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Ischemic stroke is a result of a transient or permanent reduction in cerebral blood 

flow restricted to a certain and delimited region. In humans, ischemic stroke occurs 

most often in the area perfused by the MCA (Mhairi Macrae 1992). It is noteworthy 

that while in animal models the onset of ischemia and reperfusion can be precisely 

defined, in humans this is not always possible. For example, the onset of symptoms 

might not coincide with the onset of cerebral ischemia, or there might be a delay 

before the patients become aware of these symptoms as in stroke at night or stroke 

syndromes characterized by unawareness of deficits. Thus, it is difficult to define 

accurately the time window in which a certain drug might be effective in each 

patient (Dirnagl et al., 1999). However, in the last years, studies using animal models 

of stroke have provided remarkable contribution to our understanding of the 

pathophysiology of ischemic stroke (Lo 2008). One of the most extended stroke 

models involves transient or permanent MCAO in the rats and mice. When the 

pathobiology of human stroke is compared with these experimental models, 

emerging data indicates that the rat tMCAO model may be the best mimicking 

human ischemic stroke (Yamori et al., 1976). Experimental tMCAO is equivalent to 

human stroke because cerebral vessel occlusion is seldom permanent, as are most 

cases human ischemic stroke that have spontaneous or thrombolytic rt-PA therapy-

induced reperfusion (Jin et al., 2010). 

Tissue damage following cerebral ischemia results from the interaction of complex 

pathophysiological processes such as excitotoxicity, peri-infarct depolarizations, 

inflammation and apoptosis (Amantea et al., 2009). Even though the cellular and 

molecular changes characteristic for this area have been thoroughly studied in 

animal models, therapies based on these searches have resulted unsuccessful (Arsene 

et al., 2011; Donnan 2008). Then, given that stroke is caused, at least initially, by a 

disorder of blood flow in the brain, favorable attempts to establish early reperfusion 

can reduce the magnitude and extent of tissue injury. Actually, the early blood flow 

recovery by rt-PA (thrombolytic) is the only current pharmacological treatment 

approved in humans that has given good results so far (Ekholm et al., 1993; The 

National Institute of Neurological Disorders 1995). On the other hand, the standard 

view of neuroprotection, which has long been exclusively neurocentric, is no longer 

accepted. Instead it has been replaced by a more integrative approach that recognizes 
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the importance of dynamic interactions between cells that form the neurovascular 

unit to be committed to brain repair (Ohab and Carmichael 2008; Yang and 

Rosenberg 2011). Therefore, in the future, it is very likely that interventions will 

combine strategies that enhance both early reperfusion and neuroprotection.  

The most noticeable finding of this study is that Gbc administered between 6 and 

24 hours after reperfusion to tMCAO rats significantly reduces the lesion severity, as 

it improves motor and neurological outcome. When we designed the study we were 

aware that functional motor recovery after stroke is difficult to assess within the first 

3 days, because the period of major brain tissue destruction is not finished and the 

animals are still recovering from anesthesia and surgery. Thus, in our experimental 

conditions we expected a discrete functional improvement, if any. Even so, we found 

a significant 25% improvement in the neuroscore of rats treated with a low dose of 

Gbc, which means an important neuroprotective effect of the drug that is maintained 

at long term. At cellular and molecular levels, brain motor and behavior functions 

are a consequence of the activity of several neuron types from different brain areas 

that coordinate their functions through a crosstalk of complex signaling pathways. 

Preservation of these functions after a stroke must involve, multiple actions to both 

retail cell death and potentiate neuroprotective and restorative processes. According 

to that, Gbc may present multiple brain targets with several biological functions, 

which would have significant advantages over individual target drugs or a cocktail 

of drugs.  

Previous preclinical and clinical data suggest a neuroprotective role of Gbc to treat 

stroke (Kunte et al., 2007; Simard et al., 2009). Sulfonylureas such as Gbc close the 

KATP channel by interaction with two drug-binding sites on SUR subunits (Mikhailov 

et al., 2001) and are widely used to treat diabetes. Simard and colleagues proposed 

that the astroglial NCCa-ATP channel mediates the Gbc-induced prevention of edema 

after cerebral ischemia (Simard et al., 2006), while in their studies the function of the 

KATP channel remained unclear. KATP channels have been found in neurons, 

astrocytes, oligodendrocytes and capillaries under ischemic conditions (Simard et al., 

2006), whereas our group and others have also suggested the microglial expression 

of these channels (McLarnon et al., 2001; Ramonet et al., 2004). Therefore, as Gbc may 

bind to constitute functional KATP channels after ischemic stroke, other possible 
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effects of Gbc might explain the effectiveness of this drug in the treatment of stroke.  

We herein demonstrated that KATP channel subunit expression is upregulated in 

BV2 microglia cell line after LPS+IFN� activation. Given that the SUR1 subunit has 

particularly high affinity for Gbc and ATP (Dörschner et al., 1999; Matsuo et al., 

2000), we used Gbc to characterize the cellular response of reactive microglia to KATP 

channel blockade. Thus, we observed that Gbc increased BV2 reactive morphology, 

TNF� release and phagocytic capacity. We also confirmed KATP channel expression 

in primary rat microglial cultures. When microglial cells became activated after 

exposure to LPS+IFN�, they upregulated SUR1, Kir6.1 and Kir6.2 subunits, showing 

thus higher specific Gbc-labeling extended to the plasmalemmal membrane. These 

results suggest that microglia activation involves KATP-channel overexpression, and 

the subsequent protein translocation to the cell surface to regulate phagocytic activity 

and release of cytokines/chemokines (Ortega et al., 2012a; Virgili et al., 2011). Gbc 

possibly also blocks the SUR1 subunits in KATP- or NCCa-ATP- channels expressed in 

neurons (Toulorge et al., 2010), astrocytes (Simard et al., 2009) and capillary 

endothelial cells (Simard et al., 2010), however, our results also suggest a crucial role 

for the KATP channel in the control of microglial neuroprotective activity after stroke. 

In ischemic stroke we can difference two temporal phases. First, the acute phase 

(minutes to hours) is characterized by a rapid release from the injured tissue of ROS 

and proinflammatory mediators (cytokines/chemokines). These mediators induce 

the expression of the adhesion molecules on cerebral endothelial cells and on 

leukocytes promoting homing of circulating leukocytes and neutrophils (Jin et al., 

2010). Secondly, in the subacute phase (hours to days), infiltrating cells participate in 

the inflammatory response by release of cytokines and chemokines, especially 

excessive production of ROS and induction/activation of MMP-9. This causes a more 

extensive activation of resident cells and infiltration of peripheral cells, eventually 

leading to disruption of the BBB (Yang and Rosenberg 2011), brain edema, neuronal 

death, and hemorrhagic transformation (Amantea et al., 2009). Regardless of their 

origin, many of these proinflammatory factors have a dual role at early and late 

stages of stroke, where microglia has a key role in the pathobiology of the process. 

Microglia in normal conditions normally monitor the brain environment sensing and 

eliminating defunct synapses (Tremblay et al., 2011; Wake et al., 2009), controlling 
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developmental synaptogenesis (Bessis et al., 2006) and clearing newborn adult 

hippocampal neuroprogenitors (Sierra et al., 2010). After an ischemic insult, 

microglia but also neurons, astrocytes and oligodendrocytes upregulate a wide panel 

of cytokines (Mabuchi et al., 2000). While it has been accepted for many years that 

proinflammatory cytokines, such as IL-1� or TNF�, appear to exacerbate cerebral 

injury, others microglia-released molecules (e.g. IL-6, IL-10 and transforming growth 

factor-beta) appears to provide neuroprotection (Iadecola and Anrather 2011). This 

dogma is now challenged by recent studies, which reflect complex roles of microglia 

activity with conflicting effects. For instance, notwithstanding the well-known 

negative effect of TNF�, the effect of this cytokine in general, and on neuronal 

survival in particular, is largely dependent on the context, timing, and dosage of its 

activity (Hallenbeck 2002; Lenzlinger et al., 2001). TNF� secretion is crucial for 

autocrine fast microglial activation with cytotoxic effects, however, neuronal death or 

survival are TNF� dose dependent (Bernardino et al., 2008), since it activates two 

specific receptors: TNFR1, with an intracellular death domain, and TNFR2 with 

higher affinity and mainly involved in neuroprotection (Fontaine et al., 2002). These 

two receptors are key elements in modulating neuronal sensitivity to ischemia, with 

microglial-derived TNF� being crucial to determine the survival of endangered 

neurons in the acute phase of focal cerebral ischemia (Lambertsen et al., 2009). In 

addition, TNF� is proposed as the molecular mediator of the microglial-mediated 

synapse removal, likely to be important in remodeling of neuronal circuits and 

remyelination processes in the ischemic brain to ensure function (Arnett et al., 2003; 

Wake et al., 2009). Thus, often, a clear distinction between cytokines that are either 

harmful or beneficial cannot be established, since the cytotoxic proinflammatory 

cytokines IL-1� and TNF� released from activated microglia may evoke a 

neuroprotective or pro-myelin regenerative response. This also applies for 

neurodegenerative processes, since TNF� protects neurons against amyloid-beta-

peptide-mediated toxicity under pathological conditions (Barger et al., 1995), and has 

a role in homoeostatic synaptic scaling under physiological conditions (Stellwagen 

and Malenka 2006).  

Neumann and colleagues (Neumann et al., 2006) have established that after acute 

injury such as trauma or stroke, appropriately activated microglia and its pro-
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inflammatory mediators, may primarily have a neuroprotective role, and therefore, 

anti-inflammatory treatment within the protective time window of microglia would 

be counterintuitive. Consequently, in vivo identification of a drug target able to 

prompt the beneficial effects of the primary cellular response, as well as, of the 

inflammatory reaction in the early phases of stroke would be beneficial for 

neuroprotection and brain repair; with the subsequent better patient outcome.  

In our in vivo study we showed that reactive microglia from tMCAo animals 

upregulated SUR1, SUR2B and Kir6.2 subunits of KATP channels in the infarct core. 

Thus, KATP channels should directly participate in the control of microglial reactivity 

in vivo, with Gbc treatment resulting in a strengthening of the neuroprotective role of 

microglia/macrophages in these early stages of stroke. First we assessed whether 

Gbc was able to reach the lesion in case of BBB disruption. We found that Gbc 

administered after MCAO reached the ischemic hemisphere with a 3-fold 

concentration increase. In addition, although the volume of lesion measured by T2-

MRI was not significantly reduced, Gbc administered at 6, 12 and 24 hours after 

triggered 50% neuronal preservation in the peri-infarcted region, increased the peri-

infarct volume and improved motor neurological outcome. It is noteworthy to 

mention that, most rodent models of stroke focus on the outcome measurement of 

lesion size in terms of infarct volume and brain edema. Within the first 3 days of 

lesion, the methodological approach and accuracy in these measurements are 

essential, since brain edema development may lead to overestimation of infarct 

volume (Lin et al., 1993). This accuracy reaches crucial importance in the assessment 

of drugs activity, as their neuroprotective effects may not be reflected by these two 

parameters (Walberer et al., 2010). Under our conditions, we used MRI to assess 

changes in the size of the lesion volume, but this approach cannot give a precise 

indication of the severity of the injury (Simard et al., 2010) and is not accurate 

enough to measure the necrotic core of the lesion. In this line, we agree other authors 

that have described an effect of Gbc in reducing infarct volume, edema and disability 

in different stroke models (Simard et al., 2006; Simard et al., 2010; Simard et al., 2009). 

However in those experiments the procedure of Gbc treatment is different to our 

approach. In Simard’s experiments, Gbc dose presenting morphological effects (33 

�g/kg) is at least 5 times higher than the highest dose we used herein (6 �g/Kg). At 
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more similar treatment conditions (Glibenclamide loading dose = 3.3 �g/kg 4 or 6 h 

after reperfusion versus 6 �g/Kg 6 h after reperfusion), Simard’s experiments 

presented no reduction of edema as well. As this lack of morphological changes does 

not correlate with the preservation of function, we considered the stereological 

counting of neurons as more accurate assessment of Gbc-derived neuroprotection. 

Thereby, when we included histological methods, measurement of the necrotic and 

peri-infarct volumes (Lin et al., 1993) and neuronal counts defined the morphological 

and cellular bases of the motor function improvement induced by KATP channel 

blockade. Our results strongly support the idea that the fate of the ischemic 

penumbra during the early steadies of the injury is considered the crucial element for 

stroke recovery (Furlan et al., 1996).  

Stroke causes irreversible tissue damaged in the infarct core, whereas other 

hypoperfused areas may be at risk but are potentially salvageable. A few minutes 

after the onset of ischemia, tissue damage occurs in the centre of ischemic injury, 

where cerebral blood flow is reduced by more than 80%. In this core region, cell 

death rapidly develops as a consequence of the acute energy failure and loss of ionic 

gradients associated with permanent and anoxic depolarization, known as 

excitotoxicity (Dirnagl et al., 1999; Hossmann 1994; Mitsios et al., 2006). The degree of 

ischemia decreases with distance from the infarct core because collateral vessels 

maintain sufficient blood flow to allow the potential survival of cells in areas 

adjacent to the core of the infarct. Cells in this penumbra area have impaired function 

but remain viable for a period of time (Ginsberg 1997). The ischemic penumbra is a 

dynamic target that evolves over time and the infarct core evolves rapidly in the first 

few hours, therefore supporting the concept that “time is brain” (Saver 2006). The 

fate of this ischemic penumbra during the early steadies of the injury is considered 

the crucial element for stroke recovery (Furlan et al., 1996) since in the necrotic zone 

astrocytes and neurons are determined to die. Transcriptional upregulation of SUR1 

in the ischemic brain has been related to NCCa-ATP channels of neurons, astrocytes 

and capillary endothelial cells of the peri-infarct region (Simard et al., 2006). As 

activation of NCCa-ATP channels in astrocytes causes cell blebbing characteristic of 

cytotoxic edema, the Gbc-mediated reduction of infarct volume in permanent MCAO 

animals has been linked with blockade of these channels (Simard et al., 2009), 
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although this finding is still a hot topic of debate (Favilla et al., 2011; Simard et al., 

2011), and Sala-Rabanal and cols. (2012) have recently refuted this hypothesis. Using 

recombinant cell line co-transfected with TRMP4, the pore-forming subunit of NCCa-

ATP channels, and SUR1 genes these authors observed that the coupling between 

TRPM4 and SUR1 is unlikely to happen (Sala-Rabanal et al., 2012). Despite all this 

challenges, Simard et al ((Simard et al., 2009)) ruled out the involvement of KATP 

channels in the process. Interestingly, they did not assess the ischemia-induced 

expression changes of the trpm4 gene, (Simard et al., 2010) and, despite the massive 

neuronal loss, immunoblots revealed no concentration changes of Kir6.1 and Kir6.2 

proteins in the ischemic core (Simard et al., 2006). Our findings complete Simard’s 

results and argue for a contribution of KATP channels to the neuroprotective effects of 

Gbc by reducing the lesion’s severity. Thus, we found that reactive microglia 

enhances SUR1, Kir6.1 and Kir6.2 protein expression in vitro, and that amoeboid 

microglia express KATP channels in the necrotic core of the lesion in vivo. This 

upregulation contributed to the enhancement of SUR1 found by Simard and cols. 

(Simard et al., 2006) and helped to compensate for a putative decrease in Kir6.1 and 

Kir6.2 subunits due to the massive neuronal loss in the necrotic zone. Moreover, our 

results also explains the increased Kir6.1 and Kir6.2 expression in absence of the 

further neuronal damage in brain hypoxia described by other authors (Yamada et al., 

2001).  

We herein also found the cerebral area occupied by CD3-immunopositive cells for 

lymphocytes was of small size, which might be related with little infiltration of blood 

cells 3 days after tMCAO. Infiltrated macrophages and granulocytes are proposed to 

not play major roles in the early progression of ischemic neuronal damage, whereas 

reactive microglia are already detected in the zone (Mabuchi et al., 2000). 

Furthermore, a transition of monocyte-derived cells into microglia is a very rare 

event that only occurs under highly defined host conditions (Mildner et al., 2007). 

Thus, microglial activity in the necrotic core would be crucial in determining the fate 

of the ischemic tissue. Microglia phagocytic abilities are essential for the clearance of 

cell debris and toxic compounds of the lesioned tissue, which underlies 

neuroprotection (Polazzi and Monti 2010). In addition, dying PMNs infiltrated in the 

site of lesion, mediate neurotoxicity by the release of toxic intracellular compounds 
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(Denes et al., 2007; Weston et al., 2007). Consequently, prompt phagocytosis of 

apoptotic PMNs by microglia might prevent the secretion of toxic compounds, thus, 

might be an effective strategy to protect neurons from PMNs neurotoxicity (Napoli 

and Neumann 2009; Neumann et al., 2008). In this line, we here provide evidence 

that Gbc increases the reactive morphology and phagocytic capacity of BV2 microglia 

activated with LPS+IFN�. Also, in vivo the KATP channel blockade slightly enhances 

neuronal loss in the necrotic core, thus microglial cells in presence of Gbc are likely to 

increase their efficiency to clear generated apoptotic cell debris. This activity is 

beneficial since it reduces the secretion of proinflammatory cytokines (Magnus et al., 

2001), chemoattractants and the migration of T lymphocytes (Chan et al., 2006). Also, 

in hypoxia-ischemia, acute brain damage or excitotoxicity, microglia neuroprotective 

reaction includes a phagocytic response to calcium deposit formation (Herrmann et 

al., 1998). The extension of calcification after hypoxia-ischemia in a brain area 

depends on the intensity of the acute phase and on the characteristics of each area of 

pathology (Lievens et al., 2000; Nonoda et al., 2009; Rodriguez et al., 2001). We here 

found a Gbc-induced decrease in ischemic brain calcification with a reduced size and 

number of deposits, which represents a reduction in tMCAO-induced neuronal 

suffering and may be related to boosted microglial phagocytic activity. Overall, these 

data suggest that cell debris clearing from the lesion core will provide an optimal 

environment for neuroprotection in the surrounding tissue. In this scenario the Gbc-

induced neuronal preservation observed in the peri-infarct region may result from 

the interaction of all the processes explained above. If true, the functional recovery 

here found will reflect an enhancement of the neuroprotective microglial activity in 

the necrotic core. This control of microglia activity fully deals with the idea that, in 

stroke, targeting a single point or a single pathway does not yield sufficient 

protection, and that the emphasis should be on the targets that mediate cross-talk 

between multiple cell death mechanisms (Sun and Hu 2009). 

Continuous crosstalk mediated by several signaling molecules, takes place 

between neurons, microglia and astrocytes, differently regulating their relationships 

in both health and disease (Polazzi and Monti 2010). In this regard, we here found a 

Gbc-induced increase of S100� in reactive astrocytes of the white mater, probably 

due to the NCCa-ATP channel blockade (Simard et al., 2009), which may influence 



              Chapter 7 

� ����

microglial-mediated neuroprotection. Released S100� modifies astrocytic, neuronal 

and microglial activities, whose effects depend on its extracellular concentration and 

the expression of the specific receptor RAGE. At micromolar concentrations, S100� 

upregulates TNF� expression in activated microglia (Bianchi et al., 2010), and also 

stimulates microglia migration via RAGE-dependent up-regulation of chemokine 

expression and release. In addition, factors that modulate microglial reactivity, such 

as intracellular calcium concentration or TNF�, modify the RAGE response to S100� 

(Edwards and Robinson 2006) in a crosstalk that integrates these signaling systems. 

Thus, microglia reaction directly interacts with the concomitant astroglial reaction 

and the factors that determine this interaction, such as TNF� and S100� participate in 

the regulation of the activated phenotype of microglia after injury.  

Likewise, among others chemokines, increased mRNA expression for MCP-1, also 

known as CCL2, and macrophage inflammatory protein-1 alpha has been described 

in the rat brain after focal cerebral ischemia (Hinojosa et al., 2011; Jin et al., 2010; 

Liberto et al., 2004). MCP-1 is express by neurons at 12 h after focal brain ischemia, 

but has also been found in astrocytes and microglia at later stages following the 

insult. We here found that MCP-1 released by microglia may modify ischemia-

induced neurogenesis by promoting NPs neuronal differentiation. There is little 

doubt that ischemic stroke influence precursor cells and adult neurogenesis 

(Arvidsson et al., 2002; Kokaia and Lindvall 2003; Yamashita et al., 2006). 

Nonetheless, whether microglial cells influence neurogenesis and the fate of the 

newborn neurons is still controversial. In the present study, ischemia increased 

neuroblasts proliferation and migration towards the lesion 3 days after reperfusion 

and this persisted up to one month. Inhibition of the microglial KATP channel with 

Gbc led to a further increase in the number of migrating neuroblasts, thereby 

indicating that Gbc modifies the cell lineage choice or enhances progenitor cell 

proliferation and migration. Our results also showed that the number of newly 

generated neurons increased in the cortex 30 days after reperfusion and that Gbc 

potentiated this effect. Although we cannot rule out the possibility that neural 

progenitors migrate from the SVZ and establish themselves in the ipsilateral cortex 

network, we found no co-localization of BrdU-positive cells with the classical rostral 

migratory stream derived neuronal markers (i.e., calbindin, calretinin, tyrosine 
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hydroxylase, and parvalbumin). These newborn cortical neurons may be originated 

from potential resident neural stem cells within the cortex (Shimada et al., 2010). 

Several authors have proposed the presence of these endogenous quiescent neural 

stem cells in the cerebral cortex, and that their proliferation and differentiation to 

mature neurons is induced by ischemic insults (Cameron and Dayer 2008; Gu et al., 

2000; Jiang et al., 2001; Kuge et al., 2009; Magavi et al., 2000; Nakagomi et al., 2009; 

Nakayama et al., 2010; Ohira et al., 2009). Although the number of these cells is very 

small, strategies to foster the intrinsic neurogenesis would be highly relevant for 

clinical approaches to facilitate neural repair and functional recovery.  

Microglial cells participate in modifications of stem cell proliferation (Aarum et al., 

2003; Walton et al., 2006), migration and/or differentiation into neurons after stroke 

and status epilepticus through producing trophic factors and inflammatory 

cytokines/chemokines (Butovsky et al., 2006; Ekdahl et al., 2009). In order to explain 

whether blockade of the microglial KATP channel has the capacity to promote 

neurogenesis in vivo, we moved to an in vitro model using the neurosphere assay. We 

here showed that after inhibition of NPs proliferation in presence of LPS+IFN�, the 

specific blockade of the microglial KATP channel cause a release of a soluble factor 

that enhance the activation of these NPs. Moreover, progenitor cells cultured with 

non-challenged microglia and treated with Gbc gave rise to a higher number of beta-

III-tubulin-positive cells. Further characterization of releasing cytokines determined 

that the KATP channel blockade boost the production of MCP-1, which does not 

appear to directly activate an inflammatory response in microglia or cause neuronal 

damage (Hinojosa et al., 2011). MCP-1 and stromal cell-derived factor-1alpha trigger 

migration of newly generated neuroblasts from neurogenic regions to ischemic 

damaged areas (Amantea et al., 2009; Ekdahl et al., 2009; Mantovani et al., 2004; Tran 

et al., 2006). In addition, we found that MCP-1 promotes NPs neuronal 

differentiation, as reported previously elsewhere (Liu et al., 2007b; Turbic et al., 

2011). It is noteworthy that this chemokine also protects neurons against 

inflammatory damage caused by NMDA-mediated excitotoxicity (Eugenin et al., 

2003), being very useful after brain damage. However, whether MCP-1 plays a role in 

the survival of NPs remains to be determined. Our results suggest that the microglial 

KATP channel blockade after brain injury may cause an increase on the production of 
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the MCP-1 in vivo, enhancing the migration of precursors to the site of injury to 

repair the lesioned region and protect neurons. Thus, potentiation of microglial 

proneurogenic phenotype could represent a new strategy to enforce endogenous 

brain regenerative processes, which in turn could have a significant impact in the 

outcome of the patient. 

The pro- or anti-neurogenic niche would depend on the degree of microglia 

activation and the balance between the pro- and anti-inflammatory cytokines 

produced (Battista et al., 2006). For instance, acutely activated microglia induces an 

inflammatory response detrimental for neurogenesis, while chronically activated 

microglia is permissive to neuronal differentiation and cell survival (Cacci et al., 

2008; Ekdahl et al., 2003). This raises the possibility that in a chronically altered 

environment, persistently activated microglia could display protective functions that 

foster rather than attenuate brain repair processes. Interestingly, microglial KATP-

channel has been described previously as a drug target to regulate cell reactive state, 

controlling the release of a diversity of inflammatory mediators, such as NO, IL-6 or 

TNF�, or even modifying microglial phagocytic activity (Ortega et al., 2012a; Virgili 

et al., 2011). Therefore, the blockage of the microglial KATP channel endows microglia 

to a new distinct phenotype, similar to the chronic proinflammatory phenotype 

described above and able to enhance NPs activation and differentiation. 

Angiogenesis is also activated after cerebral ischemia and plays an important role 

for striatal neurogenesis after stroke (Thored et al., 2007). Molecules such as vascular 

endothelial growth factor (Jin et al., 2003) and erythropoietin (Zhang et al., 2005) 

stimulate both angiogenesis and neurogenesis and lead to improved functional 

recovery alter stroke in the early postischemic phase. Intriguingly, NPs use 

neurovasculature as a scaffold for their migration towards the lesion (Kojima et al., 

2010). In our study Gbc further increased the diameter of microvessels in the non-

lesioned cortex and RECA-1 immunoreactivity in the hippocampus, and we found 

stimulated glial proliferation in both regions. These observations relate tissue 

macrophages/microglia with brain angiogenesis as propose for other developing 

organs (Fantin et al., 2010). Vasculature attracts microglial cells and stimulates them 

to release angiogenic factors (Rymo et al., 2011), with subsequent growth stimulation 

of neural stem cells (Androutsellis-Theotokis et al., 2010). Therefore, optimizing 
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vascularization appears as an important strategy to promote neurogenesis and repair 

in the stroke-damaged brain (Thored et al., 2007). 

Overall, in this study we demonstrate that Gbc improves functional neurological 

outcome in stroke, accompanied by neuron preservation in the core of the ischemic 

brain. These Gbc effects identify KATP channels as a key target for strengthening the 

neuroprotective role of microglia in the acute phase after focal cerebral ischemia, 

enhance long-term neurogenesis and brain repair processes. This also provides new 

therapeutic avenues for the treatment of other neurological disorders that involve 

microglia. 
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From the present work we have obtained the following conclusions: 

 
1. BV2 microglia cell line enhances the expression of functional KATP channels 

after a pro-inflammatory stimulation. When KATP channel was blocked with 

glibenclamide, BV2 microglia increased their reactive morphology, TNF� 

release and early phagocytic capacity. Isolated cultured rat microglia also 

express functional KATP channels.  

 
2. Glibenclamide reaches the ischemic brain hemisphere after rat MCAO, 

probably as a result of BBB disruption. Moreover reactive microglia from 

tMCAO rats’ upregulate the KATP channel expression in the necrotic core, 

which makes microglia/macrophages a target to glibenclamide actions in the 

early stages of stroke. 

 
3. Glibenclamide administered at 6, 12 and 24 hours after reperfusion 

significantly improved sensorimotor and memory recovery at long term. This 

functional recovery is based in a glibenclamide-induced neuroprotection since 

this drug also increased both the peri-infarct volume of the ischemic brain 

and the neuronal preservation into this region. 

 
4. Although glibenclamide did not modify gliosis or glial cell density; early KATP 

channel blockade increased clearance of the debris and decreased calcification 

in the ischemic brain. This represents a boosted microglial phagocytic activity 

that in turn reduces tMCAO-induced neuronal suffering in the boundary of 

the necrotic core. 

 
5. Glibenclamide increased both the number of migrating neuroblasts three days 

after ischemia and the number of newly generated neurons in the lesioned 

cerebral cortex thirty days after reperfusion. Thereby early microglial KATP 

channel blockade modifies the cell lineage choice and/or enhances progenitor 

cell proliferation and migration in the ischemic brain. 

 
6. KATP channel blockade increased angiogenesis in cerebral cortex and 

hippocampus of ischemic rats, which is tightly associated with glial 
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proliferation and may contribute to the glibenclamide-mediated enhancement 

of neurogenesis.  

 
7. Blockade of microglial KATP channel in vitro increased the number of 

immature neurons on neurosphere cultures, and blockade of the channel after 

a pro-inflammatory stimulus enhanced the activation of neural precursor cells 

and boosted the microglia production of MCP-1. 

 
8. KATP channels constitute a key target for the control of neuroprotective and 

inflammatory microglia activity in the acute phase of focal cerebral ischemia. 

Therefore, sulfonylureas may offer clinical therapeutics for stroke through 

short-term inflammation-related beneficial effects that include potentiation of 

neurogenesis and repair processes and lead to sensorimotor and memory 

recovery.  
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Primary Antibodies Host Company Technique Dilution 
Blocking 

time 

Blocking buffer 
(IHC or IF) 

Immunobuffer 
(IHC or IF) 

Polyclonal anti-SUR1 
(C-16 clone) 

Goat 
Santa Cruz 

Biotec. ICF / IF / WB 1:100 3 
0,3 % Saponin + 

10 % NGS + 10 % BSA 

0,5 % triton + 1 % 
NGS + 1% BSA 

Polyclonal anti-SUR2B 
(C-15 clone) 

Goat 
Santa Cruz 

Biotec. ICF / IF 1:100 3 
0,3 % Saponin + 

10 % NGS + 10 % BSA 

0,5 % triton + 1 % 
NGS + 1% BSA 

Monoclonal anti-neuronal 
(NeuN) 

Mouse Chemicon IHC / IF 1:150 2 
0,5 % triton + 

5 % NGS + 5% BSA 

0,5 % triton + 1 % 
NGS + 1% BSA 

Monoclonal anti-CD3 

(PC3/188A) 
Mouse 

Santa Cruz 
Biotec. 

IF 1:100 2 
0,3 % triton + 

5 % NGS + 5% BSA 

0,3 % triton + 1 % 
NGS + 1% BSA 

Monoclonal anti-rat CD11b 
(OX-42 clone) 

Mouse Serotec IF 1:500 2 
0,5 % triton + 

5 % NGS + 1% BSA 

0,5 % triton + 1 % 
NGS + 1% BSA 

Monoclonal anti-Glial 
fibrillary 

acidic protein (GFAP) 
Mouse 

Sigma-
Aldrich 

IHC 
ICF 
IF 

1:400 
1:750 
1:750 

2 
0,5 % triton + 

5 % NGS + 5% BSA 

0,5 % triton + 1 % 
NGS + 1% BSA 

Monoclonal anti-alpha-

tubulin 
FITC conjugate 

Mouse 
Sigma-
Aldrich 

ICF 1:500 2 
0,5 % triton + 

5 % NGS + 1% BSA 

0,5 % triton + 1 % 
NGS + 1% BSA 

Polyclonal anti-Kir6.1 Rabbit 
Alomone 

Labs 
IF 

WB 

1:400 
1:500 

2 
0,5 % triton + 

5 % NRS + 1% BSA 

0,5 % triton + 1 % 
NRS + 1% BSA 

Polyclonal anti-Kir6.2 Rabbit 
Alomone 

Labs 

ICF 
IF 

WB 

1:400 
1:400 
1:500 

2 
0,5 % triton + 

5 % NRS + 1% BSA 

0,5 % triton + 1 % 
NRS + 1% BSA 

Polyclonal anti-S100�� Rabbit Dako IHC 1:800 2 0,5 % triton + 5 % NRS 
0,5 % triton +  

1 % NRS 

Tyrosine Hydroxilase Rabbit AbCam IF 1:5000 2 
0,5 % triton + 

5 % NRS + 1% BSA 

0,5 % triton + 1 % 
NRS + 1% BSA 

Caspase-3 (5A1E clone) Rabbit 
Cell 

Signaling 
IF 1:500 2 

0,5 % triton + 
5 % NRS + 1% BSA 

0,5 % triton + 1 % 
NRS + 1% BSA 

DCX (C-18 clone) Goat 
Santa Cruz 

Biotec. IHC 1:150 2 
0,5 % triton + 

5 % NGS + 1% BSA 

0,3 % triton + 1 % 
NGS + 1% BSA 

RECA-1 Rabbit Serotec IHC 1:100 2 
0,3 % triton + 

5 % NRS + 1% BSA 

0,5 % triton + 1 % 
NRS + 1% BSA 
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Isolectine B4 
Peroxidase-conjugated (IB4) 

- 
Sigma-
Aldrich 

IHC 1:25 2 
0,3 % triton + 5 % NGS + 

5% BSA 

0,3 % triton + 1 % 
NGS + 1% BSA 

Calbindin Rabbit Swant IF 1:500 2 
0,5 % triton + 

5 % NRS + 1% BSA 

0,5 % triton + 1 % 
NRS + 1% BSA 

Calretinin Rabbit Swant IF 1:2000 2 
0,5 % triton + 

5 % NRS + 1% BSA 

0,5 % triton + 1 % 
NRS + 1% BSA 

Parvalbumin Rabbit Swant IF 1:2000 2 
0,5 % triton + 

5 % NRS + 1% BSA 

0,5 % triton + 1 % 
NRS + 1% BSA 

 

 Note Immunobuffer (WB) 

 TBST + 5 % NFDM + 1 % BSA 

 
 

Secondary Antibodies Company Technique Dilution Immunobuffer 

Anti-mouse IgG biotin conjugated Sigma-Aldrich IHC / IF 1:250 0,5 % triton + 1 % NGS + 1% BSA 

Anti-rabbit IgG biotin conjugated Sigma-Aldrich IHC 1:250 0,5 % triton + 1 % NRS + 1% BSA 

Anti-goat IgG biotin conjugated Sigma-Aldrich IHC 1:250 0,5 % triton + 1 % NGS + 1% BSA 

ExtrAvidin-Peroxidase Sigma-Aldrich IHC 1:250 PBS 0.01 M 

Anti-mouse AlexaFluor-555 Invitrogen 
ICF  
 IF 

1:300  
1:500 

PBS 0.01 M 

Anti-rabbit AlexaFluor-488 Invitrogen 
ICF  
 IF 

1:300  
 1:500 

PBS 0.01 M 

Anti-goat AlexaFluor-488 Invitrogen 
ICF  
 IF 

1:300  
 1:500 

PBS 0.01 M 

ExtrAvidin-FITC Sigma-Aldrich IF 1:250 PBS 0.01 M 

Anti-mouse IgG-HRP conjugated Sigma-Aldrich WB 1:2500 TBST + 5 % NFDM + 1 % BSA 

Anti-rabbit IgG-HRP conjugated Sigma-Aldrich WB 1:2500 TBST + 5 % NFDM + 1 % BSA 

Anti-goat IgG-HRP conjugated Sigma-Aldrich WB 1:2500 TBST + 5 % NFDM + 1 % BSA 
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Protocols for RT-PCR: 
 

 
 

1.- Kir 6.1:  

Reaction components for RT-PCR-  Thermal Cycler conditions- 

Master Mix 
Volume 

1 rx (�L) 

10X Qiagen RT-Buffer 2,5 

dNTP Mix 0,5 

Taq DNA polimerase 0,125 

5X Q-Solution - 
Mg Cl2 - 

Free RNase Water 16,875 

Reverse Primer 1,5 

Forward Primer 1,5 

Template cDNA 2 

Final Volume 25 

 
 
 
 2.- Kir 6.2:  

Reaction components for RT-PCR-  Thermal Cycler conditions- 

Master Mix 
Volume 

1 rx (�L) 

10X Qiagen RT-Buffer 2,5 

dNTP Mix 0,5 

Taq DNA polimerase 0,125 

5X Q-Solution - 
Mg Cl2 0,5 

Free RNase Water 16,375 

Reverse Primer 1,5 

Forward Primer 1,5 

Template cDNA 2 

Final Volume 25 

 

 

 

 

 

 

Steps Time 
Temperature 

(ºC) 

Initial denaturing 

and activation time 
15’ 95º 

Denaturation 30’’ 95º 
Annealing 30’’ 60º 
Extension 45’’ 72º 

Number of Cycles x35 

Final Extension 5’ 72º 

Steps Time 
Temperature 

(ºC) 

Initial denaturing 

and activation time 
15’ 95º 

Denaturation 30’’ 95º 
Annealing 30’’ 60º 
Extension 45’’ 72º 

Number of Cycles x35 

Final Extension 5’ 72º 
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 3.- SUR1:   

Reaction components for RT-PCR-  Thermal Cycler conditions- 

Master Mix 
Volume 

1 rx (�L) 

10X Qiagen RT-Buffer 2,5 

dNTP Mix 0,5 

Taq DNA polimerase 0,125 

5X Q-Solution - 
Mg Cl2 - 

Free RNase Water 16,875 

Reverse Primer 1,5 

Forward Primer 1,5 

Template cDNA 2 

Final Volume 25 

 
 
 
 4.- SUR2A/B:   

Reaction components for RT-PCR-  Thermal Cycler conditions- 

Master Mix 
Volume 

1 rx (�L) 

10X Qiagen RT-Buffer 2,5 

dNTP Mix 0,5 

Taq DNA polimerase 0,125 

5X Q-Solution - 
Mg Cl2 - 

Free RNase Water 16,875 

Reverse Primer 1,5 

Forward Primer 1,5 

Template cDNA 2 

Final Volume 25 

 

 

 

Steps Time 
Temperature 

(ºC) 

Initial denaturing 

and activation time 
15’ 95º 

Denaturation 30’’ 95º 
Annealing 30’’ 60º 
Extension 45’’ 72º 

Number of Cycles x35 

Final Extension 5’ 72º 

Steps Time 
Temperature 

(ºC) 

Initial denaturing 

and activation time 
3’ 94º 

Denaturation 45’’ 94º 
Annealing 45’’ 57º 
Extension 1’ 72º 

Number of Cycles x35 

Final Extension 10’ 72º 
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