is a generalization of the gradient concept also valid for non-differentiable functions: a vector
s(x0) is said to be a subgradient of the function f at the point x0 if, given any point x ∈ domf , it is true that
f(x) = f(x0) + s(x0)T (x − x0).
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gj(xj) � 0, where gj : R
nj −→ R. Then, the application of the KKT conditions in (3.23) forces

the following equalities and inequalities to the dual variables,

λj ≥ 0,
υk

j ≥ 0, k = 1, . . . ,Kj ,

λj(hj(x
p∗
j ) − yj) = 0,

υk
j gk

j (xp∗
j ) = 0,

∇fj(x
p∗
j ) + λj∇hj(x

p∗
j ) +

∑Kj

k=1 υk
j ∇gk

j (xp∗
j ) = 0,

(3.63)

where υj = [υ1, . . . , υKj ]
T are the dual Lagrange variables associated to the set of constraints

gj(xj) � 0 and λj is the dual variable associated to hj(x
p∗
j ) ≤ yj, being λ = [λ1, . . . , λJ ]T . From

the previous equations, the values of λj can be computed, either analytically or numerically.

These are labelled as λt
0 in Figure 3.5. Note that the slackness constraint λj(hj(x

p∗
j ) − yj) = 0

forces λj = 0 if the constraint is not active, i.e. hj(x
p∗
j ) < yj . We say then that the jth value

of λ is not active. Furthermore, the values of λ are classified accordingly into two subsets: the

active and the non-active ones.

From Dual Projection to Primal Projection: the Dual Subproblems

It is also possible to decouple the problem in (3.61) from a dual perspective using the ideas

from a pure dual decomposition strategy. For that purpose, a partial Lagrangian for (3.61) is

constructed by relaxing only the constraints Ay ≤ c with associated dual variables μ,

L({xj},y,μ) =
J∑

j=1

fj(xj) + μT (Ay − c). (3.64)

From this Lagrangian definition, the dual function of the problem can be derived. The

constraints not explicitly included in the Lagrangian are now implicitly taken into account.

The resulting dual function is

q(μ) = min
{xj},y

xj ∈ Xj ,∀j
hj(xj) ≤ yj ,∀j

yj ∈ Yj,∀j

L({xj},y,μ) (3.65)

and finally, substitution of (3.64) into (3.65) attains

q(μ) =
( J∑

j=1

min
xj, yj

xj ∈ Xj

hj(xj) ≤ yj

yj ∈ Yj

fj(xj) + yj([AT ]j μ)
)
− μT c (3.66)
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since μT (Ay − c) = yT AT μ − μT c = (
∑J

j=1 yj [AT ]j μ) − μT c. We define [M ]j to be the jth

file of matrix M .

This result clearly decouples the dual function into several dual subproblems, qj(μ), where

qj(μ) = min
xj, yj

xj ∈ Xj

hj(xj) ≤ yj

yj ∈ Yj

fj(xj) + yj([AT ]j μ), j = 1, . . . , J (3.67)

and

q(μ) =
J∑

j=1

qj(μ) − μT c. (3.68)

The dual converse to extracting the dual variables λ from fixed values of y applies now.

Using the dual subproblems and fixing a value μ � 0, the optimal values of xj and yj are

obtained. We call these values xd∗
j (μ) and yd∗

j (μ), respectively.

Let us consider now a full Lagrangian of (3.61),

L({xj,υj γj, δj},y,μ) =
∑J

j=1 fj(xj) +
∑J

j=1

∑Kj

k=1 υk
j gk

j (xj)
+
∑J

j=1 λjhj(xj) + μT (Ay − c)
+
∑J

j=1 γj(yj − supYj) −
∑J

j=1 δj(yj − inf Yj)
. (3.69)

If we assume that the local constraints in Yj are not active at the optimal yj values, then it is

true that γj = δj = 0 (due to the slackness constraints). Under this hypothesis, the application

of the KKT conditions imposes the following subset of constraints,

∂

∂yj

{
yj ([AT ]j μ) + λj(hj(xj) − yj)

}∣∣∣∣
yj=y∗

j

= 0, j = 1, . . . , J (3.70)

and hence we verify that

λj = [AT ]j μ (3.71)

when the local constraints on yj are not active. Furthermore, if [AT ]j μ > 0, then λj > 0 and

the slackness constraints impose y∗j = hj(x∗
j).

Again, the values yd∗
j (μ) provide the necessary information to obtain a subgradient of q(μ)

and one could proceed as in a pure dual decomposition. Once more, the idea now is to interchange

that primal information with the primal subproblems in order to coordinately reach the optimal

solution. Note that, due to strong duality, the optimal values of μ for the general problem applied

to the dual subproblems return the optimal values of xj and yj. The converse is also true: given

the optimal values of yj to the primal subproblems, the optimal values of xj and λj = [AT ]j μ,

derived from (3.71), are found.
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However, a direct interconnection between primal and dual subproblems is not possible unless

an adequate treatment of data in both directions is performed. Checking whether the KKT

conditions hold or not with the sole use of primal and dual subproblems reveals that something

else is required. An example supporting the discussion is found in the MVC decomposition

method, where a key point was to perform a time average of the successive updates from primal

and dual subproblems.

We keep in background by the moment the task of analyzing the KKT conditions of the

original problem in (3.61) in order to finally conclude the method. The interest now is on

studying the dependencies between primal and dual subproblems, that is, how the variables yj

are related to the Lagrange multipliers λj = [AT ]j μ.

Primal-dual Relationship in Subproblems

Take now the jth primal subproblem in (3.62) and assume that the constraint hj(xj) is active

between the values y1
j and y2

j , i.e. hj(xj) = yj, yj ∈ [y1
j , y

2
j ]. The objective is to understand the

evolution of the associated dual variable λj within that interval. In other words, we want to

know what variation in λj may be expected as a reaction to a variation in yj. We take a rather

practical approach this time to gain intuition on the question. However, the reader may find in

[Boy03, Sec. 5.6.3] a more formal analysis under the topic of local sensitivity analysis.

Define x∗
j (yj) as the optimal solution of the primal subproblem in (3.62) and allow yj to be

in the range [y1
j , y

2
j ]. Then, x∗

j describes a curve in the domain of the subproblem as yj moves.

Figure 3.6 exemplifies the situation. In darkest line, there is the curve x∗
j(yj) between y1

j and

y2
j . Moreover, we have depicted in dotted lines the contour plots for the objective function and

in solid lines the constraints h(xj) = y1
j and h(xj) = y2

j . Finally, the subset Xj is represented

using an arbitrary number of constraints gl
j(xj) ≤ 0.

Primal subproblems are now redefined as one-dimensional optimization problems making

use of the previously defined optimal curve, x∗
j (tj) with tj ∈ [y1

j , y
2
j ], and assuming that the

constraint is active as
min

tj
fj(x∗

j(tj))

s.t. hj(x∗
j(tj)) ≤ yj.

(3.72)

Note that the set of constraints xj ∈ Xj in (3.62) is not necessary now as that information

is implicitly included in the curve x∗
j (tj). Moreover, the optimal value of (3.72) function of yj

forms a convex function with convex domain, as can be extracted from the discussion in (3.28)

and (3.29).

If the Lagrangian of (3.72) is differentiated with respect to tj, it holds that

∂L(tj , λj)
∂tj

=
∂fj(x∗

j(tj))
∂tj

+ λj

∂hj(x∗
j(tj))

∂tj
= 0 (3.73)
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Figure 3.6: Interpretation of the relationship between yj and the Lagrange multiplier λj .

and since hj(x∗
j(tj)) = tj, it is verified that

∂fj(x∗
j(tj))

∂tj
= −λj. (3.74)

Note that the optimal solution of (3.72) is attained at tj = yj . This result is in accordance with

the results in [Boy03, Sec. 5.6.3] (fixing yj = 0) and the previously found result in (3.32). This

can be seen in Figure 3.7, where we represent the functions fj(x∗
j(tj)) and hj(x∗

j (tj)). Fixing

tj = yj = y1
j , the equilibrium equation imposed by the partial of the Lagrangian with respect

to tj in (3.73) forces to choose an adequate value of λj such that the slopes of fj(x∗
j(tj)) and

hj(x∗
j (tj)) compensate one each other. For a greater value of tj such as tj = y2

j and given that

fj(x∗
j (tj)) is a convex function of tj (see Lemma 1), it is clear that, in order to restore equilibrium

in the slopes of the functions, a lower value of λj is required. Therefore, we can conclude that

λj is a decreasing function of yj.

This result is summarized in the following Lemma.

Lemma 2 Primal and dual subproblems in (3.62) and (3.67) have a relationship through primal

and dual variables yj and λj (assuming that the local constraints in Yj are not active). It holds

that

• An increase (decrease) on the primal value yj implies a decrease (increase) on the dual

variable λj, although not linear.

• An increase (decrease) on the dual value λj implies a decrease (increase) on the primal

variable yj, although not linear.
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Figure 3.7: Graphical representation of the problem in (3.72).

Coordination between Subproblems. How Coupling is Managed.

We focus now on the original problem in (3.61). The objective is to embed primal and dual sub-

problems in a procedure to find the global solution of the problem. This implies the optimization

over y and its dual λ, which are not taken account in the subproblems. Let us rewrite the full

Lagrangian of the problem as

L({xj,υj, ξj},y,λ,μ) =
∑J

j=1 fj(xj) +
∑J

j=1 λj(hj(xj) − yj) + μT (Ay − c)
+
∑J

j=1 υT
j gj(xj) +

∑J
j=1 ξT

j rj(yj)
(3.75)

where the functions {rj(yj)} represent an arbitrary number of constraints on the coupling vari-

able y that define the convex subset Y. Rcall that it is possible to uncouple those constraints

(depending only on yj) as Y is the cartesian product of J one-dimensional subsets, Yj. Typically,

Kj = 2, since in one-dimensional optimization only lateral constraints are meaningful. Similarly,

the set of constraints gj(xj) = [g1(xj), . . . , gKj (xj)]T define the convex subsets Xj .

Among the KKT conditions for optimality of the solution, the focus is now on the ones

related with the coupling variable y, either from the primal or dual point of view. In the optimal

values x∗
j , y∗, λ∗ and μ∗, it holds

∇yL({x∗
j},y∗,λ∗,μ∗) = AT μ∗ − λ∗ +

∑
j,k ξk

j ∇y{rk
j (yj)} = 0

μ∗T (Ay∗ − c) = 0
Ay∗ ≤ c

y∗ ∈ Y
(3.76)

Two important conclusions can be extracted to guide primal and dual subproblems towards

the optimal solution of the coupled problem. They are:
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• If μk > 0, then aT
k y = ck due to the slackness constraint. The converse applies when

aT
k y < ck and then it is required that μk = 0.

• As stated before (in Lemma 2), it is verified that λj = [AT ]j μ when the local constraints

in Yj are not active. If any of the local constraints is active, i.e rk
j = 0, then the optimality

condition ∂
∂yj

L({x∗
j ,υ

∗
j , ξ

∗
j},y∗,λ∗,μ∗) = 0 can be attained by means of many different

values of λj adjusting the value of the multiplier ξk
j ≥ 0, which is fully uncoupled from

the other optimality conditions ∂
∂yk

L({x∗
j ,υ

∗
j , ξ

∗
j},y∗,λ∗,μ∗) = 0 with j �= k. Therefore,

in such a case the condition is not useful to relate λ with μ.

With those observations, we have provided sufficient conditions to interconnect primal and

dual subproblems. Next we use these to derive the primal and the dual projections of the method.

From Dual Subproblems to Primal Subproblems: the Primal Projection

First, consider the simplest connection, from dual subproblems to primal subproblems. Given

the dual variables μ, the dual subproblems in (3.67) obtain the values of the primal variables

yj and xj. However, there is no guarantee to accomplish the necessary condition Ay ≤ c.

Moreover, note that once fixed the values of μ, it is implicitly assumed (using slackness) that for

each μk > 0, aT
k y = ck. Again, this is not necessarily attained in dual subproblems. To correct

those primal unfeasibilities, dual subproblems are connected to the primal subproblems with the

primal projection for the method, which solves the following optimization problem

min
ŷ

‖y0 − ŷ‖2
2

s.t. aT
k ŷ = ck, k

∣∣μk > 0
aT

k ŷ ≤ ck, other k
ŷ ∈ Y

(3.77)

where y0 is the output of the dual subproblems.

The primal projection takes the role of the primal master in pure primal decomposition and

performs a projection to the feasible subset. However, the projection is this time conditioned to

the values of μ, which force additional equality constraints. Disregarding this subtle difference,

the idea is the same as in gradient projected methods, where unfeasible updates are in this way

corrected. Moreover, the new point ŷ is the one that, lying in the feasible set, is closer to the

given point y0. Note that such procedure guarantees primal feasibility by moving the solution

away from y0 by the minimum possible distance. Later on, we define the dual converse of primal

projection, the dual projection, and the same idea holds. This establishes a connection between

both projections.

Consider now the following Lemma.
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Figure 3.8: Supporting hyperplane.

Lemma 3 Assuming that the feasible set (with respect to to y) of (3.61) coincides with the

feasible set of (3.77), the solution to the primal projection, ŷ, verifies that it is not farther to

the optimal solution of (3.61) than y0.

Proof. First, note that the feasible set of the primal projection problem is a convex subset,

since it is the intersection of the convex subset Y with linear equalities and inequalities [Boy03,

Sec. 2.3.1]. If y0 ∈ Y, then we have ŷ = y0 and the property holds. If y0 /∈ Y, then the solution

ŷ must be in the boundary of Y (otherwise ŷ would be even farther from y0). It is possible

to define a supporting hyperplane [Boy03, Sec. 2.5.2] to the set at the point ŷ (the hypothetic

solution) since it is on the boundary of the set (which is convex and compact). A supporting

hyperplane of Y at the point ŷ is an hyperplane which verifies that all the points within the

subset are contained by it. In other words, it is defined as HP = {y|pT y = pT ŷ}, with p �= 0,

and satisfies that, for every ŷ′ ∈ Y, it holds

pT ŷ′ ≤ pT ŷ. (3.78)

See this graphically in Figure 3.8. Note that ŷ is the orthogonal projection of y0 to the described

hyperplane. Now, let us write the distance between two points a and b as da,b. Then, for any y0,

ŷ and y∗ ∈ Y, the application of the cosine theorem attains

dy0,y∗ =
√

d2
ŷ,y0

+ d2
ŷ,y∗ − 2dŷ,y∗dŷ,y∗ cos α (3.79)

where α is the angle defined by the segment lines from ŷ to y0 and from ŷ to y∗, respectively.

Finally, noting that α ∈ [π2 , 3π
2 ], it is confirmed that dy0,y∗ ≥ dŷ,y∗ . �



Chapter 3. Unified Decompositions Framework in Convex Programming 55

T T
ki kj

T

T T
li lj

a a

a a
A

T
kjaB

i

j

μ

' jμ

k

l

' k

k ky bdY

l ly bdY

T
i ica y T

j jca y
J x r

Figure 3.9: Construction of the linear system λ′
0 = Bμ′ used in the dual projection of the method.

From Primal Subproblems to Dual Suproblems: the Dual Projection

Consider now the link from primal subproblems to dual subproblems or equivalently, how the

values in λ0 = [λ01 , . . . , λ0J
]T (from now on the output of the primal subproblems) are trans-

formed to the values μ (the input of the dual subproblems). In this case, two of the previous

observations are used: i) if aT
k y < ck, then μk = 0 and ii) the fact that λ0j = [AT ]j μ for those yj

not in the boundary of Yj. First, we construct the new matrix B by selecting the kth column of

AT if aT
k y = ck and discarding it if aT

k y < ck. If the kth column is eliminated, then immediately

μk = 0. Accordingly, a new μ′ vector is defined with the non-zero values. Similarly, the files in

AT whose associated yj ∈ bd Yj are discarded in B and not included in the new vector λ′
0.

See it graphically in Figure 3.9. In this way, the linear system λ′
0 = Bμ′ collects the equations

that are useful for the obtention of a new μ from the given λ0 values (output of the primal

subproblems). Note that the KKT optimality conditions associated to the coupling variables

that have been relaxed in primal and dual subproblems (hence not taken into account therein)

are now considered.

The linear system λ′
0 = Bμ′ is in general overdetermined or, in some cases, determined. In

order to verify it, take a feasible primal point y and let a subset M of the constraints aT
i y ≤ ci

in (3.61) attain equality if i ∈ M. With that subset of affine equalities, define the linear system

of equations AMy = cM. Note that by construction, card {M} equals the number of elements

in μ′. Since A is assumed to be a full rank matrix, we have rank AM = card {M}. And since
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the matrix AM is a flat matrix, the matrix (AM)T is tall. Finally, it holds that the number of

variables yj such that yj /∈ Yj is at least equal to card {M} (otherwise there is a contradiction

in the definition of the coupling system AMy = cM) and therefore it is verified that the system

of equations5 λ′
0 = Bμ′ is determined or overdetermined.

The completion of the dual projection requires the previous values of μ, called μt, to obtain

μt+1. The objective in dual projection is to provide dual feasible values λt+1 = AT μt+1 such

that the relative position to λ∗ is preserved (if possible) when updating from λt to λt+1. That

is, if λt
k < λ∗

k (λt
k > λ∗

k), then we want that λt+1
k < λ∗

k (λt+1
k > λ∗

k) – if it is possible given the

λ0 values from the primal subproblems –. Also, we want to take advantage of the approaching

updates in primal projection (ŷ is closer to y∗ than y0) and use the information in ŷ (which is

available at the output of the primal subproblems, λ0, when ŷ is the input to them).

The logic in the previous discussion is to try to keep the successives updates of the dual

subproblems within the same zone (a zone is defined as the subset of points y0 that have the

same relative position with respect to the constraints in Ay0 = c) and approaching to the

optimal value y∗, while the constraints in Ay � c are taken into account. This forces primal

projections to have similar directions in successive updates and avoids abrupt changes of zone

(it is also discussed later), as shown in the following example. Consider, for instance, that

λt = AT μt ≺ λ∗. When this λt is used as the input of the dual subproblems, the output y0

attains Ay0 � c (recall the relationship between primal and dual variables in the subproblems

in Lemma 2). If primal projection is applied to the point y0, then the resulting ŷ is closer to y∗

(as already shown in Lemma 3). For the sake of simplicity, assume now that all constraints keep

active in the iterations considered. Finally, if dual projection achieves λt+1 = AT μt+1 ≺ λ∗,
then the update on y0 will also attain Ay0 � c. Moreover, it will be closer to the optimal

solution since the dual projection has used updated information from the primal subproblems

when ŷ was the input of those. In general, the subset of active constraints evolves with successive

updates until the optimal subset is found. The algorithm we propose is capable of discovering

that optimal subset and therefore to define the zone from where to reach the optimal solution

(where the y0 points of primal projection lie), as discussed later.

Using the arguments above and taking again the problem λ′
0 = Bμ′ (that implicitly includes

optimality conditions for the primal and dual coupling variables), note that the intuitive solution

(and in some sense dual converse of the primal projection) that is found as the argument of the

following least squares problem
min
μ′ ‖λ′

0 − Bμ′‖2

s.t. μ′ � 0
(3.80)

does not meet the previous requirements. Note that such strategy has no control on where new

5B is a selection of the equations defined by the matrix (AM)T since, due to the construction process in Figure
3.9, some of the remaining equations in B may contain only zero entries and they are eliminated.
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updates are placed (relative to λ∗).

Our proposal to perform the dual projection checks the distances between the proposed

λ0 values (from the primal subproblems) and the previous feasible values derived from μt as

λt = AT μt. The distance vector d is readily given as

d = diag
(
(λt − λ0)(λt − λ0)T

)
= diag

(
(AT μt − λ0)(AT μt − λ0)T

)
(3.81)

Now, since the subsystem of interest is λ′
0 = Bμ′, we accordingly define d′ by collecting the

values dk where k is such that yk /∈ bd Yk. To finally obtain μ′, we take from the subsystem

λ′
0 = Bμ′ the minimum subset of equations that are linearly independent and that have the

minimum possible values in d′. The indices of the equations selected are grouped in the integer

subset D and the corresponding linear systems of equations is λ′
0D = BDμ′. A simple algorithm

to obtain the subset is:

set D = {�}, K = {1, . . . , length(λ′
0)} and do

1. search the minimum value d′k with k ∈ K
2. set D� = D ∪ k

3. if rank(BD�) > rank(BD), then D = D�

4. K = K \ k

repeat until rank(BD) = length(μ′)

Once given D, the output of the dual projection must take into account the optimality

condition μ � 0. It is obtained as the argument of the following quadratic optimization problem,

min
μ′ ‖λ′

0D − BDμ′‖2

s.t. μ′ � 0
(3.82)

From the value of μ′, the output values μt+1 are readily obtained by adding zero elements into

the corresponding positions, i.e. μt+1
k = 0 if the corresponding primal value yk ∈ bd Yk.

As an example to illustrate what dual projection performs, consider the situation in Figure

3.10, where we graphically obtain λt+1 from λt and the output of the subproblems (λ0). For

simplicity reasons, assume that all λ0 and μ values are active, so the system of equations

λ′
0 = Bμ′ is for this particular case equivalent to the linear system λ = AT μt. In the figure, we

have depicted the two-dimensional subspace generated by μ inside the subspace R
3
+ of λ. The

following equations relate both subspaces

λ1 = μ1

λ2 = μ2

λ3 = μ1 + μ2

. (3.83)
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Figure 3.10: A dual projection example.

In dashed lines, there are the three possible projections into the subset of μ from the given point

λ0. Note that they are found by solving the previous system by selecting 2 out of 3 equations.

The point λt+1 is the selected projection. Note that it keeps the relative position with respect

to λ∗ at the same time it gets closer to the optimal value.

If we calculate the distance ‖λ′t+1 − λ
′t‖2 in a general case (consider λ

′t+1 = Bμ
′t+1), we

have that

‖λ′t+1 − λ
′t‖2 =

∑
i

(λ
′t+1
i − λ

′t
i )2. (3.84)

Assuming that the solution to the reduced linear system of equations λ′
D = BDμ′ attains μ′ � 0,

we have

‖λ′t+1 − λ
′t‖2 =

∑
i∈D

d′i +
∑
i/∈D

(λ
′t+1
i − λ

′t
i )2, (3.85)

because for each i ∈ D, it holds that λ
′t+1
i = λ′

0i
. Furthermore, the quantities λ

′t+1
i and λ

′t
i can

be expressed, for each i /∈ D, as a linear combination of the values λ
′t+1
i and λ

′t
i with i ∈ D,

respectively. With that observation, we can write

‖λ′t+1 − λ
′t‖2 =

∑
i∈D

d′i +
∑
i/∈D

(
fi

(√
d′j∈D

))2
, (3.86)
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where fi

(√
d′j∈D

)
is a certain linear combination of the square root of the elements in d′

that belong to the subset D. The equation in (3.86) justifies the method employed in the dual

projection. In other words, by selecting the equations whose d′i values are the smallest available,

we hope that the output of the dual projection λt+1 = AT μt+1 is close to the previous λt value

(always conditioned to the values of λ0, implicitly obtained from the primal projection through

primal subproblems), although not necessarily the closest one.

At this point, we have introduced all the elements that are required to construct the

proposed coupled-decomposition method. The reader would have noticed that primal and dual

subproblems, as well as primal projection, can be perfectly isolated and so they have been

explained. Against, dual decomposition and the motivation behind suggests to interact with

primal projection using primal and dual subproblems as translators between primal and dual

domains. The algorithm we propose can then be summarized as follows:

initialize μt = μ0 (e.g. μ0 = 0)

repeat

1. Set λt = AT μt and compute the dual subproblems using (3.67). Store yt
0, {xj}t.

2. Use yt
0 and μt in the primal projection (3.77) and obtain ŷt.

3. Input ŷt in the primal subproblems (3.62) and get the dual candidates λt
0.

4. Using λt
0 and ŷt, update λt+1 = AT μt+1 by performing dual projection (3.82).

until stopping criteria are accomplished

To finally complete the solution, an adequate stopping criterion must be defined for the

algorithm. In the review of interior point methods, it has been said that typical stopping criteria

in most algorithms fix a threshold to the relative variation of the objective value, to the solution

attained, or both. In other words, for a given threshold ε > 0, numerical methods can be

stopped at a certain iteration if |f0(xn+1)−f0(xn)|
|f0(xn+1)| < ε or ||xn+1−xn||

||xn+1|| < ε, or both. In the MVC

decomposition method, the difference between the current value of the primal subproblem and

the dual subproblem was used, since when both are evaluated in the optimal primal and dual

values, the difference vanishes (strong duality holds).

The stopping criterion we propose for the coupled-decomposition method checks the following

differences in primal and dual domains,

‖ŷt − yt
0‖2

‖ŷt‖2
≤ ε and

‖λ′t
0 − Btμ

′t‖2

‖Btμ′t‖2
< ε. (3.87)

When the optimal solution of the problem is attained in primal and dual domains, i.e. ŷt and μt

with t −→ ∞, both numerators vanish. It is not difficult to check that under the assumptions



60 3.3. Proposed Coupled-Decomposition Method

primal
subproblem 1

dual 
subproblem 1

primal 
subproblem J

dual 
subproblem J

primal
projection

dual
projection

1 1

t T tA μ
t T t
J J

A μ

0J
ty

10
ty

1ˆ
ty ˆ tJy

10
t

0J
t

Figure 3.11: Block diagram of the coupled-decomposition method.

made in the problem statement, all KKT conditions of the global problem can be fulfilled

using the values obtained. Therefore, the solution is optimal and the stopping criterion is well

established.

The reader can find again in Figure 3.11 the block diagram representation of the method. Pri-

mal and dual subproblems are linked to primal and dual projections with arrows that represent,

in a distributed implementation of the method, the message passing that is required.

3.3.2 Resource-Price Interpretation

It is possible to give an economic interpretation to convex problems by relating primal variables

to resources employed and dual variables to the prices that have to be paid for using such

resources. For that purpose, let us rewrite again the primal subproblem in (3.62) as

min
x

f(x)

s.t. x ∈ X ,
h(x) ≤ y

(3.88)

and call λ the dual Lagrange variable associated to the constraint h(x) ≤ y. While studying

the relationship between primal an dual subproblems, it has been shown that an increase in

λ implies a decrease in y and viceversa. Therefore, we can interpret that if the price of the
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resource increases, less resources are used in order to optimize the revenue, which is f(x). On

the contrary, if the price is reduced, the revenue is optimized by employing more resources.

However, we are mostly interested in the extension of the interpretation of the subproblems to

the general problem formulation in (3.61) and the algorithm proposed to solve it. The variables

involved are the primal and dual candidates of the subproblems, i.e. y0 and λ0, and the primal

and dual corrections performed by the projections, i.e. ŷ and λ = AT μ. Note that the price

that the jth subproblem is willing to pay, i.e. λj = [AT ]j μ, is obtained as the sum of the prices

of the constraints (grouped in vector μ) where jth subproblem competes for the allocation of

that resource. As an example, consider the scenario proposed in (3.83). Therein, subproblem 1

and subproblem 3 compete to allocate y1 + y3 ≤ c1, whereas subproblem 2 and subproblem 3

do their part with y2 + y3 ≤ c2.

Under this economic perspective, the method we propose can be interpreted as follows. Once

fixed the prices to pay in order to make use of a shared resource (the values in μ), the dual

subproblems compute the price they have to pay (in λ) and take the quantities of resource

(grouped in y0) that maximize their own revenue (by properly allocating its internal resources

xj). However, these may not be feasible and primal projection corrects the values to the nearest

feasible ones. Again, these may not be feasible, now from the dual (price) point of view. In

other words, some of the subproblems pay more than others for the same resources. The dual

projection is in charge of reaching a consensus on the price of the shared resources (in μ). From

that point of view, dual projection updates the prices in μ trying to avoid sudden increases

or decreases in the price that the subproblems will pay in λ = AT μ. Hence, dual projection

imposes the constraints that the prices should satisfy. Note that if the price is abruptly too

expensive or too cheap, in both cases the dual subproblems will fix yj ∈ bd Yj and they will

be not prepared to pay anything for them. This will definitively difficult the consensus among

parts.

The key issues of the method are: i) the relation between primal and dual variables in the

subproblems (see Lemma 2); ii) the primal projection, which assures to get closer to the optimal

solution (see Lemma 3) and iii) the dual projection, which imposes the constraints that the prices

must verify (λ = AT μ). Note that the method is able to discover which coupling constraints

within Ay � c are active (i.e. attained with equality), which implies that the corresponding

values within μ satisfy μk > 0. This is done in primal and dual projections as follows. On one

hand, a μk value enters the active subset of μ values when the constraint aT
k y ≤ ck becomes

active (i.e. attained with equality) after the primal projection. On the other hand, an active

μk value leaves the active subset when the dual projection forces μk = 0. Finally, we want

to remark that both primal and dual projections can be efficiently computed using numerical

methods (since they are QP problems) and that there is no combinatorial process throughout

the whole method.
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Figure 3.12: Block diagram in pure primal/dual decomposition.

3.3.3 Comparison with Previous Approaches

After the description of the method and the final summary in block diagram representation,

the coupled-decomposition method is compared to the pure primal and dual decomposition

approaches and to the MVC decomposition method from an architecture point of view.

Consider first the block diagram of a pure primal/dual decomposition method (as described in

Sections 3.2.1 and 3.2.2) and depicted in Figure 3.12. It is clearly noted that the way the problem

is split is comparable to the coupled-decomposition method because several subproblems are

taken into account, though signalling is simpler. The master problem sends to the subproblems

the variables that couple the subproblems through the constraints (these are yi in the primal

case and μ in the dual case). With these values, the subproblems optimize their local variables

and compute the subgradients si. These indicate to the master problem what the updates of yi

and μ should be so as to optimize their local subproblems. That information allows the master

problems to decide the best strategy to reach global optimality. In terms of the time required

to reach a solution, we want to remark that both approaches may require many iterations to

converge, which can be in part justified by the problem of having a user-defined step-size in the

master problems (as previously discussed in the corresponding sections).

Note that in the coupled-decomposition method, the master problems play the role of primal

and dual projections. However, the philosophy in the computation is different (we do not use the

subgradient concept) and so they actually are the projections. The method is able to combine

both primal and dual decompositions in a unified approach.

If we consider now a block diagram picture of the MVC decomposition method as described in

Section 3.2.3 (see Figure 3.13), we first realize that the problem is split into only two subproblems,

primal subproblem and dual subproblem. Moreover, there is no dual or primal master as it
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Figure 3.13: Block diagram in MVC decomposition.

happens to be with the rest of the methods. The idea of projection is no further used but a time-

average of the outputs of primal and dual subproblems is required to guarantee the convergence

of the algorithm. In practical terms, this reduces significantly the speed of convergence of the

algorithms, as we will show later with an example.

Finally, we summarize the results of the comparison among methods in Table 3.1.

3.3.4 Geometric Interpretation

Consider now the following optimization problem

min
x1,x2,y1,y2

−p1 log x1 − p2 log x2

s.t. mi ≤ xi ≤ di, i = 1, 2
xi ≤ yi i = 1, 2

y1 + y2 ≤ c
mi ≤ yi ≤ di, i = 1, 2

, (3.89)

which is adequately written to suit a coupled-decomposition strategy. In this case, we have

λ1 and λ2 as dual variables associated to the constraints xi ≤ yi and μ as the dual variable

associated to the coupling constraint y1 + y2 ≤ c.

Method
Number of Primal Dual Algorithm
subproblems treatment treatment step-size

Primal Decomposition Several � × User-defined
Dual Decomposition Several × � User-defined
MVC Decomposition 2 � � Time-average

Coupled-decomposition Several � � ×
Table 3.1: Comparison among methods.
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Figure 3.14: Geometric interpretation of the proposed method.
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The primal subproblems are
min
xi

−pi log xi

s.t. mi ≤ xi ≤ di

xi ≤ yi

(3.90)

and can be solved analytically using the KKT conditions of the problem. The optimal value xi

is readily given as

xi =
pi

λi

]di

mi

(3.91)

where

a

]A2

A1

=

⎧⎨
⎩

A2, a > A2

a, A1 ≤ a ≤ A2

A1, a < A1

(3.92)

The same relation would be obtained if we study the dual subproblems and hence, the relation-

ship between dual and primal variables in subproblems (Lemma 2) is confirmed in this example.

Another known result applied to this problem is that, if mi < yi < di, then it holds λi =

[AT ]i μ, so when variables {y1, y2} do not saturate to the lateral constraints, it is verified that

μ = λ1, and μ = λ2 (3.93)

and therefore it is also true that for a given μ that accomplishes the considerations above, we

have

x(μ) = y(μ) =
[
p1

μ
,
p2

μ

]T

. (3.94)

The previous results allow us to give a geometrical interpretation of the way the method

operates and intuitively show how it converges to the optimal solution of the problem. For that

purpose, consider Figure 3.14. The zone shaded in light grey and labelled as Y represents the

lateral constraints mi ≤ yi ≤ di. If we intersect that zone with the half-space y1 + y2 ≤ c we get

the zone shaded in darker grey, which is the feasible set of the problem. A line represents the

values that the variables yi take depending on the value of μ, accordingly to (3.94). Note that

the slope of the line depends on the values of p1 and p2.

Assume that at a certain iteration of the proposed algorithm, the value μt is found. Using

dual subproblems, we get yt
0, which is unfeasible for the problem. Thanks to primal projection

(represented with a line), we reach ŷt, which is feasible but diverges from the subspace generated

by μ (a line in this case, too). From ŷt, the primal subproblems emit their candidates for the

dual variables λ, i.e. the values λt
01

and λt
02

. The red lines in the figure (vertical and horizontal

departing from yt
0) represent the next value of ŷt+1

0 when the equation λt
01

= μt+1 or the equation

λt
02

= μt+1 is selected in the dual projection. If λ01 is used, which gives the closest possible value

of μt+1 to μt, we realize that the algorithm finds new values of yt+1
0 and ŷt+1 that evolve towards

the optimal value y∗
0(μ

∗) = ŷ∗(μ∗). Note that the algorithm forces yt
0(μ

t) � y∗
0(μ

∗).
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Imagine now that the strategy in the dual projection is to update the value of μ in a least-

squares approach. For the problem under study this implies to solve the following problem

min
μ

‖λ0 − 1μ‖2

s.t. μ ≥ 0
(3.95)

with solution μ = λ01+λ02
2 . The red square in Figure 3.14 approximately represents yt+1

0 for this

particular dual projection. In this case, yt
0(μ

t+1) ≺ y∗
0(μ

∗) and we change the zone from where

we perform primal projection: at iteration t we had yt
0 in the half-space y1 + y2 > c, whereas

at iteration t + 1, the update lies in y1 + y2 < c. Note in the figure that such strategy may not

converge depending on the particular parameters of the problem, since it is possible to find an

example where iterates keep jumping from one half-space to the other.

3.3.5 Examples and Performance

In this section we evaluate the performance of the coupled-decomposition method in two different

scenarios and, at the same time, we take the opportunity to compare it through simulations with

the other decomposition approaches described in the chapter.

Example 1

First, consider the following minimization problem

min
x

−∑20
i=1 pi log xi

s.t. mi ≤ xi ≤ di, i = 1, . . . , 20
Ax ≤ c

(3.96)

where the values of c, m, d and p have been randomly chosen using distinct uniform probability

density functions (p.d.f.). For the problem we simulate now, we have

c = [78.064, 342.67, 144.95, 60.464, 388.53, 353.98, 113.22]T

m = [4.63, 0.58, 3.66, 1.04, 2.69, 4.32, 0.48, 1.65, 3.24, 2.16, . . .
. . . , 0.78, 1.97, 2.47, 0.65, 1.35, 1.63, 4.76, 4.34, 4.56, 3.47]T

d = [38.48, 29.51, 33.83, 29.33, 57.56, 32.40, 20.57, 19.82, 32.23, 8.76, . . .
. . . , 38.04, 51.56, 45.19, 11.80, 46.46, 39.73, 35.09, 10.15, 59.96, 4.54]T

(3.97)

The matrix A has also been randomly generated with i.i.d (independent and identically

distributed) Bernoulli variables of probability p = 0.5. Furthermore, A is discarded if it is not a
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Figure 3.15: Evolution of dual variables μ for problem (3.96) using the coupled-decomposition method.

full rank matrix. For the problem under study, we have

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 0
1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 1
0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1
0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0
1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 1 0 1
0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1
1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.98)

Using the proposed coupled-decomposition method, we finally get the following optimal

value:
x∗ = [4.63, 20.07, 9.06, 5.63, 57.56, 32.40, 11.06, 6.56, 32.23, 8.76, . . .
. . . , 18.88, 20.17, 3.89, 11.80, 46.46, 6.07, 10.59, 10.15, 10.38, 4.54]T .

(3.99)

We have checked that it is the optimal value of the by computing the solution with general

non-linear constrained optimization methods. The evolution of the dual values μ is depicted in

Figure 3.15. Note that μ1, μ3 and μ4 are the ones with non-zero values and thus constraints 1, 3

and 4 are attained with equality. Note also that initially μ7 is considered active for the problem

but discarded afterwards. Hence, the algorithm has found out the correct set of active constraints

of the problem. If we take a look at the successive values of the constraints of the problem, i.e.

the values aT
i x− ci, we confirm the statement above. See it in Figure 3.16. Furthermore, it can

be observed that before reaching the optimal value x∗, the constraints that are active at the
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Figure 3.16: Evolution of the quantities aT
i x − ci for problem (3.96) using the coupled-decomposition

method.

optimal solution, violate these at all the iterations, which is coherent with the fact that the

initial values of μ are set to zero. Therefore, it holds that near the optimum, the projections

of the values yt
0(μ

t) onto the feasible set always depart from the same zone. The zone is the

intersection of the half-spaces aT
i x > ci for the active constraints of the problem in the optimal

solution and the half-paces aT
i x < ci for the other constraints.

Now we can compare the performance of the proposed coupled-decomposition method with

the other reviewed decomposition approaches. More exactly, we compare our solution to the

MVC decomposition approach in Section 3.2.3 and to a pure dual decomposition strategy (re-

viewed in Section 3.2.2). Both performance comparisons are also useful to check the consistency

of the results.

In Figure 3.17, the reader can find the evolution of the primal variables ȳk of the MVC

decomposition method (see Section 3.2.3) applied to solve (3.96). The first thing to note is that

the method reaches approximately the same solution x∗ attained with the proposed method,

so results are coherent. However, the most remarkable issue in the MVC decomposition from

the performance point of view is how time averaging (which is done both in primal and dual

domains) influences the evolution of the variables. In the problem under study, it is clear that

the method evolves smoothly towards the optimal solution and thus, the method we shows faster

convergence.

The previous result relating the MVC decomposition method to our proposed technique
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Figure 3.19: Evolution of the μ values for problem (3.96) using a pure dual decomposition approach
with constant step-size α = 0.001.

can be extended also to the classical decomposition solutions. In this case, we compare with

a pure dual decomposition approach with two different settings of the step-size α. In the first

case, we set a coarse value of 5 but it is modified using a diminishing step-size approach, so α

is calculated at each iteration k as α(k) = 5
k . Doing so, the optimal solution is well attained

though the initial value is not adequate for the problem. In a second setting of the parameter,

we set up a manually-tuned constant step-size of 0.001. The results of the iterations of the

algorithm, plotted as the evolution of the dual values μ, are found in Figures 3.18 and 3.19.

The reader can check again in this occasion that both results coincide with the results in the

coupled-decomposition method (see Figure 3.15).

Aided by the previous figures, we want to remark graphically the inconvenience of the step-

size in classical decomposition strategies. Note that a coarse adjustment of the parameter pro-

duces oscillations in the variables until a proper value is found. Globally, the algorithm requires

many iterations to find out a solution. Setting a proper value of α improves the result and reduces

significantly the time to converge. Still, the convergence of the proposed coupled-decomposition

method is significantly better in terms of the number of iterations required to reach the optimal

solution. Note that in many applications, it is difficult to perform a continuous tuning of the

step-size and it becomes a shortcoming of classical approaches.
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Example 2

In the second scenario, we change both the objective function and the type of coupling con-

straints. In the objective function we replace logarithms with square roots and the linear cou-

pling constraints are modified by quadratic functions on the variables. The aspect of the problem

is now
min

x
−∑20

i=1 pi
√

xi

s.t. mi ≤ xi ≤ di, i = 1, . . . , 20
Ah(x) ≤ c

(3.100)

where h(x) = [x2
1, . . . , x

2
N ]T .

As in the previous example, we take random values for the parameters of the problem, which

in this case are

c = [686.28, 441.12, 423.45, 319.79, 679.60, 671.36, 152.86]T

m = [3.19, 2.15, 2.93, 1.57, 1.30, 4.99, 1.98, 2.38, 1.86, 4.70, . . .
. . . , 2.52, 4.70, 4.92, 1.78, 1.76, 4.20, 4.16, 2.22, 4.22, 2.40]T

d = [5.24, 39.83, 39.58, 15.61, 40.93, 18.66, 8.77, 40.83, 5.61, 25.94, . . .
. . . , 23.77, 42.00, 9.18, 21.48, 32.58, 14.38, 15.13, 43.32, 40.05, 8.08]T

(3.101)

and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1
0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1
1 0 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0
1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 1
0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0
0 0 1 0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.102)

Figure 3.20 plots the evolution of the dual variables μ. As in the previous example, note that

the proposed method gets the optimal solution after performing a few iterates of the algorithm. In

Figure 3.21 the two stopping criteria used in the method are plotted versus the iteration number.

It can be checked that both quantities tend to zero as the optimal solution is approached. In

the first subplot (top) we have the quadratic Euclidean distance between the output of the dual

subproblems λt
0 and the correction made by the primal projection ŷt. Therefore, for the optimal

values of μ, i.e. μ∗, we check that no correction is required since the translation of these to the

primal domain attains also the primal optimal solution y∗. Something similar can be extracted

from the second subplot (bottom), where the difference (in absolute value) between the dual

candidates proposed by primal subproblems λt
0 and the correction made by the dual projection

λt+1 = AT μt+1 is plotted. Again, an optimal primal value yt
0 = y∗ requires no correction when

it is translated to a dual domain by the primal subproblems.
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3.3.6 Formal Proof of the Method for a Single Coupling Constraint

Up to this point we have introduced the method that we propose and we have shown its good

performance in terms of speed of convergence (in comparison with known decomposition ap-

proaches in the literature) through simulation examples. We have justified and interpreted every

step of the method. Still, a formal proof is required for a full comprehension and further refine-

ment (if possible). The conclusions extracted from a huge number of random scenarios simulated

and correctly solved are full of promise. However, we are not yet able to provide a complete proof

of the general case presented and it remains as further work in an open research line. At this

moment, we can contribute with a proof for a reduced version of the problem when we consider

only one coupling constraint.

Consider throughout this section the following problem formulation

min
{xj},y

∑J
j=1 fj(xj)

s.t. xj ∈ Xj , j = 1, . . . , J
hj(xj) ≤ yj, j = 1, . . . , J

1T y ≤ c
y ∈ Y, Y = Y1 × . . . × YJ

(3.103)

where 1 is a column vector with J unity entries. Let μ be the dual variable associated to the

coupling constraint 1T y ≤ c.

We have basically two options to prove the convergence of the algorithm to the optimal

solution. From the primal point of view, we can prove that

ŷt t→∞−→ y∗ (3.104)

or alternatively, form the dual domain, we can prove that

λt = 1μ
t→∞−→ λ∗ = 1μ∗ (3.105)

Since strong duality holds, both options are equivalent. We choose to prove the second statement

for simplicity.

Note that primal and dual projections are rather simple for problem (3.103). In the dual

projection, we only need to fix the value of μ to the value in λ
′t
0 with minimum distance to the

previous values λ
′t = 1μt. The primal projection is, in this case, the projection to the half-space

1T y ≤ c with the additional constraint y ∈ Y. However, we prove that for the one constraint

problem, it is not necessary to take this additional constraint into account and the algorithm

still converges. Anyway, as in the general case, we construct the vector λ
′t by taking into account

only the elements in λt
0 whose associated values yt

0 belong to intY. Under this prmise, primal

projection can be analytically computed as [Boy03, Sec. 8.1]

ŷt =

{
yt

0 + (c−1T yt
0)1

J 1T yt
0 > c

yt
0 1T yt

0 < c
(3.106)



74 3.3. Proposed Coupled-Decomposition Method

Assume now that at instant t we have

μt < μ∗. (3.107)

Applying λt = 1μt to the dual subproblems and given the relationship between primal and dual

variables in the subproblems, it is true that

yt
0i

≥ y∗i , ∀i (3.108)

where equality is attained only when y∗i ∈ bd Yi.

In the primal projection, it is verified that

ŷi = y0i − ki, ki ≥ 0, ∀i (3.109)

thanks to the lemma below.

Lemma 4 Given the optimization problem

min
ŷ

‖y0 − ŷ‖2

s.t. 1T ŷ ≤ c
ŷ ∈ Y

(3.110)

where Y = Y1× . . .×YJ and given y0 such that 1T y0 > c and y0 ∈ Y, then the optimal solution

of the problem can be expressed as

ŷ∗ = y0 − k (3.111)

with k � 0.

Proof. First, note that a point ŷ = y0 − k with k � 0 can be feasible since it may attain both

1T ŷ ≤ c and ŷ ∈ Y (assuming that the intersection is not empty). The former holds because

1T y0 > c and since y0 ∈ Y, a point ŷ arbitrarily close to y0 satisfies also the latter. Then, we

have to prove that a point that does not accomplish the equation ŷ = y0 −k for positive values

in k can not be optimal for problem (3.110).

We prove this last result by induction. Assume a certain vector k, called k� that attains

1T (y0 − k�) = c and k� � 0. Construct now a new vector k† from k� by fixing its lth element

k†
l = −a with a > 0 and distributing the difference |k�

l − k†
l | among the rest of elements in k†

so as to attain the equality coupling constraint. In other words,

k†
i =

{ −a, i = l
k�

i + εi, i �= l, εi > 0

∑
i k†

i = 1T y0 − c

(3.112)
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We introduce some results from majorization theory [Mar79] that we need to complete the

proof. First, let the components of x ∈ R
n be ordered in decreasing order and express it as

x[1] ≥ . . . ≥ x[n]. (3.113)

Then, it is said [Mar79, 1.A.1] that a vector y majorizes a vector x (which we denote by y �M x),

x,y ∈ R
n if ∑k

i=1 x[i] ≤
∑k

i=1 y[i], k = 1, . . . , n − 1∑n
i=1 x[i] =

∑n
i=1 y[i]

(3.114)

From the definition above and the construction process of k†, we can state that k† �M k�.

Second, a real-valued function φ on a set A ⊆ R
n is called Schur-convex if [Mar79, 3.A.1]

y �M x on A ⇒ φ(y) ≥ φ(x). (3.115)

And third, a function

φ(x) =
∑

i

g(xi) (3.116)

where g is convex, is Schur-convex [Pal03, Corollary 3.1].

With those results in hand, we want to compare ‖y0 − ŷ‖2 for k = k� and k = k†. Let us

rewrite the quadratic norm as

‖y0 − ŷ‖2 = ‖y0 − y0 + k‖2 =
∑

i

k2
i (3.117)

and consider φ(k) =
∑

k2
i , which is a Schur-convex function. Finally, since k† �M k�, we have

‖k†‖2 ≥ ‖k�‖2 (3.118)

and thus, any solution where one element of k is negative is not optimal (since the problem is

convex and has a single solution). The proof ends by induction of this result to an arbitrary

number of negative elements in k.

It is known [Mar79, p. 7] that a vector with equal entries is majorized for all other vectors

that have the same total-sum value. Note that this is in accordance with the primal projection

in (3.106), where the constraint ŷ ∈ Y is not considered. �

Apply now the relationship between primal and dual subproblems (see Lemma 2) to the

values ŷt that result after computing the dual projection. Either if it has been computed taking

into account ŷ ∈ Y or not, we know that

λt
0i

≥ λt
i, ∀i (3.119)

Furthermore, if ŷt is not the optimal value, it is verified that there are some of the λt
0i

values that

attain λt
0i

≤ λ∗
i whereas the rest attain λt

0i
≥ λ∗

i , since it holds that 1T ŷ = c and therefore, some
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Figure 3.22: Example of the situation before performing dual projection.

of the ŷi values attain ŷi ≥ y∗i and the rest attain ŷi ≤ y∗i . Applying the relationship between

primal variables and dual variables in the subproblems, the previous statement is readily found.

An example of the situation that we expect before computing the dual projection is depicted in

Figure 3.22.

Note that not all the λt
0i

are useful in the obtention of μt+1 since we discarded the values

whose associated ŷi values attained ŷi ∈ bd Yi. The valid values form the vector λ
′t
0 and in the

dual projection we manage the system of equations λ
′t
0 = 1μt+1. In the worst case, the vector

λ
′t
0 may contain just a single value. We want to remark that no value is not possible since we

assume that the coupling constraint is active. Otherwise, μ = 0 and the global problem is readily

optimized by just solving the subproblems. In order to consider the situation where λ
′t
0 contains

only one element, we have the following lemma.

Lemma 5 Let a primal point ŷ attain 1T ŷ = c and ŷ ∈ Y. Let also λ′
0 be a vector containing

the dual translation (computed by primal subproblems) of the values in ŷ that attain ŷ ∈ int Y.

Then, if λ′
0 (which contains all the possible μt+1 candidates) is an scalar λ′

0 (i.e. we have only

one candidate), then it holds

λ′
0 ≤ λ

′∗ (3.120)

where λ
′∗ is the optimum value of λ for the selected position in λ′

0 (equal to μ∗).

Proof. From Lemma 4, we know that ŷ = y0 − k, k � 0 if 1T y0 > c and y0 ∈ Y. In the case

under study, only one value in ŷ, take ŷi, attains ŷi ∈ int Y. The other values are reduced by a

certain quantity kj > 0 unless it is verified that ŷj = inf Yj . From the discussion above, if all

ŷj = inf Yj except ŷi and ŷ is not optimal, then it holds

ŷi ≥ y∗i (3.121)

since 1T ŷ = c. Note that the same reasoning applies in the case where primal projection takes

into account only the constraint 1T y ≤ c. In that case, the same quantity is extracted to all the

values in y0 attaining 1T ŷ = c, indistinctly if ŷj < inf Yj or not. Therefore, the same result

holds for the value ŷi ∈ int Yi. �
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Finally, in the dual projection we choose μt+1 as the λ
′t
0i

value that has the minimum distance

with μt as

μt+1 = arg

{
min
μt+1

(μt+1 − μt)2

s.t. μt+1 ∈ {λ′t
01

, . . . , λ
′t
0M

}

}
(3.122)

Collecting the results obtained before, we have

μt+1 > μt (3.123)

since every value in λ
′t
0 verifies λ

′t
0i

> μt. Furthermore, it is also true that

μt+1 < μ∗ (3.124)

since the value λ
′t
0i

closer to μt accomplishes λ
′t
0i

< λ
′∗
i ≤ μ∗, which is derived from Lemma 5 and

the first equation in (3.76). See also a graphical explanation in Figure 3.22. So we can finally

conclude that

μt < μt+1 < μ∗. (3.125)

This result reveals that the successive iterates of μt increase in value and that they are

upper-bounded by μ∗. To end the proof, it is required to show that μt t→∞−→ μ∗. This is done

by contradiction. Assume that there exists a value μ� where successive iterates converge. Then

μ� is an stationary point of the method. In other words, a complete iteration of the method

starting from μ� returns exactly the same value. This enforces in primal projection that ŷ =

y0(μ�), otherwise the values in λ′
0 increase and so the update in μ (dual projection). Given the

relationship between primal and dual subproblems, we see that the previous equation is only

attained if μ� = μ∗ since a lower value μ� < μ∗ will obtain a primal point y0(μ�) from dual

subproblems such that 1T y0(μ�) > c.

Note that the dual projection in the single constraint problem is equivalent to selecting the

minimum of the values in λ
′t
0 if μt < μ∗. In other words, (3.122) is equivalent to

μt+1 = min(λ
′t
0 ). (3.126)

Setting μ0 = 0 we guarantee that μ0 < μ∗ and that μt < μ∗ in the next iterations of the

algorithm. In case μt > μ∗, the dual projection is equivalent to the selection of the maximum

value in λ
′t
0 and therefore, (3.122) turns into

μt+1 = max(λ
′t
0 ). (3.127)

It can be easily proved then that the successive updates of μ attain

μt > μt+1 > μ∗ (3.128)

and that the algorithm also converges to the optimum value (the proof is analogous to the

previous case).
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Furthermore, if we make use of the maximum or minimum functions in the dual projection

and the initial hypothesis is not accomplished, i.e. μt > μ∗ for the minimum or μt < μ∗ for the

maximum, the algorithm still converges. It can be easily seen from the example in Figure 3.22

that if the maximum function is used in that situation of the figure, then μt+1 > μ∗ and in the

iteration t + 1, all the requirements to converge with the max function are fulfilled.

3.4 Summary

This chapter contributes to the field of decomposition techniques applied to convex programs.

We begin with a brief review of general convex optimization theory. Thereafter, we revisit the

known decomposition techniques that exist in the literature, namely: i) primal decomposition; ii)

dual decomposition and iii) MVC decomposition. All these strategies are used to separate a given

convex optimization problem into smaller problems, termed the subproblems. Depending on the

strategy used, these are coordinated in different ways, always leading to the same global optimal

solution. In particular, primal and dual decompositions use a subgradient-driven approach that

optimizes either the primal or the dual version of the problem. A different approach is derived

in the MVC decomposition method, where one primal and one dual subproblems are defined.

The technique alternates the computation of both subproblems (that exchange primal and dual

variables) in order to attain the optimal value of the problem.

After the initial literature review, we propose a novel decomposition technique, the coupled-

decomposition method. It is a generalization of the MVC decomposition one since it intertwines

primal and dual variables of multiple primal and dual subproblems. An extensive description of

the method is provided, as well as the logic in the procedure, a comparison with the existing

methods and a geometric interpretation. We shall remark that the results obtained show a

significant gain in terms of convergence speed with respect to the other mechanisms. Finally, a

formal convergence proof for a reduced case (considering a single constraint) is provided.



Chapter 4

Cross-Layer Dynamic Bandwidth
Allocation in DVB-RCS

This chapter is devoted to the design of bandwidth allocation mechanisms in the Digital Video

Broadcasting - Return Channel Satellite (DVB-RCS) system using the convex decompositions

perspective described in Chapter 3. The specific multiple access of the system, which assigns

bandwidth to users subject to what they have previously requested, makes it particularly suitable

to the mentioned approach. In this chapter, we contribute with a specialized framework for the

problem that attains fairness among users, the potential incorporation of quality of service (QoS)

policies and efficiency in the allocation.

4.1 Introduction to DVB-RCS

A comprehensive introduction about the return channel over satellite of the DVB requires first

a brief introduction to Digital Video Broadcasting - Satellite (DVB-S) and to Digital Video

Broadcasting - Second Generation Satellite (DVB-S2). The oldest DVB standard in the satellite

field, the DVB-S [ETS97], is a widely accepted standard in the forward link of broadband satellite

communications. There are nowadays many satellites and a huge number of ground receivers

using that technology to receive digital broadcast television. The natural evolution of DVB-S

is DVB-S2 [ETS05b] and allows for a more flexible usage of the satellite capacity. A redefined

physical layer with adaptive modulation and coding (ACM) is one of the key improvements in

DVB-S2. Thus modulation and coding are adjusted depending on the channel quality of each

satellite-ground link and the goal is to operate always as close as possible to the varying channel

capacity.

In parallel to the evolution of DVB over satellite systems, the development of the actual

knowledge society has been intensively related to new technologies that enable interaction among

people. Two classical examples are the growth and penetration of internet services and mobile

79
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Figure 4.1: DVB-S2/DVB-RCS scenario.

communications among the population. The actual trend is to merge a variety of systems in a

single terminal that will allow the end user to get closer to a an infinity of multimedia contents.

Satellite DVB is also aware of the outlook and has designed its second generation to accommo-

date, besides TV contents, also broadband interactive multimedia services [LN01], which can be

multicast or unicast. The list of services is long, from classical web browsing, mail or file transfer

protocol (ftp) applications to more demanding ones such as video-conferences, virtual meetings

or Voice over Internet Protocol (VoIP) services [Ski05].

These wide system possibilities of DVB-S2 require interactivity. It is sometimes achieved

using ground networks, but this is not always a valid solution. A return link over the satellite

is mandatory since a single terrestrial option for a return link would limit the expansion of

DVB-S2 to certain areas. Consider, for example, remote places (as the ones in rural zones),

disaster areas, etc. The current counterpart of DVB-S2 for the return link is the DVB-RCS

standard [ETS05a, ETS03c]. We focus our work on unicast services for which ACM has been

made mandatory in the DVB-S2 standard while adaptive coding is allowed in the DVB-RCS

standard. To our knowledge, while the adaptive nature of the forward link is attracting increasing

interest [Rin04, Alb05], the adaptive nature of the DVB-RCS still requires research effort in order
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to optimize the system performance. Some previous works on the subject include [Chi04a] and

[Got06]. A possible DVB-S2/DVB-RCS scenario is depicted in Figure 4.1 with two different

network configurations. In one hand, the satellite subnetwork provides coverage to a rural area

and thus, a local area subnetwork is behind the DVB terminal. In the other hand, a disaster

zone is depicted and different equipments (maybe operated by rescue agents, police, firemen,

army, etc.) directly connected to portable DVB terminals are used to coordinate the operations

in the area.

The work we present along this chapter is devoted to the multiple access part of the system

that runs, given the Open Systems Interconnection (OSI) model [Zim80], at the Medium Access

Control (MAC) sublayer of the Data Link Layer (DLL). The goal is to adequately distribute the

transmission resources of the satellite so as to obtain maximum revenue or utility (later on, we

define this concept mathematically). Our approach considers not only local information available

at MAC layer (for example, the length of MAC queues) but also PHY layer and Network (NET)

layer information. From the PHY layer, the channel quality of each RCS Terminal (RCST) is

taken into account in the resource distribution. As far as the NET layer is concerned, we require

to be able to distinguish the variety of services carried by Internet Protocol (IP) packets and

to reflect so with more or less transmission opportunities. The idea underneath is to merge the

satellite subnetwork in a QoS-based IP environment and make it as transparent as possible to

the whole network. The argumentation above justifies the words cross-layer in the chapter title

as far as certain flows of information from one layer to another are foreseen (see Figure 4.2).

In the next section we perform a detailed description of the Dynamic Bandwidth Allocation

(DBA) mechanisms in DVB-RCS. Nevertheless, let us end this introduction with a brief comment

on the multiplex of the DVB-RCS or, in other words, on how radio resources are planned in

order to allow several RCSTs to transmit simultaneously. The multiple access of DVB-RCS
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is a Multi-Frequency Time Division Multiple Access (MF-TDMA), which results in a hybrid

combination of Time Division Multiple Access (TDMA) and Frequency Division Multiple Access

(FDMA). According to the standard [ETS05a, Sec. 6.7], two options are possible: Fixed MF-

TDMA (mandatory) and Dynamic MF-TDMA (optional). In the fixed version, the available

satellite bandwidth is divided into several subcarriers of the same bandwidth and time-slots are

defined in each subcarrier. All time-slots are identical. The time-slots assigned to a certain RCST

can belong to different subcarriers and thus, DVB-RCS equipments must support frequency

hoping, which improves system performance thanks to the frequency diversity. An example of

fixed MF-TDMA can be seen in Figure 4.3 (left), where time-slots are colored depending on

the RCST that transmits on them. In the Dynamic MF-TDMA situation, time-slots are more

flexible in the sense that different bandwidths and durations are allowed. In this situation, the

available time-frequency resources on the satellite create an infinite number of options on how

to share them. An example of Dynamic MF-TDMA is plotted in Figure 4.3 (right).

Our contribution considers a dynamic MF-TDMA basis, which is more interesting from

the design point of view since there are many degrees of freedom to be exploited in order

to improve system performance. However, an infinite number of possibilities in defining and

allocating time-slots appears. This fact implies solving combinatorial problems if a fully flexible

strategy is envisaged, which can not be accomplished in polynomial time. Since we are interested

in practical solutions (in terms of computation time), we propose an optimization framework

that fixes some structure to the problem and allows the use of time-efficient algorithms. Note

the implicit tradeoff between performance and usability.

After introducing the generalities that will be developed along this chapter, the next section

deals with a specific description of the DBA part in DVB-RCS.
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4.2 Dynamic Bandwidth Allocation in DVB-RCS

Consider a transparent satellite network as depicted in Figure 4.4, where we take into account

only the return link of the general system in Figure 4.1. A significant part of the system under

study is the process carried out by the Network Control Center (NCC), which is attached to

the ground hub and has a key role in the multiple access part of the system. The NCC is

in charge of collecting the traffic demands [Aça99, Aça02, Pri04] of the RCSTs and running

adequate DBA algorithms trying to maximize the benefit that RCSTs get from the available

radio resources. The output of the DBA algorithms is sent back to the terminals and informs

them about their transmission opportunities. In short, the NCC informs each RCST about the

time-slots assigned and their corresponding parameters (position in the time-frequency axes,

bandwidth, time duration, etc.).

Bandwidth allocation techniques allowed by the standard belong to the class called resource

reservation on-demand [Iuo05] or Demand-Assignment Multiple Access (DAMA) because users

get resources only when they ask for them. Though the final allocation is centralized at the

NCC, there is a big difference with classical centralized networks (connection-oriented) since

there is no guarantee to get the desired resources if lots of users access the system. Bandwidth

reservation messages are sent from the RCSTs to the NCC and a scheduler applies the DBA
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algorithms. The resulting allocation is sent back to the RCSTs at least one Round Trip Time

(RTT) after the request was sent. This parameter has to be taken into account in DVB-RCS

since it is relatively high (specially if we compare it to the values in terrestrial networks) and

directly affects the latency of the system.

RCSTs capacity requests can be emitted every RTT; however, not all the stations will request

bandwidth continuously. It will depend in general on the queued traffic at the MAC queues of

each terminal and requests are sent using the standard-defined SAC (Satellite Access Control)

messages [ETS05a, Sec. 6.6]. At its turn, the time-slot allocation is sent form the NCC to RCSTs

using the Terminal Burst Time Plan (TBTP) [ETS05a, Sec. 6.7]. See Figure 4.4. It is important

to note here the challenging allocation problem: while the IP traffic is inherently connectionless,

DAMA algorithms actually set up a connection over the DVB-RCS air interface [Lee04]. At its

turn, the time-slot allocation is sent form the NCC to RCSTs using the Terminal Burst Time

Plan (TBTP) [ETS05a, Sec. 6.7]. See Figure 4.4.

There are three main types of capacity requests defined in the DVB-RCS standard [ETS05a,

Sec. 6.8]. From highest to lowest priority, these are:

• Constant Rate Assignment (CRA): the RCST requires a constant rate to transmit during

all the time. Only the most critical services will be requested under this option.

• Rate-Based Dynamic Capacity (RBDC): a bandwidth request (made in terms of rate

capacity) remains effective until it is updated or timed out. In contrast to CRA, a RBDC

strategy allows statistical multiplexing among many RCSTs, resulting in a more efficient

use of the satellite bandwidth. Services that suit such request type are, for example, VoIP

and video-conference.

• Volume-Based Dynamic Capacity (VBDC): it requires a certain amount of volume capacity

to transmit information regardless the way it is done (no constant rate is needed). These

type of requests are cumulative in the sense that new requests add to the previous ones.

For example, services matching such type of request are ftp and web browsing.

Additionally, the standard defines the Absolute VBDC (AVBDC) and the Free Capacity As-

signment (FCA) [Nea01]. The former requests volume capacity as in VBDC but this time in

absolute terms. That is, when a RCST emits an AVBDC request, all the previous VBDC ones

are omitted. The motivation is to replace previous VBDC requests when the RCST senses that

these may have been lost. The latter (FCA) is not really a capacity request since it may be

granted by the NCC but not requested by the RCSTs. It falls in the volume capacity category

and it has been designed to distribute unused capacity of the satellite to the terminals.

Finally, let us define the MF-TDMA structure in DVB-RCS. The highest level of division

is constituted by the Superframe (SF) and is a portion of time and bandwidth in the return
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link. Each SF contains a number frames (32 at most) that constitute an intermediate level of

organization between the time-slots and the SF, justified by signalling reasons. The frames may

have arbitrary bandwidth and time duration. Inside each frame there are the time-slots, the last

subdivision of the satellite capacity. Each frame contains at most 2048 time-slots with arbitrary

bandwidth and duration. Whatever the division in frames and time-slots is, it is specified and

signalled from the NCC to the RCSTs in the Frame Composition Table (FCT) and the Timeslot

Composition Table (TCT), respectively. In the TCT the type of time-slot (i.e, different traffic

TS, synchronization TS, etc.) is also specified. A picture showing a possible structure in the SF

is drawn in Figure 4.5.

In summary, the requests generated by all terminals in a beam constitute the inputs of the

allocation problem. It is not considered here how terminals generate them, but it is an important

part to be considered jointly with the DBA. In our work, we assume that terminals request for

just what they need using the appropriate capacity request type. Note also that due to the

latency of the system (about half a second of round trip time in geostationary orbit), traffic

prediction may also play an important role. Then, for each bandwidth allocation update, the

NCC signals a TBTP to the RCSTs, where it points out which timeslots in the MF-TDMA are

assigned to each terminal. With that information, the terminal schedules the traffic stored in

the MAC queues. In the next section, we provide our proposed DBA framework in DVB-RCS.

As discussed above, our approach fixes some structure to the MF-TDMA since a combinatorial

solution is not practical in terms of computational time.
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4.3 Proposed Cross-Layer Framework

In the design of the proposed framework it is possible to distinguish two differentiated parts,

which are actually highly coupled:

• Structure imposed to the MF-TDMA.

• The DBA procedure itself (i.e. the allocation algorithm used).

Note that the performance and the design of the DBA algorithm strongly depends on the

particular configuration of the Superframe. In other words, if the Superframe is defined with

a structure that has few degrees of freedom (an extreme case would be the fixed MF-TDMA),

less performance can be expected in terms of bandwidth utilization or the total rate conducted

through the satellite. In order to illustrate the question, imagine that no structure is imposed

to the transmission and therefore, each RCST is allowed to transmit with an arbitrary time-slot

(with distinct bandwidths and/or time durations). This is in principle a good option since it is

possible to fulfill the whole Superframe. However, the organization of such a collection of time-

slots with different shapes in the MF-TDMA may be difficult. Indeed, all the possible relative

positions (with respect to the others in the SF) and shapes of the time-slots should be checked
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to get the optimum. Concerning only the relative positions of the time-slots, it is required to

search over a combinatorial number of possibilities and this makes the problem not solvable

in polynomial time. Therefore, it is actually meaningful to impose some structure on the MF-

TDMA. We deal with such imposed structure issues in this section, whereas the allocation itself

is the subject of the next section.

Let us consider that the Superframe is divided into NF frames that span the entire time

duration and share the satellite bandwidth as in Figure 4.6 (bottom). This division of the

Superframe has been already considered in the DVB-RCS guidelines document [ETS03c]. We

further assume that each frame is divided into several subcarriers of the same bandwidth but not

necessarily equal to the bandwidth of the subcarriers in other frames. This distinction intends to

accommodate different users accounting for different Service Level Agreements (SLAs), terminal

equipment or location, so that an RCST uses only one type of carrier. Under these assumptions,

the global allocation problem is decoupled into NF smaller and independent subproblems.

Fix now just one of the subproblems. The task therein is to multiplex N users into C carriers

of BW bandwidth that transmit during TSF seconds (see Figure 4.6, top). Let us introduce at

this point the concept of area in the DVB-RCS environment. Terminals in DVB-RCS can adapt

to the channel link quality as it happens with the ACM technique in DVB-S2 but with the

difference that only the coding rate of RCSTs is allowed to change. In this occasion, we talk

about Adaptive Coding (AC). According to the ETSI technical specification [ETS05c], an area is

formed by the subset of RCSTs that transmit with the same symbol and coding rate. A terminal

must belong only to one area. In our framework, all terminals in a frame coincide in symbol rate

since all the subcarriers in it use the same bandwidth. Therefore, terminals are grouped into

areas depending only on their coding rate. The channel quality in DVB-RCS strongly depends

on meteorological issues such as rain or snow. Since those events are usually manifested in cells,

we can interpret that the previously defined areas will correspond to the zones in the earth

surface where propagation conditions are similar. See this interpretation in Figure 4.4.

The question now is how to fix the time-slot duration inside each DVB-RCS frame. Note

that information is already quantized in MAC queues, where we have MAC frames in general.

For the particular case of DVB-RCS, Asynchronous Transfer Mode (ATM) cells of 53 bytes or

Moving Picture Experts Group (MPEG) containers of 188 bytes are considered. We introduce

now the key aspect of the proposed framework, which establishes the tradeoff choice between

complexity and optimality. A time-slot of duration TTS is fixed common to all areas at each

frame. However, the time-slot duration may change in subsequent Superframes depending on

the traffic demands and the distribution of terminals into areas. In Figure 4.6 the idea is depicted

with three areas. Inside each time-slot we transmit as many complete MAC frames as possible

and thus, it may happen that part of the time-slot remains unused. Moreover, part of the frame

may be not occupied by any time-slot. The time duration of a MAC frame transmission depends
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on the coding rate of the RCST or, equivalently, on the area where the RCST is attached to.

For a fixed time-slot duration and a fixed coding-rate, we can define the bandwidth efficiency of

the time-slot as the percentage of time it is used to transmit. It is common to all the time-slots

that are assigned to RCSTs in a given area and thus, it is meaningful to group all the RCSTs

in the frame depending on their area as in Figure 4.6. Transmission of multiple MAC frames in

a single time-slot already exists in the standard, where the allowed values are 1, 2 and 4.

Once the proposed Superframe organization is defined, let us discuss how cross-layer infor-

mation interacts with the proposed framework. From the PHY layer of terminals we get at the

NCC the coding rates of the RCSTs and we use this information to set up the best possible

DVB-RCS frame configuration, which depends only on the time-slot duration and the aggregate

requests from each area. For example, in the hypothetic situation where all RCSTs are in good

propagation conditions and belong to the same area, it is possible to set up a time-slot duration

that gets 100% bandwidth efficiency in all the time-slots of the frame. The goal is to achieve

maximum frame efficiency for all distributions of users among areas and we study this in Section

4.5.

Interaction with the upper layers is more tricky since the NCC does not know the QoS

requirements of the enqueued traffic at the MAC queues of the RCSTs that have caused the

emission of capacity requests. In this case it is necessary to explicitly signal the information.

Assuming that a transparent transponder is used, the field Channel ID of the SAC messages is

not used. It has 4 bits available that we can use to distinguish the QoS that each traffic requires,

even when resources are asked under the same type of capacity request. If we think of an IP

environment, it is desirable to be able to prioritize some services over the others with the final

objective of having a satellite sub-network as transparent as possible.

Further interesting features of our model are signalling reduction and higher robustness to

changes in the quality of the radio links in the satellite network. With respect to signalling, the

advantage is to have many time-slots with exactly the same characteristics (duration, bandwidth,

etc.) as is depicted in Figure 4.6. It is then possible to define the time-slot once at the beginning

of the subcarrier and indicate how many times it is repeated, reducing the signalling in FCT and

TCT tables. The reader can find in [VC05, Lee04], different approaches that consider changing

continuously the time-slot duration as a function of the coding rate of the area. With respect

to robustness, note that once a time-slot has been allocated to a RCST, the terminal may use

it with a different coding rate (keeping within the time-slot limits) without interfering other

transmissions. Advantages and disadvantages of different approaches have to be read from the

complexity-performance trade-off already discussed.

Finally, we include the hierarchical bandwidth allocation concept defined in [ETS05c], which

is also compatible with our approach. The motivation is to guarantee some minimum resources

to Service Providers (SPs) as an extra mechanism to grant Quality of Service (QoS) to their
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attached RCSTs. Note that not all the RCSTs attached to a certain SP see necessarily the same

channel conditions and thus, they do not belong to the same area in general. It is then adequate

to define the segment concept [ETS05c]. A segment is the subset of RCSTs in the network

that have contracted their services with a particular SP and may intersect in general with the

subsets that define the areas in the system. Figure 4.7 depicts the situation. In general, satellite

resources must be distributed among areas, segments and finally among RCSTs. It can be done

step by step by distributing resources through the entities on the hierarchy (i.e. distribute first

among areas, then among segments in the areas and finally among RCSTs), or globally. This is

discussed in the following section.

4.4 Cross-Layer Dynamic Bandwidth Allocation Algorithms

In this section, we develop practical algorithms that have to be able to operate in real-time

[Lee04]. In the DVB-RCS scenario, algorithms must compute the allocation in tens of mil-

liseconds, which is small compared to the RTT. Beyond the time limit, a good distribution of

resources makes the most efficient use of the satellite bandwidth and maximizes the total rate

conducted by the transponder. If we only take these considerations into account, the optimal
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solution is to allocate resources to RCSTs with the best coding rates, which corresponds to an

opportunistic design. However, users with permanent bad propagation conditions are delayed

until other users release their resources. It may not be a problem if the system works far from the

saturation point but it is terribly unfair otherwise. This situation is avoided including fairness

among users in the design and it is done using known results from game theory or resource

allocation strategies [Mut99, Yäı00].

It is known that a fair distribution of a quantity P of resources among N entities is achieved if

the product of the resources allocated to them is maximized [Maz91]. We use entity as a generic

concept here. It can stand for RCST, user or even connection depending on the granularity of

the solution. In other words, we can talk about connections when it is necessary to distinguish

distinct services of the same user or we can use RCSTs if all the users and connections behind the

terminals are equally treated. Consider the following simple example: 10 units of some material

have to be shared among two persons. One gets x and the other one gets 10 − x. The product

of both, f(x) = x(10 − x), is plotted in Figure 4.8. We immediately realize that the maximum

of the function is achieved when both get 5 units of product, which intuitively shows the way

fairness can be obtained with product forms.

Therefore, the allocation problem is mathematically described in the following maximization

problem,
max

x1,...,xN

∏N
i=1 xpi

i

s.t.
∑N

i=1 xi ≤ P
mi ≤ xi ≤ di

. (4.1)

where mi is the minimum amount of resources that must be granted to entity i and di stands
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for its request. Finally, pi is a weighting factor that represents the importance or priority of that

entity (over the whole). It can be proved that the resolution of (4.1) achieves an asymmetric

(due to the weighting parameters) proportional fair solution, which is a particular definition of

fairness introduced by Kelly et al. [Kel98]. We consider this formulation for DBA in the DVB-

RCS, but other applicability examples include scheduling in the DVB-S2 or rate allocation in

terrestrial links [Pal07]. If we had considered the sum of xi as the the objective function of the

problem, then the solution is interpreted under the perspective of opportunistic designs: the

non-served entity with highest priority reaches its demand or gets all the remaining resources.

The problem in (4.1) can be easily converted to a convex optimization problem [Boy03] by

transforming the objective function with the natural logarithm since both the objective function

and the constraints are convex functions of the variables (for further details, see Section 3.1).

The optimal objective value of the transformed problem is not the same but it is attained at

the same optimal point. That happens because the logarithm function is an strictly increasing

function for positive values and thus, the position of maxima and minima of any positive function

are not altered when composed with the logarithm. The equivalent formulation coincides then

with the Network Utility Maximization (NUM) formulation in [Pal07] or [Lee06a] among others,

max
x1,...,xN

∑N
i=1 pi · log xi

s.t.
∑N

i=1 xi ≤ P
mi ≤ xi ≤ di

. (4.2)

In the previous formulation, the utility that each user gets from a quantity xi of resources is

measured as its natural logarithm. In terms of “utility”, the interpretation is that extra resources

are more useful when few or no resources are available. On the other side, more resources do not

excessively increase utility if we have a lot of them. The resulting problem is semi-analytically

solved applying KKT conditions [Boy03], with the solution

xi =
pi

λ

]di

mi

�

⎧⎨
⎩

pi
λ , mi ≤ pi

λ ≤ di

mi,
pi

λ ≤ mi

di,
pi

λ ≥ di

. (4.3)

where λ is a positive value such that
∑N

i=1 xi = P . This value is usually obtained applying the

bisection method [Rek83]. However, as the number of entities grows, the method may require

excessive computation time [Gir00] (remember that in DVB-RCS the problem has to be solved

in tens of milliseconds). From another perspective, the faster the allocation is computed, the

highest is the number of users the system can manage. Our proposed coupled-decomposition

method in Section 3.3 is applied to this particular problem and we show that we can improve

the performance of the bisection method. In practical terms, the more users can be managed in

the satellite sub-network, the more connections can be distinguished.

A graphical interpretation of the solution is found by filling a multiple-column recipient

shaped accordingly with the demands, guaranteed resources and priorities of the entities with a
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Figure 4.9: Graphical fair resource distribution.

quantity P of water [Pal05]. See Figure 4.9. Each column represents an entity, where the height

is the amount of resources requested (di) and the depth is the priority of the entity (pi). Each

column has to be filled at least to the water-level defined by mi. As it can be appreciated, the

solution first fulfils the mi water-levels (“pale water”) and “equally” distributes the remaining

water (“strong water”) among the columns. The common water-level is 1
λ , so entities with

requests below the water-level get exactly the resources they have asked but not more while the

others fairly share the resources in the system.

4.4.1 Global DBA Optimization Problem

Let us slightly modify the problem in (4.1) to precisely model the resource allocation in the

proposed DVB-RCS framework. The formulation is

max
{xi,j}

∏
i,j (xi,j · Ki)

pi,j

s.t.
∑

i,j xi,j ≤ P

�mi,j

Ki
� ≤ xi,j ≤ �di,j

Ki
�, ∀i, j

, (4.4)

where P is the total number of time-slots in the frame, xi,j stands for the amount of time-slots

assigned to RCST i with request j and pi,j defines the priority of RCST i in jth connection. As

before, di,j and mi,j stand for demands and minimum guaranteed resources (now expressed in

number of ATM cells or MPEG containers). Assume, in accordance with [ETS05c], that each

SP decides how to distribute the minimum amount of resources that it has contracted among

the RCSTs attached to it, so that
∑

i∈Sk,j mi,j = Mk, where Mk is the minimum guaranteed
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resources to the terminals in segment k, Sk.

For the sake of simplicity, we base further considerations on a system using ATM cells at its

MAC layer. However, these can be substituted for MPEG containers or any defined MAC frame

type without affecting the following discussions. Finally, Ki establishes the number of ATM

cells that RCST i can transmit in a time-slot. This value depends on the time-slot duration

in the frame and on the time required by the RCST to transmit an ATM cell, which depends

on the coding rate of the terminal. Remember that the coding rate is established by the AC

technique of DVB-RCS and it is a function of the channel quality. We use �a� to represent the

ceil function, which returns the nearest integer that is bigger or equal than a. On the opposite

side, �b	 corresponds to the floor function and returns the nearest integer lower or equal to b.

The formulation in (4.4) is a relaxation of the real bandwidth allocation problem since we do

not restrict the quantities xi,j to be integer values. The final solution can then be obtained by

simple down-rounding or it can be further refined by distributing the remaining resources (after

rounding down the result of the optimization process) using some simple heuristic criteria. For

example, a meaningful strategy is to perform a round-robin allocation to RCSTs or connections

ordered by pi,j (from highest to lowest). Another option is to use variable threshold rounding

[Xia03] instead of down-rounding and get a final allocation that is closer to the available frame

capacity. It consists in fixing a threshold v between 0 and 1 and perform the rounding operation

as

[c]v =
{ �c�, c − �c	 > v

�c	, c − �c	 ≤ v
. (4.5)

If v = 0, we have the floor function and if v = 1 we have the ceil function. Note that rounding up

the real-valued solution may not be a feasible solution for the DBA problem since we may exceed

the available capacity. By setting v properly, it is possible to adjust the final solution to the

frame capacity. However, we expect to have in general few degradation as far as RCSTs manage

a big number of ATM cells. In that situation, the remaining capacity after down-rounding will

be small in relative terms.

4.4.2 Global DBA Optimization Algorithm

In order to efficiently solve the DBA optimization problem under study, the coupled-

decomposition method developed in Section 3.3 is now applied to (4.4). In the following, we

identify the subproblems (primal and dual) and the projections (primal and dual) of the method

and we propose analytical solutions for them. Previously, the problem has to be transformed to

a convex optimization problem suitable to the proposed method. By transforming the objective



94 4.4. Cross-Layer Dynamic Bandwidth Allocation Algorithms

function with the natural logarithm and adding new variables yi,j we get

min
{xi,j ,yi,j}

−∑
i,j pi,j log xi,j −

∑
i,j pi,j log Ki

s.t. �mi,j

Ki
� ≤ xi,j ≤ �di,j

Ki
�, ∀i, j

�mi,j

Ki
� ≤ yi,j ≤ �di,j

Ki
�, ∀i, j

xi,j ≤ yi,j, ∀i, j∑
i,j yi,j ≤ P

. (4.6)

Note that the term −∑
i,j pi,j log Ki affects the objective value of the problem but not the

optimal solution and thus, it may be obviated for allocation purposes.

Primal and dual subproblems

Consider fixed values for variables yi,j that are feasible for (4.6). Then the joint program can be

solved individually optimizing each of the primal subproblems, since (4.6) fully decouples. For

the jth connection on the ith RCST, the primal subproblem is

min
xi,j

−∑
i,j pi,j log xi,j

s.t. �mi,j

Ki
� ≤ xi,j ≤ �di,j

Ki
�

xi,j ≤ yi,j

. (4.7)

It is possible to solve it analytically using the KKT conditions with the following result

xi,j = yi,j

]� di,j
Ki

�
�mi,j

Ki
�, λi,j =

{
pi,j

xi,j
, yi,j < �di,j

Ki
�

0, yi,j ≥ �di,j

Ki
� (4.8)

where λi,j is the Lagrange dual variable associated to the constraint xi,j ≤ yi,j.

Dual subproblems are derived when the Lagrange multiplier associated to the coupling con-

straint
∑

i,j yi,j ≤ P , which we call μ, is fixed. Then the joint problem decouples in the dual

domain and the problem can be solved individually optimizing the following dual subproblems

min
xi,j ,yi,j

−∑
i,j pi,j log xi,j + μ · yi,j

s.t. �mi,j

Ki
� ≤ xi,j ≤ �di,j

Ki
�

xi,j ≤ yi,j

. (4.9)

As in primal subproblems, an analytical solution to (4.9) is readily found using KKT condi-

tions. The result is

xi,j =
pi,j

μ

]� di,j
Ki

�

�mi,j
Ki

�
, yi,j = xi,j. (4.10)

In the following, we describe primal and dual projections for problem (4.6). As it happens

with primal and dual subproblems, simple analytical solutions arise and thus, the computational

load at each iteration of the coupled-decomposition method applied to the DVB-RCS scenario

is relatively low.
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Primal and dual projections

The mission of the primal projection is to correct, if necessary, the result of the dual subproblems.

Since the main interest of the problem is on managing the coupling among the subproblems, i.e.

on finding the optimal distribution of resources, we can assume μ > 0 in general. If resources

are not scarce, i.e. if P exceeds the sum of the demands of the terminals, then μ = 0 and all

connections in all terminals get what they request. A positive value of μ forces the coupling

constraint to be attained with equality. Let us collect the output of all the dual subproblems for

a given value of μ, i.e. the values yi,j for all i and j, in the vector y(μ). Given the relationship

between primal and dual subproblems in Section 3.3.1, it is clear that if μ > μ∗, then yi,j < y∗i,j
for all i and j and thus

∑
i,j yi,j < P . Conversely, if μ < μ∗ we have

∑
i,j yi,j > P . The correction

made by primal projection (in vector ŷ) results from the computation of the following convex

program,
min

ŷ
‖y − ŷ‖2

s.t. �mi,j

Ki
� ≤ ŷi,j ≤ �di,j

Ki
�, ∀i, j∑

i,j ŷi,j = P

(4.11)

which is the projection of y to the hyperplane
∑

i,j ŷi,j = P , additionally taking into account the

lateral constraints represented by �mi,j

Ki
� ≤ ŷi,j ≤ �di,j

Ki
�. However, as discussed in Section 3.3.6,

it is possible to omit the lateral constraints in the single coupling constraint problem without

affecting the convergence of the method to the optimal solution, so primal projection can be in

this case easily computed by just projecting the vector ŷ to the hyperplane
∑

i,j ŷi,j = P . The

problem has the following analytical solution

ŷ = y +
(P − 1T y)

1T 1
(4.12)

where the ones vector 1 is such that length(1) = length(y).

Dual projection works with the values inside the vector ŷ that we get from primal projection

but transformed to the dual domain using the primal subproblems. These values are the dual

variables λ0i,j . The goal is to reach a consensus on the value of the dual variable μ (associated

to the coupling constraint) using the candidate values λ0i,j . As shown in Section 3.3.6, the value

of μ can be easily obtained in the single coupling constraint situation as

μ = min(λ′) (4.13)

where the vector λ′ contains all the λi,j values whose corresponding yi,j (output and input to

the primal subproblems, respectively) attain �mi,j

Ki
� < ŷi,j < �di,j

Ki
�. Another possibility is to use

the max function instead of the minimum, but once any of them is selected, it is not changed

any more.

Having defined both the subproblems and the projections, the coupled-decomposition method

is fully described and can be applied to the DVB-RCS allocation problem. However, we propose
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to upgrade the performance of the technique thanks to a redefinition of the stopping criterion.

We show that, under some circumstances, it is possible to stop the iterations of the coupled-

decomposition algorithm before it converges but still the optimal solution is found.

Stopping criterion

Consider now a finer convergence analysis of the proposed method explicitly applied to problem

(4.6), which studies the evolution of the successive values of μ through the quantity∣∣∣∣ 1
μt+1

− 1
μ∗

∣∣∣∣. (4.14)

Since convergence of μ to the optimal value μ∗ has been established in Section 3.3.6, we consider

here the analysis on the convergence speed of the technique. For simplicity reasons and without

loss of generality, the subsequent analysis is done assuming a single index i for the variables in

y (of dimension N).

First, let us write the optimal values of variables yi as

y∗i =

⎧⎨
⎩

pi

μ∗ , i ∈ S̄∗

mi, i ∈ M∗

di, i ∈ D∗
, (4.15)

where S̄∗ is the subset of terminals with optimal solution yi ∈ (mi, di), M∗ defines the users

with solution yi = mi and D∗ includes terminals with solution yi = di. Since in the optimal

solution it holds
∑

yi = P , the optimal water-level is derived as

1
μ∗ =

P −∑
i∈D∗ di −

∑
i∈M∗ mi∑

i∈S̄∗ pi
. (4.16)

The next step revisits a complete iteration of the algorithm in order to derive 1
μt+1 from

1
μt , where t indexes iterations. Given μt, the primal variables yt

i are computed using the dual

subproblems as

yi =

⎧⎨
⎩

pi

μt , i ∈ S̄t

mi, i ∈ Mt

di, i ∈ Dt

(4.17)

where S̄t, Mt and Dt are the counterpart of S̄∗, M∗ and D∗ at iteration t, respectively.

The corrected primal variables after the primal projection are

ŷi = yi −
∑

i yi − P

N
= yi − k (4.18)

where k > 0 if we assume that the water-level in t is over the optimum or equivalently μt < μ∗.
See Section 3.3.6 for further details.
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Accordingly, the candidates (λi) that the primal subproblems propose for the dual coupling

variable μ are

1
λi

=
ŷi

]di

mi

pi
=

⎧⎪⎨
⎪⎩

1
μt − k

pi
, i ∈ S̄t′

mi
pi

, i ∈ Mt′

di
pi

, i ∈ Dt′
. (4.19)

Note that S̄t′ does not necessarily coincide with S̄t. The same is verified for Mt′ and Dt′ .

Finally, μ is updated thanks to the dual projection

1
μt+1

=
1

min{λ′} =
1
μt

− k

pmax
(4.20)

with pmax = max
i∈S̄t′

{pi}. Note that the assumption k > 0 is coherent with the usage of the min

function in the dual projection (see Section 3.3.6).

In the light of the previous result, we can expand (4.14) into∣∣∣∣ 1
μt+1

− 1
μ∗

∣∣∣∣ =
∣∣∣∣ 1
μt

− 1
μ∗ − k

pmax

∣∣∣∣, (4.21)

where k can be substituted by

k =

∑
i∈S̄t

pi

μt +
∑

i∈Mt

di +
∑

i∈Dt

Di − P

N
, (4.22)

which results after the combination of (4.17), (4.18) and the fact that
∑

ŷi = P . Note that since

k > 0, the solutions computed by the dual subproblems in (4.17) exceed the optimal ones if they

do not saturate. Furthermore, since μt < μ∗ (see Section 3.3.6), the following statements hold

at the tth iteration

Dt = D∗ ∪Dextra

S̄∗ = S̄t ∪ S̄extra (4.23)

M∗ = Mt ∪Mextra

Note that the sets labelled as extra are empty sets when the solution is optimal.

Introduce the previous subsets definitions in equation (4.22) and identify therein the defini-

tion of 1
μ∗ from (4.16). It is possible to conclude then

k =

∑
i∈S̄∗

pi

N

[
1
μt

− 1
μ∗

]
+

1
N

[ ∑
i∈Dextra

Di −
∑

i∈S̄extra

pi

μt
−

∑
i∈Mextra

di

]
(4.24)

Since the algorithm converges, it holds that from a certain iteration t� the extra subsets attain

S̄extra = Mextra = Dextra = {Ø}. We say then that the algorithm has entered the optimal zone

(i.e. t ≥ t�) because the extra subsets remain empty as in the optimal solution. In that zone,

k =

∑
i∈S̄∗

pi

N

[
1
μt

− 1
μ∗

]
(4.25)
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and the combination of that result with (4.21) shows the speed of convergence of the algorithm

in the optimal zone,

∣∣∣∣ 1
μt+1

− 1
μ∗

∣∣∣∣ =
∣∣∣∣ 1
μt

− 1
μ∗

∣∣∣∣−
∑

i∈S̄∗
pi

pmax · N
∣∣∣∣ 1
μt

− 1
μ∗

∣∣∣∣ =
∣∣∣∣ 1
μt

− 1
μ∗

∣∣∣∣ ·
⎛
⎜⎝1 −

∑
i∈S̄∗

pi

pmax · N

⎞
⎟⎠ (4.26)

In the case where μt > μ∗, a similar discussion conducts to the same convergence results if the

maximum function is used in dual projection.

Some intuition about the performance of the method is gained with the analysis of the

particular case where pi = 1 for all i. Equation (4.26) is then rewritten as∣∣∣∣ 1
μt+1

− 1
μ∗

∣∣∣∣ =
ns

N

∣∣∣∣ 1
μt

− 1
μ∗

∣∣∣∣ (4.27)

where ns is the number of terminals with solution xi = mi or xi = di. Assume that no user

saturates. We read from the previous result that the optimum is then found in just one iteration.

This is verified since the primal projection exactly computes that optimum. On the contrary,

when nearly all users saturate, the convergence of the algorithm is much slower.

The results above are useful to determine when the iterates of the algorithm belong to the

optimal zone. It is very useful since it allows to stop iterating and to calculate analytically the

optimal solution. Consider the following function of three consecutive updates of the algorithm

Bt =
1

μt+1 − 1
μt

1
μt − 1

μt−1

(4.28)

It can be verified that when the algorithm reaches the optimal zone, the value of Bt is the same

for iterations t and t + 1. Call Bc to that value, whose expression is

Bc = 1 −

∑
i∈S̄∗

pi

pmax · N . (4.29)

Once the condition holds, i.e. we are in the optimal zone (t ≥ t�), the exact solution to the

problem is found in a single step as

μ∗ =

∑
i∈S̄∗

pi

P ′ , yi =
pi

μ∗ , (4.30)

where P ′ = P −∑
i∈D∗ di −

∑
i∈M∗ mi is the quantity of resources that are distributed among

the entities that do not have a saturated solution.

Complete algorithm

To end the section, we summarize the proposed method in its algorithmic form. The reader can

also find a flow chart of the iterative method in Figure 4.10.
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Take initial guess μ0 = 0.5 · [ N
P−P

mi,j
+ 1

max {di,j} ] and repeat

1. Allocate resources using μt and obtain yi,j(μt) as in (4.10).

2. Project the previous solution to the capacity limit,
∑

i,j ŷi,j = P and get ŷi,j =

yi,j +
P−P

i,j yi,j

1T 1
(primal projection).

3. Construct the vector λ′ collecting the estimates λ0i,j = pi,j

ŷi,j
where the values ŷi,j

attain �mi,j

Ki
� < ŷi,j < �di,j

Ki
�.

4. Update μt+1 with the lowest value in the vector (dual projection).

5. Compute the value Bt =
1

μt+1 − 1
μt

1
μt − 1

μt−1
.

Until |Bt − Bt−1| < ε (step 6 in Figure 4.10). Then compute the optimal solution as

7. Calculate the current solution (with μt+1) using (4.10).

8. Obtain the set S = D∗ ∪M∗ =
{
i, j|xi,j = �mi,j

Ki
� or xi,j = �di,j

Ki
�
}

.

9. Calculate the remaining resources P ′ as P ′ = P −∑
i,j∈S xi,j.

10. Modify the solution found in step 7 only at the entities that do not belong to S as

xi,j = P ′ pi,jP
i,j /∈S pi,j

.

Cross-layer information

Cross-layer information is included in the original formulation (4.4) thanks to the parameters

Ki and pi,j. The first one implicitly takes into account that the RCSTs in the frame may have

different coding rates. Note that the time required to transmit an ATM cell depends on the

specific coding rate of the terminal and therefore, the number of MAC frames that fit in a time-

slot (the parameter Ki) is function of that value. We include in this way PHY-layer information.

To convey QoS information from the upper-layers (e.g. IP-DiffServ) we have the parameters

pi,j, which allow to balance or prioritize the resource allocation towards the RCSTs or services

with higher values. There are many ways to select the values of the parameters that depend

on the policy we take. In general, if we are interested to provide a satellite sub-network as

transparent as possible to IP QoS, the design of pi,j will depend on the type of capacity request

emitted (MAC layer) and/or on the service underneath that request (IP layer). However, the

formulation proposed in this section is flexible enough to incorporate also other types of policies.

Some hypothetic examples are:

• prioritize the areas with higher coding rates to achieve a higher sum rate in the satellite,
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• prioritize the segments of the system depending on the QoS policy that each SP has

contracted or

• distinguish individual RCSTs if they pay for distinct QoS levels.

4.4.3 Hierarchical DBA Optimization Algorithm

In the previous section we have formulated the DBA problem for DVB-RCS as a convex opti-

mization problem and we have detailed the method to compute the allocation efficiently. In the

results section we compare the performance of the method with other known solutions and we

show the advantage in terms of computational time. We want to remark that it is an important

issue in DVB-RCS since it may be a limiting factor on the number of users or connections routed

through the satellite. Using the global allocation discussed up to this point, we allocate resources

to areas, segments and RCSTs in a single joint step. It is the best we can do since decisions

are taken at the lowest possible level, even distinguishing connections that belong to the same

terminal.

A more practical approach is possible if we split the joint allocation in some steps of resource

distribution, at the expenses of some optimality loss. Note that in our framework this degradation

implies a less fair solution. It is then adequate to make use of the bandwidth allocation hierarchy

defined in [ETS05c] and summarized in Figure 4.7. The idea is pretty simple: allocate resources

at each level in the hierarchy, namely: areas, segments and terminals. The same formulation

is employed to solve each distribution process but the number of variables to manage reduces

significantly and so the time to calculate them. Moreover, the allocation of resources to services

or connections can be done at the RCSTs and not at the NCC, reducing the computational load.

In the first phase of the hierarchical approach, the overall demands and guaranteed resources

per area are computed. These constitute the inputs of the DBA algorithm to obtain the allocation

per area. Inside each area, the same procedure is done with segments in a second phase and

again, inside each segment with RCSTs in the third and last phase. This is graphically expressed

in Figure 4.11, where Ni is the aggregated demand on area i and Sij is the aggregated demand

on segment j (operated by SP j) inside area i. Note that we can use the priority values pi,j

at each phase of the hierarchical algorithm with different purposes that depend on what is

managed at each stage. In the first phase, we can treat areas differently. For example, we can

balance the allocation towards the RCSTs with higher coding rates. In the second phase, the

distinction can be based on the QoS guarantees that each SP has contracted for its segment.

In the third phase, the SPs may have interest in serving terminals with different quality levels.

Finally, each RCST can manage its resources according to the services that go through it. Note

that a potential scenario of application of DVB-RCS considers a Local Area Network (LAN)

attached to a RCST.
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Figure 4.10: Joint DBA algorithm.
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Figure 4.11: Hierarchical DBA algorithm.

4.4.4 Free Capacity Assignment

We have assumed throughout this chapter that the system is overloaded in the sense that there

are more requested resources than the available ones. It is the most interesting situation from the

engineering point of view since reasonable decisions on the distribution of the scarce resources

are essential to have a system working properly. This has motivated our work in the chapter.

However, it is possible to face the opposite situation, where the available resources exceed the

requests. The allocation is then pretty simple: assign each RCST what it has requested.

In that situation, it seems reasonable to allocate the remaining resources or part of them

to the terminals. This is called the free capacity assignment [Nea01]. Note that the latency in

a geostationary satellite communications system is about half a second and thus, it is probable

that the current allocation (which is a reaction to the capacity requests emitted at least one

RTT before) no longer fits the current traffic requirements. Free capacity assignment working

jointly with traffic prediction palliates this satellite drawback and thus, a new allocation problem

exists. Fortunately, the problem can be formulated as in (4.4) and setting the requests to a very

high value, di,j = ∞ for all i, j. Priority values pi,j may be used now to balance traffic towards

the terminals that may require more resources in the immediate future as foreseen by prediction

techniques.
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Up to this point, we have described our DBA framework in DVB-RCS divided in two parts,

namely: i) structure of the frame and ii) cross-layer DBA algorithm. Whereas all the details

about the latter have yet been discussed, there is still room to optimize system performance if

the time-slot duration is properly adjusted to the characteristics of the frame. We do this in the

next section. Since we make use of the coding rates of the RCSTs in the frame, the approach is

cross-layer.

4.5 Cross-Layer Timeslot Optimization: Joint DBA and Frame

Design

Consider the original DBA problem in (4.4) and explicitly introduce the dependence of the

problem on the time-slot duration TTS as

max
TTS ,{xi,j}

∏
i,j

(
xi,j · K(TTS , ta(i))

)pi,j

s.t.
∑

i,j xi,j ≤ P (C, TF , TTS)
� mi,j

K(TTS ,ta(i))
� ≤ xi,j ≤ � di,j

K(TTS ,ta(i))
�

Tmin ≤ TTS ≤ Tmax

, (4.31)

where C is the number of carriers in the frame, TF is the frame duration and ta(i) is the time

duration of an ATM cell transmitted by the ith RCST (a(i) denotes the area of the RCST i).

Note the relation between ta(i) and the coding rate of the ith terminal.

If we take the following expressions for K(TTS , ta(i)) and P (C, TF , TTS),

K(TTS , ta(i)) = �TTS

ta(i)
	, P (C, TF , TTS) = � TF

TTS
	, (4.32)

being �·	 the floor function, then we can rewrite the joint DBA problem as

max
TTS ,{xi,j}

∏
i,j

(
xi,j · �TTS

ta(i)
	
)pi,j

s.t.
∑

i,j xi,j ≤ C · � TF
TTS

	
� mi,j

	 TTS
ta(i)


� ≤ xi,j ≤ � di,j

	 TTS
ta(i)


�
Tmin ≤ TTS ≤ Tmax

. (4.33)

The joint problem in {xi,j} and TTS is non-convex, which is readily concluded by the non-

linear dependance on TTS that fixes the floor function. Note that �TTS
ta(i)

	 is an staggered function

of TTS and that it is not difficult to find a counter-example not attaining the definition of a

convex function (see Section 3.1). However, we have yet established convexity of the problem

for a fixed TTS or equivalently, for fixed values of Ki and P .

Let us assume that we can adjust the time-slot duration between Tmin and Tmax as it is

formulated in (4.33) and take Lemma 6 to certify that it is not necessary to search over the

whole range of the variable to find the optimal solution to the problem.
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Lemma 6 Starting from a feasible value of TTS and increasing it, it can only reduce the objective

value unless a multiple value of some of the ta(i)’s is used.

Proof. Start with TTS = Tmin and increase TTS . Stop when a multiple of any of the ta(i)’s is

attained. Call this value T 1
mult. Then, it is clear that the Ki values do not change in the interval

[Tmin, T 1
mult). However, it is also true that P (T 1

mult) ≤ P (Tmin). Therefore, the optimal solution

of the global problem can not improve until (possibly) TTS = T 1
mult. The same argumentation

holds for TTS ∈ [T 1
mult, T

2
mult) (where T 2

mult is the next multiple of any of the ta(i) values).

Iterating this procedure, it can also be verified for the whole range of the time-slot duration, i.e.

TTS ∈ [Tmin, Tmax]. �

Lemma 6 states that the optimal value of the problem in (4.33) is attained at a time-slot

duration that is multiple of the time required to transmit an ATM cell in any of the areas, i.e.

ta(i). So a practical way to solve the problem is to fix the value of TTS to each of the meaningful

candidates and to solve thereafter the allocation problem, which is efficiently solved using the

results in the previous section. Note that in the DVB-RCS situation, the number of areas is very

low. Thus, we can expect the same about the list of candidates T k
mult. It is feasible then to focus

the joint problem with an exhaustive small search over TTS . Moreover, the list of candidates is

reduced if we discard equal proposed values that are computed as multiples of different values of

ta(i). Note that the approach is valid for the joint DBA algorithm as well as for the hierarchical

approach.

The algorithm to solve the joint DBA and TS selection is summarized as:

1. Construct the list of candidate values to TTS .

2. Reduce the list by suppressing equal values coming from multiples of different ta(i)’s.

3. Solve the allocation problem for each of the possible values of TTS.

4. Finally, get the TTS with best objective value in (4.31).

Finally, we want to mention that in a practical situation it is not necessary to compute the

value of TTS at each frame since the time-slot duration depends on the area parameters and we

can assume that this vary slowly in time because an area is an aggregation of many RCSTs.

Maybe the most affecting parameter is how the traffic transported by the satellite is distributed

among areas. In the next section, we show the impact of a time-slot duration maladjustment in

performance.
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Area RCST
ATM cells

Requests Minimums Priorities
per TS

1 1-2 1 [15, 16] [2, 0] [1.75, 1.25]
2 3-6 1 [9, 19, 14, 5] [0, 1, 2, 0] [1.5, 2, 1.25, 1.75]
3 7-13 2 [17, 13, 4, 5, 13, 13, 8] [1, 2, 2, 2, 0, 1, 1] [1.75, 2, 1.5, 2, 1.25, 1.5, 1.25]
4 14-20 2 [12, 10, 2, 2, 7, 1, 8] [1, 0, 2, 2, 2, 1, 2] [1.5, 1.5, 1.75, 1.75, 2, 1.25, 1]
5 21-24 2 [14, 3, 2, 13] [0, 1, 2, 3] [1.5, 2, 1, 1.75]

Table 4.1: RCSTs definition.

4.6 Results and Discussion

The section starts with a discussion on operational aspects of the proposed framework, which are

exemplified by means of a small DBA example. It shows the benefits of taking into account cross-

layer messages coming from the upper layers, which allow to balance the resulting allocation in

a QoS-oriented perspective. After this first micro-system analysis, we perform a macro study,

with many terminals populating each of the areas, that serves to manifest the advantages of

adapting the time-slot duration to the traffic load thanks to PHY cross-layer information. Finally,

computational complexity and signalling overhead issues are discussed. We show the impact of

our algorithm in time requirements and we establish a comparison between the signalling needs

of the framework we propose and a non-structured one.

4.6.1 Operational Aspects

Assume now a reduced allocation problem involving 24 RCSTs that share 100 time-slots. Note

that the results derived in this analysis can be extrapolated to a larger population and more

resources since the main concern is in the way that resources are distributed. In other words,

the problem has much more sense in relative terms than in absolute terms so that we can scale

the problem both in number of users and available resources and it keeps conceptually the same.

The scenario under consideration is summarized in Tables 4.1 and 4.2. In Table 4.1 we define

the parameters of interest of each RCST, namely: i) assigned area; ii) number of ATM cells

per time-slot that the terminal can transmit; iii) the RCSTs’ requests; iv) the RCSTs’ minimum

guaranteed resources and v) the priority of each demand. Table 4.2 relates terminals to segments

(we consider just two segments for simplicity reasons). Finally, Table 4.3 proposes a potential

association between services, the type of request used to enter the satellite network and the

corresponding priority. Note that we have assumed a single service or connection running at

each RCST, which may not be the case in real life. Fortunately, this simplification does not

subtract generality to the problem at the same time that offers a better comprehension of it.

The conclusions extracted here are valid also for a multi-connection scenario.
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Segment identifier Attached RCSTs

1 [1, 3, 4, 7, 8, 9, 14, 15, 16, 17, 21, 22]
2 [2, 5, 6, 10, 11, 12, 13, 18, 19, 20, 23, 24]

Table 4.2: Assignment of RCSTs to segments.

Requested QoS Associated priorities Request type

VoIP 2 RBDC
Video streaming 1.75 RBDC
Telnet, gaming 1.5 VBDC
Web browsing 1.25 VBDC
FTP, SMTP 1 VBDC

Table 4.3: Types of request.

Using the hypothesis summarized in the previous tables, we compute the allocation with the

global DBA algorithm and the hierarchical approach. The resulting resource distribution from

the global method is depicted in Figure 4.12 in form of a bar diagram (one bar for each terminal).

The reader may appreciate the final allocation (in number of ATM cells) in blue whereas the

requests and minimum guaranteed resources of each terminal are plotted in green and red,

respectively. In this case, we have obtained the real-valued solution to the problem and it has

been rounded down to fit the DVB-RCS situation. It is important to sense in Figure 4.12 the

balancing of the allocation towards the terminals with highest priorities. The dotted horizontal

lines show the water-levels fixed by each of the distinct priority values. For requests exceeding

those water-level values, that depend on the available system resources, a terminal with higher

priority receives always a higher allocation. On the contrary, an RCSTs never receives extra

resources when it reaches its own request, independently of its priority. As an example, compare

RCSTs 12 and 11. The former receives a larger allocation thanks to its larger priority despite

they have requested the same amount of resources. RCST 12 transports streaming video, a

priority service, whereas RCST 11 does simply web browsing. Compare now RCSTs 21 and 22.

The former has lowest priority but receives the highest allocation. It is because the request of the

latter is below the water-level that it has been fixed for the former (which is actually attained).

We compare now the global and hierarchical DBA algorithms maintaining the same scenario.

The final allocation for both designs is depicted in Figure 4.13. The blue bars correspond to the

global DBA and the green ones to the hierarchical approach. The result clearly illustrates the

differences between both methods. If we want to quantize it, one possibility is to measure the

objective value attained for both approaches. Another possibility is to use the Fairness Index

definition from [Jai84] as a measure of the fairness achieved. It departs from a known solution

which is assumed to be the most fair one. In our case, it corresponds to the one obtained with the
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1

y

Figure 4.14: Geometric interpretation of the FI.

global DBA procedure. Let us call it {x∗
i,j} in general. Then it constructs a new set of variables

{yi,j} that depends both on the most fair solution {x∗
i,j} and the one to be checked {xi,j} as

yi,j =
xi,j

x∗
i,j

, ∀i, j. (4.34)

Finally, the Fairness Index (FI) is computed as

FI =
(
∑

i,j yi,j)2

Y
∑

i,j y2
i,j

, (4.35)

where Y =
∑

i,j 1 is the total number of connections taking into account all RCSTs. We can

give a geometric interpretation to the FI if we compare a vector y (which is the vertical stack of

the values in {yi,j}) with an all-ones vector of the same dimension using the scalar product. See

the plot in Figure 4.14, where θ is the angle between vectors. Note that we can rewrite (4.35) as

FI =
(y × 1)2

Y ‖y‖2
=

(‖y‖ ‖1‖ cos θ)2

‖1‖2‖y‖2
= cos2 θ (4.36)

so that the FI is an implicit measure on the angle between the most fair solution (the vector 1

in the space of y) and any other solution y.

Figure 4.15 depicts the performance differences between the global and the hierarchical

approach. Both the optimal value attained in (4.6) and the Fairness Index in (4.35) are depicted.

Looking at the first measure, a slight reduction is perceived. However, since the objective function

is logarithmic, it is difficult to establish how significant the improvement is. In terms of the FI,

a reduction of about 12% is achieved and it allows a more comprehensive interpretation. Look

now in a service per service basis: if the allocation is xi,j = x∗
i,j, we are 100% fair with that

service. On the other hand, if the allocation is xi,j = 0 with x∗
i,j > 0, we are totally unfair. So

the hierarchical strategy is in mean about 12% unfair.
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Figure 4.15: DBA algorithms performance

Traffic type With priorities Without priorities
Opportunistic

allocation

VoIP 35 31 47
Video streaming 36 33 54
Telnet, gaming 44 44 48
Web browsing 25 31 0
FTP, SMTP 7 10 0

Table 4.4: Traffic (in number of ATM cells) with/without priorities.

Finally, we want to illustrate the advantage of a proper balance of the resource distribution

thanks to the defined priorities. Table 4.4 compares the amount of traffic (in number of ATM

cells) dedicated to each application or service (as defined in Table 4.3) when priorities are

considered and when not (fixing all pi,j = 1). The result confirms the desired increased allocation

at the most stringent applications, proving the interest on the proposed cross-layer mechanism

with the upper-layers on the system.

4.6.2 Global System Performance

In this part we simulate a bigger satellite sub-system and the main objective now is to analyze

the benefits of cross-layer interaction with the PHY layer of the system using the joint DBA and

frame design developed in Section 4.5. For that purpose, assume a frame duration of 26.5ms and

consider the allocation of users among 111 carriers of 540kHz each, spanning 60MHz in total.

We study a PHY layer with AC where five possible coding rates are feasible. This assumption

is in accordance with the DVB-RCS standard when convolutional coding is used. As discussed

before, users are grouped into areas depending on their transmitting rate. We have summarized

in Table 4.5 the key area parameters, namely: i) the coding rate employed and ii) the time

duration of an ATM cell in the area. Our simulation assumes a Quadrature Phase Shift Keying

(QPSK) modulation using a raised cosine pulse with a roll-off factor of 0.35. Furthermore, the
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Area identifier Coding rate ATM cell duration

1 r1 = 1/2 t1 = 1.06ms
2 r2 = 2/3 t2 = 0.795ms
3 r3 = 3/4 t3 = 0.707ms
4 r4 = 5/6 t4 = 0.636ms
5 r5 = 7/8 t5 = 0.606ms

Table 4.5: Areas definition.

time-slot duration is limited between Tmin = t1 and Tmax = 3t1.

Define v as the vector that contains, in its kth component, the mean number of terminals in

area k. An stochastic realization of the number of RCSTs in each area is then computed using

uniform probability density functions (pdf) as

Vk ∼ U [0, 2 · vk], k = 1, . . . , 5, (4.37)

where U [a, b] is the integer uniform pdf with values between a and b, so that V = [V1, . . . ,V5]T

defines a random scenario with a mean terminal distribution as in v. Within each stochastic

scenario (a realization of V), the requests emitted by each RCST are also randomly generated

as

di ∼ U [0, 2
Dtot

1T v
], ∀i, (4.38)

where 1T v is the mean number of RCSTs in the system and Dtot is the mean load offered to the

system in number of ATM cells . In other words, it is the total amount of traffic requested to

the satellite, even if it were not allocated. Note that this model assumes equal expected number

of requests per terminal but allows to adjust the distribution of terminals among the areas.

Furthermore, as far as we are interested in the macro system behavior, we assume for simplicity

reasons that no minimum resources need to be allocated and that the priority of all terminals

and connections equals one, so that we no more distinguish different connections at the same

RCST (the subindex j is dropped).

Let us define the Aggregated Data Rate (ADR) transported by the satellite subnetwork as

the sum rate that the system attains for a certain allocation of resources {xi} so that

ADR =
∑

i min (Ki · xi, di) · 53bytes

26.5ms
. (4.39)

The min function takes into account the case where the terminal can potentially transmit more

ATM cells in the assigned time-slots than what it really does due to rounding. As an example

of the situation, consider a terminal that allocates 2 ATM cells in a time-slot and its request

is 9 cells. If it receives 5 time-slots from the DBA algorithm, then it sends 9 ATM cells to the

satellite instead of 10. The maximum possible ADR is achieved when the whole frame is fulfilled

with ATM cells of the highest coding rate area using the best time-slot configuration. With the
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values assumed in our simulation it is possible to transmit 4662 cells that finally correspond to

74.59Mbps of ADR. Take this value as the reference value ADRref .

We run Monte Carlo simulations that show the expected value of ADR as a function of the

load offered to the system Dtot for a fixed distribution of users v. The simulated range of Dtot

is from 500 to 6000 ATM cells in steps of 500 cells. The results obtained with the proposed

DBA mechanisms are compared to the ones attained by the optimal solution to the problem,

which is combinatorial. In this case, the time-slot duration is not fixed. Instead, it exactly fits

the duration required to transmit an ATM cell and thus, it depends on the coding rate of

the terminal. The goal is to find the best possible ordering of time-slots, that is, the one that

keeps the non-transmitted time in the subcarriers of the frame to the minimum. To compute

(approximate) the optimal solution, we first fix the lowest possible water-level (the minimum

request of all terminals) and we generate random permutations (each permutation is a particular

placement of the corresponding time-slots within the subcarrier/s) to find the most efficient one

(the one that leaves less free-space in the subcarrier/s). Then, the water-level is fixed to the

second lowest request and the procedure is repeated until all the subcarriers are used or all the

requests are allocated. In practice, we have used 50 random orderings at each stage observing

that few or no gains are reported by the last trials, which assures to fairly approximate the real

optimum.

In Figure 4.16 we plot the ADR in the system using either the proposed technique or the

optimum allocation for a user distribution v = [5, 10, 10, 30, 45], which assumes that most users

are in rather good propagation conditions (it is a realistic hypothesis). The proposed method

is computed with three different choices of TS duration, namely: i) the optimal value; ii) the

minimum feasible value TTS = t1, and iii) TTS = 4t4, which is a value that suits the current

load and user distribution (not necessarily the optimum). Note that the election TTS = t1 is the

natural one without considering multiple MAC frames in a time-slot. The reader may appreciate

significant gains comparing the rates obtained with the optimal time-slot duration to the ones

achieved with TTS = t1. Furthermore, the distance with the optimal allocation is considerably

reduced. Note also that the election TTS = 4t4 attains nearly the same performance as the

optimal TTS , proving that it is not necessary to adjust the value at each bandwidth allocation

process. This robust behavior is very interesting in practical systems. We confirm it simulating

a drastic change in the user distribution to v = [20, 20, 20, 20, 20] in Figure 4.17. We assume

now that there is a rain event and many users lower the coding rain to adapt to the new bad

propagation conditions. Still, the non-fitted value TTS = 4t4 exhibits acceptable rates, close to

the ones obtained with the optimal value.

Figure 4.18 evaluates the efficiency in terms of frame occupation. For that purpose, we plot
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Figure 4.16: Aggregated Data Rate (good conditions).
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Figure 4.17: Aggregated Data Rate (bad conditions).
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Bandwidth Occupation

ar
ea

/T TS
t1 2t5 2t4 2t3 2t2 3t5 3t4 3t3 3t2 4t5 4t4 4t3 5t5

1 1,00 0,87 0,83 0,75 0,66 0,58 0,54 1,00 0,83 0,83 0,83 0,75 0,66

2 0,75 0,65 0,62 0,56 1,00 0,87 0,81 0,75 0,62 0,93 0,93 0,84 0,75

3 0,66 0,58 0,55 1,00 0,89 0,77 0,72 1,00 0,83 0,83 0,83 1,00 0,89

4 0,60 0,52 1,00 0,90 0,80 0,70 0,97 0,90 0,75 0,75 1,00 0,90 0,80

5 0,57 1,00 0,95 0,85 0,76 1,00 0,93 0,85 0,71 0,95 0,95 0,85 0,95

mean 0,71 0,73 0,79 0,81 0,82 0,78 0,79 0,90 0,75 0,86 0,91 0,87 0,81

Table 4.6: System occupation analysis.

the Bandwidth Occupation (BO), computed as

BO =

∑
i min (Ki · xi, di) · ta(i) · 540kHz

C · 540kHz · 26.5ms
(4.40)

as a function of ASD
ADRref

. ASD stands for Aggregated System Demand and it is the total sum of

requests in the satellite sub-network in number of ATM cells, i.e. ASD =
∑

i di. The reference

value ASDref is, as before, the maximum number of ATM cells transmitted in the system (at the

highest coding rate), i.e. 4662 ATM cells in our simulation. Therefore, the BO is the percentage

of the frame (interpreted as a time-frequency zone) being used by the satellite. We compare

the proposed method with an opportunistic allocation, which corresponds to the solution of

(4.31) when the objective function is replaced by
∑

i,j

(
xi,j · K(TTS , ta(i))

)pi,j . Opportunistic

approaches are known to be terribly unfair since the goal is to maximize global benefits (the

sum-rate in this case) without considering the way it is achieved. Assuming pi,j = 1, the op-

portunistic solution allocates first the users with highest coding rates since the benefit is higher

(more ATM cells fit in the frame). Remaining resources are then distributed among RCSTs that

use the second highest rate and so on. The procedure is clearly detrimental to terminals with low

coding rates since they get fewer opportunities or even none. Both methods are computed with

optimal time-slot selection and TTS = t1. Results show that optimizing TTS improves signifi-

cantly the occupation for both fair and opportunistic strategies while it reduces the bandwidth

occupation differences between the two designs. The optimal (combinatorial) allocation (not

plotted) saturates to a value close to 1 when the load of the system allows to use all the frame.

Additional insight into the bandwidth allocation issue is gained with the following analysis.

Assume the hypothetic scenario where all terminals saturate to one area and transmit with a

single coding rate. Further assume that the total amount of traffic requested in the area is fairly

above the system limit, so that all the available resources in the frame are employed. Finally,

compute the BO for the described situation and for all the meaningful candidates of TTS. The

results of the previous analysis for the five areas considered is found in Table 4.6. Note that in

case that the expected distribution of users into areas v is known, it is possible to approximate
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Figure 4.20: Signalling Rate (good conditions).

the BO of the system as a function of the time-slot duration as

BO(TTS) ≈
∑

i viBOTTS
i∑

i BOTTS
i

(4.41)

where BOTTS
i is the bandwidth occupation of the system when all RCSTs belong to the ith area

and the time-slot duration is TTS . Therefore, it is possible to adjust the TTS off-line given the

frame parameters and an estimation of v. Even with no information on the distribution it is

possible to adjust the value in the max-min sense. In other words, we can choose the time-slot

duration that maximizes the BO when the unknown distribution v appears to be the worst

possible. In our example, the max-min TTS is TTS = 4t4 (marked in yellow). If some information

is available, for example, if we know that most of the traffic is in areas 3 and 4, the best choices

for TTS are TTS = 2t3, TTS = 3t3 or TTS = 4t3. This table further justifies that it is not necessary

to update TTS at every allocation process.

Finally, Figure 4.19 studies how is fairness affected by: i) a non-optimal time-slot duration

TTS = t1 in the proposed global DBA method and ii) an opportunistic strategy with optimized

time-slot duration. As before, we make use of the fairness index introduced in [Jai84] and for-

mulated in (4.35). To obtain it, we assume that the most fair solution is the one attained with

the fair approach and optimal time-slot duration. Note that TTS for the fair solution does not

necessarily coincide with the optimal value for the opportunistic approach. The result in the

figure confirms that the fair strategy sustains fairness even when the time-slot duration is far
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from the optimal one. On the contrary, the opportunistic solution tends to be more unfair as

the total demand in the system increases because the terminals with lowest rates are discarded

to benefit the ones with better propagation conditions.

4.6.3 Computational Complexity and Signalling

The end of the results section is dedicated to show the advantages of the proposed framework in

the questions of signal efficiency and reduced computational complexity. To begin with, consider

the amount of information required to signal the frame structure in the proposed framework

and in the optimal (combinatorial) solution. Since no frame structure is imposed in the second

option, it is mandatory (according to the standard) to indicate the position of each time-slot

in the frame, which is done at the Frame Composition Table (FCT) [ETS05a, Sec. 8.5]. In

numbers, we need (174 + NTS · 72)bits to transmit the FCT, where NTS is the number of time-

slots (equivalent to ATM cells) allocated in the frame, that takes 26.5ms in our simulation. On

the contrary, the use of the proposed frame structure reduces this quantity to (174+Cu ·72)bits,
where Cu is the number of carriers employed to transmit, because it is possible to signal the

time-slot at the beginning of the frame and indicate the number of repetitions. Figure 4.20 plots

these quantities in form of signalling rate (divided by 26.5ms) as a function of the normalized

requested rate in the system when v = [5, 10, 10, 30, 45]. The result clearly shows the advantage

of the structured option with a reduction of about 12Mbps devoted to signalling in a loaded

system. Note in Figure 4.16 that the increase in transmitted data rate in the same conditions is

around 8Mbps and therefore, an structured option is meaningful.

In addition, our design facilitates the computation of a fair and time-efficient solution, which

is imperative in practical systems. To exemplify it, we solve the allocation problem using our

DBA algorithm and the bisection method, which is known to suit practical implementations

[Pal05], applied to (4.2) in a Pentium�-Mobile processor running at 1.73GHz. The inputs to

both algorithms are discrete (integer) uniform random variables with different thresholds: i)

di ∼ U [1, 20]; ii) mi ∼ U [0, 3] and iii) Ki ∼ U [1, 2]. Priorities are also discrete, pi ∼ U [1, 2], but

with a step of 0.25 (i.e. pi ∈ {1, 1.25, 1.5, 1.75, 2}). We run Monte-Carlo simulations to extract

the mean computation time function of the number of terminals. The results are depicted in

Figure 4.21. The reader may appreciate that the proposed global DBA algorithm solves the

problem in half the time required by the bisection method. Translating the result in the context

of DVB-RCS (assuming 100ms of available time to compute the allocation), it is equivalent to

say that the bisection method is able to manage 8500 users whereas our method would manage

18000.
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Figure 4.21: Computational time (global DBA and bisection method).

4.7 Summary

The main contributions of this chapter are the design of an optimized framework to work with

the dynamic allocation procedure in the DVB-RCS standard together with fair and time-efficient

DBA algorithms that take into account cross-layer information both from the lower layer (PHY

layer) and the upper layers (IP layer in our example). The proposed algorithm is derived using

the convex duality and decomposition results in Chapter 3.

Our approach is compliant with both the DVB-RCS standard and the ETSI technical speci-

fications. Unlike other approaches, our contribution fixes some structure, the time-slot, common

to all areas (i.e., coding rates). This results in reduced signalling, increased robustness to PHY-

layer changes and reduced complexity of the subsequent resource allocation. Then, depending

on the spectral efficiency of the RCSTs within a given area, one or more ATM cells can be

transmitted. The time-slot is optimized either for each allocation cycle or in a max-min sense.

Results show that a good usage of the satellite bandwidth is achieved with this strategy and

that the MAC cross-layer design enabled by an adaptive PHY layer reports significant gains.

Thereafter, time-efficient algorithms have been presented for the allocation of bandwidths

to RCSTs (in global and hierarchical approaches). The basic algorithm is able to find the exact

solution to the problem with less than half the time of the widely used bisection method. We

have exemplified both algorithms, showing the sub-optimality of the hierarchical approach. This
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makes even more important to solve the global allocation with little complexity.

Finally, the use of priorities at MAC-layer gives continuity to the QoS requirements defined at

upper layers, such as IP layer. Priorities can be explicitly signalled to the NCC or alternatively,

the NCC can extract this information from the traffic.



Chapter 5

Distributed Algorithm for Uplink
Scheduling in WiMAX Networks

We propose in this chapter another application of the decomposition strategies exposed in Chap-

ter 3, this time focusing the scheduling aspects at the uplink of the Worldwide Interoperability

for Microwave Access (WiMAX) system from a MAC layer point of view. Resource allocation in

the WiMAX uplink falls into the DAMA-type approaches. The different services managed by a

terminal (and mapped to MAC-layer logical connections) request for transmission opportunities

that are granted in a terminal basis. We address in this chapter the scheduling formulation and

computation under a generic NUM approach that is particularized to a proportional fairness

strategy, like in DVB-RCS. The design is suitable for PMP and tree-deployed mesh network

configurations, which may have application in the usage of WiMAX as the backhaul network.

In both cases, the network is optimized centrally from the Base Station (BS). However, the

solution is computed in a distributed manner without requiring explicit communication from all

terminals to the BS.

5.1 Introduction to WiMAX

The wireless community has recently directed much attention on a variety of topics related to

WiMAX technologies as a broadband solution. Two different standards are under this com-

mercial nomenclature: the IEEE 802.16 [IEE04], with its extension to mobile scenarios IEEE

802.16e [IEE06], and the ETSI HiperMAN [ETS03b, ETS03a]. Operating mainly in the range of

2GHz to 11GHz, WiMAX enables a fast deployment of the broadband network even in remote

locations with low coverage of wired technologies, such as the DSL (Digital Subscriber Loop)

family. WiMAX extends the widely-used WLAN (Wireless Local Area Network) coverage to

tens of kilometers, and thus the interest to use such platform to bring internet access to rural

and isolated places.

119
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Four different PHY layers have been defined in the IEEE 802.16 standards [IEE04, IEE06].

These are:

• Wireless Metropolitan Area Network (WirelessMAN) Single Carrier (SC): it is devoted to

operation frequencies beyond 11GHz and requires Line of Sight (LOS) propagation.

• WirelessMAN SCa: a single carrier system for frequencies between 2GHz and 11GHz and

designed for point-to-multipoint (PMP) operation.

• WirelessMAN Orthogonal Frequency Division Multiplexing (OFDM): designed to operate

in the range between 2GHz and 11GHz in non-LOS (NLOS) propagation conditions. It uses

256 subcarriers and it has been accepted as the reference PHY layer for fixed deployments,

being also referred to as fixed WiMAX.

• WirelessMAN Orthogonal Frequency Division Multiple Access (OFDMA): uses 2048 sub-

carriers and it is devoted to PMP with NLOS propagation. Operates in the range between

2GHz and 11GHz. This PHY layer has been modified in [IEE06] to an Scalable OFDMA

(SOFDMA) where 128, 512, 1024 and 2048 subcarriers can be configured. The motivation

of such scalability is to adapt to the nature of the mobile channel and thus, this PHY layer

has been accepted for mobile operation, being also referred to as mobile WiMAX.

Typically, terminals use OFDM as the modulation technique in mobile scenarios and also in

fixed WiMAX. Regarding the multiple access strategy, fixed terminals employ mainly TDMA

whereas mobile units use an OFDMA approach. Generally speaking, the PHY layer in WiMAX

allows many degrees of adaptation to the channel conditions of the terminals thanks to adaptive

coding and modulation (ACM), power control and subchannelization in the OFDM mode. A

subchannel is a logical collection of subcarriers that depends on the subcarrier permutation

mode. A data block is then sent over one or multiple subchannels. In summary, PHY layer

flexibility allows to set up a transmission at many different points in the multi-user capacity

region of the system and it is a courageous task to set it up in the best possible way given

channel and traffic load conditions. Our contribution considers a given PHY set up and the goal

is to distribute the available resources (link rates) among the services that require them. Future

work will consider also PHY layer aspects.

The MAC layer in WiMAX can be divided into three parts: the service-specific Conver-

gence Sublayer (CS), the common-part sublayer and the security sublayer [And07]. The CS is

the interface with the IP layer and manages data packets to and from that layer, also known as

Service Data Units (SDUs). Among its inter-layer adaptation tasks, we can find header compres-

sion and address mapping. The common-part sublayer performs most of the MAC-layer tasks,

such as fragmentation and concatenation od SDUs into MAC Packet Data Units (PDUs), MAC
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management, QoS control, scheduling, ARQ, . . . where our work is focused. Finally, the security

sublayer is in charge of encryption, authorization and related tasks.

Let us now discuss about network topologies. There are two possible architectures in WiMAX,

namely: i) PMP and ii) mesh. In PMP mode, one Base Station (BS) serves a certain amount

of Subscriber Stations (SSs) using direct links like in traditional cellular networks, whereas in

mesh mode, SSs can be linked directly to the BS or routed through other SSs in the network. In

Figure 5.1 there is a mesh topology example. Note that it is a particular case of a mesh network

since it is tree-deployed. It is possible to identify 3 PMP clusters within. At the top of the tree a

PMP network formed by MeshSS1, MeshSS2 and the MeshBS. Below, there are two other PMP

clusters: one headed by MeshSS1 and another one headed by MeshSS2. We will consider in this

work either PMP or tree-deployed mesh networks. The practical motivation is that under such

circumstances it is possible to compute the scheduling in a distributed way and thus reduce the

involved signalling that is required if the necessary information to calculate the scheduling has

to be gathered at a central node in the network. Moreover, the request/allocation mechanism

envisaged in the standard document for centralized scheduling suggests the implementation of

such topology since requests at one node have to be aggregated to the requests performed at

the nodes below.

In the uplink of the system the SSs request resources in terms of bytes of information and

they do it for each connection at the SS. Roughly speaking, we can associate connections with

services (further details are given in the next section). However, the result of the allocation is

given in a terminal basis and it is the SS who is in charge of distributing the allocation among

the services within so that, from a scheduling point of view, the tree-topology interpretation

has sense even in the PMP case. In that situation, we may consider two allocation levels: at the

highest, the distribution of the BS resources among the SSs and at the lowest, the allocation

of the SS grants to the services below. In the mesh mode the standard defines two types of

transmission scheduling, namely: i) centralized and ii) distributed, which shall not be confused

in the distributed nature of the computation of the allocation that we propose. In centralized

scheduling the allocation is conducted by the Mesh BS as outlined some line above whereas in

distributed scheduling, some parts of the network are allocated separately. Note that we propose

to perform centralized scheduling with the signalling advantages of a distributed strategy (not

distributed scheduling) since thanks to decomposition ideas, the bandwidth allocation may be

computed in a distributed way.

Previous works related to resource allocation in WiMAX networks address a variety of sce-

narios, from PMP to mesh, from TDMA to OFDMA access types, and distinguishing single

channel or multi-channel networks, most of them from a physical (PHY) layer perspective,

where the goal is to properly configure the transmission parameters. At the best of our knowl-

edge, two main approaches are found in the literature, namely: i) formulate the problem in a
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Figure 5.1: WiMAX mesh network.
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mathematical optimization framework and ii) develop heuristic algorithms. In the sequel, we

briefly review some of the works (more details can be found in Section 2.4.2). In [Mak07], the

authors propose an heuristic solution for the case of a single cell OFDMA WiMAX network that

maximizes the network sum-rate under some fairness considerations. The authors in [Wei05]

analyze how concurrent transmissions boost performance in mesh-type networks by proposing

an interference-aware routing and scheduling mechanism. In [Du07], one can find a discussion

about the advantages of a multi-channel network. Finally, [Sol06] contributes with a mathe-

matical optimization solution that falls into the NUM framework, where a distributed optimal

solution to the established NUM problem is obtained using a convex decomposition approach

[Pal07]. It combines PHY and MAC scheduling aspects.

In this work we concentrate on the scheduling design of the uplink of a WiMAX network

from a MAC layer perspective, which is DAMA. We consider either a PMP or a tree-deployed

mesh network, which is useful when WiMAX is employed as the backhaul network [Lee06b].

Our solution can be sorted into the class of proportionally fair schedulers [Kel98] and it is

formulated as a NUM problem. The objective is to fairly allocate all the connections or services

in the system depending on the mid-term transmission resources provided by the PHY layer. The

proposed solution is distributed in the sense that it allows to jointly optimize the entire network

without the need of a central node (and subsequent signalling requirements), and provides faster

convergence times than other known distributed techniques. Next section details the procedure

for requesting and allocating bandwidth in WiMAX.

5.2 Bandwidth Request and Allocation in the WiMAX Uplink

As introduced in the previous section, each WiMAX SS may support many connections and each

one is described by a Connection Identifier (CID). There is a primary CID (which is in charge

of MAC messaging) and several secondary CIDs, all devoted to different services. The exact

mapping between services and connections is not specified in the standard, but the underlying

motivation is to group services that have similar QoS requirements under the same logical

connection. QoS requirements are characterized by means of a set of attributes [IEE04, Sec.

6.14], all of them related to each service flow thanks to the Service Flow Identifier (SFID). All

CIDs in the system use a three-way handshake in which they request for uplink bandwidth, wait

for the BS to compute the allocation and get their grants using the Uplink (UL) MAP messages.

Requests are made in terms of bytes of information and can be incremental (if they add to

the previous ones) or aggregate (if they replace them). The way the SSs ask for resources is either

using a specific bandwidth-request MAC Packet Data Unit (PDU) or piggybacking on a generic

MAC PDU. The UL MAP also defines the dedicated or shared UL resources that the SSs can use

to emit their bandwidth requests. This mechanism is known as polling in the WiMAX context.
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If there are enough available resources to poll each SS separately, then we have unicast polling.

On the contrary, a subset of terminals or even all terminals enter in a contention process and

we have multicast/broadcast polling. Remember that resources are granted in WiMAX in a SS

basis and it is the SS that distributes these among the attached CIDs and therefore, distributed

solutions benefit from reduced signalling in a joint network optimization strategy.

In order to provide Quality of Service (QoS), five different scheduling services are defined in

the WiMAX standards:

• The Unsolicited Grant Service (UGS): it is devoted to real-time service flows that generate

packets of constant size on a periodic time basis, as it is the case in VoIP. UGS grants a

fixed-size allocation without explicit bandwidth requests in order to reduce the associated

system overhead and the latency in scheduling.

• The real-time Polling Services (rtPS): accommodates real-time services that generate data

packets of variable size on a periodic time basis, as it happens with MPEG video. The BS

provides polling opportunities to the SS with an adequate rate to fit the latency require-

ments of the services. The goal is to have a more efficient system that is able to compensate

the signalling overhead derived from the request and allocation process.

• The non-real-time Polling Services (nrtPS) is similar to rtPS but contention-based polling

is used in addition to the unicast version, where request opportunities are less frequent

than in rtPS.

• The Best-Effort service (BE) is designed for services with low QoS requirements so that

the scheduling process prioritizes all other services. In this case requests are emitted using

only the contention-based polling mechanism.

• The extended real-time Polling Service (ertPS) was introduced in the mobile WiMAX

[IEE06] and it lies in between the UGS and the rtPS. In this case the periodic resources

allocated to the SS can be used either for transmitting data or for requesting additional

bandwidth and therefore, this service suits traffic types whose bandwidth requirements

change with time.

Services flows are explicitly described in terms of QoS related parameters, such as latency,

jitter, throughput and packet error rate. The components in a service flow are:

• Service flow ID (SFID): a 32-bit identifier.

• Connection ID (CID): a 16-bit identifier of the connection that carries the service.

• Provisioned QoS parameter set: it contains the recommended QoS settings for the service

and is usually proportioned by the higher layers.
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• Admitted QoS parameter set: the QoS parameters that can be actually satisfied with

the current MAC/PHY layer configuration. It may be a subset of the provisioned QoS

parameter set when the BS is not able to attain all QoS requirements.

• Active QoS parameter set: it is the subset of QoS parameters that are provided to the

service flow at a given time.

• Authorization module: a logical BS function that verifies every potential change to the

QoS parameters and classifiers related with a service flow.

Service flows are usually grouped into service classes with similar QoS requirements. This fact

enables that requests at any point in the network are globally consistent from a higher-layer

perspective. However, the way service flows are grouped into service classes is left as an open

issue in the WiMAX standard.

Up to this point, we have reviewed the most significative aspects of the scheduling issues

that appear in the uplink of WiMAX. The interested reader can find a good explanation on the

standard and related aspects in [And07]. We propose now a mathematical optimization approach

to cope with the depicted situation and we do it using the framework of NUM. Let us formulate

the scheduling as
max
{ri}

∑N
i=1 Ui(ri)

s.t. ri ∈ Ri, i = 1 . . . N∑N
i=1 hi(ri) ≤ c

(5.1)

where Ui(ri) is the utility function perceived at entity i that depends on the granted rates ri.

Given the network topology assumed, entity i can be (from top to bottom) the Mesh BS, a Mesh

SS, a SS and finally, a CID. In general, Ui(ri) is the result of a convex optimization problem of

the same nature as (5.1). Later on, we will provide an example to illustrate our mathematical

framework. The functions hi(ri) are convex on the rates and decoupled with respect to the

elements in ri and c is the total amount of available resources. We assume that c is a parameter

of the problem that is given by the specific PHY layer configuration as the mid term capacity.

The convex subsets Ri are cartesian products that define the maximum and minimum values

that the rates in ri can take.

Take now the network configuration in Figure 5.1 and assume that it is possible to map

the different services and their requests to certain utility functions and subsets Ri. Note that

the specific choice of those functions defines the nature of the solutions. As we have done in

the DVB-RCS case in Chapter 4, we use weighted logarithmic utility functions on the granted

rates to attain an asymmetric proportionally fair solution [Kel98]. However, the decomposition

approach is valid for any convex function given the specified tree network topology. Consider

first the allocation of resources performed at the Mesh BS among Mesh SS1 and Mesh SS2. We
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formulate the problem as
max
r1,r1

U1(r1) + U2(r2)

s.t. ri ∈ Ri, i = 1, 2∑2
i=1 1T ri ≤ c

(5.2)

where r1 = [rT
1 , rT

2 , rT
3 ]T , r2 = [rT

4 , rT
5 ]T and c is the amount of resources available at the Mesh

BS to transmit to the core network. For the sake of simplicity, superscripts are now related to

Mesh SSs whereas subscripts are associated to SSs. Note that r1 aggregates all the rates at SSs

1 to 3, i.e. r1 to r3. Furthermore, each ri is a vector that contains the rates of all the CIDs

attached to SSi.

The allocation at a level below, i.e. from Mesh SS1 to SSs 1 to 3 and from Mesh SS2 to SSs

4 to 5, is then implicit in the functions U1(r1) and U2(r1), respectively. In the first case, the

explicit formulation is

U1(r1) =
max

r1,r2,r3

U1(r1) + U2(r2) + U3(r3)

s.t. ri ∈ Ri, i = 1, 2, 3∑3
i=1 1T ri ≤ c1

, (5.3)

where c1 is the rate capacity of the link between the Mesh SS1 and the Mesh BS. Similarly, we

can write the optimization problem that models U2(r2). Note that U i(ri) are concave functions

on the variables ri (given the functions Ui(ri) are concave) since they are the result of a convex

optimization problem (expressed in maximization form), as discussed in Chapter 3.

Finally, the allocation of resources to CIDs attached to ith SS is done by solving the following

allocation problems that result from the explicit expressions of Ui(ri),

Ui(ri) =

max
{ri,j}

∑
j Ui,j(ri,j)

s.t. ri,j ∈ Ri,j, ∀j∑
j ri,j ≤ ci

, (5.4)

where ci is the rate capacity of the link between the ith SS and the Mesh SS where it is attached to

and ri,j is the granted rate to jth CID at the ith SS. The functions Ui,j are no longer expressed as

convex optimization problems in the last allocation level. Instead, they are represented through

analytical expressions, such as the weighted logarithm of the granted rates in a proportionally

fair design. The subsets Ri,j define now the requested rate of the CID (in its maximum value)

and the guaranteed rate (in the minimum value). Note that the subsets Ri and Ri in the

previous allocation phases are formed by union of the one dimensional subsets Ri,j in the multi-

dimensional space, as well as vectors ri and ri are formed by stacking together the elements

ri,j.

From the scheduling problems (5.2) to (5.4), the reader may appreciate that the global

allocation is divided into several smaller resource distribution problems of PMP type. Regarding

signalling issues, as it will be discussed in the next section, each entity or node in the network
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info exchange
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Figure 5.2: Proposed distributed bandwidth allocation.

negotiates a total amount of resources (i.e. the sum of the rates allocated at the node) with

the nodes above and it is the node that distributes the granted amount among the nodes or

connections below, whatever the situation is. Remember that the standard enforces, at the lowest

allocation level, that the SSs distribute their granted resources among the connections attached

to them, so the architecture we propose is in accordance with the IEEE 802.16 definitions. Both

issues, signalling and PMP-wise scheduling, are graphically depicted in Figure 5.2.

The next section is devoted to the application of known decomposition techniques (primal and

dual) to the previous scheduling formulation in order to compute the joint resource allocation in a

multi-level decompositions approach. It is also possible to perform such multi-level decomposition

using the proposed coupled-decomposition method described in Chapter 3 with the subsequent

benefits in terms of convergence speed, as it is discussed in the following. All the strategies are

distributively computed in the way described in Figure 5.2.

5.3 Distributed Scheduling Using Convex Decompositions

Consider again (5.1) as the basic scheduling piece in our architecture, which formulates a PMP

resource allocation, and let us solve it in terms of a primal, dual or a coupled-decomposition

approach. Moreover, in this section we include a detailed description of the quantities that need

to be signalled between network nodes to cope with a tree-deployed network topology using the

three approaches.
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5.3.1 Primal Decomposition

Problem (5.1) is adequate to perform a dual decomposition since it has a coupling constraint. In

order to attain a primal decomposition, we include the coupling variables {yi} and write (5.1)

equivalently as
max
{ri,yi}

∑N
i=1 Ui(ri)

s.t. ri ∈ Ri, i = 1, . . . , N
hi(ri) ≤ yi, i = 1, . . . , N∑N

i=1 yi ≤ c

. (5.5)

Following the results in Chapter 3, it is possible to define the primal master problem and

the primal subproblems. The subproblems are defined for fixed values of {yi} as

UP
i (yi) = max

{ri}
ri ∈ Ri

hi(ri) ≤ yi

Ui(ri) (5.6)

and it is known that for fixed i, UP
i (yi) is a concave function of yi. Note that the maximization

of a concave function is equivalent to the minimization of a convex one and thus the previous

statement is easily verified from the results in Chapter 3. Using UP
i (yi) we define the primal

master problem as
max
{yi}

∑N
i=1 UP

i (yi)

s.t.
∑N

i=1 yi ≤ c
. (5.7)

The master problem is solved using the subgradient method (see details in Section 3.2.1). A

subgradient (conceptually equivalent to the gradient) of UP
i (yi) at the point yi, si(yi) is readily

found from the solution of (5.6) as

si = λ∗
i (yi) (5.8)

where λ∗
i is the optimal value of the Lagrange multiplier associated to the constraint hi(ri) ≤ yi

for a given value yi. The completion of the method is attained with the following update of the

coupling variables

yt+1
i =

[
yt

i + α(t) · si(yt
i)
]P

, (5.9)

where t indexes iterations, α(t) is the user-defined step-size of the method and [·]P denotes the

projection onto the half-space
∑N

i=1 yi ≤ c, that can be analytically computed [Boy03, Sec. 8.1].

In Figure 5.3 we detail the allocation process of the network depicted in Figure 5.2 using

primal decomposition. Note that we assume just two scheduling levels for simplicity but the

procedure can be extended to an arbitrary number of layers. We have indexed in the figure

the variables related to the allocation at the highest level with a superscript and the variables

related to the lowest level distribution with a subscript. The highest node (the BS in the WiMAX
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Figure 5.3: System view of a 2-level primal (dual) decomposition.

context) is labelled as MP as it computes only a master problem. Similarly, the lowest nodes (the

CIDs in WiMAX) are labelled as SP since they only perform the function of the subproblems.

On the contrary, the intermediate nodes compute both master problems (for the nodes below)

and subproblems (for the node above). Red arrows signal the allocated resources to the nodes

below whereas blue arrows signal the subgradients to nodes above.

The global solution is distributively attained in the following way: Start from a feasible

distribution of resources y1 and y2 such that y1 + y2 = c, where c is the rate capacity from the

BS to the core network. The next step requires computation of the subgradients s1 and s2 and

thus, solving the corresponding subproblems. Each of the subproblems can be solved using a

primal decomposition and we can apply the subgradient method again. For example, we perform

the inner iterations exchanging the variables y3, y4 and y5 and the corresponding subgradients

si to be able to compute s2. Note that the subgradients are related in this inner case to the

constraints ri ≤ yi and that the master problem attains y3 + y4 + y5 ≤ y2 (imposed by the first

decomposition) and also y3 + y4 + y5 ≤ c2 (imposed by the second decomposition), where c2

is the rate capacity between the BS and the SS. Once the solution is available, s2 is computed

(related to y3 + y4 + y5 ≤ y2) and it is used to update the higher-layer allocation together with

s1. The procedure is repeated until it converges. Note that at each outer iteration, a solution

to the subproblems is needed and thus the scheduling procedures work with different updating

rates.
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5.3.2 Dual Decomposition

A dual decomposition of (5.1) is attained when we construct a partial Lagrangian relaxing only

the coupling constraint, which allows to rewrite the original problem as

min
μ

max
{ri}

∑N
i=1 Ui(ri) − μ(

∑N
i=1 hi(ri) − c)

s.t. ri ∈ Ri, i = 1, . . . , N
μ ≥ 0

, (5.10)

where μ is the Lagrange multiplier associated to the coupling constraint.

Let us rewrite the previous result as

min
μ

∑N
i=1 UD

i (μ) + μ c

s.t. μ ≥ 0
, (5.11)

where

UD
i (ri) =

{
max

ri

Ui(ri) − μ hi(ri)

s.t. ri ∈ Ri

. (5.12)

Now UD
i (μ) are the dual subproblems and (5.11) is the dual master problem. Note that the

coupling is driven in dual decomposition by the variable μ. In other words, for the optimal value

μ∗ the dual subproblems compute the optimal allocation in a fully decoupled manner.

As discussed in Chapter 3, the subgradient method is also used to solve the dual master

problem and a subgradient of UD
i at μ, s′i(μ), is readily found as

s′i = −hi(r∗
i (μ)), (5.13)

where r∗
i (μ) is the optimal value of the primal variables in the dual subproblem when a value

of μ is given. The following iterations are then applied to find the optimal value of the dual

variable,

μt+1 =

[
μt + α(t) ·

(
c −

N∑
i=1

hi

(
r∗

i (μ
t)
))]+

(5.14)

where t indexes iterations, α(t) is the user-defined step-size of the method and [·]+ is the projec-

tion to the non-negative orthant in order to grant the accomplishment of the constraint μ ≥ 0

in the master dual problem. See further details on dual decomposition in Section 3.2.2.

The architecture of dual decomposition in terms of signalling is pretty similar to the one

described for primal decomposition. Again, let us review the scheduling process in the network

example of Figure 5.2, this time using a two-level dual decomposition. However, note that the

results here are general as they can be extended to an arbitrary number of layers or scheduling

stages. The specific signalling required is described by Figure 5.3 substituting si and si by s′i

and s′i, respectively, and {y1, y2}, {y1, y2} and {y3, y4, y5} by μ1, μ1 and μ2, respectively. In



Chapter 5. Distributed Algorithm for Uplink Scheduling in WiMAX Networks 131

other words, the BS (at top) first sends to the SSs (intermediate nodes) the values of the dual

variable μ1, which is the same for both SSs. With that μ1 value the dual subproblems in (5.12)

are defined. The computation of the dual subproblems can be done by performing a second dual

decomposition since

UD
i (ri) =

{
max

ri

Ui(ri) − μ hi(ri)

s.t. ri ∈ Ri

=

⎧⎪⎨
⎪⎩

max
ri

∑
j Ui,j(ri,j) − μ

∑
j hi,j(ri,j)

s.t. ri,j ∈ Ri,j∑
j hi,j(ri,j) ≤ ci

(5.15)

where j indexes the nodes at the lowest level (i.e. CIDs) and ci is the rate capacity seen at the ith

SS to the BS. Note in (5.15) the substitution of Ui(ri) by its optimization problem form including

the scheduling at the lower level and also the substitution of hi(ri) in terms of the variables

managed at the lowest layer. Given this second dual decomposition, a subgradient method

approach requires the exchange of the dual variables μ1 and μ2 along with the corresponding

subgradients s′i. Once the solution of UD
i is attained at μ1, the subgradients s′1 and s′2 are readily

found and μ1 is updated. As it happens with primal decomposition, different update rates are

given at each layer since an update in an upper layer requires convergence of the solution at the

stages below.

5.3.3 Coupled-Decomposition

Let us consider the problem formulation in (5.5), which is adequate both for a primal decom-

position and also for an indirect dual decomposition [Pal07] when the constraint
∑N

i=1 yi ≤ c is

relaxed in the Lagrangian. The coupled-decomposition method intertwines both approaches in

a single method and boosts the convergence speed of the algorithm significantly. In the sequel,

we review the strategy applied to the specific case of WiMAX scheduling. The details of the

method can be found in Section 3.3.

Given a value for the dual variable associated to the coupling constraint μ, the dual sub-

problems compute the amount of resources yi dedicated to the ith subnetwork (with rates in ri)

as

yi(μ) = argyi
max
ri, yi

ri ∈ Ri

hi(ri) ≤ yi

Ui(ri) − μ · yi (5.16)

If we explicitly formulate the scheduling within the subnetworks (indexed by j) that integrate

the ith subnetwork, the problem is

max
{ri,j ,yi,j}

∑
j Ui,j(ri,j) − μ

∑
j yi,j

s.t. ri,j ∈ Ri,j

hi,j(ri,j) ≤ yi,j∑
j yi,j ≤ ci

(5.17)
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Figure 5.4: Approximate resolution of dual subproblems in the coupled-decomposition method.

where yi =
∑

j yi,j and ci is the rate capacity available from the ith PMP subnetwork to the

node above. The problem decomposes again and may be solved using a coupled-decomposition

strategy. In practice, we have found that (5.17) may be approximately solved if we obviate the

constraint
∑

j yi,j ≤ ci without affecting the global convergence of the method (the constraint

is taken into account in the following steps). In that case, the dual value μ propagates to all the

PMP subnetworks below. It is then used in the lowest level to compute the allocation at a CID

basis and group allocations are propagated backwards and added to finally obtain yi. See the

idea of the first step of the method in Figure 5.4.

Once the values {yi} are available, primal projection prevents them from exceeding the rate

capacity limits of the network. It finds the new allocation values {ŷi} by means of solving the

following quadratic minimization problem,

min
{ŷi}

∑
i(ŷi − yi)2

s.t. mi ≤ ŷi ≤ min (di, c
i)∑

i ŷi = c

(5.18)

where mi and di are the sum of the minimum guaranteed resources and the aggregated demand

in the ith subnetwork. Note that we consider in primal projection the constraint
∑

j yi,j ≤ ci,

obviated in dual subproblems.

In the next step, subnetworks obtain their μ candidates λi after the computation of the

following primal subproblems,
max

ri

Ui(ri)

s.t. ri ∈ Ri

hi(ri) ≤ ŷi

(5.19)

where λi is implicitly achieved as it is the dual variable associated to the constraint hi(ri) ≤ ŷi.

Due to the decoupled structure of Ui(ri) and hi(ri), primal subproblems resemble to the original
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Figure 5.5: Flow diagram of the coupled-decomposition method.

problem in 5.1. Therefore, they can be iteratively solved using the coupled-decomposition method

that works this time with a reduced problem.

Finally, dual projection decides the μ update from the candidates λi. As discussed in Section

3.3, not all the λi values are valid for this computation and we select only the ones that are

found with an input ŷi to the primal subproblem that verifies mi ≤ ŷi ≤ min (ci, di). Let us

group all these valid dual candidates (from the valid subproblem subset) in the vector λ′. Then,

dual projection computes the μ update as

μ = min
λi

λ′. (5.20)

See in Figure 5.5 a flow diagram of the method that shows the connections among primal and

dual projections and subproblems, where the variable t indexes iterations.

As we have done with primal and dual decompositions, we review now the signaling required

to attain the solution in the network example of Figure 5.2 in a distributed manner using the

coupled-decomposition algorithm. The following steps, depicted and specified in Figure 5.6,

obtain the optimal scheduling in the network:

1. The dual variable μt is spread through the network.

2. The end-nodes transmit the allocation computed with μt to the nodes above. Intermediate
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Figure 5.6: Signaling in coupled-decomposition.

nodes obtain their allocation as the sum of the ones below.

3. The highest node corrects the previous allocations to attain the rate capacity towards the

core network, i.e. c, and taking also into account the rate capacities to the nodes below,

i.e. ci.

4. The corrected allocations are used by the intermediate nodes to perform new iterations of

the coupled-decomposition method and obtain the dual variable candidates λi.

5. Finally, the highest node in the network updates the value of the dual variable to μt+1

using dual projection.

Note again the different updating rates at the different scheduling levels, as it happened with

primal and dual decompositions.

To end this section, let us briefly interpret the operation of our joint and distributed schedul-

ing proposal. The key idea is to reach a consensus on the price μ to be paid to use the network

resources. Within our PMP or tree-deployed topology, it is natural to negotiate prices and al-

located resources at the end-nodes depending on the QoS requirements of the connections and
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Figure 5.7: Network example under test.

therefore, the global price is propagated to the whole network. In that way, all the connections

are equally treated at the highest network node. However, it may happen that a certain μ were

not valid for a given subnetwork, either because it implies exceeding the capacity of the sub-

network or because it does not attain the minimum grants. In such occasions, the subnetwork

computes its own price (λi in the previous example) to satisfy the constraints. Note, from the

point of view of the KKT optimality conditions of the problem, that such constraints attained

with equality make feasible a non-zero value of the associated Lagrange multipliers λi, which

are common to all the connections in the subnetwork below and play the role of μ inside it.

Therefore, each subnetwork defines its own price when it is necessary (it may differ from μ) and

KKT conditions can be attained to obtain the optimal bandwidth allocation or scheduling.

5.4 PMP Scheduling Example

In this section, we test the decomposition techniques (dual decomposition and coupled-

decomposition) in a small PMP network example and we compare both results to a non-

distributed computation performed with the MVC decomposition method, reviewed in Section

3.2.3. Let us consider the network topology depicted in Figure 5.7, where three SSs manage six

CIDs. Each CID is assumed to be mapped to a service with independent QoS requirements.

The links are labelled with their rate capacity, given by the PHY layer configuration of each

of them. Two scheduling levels can be identified in the figure, namely: i) from the SSs to the

BS at the high level and ii) from the CIDs to the corresponding SS at low level. The former is
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mathematically defined as in (5.1) with

Ui(ri) =

{
max

ri

∑
j Ui,j(ri,j)

s.t.
∑

j ri,j ≤ ci

}
, hi(ri) =

∑
j

ri,j, (5.21)

where ri,j is the transmission rate of CIDj at SSi and ci is the rate capacity from SSi to the BS.

At the lowest level, problem (5.1) is solved for the ith SS using

Ui,j = pi,j log ri,j, hi,j(ri,j) = ri,j. (5.22)

In both cases, the subsets Ri and Ri,j contain the maximum and minimum rate values of the

CIDs within them. However, note that at the highest level and from a practical point of view,

we need to know only the sum of maximums and minimums since these two values are enough

to iterate the variables {yi}, {ŷi}, {λi} and μ of the proposed algorithm. The specific quantities

per CID, i.e. Ri,j, are only required at the lowest level to obtain the scheduling of CIDs.

Recall that the election of logarithmic functions of the rates responds to a proportional

fair criterion as it is discussed in [Kel98], but other utility functions can be used. We further

use the priority values pi,j, as in the DVB-RCS case in Chapter 4, to balance the scheduling

towards some services depending on the specific QoS policy and thus the solution is asymmetric

proportionally fair. These values are depicted in blue in Figure 5.7 at each CID. The max and

min values in Ri,j (in brackets in the figure) define the requested and minimum granted rates

of each service, respectively. In WiMAX, the UGS can be requested with a minimum granted

rate regardless the value of pi,j whereas the ertPS can be requested with the minimum grant

plus the request of extra resources modulated by an adequate priority value. The other service

types can be configured with adequate priority values as well. Note that the original requests in

terms of bytes of information can be transformed to rates taking into account the time basis of

the requests.

We assess now the convergence speed terms of the following solutions, namely:

• A two-level dual decomposition approach.

• A MVC decomposition approach.

• A coupled-decomposition strategy.

The results of the proposed method are depicted in Figure 5.8. The first subplot contains

the evolution of the dual variable at the highest allocation level and the second subplot shows

the evolution of the allocated rates at the CIDs (rates are ordered from left to right according

to the CIDs in Figure 5.7). The same results with a two-level dual decomposition approach are

plotted in Figure 5.9. Dual or primal decompositions require a user-defined adaptation step and

in this case we choose a diminishing step size of the form α(t) = α0√
t

with α0 = 0.5. Note that
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Figure 5.8: Evolution of rates and dual variable μ with the coupled-decomposition method.
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Figure 5.10: Evolution of rates using a MVC decomposition approach.

the coupled-decomposition method does not verify this undesired feature. In both cases, at each

iteration of the highest level, it is required to attain the solution at each CID at the lowest

scheduling level, so that convergence properties should be more stringent as more scheduling

levels are considered. In the light of results, it is clear that the coupled-decomposition solution

provides orders of magnitude of advantage in terms of iterations of the algorithm.

For the sake of completeness, we compare the previous results with the MVC decomposition

method, which is described in [Hol06] and reviewed in Section 3.2.3. It is not distributed but uses

also the idea of combining primal and dual decompositions of the problem in a single approach.

Results are plotted in Figure 5.10 and again the coupled-decomposition method converges to

the optimal solution much faster. Therefore, it is a good candidate to cope with the uplink

scheduling in WiMAX, either in PMP networks or in tree-deployed backhaul applications.

5.5 Summary

In this chapter we have applied the coupled-decomposition method to the design of the schedul-

ing in the uplink of WiMAX networks. The network topology considered is the basic Point to

Multipoint in WiMAX and can be extended to a tree-deployed network that has its application,

for example, in backhaul deployments of the system. The problem is formulated as a NUM prob-

lem and thanks to the proposed decomposition techniques, the optimal solution is computed in a
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distributed manner, as enforced by the WiMAX standard: each BS schedules its own CIDs with

the granted resources. In general, the whole network optimization is broken into several PMP

scheduling levels in a top-bottom design, where each terminal interchanges resource allocation

and prices with the node above. The goal is to reach a consensus on the global price, which

may differ from one subnetwork to another depending on the constraints of the problem. Those

constraints include the rate limitations imposed by the specific physical layer configuration,

the accomplishment of all requests in the subnetwork and the non-attainment of the minimum

guaranteed resources.

We have shown that the NUM framework is suitable in the WiMAX scenario since an ade-

quate selection of utility functions allows to attain fair solutions or to sustain QoS definitions

(from the higher layers). Finally, simulation results show that the coupled-decomposition algo-

rithm converges much faster than other approaches in the literature, which is specially relevant

as the number of scheduling levels grows.
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Chapter 6

Conclusions and Future Work

This Ph.D. dissertation has explored Dynamic Bandwidth Allocation (DBA) solutions applied to

the multiple access techniques of multimedia and QoS-enabled systems. Mathematically speak-

ing, all the work has been based in the Network Utility Maximization (NUM) framework and

in the convex decomposition techniques that make a distributed solution be possible. Since the

DBA philosophy may involve procedures and protocols in several layers of the OSI protocol

stack, it is mandatory to define adequate cross-layer interactions in order to optimize a common

system performance metric. Once again, decomposition techniques provide the mathematical

framework needed to define such interactions (message passing) and to attain the optimal so-

lution. Multiple access strategies formulated as NUM problems have been set up throughout

this work with a common fairness perspective and balancing resources as a function of the de-

sired QoS. In the following, we draw the conclusions of this thesis and some open issues to be

addressed as future work.

6.1 Conclusions

In Chapter 2 we have introduced some of the key topics that have been used throughout this

dissertation. Specifically, we have revisited the concepts of Network Utility Maximization and

the various mathematical representations of fairness. Furthermore, cross-layer philosophy as well

as the importance of decomposition architectures in relation with NUM for the development of

future network protocols have been reviewed. Finally, we have made a survey of state-of-the-art

DBA solutions in the DVB-RCS and WiMAX standards.

Chapter 3 has first revisited some basics in convex optimization theory. Thereafter, we have

reviewed the most popular decomposition techniques in the network community, namely: primal

and dual decompositions. In the NUM context, dual decomposition is usually the preferred

strategy because it involves less signalling. Notwithstanding, primal and dual decompositions

141
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are not the only possibilities that one can consider when trying to decompose an optimization

problem. Recently, some works have proposed the use of the Mean Value Cross decomposition

method and thus, we have also reviewed this alternative solution. The idea is to combine both

primal and dual representations of a convex optimization problem in a single algorithm. In MVC

decomposition, the problem is conceptually split into a primal and a dual subproblem whereas

in primal/dual decomposition, there may be an arbitrary number of subproblems and a master

problem that coordinates them. After that, we have developed a novel decomposition technique,

which we call coupled-decomposition method and which is the major theoretical contribution

of this dissertation. This new method combines ideas from both primal/dual decompositions

and the MVC decomposition method. It proposes a novel manner to intertwine primal and dual

subproblems using novel blocks in the decomposition, which are the primal projection and the

dual projection. In some sense, the MVC decomposition method is improved and generalized to

support an arbitrary number of subproblems. As a result, we achieve big advantage in terms

of computational time and thus, algorithm efficiency. Our solution reaches the optimal solution

with a reduced number of iterations and furthermore, it is not necessary to tune any user-defined

parameter, as it happens with the primal/dual decompositions.

In Chapter 4 we have applied the results in Chapter 3 in order to solve the problem of DBA

in the Demand Assignment Multiple Access mechanism of the DVB-RCS standard. Although

given that the satellite sub-network is point to multipoint and that the optimization process

is conducted at a central node in the network, we show that using the coupled-decomposition

method we decrease the time of computation of the number of time-slots per terminal by a factor

of two with respect to the classical approach. Since the amount of time available to obtain each

allocation is limited, the efficiency of the algorithm limits the number of users in the system.

Therefore, our technique doubles the number of potential users. Furthermore, we have shown

that thanks to our choice of utility functions in the NUM framework, we attain a fair resource

distribution that can also prioritize the final allocation towards the most stringent traffic flows

(in terms of QoS requirements). The required information, available at the upper layers of the

system, needs to be communicated to the MAC layer, that runs the allocation algorithm, and

thus, our approach is cross-layer. That interaction is possible in a transparent satellite DVB-

RCS network by means of reutilizing signalling fields that are planned for non-transparent

networks. Finally, we have also contributed with a proposal to structure the resources in the

Multi-Frequency-TDMA frame of the system. Since the requests of users can be potentially

multiplexed within the frame having a combinatorial number of options (as specified in the

standard) and this is not practical from an implementation perspective (it is a problem that is

non-solvable in polynomial time), we optimize the frame structure as a function of the coding

rate that users employ in the transmission. Note that DVB-RCS employs adaptive coding to

adapt to the variations on the quality of the channel. Taking into account the transmission

rate of each terminal, which is cross-layer information that flows from PHY to MAC layers, we
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achieve a frame utilization that is close to the optimal one.

Finally, in chapter 5 we consider the DBA design of the DAMA mechanism that has been

envisaged for the uplink of WiMAX. The standard defines a basic point to multipoint network

topology and also a mesh mode. In mesh mode, each Subscriber Station can connect directly

to the Base Station or through other terminals, the Mesh Base Stations. In this chapter, we

concentrate on DBA at the MAC layer, thus providing the mechanism to achieve an efficient

balance of traffic flows. We consider a tree-deployed network that can be used, for example,

when WiMAX implements the backhaul transport network. Note that a particular case of that

topology is the point to multipoint, as in the DVB-RCS case. The goal is to fairly allocate

bandwidth among all the traffic flows accessing the network. For that purpose, we use the NUM

framework developed in Chapter 4 and extend it to the new topology. Furthermore, we want

to achieve a good balance between signalling and computation time while we maintain the

philosophy defined in the standard document for centralized scheduling. Essentially, terminals

must request resources in an aggregate basis (including the requests of all the nodes below)

and allocate sum-grants accordingly. Under those circumstances, we show that the coupled-

decomposition strategy suits perfectly the requirements and that it attains the optimal solution

with a significant reduction of iterations with respect to other strategies, which also implies

reducing the amount of signalling in the network. In summary, global optimal flow control is

efficiently achieved without spreading requests and grants throughout the whole access network,

as described in the standard document. Instead, signalling is confined within each of the point

to multipoint sub-pieces in the tree.

This Ph.D. thesis has explored the universe of decomposition possibilities in convex program-

ming and it has contributed with a novel decomposition architecture. Furthermore, two examples

have demonstrated the benefits of the new approach in two practical cases. Before ending the

conclusions of the work, let us emphasize the importance of decomposition techniques as a guide

on how to or how not to divide (vertically within a network element and horizontally among

several elements) future networks and protocols in layers. Fortunately, there is still much work

to be done and we identify some of those open issues in the next section.

6.2 Future Work

In the following we detail some of the questions that should be addressed in future extensions

of this dissertation. In Chapter 3 some of the possibilities are:

• To formally prove the convergence of the coupled-decomposition method for the case of an

arbitrary number of constraints and, if possible, to refine the method accordingly. Special

attention must be given to the definition and computation of the dual projection.
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• To exploit the special structure of the constraint matrix (that has either one or zero values)

in order to compute primal and dual projections more efficiently.

• To characterize, if possible, the speed of convergence of the algorithm as a function of the

problem size.

• Finally, to explore the applicability of the coupled-decomposition method to more general

problem formulations. In particular, it would be interesting to explore how the method (or

an extended version of it) could be implemented in non-structured or ad-hoc networks.

In Chapter 4 we consider the following extensions:

• To investigate simple strategies that allow to tune the priority values in the utility functions

and thus achieving the desired degree of QoS at each connection.

• To test the proposed algorithm in more realistic scenarios. For example, a nice job would

be to include the proposed algorithm in a DVB-RCS system simulator with more realistic

traffic and request patterns.

• To focus the joint design of the request/allocation process. In other words, to integrate the

request process with the allocation algorithm with the objective of attaining an efficient

bandwidth utilization and sustaining the QoS constraints.

• To study the impact of mobility and channel variations to the proposed schemes and to

modify them accordingly, maybe reformulating the NUM problem in order to be able to

manage statistical information.

Last but not least, the research lines that continue the work in Chapter 5 are:

• To explore how useful can be other network topologies in the WiMAX context and to

provide the most adequate decomposition strategies therein.

• And finally, since WiMAX has considered adaptive physical layers that allow to adapt the

rate capacity of the links between nodes, there is a huge work in developing algorithms and

protocols that jointly tune the physical layer parameters and allocate the service flows.

Within those PHY layer parameters, one can consider power control, adaptive coding and

modulation or subcarrier allocation among others.
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