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0.2. ABSTRACT III

0.2 Abstract

• Hay tres aspectos innovadores. Primero, un algoritmo novedoso para calcular
el contenido emocional de un enunciado, con un diseño mixto que emplea
aprendizaje estadstico e información sintáctica. Segundo, una extensión para
selección de rasgos que permite adaptar los pesos y aśı aumentar la flexibilidad
del sistema. Tercero, una propuesta para incorporar rasgos de alto nivel al
sistema. Dichos rasgos, combinados con los rasgos de bajo nivel, permiten
mejorar el rendimiento del sistema.

• The first contribution of this thesis is a speech emotion recognition system
called the ESEDA capable of recognizing emotions in different languages.

The second contribution is the classifier TGI+. First objects are modeled by
means of a syntactic method and then, with a statistical method the mappings
of samples are classified, not their feature vectors. The TGI+ outperforms the
state of the art top performer on a benchmark data set of acted emotions.

The third contribution is high-level features, which are distances from a feature
vector to the tree automata accepting class i, for all i in the set of class labels.
The set of low-level features and the set of high-level features are concatenated
and the resulting set is submitted to the feature selection procedure. Then the
classification step is done in the usual way. Testing on a benchmark dataset
of authentic emotions showed that this classification strategy outperforms the
state of the art top performer.
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0.3 Prologue

The aim of a speech emotion recognizer is to produce an estimate of the emotional
state of the speaker given a speech fragment as an input. In other words we seek
a solution for the tricky problem: given a speech fragment how to know what the
speaker is feeling, even if she did not intend us to know that.

How would it be possible to construct such recognizers? Intuitively, when emo-
tion is experienced, there are physiological changes, for example faster heart rate,
higher blood pressure, faster breath rate, tension of certain muscles, and so forth.
Some of these physiological changes affect speech production organs and they are in
a state different from normal, therefore the speech signal comes out of the mouth
distorted as compared to emotionally neutral. Different emotions trigger different
physiological changes – one feels differently when bored compared to when scared.
Since the changes are typical and differ from emotion to emotion, the speech waves
produced under the effects of different emotions are distorted in predictably differ-
ent ways. Our intuition tells us the following procedure might lead to a solution of
the problem. We can record speech in different emotional states, measure acoustic
parameters of the wave, form feature vectors from these measurements, and then
we hope that pattern recognition techniques would do their job well, the way they
recognize different iris flowers based on the shape of petals and colour. Instead of
shape and colour we have parameters of intensity, pitch, formants and so on – the
acoustic parameters that are well studied in speech recognition and synthesis.

Speech emotion recognition is a young interdisciplinary research field1. For the
first time the above described methodology was given a try not earlier than a decade
ago. The first systems worked in lab conditions and were quite different from what
can be used in real life applications. Since then mathematicians, engineers, psy-
chologists and various speech experts united their efforts in designing working SER
systems, and significant progress has been made. Some old challenges have been suc-
cessfully faced, many others remain. New applications keep appearing and in their
turn pose new open problems and challenges. This year at the biggest annual speech
conference INTERSPEECH 2009, several leading researchers of the field started a
centralised event called the INTERSPEECH Emotion Challenge, aimed at providing
an assessment settings and comparing different SER systems. They also challenged
the SER community with the Hilbert-like list of problems:

• How to achieve high and robust performances? (the open system challenge),

• New high-level preferably perceptually adequate features are sought after (the
open feature challenge),

• How to craft classifiers for SER and go beyond the main-stream libraries for
classification? (the classifier challenge)

In this work I give my answers to these questions.

1Henceforth speech emotion recognition is abbreviated to SER.
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Chapter 1

Introduction

This chapter provides a reading guide over this thesis and formulates the objectives
and the hypotheses. In this thesis I claim three contributions:

• a speech emotion recogniser capable of recognizing acted and authentic emo-
tions in various languages,

• a classification method for SER, and

• high-level features for SER.

For each of the above listed contributions, there is a paragraph in Section 1.1 Ob-
jectives describing my idea and my departure point in the state of the art research.
A reading map in Figure 1.1 shows interconnections between sections and chapters,
where the sections with contributions are coloured green.

Chapter 2 is a literature review of relevant topics. In Section 2.1 I answer the
question Why SER is important and difficult? and summarize SER applications.
Section 2.2 contains a selection of relevant topics on classification including a com-
plete account of the work in optical character recognition that gave me the general
idea for the proposed classification method. In Section 2.3, I describe the databases
I use. Section 2.4 gives considerations for the design of different modules of a SER
recognizer.

Chapter 3 describes the ESEDA system1 that I developed for this thesis project.
Section 3.1 Basic System Architecture explains the design of the three modules:
feature extraction, feature selection and classification. In Section 3.1.1 I report
the testing results for the basic recogniser on different databases in mono- and
multilingual modes. Section 3.2 Module of Error Analysis and Prevention describes
my idea of doing classification decomposition based on the analysis of the confusion
matrix. The idea is explained in Section 3.2.1 Description of the additional block,
then in Section 3.2.2 Example I provide an example of how it works and finally the
testing results are reported in Section 3.2.3. In Section 3.3 I draw conclusions with
respect to the first contribution of this thesis.

In Chapter 4, the TGI+ classifier [61] is explained. In Section 4.1 I refresh the
idea of a combined classification strategy from optical character recognition, which
was my starting point. In Section 4.2 I informally introduce and formally define

1The abbreviation stands for Enhanced Speech Emotion Detection and Analysis.

1
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Figure 1.1: Interconnections of different sections of the thesis.
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the proposed classification method. In Section 4.3 I explain my further extension of
the TGI+. In Section 4.4, I report the experimental results, which I then discuss in
Section 4.6 and on the basis of which in Section 4.7 I conclude that the TGI+ is a
classifier with a righteous place among other classifiers that are recommendable for
SER.

In Chapter 5, the high-level features are proposed [62]. In Section 5.2 the pro-
posed algorithm for high-level feature construction is explained. In Section 5.3 I
describe the data set and experiments to test the idea. Section 5.4 is discussion and
conclusions for the third contribution of this thesis.

In Chapter 6 I draw conclusions for this thesis.

In Chapter 7 I discuss the potential impact of my contributions, both in appli-
cations and research.

In Appendix A I include the explanations of the multilayer perceptron, the sup-
port vector machines, and the RIPPERk. These are the top performers on the
databases I work with and therefore serve as baselines for the proposed classifica-
tion methods.

Appendix B provides a full account of the features that the feature extraction
module extracts.

Appendix C is the list of my papers that cover my contributions defended in this
thesis.

1.1 Hypotheses

The starting point of my research was construction of the basic emotion recogniser
capable of recognizing acted and authentic emotions in various languages. Its per-
formances will serve as a baseline to validate the theory proposed in this thesis.

1.1.1 ESEDA: classical speech emotion recogniser and mod-
ule for error prevention

The first contribution concerns practical work and did not imply the development
of any new theory.

After having constructed the basic speech emotion recogniser, I analysed the
accuracy and realised that there is room for improvement. Certainly the desired
improvement can be obtained in more than one way. For example, a direct solution
is a revision of every module of the basic recognizer: feature extraction, feature
selection or classification. That for example could be extracting more signal fea-
tures, or trying all the available feature selection algorithms on the validation set
and choosing the one that leads to the best accuracy, and so forth. The weakness of
this solution is that it can turn out to be database-dependent, since generally there
is no way to be sure which are the best features or the best classifier a priori before
having seen the type of speech data: e.g. speech of a German child interacting
with a toy is unlikely to show the same trends as Spanish data from a call centre.
A data-independent solution would be of more use – a wrapper machine learning
technique without reprogramming the basic recognizer. From the rich palette of
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machine learning methods, I take classification decomposition2. A decomposition
splits a complete multiclass problem into a set of smaller classification problems.
Decompositions allow for learning more accurate concepts due to simpler classifica-
tion boundaries in subtasks and the feature selection procedure done individually
for each classification step [12]. When doing classification decomposition, the cen-
tral choice is the order of combinations of smaller classification steps, called the
classification path. My idea is to derive the classification path from the confusion
matrix and, after uncovering the reasons for errors, design a module that prevents
the system from making such errors in the future.

Another fact that is necessary to take into account at the training stage is that
not all emotions are equally frequent in data sets from real-life applications. A class
with few samples is called the minority class. The rarity of samples with this class
value in the training data does not mean that the emotion is unimportant. On
the contrary it may signify an exceptional situation and therefore require accurate
detection, while the classifier can be biased towards a more frequent class.

To counter the low separability of some classes in the feature space and the mi-
nority class problem, the error-prevention module implements the following strategy:

1. The class of special interest is identified (denote it class I), for which the recog-
nition rates are to be improved. For example it can be the worst recognised
class or a class of special interest for some application. From the confusion ma-
trix of the standard classification step it is deduced with which other class the
class of interest is most frequently confused (denote it class J). The original
classification step is then divided into two new steps: the first multiclassifi-
cation step, where the new class labels are the old ones, except that there is
a joint label K for samples from the classes I and J , and the second binary
classification step, where instances of class K are classified into I or J .

2. If the minority class problem is present and hampers the classification accuracy,
cost-sensitive training is used, more specifically, every minority class sample
in the database is duplicated.

My intuition is that the above formulated wrapper procedure derived from the
confusion matrix will improve the recognition accuracy of the basic speech emotion
recognizer. In Section 3.2.3 Testing for the module of error-prevention I describe
the experiments and draw conclusions in Section 3.3.

1.1.2 The TGI+ classifier

In the optical character recognition literature [58] it was reported that a combi-
nation of statistical and syntactic pattern recognition techniques led to significant
improvements in accuracy as compared to ”mono-” methods and a new classification
method was proposed that combined tree grammar inference and entropy decision
trees in a coherent learning strategy.

My first hypothesis is that the above mentioned approach from optical character
recognition is adaptable to speech emotion recognition and will lead to accurate
recognition results.

2The approach is sometimes reffered to as hierarchical or tree structured classification.
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I propose a classification method [61], the general idea of which comes from op-
tical character recognition. The syntactic part implements tree grammar inference,
and the statistical part implements an entropy decision tree classifier. First, the
objects are modeled by means of a syntactic method, that is samples are mapped
into their representations. A representation of a sample is a set of numeric values,
signifying to which degree a given sample resembles the averaged pattern of each
of the recognition classes. Then, the mappings of samples are classified, not their
initial feature vectors, with a statistical method. The new domain required a revi-
sion of every algorithm involved in the syntactic phase. I called the classifier TGI+,
which stands for Tree Grammar Inference and the plus is for the statistical learning
enhancement.

My second hypothesis is that the combined scheme can be beneficially extended
with a built-in feature selection procedure, which would result in weights put on
nodes corresponding to the selected features in the tree representation. My idea is
to apply some standard feature selection procedure and then according to its results
add various edit costs to penalise more important features with higher edit costs for
being outside the interval which the tree automata learned at the inference stage.

1.1.3 The high-level features based on distances to tree au-
tomata

As was formulated in the list of challenges for the community at the INTERSPEECH-
2009 conference, currently one of the central SER open problems is the search for
novel features, especially perceptually adequate and high-level ones.

The classifier from the previous section can be viewed as the C4.5 run on the
high-level distance-to-automaton features. My hypothesis is that these high-level
features can be useful when early-fused with the low level features from which they
were calculated.

Thus I propose the high-level features, which are distances from a feature vector
to the tree automata accepting class i, for all i in the set of class labels. The
automata are trained to operate on feature vectors through a previously described
grammar inference procedure. The set of low-level features and the set of high-
level features are concatenated and their union is submitted to the feature selection
procedure. Then the classification step is done in the usual way.

1.2 Objectives

Thus, the objectives to be achieved for this thesis are:
with respect to the system construction

• build a robust system to be exposed to acted and authentic emotions in dif-
ferent languages;

with respect to the proposed classifier

• adapt the new combined classifier from optical character recognition to the
new domain of speech emotion, which will take revision of some its algorithmic
components;
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• extend the initial algorithm with a built-in feature selection which will result
in different weights put on different nodes in the tree representation.

with respect to the high-level features

• propose new high-level features for SER and show that their fusion with the
initial features is beneficial in terms of recognition rates.



Chapter 2

State of the Art

This chapter provides a review of relevant topics. In Section 2.1 I answer the question
Why SER is important and difficult? and summarize some SER applications. The
focus of Section 2.2 is relevant issues in pattern recognition. In Section 2.3, the
databases I use are described. Section 2.4 gives considerations concerning the design
of different modules of a SER recognizer.

2.1 Why SER is important and difficult

SER is important because it is an intriguing research field about human cognition.
In the present days cognitive sciences are gaining in importance. The XX century
with its major mathematical breakthroughs gave us the techniques and allowed for
the luxury to turn our attention to more humanistic problems:

• how to be more attentive to the emotional needs of others;

• how to teach the machines and the sick, who for some reason are incapable
of conveying or understanding emotions, to become competent in fully-human
communication.

Better understanding between people replaces conflict with cooperation. Morally
and financially our society is in need for such affective technology. Despite only a
decade of history, SER has already been integrated into many useful applications.

In smart call-centers, SER helps to detect potential problems that arise from an
unsatisfactory course of interaction. A frustrated customer is typically offered the
assistance of human operators or some reconciliation strategy [14], [8], and [9].

In intelligent spoken tutoring systems, detecting and adapting to student’s emo-
tions is considered to be an important strategy for closing the performance gap
between human and computer tutors [1]. Studies in educational psychology point
out that emotions can impact a student’s performance and learning.

In spoken dialogue research, it is beneficial to enable the systems not only to
recognize the content encoded in a user’s response, but also to extract information
about the emotional state of the user by analyzing how these responses were spoken.

In human-robotic interfaces, robots can be taught to interact with humans and
recognize human emotions. Robotic pets, for example, should be able to understand

7
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Figure 2.1: The Aibo robot. [image taken from
www.inf.ed.ac.uk/postgraduate/msc.html

not only spoken commands, but also other information, such as the emotional and
health status of its human commander and modify their actions accordingly. For
example, [28] constructed a robot capable of detecting and moderating tension. The
Aibo robot has the potential to let even dogs benefit from modern technological
advances (Figure 2.1).

Reasons why SER is difficult include:

• noisy data;

Noise is defined in very general terms [15]: any property of the pattern which is
not due to the true underlying model, but instead to randomness in the world or
sensors.

• emotional expressions are discrete;

Unlike expressive imitations of emotions by actors, everyday emotions are hard to
detect by humans and computers alike.

• diversity of patterns;

It is hard to build systems that would work well without retraining when exposed to
new tasks than those for which they were trained. For example, different languages
have different emotional patterns, and in distinct circumstances people express emo-
tions differently: at work during project meetings as contrasted to at home when
talking to the family.
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2.2 Classifiers

In the Section 2.2.1 Preliminaries I introduce the general framework of classification.
In Section 2.2.2 a hybrid classification solution is explained, which is a starting point
of the work on the TGI+ I describe in Chapter 4. Section 2.2.3 introduces the
general framework of classification trees with one such particular algorithm C4.5
detaily explained in Section 2.2.3. The C4.5 is given this attention because it is a
building block of the proposed TGI+ classifier.

Additionally in Appendix A I include the explanations of the multilayer percep-
tron, the support vector machines, and the RIPPERk. These are the top performers
on the databases I work with and therefore serve as baselines for the classification
methods I propose.

2.2.1 Preliminaries

A classifier assigns class labels to objects. Objects are described by a set of mea-
surements called attributes or features. In SER objects are the speech fragments.
Features are signal statistics extracted from the utterance. Classes correspond to a
set of emotions.

Let there be c possible classes in the problem, with labels from:

Σ = {w1, w2, ..., wc}.
Feature values for a given object form an n-dimensional vector:

x = [x1, ..., xn].

The real space <n is called the feature space, with every axis corresponding to a
particular feature. The data set is denoted as,

Z = {z1, ..., zN}, where zj ∈ <n.

Let l(zj) denote the class label of zj, and l(zj) ∈ Σ, where j = 1, ..., N . A classifier
D is a function:

D : <n −→ Σ.

In the canonical model of the classifier Figure 2.2 a set of c discriminant functions
is considered:

G = {g1(x), ..., gc(x)}, where gi : <n −→ <, for all i = 1, ..., c.

Every function yields a score for the representative class, and x is assigned the label
of the highest scoring class. The maximum membership rule can be stated as

D(x) = wj ⇔ j = argmaxigi(x). (2.1)

Ties are resolved randomly, that is x is assigned randomly to one of the tied
classes. The discriminant functions divide the feature space <n into c, not necessarily
compact, classification regions, R1, ..., Rc:
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Figure 2.2: The canonical model of the classifier.

Rc = {x | x ∈ <n, gc(x) = max gk(x), k = 1, ..., c}, i = 1, ..., c.

The points for which the ith discriminant function has the highest score constitute
the decision region for class wi. By the maximum membership rule (Equation 2.1),
all points in decision region Ri are assigned to class wi. The decision regions are de-
fined by classifier D, or, equivalently, by discriminant functions G. The classification
boundaries of the decision regions contain the points for which two or more discrim-
inant functions return the same value. A point on the boundary can be assigned
to any of the adjacent classes. The classes wi and wj are said to be overlapping
if a decision region Ri contains data points from the labelled set Z with true class
labels wj, with i 6= j. If classes overlap given a particular partition of the feature
space, they also can be non-overlapping if the feature space were to be partitioned
differently.

To know exactly how accurate D is, it must be run on all possible input objects.
Since this is not possible, the counting estimator Error(D) is used to characterize
accuracy. Assume a labelled data set Ztest with Ntest objects in it is available for
testing the accuracy of a classifier D. After running D on Ztest, calculate Error(D):

Error(D) = Nerror

Ntest
,

where Nerror is the number of misclassifications made by D, and Ntest is the total
number of objects in the test data set.

Another question is which subsets of Z it takes for training and testing purposes.
In this thesis, I invariably use cross-validation (π- or rotation method): The data set
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Z is randomly divided into K subsets of size N
K

, where the integer K is preferably
a factor of N . One subset is then used to test the performance of D trained on the
union of the remaining (K − 1) subsets. This procedure is repeated K times and
the average error over all K trials is taken as Error(D).

To know how the misclassifications are distributed across the classes, confusion
matrices are built for Ztest. The entry aij of a confusion matrix denotes the number
of elements from Ztest whose true class is wi, and which are classified by D as
belonging to the class wj.

2.2.2 Combined Classification Strategy from OCR

In this section I describe a classification method originally devised for optical char-
acter recognition (OCR) of hand-written isolated digits from 0 to 9 [58], which was
the departure point in my work on the classification method for SER. The general
idea is to first model the objects by a tree and then use other pattern recognition
techniques: k-neighbour, clustering, etc. [73], [74], [75], [44]. A particular imple-
mentation of this general idea for OCR in question is organized in three stages:

1. Through a grammar inference technique the system learns a set of tree au-
tomata (one per digit).

2. The system obtains a set of edit distances of every digit to every tree automa-
ton.

3. According to a set of rules based on distances the system learns a decision tree
from the last set of distances that will classify the digit.

In the following paragraphs I explain these stages in greater detail.

Learning Tree Automata

There are three algorithms involved in learning tree automata:

1. an algorithm to obtain tree-representations from physical objects;

2. an algorithm to obtain a distance between a tree and a tree automaton;

3. a tree grammar inference algorithm.

Converting physical objects to suitable representation
Figure 2.3 shows a scanned handwritten digit 2. Under the approach being

explained, digits must be converted into their tree representations with the q-tree
[24]. A q-tree is constructed by drawing a square window around the digit and
splitting the window into four windows of the same size recursively up to a predefined
depth. In Figure 2.3 the digit has been placed in the recursively split window of
depth 3. Once the system obtains the window of the digit, it assigns a label to the
window of the smallest size. The label is chosen depending on the scale of gray:
black, white or gray. So, every smallest window is represented by a label from the
three letter alphabet {a, b, c}. The relations between windows can be represented
by a tree using the up-down and left-to-right scanning of the q-tree.
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Figure 2.3: An example for the q − tree algorithm.

After having converted hand-written digits into suitable representations, gram-
mar inference is used to construct a tree automaton from every set of trees represent-
ing the same digit. Grammar inference [51] is an inductive approach to represent
recognition classes as grammars in the sense of a term-rewriting system and learn
such grammars from examples available for the recognition classes.

An algorithm from [34] is used to obtain the automata from examples.
In this section I provide a description of this polynomial time algorithm to cal-

culate a distance between a tree and a tree automaton [34]. Below I include a
few necessary definitions, and for a broader picture of Tree Automata theory and
applications, the reader is referred to [13].

Assume we are given an alphabet V , and a set of natural numbers N .
A ranked alphabet is defined as the association of V with a finite relation r in

(V × N).

Vn := {σ ∈ V | (σ, n) ∈ r}. (2.2)

V T is the set of finite trees whose nodes are labelled with symbols in V .
A tree is inductively defined as follows:

V0 ⊆ V T ; (2.3)

σ(t1, . . . , tn) ∈ V T : (2.4)

for ∀t1, . . . , tn ∈ V T , and σ ∈ Vn.
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Given a tree t, the set of subtrees of t is denoted as Sub(t):

Sub(a) = ∅, (2.5)

for ∀a ∈ V0;

Sub(σ(t1, . . . , tn)) = {t1, . . . , tn}
⋃

i=1..n

Sub(ti), (2.6)

for ∀ t1, ... , tn ⊆ V T , and σ ∈ Vn.
The root of the tree, root(t), is defined as:

root(a) = a, (2.7)

for ∀a ∈ V0;

root(σ(t1, ..., tn)) = σ, (2.8)

for ∀t1, ..., tn ∈ V T , and σ ∈ Vn.
The depth of the tree, depth(t), is defined as:

depth(a) = 0; (2.9)

depth(σ(t1, ..., tn)) = 1 + max{depth(ti)} (2.10)

for i = 1, ..., n, and ∀ti ∈ V T , where 1 ≤ i ≤ n, and σ ∈ Vn.
Subtrees for which depth(t) ≥ 1 are called successors of t and denoted H t:

Hσ(t1, ..., tn) = 〈root(t1), ..., root(tn)〉 : (2.11)

for ∀t1, ..., tn ∈ V t, and σ ∈ Vn.
Let the size of the tree t, denoted by |t|, be defined inductively as

|a| = 1, (2.12)

for ∀a ∈ V0.

|σ(t1, ..., tn)| = 1 +
∑

i=1...n

|ti| : (2.13)

for ∀tn ∈ V T , and σ ⊆ Vn.
Given a tree t, let leaves(t) be the set defined as follows:

leaves(a) = {a}, (2.14)

for ∀a ∈ V0;

leaves(σ(t1, . . . , tn)) =
⋃

i=1..n

leaves(ti), (2.15)

for ∀t1, . . . , tn ∈ V T , and σ ∈ Vn.
Σ denotes the set of a ∈ V0 and is called the leaf alphabet.
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Let the deterministic tree automaton1 be defined as a tuple:

A = (Q, V, δ, F ), (2.16)

where:
Q is finite set of states;
V is a ranked alphabet with Q ∩ V = ∅;
F ⊆ Q is a set of final sates;
δ = (0, . . . , m) is a finite set of transitions defined as follows:
δn: (Vn × (Q ∪ V0)

n → Q), where n = 1, . . . , m.
δ0(a) = a, for ∀a ∈ V0.

The relation δ can be extended to operate on trees:

δ : V T → Q ∪ V0, (2.17)

δ : (σ(t1, . . . , tn)) = δn(σ(δ(t1), . . . , δ(tn))), (2.18)

if n ≥ 1,
δ0(a) = a. (2.19)

A given tree t ∈ V T is accepted by A, if δ(t) ∈ F .
Given the state q ∈ Q, we define the ancestors of the state q:

Ant(q) = {〈p1, ..., pn〉|pi ∈ (Q ∪ V0) ∧ δn(σ, p1, ..., pn) = q}. (2.20)

Let σt
i be the ith node of tree t in post order enumeration, which means that on

the same level the nodes are ordered from left to right and the levels are passed in
bottom-up manner. Ht

i is the string formed by the successors of σi in t.
Edit costs between trees are defined as follows:
Insertion costs are defined as:

B(a) = 1, (2.21)

for ∀a ∈ Σ;

B(σ(t1, ..., tk)) = 1 +
∑

∀j
B(tj). (2.22)

Deletion costs are defined as:

I(a) = 1; (2.23)

I(σ(t1, ..., tk)) = 1 +
∑

∀j
I(tj). (2.24)

Substitution costs are defined as:

S(a, a) = 0 (2.25)

1further in the text abbreviated to TA
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and
S(a, b) = 1 (2.26)

for ∀a, b ∈ Σ.
S(σ(t1, ..., tk), a) = B(σ(t1, ..., tk)) + I(a); (2.27)

S(a, σ(t1, ..., tk)) = B(a) + I(σ(t1, ..., tk)). (2.28)

The algorithm explores the tree and for ∀σi ∈ t calculates the cost to reduce the
tree St

i to every state of the automaton. Given a node of a tree σi:

St
i = σ(t1, ..., tn) (2.29)

and a state q ∈ Q, the strings involved in comparison are:

• the ancestors of each state of the automaton Ant(q) and

• the sequences
H t

i = 〈h1, ..., hn〉, (2.30)

where hi ∈ {ti} ×Q, if Depth(ti) ≥ 1, hi = (ti, ti).

Ĥ t
i extends the notion of H t

i to a chain of states instead of tree nodes. This measure
is stored in a matrix DA indexed by the states and the tree nodes. To carry out this
calculation it is necessary to extend the edit operations to take into account every
possibility. Instead of what was defined in Equations 2.23 - 2.24 for delete:

I(q) = Min{I(t)|δ(t) = q}, (2.31)

for ∀q ∈ Q. Instead of what what was defined for insert above in Equations 2.21 -
2.22

B(t, q) = B(t), (2.32)

for ∀q ∈ Q, and ∀t ∈ V T . For substitution instead of Equations 2.25 - 2.29,

S((a, a), b) = S(a, b), (2.33)

for ∀a, b ∈ V0.
S((a, a), q) = B(a) + I(q), (2.34)

for ∀q ∈ Q, and ∀a ∈ V0.

S((t, q), p) = B(t) + I(p). (2.35)

The method visits the tree nodes in post-order and at each node carries out distance
calculations.

Given a generic string edit distance calculation algorithm Dc, e.g. [69], instead
of Dc we have D̂c:

D̂c : (V T )× (Q ∪ V T ))∗ × (Q ∪ V0) −→ N. (2.36)

The algorithm maintains the same algorithmic scheme, but using the above defined
edit operations.
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We can establish the distance between a tree t

t = σ(t1, t2, ..., tk) (2.37)

and a state q. If depth(t) = 1, then

D(t, q) = Min{D̂c(Ĥ
t, x) | x ∈ Ant(q)}. (2.38)

Otherwise,

D(t, q) = Min{D̂c(〈t1, qi1〉, ..., 〈tk, qik〉, x) +
k∑

j=1

D(tj, qij)}, (2.39)

where x ∈ Ant(q), and 〈(t1, qi1), ..., (tk, qik)〉 ∈ Ĥ t.
After the edit operations between a tree t and a state q have been defined, let

the distance from a tree t to a TA A be the operations with minimum cost necessary
to allow the TA to accept the tree:

D(t, A) = Min{D(t, q|q ∈ F )} (2.40)

Under the dynamic programming scheme in post-order enumeration when a node σi

St
i = σ(t1, t2, ..., tk) (2.41)

is going to be analysed, every distance between St
i and the state of the automaton

has already been calculated and stored in DA.

A scheme of the algorithm:

Input: A finite tree automaton A and a tree t.

Output: Distance from the tree t to the automaton A.

Method: [Initialization]

∀σi ∈ t{

∀q ∈ Q{

DA[σi, q] =∞

}

}

[ in post order enumeration]



2.2. CLASSIFIERS 17

∀σi ∈ t{

∀q ∈ Q{

DA[σi, q] = Min(DA[σi, q],Min∀x∈Ant(q)(D̂c(S
t
i , x))

}

}

End Method.

3) Once the distance is defined, the learning method is an
error-correcting grammar inference technique [35].

The sequence of transitions applied to accept a tree is called the path. The
minimum cost path ∆t is a sequence of transitions that should be applied to obtain
the minimum distance from t to A under the scheme described above. The set of
edit operations with a minimum cost may not be unique, but this does not affect
the inference algorithm.

For a subtree of t:
τi = σ(τ1, ..., τik) (2.42)

let d(τi) ∈ ∆ be the transition, which is applied to reduce τi:

δ(σ, ui1, . . . , uik) = qi, (2.43)

where uij = τij, if τij ∈ V0, otherwise uij = q, in case d(τij) ≡ δ(σ(z1, . . . , zn).
Let the sum of every edit operation cost applied in ∆ be called the accepting

cost :
∆ = ∆P ∪∆N . (2.44)

The accepting cost consists of two non-overlapping parts: the transitions that add
to the error cost, ∆N , and the transitions that do not add to the error cost, ∆P .

Error-correcting tree language algorithm

Input: A set of samples {ζ = t1, . . . , tn}.

Output: A tree automaton A = (Q, V, δ, F ), which accepts at least the sample set.

Method: [Initial automaton, which accepts t1]
Q = Sub(t1) ∪ {t1}
V = leaves(t1) ∪ {σ}
F = {t1}
δ(a) = a, ∀a ∈ leaves(ti)

if [u1, . . . , up ∈ Q]σ(u1, . . . , un) ∈ Q
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then
δ ⊇ δ(σ, u1, . . . , up) = σ(u1, . . . , up)
}

[Processing other trees in the set ζ]

∀t ∈ ζ : i : 2, ..., n{
A = Expand(ti, A)

}

EndMethod

Expand(ti, A) method.

Input:
A tree t = σ(τ1, ..., τn).

A tree automaton A = (Q, V, δ, {qf})

Output: A tree automaton that accepts at least {t} ∪ L(A).

Variables:
Red[1, . . . , | t |] array of Q ∪ leaves(t)
A′ = (Q′, V ′, δ′, F ′)

Method:
Q′ = Q
V ′ = V ∪ leaves(t)
δ′ = δ
F ′ = F
Obtain the minimum cost path 4t

for ∀z ∈ Sub(t){
dz = δ(σ, uz1, . . . , uzp) = qz

if (z ∈ leaves(t))
then Red[z] = z
else Red[z] = qz

}
[in post order]
∀z = σ(z1, . . . , zp) ∈ Sub(t){
if (dz ∈ ∆N)
then {Q′ = Q′ ∪ {qN } [add a new state]
δ′ ⊇ δ(σ,Red[z1], . . . , Red[zp]) = qN

elsif { ∃dzj ∈ ∆N
t
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δ′ ⊇ δ(σ,Red[z1], . . . , Red[zp]) = Red[z]
}
}

[Accept transition]
δ′ ⊇ δ(σ,Red[τ1], . . . , Red[τn]) = qf

Return A′

EndMethod.

2.2.3 Learning Decision Trees

The above described learning process ends with every sample represented by a fea-
ture vector with ten features, which are distances to the ten tree automata for digits
from 0 to 9. Then the C4.5 algorithm from the family of entropy decision tree clas-
sifiers is used to first create a decision tree and then to classify new samples based
on its distances to the ten tree automata. The C4.5 is explained in the next section.

To conclude, the protocol for the optical character recognition was as follows:

1. obtain q − tree representation of every digit in the data set;

2. divide the set into two disjoint subsets (Set 1 and Set 2), and with the error-
correcting inference algorithm from Set 1 learn a tree automaton for every
digit;

3. calculate the distance between every digit and every tree automaton;

4. from Set 1 ∪ Set 2 perform the learning and testing phase for decision trees.

C4.5

The C4.5 is a building block for the proposed classification strategy I described in
Chapter 4. The C4.5 belongs to the family of algorithms that employ a top-down
greedy search through the space of possible decision trees. A decision tree is a
representation of a finite set of if-then-else rules. An alternative to the C4.5 is a
generic tree growing framework [5] called CART.

The construction of the tree splits a given training set hierarchically until ei-
ther all the objects within the same region have the same label or the subregion
is pure enough. Consider a c-class problem with Ω = {w1, w2, ..., wc}. Let Pj be
the probability for class wj at node t, estimated as the proportion of points from
the respective class from the data set which reached node t. The impurity of the
distribution of the class labels at t can be measured with the entropy function:

i(t) = −
c∑

j=1

PjlogPj. (2.45)

Impurity has its maximum when the classes are uniformly distributed: i(t) = log c.
For a pure region with only one class label, i(t) = 0, that is takes its minimum.
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Denote the set of classes: {w1, ..., wn} by Ω, and the training set of records by
T . The information needed to identify the class of an element of T :

Info(T ) = −i(t) = I(P ). (2.46)

P is the probability distribution of the partition (w1, w2, ..., wk):

P = (
w1

|T | ,
w2

|T | , ...,
wk

|T |). (2.47)

If we partition T into sets {T1, T2, ..., Tn} on the basis of some feature X:

Info(X,T ) =
n∑

i=1

|Ti|
|T | Info(Ti). (2.48)

The notion of Gain is used to rank attributes and to build decision trees where
at each node the attribute is located with greatest gain among the attributes not
yet considered on the path from the root:

Gain(X,T ) = Info(T )− Info(X, T ). (2.49)

Equation 2.49 represents the difference between the information needed to iden-
tify an element T and the information needed to identify an element T after the value
of attribute X has been defined, i.e. the gain in information due to the attribute X.

The C4.5 is the extension of the ID3 algorithm.

function ID3 (R: a set of features, w: a class label, S: the training set) return
a DT

begin

/ ∗ First special cases ∗ /

If S is empty, return a single node with value Failure.

If S consists of records all with the same value for the
class value, return a single node for that value.

/ ∗Now regular cases ∗ /

Let D in R be the attribute with the largest Gain(D, S);

Let {dj|j = 1, 2, ..m} be the value of attribute D;

Let {Sj|j = 1, 2, ..m} be the subsets of S consisting
respectively of records with value dj for attribute Dj;

Return a tree with root labelled D and arcs labelled d1, d2, ..., dm

going respectively to the trees
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ID3(R− {D}, w, S1), ID3(R− {D}, w, S2), ..., ID3(R− {D}, w, Sm);

end ID3.

Having constructed an almost perfect decision tree we have to prune it to prevent
overfitting. Pruning strategies can be different. Below we explain two of them.

Reduced Error Pruning (REP) is the simplest pruning method. It uses an addi-
tional training set, called the ”pruning set”, unseen during the growing stage.

1. A simple error check in the bottom-up manner is calculated for all non-leaf
nodes.

2. Replace the node with a leaf and label it to the majority class, then calculate
the error of the new tree on the pruning set:
- If the error is smaller than the error of the whole tree on the pruning set, we
replace the node with the leaf.
- Otherwise, keep the subtree.

Pessimistic Error Pruning : the same data set is used both for growing and
pruning the tree. Denote n the number of data points that reached node t and e(t)
the number of errors if t was replaced by a leaf. Let Tt be the subtree rooted at t,
Lt be the set of leaves of Tt, be l′(Tt) the number of errors of Tt with a complexity
correction:

l′(Tt) =
∑

l∈Lt

e(l) +
|Lt|
2

. (2.50)

The node t is replaced by a leaf if

e(t) ≤ e′(Tt) +

√
e′(Tt[n− e′(Tt)])

n
− 1

2
. (2.51)

Tree complexity is expressed as the number of leaves of the subtree. Thus a balance
is sought between the error and the complexity.

The notion of Gain from Equation 2.49 tends to favour attributes that have a
large number of values. For example, if we have an attribute D that has a distinct
value for each record, then Info(D, T ) = 0, and thus Gain(D, T ) is maximal. To
counter this the GainRatio impurity was proposed:

GainRatio(D,T ) =
Gain(D,T )

SplitInfo(D,T )
= ∆iM =

∆i

−∑M
i=1 PilogPi

. (2.52)

SplitInfo(D, T ) is the information due to the split of T on the basis of the value
of the class value D.

SplitInfo(D, T ) = I(
T1

T
,
T2

T
, ...,

Tm

T
) (2.53)

where {T1, T2, ...Tm} is partition of T induced by the value of D.
On the way of evolution from the ID3 to the C4.5, a number of modifications

were added:
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• Missing values.
- While building a decision tree, we can deal with training sets that have
records with unknown attribute values by evaluating the Gain, or the GainRatio
by considering only the records where that attribute is defined;
- While using a decision tree, we can classify unknown attribute values by
estimating the probability of the various possible results.

• Continuous values. To determine the best split point for the feature X we sort
the values of X for all the points in the current node and check ∆iM for a split
point between every two consecutive values of X. The highest ∆iM signifies
the best split point.

• Pruning the decision tree. Pruning the decision tree is done by replacing a
whole subtree by a leaf node. The replacement takes place if a decision tree
established that the expected error rate in the subtree is greater than in the
single leaf.

2.3 Databases of Emotional Speech

In the literature the issue of authenticity of speech material has enjoyed a vivid
research interest. I can single out three types of databases used in SER:

• Type 1 is acted emotional speech with human labelling. They are obtained by
asking an actor to speak with a predefined emotion, e.g. as in DES [16] or in
EMO-DB [7].

• Type 2 is authentic emotional speech with human labelling. These databases
come from real-life applications for example call-centres: [32], [1], [55], [64],
[41], etc.

• Type 3 is elicited emotional speech with self-report instead of labelling, e.g.
[29], where emotions are provoked and self-report is used for labelling control.
In this case, no manual labelling is needed.

Different types of databases are suitable for different purposes. There are objec-
tions against the use of acted emotions. It was shown that acted and spontaneous
samples differ in the view of features and accuracies [68]. In [70] some experiments
focusing on the production and perception of real and acted emotional speech sup-
ported the opinion that acted emotional speech is not felt when spoken, and is
perceived more strongly than real emotional speech. Yet Type 1 can still be quite
adequate testing data as for example in [10]. It is suitable for a novel method which
first requires proof of the concept, rather than construction of a real-life application
for the industry. In Section 7.1 of Chapter 7 Future Work I describe the case where
acted emotions are indispensable for creation of a real life application. Real emo-
tions create additional and partially predicable difficulties, for example the database
is typically highly imbalanced as in the case of the Aibo corpus, and a solution is
resampling [57]. A less trivial difficulty is when the emotional states are fuzzy and
close to one another, as in the Smartkom corpus [53]. The solution to counter some
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of the difficulties that authentic emotions pose have been found, yet some remain
to be open problems. Type 3 is preferable, when adequate reliability on annotating
emotions is difficult to achieve, particularly when annotators are asked to judge in-
frequent emotions like confusion and surprise rather than more typical like anger
or boredom.

There are six databases used in the present study: five of them are of Type 1 (the
Berlin Emotional Database and the four Interface databases of English, Slovenian,
French and Spanish) and one database is of Type 2: the Aibo corpus with authentic
emotions in German. Below brief descriptions of these data sets are provided.

2.3.1 Berlin Emotional Database: EMO-DB

The Berlin Emotional database (abbreviated to EMO-DB) [7] is a publicly available
benchmark database of acted emotional speech. Ten German sentences of emotion-
ally undefined content were acted in seven emotions by ten professional actors.

Number and sex of speakers: five male and five female.
Recognition classes: anger, joy, disgust, fear, sadness, surprise and neutral,

i.e. the set of emotions from the MPEG-4 standard.
Size: 488 phrases.
Labelling: Out of initial 700 phrases, throughout perception tests by twenty

human listeners 488 phrases were chosen as more than 60% natural and more than
80% clearly assignable.

Recording characteristics are 16 bit, 16 kHz, under studio noise conditions.

2.3.2 Interface databases

The Interface databases [23] contain acted emotional speech in French, English,
Slovenian and Spanish.

Number and sex of speakers: two male actors per each database.
Recognition classes: anger, disgust, fear, joy, surprise, sadness and neutral

as well as variations of neutral : regular neutral for French, slow-soft and fast-loud
neutral styles for French, Slovenian and English databases.

Size: randomly chosen subsets of 3711, 3805, and 4030 utterances for English,
Slovenian and French, respectively.

Labelling and unit of analysis: The corpora contain isolated words, short
(five to eight words), medium-length (thirteen words) and long (fourteen to eighteen)
sentences that are context-independent. The sentences are both interrogative and
affirmative.

Recording characteristics are 16 bit, 16 kHz, under studio noise conditions.

2.3.3 FAU Aibo database

The FAU Aibo database [65] contains recordings of spontaneous speech of German
children interacting with the Sony’s pet robot Aibo, which is shown in Figure 2.1.
The children were led to believe that Aibo was responding to their commands,
whereas in truth the robot was controlled by a human operator. The wizard caused
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Aibo to perform a predefined sequence of actions. Sometimes Aibo behaved disobe-
diently thereby provoking emotional reactions.

Number and sex of speakers: The speech was recordered from 26 children:
13 boys and 13 girls.

Recognition classes: There are five recognition classes: Anger, Emphatic,
Neutral, Positive, and Rest.

Size: For this study a subset of 2970 samples from the Aibo corpus, namely the
TRAIN set from the EMO challenge was available.

Labelling and unit of analysis: Here the labelling and the segmentation
strategies decided on by the data set holders are summarized. The recordings were
segmented automatically into turns using a pause threshold of one second. Five
labellers listened to the turns and annotated each word as neutral or belonging to one
of ten other classes. Since many utterances were only short commands and rather
long pauses can occur between words due to Aibo’s reaction time, the emotional
state of the child can also change within turns. Hence, the data was validated on
the word level. The words were labelled according to majority voting: if three or
more labellers agreed, the label was attributed to the word. The results of the
labelling were the following: 101 words were labelled as joyful, 0 as surprised, 2528
as emphatic, 3 as helpless, 225 as touchy (irritated), 84 as angry, 1260 as motherese,
11 as bored, 310 as reprimanding, 3 is rest (non-neutral but not belonging to other
categories), 39169 as neutral and other 4707 did not received any majority vote. In
total there are 48401 words. The final labels are Anger (subsuming angry, touchy
and reprimanding), Emphatic, Neutral, Positive (subsuming motherese and joyful)
and Rest.

The creators of the Aibo corpus carried out classification experiments on a subset
of the Aibo corpus [65] (Table 7.22, p. 178) and arrived to the conclusion that the
best unit of analysis is neither the word nor the turn, but some intermediate chunk,
which is the best compromise between the length of a unit of analysis and and the
homogeneity of emotional states within one unit. Hence manually defined chunks
based on syntactic-prosodic criteria [65] (Section 5.3.5) were used. A heuristic ap-
proach similar to the one applied in [65] (Section 5.3.8) was used to map the labels
of the five labels on the word level for a whole chunk.

Recording characteristics: Speech was transmitted with a high quality wire-
less head set and recordered with a DAT-recorder. The database is 16 bit, 16 kHz.

2.4 Considerations for SER system design

In this section, the modules of the basic SER system are revisited, – feature extrac-
tion, feature selection, and classification.

2.4.1 Considerations for Feature Extraction module

Throughout this thesis the term feature extraction is used in the SER tradition,
that is it means extracting numeric values of acoustic parameters from the speech
signal, not as the construction of high-level features, as in the pattern recognition
literature.
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Feature vectors can be long- or short-time ones. Long-time features are esti-
mated over the entire utterance length, while short-time features are determined
in a smaller time window, usually 20 to 100 msec. The contemporary research ap-
proach favours long-time features since long-time features identify emotions better
than short-time ones [31], [56]. On the other hand, the argument in favour of short-
time features [43] is that global statistics can be misleading because it captures
other phenomena. For example, interrogative sentences usually imply a wider pitch
contour than affirmative ones, thus the pitch standard deviation in the interrogative
phrase is usually larger, yet this is a reflex of the syntax of the sentence only and
not the case of speaking emotionally as larger value of pitch std usually indicates.

In phonetics, acoustic parameters are traditionally divided into two classes:
prosodic and segmental. To my best knowledge, there is no rigorous definition
of prosody. For a working definition of prosodic and segmental I take the one from
affective speech synthesis research, where prosody is defined as pitch, intensity and
duration, and segmental parameters as spectrum and voice quality. The voice quality
features extracted in SER systems are: formant means and band widths, harmonic to
noise ratio, MFCC coefficients, and spectrum connected features for example FFT,
spectral roll-of-point and flux. In the literature prosodic features are invariably in-
cluded in the feature vector, while segmental features are often left out. For SER
it makes sense to extract both types of features, since it has been shown that some
vocally transmitted emotions are better described and recognized via prosodic pa-
rameters, while others are better identified with segmental parameters. Languages
differ in the way how they encode speech emotions. For example, in Spanish sadness
and surprise are expressed by means of prosodic features, while happiness and cold
anger are communicated by segmental features [38]. The authors of [2] conducted
experiments through recognition and synthesis modifying pitch with a PSOLA-like
algorithm. They confirmed that in Spanish, surprise is a prosodic emotion, anger
is segmental, while sadness and happiness are a mix. On the contrary, in Japanese
anger, surprise and sorrow are prosodic, while joy and fear are segmental [40].

There is plenty of active research in the search for the golden set of features.
This includes work in defining new signal features [36], [41]. As well as constructing
new features from the known low-level features. Such constructed features can
be used alone or be early- or late-fused with the initial feature set [49]. As for
constructed features, evolutionary programming techniques [27] were applied [55]
and I contributed to this line offering the distance-to-automaton features, which are
described in Chapter 5. Also non-signal information can be included in the feature
vector, for example adding information about dialogue structure [1], [32], [9], speaker
personality and tracking lexical keys [54] were proposed.

2.4.2 Considerations for Feature Selection

The feature selection procedure gives a number of simultaneous improvements:

• it eliminates irrelevant features that hinder the recognition rates;

• it lowers the input dimensionality and therefore improves generalization;

• it saves computational time.
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There have been examples of successful SER experiments that do not have an auto-
matic stage of feature selection, especially in the early literature. Sometimes people
extract the features that were chosen in other studies or they chose a classifier,
which is robust against noisy features, or had enough knowledge about the domain
to guess the right set.

As far as the automatic feature selection is concerned, there are two fundamen-
tally different approaches. One is to make an independent assessment based on
general characteristics of the data and the other one is to evaluate the subset using
the machine learning algorithm that will be ultimately employed for learning. The
first is called the filter method, because the attribute set is filtered to produce the
most promising subset before learning starts. The second is the wrapper method,
because the learning algorithm is wrapped into the selection procedure.

2.4.3 Considerations for Classification Module

As for the choice of the classifier, as it is stated in the no free lunch theorem [72]
there is no uniform a priori answer to the question which classifier constitutes the
best choice. The criterion for selecting the classifier should be related to the task,
in order to take into account the regularities of the problem, and the geometry of
the input feature space. Some classifiers are more efficient with certain type of class
distributions, and some are better at dealing with many irrelevant features or with
structured feature sets. A straightforward strategy to choose a classifier is to test
all the classifiers available on the validation set and take the top performer. In the
literature many classifiers have been tried for SER. The support vector machines
and the neural networks are the most popular choices. For the data in this study
the support vector machines and the multilayer perceptron proved their reputation
of the top performers: on the Berlin EMO-DB and on the Aibo corpus respectively
(Section 5.3).

2.4.4 Multilingual SER

In [52] the hypothesis of universality versus language variability of the emotion ef-
fects on vocal production was studied. The idea was as follows: if emotion effects
on the voice were universal, little or no adaptation would be necessary when switch-
ing between recognition in different languages, whereas culturally or linguistically
relative emotional effects would require special adaptations for specific languages or
countries. The results of perception experiments support a mild version of the uni-
versality hypothesis. The experiments in question deal with the languages of three
families: Germanic (Dutch and English), Romance (Italian, French and Spanish)
and non Indo-European languages spoken in Indonesia. According to the experi-
ment, belonging to a language family correlates with the emotion coding too, that is
being similar as languages (in grammar and basic vocabulary) implies similarity in
speech emotion coding by means of pitch, energy, time-related parameters and so on.
In practice this partial universality is large enough to allow for direct multilingual
emotion recognition, at least on a mixture of Indo-European languages.

Another interesting result was reported in [26], where it was shown that basic
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emotions in English, Chinese and Japanese are separable in the coordinates of pitch
expectancy and variance.
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Chapter 3

ESEDA system

The first objective of this thesis as I put it in Chapter 1 is

• to build a robust system to be exposed to acted and authentic emotions in
various languages.

Here I present my ESEDA system. ESEDA stands for Enhanced Speech Emotion
Detection and Analysis. It is based on a standard supervised machine learning
procedure and is enhanced with an additional module of classification error analysis
and prevention. The error prevention module explores the confusion matrix obtained
on the validation set and decides which of the available actions to undertake in order
to avoid some types of errors in the future. Despite its theoretical simplicity the
inclusion of this module leads to good improvements in accuracy and is therefore
practically useful.

The structure of this chapter is as follows. Section 3.1 covers the basic part of the
system’s architecture and its testing. In Section 3.2 I explain the ideas underlying
the error-prevention module, give an example of how it works on onde of the data
sets, and finally provide its testing results. Section 3.3 is discussion and conclusions.

3.1 Basic System Architecture

Having carefully weighed all the facts from Section 2.4 [60], I made my choices with
respect to the design of the ESEDA system. The standard part of the system is
comprised of the three modules:

• feature extraction,

• feature selection, and

• classification.

Their performance serves as a baseline to judge the usefulness of the module for
error prevention.

29
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Feature Extraction

The feature extraction module extracts 116 global statistical features, both prosodic
and segmental. The acoustic parameters are pitch, intensity, formants and har-
monicity. A complete list of the features can be found in Appendix B Low-level
features.

I started extracting statistical functions from the acoustic parameters that were
reported to be beneficial in the SER literature. Where I was not sure whether a
particular feature would be redundant or useful, I still added it. This is an affordable
redundancy because:
– feature selection will filter out the irrelevant features;
– some features become relevant in combination with other features;
– it is known that many of the features proposed in the psychoacoustic literature
turned out to be not-very-useful for SER. I decided to allow for a bigger diversity in
the ESEDA for the sake of possible new applications that have to do with human
impressions. I stopped having extracted a little more than 100 features because:

1. Enough features have been extracted already to allow for reasonably accurate
SER.

2. Open-source powerful feature extraction software was on its way. Such systems
are not solely SER-oriented and thus offer a bigger variety of features than a
SER designer would think of. For the work described in Chapter 5 Distance
To Automata Features I used the powerful feature extraction system SMILE
for music [17], made available for the public use this year. Another advantage
of the open source software is the resulting transparency of the system.

New open-source powerful solutions keep appearing and with time older blocks can
be substituted with them. Therefore, with respect to the basic recognizer, instead
of polishing individual modules, I decided that further efforts to improve robustness
of the ESEDA should lie in devising wrapper approaches, like the module for error
prevention explained in Section 3.2.

Feature Selection

The feature selection procedure implements correlation-based feature subset selec-
tion [18], which is one of the filter type. It eliminates redundant and irrelevant
features extracted by the previous module by selecting a subset of attributes that
individually correlate well with the class but have little intercorrelation. The corre-
lation between two nominal attributes are measured by the symmetric uncertainty :

U(A,B) =
i(A) + i(B)− i(A,B)

i(A) + i(B)
; (3.1)

where i is the entropy function1 from Equation 2.45. The symmetric uncertainty
lies between 0 and 1. Correlation based feature selection determines the goodness

1The joint entropy of A and B i(A,B) is calculated from the joint probabilities.
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of an attribute set through

∑
j

U(Aj, C)√∑
i

∑
j U(AiAj)

, (3.2)

where C is the class value and the indices i and j range over all attributes in the
feature vector.

The resulting vector depends on the language2:

• For French it had nine features: mean of pitch analysis based on cross-
correlation method, mean of intensity, mean of harmonicity Cc, value at 1500
Hz as a function of frequency of long-term average spectrum, max of long-term
average spectrum, frequency of minimum of the power spectral density, min of
pitch Cc, mean absolute value of pitch SPINET, mean absolute slope of pitch
SPINET.

• For Interface English the feature vector had 22 features: max of pitch Cc,
std of pitch Cc, column distance harmonicity Gne, mean of intensity, mean of
harmonicity analysis based on auto-correlation method (abbreviated to Acc),
min of long term average spectrum, max of long term average spectrum, mean
of long term average spectrum, bin width of long term average spectrum,
min of long term average spectrum pitch corrected, max of long term average
spectrum pitch corrected, quantile of pitch Acc, std of pitch Acc, min of pitch
Cc, max of pitch Cc, std of pitch Cc, jitter Dpd, min of pitch SPINET, max
of pitch SPINET, quantile of pitch SPINET, max of pitch Shs, mean absolute
slope of pitch Shs.

• For Interface Slovenian the feature vector had 13 features: column distance
harmonicity Gne, max of intensity, std of intensity, mean of harmonicity Cc,
bin width of long term average spectrum, value at 1500 Hz as a function of
frequency of long-term average spectrum, min of long-term average spectrum,
mean of long-term average spectrum, std of pitch Acc, jitter Local, mean of
absolute slope of pitch SPINET, min of pitch Shs, std of pitch Shs.

• For Interface Spanish the feature vector had 31 features: min of pitch Cc, max
of pitch Cc, std of pitch Cc, mean of intensity, min of harmonicity Acc, min of
harmonicity Acc, min of long-term average spectrum, frequency of min of long-
term average spectrum, max of long-term average spectrum, mean of long-term
average spectrum, value in bin of long-term average spectrum pitch corrected,
min of long-term average spectrum pitch corrected, max of long-term average
spectrum pitch corrected, local pitch height of long-term average spectrum
pitch corrected, height1 of long-term average spectrum pitch corrected, min of
pitch Cc, max of pitch Acc, mean of pitch Acc, std of pitch Acc, mean absolute
slope of pitch Acc, slope with octave jumps pitch Acc, quantile of pitch Cc,
mean of pitch Cc, std of pitch Cc, slope with octave jumps of pitch Cc, point

2The abbreviations used and the algorithms behind a particular statistics are covered in Ap-
pendix B Low-level Features.
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pitch process: jitter rap, min of pitch SPINET, slope with octave jumps pitch
SPINET, linear fit of pitch SPINET, max of pitch Shs quantile of pitch Shs.

• For EMO-DB German the feature vector had 27 features: mean of pitch Cc,
std of pitch Cc, mean of intensity, max of intensity, min of format LPC, max
of formant LPC, min of harmonicity Acc, max of harmonicity Acc, value at
1500 Hz as a function of frequency of long-term average spectrum, min of
long-term average spectrum, frequency of min of long-term average spectrum,
max of long-term average spectrum, bin width of long-term average spectrum
pitch corrected, min of long-term average spectrum pitch corrected, max of
long-term average spectrum pitch corrected, mean of pitch Acc, std of pitch
Acc, mean absolute slope of pitch Acc, quantile of pitch Cc, std of pitch Cc,
jitter Rap pitch Point Process, jitter Dpd, std of pitch SPINET, slope with
octave jumps pitch SPINET, max of pitch Shs, quantile of pitch Shs, mean
absolute slope of pitch Shs.

• I did not use the feature extraction module from the ESEDA for the work with
Aibo German. Instead I used the powerful feature extraction system SMILE
for music from [17]3.

• For merged Interface data sets, the feature vector had 21 features: maximum
of pitch CC, std of pitch Cc, column distance of harmonicity Gne, mean of
intensity, mean of harmonicity Cc, max of harmonicity Acc, min of long-term
average spectrum, frequency of min of long-term average spectrum, max of
long-term average spectrum, bin width of long-term average spectrum pitch
corrected, max of long-term average spectrum pitch corrected, min of pitch
Acc, mean of pitch Acc, std of pitch Acc, slope with octave jumps of pitch
Cc, jitter Dpd, min of pitch SPINET, mean absolute slope of pitch SPINET,
quantile of pitch Shs, std of pitch Shs.

Classification

The classification module takes as input a feature vector created by the feature se-
lection module, and applies the multilayer perceptron classifier [71] or the support
vector machine [67], in order to assign a class label to it. As for multilingual clas-
sification, I merged the Interface corpora, did feature selection, trained and tested
the classifier as if the data were from a monolingual data set.

3My reasons were as follows:

1. I wanted to submit the TA features for an open competition of high-level features at the
INTERSPEECH challenge, and the requirement was that the high-level features should be
constructed from the low-level features provided by the organizers;

2. SMILE is a powerful feature extraction system aimed for various signal processing applica-
tions and has just become publicly available. I took the earliest opportunity to benefit from
it in my research.
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English Slovenian French Spanish
Neutral 95% 92% 76% 93%
Anger 75% 86% 70% 66%
Joy 62% 48% 83% 74%
Fear 78% 72% 53% 81%
Surprise 76% 51% 63% 79%
Disgust 49% 61% 94% 70%
Sadness 76% 78% 72% 79%
Averaged 73% 71% 81% 80%

Table 3.1: The accuracy on English, Slovenian, French and Spanish.

Neu An Dis Fe Jo Su Sa %
Neu 297 61 18 1 1 9 2 76
An 41 218 16 0 0 38 0 70
Dis 22 16 660 0 0 6 1 94
Fe 0 0 0 372 70 112 146 53
Jo 0 0 0 66 577 30 25 83
Su 15 17 3 83 44 330 33 63
Sa 0 0 0 140 33 26 501 72

Table 3.2: Basic Recognition for French.

3.1.1 Testing for the basic recognizer

For the testing protocol, 10-fold cross-validation was used. The recognition accuracy
for the Interface data sets are listed in Table 3.1. The confusion matrices for mono-
lingual validation are presented in Tables 3.2, 3.3, 3.4, and 3.5 for French, English,
Slovenian and Spanish respectively.

As follows from the matrix for the French language in Table 3.2, the obtained
accuracy is 73%. Accuracies for the individual classes are: 76% for neutral, 70% for
angry, 94% for disgusted, 53% for fear, 83% for joy, 63% for surprise, and 72% for
sad. On average the accuracy are good, with the exception of fear, which is often
confused with surprise and sad, and surprise, which is often confused with fear.
Symmetry4 in the error pattern is not infrequent and will appear further.

As follows from the matrix for the English language in Table 3.3, the average
accuracy is 81%. The accuracy for individual classes is: 95% for neutral, 75% for
angry, 49% for disgusted, 78% for fear, 62% for joy, 76% for surprise, and 76% for
sad. The least well recognized classes are joy (it is often confused with neutral and
surprise) and disgust (it is often confused with neutral and anger).

As follows from the matrix for the Slovenian language in Table 3.4, the ob-
tained accuracy is 71%. We have 92% for neutral, 81% for angry, 74% for fear, 62%
for joy, and 57% for surprise. The least well recognized classes are joy (it is often
confused with surprise and disgust) and surprise (it is often confused with disgust).

4I use the underlined font to highlight symmetry.
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Neu An Jo Fe Su Di Sa %
Ne 1752 7 33 8 4 46 2 95
An 33 279 19 1 12 27 1 75
Jo 61 20 231 13 32 13 1 62
Fe 13 0 14 289 1 10 45 78
Su 2 6 27 0 141 9 1 76
Dis 117 30 20 5 16 181 3 49
Sa 9 0 1 34 0 1 141 76

Table 3.3: Basic Recognition for English.

Neu An Jo Fe Su Di Sa %
Ne 1058 90 0 0 1 0 0 93
An 105 639 0 0 1 0 66
Dis 0 1 465 8 84 47 153 70
Fe 0 1 4 270 42 51 7 81
Joy 0 0 96 41 371 232 35 74
Sur 0 0 31 67 227 388 47 79
Sa 0 1 92 4 36 30 594 79

Table 3.4: The confusion matrix for Slovenian.

Neu An Jo Fe Su Di Sa %
Ne 1534 34 53 9 13 0 15 93
An 36 512 40 14 70 49 1 71
Dis 84 54 508 38 17 12 18 70
Fe 18 13 31 591 12 38 31 81
Joy 19 73 12 16 538 73 0 74
Sur 9 51 10 37 44 576 1 79
Sa 38 1 18 25 0 0 311 79

Table 3.5: Basic Recognition for Spanish.

Neu An Jo Fe Su Di Sa %
Ne 5286 348 166 79 110 76 99 86
An 496 1688 73 61 178 197 18 62
Dis 460 106 1066 88 93 84 97 53
Fe 113 8 58 1756 159 215 244 69
Joy 275 232 92 183 1688 449 28 57
Sur 102 108 30 186 402 1476 41 63
Sa 203 17 80 263 38 51 999 61

Table 3.6: The confusion matrix for multilingual SER.
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class precision recall F-measure
neutral 0.76 0.86 0.81
anger 0.67 0.62 0.65
disgust 0.68 0.53 0.60
fear 0.67 0.69 0.68
joy 0.63 0.57 0.60
surprise 0.58 0.63 0.60
sad 0.66 0.61 0.63

Table 3.7: Precision, Recall, and F-measure for multilingual emotion recognition.

class precision recall F-measure
fear 0.82 0.74 0.77
disgust 0.72 0.74 0.73
happiness 0.52 0.49 0.51
boredom 0.73 0.75 0.74
neutral 0.71 0.78 0.75
sadness 0.88 0.94 0.91
anger 0.75 0.76 0.75

Table 3.8: Recognition with the MLP on the EMO-DB.

As follows from Table 3.8, the accuracy for acted German (Berlin EMO-DB)
averaged over all classes is 74%.

The question of authenticity of emotions has been a hot topic in the literature
for the last four years. I had to prove that the ESEDA can classify authentic speech
emotions as well as try out my ideas beyond the lab conditions. Table 3.10, reports
the testing results on authentic German (the Aibo corpus). As follows from the
confusion matrix, the accuracy averaged over all classes is 61%.

Table 3.6 provides the confusion matrix for multilingual SER on a mixed dataset
of English, Slovenian, French and Spanish. The averaged accuracy is 69.5%. Preci-
sion, recall and the F-measure are provided in Table 3.7. The least well recognized
classes are joy (is mostly confused with surprise), surprise (is mostly confused with
joy) and sad (is mostly confused with fear). Again, there is symmetry (highlighted
with the underlined font) is present in the error pattern: joy and surprise are con-

class precision recall F-measure
emphatic 0.55 0.31 0.40
anger 0.65 0.15 0.24
neutral 0.62 0.95 0.75
rest 0 0 0
positive 1 0.01 0.02

Table 3.9: Precision, Recall and F-measure for the Aibo corpus.
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Emphatic Anger Neutral Rest Positive %
Emphatic 189 13 411 0 0 31
Anger 57 35 148 0 0 15
Neutral 74 3 1597 0 0 95
Rest 18 1 202 0 0 0
Positive 3 2 215 0 2 1

Table 3.10: The confusion matrix for the Aibo corpus.

fused with one another. One more time, a suitable treatment would be to treat joy
and surprise as one class first, recognize everything else and then recognize between
joy and surprise in a more appropriate feature space defined by a separate feature
selection step made for this binary classification task. Summing up the observed
properties of the error matrices, I can conclude that:

1. Errors often imply a symmetrical pattern: if class X is typically taken for class
Z, then it often is the case that the reverse is also true: Z is taken for X. This
makes classification decomposition a naturally fitting solution.

2. Neutral seems always to be the best captured emotion, while disgust is least
well recognized with the exception of one language. I think this caused by
habit: the neutral affect is the most frequent, while disgust is extremely infre-
quent in real life. People can hardy recall being disgusted and therefore can
not play this emotion in a sufficiently convincing way.

3.2 Module of Error Analysis and Prevention

3.2.1 Description of the additional block

After having constructed the basic speech emotion recogniser I analysed the accuracy
and realised that there is room for improvement. Certainly the desired improvement
can be obtained in more than one way. For example, a direct solution is the revision
of every module of the basic recognizer: feature extraction, feature selection or
classification. That for example could be extracting more signal features, or trying
all the available feature selection algorithms on the validation set and choosing the
one that leads to the best accuracy, and so forth. The drawback is that it can
turn out to be database-dependent, since we can not be sure which are the best
features or the best classifier a priori before having seen the type of speech data:
for example speech of a German child interacting with a toy is unlikely to show the
same trends as Spanish data from a call centre. A data-independent solution would
be of more use: a wrapper machine learning technique without reprogramming the
basic recognizer. To this end, from the rich palette of machine learning methods, I
take classification decomposition.

A decomposition splits a complete multiclass problem into a set of smaller clas-
sification problems. Decompositions allow for learning more accurate concepts due
to simpler classification boundaries in subtasks and the feature selection procedure
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Step  1 :   

S t e p  2 :  

A N + N E D I S F E J O S U S A

A N N E

[Ang ry ,  neu t ra l ,  d i sgus t ,  f ea r ,  j o y , su rp r i se ,  sad ]

Figure 3.1: The scheme for the classification decomposition.

done individually for each classification step [12]. When doing classification de-
composition, the central choice is the order of combination of smaller classification
steps, called the classification path. My idea is to derive the classification path from
the confusion matrix and, uncovering the reasons for errors, design a module that
prevents the system from making such errors in the future:

1. The class of special interest is identified (denote it class I), for which the recog-
nition rates are to be improved. For example it can be the worst recognised
class or a class of special interest for some application. From the confusion ma-
trix of the standard classification step it is deduced with which other class the
class of interest is most frequently confused (denote it class J). The original
classification step is then divided into two new steps: the first multiclassifi-
cation step, where the new class labels are the old ones, except that there is
a joint label K for classes I and J , and the second binary classification step,
where instances of class K are classified into I or J .

Analogously for to the case of one class of special interest I, for the case when
there are m (m ≥ 2) classes of special interest (or classes recognized with
the accuracy below the desired threshold): {I1, ..., Im}. From the confusion
matrix of the standard classification step, it is deduced with with other class
{J1, ..., Jm} {I1, ..., Im} are pairwisely confused: {(I1, J1), ..., (Im, Jm)}. Tires
are broken randomly. The original classification step is then divided into
(m + 1) new steps: the first misclassification step, where the new labels are
the old ones, except that there is a joint labels K1, ..., Km for K pairs of (Ip, Jp)
for p = 1, ...,m. And k second classification steps where instances of classes
Kp are classified into Ip or Jp.

2. If the minority class problem is present and hampers the classification accu-
racy, cost-sensitive training is employed, more specifically, every minority class
sample in the database is duplicated.

The first step of this procedure is an ordered decomposition approach to a mul-
ticlass classification problem. Usually every sub-classification problem in decom-
position has a simpler classification boundary and feature selection is performed
separately for individual classification steps. The classification path of this experi-
ment is shown in Figure 3.1.

The minority class detection operates as follows:

• If some class is not well recognised (that is ≤ 70%), check if this is a minority
class (that is ≤ 500 samples in the training set);
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Figure 3.2: The flowchart for the ESEDA.
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• If this is a minority class, duplicate each sample of this class in the training
set.

3.2.2 Example

A flow chart of the ESEDA recognizer is given in Figure 3.2. To try the proposed
block of error-prevention, I took the French data set. The additional block proceeds
as follows:

1. The confusion matrix is obtained, see Table 3.2;

2. Anger was taken as a class of special interest as required in a number of
applications. For example, in call centres anger detection is needed for the
off-line control of how well conflict dialogues are resolved, etc. Alternatively,
fear could have been taken as least well recognized5.

3. From the confusion matrix obtained it was deduced that anger is mostly con-
fused with neutral. Therefore the classification was done in two steps: among
the new classes (the new labels are the old labels, except that there is a joint
label for anger and neutral), and then an extra classification step is added
to classify between anger and neutral. The classification path is depicted in
Figure 3.1.

4. Table 3.11 gives a step-wise explanation of how the detection of minority class
problem worked on the data, where the possible ”paths” of the minority class
problem are coloured in red. As long as the logical conditions are met, the font
is red. The black font signifies that the data in the column was checked, some
logical condition had not been met, and therefore the detection of the minority
class problem stopped. For example, in Table 3.11 take the row starting with
”Fear”: 53% is consistent with the condition The accuracy for a given class is
less than 50%, so the minority class problem detection can continue. Yet the
second condition is not met: the number of samples is 700, which is greater
than 500. The detection of the minority class problem stops and the treatment
of duplicating every sample is not applied for the fear row.

The minority class problem was detected for angry, therefore its every sample
was duplicated in the training set.

3.2.3 Testing for the module of error prevention

Table 3.12 shows the consecutive improvements due to the actions based on error-
analysis. The improvement of 3,5% after the classification decomposition is ex-
pected: decompositions allow for learning more accurate concepts, because usually
smaller problems have simpler classification boundaries and feature selection was
performed separately for the two classification steps.

5At the time I was asked to give a presentation on anger detection for a commercial application
in Telefonica ID, so I thought anger would make the example more interesting.
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Emotion Accuracy Number of samples MCP treatment?
Neutral 76% 389 samples No
Anger 70% 313 samples Yes
Disgust 94% 705 samples No
Fear 53% 700 samples No
Joy 83% 689 samples No
Surprise 63% 525 samples No
Sad 72% 700 samples No

Table 3.11: The Minority Class Problem treatment.

baseline + extra classification + cost-sensit.
step training

An 70% 84% 99.5%
Ne 76% 95% 93%
All
classes 73.3% 76.8% 86%

Table 3.12: The improvements due to error-prevention.

The cost-sensitive training brought 9.2% more. As the recognition rates improve,
the false alarm rate increases only by 2%, that is the accuracy for the neutral class
drops from 95% to 93%. In [57] resampling is done as the part of data cleansing
before training without checking any conditions. It can be done in either way: as
deterministic data cleansing or in a more economical way, as do it, only after having
checked whether a given operation is optimal. In both cases, balancing improved
the accuracy.

3.3 Conclusions

The ESEDA [59], [62] is based on the supervised pattern recognition cycle. The
classical part of the system is comprised of the three modules: feature extraction,
feature selection, and classification. Its performance served as a baseline to validate
the new theory. The ESEDA was tested on acted and real emotions, and on five
languages. The testing results allow me to conclude that the system is ready to be
integrated into real-life applications.

To enhance the classical design, the ESEDA has an exclusive block of error
prevention. The underlying idea is to analyse the confusion matrix on the validation
set and design a module that prevents the system from making these errors on new
material. Despite its simplicity, the module led to notable improvements in accuracy.



Chapter 4

TGI+ classifier

The second contribution of this thesis is a new algorithm of a mixed design with
syntactic [6] and statistical learning [25], the general idea for which comes from
optical character recognition [58]. The syntactic part implements tree grammar in-
ference, and the statistical part implements C4.5 [48]1. First I model the objects by
means of a syntactic method, that is the samples are mapped into their representa-
tions. A representation of a sample is a set of seven numeric values, signifying to
which degree it resembles the averaged pattern of each of the seven classes. Then,
the mappings of samples are classified, not their feature vectors, with a statistical
method. I called the classifier TGI+, which stands for Tree Grammar Inference2 and
the plus is for the statistical learning enhancement. I evaluated the TGI+ against a
state of the art classifier. To choose the competitor for the TGI+, I ran all the weka
classifiers [71] on a benchmark data set. The multilayer perceptron turned out to
be the top performer. Experimental results showed that the TGI+ outperforms the
multilayer perceptron by a statistically significant difference in accuracies of 4.68%,
which allows us to conclude that the TGI+ is a legitimate classification method.

In this chapter, I explain the TGI+ classifier [61]. In Section 4.1 I refresh the
idea of a combined classification strategy from optical character recognition, which
was my starting point. In Section 4.2 TGI+ algorithm I informally introduce and
formally define the proposed classification method. In Section 4.3 I explain my
further extension of the TGI+. In Section 4.4, I report the experimental results,
which I then discuss in Section 4.6 and on the basis of which in Section 4.7 I conclude
that the TGI+ is a classifier with a rightful place among other classifiers that are
recommended for SER.

4.1 Departure point

The general idea comes from optical character recognition and was explained in
greater detail in Section 2.2.2 of Chapter 2. The highlights of the method proposed
for optical recognition of handwritten digits were:

1. obtain a tree representation of every sample in the data set;

1The C4.5 algorithm is also explained in Section 2.2.3 C4.5 of Chapter 2 State of the Art
2Grammar inference is a process of learning a grammar (in the sense of a term-rewriting system)

from examples.

41
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2. divide the data set into two disjoint subsets: Set 1 and Set 2. From Set 1
with an error-correcting inference algorithm learn a tree automaton for each
recognition class;

3. calculate edit distance between every digit and every tree automaton;

4. from Set 1 and Set 2 perform the learning and testing phase for decision trees.

The original implementation of this idea [58] had to be modified in order to suit the
new application: emotional speech in place of hand written digits.

4.2 TGI+ algorithm

In this section I informally introduce and formally define the proposed classifier.

4.2.1 Informal description of the algorithm

The TGI+.1 is comprised of the four major steps, which I summarize below and
explain in greater detail in further sections. Figure 4.1 graphically depicts the pro-
cedure.

Step 1: In order to perform tree grammar inference, the samples are represented
with tree structures. Each utterance from the data set is represented by a tree graph,
whose skeletons are described by the grammar below. The organization of the nodes
in the tree reflects a traditional view on speech, as for example by the phonetician,
expressed as a set of rules. S denotes a start symbol of the formal grammar in the
sense of a term-rewriting system:

{S−→ ProsodicFeatures SegmentalFeatures;

ProsodicFeatures −→ Pitch Intensity Energy;

SegmentalFeatures −→ Jitter Shimmer Formants Harmonicity;

Pitch −→ Min Max Quantile Mean Std MeanAbsoluteSlope;

etc.
}

The etc. stands for further terminating productions, that is the productions,
which have low-level features on their right hand side. All trees have 116 leaves,
each corresponding to one of the 116 features from the sample feature vector. The
trees of the same class are put into one set. In the dataset there are the following
seven recognition classes: fear, disgust, happiness, boredom, neutral, sadness and
anger.

Step 2: Apply tree grammar inference to learn seven automata each accepting a
different type of emotional utterance. Divide the training set into two subsets: T1 is
39% of training data and T2 is the rest of training data. The splitting point at 39%
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Figure 4.1: The TGI+ steps.
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was chosen experimentally. The result of this step is seven automata, one for each
of the seven emotions to be recognised.

Step 3: Calculate edit distances between obtained tree automata and trees in the
training set. Edit distances are calculated between each automaton obtained at
step two and each tree representing utterances from the training set (T1 ∪ T2). The
calculated edit distances are put into a matrix of size: (number of samples in the
training set) × (number of recognition classes). The table has a characteristic look:
the first 39% of the rows are guaranteed to have 0 for a distance to some of the tree
automata, while generally this is not true for the rest of the rows. The explanation
for this is that the first 39% of the training set were used to train the automata and,
clearly, the distance from a sample used in the inference procedure to the automaton,
the grammar of which was being learnt, is 0.

Step 4: Run C4.5 over the matrix to create a decision tree. The C4.5 algorithm
is run over this matrix in order to create a decision tree, classifying each utterance
into one of the seven emotions according to edit distances between a given utterance
and the seven tree automata. The accuracies obtained from testing this decision tree
are the accuracies of the TGI+.1.

A new input sample is fed to the automata in the form of a 116 feature vector.
First the TGI+ calculates distances from a sample to the seven tree automata (the
automata learnt 116 feature intervals at the inference step). Then the TGI+ uses
the decision tree to classify the sample (the decision tree was learnt with the C4.5
from the table, where distances to seven automata to all the training samples had
been put).

As compared to OCR algorithms, Steps 2 and 3 will require adaptations to suit
a new application and in the section below I explain my solution.

4.2.2 Formal definition of the algorithm

For the reader’s convenience, I repeat some of the definitions for tree grammar infer-
ence, which have been already introduced in Section 2.2.2 Combined Classification
Strategy from OCR of Chapter 2 with minor alterations to serve our cause.

Assume we are given an alphabet V , and a set of natural numbers N . A ranked
alphabet is defined as the association of V with a finite relation r in (V × N):

Vn := {σ ∈ V | (σ, n) ∈ r}. (4.1)

V T is the set of finite trees whose nodes are labelled with symbols in V .
A tree is inductively defined as follows:

V0 ⊆ V T ; (4.2)

σ(t1, . . . , tn) ∈ V T , (4.3)

for ∀t1, . . . , tn ∈ V T , and σ ∈ Vn.
Given a tree t, the set of subtrees of t is denoted as Sub(t):

Sub(a) = ∅, (4.4)



4.2. TGI+ ALGORITHM 45

for ∀a ∈ V0;

Sub(σ(t1, . . . , tn)) = {t1, . . . , tn}
⋃

i=1..n

Sub(ti), (4.5)

for ∀ t1, ... , tn ⊆ V T , and σ ∈ Vn.
The root of the tree, root(t), is defined as:

root(a) = a, (4.6)

for ∀a ∈ V0;
root(σ(t1, ..., tn)) = σ, (4.7)

for ∀t1, ..., tn ∈ V T , and σ ∈ Vn.
The depth of tree, depth(t), is defined as:

depth(a) = 0; (4.8)

depth(σ(t1, ..., tn)) = 1 + max{depth(ti)} (4.9)

for i = 1, ..., n, and ∀ti ∈ V T , where 1 ≤ i ≤ n, and σ ∈ Vn.
Subtrees for which depth(t) ≥ 1 are called successors of t and denoted H t:

Hσ(t1, ..., tn) = 〈root(t1), ..., root(tn)〉, (4.10)

for ∀t1, ..., tn ∈ V t, and σ ∈ Vn.
Let the size of the tree t, denoted by |t|, be defined inductively as follows

|a| = 1, (4.11)

for ∀a ∈ V0.

|σ(t1, ..., tn)| = 1 +
∑

i=1...n

|ti|, (4.12)

for ∀tn ∈ V T , and σ ⊆ Vn.
Given a tree t, let leaves(t) be the set defined as follows:

leaves(a) = {a}, (4.13)

for ∀a ∈ V0;

leaves(σ(t1, . . . , tn)) =
⋃

i=1..n

leaves(ti), (4.14)

for ∀t1, . . . , tn ∈ V T , and σ ∈ Vn.
Σ denotes the set of a ∈ V0 and is called the leaf alphabet. Instead of a finite

alphabet of symbols, we allow a to take real values in R: V0 ⊆ R.
Let the deterministic tree automaton (abbreviated to TA) be defined as a tuple

A = (Q, V, δ, F ), (4.15)
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where:
Q is finite set of states;
V is a ranked alphabet with Q ∩ V = ∅;
F ⊆ Q is a set of final sates;
δ = (0, . . . , m) is a finite set of transitions defined as follows:
δn: (Vn × (Q ∪ V0)

n → Q), where n = 1, . . . , m.
δ0(a) = a, for ∀a ∈ V0.

The relation δ can be extended to operate on trees:

δ : V T → Q ∪ V0, (4.16)

δ : (σ(t1, . . . , tn)) = δn(σ(δ(t1), . . . , δ(tn)), (4.17)

if n ≥ 1,
δ0(a) = a. (4.18)

A given tree t ∈ V T is accepted by A, if δ(t) ∈ F .
Given the state q ∈ Q, we define the ancestors of the state q:

Ant(q) = {〈p1, ..., pn〉|pi ∈ (Q ∪ V0) ∧ δn(σ, p1, ..., pn) = q}. (4.19)

Let σt
i be the ith node of tree t in post order enumeration, i.e. on the same

level nodes are ordered from left to right and the levels are passed in the bottom-up
manner. H t

i is the string formed by the successors of σi in t.

4.2.3 Tree Grammar Inference Algorithm

Input: A set of samples ζ = {t1, t2, ..., tn}.

Output: A = (Q, V, δ, F ), which accepts at least the sample set.

Method: [Learn algebra from the first tree]
Q = Sub(t1) ∪ {t1}

V = leaves(t1) ∪ {σ}

F = {t1}

If [u1, u2, ..., up ∈ Q] ∧ [σ(u1, u2, ..., up) ∈ Q]

then {δ ⊇ (σ, u1, u2, ..., up) = σ(u1, u2, ..., up)

}
[ From ζ, learn intervals for leaves]

[ Loop over leaves in post-order enumeration ]
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∀i: 1, ..., 116 {
getI(i);

δ(ai) ⊇ ([ILi, IRi], q0)

}

Method getI(i)

Input: ζ = {t1, ..., tn}

i: number of the leaf in post-order enumeration

Output: [ILi, IRi]

Method:

∀tj ∈ ζ{

V0i ⊇ ai;

}

∀i{

IL,i = argmin{ elements of V0i};

IR,i = argmax{ elements of V0i};

Return [ILi, IRi]
}

4.2.4 Edit Distance Calculation Algorithm

The original algorithm for OCR has a string distance calculation [69] plugged into
the algorithm of calculation of the distance between the automaton and the tree.
This algorithm uses the resemblance of substrings to measure the resemblance of
resulting strings and allows ”shifts”, see Figure 4.2 (A.). In the case of the TGI+,
the grammar from Step 1 outputs a vector-representation, where the position of a
symbol is important and comparisons like in Figure 4.2 (B.) do not make sense.
Instead of DC , the distance on strings, I define the distance on vectors DV . Let x
denote value of some feature X, for the interval [IL, IR], with IL 6= IR, DV is the
distance between the interval and the value x:

DV = 0, (4.20)
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Figure 4.2: String comparison on strings (A) and vectors (B).

in case x ∈ [IL, IR].

DV =
IL − x

IR − IL

, (4.21)

in case x ≤ IL.

DV =
x− IR

IR − IL

, (4.22)

in case x ≥ IR. We set DV = 0, in case IL = IR.
The algorithm proceeds as follows:

1. For every leaf it calculates how far it is from the numeric interval, which the
automaton has for this feature. The distance is calculated through Equation
4.20 – 4.22, for ∀a; V0 ⊆ V T . Denote by i be the position of the leaf node in
post order enumeration.

D(a, q0i) = DV (a, Ii) (4.23)

2. The cost for every upper node is the sum of costs of the node’s ancestors. For
∀σ(t1, ..., tn) ∈ V T , ∀t1, ..., tn ∈ V T , σ ∈ Vn.

D(σ,A) = DV (t1) + ... + DV (tn) (4.24)

3. The cost of the tree is the cost to accept the tree’s root node.

D(t, A) = DA[σroot, qf ] (4.25)

In other words, the costs are calculated in the bottom-up manner and send
them up the tree.
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Input: A finite tree automaton A. A tree t.

Output: Distance from the tree t to the automaton A.

Method: [explore the tree in post-oder]

[as opposed to the solution for OCR,
here there is no table to do dynamic programming,
since there is one state for one node]

∀σi ∈ t{

DA[σi, q] =
∑

∀x∈Ant(q) DV (St
i , x)

}

D(t, A) = DA[σroot, qf ]
Return D(t, A)
End Method.

4.3 Extension of the general scheme: TGI+.2

My further extension of the four steps has to do with Step 3. In the TGI+.1 all
edit costs are equated to 1. In other words, if a feature value fits the interval a
tree automaton has learned for it, the acceptance cost of the sample is not altered.
Whenever a feature value is outside the interval the automaton has learnt for it, the
acceptance cost of the sample processed is equally augmented regardless of which
feature is being processed. In the TGI+.2 some edit costs have a coefficient greater
than 1 (namely the constant k = 1.5 was chosen via experimentation). In other
words, more important features are penalised with higher costs for being outside
their interval. The set of these more important features is determined exclusively
for every class (anger, neutral, etc.) through a feature selection procedure. The
feature selection procedure implements a correlation based feature selection (the
algorithm for which was explained in Section 2.4.2 Feature Selection of Chapter 2)3.

Let ws and wn denote the weight for the selected and non-selected features
respectively. When choosing values for (ws, wn), the solution lies somewhere between
the two extremes

• either treat selected and non-selected features equally,

• or put a lot more of weight on selected features.

I recast the problem of choosing the best pair (wn, ws) into the problem of finding
the value of the parameter k:

k = wn

ws

3Thus, the feature selection algorithm is the same for the TGI+ and its competitor, the multi-
layer perceptron.
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wn ws validation accuracy
0 1 47.00%
0 2,3,... 47.19%
1 1 79.21%
1 1.5 81.09%
1 2 78.65%
1 2.5 78.84%
1 3 80.52%

Table 4.1: Different values of k = wn

ws
.

on the interval [0, 1]. Table 4.1 shows the empirical assessment of this ratio. As
follows from the Table, the pair (1; 1.5) for (wn, ws) yields the best result, and wn

is set to 1 and ws is set to 1.5.

4.4 Experiments

The proposed algorithm should outperform other weka’s classifiers on a benchmark
data set. Having run all the weka classifiers on the benchmark data set EMO-DB
(which I described in Section 2.3.1 of Chapter 2) I already know that the multilayer
perceptron is the top performer. Thus it becomes the competitor for the TGI+.

I carried out the experiments on a benchmark data set for acted emotional speech
EMO-DB, which described in Section 2.3.1 of Chapter 2.

As for the testing protocol, 10-fold cross-validation was used. Figure 4.3 depicts
the division of data into the training and testing sets for different folds: each time
one tenth part is reserved for testing, the 39% of the training set is used for syntactic
training and the whole training set (39% and remaining 61%) is used for statistical
training.

Recall, precision and F-measure per class are given in Tables 4.2, 4.3 and 4.4
for the C4.5, the multilayer perceptron and the TGI+, respectively. The overall
accuracy of the multilayer perceptron, the state of the art recogniser, is 73.9% and
the overall accuracy of the TGI+ is 78.58%, which is a 4.68% ± 3.45% in favour of
the TGI+.

The TGI+ has been evaluated against the C4.5 to find out which is the contri-
bution of moving from the feature vector representation of samples to the distance-
to-automaton one. The C4.5 performs with 52.9% of accuracy, which is 25.68% less
than the TGI+.

4.5 Main property of TGI+

In this section I will discuss the main property of the TGI+ and a consequent further
application for the method.

Unlike many other machine learning schemes, the TGI+ is a human-readable
classification method. It consits of two phases:
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Figure 4.3: The training/testing protocol for the TGI+.

class precision recall F-measure
fear 0.49 0.44 0.46
disgust 0.26 0.24 0.26
happiness 0.35 0.36 0.35
boredom 0.49 0.55 0.52
neutral 0.51 0.46 0.49
sadness 0.71 0.82 0.76
anger 0.69 0.70 0.70

Table 4.2: The C4.5 on the EMO-DB.
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class precision recall F-measure
fear 0.82 0.74 0.77
disgust 0.72 0.74 0.73
happiness 0.52 0.49 0.51
boredom 0.73 0.75 0.74
neutral 0.71 0.78 0.75
sadness 0.88 0.94 0.91
anger 0.75 0.76 0.75

Table 4.3: The MLP on the EMO-DB.

class precision recall F-measure
fear 0.66 0.66 0.66
disgust 0.60 0.60 0.60
happiness 0.86 0.73 0.81
boredom 0.81 0.72 0.77
neutral 0.64 0.79 0.71
sadness 0.83 0.83 0.83
anger 0.89 0.93 0.91

Table 4.4: The TGI+ on the EMO-DB.

1. the human-readable modeling with features based on the idea of simple dis-
tance to a prototypical expression of the emotion;

2. the human-readable decision tree based on the assessment of how close the
expressed emotion is to the sets of rules describing each emotion.

Unlike other methods, the TGI+ can describe in simple terms what in the speech
pattern prevents it from being recognized as this or that emotion. One of the
applications following from this property lies in the clinical context to assess the
capability of the patient with disorders that affect their ability to express speech
emotion.

4.6 Discussion

4.6.1 Correctness of algorithm construction

While constructing the TGI+, it is of critical importance that the following condition
holds:

• The accuracy of the TGI+ is better than that of tree automata and the C4.5.

If this condition holds, then the TGI+ is well constructed, that is its parts, TA
and C4.5, can classify, but less efficiently than their combination. I tested the
TGI+, tree automata and the C4.5 on the same EMO-DB database under the same
experimental settings.
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With respect to tree automata, if the sample x is accepted by more than one
automaton, then ties are resolved randomly:

D(x) = rand(A1, ..., Ak), (4.26)

where x ∈ L(A1) ∧ ... ∧ x ∈ L(Ak). The tree automata performed with 43% of
accuracy, which is 35.58% worse than the accuracy of the TGI+. The C4.5 performed
with 53% of accuracy, which is 25.7% worse than the TGI+. Therefore the condition
is met and I can state that I arrived to a meaningful combination of the methods
from different pattern recognition paradigms.

4.6.2 Selection of C4.5 as a base classifier in TGI+

I considered the possibility of having the MLP in place of the C4.5. The accu-
racies dramatically went down and abandoned this alternative. Different features
go well with different classifiers, and in the literature their combinations are often
determined via experimentation.

For decision trees feature construction has long been considered a powerful tool
for increasing both accuracy and understanding of structure, particularly in high-
dimensional problems [5]. Feature Construction is the application of a set of con-
structive operators to a set of existing features resulting in construction of new
features. And this is what the TGI+ does: it first constructs new features from the
low-level features and then uses a decision tree for classification.

4.7 Conclusions

I have adapted a combined classification approach coming from the optical character
recognition research to the task of speech emotion recognition, that required devising
new algorithms for the grammar inference stage. The syntactic part implements
a tree grammar inference algorithm. The statistical part implements the entropy
decision tree classifier C4.5. I have further extended the idea with an built-in feature
selection procedure. I tested the classifier on a benchmark data set. The proposed
classifier outperformed a state of the art classifier, the multilayer perceptron, with
a statistically significant difference in accuracies of 4.68% and the baseline of the
C4.5, by 26.58%.

The main property of the TGI+ is human-readability of the classification process,
which is of a potential application for example in the clinical context as an assessment
and training tool for patients with impaired capabilities to express speech emotions.
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Chapter 5

Distance-to-Automaton Features

Currently one of the central open problems in SER is the search for novel features,
especially perceptually adequate and high-level ones. There are two ways of doing
so: defining new signal features, as for example in [36] and [41] or constructing
high-level features from the existing signal low-level features.

Feature Construction has long been considered a powerful tool for increasing
both accuracy and understanding of structure, particularly in high-dimensional
problems [5]. Feature Construction [33], [47] is the application of a set of con-
structive operators to a set of existing features resulting in construction of new
features. Examples of such constructive operators include checking for the equal-
ity conditions {=, 6=}, the arithmetic operators {+,−,×, /}, the array operators
{max(S),min(S), average(S)} as well as other more sophisticated operators were
proposed, for example count(S, C) [3] that counts the number of features in the
feature vector S satisfying some condition C. As for constructed features in SER,
evolutionary programming techniques were applied in [55].

In this chapter, new constructed features for SER are proposed. In order to
understand the principles of their construction, let us recall the principles of the
TGI+ described in the previous chapter. First the objects are modeled by means
of a syntactic method, that is the samples are mapped into their representations. A
representation of a sample is a set of the measurements signifying to which degree
the sample resembles the averaged pattern of each recognition class. Then, the
mappings are classified with a statistical method. These mappings can be used as
the constructive features to be early-fused with the low-level features from which
they were calculated. Figure 5.1 depicts the process of feature calculation. Thus,
I propose the high-level features, which are the distances from a feature vector
to the tree automaton accepting class i, for all i in the set of the class labels. I
propose to concatenate the set of the low-level features and the set of the high-level
features, submit the resulting set to the feature selection procedure and then to do
the classification step in the usual way. Figure 5.2 illustrates this scenario of the
classification with early-fusion.

The structure of this chapter is as follows: Section 5.1 provides a description of
the set of the low-level features, used for this experiment, in Section 5.2 I explain my
idea of the high-level distance to automaton features in greater detail and following
it construct such features. In Section 5.3 I describe the data set and the experimental
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Figure 5.1: Calculation of the distance-to-automaton features.
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Figure 5.2: The classification scheme with early fusion.



58 CHAPTER 5. DISTANCE-TO-AUTOMATON FEATURES

settings. In Section 5.4 conclusions are drawn.

5.1 Low-level features

The openSMILE feature extraction system [17] was used to extract speech statistics
from the Aibo corpus. Although this switch from the ESEDA feature extraction
module to openSMILE was a condition to use Aibo, it was also beneficial, since
openSMILE was meant for applications in both speech and music and thus allows
for a greater divercity of low-level features than ESEDA.

There were 16 low-level descriptors:

• zero-crossing rate from the time signal,

• root mean square frame energy,

• pitch frequency normalized to 500Hz,

• harmonics-to-noise ratio by autocorrelation function,

• 1 − 12 mel-frequency cepstral coefficients in full accordance to HTK-based
computation.

To each of these the delta coefficients were additionally computed. Next for each
sample the following 12 functionals were calculated:

• mean,

• standard deviation,

• kurtosis,

• skewness,

• minimum value,

• maximum value,

• relative position and range as well as two linear regression coefficients with
their mean square error.

Thus, the resulting feature vector per sample contains 12× 2× 12 = 384 attributes.

5.2 Distance to tree automata features

The high-level features are distances from a feature vector to the tree automaton
accepting class i, for all i in the set of class labels. There are as many such features
per sample as there are recognition classes, i.e. five in the case of Aibo. The scheme
for calculation of the high-level features is depicted in Figure 5.1. After having
calculated the five distance-to-automaton features for each sample:
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1. the set of low-level features and the set of high-level features are concatenated;

2. their union is submitted to a feature selection procedure;

3. the classification step is done in the usual way.

Figure 5.2 illustrates the scheme of this classification with early fusion.

5.2.1 Calculation of Distance-to-Automaton Features

In this section, following the ideas above the distance-to-automaton features will be
constructed.

Step 1: In order to perform tree grammar inference, samples are represented by
tree structures.

For all classes the skeletons of all tree structures have the same shape determined
by the grammar below. S denotes a start symbol of the formal grammar (in the
sense of a term-rewriting system):

{ S −→ ProsodicFeatures SegmentalFeatures;

ProsodicFeatures−→ Pitch P itch∆ ZeroCrossingRate ZeroCrossingRate∆ Energy
Energy∆;

SegmentalFeatures −→
HarmonicToNoiseRatio HarmonicToNoiseRatio∆ MFCC MFCC∆;

Pitch −→ Min Max MaxPosit MinPosit Range Mean Std Skewness Kurtosis
LinRegO LinRegS
LinRegMSE;

Pitch∆ −→ ...
}

The ”...” signifies that I continue structuring the space of the low-level features.
All the trees have 384 leaves, each corresponding to one of the 384 features from the
feature vector.

Step 2: Apply tree grammar inference to learn the five automata, each accepting a
different recognition class. This step implements the algorithm proposed in Section
4.2.3 of this thesis.

Although the automata for different recognition classes have the same skeletal
shape, they differ with respect to weights on the branches. The set of the more
important features are determined exclusively for every class (anger, neutral, etc.)
through a feature selection procedure. The feature selection procedure implements
correlation based feature selection, the algorithm for which was explained in Section
2.4.2 Feature Selection of Chapter 2.

The leaves of the tree structure corresponding to a concrete emotional sample
are the numeric values from the sample’s feature vector. The leaf nodes of the tree
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automata are the numeric intervals a particular feature takes for a given class in the
training set. These are learned through grammar inference.

The numeric intervals for the leaf nodes were learned from 30% of the training
set. The percentage of the training set that should be fed to the grammar inference
algorithm was taken the same as in the previous chapter, where it was chosen via
experimentation.

Step 3: Calculate the distance-to-automaton features. This step implements the
algorithm that was proposed in Section 4.2.4 of this thesis.

While calculating the edit costs between automaton and samples, if all the nu-
meric leaves are within the intervals the automaton has for them, then the edit
distance from the automaton to the sample is 0. Otherwise, the cost of the modifi-
cations in the grammar of the acceptor in order to accept the sample is calculated.
The rules for feature-selected nodes are more expensive to modify. More specifi-
cally, ws = 1.5 and wn = 1. The pair of weight values were taken the same as in the
previous chapter, where they were chosen via experimentation.

5.3 Experiments

The data set was the training set of the Aibo corpus (as was provided for the
INTERSPEECH challenge [57]), and Section 2.3.3 can be referred to for the corpus
description. There were five recognition classes: Anger, Emphatic, Neutral, Positive,
and Rest.

In order to see to which type of the classifier the type of the proposed features
suits best, I took several conceptually different classifiers: the rule-based classifier
RIPPERk

1 [11], the neural network MLP [71], and the geometric classifier SVM
[67]. A description of these classifiers can be found in Appendix A.

The baseline to beat is the performance of these three classifiers on the low-level
features, selected by the feature selection procedure. The experiments were carried
out in 10-fold cross-validation.

For each sample, five distance-to-automaton features were calculated, then the
set of the original features was concatenated with the set of the newly calculated
distance-to-automaton features, and their union was fed to a feature selection proce-
dure. As a result, two distance-to-automaton features and 45 other low-level features
were selected. The 48-dimensional vectors became the input for the three classifiers.

5.4 Results and Discussion

The results of the contrastive testing, with and without distance-to-automaton fea-
tures, are presented in Table 5.1. The column baseline reports accuracies for the
multilayer perceptron, the support vector Machine, and the RIPPERk [11] working
on the low-level feature vectors. The column with TA features reports accuracies for
the same classifiers working on the vectors containing both, the proposed distance-
to-automaton features and the low-level features. The inclusion of the high-level
features into the feature vector led to the unstable improvements in accuracy: from

1RIPPERk stands for Repeated Incremental Pruning to Produce Error Reduction.
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Classifier baseline with TA improvement
features

MLP 56.57% 57.67% 1.1.%
SVM 61.35% 61.48% 0.13%
RIPPERk 59.53% 68.61% 9.08%

Table 5.1: Accuracies on the low-level and the fused vectors.

notable 9% for the rule based classifier RIPPERk to a negligibly small improve-
ment (1% and 0.13%) on the multilayer perceptron and the support vector machine.
The support vector machine was the top performer on the low-level feature set. Yet,
when the RIPPERk operates on the fused feature set, it outperforms the support
vector machine by 7%. The RIPPERk is a decision tree classifier which was shown
to be competitive with the C4.5 with respect to error-rates but much more efficient
on noisy big data sets [11]. Thus, the classification of the fused set of low-level- and
distance-to-automaton features with the RIPPERk is the evolution of the TGI+
idea and its adaptation to face real-life data.

My intuition is that the distance-to-automaton features should be perceptually
adequate, since they are a general descriptive measure of how far a given sample is
from the class prototype, where the class prototype is modeled with a tree automa-
ton.

5.4.1 Conclusions

In this chapter I proposed the high-level features, which are the distances from a
feature vector to the tree automaton accepting class i, for all i in the set of the
class labels. The automata are trained to operate on feature vectors through the
grammar inference procedure proposed in the previous chapter. There are as many
tree automaton features as there are recognition classes. I proposed to early-fuse
the set of the low-level features and the set of the high-level features, submit the
resulting set to a feature selection procedure and then to do the classification step
in the usual way.

According to the experimental results, inclusion of the proposed features in the
feature set leads to an improvement in accuracies, at least when the proposed fea-
tures are used together with a rule-based classifier. The proposed classification
scheme of the RIPPERk run on the fused set of the low-level and the distance-
to-automaton features outperformed the state of the art top performer (the SVM)
with a statistically significant difference in accuracies of 7%.

The classification of the fused set of low-level- and distance-to-automaton fea-
tures with the RIPPERk is the evolution of the TGI+ idea and its adaptation to
face big and noisy real-life data sets.
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Chapter 6

Results

In this chapter I draw conclusions with respect to my contributions:

1. the ESEDA tool for enhanced speech emotion recognition and analysis;

2. the TGI+ classifier;

3. the high-level distance-to-automaton features.

6.1 The ESEDA system and learning from classi-

fication errors

The ESEDA [59], [62] is based on the supervised pattern recognition cycle. The
classical part of the system is comprised of the three modules: feature extraction,
feature selection, and classification. Its performance served as a baseline to validate
the new theory developed in this thesis. The ESEDA was tested on acted and real
emotions, and on five languages. The testing results allow me to conclude that the
system is ready to be integrated into real-life applications.

To enhance the classical design, the ESEDA has an exclusive block of error
prevention. The underlying idea is to analyse the confusion matrix on the validation
set and design a module that prevents the system from making these errors on new
material. Despite its simplicity, the module led to notable improvements in accuracy.

6.2 TGI+ classifier

I have proposed a classifier for SER, called the TGI+1, [61] of a mixed design with
syntactic and statistical learning. The syntactic part implemented tree grammar in-
ference, and the statistical part implements an entropy decision tree classifier. First,
by means of a syntactic method the samples are mapped into their representations.
A representation of a sample is the set of seven numeric values, signifying to which
degree a given sample resembles the averaged pattern of each of the seven classes.
Second, the mappings of samples, not the initial feature vectors, are classified with a

1TGI stands for Tree Grammar Inference and the plus is for the statistical learning enhancement.
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statistical method. I have also extended the grammar inference part with a feature
selection procedure to penalise more important features with higher edit costs for
being outside the interval, which the tree automata learned at the inference stage.

The TGI+ has been evaluated against the weka’s top performer for the bench-
mark data set EMO-DB, which turned out to be the multilayer perceptron. The
TGI+ outperformed the multilayer perceptron by 4.68%.

6.3 High-level features based on distances to tree

automata

I have proposed the high-level features, which are the distances from a feature vector
to the tree automaton accepting class i, for all i in the set of the class labels. The
automata are trained to operate on feature vectors through the grammar inference
procedure. There are as many tree automaton features as there are recognition
classes. I proposed to early-fuse the set of the low-level features and the set of the
high-level features, submit the resulting set to a feature selection procedure and
then to do the classification step in the usual way.

According to the experimental results, inclusion of the proposed features in the
feature set leads to an improvement in accuracies, at least when the proposed fea-
tures are used together with a rule-based classifier. The proposed classification
scheme of the RIPPERk run on the fused set of the low-level and the distance-
to-automaton features outperformed the state of the art top performer (the SVM)
with a statistically significant difference in accuracies of 7%.

The classification of the fused set of low-level- and distance-to-automaton fea-
tures with the RIPPERk is the evolution of the TGI+ idea and its adaptation to
face big and noisy real-life data sets.



Chapter 7

Future Work

In this chapter I discuss the potential impacts of my contributions in both research
and applications.

7.1 Medical Application

Emotional prosody is affected in a few language pathologies, including the foreign
accent syndrome. A potential application of SER systems, which would be of use for
speech pathology specialists is automatic assessment of acted speech emotion in the
clinical context to evaluate emotional prosody skills of the patient. According to the
practitioners it is difficult to use naive judges to assess emotional prosody. Ideally,
a SER system would provide objective measurements of the patient’s progress.

7.1.1 Task Formulation

The immediate problem one runs into using a state of the art SER system is that
computers recognize emotions not in the same way than humans do and classification
algorithms were designed for the computer with the built-in Turing computation,
which is not the same as the human brain processing. As was reported in the SER
literature, computers can recognize emotions better than human judges, but the
purpose of the application is to help the patient learn how to express emotions to be
understood by other people rather than to have her emotions accurately recognized
by the computer. Also with respect to features, it was repeatedly shown in the
psycholinguistic literature that cognitively adequate features are not very useful in
the computerized SER. A requirement for the medical SER would be that emotions
are assessed in a more human way. To bridge this gap between human and computer
perception of the emotion, I propose to start with a more human-like classification,
for which the TGI+ is a suitable framework.

There is extensive psychological literature showing that human pattern recog-
nition punishes formation of subpatterns of another recognition class more than it
punishes other deviations from the prototypical pattern [20], [63]. Human cognition
is based on ”sub-patterns” stored in and processed by neural clusters. For example,
for the human ear the case when the pitch pattern comes from another emotion, and
the rest complies with the emotional pattern, is a much less successful expression of
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emotion than the one when one parameter of pitch is incorrect and one parameter
of intensity, and one of tempo – but all together these inconsistencies do not form
another pattern. In the first case the cluster of neurons responsible for pitch will
fire ”we have recognized an inconsistent emotional pattern”, and the human pattern
recognition would need to backtrack to reconsider the decision.

7.1.2 TGI+ cognitive

In order that the formation of subpatterns of a different class is punished, I changed
the edit distance calculation algorithm from Chapter 4. In the TGI+ for computer
SER the edit distances were calculated exclusively via the substitution operation
and with the tree structure not fully exploited. In the case of the TGI+c the tree
structure is fully exploited and there are three levels of subpatterns:

1. the level of acoustic parameters (pitch, intensity, etc);

2. the level of prosodic impression (intonation) and segmental impression (voice
quality);

3. the level of perception of emotion.

The above is said in the grammar:

{S−→ ProsodicFeatures SegmentalFeatures;

ProsodicFeatures −→ Pitch Intensity Energy;

SegmentalFeatures −→ Jitter Shimmer Formants Harmonicity;

Pitch −→ Min Max Quantile Mean Std MeanAbsoluteSlope;

etc.
}

Moreover, the operation of substitution is allowed only at the leaf level, provided
that the leaves in the subpattern do not form a subpattern of a different emotion
from the one to which the distance is being calculated. If a subtree has been reduced
to a subpattern of a different pattern (e.g. while calculating the edit-distance to
anger, the subpattern of pitch is acceptable by the neutral TA), then for the edit-
distance calculation algorithm it takes to first erase the node paying the deletion
costs and redraw it paying the insertion costs. As in the case of the TGI+, the costs
are sent upwards, and the tree is processed in the bottom-up manner in post-order
enumeration. The higher is the level of a wrong subpattern to which the tree has
been reduced, the more costly the repairment is, since there are more nodes to erase
and than to insert. Thus, the formation of wrong subpatterns is punished.

I implemented this new version of the TGI+, called TGI+c, where c stands for
cognitive. The automatic recognition accuracy on the EMO-DB is 61%, which is
better than C4.5 but worse than that of other powerful state of the art classifiers,
like the TGI+, the support vector machine or the multilayer perceptron.
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7.1.3 Data

In collaboration with CIMES (Centro de Investigaciones Medico Sanitarias, Univer-
sity of Málaga) I plan to carry out research on the FAS data [39]. Two subjects
suffering from the foreign accent syndrome were recordered five times: pretreatment
and four times after long treatment periods. Each time the patient had to read 10
neutral sentences with the four intonations: neutral, happy, sad and angry. Thus
there are 200 sentences by each patient.

7.1.4 Hypothesis

In this thesis edit distances were applied to the analysis of emotional speech. Edit
distance measures how far a given utterance is from the pattern. For example, how
far the patient still is from healthy prosody or her previous imitations. I expect edit
distances to form the four numeric sequences that would converge to 0 for the aimed
emotion and to some ki greater than 0, for i = 1, 2, 3, 4. The correct values of ki are
learned from the corpus of speech with emotional imitations by healthy people.

7.1.5 Usability

The ESEDA tool with the TGI+c function will provide a graphical user interface.
For the patient’s speech sample it draws a tree graph that shows:

• human-readable assessment of correctness of individual acoustic parameters;

• assessment of the closeness of the patient’s imitations to the healthy prototyp-
ical expression of emotion;

• keeps track of the patient’s progress through time.

7.2 Future Research

As far as the future directions of research are concerned, I can indicate the following
two paths:

1. feature selection for features embedded in a tree structure,

2. search for a more cognitive algebra for the TGI+c.

7.2.1 Feature Selection Embedded in Tree Structure

In the TGI+.2 I put weights on the initial feature vector, which are determined via
a feature selection procedure that treats features as equal elements of a feature set.
Feature selection should be possible to be done taking into account the position of
the node in the graph.
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7.2.2 Towards a more cognitive algebra for TGI+c

In tree automata theory rules of the automaton are referred to as algebra (as opposed
to leaves that are called constants). The TGI+c is described in Section 7.1.2. It is
based on the idea of the subpattern and fully exploits the hierarchical structure. In
the search for a more cognitive algebra, I plan to further explore the psycholinguistic
literature.



Appendix A

Three classifiers

In this Appendix I include the explanations of the multilayer perceptron, the support
vector machines, and the RIPPERk. These classifiers were the top performers on
the databases I work with and therefore they served as baselines for the classification
methods proposed.

A.1 Multilayer Perceptron

Artificial neural networks (NNs) [30], [19] were designed with the idea to mathemat-
ically model human intellectual abilities by biologically plausible engineering design
and to benefit from parallel computation. NNs have been a popular classifier choice
in SER experiments [21], [22], [46], [66]. The multilayer perceptron (MLP) is the
most widely used NN variant.

The multilayer perceptron outperformed all other classifiers from the state of
art weka collection of classifiers. Therefore the multilayer perceptron becomes a
competitor for the TGI+ classifier propose in Chapter 4 TGI+ classifier.

For an n-dimensional pattern recognition problem with c classes, a neural net-
work obtains a feature vector:

x = [x1, ..., xn] ∈ <n

as its input, and produces values for the c discriminant functions

g1(x), ..., gc(x).

NNs are usually trained to minimize the squared error E on a labeled training set
Z = {z1, ..., zn}, where zi ∈ <n, and l(zj) ∈ Ω :

E = 1
2
ΣN

j=1Σ
c
i=1{gi(zj) - I(wi, l(zj))}2 (2.)

where I is an indicator function: I(a, b) takes value 1 if a = b and 0 if a 6= b. The
factor 1

2
is included for convenience.

The computational model of the neuron is presented in Figure A.1. Let u be the
input vector to the node:

u = [u0, ..., uq] ∈ <q+1.
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Figure A.1: The computational model of the neuron.

and v ∈ < be the output. Let w be a vector of synaptic weights:

w = [w0, ..., wq] ∈ <q+1.

The processing element implements the function:

v = φ(ξ), where ξ = Σq
i=0wiui, (3.)

where φ : < −→ < is the activation function and ξ is the net sum. Typical choices
for φ are:
The threshold function:

φ(ξ) = 1 if ξ ≥ 0

φ(ξ) = 0, otherwise.

The sigmoid function:

φ(ξ) = 1
1+exp(−ξ)

.

The identity function:

φ(ξ) = ξ. (4.)

The hyperbolic tangent function:

φ(ξ) = tan(ξ).
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Figure A.2: Multilayer perceptron.

The sigmoid is the most widely used, for the reasons that:

• it can model both linear and threshold functions to a desirable precision, and

• it is differentiable, which is important for NN training algorithms: φ′(ξ) =
φ(ξ)[1− φ(ξ)].

The weight −w0 is used as a bias, and the corresponding input value u0 is set to
1. Expression (3.) can be rewritten as:

v = φ[ζ − (−w0)] = φ[Σq
i=1wiui − (−w0)],

where ζ is now the weighted sum of the weighted inputs from 1 to q. Geometrically
the equation:

Σq
i=1wiui − (−w0) = 0 (6.)

defines a hyperplane in <q. A node with a threshold activation function responds
with value 1 to all inputs [u1, ..., uq] on the one side of the hyperplane and with value
0 to all inputs on the other side.

In the late 1950s Rosenblatt defined the famous perceptron with its training
algorithm. The perceptron was implemented as defined in (3.); its threshold activa-
tion function φ(ξ) takes 1 if ξ ≥ 0 and −1, otherwise. This single-neuron classifier
separates two classes in <n with a linear discriminant function defined by ξ = 0.
The algorithm starts with random initial weights w and modifies them, as each
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subsequent sample from Z is fed to the perceptron. The modification is made only
the current vector zj is misclassified (appears on the wrong side of the hyperplane).
The weights are corrected by

w←− w− νηzj, (6.)

where ν is the output of the perceptron for zj and η is the learning rate.
Beside its simplicity, perceptron training has the following interesting properties:

1. The perceptron convergence theorem. If the two classes are linearly separable
in <n, the algorithm always converges in finite number of steps to a linear
discriminant function that gives no resubstitution errors on Z for any η.

2. If two classes are not linearly separable in <n, the algorithm will loop infinitely
through Z and never converge. There is no guarantee that if the procedure
terminates, the resulting linear function is the best one found throughout the
training.

A neuron can represent only a linear decision boundary. The way to approach
non-linear classification is by connecting many perceptrons in a hierarchical structure
called a multilayer perceptron (MLP). A MLP has an input layer, a hidden layer, and
an output layer connected in a feed-forward manner; that is, each neuron receives
signals from the previous layer as well as sends connections to the next layer (Figure
A.2), and there are no connections between the nodes of the same level. Weights are
associated with each input and every connection. A MLP receives an input pattern
x and maps this into c discriminant functions g1(x), ..., gc(x) at the output layer.
The default perceptron properties are:

• the activation function at the input layer is the identity function (4.);

• there are no lateral connections between the nodes at the same layer (feed-
forward structure);

• non-adjacent layers are not directly connected;

• all nodes at all hidden layers have the same activation function φ.

It was shown that a MLP with a single hidden layer and threshold nodes can
approximate any function with a specified precision. The Backpropagation algorithm
provides the means to train a neural network.

There are two aspects to the MLP’s learning: learning the structure of the net-
work and learning the connection weights. The backpropagation algorithm described
below is an algorithm for determining the weights given a fixed neural network struc-
ture with already chosen number of hidden layers, number of nodes at each layer,
and a differentiable activation function. However, although there are many algo-
rithms that attempt to identify network structure, this aspect of the problem is
commonly solved through experimentation.

Let Θ be a parameter of the NN and J(Θ) be some error function to be mini-
mized. In our case this is the squared error function E of Equation (2). The gradient
descent method updates Θ by
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Θ←− Θ− η ∂J
∂θ

,

where η > 0 is the learning rate.
An obvious candidate for J(θ) is the squared error E of the Equation (2).
Backpropagation training algorithm:

1. Initialize the training procedure: assign small random values to all weights
(including biases) of the MLP. Specify the learning rate η > 0, the max
number of epochs T , and the error goal ε > 0.

2. Set E =∞, the epoch counter t = 1 and the object counter j = 1.

3. While (E > ε and t ≤ T ) do
(a)Submit zj as the next training example.
(b)Calculate the output of every node of the NN with the current weights
(forward propagation).
(c)Calculate the error term δ at each node at the output layer by δ = δ0

i .
(d)Calculate recursively all error terms at the nodes of the hidden layers using
δh
k (back-propagation):

δh
k = (Σc

i=1δ
0
i w

0
ik)

∂θ(ξh
k )

∂ξk
h

.

(e)For each hidden and each output node update the weights by

wnew = wold − ηδu,

(f)Calculate E using the current weights and (2.).
(g)If j = N [a whole pass through Z (epoch) is completed], then set t = t + 1
and j = 0. Else, set j = j + 1.

4. End while.

To overcome the inherent disadvantages of the pure gradient descent, RProp (for
resilient propagation) was proposed [50]. RProp performs a local adaptation of the
weight-updates according to the behaviour of the error function.

Being a powerful classifier, the MLP is often used in SER. In [21] experiments
were conducted on the database of acted speech emotions in English, Slovenian,
Spanish and French. Their SER system is based on all features used by [45] with
duration features, with the sum of absolute pitch and energy difference which pertain
to prosody, and with shimmer and jitter, which pertain to speech quality. Their
classification system was based on a MLP with 144 input neurons, 7 output neurons,
one for each of six emotional states in addition to the neutral condition, and 49
neurons in the hidden layer. The MLP was trained with the Rprop algorithm using
Stuttgart Neural Network Simulator version 4.2. Their testing protocol was 80% of
data for the training of the neural network, and the remaining 20% were used for
testing. The max-correct method [42] was used to evaluate the correctness of the
entire vector. One output vector denoted the emotion of one utterance. Elements
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in the output and target vector that have the maximum values were searched for. If
the element with the maximum value in the target vector and the element with the
highest vector denoted the same emotion, then the vector was defined as correct.
It evaluated the correctness of the entire output vector, which corresponds to the
emotion.

A.2 Support Vector Machines

The paragraph describing the support vector machine (SVM) [19] is included, be-
cause it turned out to be the top performer on the Aibo data set. In the experiment
in question the SVM was a top performer when the classification was done on nor-
mal feature vectors. Therefore its performance is an important baseline to beat for
a classifier working on fused feature vectors, which proposed in Chapter 5 Distance
to Automaton Features.

The SVM relies on preprocessing the data to represent patterns in high dimen-
sion – typically much higher than the original feature space. With an appropriate
nonlinear mapping ϕ(·) to a sufficiently high dimension, data from two categories
can always be separated by a hyperplane. For each of the n patterns, k = 1, 2, ...n,
we let zk = ±1, according to whether pattern k is in w1 or w2. A linear discriminant
in an augmented y space is

g(y) = aty, (A.1)

where both the weight vector and the transformed pattern vector are augmented
(by a0 = w0 and y0 = 1, respectively). Thus a separating hyperplane ensures

zkg(yk) ≥ 1, (A.2)

for k = 1, 2, ..., n.
The goal in training an SVM is to find the separating hyperplane with the

largest margin; we expect that the larger the margin, the better generalization of
the classifier. The distance from any hyperplane to a (transformed) pattern y is
|g(y)|
‖a‖ , and assuming than a positive margin b exists, Equation A.2 implies

zkg(yk)

‖a‖ ≥ b, (A.3)

for k = 1, 2, ..., n. The goal is to find the vector a that maximizes b.
The support vectors are the (transformed) training patterns for which Equation

A.2 represents an equality, that is the support vectors are equally close to the hy-
perplane. The support vectors are the training samples that define the optimal
separating hyperplane and are the most difficult patterns to classify.

If Ns denotes the total number of support vectors, then for n training patterns
the expected value of the generalization error rate is bounded, according to

εn ≤ εn[Ns]

n
, (A.4)

where the expectation is over all training sets of size n drawn from the stationary
distributions describing the categories. This bound is independent of the dimen-
sionality of the space of the transformed vectors, determined by ϕ(·). Suppose we
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have n points in the training set, we train an SVM on n− 1 of them, and we test on
the single remaining point. If that remaining point happens to be a support vector
for the full n sample case, then there will be an error, otherwise there will not.

The first step of the training is to choose the non-linear ϕ-functions that map the
input to higher-dimensional space. Often this choice is based by the knowledge of the
domain. In the absence of such information, polynomials, Gaussians, or other basic
functions can be used. The dimensionality of the mapped space can be arbitrary
high – in practice limited to the computational resources.

We begin by recasting the problem of minimizing the magnitude of the weight
vector constrained by the separation into a unconstrained problem by the method
of Lagrange undetermined multupliers. Thus from Equation A.3 and our goal of
minimizing ‖a‖, we construct the functional

L(a, α) =
1

2
‖a‖2 −

n∑

k=1

αk[zka
tyk − 1] (A.5)

and seek to minimize L() with respect to weight vector a and maximize it with
respect to undetermined multipliers αk ≥ 0. The last term in Equation A.5 expresses
the goal of classifying the points correctly. One of the solution to this is through first
applying the Kuhn-Tucker construction and then using quadractic programming.

A.3 RIPPERk

RIPPERk [11] stands for Repeated Incremental Pruning to Produce Error Re-
duction. The RIPPERk classifier is very compatible with C4.5 with respect to
error-rates, but it much more efficient on large and noisy datasets. The RIPPERk

gave maximum improvement in its performance when the distance-to-automaton
features were used and operating on the fused vector space it turned out to the top
performer on the Aibo data set.

The RIPPERk is a result of the evolution of pruning strategies: PER −→
IREP −→ RIPPERk. One of the effective techniques to prune trees is reduced
error pruning, REP . In REP , the training data is split into a growing set and a
pruning set. First an initial rule set is formed that overfits the growing set, using
some heuristic method. This overlarge rule set is then repeatedly simplified by
applying one of a set of pruning operators. Typical pruning operators would be to
delete any single condition or any single rule. At each stage of simplification, the
pruning operator chosen is the one that yields the greatest reduction of error on the
pruning set. Simplification ends when applying any pruning operator would increase
error on the pruning set. REP for rules usually does improve a generalization
performance on noisy data, however it is computationally expensive for large data
sets.

In response to the inefficiency of REP , incremental reduced error pruning was
proposed IREP . It was shown to be competitive with REP with respect to error
rates and to also to be much faster.
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Algorithm for 2-class version of IREP

procedure IREP (Pos, Neg)
begin
Ruleset := ∅.
while Pos 6= ∅ do
[grow and prune a new rule]
split(Pos,Neg) into (GrowPos, GrowNeg)
Rule := GrowRule(GrowPos, GrowNeg)
Rule := PruneRule(Rule,RulePos,RuleNeg)
if the error rate of Rule on (PrunePos, PruneNeg) exceeds 50%
then return Ruleset
else add Rule to Ruleset;
remove examples covered by Rule from (Pos, Neg)
endif
endwhile
return Ruleset
end

Further on the way of evolution, three modifications were added to REP :

1. a new metric for guiding its pruning phase;

2. a new stopping condition;

3. a technique for optimizing the rules learned by IREP .

To this the RIPPERk adds k iterations of an optimization step that more closely
mimic the effect of non-incremental reduced error-pruning. Finally the RIPPERk

was shown to outperform IREP on some benchmark datasets with a statistically
significant improvement of recognition rates.



Appendix B

Low level features

The feature extraction module extracts 116 global statistical features, both prosodic
and segmental. The acoustic parameters are pitch, intensity, formants and har-
monicity. The module was implemented in the Praat [4] scripting language. This
Appendix provides a full list of the features.

Features 1-5: various raw parameters: energy, power, intensity.

Feature 1: Energy
Feature 2: Power
Feature 3: Energy in air
Feature 4: Power in air
Feature 5: Intensity

Features 6-9 and 14-17: harmonicity Gne
Gne is the glottal-to-noise excitation ratio as proposed by [37].
Feature 6: Lowest X
Feature 7: Highest X
Feature 8: Lowest Y
Feature 9: Highest Y

Feature 14: numberOfRows
Feature 15: numberOfColumns
Feature 16: rawDistance
Feature 17: columnDistance
Feature 18: sum

Features 30-33: Harmonicity Cc && 34-37: Harmonicity Ac1

A Harmonicity object represents the degree of acoustic periodicity, also called
Harmonics-to-Noise Ratio (HNR). Harmonicity is expressed in dB: if 99% of the en-
ergy of the signal is in the periodic part, and 1% is noise, the HNR is 10*log10(99/1)
= 20 dB. A HNR of 0 dB means that there is equal energy in the harmonics and in
the noise.

1CC stands for cross-correlation function, Ac stands for auto-correlation function.

77
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Harmonicity can be used as a measure for:
- The signal-to-noise ratio of anything that generates a periodic signal.
- Voice quality. For instance, a healthy speaker can produce a sustained [a] or [i]
with a harmonicity of around 20 dB, and an [u] at around 40 dB; the difference
comes from the high frequencies in [a] and [i], versus low frequencies in [u], result-
ing in a much higher sensitivity of HNR to jitter in [a] and [i] than in [u]. Hoarse
speakers will have an [a] with a harmonicity much lower than 20 dB. We know of a
pathological case where a speaker had an HNR of 40 dB for [i], because his voice let
down above 2000 Hz.

For harmonicity CC2:
Feature 30: minimum
Feature 31: maximum
Feature 32: mean
Feature 33: std

Feature 34: For harmonicity AC3:
Feature 35: minimum
Feature 36: mean
Feature 37: std

Features 38-53: statLtas:

Ltas is short for Long-Term Average Spectrum. An object of class Ltas represents
the power spectral density as a function of frequency, expressed in dB/Hz relative
to 210−5 Pa.
Feature 38: Lowest frequency
Feature 39: highest frequency
Feature 40: numberOfBins
Feature 41: binWidth
Feature 42: binNumberFromFrequency
Feature 43: valueAtFrequency
Feature 44: valueInBin
Feature 45: minimum
Feature 46: frequencyOfMinimum
Feature 47: frequencyOfMaximum
Feature 48: maximum
Feature 49: mean
Feature 50: slope
Feature 51: localPeakHeight
Feature 52: localPeakHeight1
Feature 53: standard deviation

Features 10-13: global F0 statistics && Pitch (acc): Features 70-76 &&

2The abbreviation stands for ”by cross-correlation function”.
3The abbreviation stands for ”by auto-correlation function.”
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Features 77-83: Pitch (cc):
The features are statistical measurements (mean, max, min, range, std) connected
to the following.
A Pitch object represents periodicity candidates as a function of time. It does not
mind whether this periodicity refers to acoustics, perception, or vocal-cord vibra-
tion. It is sampled into a number of frames centred around equally spaced times.
Feature 10: mean
Feature 11: minimum
Feature 12: maximum
Feature 13: std

Pitch Acc:
Feature 70: min
Feature 71: max
Feature 72: quantile
Feature 73: mean
Feature 74: std
Feature 75: meanAbsoluteSlope
Feature 76: slopeWithOctaveJumps

Pitch CC:
Feature 77: min
Feature 78: max
Feature 79: quantile
Feature 80: mean
Feature 81: std
Feature 82: meanAbsoluteSlope
Feature 83: slopeWithOctaveJumps

Features 84-95: Pitch Point Process:

A PointProcess object represents a point process, which is a sequence of points
ti in time, defined on a domain [tmin, tmax]. The index i runs from 1 to the num-
ber of points. The points are sorted by time.
Feature 84: numberOfPoints
Feature 85: lowIndex
Feature 86: highIndex
Feature 87: nearestIndex
Feature 88: numberOfPeriods
Feature 89: meanPeriod
Feature 90: stdevPeriod
Feature 91: jitterLocal
Feature 92: jitterLocalAbsolute
Feature 93: jitterRap (the relative average pertubation)
Feature 94: jitterPpq5 (the pitch pertubation quotient)
Feature 95: jitterDpd (the differential phase detection)
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Features 96-103: Pitch SPINET4 && Features 104-112: Pitch Shs

To perform a pitch analysis based on a spectral compression model. The concept
of this model is that each spectral component not only activates those elements of
the central pitch processor that are most sensitive to the component’s frequency,
but also elements that have a lower harmonic relation with this component. There-
fore, when a specific element of the central pitch processor is most sensitive at a
frequency f0, it receives contributions from spectral components in the signal at
integral multiples of f0.

Algorithm used: The spectral compression consists of the summation of a se-
quence of harmonically compressed spectra. The abscissa of these spectra is com-
pressed by an integral factor, the rank of the compression. The maximum of the
resulting sum spectrum is the estimate of the pitch.
Feature 96: min
Feature 97: max
Feature 98: quantile
Feature 99: mean
Feature 100: std
Feature 101: meanAbsoluteslope
Feature 102: slopeWithoutOctaveJumps
Feature 103: linearFit

Feature 104: min
Feature 105: max
Feature 106: quantile
Feature 107: mean
Feature 108: std
Feature 109: meanabsoluteSlope
Feature 110: outerViewport
Feature 111: slopeWithoutOctaveJumps
Feature 112: lowestFrequency
Feature 113: highestFrequency
Feature 114: numberOfFrequencies
Feature 115: frequencyDistance
Feature 116:frequencyInHerz
Feature 117:frequencyInMel

Features 19-23: Intensity statistics

An Intensity object represents an intensity contour at linearly spaced time points ti
= t1 + (i - 1) dt, with values in dB SPL, that is dB relative to 210−5 Pascal, which
is the normative auditory threshold for a 1000-Hz sine wave.
Feature 19: mean
Feature 20: minimum

4SPINET stands for a model of pitch perception called the spatial pitch network.
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Feature 21: maximum
Feature 22: range
Feature 23: std

Features 54-69: Ltas Pitch corrected

An object of class Ltas represents the power spectral density as a function of fre-
quency, expressed in dB/Hz relative to 2?10-5 Pa.
Feature 54: lowestFrequency
Feature 55: highestFrquency
Feature 56: numberOfBins
Feature 57: binWidth
Feature 58: binNumberFromFrequency
Feature 59: valueAtfrequcncy
Feature 60: valueInBin
Feature 61: minimum
Feature 62: frequencyOfMinimum
Feature 63: frequencyOfMaximum
Feature 64: maximum
Feature 65: mean
Feature 66: slope
Feature 67: localPeakHeight
Feature 68: localHeight1
Feature 69: std

Features 112-117: Formants && Features 24-29: Formant LPC5

An object of type FormantFilter represents an acoustic time-frequency representa-
tion of a sound: the power spectral density P(f, t), expressed in dB’s. It is sampled
into a number of points around equally spaced times ti and frequencies fj (on a linear
frequency scale).
Feature 112: lowestFrequency
Feature 113: highestFrequency
Feature 114: numberOfFrequencies
Feature 115: frequencyDistance
Feature 116: frequencyInHerz
Feature 117: frequencyInMel

Feature 24: min
Feature 25: max
Feature 26: quantile
Feature 27: mean
Feature 28: std
Feature 29: numberOfLPCKoefficiencies

5LPC stands for linear predictive coding.
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Appendix C

Publications

Journal submissions:

• a paper about TGI+ is ready for submission;

• a paper about tree-automaton high-level features is ready for submission.

A-level (CORE ranking) or impact = 0.62 (CS conference ranking) conference:

• Sidorova, J. Speech emotion recognition with TGI+.2 classifier. EACL-2009
European Association for Computational Linguistics. Student Workshop. Athens,
Greece. March, 30 – April, 03. pp. 54-60. [The acceptance rate was 28%.]

Other international conferences:

• Sidorova, J. and Badia, T. ESEDA: tool for enhanced speech emotion detec-
tion and analysis. The 4th International Conference on Automated Solutions
for Cross Media Content and Multi-Channel Distribution (AXMEDIS 2008).
Florence, November, 17-19. pp. 257–260. IEEE press. 2008. [The acceptance
rate was 30%.]

• Sidorova, J., Badia T. Syntactic learning for ESEDA.1, tool for enhanced
speech emotion detection and analysis. Internet Technology and Secured
Transactions Conference 2009 (ICITST-2009), London, November 9 -12. IEEE
press. [The acceptance rate was 55%.]

Book chapter:

• Sidorova J., McDonough J., Badia T. Automatic Recognition of Emotive Voice
and Speech. In (Ed.) K. Izdebski. Emotions in The Human Voice, Vol. 3,
chapter 12, pp.217-242, Plural Publishing, San Diego, CA, 2008.

Publications in other languages than English:

• Sidorova, J.A. Recognizing emotions from the acoustic signal, man-machine
interface perspective. In J. Programming Systems and Instruments. Press
of the faculty of Computational Cybernetics and Mathematics, Moscow State
University. [In Russian] 2006
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