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Abstract 

Automatic audio content analysis is a general research area in which algorithms are developed to 

allow computer systems to understand the content of digital audio signals for further exploitation. 

Automatic music structural analysis is a specific subset of audio content analysis with its main task to 

discover the structure of music by analyzing audio signals to facilitate better handling of the current 

explosively expanding amounts of audio data available in digital collections.  

 

In this dissertation, we focus our investigation on four areas that are part of audio-based music 

structural analysis. First, we propose a unique framework and method for temporal audio 

segmentation at the semantic level. The system aims to detect structural changes in music to provide a 

way of separating the different “sections” of a piece according to their structural titles (i.e. intro, verse, 

chorus, bridge). We present a two-phase music segmentation system together with a combined set of 

low-level audio descriptors to be extracted from music audio signals. Two different databases are used 

for the evaluation of our approach on a mainstream popular music collection. The experiment results 

demonstrate that our algorithm achieves 72% accuracy and 79% reliability in a practical application 

for identifying structural boundaries in music audio signals. 

 

Secondly, we present our framework and approach for music structural analysis. The system aims to 

discover and generate unified high-level structural descriptions directly from the music signals. We 

compare the applicability of tonal-related features generated using two different methods (the Discrete 

Fourier Transform and the Constant-Q Transform) to reveal repeated patterns in music for music 

structural analysis. Three different audio datasets, with more than 100 popular songs in various 

languages from different regions of the world, are used to evaluate and compare the performance of 

our framework with the existing system. Our approach achieves overall precision and recall rates of 

79% and 85% respectively for correctly detecting significant structural boundaries in the music 

signals from three datasets.  

 



 v

Thirdly, we identify significant representative audio excerpts from music signals based on music 

structural descriptions. The system extracts a short abstract that serves as a thumbnail of the music and 

generates a retrieval cue from the original audio files. To obtain valid subjective evaluation based on 

human perception, we conducted an online listening test using a database of 18 music tracks 

comprising popular songs from various artists. The results indicate strong dependency between 

subjects’ musical backgrounds and their preference for specific approaches in extracting good music 

summaries. For song title identification purposes, both evaluated objective and subjective results are 

consistent.  

 

Fourthly, we investigate the applicability of structural descriptions in identifying song versions in 

music collections. We use tonal features of the short excerpts, extracted from the audio signals based 

on our prior knowledge of the music structural descriptions, to estimate the similarity between two 

pieces.  Finally, we compare song version identification performance of our approach with an existing 

method [Gómez06b] on the same audio database. The quantitative evaluation results show that our 

approach achieves a modest improvement in both precision and recall scores compared to previous 

research work. To conclude, we discuss both the advantages and the disadvantages of our proposed 

approach in the song version identification task.  
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Chapter 1 

Introduction 

This dissertation deals with structural description and segmentation of music audio signals. This work 

proposes systems intended to extract structural information from polyphonic audio recordings. We 

analyze different problems that arise when developing computational models that extract this musical 

information from audio, such as the extraction of significance features related to pitch-chroma for 

repetition identification and the selection of distance measure according to the used audio features. 

The goal of this chapter is to present the context in which this thesis has been developed, including the 

motivation for this work, the research context, some practical aspects related to automatic music 

structural and finally a summary of the work carried out and how it is organized along this document. 

 

1.1. Motivation and Goal  

As we enter a new advanced technology era, the explosion of multimedia content in databases, 

archives and digital libraries has caused some problems in efficient retrieval and management of this 

data content. Under these circumstances, automatic content analysis and processing of multimedia 

data becomes more and more important. In fact, content analysis, particularly content understanding 

and semantic information extraction, have been identified as important steps towards a more efficient 

manipulation and retrieval of multimedia content.  

 

Grammar can be seen as the rules that are used to help a person to learn most written and spoken 

languages and to understand its meaning more quickly and efficiently. Like languages, music also 

uses grammatical rules in its various structural elements (i.e. harmony, rhythm, melody, etc.), even 

though the manner of constructing a music piece may vary widely from composer to composer and 



 
 

 

 
2 

from piece to piece. The importance of musical grammar used in constructing the underlying structure 

of a music piece can be seen through its applications in different domains. In the musicology domain, 

musicologists study musical grammar to analyze a piece of music. According to [Weyde03], music is 

highly structured and the perception and cognition of music rely on inferring structure to the sonic 

flow heard [Weyde03]. In the music perception and cognition domain, computational models 

[Lerdahl83] [Temperley01] have been developed by means of applying modern linguistic or universal 

grammar theories for music analysis to study the way humans perceive, process and mentally 

represent music. Seeing this, music structural analysis, which aims to compute a representation of the 

semantic content of a music signal through discovering the structure of music, is believed to be able to 

provide a powerful way of interacting with audio content (i.e. browsing, summarizing, retrieving and 

identifying) and facilitates better handling of music audio data. 

 

In this research, we aim to provide an efficient methodology towards automatic audio-based 

music structure analysis.  Here, we do not intend to infer the grammatical rules applied to the music 

composition. Instead, we aim to discover the structure of music through identifying the similarities or 

the differences of the overall structural elements, which musical grammars are applied to, within a 

composition. In addition, we attempt to identify “singular” within-song excerpts in popular music. We 

have focused our investigation in four areas that are closely related: 

 

(i) Semantic audio segmentation 

(ii) Music structure analysis and discovery 

(iii) Identification of representative excerpts of music audio 

(iv) Song version identification by means of music structural description 

 

Semantic audio segmentation attempts to detect significant structural changes in music audio 

signals. It aims to provide direct access to different “sections” of a popular music track, such as the 

“intro”, “verse”, “chorus” and so on. Whereas music structure analysis and discovery, which is more 

of a pattern identification problem, aims to disclose and infer musical forms appearing in the acoustic 

signals. The ultimate goal of music structure discovery is the generation of complete and unified high-

level descriptions of music. In contrast, the identification of representative excerpts of music audio 

aims to recognize the significant audio excerpts that represent a whole piece of music. The significant 

excerpts may consist of the most repetitive segments or even the most outstanding or “attention-

grabbing” segments that are usually not repeated but are capable of leaving a strong impression on our 

minds. The goal behind representative excerpts identification is to generate a thumbnail or cue 

abstraction of the music that would give listeners an idea of a piece of music without having to listen 

to the whole piece. This would be very much useful in facilitating time-saving browsing and retrieval 
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of music, since it saves a considerable amount of time and thus speeds up the iterations. Burns 

[Burns87] provides a framework that categorizes the possible types of ‘hooks’ appearing in popular 

records into two main elements (i.e. textual and non-textual). Textual elements mainly consist of 

music structural elements (i.e. rhythmic, melodic, harmonic, etc.) whereas non-textual elements 

comprise of performance elements (i.e. tempo, dynamics, improvisation and accidentals) and 

production elements (i.e. sound effects, signal distortion, channel balance, etc.). Considering direct 

transcription of music structural elements, such as rhythmic and melodic elements, from polyphonic 

audio signals is infeasible with currently available technologies, so we simplify the representative 

excerpts identification task by taking into account the overall structural elements, without looking into 

each element in detail.   

 

Finally, music structural description in song version identification endeavors to address the 

application issue of structural description in the music information retrieval context. The goal is to 

generate useful short excerpts from audio signals, which are based on the prior knowledge of the 

music structural information, to be used in the music retrieval system for finding different versions of 

the same songs.  By using short audio excerpts instead of the whole song, it would allow the music 

retrieval system to search songs from a substantial amount of audio data within a tolerable time span 

and thus facilitate the retrieval task of the system.  

 

It is important to note that in this study we do not deal with all kinds of music. Here, we are only 

interested in the structural analysis of pop music. Thus, other music genres, such as classical, jazz, 

ethnic and so forth, will not be included in our research. Music can be represented in two different 

manners: symbolic representation and acoustic representation. The symbolic representation is based 

on score-like notation of music. Thus, only a limited set of music material (e.g. pitches, note duration, 

note start time, note end time, loudness, etc.) is involved in music representation. Examples of such 

representation include MIDI and Humdrum [Selfridge97, Huron99]. The acoustic representation is 

based on the sound signal itself. Thus, acoustic representations can represent any sound in the natural 

world. Different storage formats and different lossy compression standards have led to different 

formats for acoustic representations of music. They include wav, au, or mp3-files to name a few.  The 

task of automatic music structural analysis can be accomplished using either of these music 

representations. However, considering the prevalent usage of acoustic representation in representing 

popular music and that the task of converting acoustic representations to symbolic representations of 

music is still a currently open issue, we concentrate our study on dealing with acoustic representations.  
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1.2. Multimedia Content Analysis  

With the rapid increase in electronic storage capacity and computing power, the generation and 

dissemination of digital multimedia content experiences a phenomenal growth. In fact, multimedia is 

pervasive in all aspects of communication and information exchange even through internet 

networking. Efficient management and retrieval of multimedia content have become the key issue 

especially for large distributed digital libraries, databases and archives. Traditional search tools are 

built upon the success of text search engines, operating on file names or metadata in text format. 

However these have become useless when meaningful text descriptions are not available [Cheng03]. 

Apparently, large indexing of multimedia content based on human efforts is very time consuming and 

may also lead to incoherent descriptions by different indexers and errors caused by carelessness. This 

causes problems when searching on improper indexed multimedia databases using text descriptions. 

Thus, a truly content-based retrieval system should have the ability to handle these flaws caused by 

text descriptions.  So far, much research has been focusing on finding ways of analysis and processing 

to effectively handle these enormous amounts of multimedia content. In this context, multimedia 

content analysis, which aims to compute semantic descriptions of a multimedia document [Wang00], 

holds a tremendous potential.  

 

The term “media” encompasses all modalities of digital content, such as audio, image, language. 

Video, which is used in entertainment, broadcasting, military intelligence, education, publishing and a 

host of other applications, represents a dynamic form of media. Digital video is a composite of image, 

audio, language and text modalities [Smith04]. So far, content-based analysis of video has been a fast 

emerging interdisciplinary research area. Prior video content-based analysis used physical features, 

such as colour, shape, texture and motion for frame characterization and later on scene recognition 

using similarity between frame attributes to study its content. Current video content-based analysis 

makes use of audio information included in video to facilitate better content descriptions [Zhu03] 

[Liu04]. The exploration of the significance of audio characteristics in semantic video content 

understanding has led audio content to be associated with video scene analysis, such as video 

segmentation, scene content classification and so forth, to facilitate easy browsing [Adam03]. In fact, 

audio content-based analyses are important processes in video characterization that aims to preserve 

and communicate the essential content of the video segments via some visual representation 

[Smith04]. Most characterization techniques use the visual stream for temporal segmentation and the 

audio stream is then analyzed for content classification [Nam97] [Wang00] [Pfeiffer01]. The 

development of MPEG-7 is an ongoing effort by the Moving Picture Experts Group to standardize 

such relevant features or metadata available for efficient characterization and descriptions of 

multimedia content. In this context, MPEG-7 holds a high potential in a variety of application 
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domains: large distributed digital libraries, digital and interactive video, multimedia directory services, 

broadcast media selection and multimedia authoring.  

 

1.3. Music Audio Content Analysis  

With the advance of compression technology and wide bandwidth of network connectivity, the 

existence of music downloading services on the internet blossoms. The availability of these services 

has made it possible for computer users to store many music files that he/she has only once or even 

never listened to. For instance, Napster, which offers over 700,000 songs, 70,000 albums and 50,000 

artists to be downloaded for offline listening, is still adding new music to its database every day with 

new release from all of the four major music labels in the world, such as Sony/BMG, EMI, Warner 

Music Group and Universal Music Group. Apparently, the rapid increase of music collections has 

created difficulties for administrating these audio data. Retrieving a song without knowing its title 

from one of these huge databases would definitely be a difficult task. From this, we can see that the 

traditional way of music indexing and retrieval is no longer able to handle these huge databases. Thus, 

content-based analysis is believed to be suitable to facilitate efficient handling of these huge amounts 

of digital audio data. Similar to video content analysis, current music content analysis works focuses 

on generating semantic descriptions of the music that is contained in an audio file.  

 

1.4. Music Structural Analysis  

Music structure is a term that denotes the sounds organization of a composition by means of melody, 

harmony, rhythm and timbre. Repetitions, transformations and evolutions of music structure 

contribute to the specific identity of music itself. Therefore, laying out the structural plan (in mind or 

on a piece of paper) has been a prerequisite for most music composers before starting to compose their 

music. The uniqueness of music structure can be seen through the use of different musical forms in 

music compositions. For instance, western classical sonata music composers used the structural form 

known as sonata form, which normally consist of a two-part tonal structure, articulated in three main 

sections (i.e. exposition, development and recapitulation), to shape the music of a sonata. This is very 

different from the present popular music, which are much shorter in length and use much simpler 

structural forms. Thus, it is believe that the description of music structure, which subsume temporal, 

harmonic, rhythmic, melodic, polyphonic, motivic and textual information, is an important aspect in 

generating semantic descriptions from acoustic music signals. Comprehending such content 

descriptions may improve efficiency and effectiveness in handling huge music audio databases. 

Moreover, such structural description can also provide a better quality access and powerful ways of 

interacting with audio content, such as better quality audio browsing, audio summarizing, audio 



 
 

 

 
6 

retrieving, audio fingerprinting, etc., which would be very useful and applicable for music 

commercials and movie industries.  

 

Recently music structural analysis has further extended its applications in the domain related to 

human cognition. Limitation of human memory makes us incapable to recall every single detail of all 

incidents that happen in our daily life. As human beings, we may only recall certain events, which 

have created a “strong” impression in our mind. The same happens with music, we do not recall the 

music that we hear in its entirety but through a small number of distinctive excerpts that have left an 

impression on our mind. It is usually the case that we only need to listen to one of those distinctive 

excerpts in order to recall the title for the musical piece or, at least, to tell if we have heard the song 

before. For instance, when a previously heard song is played halfway through on the radio, listeners 

are able to recognize the song without having to go through the whole song from the beginning until 

the end. According to psychology research, it is the retrieval cue in the music that stimulates us to 

recall and retrieve information in our memory [Schellenberg99]. Humans by nature own a remarkable 

object recognition capability. According to [Roediger05], people can often recognize items that they 

cannot recall. One example would be the experience of not being able to answer a question but then 

recognizing an answer as correct when someone else supplies it. In the music context, even musically 

untrained people are able to recognize or at least determine whether they have heard a given song 

before without much difficulty. Seeing the competency of structural analysis in distinguishing various 

structural elements of music directly from raw audio signals, much research related to music content 

description is currently focused on identifying representative musical excerpts of audio signals based 

on the derived structural descriptions.  

 

In the following section, we review the potential of music structural analysis for a variety of 

application domains.  

 

1.5. Applications  

1. One of the primary applications for music structural analysis is the production of structural 

descriptors of music for music content exploitation. For instance, music can be classified 

according to the similarity or difference of its structural descriptions.  

2. Music structural analysis has also some applications for facilitating time-saving browsing of 

audio files. Being able to provide higher semantic information from audio files would offer users 

some clues regarding where the structural changes in the audio occur (i.e. from 

“Intro” →”Verse” →”Chorus”, etc.). This would allow users to grasp the audio content through 

scanning the relevant segments. For example, an audio player with a functionality of allowing 
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users to skip from one section to another section would definitely reduce the browsing time of 

assessing large amounts of retrieved audio [Goto03b].  

3. Repetition in music is one of the crucial elements in extracting a short abstract or generating a 

retrieval cue from the original audio files. Seeing that structural analysis holds a high potential in 

revealing the repeated patterns in music, it has also extended the applications for music 

summarization and thumbnailing.  

4. Coupling music structural analysis functionality into music annotation tools would offer users 

with an initial audio annotation. In the case of manual annotation, annotators could profit from 

this initial annotation information from the system and make further adjustments or expansions of 

it. Without doubt, this would enhance the annotation processes.  

5. The generation of higher-level semantic information of music audio may also provide an 

additional comparing dimension for music recommendation systems in finding music with similar 

characteristics. The systems can tailor users’ preferences based on the simplicity or complexity of 

the music structure in the users’ own collections.  

6. Besides the usefulness in generating an abstract of the original audio files through music 

summarization, music structural analysis would also contribute in offering an interactive 

multimedia presentation that shows “key-frames” of important scenes in the music, allowing 

users to interactively modify the summary.  For instance, users can create mega-tunes comprising 

a remix of all the choruses by their favourite artists.  

7. Finally, automatic music structural analysis may serve as a valuable tool for computer support of 

most types of music, especially those not having scores at all or using non standard types of 

notation. Research work by Nucibella et al. [Nucibella05] shows an example of how computer 

based music analysis facilitates musicological research.  

 

1.6. Scope  

In this work, we examine four tasks of music structural analysis: (i) semantic audio segmentation; (ii) 

music structure analysis and discovery; (iii) identification of representative excerpts of music audio 

signals; and (iv) music structural description in song version identification. Four separate systems 

have been developed to automatically perform each task. All of them accept music audio as input 

signals. The segmentation system outputs a text file in ASCII format, which indicates the detected 

segment boundaries with a temporal resolution of 0.01 sec. The music structural analysis system 

outputs the transcription files in the lab-file format (used by WaveSurfer1, an open-source tool for 

sound visualizing and manipulation, to transcribe sound files). It is noted that one audio input will 

only yield one unity transcriptions file marking the beginning and ending time of the repeated sections 

                                                 
1 http://www.speech.kth.se/wavesurfer/ 
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together with their given labels indicating the (dis) similar repeated sections (ex: A, B, C, etc.) 

appearing in the music signal. Whereas for the representative excerpt identification system, each input 

signal will cause the system to output three extracted 30-second excerpts of the input signal. These 

three excerpts are extracted based on each approach that we are interesting in studying. For the song 

version identification system, two short excerpts are extracted for each audio input. The system 

outputs a text-file, which contains a list of song-IDs from the dataset (excluding the root query song-

ID) for each song query. Song-IDs in the lists are sorted according to the increasing order of the 

minimum costs computed between each song in the database with the root query song. 

 

1.7. Summary of the PhD work  

In this work, we undertake a study analyzing musical structure with the aim of discovering the 

musical forms that appear in the music signals and generating a high-level description from it. With 

the discovered music descriptions, we aim to identify characteristics within song excerpts from the 

perspective of content-based analysis. Repetitions and transformations of music structures contribute 

to the specific identity for each music piece. Thus, we hypothesize that identification of these 

transformations and the generation of a semantic level of music structural description will 

significantly contribute to better handling of audio files. In addition, we also intend to demonstrate the 

applicability potential of high-level structural descriptions in music information retrieval contexts. We 

do not attempt to investigate all kinds of music (i.e. classical, jazz, ethnic, to name a few) but only 

focus on “pop” music. Unlike much previous work in structural analysis [Lerdahl83], we make no 

attempt in tackling this matter based on symbolic notated music data (i.e. MIDI) but instead base our 

work on the actual raw audio. Hence, we rely on the particular characteristics of audio features in 

music content to perform structural analysis of music audio signals.  

 

Our work contributes in a number of areas in music audio retrieval. In the audio segmentation 

task, we present our approach to detect the significant structural changes in audio content. In order to 

extract content descriptions that are significant in describing structural changes in music, we propose a 

combination set of low-level descriptors computed from audio signals. In addition, we also introduce 

the application of image processing filtering techniques for facilitating better segment boundaries 

detection. Finally, we use test database, which consists of popular music from different artists, to 

evaluate the efficiency of our proposal. The quantitative evaluation shows that our proposed approach 

achieves as high as 72% accuracy and 79% reliability in correctly identifying structural boundaries in 

music audio signals.  

 

In music structural analysis and discovery tasks, we further improve previous research work in 

chorus identification [Goto03a] to produce a complete and unified high-level structural description 
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directly from music signals. We propose the use of timbre-based semantic audio segmentation to 

rectify the common boundaries inaccuracies, which appear in music structural descriptions caused by 

dependence on single tonal-related features to discover musical structure from acoustic signals. We 

also tackle the phenomenon of transposition within a piece of music by means of modifying the 

extracted tonal-related features. In addition, we propose the integration of timbre-based semantic 

audio segmentation into our system to rectify the boundary inaccuracies caused by the system’s 

dependency on only tonal-related features for discovering structure in music. We then compare our 

segmentation performance with a previous method described in [Chai03c] to evaluate the efficiency of 

our proposal, and it shows improvement with respect to the overall performance.  

 

In identifying representative audio excerpts of music, we take into consideration the potential of 

other possible approaches in capturing the specific features of the ‘gist’ in music instead of simply 

pursuing the present literature that mainly accentuates that repetitiveness of audio excerpts in the 

identification task. In addition, we conduct an online listening test to achieve some subjective 

evaluation regarding the quality of the extracted segments from various approaches, based on human 

perception. In our subjective evaluation based on human perception, our results show that our 

proposed approach is one of the most useful for song title identification compared to the rest of our 

studied methods for representative excerpts identification (i.e. first-30-segment approach and most-

representative approach). 

 

In song versions identification, we introduce a unique concept of using short representative 

excerpts from music to retrieve different song versions of the same songs. Here, we present our 

approach as to how to extract short excerpts from the audio signals based on structural descriptions of 

music for song versions identification. Finally, we use a song database, which consists of 90 versions 

of 30 different popular songs, to justify the feasibility of our proposed concept. Our quantitative 

results demonstrate an evident improvement in accuracy and time-saving factors for the song version 

identification task.  

 

1.8. Thesis Outline  

The remainder of this work is organized in the following manner. 

 

Chapter 2 reviews related literature related to automatic music structural analysis. We include in 

this chapter a discussion regarding the pros and cons of each approach for discovering the structure of 

music as found in the literature.  
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Chapter 3 introduces our approach for semantic audio segmentation corresponding to the 

structural changes in music. It begins by giving an outline of our proposed method and this is 

followed by its full description. This chapter includes quantitative evaluation of the system’s 

performance based on a test set. All experiments involve the use of polyphonic music from audio 

recordings of popular songs.  

 

Chapter 4 presents our approach for music structural analysis and unified music description 

generation. It starts with giving a brief profile of our approach and is then followed by detailed 

descriptions of our approach. This chapter considers different test sets to assess the segmentation 

performance of our proposed system besides making comparisons with the existing system as well. 

The final section includes some discussion with regards to specific issues not solved by our system.  

 

Chapter 5 attempts to identify representative excerpts in music audio signals. This chapter first 

lays down the framework of our method. It is then followed by a detailed description of our approach. 

We examine its performance based on different assumptions used in identifying representative audio 

excerpts through an online listening test. The test data includes popular songs from various artists. The 

final section of this chapter includes a discussion of the obtained subjective evaluation results based 

on human perception.  

 

Chapter 6 investigates the applicability of structural descriptions for song version identification 

in music collections. This chapter begins with a brief introduction to different approaches. It is then 

followed by a full description of how the audio excerpts are extracted based on music structural 

descriptions for each approach. This chapter includes quantitative evaluations based on a test set 

consisting 90 versions from 30 different songs of popular music. The result observation section 

comprises quantitative comparisons among different approaches, including the one reported in the 

recent research work [Gómez06b]. The final section of this chapter discusses the shortcomings of our 

proposed approach in the song version task.  

 

Finally, Chapter 7 draws conclusions and examines potential directions for future work in this 

area.  
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1.9. Description of Test Databases Used in Each Chapter  

In this thesis, some chapters contain test databases that are used for evaluation purposes. Listed below 

are the used databases corresponding to their related chapters. Please refer to Appendix B for the full 

details of the test database.  

 
Chapter 3  

- 54 songs from The Beatles (1962 – 1965); 

- 27 pop songs from the Magnatune2 database; 

 

Chapter 4 

- 56 songs from The Beatles 70s’ albums referred to as BeatlesMusic; 

- 26 songs by The Beatles from the years 1962-1966 referred to as ChaiMusic; 

- 23 popular songs in various languages referred to as WordPop; 

 

Chapter 5 

- 18 popular songs from The Beatles’ and other artists or groups; 

 

Chapter 6 

- 90 versions from 30 different songs (root query) of popular music as described in 

[Gómez06b]; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
2 Magnatune official web page: http://magnatune.com/ 
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Chapter 2 

Literature Review 

In this chapter, we present a review of the literature related to the topic of this thesis. It starts with a 

general overview of music structural analysis. Following this, we review the research that is directly 

related to music structural analysis. Current research works in music structural analysis can be 

classified into two main approaches: the audio-signal approach versus the symbolic representation 

approach. The audio-signal approach deals with the actual raw audio file whereas the symbolic 

representation approach deals with music symbolic notation data (e.g. MIDI). Here, we focus our 

literature review on the audio-signal approach rather than on the symbolic representation. Feature 

extraction is an indispensable process in music content analysis. Thus, we devote some space to 

present the different extracted features considered in the literature. Audio segmentation facilitates 

division of audio signals for further analysis. In fact, it seems to be an indispensable procedure in 

certain content-based analysis. Here, we review work relevant to segmenting audio signals for further 

structural analysis. Music structural discovery aims to the identification of representative excerpts of 

music is a key issue in this thesis.  Thus, in the last section of the literature review, we focus on 

relevant approaches for the identification task and the pros and cons of each proposed approach. 

 

2.1. Introduction  

A piece of music can be divided into sections and segments at a number of different levels. Lerdahl 

and Jackendoff [Lerdahl83] proposed the term grouping to describe the general process of 

segmentation at all levels (and the multi-leveled structure that results). Grouping of musical elements 

plays an important role in the recognition of repeated patterns or “motives” in music. According to 

psychological experiments [Dowling73] [Deutsch80] [Boltz86], if a sequence of notes is being 
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perceived as a group, it should be more easily identified and recognized than other sequences. Much 

works in musical grouping have adopted the Gestalt principles of perception organization. These 

adopted Gestalt principles are such as similarity, proximity and continuity. Since 1970s, much 

computational models have been proposed focusing on deriving various aspects of structure by means 

of music analysis. These various aspects of structure are such as metrical structure [Lerdahl83] 

[Povet85] [Allen90] [Lee91] [Rosenthal92] [Large94] [Temperley99], melodic phrase structure 

[Tenney80] [Lerdahl83] [Baker89a] [Baker89b], contrapuntal structure [Huron89] [Marsden92] 

[Gjerdingen94] [McCabe97], harmonic structure [Winograd68] [Bharucha87] [Bharucha91] 

[Mazwell92], key structure [Longuet-Higgins71] [Holtzmann77] [Leman95] [Krumhansl90] [Vos96]. 

Melisma Music Analyzer3 presented by Temperley is the latest preference-rules-based computation 

system for music analysis that covers several aspects of music structure (i.e. metrical structure, 

harmonic structure, phrase structure, contrapuntal structure—the grouping of notes into melodic 

line—and key structure). 

 

In the domain of human cognitive capacity, Lerdahl and Jackendoff [Lerdahl83] evolved a 

theory called A Generative Theory of Tonal Music. Their central purpose was to elucidate the 

organization that the listener imposes mentally on the physical signals of tonal music. In Lerdahl and 

Jackendoff’s work, they presented a framework comprised a set of grammar rules operating on four 

kinds of hierarchical structure that models the listener’s connection between the presented music 

surface of a piece and the structure he attributes to that piece. The four components are grouping 

structure (related to segmentation into motives, phrases and sections), metrical structure (defining 

hierarchy between strong and weak beats), time-span reduction (establishing the relative importance 

of events in the rhythmic units of a piece) and prolongation reduction (hierarchy in terms of perceived 

patterns of tension and relaxation).  

 

So far, the above mentioned computational models for music structural analysis are mostly 

derived from analyzing western classical compositions. In addition, the analyses were mostly based on 

the symbolic representation of the music (i.e. MIDI). This is understandable because notated music, 

such as western classical repertoire, is normally written by a composer by means of symbolic 

representation in the form of a score and is then performed by a performer. Thus, the score is 

generally taken to represent the piece. Besides, the symbolic representation of the music often 

provides explicit information about infrastructural representation (e.g. meter, contrapuntal structure, 

phrase structure, etc.), thus it has become the main object of attention and analysis. However for other 

type of music, such as rock and pop, there is generally no score available [Temperley01]. Thus the 

representation of the music itself is likely a particular performance or music recordings. For this 

                                                 
3 http://www.link.cs.cmu.edu/music-analysis/ 
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reason, the analysis of music structure for these kinds of music will have to be derived directly from 

the audio signal. So far, most research work in audio-based structural analysis has mainly focused on 

popular music. This is because the song structure of popular music very frequently consists of sections 

labeled as intro, verse, chorus or refrain, bridge and outro, which can be identified if one 

comprehends the characteristics of these sections in popular music. In popular song writing: intro 

(outro), as suggested by its name, indicates the introduction (conclusion) to a song. Thus, intro (outro) 

typically appears at the beginning (ending) of a song; verse is a lyrical melodic phrase in which the 

premise of the story of the song is introduced and developed through its lyrics; chorus or refrain is 

normally a repeating phrase that occurs at the end of each verse of a song. Generally its repeated 

phrase delivers the gist of the song; bridge is the transitional section connecting a verse and a chorus. 

Sometimes an instrumental section is added to the song structure, sometimes the bridge takes the form 

of an instrumental section. The instrumental section can be an imitation of a chorus or a verse or a 

totally different tune from any of these sections. Thus, by applying segmentation and pattern 

recognition techniques (e.g. such as self-similarity) to the acoustic music signals, one should be able 

to relate the different content-based repetitions in the physical signals to the song structure.  

  

2.2. Related Work in Automatic Music Structural Analysis 

In the following sections, we explore several research directly related to automatic audio-based music 

structural analysis in detail, with a particular focus on discovering structure descriptions. These related 

automatic structural analysis research works either form the basis for other studies (i.e. music 

summarization) or as the subject of study in itself. We begin with a discussion of audio features that 

are commonly used in music structural analysis literature. It is then followed by the review of audio 

segmentation approaches aiming at a better division of the audio signal for further structural 

processing. Finally, we discuss a variety of identification techniques to discover the structure of music 

for further exploitations. 

 

2.2.1. Audio Features 

In music content analysis, proper selection of audio feature attributes is crucial to obtain an 

appropriate musical content description. For music structural analysis, it is important to extract a kind 

of music representation that is able to reveal the structural information from the audio signal. 

Extracting symbolic score-like representation from music could be a possible way to complete the task 

of music structural analysis [Raphael02] [Klapuri03]. However due to the demanding constraints in 

extracting symbolic score-like representation from polyphonic music, this approach is practically 

infeasible. Instead, extracting low-level representations from the audio signal for musical content 

description is found to be an alternative way for accomplishing this task. The term low-level is usually 
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employed to denote features that are closely related to the audio signal, which are computed in a direct 

or derived way. Lately, low-level audio feature attributes, which describe the musical content of a 

sound signal, have been widely used in research works closely related to music structural analysis, 

such as audio segmentation or boundary detection, audio thumbnailing, chorus identification, music 

summarization and pattern analysis of music. In automatic audio-based music structural analysis 

related works, feature attributes are often computed on a frame-by-frame basis in order to obtain the 

short-term descriptions of the sound signal. The music signal is cut into frames of a fixed time length. 

For each of these frames, a feature vector of low-level descriptors is computed in either the time 

domain or the frequency domain. In accordance with the similarities and differences of the generated 

content descriptions, these feature attributes can be roughly classified into three groups: timbre-related 

features, melody-related features, and dynamics-related features.  Figure 2.1 illustrates the overall 

taxonomy of features. 

 

 
Figure 2.1. Illustration of categories of feature attributes 

 

2.2.1.1    Timbre-related features 

Timbre content descriptions are of general importance in describing audio. Most of the existing 

research work uses timbre content descriptions in order to differentiate music and speech besides 

music classification applications. Hence, many timbre-related features have been proposed in this 

research area [Tzanetakis99]. In fact, timbre-related features are the most widely used among the three 

groups mentioned above. So far, the most employed timbre-related features are:  

 

Zero Crossings: A measure of the number of time-domain zero crossings within a signal. It gives an 

approximate measure of the signal’s noisiness.  

Timbre-related 
Zero Crossing 

Spectral Centroid 
Spectral Rolloff 

Spectral Flux 
MFCC 

Constant-Q 
Spectra 

Melody-related 
Pitch-height 
Pitch-chroma 

Dynamics-related
Spectral Power 
RMS energy 
Amplitude 
Envelope 

Features attributes 
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where sign function is 1 for positive x[n] and –1 for negative x[n] while t denotes the frame 

number.  

 

Spectral Centroid: A representation of the balancing point of the spectral power distribution within 

a frame that is computed as follows:  
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where k is a correspond index to a frequency bin, within the overall estimated spectrum, and X[k] 

is the amplitude of the corresponding frequency bin. 

 

Spectral Rolloff: A measure of the frequency, below which 95 percentile of the spectral energy are 

accumulated. It is a measure of the “skewness” of the spectral shape – the value is higher for right-

skewed distributions 
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Spectral Flux (also known as Delta Spectrum Magnitude): A measure of spectral difference, thus it 

characterizes the shape changes of the spectrum. It is a 2-norm of the frame-to-frame spectral 

magnitude difference vector 

 

|| [ ] [ 1] ||SF X k X k= − −                      (2.4) 

 
where X[k] is the complete spectral magnitude of a frame. 
 

MFCC, also called Mel-Frequency Cepstral Coefficients [Rabiner93]: A compact representation of an 

audio spectrum that takes into account the non-linear human perception of pitch, as described by the 

Mel scale. It is the most widely used feature in speech recognition. Currently, much research has 

focused in using MFCC to automatically discover the structure of music. [Aucouturier02] [Xu02] 

[Steelant02] [Logan00] [Peeters02] [Foote99] [Cooper02] [Kim06]. MFCC is particularly useful for 

analyzing complex music due to its low-dimensional, uncorrelated smooth version of the log spectrum, 

the ability to discriminate between different spectral contents [Steelant02] and to somehow discard 
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differences due to pitch evolution. MFCC calculation can be done through the following steps 

[Rabiner93]: 

 

1. Convert signal into short frames 

2. Compute discrete Fourier transform of each frame 

3. Convert spectrum to the log scale 

4. Mel scale and smooth the log scale spectrum 

5. Calculate the discrete cosine transform (to reduce the spectrum to n4 coefficients) 

 

Constant-Q Spectra [Brown91]: A log frequency transformed of a fast Fourier transform. According 

to Brown, a constant Q transform can be calculated directed by evaluating:  
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where  [ ]cq
cqX k  is the cqk  component of the constant Q transform. Here x[n] is a sampled function 

of time, and, for each value of cqk , [ , ]cqw n k  is a window function of length [ ]cqN k . The 

exponential has the effect of a filter for center frequency  
cqkw . In practice, a constant Q transform can 

be implemented as a bank of Fourier filters of variable window width, where the centre frequencies of 

the constant Q filter banks are geometrically spaced. For musical applications, the calculation is often 

based on the frequencies of the equal tempered scaled with  
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k min

kw w=                 (2.6) 

 

for semitone spacing where minw is the lowest center frequency of the used Fourier filters used.  

 

2.2.1.2    Harmonic and Melody-related features 

Melody, together with harmony, rhythm, timbre and spatial location makes up the main dimension for 

sound descriptions [Gómez03]. With the implicit information that it carries, melody plays an 

important role in music perception and music understanding. According to Selfridge-Field 

[Selfridge98], it is the melody that makes music memorable and enables us to distinguish one work 

from another. Current research in music content processing such as music transcription, melody 

similarity, melodic search, melodic classification and query-by-humming, works closely with melodic 

                                                 
4 The usual number of coefficients used for MFCC are less than 15. 
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information. So far, there are several ways of defining and describing a melody. Solomon [Solomon97] 

and Goto [Goto99, Goto00] define melody as a pitch sequence. While some others define music as a 

set of attributes that characterize the melodic properties of sound, a set of musical sounds in a pleasant 

order and arrangement etc. [Gómez03]. Among those viewpoints, melody as a pitch sequence would 

be the most appropriate representation for finding repetitions of music with the aim to discover music 

structure.  

 

In pitch perception, humans recognize pitch as having two dimensions, which refer to pitch 

height and pitch chroma, respectively. Pitch chroma embodies the perceptual phenomenon of octave 

equivalence, by which two sounds separated by an octave (and thus relatively distant in term of pitch 

height) are nonetheless perceived as being somehow equivalent. Therefore, pitch chroma provides a 

basis for presenting acoustic patterns (melodies) that do not depend on the particular sound source. In 

contrast, pitch height varies directly with frequency over the range of audible frequencies. Hence, it 

provides a basis for segregation of notes into streams from separated sound sources. Within the music 

context, music psychologists represent pitch using a bi-dimensional model called the pitch helix 

model (as shown in Figure 2.2). In the helix model, the musical scale is wrapped around so that each 

circuit (marked red) is an octave [Warren03]. The pitch height representation moves vertically in 

octaves, and the pitch chroma representation determines the rotation position within the helix. The 

function of these two pitch dimensions is illustrated when the same melody is sung by a male or a 

female voice [Warren03]. In music notation, “A4” is used to give information regarding the pitch of a 

musical note in both dimensions (i.e. pitch height and pitch chroma). Alphabet, “A”, refers to pitch 

chroma while the number, “4”, denotes the pitch height.  

 
Figure 2.2. The pitch helix model. 
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In the music structural analysis and processing domain, melody-related features have been 

widely used in identifying repetitive patterns or representative excerpts of music. According to the 

dimension they focus on, we can consider two approaches in extracting melody-related features. The 

first one focuses on the pitch-height dimension. This approach uses features that carry pitch-height 

information to find repetitive patterns of music. Dannenberg and Hu, [Dannenberg02b] use this 

approach to estimate pitch and identify the note boundaries of monophonic music. The authors 

compute the correlation between the signal and a time-shifted version of it. Finally, the fundamental 

pitch is selected based on several heuristics rules. This approach is only applicable for single pitch 

monophonic music. However, for real-world polyphonic music with a complex mixture of pitches, 

extracting the predominant one is highly complicated and practically infeasible with current methods. 

Sound source separation, which aims to separate a sound mixture, could be a possible way to facilitate 

in extracting predominant pitch of music. However due to the present limitations of sound source 

separation technologies in performing precision separation of signals, extracted pitch height 

information from polyphonic music is still very unreliable.  

 

The second approach focuses on the pitch-chroma dimension and thus uses features that carry 

pitch-chroma information. Pitch-chroma holds the information related to the harmony or the melodic 

content of music and it captures the overall pitch class distribution of music [Goto03a], the description 

it yields can be similar even if accompaniment or melody lines are changed to some degree. With this 

unique characteristic of pitch-chroma, there is no constraint of using this approach to analyze 

polyphonic music. In fact, the application of harmonic or melodic content-related information in 

music content processing is not a novel strategy. The pitch histogram proposed by Tzanetakis 

[Tzanetakis02] for measuring similarity between songs would be an example. Tzanetakis’s pitch 

histogram is composed of a set of global statistical features related to the harmonic content. This set 

presents the most common pitch class used in the piece, the occurrence frequency of the main pitch 

class, and the octave range of the pitches of a song.  In their research on the identification of 

representative musical excerpts research, several authors [Goto03a] [Dannenberg02a] [Birmingham01] 

[Bartsch01] [Bartsch05] have employed chroma-based vectors to find the repetitive patterns of music. 

A chroma-based vector is basically an abstraction of the time varying spectrum of audio. It is 

computed mainly through restructuring a sound frequency spectrum into a chroma spectrum. Octave 

information is discarded through folding frequency components in order to fall into twelve distinct 

chroma bins which correspond to the twelve pitch classes [Dannenberg02a]. Bartsch and Wakefield 

[Bartsch01, Bartsch05] perform autocorrelation to the chroma-based vector in order to identify the 

song extract, which holds the most repeated “harmonic structure”. With a different formulation, 

Goto’s [Goto03a] RefraiD method employs a 12-element chroma-based vector similar to the one that 
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is used in [Bartsch01], in order to analyze relationships between various repeated sections, and finally 

detecting all the chorus parts in a song and estimating their boundaries. 

 

2.2.1.3    Dynamics-related features 

In human auditory perception, loudness contrast captures listeners’ ears. The musical term “dynamics”, 

which refers to relative loudness or quietness measurement of the sound, holds a significant role in 

expressive musical structure formation. In music composition and music performance, artists use 

dynamics to emphasize and shape the structure of music. Current research studies in music expressive 

performance analyze dynamics behaviour to evaluate the expressiveness of the performance 

[Friberg04]. A real-time expressive music performance visualizing system, based on tempo and 

loudness spaces, has been built to help studying performance expressiveness. It depicts the dynamics 

and tempo behaviour of each performance done by different interpreters on the same piece of music 

[Widmer03]. Considering the significance of music dynamics in marking the occurrence of new music 

events, dynamics-related features have become unique and useful in music segmentation. When 

finding repetitions in music, proper identification of dynamics-based repetition boundaries is highly 

significant. So far, three dynamics-related features frequently appear in the existing work: Spectral 

Power, RMS and amplitude envelope.  

 

Spectral power: For a music signal s(n),  each frame is weighted with a window. [Xu02]  weights 

each frame signal with a Hanning window that is defined as h(n): 
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                         (2.7) 

 

where  N  is the number of the samples of each frame.  
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RMS energy [Tzanetakis99, Steelant02]: A measure of physical loudness of the sound frame 
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where N is the number of samples in each frame. 
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Amplitude Envelope:  A description of the signal’s energy change in the time domain. [Xu02] 

computes the signal envelope with a frame-by-frame root mean square (RMS) and a 3rd order 

Butterworth lowpass filter [Ellis94] with empirically determined cutoff frequencies. 

 

2.2.2. Feature Extraction Approach 

So far, there exist two approaches in using the above mentioned low-level feature attributes to obtain 

useful descriptions for music structure discovery: the static one and the dynamic one. The static 

approach computes low-level descriptions directly from the sound signal to represent the signal 

around a given time. Hence, in order to detect repetitive patterns in music, it is essential to find feature 

sequences with identical evolution. The dynamic approach, proposed by Peeters et al. [Peeters02], 

uses features that model directly the temporal evolution of the spectral shape over a fixed time 

duration. The difference between the two approaches is that the earlier one uses features that do not 

model any temporal evolution and only provide instantaneous representations around a given time 

window (i.e. only the successive sequence of the features models the temporal evolution of the 

descriptions). 

 

Following the static approach, Steelant et al. [Steelant02] propose the use of statistical 

information of low-level features, instead of the features themselves, to find the repetitive patterns of 

music. These statistics are mainly the average and the variance of the instantaneous features over the 

whole signal. According to Steelant et al., global representations of the low-level features, which 

consist of their statistical information, can overcome the problem of very similar passages having 

different extracted coefficients, due to the large frame-step during feature extraction process. In their 

research to find the repetitive patterns of music, they use feature sets, which contain mean and 

standard deviation of MFCCs. Their algorithm, tested on a database of only 10 songs, showed a slight 

improvement when using the statistical information of the low-level features instead of using the 

frame by frame features.  

 

On the dynamic approach side, Peeters et al. [Peeters02] compute dynamic-features by passing 

the audio signal, ( )x t through a bank of N Mel filters. Short-Time Fourier Transform (STFT) with 

window size L is then used to analyze the temporal evolution of each output signal ( )nx t of the 

n N∈ filters. The transformed output, , ( )n tX w , models directly the temporal evolution of the 

spectral shape over a fixed time duration. According to Peeters et al., the window size that is used for 

STFT analysis determines the kind of music structure (i.e. short-term or long-term) that can be 

derived from the signal analysis. Even though this approach may greatly reduce the amount of used 

data, the advantage is only noticeable when one deals with a high dimensionality of feature attributes. 
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2.2.3. Audio Segmentation 

Music structural discovery from audio signals was first inspired by the works on signal segmentation 

first developed in speech applications, such as “SpeechSkimmer” [Arons93], and were later adapted 

for musical applications. Thus, signal segmentation is closely associated with music structural 

discovery. In fact, signal segmentation, which facilitates partitioning audio streams into short regions 

for further analysis, is an indispensable process in music structure discovery.  Finding appropriate 

boundary truncations is crucial for certain content-based applications, such as audio summarization 

and audio annotation.  In this section, we will discuss different methods implemented for segmenting 

audio signals for later structural identification. In addition, we have grouped the methods according to 

their similarities and differences regarding implementation (i.e. model-free segmentation versus 

model-based segmentation). 

 

In discovering structure of music, we can distinguish between two segmentation processes: 

short-term segmentation and long-term segmentation. Short-term segmentation (sometimes also called 

frame segmentation) is in fact a crucial primary step in content analysis description. This 

segmentation process normally partitions audio streams into fixed-length short regions for further 

analysis. These short regions may sometimes partially overlap. However due to arbitrary fixed 

resolution segmentation of audio streams may cause unnatural partitions, current development in this 

area has been the exploitation of high-level rhythmic descriptions, such as tempo tracking, beat or 

onset detection, to find natural segmentation points to improve the overall short-term segmentation 

performance [Maddage04] [Shao05] [Levy06a][Levy06b].  

 

Maddage et al. [Maddage06] present an inter-beat segmentation known as beat space 

segmentation (BSS) to segment music signal into smallest note length with the use of onset detection. 

The authors first decompose music signal into 8 sub-bands corresponding to octaves of music scale. 

Using the similar method in [Duxburg02], the authors analyze both the frequency and energy 

transients of the sub-bands signals. An energy-based detector and frequency based distance measure 

are used on the upper (within the frequency range of 1025 to 22050 Hz) and lower (within the 

frequency range of 0 to 1024 Hz) sub-bands respectively. To detect both hard and soft onsets, the 

authors take the weighted summation of the detected onsets in each sub-band. By taking the 

autocorrelation over the detected onsets, the initial inter-beat length is estimated. Following this, 

dynamic programming approach [Navarro01] is applied to check for equally spaced beats patterns 

among the detected onsets and compute both the smallest note length and inter-beat length. Maddage 

et al. then segment music signal into smallest note length frames for later music structural analysis 

processes. It is important to note that beat space segmentation (BSS) is based on the assumptions that 

the time signature of an input song is 4/4 and the tempo of the song is constrained to between 30–240 
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quarter notes per minute. In addition, the tempo of the music is bounded to be roughly constant 

throughout the songs. Thus, for music signals which fail to fulfill these assumptions, the above 

mentioned segmentation approach is practically infeasible.  

 

On the other hand, long-term segmentation aims to identify appropriate boundaries for 

partitioning the audio streams into sections. These sections comprise a non-fixed number of 

successive short regions being the output from earlier short-term segmentation processes (as shown in 

Figure 2.3), based on their feature changes. Hence, the partitions we obtain using long-term 

segmentation have a longer duration than those from short-term segmentation. Long-term 

segmentation assumes that the boundaries between two consecutive partitions should consist of abrupt 

changes in their features’ contents. Meanwhile, the feature values of the signal inside each partition 

are supposed to vary little or slowly (i.e. are homogenous).  Since appropriate boundary divisions are 

rather significant for music structure, this segmentation process holds an important role in automatic 

music structural analysis.  

 
Figure 2.3. Illustration of long-term segmentation 

 

Long-term segmentation strategies can be categorized into two groups, according to the 

similarities and differences in their implementations. Hence, we speak of model-free segmentation and 

of model-based segmentation. Model-free segmentation algorithms partition signals without requiring 

any training phase. An example of model-free long-term segmentation method used in automatic 

music structure analysis is similarity measures [Bartsch01] [Steelant02] [Cooper02] [Cooper03] 

[Goto03a] [Lu04] [Bartsch05]. In the case of model-based segmentation, a training phase is necessary 

in order to learn the models for segmenting. The model is built, by using a collection of examples, 

which correspond to the desired output from the segmentation algorithm, as training samples. Hidden 

Markov Models (HMM) [Logan00] [Aucouturier02] are an example of the model-based long-term 

segmentation method used in music structure analysis.  
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2.2.3.1  Model-free Segmentation 

A widely used model-free segmentation technique takes advantage of (dis)similarity measures 

[Foote00] [Bartsch01] [Steelant02] [Cooper02] [Peeters02] [Cooper03] [Goto03a] [Lu04] 

[Bartsch05]. Foote [Foote99] first proposed the use of local self-similarity in spotting musically 

significant changes in music. It is done by measuring the distance between feature vectors using 

Euclidean distance or the cosine angle distance between the parameter vectors. The similarity matrix 

is a two-dimensional representation that contains all the distance measures for all the possibilities of 

frame combinations (as shown in Figure 2.4 - top illustration). As every frame will be maximally 

similar to itself, the similarity matrix will have a maximum value along its diagonal. In addition, if the 

distance measure is symmetric, the similarity matrix will be symmetric as well. With the use of a 

cosine angle distance, similar regions will be close to 1 while dissimilar regions will be closer to –1. 

According to Foote, by correlating a similarity matrix, S, with a checkerboard kernel, which is 

composed of self-similar values on either side of the centre points and of cross-similarity values 

between the two regions, along the diagonal of the similarity matrix, it yields the time instant of audio 

novelty ( )N i , which is useful for identifying the immediate changes of audio structure. A simple 

2x2 unit kernel, C, that can be decomposed into “coherence” and “anticoherence” kernels is shown in 

equation 2.10 below.  

1 1 1 0 0 1
1 1 0 1 1 0

C
−     

= = −     −     

                                               (2.10) 

 
Audio novelty can be represented by  
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L L

m L n L

N i C m n S i m i n
=− =−

∑ ∑= + +                     (2.11) 

 

where S denotes the similarity matrix, i denotes the frame number, and L represents the width of the 

kernel that is centered on 0,0. A visual rendering of a similarity matrix (top) (with a given grey scale 

value proportional to the distance measure) together with its corresponding novelty score (bottom) 

give a clear image display of the occurrences of different sections in audio, as shown in Figure 2.4. 
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Figure 2.4. (Top) Similarity matrix and (bottom) novelty score computed from an audio 

excerpt from the soundtrack of Beauty and the Beast. The MFCC derivatives were used 

as low-level features 

 

Given that novelty detection is based on the correlation process, the width of the kernel affects 

the resolution of the detection outcome. A small kernel, which detects novelty on a short time scale, is 

capable of identifying detailed changes in the audio structure such as the individual note events. On 

the other hand, a large kernel, which takes a broader view of the audio structure, compensates its 

coarse detection with a better identification for longer structural changes, such as music transitions 

and key modulations. According to Foote, A large kernel can be constructed by forming the 

Kronecker product of C with a matrix of one and applying a window to smoothen the edge effects, for 

example,.   
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Finally, segment boundaries are extracted by detecting peaks where the novelty score exceeds a 

local or global threshold. A binary tree structure is then constructed to organize the index points of the 

segment boundaries by the novelty score. Our semantic audio segmentation approach is mainly based 

on (dis)similarity measurement approach. Further details regarding our proposed semantic audio 

segmentation method will be presented in the next chapter.   

 

2.2.3.2  Model-based Segmentation 

Hidden Markov Models (HMM) [Rabiner86], a well-known technique in pattern discovery and speech 

processing, is an example of model-based segmentation used in the research aiming to identify 

representative musical excerpts. Aucouturier and Sandler [Aucouturier01] train a 4-state ergodic 

HMM with all possible transitions to discover different regions in music based on the presence of 

steady statistical texture features. In their experiments, they use the classic Baum-Welch algorithm to 

train the HMM. The algorithm optimizes the Gaussian mixture distribution parameters and the 

transition probabilities for each state of the model for the given training data. Finally, segmentation is 

deduced by interpreting the results from the Viterbi decoding algorithm for the sequence of feature 

vectors for the song. One of the two approaches used in Logan and Chu [Logan00] is another example 

of applying Hidden Markov Models in a long-term segmentation task. Since the segmentation and the 

identification processes are closely related, HMM is capable of integrating the segmentation and 

identification process into a unified process. In other words, it completes both tasks by using a single 

algorithm. The application of HMMs for solving identification tasks will be discussed in the following 

section. 

 

2.2.4. Music Structure Discovery 

Structural analysis seeks to derive or discover structural descriptions of music and provide a higher-

level interactive way of dealing with audio files. Structural analysis research work such as, semantic 

audio segmentation [Chai03c], music thumbnailing [Bartsch05] [Chai03a] [Chai03b] [Aucouturier02], 

music summarization [Cooper03] [Xu02], chorus detection [Goto03a] [Bartsch01] and repeating 

patterns identification [Lu04], although carrying different titles, all shares the same goal of facilitating 

an efficient browsing and searching of music audio files. In fact, they are all built upon the 

identification of significant audio excerpts that are sufficient to represent a whole piece of music. 
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Hence, identifying the representative musical excerpts from music structure is the key issue here. 

There are different approaches, including those which are commonly used in pattern recognition and 

image processing. Here, we organize these approaches into four main groups: Self-similarity Analysis, 

Dynamic Programming, Clustering, and Hidden Markov Modeling, based on its differences and 

similarities. In the forthcoming subsections we discuss these approaches, including pros and cons of 

their specific algorithms. 

 

2.2.4.1  Self-Similarity Analysis 

In Section 2.2.3.1, we have seen how self-similarity facilitates in spotting musically significant 

changes in music for the audio segmentation task. Here, we are going to observe how self-similarity is 

exploited in discovering the structure of music. The occurrence of repetitive sections in the structure 

of music audio has led researchers to relate music audio structure with fractal geometry phenomena in 

mathematics. A few methods based on self-similarity have been employed for identifying 

representative musical excerpts. One of them is the two-dimensional self-similarity matrix [Foote00]. 

Seeing that self-similarity measurement is capable of expressing local similarity in audio structure, 

Bartsch and Wakefield [Bartsch01] use a restructured time-lag matrix to store the filtering results that 

are obtained through applying a uniform moving average filter along the diagonals of the similarity 

matrix, for the aim of computing similarity between extended regions of the song. Finally, they select 

the chorus section of music by locating the maximum element of a time-lag matrix based on two 

defined restrictions: (1) the time position index of the selection must have a lag greater than one-tenth 

of the song; (2) it appears before three-fourths of the way through the song.  

 

Goto’s [Goto03a] RefraiD method is another example of using time-lag similarity analysis in 

identifying representative musical excerpts from audio music. Goto also uses 2-dimensional plot 

representations having time-lag as their ordinate, in order to represent the similarity and the possibility 

of containing line segments at the time lag. With an automatic threshold selection method, which is 

based on a discriminant criterion measure [Otsu79], time-lags with high possibility of containing line-

segments are selected. These selected time lags are then used to search on the horizontal time axis on 

the one-dimensional function for line segments using the same concept of the previous threshold 

selection method. After that, groups are used to organize those line segments, with each group 

consisting of the integration of the line segments having common repeated sections. The author then 

recovers the omitted line segments from previous line segment detection process through searching 

again the time-lag matrix using the line segment information of each group. Finally groups, which 

share a same section, are integrated into a singular group. The group integration process works by 

adding all the line segments belonged to the groups and adjusting the lag values. With the use of the 

corresponding relation between circular-shifts of the chroma vector and performance modulation, 
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Goto further improves the overall detection performance by tackling the problem in identifying 

modulated repetition. According to Goto, when an original performance is modulated by tr semitones 

upwards, its modulated chroma vectors satisfy, 

 

( ) ( ) 'trv t S v t=
G G                (2.13) 

where  

( )v tG  = chroma vectors of original performance, 

( ) 'v tG  = chroma vectors of modulated performance that is modulated by tr semitones 

upwards from the original performance,  
trS = shift matrix defined by 
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By using this strategy, Goto computes twelve kinds of extended similarities using the shift 

matrix and chroma vectors of original performances in order to represent the modulation of twelves 

semitones upwards. Twelve kinds of extended similarity of each tr are defined as: 
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                                (2.15) 

 

where the denominator 12  is the length of the diagonal line of the 12-dimensional hypercube with 

edge length 1, ( , )trr t l  satisfied 0 ( , ) 1trr t l≤ ≤ . For generating structural description of music (in 

Chapter 4), we will also tackle the issue of detecting modulations within a song. 

 

For each kind of extended similarity, the above-mentioned process of listing and integrating the 

repeated sections is performed, with the exception that the threshold adjusted for the original 

performance vectors is used for modulation vectors as well. Goto later unfolds each line segment in 

each group to obtain unfolded repeated sections and λij (its possibility of being chorus sections). 

Before the possibility λij  of each repeated section is used for later calculation for Vi (a total possibility 

of each group for being a chorus section), it is adjusted based on three heuristic assumptions, 

.. 
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i. The length of the chorus section has an approximate range. If the length is out of range. λij is 

set to 0. 

ii. Long repeated sections may correspond to a long-term repetition (e.g. the verseA, verseB 

and chorus) and it is likely that a chorus section is located near its end. Hence, if there 

exists a repeated section whose end is close to the end of another long repeated section 

(longer than 50 sec), its λij  is doubled.  

iii. Because a chorus section tends to have two half-length repeated sub-sections within its 

section, a section that has those sub-sections is likely to be the chorus section. If there is a 

repeated section that has those sub-sections in another group, half of the mean of the 

probability of those two sub-sections is added to its λij. 

 

Finally, the group with the highest possibility value of Vi is selected as the chorus section. 

Pseudo code in Figure 2.5 depicts the chorus detection procedure by Goto’s RefraiD method. The 

experimental result reported in [Goto03a] shows quite a satisfactory result with 80 out of 100 songs 

have its chorus sections successfully detected. For the music structural discovery task, which aims to 

reveal structure descriptions from the music signal, the research work has only achieved partial 

success. This is because only specific music sections, such as chorus section in this case, are identified 

and labeled. Whereas there are still remaining sections left without being identified and labeled. Our 

approach in discovering and extracting music structural descriptions from music signal is highly 

inspired by [Goto03a]. We introduce further improvements on this method to offer a unity and high 

level of music structural description such that different sections that appear in the music signal are 

identified and labeled. Full detail regarding our approach will be presented in later Chapter 4. 

 

Another research work by Lu et al. [Lu04] also uses self-similarity analysis approach to perform 

repeated pattern discovery and structural analysis from acoustic music data. Different from Goto’s 

approach, Lu et al. use estimated rhythmic information such as, tempo period and length of musical 

phrase, to define the minimum length of a significant repetition in repeating pattern discovery and 

boundary determination. In addition, the authors utilize Constant-Q transform (CQT) (as explained in 

Section 2.2.1.1) in extracting features from music signals. With the extracted CQT features vectors, 

Lu et al. exploit structure-based distance to compute similarity measures between each pair of the 

musical frames. Structure-based distance is computed based on autocorrelation of the difference 

compared vector, with its number of lags corresponds to the features index number. The idea of using 

weighted autocorrelation coefficients is to reduce the distance measures’ sensitivity for timbre 

difference. To facilitate the repetitions detection process, Lu et al. introduce morphological filtering 

technique, which will be explained in Chapter 3, to enhance significant repetitions lines and remove 

the short lines appear in the time-lag matrix. The authors employ the estimated length of a musical 
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phrase as presented in [Lu03] to define the length of the structuring element for morphological 

filtering process. Finally, with the detected repeated patterns, the author uses heuristic rules to infer 

music structure.  

 

% for detecting non-modulated repetition 
Compute time-lag matrix, r(t,l) 
Normalize r(t,l)  
Compute Rall(t,l) with normalized r(t,l) 
Set threshold, ThR based on discriminant criterion measure 
Execute function(detect_repetition) 
Recover omitted line segments based on line segment information of each group  
Integrate groups that share a same segment into a singular group 
 
% for detecting the modulated repetition 
For each semitone 

Compute modulated chroma vector, ( )v tG , based on Equation (2.12) 
Compute rtr(t,l) based on Equation (2.12) 
Normalize rtr(t,l) 
Compute Rall(t,l) with normalized r(t,l) 
Execute function(detect_repetition) 
Recover omitted line segments based on line segment information of each 
group  
Integrate groups that share a same segment into a singular group 

End 
 
For each group 

Define  λij  based on three heuristics rules 
Compute total possibility Vi,  

End 
 
If m = argmax  i

i group
V

→

 

Select m as chorus sections 
End 
 
function (detect_repetition) 
{ 

Let high_peak = Rall(t,l) that is above ThR 
Let Lhigh_peak = lag information of each high_peak, 
For each high_peak 

Search on the horizontal time axis of r(τ,l) (Lhigh_peak <τ< t) at the lag 
Lhigh_peak 

Set threshold, ThLag, based on discriminant criterion measure 
Search smoothed r(τ,Lhigh_peak) that is above ThLag, 

End 
 

Group line segments that have almost the same section into a group 
} 
 

Figure 2.5. Pseudo code depicts the chorus detection procedure by Goto’s RefraiD method.  
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2.2.4.2  Dynamic Programming 

Dynamic programming is a very powerful algorithm paradigm in which a problem is solved by 

identifying a collection of subproblems and tackling them one by one, smallest first, using the answers 

to small problems to help figure out larger one, until the whole lot of them is solved [Dasgupta06]. 

Dynamic programming is another various approaches used to discover musical structure for later 

music thumbnailing [Maddage04] [Maddage06] [Chai(03b,03d,05)]. Chai [Chai(03b,03d,05)] uses 

dynamic programming to perform music pattern matching for finding repetitions in music and later 

discovering the structure of music. The structural analysis results determine actual alignment at 

section transitions, which is also similar to music segmentation. After the short-term segmentation 

process, the author computes the distance, c, between each two feature vectors. The computed 

distances are kept for later usage in a matrix scoring scheme. Two distances have been defined 

according to different dimensionalities of the used features. The distance between two one-

dimensional pitch features v1 and v2 is defined as 

1 2
1 2( , )

 p

v v
d v v

normalization factor
−

=                                       (2.16) 

The distance between two multi-dimensional feature vectors (FFT or chroma) 1v
G

and 2v
G

 is defined 

as 

1 2

1 2

1 2

( , ) 0.5 0.5f

v v
d v v

v v

⋅
= − ⋅

G G
G G

G G                                   (2.17) 

In both cases, the distance ranges between 0 and 1.  

 

The computed feature vector sequence, [ ] { }1, | 1,2,..,jV n v j n= = , is segmented into segments 

of fixed length l. Each segment (i.e., [ , 1]is V j j l= + − ) is then matched with the feature vector 

sequence starting from this segment (i.e., [ , ]V j n ) by using dynamic programming. The author first 

creates a ( 1)-by-( 1)n l+ +  scoring matrix Mi, (as shown in Figure 2.6.) and then fills up the matrix 

based on a scoring scheme shown in Equation 2.17. 

 
 

[ 1, ] ( 1)
[ , 1] ( 1)

( , ) min        
[ 1, 1] ( , 1)

 0 otherwise

M p q e i
M p q e j

M p q
M p q c i j

− + ≥
 − + ≥=  − − + ≥


                                         (2.18) 
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where e is the insertion or deletion cost, and c is the distance between the two corresponding feature 

vectors mentioned above. 

 

 
 

jV  
( 1)jV +

 ( 2)jV +
 

( 3)jV +
 #  #  #  #  #  nV  

 0 0 0 0 0 … … … … … 0 

jV  e           
( 1)jV +

 2e           
… …           
… …           
…            

( 1)j lV + −
 le           

 
Figure 2.6. Dynamic Programming Scoring matrix, Mi.  

 

After the matrix fill step, the author performs a traceback step to determine the actual matching 

alignments that result in the minimum score. A repetition detection process is then performed by 

finding the local minima of the traceback results, [ ]id r , based on a predefined parameter h.  The 

algorithm then merges consecutive segments that have the same repetitive properties into sections and 

generates pairs of similar section in terms of tuples < 1 2, ,j j shift >, which indicates the starting and 

ending location of each segment together with the lag information of its repetition. With the 

summarized repetition information, the music structure is inferred and labeled based on heuristic rules. 

Finally, the structure of music is revealed together with its section boundaries. With the use of 

structural analysis results, Chai summarizes the thumbnails of music by choosing the beginning or the 

end of the most repeated section based on criteria proposed by Logan and Chu [Logan00].  

 

2.2.4.3  Clustering 

Clustering is a grouping technique that has been extensively used in image processing, machine 

learning and data mining [Jain99]. Clustering organizes a set of objects into groups, such that all 

objects inside each group are somehow similar to each other. There exists an overwhelming amount of 

different clustering algorithms and criteria to determine the intrinsic grouping in a collection of data, 

and their selection depends on strategic factors. Logan and Chu [Logan00] use a clustering technique 

to discover the key phrase of music. The authors divide the sequence of features for the whole song 

into fixed-length contiguous segments, as a starting point. Then an iterative algorithm proceeds 

according the following steps: 
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1. Compute mean and covariance for each cluster with the assumption that each cluster has a 

Gaussian distribution.  

2. Compute and store the distortion between each pair of cluster using a modified Kullback-

Leibler distance measure [Siegler97]. The purpose of using Kullback-Leibler distance 

measure is to determine how close the two probability distributions are. 

3. Select the pair of clusters with the lowest distortion between them. 

4. If it is below a predefined threshold, combine these two clusters and go to step 1, else 

continue with step 5. 

5. Each distinct cluster is assigned a label (such as ‘0’ and ‘1’), with all the frames inside this 

clusters are given this label. 

6. Determine the most frequent label that occurs in the song. 

 

By using this approach, Logan and Chu select the longest section (which consists of the most 

frequent label that appears in the first half of the song) as the key phrase of the song. Results from 

their evaluation test show that the clustering approach performed the best when compare to Hidden 

Markov Modeling and random selection. Nevertheless, the selected key phrase through clustering 

approach contains an unnatural starting and ending point, which is due to a limited resolution in the 

segmentation process.  

 

Other than using K-means, a clustering technique that classify a given data set through a certain 

number of clusters (assume k clusters) fixed a priori, Foote and Cooper [Foote03] propose using 

Singular Value Decomposition (SVD). SVD is a dimension-reduction technique extensively used for 

still image segmentation, which can also be used for completing the task of segment clustering. SVD 

works by performing decomposition on a similarity matrix. In other words, it finds the repeated or 

substantially similar groups of segments through factoring a segment-indexed similarity matrix.  

 

A few recent research works by [Abdallah05] [Levy06a] [Levy06b] propose their work of 

extracting classified structural segments, such as intro, version, chorus, break and so forth, from 

recoded music using a two atomization-clustering-agglomeration approach. The authors compute a 

sequence of short term HMM states occupancy histograms through the following sequence: (1) 

normalizing the extracted constant-Q log-power spectrum according to the estimated music beat 

length by means of beat tracking algorithm [Davies05]; (2) reducing feature vectors dimensionality 

using Principle Component Analysis (PCA); (3) a single Gaussian HMM is then fitted to the sequence 

of PCA coefficients and the Viterbi algorithm [Viterbi67] is used to decode the most probable state 

path which gives the most likely sequence of assignments for each beat of the music to the possible 

timbre-types. It is then followed by creating a sequence of short-term states occupancy histograms 
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over a sliding window of length w. The state histograms represent a distribution of the decoded 

timbre-types. Finally, a few clustering techniques such as Pairwise clustering [Hofmann97], with the 

used of the Kullback-Leibler divergence for defining the empirical dissimilarity measures between 

observed window states histograms, histogram clustering [Puzicha99] and K-means clustering are 

used separately to cluster the histograms into M clusters correspond to the segment type. So far, there 

exists no comparison with regard to which clustering methods perform better in discovering musical 

structure. 

 

2.2.4.4  Hidden Markov Modeling 

Hidden Markov Modeling (HMM) [Rabiner89] is another approach used in determining 

representative excerpts of music signal. HMM has a good capability in grasping the temporal 

statistical property of stochastic process. A Hidden Markov Model consists of a set of n finite number 

of states interconnected through probabilistic transitions, and is completely defined by the 

triplet, { }, ,A Bλ π= , where A is the state transition probability. B is the state observation probability, 

and π is the initial state distribution. At each time, HMM stays in one specific state. The state at time 

t is directly influenced by the sate at time t-1. After each translation from one state to another, an 

output observation is generated based on an observation probability distribution associated with the 

current states. State variable are “hidden” and are not directly observable and thus, only output is 

observable. Figure 2.7 below shows a 4-state ergodic hidden Markov model.  
 

 
Figure 2.7. A 4-state ergodic hidden Markov Model 

 

With the application of HMM, the segmentation process and the identification process are 

integrated into a single unified process [Logan00]. Hence, it is not necessary to perform any 

segmentation prior from using the HMM technique as the system learns the segmentation from the 

data itself.  Unsupervised Baum-Welch is used to train the HMM given the sequence of feature 

attributes of the songs. In HMM, each state corresponds to a group of similar frames in the song. With 

Viterbi decoding, the most likely state sequence for the sequence of frames is determined, where each 

states is given a label. Finally, continuous segments are constructed by concatenating consecutive 
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frames that have the same given label.  Logan and Chu [Logan00] chose the key phrase based on the 

duration and frequency of occurrence of these segments.  In their studies, HMM overcame the 

problem of unnatural key phrase beginning that was observed using the clustering approach, even 

though the HMM did not achieve a satisfactory performance in the evaluation test. Nevertheless, using 

a fixed number of states in HMMs may not be an optimal solution since in real world music because 

the number of sections in music may vary significantly from one title to another one.  

 

One underlying issue when using HMM in music structural analysis lies in finding the 

appropriate number of states for initialization. An insufficient number of states results in poor 

representations of the data, whilst an excessive amount of states causes too detailed representations. 

Besides, using a fixed preset number of states for the HMM model would also limit its potential in 

structure discovery. Hence, previous knowledge of these parameters will definitely improve the 

overall performance. Considering this factor, Peeters et al [Peeters02] propose a multi-pass approach 

combining segmentation and HMM, which does not require the a priori fixing of the number of states, 

for automatic dynamic generation of audio summaries. Its first-pass performs a long-term 

segmentation through similarity measurements between feature vectors in order to allow the definition 

of a set of templates (classes) of music. Here, the author intends to make use of the restructured 

information boundaries from long-term segmentation for achieving a better estimation of the number 

of classes and their potential states for a K-means clustering algorithm [MacQueen67]. With the 

constituted templates of the music, the second-pass organizes nearly identical (similarity≥ 0.99) 

templates into groups and uses the reduced number of groups as “initial” states to initialize K-means 

clustering algorithm. The output from the K-means clustering is then used to initialize an ergodic 

HMM learning model, where every state of the model could be reached (in a single step) from every 

other state in a finite number of steps [Rabiner89]. Similar to Logan  and Chu’s [Logan00] approach, 

the classic Baum-Welch algorithm is used to train the model. The outputs of the training are the state 

observation probabilities, the state transition probabilities and the initial state distribution. Finally, 

decoding using Viterbi algorithm with the given HMM and the signal features vectors, they obtain the 

state sequence corresponding to the piece of music. Through this unsupervised learning process, each 

time frame is given a state number. The authors suggest that the generation of the audio summary 

from this state representation can be done in several ways (with a given structure example: 

AABABCAAB): 

 

• Providing audio example of class transition (A→B, B→A, B→C, C→A) 

• Providing a unique audio example of each of the states (A, B, C) 

• Reproducing the class successions by providing an audio example for each class apparition (A, B, 

A, B, C, A, B) 
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• Providing only  an audio example of the most important class in terms of global length or 

repetitiveness of the class) (A) 

 

The research done by Peeters et al. has shown that an integrative approach by means of 

segmentation and an unsupervised learning method (K-means and Hidden Markov Models) can 

overcome the quick state-jump between states and produce a better and smoother state sequence. Thus, 

it improves overall the performance of using HMM in music structural discovery. However the 

authors do not provide any evaluation data to verify this observation.  

 

2.3. Discussion 

In this section, we discuss the pros and cons on each approach used in identifying representative 

musical excerpts of audio music. Self-similarity analysis approach has the advantage of providing a 

clear and intelligible view of audio structure. Nevertheless, it is not efficient for spotting repetitions 

with a certain degree of tempo change. A fixed resolution in its feature representation may give a 

different representation view on the tempo-changed repeated sections compared with its original 

section. Another problem with this approach is its threshold dependency in reducing noise for line 

segment detection. Threshold setting may vary from one song to another. Hence, a general setting 

threshold may not be valid for a wide range of audio.  

 

The dynamic programming approach [Chai03c] has an advantage in offering a better accuracy in 

boundary detection. However this approach requires the comparison of all possible alignments 

between two sequences. The number of operations grows dramatically with the total number of 

frames. Thus, it suffers a lack of scalability.   

 

The clustering approach manages to overcome the problem of the sensitivity to tempo changes 

suffered by the previously mentioned approaches, as long as boundary truncations are appropriate. 

However, one has to take notice that clustering, which organizes objects into groups based on their 

similarity, may produce complex representations of audio structure when a large range of similarity 

values exists among its feature contents. Hence, this approach is not appropriate for music that has 

non-homogenous feature contents, such as electronic music. Another limitation of this approach is that 

it is incapable in detecting unitary events in music. In other words, successive similar segments appear 

in music, for example a verse directly followed by another verse, will not be detected due to the 

homogeneity in the local properties of the signal. Only those with a distinct segment in between (e.g. 

verse→ refrain→ verse) will be detected instead.  
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HMM approach with its transition statistical parameters is capable of handling the problem 

caused by non-homogenous segments that we have to face with music content analysis. Other 

advantages of HMMs are their efficiency in handling non-fixed length input and their independency in 

completing both the segmentation task and identification task without any external support. 

Nevertheless, this approach has a disadvantage in its expensive computation. In addition, HMM’s 

performance efficiency highly depends on the number of states and on a good initialization. An 

insufficient number of states causes a poor representation of the data, whilst excessive state numbers 

cause too detailed representations. As the number of states in HMM can roughly correspond to the 

amount of different sections in the song, using a fixed number of states in HMMs may generate 

unsatisfactory outcomes. 

 

So far, much research works focusing on finding significant excerpts to represent a piece of 

music mainly depend on the repetitiveness of a music segment in the identification task. Apparently, 

no other assumptions have been proposed. In fact, how does one define the “significant” of an audio 

excerpt? From the musical point of view, it could be a “chorus” section of the pop music. While from 

the perceptual or cognitive point of view, it could be the most outstanding or attention grabbing or 

“strange” or “unexpected” excerpts that are usually not repeated but are capable in leaving a strong 

impression on our mind. Thus, repetitiveness may not be the only factor in criteria of defining the 

“significant” of an audio excerpt.  

 

From music description extraction aspects, so far there are only a few research works [Lu04] 

[Chai05] reach the level where a unity and high-level of semantic description of music can be directly 

extracted from the music signals. However the related research works have not addressed the problem 

of modulation within song even though it is one of the most common phenomena encountered in 

music structural analysis task. Goto’s [Goto03a] RefraiD system has addressed the modulation within 

song issue, however the system so far only reaches the level of detecting specific music sections with 

the remaining sections left without being identified. Whereas from the application aspects, current 

significance of discovering the structural description of music seems to only point towards audio 

browsing and music thumbnailing or summarization contexts. Prior knowledge of such a high-level 

description of music should be able to give a better grasp of the musical data and further improve the 

content analysis and processing of the acoustics signals. However so far there exists no exploration 

with regard to the practical usability of music structural descriptions in other contexts besides the 

above mentioned area.   

 

Finally, by reviewing the current developments in this area, we observed a few limitations in the 

aspect of algorithm evaluations in present literature. First limitation is the lack of generality of the test 
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databases. Hence, by using such a database, it is quite impossible to obtain an objective evaluation on 

the algorithm efficiency for most of the existing music. Another limitation is the method in weighting 

the importance of extracted music sections. The significance of the musical excerpts in audio signal 

highly depends on human perception.  

 

2.4. Summary 

In this chapter, we have covered a substantial range of background information in music structural 

analysis. We have presented various audio feature classes and extraction approach used for music 

structural analysis, audio segmentation techniques for better truncations of audio signal and related 

identification approaches for discovering the structure of music.  

 

In the next chapter, we begin our study of segmenting audio semantically in term of the 

structural changes in the music signal. Chapter 3 begins with a presentation of the overview of our 

proposed framework for semantic audio segmentation.  The chapter proceeds by presenting the 

descriptions of our proposed approach in more detail. Finally, we present quantitative evaluation 

results of the performance of our proposed method using our own test database. 
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Chapter 3 

Semantic Audio Segmentation 

In this chapter, we address the problem of finding acceptable structural boundaries, without prior 

knowledge of music structure.  This provides a way to separate the different “sections” of a piece, 

such as “intro”, “verse”, “chorus”, etc. From now on, we use semantic audio segmentation to refer to 

our proposed method in this respect. There is a second related problem consisting of assigning labels 

to the segments that are found. Here, we will not go into this issue but leave it to the following chapter 

instead. 

 

The work in this chapter has two aspects. First, we propose our semantic audio segmentation 

method. In our approach, we divide the segment boundaries detection task into a two-phase process 

with each having different functionalities. Unlike traditional audio segmentation approaches, we 

employ image processing techniques to enhance the significant segment boundaries in audio signals. 

In order to obtain appropriate structural boundaries, we propose a combination of low-level 

descriptors to be extracted from the music audio signal. Section 3.1 comprises complete descriptions 

of this aspect. First, we start by providing an overview of the proposed framework. Later, we extend 

the description of each procedure in detail at each subsection, according to the processing sequence. 

 

The second aspect, presented in Section 3.2, is a set of experiments to evaluate the efficiency of 

our system by means of using various combinations of low-level descriptors and descriptive statistics. 

We use some basic measures in evaluating search strategies to achieve an objective evaluation for 

each performed experiment. Two different datasets are used to evaluate the performance of our 

algorithm. The first dataset consists of 54 songs from the first four CD’s of The Beatles’ (1962 - 

1965), whereas the second dataset comprises of 27 pop songs from the Magnatune database.  The 
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experiment results evaluated using both test datasets show that our approach achieves an overall 

effectiveness as high as 74% in identifying structural boundaries in music audio signals.  

 

3.1. Approach 

Audio segmentation facilitates partitioning audio streams into short regions. It seems an indispensable 

process in certain content-based applications, such as audio notation, audio summarization, and audio 

content analysis. Due to this reason, research in this area has received increasing attention in recent 

years. A number of different approaches have been proposed [Aucouturier01, Foote00, Tzanetakis99, 

Ong04]. 

 

In this chapter, we propose a novel approach for the detection of structural changes in audio 

signals by dividing the segment detection process into two phases (see Figure 3.1). Each phase is 

given a different goal: Phase 1 focuses on detecting boundaries, which may contain structural changes 

from the audio signal; Phase 2 focuses on refining detected boundaries obtained from phase 1 by 

aggregating contiguous segments while keeping those which mark true structural changes in the music 

audio. Our proposed method consists of 9 steps as follows: 

 

Phase 1 – Rough Segmentation 

(1) Segment input signal into overlapped frames of fixed length and compute audio descriptors for 

each frame (see section 3.1.1); 

(2) Compute between-frames cosine distance to obtain several similarity matrices [Foote00] for each 

one of the used features (see section 3.1.2); 

(3) Apply morphological filter operations (see section 3.1.2) to similarity matrices for enhancing the 

intelligibility of the visualization; 

(4) Compute novelty measures by applying kernel correlation [Foote00] along the diagonal of the 

post-processed similarity matrices (see section 3.1.2); 

(5) Detect segments by finding the first 40 highest local maxima from novelty measure plot (see 

section 3.1.2); 

(6) Combine the detected peaks to yield boundary candidates of segment changes of music audio (see 

section 3.1.2); 

 

Phase 2 – Segment Boundaries Refinement 

(7) Assign frames according to detected segments obtained from phase 1 and compute the average 

for all the used features (see Table 3.1) in each segment; 

(8) Compute between-segments distances using the mean value of each feature in each segment (see 

Table 3.1); 
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(9) Select significant segments based on distance metrics (see Table 3.1). 

 

 

 Figure 3.1. Overview framework of our approach. 

 

The following sections explain each step in detail. 

 

3.1.1. Feature Extraction 

We begin our segmentation task by extracting a feature representation of the audio content. As 

mentioned earlier, detecting significant structural changes in music signals is a key issue of our 

research objective for this chapter. Thus proper selection of feature attributes is crucial to obtain 

appropriate musical content descriptors that grant a proper boundaries-detection process. Nevertheless, 

an effective description of musical content not only depends on the best feature attributes, but 

sometimes also depends on the use of different features in a combined manner. Therefore, the 

application of musical knowledge into the selection process would further improve the quality of 

musical content description.  

 

With regards to obtaining the short-term descriptions of the audio sound signal, we partition the 

input signal into overlapped frames (4096-samples window length) with a hop size of 512 samples. 

We then follow by extracting feature descriptions of each of these frames with a Hamming window.  
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To estimate the content descriptions of the music audio signal, we consider different timbre and 

dynamics related features: MFCC, sub-bands energy, spectral centroid, spectral rolloff, spectral flux, 

zero crossings, spectral flatness, low bass energy, high-medium energy and RMS energy. The 

following gives a brief description of each of the used content descriptors. Please refer to section 2.2.1 

for detailed explanations of these descriptors.  

 

MFCC, also called Mel-Frequency Cepstral Coefficients: A compact representation of an audio 

spectrum that takes into account the non-linear human perception of pitch, as described by Mel-scale 

[Rabiner93]. 

 

Sub-bands energy: A measure of power spectrum in each sub-band. We divide the power spectrum 

into 9 non-overlapping frequency bands as described in [Maddage04]. 

 

Spectral Centroid: A representation of the balancing point of the spectral power distribution within a 

frame. 

 

Spectral Rolloff: A measure of frequency, which is below the 95th percentile of  the power spectral 

distribution. It is a measure of “skewedness” of the spectrum.  

 

Spectral Flux: The 2-norm of the frame-to-frame spectral magnitude difference vector. It measures 

spectral difference, thus it characterizes the shape changes of the spectrum.  

 

Zero Crossings: A time-domain measure that gives an approximation of the signal’s noisiness. 

 

Spectral Flatness: A measure of the flatness properties of the spectrum within a number of frequency 

bands. High deviation from a flat shape might indicate the presence of tonal components.  

 

High-medium energy: A ratio of the spectrum content within the frequency range of 1.6 kHz and 4 

kHz to the total content. This frequency range comprises all the important harmonics, especially for 

sung music. 

 

Low-bass energy: A ratio of the low frequency component (up to 90 Hz) to the total spectrum energy 

content. This frequency range includes the greatest perceptible changes in “bass responses”. 

 

RMS energy: A measure of loudness of the sound in a frame.  
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In our approach, we use two different groups of descriptors, one for each of the different phases. In 

Phase 1, descriptors are used to detect segment boundaries, which hold a significant timbre change 

between its previous and next compared frames. In the case of phase 2, the descriptors are mainly 

used to refine the detected segment boundaries from phase 1. 

 
 Phase 1 Phase 2 
MFCC 

Sub-bands Energy 
Zero Crossings rate, 
Spectral Centroid, 
Spectral Flatness, 
Spectral Rolloff, 

Spectral Flux, RMS, 
Low-bass Energy, 

High-medium Energy 

Table 3.1. The list of audio descriptors for Phase 1 and Phase 2. 

 

3.1.2. Phase 1 – Rough Segmentation 

After computing feature vectors for each frame, we group every 10 frames (116ms) and calculate the 

mean value for every feature.  In this phase of the segment detection process, we only work with 

multidimensional features (i.e. MFCC and sub-band energies). We treat those features separately in 

order to combine both results in the final stage of the detection process in phase 1. In order to find the 

structural changes in the audio data, we measure the distance between each feature 

vector, { },1 ,2 ,, ,...,n n n n mV v v v= , and its neighbouring vectors, { },1 ,2 ,, ,...,n i n i n i n i mV v v v+ + + += , 

using cosine angle distance [Foote00] given by the expression:  
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where m denotes the m-dimensional of the feature vector.  

 

Figure 3.2 illustrates the two-dimensional cosine similarity plot computed using MFCC features. 

As shown in the figure, some structural changes can be perceived in the similarity plot. To enhance 



 

 

 
46 

such information, we need to further improve the intelligibility of the vague visualization given by the 

similarity plot. For this purpose, we apply morphological filters [Burgeth04], a widely used filtering 

technique applied to image processing, on the computed distance matrix representations. The reason 

for selecting the morphological filter lies in its advantage in preserving edge information and its 

computational efficiency over other techniques. Different from Lu’s previous work in structural 

analysis [Lu04], the idea behind using morphological filtering operations here is to increase the 

intelligibility of the structural changes and facilitate the enhancement of the segment boundaries 

instead of removing redundant short lines from the time-lag matrix. Since morphological filtering 

techniques are relatively unknown in music analysis, we dedicate a few paragraphs below to providing 

a brief introduction about its operations’ functionalities and implementations procedure.  

 

 

Figure 3.2. Two-dimensional cosine similarity plot computed from the song entitled When I 

Get Home using MFCC features. 

 

Morphology filtering is an analysis process of signal in terms of shape. Basically, it uses set 

theory as the foundation for many of its operations [Young02]. Its simplest operations are dilation and 

erosion. In general, dilation causes objects to dilate or grow in size while erosion causes objects to 

shrink. The amount of changes (growth or shrinkage) depends on the choice of the structuring element.  

The following paragraph explains how dilation and erosion work in detail.  Dilation, also known as 

‘Minkowski Addition’, works by moving the structuring element over the input signal and the 

intersection of the structuring element reflected and translated with the input signal is found. In 

another words, the output is set to one unless the input is the inverse of the structuring element. For 

instance, ‘000’ would cause the output to be zero and placed at the origin of the structuring element, B, 

for the given example in figure 3.3.a. Similar to dilation, erosion, also known as ‘Minkowski 
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Subtraction’, works by moving the structuring element over the input signal. The erosion of the input 

signal, A, and the structure element, B, is the set of points x such that B translated by x is contained in 

A. In contrast with the dilation operation, the output is set to zero unless the input is identical to the 

structuring element. Figure 3.3.b shows how erosion opens up the zeros and removes runs of ones that 

are shorter than the structuring element in a one-dimensional binary signal. [Young02].  
 

 
Figure 3.3. Examples of how dilation and erosion work with the shaded structuring elements 

show the origin element. 

 

So far, the above mentioned dilation and erosion operations are associated with one-dimensional 

binary signals. For non-binary signals, the dilation (erosion) operation works the same as taking the 

Figure 3.3.a Example of how dilation works 

Input signal (A) 

Structuring element (B) with shade marks the origin 

Set the output to be the intersection

Slide the structuring element (B) along 
input signal (A) and get new output 

Repeat until all 
elements have 
been done 

Figure 3.3.b Example of how erosion works 

Structuring element (B) with shade marks the origin 

Input signal (A) 

Set output to be translation of B contained in 

Repeat until all 
elements have 
been done 

Slide the structuring element (B) along 
input signal (A) and get new output 

Filtered output 

Filtered output 
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maximum (minimum) value of the signal, which lies within the 1’s of the structuring element. Thus, 

dilation and erosion operations for non-binary signals can be redefined as  
 

max( )xi B
Dilation A

∈
=         where,    1

2
ni −

≤   ∩    i∈                       (3.3) 

min( )xi B
Erosion A

∈
=            where,    1

2
ni −

≤   ∩    i∈                 (3.4) 

 

Figure 3.4 illustrates the properties of the input signal, Ax, with its structuring element, Bi, as defined 

in expressions 3.3 and 3.4.   

 

 
Figure 3.4. The properties of one-dimensional signal, Ax, with its structuring element, Bi, in 

defined in expressions 3.3 and 3.4. 

 

For two-dimensional input signals, erosion and dilation operations still work in exactly the same 

way as for one-dimensional input signals, but with a two-dimensional structuring element instead. 

Hence, dilation and erosion operations for two-dimensional signals can be expressed as: 
 

 

,( , )

1max( ),      where  ,     ,
2x i y ji j B

nDilation A i j i j+ +∈

−
= ≤ ∩ ∈              (3.5) 

,( , )

1min ( ),       where  ,     ,
2x i y ji j B

nErosion A i j i j+ +∈

−
= ≤ ∩ ∈             (3.6) 

 

Figure 3.5 shows the two-dimensional properties of an input signal, ,x yA , with its n-by-n structuring 

element, ,i jB , as defined in expression 3 and 4.  

 

 

 

 

 

i i -ve +ve 

Input signal, xA  Structuring element, Bi 
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Figure 3.5. The two-dimensional properties of input signal, 
,x yA , with its n-by-n structuring 

element, 
,i jB , as defined in expression 3.5 and 3.6. 

 

‘Opening’ and ‘Closing’ operations are two morphological filter operations, which contain the 

properties of both dilation and erosion operations. The ‘Closing’ operation works by dilating the 

signal and is followed by eroding the results. In contrast, the ‘Opening’ operation works by eroding 

the signal followed by dilating the results. Figure 3.6 demonstrates both ‘Closing’ and ‘Opening’ 

operations of the morphological filter on a one-dimensional binary signal. From the figure, we can 

clearly see the distinct properties of these two operations. The ‘Closing’ operation (as shown in Figure 

3.6.a) closes the gaps that lie within the length of the structuring element, whereas the ‘Opening’ 

operation (as shown in Figure 3.6.b) opens the gaps and removes runs of ones that are shorter than the 

structuring element of the signal. Otherwise, the signal is left unchanged.  

 

In our work, we utilize ‘Open-Close’ and ‘Close-Open’ operations of the morphological filter. 

These two operations are the combination products of ‘Opening’ and ‘Closing’ operations in order to 

merge their properties into one filter operation. The ‘Open-Close’ operation is implemented by first 

opening the signal and then closing the opened signal. In contrast with the ‘Open-Close’ operation, the 

‘Close-Open’ operation is implemented by first closing the signal and then opening the closed signal. 

Both ‘Open-Close’ and ‘Close-Open’ can be expressed as: 

 

Open-Close( , ) ( ( , ), )A B close open A B B=                         (3.7) 

Close-Open( , ) ( ( , ), )A B open close A B B=                         (3.8) 

 

where A denotes the input signal and B is the structuring element. 

 

 

Structuring element, 
,i jB            Input signal, ,x yA     
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Figure 3.6. The opening operation of the morphological filter on a one-dimensional 

binary signal. 

 
Figure 3.7 shows how these filter operations work on a one-dimensional binary signal. 

Comparing the operations outputs as shown in Figure 3.6 with those in Figure 3.7, we can see that 

Open-Close’ (‘Close-Open’) operations produce a similar output as ‘Opening’ (‘Closing’) operations 

when dealing with one-dimensional binary signals. However this is not the case when applied to two-

dimensional non-binary signals. ‘The Opening’ operation will remove high intensity points whilst 

keeping the rest of the signal intact. The ‘Closing’ operation will discard low valued points whilst 

keeping the rest of the signal intact. However, the ‘Open-Close’ and ‘Close-Open’ operations will 

remove both high and low valued points while keeping the rest of the signal intact.  

 

 

Input signal (A) 

Structuring element (B) with shade element marks the origin 

The erosion output 
of A and B 

The output of the 
opening operation 
of A and B 

Structuring element (B) for performing dilation 
operation with the previous eroded signal 

Figure 3.6.b Example of ‘Opening’ operation of morphological filter 

Figure 3.6.a Example of ‘Closing’ operation of morphological filter 

Input signal (A) 

Structuring element (B) with shade element marks the origin 

The dilation 
output of A and B 

The output of the 
closing operation 
of A and B 

Structuring element (B) for performing erosion 
operation with the previous dilated signal
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Figure 3.7. The ‘Open-Close’ and ‘Close-Open’ operations of the morphological filter on a 

one-dimensional binary signal. 

 

Since our computed distance matrix consists of two-dimensional non-binary signals, the 

applications of ‘Open-Close’ and ‘Close-Open’ operations would disregard high and low valued 

points in our distance matrix and produce (dis)similarity representations with an enhanced 

intelligibility. Figure 3.8 and Figure 3.9 illustrate the post-processed distance matrices obtained from 

applying ‘Close-Open’ and ‘Open-Close’ operations independently on the distance matrix as shown in 

Figure 3.2. Compared to Figure 3.2, the appearances of structural patterns in the distance 

representation plots have been amplified after morphological filtering processes. From the figures, we 

can see that although both two operations have the same characteristics in removing intensity points 

from the signal, they do not produce the same filter results. This is due to the different sequence of 

erosions and dilations in implementing both operations. In addition to the outputs of both 

morphological operations, we also utilize additional distance matrices yielded from multiplication and 

subtraction between ‘Close-Open’ and ‘Open-Close’ operation outputs to facilitate the identification 

of relevant structural changes of music. Figure 3.10 illustrates the distance matrix representation 

obtained from the multiplication of ‘Open-Close’ and ‘Close-Open’ filter results. 

 

 
 

Input signal (A) 

Structuring element (B) with shade element marks the origin 

The output of ‘Open-
Close’ operation of A 
and B 

The output of ‘Close-
Open’ operation of A 
and B 
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Figure 3.8. Similarity representation before morphological operation (top) versus similarity 

representation after ‘Close-Open’ operation.  
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Figure 3.9. Similarity representation after ‘Open-Close’ operation 

 

 
Figure 3.10. Distance matrix representation obtained from the multiplication between 

‘Open-Close’ and ‘Close-Open’ filter results. 

Refrain Refrain Refrain Verse VerseBridge Refrain Verse

Refrain Refrain Refrain Verse VerseBridge Refrain Verse
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With the post-processed similarity matrices obtained from morphological filtering operations, we 

then apply a kernel correlation [Foote00], with a width of 10, along the diagonal of each post-

processed similarity matrix to measure the audio novelty. This is to observe any significant changes of 

the related audio contents for approximately every 1 second. In order to accumulate all information 

from the post-processed similarity matrices, we aggregate all the computed novelty measures and 

normalize it with its maximum value. This produces an overall novelty measure with values within the 

range of 0 to 1. Based on the overall novelty measure, the first 40 highest local maxima are selected 

based on the constraint that each selected local maximum must be at least m seconds apart from its 

neighbouring selected local maximum. Three empirical preset m parameters were considered: 2.3 sec, 

2.9 sec, and 3.5 sec. Finally, we accumulate all the peaks detected based on these three m parameters 

and select the first 40 highest local maxima amongst all local maxima as the segment boundaries 

candidates from the employed features.   

 

As mentioned earlier, in this phase of the segment detection process, we are working with MFCC 

and sub-band energies. Hence the whole process of similarity measurement, morphological filtering 

and segment candidates’ selection is repeated for sub-band energies. Finally, we combine all segment 

boundaries candidates detected from both features (MFCC and sub-band energy) and select the 

highest 40 amongst them to be considered as boundaries candidates of segment changes of music 

audio. The selection is based on the criterion that each segment candidate must be at least 2.3 seconds 

(the lowest considered value for m parameters) apart from each other. Figure 3.11 illustrates the 

detected boundaries candidates yielded by the segment detection process in phase 1.  
 

 
 

Figure 3.11. Candidate boundaries yielded by segment detection process in phase 1. 
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3.1.3. Phase 2 – Segment Boundaries Refinement 

In the second phase of the detection process, we only use the time position from the candidates 

extracted in the previous phase. Here, we consider the values for all the attributes used in phase 2 (see 

Table 3.1) that are within the detected segment boundaries and compute the average of each. Hence, 

each detected segment now comprises only a set of feature vectors representing the mean value of the 

attributes in that segment. It has to be mentioned that in our attributes, there exists a different range of 

feature values. Presumably, attributes whose values are larger than others would have more influence 

in determining the similarity of any two sequences. Hence, in order to avoid such an effect and to have 

an equal importance weight among the used attributes, we normalize all attributes so that its feature 

values are within the ranges of 0 and 1. We then compute the (dis)similarity between each segment 

and its neighbouring segments by measuring the Euclidean distance between their feature vectors. The 

Euclidean distance between vectors { },1 ,2 ,, ,...,n n n n mV v v v=  and { },1 ,2 ,, ,...,n i n i n i n i mV v v v+ + + +=  is 

given by the expression: 
 

2
, ,1

( )m
n n i n j n i jj

V V v v+ +=
− = −∑                                   (3.9) 

 

where m denotes the m-dimensional of the feature vector.  Theoretically, the Euclidean distance and 

cosine angle distance used in section 3.1.2 give the same distance measure when two compared 

feature vectors have same variance values [Gang02]. In fact, the cosine angle distance is very 

sensitive to the variance of compared feature vectors. Thus, it is very useful in finding very similar 

items. Since our feature vectors in this phase are obtained based on the detected boundaries 

information from phase 1, we hypothesize that the Euclidean distance should be more suitable to 

compute the distance measures of these feature vectors. Similar to the previous steps in computing 

novelty measures from the similarity representations, we apply a kernel correlation, along the diagonal 

of the (dis)similarity representation of segments to yield the novelty measures, N, between each 

segment and its next sequential segment. Figure 3.12 and Figure 3.13 illustrate the (dis)similarity 

representations and novelty measures computed from the (dis)similarity representations between 

segments. Finally we select significant segment boundaries from the computed novelty 

measures, { }| 1, 2, ...,snN s l= =  (where l is the number of segment boundaries candidates) based on 

the following steps: 

 

1. Select all the peaks that lie above a predefined threshold, Pt, based on their computed novelty 

measures, Ns, and organize them into a group, which is represented as { }| 1, 2, ...,P p i Mi= = (M 

is the number of selected peaks). Whereas those peaks that lie below the predefined threshold, Pt,, 
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are organized into another group denoted by { }| 1, 2, ...,jE e j N= = (N is the number of 

unselected peaks).  

2. Organize all peaks in E in ascending order according to their distance measures. 

3. Select the highest peak in E for further evaluation.  

4. Based on temporal information, if the evaluated peak is located at least 4 sec apart from any 

peaks in P, insert it in group P and reorganize all peaks in group P in ascending order based on 

the segment index number; otherwise delete it from E. This is based on the assumption that each 

section in music (e.g. verse, chorus, etc.) should at least hold for 4 sec (1 bar for songs with 

quadruple meter with 60 bpm tempo) in length before moving to the next section.  

5. Go to step 3. 

 

The whole iterative peak selection process ends when there are no more peaks in E. Finally, segment 

boundaries in P are considered as significant segment boundaries that mark structural changes in 

music audio signals. 
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Figure 3.12. The (dis)similarity representations between segments detected in phase 1. 

 
Figure 3.13. The novelty measures computed from the (dis)similarity representations 

between segments. 

 

3.2. Evaluation 

In this section we present an evaluation of our proposed semantic audio segmentation method in 

detecting structural changes in music audio signals. We first begin by discussing in detail our dataset. 

This is followed by presenting the measures used in evaluating the performance of our proposed 

method.  
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3.2.1. Datasets 

In our experiment, we created an audio database, which consists of 54 songs from the first four CD’s 

of The Beatles (1962 – 1965) as a test set. In addition, we also created another test set, containing 27 

pop songs from the Magnatune5 database. The reason of using a second test set is to avoid having an 

evaluated performance result that biases towards The Beatles’ songs. Each song in both test sets is 

sampled at 44.1 kHz, 16-bit mono. In the objective evaluation, we have generated a ground truth by 

manually labelling all the sections (i.e. intro, verse, chorus, bridge, verse, outro, etc.) of all the songs 

in the test sets. For The Beatles’ music test set, the ground truth is manually labelled according to the 

information provided by Allan W. Pollack’s “Notes On” Series website on song analyses of The 

Beatles’ twelve recording projects 6 . Since there exists no official song analyses available for 

Magnatune’s songs, we generated the ground truths by comparing labellings manually annotated by 

two advanced music conservatory students who listened to the music and generated the boundary 

marks. A music composer supervised the labelling process and results. 

 

3.2.2. Procedure 

To quantitatively evaluate the detected segments from the proposed algorithm, the detected segment 

boundaries are compared with the ground truth in term of precision and recall. The precision and 

recall are defined as follows: 

Precision = D G
D
∩                                                  (3.10) 

Recall = D G
G
∩                                                     (3.11) 

 

where D denotes detected segments, G denotes relevant ground truth segments and D G∩  signifies 

detected segments that are placed within the region of relevant ground truth segments’ with its 

tolerance deviation. In evaluating the identified segments, we allow a tolerance deviation of ± 3 

seconds (approximately 1 bar for a song of quadruple meter with 80 bpm in tempo) from the manually 

labelled boundaries.  

                                                 
5 Magnatune official web page: http://magnatune.com/ 
6The Twelve Recording Projects of the Beatles web page: http://www.icce.rug.nl/~soundscapes/DATABASES/AWP/awp-
beatles_ projects. html 
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Figure 3.14. An example of measuring segmentation performance with a tolerance deviation 

presented as shaded area (top transcription: ground truth segments; bottom transcription: 

detected segment). Circled segments mark the outliers of the correctly detected segments. 

 

Figure 3.14 shows an example of measuring segmentation performance with a tolerance 

deviation. In the example shown in the figure 3.14, segments with marked circles do not fall within 

the region of ground truth segment boundaries with its tolerance deviation (shaded area). Hence these 

two mark circled segments will not be considered as D G∩ . The top transcription, which represents 

the ground truth results, comprises 8 segment boundaries whereas the bottom transcription, which 

denotes detected results, comprises 7 segment boundaries. Thus, the precision and recall in this 

example are 5/7 (≈ 0.71) and 5/8 (≈ 0.63), respectively.  

 

Precision and recall measures are mainly used to evaluate the accuracy and reliability of the 

proposed algorithm. In addition, we use the F-measure to evaluate overall effectiveness of segment 

detection by combine recall and precision with an equal weight: 
 

2 (Precision Recall)F-measure
Precision+Recall
× ×

=                                           (3.12) 

 

3.2.3. Results and Discussion  

In this section, we summarize the key findings from the quantitative evaluation results of our 

proposed segmentation method discussed in this chapter.  

 

Bar graphs in Figure 3.15 and Figure 3.16 show the precision, recall and F-measure scores 

obtained for all songs in both our test databases with a tolerance deviation of ± 3 seconds. From the 

first test set, our proposed structural changes detection approach has achieved an average precision 

higher than 72% and an average recall of 79% using the ground truth set. The overall F-measure has 

reached 75%. In other words, with 10 detected segment boundaries, 7 of them are correctly detected 
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compared to the ground truth data. Whilst about 2 out of 10 manually labelled boundaries are missed 

by our automatic boundaries detector.  The distribution of precision scores has a standard deviation of 

0.11 and the range of precision values spans across 0.41-0.94. For the obtained results, we also 

observe that the best performance in The Beatles’ test set is in the case of SongID-35 with its recall 

and precision score of 100% and 95%, respectively. Whereas the worst performance is observed in the 

case of SongID-47, which only reaches the recall rate of 38% and precision rate of 56%. Figure 3.17 

illustrates the segment boundaries detected by our proposed algorithm, with manually labelled 

segment boundaries for SongID-35.  

 

 
Figure 3.15.  The precision, recall and F-measure scores obtained for all songs in The Beatles’ test set 

with a tolerance deviation ± 3 seconds. 
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Figure 3.16.  The precision, recall and F-measure scores obtained for all songs in Magnatune’ test set 

with a tolerance deviation ± 3 seconds. 

 

 

Figure 3.17. Manually labelled segment boundaries (top) and segment boundaries detected by our 

proposed algorithm (middle) with time position information (below) for SongID-35 entitled Words of 

Love.  The label VerseS means an instrumental solo playing the verse. Labels are not yet assigned by 

the algorithm. Circled segments mark the outliers of the correctly detected segments. 
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For the second test set, which contains songs from the Magnatune database, our proposed 

structural changes detection approach achieved an average precision higher than 68% and an average 

recall of 81% using the ground truth set. The overall F-measure reached 74%, which is quite identical 

with the one obtained using The Beatles’ database. 

 

Significance of the Proposed Audio Descriptors 

To investigate the significance of our proposed audio features that are not commonly used in the 

segmentation task, we evaluate the segmentation results obtained using various combinations of audio 

descriptors. Table 3.2 shows the use of different combinations of audio descriptors according to our 

proposal in Table 3.1, together with their labels appearing in the plot given in Figure 3.18. 

 
Label Descriptors in Phase 1 Descriptors in Phase 2 

A All  All 
B Only MFCC All 
C All All, except high-medium energy 
D All All, except low-bass energy 

Table 3.2. Various combinations of the audio descriptors together with their labels appearing in 

Figure 3.18. 

 

Figure 3.18 illustrates the segmentation performance according to various combinations of audio 

descriptors. As shown in the graph, with an additional of sub-band energy in phase 1 instead of MFCC 

features, it shows a slight improvement of 1.46% to the overall effectiveness of the segmentation task. 

While comparing to low-bass energy features (D), the absence of high-medium energy in phase 2 (C) 

shows a much greater degradation to the performance of our proposed segmentation algorithm. The 

impaired overall F-measure reaches as high as 8.1%, with the deficient average precision and recall 

rates of 8.2% and 8.0%, compared to 2.86% for the low-bass energy features. This may be due to the 

reason that high-medium energy, which captures spectral content within the frequency ranges of 1.6 

KHz to 4 KHz, has also subsumed singers’ formant [Sundberg77] properties within it. Thus, it is 

useful in identifying significant changes in the singing voices for sung music. 
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Figure 3.18. The segmentation performance using various combinations of audio descriptors.  

 

Beat Detection Application 

Theoretically, by applying reliable beat detection processing to the segmentation algorithm, it should 

somehow improve the overall detection task. This is because most of the structural changes in popular 

music appear on the beat. In addition, it can be easier or more convenient to listen to segments that 

start on the beat (upbeat or downbeat). Thus, to investigate the applicability of beat information to 

segment detection, we incorporate a beat detection algorithm [Gouyon03] into our system, according 

to the overview block diagram shown in Figure 3.19. We group the computed frame-by-frame feature 

vectors according to the induced beat information, instead of using a constant number of frames 

grouping. Figure 3.20 illustrated the segmentation performance with and without the application of 

beat detection using The Beatles dataset 

 

From the obtained results, we observe modest improvements at the lower tolerance deviations, 

whereas no further advancement appears at the extended tolerance deviations. This is due to the inter-

beat intervals detected in all songs in the test set. Figure 3.21 illustrates the histogram of 20 equally 

spaced average inter-beat intervals (IBI) detected from The Beatles’ test set. The detected inter-beat 

intervals from The Beatles’ test set have a mean value of 0.6 seconds with a standard deviation of 0.2 

seconds with 75% (or third quartile) of the average inter-beat intervals falling below 0.75 seconds. 

Thus, by applying beat detection processing to our segmentation algorithm, it improves the overall 

segmentation performances at the tolerance deviations that are approximately within the range limits 

of the detected inter-beat interval of all songs in the test set. In the case of using The Beatles’ as our 

test set, the tolerance deviations of the improved segmentation results are less than 0.9 seconds, which 

is consistent with the inter-beat interval descriptions of the test set. This observation leads us to the 
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assumption that the overall performance might improve at the larger tolerance deviations if reliable 

detection processing, which identifies the structural units on a larger time scale beyond the inter-beat 

interval level, is applied to the segmentation algorithm. In this context, efficient music phrase 

detection or bar detection processing would be very useful in further improving the segmentation task.  

 

 
Figure 3.19. Overview block diagram of our approach with the application of beat detection algorithm. 

 

 

Figure 3.20. The segmentation performance with and without the application of beat detection from 

The Beatles’ test set.  
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Figure 3.21.  The histogram of the average inter-beat interval detected in all songs in The Beatles’ 

database. 

 

From observing the performance of our semantic segmentation algorithm on both test databases, 

we have noted the fact that precision and recall rates are particularly low for those songs that comprise 

of smooth transitions between sections. It seems that our descriptors are not sensitive enough to mark 

these changes. On the other hand, songs with abrupt transitions between sections usually achieve a 

better rate. Thus, the use of some other descriptors may perhaps contribute towards coping with this 

issue. 

 

3.3. Summary 

In this chapter, we have presented a novel approach for detecting structural changes in music audio 

using a two-phase procedure with different descriptors for each phase. A combination set of audio 

descriptors has also been shown useful in detecting music structural changes. In addition, we have 

explored some other possible ways, such as coupling beat detection into our proposed system, to 

enhance the segmentation task. Evaluation results have shown that our approach is both valid and 

improves performance of the segmentation task. 

 

Inter-relationships (e.g. similarities or differences) between the structural segments would give a 

better grasp of the music structural information directly from the acoustic signals. Comprehending 

such information would definitely facilitate in efficient handling of huge amounts of music data. A 



 

 

 
66 

system with a good semantic segmentation is highly useful for allocating structural changes in music. 

However the lack of enclosed inter-relationship information with regards to the music segments in 

audio semantic segmentation may not be useful in practice when dealing with search or retrieval of 

huge numbers of music audio files. In the next chapter, we present our approach in identifying and 

extracting music structural descriptions with labelling and time stamping marking (dis) similar 

sections appeared in the music signals. The system simultaneously identifies repetitive patterns that 

appear in music and provides a visual representation of the music structure. The following chapter 

includes an objective evaluation of the performance of our proposed identification method with the 

use of a mixture of polyphonic music recordings. 
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Chapter 4 

Music Structural Analysis Based on Tonal Features 

In Chapter 3, we described a method for segmenting music audio signals. However, a system that can 

detect structural boundaries in music may not be sufficient for practical use when dealing with search 

or retrieval of very large numbers of music audio files. In fact, the structural information subsumed in 

the music signal is beneficial for further applications. Humans assimilate information at a semantic 

level with remarkable ease. Studies of memory support the assertion that people make use of special 

landmark or anchor events for guiding recall [Shum94] [Smith79] [Smith78] and for remembering 

relationships among events [Davis88] [Huttenlocher97]. In our study, we assume that such an 

assertion also applies to humans in the case of remembering music - we do not recall what we hear in 

its entirety but through a small number of distinctive excerpts (e.g. chorus, verse, intro, etc.) that have 

left an impression on our minds. It is usually the case that we only need to listen to one of those 

distinctive excerpts in order to recall the title for the musical piece, or, at least, to tell if we have heard 

the song before. Thus, we hypothesize that identifying and extracting music structural descriptions 

from audio signals would be a primary step towards generating higher-level music metadata, 

contributing to better and more efficient retrieval of massive amounts of digital audio data. In addition, 

it will serve as indispensable processing towards music summarization applications that aim to 

generate abstracts from music audio similar to trailers or previews of movies. In this chapter, we 

present our approach towards structural analysis of music signals based on tonal features.  

 

We have implemented our own system to perform the structural discovery task via inferring the 

repeated patterns that appear in music. Our structural description system presented in this chapter is 

based on Goto’s method [Goto03a] for detecting chorus sections in music. We have introduced further 

improvements on this method to offer a more complete music structural description. This is done by 
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marking (dis)similar sections that appear in the music signal (i.e. verse, chorus, bridge, etc.) through 

labelling and time-stamping. Our system takes a polyphonic music audio signal as input and detects 

repetitions through comparing the pitch chroma information of the music according to frame-to-frame 

information. After some processing of these detected repetitions, which will be described in detail in 

the following sections of this chapter, the system will generate transcription files which comprise the 

beginning and ending times of each sections appearance in the music, together with their given labels. 

The system is designed to achieve two goals:  

 

(i) To identify and extract music structural information from audio signals; 

(ii) To visualize all the repetitions that appear in a piece of music. This is to give a visual 

presentation of music and show key frames of important scenes that occur in the music.  

 

Current literature uses both timbre-related and tonal-related features in discovering the structural 

descriptions of music. We acknowledge the significance of timbre-related features (i.e. MFCC, etc.) in 

revealing significant structural changes in music signals. However, our approach in discovering 

structural descriptions requires independence with respect to timbre and instruments played to reveal 

repeated patterns in music. In other words, our approach should be able to produce high similarity 

scores when comparing similar repeated segments but played by different instruments. For this reason, 

we only consider tonal-related features for performing structural analysis of music signals.  

 

This chapter introduces our proposed system in detail and presents an evaluation of the system’s 

performance for each approach used in the identification task. In Section 4.1, we present an overview 

of the system. In its subsections, we present in detail the descriptions of all processes carried out by 

the system. Section 4.2 presents a set of experiments performed on the system and their evaluation 

results.  

 

4.1. Approach 

Figure 4.1 below illustrates the overview framework of our music structural description system. As 

shown in Figure 4.1, our system involves 9 main processes, each undertaking a different task. These 

main processes are as follows: 

 

(1) Feature extraction: segment input signal into overlapping frames of fixed length and compute a 

set of audio features to describe audio content for each frame; 

(2) Similarity measurement: compute similarity distance between each frame using selected audio 

features to measure the (dis)similarity between one frame and its neighbouring frames; 
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(3) Pre-processing: remove redundancies and enhance information supplied by the similarity 

representation for later processing;  

(4) Repetitions detection: identify all repeated line segments that appear in music according to the 

similarity representation; 

(5) Line segments integration: organise all the repeated line segments and recover undetected 

repeated segments in previous detection processes; 

(6) Repetitive segments compilation: assemble the repeated line segments to construct a 

comprehensive structural description of music; 

(7) Boundaries adjustment: improve the boundary accuracy of the structural description based on 

semantic audio segmentation; 

(8) Modulation detection: detect modulation within the song by comparing line segment with ring 

shifting feature vectors; 

(9) Structural Description Inference: infer music structural description based on time constraint. 

 

The following subsections explain each process in detail.  

 

 
 

Figure 4.1. Overview framework of our music structural description system. 

 

*As proposed in Chapter III
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4.1.1. Features Extraction 

Discovering music structure is a key issue in structural analysis research. Hence, extracting a kind of 

music representation from the audio signal is crucial in discovering the structure of music. Extracting 

symbolic score-like representation in music could be a possible way to complete the task. However 

due to the high constraint of present sound source-separation technologies, extracting symbolic 

representations of polyphonic music from raw audio signals is practically infeasible at the present time. 

Otherwise, extracting low-level representations of audio signals for musical content description is 

found to be an alternative way for completing this task.  

 

As mentioned earlier, melody has played an important role in music perception and music 

understanding with the implicit information that it carries. In fact, perceptual research studies 

[Dowling78, Edworthy85, Croonen94] have confirmed that contour can serve as a salient cue to 

melody recognition. Thus, in our approach towards identification and extraction of music structural 

descriptions, we exploit melody-related features to first find the repeated patterns appearing in a music 

signal. Our audio input signals consist of polyphonic popular music with the presence of simultaneous 

pitches from instruments plus voices. Therefore, melody cannot be reliably extracted from polyphonic 

audio without much error. For this reason, instead of extracting detailed melodic information from the 

music signals, we revert to using pitch-chroma as a rough approximation of it. We hypothesize that 

extracting melody-related features focused on the pitch-chroma dimension (i.e. Harmonic Pitch Class 

Profile, etc.) would be an appropriate manner to deal with our input signals and identify significant 

musical content.  

 

In the current literature, there exist a few comparisons between timbre-related and tonal-related 

features for music structural analysis. So far, most of these comparisons [Bartsch05] [Lu04] 

[Bartsch01] have shown that tonal-related features are better than timbre-related features in 

discovering the structure of music. However, there exists no specific study in identifying the 

applicability of different tonal-related features in music structural analysis. In our study, we compare 

the applicability of tonal-related features generated using two different methods, the Discrete Fourier 

Transform and the Constant-Q Transform, to reveal repeated patterns in music for music structural 

analysis. Table 4.1 below shows the grouping of the compared tonal-related features.  
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Discrete Fourier Transform Constant Q Transform  

Harmonic Pitch Class Profile (HPCP) 
Pitch Class Profile (PCP) 

Constant-Q Profile (Cq Profile) 
Constant-Q (CQP) 

Table 4.1. The list of tonal-related descriptors generated using two different methods for 

structural description discovery. 

 

Our tonal-related features are computed by mapping frequencies to pitch class values for a single 

octave.  All the compared tonal-related features have an interval resolution of one third of a semitone 

(chroma), with the size of the pitch class distribution vectors equal to 36. As mentioned in the 

beginning of this chapter, our approach in discovering structural descriptions requires features that are 

highly sensitive to tonal similarities and independence with respect to timbre and instruments played 

to reveal repeated patterns in music. Thus, different from Lu et al.’s proposed features in music 

structural analysis [Lu04], we use octave mapping for all our compared features, including both tonal 

descriptors computed using the constant Q transform. This is due to the reason that through octave 

mapping, the CQT features are more sensitive to tonal similarities compared to the non-octave 

mapping of the features. Figure 4.2 illustrates self-similarity matrices of three notes based on cosine 

distances among three notes, which includes B4 played by the bassoon (B_B4), B4 by the clarinet 

(Cl_B4), and C5 by the bassoon. The similarity plots are normalized to [0,1], and the brighter points 

represent high similarity. From the similarity plots, it is noted that the similarity score between B4 

played by the bassoon (B_B4) and B4 played by the clarinet (Cl_B4) is higher for the octave-mapped 

constant Q transformed features than the non-octave-mapped features. Thus, the act of octave 

mapping on our used tonal descriptors is considerably fulfills the features properties required by our 

approach. Another advantage of using octave-mapped tonal features is that tonal modulations, which 

occur within a piece of music, could be easily detected by ring shifting the tonal features (as to be 

explained in Section 4.1.8). Thus, for analyzing the structure of music, we adopt the octave mapping 

procedure for all our features.  
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Figure 4.2. Self-similarity matrices of three notes, which include B4 played by the bassoon (B_B4), 

B4 by the clarinet (Cl_B4), and C5 by the bassoon (B_C5), using different Constant-Q feature vectors: 

(right) Constant-Q extracted directly from 5 octaves of musical notes (left) Constant-Q extracted from 

5 octaves of musical notes and mapped into 1 octave. 

 

As in most content-based analysis, our system first requires the short-term descriptions of the 

input audio signal. The input signal is a complete full-length music audio signal. We segment the 

input signal into overlapping frames (4096-samples window length) with the hop size of 512 samples. 

This is then followed by extracting pitch class distribution features for each of these frames. Here, we 

use one of three different approaches for extracting low-level tonal features from input signals. The 

general block diagram for computing pitch class distribution features is shown in Figure 4.3. 
 

 

Figure 4.3. General diagram for computing pitch class distribution features. 

 

We focus here in describing the main differences between the four different approaches: 

Constant Q Spectral Transform Profiles (CQP), based on [Brown91], Constant Q Profiles (CQ-

Profiles), as proposed in [Purwins00], Pitch Class Profiles (PCP), as proposed in [Fujishima99] and 

the Harmonic Pitch Class Profiles (HPCP), explained in [Gómez06a]. 

 

 

B_B4 B_C5 Cl_B4 

B_B4 

Cl_B4 

B_C5 

B_B4 B_C5 Cl_B4 

B_B4 

 

B_C5 
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Pre-processing 

CQP and CQ-profiles use the constant-Q transform as a preprocessing step before mapping 

frequencies to pitch class values, while PCP and HPCP use the DFT. For both PCP and HPCP, the 

preprocessing step also includes a frequency filter after DFT, so that only the frequency band between 

100 and 5000 Hz is used. HPCP finally includes a peak detection procedure, so that only the local 

maxima of the spectrum are considered. More details regarding the HPCP computation can be found 

in [Gómez06b].  

 

Reference Frequency Computation 

A reference frequency computation procedure is used before computing HPCP, in order to estimate 

the deviation with respect to 440 Hz of the frequency used to tune the piece. This is done by analyzing 

the deviation of the peak frequencies with respect to the perfect tuning. PCP, CQ-profiles and CQP 

use a fixed frequency grid with a 440 Hz reference. 

 

Frequency to pitch class mapping 

Once the reference frequency is known and the signal is converted into a spectrogram by means of 

DFT or constant-Q analysis, there is a procedure for determining the pitch class values from frequency 

values. In the case of CQP and CQ-profiles, the weight of each frequency to its corresponding pitch 

class is given by the spectral amplitude, whereas the PCP and HPCP use the squared value. The HPCP 

introduces an additional weighting scheme using a cosine function (described in [Gómez06a]), and 

considers the presence of harmonic frequencies, taking into account a total of 8 harmonics for each 

frequency. In the four compared approaches, the interval resolution is set to one-third of a semitone, 

so that the size of the pitch class distribution vectors is equal to 36. 

 

Post-processing 

Finally, in the case of HPCP and PCP, the computed features are normalized frame-by-frame dividing 

through the maximum value to eliminate dependency on global loudness. Table 4.2 shows the 

computation methods of the compared tonal features.  

 

4.1.2. Similarity Measurement 

The second process in our system is similarity measurement between each frame feature vectors. First, 

the system uses the computed HCPC feature vectors as input and selects a set of candidates for later 

processing. The candidate set consists of the first frame feature vectors from every 10 frames, with 

each representing the pitch class distributions of approximately every 116 millisecond of the original 

input signal. Here, we only consider the first frame feature vectors instead of all 10 frames. There are 

two reasons for us to do so. First, it prevents our system from having high computational cost by 



 
74 

 

processing the complete HPCP features of the input audio signal. Second, we assume that there are 

not much significant changes in terms of music context within such a short interval. Thus, taking the 

first frame features of every 116 milliseconds interval is sufficient to identify significant changes 

within the music. From these candidates, we measure the (dis)similarity distance between each 

candidate, v(n), to its neighbouring candidates using the cosine similarity function. The cosine 

similarity function calculates the dot product of the features vectors, normalized by their magnitudes. 

It produces distance measures within the range of 0 to 1. The similarity score tends towards 1 when 

there is a strong similarity between two candidates. In reverse, the similarity scores tend towards 0 

when there is less similarity between two candidates. The cosine of the angle is given by the 

expression:  
 

( , ) X YSD X Y
X Y

•
=                                                    (4.2) 

 

We then embed the computed (dis)similarity distance values in a two-dimensional representation plot 

to reveal the repeated patterns that occur in the musical structure of the input signal. Figure 4.4 

illustrates a two-dimensional similarity plot of the song entitled I’m a Loser with the use of HPCP 

descriptors. Repeated patterns in music are visible as bright off-diagonal lines running from top left to 

bottom right.  

 
Method Pre-processing Reference 

frequency 
computation 

Frequency to 
Pitch Class 
Mapping 

Post-processing 

HPCP 
[Gómez06a] 

DFT (100-5000Hz), 
transient detection 

Analysis of 
peak deviation 

Square of 
spectral 

magnitude 
and 

weighting 
scheme 

Normalization 

PCP 
[Fujishima99] 

DFT (100-5000Hz) No Square of 
spectral 

magnitude 

Normalization 

Cq profiles 
[Purwins00] 

Constant Q 
transform (131.25 

Hz - 5 octaves 
above or ~4000Hz ) 

No Spectral 
magnitude 

No 

Constant Q 
transform 

[Brown91] 

Constant Q 
transform (92 Hz - 5 

octave above or 
~2900Hz) 

No Spectral 
magnitude 

No 

Table 4.2. The different computation methods of the compared tonal-related features.   
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Figure 4.4. Two-dimensional similarity plot of The Beatles’ song entitled I’m a Loser. 

 

Besides cosine distance, Euclidean distance could be an alternative way for computing similarity. 

In this chapter, we choose cosine distance over Euclidean distance. The reason lies in the type of 

audio features we used to discover repeated patterns in music. As mentioned in the beginning of this 

chapter, our approach in music structural analysis is based on identifying and inferring repeated 

patterns that appear in music with the use of tonal features. Thus, the success of the pattern 

recognition task is highly influenced by the high sensitivity of the distance measure with regards to 

the tonal descriptions subsumed in the computed feature vectors. Figure 4.5 illustrates self-similarity 

matrices computed based on PCP features of three notes, which includes B4 played by the bassoon 

(B_B4), B4 by the clarinet (Cl_B4), and C5 by the bassoon. The similarity plots are normalized to [0, 

1], and the brighter points represent high similarity. From the similarity plots, it is noted that the 

similarity scores between B4 played by the bassoon (B_B4) and B4 played by the clarinet (Cl_B4) is 

much higher for the matrix computed using the cosine distance than the Euclidean distance. In this 

case, it demonstrates that cosine distance is more sensitive than Euclidean distance for our used tonal 

features. Thus, by using the Euclidean distance to measure the similarity for tonal feature vectors, it 

may introduce some noise to the later repeated patterns detection processes. Even though our given 

examples comprise of only single notes this observation should not be much different when applied to 

chords played by different instruments, especially with our considered tonal-descriptors which are 

insensitive to timbre differences. Besides, even though similar chord progressions may comprise notes 

played by different instruments, their tonal descriptions still subsume more or less similar properties. 
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Figure 4.5. Self-similarity matrices of three notes, which include B4 played by the bassoon (B_B4), 

B4 by the clarinet (Cl_B4), and C5 by the bassoon (B_C5), using difference distance measures: (right) 

Cosine distance (left) Euclidean distance. 

 

4.1.3. Pre-processing 

In order to ease the process of identifying repetitive segments in music, we compute the time-lag 

matrix of the similarity representation, computed from the previous processing, by orientating the 

diagonal of the computed similarity matrix towards the vertical axis. The rotated time lag matrix, 

( , )L l t  between chroma vector v(t) at time t and at time lag l, v(t-l), is defined as  

 

,( , ) ( )t t lL l t SD v v −=                                             (4.3) 

 

Figure 4.6 illustrates the converted time-lag matrix with the x-axis referring to the lag and the y-axis 

referring to the time. The vertical lines, which appear to be parallel to the y-axis in the time-lag matrix 

plot indicate the repeated segments that appear in the music. For instance, a vertical line from 

(15, )beginL t  to (15, )endL t  in the time-lag matrix denotes that the audio section between tbegin and 

tend seconds is a repetition of the earlier section from time (tbegin-15) sec to (tend-15) sec.  The length of 

each line segment appears in the time-lag matrix plot indicating the duration of each repeated segment 

in the music. In other words, line segments with long vertical lines signify long repetitions of music 

segments and vice versa. Hence by detecting the vertical lines that appear in the time-lag matrix, we 

can obtain all the repetitions that appear in the music signal.  

 

B_B4 B C5Cl B4 

B_B4 

Cl_B4 

B_C5 

Euclidean Distance 

B_B4 B_C5 Cl_B4 

B_B4 

Cl_B4 

B_C5 

Cosine Distance
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Figure 4.6 illustrates the time-lag matrix, L, for the song I’m a Loser by The Beatles with its x-axis 

referring to the lag and its y-axis referring to the time. 

 

 
Figure 4.7. Flow chart illustrating the iterative binarization process. 

 

Output 

Th = 0.9 (default)

Compute 
P value

Th = Th + 0.01; Th = Th – 0.01; 

Binarization of time-lag 
matrix

Time-lag 
matrix 



 
78 

 

As shown in Figure 4.6, there exists much noise in the time-lag matrix. Hence, in order to detect 

repetitions or vertical lines in the time-lag matrix, we would like to consider only a certain degree of 

similarities. Using a fix degree of similarities is not practical when dealing with broad categories of 

audio input signals, which may have differences in recording quality and etc. Thus, in our approach, 

we perform a binarization process on the time-lag matrix based on an adaptive threshold to remove 

redundancies. The threshold, Th, used for the binarization process will decide the degree of similarity 

measures to be retained from the matrix for later processing. The implementation of the binarization 

process is based on an iterative procedure as shown in Figure 4.7.  

 

For initialization, our adaptive threshold holds a default value of 0.9. It means that we would 

only consider similarity measures with values more or equal to 0.9.  We first binarize the similarity 

measures in the time-lag matrix using the default threshold value. In another words, those similarity 

measures which are less than the threshold value are set to 0 whereas those higher or equal are set to 1. 

Then we compute a P value from the binarized matrix to evaluate the sufficiency of information it 

retained. The P value is defined as:  

 

total number of 1 in time-lag matrix
0.5 (time-lag matrix)

P
Area

=
×

                                   (4.4) 

 

Based on the computed P value, we consider three cases as listed below: 

 

(i) If P>0.039, increase the threshold by 0.01 and return to the beginning of the procedure; 

(ii) Else if P< 0.02, reduce the threshold by 0.01 and return to the beginning of the procedure;  

(iii) Else, quit the iterative process and output the binarized time-lag matrix. 

 

For the first two cases, the iterative procedures continue with alteration to the threshold value. 

The whole iterative procedure only terminates when the third case is fulfilled. In such a case, the 

system will output the binarized time-lag matrix and move on to the last operation in the pre-

processing section. The values used in evaluating different cases in P are empirical results obtained 

through observing various input signals. When P>0.039, it denotes superfluous information in the 

binarized time-lag matrix. Thus, by increasing the level of threshold, P, it removes the redundancies. 

When P< 0.02, it denotes that insufficient information is contained in the binarized time-lag matrix. 

Thus, it is necessary to reduce the level of threshold, P, in order to yield more information for further 

processing. Figure 4.8 illustrates an example of binarized time-lag matrix. 
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Figure 4.8. An example of binarized time-lag matrix. 

 

The last operation within the pre-processing section consists of applying the opening operation 

of the morphological filter, a widely used filter operation in image processing, to the binarized time-

lag matrix.  Please refer to Chapter 3 for details regarding the operations of the morphological filter. 

The functionalities of the opening operation in our application are: 

 

(i) to separate vertical line segments, which contain large in-between gaps, to several short 

segments;  

(ii) to remove line segments, which are too short to contain any significant repetitions of music.   

 

As shown in Figure 3.5.b presented in Chapter 3, we can clearly see how the ‘Opening’ 

operation opens the gaps within the signal while removing successive ones that are shorter than the 

structuring element in the one-dimensional binary signal. As mentioned in Chapter 3, Section 3.1.2, 

the opening operation of the morphological filter is based on erosion and dilation operations 

[Filonov05]. In general, dilation causes objects to dilate or grow in size while erosion causes objects 

to shrink. The ‘Opening’ operation works by eroding the signal then dilating the results. The amount 

of changes (growth or shrinkage) depends on the choice of the structuring element.  The following 

paragraph explains briefly how dilation and erosion work in detail.   

 

As mentioned in Section 3.1.2, dilation works by moving the structuring element over the input 

signal where the intersection of the structuring element reflected and translated with the input signal is 

found [Young02]. Figure 3.3.a shows how dilation adds ones to runs of zeros that are shorter than the 

structuring element. While dilation works by moving the structuring element over the input signal, 

erosion of the input signal, A, and the structure element, B, is the set of points x such that B translated 

by x is contained in A [Young02]. In contrast with the dilation operation, the output is set to zero 

unless the input is identical with the structuring element. Figure 3.3.b shows how erosion removes 

runs of ones that are shorter than the structuring element.  
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Here, we treat our binarized time-lag matrix as a one-dimensional non-binary signal. As 

mentioned before, the opening operation works by eroding the signal followed by dilating the results 

(as illustrated in Figure 3.4b). Alternatively, we implement the erosion operation, ( , )Er i j , by first 

applying a zero-phase rectangular window, w(n), along the perpendicular of the binarized time-lag 

matrix, x(i,j), and computing the minimum value within each windowed signal. That is, 

{ }( , ) min ( , ) ( ) ,             - ( 1) / 2 ( 1) / 2Er i j x i j n w n N n N= + − ≤ ≤ −                (4.5) 

where x(i,j) refers to the lag, i and j refers to the time at the y-axis and x-axis of the binarized time-lag 

matrix. w(n) is the zero-phase rectangular window function, which is used to define the minimum 

length, N, of relevant line segments such that line segments shorter than this minimum length are to be 

removed from the binarized time-lag matrix, and are defined as  

11,  
( ) 2

0,  otherwise

Nn
w n

− ≤= 


                                                      (4.6) 

We then perform a dilation operation on the eroded signal, ( , )Er i j , by applying the previously used 

rectangular window, w(n), to ( , )Er i j  then computing the maximum value within each windowed 

signal. That is, 

{ }( , ) max ( , ) ( ) ,              - ( 1) / 2 ( 1) / 2Op i j Er i j n w n N n N= + − ≤ ≤ −            (4.7) 

 

Finally, we yield a binarized time-lag matrix with removed vertical line segments that are less 

than the size of the window used in the morphological filtering operations. Figure 4.9 shows the same 

example given in Figure 4.8 before and after applying morphological filtering operations. In our study, 

we have experimented with using different window lengths in order to find the optimal one for our 

proposed method. The experimental results are reported later in Section 4.3.  
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Figure 4.9. Binarized time-lag matrix: before (upper) and after (below) applying morphological 

filtering operations 

 

4.1.4. Repetition Detection (Listing the repeated sections) 

The main goal of this process is to detect repetitive segments. This process requires the output data 

from the post-processing process, ( , )pL l t , as an input signal. As mentioned earlier, vertical line 

segments in the time-lag matrix represent the occurrence of repetition in music. Thus, for finding the 

possibility of each lag for containing line segments, ( , )rP l t , we sum up each column of the time-lag 

matrix according to the lag. Since we only consider elements below the diagonal of ( , )pL l t  and the 

number of elements decreases corresponding to the increase of lag, we normalize the summation 

results with the total number of elements in each lag. The calculation for the possibility of containing 

line segments, ( , )rP l t , of each lag is defined as:  

( , )
( , )

t
p

r
l

L l
P l t d

t l
τ

τ=
−∫                                               (4.8) 
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Figure 4.10 illustrates the possibility of containing line segments, ( , )rP l t , corresponding to each lag. 

High ( , )rP l t marks frequent repetitions whereas low ( , )rP l t marks that infrequent repetitions occur 

in lag, l.  

 

 

Figure 4.10. The possibility of containing repetition, ( , )rP l t , corresponds to each lag. 

 

For searching line segments, we select all peaks appearing in ( , )rP l t  and store their lag 

information in descending order as PeakSortl . We then evaluate the occurrence of line segments 

in ( , )pL l t  alternately for each element in PeakSortl . We compute ( , )p PeakSortL l t  for each PeakSortl  and 

search for the occurrence of vertical line segments. Here, we hypothesize that repetitions, which hold 

for less than 4 seconds (or less than 2 bars for a music piece with a tempo of 120 beats-per-minute in 

4/4 time signature), do not carry much significant musical information. Thus, for detecting repetitive 
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segments in music, we only consider those line segments with durations longer than 4 seconds. For 

each detected line segment, we store the beginning and ending time of the repeat segment together 

with its repeated segment based on PeakSortl  information. For instance, when a line segment between 

1( , )p PeakSort pL l l T=  and 2( , )p PeakSort pL l l T= is located, it means that a segment between time T1 

and T2 is the repetition of an earlier segment at time 1 pT l− until 2 pT l− . Hence, by the end of an 

iterative detection process, we yield a set of repetition pairs. Pseudo code shown in Figure 4.11 

outlines the above mentioned line segments searching algorithm.  

 

Select peaks from ( , )rP l t  

Let PeakSortl = peaks’ lag information in ( , )rP l t  

Sort  PeakSortl  by descending order 
 
FOR each of the PeakSortl  

Search line segments appear in ( , )p PeakSortL l t  
 

FOR each of the obtained line segments 
IF length of line segment less than 4 seconds 

Delete line segment 
ELSE  

Store starting time and ending times of line segment  
Store starting time and ending times of repeated line segments 

END 
END 

END 
 

Figure 4.11. Pseudo code outlines the line segments search algorithm. 

 

4.1.5. Integrating the Repeated Sections 

In this section, we organize the detected repetition pairs obtained from previous steps into groups. 

Apparently, different line segments that share a common line segment are repetitions of one another, 

for example repetition pairs A, B and C (according to the y-axis) given in Figure 4.12. Thus, if these 

segments are to be labelled, they should be given the same labelling. 
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Figure 4.12.  Detected repetitions correspond to the ground truth annotation of A Hard Day’s Night. 

(Description: y-axis shows the given label of each line segment. Bold labels above each line segment 

denote the relationship among the line segments). 

 

Based on this observation, we integrate the line segments, which share a common line, into a 

same labelled group. From this, we yield a set of repetition groups with different labels marking the 

different repetitive segments appearing in a music piece. That is  

 

{ }1 2, ,...,repetitions nGroup Group Group Group=                            (4.9) 

 

where n is the number of repetition groups. In each repetition group, we sort the repeated line segment 

in ascending order based on their time information, represented as  

 
{ }1 1 2 2[ , ];[ , ];...;[ , ]A m mGroup Tbegin Tend Tbegin Tend Tbegin Tend=             (4.10) 

 
1 2   ... mwhere Tbegin Tbegin Tbegin< < <  

 

Tbegin and Tend denote the beginning time and ending time of the repetitive segments whereas m is 

the number of repetitive segments in GroupA.  

 

For the refinement of line segments, we select the first line segment from each group in Groupn, 

and correlate it alternately with the pre-processed features, v(n), as mentioned in the earlier section 

4.1.2. This is for the purpose of recovering undetected repetitions that we have missed in the previous 
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detection process. We compute the distance measure, E(n), for the selected line segment and a sliding 

window of the same length through the pre-processed features, v(n). The distance measure, E(n), is 

defined as  

_
2

( ( )
( )

_
segment len comparedcompared v n

E n
len compared

−
= ∑∑                             (4.11) 

 

where Comparedsegment denotes the compared segment features and len_compared, its length. The nth 

pre-processed feature sequence with the length len_compared is represented by v(n)len_compared . The 

computed distance measures are within the range of 0 and 1 with low distance measures indicating 

strong correlations with the compared segment and vice versa. In fact, when there exists 0 in the 

computed distance measures, it marks the correlation of the compared segment to itself. Figure 4.13 

illustrates the correlation between compared segments with pre-processed features, v(n) corresponding 

to time. As shown in Figure 4.13, the self-correlated compared segment occurs after 31 seconds of the 

starting point of the song, marking the actual time position of the compared segment in the input 

music signal. 

 

 
Figure 4.13. The correlation between selected segments with pre-processed HPCP features, v(n). 

Circled crosses mark the selected local minima based on the computed distances with a predefined 

threshold. 

0.05 tolerance 
margin 

The selected lowest 
distance value  
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To detect significant repetitions appearing in music, we use an empirically predefined threshold 

based on the computed distances. Excluding the distance of the compared segment to itself (which is 

always zero), we select the lowest occurring distance value. To obtain the predefined threshold, we 

add a tolerance margin of 0.05 to this value. Then, all local minima falling below the threshold are 

considered relevant to the occurrence of repetitions. We sort the considered local minima based on the 

distance measure in descending order. With the length of the compared segment, we estimate and 

store the corresponding beginning time and ending time for each considered local minimum and form 

a set of candidate segments. We hypothesize that repetitions of a segment do not overlap with each 

other. Hence, we disregard those candidate segments that overlap with any of the line segments in the 

group that hold the same label as the compared segment. The remaining ones are labelled and 

included in the correct group as omitted repetitions from the earlier detection process. We then 

reorganize line segments in the group with an ascending order based on their time information. This is 

similar to the earlier sorting processes of the line segments for each group in Groupn. Pseudo code 

shown in Figure 4.14 giving a rough outline of the above mentioned refinement algorithm in 

recovering omitted repetitions from the earlier detection process. 

 
FOR each repetition group in Groupn 

Let segments_inGroup = line segments in the repetition group 
Find lowest distance value besides zero 
 
Let lowest_distance = lowest distance value 
Select local minima within lowest_distance + 0.05 
Sort selected local minima in descending order based on distance value 
 
Let Z = length of a line segment in segments_inGroup 
FOR each selected local minima 

Compute starting time and ending time of local minimum based on Z 
Store starting time and ending time of local minimum 
IF overlapping with any segments_inGroup 

Remove selected local minimum 
ELSE 
 Label and insert selected local minimum in segments_inGroup 
 Sort segments_inGroup in ascending order based on time 
END 

END 
END 

Figure 4.14. Pseudo code outlines the line segment refinement algorithm. 

 

4.1.6. Repetitive Segments Compilation 

For generating the music structural description, we select the three most repetitive groups, Groupn, (i.e. 

with the highest number of elements). We compile the repetitive segments by lining up all the line 

segments of these repetitive groups according to their labels as shown in Figure 4.12. If there exists an 
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overlap between two particular labels (e.g. A and B as shown in Figure 4.15), all the overlapped 

sections of these two labels will be given a new label (e.g. C), whereas the non-overlapped sections 

will be given another label (e.g. D). Unlabelled sections between all the labeled segments (e.g. E and 

F) will each be given a new label as a new unique repetition group. We then select one line segment of 

each label and perform another repetition detection procedure by correlating it with the pre-processed 

features, v(n), as described in Section  4.1.5,   this  time  with  the  goal  of  finding  all   the 

corresponding repetitions that appear in the music signal. Finally, the repetition detection process 

terminates when we have checked all labels obtained from the previous operation. 

 

 
Figure 4.15. Repetitive segments compilation process with generated new labels. (Descriptions: 

Labeling given in the y-axis denotes the original repetition labeling before the repetitive segments 

compilation process. Circled labels mark the generated new labels after the repetitive segments 

compilation process) 

 

4.1.7. Boundaries Adjustment based on Semantic Audio Segmentation 

In the previous chapter, we have explained our semantic audio segmentation algorithm for detecting 

the significant abrupt changes in the audio contents. In our semantic audio segmentation approach, we 
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hypothesize that abrupt changes in audio content occur where there is a sectional transition (e.g. intro 

 version, verse  chorus, etc.) in the music signal.  Thus, unlike our current approach, semantic 

audio segmentation focuses on the significant deviations in the audio content for finding structural 

changes of music signals. As presented in Chapter 3, semantic audio segmentation has provided a way 

to segment music signals to a larger extent compared with beat detection and onset detection 

algorithms. In other words, the detected segment boundaries by means of semantic audio 

segmentation, which is not bounded to the rhythmic restrictions of the music signals, are separated 

from its neighboring boundaries with a longer time interval. To improve the accuracy of segment 

boundaries of structural descriptions, we utilize structural change information obtained from semantic 

audio segmentation. This approach also solves the typical problem encountered in music structural 

description algorithms when dealing with songs with very short (less than 3 seconds) intro consisting 

of one or only a few strummed guitar note(s) or a short drum roll. Examples of this type of song 

include Misery and All I’ve Got to Do by The Beatles. Thus, if there appear repeated segments which 

include this short intro in the music signal, those line segments will most probably be considered as 

single line segments and cause inaccuracy to the boundaries of the final output structural description 

as shown in Figure 4.16 for the song entitled All I’ve Got To Do. The segment labeled # marks the 

strummed guitar sound at the beginning of the song while the dotted circles mark the ideal segment 

boundaries of the C-labeled segments from the output structural description. 

 

 
Figure 4.16. The output structural descriptions of the song entitled All I’ve Got To Do. (a) First 

transcription: the manually labeled ground truth result. (b)Second transcription: the chord progression 

of the song. (c) Third transcription: the output structural descriptions from our algorithm. 

 

To adjust segment boundaries of the computed structural descriptor, we categorize all the 

repeated segments into groups according to their labels excluding those undetected segments. That is  

 

                                         { }, , ...,1 2_ mGroup Segment Segment SegmentA label =                              (4.12) 
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where m is the number of repeated segments with label A. Based on the ending time of each line 

segment in each group, we find the nearest segment boundary from the semantic segmentation results. 

To be considered as a candidate group, we first make sure that each nearest semantic boundary is 

located at a similar direction from the line segments in the considered segment group. Figure 4.17 

illustrates the alteration of line segments according to the information provided by semantic 

segmentation. For example, if a line segment labelled C (as shown in Figure 4.17) is considered to be 

lengthened, we should find its nearest semantic boundary located behind its ending time for each 

occurrence of C. If the considered segment group fulfils this criterion, it is then followed by 

considering the time distances between each line segment and its nearest segment boundary. We want 

to ensure that structural changes are consistent within a limited time range around the line segments. 

For this purpose, we check whether the absolute range of the calculated time distances (i.e. the 

difference between the maximum and the minimum distance) is below a threshold of 1.5 seconds.  

Since we do not allow overlapping segments, by changing the ending time of one segment, we also 

change the beginning time of the following segment. Thus, we have to examine the affected 

neighbouring segments for each line segment in the considered segment group. All the affected 

neighbouring segments should fulfill either of the following two criteria: 

 

(i) The affected neighbouring segment has no repetition in its music signal;  

(ii) If repetitions exist, then all the line segments with the same label as the affected 

neighbouring segments should also be affected neighbours. For example: If we want to 

extend C and this affects E, then all the occurrences of E should be found directly behind an 

occurrence of C. 

 

It is noted that the first segment in the whole song is not considered in the process and thus, no 

alteration will be made to the first segment. This is to give some flexibility to the segment at the 

beginning of the song. Finally, all the ending times of the line segments of the candidate group and the 

beginning times of the affected neighbouring segments will be adjusted according to the average time 

distances computed previously between each line segment and its nearest segment boundary. The 

whole process is repeated based on the beginning time of each line segment in the group.  
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Figure 4.17. The song example entitled All I’ve Got To Do with the alteration of line segments 

according to the information provided by semantic segmentation. (a) First transcription: the manually 

labeled ground truth result. (b) Second transcription: the output structural description before 

boundaries adjustment procedure. (c) Third transcription: the output structural description after 

boundaries adjustment procedure. (d) Bottom data plot: the structural changes boundaries output from 

semantic audio segmentation. 

 

4.1.8. Modulation Detection 

Modulation, the process of changing from one key to another, is a very common phenomenon in 

music composition. Composers and song writers use modulation to give freshness to their musical 

compositions. In perceptual experiment, Thompson and Cuddy [Thompson92] found that both trained 

and untrained listeners were sensitive to changes in key and that the perceived distances of 

modulations corresponded well with music theoretical ideas about key distance. Thus, when analyzing 

music structures, one should expect to encounter and solve music modulation issues. Figure 4.18 

illustrates the structural description of the song entitled I Am Your Angel from our proposed algorithm 

without any modulation detection procedure. From the ground truth, we can see that all the refrain 

segments appearing in this song are given the same Refrain label. However from the output structural 

descriptions from our algorithm, the first two refrain segments are given the label A, whilst the final 

two refrain segments are given the label B. This is because the final two refrain segments are 

modulated two semitones up from the original key of C Major to D Major. Thus, by directly 

comparing segment-A to segment-B, it is impossible to find any similarity within these two segments.  

For this reason, the algorithm without considering modulation effects fails in identifying the 

modulated repetitions.  

 

(a) 
(b) 
(c) 

(d) 
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Figure 4.18. The undetected modulated “refrain” segments within the song entitled I Am Your Angel. 

(a) Top transcription: the manually labeled ground truth segments of music. (b) Bottom transcription: 

the detected structural descriptions from our proposed algorithm before the modulation detection 

procedure. 

 

So far, not much study in music structural discovery has addressed the problem of modulations 

within a song. In our proposed approach, we are going tackle the complexity of modulation within a 

song by means of modifying the extracted pitch class distribution features described in Section 4.1.1. 

One of the advantages of octave mapping tonal descriptors is that ring shifting of the feature vectors 

corresponds to transposition in music perception. Since the interval resolution has been set to one-

third of a semitone, ring shifting three coefficients of the features vectors resembles transposing the 

tonal harmonic contour by one semitone. In practical, it can be achieved by  

      (:, +1:36) (:, 1: )compared shift compared shiftcompared_modulatedv v  Index    v  Index 
 =    (4.13) 

                                      where, 3* ( 1)shiftIndex r= −                                            (4.14) 

 

and  { }1,2,3,...,12r∈ denotes the (r-1) number of semitones to be modulated downwards. . It is 

noted that when r=1, there is no modulation occurrs at comparedv . Thus, with the newly generated 

music structural descriptions, we categorize all the repeated segments into groups according to their 

labels as shown in Equation 4.12.  

 

Since we have no prior knowledge regarding the modulation information, we ring shift the pre-

processed feature vectors, v(n), as mentioned in the earlier section 4.1.2., transposing by eleven 

semitones downwards towards an octave. This is followed by selecting the first line segment from 

each group in Groupn, and correlating it alternatively with each of the eleven shifted feature vectors, 

Vshift-semitone(n), where shift-semitone={1,2,…,11}, is similar to the undetected repetitions recovery 
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procedure described in Section 4.1.5. Here, we adopt the same distance measure given by Equation 

4.11. As mentioned earlier, a low distance measure indicates strong correlations within two compared 

windows. For detecting significant modulated repetitions, we set a constant empirical value as the 

upper threshold. We only consider those local minima falling below the threshold as the relevant 

modulated repetitions that appear in the music. Similar to the sorting and estimating candidate 

segments procedures explained in Section 4.1.5, we disregard those candidate segments that are not 

fully but partially overlapping with any of the line segments in the considered group, Groupn. Finally, 

we only consider the remaining candidate segments as the modulated segments of the compared line 

segments. Figure 4.19 illustrates the computed distance measures between A-Segment and the 

transposed (two-semitones downwards) feature vectors of the same song example shown in Figure 

4.18, and the selected modulated segments. We then include those modulated segments into the group 

of the compared line segments and label the line segments according to the labels of the compared 

group. Figure 4.20 shows the output of our structural descriptions, after applying the modulation 

detection procedure, with the identified modulated repetitions appearing in the song example given by 

Figure 4.18. 

 

 
Figure 4.19. The correlation between the segment labeled A with transposed feature vectors, Vshift-

semitone(n) with the dotted line marks the predefined threshold. Circles mark the selected local minima 

as relevant modulated segments. 

 



 
93 

  

 
Figure 4.20. The output structural descriptions of our proposed algorithm with the same song example 

given by Figure 4.18. (a) Top transcription: the manually labeled ground truth result. (b) Middle 

transcription: music structural descriptions without the modulation detection procedure. (c) Bottom 

transcription: music structural descriptions with the modulation detection procedure. 

 

4.1.9. Structural Description Inference 

Finally, with the labeled line segments, we combine all the repeated labels (as shown in Figure 4.21) 

with a parameter, d, to restrict the maximum duration that is allowed for the integration of the 

repeated labels. In fact, the setting of parameter d defines the simplicity (or complexity) of the 

generated music structural descriptions. Figure 4.22 shows different d parameter settings with its 

generated structural descriptions of music from our system. As shown in Figure 4.22, with the 

increase of the d parameter from the most basic default computed structural description to 25 seconds, 

segments marked “BA” are combined to produce a single new “A” segment. Thus, the structural 

descriptions of the song have been modified from a detailed “BABACBABACBA” to a simplified 

“AACAACA” version. In evaluating the performance of our structural description algorithm, we set 

the d parameter as 25 sec. This is based on the assumption that structural sections in pop music (i.e. 

intro, verse, chorus, etc.) are less than 25 sec in length.  

 

 
 

Figure 4.21. Labeling integration procedure. 

 

A B

A B A A

A A

B C B 
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Figure 4.22. Music structural descriptions from the song entitled A Hard Day’s Night, with various 

predefined d parameter settings: (1) the default structural descriptions from our algorithm. (2) 25 

seconds. (3) 50 seconds. (4) 75 seconds. 

 

4.2. Evaluation 

In this section we present an evaluation of our system’s performance in identifying structural 

descriptions of music based on different datasets. We first begin by presenting in detail our test data 

set and the labelling procedure. This is then followed by explaining three evaluation measures used to 

assess the performance of our proposed method. Then, we show the quantitative evaluation results of 

our system’s performance for different datasets. Finally, we present our system’s performance results 

based on applying different window sizes of morphological filtering as described in section 4.1.3.  

 

4.2.1. Data set 

In our experiments, we use three datasets. The first test set (from now onwards referred to as 

BeatlesMusic) consists of 56 songs from The Beatles 70s’ albums, whereas the second test set (from 

now onwards referred to as ChaiMusic) comprises the same audio database as in [Chai05], 26 songs 

by The Beatles from the years 1962-1966.  The third dataset (from now onwards referred to as 

WordPop) consists of 23 popular songs in various languages (e.g. Japanese, Mandarin, Cantonese, 

Indonesian, English, etc.) from different regions of the world. The selected English pop songs in 

WorldPop include those appearing in the song list proposed in [Rentfrow03], which study the abroad 

2

1

3

4
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and systematic selection of music genres and personality dimensions. The purpose of using two 

additional datasets (i.e. ChaiMusic and WorldPop) is to evaluate the validity of our algorithm 

compared to other systems in existing literature. In the case of using a third test set (i.e. WorldPop) 

which contains songs other than The Beatles’, this is to avoid having an evaluated result that biases 

towards The Beatles’ music and also to show the applicability of our algorithm to a broad range of 

styles, artists, languages, and time periods within popular music.  

 

Each song is sampled at 44.1 kHz, 16-bit mono. For evaluation purposes, we have generated a 

ground truth by manually labelling all the sections (i.e. intro, verse, chorus, bridge, verse, outro, etc.) 

of all The Beatles songs in the first two test sets (i.e. BeatlesMusic and ChaiMusic), according to the 

information provided by Allan W. Pollack’s “Notes On” Series website on song analyses of The 

Beatles’ twelve recording projects7. In the case of the third test set (i.e. WorldPop), since there exist 

no official song analyses available, we generated the ground truth by comparing labellings manually 

annotated by two advanced music conservatory students through listening to the music itself. A music 

composer supervised the labelling process and results. 

 

4.2.2. Quantitative Performance 

To quantitatively evaluate the segmentation performance of our algorithm, we use the standard 

measures in information retrieval (as explained in Chapter 3, Section 3.2.2.). We compare the 

obtained segment boundaries for each of the three descriptors with manually labelled ground truth 

results. The recall and precision are computed for various degrees of tolerance deviation (between 0.3 

sec and 3.6 sec) in order to obtain a more complete picture with regards the accuracy and reliability of 

the segmentation results.  

 

4.2.3. Results and Discussion 

Figure 4.23 and Figure 4.24 show the evolution of precision and recall scores with respect to tolerance 

deviation for different pitch class distribution descriptors (i.e. HPCP, PCP, CQP and CQ-profiles) 

using BeatlesMusic. In both figures, we observe a significantly higher performance of HPCP 

compared to PCP, CQP and CQ-profiles. With a tolerance deviation of 3.6 sec, HPCP achieves a 

higher than 70% accuracy, and a reliability of 83%. From our segmentation results, HPCP 

outperforms the other tonal descriptors by as much as 10% in both precision and recall scores with 3.6 

sec tolerance deviation. A t-test analysis concludes that the differences between HPCP and the rest of 

the used tonal descriptors are statistically significant beyond the 99% confidence level with the p-

                                                 
7  The Twelve Recording Projects of the Beatles webpage: http://www.icce.rug.nl/~soundscapes/DATABASES/AWP/awp-

beatles_ projects. html 
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values<0.01. For the case of PCP, CQP and CQ-profiles, there is no statistically significant difference 

in their performance on our test set. 

 

 
Figure 4.23. Precision measures of segmentation results (through structural analysis) with four 

different tonal-related descriptors using BeatlesMusic. 

 

 
Figure 4.24. Recall measures of segmentation results (through structural analysis) with four different 

tonal-related descriptors using BeatlesMusic. 

 

Comparing our proposed method with an existing structural analysis system [Chai05] by means 

of using a same evaluation dataset (i.e. ChaiMusic), we note a slightly better performance using our 
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proposed method (with the use of the HPCP tonal descriptors), throughout almost the entire evolution 

of recall and precision rates corresponding to the considered tolerance deviations (in seconds). With a 

tolerance deviation of 3.6 sec, our algorithm achieves precision and recall rates of 82% and 84%, 

respectively, together with an average F-measure of nearly 83%. Figure 4.25 illustrates both precision 

and recall scores of the HPCP using ChaiMusic with respect to the tolerance deviation. 

 

 

Figure 4.25. Evolution of recall and precision rates of HPCP with respect to the tolerance 

deviation (sec) for the different pitch class distribution features using ChaiMusic. 

 

Figure 4.26. Evolution of recall and precision rates of HPCP with respect to the tolerance deviation 

(sec) for the different pitch class distribution features using WorldPop. 
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In the case of WorldMusic, which comprises of popular songs in various languages from 

different regions, the segmentation performance is illustrated in Figure 4.26. With a tolerance 

deviation of ± 3 seconds, our algorithm achieves at least 81.7% and 83.2% in its precision and recall 

rates respectively. Figure 4.27 shows the precision and recall scores for each song in the WorldPop 

with a considered tolerance deviation of ± 3 seconds. From the F-measure scores in Figure 4.27, we 

have observed that there are at least 7 songs (i.e. SongID-4, SongID-9, SongID-12, SongID-14, 

SongID-16, SongID-19 and SongID-23) which have all their structural segments correctly detected by 

our algorithm, with a tolerance deviation of ± 3 seconds.  

 

 
Figure 4.27. The segmentation performance (with a tolerance deviation of ± 3 seconds) on each song 

in WorldPop.  

 

To compare our algorithm’s performance on each of the songs in the WorldPop, we compute the 

average for all the F-measures obtained along the twelve considered tolerance deviations (from 0.3 sec 

to 3.6 sec) for each song in the test set. The distribution of the average F-measure has a mean of 

69.3% and a median of 72.9%. From the median value, more than 50% of the songs have an average 

F-measure above 72.9%. The closeness between mean and median values show there are not many 
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outliers in the distribution. Figure 4.28 illustrates the average F-measures of each song in WorldPop 

along the various tolerance deviations. From the bar graph, we note that the best song performance in 

WorldPop is in the case of SongID-12. With an average F-measure of 100%, it denotes that SongID-

12 has achieved 100% precision and recall rates throughout the considered tolerance deviations. In 

other words, all the structural segments in SongID-12 are correctly detected under 0.3 seconds 

tolerance deviation. Figure 4.29 shows the manually annotated ground truth result and the detected 

segments from our proposed structural description algorithm for SongID-12. 

 

 
Figure 4.28. The average of total F-measures obtained from each song in WorldPop along the twelve 

considered tolerance deviations. 

 

 

Figure 4.29. The SongID-12 entitled I Say A Little Prayer with two annotations: (a) Top transcription: 

the manually labelled ground truth result. (b) Bottom transcription: the detected segments from our 

proposed structural description algorithm. 
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Through observing the performance evolution curves generated based on each test set (i.e. 

BeatlesMusic, ChaiMusic, WorldPop), we find a similar abrupt increase of the segmentation 

performance between the first (0.3 seconds) and the second (0.6 seconds) of the considered tolerance 

deviation extent. In particular, WorldPop holds the highest sudden rise, as much as 22% in both 

precision and recall scores respectively, within this region. The sudden increase of segmentation 

performance within 0.3 seconds tolerance deviation to 0.6 seconds may be caused by the mixture of 

fricative sounds at the segment boundaries and the chosen morphological filter length. Music sections 

commonly start with a new phrase. Thus, the segment boundaries of music have a high possibility of 

containing fricative sounds incurred from the start of singing a new phrase by the singers. When there 

are fricative sounds that have weak tonal representations around the segment boundaries, its tonal 

features in the time-lag matrix will be considered as noise and will be suppressed after the binarization 

process. This will then incur leakage within the line segment in the time-lag matrix. When this 

happens, the morphological filter will remove the considered line segments, based on the chosen filter 

length, and thus create some errors in the detected structure boundaries. This scenario happens to be 

much stronger in the WorldPop data set compared to the other two test sets (i.e. BealtesMusic and 

ChaiMusic), perhaps because the WorldPop database contains songs in some specific languages (e.g. 

Mandarin and Cantonese) which may have a higher potential of causing fricative sounds at the 

segment boundaries. 

 

From the above given evaluation results, we can see that our algorithm performs quite well in 

discovering the structure of music by means of tonal-related features. However, we note a typical 

problem that occurs when using only tonal-related features in performing music structural analysis: 

the occurrence of true negatives in repetition identification when dealing with songs which have the 

same temporal evolution of chord progressions for different sections. The Beatles’ song entitled 

Please Mister Postman is a typical example of different sections holding the same temporal evolution 

of chord progressions. Both of its “RefrainA” and “VerseA” sections are composed of identical chord 

progressions (i.e. A F#m D E). Thus, our music structural description algorithm falsely identifies 

these different segments as the repeated segments in the music as shown in Figure 4.30. 
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Figure 4.30. The song example entitled Please Mister Postman, where true negatives occur when 

different segments contains quite an identical temporal evolution of tonal descriptions (or chord 

progression in musical term). (a) Top transcription: the manually annotation ground truth result. (b) 

Bottom transcription: the output structural description from our algorithm. 

 

In the following paragraphs, we are going to investigate the validity of a few hypotheses 

assumed by our proposed approach to music structural analysis. By means of comparing the acquired 

quantitative evaluation results, three aspects are examined: 

 

(i) The use of Euclidean distance versus cosine distance in computing distances between frame 

feature vectors; 

(ii) The effectiveness of coupling semantic audio segmentation into a structural analysis 

algorithm; 

(iii) The effectiveness of morphological filtering in music structural analysis. 

 

Case study 1: Euclidean Distance versus Cosine Distance 

To verify the validity of our observations regarding the suitability among the two distance measures 

(i.e. Cosine distance versus Euclidean distance) to our proposed application, we generate structural 

descriptions of music for all songs in BeatlesMusic based on HPCP tonal descriptors using each of 

these two distances. Finally, we compare the segmentation performance generated from each of the 

two distances to evaluate its applicability to our proposed method. Figure 4.31 shows the 

segmentation results generated using BeatlesMusic with respect to the tolerance deviation (in seconds) 

for the different distance measures: cosine distance and Euclidean distance.  The plots show a clear 

advantage of cosine distance over Euclidean distance for generating structural descriptions of music in 

both precision and recall scores. Segmentation performance obtained using the cosine distance 

exceeded at least 6.5% in its F-measure compared to Euclidean distance. T-test analysis concludes that 

the differences are statistically significant beyond the 99% confidence level with the p-values<0.01. 

This quantitative evaluation has confirmed our preference in using the cosine distance measure to 

calculate the similarities between feature vectors for discovering and extracting structural descriptions 

from music signals using our approach. 
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Figure 4.31. The segmentation evaluation results obtained using Euclidean distance (rightmost) versus 

Cosine distance (leftmost) using BeatlesMusic based on HPCP descriptors. 

 

Case study 2: Effectiveness of Coupling Semantic Audio Segmentation 

We evaluate the effectiveness of coupling semantic segmentation to our structural description system 

by comparing the segmentation results (with and without the use of semantic segmentation) achieved 

from our algorithm results. Figure 4.32 illustrates the distinct improvement in its segmentation 

performances with the application of semantic segmentation based on HPCP features on BeatlesMusic. 

The evaluation results show that our algorithm with applied semantic segmentation has improved as 

high as 3% in its overall effectiveness in detecting structural descriptions of music. T-test analysis 

concludes that the differences between the two approaches (i.e. with and without the use of semantic 

segmentation) are statistically significant beyond the 99% confidence level with the p-values<0.01. 
 

 

Figure 4.32. The segmentation performance with and without the application of semantic audio 

segmentation on our proposed structural description algorithm using BeatlesMusic. 
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Case study 3: Effectiveness of Morphological Filtering 

 

 
Figure 4.33. Segmentation performance of various window lengths applying to morphological filter 

with a tolerance deviation of ± 3 seconds using BeatlesMusic. 

 

The performance results corresponding to different filter lengths used in the pre-processing stage has 

shown the effectiveness of the morphological filtering application in our system. Figure 4.33 

demonstrates our system’s performance corresponding to different window sizes in morphological 

filtering with a tolerance deviation of ± 3 seconds using BeatlesMusic. “0.0” window size in the 

figure denotes without the use of any morphological filter. The figure shows the dependence of the 

precision and recall scores on window length. The optimal performance occurs for a window size of 

30 frames (approximately 0.3 seconds) with precision and recall scores of 65.8% and 77.6%, 

respectively with an overall F-measure of 71.2%. This surpasses the other window lengths (i.e. 0 sec, 

0.6 sec, and 0.8 sec) by at least 7.0% and 8.0% for precision and recall rates respectively. The worst 

performance occurs for the window size of 0.6 seconds with the lowest precision rate of 55.6% and a 

recall rate of 65.7%. The statistical T-test concludes that the differences between 0.3 sec window size 

and the rest of the window lengths are statistically significant beyond the 99% confidence level with 

the p-values<0.01.  For the case of 0 sec (non-applied morphological filter), 0.6 sec and 0.8 sec, there 

is no statistically significant difference in their performance with our test set. The results demonstrate 

that relatively good structural descriptions can be obtained when a suitable filter length is applied to 

our system. As shown in Figure 3.21 in Chapter 3 regarding the histogram of the average inter-beat 

interval of all songs in The Beatles’ database (or also BeatlesMusic in this chapter), BeatlesMusic has 

a mean value of 0.6 seconds with a standard deviation of 0.2 seconds. By applying morphological 
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filtering with a filter length approximately the same as or higher than the average inter-beat interval of 

songs in the database, it may lead to excessive discarding of the relevant line segments and decrease 

the algorithm performance. Therefore, prior knowledge regarding the beat information of the song in 

the processing database would be helpful for choosing an optimal filter length to be applied to the 

system. 

 

4.3. Summary 

In this section, we summarize the key findings from the experiments discussed in this chapter. Here, 

we have presented our approach towards music structural analysis by identifying and inferring 

repeated patterns that appear in music to generate unified high-level structural description directly 

from the audio signals. In addition to the obtained music structural boundaries information, similar 

with the one provided by semantic audio segmentation explained in the previous chapter, (dis)similar 

sections in music are identified and tagged with explicit labeling. We have investigated using different 

tonal-related features to discover repeated patterns appearing in music for later structural description 

generation. By integrating semantic audio segmentation to our music structural description system, 

modest improvement to both the accuracy and the reliability of our system is achieved. In addition, we 

have also built a music structural description system that detects modulations within a song. 

Experiments were conducted to evaluate the performance of our proposed approach for polyphonic 

audio recordings of popular music. Additionally, we also studied the effectiveness of morphological 

filters for pre-processing the signal prior to the identification process through the use of various 

window sizes.  

 

In the next chapter, we will present our new approach in identifying representative excerpts from 

the audio signal based on the generated music structural descriptions. Additionally, subjective 

evaluation is conducted by music listeners through an online listening test that examines the quality of 

the extracted segments from various approaches based on human perceptions. 
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Chapter 5 

Identifying Representative Audio Excerpts from Music 

Audio 

In the previous chapter, we presented our system for discovering and extracting music structural 

descriptions from audio signals. In this chapter, we continue our research study with the identification 

of representative audio excerpts from music signals based on the structural information generated 

using our system described in the previous chapter. In other words, our aim is to generate an audio 

excerpt that captures the retrieval cue or the gist of the music input signal. In line with this, we study 

the significance of various approaches related to this context through subjective evaluation based on 

human perceptions. In particular, three different approaches are investigated. The first approach 

pursues the widely used manner by online music stores (e.g. Amazon, iTunes, etc.) in previewing 

music, where the first 30 seconds of the song is selected to represent any piece of music. The second 

approach emphasizes the significance of the most repetitive excerpts in the music. The third approach 

considers all repetitions as equivalent. Instead, high similarity between a repetitive segment and the 

entire song is used as the primary criteria to select the best suitable audio excerpt to represent a piece 

of music. To make this study possible, we have set up an online listening test. Music listeners were 

invited to participate in the online listening test to examine the quality of the extracted segments using 

the various approaches.  

 

So far, a few studies related to evaluating various strategies for music summarization have been 

conducted [Chai05] [Logan01]. Logan and Chu [Logan01] conducted user tests to evaluate the quality 

of music summaries obtained from selecting a fixed 10 seconds segment among the frames with the 

most frequent label assigned by two bottom-up clustering techniques (i.e. clustering approach versus 
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HMM approach). Chai [Chai05] also investigated various strategies for music summarization (i.e. 

random; beginning of the second repeated section; transition between the most repeated section and 

the second repeated section; transition between the second repeated section and the most repeated 

section). From Chai’s compared summarization strategies, the author reported a consistently high 

performance for cases that extract music summaries based on the beginning of the most repeated 

section over the other strategies  

 

5.1. Audio Excerpt Identification and Extraction 

Given that one of our aims in this chapter is to identify a representative excerpt from music signals, 

one may ask, “what is the criterion required for a music section to be acknowledged as a 

representative excerpt the whole piece of music?” As mentioned in Chapter 1, the repetition, 

transformation, simplification, elaboration and evolution of music structures create the uniqueness of 

the music itself. Hence, many research in this area have assumed that the most representative sections 

of music are frequently repeated within the song. In fact, this has been the most adopted assumption 

for generating the most representative excerpt or thumbnail of any music in audio research [Chai05] 

[Logan01]. We acknowledge the significance of repetitiveness of music in human perception and 

cognition. However we hypothesize that perhaps there may exist some other significant factors (e.g. 

first 30 seconds of the piece as they are the most memorable, etc.) and some of them will be explored 

in the next sections. In this study, we consider three approaches in extracting a representative excerpt 

of a music signals.  Our implemented system extracts a short excerpt (with a fixed length of 30 

seconds) from each song based on these three approaches, to serve as the representative excerpt of the 

music signal. We do not allow any differences in duration between the extracted audio excerpts, to 

avoid having the subjects’ preferring excerpts with longer durations. The following sections explain in 

detail the three investigated approaches. 

  

5.1.1. First-30-seconds  

In identifying a representative excerpt from a music signal, we assume that such audio excerpts can 

also serve as a retrieval cue of the music wherein when one listens to the particular audio excerpt, he 

or she would be able to tell if this is the music that he or she is looking for or if it is interesting. Since 

most online music stores utilize the 30 starting seconds of the audio signal for music previewing, we 

include this criterion within our study of comparing different approaches used in identifying 

representative excerpts of music signals.  
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5.1.2. Most-repetitive  

In our second and third approaches, we exploit the structural information generated from our music 

structural description system to extract the significant representative audio excerpts from music 

signals.  As explained in Chapter 4, our music structural description system produces structural 

transcriptions with the use of labeling (i.e. A, B, C, etc.) and time-stamping to mark (dis) similar 

sections that appear in the music signal (i.e. verse, chorus, bridge, etc.). Based on generated structural 

information, we first categorize all the repeated segments into groups according to their labels, 

excluding those undetected segments. That is  

 

{ }, , ...,1 2_ mGroup Segment Segment SegmentA label =                               (5.1) 

 

where m is the number of repeated segments with label A. In each repetition group, we sort the 

repeated line segment in ascending order based on their time information. As mentioned above, the 

second approach gives more priority to the repetitiveness of an audio segment. Since repetitiveness of 

each repetition group is defined by the number of line segments it encompasses, we begin the 

identification process with calculating the number of line segments included in each repetition group 

(as described in Chapter 4, section 4.1.7). Repetition groups with the highest number of line segments 

are selected as group candidates for having the possibility of comprising the most representative 

segments. The idea of extracting representative excerpts comes from applications such as music 

recognition, audio browsing, audio thumbnailing and so forth. Thus, for selecting representative 

excerpts of music for such applications, we would prefer to extract audio segments which appear to be 

the most original among the rest of the repetitions in the same group. Here, we assume that such 

original repetitions normally appear first in a repetition group. Thus, we extract 30 seconds of audio 

from the starting time of the first repeated segment in the most repeated group (which will be then 

considered to be the most representative excerpt of the music piece).   

 

5.1.3. Segment-to-Song 

The third approach explores the potential of the segments in capturing the specific features of the 

representative excerpt of the music. Since the third approach focuses more on content descriptions of 

the unique characteristics of music sections, we disregard the repetitiveness of audio segments but 

consider all repetition groups as equally important in making group candidates selection. Contrary to 

the first approach, we place importance on the potential of the segment to grasp the specific properties 

of the entire song. Here, we truncate songs into several segments based on the time information 

subsumed in the song’s generated structural descriptions. The audio features are then extracted on a 

frame-by-frame basis. We extract audio features from MEPG-7 descriptors from each repeated 
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segment. Table 5.1 lists the above-mentioned audio features categorized into three different groups.  

We group all frames included in each repeated segment and compute average values for each feature. 

We then use a Manhattan distance [Tzanetakis04], defined as ' '
1 1( , ') ... m md f f v v v v= − + + − , to 

access the distance between each repeated segment to its entire song. Figure 5.1 illustrates the 

procedure of distance computation between each repeated segment to its full-length song.  

 

 

 
Figure 5.1. Segment-to-song distance computation. 

 

 

Features Group Audio Features 

Spectral  
& 

 Temporal 
features 

Energy; Intensity; Loudness; High-frequency coefficient; Low-frequency 
energy relation; Maximum magnitude frequency; Spectral rolloff; Spectral 
centroid;; Spectral flatness; Spectral decrease (the amount of decreasing of 
the spectral amplitude); Spectral kurtosis; Spectral skewness; Spectral 
spread; Strong peak; Zero crossing rate; 

Bark band Bark Band  

MFCC Mel-Frequency Cepstral Coefficients 

Table 5.1 Features grouping extracted from audio segments. 

 

 

 

 

 

 

 

Song A with its structural description 

AA B C DB 

Full-length of song A 

Compared 
segment to song 
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No Artist Song Title 
1 The Beatles It Won’t Be Long 
2 The Beatles No Reply 
3 The Beatles All My Loving 
4 The Beatles If I Fell 
5 The Beatles Can’t Buy Me Love 
6 The Beatles Please Mister Postman 
7 The Beatles Eight Days A Week 
8 The Beatles Things We Said Today 
9 The Beatles Do You Want To Know A Secret 

10 Aretha Franklin Chain Of Fools 
11 Rolling Stones Brown Sugar 
12 Air Supply I Can’t Wait Forever 
13 R. Kelly & Celine Dion I Am Your Angel 
14 Whitney Houston & Mariah Carey I Believe In You And Me 
15 Destiny’s Child Independent Women 
16 Van Halen Jump 
17 Mike Francis Room In Your Heart 
18 N’sync Bye Bye Bye 

Table 5.2. Eighteen music pieces used in the online subjective evaluation. 

 

Finally, of all segments belonging to one song, we select the one with the smallest distance d to the 

entire song. We then extract 30 seconds from the beginning of the segment to represent the whole 

song itself.  

 

5.2. Evaluation 

Since the ultimate users of music is the audience, we created an online listening test to obtain a 

subjective evaluation of the extracted audio excerpts using the different approaches based on 

judgment by human listeners. In our experiment, we created an audio database consisting of 9 popular 

songs from The Beatles’ and another 9 popular songs from other artists or groups (Table 5.2). Song 

titles of the pieces and artists names were not provided to the subjects during the experiments.  

 

5.2.1. Subjects 

Subjects were invited through posted announcements at the FreeSound forum and emails to a few 

different groups such as the MTG mailing list and the Summer School on Sound and Music 

Computing 2006 mailing list.  

 

5.2.2. Datasets 

For all the 18 pieces, three music excerpts were extracted using the three different approaches. Thus, 

there were 54 song excerpts in total in our listening test. In each listening test, a list of 9 song excerpts 
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were chosen for each subject evaluation. This specific number was chosen based on the consideration 

that each subject should take approximately 30 minutes to finish the listening test. Considering that 

our listening test relied on voluntary participation, we had to stay within an acceptable time spent by 

our subjects. In this case, we set a time limit of 30 minutes.  For every 6 consecutive listening tests, 

the subjects would evaluate the same 9 song excerpts as the first listening test. We understand that the 

more song pieces included for evaluation, the more representative the obtained results from the 

listening experiment. However considering that there would be a limitation in the number of 

participants in the listening test, we only included 18 music pieces for this experiment, so that each 

song excerpt would be evaluated by more than one subject. All the excerpts together with the original 

songs were converted to MP3 format (sampling rate of 22 kHz, Mono-channel, 56 kbps). For each 

excerpt, four questions were asked to seek information regarding the following: 

 

- Familiarity with the sound excerpt; 

- Amount of effort required to recall the song; 

- Subjects’ satisfaction regarding the use of the presented sound excerpt to represent the 

entire piece of music. 

 

It is noted that throughout the online survey, the information regarding the approaches used in 

identifying representative excerpts from music signals was not disclosed to the subjects.  

 

5.2.3. Web Interface and Listening Test Procedures 

The web interface used in this online listening experiment was based on that used by [Sandvold05] for 

a different purpose, and was later also adapted by [Streich06] for music complexity judgment. In the 

online listening test each subject was given 9 audio excerpts for evaluation, taking an estimated time 

of approximately 30 minutes to complete the whole test. As three excerpts were extracted from each 

piece in the test data using different approaches, there was a possibility that the subject might be asked 

to evaluate different audio excerpts of the same songs several times. Below are the descriptions of our 

online listening test following its proceeding order.  

 

1. Introduction: The online listening test begins with an introduction page together with a link to test 

the installed web browser audio plug-in as shown in Figure 5.2. The subjects were given options 

of either installing a plug-in or downloading the mp3 files and listening through their own mp3-

player application.  

 



 
111

 
 

Figure 5.2. Introduction page of our online listening test.  

 

2. Subject registration: Subjects were then prompted to a registration page where a few personal 

questions regarding gender, age, musical background, familiarity with popular music, familiarity 

with The Beatles’ music as well as how much subjects actually liked their music before proceed 

to the evaluation pages. Figure 5.3 illustrates one of the subject registration pages. 
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Figure 5.3. Subject registration page. 

3. Before getting started with the evaluation process, subjects were sent to the introduction page of 

the evaluation site. This page describes the questions asked of the subjects.    

 

4. Audio excerpts evaluation: Each page presented one song excerpt from the test database to be 

rated by the subjects. For each audio excerpt, four questions were asked in the following order:    

 

Question 1: Have you heard this song before? 

Question 2: How much effort do you need to recall the whole piece of music if you have 

heard this song before? 

Question 3: Please select one of the labels below which you think is the most likely title of 

the song. 

Question 4: Please listen to the above full-length as well as 30 second excerpts of the song. 

How would you judge the quality of the short excerpt used as a music summary 

of the full-length song? 

 

Four choices of song titles were generated based on the song lyrics that appeared in all the 

extracted song excerpts from the same song. This was to increase the difficulty level in defining the 

song titles through listening to the lyrics that appeared in the presented song excerpts. Thumbnail 

rating was used. Figure 5.4 presents the evaluation page. As shown in Figure 5.4, if subjects needed 
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help in answering a particular question, they could click on the help link, which would redirect them 

to the relevant help page. This page gave some hints to subjects on how to rate the song excerpt 

according to the question. Figure 5.5 and Figure 5.6 illustrate the help pages for Question 2 and 

Question 4 listed above. In addition, subjects were given an opportunity to explain why they 

considered an excerpt to be a “poor” or “bad” summary of the song.  
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Figure 5.4. The evaluation page. 
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Figure 5.5. Help page for Question-2. 
 

 

 
Figure 5.6. Help page for Question-4. 
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5. After evaluating all the 9 audio excerpts, subjects were redirected to the feedback page where 

they were asked their opinion as to what would be the best way to generate a good music 

summary, identifying factors that they considered important in rating their satisfaction with the 

presented audio excerpts. Figure 5.7 shows the feedback page of the listening test.  

 

 
 

Figure 5.7. Feedback page. 

 

5.3. Observations and Results 

A total of 44 subjects participated in the listening test. Figure 5.8 illustrated the age histogram of the 

participants. The overall participants had a mean age of 33 and a standard deviation of 8.7. The 

majority of the participants were within the age of 24 to 35 years old. Among the rest of the 

participants, there were 9 participants who fell below the age of 26 years old; 8 participants within the 

age range of 36 to 45; 2 participants who were over 45 years old but less than 60 years old and finally 

1 participant who was over 60 years old. Among the participants, 7 subjects had no musical 

background, 12 subjects had a basic musical background, while 17 and 8 subjects respectively had 
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advanced and professional musical backgrounds. Figure 5.9 illustrates the evaluated song excerpts 

histogram by different musical backgrounds from the subjects.  
 

 
Figure 5.8. Subjects’ age histogram. 

 

 
Figure 5.9. The evaluated song excerpts histogram according to subjects’ musical background. 

 

Objective Evaluation  

For evaluating the efficiency of various approaches in extracting song excerpts which contain the song 

titles, we generated a quantitative estimation by means of listening to the lyrics of all the song 

excerpts and identifying the occurrence of the song titles in those excerpts extracted based on each 
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approach. Table 5.3 illustrates the quantitative evaluation results of song titles included in the song 

excerpts corresponding to the use of different excerpt identification approaches.  

 
Approach First-30-seconds Most-repetitive Segment-to-song 

Generated audio 
excerpt with 

enclosed song titles 

55.6% 72.2% 83.3% 

Table  5.3. Objective evaluation results of song titles included in the excerpts generated using 

different approaches. 

 

To obtain an average summary quality score for each approach, we recorded the label into the 

numerical ordinal scale corresponding to the {‘bad, ‘poor’, ‘fair’, ‘good’, ‘excellent’} remarks used in 

the web survey. Figure 5.10 shows the overall ratings collected from the listening test. From the 

obtained results, we note that the segment-to-song approach for representative excerpt identification 

achieved the highest score in identifying the song titles.   It surpassed by as much as 5.7% and 10.3% 

compared to the most-repetitive and the first-30-seconds approaches in naming the title of the songs 

by all the subjects. The acquired results are consistent with the objective evaluation shown in Table 

5.3. For representing a piece of music, the most-repetitive approach achieved slightly better comments 

from the participants compared to both the segment-to-song and the first-30-seconds approaches. 

Summary quality scores of {0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8 0.8-1.0} appear in the bar chart 

corresponding to the {‘bad, ‘poor’, ‘fair’, ‘good’, ‘excellent’} remarks used in the web survey. 

 

 
Figure 5.10. The overall ratings of the subjective evaluation.  
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Musical Background  

By categorizing subjects based on their musical backgrounds, we observe two opinion patterns 

appearing in their preferences for approaches used in identifying a representative excerpt from music 

signals. Figure 5.11 shows the overall summary quality ratings for each approach according to 

subjects’ musical backgrounds. As shown in the bar chart, subjects with professional and advanced 

levels of musical background prefer the segment-to-song approach over the most-repetitive approach 

in identifying representative excerpts from music signals. In contrast, subjects with basic and no 

musical backgrounds prefer the most-repetitive approach over the segment-to-song approach. Overall, 

using the first-30-seconds approach to represent a piece of music is the least preferred among all 

subjects regardless of musical background.  

 

 
Figure 5.11. The overall summary quality ratings for each approach used in identifying representative 

excerpts from music signals according to subjects’ musical backgrounds. 

 

Song Familiarity  

Figure 5.12 shows the overall song titles identification accuracy and summary quality obtained based 

on the subjects’ familiarity with the song excerpts. Logically, those that have heard a song before 

would be better in naming the song title compared to those that are not familiar with the presented 

songs as the presented subjective evaluation results show. Overall, subjects who were familiar with 

the presented songs were at least 30% better in identifying the correct song titles than those who were 

not. In addition, the bottom bar chart shows that subjects, who were familiar with the songs, preferred 

the segment-to-song approach for identifying representative excerpts from music signals. This is 
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different from those who had not heard the songs before. In this latter case, they preferred the most-

repetitive approach. A t-test analysis concludes that the differences of the preferences based on song 

familiarity for first-30-seconds approach and segment-to-song approach are statistically significant 

beyond the 95% confidence level with the p-values<0.05 and p-values<0.01, respectively. However 

there is no significant difference for the most-repetitive approach based on song familiarity.  

 
Figure 5.12. (Top) The song titles identification accuracy and (below) overall song summary quality 

obtained based on subjects’ familiarity to the presented song excerpts. 

 

Various Approaches vs. Recall Effort 

Figure 5.13 illustrates the amount of effort required to recall a piece of music that was heard before, 

based on song familiarity and representative excerpts identification approaches. Here, we only 

consider the answers of those subjects who are familiar with and have heard the music before. Our 

results indicate that for these subjects, the most-repetitive approach appears to require slightly less 

effort in recalling the music than the first-30-seconds method. However the difference between these 

two is statistically not significant. This could be due to the primacy effect in long term memory that 

makes it easier to remember the repeated elements. Alternatively, the first-appearing elements in a list 

or the first seconds of a song have probably been less affected by distractions from subsequent 

excerpts. These results indicate that the first-30-seconds and the most-repetitive approaches play an 

important role in recalling a piece of music under different circumstances. In this context, the 

segment-to-song approach seems less practical.  
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Figure 5.13. The recall effort required on each approach based on songs familiarity (Description: x-

axis represents various approaches and y-axis denotes recall effort). 

 

5.4. Summary 

In this chapter, we have presented an online subject listening test to evaluate the significance of 

various approaches used in identifying representative excerpts from music signals. We have explored 

a novel possible approach, the segment-to-song approach, to detect significant representative excerpts 

of the music. Both subjective and objective evaluation results for song title identification are 

consistent and have shown that our proposed segment-to-song approach is better in capturing the song 

titles over other evaluated approaches (i.e. first-30-seconds approach and most-repetitive approach). 

Even though the overall summary quality of our proposed approach did not surpass the other 

approaches, it was preferred by subjects with stronger musical backgrounds. For the next chapter, we 

move towards music retrieval issues based on music structural descriptions. Therein, we present our 

approach in extracting useful representative audio excerpts or summaries from audio signals, based on 

music structural descriptions, for retrieving different versions of the same song in music collections. 

The following chapter includes an objective comparison and evaluation of the performance of our 

proposed identification method with the use of 90 mixture versions from 30 different songs from 

popular music.  
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Chapter 6 

Structural Descriptions for Song Version Identification in 

Music Collections  

In Chapter 4, we described a method for automatically generating music structural descriptions from 

music audio signals. A system that can provide high-level descriptions of music signals should be 

feasible to be exploited in other tasks, such as music data mining and music retrieval, besides direct 

provision of musical information. We hypothesize that the prior knowledge about the structural 

descriptions of the music would give a better grasp of the musical content and contribute to effective 

retrieval of large amounts of digital audio data. In this chapter, we present our approach towards 

retrieving different versions of the same song by means of exploiting the representative audio excerpts 

or summaries from audio signals, based on its music structural descriptions. 

 

We have implemented our own system to perform the task of identification of song versions with 

retrieval based on prior music structural information obtained from our automatic structural analysis 

system described in Chapter 4.  After applying particular criteria in segment selection, which will be 

explained in detail below, the system extracts fixed-length short summaries or segments from the full-

length song for further identification processing. Finally, to evaluate the applicability of our proposed 

method, we compare the retrieval performance obtained using our approach with the one obtained 

using the whole-song approach proposed by [Gómez06b], which focuses on analyzing the similarity 

of tonal features in identifying different versions of the same piece, using a similar test set. 
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6.1. Short Summary Approach 

Current literature in identifying representative excerpts of music audio mainly focus on music 

summarization and thumbnailing. So far, from our literature survey, there is no publication or report 

on using audio derived structural description to identify different versions of the same song in music 

collections for music retrieval or song recommendation purposes. Moreover, most literature in 

identifying representation excerpts of music pay great attention to the significance of repetitions in 

music. In the exiting literature [Logan00] [Bartsch01], the most repetitive segments are considered as 

the most significant excerpts to represent a piece of music. Considering its application context in 

version retrieval, we explore the potential of some other factors that could be useful to retrieve songs 

with its different versions. In our short-summary approach, we investigate two ways of identifying 

representative excerpts of music for version identification purposes with the use of Harmonic Pitch 

Class Profiles (HPCP) features [Gómez06a]. Following the commonly used criteria, the first approach 

emphasizes more on the significance of the most repetitive excerpts in music. The second approach 

considers all repetitions as equivalent. Thus, the total duration of all identical repeated patterns are 

taken as the highest priority factor in selecting the best suitable audio excerpts to represent a piece of 

music.  

 

Based on the structural analysis results obtained via previous steps, we categorize all the 

repeated segments into groups according to their labels. That is  
 

                                    { }, , ...,1 2_ mGroup Segment Segment SegmentA label =                             (6.1)  

 

where m is the number of repeated segments with label A.  

 

6.1.1. Repetitiveness Emphasized 

Since the number of elements in a group, _A labelGroup , denotes the occurrence frequency of label A 

in the music, the group with the highest m value marks the most repetitive segment group of the music. 

Thus, the first approach, which emphasizes the significance of the most repetitive excerpts in music, 

selects the group with the highest m value and extracts a fixed duration, l seconds¸ from the starting-

time information of the group’s first segment. 
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6.1.2. Repetitiveness-Equivalence Emphasized 

In the second approach, we hypothesize that different versions of the same piece of music may vary in 

its musical structure. For example, the most repetitive segments of the query song may not appear to 

be the most repetitive segments in its song versions. Considering this issue, we generate two short 

summaries or segments from a song in order to overcome instances which have variances in its 

musical structure between the root songs and its versions. Music summaries are generated based on 

the following two criteria, 

 

(1) The selected segments are repeated at least once in the whole song. 

(2) The selected repeated groups should hold the majority of the song duration compared with other 

repeated groups. 

 

Since all the repeated segments within the same group have approximately the same length, we 

calculate the total length that each label subsumes in a piece by multiplying the length of its one 

segment with its total number of segments, n. With the above mentioned selection criteria, we select 

one segment from each of the first two groups, which holds the longest duration of the song, to 

compute music summaries. Finally, we extract a fixed duration, l seconds, from each selected segment 

based on their starting-time information.  

 

Research work by Gómez [Gómez06b] provides a successful example of version identification 

by means of analyzing the similarity of tonal features between music pieces.  Thus, following 

previous research work [Gómez06b], we compute the instantaneous evolution of HPCP for both short 

summaries extracted from each song query and all the songs in the database. In order to measure 

similarity between two pieces, we apply the Dynamic Time Warping (DTW) algorithm [Ellis05], 

which estimates the minimum cost required to align one piece to the other one, on short summaries 

belonging to both pieces alternately as shown in Figure 6.1. DTW, also called Dynamic Programming 

(DP), is a widely-used method for performing dynamic time alignment and similarity measurements 

between two sequences that may vary in time and speed. Here, we can see that there appear four 

similar measures for each pair of comparisons. Finally, we choose the highest similarity among the 

four values to represent the similarity estimation between two pieces.  
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Figure 6.1. The comparison of summaries between two songs. 

 

Since DTW actually performs a direct comparison between summaries from both pieces and 

considers that versions of the same piece do not necessary maintain the same key (key change) as the 

original, we need to transpose the compared summaries to the same key as the query before 

computing similarity. One of the advantages of the octave equivalence tonal descriptors is that ring 

shifting of the feature vectors, which will be named vcompared, correspond to the transposition in music 

perception. Since a higher resolution of HPCP, with each coefficient corresponding to one third of a 

semitone is used, ring shifting three coefficients of the features vectors resembles transposing one 

semitone downwards for keys with same mode, or four semitones downwards for major-to-minor 

modes, or two semitones upwards for minor-to-major modes as illustrated in the circle of fifths’ 

geometrical space (see Figure 6.2). 

 

 
 

Figure 6.2. The circle of fifths geometry with major and minor modes. The major key for each key 

signature is shown as a capital letter on the outer circle whereas the minor key is shown as a small 

letter surrounded by the inner circle. 
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Thus, we can easily accomplish the task of transposing the summaries to the desired key by 

 

   (:, +1:36) (:, 1: )compared shift compared shiftcompared_modulatedv v  Index    v  Index 
 =         (6.2) 

                                            where, 3* ( 1)shiftIndex r= −                                        (6.3) 

 

and  { }1, 2,3,...,12r ∈ denotes the (r-1) number of semitones to be modulated downwards. We 

generated 12 different sets of the shifted feature vectors for each compared summary to evaluate the 

similarity between the query summaries and the 12 semitone transpositions of the compared 

summaries. It is noted that when r=1, no modulation occurs in the compared summary. Following that, 

we apply the DTW algorithm to query summaries and each 12 transposed compared summaries 

alternately to estimate the minimum cost between two summaries. Finally, the lowest estimated 

minimum cost is selected to represent the similarity between two songs. Figure6.3 below illustrates 

the estimated minimum cost of the song summaries between a root query (song entitled Imagine) 

corresponding to 12 possible transpositions of its versions. As shown in the bar charts, versions sung 

by Diana Ross (in the key of F major) and Khaled & Noa (in the key of Eb major) achieve the lowest 

minimum cost at five semitone and three semitone downward transpositions respectively among the 

12 possible transpositions, whereas the instrumental version, which has the same key as the root query, 

obtains the minimum cost at 0 transposed semitones. 

 



 
 

 
 

 
128 

 
Figure 6.3. The estimated minimum cost of the song summaries between a root query (song entitled 

Imagine) corresponding to 12 possible transpositions of its versions. (1) Imagine sung by Diana Ross 

in F Major (2) Imagine sung by Kholed and Noa in Eb Major (3) Instrumental version of Imagine in C 

major. 
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6.2. Evaluation 

In the following sections, we will describe in detail regarding our evaluation procedure. In addition, 

we discuss pros and cons of using our approach in song version identification.  

 

6.2.1. Dataset 

The goal of this study is to evaluate the applicability of structural descriptions in identifying different 

versions of a piece of music. Thus, we reuse the dataset described in [Gómez06b], which consists of 

90 versions from 30 different songs (root query) of popular music as our test set. For this evaluation, 

we will compute a similarity measure between two different pieces based on low-level tonal 

descriptors, i.e. HPCP values.   We will compare the efficiency of version identification obtained 

through the full length of the song with the one obtained through the song summaries. 

 

6.2.2. Quantitative Measurements 

Version identification, which involves song query and retrieval, is a type of information retrieval 

system. Thus, for evaluation purposes, we use IR standard measures, such as recall and precision, to 

rate effectiveness of the retrieval. The recall rate is defined as the ratio of the number of relevant 

returned documents to the total number of relevant documents for the user query in the collection. 

That is  

                
{ } { }

{ }
relevant documents retrieved documents

Recall rate =
relevant documents

∩
                (6.4) 

 

The precision rate is the ratio of the number of relevant returned documents to the total number of 

documents for a given user query. That is, 

               
{ } { }

{ }
relevant documents retrieved documents

Precision rate
retrieved documents

∩
=            (6.5) 

 

To investigate the influence of the length, l, of the short summaries on the performance of 

version identification, we extract various durations from the range of 15 seconds to 25 seconds with 

an interval of 5 seconds from the audio signal. To estimate the optimal or upper bound performance of 

using summaries in version identification with our test set, we manually select two short segments 

(approximately 25 seconds depending on the tempo of the music), which are repeated in all the 

versions of the same songs, according to their time-varying harmonic contour in the segments. We 

substitute the manually selected segments for short summaries extracted based on music structural 
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descriptions to represent the song itself. Whereas for estimating the lower bound of the performances 

with the use of the short-summary approach, we randomly select two 25-seconds short segments for 

each song in the test set to represent the music itself. Finally, we compute similarity measures using 

the randomly selected or manually selected short segments. As explained above, we then select the 

highest similarity among the four values to represent the similarity estimation of the root query and 

the compared song. 

 

6.2.3. Results 

Here, we use precision-recall curves to capture the performance ranking of the version identification 

process. Figure 6.4 shows the performance of version identification using various numbers of short 

summaries extracted from the songs in different segments’ lengths. From our results, we observe that 

the best performance is in the case of 25-seconds with two segments, which achieves a high precision 

and recall rates of 55.1% and 32.8%, respectively. As expected, the performances become impaired 

when the extracted summaries from the audio signals are decreased in length. For the case of 20-

seconds, the performance achieves the precision and recall rates of 46.7% and 27.6%, respectively, 

whereas for the case of 15-seconds, the performance only scores 43.3% and 24.4% in its precision and 

recall measures. For the case where repetitiveness emphasis is applied on the short-summary approach, 

where only one 25-second summary is extracted from the songs, the achieved precision rate is the 

lowest, 36.7% with a recall level of 18.1%.  

 

Figure 6.5 shows the performance of version identification using the whole-song approach 

versus the short-summary approach. From the precision-recall graph, we observe that by using two 

extracted short summaries (with the length of 25 seconds each) from the songs, we can achieve a 

slightly better performance in version identification compared with using the whole length of the piece. 

By only considering the first retrieved song for a given user query, the short-summary approach 

exceeds 0.6% and 2% in its precision and recall rates respectively compared with the whole-song 

approach. The estimated upper bound results for identifying different versions of the same song 

reaches the precision and recall rates of 66.6% and 36.8%, respectively. Whereas by using randomly 

extracted short summaries from songs, the achieved precision rate is very low, 22.2% with a recall 

level of 9.0%. The short-summary approach, besides its better accuracy compared with the whole-

song approach, also consumes less time in performing version identification tasks. For our test set, 

which consisted of 90 audio data with an average audio length of 3 minutes and 45 seconds, the short-

summary approach accomplishes the identification task at least 33% faster than the other approach. 

Figure 6.6 plots the average F-measures obtained from both approaches considering various numbers 

of songs for a given query. The statistical t-test shows that the obtained average F-measures from the 
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short-summary approach is significantly higher than those from the whole-song approach with the test 

result of t(19)=3.966, p<0.01 beyond the 99% confidence level.  

 

 
Figure 6.4. The performances of version identification by using various numbers of short 

summaries of different lengths based on its average precision and recall measures.  
 

 

 
 

Figure 6.5. The performances of version identification: whole-song approach vs. short-summary 

approach based on its average precision and recall measures. 
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Figure 6.6. Average F-measures of both approaches (short-summary and whole-song) in version 

identification according to the number of songs considered for a given user query. 

 

The bar graph in Figure 6.7 shows the average F-measures obtained for each retrieved song in 

the database, by considering the first 10-retrieved songs for a given user query. The song entitled 

Imagine achieves the overall best song performance with respect to identifying its different versions. 

Five song versions of Imagine are included in the test database: John Lennon (SongID-1), Tania 

Maria (SongID-6), Khaled and Noz (SongID-24), Diana Ross (SongID-40) and an instrumental 

version of Imagine (SongID-46). As reported in [Gómez06b], there are various musical differences 

between the Imagine song versions and its root song (SongID-1). These differences include noise, 

instrumentation, tempo, transposition, harmonization and structure. By considering the first 3-retrieval 

songs, querying using SongID-1, SongID-24, SongID-40 and SongID-46 achieves recall scores as 

high as 75%. In other words, 3 out of 4 song versions of Imagine appear in the first three considered 

retrieval results. The lowest retrieval performance of “Imagine” appears to be SongID-6 by Tania 

Maria. This version of “Imagine” is first performed in a fairly straightforward manner (with very 

melodic piano breaks). It is then broken into a quicker, celebratory samba groove. In addition, its 

music harmonization is very different from the rest of the “Imagine” versions. Thus, our algorithm 

finds it difficult to retrieve this version of Imagine.  

 

Through observing the retrieval performance of each song, we notice that the song retrieval 

process achieves a better performance when querying different versions of the same song using the 

root (original) song instead of cover songs. Logically, this is reasonable, since song versions tend to 
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imitate or mimic the musical properties of the original version. Thus by querying the root (original) 

song, there is a higher possibility of comparing specific segments from the song version that 

mimicked the original version, thus increasing the accuracy of the song version identification task.  

 

 
Figure 6.7. Average F-measures obtained for each retrieved song in the database with the considered 

first 10-retrieved songs for a given user query.  Descriptions: Filled bars mark the cover songs of 

Imagine by different artists, whereas SongID-1 marked “*” denotes the root song, Imagine by The 

Beatles. 

 

Through analyzing the low performance of a few query songs, we have realized that there occurs 

an issue with regards to the transitivity relationship between songs due to our two extracted short 

summaries comparison approach. The following section uses the given example as illustrated in 

Figure 6.8 to give a better explanation regarding this issue of the transitivity relationship between 

songs. For instance, if Song-A has two summaries with each appearing in Song-B and Song-C, by 

querying Song-A, we will be able to find both Song-B and Song-C as its versions. However if Song-C 

happens to have summaries which appear one in Song-A but none in Song-B, by querying Song-C, we 

will only find Song-A but miss Song-B since we do not  infer any relationship between songs. 

Nevertheless, the failure in this aspect could be exploited or considered interesting for generating an 

additional source of metadata that is not directly stored in the database. Seeing that cover songs tend 

to imitate the original song, by inferring the transitivity relationships among different versions of the 

same song, it would provide clues to defining the original song among its different versions. For 

instance, in the above given example, the present of version relationships of Song-B and Song-C with 
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Song-A respectively but not within themselves (Song-B and Song-C) may imply that Song-A could be 

considered the canonical song (the original song version).  

 

 
Figure 6.8. Transitivity relationship between songs. 

 

6.2.4. Discussion 

In the experiment results, perhaps the most notable result from this chapter’s experiment is the 

distinctive dichotomy in performance between the two distinct selection criteria (repetitiveness 

emphasis vs. repetitive equivalence emphasis) in identifying representative excerpts of music for 

version identification applications. For the segment selections that make use of a complementary 

musical knowledge (i.e. repetitive equivalence emphasis), we see generally good performance. This 

dichotomy generally supports the notion that repetitiveness of music segments is important in 

identifying representative excerpts of music. However it is not the only assumption that we should 

rely on, depending on the application context. Incorporating musical knowledge related to the 

processing data (e.g. structural differences within the song versions) somehow improves performance.  

 

Finally, as a conclusion of this small-scale of evaluation, we can also see that the short-summary 

approach seems to perform better than the whole-song approach in both retrieval accuracy and 

computational efficiency. From this study, we have observed a few advantages and disadvantages of 

using the short-summary approach in version identification compared with the whole-song approach. 

The advantages are:  

 

(i) Time consumption factor – less time consuming and higher identification performance 

for the database, which consists of songs with long durations; 

(ii) Modulation within piece – since only two short segments are extracted from the song 

itself, the performance accuracy is not to be affected by modulation within the pieces; 

p 

m’ 

m n

q 

n’

Song-A 

Song-B Song-C 



 
135 

 

 

(iii) Different music structural descriptions in song versions – flexible to structural changes 

since only the core segments are extracted from the music itself; 

 

Whereas, the disadvantages of using such an approach include: 

 

(i) Identifying a song and its versions with large tempo variances – since short and fixed 

time constraints are applied in extracting summaries from the song, false negatives may 

occur for the query and its versions which have large differences in tempo; 

(ii) Songs with short duration – applying such an approach to songs with durations shorter 

than double the extracted summaries length is more time consuming than the whole-song 

approach;  

 

6.3. Summary 

In this chapter, we have investigated the potential of using music structural descriptions in identifying 

different versions of a piece of music. We have presented our approach in extracting significant 

excerpts from music audio files for version identification applications. Experiments were conducted to 

evaluate and compare the performance of our proposed approach with other approaches from previous 

work [Gómez06b]. From the experiment results, we have shown evidence of the utility of our 

approach in the form of retrieving different versions of a song in a music collection but still leaves 

room for additional enhancement. 

 

In the next and final chapter, we will present a summary of the main conclusions from this work. 

Additionally, we will present suggestions for improvement, open questions and potential areas for our 

future work presented in our PhD dissertation.  
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Chapter 7

Conclusions and Future Work

Within this dissertation we have addressed four main aspects related to describing structural content

from music signals: the detection of acceptable structural boundaries related to section changes in

music, the analysis and discovery music structures via inferring repeated patterns that appear in the

music, the identification of significant audio excerpts to represent a piece of music together with

human-based subjective evaluation, and finally how music structural description facilitates in the

identification of song versions in music collections.

The goal of this chapter is to summarize the contributions this dissertation makes to the current

state of the art in structural analysis and segmentation of music signals. This is followed by the main

conclusions that we have drawn from our research. Finally, we present some suggestions and ideas for

future work in this field.

7.1. Summary of Contributions

In this research work, we have fulfilled our initial goal of studying and developing algorithm

frameworks and methods in two areas that are closely related to automatic audio-based music

structural analysis: (i) Semantic audio segmentation; and (ii) music structure discovery and high-level

music description. With the extracted music structural description, we have also completed our goal in

identifying “singular” within-song excerpts in popular music by proposing a new method in defining

representative excerpts from music signals. With regards to the applicability of structural descriptions

in the music information retrieval context, we have carried out the task of identifying different song

versions of the same songs by introducing a novel retrieval concept which is based on high-level
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descriptions of music. We also include our significant contributions with regards to current state of the

art in structural analysis and segmentation of music signals.

In the literature review chapter, we have reviewed current literature related to structural analysis

and segmentation by studying the similarity and differences between these approaches and discussing

their advantages and disadvantages in performing the related tasks.

In our semantic audio segmentation study, we have proposed a two-phase approach to segment

audio data according to the structural changes of music and to provide a way to separate the different

music “sections” of a piece, such as the “intro”, “verse”, “chorus”, etc. We have also proposed a

combination set of audio descriptors that has proved useful in detecting music structural changes. In

addition, we have also utilized higher-level analysis techniques, such as beat detection, to improve the

accuracy of the structural boundary detection process. Evaluation tests have been carried out to assess

the performance of our proposed method with the use of a test dataset consisting of 54 pop songs.

From the quantitative evaluation results, we conclude that the exploitation of image processing

techniques (i.e. morphological filtering) is significantly profitable in enhancing the detection of

segment boundaries corresponding to the structural changes and in facilitating semantic segmentation

of music audio. By having two phases of segmentation, first focusing on rough segmentation and later

on further refinement, we have yielded a semantic audio segmentation algorithm that is useful and

relatively reliable for practical applications. Coupling semantic audio segmentation functionality into

both hardware and software platforms of digital audio players or sound visualization and manipulation

applications will allow users to skip from one section to another section of music easily and precisely.

This is certainly a big improvement over the conventional fast-forward function mode.

In our music structural analysis and discovery study, we have further improved upon the existing

method for detecting chorus sections in music [Goto03a] to produce a complete and unified high-level

structural description directly from music signals. Instead of only discovering the most repeated

sections that appear in music, we have also identified (dis)similar sections in music by tagging these

with explicit labelling. Herein, we have investigated and compared the applicability of different tonal-

related features used in music structural discovery. We have also proposed the use of timbre-based

semantic audio segmentation to rectify the common boundaries inaccuracies appearing in music

structural descriptions obtained by means of depending on single tonal-related features to discover

musical structure from acoustics signals. In order to obtain proper structural descriptions of music, we

have addressed the problem of tackling the complexity of modulation within a song that has not much

been addressed by the existing music structural discovery algorithms. Evaluation tests were done on

three different databases consisting of more than 100 pop songs in various languages from different
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regions in the world, to assess the applicability of our approach to real world popular music. Our

proposed approach achieved overall precision and recall rates of 79% and 85%, respectively, for

correctly detecting significant structural boundaries in the music signals from the above described

three datasets. Compared to an existing structural analysis system [Chai03c] on their same test data,

our proposed approach obtains slightly better performance in its quantitative evaluation results. From

the quantitative evaluation results, we conclude that our integration of timbre-based semantic audio

segmentation to our music structural description system significantly improves its effectiveness in

detecting structural descriptions of music. Coupling music structural descriptions into audio playback

devices will allow fast browsing of music data. In addition, an auxiliary add-in playback mode, in

combination with the segment block structural visualization, will allow users to have easy access to

any particular segment of the music by just clicking on the visualization’s segment block. Figure 7.1

shows an example of a sound visualization system coupled with music structure visualization and add-

in segment playback functionalities.

For the identification of the representative excerpts of music, we have considered other factors in

the identification task than the ones appearing in the literature. Our hypothesis states that

repetitiveness of music may not be the only element in detecting the retrieval cue of music. Thus, we

proposed our novel segment-to-song approach, in which the high similarity between repetitive

segments and the entire song is considered, to identify the representative excerpt of the music. An

online listening test has been conducted to obtain some subjective evaluation of our approach, based

on human perception. A database of 18 music tracks comprising popular songs from various artists

was used in the subjective evaluation. From the objective evaluation results, we conclude that our

proposed segment-to-song approach captures the most song titles with its extracted representative

excerpts compared to the other two investigated approaches (i.e. most-repetitive approach and first-

30-seconds approach). The subjective evaluation results show that participants are able to correctly

identify the song titles much more easily with the presented extracted excerpts based on our segment-

to-song approach. For evaluating subjects’ preference for specific approaches in extracting good

music summaries, the obtained subjective evaluation results indicate a strong dependency on the

subjects’ musical backgrounds. Specifically, subjects with stronger musical backgrounds prefer our

proposed approach (segment-to-song) over the most-repetitive approach or the first-30-seconds

approach in extracting a song summary. In contrast, for the case of subjects with none or basic

musical backgrounds, they prefer the most-repetitive approach over the other two approaches. This

result encourages the consideration of other factors, which have not yet been explored by current

references, to further investigate the identification of representative excerpts of music. These factors

can be such as the distinctive sound of a strummed guitar or a drum roll that appears in the beginning

of a music piece and so forth. On the other hand, since our approach is based on music structural
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descriptions, we are able to exploit the obtained information to visualize the structure of music. Thus,

the identification of representative music excerpts does not only bring the benefit of giving an

abstraction cue, but also a clear visual-structural representation of the music.

For music structural description in song versions identification, we have introduced a new

concept for music retrieval. Our hypothesis stated that prior knowledge of the structural descriptions

of the music would give a better grasp of the musical content and contribute to efficient retrieval of

large amounts of digital audio data. Thus, instead of using the entire music piece to find how well two

compared pieces match, we have proposed using the extracted short excerpts from the music signals

based on our prior knowledge of their music structural descriptions to find different versions of the

same song. A song database, consisting of 90 versions from 30 different songs of popular music, was

used to evaluate the performance of our proposed approach. Quantitative results have confirmed the

validity of our proposed concept by showing an explicit improvement to accuracy and time-saving

factors for the song version identification task compared to previous research work [Gómez06b] using

the same test set. This result encourages the consideration of using structural-based extracted audio

excerpts instead of entire songs in some other areas related to music content analysis and processing,

such as content-based similarity for music recommendation purposes.

7.2. Conclusion

Our general conclusion obtained by reviewing the current state of the art in this area states that there

exist a few limitations with respect to algorithm evaluation in the current literature. The first

limitation is the lack of generality of the test databases and solid ground truths for algorithm

evaluation. Great human resources and efforts are required just to obtain just a small set of ground

truth for algorithm evaluation. Goto’s shared database (DB) compiled specifically for research

purposes, RWC Music Database [Goto03c], is a good attempt at enabling researchers to compare and

evaluate their various systems and methods against a common standard. Unfortunately, the

preparation of this shared database does not consider music structural analysis related issues. Thus,

there is no solid ground truth that can be acquired directly from the shared database. MTG’s attempt at

a Music Content Semantic Annotator (MUCOSA) [Herrera05], an annotation environment that allows

users to semi-automatically annotate music content description from low-level to semantic labels,

could be a way to obtain a solid ground truth algorithm evaluation in this specific area, even though

issues regarding how to avoid any violations of the use of audio resources from the client would need

to be seriously considered

Another limitation is the method used to weight the importance of extracted music sections.

Much of research studies in this area either provides no evaluation regarding the significance of the
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extracted music sections or only depends on the presence of chorus/refrain sections to define the

quality of the music excerpts. The significance of the musical excerpts in audio signals highly depends

on human perceptions. Thus, subjective evaluation based on the human perception should be taken

into consideration to evaluate the significance of the extracted music sections. Factors such as

listeners being musicians or non-musicians who may not have the same viewpoint on “which sections

are the representative excerpts of a piece of music” also need to be considered. For instance, a

musician may have a strong impression of the solo instrumental sections whereas this may not be the

case for a non-musician. Hence, it would be useful to have two groups of listening subjects and to take

into consideration the differences between these two groups when evaluating the significance of the

extracted music sections as well.

7.3. Future Work

In this research work, the generality of our music database is quite limited. So far, we have limited our

scope to only “pop” music and have not tested our approach on different music genres, such as

instrumental music, jazz, or classical music. Thus, in our future work, we will take into consideration

some other different music genres that we have not yet explored, in order to assess our proposed

method on a wider generality of music applications.

With regards the semantic audio segmentation aspect, it is worthwhile to pay attention to the fact

that the precision and recall rates of our proposed segmentation method are particularly low for those

songs that include smooth transitions between sections. It seems that our descriptors are not sensitive

enough to mark these changes. On the other hand, songs with abrupt transitions between sections

usually achieve better rates on these measures. Thus, using some other disregarded descriptors,

perhaps we will be able to cope with this matter.

In music structure discovery and high-level description aspects, an interesting direction for future

work would be to use computed music structural descriptions to automatically label sections

according to their structural titles, such as intro, verse, bridge, outro, etc. By doing this, we can

provide a more informative description of the structure of music. In addition, by visualizing music

structural descriptions in audio editing applications coupled with click-and-play mode functionality,

the structure of music will also be visualized on the screen display and allow users to have easy access

to any particular section by just clicking on the displayed section-block as shown in Figure 7.1. This

will definitely facilitate better audio browsing and retrieval. The first step towards this goal would be

to comprehend the typical structure of the kind of music we are interested in dealing with and to

construct well-formed rules to define the structural titles.
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It is clear that identifying representative musical excerpts of audio files has relevance to music

summarization. In this research work, we only identify a significant representative excerpt from a

piece of music. Thus, our future plans include making use of our structural analysis algorithm to

generate summaries of music, in which different structural sections that appear in the music piece will

be combined, to give an overview summary representation of the music pieces as those proposed by

[Peeters02] Subjective evaluation will then be used to study the quality of differences in music

summaries, generated using the combination of various sections versus a single audio excerpt, based

on human judgment.

For music structural descriptions in the song version identification aspect, we have only explored

one among other approaches in finding different versions of the same songs. In future, it would be

interesting to explore other song versions identification techniques but utilizing the same concept in

which the short excerpts instead of the entire song are used to make comparison between songs.

Figure 7.1 An example of a sound visualization system coupled with music structure visualization and

add-in segment playback functionalities.

Finally, another future direction includes incorporating our algorithm into practical applications.

Since our music structural analysis approach begins with the identification of repetitions that appear in

the music, we are able to exploit the obtained information to visualize the structure of music.

Click & play
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Presumably, coupling music structural description information into song similarity applications will

not only allow finding of similar songs but also finding of similar song segments. In addition,

structural similarity between songs could be an additional factor to be considered for finding similar

songs. Figure 7.2 shows an example of a finding song similarity system coupled with music structural

visualization, including segment search by similarity and playback functionalities.

7.4. Final Thoughts

Traditionally, music signals were represented as a mixture of sinusoidal signals by digital audio

editing applications such as, Adobe Audition8 and SoundForge9. By segmenting and discovering the

structural patterns appearing in music, we are providing additional plus novel information on the

music signals that bridge the gap between low-level and higher-level of music descriptions.

Practically, these new descriptions of music promote new ways of dealing with music signals. A

straightforward example would be in areas related to music signals visualization. For instance, digital

sound editing applications would no longer be limited to only visualizing music signals as chaotic

waveforms but as a series of symbols or colourful block representations that somehow show the

subsumed structural content of the music signals. Without doubt, such information would be more

useful and much easier for users to comprehend. In addition, the ability to gain direct access to the

structural level of music instead of merely plain waveforms would be very useful for practical

applications in music information retrieval contexts, such as audio indexing, audio browsing, and

audio database management. The presented overview is expected to have made helpful contributions

to the development of such applications.

8 Adobe webpage: http://www.adobe.com/special/products/audition/syntrillium.html
9 Sony Media Software webpage:
http://www.sonymediasoftware.com/Products/ShowProduct.asp?PID=961
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Bee Suan
Figure 7.2. An example of finding song similarity system coupled with music structural visualization, add-in finding segment similarity and playback functionalities
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Appendix A 

Glossary 

This section is a glossary of the basic terminology used in this thesis provided for quick reference.  

 

Beat: a rhythmic sub division of music usually felt as the regular timing within a piece of music. 

Bridge: an interlude that connects two parts of a song and builds a harmonic connection between 

those parts.  

Chorus (or refrain): the part of a song where a soloist is joined by a group of singers. 

Clustering: the process of organizing objects into groups whose members are similar in some way. 

Intro: introduction of a song. 

Key-frames: the excerpts which best represent the content of a music sequence in an abstract manner, 

and are extracted from the original audio signal.  

Onset: the change points in musical signals which are equivalent to the human perception of a new 

note starting.  

Outro: the ending of a song 

Summarization: the process of generating a short abstract from the original audio signal to represent 

the whole file.  
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Thumbnailing: the process of extracting a short excerpt from the original audio signal to represent 

the whole file. 

Verse: the song sections that roughly corresponds to a poetic stanza. It is often sharply contrasted 

with the chorus (or refrain) melodically, rhythmically, and harmonically.  
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Appendix B 

Details on Audio Database used in Chapter 3 

A. 54 songs from The Beatles (1962 – 1965) 

No Title Artist Language 
1 A Hard Day's Night The Beatles English 
2 I Saw Her Standing There The Beatles English 
3 It Won't Be Long The Beatles English 
4 No Reply The Beatles English 
5 All I've Got To Do The Beatles English 
6 I Should Have Known Better The Beatles English 
7 I'm A Loser The Beatles English 
8 Misery The Beatles English 
9 All My Loving The Beatles English 

10 Anna Go To Him The Beatles English 
11 Baby's In Black The Beatles English 
12 If I Fell The Beatles English 
13 Chains The Beatles English 
14 Don't Bother Me The Beatles English 
15 I'm Happy Just To Dance With You The Beatles English 
16 I Need You The Beatles English 
17 Rock And Roll Music The Beatles English 
18 Boys The Beatles English 
19 I'll Follow The Sun The Beatles English 
20 Little Child The Beatles English 
21 Ask Me Why The Beatles English 
22 Mr. Moonlight The Beatles English 
23 Tell Me Why The Beatles English 
24 Till There Was You The Beatles English 
25 Can't Buy Me Love The Beatles English 
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26 Kansas City Hey Hey Hey Hey The Beatles English 
27 Please Mister Postman The Beatles English 
28 Please Please Me The Beatles English 
29 Any Time At All The Beatles English 
30 Eight Days A Week The Beatles English 
31 Roll Over Beethoven The Beatles English 
32 Hold Me Tight The Beatles English 
33 I'll Cry Instead The Beatles English 
34 P. S. I Love You The Beatles English 
35 Words Of Love The Beatles English 
36 Baby It's You The Beatles English 
37 Honey Don't The Beatles English 
38 Things We Said Today The Beatles English 
39 You Really Got A Hold On Me The Beatles English 
40 Do You Want To Know A Secret The Beatles English 
41 Every Little Thing The Beatles English 
42 I Wanna Be Your Man The Beatles English 
43 When I Get Home The Beatles English 
44 A Taste Of Honey The Beatles English 
45 Devil In Her Heart The Beatles English 
46 I Don't Want To Spoil The Party The Beatles English 
47 You Can't Do That The Beatles English 
48 I'll Be Back The Beatles English 
49 Not A Second Time The Beatles English 
50 There's A Place The Beatles English 
51 What You're Doing The Beatles English 
52 Everybody's Trying To Be My Baby The Beatles English 
53 Money The Beatles English 
54 Twist And Shout The Beatles English 
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B. 27 pop songs from the Magnatune database 

No Title Artist Language 
1 Can I Be A Star Burnshee Thornside English 
2 I'll Be Here Awake Arthur Yoria English 
3 Making Me Nervous Brad Sucks English 
4 Mercurial Girl Fluid English 
5 Unknown Emma's Mini English 
6 What's Inside Grayson Wray English 
7 For Madmen Only Atomic Opera English 
8 Lamborghino Burnshee Thornside English 
9 5 Star Fall Fluid English 

10 Blue Glove Emma's Mini English 
11 In 1671 Grayson Wray English 
12 Leave Me Hybris English 
13 Headphones Fluid English 
14 It's An Easy Life Magnatune Compilation English 
15 The Gift William Brooks English 
16 What I Did On My Summer Vacation Magnatune Compilation English 
17 There You Were Grayson Wray English 
18 Try It Like This William Brooks English 
19 Uncommon Eloquence Shane Jackman English 
20 Drops That Hit The Sand Tom Paul English 
21 She's The Girl Grayson Wray English 
22 I Didn't Catch What You Said Tom Paul English 
23 Into The Unknown Grayson Wray English 
24 A Different State Of Mind William Brooks English 
25 My Heart Still Beats Shane Jackman English 
26 Is There Anybody There William Brooks English 
27 The Best In Me Tom Paul English 
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Appendix C 

Details on Audio Database used in Chapter 4 

A. BeatlesMusic - 56 songs from The Beatles 70' album 

No Title Artist Language 
1 A Hard Day's Night The Beatles English 
2 I Saw Her Standing There The Beatles English 
3 It Won't Be Long The Beatles English 
4 No Reply The Beatles English 
5 All I've Got To Do The Beatles English 
6 I Should Have Known Better The Beatles English 
7 I'm A Loser The Beatles English 
8 Misery The Beatles English 
9 All My Loving The Beatles English 

10 Anna Go To Him The Beatles English 
11 Baby's In Black The Beatles English 
12 If I Fell The Beatles English 
13 Chains The Beatles English 
14 Don't Bother Me The Beatles English 
15 I'm Happy Just To Dance With You The Beatles English 
16 I Need You The Beatles English 
17 Rock And Roll Music The Beatles English 
18 And I Love Her The Beatles English 
19 Boys The Beatles English 
20 I'll Follow The Sun The Beatles English 
21 Little Child The Beatles English 
22 Ask Me Why The Beatles English 
23 Mr. Moonlight The Beatles English 
24 Tell Me Why The Beatles English 
25 Till There Was You The Beatles English 
26 Can't Buy Me Love The Beatles English 
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27 Kansas City Hey Hey Hey Hey The Beatles English 
28 Please Mister Postman The Beatles English 
29 Please Please Me The Beatles English 
30 Any Time At All The Beatles English 
31 Eight Days A Week The Beatles English 
32 Love Me Do The Beatles English 
33 Roll Over Beethoven The Beatles English 
34 Hold Me Tight The Beatles English 
35 I'll Cry Instead The Beatles English 
36 P. S. I Love You The Beatles English 
37 Words Of Love The Beatles English 
38 Baby It's You The Beatles English 
39 Honey Don't The Beatles English 
40 Things We Said Today The Beatles English 
41 You Really Got A Hold On Me The Beatles English 
42 Do You Want To Know A Secret The Beatles English 
43 Every Little Thing The Beatles English 
44 I Wanna Be Your Man The Beatles English 
45 When I Get Home The Beatles English 
46 A Taste Of Honey The Beatles English 
47 Devil In Her Heart The Beatles English 
48 I Don't Want To Spoil The Party The Beatles English 
49 You Can't Do That The Beatles English 
50 I'll Be Back The Beatles English 
51 Not A Second Time The Beatles English 
52 There's A Place The Beatles English 
53 What You're Doing The Beatles English 
54 Everybody's Trying To Be My Baby The Beatles English 
55 Money The Beatles English 
56 Twist And Shout The Beatles English 
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B. ChaiMusic - 26 songs by The Beatles from the years 1962-1966 

No Title Artist Language 
1 A Hard Day's Night  The Beatles English 
2 Day Tripper  The Beatles English 
3 Drive My Car  The Beatles English 
4 Help  The Beatles English 
5 Eleanor Rigby  The Beatles English 
6 From Me To You  The Beatles English 
7 Norwegian Wood  The Beatles English 
8 We Can Work It Out  The Beatles English 
9 All My Loving  The Beatles English 

10 Paperback Writer  The Beatles English 
11 You’ve Got To Hide Your Love Away  The Beatles English 
12 Nowhere Man  The Beatles English 
13 She Loves You  The Beatles English 
14 And I Love Her  The Beatles English 
15 Yellow Submarine  The Beatles English 
16 Can't Buy Me Love  The Beatles English 
17 Michelle  The Beatles English 
18 Please Please Me  The Beatles English 
19 Ticket To Ride  The Beatles English 
20 Eight Days A Week  The Beatles English 
21 Love Me Do  The Beatles English 
22 Girl  The Beatles English 
23 In My Life  The Beatles English 
24 Yesterday  The Beatles English 
25 I Feel Fine  The Beatles English 
26 I Want To Hold Your Hand  The Beatles English 
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C. WordPop - 23 popular songs in various languages 

No Title Artist Language 
1 Bye Bye Bye 'N Sync English 
2 I’m Real Jennifer Lopez English 
3 Brown Sugar Rolling Stones English 
4 Chain Of Fools Aretha_Franklin English 
5 Independent Women Destiny’s Child English 
6 True Love story Seiko Matsuda Japanese 
7 My Love Grows Deeper Nelly Furtado English 
8 At The Beginning Richard Marx & Donna 

Lewis 
English 

9 I am Your Angel Celine Dion R. Kelly English 
10 You Are The Inspiration Chicago English 
11 For Whom The Bell Tolls Bee Gees English 
12 I Say A Little Prayer instrumental English 
13 Bilakah Cinta Kris Dayanti Indonesian 
14 Kau Dan Aku Kris Dayanti Indonesian 
15 Turn It Into Love Kylie Minogue English 
16 Out Of My Head Kylie Minogue English 
17 当年情 Leslie Cheung Cantonese 
18 Room In Your Heart Mike Francis English 
19 月亮代表我的心 Teresa Teng Mandarin 
20 排球女将 Seiko Matsuda 

 
Japanese 

21 Sir Duke Stevie Wonder English 
22 Jump Van Halen English 
23 红颜白发 Leslie Cheung Cantonese 
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Appendix D 

Details on Audio Database used in Chapter 5 

A. 18 popular songs from The Beatles’ and other artists or groups 

No Title Artist Language 
1 Bye Bye Bye  'N Sync English 
2 Brown Sugar Rolling Stones English 
3 Chain Of Fools Aretha Franklin English 
4 Independent Women Part.1 Destiny Child English 
5 I Am Your Angel  Celine Dion & R. Kelly English 
6 I Believe In You And Me  Whitney Houston & 

Mariah Carey 
English 

7 I Can Wait Forever  Air Supply English 
8 Room In Your Heart  Mike Francis English 
9 Jump  Van Halen English 

10 No Reply The Beatles English 
11 Please Mister Postman The Beatles English 
12 Do You Want To Know A Secret The Beatles English 
13 All My Loving The Beatles English 
14 Things We Said Today The Beatles English 
15 Can't Buy Me Love The Beatles English 
16 If I Fell The Beatles English 
17 Eight Days A Week The Beatles English 
18 It Won't Be Long The Beatles English 
 
 




