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Abstract

This dissertation presents, discusses, and sheds some light on the problems that
appear when computers try to automatically classify musical genres from au-
dio signals. In particular, a method is proposed for the automatic music genre
classification by using a computational approach that is inspired in music cog-
nition and musicology in addition to Music Information Retrieval techniques.
In this context, we design a set of experiments by combining the different el-
ements that may affect the accuracy in the classification (audio descriptors,
machine learning algorithms, etc.). We evaluate, compare and analyze the
obtained results in order to explain the existing glass-ceiling in genre classifi-
cation, and propose new strategies to overcome it. Moreover, starting from the
polyphonic audio content processing we include musical and cultural aspects
of musical genre that have usually been neglected in the current state of the
art approaches.

This work studies different families of audio descriptors related to timbre,
rhythm, tonality and other facets of music, which have not been frequently
addressed in the literature. Some of these descriptors are proposed by the au-
thor and others come from previous existing studies. We also compare machine
learning techniques commonly used for classification and analyze how they can
deal with the genre classification problem. We also present a discussion on
their ability to represent the different classification models proposed in cog-
nitive science. Moreover, the classification results using the machine learning
techniques are contrasted with the results of some listening experiments pro-
posed. This comparison drive us to think of a specific architecture of classifiers
that will be justified and described in detail. It is also one of the objectives of
this dissertation to compare results under different data configurations, that
is, using different datasets, mixing them and reproducing some real scenarios
in which genre classifiers could be used (huge datasets). As a conclusion, we
discuss how the classification architecture here proposed can break the existing
glass-ceiling effect in automatic genre classification.

To sum up, this dissertation contributes to the field of automatic genre
classification: a) It provides a multidisciplinary review of musical genres and
its classification; b) It provides a qualitative and quantitative evaluation of
families of audio descriptors used for automatic classification; c) It evaluates
different machine learning techniques and their pros and cons in the context
of genre classification; d) It proposes a new architecture of classifiers after
analyzing music genre classification from different disciplines; e) It analyzes
the behavior of this proposed architecture in different environments consisting
of huge or mixed datasets.

vii



viii

Resum

Aquesta tesi versa sobre la classificació automàtica de gèneres musicals, basa-
da en l’anàlisi del contingut del senyal d’àudio, plantejant-ne els problemes i
proposant solucions.

Es proposa un estudi de la classificació de gèneres musicals des del punt
de vista computacional però inspirat en teories dels camps de la musicologia
i de la percepció. D’aquesta manera, els experiments presentats combinen
diferents elements que influeixen en l’encert o fracàs de la classificació, com ara
els descriptors d’àudio, les tècniques d’aprenentatge, etc. L’objectiu és avaluar
i comparar els resultats obtinguts d’aquests experiments per tal d’explicar els
límits d’encert dels algorismes actuals, i proposar noves estratègies per tal
de superar-los. A més a més, partint del processat de la informació d’àudio,
s’inclouen aspectes musicals i culturals referents al gènere que tradicionalment
no han estat tinguts en compte en els estudis existents.

En aquest contexte, es proposa l’estudi de diferents famílies de descriptors
d’àudio referents al timbre, ritme, tonalitat o altres aspectes de la música. Al-
guns d’aquests descriptors són proposats pel propi autor mentre que d’altres
ja són perfectament coneguts. D’altra banda, també es comparen les tècniques
d’aprenentatge artificial que s’usen tradicionalment en aquest camp i s’ana-
litza el seu comportament davant el nostre problema de classificació. També
es presenta una discussió sobre la seva capacitat per representar els diferents
models de classificació proposats en el camp de la percepció. Els resultats de
la classificació es comparen amb un seguit de tests i enquestes realitzades sobre
un conjunt d’individus. Com a resultat d’aquesta comparativa es proposa una
arquitectura específica de classificadors que també està raonada i explicada en
detall. Finalment, es fa un especial èmfasi en comparar resultats dels classi-
ficadors automàtics en diferents escenaris que pressuposen la barreja de bases
de dades, la comparació entre bases de dades grans i petites, etc. A títol de
conclusió, es mostra com l’arquitectura de classificació proposada, justificada
pels resultats dels diferents anàlisis, pot trencar el límit actual en tasques de
classificació automàtica de gèneres musicals.

De manera condensada, podem dir que aquesta tesi contribueix al camp de
la classificació de gèneres musicals en els següents aspectes: a) Proporciona una
revisió multidisciplinar dels gèneres musicals i la seva classificació; b) Presenta
una avaluació qualitativa i quantitativa de les famílies de descriptors d’àudio
davant el problema de la classificació de gèneres; c) Avalua els pros i contres
de les diferents tècniques d’aprenentatge artificial davant el gènere; d) Proposa
una arquitectura nova de classificador d’acord amb una visió interdisciplinar
dels gèneres musicals; e) Analitza el comportament de l’arquitectura proposada
davant d’entorns molt diversos en el que es podria implementar el classificador.
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Resumen

Esta tesis estudia la clasificación automática de géneros musicales, basada en
el análisis del contenido de la señal de audio, planteando sus problemas y
proponiendo soluciones.

Se propone un estudio de la clasificación de los géneros musicales desde el
punto de vista computacional, pero inspirado en teorías de los campos de la
musicología y la percepción, De este modo, los experimentos persentados com-
binan distintos elementos que influyen en el acierto o fracaso de la clasificación,
como por ejemplo los descriptores de audio, las técnicas de aprondizaje, etc. El
objetivo es comparar y evaluar los resultados obtenidos de estos experimentos
para explicar los límites de las tasas de acierto de los algorismos actuales, y
proponer nuevas estrategias para superarlos. Además, partiendo del procesado
de la información de Audio, se han incluido aspectos musicales y culturales al
género que tradicionalmente no han sido tomados en cuenta en los estudios
existentes.

En este contexto, se propone el estudio de distintas famílias de descriptores
de audio referentes al timbre, al ritmo, a la tonalidad o a otros aspectos de
la música. Algunos de los descriptores son propuestos por el mismo autor,
mientras que otros son perfectamente conocidos. Por otra parte, también se
comparan las técnicas de aprendizaje artificial que se usan tradicionalmente, y
analizamos su comportamiento en frente de nuestro problema de clasificación.
Tambien planteamos una discusión sobre su capacidad para representar los
diferentes modelos de clasificación propuestos en el campo de la percepción.
Estos resultados de la clasificación se comparan con los resultados de unos
tests y encuestas realizados sobre un conjunto de individuos. Como resultado
de esta comparativa se propone una arquitectura específica de clasificadores que
tambien está razonada y detallada en el cuerpo de la tesis. Finalmente, se hace
un émfasis especial en comparar los resultados de los clasificadores automáticos
en distintos escenarios que assumen la mezcla de bases de datos, algunas muy
grandes y otras muy pequeñas, etc. Como conclusión, mostraremos como la
arquitectura de clasificación propuesta permite romper el límite actual en el
ámbito de la classificación automática de géneros musicales.

De forma condensada, podemos decir que esta tesis contribuye en el campo
de la clasificación de los géneros musicales el los siguientes aspectos: a) Propor-
ciona una revisión multidisciplinar de los géneros musicales y su clasificación;
b) Presenta una evaluación cualitativa y cuantitativa de las famílias de des-
criptores de audio para la clasificación de géneros musicales; c) Evalua los pros
y contras de las distintas técnicas de aprendizaje artificial delante del género;
d) Propone una arquitectura nueva del clasificador de acuerdo con una visión
interdisciplinar de los géneros musicales; e) Analiza el comportamiento de la
arquitectura propuesta delante de entornos muy diversos en los que se podria
implementar el clasificador.
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CHAPTER 1
Introduction

1.1 Motivation

Wide-band connection to the Internet has become quite a common resource
in our lifestyle. Among others, it allows users to store and share thousands of
audiovisual content in their hard disk, portable media player or cellular phone.
On-line distributors like iTunes1, Yahoo! Music2 or Amazon3 take benefit
of this situation and contribute to the metamorphosis that music industry is
living. The physical CD is becoming obsolete as a commercial product in
benefit of MP3, AAC, WMA or other file formats in which the content can be
easily shared by users. On the other hand, the pervasive Peer2Peer networks
also contribute to this change, but some legal issues are still unclear.

During the last thirty years, music has been traditionally sold in a physi-
cal format (vinyl, CD, etc.) organized according to a rigid structure based on
a set of 10 or 15 songs, usually from the same artist, grouped in an album.
There exist thousands of exceptions to this organization (compilations, double
CDs, etc.) but all of them are deviations from that basic structure. Nowadays,
digital databases and stores allow the user to download individual songs from
different artists, create their own compilations and decide how to exchange mu-
sical experiences with the rest of the community. Portals like mySpace4 allow
unknown and new bands to grow using different ways than those traditionally
established by the music industry.

Under these conditions, the organization of huge databases becomes a real
problem for music enthusiasts and professionals. New methodologies to dis-
cover, recommend and classify music must emerge from the computer music
industry and research groups.

The computer music community is a relative small group in the big field of
computer science. Most of the people in this community is greatly enthusiastic
about music. The problem arises when computers meet music. Sometimes, in

1http://www.itunes.com
2http://music.yahoo.com
3http://www.amazon.com
4http://www.myspace.com

1
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this world of numbers, probabilities and sinusoids, everything about music can
be forgotten and the research becomes quite far from the final user expectations.
Our research, focused into the Music Information Retrieval field (MIR), tries
to join these two worlds but, sometimes, it is a difficult task. From our point of
view, the research in MIR should take into account different aspects of music
such as (1) the objective description of music: basic musical concepts like BPM,
melody, timbre, etc., (2) musicological description of music: formal studies can
provide our community the theoretical background we have to deal with using
computers, and (3) psychological aspects of music: it is important to know how
different musical stimulus affects the human behavior.

Music can be classified according to its genre, which is probably one of the
most often used descriptors for music. Heittola (2003) explores how to manage
huge databases that can be stored in a personal computer in terms of musical
genre classification. Classifying music into a particular musical genre is a use-
ful way of describing qualities that it shares with other music from the same
genre, and separating it from other music. Generally, music within the same
musical genre has certain similar characteristics, for example, similar instru-
ments, rhythmic patterns, or harmonic/melodic features. In this thesis, we will
discuss about the use of different techniques to extract these properties from
the audio, and we will establish different relationships between the files stored
in our hard disk in terms of musical genres defined by a specific taxonomy.

There are many disciplines involved in this issue, such as information re-
trieval, signal processing, statistics, musicology and cognition. We will focus
on the methods and techniques proposed by the music content processing and
music information retrieval fields but we will not completely forget about the
rest.

1.2 Music Content Processing

Let us imagine that we are in a CD store. Our decision to buy a specific CD will
depend on many different aspects like genre, danceability, instrumentation, etc.
Basically, the information we have in the store is limited to the genre, artist and
album, but sometimes this information is not enough to take the right decision.
Then, it would be useful to retrieve music according to different aspects on its
content but, what is the content?

The word content is defined as "the ideas that are contained in a piece of
writing, a speech or a film" (Cambridge International Dictionary, 2008). This
concept applied to a piece of music can be seen as the implicit information that
is related to this piece and that is represented in the piece itself. Aspects to be
included in this concept are, for instance, structural, rhythmic, instrumental,
or melodic properties of the piece. Polotti & Rocchesso (2008) remark that the
Society of Motion Picture and Television Engineers (SMPTE) and the Euro-
pean Broadcasting Union (EBU) propose a more practical definition of the term
content, as the combination of two concepts: metadata and essence. Essence is
“the raw program material itself, the data that directly encodes pictures, sounds,
text, video, etc.”. On the other hand, Metadata is “used to describe the essence
and its different manifestations”, that can be splitted in different categories:

• Essential: Meta information that is necessary to reproduce the essence
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• Access: Provides legal access and control to the essence

• Parametric: Defines the parameters of the capturing methods

• Relational: Allows synchronization to different content components

• Descriptive: Gives information to the essence. It facilities the search,
retrieval, cataloging, etc.

According to Merriam-Webster Online (2008), the concept of content-analysis
is defined as the "analysis of the manifest and latent content of a body of com-
municated material (as a book or film) through a classification, tabulation, and
evaluation of its key symbols and themes in order to ascertain its meaning and
probable effect". Music content analysis and processing is a topic of research
that has become very relevant in the last few years. As explained in Section
1.1, the main reason for this is the high amount of audio material that has
been made accessible for personal purposes through networks and available
storage supports. This makes it necessary to develop tools intended to interact
with this audio material in an easy and meaningful way. Several techniques
are included under the concept of “Music-content analysis” such as techniques
for automatic transcription, rhythm and melodic characterization, instrument
recognition and genre classification. The aim of all of them is to describe any
aspect related to the content of music.

1.3 Music Information Retrieval

It is difficult to establish the starting point or the key paper in the field of Music
Information Retrieval (MIR). As shown by Polotti & Rocchesso (2008), the
pioneers in MIR discipline were Kassler (1966) and Lincoln (1967). According
to them, Music Information Retrieval can be defined as “the task of extracting,
from a large quantity of data, the portions that data with respect to which some
particular musicological statement is true”. They also show three ideas that
should be the goals of MIR: (1) the elimination of manual transcription, (2)
the creation of an effective input language for music and (3) economic way for
printing music.

MIR is an interdisciplinary science. Fingerhut & Donin (2006) propose
a map with all the disciplines related to MIR. Figure 1.1 shows a simplified
version of this map. In the left, we observe the kind of information we have
(in the musician’s brain, digitally stored or just metadata information). On
the right, we observe the disciplines that are related to data for each level of
abstraction. For automatic genre classification of music we need information
from digital, symbolic and semantic levels. Ideally, we should also include
information from the cognition level, but the state of the art is quite far to
provide such information.

The relevance of MIR in the music industry is summarized by Downie
(2003). Every year, 10000 new albums are released and 100,000 works reg-
istered for copyright (Uitdenbogerd & Zobel, 1999). In 2000, the US industry
shipped 1.08 billion units of recorded music (CDs, cassettes, etc.) valued at
14.3 billion dollars (Recording Industry Association of America, 2001). Vivendi
Universal (the parent company of Universal Music Group) bought MP3.com
for 372 million dollars. Although this quantity was still so far from the overall
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Figure 1.1: Simplified version of the MIR map proposed by Fingerhut & Donin
(2006)

music business, it is obvious that it is not negligible. In 2001, Wordspot (an
Internet consulting company that tracks queries submitted to Internet search
engines) reported that MP3 format queries displaced the search for sex-related
materials. In 2007, the search and download of MP3 files is, at least, as relevant
as other traditional sources for consuming music. In front of this scenario, it is
obvious that MIR has to provide solutions to the problems presented by this
new way of listening to the music.

1.4 Application contexts

Some of the application contexts in which automatic genre classification be-
comes relevant are listed here:

• Organization of personal collections: Downloading music from the In-
ternet has become a common task for most of music enthusiasts. Au-
tomatic classifiers provide a good starting point for the organization of
big databases. Classifiers should allow users to organize music according
to their own taxonomy and should allow them to include new manually
labelled data defined by other users.

• Multiple relationships in music stores and library databases: In many
cases, music can not be completely fitted into a unique musical genre.
A distance measure for a specific audio file belonging to many given
categories can help users in their music search. Catalogs can be defined
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using these distances in such a way that the same audio file can be found
in different groups.

• Automatic labeling in radiostations: Audio fingerprinting and monitoring
is a crucial task for author societies. The whole system can be spread
into different specialized identification nodes according to musical genres.
For instance, classical music radio stations do not modify their database
as often as commercial pop music radio stations. In this context, the
configuration of fingerprint systems is different for each musical genre.
Automatic genre classification provides their initial filter.

• Music Recommendation: Due to the availability of high amounts of audio
files in the Internet, music recommenders systems emerge from research
labs. The most common systems are based on collaborative filtering or
other techniques based on the feedback provided by users (p.ex. the
Customers who bough this item also bought recommendation at Ama-
zon.com). Other systems use content based and Music Information Re-
trieval techniques in which the genre classification plays an important
role.

• Playlist generation: Many times, we would like to listen to a specific kind
of music we have stored in our portable media player. According to some
given examples, the system should be able to propose a list of similar
songs in a playlist. Here again, a distance measure from the songs in our
database to a given list of musical genres is a very valuable information.

In the applications here presented, the genre classifier is not the unique
technique to be used. It needs to be complemented with the other active topics
in MIR such as rhythm detection, chord estimation or cover identification,
among others.

1.5 Goals

We present here the goals of this PhD dissertation, which are related to the
hypothesis that we want to verify:

• Review current efforts in audio genre classification. This multidisciplinary
study comprises the current literature related to genre classification, mu-
sic categorization theories, taxonomy definition, signal processing meth-
ods used for the feature extraction and machine learning algorithms com-
monly used.

• Justify of the role of automatic genre classification algorithms in the MIR
and industry communities.

• Study the influence of taxonomies, audio descriptors and machine learn-
ing algorithms in the overall performance of automatic genre classifiers.

• Propose alternative methods to make automatic classification a more
comprehensive and musical task, according to the current state of the
art and musicological knowledge.
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• Provide a flexible classification technique that is capable to deal with
different environments and applications.

• Provide a quantitative evaluation of the proposed approaches by using
different collections.

A part from the technical content, this dissertation also presents the ques-
tion about why humans need to classify music into genres and how they do
that. The usefulness of classification is discussed in different environments
where sometimes they follow some logical rules, but sometimes not. Maybe
genre classification can not be performed in the same way than animals, fig-
ures or colors classification. And maybe traditional genre classification is not
the best way to classify music.

1.6 Summary of the PhD work

The aim of this work is to provide significant contributions to the state of the
art in automatic music genre classification. Genre classification is not a trivial
task. There exist a large amount of disciplines involved in it, from the objective
analysis of musical parameters to the marketing strategies of music retailers.
In this context, specialized classifiers with high performance rates can become
complete useless if we change the dataset or we need to include a new musical
genre.

We study the behavior of the classifiers in front of different datasets (and
mixes of them), and we show the differences in the obtained accuracies in differ-
ent contexts. We also study the influence of different descriptors and propose
the use of some other new features (like danceability or panning) that have not
been traditionally used for genre classification. Results are accompanied by a
set of listening experiments presented to a selected group of music students in
order to distinguish between the importance of two musical facets in the overall
classification process. We also study the pros and cons of different classifiers
and propose the use of some other classifiers that have not been used for this
task.

Results show how ensembles of dedicated classifiers for each category, in-
stead of traditional global classifiers we find in the state of the art, can help us
to cross the glass-ceiling existing in the automatic classification of music genres
(Aucouturier & Pachet, 2004). The proposed classifiers provide accuracies over
95% of correct classifications in real datasets but, as demonstrated in the anal-
ysis for the cross-datasets, this accuracy can decrease about 20% or more. Here
again, we met a trade-off between the performance of a genre classifier and its
generality, as expected, but we analyze which are the key points to minimize
this problem. On the other hand, we also show how traditional descriptors
related to timbre or rhythm provide the best overall results, except for some
very specific experiments in which the use of other classifiers (panning, tonality,
etc.) can improve the performance rates.

In parallel to all these detailed studies, we present results for some listen-
ing experiments which try to complement the output of some classifiers here
analyzed, and we also discuss about the results obtained in our submission to
the MIREX075 competition.

5http://www.music-ir.org/mirex/2007
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1.7 Organization of the Thesis

This dissertation is organized as shown in Figure 1.2. We start with a theoret-
ical introduction on musical genres in Chapter 2. We discuss why they were
created and how different disciplines deal with them. The evolution of the mu-
sic industry produces constant changes in the used taxonomies in such a way
that, nowadays, each user can create its own taxonomy for audio classification.
In Chapter 3, we study the state of the art in automatic classification starting
from a conceptual overview of the techniques and methods traditionally used,
followed by a more detailed discussion on the different approaches made by the
community in the last few years. At this point, the reader is expected to have
an overview of the problems presented by the musical genre classification, and
how the state of the art tries to solve them. We also extract some preliminary
conclusions to find the strong and weak points, and present the specific con-
texts for our contributions. In Chapter 4, we present the technical background
required for the construction of such classifiers. In Chapter 5 we will present
our contributions, separated into three main areas: (1) the use of different de-
scriptors, (2) the use of different classifiers, and (3) the use of different datasets.
At the end of each part we will draw some preliminary conclusions. Finally, in
Chapter 6, we present the overall conclusions and propose the future work.





CHAPTER 2
Complementary approaches

for studying music genre

2.1 Introduction

This chapter starts with our own definition ofMusical Genre. Unfortunately, an
universal definition does not exist and authors differ one each other. The term
genre comes from the Latin word genus, which means kind or class. According
to that, genres should be described as a musical category defined by some
specific criteria. Due to the inherent personal comprehension of music, this
criteria can not be universally established. Then, genres will be differently
defined for different people, social groups, countries, etc.

Roughly speaking, genres are assumed to be characterized by the instru-
mentation, rhythmic structure, harmony, etc., of the compositions that are
included into a given category. But there are many external factors which are
not directly related to music that influence this classification (performer, lyrics,
etc.). The major challenge in our approach for the study of automatic genre
classification is to define and set all the musically dependent factors as precise
as possible.

2.1.1 Definition

In this section, we will provide our own definition of music genre that will be
used from here to the end of this thesis. But we have to start studying the
existing ones. According to the Grove Music Online (Samson, 2007) a genre
can be defined as:

a class, type or category, sanctioned by convention. Since con-
ventional definitions derive (inductively) from concrete particulars,
such as musical works or musical practices, and are therefore sub-
ject to change, a genre is probably closer to an ’ideal type’ (in Max
Weber’s sense) than to a Platonic ’ideal form’.

9
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Samson clarifies that genres are based on the principle of repetition: in a
specific musical genre, there exists some well known patterns (coded in the
past) that invite to be repeated by the future compositions. According to this
definition, genre classification can be reduced to the research of these patterns.
Most of these patterns are coded in the music itself as a particular rhythm,
melody or harmony, but some others doesn’t. In this thesis and for simplicity,
we define genre as:

the term used to describe music that has similar properties, in those
aspects of music that differ from the others.

What does it means? Some music can be clearly identified by the instru-
ments that belong to the ensemble (i.e. music played with Scottish bagpipes).
Other genres can be identified by the rhythm (i.e. tecno music). Of course,
both examples can be discussed because the instrument and the rhythm are
not the only factors that define these genres. In our proposed definition, “those
aspects of music” refer to musical and non musical properties that allows a
group of works to be identified under a specific criteria. A part of the musi-
cological perspective, this criteria can be defined under geographical, social or
technological points of view, among others.

2.1.2 Genre vs Style

Genre and Style are often used as synonyms, but it is important to understand
the difference between them. The word style derives from the word for a greek
and roman writing implement (Lat. stilus), a tool of communication, the shaper
and conditioner of the outward form of a message. According to the Grove
Music Online (Pascall, 2007), the style can be defined as:

Style is manner, mode of expression, type of presentation. For the
aesthetician style concerns surface or appearance, though in music
appearance and essence are ultimately inseparable. For the histo-
rian a style is a distinguishing and ordering concept, both consistent
of and denoting generalities; he or she groups examples of music ac-
cording to similarities between them

Our work will focus on the first part of the definition concerning to the
surface or appearance of a musical piece. In other words, the style describes
a ’how to play’ or the personal properties of interpretation, independently of
the musical genre we are dealing with. The historical definition of style can
be completely confused with our previous definition of genre. From here to
the end, we will not use the term style to refer generalities or groups of music
according to a similarity criteria.

Many examples of different styles in a unique musical genre can be found.
The theme Insensatez from Antonio Carlos Jobim can be played in different
styles depending on the performer (Stan Getz, Jobim, etc.) but, in terms of
genre, it will always be referred as a bosanova.

2.1.3 The use of musical genres

The use of musical genres has been deeply discussed by the MIR community
and reviewed by Mckay & Fujinaga (2006). It has been suggested that music
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genres are an inconsistent way to organize music and that it is more useful to
focus the efforts in music similarity. Under this point of view, music genre is
a particular case of music similarity. But musical genres are the only labeling
system that takes cultural aspects into account. This is one of the most valuable
information for end users when organizing or searching in music collections. In
general, the answer to Find songs that sound like this refers to a list of songs
of the same musical genre.

Other kind of similarities are also useful (Mood, Geography) and the com-
bination of all of them should cover most of the searching criteria in huge
databases for general music enthusiasts. The relationship between humans and
similarity systems should be established under musical and perceptual criteria
instead of mathematical concepts. Users become frustrated when these sys-
tems propose mathematically coherent similarities that are far from the musical
point of view. Good similarity algorithms must be running in the lower levels
of recommending systems but filtering and classification techniques should be
applied at the upper levels of recommendation systems

On the other hand, we wonder to what kind of music item the genre classifi-
cation should apply: to an artist? to an album? to an individual song? Albums
from the same artist may contain heterogeneous material. Furthermore, differ-
ent albums from the same artist can be labelled with different music genres.
This makes the genre classification a more unclear task.

2.2 Disciplines studying musical genres

Genres are not exclusive for music. Literature and Film are two disciplines
with similar properties that require the classification into different categories
also called genres (Duff, 2000; Grant, 2003). Research in these fields addresses
issues such as how genres are created, defined, perceived and how they change
with new creations that are beyond the limits of the predefined genres. Music
genres can be studied from different points of view. Here, we present the most
important ones.

2.2.1 Musicology

According to Futrelle & Downie (2003), musicologists included computer based
and MIR techniques in their work in the last decades (Cope, 2001; Barthélemy
& Bonardi, 2001; Dannenberg & Hu, 2002; Bonardi, 2000; Kornstädt, 2001).

Focusing on music genre, the nature of the studies made by musicologist is
quite different: from very specific studies dealing with properties of an author
or performer to the influences that specific social and cultural situations can
affect to the composers. Fabbri (1981) suggests that music genres can be
characterized using the following rules:

• Formal and technical: Content based practices

• Semiotics: Abstract concepts that are communicated

• Behavior: How composers and performers behaves

• Social and Ideological: Links between genres and demographics (age,
race...)
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• Economical: Economic systems that supports specific genres

Note how only the first rule deals with musical content. Let us remark
another interesting research performed by Uitdenbogerd (2004). She discusses
about different methodologies for the definition of taxonomies in automatic
genre classification systems. This work is based on different experiments and
surveys presented to different groups of participants with different skills. Ques-
tions like “If you had to categorize music into exactly 7 categories what would
they be?” are proposed. The conclusions of this work are the impossibility
to establish the exact number of musical genres and a fixed taxonomy for the
experiments. The author also presents a methodology to better perform a
musical genre classification task, summarized as follows:

1. Acquire a Collection

2. Choose categories for the collection

3. Test and refine categories

a) Collect two sets of human labels for a small random subset of the
collection

b) Produce a confusion matrix for the two sets

c) Revise category choices, possibly discarding the worst categories

4. Revise category choices, possibly discarding the worst categories

5. Collect at least two sets of human labels for the entire collection

6. Run the experiment

7. Include in the analysis a human confusion matrix to quantify category
fuzziness. Report on the differences between the human and machine
confusion matrices.

She also enumerates the common errors made in a categorical tree definition
process:

Overextension: This is the case for a concept that is applied more generally
than it should, i.e. when a child calls all pieces of furniture “Chair”.

Underextension: This is the case for a concept that is only applied to a
specific instance, i.e. when a child uses the term “Chair” to refer its own
chair.

Mismatch: This is the case for a concept that is applied to other concepts
without any relationship between them, i.e. when a child uses the term
“chair” to refer a dog.

In our experiments, we will take into account these recommendations. Other
important works study how musicians are influenced by musical genres (Toyn-
bee, 2000) and how are they grouped and how they change (Brackett, 1995).
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Store Genres
Musicovery Rap, R&B, Jazz, Gospel, Blues, Metal, Rock

www.musicovery.com Vocal pop, Pop, Electro, Latino, Classical
Soundtrack, World, Reggae, Soul, Funk, Disco

Amazon Alternative Rock, Blues, Box Sets, Classic Rock
www.amazon.com Broadway & Vocalists, Children’s Music

Christian & Gospel, Classical
Classical Instrumental, Classical: Opera and Vocal
Country, Dance & DJ, DVDs, DVDs: Musicals
DVDs: Opera & Classical, Folk, Hard Rock & Metal
Imports, Indie Music, International, Jazz
Latin Music, Miscellaneous, New Age, Pop, R&B
Rap & Hip-Hop, Rock, Soundtracks

iTunes Alternative, Blues, Children’s Music, Classical
www.apple.com Christian & Gospel, Comedy, Country, Dance

Electronic, Folk, Hip-Hop/Rap, Jazz, Latino, Pop
R&B/Soul, Reggae, Rock, Soundtrack, Vocal

Yahoo! Music Electronic/Dance, Reggae, Hip-Hop/Rap, Blues
music.yahoo.com Country, Folk, Holyday, Jazz, Latin, New Age

Miscellaneous, Pop, R&B, Christian, Rock
Shows and Movies, World, Kids, Comedy, Classical
Oldies, Eras, Themes, World

Table 2.1: First level taxonomies used by some important on-line stores

2.2.2 Industry

As detailed in Section 2.3, the industry requires musical genres for their busi-
ness. Buying CDs in a store or dialing a specific radio station requires some
previous knowledge about its musical genre. Music enthusiasts need to be
guided to the specific music they consume. The idea is to make the search
period as short as possible with successful results. In fact, traditional music
taxonomies have been designed by the music industry to guide the consumer
in a CD store (see below). They are based on parameters such as the distri-
bution of CDs in a physical place or the marketing strategies proposed by the
biggest music labels (Pachet & Cazaly, 2000). Nowadays, on-line stores allow
less constrained taxonomies but they are also created using marketing strate-
gies. Table 2.1 shows some examples of the first level taxonomies used by some
important on-line stores.

2.2.3 Psychology

Some researchers have included the implications of music perception (Huron,
2000; Dannenberg, 2001) or epistemological analysis of music information (Smi-
raglia, 2001) in the Music Information Retrieval studies. Much research has
been done on music perception in psychology and cognitive science (Deliáege
& Sloboda, 1997; Cook, 1999).

Focusing on musical genres, research is centered on how human brain per-
ceives the music and categorizes it. Music can not be classified using the same
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hierarchy schema used for animal classification because of the high amount
of overlapping examples and different criteria used at the same time. Psy-
chologists have studied these strategies and create some theories that will be
discussed in detail in Section 2.4.

2.2.4 Music Information Retrieval

Finally, the MIR community is another field studying musical genres. In fact,
MIR community doesn’t discuss about how the musical genres should be de-
fined or how the taxonomies should be constructed. This community tries to
mix all the related disciplines to allow computers to distinguish between (in
our case) musical genres. But it is not its objective to discuss about music as-
pects such as whether taxonomies are well defined or not, the prototype songs
at each musical genre, etc. We consider that this thesis belongs to the MIR
discipline.

2.3 From Taxonomies to Tags

Let’s start this section providing a definition of the term taxonomy. Merriam-
Webster provide two definitions: a) the study of the general principles of scien-
tific classification, and b) orderly classification of plants and animals according
to their presumed natural relationships. According to Kartomi (1990), a tax-
onomy:

...consists of a set of taxa or grouping of entities that are determined
by the culture or group creating the taxonomy; its characters of
division are not arbitrarily selected but are "natura" to the culture
or group.

When building taxonomies, we apply one division criterion per step, and
then proceed ”downward” from a general to a more particular level. The result
is a hierarchy of contrasting division (items at different levels contrast with
each other).

On the other hand, ontology is also an important concept related to genre
classification. Merriam Webster provides two definitions: a) a branch of meta-
physics concerned with the nature and relations of being and b) a particular
theory about the nature of being or the kinds of existents. According to Gru-
ber (1993), an ontology is a specification of the conceptualization of a term.
This is probably the most widely accepted definition of this term (McGuinness,
2003). Controlled vocabularies, glossaries and thesauri are examples of simple
ontologies. Ontologies generally describe:

• Individuals: the basic or "ground level" objects

• Classes: sets, collections, or types of objects

• Attributes: properties, features, characteristics, or parameters that ob-
jects can have and share

• Relations: ways that objects can be related to one another

• Events: the changing of attributes or relations
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Levels Example 1 Example 2
Global category Pop Jazz

Sub-category General Live Albums
Artist Avril Lavigne Keith Jarrett
Album Under my skin Koln Concert

Table 2.2: Two examples of the industrial taxonomy

Due to the automatic classification algorithms try to establish relationships
between musical genres, maybe it is more appropriate to talk about ontologies
instead of taxonomies. For historical reasons, we will use the term taxonomy
even in those cases discussing about attributes or relations between them.

Many taxonomies from different known libraries or web sites can differ a
lot (see Table 2.1). All these taxonomies are theoretically designed by musi-
cologists and experts. If they do not coincide, does it mean that all of them
are in a mistake? Of course, not. The only problem is that different points of
view of music are applied for their definition.

2.3.1 Music Taxonomies

Depending on the application, taxonomies dealing with musical genres can
be divided into different groups (Pachet & Cazaly, 2000): taxonomies for the
music industry, internet taxonomies, and specific taxonomies.

Music industry taxonomies: These taxonomies are created by big record-
ing companies and CD stores (i.e. RCA, Fnac, Virgin, etc.). The goal of
these taxonomies is to guide the consumer to a specific CD or track in
the shop. They usually use four different hierarchical levels:

1. Global music categories

2. Sub-categories

3. Artists (usually in alphabetical order)

4. Album (if available)

Table 2.2 shows two examples of albums by using this taxonomy (we will
not discuss whether they are right or not). Although this taxonomy has
shown its usability by large, some inconsistencies can be found:

• Most of the stores have other sections with promotions, collections,
etc.

• Some authors have different recordings which should be classified in
another Global Category

• Some companies manage the labels according to the copyright man-
agement

even so, it is a good taxonomy for music retailers.

Internet Taxonomies: Although these taxonomies are also created under
commercial criteria, they are significantly different from the previous ones
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# Path
1 Styles → International → Caribbean&Cuba → Cuba →
→ Buena Vista Social Club

2 Music for Travelers → Latin Music → Latin Jazz →
→ Buena Vista Social Club

3 Styles → Jazz → Latin Jazz → Buena Vista Social Club

Table 2.3: Three different virtual paths for the same albumin a Internet tax-
onomy (Amazon)

because of the multiple relationships that can be established between
authors, albums, etc. Their main property is that music is not exposed
in a specific physical place. Then, with these multiple relationships, the
consumer can browse according to multiple criteria. Table 2.3 shows three
different paths or locations for the same album found in Amazon. As in
the previous case, some inconsistencies are also found here, specially from
the semantic point of view:

• Hierarchical links are usually genealogical. But sometimes, more
than one father is necessary. i.e. both Pop and Soul are the “fathers”
of Disco

• In most of the taxonomies, geographical inclusions can be found. It
is really debatable whether this classification is correct or not. Some
sites propose the category World Music (eBay1) in which, strictly
speaking, one should be able to find some Folk music from China,
Pop music of Youssou N’Dour and Rock music of Bruce Springsteen.

• Aggregation is commonly used to join different styles: Reggae-Ska
→ Reggae and Reggae-Ska → Ska (eBay).

• Repetitions can also be found: Dance → Dance (AllMusicGuide).

• Historical Period labels may overlap, specially in classical music:
Baroque or Classical and French Impressionist may overlap.

• Specific random-like dimensions of the sub-genre can create confu-
sion.

Specific Taxonomies: Sometimes, some quite specific taxonomies are needed,
even if they are not really exhaustive or semantically correct. A good ex-
ample can be found in music labelled as Ballroom, in which Tango can
include classical titles from “Piazzolla” as well as electronic titles from
“Gotan Project”.

2.3.2 Folksonomies

The previous section showed how complicated can be to establish a universal
taxonomy. This situation has became more complex in the recent years be-
cause of the fast growth of web publishing tools (blogs, wikis, etc.) and music

1www.ebay.com
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Figure 2.1: Tag map from Last.fm

distribution (myspace2, eMule3, etc.). From that, new strategies have emerged
for music classification such as the so-called folksonomies that can be defined
as user-generated classification schemes specified through bottom-up consensus
(Scaringella et al., 2006).

This new schema difficults the design of classification tools but allow the
user to organize their music with a better confidence to a personal experi-
ence. It is obvious that the music industry can not follow folksonomies, but
some examples show how they can influence traditional music taxonomies (i.e.
Reggaeton).

Folksonomies have emerged due to the growth of internet sites like Pandora4

or Last.fm5. They allow users to tag music according to their own criteria. For
instance, Figure 2.1 shows the Tag map in Last.fm. Now, users can organize
their music collection using tags like Late night, Driving or Cleaningmusic. The
functionality of music is included in the tags but it is not the unique information
that can be included. For instance, specific rhythm patterns, geographical
information or musical period tags can also be included.

A particularity of tags is that all the terms in the namespace have no
hierarchy, that is, all the labels have the same importance. Nevertheless, we
can create clusters of tags based on a specific conceptual criteria. Tags like
Dark or Live or Female voice are at the same level than Classic or Jazz. In
general, the use of tags difficult the classification of music into a hierarchical
architecture.

2.3.3 TagOntologies and Folk-Ontologies

Taxonomies are conceptually opposed to folksonimies. While taxonomies show
a hierarchical organization of terms, folksonomies assume that all the terms

2www.myspace.com
3www.emule-project.net/
4www.pandora.com
5www.last.fm
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are at the same level of abstraction. Gruber (2007) proposed the use of the
Tagontologies, that can be defined as:

TagOntology is about identifying and formalizing a conceptualiza-
tion of the activity of tagging, and building technology that com-
mits to the ontology at the semantic level.

The main idea behind tagontologies is to allow systems to reason about
tags. For instance, to define synonym tags, clusters of tags, etc. This means
that, in fact, we are tagging the tags, creating a hierarchical organization. This
could be interpreted as the mid-point between folksonomies and taxonomies.

On the other hand, Fields (2007) proposed the use of Folk-Ontologies as an
alternative to expert ontologies. They focus on more specific types of relation-
ships between things. For instance, a folk-ontology can be defined by the links
to other articles included by authors in the wikipedia. All these links point to
other articles that belong to a specific ontology, but they are created by users,
not by experts.

In our work, we will not use neither folksonomies nor tagontologies nor
folk-ontologies. We will focus on the classical taxonomy structure because our
datasets are so defined. But this doesn’t mean that our conclusions couldn’t be
applied to a folksonomy problem. Probably, we would get reasonable results,
but it is out of the scope of our work.

2.4 Music Categorization

Music Genre Classification is, in fact, a categorization problem with some speci-
fities. In this section we, will introduce the most important theories on human
categorization. These theories are not focused on music and they try to explain
how classification of different concepts, which sometimes are clearly defined
but sometimes not, is performed by humans. As we will see in the forthcom-
ing chapters, all the automatic classification methods imitate some of the main
properties of the categorization techniques. In Chapter 6, we will discuss about
which categorization theory represents our best approach on genre classification
and we will compare with the other algorithms commonly used.

According to Sternberg (1999), a concept is a mental representation of a
class which includes our knowledge about such things (e.g. dogs, professors).
A category is the set of examples picked out by a concept. These two terms
are often used synonymously. The categorization processes try to define those
categories as complete but well defined containers which perfectly explain and
represent different mental concepts.

Actually, some of the categories we use date back to 2000 years ago. Mu-
sical categories have evolved differently in different musical cultures. Then,
these categories, which have been developed to ease musical universe, seem to
increase the entropy of it producing more disorder and confusion. The inclu-
sion of the cultural context in which these categories are defined will help us
to reduce this disorder.

According to Fabbri (1999), some questions about musical categorization
arise:

• Why do we need musical categories?
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• How are such categories created?

• Are historical categories like ’genre’ or ’style’ useful in all contexts?

• What is the status of terms like ’field’, ’area’, space’, ’boundary’ and
’frontier’?

The three theories here exposed (a) Classical theory, b) Prototype theory
and c) Exemplar theory) try to answer some of these questions.

2.4.1 Classical Theory

According to Aristotle, a category is:

...the ultimate and most general predicate that can be attributed
to anything. Categories have a logical and ontological function:
they allow to define entia exactly, by relating them to their general
essence. They are: substance, quality, quantity, relation, place,
time, position, condition, action, passion.

If so, categories can be defined by a set of necessary and sufficient features.
When a new concept needs to be classified according to the classical theory, the
process will start with the extraction of all the features of the instance. Then,
the classification is performed by checking whether this new instance has all
the required properties to be into one of the categories or not.

Classical theory has been traditionally used until the 20th. century because
it can explain most of the categorization scientific problems found. The tradi-
tional animal classification is a good example of use. This category model has
been studied in depth by Lakoff (1987) and presents the following properties:

1. categories are abstract containers with things either inside or outside the
category

2. things are in the same category if and only if they have certain properties
in common

3. each category has clear boundaries

4. the category is defined by common properties of the members

5. the category is independent of the peculiarities of any beings doing the
categorizing

6. no member of a category has any special status

7. all levels of a hierarchy are important and equivalent

The proposed schema can be interpreted as a multilayer categorization. One
example is basic-level categorization made by childs in which the categorization
process starts with very simple categories (the level of distinctive action). Then,
he proceeds upward to superordinate categories and downward to subordinate
categories. The First level of categorization shows the following properties:

• People name things more readily at that level
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• Languages have simpler names for things at that level

• Categories at that level have greater cultural significance

• Things are remembered more readily at that level

• At that level, things are perceived holistically, as a single gestalt, while
for identification at a lower level, specific details have to be picked out to
distinguish

The classical theory shows some weak points that can be summarized as
follows:

• Family resemblance: category members may be related to one another
without all having properties in common

• Some categories have degrees of membership and no clear boundaries

• Generativity: categories can be defined by a generator plus rules

• Metonymy: some subcategory or submodel is used to comprehend the
category as a whole

• Ideals: many categories are understood in terms of abstract ideal cases,
which may not be typical or stereotypical

• Radial categories: a central subcategory plus non central extensions. Ex-
tensions are based on convention

2.4.2 Prototype Theory

Rosch (1975) was the first to provide a general perspective for the categorization
problem. In her studies, she demonstrated the weaknesses of the classical
theory of categories in some environments. Her name is mostly associated with
the so-called prototype theory.

The prototype view assumes that there is a summary representation of
the category, called a prototype, which consists of some central tendency of
the features of the category members. All the classification measures will be
determined by the similarity of a given instance to the prototype. When new
instances are given and the feature vectors are computed, the similarity distance
to the prototype is computed. When this similarity is greater than a given
threshold, this new instance is considered to be part of the category. In case
of multiple categorization options were available, the closest distance to the
prototypes will set the categorization decision.

The computational support to the Prototype Theory was given by Hampton
(1993). The similarity of a given instance to the prototype can be computed as
a weighted sum of features. The weights are selected according to the relevance
of that feature for that concept:

S(A, t) =
n∑
i=1

wi · vi(t) (2.1)

where t is the new instance, A is the prototype, S(A, t) is the similarity of t
to the category A, wi is the weight of the ith feature in the prototype and vi(t)
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is the feature itself. This formula provides a similarity measure to the center
of the category, weighted by the importance of the features. The similarity
measure of a given instance to different categories can be computed using the
Luce’s Choice Rule (Luce, 1959) as:

p(A, t) =
S(A, t)

S(A, t) +
∑
j 6=A S(j, t)

(2.2)

where p(A, t) is the probability of assigning t to category A. The prototype
theory allows to solve some of the challenges of the Classical Theory mentioned
above. First, in a categorization process, there are some differences in the typ-
icality of some of their members. The prototype view uses this information to
create the prototype according to the specificities of the most typical members
but also taking into account (but with a lower weight) those less typical cases.
Second, these differences on the typicality of the members lead to differences
in the performance. Members near the prototype will be learned earlier and
classified faster (Murphy & Brownell, 1985) even artificial categories (Rosch,
1975). This behavior is quite similar to the categorization process made by hu-
mans in a not so evident and easy classification environment. Third, a member
that has not been present in the categorization process can be classified with
the same performance than those than were present.

From now on, prototype theory seems to solve all the problems of the classi-
cal theory described above. But there are some limitations to take into account.
First, the human categorization process based on this theory seem to use some
kind of additional information to create the clusters, not only a specific dis-
tance measurement. Second, from the mathematical point of view, the centers
of the clusters are located according to a strict statistic measure and, further-
more, the properties of this center do not depend (in a initial step) on the other
clusters. It is the opposite for humans. They use to imagine the prototypes
according to neighbors and these prototypes will be defined more or less accu-
rately according to them. Third, humans are also able to distinguish between
the properties or attributes that define a specific category while the categoriza-
tion theory does not. In the prototype theory, the correlation between features
and the weight of different attributes do not influence the prototype definition.

This categorization model will solve some of the problems presented in mu-
sical genre classification, but it is not sufficient to gather with all its complexity.
The Exemplar theory will provide some solutions to these specific problems.

2.4.3 Exemplar Theory

The exemplar models assume that a category is defined by a set of individuals
(exemplars). Roughly speaking, the classification of new instances will be de-
fined by their similarity to the stored exemplars. Exemplar models have been
studied in detail by many authors (Medin & Schaffer, 1978; Nosofsky, 1986,
1992; Brooks, 1978; Hintzman, 1986).

Initially, a category is represented as a set of representations of the exem-
plars. In this study, we will consider the context model of the exemplar view
which states two important hypothesis:

1. The similarity of a new instance to the stored exemplars is a multiplicative
function of the similarity of their features. That means that new instances
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whose vectors are quite similar to a stored instance except for only one
feature may lead a low similarity measure.

2. The similarity of a new instance is computed against all the existing
instances in all the categories and then classifying to the category that
has the greater overall similarity.

From the mathematical point of view, the similarity of the item t to the
category A is the sum of the similarity to each exemplar of this category :

S(A, t) =
∑
a∈A

S(a, t) (2.3)

As a difference with the prototype view, the similarity between new and
stored instances is computed as:

S(a, t) =
n∏
i=1

si (2.4)

where si = 1 when the ith features of items a and t match, and si = mi

when they mismatch.
In some contexts, it is possible that some features have more importance

than others. With the formulas shown above, all features are equally weighted.
It is possible to add a weighting function to the Equation 2.4 to assign different
weights to different attributes in order to obtain weighted s′i measure.

After this definition, we can derive some properties of the exemplar view:
First, as in the prototype view, some instances become more typical than oth-
ers. Distance measures have lower values between the most typical elements of
a category and occur more frequently. Second, differences in classification occur
due to related reasons. Third, the exemplar view is able to classify the (miss-
ing) prototype correctly. This is due to the high similarity that the prototype
shows with the most typical elements in that category.

Furthermore, the exemplar view is able to solve some of the problems shown
by the prototype view. It is able to distinguish between the properties (fea-
tures) that define center or prototype and, as a consequence of that, it allows
to save much more additional information. That means that a category can
be defined by some specific features while other ones can be defined by other
specific features. Second, it takes into account the context to locate the centers
in the prototyped space. The definition of the categories depends and, at the
same time, influences all the other categories. Then, the location of the center
is not based exclusively on a statistical measure as in prototype view.

The exemplar theory of categorization also shows some conceptual limita-
tions. Generally speaking, there is no a clear evidence that the exemplar that
define a category should be members of that category. Who defines what is
a category or not? Who defines which are the properties that define a cate-
gory? Detractors of this categorization theory show that the information of
these categories is not used in classification.

The exemplar model is usually implemented by using the generalized con-
text model (Ashby & Maddox, 1993; Nosofsky, 1986). It uses a multidimen-
sional scaling (MDS) approach to modeling similarity. In this context, ex-
emplars are represented as points in a multidimensional space, and similarity
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between exemplars is a decreasing function of their distance. As mentioned
above, one of the benefits of the exemplar theory is the possibility of create
different categories using different criteria (or descriptors). In this way, we as-
sume that with the experience in a given task, observers often learn to distribute
their attention over different descriptors in a manner that tends to optimize
performance. Specifically, in an experiment involving multiple categories, the
probability that item i is classified into Category J is given by:

P (J |i) =

(∑
j∈J Sij

)γ
[∑

K

(∑
k∈K sik

)γ]′ (2.5)

where sij denotes the similarity of item i to exemplar j and the index
j ∈ J denotes that the sum is over all exemplars j belonging to Category J .
The parameter g is a response-scaling parameter. When γ = 1 the observer
responds by ’probability matching’ to the relative summed similarities. When
g grows greater than 1 the observer responds more deterministically with the
category that yields the largest summed similarity.

It is common to compute distance between exemplars i and j by using the
weighted Minkowski power-model formula:

dij =

[∑
m

wm||xim − xjm|r
] 1
r

(2.6)

where r defines the distance metric of the space. If r = 1 a city block
distance metric is obtained and r = 2 defines an Euclidean distance metric.
The parameters wm are the attention weights (See Nosofsky & Johansen (2000)
for details)

2.4.4 Conclusion

In this section, we have introduced three categorization theories which are,
from our perspective, complementary. Human genre classification is performed
under more than one criteria at the same time, hence, the classification of a
specific song may use more than one theory at the same time. For instance,
the classification of our specific song may be set by a rhythmic prototype and
many examples of instrumentation. All the classification techniques explained
in Chapter 4 are related to these theories. Their results need to be interpreted
taking into account which categorization model they follow.





CHAPTER 3
Automatic genre

classification: concepts,
definitions, and

methodology

3.1 Introduction

Music genre classification can be studied from different disciplines, as shown in
Section 2.2. In this chapter, we will focus on Music Information Retrieval and,
for that, we start with a short description on genre classification performed by
humans, automatic classification using symbolic data and automatic classifica-
tion using collaborative filtering. In Section 3.2, we show the description of the
basic schema for automatic genre classification commonly used in MIR, and
finally, in Section 3.3, we present a review on the state of the art.

3.1.1 Genre classification by Humans

According to Cook (1999), the musical aspects that humans use to describe
music are Pitch, Loudness, Duration and Timbre but, sometimes, music is also
described with terms such as Texture or Style. Music genre classification by
humans probably involves most of these aspects of music, although the process
is far from being fully understood (Ahrendt, 2006). As mentioned in Section
2.3, the cultural listeners’ cultural background and how the industry manages
musical genres affect the classification process.

An interesting experiment of basic behavior in front of two musical genres
was proposed by Chase (2001). Three fish (carps) were trained to classify music
into classical or blues. After the training process, carps were exposed to new
audio excerpts and they classify with a very low error rate. As reported by
Crump (2002), pigeons have demonstrated the ability to discriminate between
Bach and Stravinsky (Porter & Neuringer, 1984). These results suggest that
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MAMI1 MAMI2 Weighted rating
Random 26% 30% 35%
Automatic 57% 69% 65%
Human 76% 90% 88%

Table 3.1: Results for the human/non human genre classification experiments
proposed by Lippens et al. (2004) using two datasets (MAMI1, MAMI2). The
weighted rating is computed according to the number of correct and non correct
classifications made by humans for each category

genre is not a cutural issue and this information is intrinsic to the music, and
that the music encoding mechanisms are not highly specialized but generalists.

Perrot & Gjerdigen (1999) showed how humans are really good in musical
genre classification. Humans only need about 300 milliseconds of audio infor-
mation to accurately predict a musical genre (with an accuracy above 70%)
(Unfortunately, as noticed by Craft et al. (2007), this study is still unpublished
but the reader can analyze our own results on human genre classification in
Section 5.3). This suggests that it is not necessary to construct any theoretic
description in higher levels of abstraction -that require longer analyses- for
genre classification, as described by Martin et al. (1998).

Dalla (2005) studies the abilities of humans to classify sub-genres of classical
music. The test consists in the classification of 4 genres from baroque to post-
romantic, all of them in the Classical music category. Authors investigate the
so-called “historical distance” in the sense that music which is close in time will
also be similar in sound. Results suggest that the subjects use the temporal
variability in the music to discriminate between genres.

Another interesting experiment on human classification of musical genres
was proposed by Soltau et al. (1998). He exposed 37 subjects to exactly the
same training set that a machine learning algorithm. Results show how con-
fusions made by humans were similar to confusions made by the automatic
system.

Lippens et al. (2004) perform an interesting comparison test between auto-
matic and human genre classification using different datasets, based on MAMI
dataset (See Section 3.3.1 for details). Results show how there is a significant
subjectivity in genre annotation by humans and, as a consequence of that, au-
tomatic classifiers are also subjective. Results on this research are shown in
Table 3.1.

Many other studies can be found in the literature (Futrelle & Downie, 2003;
Hofmann-Engl, 2001; Huron, 2000; Craft et al., 2007) and the conclusion is
that, although results show that genre classification can be done without taking
into account the cultural information, one can find many counter-examples for
pieces with similar timbre, tempo or whatever showing that “culturaly free
classification” is not possible. Here there is a short list of examples:

• Beethoven sonata and a Bill Evans piece: Similar instrumentations belong
to different music genres

• Typical flute sound of Jethro Tull and the overloaded guitars from the
Rolling Stones: Different timbres belong to the same music genre
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Leaf Categories
Jazz Bebop, Jazz&Soul, Swing
Popular Rap, Punk, Country
Western Classical Baroque, Modern Classical, Romantic

Table 3.2: Taxonomy with 9 leaf categories used in MIREX05

Then, automatic classifiers should take into account both intrinsic and cul-
tural properties of music to classify it according to a given taxonomy. Although
the human mechanisms used for music classification are not perfectly known,
a lot of literature can be found. But, according to our knowledge, it doesn’t
exist any automatic classifier that is capable to include cultural information to
the system. In our opinion, this is one of the issues that MIR needs to address.

3.1.2 Symbolic classification

Since the beginning of this thesis we have been discussing about automatic
genre classification based on audio data. In many cases, music is represented
in a symbolic way such as scores, tablatures, etc. This representation can
also provide significant information about the musical genre. The parameters
that are represented in this information are related to the intensity (ppp..fff,
regulators, etc.), timbre (instruments), rhythm (BPM, ritardando, largo, etc.)
melody (notes) and harmony (notes played at the same time). It is possible
to study the different historical periods, artists or musical genres according
to specific musical resources they use. For instance, the use of the minor
seventh in the dominant chords is quite typical in Jazz music, or the instruments
represented in a orchestra clearly leads to a specific repertoire in the classical
music.

The most common way to represent symbolic data in a computer is using
MIDI1 or XML2 formats. Scanned scores (in GIF or JPG) or PDF files are
not considered symbolic digital formats due to they need a parser to translate
their information from image to music notation.

The main advantage when using symbolic representation is that feature
extraction is simpler. Instruments, notes and durations are given by the the
data itself. From this data, many statistics can be computed (histogram of
duration, note distribution, most common intervals, etc.)

Focusing on symbolic audio and genre classification, many successful ap-
proaches have been developed by the MIR community. Some interesting pro-
posals were compared in the MIREX competition made in 20053. Two sets of
genre categories were used. These categories were hierarchically organized and
participants need to train and test their algorithms twice (See Table 3.2 and
Table 3.3).

1Standard for the Musical Instrument Digital Interface proposed by Dave Smith in 1983
2eXtensible Markup Language
3www.music-ir.org/mirex2005/index.php/Symbolic_Genre_Classification
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Subcategory Leaf
Country Bluegrass
Country Contemporary
Country Trad. Country
Jazz Bop Bebop, Cool
Jazz Fusion Bossanova,Soul,Smooth Jazz
Jazz Ragtime
Jazz Swing
Modern Pop Adult Contemporary
Modern Pop Dance Dance Pop,Pop Rap,Techno
Modern Pop Smooth Jazz
Rap Hardcore Rap
Rap Pop Rap
Rhythm and Blues Blues Rock, Chicago,Country,Soul
Rhythm and Blues Funk
Rhythm and Blues Jazz Soul
Rhythm and Blues Rock and Roll
Rhythm and Blues Soul
Rock Classic Rock Blues Rock,Hard Rock,Psycho
Rock Modern Rock Alternative,Hard,Metal,Punk
Western Classical Baroque
Western Classical Classical
Western Classical Early Music Medieval,Renaissance
Western Classical Modern Classical
Western Classical Romantic
Western Folk Bluegrass
Western Folk Celtic
Western Folk Country Blues
Western Folk Flamenco
Worldbeat Latin Bossanova,Salsa,Tango
Worldbeat Reggae

Table 3.3: Taxonomy with 38 leaf categories used in MIREX05
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Accuracy 38 classes 9 classes
McKay 77.17 64.33 90.00
Basili (Alg1) 72.08 62.60 81.56
Li 67.57 54.91 80.22
Basili (Alg2) 67.14 57.61 76.67
Ponce 37.76 24.84 50.67

Table 3.4: Results for the Symbolic Genre Classification at MIREX05

Four authors participated in the contest (Mckay & Fujinaga, 2005; Basili
et al., 2005; Ponce & Inesta, 2005). Results for the two datasets are shown in
Table 3.44. According to these results, we conclude that accuracies about 75%
can be obtained using symbolic genre classification.

Some other interesting approaches on genre classification based on symbolic
data can be found in the literature. The first interesting approach was proposed
by Dannenberg et al. (1997). This work is considered one of key papers for
automatic genre classification by the inclusion of machine learning techniques to
audio classification. Authors use 13 low level features (averages and deviations
of MIDI key numbers, duration, duty-cycle, pitch and volume as well of notes,
pitch bend messages and volume change messages). It is computed over 25
examples of 8 different styles and trained using 3 different supervised classifiers:
bayesian classifier, linear classifier and neural networks. The whole dataset is
divided in the train (4/5 of the whole database) and test (1/5 of the whole
database) subsets. Results show accuracies up to 90% using the 8 musical
styles. Variations of these confidence values are also shown as a function of the
amount of data used to train the classifier.

Another interesting MIDI-based genre classification algorithm is proposed
by Basili et al. (2004). Authors try to create a link between music knowledge
and machine learning techniques and they show a brief musical analysis before
the computational stuff. They also discuss about the confusions made by hu-
mans in the manual annotation task (Pop vs Rock and Blues, Jazz vs. Blues...).
After the computation of different features extracted from MIDI data (Melodic
Intervals, Instrument classes, Drumkits, Meter and Note Extension) they dis-
cuss about the results obtained by the application of different machine learning
techniques. Two kinds of models are studied: single multiclass categorization
and multiple binary categorization. Discussions about results are shown but
global numerical performances are not provided.

McKay & Fuginaga (2004) propose an automatic genre classification using
large high-level musical feature sets. The system extracts 109 musical features
from MIDI data. Genetic Algorithms (GA) are used to select the best features
at the different levels of the proposed hierarchical classifier in order to maximize
results in a KNN classifier. The experiment is built over 950 MIDI recordings
for training and testing, using a 5 fold cross-validation process. These songs
belong to 3 root music genres (Classical, Jazz, Popular) and 9 leaf music gen-
res (Baroque-Modern-Romantic; Bebop-FunkyJazz-Swing; Coutry-Punk-Rap).
Results are impressive: 97% of correct classifications at the root level and 88%
of accuracy at leaf levels. These results reveal that a good starting point for

4www.music-ir.org/evaluation/mirex-results/sym-genre/index.html
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genre classification is an exhaustive pool of features, and selecting those which
are relevant to our problem using machine learning or genetic algorithms.

Lidy & Rauber (2007) propose the combination of symbolic and audio fea-
tures for genre classification. Their experiment uses an audio dataset from
which it computes a set of descriptors (Rhythm patterns, Spectrum descrip-
tors, etc.), and applies a state of the art transcription system to extract a set of
37 symbolic descriptors (number of notes, number of significant silences, IOI,
etc.). The classification is performed over Tzanetakis, Ballroom Dancers and
Magntune datasets (See Section 3.3.1 for details) using Support Vector Ma-
chines (SVM). Results show how accuracies obtained by combining symbolic
and audio features can increase up to 6% the overall accuracy using only au-
dio descriptors, depending on the dataset and the selected descriptors for the
combination.

Other interesting approaches combine techniques of selection and extrac-
tion of musically invariant features with classification using (1) compression dis-
tance similarity metric (Ruppin & Yeshurun, 2006), (2) Hidden Markov Models
(HMM) (Chai & Vercoe, 2001), (3) the melodic line (Rizo et al., 2006a), (4)
combinations of MIDI related and audio features (Cataltepe et al., 2007), and
(5) creating a hierarchical classifiers (De Coro et al., 2007).

3.1.3 Filtering

Having a look to the internet music stores, we observe how they classify music
according to genres. They use this information to propose the user new CDs or
tracks. In most of these cases, the analysis of music genres is not performed by
Music Information Retrieval techniques. In addition to the manual labeling,
they use some other techniques such as Collaborative Filtering to group music
according to a specific ontology. As cited by Aucouturier & Pachet (2003),
Collaborative Filtering term was proposed by Shardanand & Maes (1995) and
it is defined as follows:

Collaborative Filtering (CF) is based on the idea that there are
patterns in tastes: tastes are not distributed uniformly. These pat-
terns can be exploited very simply by managing a profile for each
user connected to the service. The profile is typically a set of as-
sociations of items to grades. In the recommendation phase, the
system looks for all the agents having a similar profile than the
user’s. It then looks for items liked by these similar agents which
are not known by the user, and finally recommends these items to
him/her.

Although CF is out of the scope of this thesis, we think it is necessary to
write some words because it helps us to understand which are the limits of
genre classification using MIR. Experimental results by using CF show impres-
sive results once a sufficient amount of initial ratings are provided by the user,
as reported by Shardanand & Maes (1995). However, Epstein (1996) showed
how limitations appear when studying quantitative simulations of CF systems:
First, the system creates clusters which provide good results for naive classifi-
cations but unexpected results for non typical cases. Second, the dynamics of
these systems favors the creation of hits, which is not bad a priori, but difficult
the survival of the other items in the whole dataset.
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As reported by Celma (2006), many approaches for audio recommendation
are based on relevance feedback techniques (also known as community-based
systems) which implies that the system has to adapt to the changes of users’
profiles. This adaptation can be done in three different ways: (1) manually by
the user, (2) adding new information to the user profile, or (3) gradually for-
getting the old interests of the user and promoting the new ones. Once the user
profile has been created, the system has to exploit the user preferences in order
to recommend new items using a filtering method. The method adopted for
filtering the information has led to the classification of recommender systems:

Demographic filtering According to Rich (1979), demographic filtering can
be used to identify the kind of users that like a certain item. This tech-
nique classifies users profiles in clusters according to some personal data
(age, marital status, gender, etc.), geographic data (city, country) and
psychographic data (interests, lifestyle, etc.).

Collaborative filtering According to Goldberg et al. (1992), collaborative
filtering uses the user feedback to the system allowing the system to pro-
vide informed guesses, based on ratings that other users have provided.
These methods work by building a matrix of users’ preferences (or rat-
ings) for items. A detailed explanation of these systems was proposed by
Resnick & Varian (1997).

Content-based filtering the recommender collects information describing
the items and then, based on the user’s preferences, it predicts which
items the user will like. This approach does not rely on other users’ rat-
ings but on the description of the items. The process of characterizing
the item data set can be either automatic or based on manual anno-
tations made by the domain experts. These techniques have its roots
in the information retrieval (IR) field. The early systems were focused
on text domain, and applied techniques from IR to extract meaningful
information from the text.

Many successful applications using CF can be found in the field of music
classification and selection, as the work proposed by Pestoni et al. (2001);
French & Hauver (2001), but the main problem, according to Pye (2000), is
that:

it requires considerable data and is only applicable for new titles
some time after their release.

There are some interesting works which are not directly related to the Col-
laborative filtering, but they also use the textual data available in the Internet.
First, Knees et al. (2004) present an artist classification method based on tex-
tual data in the web. The authors extract features for artists from web-based
data and classify them with Support Vector Machines (SVM). They start by
comparing some preliminar results with other methods found in the literature
and, furthermore, they investigate the impact on the results of fluctuations
over time of the analyzed data from search engines for 12 artists every day for
a period of 4 months. Finally, they use all this information to perform genre
classification with 14 genres and 224 artists (16 artists per genre). In a more
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Figure 3.1: Overall block diagram for building a MIR based automatic genre
classification system

recent study, Knees shows how accuracies up to 87% are possible. Particular
results are obtained with only 2 artist defining a genre, reaching accuracies
about 71%.

Bergstra (2006) explores the value of FreeDB5 as a source of genre and
music similarity information. FreeDB is a public and dynamic database for
identifying and labeling CDs with album, song, artist and genre information.
One quality of FreeDB is that there is high variance in, e.g., the genre labels
assigned to a particular disc. Authors investigate the ability to use these genre
labels to predict a more constrained set of canonical genres as decided by the
curated but private database AllMusic6.

3.2 Our framework

Since the MIR community started analyzing music for further retrieval, there
exists some common properties in their methods and procedures. The basic
process of building a MIR classifier is defined by four basic steps: (1) Dataset
collection, (2) Feature extraction, (3) Machine learning algorithm and (4) Eval-
uation of the trained system. Figure 3.1 shows a block diagram for a basic
system.

All the approaches proposed by the authors can be characterized by the
techniques used at each one of these steps. Some authors focus on a specific
part of the whole system, increasing the performance for specific aplications,
while others compare the use of different datasets, features or classifiers in a
more general environment. In the following sections we will discuss about these
four main steps in detail.

3.2.1 The dataset

As shown in Section 2.3.1, it doesn’t exist a universal taxonomy for musical
genres. There are different parameters that influence the construction of a

5www.freedb.org
6www.allmusic.com
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dataset and, as a consequence of that, the results of the classifier may vary a
lot. Here is a list of the most important ones:

Number of genres: The number of musical genres is one of the most impor-
tant parameters in the design of a dataset. It sets the theoretical baseline
for random classification which is, in the case of an equally distributed
dataset, computed according to the following formula:

accuracy(%) =
1
n
· 100 (3.1)

where n is the number of musical genres. The accuracies obtained by the
automatic classification need to be relative to this value.

Size: There is no universal size for a music genre dataset. There are a few
approaches using less than 50 files (Scott, 2001; Xu, 2005) but most of
them use larger datasets. A priori, one could assume that the bigger the
dataset the better the results, but it is not always true: few representative
audio excerpts may better represent the genre space than a large number
of ambiguous files. Depending on the goal of the research, maybe it
is enough to train a system with a few number of representative audio
excerpts per class.

Length of the audio excerpt: Audio excerpts of 10, 30 or 60 seconds ex-
tracted from the middle of the song maybe enough to characterize music.
This can reduce the size of the dataset and the computational cost with-
out reducing its variability and representativeness. When deciding the
size of the dataset, we should take into account that the classification
method needs to be tested by using cross-fold validation, splitting the
dataset in a train set plus a test set (typically 66%− 33% respectively),
or even better, with an independent dataset. All these techniques will be
discussed in Section 3.2.5.

Specificity: The specificity of the selected musical genres will also affect the
behavior of the classifier. A priori, general taxonomies produce better
results than specialized taxonomies. For instance, it is easier to distin-
guish between Classic, Jazz and Rock than between Pop, Rock and Folk.
Furthermore, some of the datasets found in the literature use a subgroup
of songs in a specific musical genre to represent it. This may produce
biased results and decreases the performance of the overall system. On
the other hand, for some specialized taxonomies, the extracted features
and classification algorithms can be tuned to obtain better results than
traditional classifiers (i.e. the ballroom music classification proposed by
Gouyon & Dixon (2004)).

Hierarchical taxonomy: They are used in datasets with a large number of
classes and provide many benefits to the classification. First, specific de-
scriptors or classifiers can be applied to different subgroups of musical
genres. Second, post-processing filtering techniques can be applied to
increase the overall accuracy at the coarse levels of classification. If the
classifier considers all the musical genres at the same level, the hierarchy
is not used (i.e. “flat classification“) and the most detailed labels will
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Music
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BackgroundAUDIO

Figure 3.2: Hierarchical taxonomy proposed by Burred & Lerch (2003)

be used. An example of hierarchical taxonomy was proposed by Tzane-
takis et al. (2001b). Burred & Lerch (2003) also proposed the use of a
hierarchical taxonomy, shown in Figure 3.2.

Variability: Datasets should be built with the maximum variability of music
for a specific class by including different artists and sub-genres in it. For
that, it is recommended to use only one song per author in the dataset.
Moreover, mastering and recording techniques can be similar for all the
songs in an album. This phenomena is known as the producer effect and
it was observed by Pampalk et al. (2005a). In case of using more than
one song in an album, the classifier may bias to a specific audio property
(timbre, loudness, compression, etc.) that is representative of the album
but not of the category. In other words, a given feature might be over-
represented.

Balance of the dataset: The number of songs for each genre should be sim-
ilar. There are some well balanced datasets (Tzanetakis & Cook, 2002;
Goto et al., 2003) and others which doesn’t (Magnatune7: see Section

7www.magnatune.com
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3.3.1). Unbalanced datasets clearly produce biased results although the
extracted features and the classification method work properly8 (Tables
3.11 and 3.14 show the main properties of these datasets).

License: Collections can be built using personal music collections, in which
case they will contain basically well known songs and artists or public
music from internet repositories (Magnatune, Amazon, LastFM). Pub-
lic datasets are useful for sharing and comparing results in the research
community, but they are not so commonly used than the personal ones.
The so called in-House collections provide more expandable results, but
results they provide can not be shared or compared with the work of
other researchers.

3.2.2 Descriptors

As shown in Section 3.1.2 and 3.1.3, automatic genre classification requires
some representation of the musical information. This information can be col-
lected from the user profiles (collaborative filtering), from symbolic repositories
(XML or MIDI) or, as we will see in this section, from audio files. Most of the
music available in the personal collections or in the Internet is stored in dig-
ital formats (usually CD, WAV or MP3). Whatever the format is, data can
be decoded and transformed to a succession of digital samples representing the
waveform. But this data can not be used directly by automatic systems because
pattern matching algorithms can not deal with such amount of information.

At this point, automatic classifiers must analyze these samples and extract
some features that describe the audio excerpts using a compact representation.
These descriptors can be computed to represent some specific facets of music
(timbre, rhythm, harmony or melody). But these are not the unique families
of descriptors that can be extracted: some descriptors in a higher level of
abstraction can also be obtained (mood, danceability, etc.). According to Orio
(2006), the most important facets of music related to the MIR community are
the following:

Timbre: It depends on the quality of sounds, that is, the used musical instru-
ments and the playing techniques.

Orchestration: It depends on the composers’ and performers’ decisions. They
select which musical instruments are to be employed to play the musical
work.

Acoustics: It depends on some characteristics of timbre, including the con-
tribution of room acoustics, background noise, audio post-processing, fil-
tering, and equalization.

Rhythm: It depends on the time organization of music. In other words, it
is related to the periodic repetition, with possible small variants, of a
temporal pattern.

8After many discussions in MIREX2005, a new balanced collection was collected for
MIREX2007 genre classification task
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Dimension Content
short-term Timbre Quality of the produced sound

Orchestration Sources of sound production
Acoustics Quality of the recorded sound

mid-term Rhythm Patterns of sound onsets
Melody Sequences of notes
Harmony Sequences of chords

long-term Structure Organization of the musical work

Table 3.5: Facets of music according to the time scale proposed by Orio (2006)

Melody: It is built by a sequence of sounds with a similar timbre that have
a recognizable pitch within a small frequency range. The singing voice
and monophonic instruments that play in a similar register are normally
used to convey the melodic dimension.

Harmony: It depends on the time organization of simultaneous sounds with
recognizable pitches. Harmony can be conveyed by polyphonic instru-
ments, by a group of monophonic instrument, or may be indirectly im-
plied by the melody.

Structure: It depends on the horizontal dimension whose time scale is dif-
ferent from the previous ones, being related to macro-level features such
as repetitions, interleaving of themes and choruses, presence of breaks,
changes of time signatures, and so on.

On the other hand, music is organized in time. It is well known that music
has two dimensions: a horizontal dimension that associates time to the hori-
zontal axis and, in the case of polyphonic music, the vertical dimension that
refers to the notes that are simultaneously played. Not all the facets of music
described above can be computed in the two dimensions, i.e. melody occurs in
the horizontal dimension while harmony occur in both horizontal and vertical
dimension. All the facets that take place in the horizontal dimension need
to be computed at different time scales. Timbre, orchestration, and acoustics
are more related to the perception of sounds and can be defined as short-term
features (humans spend about a few milliseconds to compute them). Rhythm,
melody and harmony are related to the time evolution of the basic elements,
so, they can be defined as mid-term features. Finally, structure is clearly a
long-term because it depends on the short-term and mid-term features as well
as the cultural environment and knowledge of the musician/listener. Table 3.5
summarizes the facets of music according to the horizontal scale.

Similarly, Koelsch & Siebel (2005) propose a neurocognitive model of music
perception in which specifies the time required for the human brain to recognize
music facets. In his study, they show how cognitive modules are involved
in music perception and incorporates information about where these modules
might be located in the brain. The proposed time scales are shown in Table
3.6.
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Concept Time(ms)
Feature Extraction (Pitch height, Pitch croma, 10..100

Timbre, Intensity, Roughness)
Auditory, Sensory, Memory 100.200

Structure Building (Harmony, Meter, Rhythm, Timbre) 180..400
Meaning 250..500

Structural reanalysis and repair 600..900

Table 3.6: Time required for the human brain to recognize music facets ac-
cording to the neurocognitive model of music perception proposed by Koelsch
& Siebel (2005)

3.2.3 Dimensionality reduction

The feature extraction process can provide the classifier a large amount of
data. In most of the cases, not all of the computed descriptors provide useful
information for classification. The use of these descriptors may introduce some
noise to the system. For instance, it is well known that the MFCC0 coefficient
is related to the energy of the input audio data. For automatic genre classifi-
cation, this descriptor is, a priori, not useful at all because it is more related to
the recording conditions than to the musical genre itself. If we avoid the use
of this descriptor, the classifier is expected to yield better accuracies.

There exist different techniques to reduce the dimensionality of feature vec-
tors according to their discrimination power. These techniques can be divided
into two main groups: the feature selection and the space transformation tech-
niques. Here, we present a short list of the most important ones.

Feature Selection

The feature selection techniques try to discriminate the useless descriptors of
the feature vector according to a given criteria, without modifying the other
ones. This discrimination is computed for all the given vectors at the same
time. Here, we show a brief description of some existing methods:

CFS Subset Evaluation: According to Hall (1998), the CFS Subset Eval-
uation evaluates the worth of a subset of attributes by considering the
individual predictive ability of each feature along with the degree of re-
dundancy between them. Subsets of features that are highly correlated
with the class while having small intercorrelation are preferred.

Entropy: According to Witten & Frank (2005), the entropy based algorithms
selects a subset of attributes that individually correlate well with the class
but have small intercorrelation. The correlation between two nominal
attributes A and B can be measured using the symmetric uncertainty:

U(A,B) = 2
H(A) +H(B)−H(A,B)

H(A) +H(B)
(3.2)

where H is the entropy of the selected descriptor.
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Gain Ratio: The information gain is defined as the transmitted information
by a given attribute about the object’s class (Kononenko, 1995).

Gain = HC +HA −HCA = HC −HC|A (3.3)

where HC , HA, HCA and HC|A are the entropy of the classes, of the
values of the given attribute, of the joint events class-attribute value,
and of the classes given the value of the attribute, respectively. In order
to avoid the overestimation of the multi valued attributes, Quinlan (1986)
introduced the gain-ratio:

GainR =
Gain

HA
(3.4)

In other words, it evaluates the worth of an attribute by measuring the
gain ratio with respect to the class.

Space Transformation

The feature space transformation techniques try to reduce the dimensionality
while improving class representation. These methods are based on the projec-
tion of the actual feature vector into a new space that increases the discrim-
inability. Typically, the dimension of the new space is lower than the original
one. Here, we show a brief description of three commonly used methods:

Principal Component Analysis (PCA): It finds a set of the most repre-
sentative projection vectors such that the projected samples retain the
most information about original samples (See Turk & Pentland (1991)
and Section 4.5.1 for details).

Independent Component Analysis (ICA): It captures both second and
higher-order statistics and projects the input data onto the basis vectors
that are as statistically independent as possible (See Bartlett et al. (2002)
and Draper et al. (2003) for details).

Linear Discriminant Analysis (LDA): It uses the class information and
finds a set of vectors that maximize the between-class scatter while min-
imizing the within-class scatter (See Belhumeur et al. (1996) and Zhao
et al. (1998) for details).

3.2.4 Machine Learning

According to the literature, there are many definitions dealing with Machine
Learning (ML). Langley (1996) proposes that ML is:

a science of the artificial. The field’s main objects of study
are artifacts, specifically algorithms that improve their performance
with experience.

Mitchell (1997) proposes that ML is:

Machine Learning is the study of computer algorithms that im-
prove automatically through experience.



3.2. OUR FRAMEWORK 39

and Alpaydin (2004) assumes that ML is:

programming computers to optimize a performance criterion using
example data or past experience.

From the practical point of view, ML creates programs that optimize a
performance criterion through the analysis of data. Many tasks such as classi-
fication, regression, induction, transduction, supervised learning, unsupervised
learning, reinforcement learning, batch, on-line, generative models and discrim-
inative models can take the advantage of using them.

According to Nilsson (1996), there are many reasons that make the use of
ML algorithms useful. Here is a short list of these situations:

• Some tasks can not be perfectly defined but its behavior can be approx-
imated by feeding the system with examples.

• Huge databases can hide some relationship between their members

• Some human designed classification algorithms provide low confidence
with expected results. Sometimes it is caused because of the unknown
origin of the relationship between members.

• Environments change over time. Some of these algorithms are capable to
change according to the change of the input data

• New knowledge is constantly discovered by humans. These algorithms
are capable to adapt this new data in these classification schemas.

The MIR community has traditionally used some of these techniques to
classify music. Expert systems could be assumed to be the first approaches in
music classification. These expert systems, in fact, are not considered machine
learning due to they are just an implementation of a set of rules previously
defined by humans. For the automatic musical genre classification task this
means that we are capable to define a set of properties that uniquely define a
specific genre. This assumes a deep knowledge of the data (musical genre in this
case) and the possibility to compute the required descriptors from that music,
descriptors that the current state of art can not provide. Furthermore, from
the engineering point of view, these systems are very expensive to maintain
due to the constant changes in music.

Focusing on ML, there are two main groups of algorithms that the MIR
community traditionally uses:

Unsupervised learning: The main property of unsupervised classifiers is
that the classification emerges from the data itself, based on objective
similarity measures. These measures are applied to the feature vectors
extracted from the original audio data. The most simple distances be-
tween two feature vectors are the euclidiean and the cosine distance.
Other sophisticated ways to compute distances between feature vectors
are the Kullback-Leibler distance, Earth’s mover distance or using Gaus-
sian Mixture Models. Hidden Markov models are used to model the time
evolution of feature vectors. Once the distances between all the feature
vectors are computed, the clustering algorithms are the responsible to
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Paradigms
Expert systems 1 Uses a Taxonomy

2 Each class is defined by a set of features
3 Difficult extraction of required descriptors
4 Difficult to describe musical genres

Unsupervised Learning 1 No taxonomy is required
2 Organization according to similarity measures
3 K-Means, SOM and GHSOM

Supervised Learning 1 Taxonomy is required
2 Feature mapping without musical description
3 K-NN, GMM, HMM, SVM, LDA, NN

Table 3.7: Main paradigms and drawbacks of classification techniques, reported
by Scaringella et al. (2006)

organize data. K-Means is probably the simplest and most popular clus-
tering algorithm, but its main problem is that the number of clusters (K)
must be given a priori and, most of the times, this information is not
available. Self Organizing Maps (SOM) and Growing Hierarchical Self
Organizing Maps (GHSOM) are used to cluster data and organize it in
a 2 dimensional space, which allows an easy visualization of data. The
main problem of the unsupervised learning is that, most of the times, the
resulting clusters have no musical meaning, which difficult the process of
interpreting the results.

Supervised learning: These methods are based on previously defined cat-
egories and try to discover the relationship between a set of features
extracted from the audio data and the manually labelled dataset. The
mapping rules extracted from the training process will be used to classify
new unknown data. The most simple technique for supervised learning
is the K-Nearest Neighbor but the most widely used technique is prob-
ably Decision Trees. Gaussian Mixture Models, Hidden Markov models,
Support Vector Machines, Linear Discriminant Analysis and Neural Net-
works are other widely used supervised algorithms used in the literature.
Supervised techniques are the most commonly used techniques for au-
dio classification. The main advantage of using them is that an exact
description of (in our case) the musical genre is not required. The pro-
vided model will be easily interpretable or not depending on the learning
algorithm applied.

Table 3.7, reported by Scaringella et al. (2006), summarizes the main paradigms
and drawbacks of the three classification techniques shown above. A more de-
tailed description of the algorithms here presented is provided in Section 4.4.

3.2.5 Evaluation

Evaluation is the last step for building a classifier. Although this part may not
be implemented in a real application, it is crucial when designing the classifier.
Evaluation will provide information to redefine the classifier for obtaining better
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results. There are two main parts in the evaluation that will be discussed in the
following sections. First, some post-processing techniques may be applied to
the preliminary results of the classifier, depending on its output format (frame
based or a single value per song). On the other hand, due to the access to
datasets with properly labelled audio files is usually limited, there are some
techniques to organize and reuse the same data for train and test processes.

Post-processing

Depending on the input descriptors and the architecture of the classifier, the
proposed labels for new unknown data may address a whole song or specific
frames of it. The musical genre is traditionally assigned to a whole song,
so, if the classifier provide different labels for each frame we will need some
techniques to obtain a global index. Particularly, genre classification is highly
sensitive to this effect because, in a specific song, some frames can be played
using acoustic or musical resources from other musical genres.

According to Peeters (2007), we can differentiate between three different
techniques:

Cumulated histogram: The final decision is made according to the largest
number of occurrences among the frames. Each frame is first classified
separately:

i(t) = argmaxi p(ci)|f(t)) (3.5)

Then, we compute the histogram h(i) of classification results i(t). The
bins of this histogram are the different musical genres. The class corre-
sponding to the maximum of the histogram is chosen as the global class.

Cumulated probability: Here, we compute the cumulated probabilities p(ci|f(t))
over all the frames:

p(ci) =
1
T

∑
t

p(ci|f(t) (3.6)

and select the class i with the highest cumulated probability:

i = argmaxi p(ci) (3.7)

Segment-statistical model: This technique was proposed by Peeters (2007).
It learns the properties of the cumulated probability described above by
using statistical models, and perform the classification using them. Let
s be the whole audio data and ps(ci) its cumulated probability. Let Si
be the set of audio segments belonging to a specific class i in the train-
ing set. Then, for each class i, we compute the cumulated probabilities
ps∈Si(ci). Then, we model the behavior of the bins ci over all the s ∈ Si
for a specific class i. p̂i(ci) is this segment-statistical model. For the
indexing procedure, first we compute its accumulated probability ps(ci)
and classify it using the trained segment-statistical method. The sta-
tistical models to be considered can be based on means and deviations
or on gaussian modeling. In other words, it learns the patterns of the
cumulated probabilities for all the categories and classifies according to
them.
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These indexing techniques for evaluation here proposed should not be con-
fused with the time domain feature integration process described in Section
3.2.3. Now, the features are independently computed (using time integration
or not), but the output of the classifier may require global indexing method to
compare results with the output of other classifiers.

Validation

Once system is trained, different methods to evaluate its performance can be
used. It doesn’t make sense to test the system with the same audio dataset
used for training because this will reduce the generality of the system and we
will not provide any idea on the behavior of the trained system in front of new
data. The following techniques are used to train and test the classifier with the
same dataset:

K-fold cross-validation: The original dataset is splitted into K equally dis-
tributed and mutually exclusive subsamples. Then, a single subsample is
retained as the validation data for testing, and the remaining K − 1 sub-
samples are used as training data. This process is repeated K times (the
folds), with each of the K subsamples used exactly once as the validation
data. The K results from the folds then can be averaged (or otherwise
combined) to produce a single estimation.

Leave-one-out: It uses a unique observation from the original dataset to val-
idate the classifier, and the remaining observations as the training data.
This process is repeated until each sample in the original dataset is used
once as the validation data. This process is similar than K-fold cross-
validation but setting K as the number of observations in the original
dataset. Sometimes, Leave-one-out is also called Jacknife.

Holdout: This method reserves a certain number of samples for testing and
uses the remainder for training. Roughly speaking, it is equivalent to
randomly split the dataset into two subsets: one for training and the
other for testing. It is common to hold out one-third of the data for
testing. From the conceptual point of view, Holdout validation is not
cross-validation in the common sense, because the data is never crossed
over.

Bootstrap estimates the sampling distribution of an estimator by sampling
the original sample with replacement with the purpose of deriving robust
estimates of standard errors of a population parameter (mean, median,
correlation coefficient, etc.).

The Leave-one-out method tends to include unnecessary components in the
model, and has been provided to be asymptotically incorrect (Stone, 1977).
Furthermore, the method does not work well for data with strong clusterization
(Eriksson et al., 2000) and underestimates the true predictive error (Martens &
Dardenne, 1998). Compared to Holdout, cross-validation is markedly superior
for small data sets; this fact is dramatically demonstrated by Goutte (1997) in
a reply to Zhu & Rohwer (1996). For an insightful discussion of the limitations
of cross-validatory choice among several learning methods, see Stone (1977).
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Subcategories (# tracks)
Ballroom: Waltz(323), Tango(189), Viennese Waltz(137),

Foxtrot(242), Quickstep(263)
Latin: Cha Cha(215), Samba(194), Int’l Rumba and Bolero(195),

American Rumba(8), Paso Doble(24), Salsa(17), Mambo(8)
Swing: EC Swing(3), WC Swing(5), Lindy(8), Jive(140)

Table 3.8: Summary of the BalroomDancers dataset

3.3 State of the art

In this section, we analyze the art in automatic music genre classification based
on audio data. For that, we start with a short description of the datasets com-
monly used in the MIR community to test the algorithms. Then, we introduce
the MIREX contests which provide an excellent benchmark to compare the
algorithms proposed by different authors and, finally, we also introduce many
other interesting approaches that have been developed independently.

3.3.1 Datasets

Here we describe different datasets which are relevant to our work for different
reasons: some of them are widely known and used by the whole community
while the others are specially collected for this work. Our idea is to make
results of our tests independent of the selected dataset, so, we need to design
our experiments by combining them.

According to Herrera (2002), there are some general requirements and issues
to be clarified in order to set up a usable dataset:

• Categories of problems: multi-level feature extraction, segmentation, iden-
tification, etc.

• Types of files: sound samples, recordings of individual instruments, poly-
phonic music, etc.

• Metadata annotation: MIDI, output of a MIR algorithm, etc.

• Source: personal collections, internet databases, special recordings, etc.

Some of the following datasets have been collected to address specific prob-
lems, but all of them can be used for genre classification.

Ballroom Dancers: This dataset is created by the 30sec preview audio ex-
cerpts available in the Ballroom Dancers website9.The most interesting
property of this dataset is that the BPM value is given for each song. It
is created by 3 coarse cateogires and many leaf subcategories, as shown
in Table 3.8.

This dataset is very specialized, unbalanced but available to the commu-
nity. It has been built using a hierarchical taxonomy and it has been used

9secure.ballroomdancers.com/Music/style.asp
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Entries Albums Artists Styles Genres
8764 706 400 251 10

Table 3.9: Summary of the USPOP dataset

# Songs
Popular Music Database 100

Royalty-Free Music 15
Classical Music 50

Jazz Music 50
Music Genre 100

Musical Instrument Sound 50

Table 3.10: Summary of the RWC dataset

for rhythm detection and ballroom music classification by Dixon et al.
(2004) and Gouyon & Dixon (2004).

USPOP: This dataset was created on 2002 by a set of full-length songs and
their corresponding AllMusic meta-information (Berenzweig et al., 2004).
Due to legal issues, this dataset is not freely available and only the pre-
computed Mel-Scale Frequency Cepstral Coefficients can be distributed.
The aim of this dataset is to represent popular music using 400 popular
artists. The distribution of songs, artists and genres is shown in Table
3.9. This dataset is specialized in western pop music and the number
of songs at each musical genre is balanced. It has been used for many
authors and also in the MIREX05 competition.

RWC: The RWC (Real World Computing) Music Dataset is a copyright-
cleared music dataset that is available to researchers as a common foun-
dation for research (Goto et al., 2003; Goto, 2004). It contains six original
collections, as shown in Table 3.10.

The Music Genre subset is created by 10 main genre categories and 33
subcategories: 99 pieces (33 subcategories * 3 pieces). Finally, there is
one piece labelled A cappella. See Table 3.11 for details. This dataset is
available on request in CD format10.

Tzanetakis: This dataset was created by Tzanetakis & Cook (2002). It con-
tains 1000 audio excerpts of 30sec distributed in 10 musical genres (Blues,
Classical, Country, Disco, Hip-Hop, Jazz, Metal, Pop, Reggae, Rock).
Audio files for this dataset are mono, wav format, using a sr = 22050Hz.
This dataset has been used for many authors (Li & Ogihara, 2005; Holzapfel
& Stylianou, 2007).

MAMI: This dataset was collected with a focus on Query by humming re-
search, but also provided a good representation of western music to the
whole community. It contains 160 full length tracks based on the sales

10staff.aist.go.jp/m.goto/RWC-MDB/
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Subcategories (# tracks)
Popular Popular(3), Ballade(3)

Rock Rock(3), Heavy Metal(3)
Dance Rap(3), House(3), Techno(3), Funk(3), Soul/RnB(3)
Jazz Big Band(3), Modern Jazz(3), Fusion(3)
Latin BossaNova(3), Samba(3), Reggae(3), Tango(3)

Classical Baroque(3), Classic(3), Romantic(3), Modern(3)
March Brass Band(3)

Classical(Solo) Baroque(5), Classic(2), Romantic(2), Modern(1)
World Blues(3), Folk(3), Country(3), Gospel(3), African(3)

Indian(3), Flamenco(3), Chanson(3), Canzone(3)
Popular(3), Folk(3), Court(3)

Cappella Cappella(1)

Table 3.11: Summary of the Music Genre - RWC dataset

# Songs # Songs
Blues 100 Jazz 100

CLassical 100 Metal 100
Country 100 Pop 100

Disco 100 Reggae 100
Hip-Hop 100 Rock 100

Table 3.12: Summary of the Tzanetakis dataset

information from the IFPI (International Federation of the Phonographic
Industry) in Belgium for the year 2000. The songs belong to 11 musi-
cal genres but some of them are very poorly represented. Lippens et al.
(2004) conducted a manual labeling process obtaining a subset formed by
only 6 representative and consistent musical genres (Pop, Rock, Classical,
Dance, Rap and Other). This new dataset is known as MAMI2 and some
works are based on it (Craft et al., 2007; Lesaffre et al., 2003).

Garageband: Garageband11 is a web community that allows free music down-
load from artists that upload their work. Visitors are allowed to downoad
music, rate it and write comments to the authors. Although it is a contin-
uously changing collection, many works derived from this dataset. First,
some students downloaded it and gathered some metadata. They manu-
ally classified music (1886 songs) into 9 musical genres (Pop, Rock, Folk
/ Country, Alternative, Jazz, Electronic, Blues, Rap / Hip-Hop, Funk
/ Soul) and compute some descriptors to perform audio classification
experiments (Homburg et al., 2005; Mierswa & Morik, 2005). All this in-
formation is currently available in the web12. On the other hand, a recent
work proposed by Meng (2008) updates and redefines the dataset based
on Garageband. The author fuse the original 16706 songs distributed into
47 categories into a smaller 18 genre taxonomy. After that, Jazz became

11www.garageband.com
12www-ai.cs.uni-dortmund.de/audio.html
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Categories(18) Garageband genres (47)
Rock Alternative pop, Pop, Pop rock, Power pop

Alternative Rock, Indie Rock, Hard Rock
Modern Rock, Rock

Progressive Rock Instrumental Rock, Progressive Rock
Folk/Country Acoustic, Folk, Folk Rock, Americana, Country

Punk Emo, Pop Punk, Punk
Heavy Metal Alternative Metal, Hardcore Metal, Metal

Funk Funk, Groove Rock, R&B
Jazz Jazz

Electronica Ambient, Electronica, Electronic
Experimental Electronica, Experimental Rock

Latin Latin, World, World Fusion
Classical Classical
Techno Dance, Techno, Trance

Industrial Industrial
Blues Blues, Blues Rock

Reggae Reggae
Ska Ska

Comedy Comedy
Rap Hip-Hop, Rap

Spoken word Spoken word

Table 3.13: Fusion of Garageband genres to an 18-terms taxonomy proposed
by Meng (2008).

the smallest category (only 250 songs) and rock became the bigger one
(more than 3000 songs). The rest of the categories gather about 1000
songs (See Table 3.13).

Magnatune: It is a record label founded in April 2003, created to find a way
to run a record label in the Internet. It helps artists get exposure, make
at least as much money they would make with traditional labels, and
help them to get fans and concerts. Visitors can download individual
audio files from the Internet and it has been used as a groundtruth in
the MIREX05 competition (See Section 3.3.3). Details on this dataset
are shown in Table 3.14.

Mirex05: Music Genre Classification was the most popular contest in the
MIREX05. Two datasets were used to evaluate the submissions: Mag-
natune and USPOP, described above. In fact, two simpler versions of
these databases were used, following the properties shown in Table 3.15.

STOMP (Short Test of Music Preferences): This dataset was proposed
by Rentfrow & Gosling (2003) to study social aspects of music. It con-
tains 14 musical genres according to musicological (a set of experts were
asked) and commercial criteria (taxonomies in online music stores were
consulted) and it is considered to be representative of the western music.
A list of 10 songs for each of these genres is proposed, assuming that
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Subcategories(# albums)
Classical Classical(178), After 1800(12)

Electronica Electronica(106), Ambient(53)
Jazz & Blues Jazz & Blues (18)

Metal & Punk Rock Metal & Punk Rock(35)
New Age New Age(110)
Pop/Rock Pop/Rock(113)

World World(85)
Other Ambient(53)

Table 3.14: Summary of the Magnatune dataset

Entries Artists Genres
USPOP 1515 77 6

Magnatune 1414 77 10

Table 3.15: Summary of the MIREX05 simplified dataset

# Songs # Songs
Alternative 10 Rap & Hip-Hop 10

Blues 10 Jazz 10
Classical 10 Pop 10
Country 10 Religious 10

Electronica/Dance 10 Rock 10
Folk 10 Soul/Funk 10

Heavy Metal 10 Soundtrack 10

Table 3.16: Summary of the STOMP dataset

they are clear prototypes for each one of the genres (See Table 3.16 for
details).

Radio: This can be considered as our in-house dataset. It was created by
collecting the most common music broadcasted by spanish radio stations
in 2004. It was defined by musicologists and uses 8 different musical gen-
res and 50 full songs per genre without artist redundancy. Each musical
genre has associated a set of 5 full songs for test. One of the particularities
of this database is that includes the Speech genre which includes differ-
ent families of spoken signal such as advertisements, debates or sports
transmission.

3.3.2 Review of interesting approaches

One of the earliest approaches in automatic audio classification was proposed
by Wold et al. (1996). The author proposes the classification for different
families of sounds such as animals, music instruments, speech and machines.
This method extracts the loudness, pitch, brightness and bandwidth from the
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# Train songs # Test songs
Classical 50 10

Dance 50 10
Hip-Hop 50 10

Jazz 50 10
Pop 50 10

Rhythm&blues 50 10
Rock 50 10

Speech 50 10

Table 3.17: Summary of the Radio dataset

original signals and compute the statistics such as mean, variance and auto
correlation over the whole sound. The classification is made using a gaussian
classifier. Although this system is not centered in musical genres, it can be
considered the starting point for this research area.

Five years later, one of the most relevant studies in automatic genre clas-
sification is proposed by Tzanetakis & Cook (2002). In this paper, authors
use timbre related features (Spectral Centroid, Spectral Rolloff, Spectral Flux,
MFCC and Analysis and Texture Window), some derivatives of the timbric
features, rhythm related features based on Beat Histogram calculation (Tzane-
takis et al., 2001a) and pitch related features based on the multipitch detection
algorithm described by Tolonen & Karjalainen (2000). For classification and
evaluation, authors propose the use of simple gaussian classifiers. The dataset
is defined by 20 musical genres with 100 excerpts of 30 seconds per genre. Many
experiments and evaluations are discussed and the overall accuracy of the sys-
tem reaches a 61% of correct classifications, using 10-fold cross validation, over
the 20 musical genres.

In the recent years, the activity has been centered in the improvement of
both descriptors and classification techniques. Table 3.18, Table 3.19, and
Table 3.20 shows a non exhaustive list for the most relevant papers presented
in journals and conferences for the last years. Although accuracies are not
completely comparable due to the different datasets the authors use, similar
approaches have similar results. This suggests that music genre classification,
as it is known today, seems to reach a ’glass ceiling’ (Aucouturier & Pachet,
2004) in the used techniques and algorithms.
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If we plot the obtained accuracies shown in Tables 3.18, 3.19, and 3.20 with
respect to the number of genres used in the approach, we obtain a plot as shown
in Figure 3.3. The regression line we plot is that corresponding exponential
function:

% of accuracy = A · r# of genres (3.8)

where A = 93.36 and r = 0.9618. We also plot the corresponding theoretical
baseline for an equally distributed dataset following the 1/n curve, where n is
the number of genres in the collection. These values will be useful for the
conclusions extracted in the forthcoming chapters.

Focussing on the works centered on the descriptors, authors study how to
integrate all the extracted descriptors (which have no time-related information
at all) into bigger chunks of descriptors with some time relative information.
First, West & Cox (2005) presented a study comparing results between different
approaches that include individual short frames (23 ms), longer frames (200
ms), short sliding textural windows (1 sec) of a stream of 23 ms frames, large
fixed windows (10 sec) and whole files. The conclusions of this work showed how
onset detection based segmentations of musical audio provide better features for
classification than the fixed or sliding segmentations examined. These features
produced from onset detection based segmentations are both simpler to model
and produce more accurate models.

Scaringella & Zoia (2005) investigated means to model short-term time
structures from context information in music segments to consolidate classifi-
cation consistency by reducing ambiguities. The authors compared 5 different
methods taking low-level, short-term time relationships into account to classify
audio excerpts into musical genres. SVMs with delayed inputs prove to give
the best results with a simple modeling of time structures providing accuracies
near 70% over 7 musical genres.

According to Meng et al. (2007), mean and variance along the temporal
dimension were often used for temporal feature integration, but they didn’t
capture neither the temporal dynamics nor dependencies among the individ-
ual feature dimensions. The authors proposed a multivariate autoregressive
feature to solve this problem for music genre classification. This model gave
two different feature sets, the diagonal autoregressive (DAR) and multivariate
autoregressive (MAR) features which were compared to the baseline mean-
variance as well as two other temporal feature integration techniques.

Li et al. (2003); Li & Tzanetakis (2003) proposed the use of the Daubechies
Wavelet Coefficient Histogram (DWCH) to capture local and global informa-
tion of music at the same time. Authors also showed an exhaustive comparative
analysis between different descriptors and classifiers, as shown in Table 3.21.

Ahrendt et al. (2005) proposed the use of co-occurrence models which, in-
stead of considering the whole song as an integrated part of the probabilistic
model, considered it as a set of independent co-occurrences. All the proposed
models had the benefit of modeling the class-conditional probability of the
whole song instead of just modeling short time frames.

In our study, we will use basic statistics (mean, variance, skewness and
kurtosis) to collapse the computed descriptors among time. It is our goal to
compare the performance of different families of descriptors and their combi-
nations, assuming that, in those cases where necessary, the descriptor itself
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Figure 3.3: Accuracies of the state of the art with respect to the number of
genres, and the exponential regression curve.

contains this information (rhythm transform, complexity, etc.). See Section
4.3 for details.

Other approaches proposed different techniques to improve the accuracy
of the descriptors. Lampropoulos et al. (2005) proposed a sound source sep-
aration method to decompose the audio signal into a number of component
signals, each of which corresponds to a different musical instrument source.
The extracted features were used to classify a music clip, detecting its various
musical instruments sources and classifying them into a musical dictionary of
instrument sources or instrument teams. Accuracies about 75% in a 4 genres
database were obtained.

Bagci & Erzin (2006) investigated inter-genre similarity modeling (IGS) to
improve the performance of automatic music genre classification. Inter-genre
similarity information was extracted over the miss-classified feature population.

Ellis (2007) proposed the use of beat-synchronous chroma features, designed
to reflect melodic and harmonic content and be invariant to instrumentation
which improved about 3% the accuracies of his experiments.

Hierarchical classifiers were also developed by many authors. They used the
information of hierarchical taxonomies to classify genres in a higher category
level. For instance, Zhang & Kuo (1999) proposed a Hierarchical classification
of audio data for archiving and retrieving. The system divided the classification
in three main steps: (1) a coarse level classification to discriminate between
speech, music, environmental audio and silence, (2) fine level step to discrim-
inate between different environmental sounds like applause, birds, rain, etc.,
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SVM1 SVM2 MPSVM GMM LDA KNN
DWCH’s 74.9 78.5 68.3 63.5 71.3 62.1

All the rest 70.8 71.9 66.2 61.4 69.4 61.3
Beat + FFT + MFCC 71.2 72.1 64.6 60.8 70.2 62.3
Beat + FFT + Pitch 65.1 67.2 56.0 53.3 61.1 51.8

Beat + MFCC + Pitch 64.3 63.7 57.8 50.4 61.7 54.0
FFT + MFCC + Pitch 70.9 72.2 64.9 59.6 69.9 61.0

Beat + FFT 61.7 62.6 50.8 48.3 56.0 48.8
Beat + MFCC 60.4 60.2 53.5 47.7 59.6 50.5
Beat + Pitch 42.7 41.1 35.6 34.0 36.9 35.7

FFT + MFCC 70.5 71.8 63.6 59.1 66.8 61.2
FFT + Pitch 64.0 68.2 55.1 53.7 60.0 53.8

MFCC + Pitch 60.6 64.4 53.3 48.2 59.4 54.7
Beat 26.5 21.5 22.1 22.1 24.9 22.8
FFT 61.2 61.8 50.6 47.9 56.5 52.6

MFCC 58.4 58.1 49.4 46.4 55.5 53.7
Pitch 36.6 33.6 29.9 25.8 30.7 33.3

Table 3.21: Classification accuracies proposed by Li et al. (2003) for different
descriptors and classifiers. SVM1 refers to pairwise classification and SVM2
refers to one-versus-the-rest classification. “All the Rest” features refers to:
Beat + FFT + MFCC + Pitch

and (3) a Query-By-Example audio retrieval system. The author reported an
accuracy of 90% in a coarse-level classification when using a dataset of 1500
sounds. As shown in Section 3.2.1, Tzanetakis et al. (2001b); Burred & Lerch
(2003) also obtained interesting results by using hierarchical taxonomies.

Pampalk et al. (2005b) presented an improvement to audio-based music
similarity and genre classification based on the combined spectral similarity
proposed by Aucouturier & Pachet (2004) with three additional similarity mea-
sures based on fluctuation patterns. He presented two new descriptors and a
series of experiments evaluating the combinations. This approach increased
about 14% other state of the art algorithms, but the author reported the pres-
ence of a glass ceiling in genre classification.

Finally, some improvements in classification algorithms were proposed by
some authors. Bagci (2005) investigated discriminative boosting of classifiers to
improve the automatic music genre classification performance. He used two dif-
ferent classifiers, the boosting of a GMM and another one that used inter-genre
similarity information. In the first classifier (Boosting Gaussian Mixture Mod-
els) the author used the first multi-class extension of the AdaBoost algorithm
and proposed a modification to the expectation-maximization algorithm (Red-
ner & Walker, 1984) based training of mixture densities to adapt the weighting
approach of the boosting algorithm. In the second classifier (Boosting with
Inter-genre Similarity information) two novel approaches were proposed: The
first approach addressed capturing the inter-genre similarities to decrease the
level of confusion across similar music genres (the inter-genre similarity mod-
eling was closely related with the boosting idea) and the second one presented
an automatic clustering scheme to determine similar music genres in a hierar-
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chical classifier architecture. Many tests were performed for each classifier and
many results are shown for all of them obtaining accuracies up to 80% which
are quite similar to results obtained by 3s or 20s human classification.

Soltau et al. (1998) proposed a Neural Network based music classifier with
the inclusion of time-domain information. The authors used a new approach to
temporal structure by the inclusion of the Explicit Time Modeling with Neu-
ral Network (ETM-NN) and compared results with a more classical approach
using Hidden Markov Models (HMM). After the computation of the acousti-
cal features of the input signal (based on MFCC), the results obtained with
a left-to-right structure in HMM achieved a performance of 79.2% while the
ETM-NN approaches achieved a 86.1% of performance.

Li et al. (2003) used Support Vector Machines and Linear Discriminant
Analysis to improve previously published results using identical data collections
and features. After some experiments, they showed the relative importance of
feature subsets (FTT,MFCC, Pitch, Beat) in order of decreasing accuracy. Best
results were obtained by Linear Discriminant Analysis (71% of accuracy) which
is indirectly comparable to the 70% of accuracy in other human classification
tests.

Flexer et al. (2005) presented a clear discussion on the benefits of using
Hidden Markov Models (HMM) in front of Gaussian Mixture Models (GMM)
for music genre classification. Authors based their study on the audio data
available in the Magnatune dataset. After the introduction of HMMs and
GMMs concepts, the authors created different models for the comparison of
their likelihoods. Results and conclusions show how HMMs better describe
spectral similarity for individual songs but HMMs perform at the same level
as GMMs when used for spectral similarity in musical genres.

As mentioned in Section 2.3.1, music genre classification depends on some
elements which are extrinsic to the actual music. Whitman & Smaragdis (2002)
tried to solve this problem by combining musical and cultural features which
are extracted from audio and text. The cultural features were found from
so-called community metadata (Whitman & Lawrence, 2002) based on textual
information from the Internet. The author concludes that this mix can be useful
for some specific cases, i.e. the confusion between Rap and Rhythm’n’Blues
classification using only audio data.

Finally, only one work have been found focused on automatic genre classifi-
cation of non western music. In this study, Noris et al. (2005) investigated the
factors affecting automated genre classification using eight categories: Dikir
Barat, Etnik Sabah, Inang, Joget, Keroncong, Tumbuk Kalang, Wayang Kulit,
and Zapin. A total of 417 tracks from various Audio Compact Discs were col-
lected and used as the dataset. Results show how accuracies near 75% can be
obtained using spectral features and J48 classifier.

3.3.3 Contests

In the following section, we will discuss about the contests, on different MIR
tasks, organized in the context of the International Symposium of Music In-
formation Retrieval (ISMIR) for the last few years. These contests became a
must reference for the whole MIR community because the presented algorithms
can be directly compared under the same testing conditions. We will focus on
the audio genre classification task which has been carried out for three years
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Lab Accuracy
Dan Ellis & Brian Whitman Columbia University, MIT 51.48%

Elias Pampalk OFAI 78.78%
George Tzanetakis Univ. of Victoria 58.60%

Kris West Univ. of East Anglia 67.22%
Thomas Lidy & Andreas Rauber Vienna University of Tech. 55.70%

Table 3.22: Participants and obtained accuracies for the Audio Description
Contest (ISMIR2004)

(2004, 2005 and 2007).

Audio Description Contest

The Audio Description Contest is considered the starting point for further
competitions between algorithms in MIR community13. It was organized by
the Music Technology Group at Universitat Pompeu Fabra, Barcelona, which
hosted the International Conference of Music Information Retrieval (ISMIR)
in 2004. It was the first time that comparisons between algorithms instead
of results was carried out. It forced researchers to test and document their
algorithms and to build a pre-defined i/o format. Six tasks were defined for
this contest:

Genre Classification: label unknown songs according to one of 6 given mu-
sical genres

Artist Identification: identify one artist given three songs of his repertoire

Artist Similarity: mimic the behavior of experts in suggesting an artist sim-
ilar to a given one

Rhythm Classification: label audio excerpts with one out of eight rhythm
classes

Tempo Induction: main beat detection from polyphonic audio

Melody Extraction: main melody detection from polyphonic audio

Five authors participated to the genre classification contest. The used
dataset was based on Magnatune dataset (See Section 3.3.1 for details) and
the obtained results are shown in Table 3.22.

The big difference between the obtained accuracies can be explained by
different reasons. First, the lack of previous initiatives to compare algorithms
produced that the authors focused on their work, and the performance of their
algorithms could decrease in this new scenario. Second, the Magnatune dataset
is clearly an unbalanced dataset which may deviate the good performance of
some algorithms. Although problems here described and the small number of
participants, this contest fixed the starting point for further editions.

13ismir2004.ismir.net/ISMIR_Contest.html
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MIREX 2005

As a consequence of the difficulties in the organization of the contests in 2004,
the International Music Information Retrieval System Evaluation Laboratory
(IMIRSEL)14 was created. They organized the Music Information Retrieval
Evaluation eXchange (MIREX) in the context of ISMIR 2005. As in the Audio
Description Contest, many different tasks were proposed:

Audio Artist Identification: recognize the singer or the group that per-
formed a polyphonic audio recording

Audio Drum Detection: detect the onsets of drum sounds in polyphonic
pop song

Audio Genre Classification: label unknown songs according to one of 10
given musical genres

Audio Melody Extraction: extract the main melody, i.e. the singing voice
in a pop song or the lead instrument in a jazz ballad

Audio Onset Detection: detect the onsets of any musical instrument

Audio Tempo Extraction: compute the perceptual tempo of polyphonic
audio recordings

Audio and Symbolic Key Finding: extract the main key signature of a
musical work

Symbolic Genre Classification: label unknown songs according to one of
38 given musical genres in MIDI format. See Section 3.1.2 for further
details

Symbolic Melodic Similarity: retrieve the most similar documents from a
collection of monophonic incipits.

Focusing on audio genre classification, all the tests were carried out using
two independent databases (See Section 3.3.1 for details) and the participants
had to make independent runs on the two collections. The overall result for each
submitted algorithm was computed as the average of the two performances.
Results are shown in Table 3.23.

Bergstra et al. (2005) propose an algorithm that compensates the large
discrepancy in temporal scale between feature extraction (47 milliseconds) and
song classification (3-5 minutes). They classify features at an intermediate
scale (13.9 seconds). They also decompose the input song into contiguous,
non-overlapping segments of 13.9s, and compute the mean and variance in
standard timbre features over each segment. For classification, the authors
use an extension of Adaboost called Adaboost.MH (first algorithm) and 2-level
trees (second algorithm).

Mandel & Ellis (2005b) use support vector machines to classify songs based
on features calculated over their entire lengths. They model songs as single
Gaussians of MFCCs and use a KL divergence-based kernel to measure the
distance between songs.

14www.music-ir.org/evaluation
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Accuracy
Bergstra, Casagrande & Eck (2) 82.34%
Bergstra, Casagrande & Eck (1) 81.77%

Mandel & Ellis 78.81%
West, K. 75.29%

Lidy & Rauber (SSD+RH) 75.27%
Pampalk, E. 75.14%

Lidy & Rauber (RP+SSD) 74.78%
Lidy & Rauber (RP+SSD+RH) 74.58%

Scaringella, N. 73.11%
Ahrendt, P. 71.55%
Burred, J. 62.63%
Soares, V. 60.98%

Tzanetakis, G. 60.72%

Table 3.23: Participants and obtained accuracies for the Audio Genre Classifi-
cation task in MIREX2005

West (2005) uses a novel feature called Mel-band Frequency Domain Spec-
tral Irregularity which is computed from the output of a Mel-frequency scale
filter bank and is composed of two sets of coefficients, half describing the spec-
trum and half describing the irregularity of the spectrum. He also uses rhythmic
descriptors based on onset detection. The classifier is based on a modified ver-
sion of classification and regression trees, replacing the normal single variable
with single Gaussian distributions and Mahalanobis distance measurements.
Finally, he applies Linear Discriminant Analysis to weight the extracted fea-
tures.

Lidy & Rauber (2005) submitted a system that uses combinations of three
feature sets (Rhythm Patterns, Statistical Spectrum Descriptor and Rhythm
Histogram). All feature sets are based on fluctuation of modulation ampli-
tudes in psychoacoustically transformed spectrum data. For classification, the
authors applies Support Vector Machines.

Pampalk (2005) uses cluster models of MFCC spectra, fluctuation patterns
and two descriptors derived from them: Gravity and Focus. For each piece in
the test set, the distance to all pieces in the training set is computed using a
nearest neighbor classifier. There is no training other than storing the features
of the training data. Each piece in the test set is assigned the genre label of
the piece closest to it.

Scaringella & Mlynek (2005) parameterize audio content by extracting 3
sets of features describing 3 different dimensions of music: timbre, energy and
rhythm. Once features extracted, an ensemble of Support Vector Machines
(SVMs) is used for classification into musical genres. The underlying idea is
to use separate models to approximate different parts of the problem and to
combine the outputs from the experts with probabilistic methods.

Ahrendt & Meng (2005) model an audio segment (1.2s) of short time fea-
tures (statistical moments of MFCC) for creating a multivariate autoregressive
model. This data feeds a generalized linear model with softmax activation
function is trained on all the MAR-feature vectors from all the songs. To reach
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a final decision for a 30s music clip, the sum-rule is used over all the frames.
Burred (2005) computes the mean, the variance and the derivatives of many

timbre a rhythm related descriptors. In order to maximize genre separability,
author uses a sequential forward feature selection algorithm based on an objec-
tive measure of class separability. The system is designed to work in the two
environments of the contest: (1) Hierarchical: The feature selection is repeated
for each subset of classes of the taxonomy tree, so that only the features that
are most suitable for separating that particular subset are retained. When
classifying an unknown input signal, the appropriate features are selected and
computed at each level of the hierarchy. (2) Parametric classification: The
classes are modeled as 3-cluster Gaussian Mixture Models. The classification
is performed on a Maximum Likelihood basis.

Soares (2005) computes a wide group of more than 400 signal processing
features including some transformations to the original features, such as deriva-
tives and correlation between features. Then, the "wrapper" methodology is
followed to select the most important ones. For classification, the author pro-
poses a Multivariate Time Series datasets method (also called taxoDynamic),
which dynamically adjusts the subset of features at each node of the taxonomy.

Finally, Tzanetakis & Murdoch (2005) use the 3s mean and variances of 18
timbre features, and Support Vector Machine for classification. The outputs
of the classifier are mapped to probabilities using logistic regression and the
classification decision over the entire song is done by taking weighted (by the
classifier outputs) sums for each class and selecting the one with the highest
sum.

MIREX 2007

Following with the MIREX, in 2007 the people of the IMIRSEL and the or-
ganizers of the 8th International Conference on Music Information Retrieval
(ISMIR 2007) proposed a set of tasks for a new competition:

• Audio Artist Identification

• Audio Classical Composer Identification

• Audio Cover Song Identification

• Audio Genre Classification

• Audio Music Mood Classification

• Audio Music Similarity and Retrieval

• Audio Onset Detection

• Multiple Fundamental Frequency Estimation and Tracking

• Query-by-Singing/Humming

• Symbolic Melodic Similarity

For the Audio Genre Classification task, five authors submitted their algo-
rithms. The proposed dataset was built using 7000 clips (length=30s) covering
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Main Category Genre
JazzBlues Jazz

Blues
CountryWestern Country
GeneralClassical Baroque

Classical
Romantic

Electronica Electronica
Hip-Hop Hip-Hop

GeneralRock Rock
HardRockMetal

Table 3.24: Hierarchical taxonomy for the Audio Genre Classification task in
MIREX 2007

the following musical genres (700 tracks per genre): Baroque, Blues, Classical,
Country, Dance, Jazz, Metal, Rap/Hip-Hop, Rock’n’Roll and Romantic.

A hierarchical taxonomy was also provided to participants in order to com-
pare results between raw and hierarchical classification (See Table 3.24). The
evaluation procedure is detailed in the Wiki of Audio Genre Classification
task15.

Lidy et al. (2007) proposed the use of both audio and symbolic descriptors
for genre classification. For that, the authors proposed a new transcription
system to get a symbolic representation from audio signals. The audio fea-
tures used in this work were the rhythm patterns, rhythm histograms, statis-
tical spectrum descriptors and onset features. The set of extracted symbolic
descriptors was based on the work proposed by Ponce & Inesta (2007); Rizo
et al. (2006b), and included the number of notes, number of significant silences,
the number of non-significant silences, note pitches, durations and Inter Onset
Intervals, among others. Support Vector Machines were used for classification.

Mandel & Ellis (2007) proposed an algorithm that was used for several
tasks in the contest (audio similarity, composer and artist identification and
genre and mood classification). This work computes spectral and time domain
features based on the work of Mandel & Ellis (2005a) and Rauber et al. (2002)
respectively. The classification is performed by a DAG-SVM which allows n-
way classification based on support vector machines using a directed acyclic
graph (DAG). See Platt et al. (2000) for details.

Tzanetakis (2007) proposed an algorithm that covered the audio artist iden-
tification, audio classical composer identification, audio genre classification, au-
dio music mood classification, and audio music similarity and retrieval results
tasks using Marsyas16. The features used were spectral centroid, rolloff, flux
and MFCC. To capture these features, the author computed a running mean
and standard deviation over the past M frames. All this data was collapsed
to a single vector that represents the overall behavior of each audio clip. The
author also used support vector machines for classification.

15www.music-ir.org/mirex2007/index.php/Audio_Genre_Classification
16marsyas.sness.net/
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Participant Hierarchical Raw
IMIRSEL(1) 76.56% 68.29%

Lidy 75.57% 66.71%
Mandel(1) 75.03% 66.60%
Tzanetakis 74.15% 65.34%
Mandel(2) 73.57% 65.50%

Guaus 71.87% 62.89%
IMIRSEL(2) 64.83% 54.87%

Table 3.25: Obtained accuracies for the MIREX 2007 Audio Genre Classifica-
tion tasks for all submissions

Participant Runtime (sec) Folds
IMIRSEL(1) 6879 51

Lidy 54192 147
Mandel(1) 8166 207
Tzanetakis — 1442
Mandel(2) 8018 210

Guaus 22740 194
IMIRSEL(2) 6879 1245

Table 3.26: Time for feature extraction and # folds for train/classify for the
MIREX 2007 Audio Genre Classification tasks for all submissions

Finally, the IMIRSEL lab (organizers of the contest) also participated using
a simple feature extraction and classification techniques but, undortunately,
they did not document their approaches. Our own approach will be described
in detail in Section 5.4. We used spectral and rhythmic features to train a
SVM algorithm.

The summary of the results for all the participants is shown in Table 3.25
and the runtimes for the different submissions are shown in Table 3.26. A more
detailed discussion about these results is given in Section 5.4.5.

3.4 Conclusions from the state of the art

As described above, music genre classification can be considered as one of the
traditional challenges in the music information retrieval field. Roughly speak-
ing, the literature can be divided into two main groups: the first one dealing
with works focused on audio descriptors and their compact representation, and
the second one focused on machine learning algorithms that improve the perfor-
mance of the genre classification systems. Fortunately, the MIREX has became
a reference point for the authors providing a benchmark to compare algorithms
and descriptors with exactly the same testing conditions.

From the point of view of many authors (Aucouturier & Pachet, 2004;
Pampalk et al., 2005b) whose ideas are also supported by us, all these efforts
are near to reach a glass-ceiling on accuracies. Algorithms become more and
more complicated but, from our knowledge, only few works compare these
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results with real listening experiments on genre classification (Soltau et al.,
1998; Huron, 2000; Futrelle & Downie, 2003). We think that Less is more, and
we have played with simple concepts and techniques, thinking with music and
how humans perceive it. Working in that direction, we propose the listening
of the errors provided by the automatic classifiers and use this information
to design a better classifier. Moreover, we wonder whether algorithms should
imitate classical, prototype or exemplar categorization theory. Although some
authors did, (Fujinaga et al., 1998; Jäkel et al., 2008), these kind of works are
traditionally far from the MIR channels. From here to the end, we will study de
behavior of descriptors and classifiers and, in the last chapter, we will establish
the relationships between all the elements. For that, we first introduce the
scientific background required for our analysis, we introduce a set of listening
experiments, we compare the performance of different families of descriptors,
and finally, deduce the architecture of our proposed classifier.



CHAPTER 4
Computational techniques

for music genre
characterization and

classification

4.1 Introduction

In this chapter, we introduce the scientific concepts that will be used in our
experiments. All the techniques here exposed are not new, so, they are not
part of the contribution of this thesis. In some cases, these algorithms have
never been applied to Music Information Retrieval. In this chapter, we ex-
plain the techniques themselves and we study their application to music genre
classification in the forthcoming chapters.

4.2 Basic Statistics

In this section, we define some statistical concepts that will be used in almost all
the experiments. We start with an overview of the statistical models that will
be used for generating descriptors and for computing the obtained accuracies
provided by the classifiers. Then, we define the periodogram that will be used
in the computation of rhythmic descriptors.

4.2.1 Statistic moments

Mean

The mean or expected value of a discrete random variable X, can be computed
as Montgomery & Runger (2002):

µ = E(X) =
∑
x

xf(f) (4.1)

63
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where x are the obtained values of the experiment and f(x) is the weight
of each for these values. Typically, f(x) = 1

N where N is the number of
occurrences in the experiment.

Variance

The variance of X is a measure of the dispersion of the samples around the
mean value, and it can be computed as (Montgomery & Runger (2002)):

σ2 = V (X) = E(X − µ)2 =
∑
x

(x− µ)2f(x) =
∑
x

x2f(x)− µ2 (4.2)

or, by using Matlab nomenclature 1:

σ2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (4.3)

Finally, the Standard Deviation of X can be computed as:

σ = [V (X)]
1
2 =

( 1
n− 1

n∑
i=1

(xi − x̄)2
) 1

2 (4.4)

Skewness

The skewness of a distribution is defined as:

y =
E(x− µ)3

σ3
(4.5)

where µ is the mean of x, σ is the standard deviation of x and E(x) is
the expected value of x. Skewness is a measure of the asymmetry of the data
around the sample mean. If skewness is negative, the data are spread out more
to the left of the mean than to the right. If skewness is positive, the data are
spread out more to the right. The skewness of the normal distribution (or any
perfectly symmetric distribution) is zero.

Kurtosis

The kurtosis of a distribution is defined as:

k =
E(x− µ)4

σ4
(4.6)

where µ is the mean of x, σ is the standard deviation of x and E(x) is the
expected value of x. Kurtosis is a measure of how outlier-prone a distribution is.
The kurtosis of the normal distribution is 3. Distributions that are more flat-
shaped than the normal distribution have kurtosis greater than 3; distributions
that are peak-shaped have kurtosis smaller than 3.

1Matlab calculates the variance with 1
n−1

instead of 1
n
as an approximation for small-size

samples (N < 30)
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4.2.2 Periodogram

In this section, we will present an overview of the periodogram that will be
used in following chapters. The Periodogram was introduced by Schuster in
1898 to study periodicity of sunspots.

The sample mean and variance statistics are unbiased and asymptotically
unbiased estimators respectively, and they are both consistent estimators (Op-
penheim & Schaffer, 1989). Sometimes, in digital signal processing, the estima-
tion of the power density spectrum Pss(Ω) of a continuous stationary random
signal sc(t) is needed. After the anti-aliasing filtering, another discrete-time
stationary random signal x[n] will be created, and its power density spectrum
Pxx(ω) will be proportional to Pss(Ω) over the whole new bandwidth of x[n]:

Pxx(ω) =
1
T
Pss

(
Ω
T

)
|ω| < π (4.7)

where T is the sampling period. Then, a good estimation of Pxx(ω) will
provide a reasonable estimation of Pss(Ω).

Let v[n] be the windowed input signal:

v[n] = x[n] · w[n] (4.8)

where w[n] is the windowing function. Then, the Fourier Transform of v[n]
can be computed as:

V (ejω) =
L−1∑
n=0

w[n]x[n]e−jωn (4.9)

where L is the length (in samples) of the windowing function. Now, let
I(ω) be the estimation of the power density spectrum:

I(ω) =
1
LU
|V (ejω)|2 (4.10)

where U is the normalization factor for removing the bias in the spectral
estimate. Depending on the windowing function, this estimator can be:

• If w[n] is the rectangular window → I(ω) is the periodogram

• If w[n] is NOT the rectangular window → I(ω) is the modified peri-
odogram

Furthermore, note that the periodogram can also be computed as:

I(ω) =
1
LU

L−1∑
m=−(L−1)

cvv[m]e−jωm (4.11)

where

cvv[m] =
L−1∑
n=0

x[n]w[n]x[n+m]w[n+m] (4.12)
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As cvv[m] is the aperiodic correlation sequence for the finite-length sequence
v[n], the periodogram can be interpreted as the Fourier Transform of the ape-
riodic correlation of the windowed input data.

Finally, as we are in discrete domain, the periodogram can only be obtained
at discrete frequencies. Then, discrete periodogram is computed as:

I(ωk) =
1
LU
|V [k]|2 (4.13)

where V [k] is the N-point DFT of w[n]x[n].

4.3 Descriptors

Descriptors are, from our point of view, the key point in audio classification.
They are the responsible to extract the required information from raw data
and, as a consequence of that, to decide which aspects of music will participate
in the classification. Descriptors can be classified according to different criteria
(Pohle, 2005). First, they cover different facets of music such as rhythm, timbre,
melody, etc. In the following sections we will introduce them according to this
criteria. Moreover, descriptors can describe low level features of music (p.e.
energy, spectra, etc.) or high level (p.e. mood, genre, etc.), which are more
related to the perception of the music by humans. Low level features are usually
easier to compute, but they provide less musical information than high level
descriptors.

Focusing on the goal of this thesis, the major challenge in music genre clas-
sification is to choose an appropriate bag of descriptors and the corresponding
machine learning algorithm that provides high accuracies in a given dataset.
For the author, music genre should reach a status of high level descriptor in-
stead of a specific application of machine learning algorithms. We will include
as many facets of music as possible in our classifier in order to work for this
goal.

4.3.1 Previous considerations

Length of the audio excerpt

There are some properties which are shared for the computation of most of
the descriptors. First, we have to decide which part of the audio data we will
use. Some datasets provide access to the full song, but many authors prefer to
compute their descriptors on a short audio excerpt of the whole song. Different
configurations can be found in the literature: from 5 seconds at the middle of
the song to 2 minutes (See Pampalk et al. (2003) for further comparisons). In
the context of the Audio Genre Classification contest proposed for the MIREX
2007 2, the results of the survey asking to the participants whether to use audio
excerpts or not, results were clear: all of them preferred to use audio excerpts
(See Table 4.1 and Table 4.2 for details).

The format of the input file is also a non standardized property. Omitting
the compressed formats which are usually not used for feature computation
(compressed data is converted to WAV or RAW data format), the sampling

2http://www.music-ir.org/mirex2007
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Yes No Votes
Use clips? 100% 0% 11

Table 4.1: Use of clips for the MIREX 2007 (data collected in August 2007)

30s 60s 90s 120s Votes
Length 83% 17% 0% 0% 8

Table 4.2: Preferred length of clips for the MIREX 2007 (data collected in
August 2007)

22KHz 44KHz
Mono Stereo Mono Stereo

WAV 59% 0% 29% 6%
MP3 6% 0% 0% 0%

Table 4.3: Preferred formats for the MIREX 2007 participants (data collected
in August 2007, votes=17)

rate and the number of channels can affect some descriptors (p.ex. MFCC,
Panning, etc.). Here again, the preferred formats for the participants in the
Genre Classification contest at the MIREX 2007 are shown in Table 4.3.

As will be discussed in Section 5.3, our listening experiments are based on
5sec audio excerpts while the computation of descriptors is carried out, in most
of the cases, using 30sec audio excerpts.

Frame size and hop-size

Another parameter that needs to be chosen a priori is the length of the frame
and its hop-size. Typical frames are selected from 512 to 4096 frames (that
is 23.22ms and 186ms respectively at sampling rate sr = 22050Hz), and the
hop-size is typically fixed at 50%. These parameters affect the time and fre-
quency resolution of the analysis and there is no a universal rule to select them.
Rhythmic descriptors need longer frames than timbre (> 2s) which can be ob-
tained by summing results over short frames or computing them directly in a
longer frame.

Velocity and Acceleration

Finally, sometimes we also compute the derivative and the second derivative of
the original descriptors. The aim of computing them, also referred as the ve-
locity or the acceleration of a given descriptor, is to capture how this descriptor
evolves in time.

The first order differentiation can be computed in different ways, but many
authors use the Causal FIR filter implementation:
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ṗ[n] =
∂p[n]
∂t

=
m=N∑
m=n

p[n−m] (4.14)

where N is the depth of the differentiation. The descriptor we get by
applying differentiation is denoted as delta descriptor (∇). Finally, if we have to
apply the second-order differentiation, we will compute the Eq. 4.14 recursively.
Then, we have the delta-delta descriptor (∇2).

4.3.2 Time domain descriptors

Energy

From a mathematical point of view, the time-domain energy of the input signal
can be defined as:

E =
N∑
n=0

x[n]2 (4.15)

where x[n] is the input time-domain data and N is the length of x[n] (in
samples).

The energy is not a representative descriptor at all. It depends on many
not fixed parameters of the experiment such as the mic/line-in amplifier level
while recording, the used codification, and so on. But in this thesis, we will use
the derivative of the time domain energy here defined to compute the rhythmic
descriptors.

Zero Crossing Rate

As defined by Kedem (1986) and Saunders (1996), the Zero Crossing Rate
(ZCR) of the time domain waveform provides a measure of the weighted average
of the spectral energy distribution. This measure is similar to the spectral
center of mass or Spectral Centroid of the input signal (see Section 4.3.3).
From a mathematical point of view, it can be computed as:

ZCR =
1
2

N∑
n=1

|sign(x[n])− sign(x[n− 1])| (4.16)

where sign function is 1 for positive arguments and 0 for negative arguments,
x[n] is the input time-domain data and N is the length of x[n] (in samples).

4Hz Modulation

The 4Hz Modulation Energy Peak is a characteristic feature of speech signals
due to a near 4Hz syllabic rate. It is computed by decomposing the original
waveform into 20 (Karneback, 2001) or 40 (Scheirer, 1998), depending on the
accuracy, mel-frequency bands. The energy of each band is extracted and a
second band pass filter centered at 4 Hz is applied to each one of the bands. Of
course, this 4Hz value depends on the language: catalan or spanish languages,
this value is near the 6[Hz] instead of the 4[Hz] value for English.
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4.3.3 Timbre descriptors

Spectral Centroid

The Spectral Centroid is defined as the balancing point of the spectral power
distribution (Scheirer, 1998). The Spectral Centroid value rises up, specially
for percussive sounds, due to the high density of harmonics in the upper bands
of the spectrum. This concept has been introduced by psychoacoustic and
music cognition research. It can be interpreted as a measure of the average
frequency, weighted by amplitude, of a spectrum, that is, a measure related
with the brightness of the signal. Be careful of confusing the Spectral Centroid
and the Fundamental Frequency: while the Spectral Centroid can be higher
for a trumpet sound than for a flute sound, both instruments can play exactly
the same note. From a mathematical point of view, the Spectral Centroid can
be calculated as:

SC =
∑
fiai∑
ai

(4.17)

where fi is the frequency value of each bin of the FFT and ai is its ampli-
tude. In many applications, it is averaged over time. This S̄C value can be
averaged into different time-domain frames as shown in next equation:

S̄C =
1
N

∑
SCi (4.18)

where N is the number of frames and SCi is the Spectral Centroid value
for each frame. Finally, the spectral centroid is sometimes normalized with the
fundamental frequency, making this value adimensional:

SC =
∑
fiai

f1
∑
ai

(4.19)

Spectral Flatness

The Spectral Flatness is defined as the ratio of the geometric mean to the arith-
metic mean of the power spectral density components in each critical band for
the input signal. According to Izmirli (1999), it can be computed according
to the following steps: the signal should be sampled at fs = 22050[Hz] and
the 2048-points FFT should be performed after the Hanning windowing. The
windows should be 30% overlapped. A Pre-emphasis filter should be applied in
order to compensate the behavior of the human ear. The bark-band filter out-
put should be calculated from the FFT and the power spectral density should
be computed for each critical bands. All these values are used to compute the
arithmetical and geometrical means.

SFM =
Gm
Am

(4.20)

where Gm and Am are the arithmetical and geometrical means of the spec-
tral power density function respectively. Sometimes, the Spectral Flatness
Measure is converted to decibels as follows (Johnston, 1998):

SFMdB = 10log10
Gm
Am

(4.21)
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and, furthermore, it can be used to generate a coefficient of tonality α as
follows:

α = min

(
SFMdB

SFMdBmax

, 1
)

(4.22)

For instance, a SFM of SFMdBmax = −60dB is used to estimate that the
signal is entirely tone-like, and an SFM of 0dB to indicate a signal that is
completely noise-like.

Spectral Flux

The Spectral Flux is also known as Delta Spectrum Magnitude. It is defined
as (Tzanetakis & Cook, 2002):

Ft =
N∑
n=1

(Nt[n]−Nt−1[n])2 (4.23)

where Nt is the (frame-by-frame) normalized frequency distribution at time
t. It is a measure for the rate of local spectral change: if there is much spectral
change between the frames t− 1 and t then this measure produces high values.

Spectral Roll-Off

There are many different definitions for the Roll-off frequency, but more or less
all of them express the same concept. It can be defined as (Tzanetakis & Cook,
2002):

SRt = max

{
f
∣∣∣ f∑
n=1

Mt[n] < TH ·
N∑
n=1

Mt[n]

}
(4.24)

whereMt is the magnitude of the Fourier transform at frame t and frequency
bin n. Typical values of the threshold TH are between 0.8 and 0.95.

Mel Frequency Cepstrum Coefficient

The Cepstrum of an input signal is defined as the Inverse Fourier Transform
of the logarithm of the spectrum of the signal (Picone, 1993):

c[n] =
1
N

N−1∑
k=0

log10 |X[k]|j
2π
N kn

, 0 < n < N − 1 (4.25)

where X[k] is the spectrum of the input signal x[n] and N is the length of
x[n] (in samples). The process is an Homomorphic Deconvolution because it
is able to separate the excitation part of the input signal for further manipu-
lations. For the Mel-Cepstrum computation, some few modifications have to
be done. The mel scale tries to map the perceived frequency of a tone onto a
linear scale:

mel frequency = 2595 · log10

[
1 +

f

700

]
(4.26)
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Figure 4.1: Behavior of the MFCC5 coefficient for different musical genres.
Each point corresponds to the mean for all the short-time MFCC5 descriptor
computed over 30 seconds audio excerpts in the Tzanetakis dataset (Tzanetakis
& Cook, 2002). The musical genres are represented in the x axis

The Mel scale can be used as a rough approximation to estimate the band-
widths of human auditory filters expressed as Barks (Zwicker & Terhardt,
1980):

bark = 13 · arctan
(

0.76 · f
1000

)
+ 3.5 · arctan

(
f2

75002

)
(4.27)

Figure 4.1 shows an example of the behavior of a MFCC coefficient for dif-
ferent musical genres. For this case, we only show the MFCC5 coefficient. Each
point represents the mean for all the short-time MFCC5 coefficients computed
over the 30 seconds audio excerpts included in the Tzanetakis dataset (Tzane-
takis & Cook, 2002). In this case, some differences between metal a pop music
can be found. On the other hand, Figure 4.2 shows the plot for MFCC6 vs
MFCC10 coefficients for the two musical genres mentioned above: Metal and
Pop. In summary, we can combine the information from different coefficients
to discriminate between different musical genres.

In some cases, the descriptor we use has not the whole information we
need. Then, the first-order or the second-order differentiation of the original
parameter is used (see Section 4.3.1).

4.3.4 Rhythm related descriptors

Inter Onset Interval

According to Allen & Dannenberg (1990), the Inter Onset Interval (IOI) is the
time difference between two successive onsets but, according to Dixon (2001) it
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Figure 4.2: MFCC6 (x axis) vs MFCC10 (y axis) values for Metal (in blue) and
Pop (in red). Each point represents the mean for all the short-time MFCC coef-
ficients computed over the 30 seconds audio excerpts included in the Tzanetakis
dataset (Tzanetakis & Cook, 2002).

can also be defined as the difference between any two onsets. Many algorithms
can be found for IOI computations, but only one of them will be explained
here. According to Gouyon (2003), the IOI histogram can be computed as:

1. Onset detection: First of all, the energy of each non-overlapping frames
is calculated. The onset will be detected when the energy of the current
frame is superior to a specific percentage (i.e. 200%) of a fixed number
(i.e. 8) of the previous frames energy average. It is assumed that there
is a gap of 60[ms] between onsets, and a weighting factor is applied to
each onset according to the number of consecutive onsets whose energy
satisfies the threshold condition mentioned above.

2. IOI computations: In this algorithm proposed by Gouyon (2003), the time
differences between any two onsets is taken. Each IOI has an associated
weight according to the smallest weight among the two onsets used for
this IOI computation

3. IOI histogram computation: With all these computed IOI, a histogram
is created. This histogram is smoothed by the convolution of a Gaussian
function. The parameters of this Gaussian function are fixed empirically.

At this point, the histogram of IOI is available. This data can be used for
tick induction computations, rhythm classification, automatic BPM detection,
and so on.
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Beat Histogram

This concept was proposed by Tzanetakis et al. (2001a) as part of his automatic
genre classification system. Some additional techniques such as Wavelet Trans-
form are also used(Vidakovic & Müller, 1991; D. & L., 1992). The Wavelet de-
composition of a signal can be interpreted as successive high-pass and low-pass
filtering of the time domain signal. This decomposition is defined by:

yhigh[k] =
∑
n

x[n]g[2k − n] (4.28)

ylow[k] =
∑
n

x[n]h[2k − n]

where yhigh[k] and ylow[k] are the output of high-pass and low-pass filters
respectively, and g[n] and h[n] are the filter coefficients for the high-pass and
low-pass filters associated to the scalar and wavelet functions for 4th. order
Daubechies Wavelets. The main advantage of using the Wavelet Transform
deals with the similarity of the decomposed signal to a 1/3 octave filter bank
in a similar way than the human ear does. Once the signal is decomposed,
some additional signal processing (in parallel for each band) is needed:

1. Full Wave Rectification (FRW):

z[n] = abs(y[n]) (4.29)

where y[n] is the output of the Wavelet decomposition at that specific
scale (or octave)

2. Low-pass filtering (LPF): One pole filter with α = 0.99:

a[n] = (1− α)z[n]− α · a[n] (4.30)

3. Downsampling(↓) by k=16:

b[n] = a[kn] (4.31)

4. Normalization (Noise removal NR):

c[n] = b[n]− E [b[n]] (4.32)

5. Autocorrelation (AR):

d[n] =
1
N

∑
n

c[n]c[n+ k] (4.33)

This autocorrelation is computed by using the FFT for efficiency.

Figure 4.3 shows a screenshot of the block diagram for beat histogram
computation proposed by Tzanetakis et al. (2001a).

At this point, the first five peaks of the autocorrelation function are de-
tected and their corresponding periodicities in beats per minute(BPM) are
calculated and added to the beat histogram. Finally, when the beat histogram
is computed, some features can be used:
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Figure 4.3: Screenshot of the block diagram for Beat Histogram computation
proposed by Tzanetakis et al. (2001a)

1. Period0: Periodicity in BPM of the first peak

2. Amplitude0: Relative amplitude of the first peak

3. Ratio Period1: Ratio of the periodicity of the second peak to the first
one

4. Amplitude1: Relative amplitude of the second peak

5. Ratio Period2, Amplitude2. . .

Other authors use the number of peaks, their distribution, max and min
operations over the peaks, etc. Grimalidi (2003) uses the beat histogram as an
input feature to his classification system.

Beat Spectrum

Beat Spectrum was introduced by Foote & Uchihashi (2001). It is a measure
of the acoustic self-similarity as a function of time lag. The goal of this method
is that it doesn’t depend on fixed thresholds. Hence, it can be applied to any
kind of music and, furthermore, it can distinguish between different rhythms at
the same tempo. The Beat Spectrogram is also introduced in this work as the
time evolution of the rhythm representation and it can be computed according
the following steps:

1. Audio parameterization: The FFT of the windowed input data is com-
puted. Then, by using any known filtering technique (i.e MFCC), the
vector of the log energy for each band is obtained.

2. Frame similarity computation: Data derived from previous parameteriza-
tion is embedded in a 2D representation. A dissimilarity measure between
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two vectors i and j is computed as:

DC(i, j) =
vi · vj
‖vi‖‖vj‖

(4.34)

3. Distance Matrix Embedding: The similarity matrix S contains all the
measures for all the i and j as shown in Eq. 4.34. In this matrix, audio
similarities can easily be observed.

4. The Beat spectrum: Periodicities and rhythmic structure can be derived
from this similarity matrix. An estimation of the Beat Spectrum can be
found by summing S along the diagonal as follows:

B(l) =
∑
k⊂R

S(k, k + l) (4.35)

where B(0) is the sum for all the elements of the main diagonal over
some continuous range R, B(1) is the sum of all the elements along the
first super-diagonal, and so on. A more robust estimation of the Beat
Spectrum can be computed as:

B(k, l) =
∑
i,j

S(i+ k, j + l) (4.36)

where the autocorrelation of S is computed. Some applications like onset
detections can be computed by using this Beat Histogram.

In Section 5.2.1, we will present our own approach to rhythm description
and their advantages and inconveniences with respect to the techniques here
presented.

4.3.5 Tonal descriptors

The tonal features used in this thesis are based on the work made by Gomez
(2006). They are inspired on the Harmonic Pitch Class Profile (HPCP) pro-
posed by Krumhansl (1990). The HPCP measures the intensity of each of the
twelve semitones in a diatonic scale. The basic idea is to map each frequency
bin of the spectrum of the input signal to a given pitch class. For doing that,
it uses a weighting function for feature computation, it considers the presence
of harmonics from a fundamental frequency, and it uses high resolution grids
in the HPCP bins (less than a semitone). The bandwidth that is considered is
in between 100Hz and 5KHz. Then, the HPCP vector can be computed as:

HPCP (n) =
nPeaks∑
i=1

ω(n, fi) · a2
i n = 1 . . . N (4.37)

where ai and fi are the linear magnitude and frequency values of the peak
number i, nPeaks is the number of spectral peaks that we consider, n is the
HPCP bin, N is the size of the HPCP vector (i.e. number of bins: 12, 24, 36, .
. .), and ω(n, fi) is the weight of the frequency fi when considering the HPCP
bin n.

The Transposed Harmonic Pitch Class Profile (THPCP) proposed by Gomez
(2006) is one of the main contributions in her thesis. They are considered as
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Figure 4.4: General diagram for computing HPCP features

Figure 4.5: Comparison of the behavior of the 7th. coefficient of the HPCP vs
THPCP for different musical genres. Information provided for THPCP seem
to provide more discriminative power than the HPCP for the different genres

an enhanced HPCP which is invariant to transposition, that is, a transposed
version of the HPCP. The THPCP can be computed as a shifted version of the
HPCP according to the following formula:

THPCP (n) = HPCP (mod(n− shift,N)) n = 1 . . . N (4.38)

where n is the size of the HPCP vector and the index shift can be defined in
different ways. First, shift can be assigned to a certain key in order to analyze
the tonal profile given by the HPCP features. On the other hand, shift can
be automatically assigned according to the estimated key or, finally, according
to the maximum value of the HPCP vector.

Figure 4.5 shows the distribution of the 7th HPCP and THPCP coefficients
for different musical genres. Note how the information provided for THPCP
seem to provide more discriminative power than the HPCP for the different
genres. This property is also present in many of the other 11 coefficients.

Some other features can be derived from the HPCP or THPCP. They will
be included in our analysis of musical genres in addition to THPCP described
above, and we will compare their performance with the timbre and rhythm
descriptors. In the following subsections we briefly describe them.
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Equal-tempered deviation

The Equal-tempered deviation feature is proposed by Gomez & Herrera (2008).
It measures the local maxima deviation of the HPCP from equal tempered
bins. First, we need to extract a set of local maxima from the HPCP:

{posi, ai} i = 1 . . . N (4.39)
and then we compute their deviations from closest equal-tempered bins,

weighted by their magnitude and normalized by the sum of peak magnitudes:

ETD =
∑
ai · abs(posi − equalTemperedi)∑

ai
(4.40)

Non tempered to tempered energy ratio

The Non tempered to tempered energy ratio is also a descriptor derived from
the HPCP and proposed by Gomez (2007). It represents the ratio between the
HPCP amplitude for non-tempered bins and the total amplitude:

ER =
∑
HPCPiNT∑
HPCPi

i = 1 . . . HPCPsize (4.41)

where HPCPsize = 120 and HPCPiNT are given the HPCP positions
related to the equal-tempered pitch classes.

Ditaonic Strength

Here again, this descriptor was proposed by Gomez (2007). It represents the
maximum correlation of the HPCP vector and the diatonic major profile ring-
shifted in all possible positions. We suppose that, as western music somehow
characterized by the diatonic major scale, this descriptor should provide higher
values than non-western music.

Octave Centroid

The octave centroid descriptor was also proposed by Gomez (2007). All the
other tonal related descriptors do not take into account the octave location.
The octave centroid finds the geometry center of the played pitches using the
following steps: (1) finding the pitches by applying the multi-pitch estimation
method proposed by Klapuri (2004), (2) computing the centroid of its repre-
sentation for each frame, and (3) considering different statistics of frame based
values (mean, deviation, etc.) as global descriptors for the analyzed song.

Tonal Roughness

This is the last tonal related descriptor proposed by Gomez (2007). It attempts
to be a measure of sensory dissonance. The computation starts with the obten-
tion of the roughness according to the estimation model proposed by Vassilakis
(2001) and Vassilakis (2005). The roughness of a frame is obtained by sum-
ming the roughness of all pairs of components in the spectrum. The frequency
components whose spectral magnitude is higher than 14% of the maximum
spectral amplitude are considered as the main frequency components. Then,
the global roughness is computed as the median of the instantaneous values.
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4.3.6 Panning related descriptors

The Panning Coefficients here presented are based on the work of Gómez et al.
(2008). His work is inspired by the results obtained by Barry et al. (2004) and
the use of them in the MIR is inspired by Jennings et al. (2004). The extraction
of spatial features or Panning Coefficients is defined using the following steps:
First, the input audio is divided into frames and windowed by the windowing
function w(n). Then, we compute the FFT for each channel in order to obtain
the two power spectra functions SL(t, f) and SR(t, f). Now, the ratio of the
power spectra is computed for each frame:

R[k] =
2
π
arctan

(∣∣∣∣SL[k]
SR[k]

∣∣∣∣) (4.42)

The resulting sequence represents the spatial localization of each frequency
bin k, The range of the panning factor is [−45,+45]. This process can be
carried out using all the frequency bins k or separately for different frequency
bands, providing a more detailed information about the localization of sound
sources from different nature.

In order to have a spatial description more related to the human perception
(Mills, 1958), non linear functions are applied to the azimuth angle: a warping
function will provide more resolution near the azimuth = 00 as shown below:

RW [k] = f(R[k]) (4.43)

where:

f(x) = −0.5 + 2.5x− x2 x ≥ 0.5 (4.44)
f(x) = 1− (−0.5 + 2.5(1− x)− (1− x)2) x < 0.5

and x ∈ [0, 1]↔ Az ∈ [−450,+450]. After the computation of warped ratios
sequence, its histogram is deduced by weighting each bin of the histogram ik
with the energy of the frequency bin of the STFT,

ik = floor(M ·RW [k]) (4.45)

HW (ik) =
∑
k

= 0N |SL[k] + SR[k]|

where SL[k] = SL(t, fk) and SR[k] = SR(t, fk), M is the number of bins of
the histogram and N is the size of the spectrum (half of the STFT size).

At this point, the panning image histograms are available. In real perfor-
mances, they can differ a lot from one frame to the next. A 2s averaging is
made using a first order low pass filter for each of the M values obtaining:

H̄w,n = (1− a) · H̄w,n−1 + a · H̄w,n (4.46)

where a = 1/A and A is the number of frames in the averaging. Finally, the
panning coefficients need to be independent of the energy of the input signal.
We will apply a normalization by the sum of the energy in the bins:
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Figure 4.6: Panning distribution for a classical and a pop song (vertical axes
are not the same)

H̄norm
w,n =

H̄w,n∑
H̄w,n

(4.47)

Figure 4.6 shows two examples of the panning distribution for two different
songs (classical and pop musical pieces). We can observe the 512 bins which
provide the information from left (bin 0) to right (bin 512). The center of the
stereo image is located at the bin 256. Note how classical music has a wider
stereo image than pop music in which the information is basically centered at
the middle of the image.

The information of this normalized and smoothed histogram holds all the
spatial information contained in the input signal but it can become a bit hard
to manage. The panning coefficients pl are defined using a cepstrum-based
computation over the whole data. It computes the logarithm of the normalized
panning histogram H̄norm

w,n and applies the IFFT to the result. By taking the
real part of the L first coefficients we get a compact description of the panning
histogram of the audio signal. A good trade-off between spatial resolution and
size/compactness can be achieved with L = 20. Figure 4.7 shows two examples
of the time evolution of the panning coefficients for two pieces of classical and
pop music.

4.3.7 Complexity descriptors

The music complexity descriptors used in our experiments are taken from the
set proposed by Streich (2007). They were designed to form a compact rep-
resentation of music complexity properties such as variability, repetitiveness,
regularity and redundancy on the music track level. For our experiments we
use the algorithms developed for the facets of timbre, rhythm, dynamics and
spatial range.

Dynamic complexity

The dynamic complexity component relates to the properties of the loudness
evolution within a musical track. We refer to it in terms of abruptness and rate
of changes in dynamic level. The author proposes two different techniques to
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Figure 4.7: Time evolution of panning coefficients for a classical and a pop
song (vertical axes are not in the same scale).

compute the dynamic complexity: the first one was proposed by Vickers (2001)
and the second one is based on the Pampalk (2001) implementation of Stevens’
method (Stevens, 1956, 1962). In our experiments, we use the Pampalk’s im-
plementation because it shares many computation steps with other complexity
descriptors. Roughly speaking, first we compute the estimation of the loudness
of the audio signal and, after that, we compute the time-domain fluctuations.

The process starts with the computation of the power spectrum of the input
data in frames of 16ms. The power spectrum P (k) is then weighted by a curve
that is inspired by the frequency response of the outer ear proposed by Terhardt
(1979):

A(f) = 10(0.5∗e0.6(f−3.3)2−5f4·10−5−2.184·f−0.8) (4.48)

where A(f) is the weighting value assigned to each frequency f . From this
weighted power spectrum we compute then the bark band energies of the 24
bark bands as defined by Zwicker & Fastl (1990):

Pcb(l) =
high B(l)∑
k=low B(l)

Pw(k) (4.49)

where Pw(k) = P (k) ·A(k)2, and low B(l) and high B(l) are the high and
low limits of each bark band. At this point, a heuristic spreading function s(l)
is applied to account for spectral masking effects, according to Schroeder et al.
(1979):

s(l) = 10(0.75·l+1.937−1.75
√
l2+0.948·l+1.225) (4.50)

resulting in the spread energy distribution:

Pspread(m) =
24∑
l=1

Pcb(l) · s(m− l) 1 ≤ m ≤ 24 (4.51)

Now, we convert the energy values of each band from the decibel scale
(PdB(m) = 10 · log(pspread(m))) to the sone scale proposed by Stevens (1956):
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Figure 4.8: Dynamic complexity descriptors computed over 10 musical genres

L(m) =

{
20.1(PdB(m)−40) forPdB(m) ≥ 40
(PdB(m)− 40)2.642 else

(4.52)

Finally, we obtain the total loudness estimate for each frame by evaluating

Ltotal = 0.85 · L(mmax) + 0.15
24∑
i=1

L(i) (4.53)

where mmax is the index of the band with the biggest loudness in the frame.
After some empirical smoothness and decimation processes, the fluctuation of
the total loudness is computed as follows:

Cdyn =
1

N − 1

N−1∑
i=1

|log10(Ltotsd(n))− log10(Ltotsd(n− 1))| (4.54)

with N being the number of decimated loudness values for the entire track
and Ltotsd is the smoothed and decimated loudness estimation value.

Figure 4.8 provides some examples of dynamic complexity descriptor com-
puted over 10 musical genres according to the dataset proposed by Tzanetakis
& Cook (2002). The Lowest values correspond to Hip-Hop, Disco and Metal
music in which the amplitude of the recorded signal is highly compressed (there-
fore, more constant). Higher values are obtained for classical and jazz music,
two musical genres that maximally exploit the dynamics of the musical instru-
ments.

Timbre complexity

Timbre complexity is not a well defined term and it refers to many concepts
at the same time. For instance, timbre complexity can be pointed by the
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number of distinguishable instruments, sound textures present in the music,
the rate at which the leading instruments change, or the amount of modulation
of the sound sources. According to Streich (2007), we use the LZ77 algorithm
proposed by Ziv & Lempel (1977). The assumption is that it is possible to apply
techniques like entropy estimation or compression algorithms for measuring
timbre complexity.

The basic idea is to apply a sliding window on the sequence of symbols that
is to be encoded. The window is split into two parts, the memory buffer with a
substring A of fixed length that has been encoded already, and the look-ahead
buffer with substring B of fixed length that still needs to be encoded. In each
step the algorithm searches for the longest prefix of B beginning in A. This
prefix is then encoded as a code word composed of three parts. It contains the
offset (number of symbols between prefix and match), the length (number of
matching symbols), and the terminating symbol of the prefix in B (the first
symbol that doesn’t match anymore). If there is no match found, offset and
length are set to zero in the code word. The encoded symbols are then shifted
into the memory buffer and the procedure starts again until the entire string
is encoded.

In our context of the estimation of perceived timbre complexity, we use the
compression gain rc of LZ77 applied to timbre sequences:

rc =
nc · lc
ns

(4.55)

where lc is the length of the code words relative to the length of the symbols
in the original source alphabet, and nc and ns are respectively the number of
code words and the number of symbols that are needed to represent the string.
A low compression factor means that a lot of redundancy was removed in the
compression process, and thus the source entropy is low. A compression factor
close to one means that the compression algorithm was not able to take much
advantage of redundancy, thus the source entropy is supposed to be high. The
required compact timbre representation is made up by four timbre descriptors:

Bass: The intensity ratio of spectral content below 100 Hz to the full spec-
trum. This feature reflects the amount of low frequency content in the
signal (originating for example from bass drums, bass guitars, or hum-
ming noises)

Presence: The intensity ratio of spectral content between 1.6 and 4 kHz to
the full spectrum. This feature reflects a sensation of “closeness” and bril-
liance of the sound, especially noticeable with singing voices and certain
leading instruments.

Spectral Roll-Off: The frequency below which 85% of the spectral energy
are accumulated. This feature is related with the perceived bandwidth
of the sound. In music it reacts to the presence of strong drum sounds,
which push the spectral roll-off up.

Spectral Flatness: The spectral flatness between 250Hz and 16kHz reflects
whether the sound is more tonal or noise-like, as defined in 4.3.3

In this case, Figure 4.9 does not provide relevant differences of timbre com-
plexity for any of the musical genres.
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Figure 4.9: Timbre complexity descriptors computed over 10 musical genres

Rhythmic complexity

In our study, rhythmic complexity is addressed in terms of danceability. This
descriptor doesn’t need any previous assumptions about metrics or tempo,
hence it will be useful for all the possible scenarios. Danceability has proved
to be a good descriptor in large datasets (Streich & Herrera, 2005) and it is
based on the research proposed by Jennings et al. (2004) using the Detrended
Fluctuation Analysis (DFA) technique proposed by Peng et al. (1994).

Danceability measure is computed as follows. First, the original audio data
is segmented into non-overlapping blocks of 10ms. For each block, the standard
deviation s(n) of the amplitude values is computed. Then, we compute the
unbounded time series y(m):

y(m) =
m∑
n=1

s(n) (4.56)

The series y(m) can be thought of as a random walk in one dimension.
y(m) is now again segmented into blocks of τ elements length. This time, we
advance only by one sample from one block to the next. From each block we
remove the linear trend ŷk and compute the mean of the squared residual:

D(k, τ) =
1
τ

τ−1∑
m=0

(y(k +m)− ŷk(m))2 (4.57)

Now, we compute the detrended fluctuation F (τ) of the time series:

F (τ) =

√√√√ 1
K

K∑
k=1

D(k, τ) (4.58)

As F is a function of τ , we repeat the same process for different values of
τ that are in our range of interest (from 310ms to 10s). The DFA exponent
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Figure 4.10: Danceability descriptors computed over 10 musical genres. High
values correspond to low danceability and low values correspond to high dance-
ability

α is defined as the slope of the double logarithmic graph of F over τ . Then,
according to Buldyrev et al. (1995) , the DFA exponent can be computed as:

α(i) =
log10(F (τi+1)/F (τi)

log10(τi+1 + 3)/(τi + 3)
(4.59)

White noise will produce a DFA exponent equals to 0.5. The behavior of α
is different for genres like classical, where α is near to be constant, in contrast to
techno music that produces more abrupt results. According to Streich (2007),
the danceability descriptor is computed as the lowest local minimum in the
scaling curve for time scales below 1.5s.

Figure 4.10 shows the differences of danceability descriptors between Clas-
sical and Jazz music with respect to Disco and Hip-Hop music, as expected.

Spatial complexity

The aim of the spatial complexity is to measure the amount of fluctuation
in the stereo image. Although there exists different methods to compute the
position of a single sound in the stereo image (Silverman et al., 2005), we will
focus on the differences between the information of two channels without taking
into account the exact location of the sound source. The method proposed by
Streich (2007) is based on the research made by Barry et al. (2004) and Vinyes
et al. (2006), described in Section 4.3.6. The process starts with the windowing
of the input signal with w(n) with frames of 93ms and 50% overlap. Then, we
will compute a different power spectra for each channel:

PL(k) = |XL(k)|2 and PR(k) = |XR(k)|2 (4.60)

where XL(k) and XR(k) are the Fourier Transform from the windowed
input signal for the left and right channels respectively. Now, we estimate the



4.3. DESCRIPTORS 85

angle tan(α(k)) corresponding to the direction of the acoustic energy source in
a horizontal 180o range:

tan(α(k)) =
PR(k)− PL(k)

2
√
PR(k) · PL(k)

(4.61)

Let αq(k) be a natural number between the limits 1 ≤ αq(k) ≤ 180. It is a
measure of the acoustic energy being concentrated in the left channel (αq(k) =
1) or the right channel (αq(k) = 180) for each bin k. The instantaneous spatial
energy distribution E(k) is computed by:

E(k) = log10(PR(k)) + log10(PL(k)) + 14 (4.62)

where 14 is an empirical threshold used for noise suppression. The overall
spatial energy distribution Espatial(m) is obtained summing all values E(k) of
one frame that have the same value αq(k):

Espatial(m) =
∑

k∈{k|αq(k)=m}

E(k) (4.63)

with 1 ≤ m ≤ 180 is the panning in degrees. After some energy normaliza-
tion and smoothing using a median filter (with the corresponding decrease in
accuracy, obtaining a resolution of 3o and 230ms) we get the E[i]

norm(m), where
i is the frame number. Now, we are ready to compute the spatial fluctuation
as a measure of the complexity in terms of changes in the stereo image over
time:

CspatF luc =
1

N − 1

N−1∑
i=0

g[i]g[i+1] ·
180∑
j=1

|E[i]
norm(j)− E[i+1]

norm(j)| (4.64)

whereN is the total number of frames. But the Spatial Fluctuation measure
does not take into account the wideness of the acoustical scene. Streich (2007)
also proposes the computation of the Spatial Spread Complexity as:

CspatSpread =
1
N

N∑
i=1

∑180
m=1E

[i]
norm(m) · |m− c[i]g |
E

[i]
sum

(4.65)

where c[i]g is the center of mass of each distribution:

c[i]g =
E180
i=1m · E

[i]
norm(m)

E
[i]
sum

(4.66)

and:

E[i]
sum =

180∑
m=1

E[i]
norm(m) (4.67)

Figures 4.11 and 4.12 show the spatial flux complexity and spatial spread
complexity descriptors for computed over the STOMP dataset (Rentfrow &
Gosling, 2003) respectively. In the case of the spatial flux, we will focus on
the variance of the obtained results: Alternative, Electronic and Heavy-metal
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Figure 4.11: Spatial flux complexity descriptors computed over 14 musical
genres

Figure 4.12: Spatial spread complexity descriptors computed over 14 musical
genres

music concentrate all the spatial flux values in a very narrow margin while
Blues, Folk and Jazz music present a wider margin. It is curious to see how,
in this case, Classical music does not follow the same distribution than other
acoustical musical genres. On the other hand, spatial spread does not show, a
priori, any other interesting behavior.

4.3.8 Band Loudness Intercorrelation

Feature computation for musical purposes has been dominated by Mel-Frequency
Cepstrum Coefficients and FFT-derived spectral descriptors such as the spec-
tral centroid or the spectral flatness (Pohle et al., 2005a). Most of them also
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base on the critical-band energy model (Fletcher, 2940), and use, as a kind of
pre-processing, rough simplifications of it, as Bark bands or ERB. Contrast-
ingly, we explore here the idea of exploiting the information that arises from the
covariational aspects of our environment. The Band Loudness Intercorrelation
descriptor (BLI) tries to encode covariations of information at the output of
the auditory filters (Aylon, 2006).

McAuley et al. (2005) studied sub-band correlation in robust speech recog-
nition. In order to isolate noisy bands, they created a complex data structure
consisting of all possible combinations between sub-bands (i.e., {Cn1...nN−M }
where N is the number of sub-bands and M the number of supposedly cor-
rupted bands). To capture correlation between sub-bands, they treated each
of these combinations as a single band and calculated a single feature vector
for it. Shamma (2008) also studied the correlation between bands in speech
processing, from the physiological point of view.

In this thesis, we use these descriptors to find different correlations between
the energy of different critical bands for different genres. From the mathemat-
ical point of view, BLI is composed by a series of values which correspond to
the cross-correlations of the specific loudness at each band weighted by the
contribution of the total loudness. The specific loudness can be computed as:

Lik =
{ 2Sik−40)/10 id Sik ≥ 40dB

(Sik − 40)2.643 otherwise
(4.68)

where Sik is the weighted sonogram in dB at frame k and band i. The total
loudness at frame k is then computed as:

Lk = max{Sik}nBands−1
i=0 − 0.15

(
nBands−1∑

i=0

sik− = max{Sik}nBands−1
i=0

)
(4.69)

Then, we can express the weighted cross-correlations as:

ICij =
(ωi + ωj) · CCij

W
(4.70)

where CCij is the cross-correlation between bands i and j:

CCij =
COV ({Lik}N−1

k=0 , {Ljk}
N−1
k=0 )

σi · σk
(4.71)

and:

W =
∑

ωi and ωi =
N−1∑
k=0

Lik (4.72)

where k is the frame number. The resulting matrix has dimension nBands ·
nBands. The higher the number of critical bands is, the higher the size of the
resulting matrix. However, CCij is symmetric and we only take into account
one half of the matrix plus the diagonal. Then, the dimension of the final
vector is:

Dim =
nBands2 + nBands

2
(4.73)
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Figure 4.13: BLI matrices for a Blues and a Jazz songs

Finally, {ICik}i=j represents the relative loudness at band i. In our imple-
mentation, the frame size is set to 92.9ms with 50% overlap computed over 24
frequency bands.

Figure 4.13 shows two examples of the BLI coefficients for a Blues and a
Jazz songs. In the first case, there is no high correlation between the energy
bands providing high level values in the diagonal. In the second case, the higher
correlation between bark bands produces smaller values in the diagonal and a
more spread distribution (the two computed matrices are not representative of
the behavior of all the songs in Blues or Jazz musical genres).

4.3.9 Temporal feature integration

Time feature integration is the process of combining all the short-time feature
vectors, traditionally computed over frames from 10 to 50ms, into a unique
feature vector comprising a larger time frame (from 0.5 to 10s). According
to Ahrendt (2006), this process is required for a better description of musical
facets such as loudness, rhythm, etc. or other musical properties like tremolo,
swing, etc.

As humans use temporal information for genre classification, it seems that
classifiers should include this information in some way. Depending on the
classification technique used, this process is performed by the classifier while,
in other cases, time integration should be specifically computed from the data.
In this dissertation, we study the differences between integrating of all the
features in a song with respect to the use of the descriptors without time
integration (See Section 5.5).

Some of the audio descriptors described in the previous sections are built
using temporal feature integration (p.ex. rhythm related descriptors, panning
or danceability) but some others doesn’t (MFCC or Zero crossing Rate). The
integration process provide a unique feature vector for a larger time scale.
Roughly speaking, it can be defined as:

Zn = T (xn−(N−1), . . . , xn) (4.74)

where Zn is the new feature vector, xn is the original feature vector at high
resolution for frame n and N is the length of the new feature vector. T symbol-
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izes the feature transformation. The new integrated feature Zn normally has
higher dimensionality than the xn features. This is necessary to capture all the
relevant information from the N frames. For instance, the common Gaussian
Model uses the mean and variance of each element. Hence, the dimensionality
of the vector Zn will be twice large as xn.

Different techniques can be used for feature integration. Here is a short
description for some of them:

Basic statistics: These methods use simple statistics of the short-time fea-
tures such as the mean, variance, skewness and kurtosis, or the auto-
correlation coefficient. They are easy to compute and provide a compact
representation of the features in a mid-term time scale. Some examples
using this technique can be found in Lippens et al. (2004); Li et al. (2003).

Gaussian Model: The use of simple statistics assumes the independence of
short-time features in time and among coefficients, but this assumption
is not always true. The extension of the basic feature integration model
allows to use a full covariance matrix to capture correlations between the
individual feature dimensions, as shown by Meng et al. (2007). The main
problem using a covariance matrix is the increase of dimensionality in the
long-time feature vector: for an original dimension of short-time features
d, new feature vectors are d(d+ 1)/2 long.

Multivariate autoregressive model: Gaussian models allow to model the
correlation between features but they are not able to model their corre-
lation along time. The multivariate autoregressive model, proposed by
Ahrendt & Meng (2005), models the multivariate time series of feature
vectors with an autoregressive model. Mathematically, the model can be
written in terms of the random process xn as

xn =
P∑
p=1

Apxn−p + v + un (4.75)

where P is the model order, the Ai’s are (deterministic) autoregressive
coefficient matrices, v is the so-called (deterministic) intercept term and
un is the driving noise process. It is found that

v = (I −
P∑
p=1

Ap)µ (4.76)

where µ is the mean of the signal process xn. Hence, the intercept term
v is included explicitly to allow a (fixed) mean value of the feature signal.
The noise process un is here restricted to be white noise (ie. without
temporal dependence) with zero mean and covariance matrix C.

Dynamic principal component analysis: The use of this method for mu-
sic genre classification was proposed by Ahrendt et al. (2004). The main
idea is to first perform a time stacking of the original signal (the short-
time feature vectors) which provides results in a high dimensional feature
space. Principal component analysis (PCA) is then used to project the
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stacked features into a new feature space of (much) lower dimensionality.
From the mathematical point of view, it can we written:

yn =

 xn−(N−1)

...
xn

 (4.77)

where N is the frame-size. The long-term feature vector can be computed
as:

Zn = ŨT (yn − µ̂) (4.78)

where each row of Ũ is the estimated k first eigenvectors of the covariance
matrix of yn. The eigenvectors belong to the k largest eigenvalues and
represent the directions with the greatest variance. µ̂ is the estimate of
the mean of yn. The use of this technique for genre classification aims
to detect the strongest correlation between both the individual features
and at different times.

Other: Another approach is proposed by Cai et al. (2004). He models the
temporal evolution of the energy contour using a polynomial function.
Another temporal feature integration method for genre classification is
proposed by Esmaili et al. (2004). His algorithm uses the entropy energy
ratio in frequency bands, brightness, bandwidth and silence ratio.

4.4 Pattern Recognition

In this section, we introduce the pattern recognition techniques that are used
in this thesis. Most of them are widely known and commonly used by the
MIR community. Here, we present a short overview of all them. We make
a special effort in the explanation of the SIMCA algorithm which, after some
analysis and decisions explained in Section 5.6, is one of the most important
contributions of this thesis. Although the technique itself is not new, it is the
first time that SIMCA is applied to solve a MIR problem.

4.4.1 Nearest Neighbor

Nearest Neighbor is the simplest classification algorithm. Its basic idea consists
in the fact that an object is classified by a majority vote of its neighbors. It is
classified according to the class most common amongst its k nearest neighbors,
where k is a positive integer, typically small. For instance, if k = 1, the object
is assigned to the class of its nearest neighbor (See Figure 4.14 for details).

The neighbors are taken from a set of objects for which the correct classifi-
cation is known. This can be thought of as the training set for the algorithm,
though no explicit training step is required. In order to identify neighbors, the
objects are represented by position vectors in a multidimensional feature space
(p.e. 2 dimensional vector). The full process can be summarized as follows:

Training: For each training example x, f(x), add the example to the list train-
ing examples.
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?

Figure 4.14: Example of a Nearest Neighbor classification. Categories (trian-
gles and squares) are represented in a 2D feature vector and plotted in the
figure. The new instance to be classified is assigned to the triangles category
for a number of neighbors N = 3 but to the squares category for N = 5.

Classification: Given a query instance xq to be classified, let x1 . . . xk denote
the k instances from training examples that are nearest to xq and return:

f̄(xq)← argmax

k∑
i=1

δ(v, f(xi)) (4.79)

where δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise

4.4.2 Support Vector Machines

Support Vector Machines(SVMs) have proved to be a useful technique for data
classification. Their study started in the late seventies by Vapnik (1972) but
it is not until mid nineties that they received the attention from researchers.
According to Burges (1998), SVMs have provided notorious improvements in
the fields of handwritten digit recognition, object recognition and text catego-
rization, among others.

SVMs try to map the original training data into a higher (maybe infinite)
dimensional space by a function φ. For that, SVMs create a linear separating
hyper-plane with the maximal margin in this higher dimensional space (See
Figure 4.15 for the visualization of the hyper-plane w and support vectors,
reduced in a 2D space). From the mathematical point of view (and following the
nomenclature proposed by Hsu et al. (2008)), given a training set of instance-
label pairs (xi, yi), i = 1 . . . l, where xi ∈ Rn and y ∈ {−1, 1}l, SVMs search
the solution of the following optimization problem:

min
w,b,ξ

1
2
wTw + C

l∑
i=1

ξi

subject to : yi
(
wTφ(xi) + b

)
≥ 1− ξi; ξi > 0 (4.80)

Here training vectors xi are mapped into the higher dimensional space by
the function φ. C > 0 is the penalty parameter of the error term. Furthermore,
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Figure 4.15: Hyper-planes in a SVM classifier. Blue circles and triangles be-
longs to training data; Green circles and triangles belongs to testing data (Fig-
ure extracted from Hsu et al. (2008))

K(xi, xj) ≡ φ(xi)Tφ(xj) is called the kernel function. There are four basic
kernel functions: linear, polynomial, radial basis function and sigmoid but,
for the music classification problems, the Polynomial (Poly) and Radial Basis
Function (RBF) are the most commonly used.

SVMs are able to deal with two-class problems, but there exists many strate-
gies to allow SVMs work with a larger number of categories. Finally, SVMs use
to provide better results working with balanced datasets. Further information
on SVMs can be found in Vapnik (1995); Burges (1998); Smola & Schölkopf
(2004).

4.4.3 Decision Trees

According to Mitchell (1997), decision tree learning is a method for approximat-
ing discrete-valued target functions in which the learned function is represented
by a decision tree. Learned trees can also be represented as sets of if-then rules
to improve the human readability.

Decision trees classify instances by sorting them down the tree from the
root to some lead node which provides the classification of the new instance,
and each branch descending from that node corresponds to one of the possible
values for this attribute. An instance is classified by starting at the root node
of the tree, testing the attribute specified by this node, the moving down the
tree branch corresponding to the value of the attribute in a given example.
This process is repeated for the subtree rooted at the new node. Here is a
possible algorithm to train a decision tree:

1. Select the best decision attribute for next node. The selected attribute
is that one that, according to a threshold, best classifies the instances in
the dataset.

2. Assign the selected attribute as the decision attribute for that node

3. For each value of the selected attribute, create new descendant of node
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Outlook?

Sunny Overcast Rain

Humidity? Wind?

High Normal Strong Weak

Yes

No Yes YesNo

Figure 4.16: Typical learned decision tree that classifies whether a Saturday
morning is suitable for playing tennis or not, using decision trees (Figure ex-
tracted from Mitchell (1997))

4. Sort training examples to leaf nodes

5. If training examples perfectly classified, Then STOP, Else iterate over
new leaf nodes

Figure 4.16 show a typical learned decision tree that classifies whether a
Saturday morning is suitable for playing tennis or not.

4.4.4 Ada-Boost

The AdaBoost algorithm was introduced by Freund & Schapire (1997). Ad-
aBoost is an algorithm for constructing a strong classifier as a linear combina-
tion of weak classifiers. The algorithm takes as input a training set (x1, y1) . . . (xm, ym)
where each xi belongs to some domain or instance space X, and each label yi
is in some label set Y . Assuming Y = −1,+1, AdaBoost calls a given weak
algorithm (that is, a simple classification algorithm) repeatedly in a series of
rounds t = 1 . . . T . One of the main ideas of the algorithm is to maintain a dis-
tribution or set of weights over the training set. The weight of this distribution
on training example i on round t is denoted Dt(i). Initially, all weights are set
equally, but on each round, the weights of incorrectly classified examples are
increased so that the weak learner is forced to focus on the hard examples in
the training set.

The weak learner’s job is to find a weak hypothesis ht : X → −1,+1
appropriate for the distribution Dt. The goodness of a weak hypothesis is
measured by its error

εt = Pri∼Dt [ht(xu) 6= yi] =
∑

i:ht(xi)6=yi

Dt(i) (4.81)

Notice that the error is measured with respect to the distribution Dt on
which the weak learner was trained. In practice, the weak learner may be an
algorithm that can use the weights Dt on the training examples. Alternatively,
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when this is not possible, a subset of the training examples can be sampled
according to Dt, and these (unweighted) resampled examples can be used to
train the weak learner.

4.4.5 Random Forests

As mentioned in Section 3.2.4, Machine learning methods are often categorized
into supervised and unsupervised learning methods. Interestingly, many super-
vised methods can be turned into unsupervised methods using the following
idea: one creates an artificial class label that distinguishes the observed data
from suitably generated synthetic data. The observed data is the original un-
labeled data while the synthetic data is drawn from a reference distribution.
Breiman & Cutler (2003) proposed to use random forest (RF) predictors to
distinguish observed from synthetic data. When the resulting RF dissimilarity
is used as input in unsupervised learning methods (e.g. clustering), patterns
can be found which may or may not correspond to clusters in the Euclidean
sense of the word.

The main idea of this procedure is that for the kth tree, a random vector �k
is generated, independent of the past random vectors �1, . . . ,�k−1 but with the
same distribution; and a tree is grown using the training set and �k, resulting
in a classifier h(x,�k) where x is an input vector. For instance, in bagging the
random vector � is generated as the counts in N boxes resulting from N darts
thrown at random at the boxes, where N is number of examples in the training
set. In random split selection � consists of a number of independent random
integers between 1 and K. The nature and dimensionality of � depends on its
use in tree construction. After a large number of trees is generated, they vote
for the most popular class.

4.5 Statistical Methods

In this section, we will introduce the PCA and SIMCA methods. These tech-
niques are not new and have been used in many research topics for the last
decades. To our knowledge, the SIMCA algorithm has never been tested in
MIR problems, and we decided to include it in our study because of the con-
clusions extracted in all our previous analysis. We will discuss the obtained
results in Section 5.7 but we include the technical explanation in this section
because the algorithm itself is not new. The principal component analysis is
part of the SIMCA. Hence, we also include its technical explanation here.

4.5.1 Principal Components Analysis

Here, we will show a brief explanation on Principal Components Analysis
(PCA). PCA is a powerful statistical technique that tries to identify patterns
in our data representing it in such a way as to reinforce their similarities and
differences. One of the main advantages using PCA is the data compression
by reducing the number of dimensions without much loss of information.

Let Z(i) be the feature vector of dimension i = 1..N ,where N is the number
of features sampled at frame rate fr:

Z(i) =
[
Z

(i)
1 , Z

(i)
2 , . . . , Z

(i)
K

]
(4.82)
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where K is the number of frames extracted from the audio file. Now, we
randomly select r feature vectors from Z(i)3:

Zr =
[
Z(0)
r , Z(1)

r , . . . , Z(N−1)
r

]
(4.83)

Now, we compute the squared covariance matrix ZTr Zr and perform the
eigenvalue decomposition as:

ZTr Zr = Ur ∧r UTr (4.84)

where ∧r is the squared symmetric matrix with ordered eigenvalues and Ur
contains the corresponding eigenvectors. Next, we compute the outer product
eigenvectors of ZrZTr using the relationship between inner and outer products
from the singular value decomposition. At this point, we only retain the p
eigenvectors with largest eigenvalues:

Zr = VpSpU
T
p → Vp = ZrUpS

−1
p (4.85)

where Vp has dimension K × p, Sp is the singular values of dimension p× p
and Up is of dimension rN × p. Vp is computed by calculating ZrUp and
normalizing the columns of Vp for stability reasons.

With the selection of only the p largest eigenvalue/eigenvector pairs, the
eigenvectors can be considered as an approximation to the corresponding p
largest eigenvector/eigenvalue pair of the complete matrix ZZT = V ∧ V T .
Then,

Vp ∧r V Tp ≈ ZZT (4.86)

New data Ztest can be projected into the p leading eigenvectors as:

Z ′test = V Tp Ztest (4.87)

From our point of view, this mathematical procedure can be interpreted
as a linear combination of the existing features into a new feature space. For
dimension reduction we will work only with the most important linear combi-
nations of the projection. The reader will find more information about PCA
in Jolliffe (2002); Shlens (2002); Meng (2006).

4.5.2 SIMCA

The SIMCA method (Soft Independent Modeling of Class Analogies) was pro-
posed by Wold (1976). It is specially useful for high-dimensional classification
problems because it uses PCA for dimension reduction, applied to each group
or category individually. By using this simple structure, SIMCA also provides
information on different groups such as the relevance of different dimensions
and measures of separation. It is the opposite than applying PCA to the full
set of observations because the same reduction rules are applied through all
the original categories. SIMCA can be robustified in front of the presence of
outliers by combining robust PCA method with a robust classification rule

3The random selection of feature vectors is performed according to a specific validation
method detailed in Section 3.2.5
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based on robust covariance matrices (Hubert & Driessen, 2004), defining the
RSIMCA.

As mentioned above, the goal of SIMCA is to obtain a classification rule
for a set of m known groups. Using the nomenclature proposed by Vanden &
Hubert (2005), let Xj be the m groups where j indicates the class membership
(j = 1 . . .m). The observations of group Xj are represented by xji , where
i = 1 . . . nj and nj is the number of elements in the group j. Now, let p be the
number of variables for each element providing xji = (xji1, x

j
i2, . . . , x

j
ip)
′. This

number of variables p can be really high, up to some hundreds or thousands of
different variables for each element. Finally, let Y j be the validation set, with
j = 1 . . .m.

The goal of SIMCA is not only the classification itself but also to enhance
the individual properties of each group. Then, PCA is performed on each group
Xj independently. This produces a matrix of scores T j and loadings P j for
each group. Let kj << p be the retained number of principal components for
group j. At this point, let’s define OD as the orthogonal distance (Euclidean
distance) from a new observation to the different PCA models. Let y be a
new observation to be classified, and let ỹ(l) represent the projection of this
observation on the PCA model of group l:

ỹ(l) = x̄l + P l(P l)′(y − x̄l) (4.88)

where x̄l is the mean of the training observations in group l. The OD to
group l is then defined as the norm of the deviation of y from its projection
ỹ(l):

OD(l) = ‖y − ỹ(l)‖ (4.89)

The classification of new data is performed by comparing the deviation
(OD(l))2 when assigned to a specific class l with the variance of the lth training
group s2l . Specifically, it is computed using the F-test4 by looking at (s(l)/sl)2:

(s(l))2 =
(OD(l))2

p− kl
(4.90)

and:

s2l =
∑nl
i=1(ODl

i)
2

(p− kl)()nl − kl − 1
(4.91)

If the observed F-value is smaller than the critical value Fp−kl,(p−kl)(nl−kl−1);0.95,
the 95% quantile of the F-distribution with p− kl, (p− kl)(nl − kl − 1) degrees
of freedom, the new observation y is said to belong to the lth group. Thus, an
observation can be classified in many different groups at the same time.

This approach does not completely exploit the benefit of applying PCA
in each group separately. Wold (1976) and Albano et al. (1978) suggested to
include another distance in the classification rule. It was defined as the distance
to the boundary of the disjoint PCA models. For each of the m groups, a
multidimensional box is constructed by taking into account the scores tli for
i = 1, . . . , nl, where tli = (tli1, t

l
i2, . . . , t

l
ikl

)′ represents the kl-dimensional score

4the F Test provides a measure for the probability that they have the same variance
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of the ith observation in the training set X l. The boundary for each set of
scores is defined by looking at the minimal and maximal value of the scores
componentwise:

min
i=1,...,nl

tlij − cdlj , max
i=1,...,nl

tlij − cdlj (4.92)

where dlj is the standard deviation of the jth component of the tli:

dlj =

√√√√ 1
nl − 1

nl∑
i=1

(
tlij −

1
nl

nl∑
a=1

tlaj

)2

(4.93)

where c is usually taken equal to 1.
The new Boundary Distance BD(l) is defined as the distance of a new

observation y to the boundary of the lth PCA model. If the observation falls
inside the boundaries, BD(l) = 0. Finally, assigning y to any of the m classes
is again done by means of an F-test based on a linear combination of (BD(l))2

and (OD(l))2. The reader will find more information about SIMCA in Vanden
& Hubert (2005).

4.6 Conclusions

In this chapter, we introduced the scientific background that will be used in
our experiments. We started with the statistical concepts required for the
definition of our own rhythmic descriptor. Then, we discussed some previous
considerations when computing audio descriptors (length of the audio excerpt,
hop-size, etc.) and showed different descriptors grouped into different families.
Some of these descriptors are widely known by the community (MFCC, IOI,
etc) while others are recently developed at the Music Technology Group for dif-
ferent purposes (THPCP, Danceability, etc.). Although the definition of these
descriptors is not in the scope of this thesis, we will evaluate its behavior in
front of the automatic genre classification problem. Then, we discussed differ-
ent machine learning techniques traditionally used in classification techniques
with an special effort on the PCA and SIMCA techniques that, although they
are not new, it is the first time that this last one is used to solve an audio
classification problem.

As a conclusion, we presented all the individual parts required to start an-
alyzing automatic classification of musical genres. Although some of them are
relatively new (i.e. danceability descriptor) or never used in the MIR commu-
nity (i.e. SIMCA classification technique) we preferred to separate its descrip-
tion from the study in genre classification. So, all the discussions presented in
Chapter 5 can be considered as contributions of this thesis for automatic music
genre classification.





CHAPTER 5
Contributions and new

perspectives for automatic
music genre classification

5.1 Introduction

In this chapter, we describe the main contributions of this thesis. We start
presenting a rhythmic descriptor designed to solve some specific gaps we found
in the literature. Specifically, we present the rhythm transform as an alternative
way to show rhythm in a similar way we can compute the spectrum of a signal,
so, we are able to compute al the derived descriptors of the spectrum (spectral
centroid, spectral flatness, MFCC) but using rhythmic information.

Next, we show the configuration and the results of a set of listening exper-
iments developed to guide us in the research process. These experiments allow
us to determine the importance of two musical facets (timbre and rhythm) in
genre classification. Results of these experiments are contrasted with the out-
put of automatic classifiers and they allow us to decide how to build our ideal
genre classifier.

After that, we describe our participation to the MIREX’07 contest which
serve us to establish a baseline for music genre classification, with respect to
the whole community, proposing a state of the art algorithm. Starting from
that, we present a quite exhaustive comparison of classification using different
descriptors, classifiers and datasets: all the available families of descriptors are
computed for different datasets, and we build genre classifiers using different
machine learning techniques. We also evaluate the behavior of classifiers in
front environments (i.e. mixing datasets) and analyze the obtained accuracies
to extract some preliminary conclusions.

The results of the listening experiments and the conclusions extracted from
the evaluation of automatic genre classifiers drive us to think about the ar-
chitecture of a conceptually different genre classifier. We try to get closer to
the human classification process instead of obtaining better accuracies in the

99
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classification. We show the reasoning process and the obtained results with the
new proposed classifier in different scenarios. Finally, we perform some addi-
tional tests to show how this classifier can be also useful to other classification
tasks.

5.2 Descriptors

5.2.1 The rhythm transform

Many rhythmical descriptors can be shown in the literature. As shown in Sec-
tion 4.3.4, some of them depend on manually fixed parameters or experimental
thresholds, or they only give a partial point of view about the whole rhythmic
information. The so called Rhythm Transform offers a rhythmic representation
that is able to represent the rhythm content for all kinds of music without using
thresholds based on experimental values.

Note that we call rhythm transform from a conceptual point of view. It
is not a real transform from a mathematical point of view since the inverse
transform can not be defined. But the obtained data could be interpreted as
data in the so called rhythm domain.

Rhythm transform

Some rhythmic descriptors compute the frequency analysis of the input signal
and search for the common energy periodicities through different (linear o mel-
frequency based) sub-bands. The energy’s periodicity search is implemented
as a bank of resonators and represented as a Beat Spectrum or as a Beat
Histogram. The Rhythm Transform is slightly different: the periodogram is
calculated for the energy derivative of each sub-band of the input data and
a weighted sum is implemented for a global rhythm representation. Next, we
show each step in the process:

Frequency decomposition: The input data x(t) is filtered with the anti-alias
filtering and sampled with fs = 22050[Hz]. The length of the frames is
l = 300[ms], the hop-size is h = 30[ms] and Hamming windowing is
applied. Digital windowed data xw[n] is decomposed into different sub-
bands with a 1/3 octave filter bank to simulate the perceptual behavior
of the human ear. At this point, different digital signals are obtained:

xfc=20[Hz][n] = 1
N1

∑f=22.4[Hz]
f=17.8[Hz] |xw[n]|

xfc=25[Hz][n] = 1
N2

∑f=28.2[Hz]
f=22.4[Hz] |xw[n]|

. . .

xfc=10000[Hz][n] = 1
N28

∑f=11220[Hz]
f=8913[Hz] |xw[n]|

(5.1)

where Ni is the number of points of the FFT inside each 1/3 octave band.

Energy Extraction: The log of the energy is obtained for each band:

efc=20[Hz][n] = log10
(
xfc=20[Hz][n]

)
efc=25[Hz][n] = log10

(
xfc=25[Hz][n]

)
. . .

efc=10000[Hz][n] = log10
(
xfc=10000[Hz][n]

) (5.2)
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Derivative of the Energy: The derivative of the energy is computed:

di,fc=20[Hz][n] = ei,fc=20[Hz][n]− ei−1,fc=20[Hz][n]
di,fc=25[Hz][n] = ei,fc=25[Hz][n]− ei−1,fc=25[Hz][n]

. . .
di,fc=10000[Hz][n] = ei,fc=10000[Hz][n]− ei−1,fc=10000[Hz][n]

(5.3)

Periodogram calculations: The periodogram is computed for each buffer,
as explained in Sec. 4.2.2. Then,

Ifc=20[Hz][ω] = 1
LU

∑L−1
m=−(L−1) cvv,fc=20[Hz][m]e−jωm

Ifc=25[Hz][ω] = 1
LU

∑L−1
m=−(L−1) cvv,fc=25[Hz][m]e−jωm

. . .

Ifc=10000[Hz][ω] = 1
LU

∑L−1
m=−(L−1) cvv,fc=10000[Hz][m]e−jωm

(5.4)

where cvv,fi is the aperiodic correlation sequence of each dfi sequence,
and L = 6[s], which is the worst case for a full 4/4 bar at 40 BPM.

Weighted sum: Finally, the weighted sum for all the periodograms for each
band is computed. The weighting vector is:

r[1..nBands] =
{

1
nBands

,
1

nBands
, . . .

}
(5.5)

but it can be manually modified in order to emphasize some frequency
bands. For general pop music, where the rhythm is basically played by
Bass and Bass drums, it can be any decreasing sequence, i.e.:

r[1..nBands] =
{

1
1
,

1
2
, . . .

}
(5.6)

and for some kind of Latin music, where some high-frequency instruments
are usually played, the weighting vector could be:

r[1..nBands] =
{

1
1
,

1
2
, . . . ,

1
9
,

1
10
,

1
9
, . . . ,

1
2
,

1
2

}
(5.7)

But in a general way, the weighting vector described in Eq. 5.5 is good
enough. By performing the weighted sum of the squared values of all the
periodograms, data in the rhythm domain is obtained:

T (ω) =
nBands∑
j=1

r(j)Ifj [ω] (5.8)

Figure 5.1 shows the block diagram to compute the Rhythm Transform.

Interpretation of data in Rhythm Domain

Which information is available from data in the Rhythm Domain? The BPM
information can be found as the greatest common divisor for all the represen-
tative peaks since the beat can be defined as the common periodicity of the
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Figure 5.1: Block diagram for Rhythm Transform calculation

=60 =60

Figure 5.2: Two examples of different periodicities of a musical signal with the
same tempo, and their corresponding temporal evolution of the energy. The
first one corresponds to a strong beat (with lower periodicity) and the second
one corresponds to the weak beats (with higher periodicity)

energy peaks for all the instruments in a song. For BPM detection, any peak
detection algorithm across data in rhythm domain data can be used.

But the major advantage of this representation is that it gives some time
domain information too. Let’s see this duality from a conceptual point of view:
It is well known that music is structured in bars, in a given meter. It is well
known that the strongest beat in a bar is usually the first one. This means
that this strongest beat in a bar appears less frequently: it has the smaller
periodicity. On the other hand, a weak beat will appear more frequently since
it has a higher periodicity (see Figure 5.2)

In rhythm domain, weak beats appear at higher BPM than strong beats.
Furthermore, in time domain, weak beats appear later than strong beats too.
This correspondence allows to interpret data in rhythm domain as data in
time domain. This is what we call duality of data in rhythm domain and time
domain.

Assuming this duality, the time signature from audio data can easily be
deduced. Data between two higher peaks can be seen as the distribution of
the beats in a bar. If data between two maximum peaks is divided by twos,
a simple meter is assumed as it is shown in Figure 5.3. If data between two
maximum peaks is divided by threes, a compound meter is assumed as it is
shown in Figure 5.4. On the other hand, if data in a simple or compound bar is
sub-divided by twos, a duple meter is assumed as it is shown in the first Figure
of 5.3 and 5.4. If this data is sub-divided by threes, a triple meter is assumed
as it is shown in the first Figures of 5.3 and 5.4. Finally, in Figure 5.5 if a
simple duple meter is sub-divided by twos, the presence of swing is assumed.
Let the swing structure as a dotted quarter-note and a eight-note, fact that
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Figure 5.3: Examples of data in Rhythm Domain for a simple duple meter and
a simple triple meter
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Figure 5.4: Examples of data in Rhythm Domain for different compound duple
meter and compound triple meter

can be debatable (Gouyon, 2003).
In conclusion, the main advantage of this method is that we have much more

information than the information available at the output of a set of resonators
tuned to different BPM typical values and a unique frequency value is related
to a unique BPM value. The BPM resolution is higher than other methods, and
we have not only the BPMs but all the existing periodicities as well according
to different human aspects of music. Furthermore, different rhythms with the
same meter and structure but played with different feeling can be distinguished
by using the Rhythm Transform, as shown in both the swinged and real audio
examples.

Limitations

The Rhythm Transform is limited by FFT resolution. For low BPM values, the
periodicity is low, then the subdivisions by twos or threes will be much closer
than the distance between two bins. On the other hand, this descriptor may
fail in those cases with music performed by non-attack instruments that may
define a rhythm with pitch or timbre variations (some strings, choirs, synthetic
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Figure 5.5: Examples of data in Rhythm Domain for simple duple meter
(swing) and a real case: Take this Waltz by Leonard Cohen

Genre BPMmean BPMvar Beatedness
Dance 140 0.49 3.92
Pop 108 0.71 5.23
Soul 96 0.43 3.48
Jazz 132 1.26 3.54

Classic 90 32 0.95
Voice 66 46.9 0.36

Table 5.1: BPM and Beatedness for different musical genres

pads, etc.).

5.2.2 Beatedness descriptor

The beatedness calculation is an application on the use of data in Rhythm
domain. This concept was introduced by Foote et al. (2002) and evaluated by
Tzanetakis et al. (2002). The Beatedness is a measure of how strong are the
beats in a musical piece. The beatedness is computed as the Spectral Flatness
of the sequence but in the rhythm domain. Spectral Flatness is a measure of
the tonality components in a given spectrum, and it is defined as:

SFdB = 10 · log
Gm
Am

(5.9)

where Gm and Am are the geometric an arithmetic mean values from all
the bins of the Fourier Transform of the signal, respectively. In the case of the
Beatedness computation, Gm and Am are the geometric an arithmetic mean
values from all the bins of data in rhythm domain.

High beatedness values are due to very rhythmic compositions as it happens
in Dance or Pop whereas low beatedness values are due to non rhythmical
compositions as it happens in some Jazz Solo, classical music or speech.

Some BPM & Beatedness measures for different musical genres are shown
in Table 5.1. All these measures belong to one frame of “No Gravity” by
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DJ Session One for Dance music, “Whenever,Wherever” by Shakira for Pop
music, “Falling” by Alicia Keys for Soul music, “Summertime” by Gershwin for
Jazz music, “Canon” by Pachelbel for Classic music and one minute of radio
recording for voice. Note that in Dance, Pop and Soul music, the the system
shows low BPMvar values. That means that the BPM measure is successful.
Not the same for Classic and Voice, but this is not an error: the selected
excerpts of classic music and speech don’t have a clear tempo. Focusing on the
Beatedness, high values are due to rhythmic music and low values are due to
Classic music or Voice.

5.2.3 MFCC in rhythm domain

As described in Section 4.3.3, the Cepstrum of an input signal is defined as the
inverse Fourier transform of the logarithm of the spectrum of the signal. The
use of the Mel scale is justified as a mapping of the perceived frequency of a
tone onto a linear scale, as a rough approximation to estimate the bandwidths
of human auditory filters. As a result of the MFCC computation we obtain a
compact representation of the spectrum of the input signal that can be isolated
from the original pitch.

Our goal is to obtain a compact representation of the rhythm of the input
signal independent of a specific BPM value. For that, we use the same algo-
rithm that transforms a spectrum to a MFCC but using data in rhythm domain
instead of the spectrum. We know we are applying the mel scale conversion in
a completely outstanding context, but it is a clear example of the flexibility of
data in rhythm domain. The resulting descriptors are a compact representa-
tion of the whole rhythm of the input audio without a clear relationship with
the rhythmic parameters such as BPM, tempo or the presence of swing, and
independent of the BPM value.

5.3 Listening Experiments

In the previous section, we have described a specific set of audio descriptors that
can be used for genre classification. These proposed descriptors, in addition to
the state of the art descriptors described in Section 4.3, are the key point in the
construction of an automatic classifier. But, which are the relevant descriptors
for genre classification? Maybe not all of them contribute to genre decisions
and, if so, maybe they contribute at different levels.

In this section, we present a set of listening experiments specially developed
to determine the importance of different musical facets on genre decisions. As
described in Section 3.1.1, there are many works dealing on genre classification
by humans and, as shown in Section 3.3.2, there are also many interesting
works dealing with the classifiers and sets of descriptors that provide best
performances in automatic classification.

The aim of the listening experiments here proposed is to establish the re-
lationship between two musical facets of music used by humans (timbre and
rhythm) and the classifier and features used in the automatic process. For that,
we present a series of listening experiments where audio has been altered in or-
der to preserve some properties of music (rhythm, timbre) but at the same time
degrading other one. It was expected that genres with a characteristic timbre
provide good classification results when users deal with rhythm modified audio
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excerpts, and vice-versa. We also want to study whether the different levels of
distortion affect the classification o not.

5.3.1 The dataset

Our experiment uses music from 6 genres (Alternative, Classic, Electronic,
Jazz, Pop, Rock) taken from the STOMP dataset proposed by Rentfrow &
Gosling (2003). This dataset is made up of 14 musical genres according to musi-
cological criteria (a set of experts were asked), commercial criteria (taxonomies
in online music stores were consulted) and also the familiarity of participants
with the proposed genres (see Section 3.3.1 for details). In our experiment, we
discarded some of these genres to avoid possible confusions to participants due
to several reasons (e.g.. Religious). Furthermore, we intentionally kept genres
with widely accepted boundaries (classic, jazz, electronic) in addition to some
other ones with more debatable limits (alternative, pop, rock).

5.3.2 Data preparation

We selected 5 seconds-long audio excerpts. According to the main goal of this
work, some rhythm and timbre modifications were applied to the audio, in
order to create excerpts where the timbre or rhythm information of the music
was somehow degraded.

In one hand, rhythmic modifications were designed to preserve timbre avoid-
ing the participant to extract any temporal information from the audio excerpt.
This modification was based on the scrambling of the original audio. Short seg-
ments were randomly selected to create a new audio segment with the same
length as the original. The length of the scrambled segments varied among
3 values: 125ms, 250ms and 500ms. It was expected that genres with a par-
ticular timbre provide good classification results when users exploited these
audio excerpts. We also wanted to study whether the different levels of dis-
tortion affect the classification. On the other hand, timbre modifications were
designed to preserve rhythm while avoiding the participant to easily extract
any timbre information from the audio excerpt. This modification was based
on the filtering of the input signal into frequency bands. The energy for each
log-scale band was used to modulate gaussian noise centered in that specific
frequency band. The energies were computed for each frame, then, this process
was similar to basic vocoding. Three different filter-bank bandwidths were ap-
plied (3rd. Octave, 6th. Octave and 12th. Octave) to study the discrimination
power affected by this parameter in the classification results. It was expected
that genres with a particular rhythm provide good classification results when
users exploited these audio excerpts.

In summary, we used excerpts from 6 different genres, sometimes distorted
with either timbre or rhythm alterations, and in some cases clean (i.e., with no
alteration). We had 3 levels for each modification (125ms, 250ms or 500ms for
the length of the presented segments for rhythmic modification; 3rd. octave
band, 6th. octave band or 12th. octave band for timbre modification). The
task presented to the subjects was a dichotomic decision (yes/no) task where
a genre label was presented in the screen, a 5 seconds excerpt was played and
they had to decide whether it belongs to the genre which label was presented
in the computer screen or not. In order to keep balanced the proportion of
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Table 5.2: Details of the presented audio excerpts to the participants: The
experiment was divided in 6 blocks (corresponding to 6 musical genres). A
total of 70 audio excerpts were presented in each block. 35 excerpts belonged
to the musical genre that defines the block). 15 excerpts had timbre distortion
(splitted into 3 different levels), 15 excerpts had rhythmic distortion (splitted
into 3 levels) and 5 excerpts without musical distortion

answers, half of the excerpts belonged to the targeted genre and a half of fillers
was used, according to the schema depicted in Table 5.2, which provides an
overview of the trials, events and blocks that were used.

The collected data was divided in two groups: First, two independent vari-
ables such as the type of distortion (timbre or rhythm) and the degree of
distortion (one of the three described above). Second, two dependent variables
such as the correctness of answers and the response time. This data will be
analyzed in Section 5.3.5

5.3.3 Participants

In the experiment participated 42 music students from the High School of Music
of Catalonia1(ESMUC), 27 males and 15 females. The age of participants was
between 18 and 43 years old (Mean=25.43; Standard Dev=5.64). All of them
were students of the first two years in different specialities, as shown in Table
5.3.

1www.esmuc.cat
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# Students %
Early Music 6 14.3%
Classical 25 59.5%
Jazz 11 26.2%

Table 5.3: Summary of the students that participate in the listening experiment

Mean Std. Dev.
Alternative 2.16 1.09
Classical 3.83 1.12
Electronic 2.20 0.93
Jazz 3.47 0.94
Pop 3.03 0.85
Rock 3.04 0.96

Table 5.4: Familiarization degree with musical genres for the participants in
the listening experiments

Students spent a daily mean of 2.2 hours (Standard Dev=1,4) listening to
music. The associated activities in this period of time are usually traveling or
doing homework. Rehearsals and instrument training are excluded from these
statistics.

Participants were also asked to define the familiarization degree from 1 (I’ve
never heard about this kind of music) to 5 (I’m an expert in this type of music)
for all the selected genres. Results are shown in Table 5.4.

We were also interested in detecting how participants classified their CD
collection. The proposed options were Alphabetical Order (22.6%), Genre
(47.2%), Chronologic (13.2%) and Other (17%) which includes “No Order”,
“Recently Bought” or “Favorites on the top”. This test shows how important
are genre labels in classification process for CD collections.

Finally, we proposed to repeat the experience proposed by Uitdenbogerd
(2004). Participants were asked to caregorize music into exactly 7 categories.
Results are shown in Figure 5.6. Genres only proposed once are not shown
in this table (Ambient, Bossa-Nova, Songwriter, Flamenco, etc.). Proposed
genres may be affected by those used in the test, as this question was asked
after the instructions for the experiment had been presented. See Figure 5.6
for details.

5.3.4 Procedure

The experiment was carried out using the SuperLab 4.0 software. The instruc-
tions of the experiment informed about its goals and its general structure (one
block per genre, expected binary responses “Yes” or “No” for all the audio ex-
cerpts, time information relevant but not crucial, etc.). Then, a training block
was presented, divided into three parts: 1) Participants were asked to familiar-
ize with the audio buttons used during the entire test. No distinction between
left-handed and right-handed people was applied. 2) Participants were invited
to listen to some audio excerpts for each one of the musical genre in order to
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Figure 5.6: Percentage of proposed musical genres by participants in the lis-
tening experiment when they were asked to categorize music into exactly 7
categories, as proposed by Uitdenbogerd (2004)

adjust the genre boundaries. 3) Participants were invited to listen to some
rhythmic and timbre modifications of the original excerpts in order to familiar-
ize with the modifications used. At this point, the experiment began and the
first block (Alternative) started until the last one (Rock) finished. Participants
could rest for a short period between blocks. The presentation of different au-
dio excerpts inside a block was randomized according to the Table 5.2. The
overall required time for completing the experiment was about 30 minutes.

5.3.5 Results

General overview

Figure 5.7 shows the percentage of correct classified instances for different gen-
res. The figure on the left shows results for rhythm modifications (preserving
timbre) and the figure on the right shows results for timbre modifications (pre-
serving rhythm). Figure 5.8 shows the corresponding averaged response times
for the same conditions. All numerical results are shown in Table 5.5
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Figure 5.7: Percentage of correct classified instances for different genres. The
figure on the left shows results for rhythm modifications (preserving timbre)
and the figure on the right shows results for timbre modifications (preserving
rhythm)

Figure 5.8: Averaged response times for different genres. The figure on the left
shows averaged times for rhythm modifications (preserving timbre) and the
figure on the right shows averaged times for timbre modifications (preserving
rhythm)
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# Hits Resp. Time
Modification Degree Modification Degree

F p F p F p F p
Alternative 6,567 0,014 0,508 0,604 4,27 0,053 4,831 0,01

Classic 169,319 0,000 4,115 0,020 45,35 0,000 2,216 0,13
Electronic 5,124 0,029 0,451 0,639 4,53 0,040 3,067 0,05

Jazz 121,268 0,000 1,450 0,241 190,42 0,000 0,506 0,61
Pop 156,465 0,000 4,166 0,019 37,81 0,000 1,028 0,37
Rock 21,644 0,000 3,243 0,044 28,05 0,000 1,6 0,21

Table 5.6: Results for the ANOVA tests for distortion analysis. The ANOVA
results are presented for the analysis on the number of hits and the response
time. For each case, we specify results (1) for the type of distortion and (2) for
the degree of the distortion

Observing genres individually, alternative music shows similar results for
all kind of distortions. The number of correct classifications is a slightly higher
for rhythm distortion as well as the response time is slightly lower, but no clear
conclusions can be extracted. Classical and jazz music show good classification
results with low response times for rhythmic distortion, but the opposite for
timbre distortion. The conclusion is that these two musical genres are clearly
defined by particular timbres.

In contrast, electronic music is the only one that presents good classification
results and low response times with timbre distortion. This musical genre
is equally defined by rhythm and timbre due to results with two distortions
are similar. Pop music also presents better results for timbre identification
and, finally, rock music is in between pop and alternative. The conclusion
is that, according to the selected taxonomy, alternative music has no clear
difference in rhythm or timbre with pop and rock. Maybe “alternative” music
is an artificial genre without musical fundament, or maybe the difference lies
in another musical component like the harmony or the lyrics.

Analysis of Variance

One-way Analysis of variance (ANOVA) is used to test the null-hypothesis
within each genre block, assuming that sampled population is normally dis-
tributed. ANOVA is computed on both response time and # of hits, taking
into account only the correct answers. We will not discriminate between two
tests due to results are comparable.

• First, we test whether the distortion degree for both modifications had
real influence in classification results. The null-hypothesis is defined as
follows:

H0 = Presented distortions, in one genre, do not influence classification
results

Results are shown in Table 5.6. Concerning the modification analysis on
the # of hits and response time, we have to reject the null-hypothesis,
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# Hits Resp. Time
F p F p

1/3rd. Octave 20,72 0,000 4,723 0,001
1/6th. Octave 11,41 0,000 7,023 0,008
1/12th. Octave 13,36 0,000 6,585 0,008

125ms 33,39 0,000 27,903 0,000
250ms 38,52 0,000 18,551 0,000
500ms 42,24 0,000 32,371 0,000

Table 5.7: Results for the ANOVA tests for overall classification, independent
from the musical genre

that is, different modifications do affect classification results. In contrast,
the distortion degrees provide some significance to the experiment: the
distortion degree show some confidence for Alternative, Electronic and
Jazz music, that is, we have to accept the null hypothesis and distortion
degrees do not affect the classification results. The distortion degree for
the response time show some confidence Classic, Electronic, Jazz, Pop
and Rock. Comparing these two cases, we realize that behaviors are not
the same but similar, then, the null-hypothesis can not be rejected. As
a conclusion, the applied distortion affects the classification results while
the distortion degree doesn’t.

• Now, we test whether the distortions have the same influence in different
genres. The null-hypothesis is defined as:

H0 = Presented genres are equally affected for each specific distortion

Results in Table 5.7 show how the null-hypothesis can be rejected with
a high level of confidence, thus, proposed distortions affect genres in
different ways.

Overall classification

Finally, results for overall classification independent of the genre are shown in
Figure 5.9. It shows the results of classification for all genres as a function of the
presented distortion when the presented audio excerpt is that which belongs to
the block (figure on the left) and the presented audio excerpt is that which does
not belong to the block (presentation of “fillers”, figure on the right). Black
columns correspond to the number of hits and dashed columns correspond to
the response time. Roughly speaking, rhythm modifications (preserving tim-
bre) provide better classification results and lower response times than timbre
modifications (preserving rhythm). Furthermore, it is easier to recognize when
a given audio excerpt does not belong to a musical genre than when it belongs.

Collecting all the information provided above, we can conclude that, ac-
cording to the configuration of this experiment, the easiest musical genre clas-
sification for humans is to detect when a specific timbre does not belong to
classical music, and the more difficult is to detect whether a given rhythm
belongs to (again) classical music.
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Figure 5.9: Results of classification for all genres as a function of the pre-
sented distortion when the presented audio excerpt is that which belongs to
the block (figure on the left) and the presented audio excerpt is that which does
not belong to the block (presentation of “fillers”, figure on the right). Black
columns correspond to the number of hits and dashed columns correspond to
the response time.

5.3.6 Comparison with automatic classifiers

In this section, we study the behavior of an automatic classification system for
musical genre in similar conditions that the listening experiments have been
performed. This study is not focused on the performance of the classifier itself
but on the differences on results provided by humans and machines.

Datasets

Two different datasets have been used for these experiments. First, we use
the Magnatune dataset (see Section 3.3.1 for details), which is used to verify
that descriptors and classification schemes we propose are not so far than those
used in the Genre Classification contest organized in the context of the Inter-
national Symposium on Music Information Retrieval - ISMIR 2004 (see Section
3.3.3 for details). Note how the Magnatune dataset has completely unbalanced
categories that will affect the overall classification performance. Second, the
STOMP dataset is used to compare results with the Listening Experiments
described above (see Section 3.3.1 for details).

Descriptors

Audio descriptors proposed for automatic classification are divided in two main
groups, as in the listening experiments: timbre and rhythm.

Timbre: Our timbre description is defined by a compact set of 39 descriptors
which include: Zero Crossing Rate (1); Spectral Centroid (1), Spectral
Flatness (1), MFCC (12), derivative (12) and acceleration (12) . Means
and variances of these descriptors are computed for the whole song.
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Figure 5.10: Results for the automatic classification experiments

Rhythm: The rhythm description is also defined by a compact set of 39
descriptors which include: Zero Crossing Rate (1), Spectral Centroid (1),
Spectral Flatness (1), MFCC (12), derivative (12) and acceleration of
data in Rhythm domain. Means and variances of these descriptors are
computed for the whole song.

Classification

All the classification experiments have been made using WEKA2. After some
initial tests using Support Vector Machines (SMO), Naive Bayes (IBk), Nearest
Neighbours (kNN) and Decision Trees (J48), the classification algorithm finally
used is Support Vector Machine with a polynomial kernel with the exponential
parameter set to 2. We applied CFS feature selection to avoid over-fitting. The
evaluation has been performed using 10 fold cross-validation.

Results

Results for this experiment are shown in Figure 5.10, According to the musical
aspects discussed above, the used descriptors are grouped in timbre, rhythm
and both. Results are shown independently for these three configurations. Al-
though different train-set and test-set were provided for the Magnatune dataset,
10-fold cross validation method has been used for all the cases, then, results
are more comparable.

2http://www.cs.waikato.ac.nz/ml/weka
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classified as → a b c d e f g h
classical (a) 311 0 0 0 0 0 0 9

electronic (b) 3 87 0 0 0 0 15 10
jazz (c) 2 0 12 0 0 0 6 6

metal (d) 0 2 0 6 0 0 21 0
pop (e) 0 1 0 0 0 0 5 0
punk (f) 0 0 0 0 0 7 9 0
rock (g) 8 12 0 2 0 0 67 6

world (h) 28 11 0 0 0 0 10 73

Table 5.8: Confusion matrix for classification on the Magnatune database using
both timbre and rhythm descriptors

Results for Magnatune dataset show accuracies up to 80% in classification
using both timbre and rhythm descriptors. Roughly speaking, these results
are comparable to results obtained by Pampalk in the MIREX contest in 2004.
Timbre related descriptors provide more classification accuracy than rhythm
ones with differences about 15% but the inclusion of rhythm information im-
proves results in all cases. Applying the same classification conditions to the
STOMP dataset, accuracies decrease because of the high number of musical
genres in the taxonomy (14) and the size of the database (10 songs/genre). But
the pattern of results depending on the timbre and rhythm facets is similar to
that obtained for the Magnatune dataset. Finally, accuracies near 70% are ob-
tained with the reduced version of STOMP, which is the dataset used for the
listening experiments. Here again, the contribution of timbre is more impor-
tant than rhythm in the classification process. Timbre classification can yield
better results than those obtained with both timbre and rhythm descriptors.

Tables 5.8, 5.9 and 5.10 show confusion matrices for classification results of
three datasets using both timbre and rhythmic descriptors. Note how classical
music is correctly classified, pop and rock have some kind of confusion between
them, and jazz, electronic and alternative music are worse classified.

5.3.7 Conclusions

Assuming that both experiments are not identical, results are quite similar in
such a way that timbre features provide better accuracies than rhythm fea-
tures. Even so, genres like electronica require some rhythmic information for
better results. As discussed above, for humans it is easier to identify music
that does not belong to a given genre than to recognize wether an audio ex-
cerpt belongs to a specific genre (see Figure 5.9). These results suggest that
automatic classification could be based on expert systems for specific genres
instead of global systems. On the other hand, listening experiments show how
the selected taxonomy also affects directly to classification results: confusions
between alternative and rock music appear as well as for automatic classifier
when different subgroups of taxonomies provide different results in genre clas-
sification.

For the listening experiments, the two proposed distortions provide differ-
ences in the classification results depending on the musical genre. Results show
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classified as → a b c d e f g h i j k l m n
alternative (a) 5 0 0 1 0 0 0 0 0 1 0 1 2 0

blues (b) 1 1 0 0 0 4 0 0 0 1 0 0 0 2
classical (c) 0 1 8 0 0 0 0 0 0 0 0 0 0 0
country (d) 2 1 0 2 0 2 1 0 0 0 1 0 1 0

electronica (e) 1 1 0 0 3 0 2 1 1 0 0 1 0 0
folk (f) 0 5 0 2 0 1 0 0 0 0 0 0 0 2
funk (g) 0 0 0 0 1 1 4 1 0 0 0 2 1 0

heavymetal (h) 2 0 0 0 0 0 0 4 2 0 0 0 2 0
hip-hop (i) 1 0 0 1 0 0 0 0 5 0 0 1 0 2

jazz (j) 1 2 0 0 0 2 0 0 1 4 0 0 0 0
pop (k) 0 0 0 0 0 0 1 1 1 0 3 1 0 2

religious (l) 1 1 0 2 0 0 0 0 0 0 1 3 0 0
rock (m) 3 0 0 1 0 0 1 1 0 0 0 1 2 0
soul (n) 0 2 0 1 0 1 0 0 3 0 0 0 0 3

Table 5.9: Confusion matrix for classification on the STOMP database using
both timbre and rhythm descriptors

classified as → a b c d e f
alternative (a) 6 0 0 1 1 2

classical (b) 0 9 0 0 0 0
electronica (c) 1 0 6 2 1 0

jazz (d) 1 1 1 6 1 0
pop (e) 1 0 1 0 5 2
rock (f) 1 0 1 0 2 5

Table 5.10: Confusion matrix for classification on the reduced STOMP
database using both timbre and rhythm descriptors used in the listening ex-
periments

how the distortion degree has not a direct relationship with the obtained ac-
curacies. The response time for non distorted audio excerpts can be a measure
of how assimilated and musically defined are the musical genres. Alternative
music provides response times higher than 3 seconds while classic or jazz music
provide response times between 1.5 and 2 seconds. Maybe “Alternative” label
was created under some commercial criteria while the jazz music can be defined
exclusively by musical properties.

Finally, results of this listening experiment need to be extended to non
musician participants. The inclusion of other facets of music like harmony
or tonal information as well as other high level semantic descriptors could be
crucial for a full characterization of musical genre discrimination in humans.
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5.4 MIREX 2007

5.4.1 Introduction

As explained in Section 3.3.3, in the context of the 8th. International Con-
ference on Music Information Retrieval (ISMIR 2007), the organizers of the
conference and the IMIRSEL lab organized the MIREX07 competition. The
goal of our submission was to compare our work with other state of the art
genre classification algorithms. For that, we submitted a classifier that was
supposed to be the baseline for further developments. This classifier was de-
signed to deal with different taxonomies, to be fast enough for real applications
and to work independently from other external software. The algorithm was
built as a C++ library and it was tested in different environments.

This section shows the details of the classifier, the results of our previous
tests in our datasets and the results in the MIREX competition.

5.4.2 Description

The algorithm has been developed as a set of C++ classes. The final im-
plementation uses three well known libraries: libsndfile3 for i/o of audio files,
FFTW4 for FFT computations and libSVM5 for Support Vector Machine train
and test processes. Three bash scripts have been developed to provide com-
patibility with MIREX specifications6.

5.4.3 Features

As mentioned in Section 5.4.1 a set of tests using different audio descriptors
have been performed. Having a look to the preliminary results shown in Table
5.11, we observe that timbre related features provide best results in different
environments, followed by rhythmic descriptors. Other descriptors related to
musical facets (melody, tonality, tempo, etc.) seem to provide worse accuracies
in the presented datasets (this part will be discussed in detail in Section 5.5).
Although the accuracies obtained by the rhythm features are about 5..10%
lower than those obtained with timbre features, the combination of both de-
scriptor sets increases about 1 to 4% points the overall performance.

Timbre descriptors

The timbre descriptors we mainly use are the MFCC. According to Logan
(2000), they have proven to be quite robust in automatic classification. Specif-
ically, we use a set of timbre descriptors comprising: 12 MFCC, 12 ∆MFCC,
12 ∆2MFCC, Spectral Centroid, Spectral Flatness, Spectral Flux and Zero
Crossing Rate. The frame size we use is 92.9ms and 50% overlap. For each au-
dio excerpt we compute basic statistics (mean, variance, skewness and kurtosis)
for the used descriptors.

3http://www.mega-nerd.com/libsndfile/
4http://www.fftw.org/
5http://www.csie.ntu.edu.tw/ cjlin/libsvm/
6http://www.music-ir.org/mirex2007/index.php/Audio_Genre_Classification
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Rhythm descriptors

The rhythmic description used in the experiments is based on the Rhythm
Transformation described in Section 5.2.1. Although many successful ap-
proaches on rhythmic description can be found in literature, this algorithm
has proved to be a good and compact representation of rhythm, even for sig-
nals such as speech, or for some excerpts of classical music where rhythm is not
present at all. The frame size we use is 92.9ms and 50% overlap, 1/3rd filter-
banks and a 3s window size to compute rhythm. Here again, we compute basic
statistics (mean, variance, skewness and kurtosis) for the used descriptors.

5.4.4 Previous evaluation: two datasets

In order to build a classifier that is capable of dealing with different music col-
lections, our algorithm has been tested on two datasets: Radio and Tzanetakis
(see Section 3.3.1 for details).

For the experiments, 4 different classifiers have been used: Nearest Neigh-
bours, Support Vector Machines, AdaBoost and RandomForest. All the pro-
posed tests have been made on Weka. Results are computed using a 10-fold
cross-validation. k-NN and SVM are probably the most popular classifiers in
music description problems. We fixed k=2 for k-NN experiments. We used
a SVM with a polynomial kernel and after performing grid search we set the
exponent to "2". For the RanfomForest experiments, the number of features
randomly selected for each tree was set to 1, and the number of trees was set to
10. Experiments done with ADABoost used the default parameters proposed
by Weka.

The most representative classification algorithms we have tested are com-
pared in Table 5.11, using different descriptors and datasets. The best results
are obtained using Timbre and Rhythm features and a Support Vector Ma-
chine with exp=2 classifier. This is the approach we have implemented for the
MIREX. Concrete results for these experiments are shown in Table 5.12 and
Table5.13 for Radio and Tzanetakis datasets, respectively.
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a b c d e f g h
Classic(a) 47 0 0 2 0 1 0 0
Dance(b) 0 45 1 0 1 0 3 0

Hip-Hop(c) 0 0 43 0 1 4 1 0
Jazz(d) 2 1 1 39 0 7 1 0
Pop(e) 0 1 2 0 36 10 2 0

R’n’B(f) 1 1 7 4 8 28 1 0
Rock(g) 0 1 0 1 6 0 42 0

Speech(h) 0 0 0 0 0 0 0 50

Table 5.12: Results for preliminary experiments using timbre and rhythmic
descriptors and SVM (exp=2) for the Radio dataset

5.4.5 Results

The results we obtained in the MIREX evaluation are the following: Aver-
age for Hierarchical Classification Accuracy: 71.87% (best obtained accuracy:
76.56%). Average Raw Classification Accuracy: 62.89% (best obtained accu-
racy: 68.29%). Runtime for feature extraction: 22740s (fastest submission:
6879s). The results for all the participants are shown in Section 3.3.3, in Table
3.25 and Table 3.26, and summarized here in Table 5.14.

The detailed analysis of the results obtained by our implementation pro-
vide a confusion matrix as shown in Figure 5.11, which is numerically detailed
in Table 5.15. The most relevant confusions in our implementation are (in
descending order): (1) Baroque, Classical and Romantic, (2) Blues and Jazz,
(3) Rock’n’Roll and Country and (4) Dance and Rap-HipHop. All these con-
fusions are musically coherent with the selected taxonomy, which is not the
same taxonomy used in our previous experiments. Results are quite close to
the best submission using this basic approach (less than 5% below). The Rap-
HipHop category is our best classified genre (as in the other approaches) while
Rock’n’Roll is our worst classified genre (as in other 3 approaches, but others
show worse results for Dance, Romantic, Classical).
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a b c d e f g h i j
Blues(a) 98 1 0 0 0 0 0 0 0 1

Classical(b) 0 92 0 0 0 0 0 0 0 1
Country(c) 0 0 99 1 0 0 0 0 0 0

Disco(d) 0 1 3 90 6 0 0 0 0 0
Hip-Hop(e) 1 0 2 12 81 0 0 2 1 1

Jazz(f) 0 0 0 0 0 98 0 1 1 0
Metal(g) 0 0 0 0 0 0 94 0 2 4
Pop(h) 0 0 0 0 1 3 0 85 5 6

Reggae(i) 1 0 0 0 0 2 2 8 83 4
Rock(j) 1 0 0 0 0 2 3 3 5 86

Table 5.13: Results for preliminary experiments using timbre and rhythmic
descriptors and SVM (exp=2) for the Tzanetakis dataset

Participant Hierarchical Raw Runtime (sec) Folds
IMIRSEL(1) 76.56% 68.29% 6879 51

Lidy 75.57% 66.71% 54192 147
Mandel(1) 75.03% 66.60% 8166 207
Tzanetakis 74.15% 65.34% — 1442
Mandel(2) 73.57% 65.50% 8018 210

Guaus 71.87% 62.89% 22740 194
IMIRSEL(2) 64.83% 54.87% 6879 1245

Table 5.14: Summary of the results for the MIREX 2007 Audio Genre Classi-
fication tasks for all submissions

Figure 5.11: Confusion matrix of the classification results: 1:Baroque, 2:Blues,
3:Classical, 4:Country, 5:Dance, 6:Jazz, 7:Metal, 8:Rap-HipHop, 9:Rock’n’Roll,
10:Romantic
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Forming moods
Cluster 1 passionate, rousing, confident, boisterous, rowdy
Cluster 2 rollicking, cheerful, fun, sweet, amiable/good natured
Cluster 3 literate, poignant, wistful,bittersweet, autumnal, brooding
Cluster 4 humorous, silly, campy, quirky, whimsical, witty, wry
Cluster 5 aggressive, fiery, tense/anxious, intense, volatile, visceral

Table 5.16: clustered mood tags selected for the contest

Participant Accuracy
IMIRSEL M2K knn 47.17%
IMIRSEL M2K svm 55.83%

Cyril Laurier, Perfecto Herrera 60.50%
Kyogu Lee 1 49.83%
Kyogu Lee 2 25.67%

Lidy, Rauber, Pertusa, Inesta 59.67%
Michael Mandel, Dan Ellis 57.83%

Michael Mandel, Dan Ellis spectral 55.83%
George Tzanetakis 61.50%

Table 5.17: Obtained accuracies of all the participants in the Mood Classifica-
tion contest.

5.4.6 Cross experiment with Audio Mood Classification task

Mood classification for musical signals is another active topic in MIR. Although
it is completely out of the scope of this thesis, we performed an experiment
on mood classification using our submitted algorithm for genre classification,
and compare the results with the submitted algorithm by Laurier & Herrera
(2007) in the contest7. The idea of comparing results of different classifica-
tion tasks was presented at the ISMIR conference by Hu & Downie (2007),
who compared mood with genre, artist and recommendation algorithms using
metadata available in the web. On the other hand, many authors proposed
the same algorithm for different tasks (Tzanetakis, 2007; Mandel & Ellis, 2007)
and results are not far from the best approaches.

In this context, we compare two algorithms that are conceptually similar
(SVM) but using different statistics extracted from the descriptors and different
parameters of the classifier. We want to thank Andreas Ehmann, from the
University of Illinois, who spend some time running these experiments and
collecting results.

Table 5.16 shows the clustered mood tags selected for the contest. Table
5.17 shows the obtained accuracies for all the participants. Best performances
are achieved by Tzanetakis, Laurier and Lidy with differences lower than 2%.
The results after the cross experiment are the following: mood classification
obtained by genre classifier presents an accuracy of 50.8% after 3-fold cross
validation. The confusion matrix is shown in Table 5.18. The overall accuracy

7http://www.music-ir.org/mirex/2007/index.php/Audio_Music_Mood_Classification
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Mood A B C D E
A 31.67% 10.83% 4.17% 10.00% 20.00%
B 15.00% 34.17% 17.50% 20.83% 3.33%
C 9.17% 14.17% 72.50% 10.83% 6.67%
D 17.50% 35.83% 4.17% 55.00% 9.17%
E 26.67% 5.00% 1.67% 3.33% 60.83%

Table 5.18: Confusion matrix of mood classification using genre classifier

is not so far from the best approaches in the contest (about 55..60%) and the
confusion matrix has a clear diagonal.

This experiment shows how different problems studied by the MIR commu-
nity can be afforded using similar techniques. We wonder if it is conceptually
coherent to use the same techniques for those problems that humans doesn’t.
We will discuss about this at the end of this chapter.

5.4.7 Conclusions

After these results, we can support the idea of the presence of a glass-ceiling in
the traditional automatic genre classification systems, idea that was introduced
by Aucouturier & Pachet (2004). The complexity of the algorithms proposed
in this contest vary from the most generic to the most specialized ones but
results differ only in 5%. As shown by our previous experiments and the accu-
racies obtained in the contest, results have a high dependence on the selected
taxonomy and dataset. This means that the most specialized algorithms will
fail in general aplications and the final user will not obtain as good results
if new musical genres or songs are included. The classifier we propose, with
acceptable accuracies, is compact and easily configurable. This allows to be
implemented in real environments of music reccomendation and classification.

5.5 The sandbox of Genre Classification

In this section, we present a set of experiments that are the starting point for
further developments. We compare different descriptors, datasets and classifiers
in order to evaluate their importance in genre classification. The main idea is
to test many combinations of descriptors with different classifiers. It is our goal
to check how the selection of datasets also affects the classification process too.
For that, we start comparing the obtained accuracies, using different state of
the art classifiers, for a set of frame based descriptors versus a set of segment-
based descriptors. Then, we include some non traditional descriptors in the
experiment and, we combine them to evaluate which are the most relevant ones.
Finally, we will combine different datasets and discuss about the reliability of
the presented classifiers. The goal of this test is to analyze the behavior of
the classifier in front of new unknown data, which is near to possible real
applications.
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time (ms)
Alternative 3161.0

Classical 2073.0
Electronica 2050.6

Jazz 1242.8
Pop 1780.4
Rock 2553.5
Mean 2143.5

Table 5.19: Overview of time responses for the listening experiments when
subjects are presented unprocessed audio excerpts

5.5.1 Frame based vs segment based classification

We start discussing whether the classification should be performed using frame
based descriptors (whose lengths can vary from few milliseconds up to some
seconds, depending on the descriptors) or using statistics computed over longer
time audio excerpts. As discussed previously in Section 3.2.5, there exist many
different techniques to collapse the frame-based information. For simplicity, we
will use basic statistics computed over the whole audio excerpt (mean, vari-
ance, skewness and kurtosis). According to Perrot & Gjerdigen (1999), humans
perform accurate genre classification based on 250ms of audio. This suggests
that automatic classifications should not need other high level structures to
perform this task (Martin et al., 1998). In opposition of that, our listening ex-
periments show how, for unprocessed audio excerpts, the mean time response
for genre classification is 2.143[s] from the presentation of the audio excerpt to
the response action to the computer (See Table 5.19 for details).

Then, how the genre classification should be performed? Should we use
frame-based classifiers or compute other compact representations representing
longer audio excerpts?

Description

For this experiment, we use 3 different datasets described previously in Section
3.3.1: STOMP, Radio and Tzanetakis. We use these three datasets to ensure
that the results can be generalized to any real environment because of their
properties: STOMP database is built using a large number of classes (14 mu-
sical genres) with few examples for each one (10 full songs) while Radio and
Tzanetakis datasets are built using a smaller number of genres (8 or 10 mu-
sical genres respectively) and more audio examples for each one (50 and 100
respectively).

We will also use different families of descriptors in order to separate the
different musical facets in our analysis. Here is a short description of them:

MFCC: This set of descriptors uses 12 MFCC coefficient and their derivatives,
as described in Section 4.3.3. It is the most used and compact timbre
description of audio. We use a frame = 2048, hopsize = 1024, sr =
22050Hz from an audio excerpt with length = 60sec centered at the
middle of the song.
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Spectral: This set of descriptors includes the MFCC coefficients and their
derivatives, as in the previous configuration, but also many other spectral
related features such as Zero-Crossing rate, Spectral Flatness, Spectral
Centroid, Spectral Flux and Spectral Roll-off. We use a frame = 2048,
hopsize = 1024, sr = 22050Hz and length = 60sec of audio centered at
the middle of the song.

Rhythm: This set of descriptors include the same features described in the
spectral set, but computed over the data in the rhythm domain instead
of the traditional spectrum. See Section 5.2.1 for a detailed description
of the rhythm transformation. We use a frame = 2048, hopsize = 1024,
sr = 22050Hz and length = 60sec of audio centered at the middle of the
song, 1/3rd octave filter bands and a sliding window of 3sec.

Tonality: For this set of descriptors, we have used the THPCP tonal coeffi-
cients proposed by Gomez (2006) and described in Section 4.3.5. We use
a frame = 2048, hopsize = 1024, sr = 44100Hz and length = 60sec of
audio centered at the middle of the song.

Panning: For this set of descriptors, we have used the Panning coefficients
proposed by Gómez et al. (2008) and described in Section 4.3.6. We use
a frame = 2048, hopsize = 1024, sr = 22050Hz and length = 60sec of
audio centered at the middle of the song, only 1 frequency band and a
sliding window of 2sec.

Complexity: The complexity descriptors used in this set are those proposed
by Streich (2007) and described in Section 4.3.7. The panning related
complexity could not be computed for the Tzanetakis dataset because
it is build up with mono files. Furthermore, the complexity descriptors,
as presented by Streich, can not be computed frame by frame, so we
should not compare the behavior of these descriptors. The details for
configuration are also explained in Section 4.3.7 and we can not modify
them. This descriptor can not be computed frame to frame.

BLI: The Band Loudness Intercorrelation descriptors were developed at the
Music Technology Group, inspired by the work of McAuley et al. (2005),
and described in Section 4.3.8. These descriptors propose an alterna-
tive point for timbre description of audio based on the codification of
covariation of information at the output of the auditory filters. We use
a frame = 2048, hopsize = 1024, sr = 22050Hz and length = 60sec
of audio centered at the middle of the song, 24 frequency bands and a
8KHz as the maximum analysis frequency This descriptor can not be
computed frame to frame.

All the descriptors have been computed on a 60sec audio excerpt centered
at the middle of the song to avoid introductions, fade-in and fade-out effects,
applause, etc. Finally, we have used different classifiers to make results in-
dependent of classification techniques: Nearest Neighbours, Support Vector
Machines, Ada-boost and Random forests. All these classifications have been
done using Weka8 using the default parameters for each classifier except for

8http://www.cs.waikato.ac.nz/ml/weka
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Dataset Descr IB1 SVM1 SVM2 AdaBoost R.Forest
STOMP MFCC 49.6% 28.3% 31.0% 6.4% 42.6%

Spectral 48.0% 36.6% 39.3% 25.0% 34.1%
Rhythm 53.0% 26.6% 29.0% 35.9% 59.4%
Tonality 15.8% 15.7% 17.3% 11.7% 14.8%
Panning 96.8% 8.9% 16.6% 56.3% 94.5%
Complexity — — — — —
BLI — — — — —

Radio MFCC 58.0% 42.0% 44.9% 43.7% 55.3%
Spectral 50.8% 55.2% 60.7% 45.1% 54.5%
Rhythm 57.2% 49.3% 49.7% 50.0% 61.5%
Tonality 22.8% 25.0% 25.0% 22.5% 25.2%
Panning 95.9% 25.0% 35.9% 70.3% 92.9%
Complexity — — — — —
BLI — — — — —

Tzanetakis MFCC 51.7% 35.6% 37.1% 35.6% 42.3%
Spectral 44.0% 43.8% 45.5% 35.9% 42.5%
Rhythm 46.9% 35.1% 35.8% 37.2% 51.5%
Tonality 17.9% 17.8% 16.7% 16.8% 18.2%
Panning — — — — —
Complexity — — — — —
BLI — — — — —

Table 5.20: Classification results for frame based descriptors using different
descriptors, classifiers and datasets

the support vector machine that we have included another test using a poly-
nomial kernel with the exponential parameter set to 2. All these classifiers
are described in Section 4.4. The evaluation procedure is set to 10 fold cross-
validation for all the experiments.

Results

The results for frame based classification are shown in Table 5.20. Some of
these descriptors can not be computed for the discussed reasons.In some cases,
a 5% of resampling has been needed to avoid memory problems. Results for
segment-based descriptors are shown in Table 5.21.

Conclusions

First of all, we have to assume that the results obtained in Tables 5.20 and
5.21 are not representative of the state of the art in automatic musical genre
classification. Both descriptors and classifiers are not tuned to obtain best
accuracies but comparable results for the different configurations are obtained.
According to these results, segment-based descriptors provide better accuracies
than frame based analysis (up to 90% using a simple SVM classifier using
spectral descriptors). Panning descriptors are the exception of this general
rule providing extremely high accuracies using some specific classifiers (96.8%,
8.9%, 16.6%, 56.3%, 94.5% for IB1, SVM1, SVM2 , AdaBoost and Random
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Dataset Descr IB1 SVM1 SVM2 AdaBoost R.Forest
STOMP MFCC — — — — —

Spectral 25.7% 41.4% 39.3% 32.9% 34.3%
Rhythm 27.9% 25.0% 24.3% 25.7% 27.9%
Tonality 15.0% 19.3% 17.1% 15.0% 16.4%
Panning 15.0% 8.6% 17.9% 20.0% 20.7%
Complexity 25.7% 22.1% 25.0% 20.7% 22.1%
BLI 24.3% 37.1% 35.7% 25.7% 25.7%

Radio MFCC — — — — —
Spectral 63.3% 80.3% 81.3% 71.8% 75.1%
Rhythm 53.1% 59.9% 62.6% 58.4% 56.6%
Tonality 34.6% 44.4% 44.1% 38.6% 37.5%
Panning 20.2% 25.3% 31.6% 41.3% 40.1%
Complexity 52.8% 55.9% 59.4% 55.9% 57.7%
BLI 57.2% 75.6% 75.3% 63.2% 60.2%

Tzanetakis MFCC — — — — —
Spectral 80.6% 90.0% 90.0% 83.5% 37.4%
Rhythm 45.6% 52.5% 60.0% 57.9% 57.3%
Tonality 40.8% 43.9% 45.7% 37.6% 37.7%
Panning — — — — —
Complexity 26.1% 30.7% 31.0% 28.4% 30.8%
BLI 51.9% 65.0% 65.9% 49.8% 50.8%

Table 5.21: Classification results for segment-based descriptors using different
descriptors, classifiers and datasets

Forest, respectively) using frame based classification.. The unstable behavior
of these descriptors claims for a detailed study which is shown in Section 5.5.3.
Focusing on the collapsed descriptors, note how spectral descriptors provide
best accuracies (Using the Spectral or BLI sets) followed by the Rhythm related
descriptors. The third place is for Complexity descriptors which computes the
complexity of the input signal for different musical facets of music (energy,
spectra, rhythm or stereo image). Here again, a detailed study of the behavior
of these descriptors is shown in Section 5.5.2. These results agree with those
obtained in the listening experiments shown in Section 5.3, in which humans
perform better classification using timbral information. It is also relevant to
note how frame based descriptors are too short to describe musical genres, and
long-term descriptors (built using basic statistics) describes them better. The
exceptions to these rule can be found in the rhythmic descriptors where the
differences are lower: as described above, these descriptors uses audio frames
of (at least) 3 seconds, in order to capture all the rhytmic information in a
whole bar. Then, using these frame based descriptors we are, in fact, taking
more than the minimum time lag required by humans to identify musical genres
(about 2.14s).

The classifier that produces best accuracies is Support Vector Machines in
any of the two configurations detailed above. The dataset that produces best
results is Tzanetakis (using 10 different musical genres). This difference is rel-
evant for spectral descriptors but, focusing on rhythmic descriptors, the Radio
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dataset provide better accuracies. This phenomena shows the high dependence
on the selected descriptors and taxonomies in genre classifiers: although Radio
dataset uses only 8 different musical genres, spectral classification is worst than
Tzanetakis dataset. In contrast, if we use rhythmic descriptors, Radio dataset
produces better accuracies. The STOMP dataset produces worst results due
to the high number of musical genres (14) and the low number of examples per
genre (only 10). From now on, we will use this dataset only for testing, not for
training.

5.5.2 Complexity descriptors

Description

As described in Section 4.3.7, complexity descriptors cover different musical
facets. In this section we will discuss about their use in genre classification
but computing the complexity descriptors for these musical facets. From the 8
computed descriptors we can create three groups:

Compl-12: Includes the dynamic and timbre complexity described in Sections
4.3.7 and 4.3.7

Compl-3456: Includes the rhythmic complexity described in Section 4.3.7

Compl-78: Includes the spatial complexity (that is panning information)
described in Section 4.3.7. These descriptors can not be computed on
the Tzanetakis database because we do not have the stereo files.

As in the previous experiments, we have used different classifiers to make
results independent of classification techniques: Nearest neighbours, Support
Vector Machines, Ada-boost and Random forests (See Section 4.4). All these
classifications have been done using Weka. The evaluation procedure is set to
10 fold cross-validation for all the experiments.

Results

Results of these experiments are shown in Table 5.22. The used classifiers
are configured in the same conditions than previous experiments in order to
provide comparable results. These Compl-78 descriptors can not be computed
on the Tzanetakis dataset because we have not access to the stereo files.

Conclusion

In the three tested datasets, rhythmic complexity descriptors have proved to be
the best of the three groups. This can be explained from two different points of
view. First, the number of descriptors for rhythmic complexity is higher than
the dynamic or panning complexity descriptors. Hence, the classifier deals with
more information to classify. Second, maybe the rhythmic complexity is more
relevant for genre classification than the others. This does not contradicts the
previous results in which timbre (or spectral) descriptors provide better results
in classification. According to that, genres may be clearly identified by differ-
ent timbres, but its variability and evolution into a genre is not relevant. The
spatial complexity also provides good accuracies in the classification process,
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Dataset Descr IB1 SVM1 SVM2 AdaBoost R.Forest
STOMP Compl-12 17.9% 13.6% 16.7% 12.1% 16.4%

Compl-3456 22.1% 17.9% 15.7% 15.0% 18.6%
Compl-78 22.1% 16.4% 18.6% 13.6% 20.7%

Radio Compl-12 26.8% 30.9% 24.2% 30.1% 27.0%
Compl-3456 37.0% 43.9% 42.6% 37.3% 33.4%
Compl-78 30.1% 32.7% 33.4% 37.2% 33.4%

Tzanetakis Compl-12 17.9% 22.0% 18.9% 21.6% 18.0%
Compl-3456 25.6% 24.3% 26.6% 25.4% 27.5%
Compl-78 — — — — —

Table 5.22: Classification results for complexity descriptors using different clas-
sifiers and datasets

Dataset Descr IB1 SVM1 SVM2 AdaBoost R.Forest
Radio Compl-12 26.8% 30.9% 24.2% 30.1% 27.0%

Compl-3456 37.0% 43.9% 42.6% 37.3% 33.4%
Compl-78 30.1% 32.7% 33.4% 37.2% 33.4%
All 52.8% 55.9% 59.4% 55.9% 57.7%

Table 5.23: Comparison of accuracies using individual or composite complexity
descriptors for the Radio dataset

better than dynamic complexity. Furthermore, classification using all com-
plexity descriptors is always higher than using only one of the proposed groups
individually, as shown in Table 5.23 for the Radio dataset.

Then, we conclude that rhythmic complexity provide better results because
of a) the higher number of descriptors and b) rhytmic complexity is more
relevant for genre classification. More over, all the three proposed subgroups
contribute positively to the genre classification, increasing about 10 . . . 15% the
overall accuracy for each subset individually.

5.5.3 Panning descriptors

As shown in Section 5.5.1, panning descriptors are the unique that provide
best classification results for the frame-based approach. These results need
to be studied in detail in order to find the right environment in which they
provide best discriminability. We will focus this study in the Radio dataset,
using SVM and KNN classifiers and we will compare results with those ob-
tained using spectral descriptors (which provide best results for segment based
classification).

Description

The study is divided into two main groups:

Frame based descriptors: For the spectral descriptors we use the following
configuration: framesize = 2048, hopsize = 1024, sr = 22050, audio
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SVM KNN
Dataset Descr Mean StdDev Mean StdDev
Radio Spectral 55.9% 0.37 63.1% 0.51

Panning 42.4% 0.24 96.0% 0.25
Both 64.9% 0.23 69.2% 0.50

Table 5.24: Comparison for frame-based classification using spectral and pan-
ning descriptors. Mean and Standard Deviations are shown for the 5 resam-
plings performed to the dataset

Database Descr SVM KNN
Radio Spectral 75.7% 61.2%

Panning 33.8% 25.3%
Both 74.4% 56.6%

Table 5.25: Comparison for segment-based classification using spectral and
panning descriptors

length = 30sec. centered at the middle of the song. Because of the
high amount of collected data for spectral descriptors, we had to resize
the dataset using only the 20% of the available frames. We performed
5 resamplings using different seeds and compute the mean and standard
deviation for all the obtained results. The panning descriptors are com-
puted using the same configuration with a historic time lag of H = 2s. In
this case, we also include the resampling process, to obtain comparable
results.

Segment based descriptors: Basic statistics for the descriptors detailed above
(Mean, Variance, Skewness and Kurtosis).

We performed three experiments for each configuration using a) only spec-
tral features, b) only panning features and c) a mix of them. We used a SVM
classifier because it produced best results for most of the cases, and KNN (with
K=1) which produced best accuracies using panning descriptors, as shown in
Table 5.20. Some preliminary experiments were done to fix the number of
neighbours to 1. All the experiments were carried out using Weka and the
evaluation procedure was 10-fold cross validation.

Results

Results of the panning analysis are shown in Tables 5.24 and 5.25 for frame-
based and segment based classification respectively. Results for the Radio
dataset may be slightly different from shown in Section 5.5.1 because we change
the length of the audio excerpt (from 60sec to 30sec) and the resampling process
is more exhaustive here.
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Conclusion

Extremely high accuracies are obtained using frame-based panning descriptors
with a K-NN classifier. But this accuracy dramatically decreases when using
the SVM classifier which has proved to provide best results in most of the
scenarios presented above. Under our point of view, these results are not
coherent and the architecture of the classifier is the main cause: we use the
10-fold cross validation method to evaluate. The train and test samples are
randomly selected from all the available samples. Then, we are training with
the 90% of the samples but, with a high probability, we are training with
frames belonging to all the audio excerpts available in the experiment. It is
quite probable that, for a given new instance, there exists a temporally near
sample (maybe the previous one or the following one) that has been used for
training.

To solve this problem, we have manually splitted de dataset into train and
test subsets before extracting the features, and repeat the whole process. Now,
the test samples are completely separate of the training ones. We use the
Holdout evaluation method and, because of the high amount of data in the
experiment, we repeat the experiment 5 times with different random subsets
of the original dataset, resampling it to a 20% of the original one.

Although this method is not comparable to that one explained above, re-
sults are more coherent: Accuracies using KNN provide a mean = 43.8%
(std = 0.53) and accuracies using SVM provide a mean = 35.7% (std = 2.0).
We realize that we should repeat the manual splitting process to assure that
results do not depend on that selection but obtained results are coherent and
the experiment is not relevant at all. To conclude, frame based panning coeffi-
cients do not provide best classification than segment based spectral or rhythm
descriptors.

5.5.4 Mixing Descriptors

In this section we will discuss about how the mix of different families of de-
scriptors can better explain genre classification. There are many studies in the
literature dealing with descriptors (See section 3.3.2 for details). The main
problem is that these studies are not comparable because they use different
configuration of descriptors, classifiers and datasets. It is our goal to provide a
set of (non exhaustive) comparable classification results depending on the fam-
ilies of descriptors but independent of the classifiers and datasets. For that, we
work with the segment based set of descriptors which have proved to give best
accuracies. We will use the Radio and Tzanetakis datasets (as we mentioned
above, the STOMP database will be only used for testing because of its short
number of examples per genre).

Description

The experiments proposed in this section are divided in two groups:

• First, we take the spectral group of descriptors as a reference and we
combine them with the other groups (Rhythm, Tonal, Complexity, BLI
and Panning). Then, we perform the classification using the same con-
ditions used for segment-based descriptors a shown in Section 5.5.1. We
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repeat this procedure by taking the Rhythmic group of descriptors as a
reference and combining them with the Tonality and BLI groups. All
the other combinations have been examined in preliminary experiments
producing worse results.

• Second, we build a big bag with all the computed descriptors and we
apply PCA covering a 95% of variance (See Section 4.5.1 for a details on
PCA). We compare the results from the best individual approach using
spectral descriptors with the use of a) all the descriptors together, b)
applying PCA and c) applying only those descriptors that have been
selected to perform a PCA (without the linear transformation).

Results

Results for mixed descriptors for manual and automatic (PCA covering 95% of
variance) feature selection are shown in Tables 5.26 and 5.27 respectively. Note
how results for individual groups of descriptors marked as ref are the same than
those shown in Table 5.21. This is the consequence of using the same sets of
descriptors and classifiers in order to provide comparable results.

Having a look to the results, we can observe how the combination of spectral
plus Rhythm, Complexity or BLI descriptors can increase the overall accuracy
of the classifier. There is neither a fixed rule through different classifiers nor
through datasets (Spectral+BLI combination provides best results for K-NN
classifier while Spectral+Complexity provide best results for SVM classifier,
using the Radio dataset. Spectral+Tonality provide best accuracies for Ad-
aBoost, using the Tzanetakis dataset). Taking the Rhythmic descriptors as a
reference, note how the combination with the BLI descriptors provides best ac-
curacies (as explained in Section 4.3.8, the BLI descriptors are also considered
timbre related descriptors). This combination can be as high as the combina-
tions made using Spectral descriptors as a reference, as shown for the Radio
dataset using SVM configuration.

Going further the combination of spectral and rhythmic descriptors, which
is the more stable combination, spectral and complexity descriptors generally
provide better accuracies for Radio dataset while the combination of spectral
and tonal descriptors provide better accuracies for Tzanetakis dataset. That
means that more detailed combinations of descriptors depend on the dataset.

Results on the second analysis show that PCA slightly improves the ob-
tained accuracies using spectral descriptors using SVM. Because of that, we
will come back to the PCA later in Section 5.6.
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Conclusions

As a conclusion, there is no a fixed rule on how to combine the extracted
features to provide best accuracies. Only the combination of spectral and
rhythmic descriptors seems to be consistent in all the environments. In fact,
this is the main reason to select the Timbre and Rhythm facets of music for
the listening experiments described in Section 5.3.

The second experiment mixes all the available descriptors and apply PCA
to perform the attribute selection. PCA assures that we will work in a new
feature space, maximizing the differences between classes, using only a reduced
set of features computed automatically. But results are not clearly better than
the traditional approach.

Although accuracies can grow up to 85% and 92% for Radio and Tzanetakis
databases using SVM, we have not much information on the behavior of each
musical genre. Other tested combinations for descriptors and classifiers (com-
puted over different databases), not shown in this work, do not produce better
accuracies. At this point, we should think we have reached the glass-ceiling of
automatic genre classification, as introduced by Aucouturier & Pachet (2004).
We need to change the philosophy of classifiers, as will be explained below in
Sections 5.6 and 5.7.

5.5.5 Mixing Datasets

According to Livshin & Rodet (2003), evaluation using self-classification is not
necessary a good statistic for the ability of a classification algorithm. In this
paper, the authors demonstrated several important points:

• Evaluation using self-classification is not a good measure for the general-
ization abilities of the classification process

• Self classification results do not reflect the classifier ability, after learning
the specific dataset, to deal with new audio excerpts

• Enriching the learning dataset with diverse samples from other datasets
improves the generalization power of the classifier

• Evaluation using self-classification of a classification process where spe-
cific instruments are being classified does not necessary reflect the suit-
ability of the feature descriptors being used for general classification of
these instruments

In this section, we discuss about the generalization power of our proposed
classifiers according to the items presented above. For that, we find the shared
musical genres between datasets. Then, by limiting the analysis to this reduced
taxonomy, we use one of the datasets for training and the other one for testing,
and we compare results with the 10-fold cross validation evaluation.

Description

For these experiments, we use three datasets: Radio and Tzanetakis for train
and STOMP for test. As mentioned in Section 5.5.1, the STOMP dataset is
defined by only 10 full songs for each category. This low number does not
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Figure 5.12: Shared taxonomies between Radio, Tzanetakis and STOMP
datasets

recommend its use for training. Hence, we use the Radio and Tzanetakis for
both training and testing, and the STOMP dataset only for testing. We use the
shared taxonomies between them which are presented in Figure 5.12. We use
the most discriminative descriptors (Spectral, Rhythm, Tonal and Complexity)
and the most important combinations of them (Spectral + Rhythm, Tonality
or Complexity). The classifier we use is Support Vector Machines , omitting
the results obtained using other classifiers which provide worse results.

We present here three sets of experiments. The first one uses only two of
the three datasets, that is Radio or Tzanetakis datasets for training STOMP
dataset for testing. For the first case, Radio and STOMP datasets share 5
musical genres (classical, hiphop, jazz, pop and rock) while for the second
case, Tzanetakis and STOMP datasets share 7 musical genres (blues, classical,
country, hiphop, jazz, pop, rock). For the second experiment, we will not use
the STOMP dataset for testing, and we will compare the two big datasets one
against the other, which share 5 musical genres (classical, hiphop, jazz, pop
and rock). For the third experiment, we will use again the 3 datasets, sharing
5 musical genres, and we will use two of them for training and the other one
for testing in all the possible configurations (this will be the unique experiment
in which we use the STOMP dataset for training). These combinations are the
following:

• Train: Radio + Tzanetakis; Test: STOMP

• Train: Radio + STOMP; Test: Tzanetakis
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# Descr 10-fold STOMP
Radio 5 Spectral 91.2% 72.0%

5 Rhythm 59.4% 68.0%
5 Tonality 60.2% 42.0%
5 Complexity 59.9% 54.0%
5 Spectral + Rhythm 88.0% 75.5%
5 Spectral + Tonality 89.2% 78.0%
5 Spectral + Complexity 93.2% 74.0%

Mean 77.3% 66.2%
Tzanetakis 7 Spectral 93.8% 60.0%

7 Rhythm 61.3% 35.7%
7 Tonality 52.1% 22.9%
7 Complexity 34.5% 41.4%
7 Spectral + Rhythm 95.1% 47.1%
7 Spectral + Tonality 94.4% 39.1%
7 Spectral + Complexity 95.4% 61.4%

Mean 75.2% 43.9%
Tzanetakis 5 Spectral 93.1% 74.0%

5 Rhythm 70.6% 54.0%
5 Tonality 63.3% 30.0%
5 Complexity 46.7% 64.0%
5 Spectral + Rhythm 94.5% 58.0%
5 Spectral + Tonality 94.5% 55.1%
5 Spectral + Complexity 94.3% 74.0%

Mean 79.6% 58.4%

Table 5.28: Results for the mixed datasets experiments using a) 10-fold cross
validation and b) STOMP database

• Train: Tzanetakis + STOMP; Test: Radio

This experiment aims to compare results with the most heterogeneous
dataset available by combining two them (the other one is used for testing).
Although the collections are supposed to be representative of the musical gen-
res, the more diverse the datasets are built, the more realistic results will be
obtained.

Finally, we have also included an additional experiment in the first set
using the Tzanetakis dataset for training and STOMP for testing, which share
7 musical genres as described above, but using only the 5 musical genres that
are shared by the 3 datasets. The goal of this test is to compare results with
the same number of categories than the experiment using Radio dataset for
training and STOMP dataset for testing.

Results

Results of the first experiments are shown in Table 5.28. In this table, we
include results of the classification using 10-fold cross validation and using the
test set extracted from STOMP. Note how results using 10-fold cross validation
can seem extremely high. This is because of the reduced number of musical
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# Descr 10-fold Other
Radio 5 Spectral 91.2% 65.3%

5 Rhythm 59.4% 51.3%
5 Tonality 60.2% 32.0%
5 Complexity 59.9% 40.2%
5 Spectral+Rhythm 88.0% 66.9%
5 Spectral+Tonality 89.2% 58.8%
5 Spectral+Complexity 93.2% 76.5%

Mean 77.3% 55.9%
Tzanetakis 5 Spectral 93.1% 78.9%

5 Rhythm 70.6% 52.2%
5 Tonality 63.3% 26.8%
5 Complexity 46.7% 50.6%
5 Spectral+Rhythm 94.5% 77.7%
5 Spectral+Tonality 94.5% 55.8%
5 Spectral+Complexity 94.3% 78.1%

Mean 79.6% 60.0%

Table 5.29: Results for the mixed databases experiments using a) 10-fold cross
validation and b) Other big dataset: Tzanetakis when training with Radio and
vice-versa

genres used, according to Figure 5.12. Note how we repeat the experiment
using the Tzanetakis dataset for 7 and 5 categories to make results comparable
with those obtained using Radio dataset.

As mentioned above, we also compare results by using the two big datasets
(Radio and Tzanetakis), one against the other. Table 5.29 shows the obtained
results for different groups of descriptors. Finally, we also perform classification
by training with two of the databases and testing with the other one. Results
are shown in Table 5.30

Conclusions

According to the presented results, the evaluation process made using the
STOMP dataset provides lower accuracies than cross validation, as expected.
Note how this difference is higher for the Tzanetakis dataset: differences up
to 55% between cross-fold validation and mixing datasets strategies are found
when combining spectral and tonality descriptors, and up to 45% when com-
bining spectral and rhythm descriptors. Although the experiment using this
dataset has more musical genres than the experiment using the Radio dataset,
these results may reflect the musicological criteria applied when building this
last one. Remember that the STOMP dataset was manually built by selecting
the most representative songs for each genre by a musicologist. Differences of
results between Tzanetakis and Radio dataset may also show that the last one
covers a wider range of music inside each musical genre. The different numbers
of songs per genre (100 for Tzanetakis and 50 for Radio) may affect this result:
the classifier is more exhaustively trained using the Tzanetakis dataset. As
a consequence of that, classification with completely new and unknown data
provide worse accuracies. What it is clear is that experiments using 10-fold
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# Descriptor 10-fold Other
Tzanetakis+Radio 5 Spectral 92.9% 78.0%

5 Rhythm 69.1% 60.0%
5 Tonality 56.6% 58.0%
5 Complexity 50.5% 58.0%
5 Spectral+Rhythm 92.7% 76.0%
5 Spectral+Tonality 92.7% 75.5%
5 Spectral+Complexity 93.4% 66.0%

Mean 78.3% 67.3%
Tzanetakis+STOMP 5 Spectral 91.5% 80.9%

5 Rhythm 69.4% 55.0%
5 Tonality 58.9% 44.3%
5 Complexity 49.2% 52.6%
5 Spectral+Rhythm 91.7% 80.9%
5 Spectral+Tonality 90.6% 75.7%
5 Spectral+Complexity 91.7% 76.9%

Mean 77.5% 66.6%
Radio+STOMP 5 Spectral 86.7% 68.2%

5 Rhythm 63.8% 53.3%
5 Tonality 59.1% 31.0%
5 Complexity 63.6% 42.4%
5 Spectral+Rhythm 87.3% 72.4%
5 Spectral+Tonality 88.0% 58.4%
5 Spectral+Complexity 89.0% 77.8%

Mean 76.7% 57.6%

Table 5.30: Results for the classification by training with two of the databases
and testing with the other one

cross validation provide very optimistic results which are far of the possible
real scenario in which these classifiers should work.

The second experiment here presented show differences about 20% when
combining our two big datasets. Results are similar for the two reciprocal con-
figurations. This reinforces the fact that these datasets do not cover the overall
spectra for each specific musical genre or that selected descriptors do not accu-
rately represent musical genres. If so, results for 10-fold cross validation or split
evaluation methods should be similar than those obtained when presenting a
completely new dataset. Due to the reciprocal behavior, results are indepen-
dent of the number of songs for each category. It makes us to conclude that
both datasets have their own area in the genre space which is quite well defined
by their elements.

Finally, when combining all the three available datasets in the third ex-
periment, the mean values show how the differences between the 10-fold cross
validation and the use of different datasets is about 10% for the first two cases,
and about 20% for the last one. This last case corresponds to a training set
formed by Radio and STOMP datasets, and a test set formed by Tzanetakis.
Because of that, we conclude that the Radio dataset covers a genre space with
similar properties than the STOMP one, while the Tzanetakis dataset is not
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Figure 5.13: Summary of the obtained accuracies for Radio and Tzanetakis
datasets using spectral and rhythmic descriptors for a) using 10-fold cross val-
idation, b) evaluating with the Stomp dataset, c) evaluating with the other
dataset and d) including the STOMP dataset to the training set and evaluat-
ing with the other

so overlapped (Let us remark that it does not mean that this last database is
not correctly built!).

Figure 5.13 shows the summary of the obtained accuracies for Radio and
Tzanetakis datasets, using spectral and rhythmic descriptors, for a) using 10-
fold cross validation, b) evaluating with the Stomp dataset, c) evaluating with
the other dataset9 and d) including the STOMP dataset to the training set
and evaluating with the other. This figure shows differences from 10% to 30%
between 10-fold cross validation and the other combinations that should not
be ignored in our study.

As a conclusion, these test could be interpreted as a measure on how univer-
sal a dataset is. Biased collections built without artist pre-filter should provide
lower performances in this set of experiments. And the opposite: datasets built
using artists that cover the whole space for that specific genre will provide bet-
ter results. In our case, it seems that STOMP and Radio datasets are more
universal than the Tzanetakis collection. It is also important to compare the
number of available songs for each category: the 10 songs/genre in STOMP
dataset contrasts with the 100 songs/genre in Tzanetakis. This will intrinsi-

9The other dataset is Tzanetakis when training with Radio, and Radio when training
with Tzanetakis
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cally affect the overall accuracy when combining them and, of course, it is more
difficult to find 100 different songs per genre that musicologically represents the
overall category than a simple list of 10.

Note how we express universal datasets without entering in the discus-
sion whether they are correctly defined or not. For instance, Religious music
(included in the STOMP dataset) can be a perfectly defined category for com-
mercial purposes although it includes a great ensemble of styles and artists.
The differences between datasets can be produced by some of the following
reasons:

• Different goals of the dataset: For instance, it can be collected for com-
mercial purposes, musicological research or a simple recompilation of our
favorite artists

• Availability of musical audio excerpts: Although the Internet provides
many different options for downloading audio files, it is not always easy to
find some specific songs. This can be an important factor when collecting
a dataset.

• Other reasons like storage availability or the use of specific datasets for
comparing results with other researchers may also affect the collected
dataset.

5.6 Single-class classifiers

In the previous sections, we have studied in depth the behavior of genre clas-
sifiers for different databases, sets of descriptors and classifiers. According to
Aucouturier & Pachet (2004), all these approaches for genre classification reach
a glass-ceiling which seems difficult to cross. In this section, we propose other
methods that change the traditional point of view by focusing on an ensemble
of individual classifiers. For that, we will create a specific classifier for each
musical genre.

5.6.1 Justification

Up to now, all the classifiers deal with all the categories at the same time. The
only exception could be found with Support Vector Machines. As described in
Section 4.4.2, SVMs try to find, in a higher dimensional space, an hyper-plane
that maximally separates the distance between training data. This process is
repeated for all the pairwise possible combinations of categories belonging to
the proposed problem. In our case, SVMs find the maximum distance between
blues and classical, blues and hip-hop, blues and rock, etc., but also the maxi-
mum distance between classical and hip-hop, classical and rock, etc. As SVMs
has proved to be the best tested classifier for most of the cases, we extract the
idea of building an ensemble of individual classifiers.

The idea of ensemble of classifiers is not new. Ponce & Inesta (2005) pro-
pose the use of a set of k-nearest neighbors and Bayesian classifiers for genre
classification based on MIDI data. The classifiers are independently trained for
different groups of descriptors and the resulting models are combined using a
majority vote scheme. Scaringella & Zoia (2005) propose the use of an ensem-
ble of three SVM classifiers focused on different features of audio describing
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different dimensions of music. Resulting models are combined computing the
average of posterior probabilities over all input feature vectors and selecting
the highest averaged posterior probability class. Harb et al. (2004) proposes
the use of an ensemble of neural networks and Piecewise Gaussian Modeling for
audio signal representation. One of the important contributions of this work is
the comparison of different combining strategies for the individual classifiers.
One of the simplest ways for combining classifiers is the majority vote schema
but sometimes it is necessary to apply some mathematical functions (addition,
multiplication, etc.) to the output of the classifiers. The choice of the output
weights is not a trivial task and it depends on the specific problem to solve.
Harb et al. (2004) proposes a list of different weighting strategies:

Equal weights: Each individual classifier contributes to the final classifica-
tion with the same weight

Gate network: Each individual weight is defined by the output of an expert
trained to classify an (many) observation(s) from the training dataset into
that specific class.

Novelty of experts: This method proposes to assign less weight to the ex-
pert classifiers that do not provide a novelty on the mixture of experts.
The novelty can be computed according to the training time or the num-
ber of operations.

Error estimation: The weight is inversely proportional to the error rate of
this expert in front of a development database.

In our proposal, the classifiers are not built using pairwise configuration
but the 1-against-all strategy. That means that we build as many classifiers as
categories and each one will be trained for discriminating between the selected
category and all the rest (i.e. blues against not blues, classical against not
classical, etc.). Figure 5.14 shows an overview of the proposed method. The
main advantage of using this configuration is that we can perform attribute
selection independently for each classifier and train it using only the relevant
features that define that musical genre. We are killing two birds in one shot.
First, we have a set of specialized classifiers that are experts in one category
(divide and conquer!) and, second, we have an idea of the most representative
descriptors that define each specific genre, which maybe can be interpreted
from a musicological point of view, following the ideas emerged in the listening
experiments described in Section 5.3.

The main problem we found is the classification of new data. The flow
for new data is shown in with a wide arrow in Figure 5.14. As we don’t
know at which category it belongs, we have to compute as many attribute
selection and classifications as the number of different categories we have in
our problem. The output for each classifier will provide a probability of new
data belonging to that category. We will assume that the assigned category
is that one with higher probability, but the obtained probabilities could also
be useful for building hierarchical classifiers (which are not in the scope of this
thesis).
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Figure 5.14: Block diagram for single-class classifiers

5.6.2 Attribute selection

We have created a new pairwise dataset for all the genres in the Tzanetakis
dataset. For each genre we have merged all the others into a unique category,
obtaining a Genre/non-Genre pair. It is obvious that this new data is com-
pletely unbalanced. For classification using SVM, we have applied multiple
resampling with different seeds (we have not applied the resampling for tree
classification using J48). With all these new pairwise datasets we have selected
the most relevant descriptors for each case, as shown in Tables 5.31, 5.32, 5.33
and 5.34.
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Family Statistic
Timbre Rhythm Mean Var

Blues 2 1 1 0
Classical 3 0 0 3
Country 2 0 3 0

Disco 3 0 3 0
Hip-Hop 1 0 1 1

Jazz 3 0 0 1
Metal 3 0 1 1
Pop 3 0 2 1

Reggae 3 0 0 2
Rock 3 0 2 1

Table 5.35: Predominant descriptor family (timbre/rhythm) and statistic
(mean/variance) for each musical genre

According to the results presented in Tables 5.31, 5.32, 5.33 and 5.34, we
can assume that spectral descriptors present best discriminative power, fol-
lowed by rhythmic a tonal descriptors. Rhythm descriptors are relevant in
Blues (first and four position in the ranking of descriptors), Jazz (second po-
sition) and reggae (fourth position). On the other hand, tonal descriptors
are relevant in Country (second position) and Hip-Hop music (first, second
and fourth positions). As expected, Blues, Jazz and Reggae music can be de-
scribed by their rhythmic properties (swing or syncopations for Blues or Jazz
and Reggae, respectively). These results partly agree with the results of the
listening experiments presented in Section 5.3 in which jazz music is the second
classified using only rhythmic information, after the electronic music. Unfor-
tunately, we don’t have the information of human classification for Blues and
Reggae genres using rhythmic descriptors, but we assume that they should be
similar to Jazz music. On the other hand, the relevance of tonal descriptors is
not so evident. The tonal behavior in Country music is not so different from
Rock or Pop music and, furthermore, Hip-Hop music can be characterized by
its low relation with tonal information (in the sense of the characteristic voice
used in this style). Maybe this non-use-of-tonality can be the property that
makes this style different from the others.

Focusing on the three most important attributes proposed by the feature
selection algorithm for each genre, we can study two properties:

1. Whether the selected attributes correspond to timbre or rhythm families
of descriptors

2. Whether the selected attributes are the mean or the variance of a specific
descriptor for all the song

This analysis is not exhaustive: Tonal or BLI descriptors are not taken into
account and, in a similar way, skewness and kurtosis statistics are neither taken
into account. These properties are summarized in Table 5.35.

All the proposed musical categories show timbre descriptors as the most
relevant ones. The statistics to be used do not show a clear behavior instead.
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The computation of the variance of the descriptors for the whole audio excerpt
is relevant for Classical, Hip-Hop, Jazz, Metal and Reggae. We didn’t find any
musicological explanation for that.

5.6.3 Classification

New data is tested against all the classifiers with the corresponding attribute
selection (manually applied according to results in Tables 5.31, 5.32, 5.33 and
5.34). The new data flow is shown in with a wide arrow in Figure 5.14. We use
a majority voting schema for the overall classification. For classification using
trees, we have selected the minimum number of instances per leaf equals to 10
(some previous tests have been done to experimentally fix this value). Initial
experiments have been done using this technique providing quite interesting
results, using both SVM and Trees (see Tables 5.31, 5.32, 5.33 and 5.34). But
we can not show exhaustive and comparative results with all the previous
experiments because of the following reasons:

• The dataset is clearly unbalanced and this affects the performance of
the classification using SVMs (we don’t think resampling it is a good
solution)

• 10-fold cross validation can not be computed for all the experiments with
the tools we use for all the previous experiments because of the complexity
of the architecture

The solution to these problems is to use a specific classifier that follows this
philosophy, that is, the Simca classifier described in Section 4.5.2. We will use
the Simca classifier to perform all these tests automatically and results will be
shown in Section 5.7.

5.6.4 Conclusion

In this section we have presented the use of individual experts for genre clas-
sification. Starting from the idea of pairwise classification used by SVM, we
build an ensemble of expert classifiers represented by the most discriminative
descriptors for each specific category. Although spectral descriptors present
the best discriminative power, rhythmic and tonal features can help in classifi-
cation of Blues, Jazz and Reggae, and Country and Hip-Hop respectively. We
could not provide exhaustive results for this experiment, but we put a special
emphasis in these tests because they are the main reason of using the Simca
classifier. This technique provides all the mathematical support to perform the
classification experiments proposed in this section.

5.7 The SIMCA classifier

In the previous section, we explained the motivations of using Simca. We
explained our intention of building an ensemble of expert classifiers represented
by the most discriminative descriptors for each specific category. For that, we
computed attribute selection independently for each classifier and trained it
using only the relevant features that define that musical genre. We killed two
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birds in one shot: First, we got a set of specialized classifiers that are experts
in one category (divide and conquer!), and second, we had an idea of the most
representative descriptors that define each specific genre, which maybe can be
interpreted from a musicological point of view. In the previous section, we
also argued that Simca classification could be more similar to human reasoning
for genre classification than other traditional classifiers, inspired by the results
of the listening experiments presented in Section 5.3. These two arguments
drive us to propose this classification algorithm for classifying music genres.
The main differences between the technique previously exposed and the Simca
method are:

1. The attribute selection previously described is based on the ranking list
of the most discriminative descriptors while Simca classifier uses PCA.

2. The classifiers previously proposed are SVM or Decision Trees while the
Simca classifier compares the distance from new data to each transformed
space for specific categories.

3. The previous overall classification method is based on a voting schema
while the Simca classifier computes the assigned class by means of a F-test
on the computed distances.

A detailed explanation of the Simca algorithm is provided in Section 4.5.2.

5.7.1 Description

For the experiments here proposed, we use the Simca implementation provided
by the LIBRA toolbox in Matlab, developed at the Katholieke Universiteit
Leuven and the University of Antwerp10. This toolbox requires formated input
data (descriptors and categories) and provide the classification results for the
new data in terms of category labels. Some additional code have been devel-
oped to adapt our datasets to the required format. On the other hand, some
modifications to the toolbox have been made:

• We adapted the algorithm for PCA in order to manually set the per-
centage of variance covered by the principal components instead of the
number of components

• We adapted the algorithm to provide distance measures from the new
data to all the existing categories instead of the category labels.

Moreover, our code is the responsible to perform a random split of the whole
database into a (configurable) 66% for train and 33% for test. All the experi-
ments have been repeated 10 times with different seeds in the splitting process
to avoid possible biasing effects. The conditions for the SVM experiments are
the same than shown above in order to provide comparable results.

10http://wis.kuleuven.be/stat/robust/LIBRA.html
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Database #Genres Descriptor SVM SIMCA diff
Radio 8 Spectral 76.8 95.5 18.7

Rhythm 60.3 83.7 27.4
Tonality 42.9 83.3 40.4
Complexity 61.2 49.4 -11.8
Spectral+Rhythm 80.1 97.0 16.9
Spectral+Tonality 77.2 94.9 17.7
Spectral+Complexity 78.8 96.6 17.8
mean 68.2 85.8 17.6

Tzanetakis 10 Spectral 89.0 95.8 6.8
Rhythm 54.6 79.5 24.9
Tonality 39.2 96.6 57.4
Complexity 31.2 37.1 5.9
Spectral+Rhythm 89.2 97.2 8
Spectral+Tonality 88.8 99.0 10.2
Spectral+Complexity 89.5 99.0 9.5
mean 68.8 86.3 17.5

Table 5.36: Results for SVM and SIMCA classifiers for different datasets and
sets of descriptors, presented as the mean of accuracies for 10 experiments with
different random splits for train and test subsets.

5.7.2 Results

Initial Experiments

In this section, we present and discuss results for genre classification. The
experiments, can be divided into two main groups. First, we show the perfor-
mance of Simca in comparison to Support Vector Machine under the same con-
ditions of datasets, descriptors and classifier parameters (splitting databases,
standardization, etc.). Second, we show the performance of SIMCA classifier
when combining different datasets. All these experiments have been repeated
for different sets of descriptors and datasets in order to ensure that the obtained
accuracies are not dependent on specific data, as we made in all the previous
tests.

Results for the first set of experiments are shown in Table 5.36. Note how
results obtained using SVMs differ from those obtained in Section 5.5.5 be-
cause we use a split (66% − 33%) evaluation method instead of 10-fold cross
validation. Here, we compare the use of SVM’s with SIMCA using different
sets of descriptors but the same dataset for training and testing. Remind that
the Radio dataset contains 8 categories and the Tzanetakis dataset contains 10
categories. All the accuracies here presented represent the mean of 10 experi-
ments with different random splits between train and test subsets. Note how
we report accuracies about 99%. We will discuss about its reliability in Section
5.7.4. The averaged difference between the accuracies obtained using SVMs
or Simca is about 17.5% for the two datasets. In this environment, the Simca
classifier clearly outperforms SVMs, one of the best traditional classifiers.
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Dataset Other(SVM) Other(SIMCA)
Radio 55.9 67.5

Tzanetakis 60.0 75.2

Table 5.38: Comparison between SVMs and Simca classifier for cross datasets
experiments. The Other dataset corresponds to Tzanetakis when training with
Radio and viceversa.

On the other hand, Table 5.37 presents results of mixing datasets, training
with Radio and Tzanetakis and testing with STOMP and Tzanetakis or Radio
respectively (shown in the column labelled as Other). Note how the number
of genres has been reduced to five which is the number of shared categories
for all the datasets. We also present the behavior of the classifier for different
sets of descriptors. Differences between 16.2% and 22.1% are observed, for the
mean of all the families of descriptors, for the accuracies between the 66− 33%
splitted tests and separate datasets. The only exception is the increasing of
2.1% of the accuracy using the STOMP dataset for test when training with
Radio. Comparing this experiment with the equivalent one carried out using
SVM (See Table 5.29), we clearly observe that Simca outperforms SVMs, as
summarized in Table 5.38.

Scalability

The goal of this section is to determine, for the case of classification of musical
genres using rhythmic and timbre descriptors described in Section 5.5, the
behavior of the Simca classifier in front of a) a large number of musical genres
and b) a large number of instances per category. We want to verify that the
performance does not dramatically fail in these conditions which are near to a
real environment for genre classification.

For that, we use a huge collection based on the previews of the iTunes
store with more than one million of songs. We use the taxonomy proposed by
iTunes as ground-truth, selecting 12 of the most representative musical genres:
Alternative, Classical, Country, Dance, Electronic, Folk, Jazz, Pop, Rap, Rock,
Soul, Soundtrack. We performed two experiments:

Large scale: In this experiment, we grow from 10 to 10000 songs per genre
in 4 decades.

Detailed scale: In this experiment, we grow in 10 linear steps between the 2
decades with higher accuracies.

All the experiments are the result of 10 random splits of the dataset into 66%
for training and 33% for testing. Then, experiments performed with 100 songs
are, in fact, experiments that only use 66 songs for training. This deviation
is not crucial because we are looking for an order of magnitude, instead of a
specific number.

Figure 5.15 shows the evolution of the 12 musical genres from 10 to 10000
instances per category. Classifications performed with less than 100 instances
show bad results. After that, all of the genres slightly increase except for
Classical, Alternative and Jazz. After that, between 1000 and 10000 instances
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Figure 5.15: Evolution from 10 to 10000 song per genre

per category, the behavior is not clear. Thus, if we look for a compromise
between the accuracy and the number of songs per genre, it seems necessary
to perform a detailed experiment between 100 and 1000 songs per genre.

Figure 5.16 show these results for the detailed scale. Here, we can see the
real measured values (as means of results of 10 random splits in the dataset)
as well as the result of a 3rd. order polynomial regression. The maximum of
these regression curves are mainly located between 300 and 700. If we compute
the mean for all the genres we got a maximum near 500 instances per genre,
as shown in Figure 5.17

We can conclude that, for automatic classification of 12 musical genres
using an ensemble of timbre a rhythm descriptors using the SIMCA classifier,
the number of instances per category that maximizes the accuracies is near 500.
Furthermore, classification results for experiments using 100 or 10000 instances
per category show the same order of magnitude. Then, Simca classifier is
flexible enough to deal with real scenarios.

5.7.3 Other classification tasks

Mood or Western/Non-western music classification are clearly out of the scope
of this thesis but, as shown in the previous sections, the good results on clas-
sification using Simca suggest that this technique can be applied to other clas-
sification problems of the MIR community. In this section, we present a set
of very simple experiments using SIMCA and compare their results with other
state of the art algorithms. We designed these experiments just to test whether
SIMCA can be a good technique to be applied or not, so, don’t interpret these
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Figure 5.16: Evolution from 100 to 1000 song for genre. The real measured
values are shown in blue and the 3rd. order polynomial regression are shown
in red

results as if they were contrasted with the state art in their respective areas.

Mood evaluation

According to the literature, mood/emotion is an important criterion in music
organization of huge databases (Cunningham et al., 2004, 2006). As a con-
sequence of that, the MIR community started his research providing many
interesting approaches (Lu et al., 2006; Pohle et al., 2005b). The actual state
of the art on Mood classification can be summarized in the Audio Music Mood
Classification task from the MIREX contest. As described in Section 5.4, the
goal of MIREX is to provide the ideal environment to compare algorithms of
different authors performing the same task. The complete description of this
task can be found in the MIREX Wiki11.

11http://www.music-ir.org/mirex/2007/index.php/Audio_Music_Mood_Classification
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Figure 5.17: Mean of evolution from 100 to 1000 song for all genres. The real
measured values are shown in blue and the 3rd. order polynomial regression
are shown in red.

Label # songs
Aggresive 132

happy 109
sad 133

relax 224

Table 5.39: Number of instances per category in the mood dataset

Unfortunately, we have no access to the dataset used in the MIREX. Our
comparison is based on in-house dataset collected by Cyril Laurier, participant
and organizer of the MIREX contest (Laurier & Herrera, 2007) and ranked in
second place in that event. The algorithm is considered to be one of the state of
the art. The authors use a set of 133 descriptors and a Support Vector Machine
classifier to predict the mood. The features are spectral, temporal, tonal but
also include loudness and danceability. The SVM classifier is optimized using a
grid search algorithm. The dataset is created by 4 moods distributed as shown
in Table 5.39.

Due to that dataset is not splitted in train and test, we performed 10 exper-
iments with different 66−33% random separation of the train and test datasets.
Then, we provided the Mean and the Std accuracies for all the experiments.
We performed two experiments: a) using the 4 proposed categories and b) us-
ing only three of them (skipping the Relax category) because of the overlap
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SVM SIMCA
# of categories Mean StdDev Mean StdDev

4 62.8 2.2 93.1 2.0
3 81.3 3.7 95.0 2.1

Table 5.40: Obtained accuracies for the SVM and SIMCA classifiers using the
mood dataset

Category Subcategory(# of files)
Western (1133) Alternative(10), Blues(110), Classical(103),

Country(110), Disco(100), Electronica(10)
Folk(10), Funk(10), Hiphop(110), Jazz(110),
Metal(110), Pop(110), Reggae(100), Religious(10),
Rock(110), Soul(10).

non-Western (508) Africa(74), Arabic(72), Centralasia(87), China(63),
India(74), Japan(40), Java(98).

Table 5.41: Overview of the dataset used for Western/non-Western classifica-
tion

from this category with the other ones. The SIMCA has been configured to
perform PCAs covering the 90% of the variance. The obtained accuracies are
shown in Table 5.40.

Results show how SIMCA clearly performs better classification than the
state of the art algorithm using SVM: differences up to 30 and 15 points are
found for 4 and 3 categories respectively. Then, the use of a SIMCA classifier
is a good option for mood classification. We encourage the experts on this field
to perform further research on this area.

Western vs non-Western music

In this section we present a short test concerning the Western/non-Western
music classification. One of the particularities of these two big groups is the
use of an equal tempered scale against many others (we will not take into
account early music and other non tempered compositions although they have
been composed in the western influence region). Assuming that, we will use
the tonal descriptors proposed by Gomez (2006) described in Section 4.3.5.

The dataset was manually collected using audio files from the existing
datasets and personal collections from the researchers in our lab, summarized
in Table 5.41.

The idea is to compare results between SVM and SIMCA classifiers. Be-
cause of our system is able to classify balanced datasets and to evaluate using
the Holdout technique (66%-33%), we propose to compute results as the mean
of 5 random subsamples of the Western subset, applying the Holdout evalua-
tion technique for each case. Under these conditions, we perform classification
using SVMs and the SIMCA classifier providing the results shown in Table
5.42.

Just for fun, we also compute country classification for the non-western
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SVM SIMCA
Western/non-Western 82.8 97.0

Country 38.5 53.0

Table 5.42: Comparison of obtained accuracies for Western/non-Western and
Country classification using SVMs and SIMCA

subset, randomly balancing the dataset to 40 instances and computing the
mean of the results for both SVMs and SIMCA classifiers, as described above.
Results are also shown in Table 5.42

Here again, SIMCA classifier improves the performance obtained by using
SVMs up to a 15% for Western-nonWestern classification. Although results in
Country classification are not good, SIMCA also improves the accuracy about
another 15% with respect to SVMs. We encourage the experts on this field to
perform further research.

5.7.4 Conclusions

In this section, we have presented an extensive comparison of SVM and SIMCA
classifiers in different environments. First, we have studied the behavior of the
SIMCA classifier dealing with a unique dataset. Second, we have studied its
behavior in front of completely independent datasets in order to study whether
it is able to deal with real scenarios. Then, we have proposed a brief study
on scalability and, finally, we have presented a set of experiments dealing with
completely new problems.

There exists a special behavior in Table 5.36 in both datasets for tonal
descriptors: while SVM provide low accuracies (42.9% and 39.2% for Radio and
Tzanetakis datasets respectively) more reasonable results are obtained using
Simca (83.3% and 96.6%). We assume this the consequence of the single class
classifiers philosophy: although tonal descriptors are not the best ones for genre
classification, the separation of the problem into a set of multiple individual
problems increases the accuracy (each classifier can be focused on its own
problem).

Furthermore, some interesting results are found in Table 5.37. As explained
in Section 3.3.1, the STOMP, Radio and Tzanetakis databases are built using
10, 50 and 100 songs per genre respectively. Training with Radio, acceptable
results are obtained when testing with STOMP but not testing with Tzanetakis.
This can be explained by the different sizes of the datasets: STOMP is five
times smaller than Radio. Thus, the classifier trained with Radio database can
predict STOMP but it can’t predict Tzanetakis, which is two times bigger. On
the other hand, the classifier trained with Tzanetakis can reasonably explain
both STOMP and Radio databases, which are smaller by a factor of ten and
two respectively. As expected, for cross experiments, SIMCA classifier performs
good classification when the size of the train dataset is big enough to extract
the essence of musical genres. In particular, as described in Section 5.7.2,
the number of instances per category that maximizes the results is near 500 for
train and test, which corresponds to 333 instances for training. The Tzanetakis
dataset consists in 100 instances per genre, which is about one third of the ideal
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case. Having a look to Figure 5.17, we observe that this number is far from
the ideal case, but this effect is compensated by a lower number of categories
(only 5).

Roughly speaking, Simca classifier provides better classification results than
SVM for individual and mixed datasets. As deduced in Section 5.6, the use of
individual and independent attribute selection for each category allows better
performances.

On the other hand, in Table 5.37 we have presented accuracies over the 99%.
Initially, we though they were produced by the over-fitting in the classifier. As
we are using only rhythm and timbre descriptors, the ratio between instances
and accuracies seem reasonable and all the rest of experiments, including those
mixing datasets, are in a similar range. The reader is reminded that these values
are obtained using a specific dataset and splitting it by random points. As the
main dataset we use has not the list of songs/artists available, we assume the
main reason for these extremely high results is because of the dataset. Then,
these values higher than 99% should be interpreted as quite good results without
taking the specific number as a reference.

To conclude, we observe that best results are obtained using spectral and
rhythmic descriptors, or spectral and tonality. Then, we assume that spectral,
rhythm and tonality related descriptors can better describe musical genres, and
the use of Simca classifier may be the technique that can better classify them.





CHAPTER 6
Conclusions and future

work

6.1 Introduction

In this thesis we proposed an exhaustive study on automatic music genre recog-
nition. First, we introduced some theoretical concepts about music genre such
as taxonomies, the most extended theories on human categorization, and the
concept of music content processing. We also introduced the state of the art
of automatic music genre classification and compared different successful ap-
proaches. We also dedicated some pages for showing the importance of the
MIREX evaluation initiative in the whole MIR community. From the techni-
cal point of view, we detailed the overall schema for classification, that is (1)
selection of the taxonomy and datasets, (2) design and computation of musical
descriptors, and (3) algorithms for automatic classification. We described each
part individually and we proposed a set of tests by manipulating these three
variables.

Moreover, we have been interested in the meaning of each part of the process
too. Descriptors are usually representative of a specific musical facet (timbre,
rhythm, etc.). We introduced new families of descriptors that traditionally
have not been exploited for genre classification (panning, complexity, tonal).
Rhythmic descriptors were developed by the author in order to achieve a coher-
ent rhythmic representation also in those cases where rhythm was no present
(some excerpts of classic music, speech, etc). This is a good example of one of
the aims of this work which is to study the behavior of classifiers in a wide range
of situations. Detailed tests show how timbre and rhythm features provide the
best classification results for a generic classification of musical genres. This
doesn’t mean that all the other descriptors we tested are useless. They can
(and need to) be computed for some specific classification problems (ballroom,
speech/music, etc.) but this is out of the scope of this thesis.

Next, we to compared results from classification using a single dataset (that
share some implicit information as codification, sampling rate, origin of some
files) against the combination of two or more of them (between-collection gen-
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Algorithm Classical Prototype Exemplar
Dedicated x

Decision Trees x x
GMM x
HMM x
SVM x
K-NN x

Table 6.1: Associated categorization theory to the most important machine
learning techniques

eralization). The big differences in the presented scenarios drove us to detect
and analyze possible gaps in the application of the current state of the art ma-
chine learning algorithms. If selected descriptors and classification techniques
were able to extract the essence of musical genres, results should not depend
so much on the selected dataset. We addressed some efforts on this problem,
as explained above.

Finally, we analyzed results of using different machine learning techniques.
The state of the art proved that, generally, the best classification results are
obtained using Support Vector Machines (SVM). But SVMs are not able to
extract the essence of musical genres as shown in the experiments performed by
mixing datasets. This, in addition to the results obtained by a set of listening
experiments, lead us to develop a new approach for classification. The Soft
Independent Modeling of Class Analogies (SIMCA) method here presented
gathers all the required conditions to perform classification accomplishing all
of our requirements. We showed results obtained using this technique and
compared them to the state of the art methodologies.

In this chapter, we present the main conclusions for the overall study. Then,
we summarize the contributions presented in this work and present some ideas
for future work.

6.2 Overall discussion

In Chapter 3, we presented different categorization theories and we promised
to contrast them with the different classification techniques used for automatic
genre classification. Table 6.1 shows this association for the most well known
algorithms.

Decision Trees can be interpreted as a representation of the classical or
exemplar based theory depending on whether the decisions are musicologi-
cally meaningful or not, respectively. Support Vector Machines is the general
purpose machine learning technique that provide best results in different en-
vironments (not only in audio genre classification but in other MIR-specific
problems), as described in Section 5.5. Under our point of view, SVMs can
be associated to the exemplar based theory where, in fact, only some of the
exemplars are used to define the separation hyperplanes. At this point, we
wonder how these methods can extract the real essence of musical genres. We
don’t want to open the never-ending discussion about how humans categorize
musical genres, but it seems clear that, using exemplar based methods, this
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Train Descriptor Split STOMP Other
SVM SIMCA SVM SIMCA

Radio (5) Spectral 94.8 72.0 96 65.3 68.6
Rhythm 88.3 68.0 94 51.3 62.8
Tonality 92.9 42.0 100 32.0 81.5
Complexity 62.8 54.0 56 40.2 32.7
Spectral+Rhythm 98.6 75.5 98 66.9 72.9
Spectral+Tonality 94.6 78.0 100 58.8 75.7
Spectral+Complexity 95.0 74.0 98 76.5 50.1

Tzanetakis (5) Spectral 97.4 74.0 98 78.9 99.2
Rhythm 89.0 54.0 66 52.2 80.0
Tonality 98.7 30.0 86 26.8 82.9
Complexity 57.3 64.0 20 50.6 20.4
Spectral+Rhythm 99.2 58.0 94 77.7 95.9
Spectral+Tonality 99.4 55.1 92 55.8 92.2
Spectral+Complexity 98.9 74.0 52 78.1 55.9

Table 6.2: Comparison of SVM and SIMCA classifiers for mixing databases
experiments. The Split accuracies are presented as the mean of accuracies for 10
experiments with different random splits for train and test subsets. The Other
dataset corresponds to Tzanetakis when training with Radio and viceversa.

essence is not modeled by the computer, but only their boundaries. In our ex-
periments, we have observed how, using SVM classifier and crossing datasets,
the accuracies fall about 20% in comparison to the 10-fold cross-validation for
single collections (See Table 5.29). If SVM’s were able to model the essence of
musical genres, this decrease on the accuracies should be lower.

Let’s discuss the results of the listening experiments presented in Section
5.3. They suggest that, for humans, it is easier to distinguish a given excerpt
that does not belong to a specific musical genre than the given excerpts that
do. This fact drives us to think about other ways of classification, and we found
that the SIMCA method perfectly accomplishes our requirements. In addition
to the independent 1-against-all classification for all the given categories, what
is interesting in SIMCA is the fact that, by using PCA, we reinforce the relevant
descriptors while discarding some non relevant information. Transforming data
to the new feature space (and what is more important, performing indepen-
dent transformations for each category) and comparing them with the residual
variances of the model, we are measuring a distance from a new instance to
a given category: the residual variance of the non-targeted category can be
interpreted as a direct measure of a given expert to the targeted category.

Conceptually, this classifier uses only the relevant information (linear com-
bination of best audio descriptors) that best explains this category which is,
under our point of view, coherent with the definition of a prototype. We
can compare the sets of experiments mixing datasets for SIMCA and SVM
classifiers, described in Section 5.7.2 and Section 5.5.5 respectively. This com-
parison is shown in Table 6.2. The use of Tzanetakis dataset for training (100
songs/genre) and STOMP or Radio dataset for testing (10 or 50 songs/genre
respectively), and the SIMCA classifier, produces lower differences between ac-
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Database #Genres Descriptor SVM SIMCA
Tzanetakis 10 Spectral 89.0 95.8

Rhythm 54.6 79.5
Tonality 39.2 96.6
Complexity 31.2 37.1
Spectral+Rhythm 89.2 97.2
Spectral+Tonality 88.8 99.0
Spectral+Complexity 89.5 99.0

Table 6.3: Results for SVM and SIMCA classifiers for Tzanetakis dataset and
for different sets of descriptors, presented as the mean of accuracies for 10
experiments with different random splits for train and test subsets.

curacies than using the SVM classifier1. Then, we conclude that SIMCA is a
classification technique that more accurately models the essence of the musical
genres in a sill far but similar way that humans do.

On the other hand, we also tested many different descriptors. We compared
frame-based descriptors against collapsed descriptors for the whole audio ex-
cerpt using basic statistics (mean, standard deviation, skewness and kurtosis).
Only panning descriptors showed to perform better with a frame-based de-
scription with respect to the collapsed descriptors (mean, standard deviation,
skewness and kurtosis), but we have discarded the inclusion of such amount
of data due to practical issues (computational constrains, availability of stereo
datasets, etc.). Complexity and Band Loudness Intercorrelation showed inter-
esting results, but it is not possible to extend these results to other datasets
and configurations for genre classification. As seen in Table 6.2, spectral de-
scriptors, and the combination of spectral descriptors with rhythmic or tonal
descriptors, showed the best accuracies. These combinations provide the best
results for SVM classifiers as well as for SIMCA classifiers (See Table 6.3) for
all the tested scenarios.

Our participation in MIREX-2007 was designed to verify how a traditional
and simple approach for genre classification deals with unknown data. The
main idea was to establish a baseline for all our experiments and allow to com-
pare results obtained by the SIMCA classifier with respect to the approaches of
other authors. Our MIREX approach, based on timbre and rhythm descriptors,
and a SVM classifier, obtained an overall accuracy of 71.87% for hierarchical
classification and 62.89% for raw classification. The best presented approach
obtained 76.56% and 68.29% accuracies for hierarchical and raw classification
respectively. Both results are about a 5% above our state of the art implemen-
tation. Then, assuming a linear relationship between accuracies (which could
be debatable), our proposed classifiers should increase about this 5% the accu-
racy obtained by our SVM approach, using our own datasets and descriptors,
which is to be tested, probably, in MIREX2009.

As discussed previously in Section 5.7.4, the 99% accuracy is shocking, but
results obtained using the SIMCA classifier provide a higher accuracy with re-

1As seen in the tests for scalability (See Section 5.7.2), we suggest to use a minimum of
100 songs/genre for training to extract a correct model. As a consequence of that, we do not
take into account results of Table 6.2 training with the Radio dataset
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spect to the traditional approaches based on SVMs in most of the presented
scenarios. As discussed in Section 3.3.2, some authors reported the presence
of a glass ceiling in genre classification (Aucouturier & Pachet, 2004; Pampalk
et al., 2005b). In our opinion, this glass ceiling should be comparable to the
accuracies obtained by exhaustive human experiments, which unfortunately
are not available. Taking the scalability experiments as example, the dataset
of which is fixed to 500 songs for each one of the 12 musical genres, it seems
reasonably to assume that an expert could classify these 6000 audio excerpts
according to the given taxonomy, providing high accuracies. So, the glass ceil-
ing of automatic classifiers should be comparable to this accuracy obtained
by the experts (I guess it could be greater than 95%). If automatic classifi-
cation does not reach this values, maybe the classifier or the descriptors are
not properly selected. In other words, if a SVMs classifier using timbre and
spectral descriptors is not able to improve an accuracy about 70% (See our
contribution to MIREX 2007 with a flat classifier) it is not because the auto-
matic genre classification has a natural glass ceiling related to the complexity
or structure of the problem. This is, otherwise, because of new descriptors and
classification techniques need to be developed and combined. Under our point
of view, SIMCA can be a starting point for a new concept of audio classifiers
that better capture human classification.

6.3 Summary of the achievements

Proposal of new descriptors for automatic genre classification. Tradition-
ally, genre classifiers are based on spectral and rhythmic descriptors of
audio. While spectral features of audio are well represented by MFCC,
spectral centroid, spectral flatness and many others, there is a variety of
rhythm descriptors available in the literature. As explained in Section
4.3.4, some of them fail or are redundant describing non rhythmic audio
(speech, classical music, etc.). Here, we propose some new descriptors
which imitate the cepstrum representation but in the so called rhythm
domain.

Evaluation of other non traditional descriptors that have not been pre-
viously used in automatic genre classification. In addition to timbre and
rhythm descriptors, we analyze classification results using THPCP de-
scriptors proposed by Gomez & Herrera (2008), complexity descriptors
proposed by Streich (2007), Panning descriptors proposed by Gómez et al.
(2008) and Band Loudness Intercorrelation descriptors proposed by Ay-
lon (2006). Tonal features seem to provide meaningful information to the
system, as shown in Table 6.2 and Table 6.3.

Generalization of the classifier in front of different datasets, number of
instances per category, number of categories, etc. Our idea is that a
good classifier must be able to capture the essence of a given category
and, as a consequence of that, it should be robust to changes produced
by its application to different scenarios. Classifiers only reaching high
accuracy for specific environments are not assumed to be good classifiers.

Behavior of classifiers in different situations: This is the mix of the items
presented above. First, we have compared different techniques (Decision
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trees, SVM, etc.) by using only one dataset and 10-fold cross validation
and combining different families of descriptors. Support Vector Machines
have proved to provide the best results. Then, we use SVMs to compare
results when mixing datasets and, finally, with the best (conceptual and
numerical) combinations, we compare results with our proposed SIMCA
classification method.

Identification of the machine learning techniques with the categoriza-
tion theories in order to design a "human-like" classifier. The adoption
of SIMCA is the result of the interpretation of many experiments focused
on the study of the confusions, accuracies and the structure of classifiers.

Extension of SIMCA classifier to other problems of Music Information Re-
trieval. We have tested SIMCA classifiers with other problems of MIR
such as western/non-western and mood classification. We have not con-
trasted these tests with the actual state of the art, so, results can not be
compared with other approaches. We designed these experiments just to
test that SIMCA can be a good technique to be applied to other music
classification problems.

6.4 Open Issues

There are many open research paths in automatic genre classification that
derive from this dissertation. In general, the community is focusing on the re-
search of new descriptors with more semantic meaning that should be included
in our study. In a similar way, new classification techniques including non linear
processing and fuzzy logics are gaining attention in papers and presentations.
As new descriptors and classifiers are developed to solve MIR problems, they
should be included in the genre classification task and compare their results
with other existing approaches.

Concerning our study, we draw some specific future work that should be
followed by the community

Detailed analysis of the confusions: It is quite interesting to listen to the
misclassified audio excerpts. In some of the cases, it could be discussed
whether the groundtruth is correct or not (p.e. a pop song that, under
the musicological point of view, could be labelled as funk). Other cases
show misclassifications that could not be explained. There are many
confusions within audio excerpts with high spectral content (metal, rock)
but the inclusion of rhythmic descriptors, among others, minimize them.
Finally, there are some acceptable confusions such as blues vs. jazz, pop
vs rock, etc. The detailed study of these confusions could be useful to (1)
improve the accuracy of classifiers, (2) help musicologists to find specific
properties of musical genres, (3) explain the evolution of musical genres,
and (4) find for a systematic method for doing that.

Listening experiments: Listening experiments presented in this dissertation
need to be extended to a bigger audience. We also propose a deeper anal-
ysis of the results in which, for instance, we can correlate the familiarity
degree of the presented musical genres (detailed in a questionnaire) with
the response time in the experiment. Moreover, the number of examples
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and categories must be extended, and other descriptors should also be
included.

Inclusion of new genres: In this study we have not taken into account how
new musical genres are included in the proposed system. New genres
may require to be included because of different reasons: (1) they were
not included initially in the system because of requirement constrains or
(2) new genres appear as a subset or of an existing one, or as a fusion
of two existing genres. In both cases, as the SIMCA classifier uses a 1-
against-all strategy, the whole system has to be retrained with the new
category. As argued in the previous chapters, we try to design a classifier
that, somehow, mimics the human behavior in front of genre classification
task. This means that SIMCA technique is still far from simulating brain
processes. Variations of SIMCA or the research of new techniques is still
required. In our opinion, these techniques should include online learning
principles.

Hierarchy classifier: Related to the problem of the inclusion of new musical
genres detailed above, the SIMCA technique is not able to deal with
hierarchical classification. The main problem is that training a parent
category and their sons at the same time create a big confusion in the all
subset for each category (remember that SIMCA uses the 1-against-all
strategy). It is possible that the parent category does not include the
audio excerpts from the sons into the dataset, or that the not belonging
audio excerpts of the son category includes the audio excerpts from his
father. From now on, the unique solution is the manual creation and
labeling of the datasets.

Inclusion of metadata: This thesis is focused in music content processing.
Nevertheless, the musical genre is a social and cultural phenomena. So,
the results here obtained should be complemented with other available
metadata such as tags, dates, etc.

6.5 Final thoughts

Personally, I would like to think this thesis can be a good reference for those who
are interested in audio classification. Not only musical genre or the methodolo-
gies here presented can be interesting, but also all the comparisons of classifica-
tion using different descriptors and datasets, and their multiple combinations.
I have compared the size of datasets, their overlap and how classification tech-
niques are able to extract the essence of the categories. I also presented some
listening experiments that support the decisions I took in the whole process.

It was no my intention to find the best classifier for a specific problem. I
wanted to present a broad point of view in audio classification using general
techniques. I also wanted to focus on the music instead of the algorithms
themselves. In my opinion, simple things work better. The only problem is to
really know the problem and how to combine the available pieces to solve it.

My best reward is that, after reading this thesis, the reader keeps thinking
on how to improve one of their algorithms inspired by one idea here presented.
If so, good luck!
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