Plan Recognition as Planning

Miquel Ramirez

TESI DOCTORAL UPF / 2012

Thesis supervisor

Prof. Dr. Héctor Geffner,
ICREA

Department of Information and Communication Technologies

UNIVERSITAT
POMPEU FABRA

=l

By My Self and licensed under
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported

©080)

You are free to Share — to copy, distribute and transmit the work Under the following
conditions:

e Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

e Noncommercial — You may not use this work for commercial purposes.

e No Derivative Works — You may not alter, transform, or build upon this
work.

With the understanding that:

Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

Public Domain — Where the work or any of its elements is in the public domain
under applicable law, that status is in no way affected by the license.

Other Rights — In no way are any of the following rights affected by the license:
e Your fair dealing or fair use rights, or other applicable copyright exceptions
and limitations;
e The author’s moral rights;
e Rights other persons may have either in the work itself or in how the work

is used, such as publicity or privacy rights.

Notice — For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

The PhD thesis committee was appointed by the rector of the Universitat Pompeu
Fabra onooooiviiiiiii , 2012.

Chairman
Member

Member

The doctoral defense was held Oncoovvviiiiiiiiiiiiiiiii e , 2012, at the
Universitat Pompeu Fabra and scored ascccooveeeiiiiniiiiiiiiiiiineiiieeeeenn.

CHAIRMAN MEMBERS

To my parents, Francisco Ramirez and Maria Jdvega.

Acknowledgements

First and foremost, I want to mention my fellow PhD students, in no particular order,
Emil Keyder, Nir Lipovetzky and Alexandre Albore. I do not think that Hector could
have chosen better students, nor I could have been more lucky than to share this
amazing journey with them. Thanks for the many discussions, which I hope were
equally enlightening to all the parties involved, as well as for the mutual assistance
we have given to each other over the years. Thanks as well for the many parties and
long nights we have shared over those same years. I will be really missing you punks.

I want to thank to Blai Bonet and Patrik Haslum for their codes and many inter-
esting, clear and thought—provoking papers. I learnt from both quite a few things
that have proven to be invaluable during my PhD. Also I learnt from them how to
write a planner from scratch, one that actually worked and was workable after the
deadlines.

Next I want to mention the never ending and tireless support provided by Lydia
Garcia and her fellow DTIC administration workers. Without her — their — devotion,
the task of completing this PhD would have been considerably harder. Thanks for
dealing on my behalf with those trivial “real world” things such as contracts, expenses
from travels and in general, the startlingly copious paper trail that research leaves
in its wake.

Now I want to thank my friends Candela, Inigo, Sandra and Eider, as well as my
brothers Francisco and Joan Manel for the patience they have had while coping with
me. When I did not return calls at all. Or when I was very late answering e-mails.
Or just answered no, perhaps too quickly, to any proposal to do something which
can fit into that notion of having a life of your own. Thank you a lot for coping with
the apparent indifference. If something is hard when doing research is precisely to
not forget about having a life of your own.

Just before finishing I want to thank my parents Francisco and Maria for the never
faltering support and unconditional love they have given to me since I was born. They
are ones responsible of my nearly insatiable curiosity and tireless will to learn new
things. I also want to thank them for the healthy skepticism they have shown in the
last six years about this “academia” thing. They have been the “voices of reason”,
which even when completely disregarded, are useful reminders about worldly affairs.
Perhaps the academia might not pay as well as you would wish for one of your sons,
but I do really think it is a worthy enterprise. Rest assured that I will never — 1
cannot — forget where I come from, and I come from you.

I reserve the last slot for Héctor Geffner, my tutor and the mastermind behind this
thesis. I expect to live up to the fine example he sets by being generous enough to
provide his students with directions and topics to pursue, his efforts to get us “to

vii

viii

push the envelope” so we make our best at all times. My PhD experience can be
summarized in the following questions and answers:

e Need a pointer? Héctor knows the right one.
e Want something interesting to read? Ask Héctor.

e Wondering about what is best to do next? Knock on his door and ask for
advice.

If there is anything like a “Best Tutor Award” in some Al venue, you should be the
one getting it next year. Thank you Héctor for everything, the thing you have done
for me is priceless. Something I will not be able to pay you back other than doing
the same myself for any PhD students I have in the future.

Abstract

Plan recognition is the problem of inferring the goals and plans of an agent after par-
tially observing its behavior. This is the inverse of planning, the problem of finding
the actions that need to be done in order to achieve a goal. In this thesis we show
how the problem of plan recognition can be solved using unmodified, state—of—the-art
planning algorithms and representation languages. Along with a solid computational
framework for deriving posterior goal probabilities, we introduce a novel and crisp
model-based formulation of plan recognition whose flexibility surpasses that of pre-
vious approaches.

X

Resum

Plan recognition és un problema computacional que consisteix en identificar el proposit
d’un agent intel-ligent, havent observat parcialment el seu comportament. Aquest és
el problema invers al problema de la planificacié automatica, que consisteix en tro-
bar les accions que sén necessaries dur a terme per tal d’aconseguir un cert objectiu.
En aquesta tesi mostrem com el problema de plan recognition és pot resoldre mit-
jancant els mateixos algorismes i llenguatges de representacié utilitzats per resoldre
la planificacié automatica. La nostra proposta no nomes conte una serie d’algoritmes
eficients i robustos, sind que ve suportada per un marc teoric formal, que ofereixen
en conjunt una flexibilitat de la qual no disposen propostes previes per resoldre plan
recognition.

X1

Resumen

Plan recognition es el problema computacional que consiste en deducir el objetivo
perseguido por un agente inteligente tras haber observado de forma incompleta su
comportamiento. Este es el problema inverso al problema que plantea la planificacién
automatica, que consiste en encontrar las acciones que se necesitan llevar a cabo
para conseguir un cierto objetivo. En esta tesis mostramos como el problema de
plan recognition se puede resolver mediante los mismos algoritmos y lenguajes de
representacion utilizados resolver la planificacién automatica. Nuestra propuesta no
tan solo ofrece una serie de algoritmos eficientes y robustos, sino que ademds viene
apoyada por un marco tedrico formal, que ofrecen, en su conjunto, una flexibilidad de
la cual carecen propuestas anteriores para resolver el problema de plan recognition.

xiii

Preface

To a man with a hammer, everything looks like a
nail.

Mark Twain

The problem of plan recognition has been for a long time an important topic in
Artificial Intelligence research. Solving plan recognition problems is essential for
autonomous systems that need to make sense out of the observed behavior of humans.
That is, given a set of possible goals and a sequence of actions done by an agent to
achieve one of these goals, select what goal accounts best for the observed actions.

Actions can represent many different types of events, depending on the application.
Sequences of utterances are relevant for Natural Language Processing applications
dealing with automated dialogue or synthetic advice. For automated surveillance,
cognitive assistance for the elderly or home automation applications, traces of goal—
oriented behavior are sought on readings obtained from sensors such as cameras, GPS
systems or RFID scanners, tracking changes in location of people and objects over
time. Intelligent user interfaces try to anticipate user actions by analyzing logs of
events generated by a user interacting with a shell or a graphical user interface.

As an illustration, let’s consider the following example of a plan recognition problem,
adapted from (Schmidt et al., 1978), where the observed actions are specified as
follows

1. Oq: Steve walked to the cabinet.
2. O2: He opened the cabinet.
3. Os: He took a record out of the cabinet.

4. Oy4: He took the record out of the record jacket.

The possible goals that might Steve be pursuing are

1. G1: Steve wants to prepare his breakfast.

2. G5: Steve wants to listen to a record.

XV

xvi PREFACE

While G5 looks to us as the obvious answer, a computer system would need two
things to reach the same conclusion we have. First, it needs the knowledge relevant
and essential to establish a causal connection between actions and goals. Second,
some means to process this knowledge to conclude that G is a better explanation
than Gl.

This knowledge would include a description of the actions the agent may do, por-
traying the causal relationships between changes in the agent environment and the
actions it can do, such as “in order to listen a record, the agent needs to put the
record on the player turntable and turn the player on”, as well as constraints like
“a record needs to be out of the jacket to be put on a turntable”. Complementing
this factual knowledge there may be generic a set of assumptions on the constraints
the agent takes into account during the process of deciding what actions to do. For
instance, it can be assumed that the agent will prefer to achieve its goal in the most
efficient manner possible, that is, in a rational, or optimizing, way. This notion of
“rationality” is bounded by constraints which might impair agent performance, such
as limited knowledge about its environment or knowledge about how to act optimally.
In the example above, Steve might not know where the record he wants to listen is,
so he might need to search for it. This would require to invest more time or energy
to achieve its goal than when knowing precisely the record whereabouts.

With the previous assumption in place, ranking the possible goals with respect to how
well do they account for the observed behavior, involves computing the likelihood of
the observed actions assuming that each goal is the one the agent is actually seek-
ing. Observed actions likelihood can be decomposed into two independent factors.
Sequences of actions found to be consistent with the facts and assumptions provided
are considered to be more likely, all other things being equal, than sequences of ac-
tions which are not. When observations are found to be consistent with the assumed
goal and the causal theory of agent behavior, then it is required to quantify how
necessary they are. This amounts to compare the number of plans consistent with
the theory and the assumed goal that are not consistent with the observed sequence
of actions, with the number of such plans which are consistent with the observed
actions.

Existing approaches to plan recognition are best understood by studying how the
range of possible agent behaviors is represented — causal theories of agent behavior,
assumptions made on agent knowledge of its environment and its criteria to prefer one
course of action over another — and how they rank or select possible goals depending
on how well these support the observed actions.

Our approach to the challenges posed by plan recognition relies on the general idea
that plan recognition is automated planning in reverse. While automated planning
is the problem of seeking a sequence actions that accounts for a given goal, plan
recognition is the problem of seeking the goals that account for the sequence of
actions observed. We claim that our approach is the first that seriously formulates
and exploits computationally the connection, first described in (Schmidt et al., 1978),
between goal-oriented behavior generation and plan recognition.

The representation and computation aspects of our approach are built on top of
the—state—of-the—art of automated planning modeling languages and solvers. Causal
theories of behavior are expressed in the language of Functional STRIPS, which is
simple yet expressive enough to account for a broad variety of agent cognitive and

PREFACE xvii

physical abilities as well as characterizing the environments where the agent per-
forms. Goal likelihood computation addresses both the consistency and necessity
of observed action sequences by invoking automated planners in an off-the—shelf
manner. While our contribution shares with earlier works such as (Schmidt et al.,
1978; Lesh and Etzioni, 1995; Baker et al., 2009) the “plan recognition is planning in
reverse” approach to plan recognition, we consider it to provide a general yet crisp for-
mal framework built on solid, efficient computational foundations, something which
previous approaches have delivered with limited success.

The significance of our contribution to plan recognition has been appreciated by the
AT community. Parts of the present work have been published in:

e “Plan Recognition as Planning” by M. Ramirez and H. Geffner, published at
the 22nd International Joint Conference on Artificial Intelligence (Ramirez and
Geflner, 2009).

e “Probabilistic Plan Recognition as Planning” by M. Ramirez and H. Geffner,
published at the 24th Annual Conference of the Association for the Advance-
ment of Artificial Intelligence (Ramirez and Geffner, 2010).

o “Goal Recognition over POMDPs” by M. Ramirez and H. Geffner published
at the 23rd International Joint Conference on Artificial Intelligence (Ramirez
and Geffner, 2011).

Contents

Abstract ix
Resum xi
Resumen xiii
Preface XV
List of Figures xxi
List of Tables xxiii
I Planning Background 1
1 Introduction 3
1.1 Motivation e 3
1.2 Example: ROBOSCHOOL 4
1.3 Planning and Plan Recognition 7
1.4 Overview of Contributions 8
1.5 Outline of the Thesis 9
2 Classical Planning 11
2.1 The Classical Planning Model 11
2.2 Factored Representations in STRIPS 13
2.3 Complexity of STRIPS planning 16
2.4 Heuristics e 17
2.5 Heuristic search algorithms 19
2.6 Reachability Planning Heuristics ™ 21
2.7 Relaxed Plan Heuristics 24
2.8 Heuristics Based on Planning Landmarks 26
2.9 State-of-the—art Planners 27
2.10 Example: ROBOSCHOOL in STRIPS 29
211 SUMmMATY e e e 31
3 Goal MDPs and POMDPs Planning 33
3.1 Goal Markov Decision Processes 33
3.2 Solving MDPs by Dynamic Programming 35
3.3 DP Algorithms for Goal MDPs 36
34 Goal POMDPs 40
3.5 Goal POMDPs as MDPs over Belief Space 40

Xix

XX CONTENTS
3.6 GPT Modeling Language 42
3.7 Summary ... 46

IT Planning—based Plan Recognition 47

4 PR over Classical Planning Theories 49
4.1 Preliminary Definitions L. 49
4.2 Accounting for Rational Agents 51
4.3 A Qualitative Model of Plan Recognition 52
4.4 Computing Plans that Satisfy Observations 53
4.5 Computation of Optimal Goal Set 59
4.6 Limitations of Qualitative Model 59
4.7 Probabilistic Model of Plan Recognition 62
4.8 Computation of Posterior Goal Probabilities with Classical Planners . 65
4.9 Evaluation Domains from Planning Benchmarks 68
4.10 Evaluation Domains from Plan Libraries 73
4.11 Experimental Results. o oL 79
4.12 Summaryo e e 82

5 PR over POMDP Theories 85
5.1 Motivation 85
5.2 Goal Recognition for Goal PoMDPS 86
5.3 Complete Observation Sequences 88
5.4 Incomplete Observation Sequences 89
5.5 Computation of Observation Likelihoods 90
5.6 Evaluation Domains o 0L 91
5.7 Experimental Results. o oo 98
5.8 Summary 102

11T Discussion 105

6 Approaches to Plan Recognition 107
6.1 BELIEVER 107
6.2 Plan Recognition and Natural Language 109
6.3 Plan Recognition as Minimum Set Cover 110
6.4 Probabilistic Models for Plan Recognition 113
6.5 Planners Generating Plan Libraries 115
6.6 Plan Recognition and Dynamic Bayesian Nets 116
6.7 Plan Recognition as Parsing 117
6.8 Plan Recognition as Inverse Goal MDP planning 119
6.9 Summary L 121

7 Conclusions 123
7.1 Contributions L 123
72 Loose Ends 125
7.3 Future Work 126

Bibliography 129

1.1

2.1
2.2

3.1
3.2

4.1

4.2

4.3

4.4
4.5
4.6
4.7
4.8

4.9

4.10

List of Figures

Lab environment represented as a grid, each cell is referred to by its coordinates:
AQ, ..., F4. Clear cells are the ones the trainer can enter and exit. Numbered
cylinders 1, 2 and 3 represent bins b1, bs and bs. Note that by is located in a cell
the trainer cannot traverse. Objects are represented by their shapes and colors.
The red circle is denoted as p; and the blue triangle as p4. The trainer is initially

located in cell B3. e)
Best-first search algorithm. 0oL 21
Relaxed plan extraction algorithm. 25
RTDP trials L 37
RTDP-Bel o o o 41

A ROBOSCHOOL plan recognition theory. Planning domain P[] and hypothetic
goal set Gy are the same as those described on Section 2.10. The trainer starts
at cell £0, marked with a capital I letter. Observation sequence O consists of
two actions: walk(C0, B1), shown by an arrow between those two cells, and pick
(ps, A4), displayed by the text next to the cell in question. 53
ROBOSCHOOL plan recognition theory where minimizing A(G, O) does not entail
maximizing P(G|O). As in the theory depicted in Figure 4.1, the trainer starts
at cell EO, but now the observation sequence O is (walk(C0,B0)). 60

Grid navigation problem where observed actions lead to several plausible or no

plausible goals.o L 61
P(O|G) as a logistic curve evaluated over SA(G) with g =1. 65
Optimized computation of cp/(G+ O) and cp/(G+O0) 66
Algorithm for checking that P'[G + O] is solvable. 66
P(G|Oy) as function of time t.o 67
BLoCKWORDS PR task example. On the left is shown the initial config-

uration I, and on the right one of the possible goals G € Gp. 69

GRID PR task example. Boxes are rooms and lines between them denote that
they are connected. Lock shapes — numbers 1, 2 and 3 — are shown only for
locked rooms F, F and H. ki, ko and k3 are keys whose shapes correspond with
that of locks of rooms E, H and F respectively. The observed agent starts in
room A. ..o e e e e e 72
Hierarchical plan libraries for the INTRUSION DETECTION task (Geib and Gold-
man, 2001). Square boxes denote primitive tasks and rounded boxes denote
composite tasks and ellipses denote primitive tasks “side effects”. Solid arrows
between primitive tasks are precedence constraints and discontinue arrows relate
primitive tasks and effects.o 76

xx1

xxii

4.11

4.12

5.1

5.2

6.1

LIST OF FIGURES

Student routine from (Bui et al., 2008) which consists of having breakfast, at-
tending to classes, meeting with other students, and ending with having coffee. .
MAKE BREAKFAST activity (Wu et al., 2007).

ROC graph showing aggregate results for goal classifier GR(m,) for different
m and /3 values (number of samples and noise level in action selection). Squares,
triangles and circles denote different m values: 100, 1000 and 10000. Black, gray,
and light gray denote different S values: 1, 10, 40. Results for random strategy
represented by the dotted line. Lo
Goal recognition accuracy of the Boltzmann policy setting 5 = 40 — dashed line —
and the greedy policy — continuous line — on the OFFICE domain over increasing
values of m. Observation sequences tested were obtained from sampling the 30%
of actions featured by greedy policy executions.

Example event hierarchy in (Kautz, 1991). Boxes denote events, dashed arrows
represent specialization — is a — relationships and solid arrows represent inclusion
— has part — relationships. Inclusion relationships between events are indexed
according to their order e.g. s; tokens denote that event comes before any other
labeled as s;, j > i. Plans encoded by this hierarchy are discussed in the text.

. 111

List of Tables

2.1 Objects in ROBOSCHOOL task depicted on Figure 1.1. 29
2.2 ROBOSCHOOL predicates used to describe world states. 29
2.3 ROBOSCHOOL STRIPS action set A. p symbols denote pieces, b symbols denote

bins and [symbols are cells.o Lo 31

4.1 Two valid plans for P[G5]. On the left, an optimal plan achieving goal G is
shown, which does not satisfy the observation sequence O = (walk(C0, B1), pick(ps, A4)).
On the right, we see the minimum cost plan that both satisfies O and achieves

G2. Bottom row values show costs of both plans. 54
4.2 Brock WORLDS fluent set F. 69
4.3 BrLock WORLDS STRIPS action set A. 69
4.4 LocisTics fluent set F'. 71
4.5 LOGISTICS STRIPS action set A. p are packages, t trucks, [locations 71
4.6 GRID fluent set F. 72
4.7 GRID STRIPS action set A. 73
4.8 CamMpus fluent set F. e e e e 77
4.9 CAMPUS STRIPS action set A. s
4.10 KiTCcHEN fluent set F. e 78
4.11 CAMPUS STRIPS action set A. 79

4.12 Evaluation with optimal and two satisficing planners. Each row describes av-
erages over 15 different plan recognition problems. The columns stand for %
of actions in plan for hidden goal sampled, average time in seconds for each
complete plan recognition problem (T), average quality measuring fraction of
problems where hidden goal is among the most likely (Q), average number of
most likely goals (S). 81

5.1 TFeatures of the four domains: number of states, actions, observation tokens,
states in initial belief, and possible goals. T is time in seconds to compute
Va(bg) forall goals Gin G. L Lo 91

5.2 DRAWERS state variables. hand is the object denoting the observed agent hand,

dl, d2 and d3 denote drawers. 7" and F' denote the boolean constants True and

5.3 DRAWERS observed agent actions. Preconditions with more than one fluent are
assumed to be conjunctions unless noted otherwise. Effects of the form =z — y
denote a conditional effect. When [p] appears next to an effect means that the
specified effect is an outcome of the action with probability p. All actions have
the same cost, whichissetto 1. 92

5.4 OFFICE state variables. Fluent meaning is described in the text. ¢ denote argu-
ments of type item and o arguments of type object. corr stands for the corridor. 93

xxiil

xxiv LIST OF TABLES

9.5 OFFICE observed agent simple actions. More complex actions are detailed in the
7« v 94
9.6 KITCHEN state variables. Fluent meaning is described in the text. i denote
ingredients being taken as arguments by the fluent. L. 96
5.7 Actions available to the observed agent in the kitchen KITCHEN task. 97
5.8 Performance of classifier GR(m = 10,000, 8 = 40): domains, observation ratio,
average length of observation sequences (L), average time in seconds to process
O (T), average accuracy (ACC), precision (PPV) and True Positive rate (TPR). 101

6.1 Schema for the WALK action discussed in (Schmidt et al., 1978). Opportunities
refer to action preconditions, Outcome is the actual action effect and Goal is the
intended action effect. In this particular example, action intended and actual
outcomes are always the same. 108

PART I

Planning Background

CHAPTER

Introduction

1.1 Motivation

The need to recognize the goals and plans of an agent from observations of his be-
havior arises in a number of applications in the fields of natural language processing,
multi-agent systems, and assisted cognition (Cohen et al., 1981; Pentney et al., 2006;
Yang, 2009). This automated reasoning task is referred to as the plan recognition
problem (Cohen et al., 1981; Pentney et al., 2006; Yang, 2009) and has been addressed
using a variety of methods which include specialized procedures (Kautz and Allen,
1986a; Avrahami-Zilberbrand and Kaminka, 2005; Lesh and Etzioni, 1995; Huber
et al., 1994), parsing algorithms (Pynadath and Wellman, 2000; Geib and Goldman,
2009) and inference procedures on Bayesian networks (Charniak and Goldman, 1993,;
Bui, 2003).

Plan recognition can be best understood as planning in reverse: while in planning
the goal is given and a plan is sought; in plan recognition, part of a plan is given,
and the goal and complete plan are sought. Early approaches to plan recognition
(Schmidt et al., 1978; Perrault and Allen, 1980) adopted this view. The space of
possible behaviors was described implicitly as a planning problem and goals were
selected when a plan that fitted the observations and achieved the goal was found.

This approach was in general abandoned from the late 1980s on. Since then, in
most approaches to plan recognition the space of possible plans or activities to be
recognized is assumed to be a fixed set of stereotypical plans (Kautz, 1991). These
are then compiled into some suitably defined library of plans or policies by the plan
recognition system designer. Plan recognition thus became a problem of matching
observations with a fixed set of plans, a plan library, stored in some suitable hierar-
chical representation similar to AND/OR graphs or HTN task networks.

The reasons for abandoning the plan recognition as planning approach were two.
First, a fundamental weakness was found in early formulations. Showing that a plan
fitting the observations exists for some goal is insufficient to rule out other goals as
not possible. There may exist many and indeed an infinite number of plans that
comply with the observations, yet some of them, under certain assumptions, are
much more plausible than others. Second, checking that such plans exist requires
solving a search problem over the space of plans that achieve the hypothesized goals.

3

4 INTRODUCTION

The size of this search problem grows with the amount of detail used to model agent
actions and environment. Unfortunately, the domain—-independent planners available
at the time were unable to scale up well, or at all, over planning domains modeling
complex agent behavior (Kautz, 1991).

Over the years the planning community has caught up with the challenges posed by
the combinatorial explosion in plan search, pushing the envelope of feasible problems
by developing planners with increased capabilities that include

1995 — GRAPHPLAN (Blum and Furst, 1995)
1999 — BLackBox (Kautz and Selman, 1999)
2000 — Hsp (Bonet and Geffner, 2001a)

2001 - FFr (Hoffmann and Nebel, 2001)

2006 — FAST DOWNWARD (Helmert, 2006)
2008 — LAMA (Richter and Westphal, 2008)

S A o

The once upon a time valid concerns regarding scalability seem to no longer apply,
and we consider that the work done by the automated planning community can once
more contribute to advance the state—of-the—art in plan recognition.

The goal of this thesis is to provide a model-based account of plan recognition,
which overcomes the limitations regarding the formulations and computational mod-
els discussed in previous works relating plan recognition and planning. We want
our formulation to provide well-founded principles which use the properties of plans
achieving a goal in order to deem the goals as a good explanation of the observations.
The computational model will be relying on existing planners without requiring mod-
ifications, so its scalability is directly related to that of the planner being used.

The advantages to our approach are several. A model-based approach is much more
flexible and robust than a library—based approach since the system designer does not
have to anticipate the plans that the agent might use to achieve a goal. This rules
out the possibility that some goal is not selected as an explanation of the observed
actions because the plan the agent actually used was not in the library. Furthermore,
planning languages empower modelers so they can construct rich agent models in a
intuitive and straightforward way. For instance, to encode complex goals in a succint
way, implicitly denoting a vast number of world states.

Our approach is not without disadvantages, though. Combinatorial explosion in plan
search is a moving target both for the planning community and plan recognition
system developers, since the latter will eventually come up with an agent model
on which no state—of-the—art planner scales well. This is particularly of concern
for agent models considering non—deterministic action effects and partial-feedback,
since the planners available for such models are not, relatively speaking, as powerful
as planners for less expressive agent models.

1.2 Example: RoboSchool

Let us consider the following example plan recognition task. The observing agent is
a robot, which is required to figure out the goal being sought by a human trainer,

1.2. EXAMPLE: ROBOSCHOOL 5

so it can imitate later the trainer’s behavior. We assume that both the robot and
the trainer have perfect knowledge of their environment i.e. know exactly their own
position and that of objects relevant to accomplish the task. We will also make
the assumption that the actions the trainer does are deterministic, that is, they have
always the same effect and she receives immediate and complete feedback about their
effects.

The environment where the activity takes place is a lab whose layout presents some
constraints on the trainer movement. The lab itself is modeled as discrete, square
cells which might be blocked by furniture. The robot is able to accurately observe
changes in the location of the trainer and assumes it can move from any unblocked
cell to any of its at most eight adjacent unblocked cells. These are taken to be to
be move actions, allowing the trainer’s motion to be modeled as a set of discrete
actions.

The objects of interest in this task are of two kinds. One is a set of wooden pieces
— denoted p1, p2, ..., pn — which might have one out of three shapes — cube, cone
or sphere — and one out of three possible colors — red, blue and green — which lay
scattered on the lab floor. The other is a set of bins — denoted by, b, ..., b, — that
can hold a number of wooden pieces much larger than the ones present in the lab.
The bins are located in cells, either accessible or inaccessible, as long as the trainer
can get adjacent to those cells. An example initial situation is depicted in Figure 1.1.

A B C D E

0 ‘ B
o,

Figure 1.1: Lab environment represented as a grid, each cell is referred to by its coordinates:
AQ, ..., E4. Clear cells are the ones the trainer can enter and exit. Numbered cylinders
1, 2 and 3 represent bins by, by and bs. Note that b; is located in a cell the trainer cannot
traverse. Objects are represented by their shapes and colors. The red circle is denoted as p;
and the blue triangle as ps. The trainer is initially located in cell B3.

Besides their shape and color, objects are further described by their situation: lying
on the ground, being carried by the trainer or stored inside one particular bin. Object
situation is assumed to change only when the trainer does some action, which can
only be executed when a specific condition is met.

6 INTRODUCTION

The trainer is expected to pick up the objects from the ground and to store them in
some bin. The trainer can only pick those objects which lie in the same cell she is
standing in, and it is guaranteed that she will be carrying it after the action is done.
She can drop them — provided that she already carries them — into bins in the same
cell or throw them into those bins in an adjacent cell. In both cases it is guaranteed
that the object will be stored in the appropriate bin after the action is done. The
trainer can carry an unlimited number of objects simultaneously and the bins can
also store an unlimited number of objects.

The set of possible goals that the robot knows about and expects the trainer to
pursue are:

Store all triangles in b;.
Store all spheres in bo.
Store all cubes in bs.
Store red objects in by.

Store green objects in bs.

S Ot W=

Store blue objects in by.

One possible plan for the trainer when she is pursuing task #1, given that she starts
at cell B3, would be:

Walk from B3 into A4.
Pick ps up.

Walk from A4 into B3.
Walk from B3 into C2.
Pick p4 up.

Throw p3 into by.

NS o W=

Throw p4 into by.

Unfortunately, robot sensors are far from being 100% accurate and tend to miss
certain actions with some probability. For instance, the robot can entirely miss up
to 70% of walk actions and up to half of either pick or drop actions. Hence, a possible
sequence of actions that the robot may observe is:

1. Pick p3 up.
2. Walk from A4 into B3.

Under certain assumptions, it can be deduced that tasks #1 and #4 are equally likely
and good explanations for the observations obtained, while the other four tasks are —
to a varying degree — rather unlikely explanations for the events observed. Namely,
if the robot is assuming that the trainer tries to attain a goal in the most efficient
manner, it would make little sense that she picked up the red triangle if she is storing
all spheres in bo, or storing all green objects in bin b3.

1.3. PLANNING AND PLAN RECOGNITION 7

While this task looks to be rather simple, it is not far from the degree of sophistication
of current robotic platforms such as SIMON !, developed by Georgia Tech’s Socially
Intelligent Machines Lab, and discussed in recent work on social learning and multi—
agent systems (Knox and Stone, 2010).

1.3 Planning and Plan Recognition

The “generative”, or model-based, approach to plan recognition formulated in this
thesis has several advantages over approaches to plan recognition based on matching
observations against plans stored in a plan library.

First, it does not require a library of plans but a domain theory from which plans can
be automatically constructed. This offers a more general and flexible framework than
the one offered by library—based approaches. While it is known that propositional,
acyclic plan libraries can be efficiently compiled into domain theories (Lekavy and
Névrat, 2007), the converse is not true. Because of this, behavior unforeseen by the
plan recognition system designer can easily be unaccounted for. Solving this problem
of incompleteness by means of systematically enumerating possible plans implies a
combinatorial blow up in the size of the plan library, defeating parsing and graph—
search algorithms that offer polynomial run—time guarantees over the size of the
library. Methods based on obtaining observed actions likelihood from plan libraries
encoded into Dynamic Bayesian Networks (Bui, 2003) ameliorate this problem, but
only if the length of possible plans is bounded by a constant.

It might be contended that the claim above is of little practical use since domain
theories are not necessarily easier to come up with than plan or policy libraries for
anything more complex than the “toy”, “grid—based”, task described in the previous
section. This might be true for applications dealing with plan recognition tasks
where there is no clear discrete notion of agency. However, we argue that such
applications are few, or in an early stage of development. Coming up with domain
theories for applications dealing with designing highly structured processes, such as
the internal business processes of a company, can be trivially achieved by retrieving
the specification and internal state of the graphical user interface (Hoffmann et al.,
2010) component in a business management application. The automated generation
of domain theories, in order to compute plans in an on-line way, has been shown
to be easily achieved even in applications rarely discussed in Al research such as
real-time video games (Orkin, 2005).

Second, a major shortcoming of library—based approaches lies in using a language,
either graphical or based on production rules, with very limited expressiveness when
it comes to characterizing world states (Geib and Goldman, 2009). One example
are the short—comings such approaches have when dealing with plans that achieve
several different goals simultaneously. Automated planning domain theories use a
factored representation of world states (Fikes and Nilsson, 1971; Geffner, 2000), where
particular states are described as logical formulas that model one or several possible
world state variables valuations. Model-based plan recognition approaches identify
processes indirectly rather than recognizing them directly, analyzing the outcomes of
plan execution and the constraints posed by world state variables values on action
execution.

'SIMON was recently featured in New York Times, see http://www.athomaz. com/?p=449

http://www.athomaz.com/?p=449

8 INTRODUCTION

To illustrate this point, consider adding the goal “store all triangles and spheres
in b1” to the example presented in Section 1.2. To model that goal is as simple
as writing the logical formula describing world states where all objects with those
specific shapes are placed inside bin b, according to the syntax and grammatical
rules of the domain—independent planning language used. This is far more natural
and elegant than ad—hoc solutions such as the ones proposed by (Geib and Goldman,
2009).

The third advantage, is that it becomes possible to build plan recognition systems
on top of state—of-the—art planners, guaranteeing that they scale as well as planners
do. As discussed in Section 1.1, the concern about planners not being able to handle
the combinatorial explosion in the size of the set of behaviors entailed by a domain
theory, no longer holds. The challenge, though, is to come up with a domain theory
expressive enough to capture all relevant aspects of the plan recognition task, and
at the same time, structured in such a way that the domain—-independent heuristics
driving the search procedures used by planners remain effective. This challenge is
not particular to planning, and has been the subject of extensive discussion in the
SAT solving community (Walsh, 2000; Fey et al., 2006; Hoos, 1999), where power-
ful domain—independent solvers can be defeated with some particular encodings of
an input problem, while dealing effortlessly with a different encoding of the same
problem.

1.4 Overview of Contributions

The main contribution of this thesis is a novel and crisp formulation of single—agent,
keyhole (Kautz and Allen, 1986a) plan recognition as planning where posterior goal
probabilities P(G|O) (Charniak and Goldman, 1993) follow from the costs of plans.
Goals G are logical formulas over variables describing many world states simulta-
neously. Observation sequences O are totally ordered sequences of action signatures
expressed in a planning language, which encode parts of the plan executed by the
observed agent. The formulation does not require O to be a plan prefiz, that is, the
first n actions in a plan, but rather handles any subset of actions of a plan, as long
as these are ordered without placing any requirement on the number of actions n
observed.

To produce the posterior probabilities P(G|O), a prior distribution P(G) over the
goals G is assumed to be given. The likelihoods P(O|G) of the observation O given
the goals G are defined in terms of the cost differences between plans 7w that achieve
G and have O embedded, and those that still achieve G but do not comply with O.
Plans m are computed by a classical planner over a classical domain theory. The
planners are used off-the—shelf so they do not need to be modified in any way. The
domain theory is assumed to be shared between agent and observer except for the
true goal of the agent that is hidden to the observer.

We also show how to extend the model-based approach above to plan recognition
over POMDP domain theories, where actions are stochastic and states are partially
observable. While the definition of P(G|O) and P(G) is unchanged, P(O|G) is
computed indirectly from the value function Vg (b) over beliefs b generated by a
POMDP planner for each possible goal G. Once computed, executions are sampled
from this value function, assuming that the agent tends to select those actions that

1.5. OUTLINE OF THE THESIS 9

are likely to achieve the goal more cheaply. The likelihood of the observations O
given the goal GG is approximated from these samples.

In analogy to the other cases, the goal recognition problem over POMDPs is solved
using an off-the-shelf POMDP planner. While POMDP planners do not scale up as
well as MDP planners, and certainly much worse than classical planners, we show
that still a rich variety of recognition problems involving incomplete information can
be effectively modeled and solved in this manner.

In all cases, the expressive power and computational feasibility of the approach will
be illustrated through a number of experiments over several domains.

1.5 Outline of the Thesis

In Chapters 2 and 3 we cover the relevant background on Classical, MDP and
POMDP planning relevant to this thesis. We start by giving a formal account of the
structure and semantics of planning problems, as well as the algorithms available to
solve them. We will illustrate the expressiveness allowed by planning languages, by
showing the reader how the example presented in Section 1.2 can be encoded.

In Chapter 4 we will present the formulation of plan recognition over classical domain
theories, formally defining plan recognition problems and their solution, in terms of
costs of classical plans. We will then discuss in detail the domains used to evaluate
our approach, so the reader can further appreciate the challenge and significance
of each of the domains. We end this chapter presenting our empirical results and
discussing their implications.

The extension of the formulation presented in Chapter 4 to domain theories model-
ing partially—observable, stochastic environments is presented in Chapter 5. As in
the previous chapter, formal definitions will be given for both the problem and the
algorithms to solve them, followed by a detailed discussion of the evaluation domains
and the obtained empirical results.

A selection of the most relevant previous approaches to plan recognition are reviewed
in Chapter 6, as well as those works which have had a direct influence on the contri-
butions presented in this thesis.

We conclude with Chapter 7 offering a summary of the main contributions and
empirical results. We will explain their significance and implications for both plan
recognition and planning. We will also offer an discussion of existing limitations in
the approach along with proposals to further extend its applicability and scalability.

CHAPTER

Classical Planning

In this chapter we present the classical planning model, and discuss how it can
be described implicitly with factored representations. We then briefly review some
complexity results of finding solutions for classical planning models, which while
in theory (Bylander, 1994) are quite hard to solve, in practice such solutions can
often be obtained with ease (Helmert, 2005). Most of classical planning systems,
or planners, which have come out to become winners of the International Planning
Competitions, on the basis of the number of problems they solve, how fast these
are solved, and the quality of the solutions found!, are based on the “planning as
heuristic search” approach. We will discuss briefly what these heuristics are in
this context and introduce the search algorithms which are the backbone of the
planners we use in Chapter 4. After that, we will give a detailed overview of the
h™ family of heuristic estimators, the additive heuristic hyqq4, relaxed plan heuristics
and the landmark heuristics. As a whole these constitute the bulk of the heuristic
machinery that state—of—the—art classical planners derive automatically from factored
representations of planning problems in order to search effectively for plans. We
will end this chapter with a complete overview of the STRIPS representation of the
example given in Section 1.2.

2.1 The Classical Planning Model

Classical planning is the problem of finding a sequence of actions, or plan, that when
applied in the initial state of the problem results in a goal state. A classical planning
problem can be viewed as a directed graph (Nilsson, 1980; Pearl, 1983; Newell and
Simon, 1972) whose nodes represent states of the planning problem, and whose edges
represent state transitions caused by actions. Edges’ source nodes are the state in
which actions are performed, and target nodes correspond to resulting states. A plan
is then a path from the node in the graph representing the initial state to a node
representing a state that is an element of the set of goal states of the problem. The
formal state—space model (Hart et al., 1968; Nilsson, 1980) underlying the planning
problem can be described as follows:

'Only considered for non-optimal planners.

11

12 CLASSICAL PLANNING

Definition 2.1 (Classical planning model). A planning model 11 = (S, sg, Sq, A,
app, f) consists of:

e A finite and discrete set of states S,
e An initial state sg € S,

o A set of goal states Sg C S,

o A set of actions A,

e The applicability function app : S — P(A) giving the set of actions that are
applicable in each state,

e The transition function f : S x O — S, where f(s,a) is defined only when
a € app(s).

The state resulting from applying an action a in a given state s is f(s,a), denoted
also as s[a]. The result of applying a sequence of actions m = (ay,...,a,) to state s
can be defined recursively as

sle] = s

sla] = {J_ ifa ¢ app(s)
f(s,a) ifa € app(s)

slat,...,an] = (slat,...,an—1])[an]

Sequences of actions that solve the planning problem, mapping the initial state sg
into some state s € Sg are plans:

Definition 2.2 (Plan). Given a planning model I1, a plan 7 for w is a sequence of
actions such that so[w] € Sg. The length 7 of a plan is the number of actions in a
plan.

In the absence of a cost function, plans with lower length are preferred as solutions
than those with higher length. Alternatively, the planning model may be stated in
conjunction with a cost function that assigns costs to the actions of the problem:

Definition 2.3 (Classical planning with costs). A planning model with costs, 11,
consists of a planning model I1 = (S, so, Sc, A, app, f) along with a function ¢ : A —
Rg that maps each action in the model to a non—negative cost.

Such costs are considered to be additive, making the definition of cost of a plan
straightforward:

Definition 2.4 (Plan cost). The cost of a plan m = (ay,...,ay) is given by

n

cost(m) = Z c(a;)

i=1

In planning problems with costs, plans with lower cost are preferred over plans with
higher cost. Planning without cost, in which length || is the criteria for preference,
can be seen as an special case of planning with costs in which c¢(a) = 1 for all a € A.

2.2. FACTORED REPRESENTATIONS IN STRIPS 13

2.2 Factored Representations in Strips

Since it is impractical to explicitly enumerate the state space of planning problems
large enough to be considered of interest, factored representations, in which states
are represented by complete assignments to a set of variables with finite and discrete
domains, are commonly used. Given such a representation, the sets of goal states
S¢ and operators, as well as the applicability A(s) and transition f(s,a) functions,
can also be described in terms of these variables.

The most common and simplest factored representation is one which consists of
only boolean variables, with the value of each such variable indicating whether a
proposition about the world is true or false at a given state. Such variables are also
known as fluents or facts. This representation was first used in the Stanford Research
Institute Problem Solver (STRrips) (Fikes and Nilsson, 1971) and is known by that
name today.

The STRIPS language comprises two parts: a language for describing the world, the
set F' of fluents, and a language for describing how the world changes, the set of
actions A, a compact representation of actions that avoids the frame problem (Mc-
Carthy and Hayes, 1969). We will consider the STRIPS language as used currently
in planning, i.e. the STRIPS subset of PDDL (McDermott, 2000), rather than the
original version of STRIPS which is slightly more complex (Fikes and Nilsson, 1971;
Lifschitz, 1986) and was used in previous approaches to plan recognition (Schmidt
et al., 1978; Perrault and Allen, 1980).

The fluent set F' is made up of expressions obtained from two types of symbols:
relational and constant symbols. For instance, fluents accounting for one of the
possible trainer locations in the example described in Section 1.2, would be

atTrainer(A0)

where at is a relational symbol of arity 1, denoting the location of the trainer, and
cell coordinates AQ, ..., B4 are constant symbols. Fluents are defined in a standard
way from the combination p(¢1,...,tx) of a relational symbol p and a tuple of terms
t; of the same arity as p. STRIPS formulas are obtained by closing the set of fluents
under the conjunctive (A) propositional connective, and are identified with sets of
atoms.

A planning problem described in the STRIPS language, is defined as follows:

Definition 2.5 (STRIPS). A planning problem in STRIPS, P = (F, A, I,G) consists

of:

e A set of boolean variables (fluents) F,

o A set of tuples A representing actions, each having the form a = (Pre(a),
Add(a), Del(a)), where Pre(a), Add(a), Del(a) are all in F' and describe action
precondition and effects,

o A set I C F, describing the initial state,

e A set G C F, describing the set of goal states.

14 CLASSICAL PLANNING

We note that many planning problems may share a common structure, such as initial
state, fluent and action sets. We will refer to this base structure as a planning domain.
We note that this term can be found in the existing planning literature to refer to
the object described in Definition 2.5, or also as the fluent and action sets shared by
many planning problems. In the context of the present thesis, a planning domain
refers to the following

Definition 2.6 (STRIPS Planning Domain). A planning domain P[] = (F, A, I)
consists of:

o A set of boolean variables (fluents) F,

o A set of tuples A representing actions, each having the form (Pre(a), Add(a),
Del(a)), where Pre(a), Add(a) and Del(a) C F.

o A set I CF, describing the initial state.

Planning problems can be then obtained by attaching to a domain description P[]
a goal conjunction G C F, resulting in problem P[G]| = (F,I, A, G).

A significant difference between relational and constant symbols in STRIPS is that
the former are used to keep track of aspects of the world that may change as result
of the actions — the current location of the trainer — while the latter are used to refer
to objects in the domain — discrete locations — which are not affected in any way by
action effects. This dynamic nature is the main reason for referring to the expressions
describing an aspect of the world state as fluents rather than by the standard term
in logic, atom.

Actions a € A are defined over the set of fluents F', by specifying their precondition,
add, and delete sets (conjunctions) of fluents in F, Pre(a), Add(a) and Del(a).
Actions are normally defined by means of first-order schemas, as is indeed the case
in the STRIPS subset of PDDL. In this thesis we assume that such schemas have been
previously grounded.

A STRIPS planning problem P = (F, A, I, G) is given a precise meaning by mapping
it into the planning state model II = (S, so, Si, A, app, f) where:

States S are sets (conjunctions) of fluents in F,
The initial state sg corresponds with I,

The goal states Sg are those states s € S such that G C s,

L

The applicability function app(s) maps states s into sets of actions such that
app(s) = {a| Pre(a) C s, a € A}

5. The transition function f(a,s), a € A, s € S is such that
f(a,s) = sU Add(a) \ Del(a) (2.1)
The solution of the planning problem P is the solution of the state model II, namely,

a sequence of applicable actions that map the initial state into goal state in II:

Definition 2.7 (Valid Plan). A solution of the planning problem P = (F, A, I,G),
or valid plan, is a sequence of actions ™ = (ay,...,a,) such that

2.2. FACTORED REPRESENTATIONS IN STRIPS 15

1. Pre(ay) C I,
2. Pre(a;) C I[ay,...,ai—1] fori>1,
3. G - I[al,...,an}.

The set of solutions, or valid plans to a planning problem P[G] is denoted as IIp(G).

The extensions of STRIPS described in the PDDL specification (McDermott, 2000; Fox
and Long, 2003) such as those involving negated fluents, conditional effects (Anderson
et al., 1998), disjunctive and quantified (existential or universal) precondition and
effect formulas are easily compiled into the present formulation of STRIPS (Gazen and
Knoblock, 1997). Most, if not all, state-of-the—art planners since Fr (Hoffmann and
Nebel, 2001) provide implementations of such compilations integrated with efficient
routines for grounding PDDL action schemas.

Conditional Effects

We will stop at examining one of the extensions above mentioned, that of conditional
effects. This extension is fundamental to the formulation of plan recognition as
planning given in Chapter 4.

As their name imply, conditional effects extend the expressiveness of STRIPS actions
a by allowing to define any number of effects e which only affect the state s’ resulting
from executing a on a state s, when a certain condition c is met by s.

We will refer to the i-th conditional effect associated to action a as ce(a);:
ce(a); : ¢; — caj;,cd;

where ¢;, a; and d; are all subsets of fluents in F'. ¢; is the condition which is required
to be true in state s in order to trigger the effects ca; and cd;.

The transition function f(a,s) in Equation 2.1 is now defined as

f(a,s) = sU Adds(s) \ Dels(s)

where Adds(s,a) is the set of all fluents that become true after executing action a
on state s

Adds(s,a) = Add(a) U U ca;

i,c;Cs

and Dels(s,a) is the set of fluents that become false after executing action a on state
5

Dels(s,a) = Del(a) U U cd;

1,c;Cs

where ¢; is the condition of conditional effect ce(a); associated with action a.

16 CLASSICAL PLANNING

Extending Strips with Action Costs

The expressiveness of STRIPS can be easily enhanced by extending it to deal with
action costs, so the cost of plans is not limited to the number of actions in it. One
straightforward and simple way of doing so is to define costs of plans as an additive
function over arbitrary positive reals:

Definition 2.8 (STRIPS with costs). A STRIPS problem with costs P. = (F, A, I,G,c)
consists of:

1. The STRIPS problem defined by P = (F, A, I,G),

2. A cost function ¢ : A — R{ that assigns to each STRIPS action in the problem
a non-negative cost

Having addressed the issue of defining costs of actions — and valid plans — we can
now define the notion of optimal plan:

Definition 2.9 (Optimal plan). An optimal plan 7 for STRIPS problem P, =
(F,A,I,G,c) is a plan such that

¢(m™) = min ¢(7)
where 7 is any valid plan for P..

The set of best solutions, or optimal plans, to planning problems P is denoted IT}(G).

In this thesis, references to problems P are to STRIPS problems with costs, where
the cost function is ¢(a) = 1, for all a € A, unless explicitly noted.

2.3 Complexity of Strips planning

The problem of finding a minimal cost path from the single source sg to all s € S,
and therefore all s € S in a planning state model II, is in P (Papadimitriou, 1994)
and can be solved by Dijkstra’s algorithm in time O(]S]?) (Cormen et al., 1989).

However, the size of state sets S in state models derived from STRIPS planning
problems P are exponential on the number of fluents O(2/¥1) and typically too large
even for the purposes of enumeration. While this bound might be quite loose, due
to many possible states s not being reachable, attempting to solve problems P with
Dijkstra 2 means dealing with not only an exponential number of states, but also
with exponential length paths.

The classical characterization of the complexity of STRIPS planning problems is due
to (Bylander, 1994), where concrete results are given for the following two decision
problems:

Definition 2.10 (Plan Existence). Given a STRIPS representation of a planning
problem P, PlanEzt(P) is the following decision problem:

20r its more space efficient version, tailored to solve state models, known as Uniform Cost
Search (Russell and Norvig, 2003).

2.4. HEURISTICS 17

INSTANCE: A planning problem P.
QUESTION: Does a valid plan © for P exist?

Definition 2.11 (Plan Cost). Given a factored representation of a planning problem
P and a constant value k €]Rar, PlanCost(P) is the following decision problem:

INSTANCE: A planning problem P, a constant k €]Rar.

QUESTION: Does a plan 7 for P with cost(m) < k exist?

Both decision problems are shown to be Pspace—complete which is exponentially
separated from NP-complete (Papadimitriou, 1994). This is broadly considered as
a disappointing result by the AI research community — i.e. “planning is hopeless” —
but contrasts starkly with the practice of planning, which routinely solves concrete
planning problems shown to be in NP or, somewhat surprisingly, in P (Helmert,
2003, 2005).

Recent work (Béckstrom and Jonsson, 2011) partly bridges this gap between theory
and practice by noting the difference between computational and expressive power
of decision problems in the same complexity class, and proposing a battery of new
methods to establish a more nuanced and proper complexity characterization of
planning problems.

These new methods replace those used by (Bylander, 1994) which have become the
standard tool for investigating into complexity of planning problem. (Bylander,
1994) results were built on a straightforward mapping into Turing Machines such
that the state transition function f(s, a) was encoded explicitly into Turing Machine
operators. This kind of representation is at odds with the standard practice of
using very efficient state expansion procedures that allow to explore the state graph
implicitly (Balcazar, 1996), as long as the number of successors to some particular
state s is bounded by a polynomial. (Balcazar, 1996) proposes — and is followed
upon by (Béackstrom and Jonsson, 2011) — to encode this node expansion procedure
as a boolean circuit, which allows for a more informative and consistent framework
to study the hardness of planning problems.

2.4 Heuristics

Given the interpretation of planning problems as implicitly defined graphs whose
nodes represent states and whose edges represent actions, graph search algorithms are
a logical choice for solving them. Yet, as discussed in Section 2.3, general algorithms
such as Dijkstra cannot effectively deal with the large state spaces usually associated
with planning problems.

However, heuristic search approaches (Pearl, 1983) using a heuristic function com-
puted automatically from planning problems encoded in STRIPS (Bonet and Geflner,
2001a) have proven to be successful in recent years, with heuristic search based
planners winning several of the most recent International Planning Competitions
(IPC) (Richter and Westphal, 2008; Helmert, 2004; Hoffmann and Nebel, 2001; Bonet
et al., 1997).

18 CLASSICAL PLANNING

A heuristic is a way of choosing between different course of action in order to achieve
some goal (Pearl, 1983). Heuristics make no guarantees as to the optimality of their
suggestions. Yet in combination with graph search algorithms allow to find both
optimal and satisficing solutions to many problems where the search space is just
too large for general search methods. Canonical examples are problems such as the
15—puzzle, in which tiles must be moved around a grid to reach a target configuration,
and the route finding problem, in which a route must be found between two cities
in a highway map. In many settings, heuristics take the form of heuristic estimators
that compute, for a given state s, an estimate of the cost of reaching the goal from
that state:

Definition 2.12 (Heuristic estimator). A heuristic estimator is a function h : S —
Ra' that given a state s estimates the cost of reaching a goal state s' € S from s.

One example of using heuristic estimators for guiding the search would be to apply
first actions a in s that minimize the estimated cost h(s") of the state s’ = f(s,a).
While such a state appears to represent the quickest way of getting to the goal from
the current situation, even if the estimate is known to not over—estimate the cost
of reaching the goal from s, alternative actions a’ must be also considered when a
globally optimal solution is sought.

While its computation is impractical for problems of interest, it is useful to define
the perfect heuristic estimator h*. This estimator returns the actual cost of optimal
solutions from any state s,:

Definition 2.13 (Perfect heuristic estimator). The perfect heuristic estimator h*(s)
is the cost of an optimal (lowest—cost) solution to a problem from state s.

The fact that h* gives the optimal cost from the current state s means that there
should always exist an action a such that h*(s) = c(a) + h*(f(s,a)). This in turn
implies that it should be possible to go from the initial state of the problem sg
to a goal state s € Sg by following a sequence of states for which the sum of the
accumulated cost until that state and the value of h* of the state are constant. In
practice, heuristics for problems of interest are far less accurate, and require the
exploration of a much larger part of the search space.

Admissible, or non—overestimating heuristic estimators, are defined with reference to
the h* estimator:

Definition 2.14 (Admissible heuristic estimator (Pearl, 1983)). An admissible heuris-
tic estimator h is one which satisfies h(s) < h*(s) for all states s € S.

An admissible heuristic estimator for the route finding problem, for example, is the
Euclidean distance in the map between two cities, as this is guaranteed to be a lower
bound on the actual minimum distance that must be driven to get from one to the
other.

Admissible heuristic estimators are important for problem solving, as they can be
used in combination with search algorithms that always explore first courses of action
that appear to be less costly in order to obtain optimal solutions. In contrast, non—
admissible heuristic estimators may lead to suboptimal solutions, as an overestimate
of the optimal cost of a state may cause the algorithm to rule out a solution that

2.5. HEURISTIC SEARCH ALGORITHMS 19

actually has lower cost. This oversight also means that search algorithms driven by
carefully designed non—admissible heuristics will find a solution much faster(Pearl,
1983).

Typically, both types of heuristic estimators are defined as the cost of solutions —
optimal or sub—optimal — to simplified versions of the problem at hand. These sim-
pler versions are called relazations of the original problem, and result from ignoring
certain of their properties or complexities (Pearl, 1983). This simplification though,
comes at the expense of the precision of the estimate conveyed by the simpler problem
solution, existing usually a trade—off between how close is the lower bound obtained
to h* and how expensive is to solve the relazation (Helmert and Mattmiiller, 2008).

There is a second class of heuristics in broad use in planning, which are not calibrated,
that is, their suggestions are not related to the cost of solving the problem. This
second class of uncalibrated heuristics, rather than producing estimates of costs, rank
actions according to what degree they are deemed to be necessary in order to achieve
the goal quickly. The probability of an action being the best to do in a state is usually
assessed by analyzing the causal structure of the planning problem, very much as
calibrated heuristics do, while being sensitive to particular structural features that
are blurred by calibrated heuristics.

2.5 Heuristic search algorithms

A heuristic search algorithm is a procedure that uses a heuristic estimator to find a
sequence of actions that reach a goal. In order to do so, an implicit directed search
graph (Russell and Norvig, 2003) is built incrementally. Each node n corresponds
with a state s plus additional information such as, the action a used to reach it and
its accumulated cost. The root node ng corresponds to initial state sg. This search
graph allows the algorithm to keep track of the partial solutions being worked on by
the search algorithm, as well as for ruling out loops.

This data structure also allows for a easy and quick retrieval of solutions found,
by enumerating the actions involved in a path backwards from a goal leaf node to
the root node ng. Hence, nodes are implicitly encodingcandidate solution paths.
Children nodes, generated by applying action a to the state s associated to a node
n, are referred to as successor nodes. Whenever all the successors of a given node n
are inserted into the search graph, it is said that node n has been expanded. The set
of leaf nodes in the search graph is commonly referred to as the search frontier.

Algorithms for solving state models S can be arranged along two different dimensions:

1. Branching strateqy — The strategy followed to traverse the directed graph im-
plicitly encoded by transition function f: breadth—first or depth—first. Both
breadth and depth can be bounded, leading to beam search and iterative deep-
ening algorithms, establishing a compromise between space, time and com-
pleteness (Korf, 1993).

2. Information — Whether there is available a heuristic function h which estimates
the cost of the path between two states k(s,s’). Usually s is fixed to be some
goal state s’ € Sg, though this particular commitment can change as search
progresses. Admissible heuristics h (Pearl, 1983) are of special importance,

20 CLASSICAL PLANNING

since they enable algorithms which are optimal with respect to the amount of
search done and the quality of the solution obtained after search.

The planning community has focused on informed or heuristic search algorithms,
trying alternatives in directionality and branching strategy with varying degrees of
success. In optimal planning though, the most successful systems have been for a
long time those using combination of backward chaining and iterative-deepening
depth—first search (Korf, 1985; Bonet and Geffner, 1999). Recently these have been
superseded by forward chaining search using admissible heuristics unrelated to the
h™ heuristics(Bonet and Helmert, 2010; Nissim et al., 2011).

For satisficing planning > most successful systems have been those combining non-
admissible heuristics, forward chaining and best—first search. The most influential
satisficing planner amongst those developed during the early 2000’s was FF (Hoff-
mann and Nebel, 2001). FF proved to be much faster than the first satisficing
planner based on heuristic search, Hsp (Bonet et al., 1997). Rather than just using
best-first search as HsP, FF followed a two-tiered strategy. First, an incomplete
but very fast search algorithm is invoked. This algorithm, Enforced Hill Climbing,
combined the then novel notion of relazed plans and helpful actions with those in
beam search, in order to explore very quickly parts of the search space deemed by the
heuristic to be the ones leading to the goal with the least cost. When this algorithm
fails, then a best—first search algorithm using the same non—admissible heuristic is
invoked. (Hoffmann and Nebel, 2001) delivered a powerful planner, which can be
argued to have been not beaten by any other satisficing planner between 2001 and
2008.

FF lost this dominant position recently with the development of the LAMA planning
system (Richter and Westphal, 2008, 2010). LAMA is an any—time planner which
relies on a heavily modified best—first search procedure that uses dynamically several
non—admissible heuristics, and integrates some of the ideas in FF to keep the search
algorithm focused on relevant parts of the search space.

Best First Search

Best first search (Hart et al., 1968; Nilsson, 1980) (BFs) algorithms explore the
search space by ranking all of the current leaf nodes, whose children have not yet
been generated, according to some evaluation function f(n). This function typically
is a linear combination of the accumulated cost to reach the goal, denoted by g(n),
and the heuristic value, written as h(n) (Pearl, 1983). The algorithm operates by
inserting leaf nodes into the open list, an ordered list where nodes are stored so that
those nodes with lower f(n) values come first (Algorithm 2.1).

At each step of the algorithm, a node n with minimum f(n) is retrieved from the
open list, and its successors are generated by applying all actions a € app(s) and
inserted according to their f(n) value. In order to avoid exploring paths already
considered, expanded nodes are placed into the closed list. Whenever a new node n
is generated, it is checked that there is no other node n’ with the same state s present

3Non-optimal planning where solutions are not required to be optimal but good enough.
4Incomplete search algorithms do not provide the guarantee of finding the solution to a search
problem, even when such solution exists.

2.6. REACHABILITY PLANNING HEURISTICS h™ 21

Input: A problem model of the form II = (S, so, Sq, 4, app, f)
Output: A path to a goal state s,

open-list < a set of nodes;
n; < a node representing the initial state;
Calculate f(n;) and add n; to open-list;
while open-list # () do
n — a node with minimal f(n) in open-list;
Remove n from open-list;
if IsGoal(n) then
‘ return GeneratePath(n);
for n’ € GenerateSuccessors(n) do
Calculate f(n');
if n’ & open-list, closed-list then
‘ Add n' to open-list;
else if previous f(n') > current f(n’) then
Update the path that lead to n’ and its f(n’) value;
if n’ € closed-list then
‘ Move n’ to open-list;

Place n in closed-list;

Figure 2.1: Best-first search algorithm.

in either the open and closed lists. If there exists such other node n’, then values
f(n) and f(n') are compared. If it is found that f(n) < f(n’) then n’ is removed
from the list in which it was found, and n is inserted into the open list.

A generic form of the typical evaluation function used by heuristic search algorithms
is given by f(n) = g(n) + wh(n). When w = 1, this results in the A* (Hart et al.,
1968) algorithm, which finds optimal solutions when used in combination with ad-
missible heuristics while generating the smallest possible search tree (Pearl, 1983).
When w > 1 the value of the heuristic for a state is given more relevance, and the
search is focused on states whose heuristic value is the smallest, even if their ac-
cumulated cost is greater, resulting in the algorithm known as Weighted A*. The
“oreediness” of the search strategy, with respect to the “prospects” of reaching the
goal, becomes extreme when g(n) values are ignored, so f(n) effectively becomes
h(n). In this last case, the algorithm receives the name of Greedy Best—First Search.

A number of refinements have been proposed for the generic best—first search strat-
egy described above in the context of planning. We will briefly review these when
discussing the LAMA planner (Richter and Westphal, 2008), which has integrated the
most effective of these refinements in a coherent way.

2.6 Reachability Planning Heuristics h"™

In this section we will discuss the 2™ family of heuristics (Bonet and Geffner, 2001a;
Haslum and Geffner, 2000; Haslum et al., 2005) which are calibrated, that is, the
values computed correspond to estimates of costs to reach the goal. This family of
heuristics are automatically derived from STRIPS representations of planning prob-
lems P (McDermott, 1999; Bonet and Geffner, 2001a), by combining two relaxation

22 CLASSICAL PLANNING

procedures: one that operates at a semantic level, ignoring part of action descriptions
and a second one, which operates at a structural level, which ensures the relaxation
to be tractable, since computing solutions for it becomes bounded by a polynomial
of degree m.

Ignoring Delete Lists
The first step in the relaxation consists in obtaining a relared version of P, PT, in
the following manner:

Definition 2.15. Given P, a STRIPS planning problem P = (F,1, A, G), a delete—
relaxation of P, P' = (F',I', A',G') is defined as follows:

1. FF=F

2.1'=1

3. Action set A is like A, but for each a € A’, Del(a) = (.
4G =G

this notion of explicitly relaxing a planning problem by operating directly on the
problem description, was first suggested by (Pearl, 1983).

However, P alone, which is referred to with the name of delete—free relazation is
not useful to derive a heuristic estimate. Computing the optimal solutions of PT is
not tractable:

Theorem 2.16. (Bylander, 1994; Hoffmann and Nebel, 2001) Let P be a STRIPS
planning problem where for all a € A, Del(a) = (). PLANMIN for such P belongs to
Np-hard.

Proof. By reduction of PLANMIN to MIN SET COVER. O

NP-hard is exponentially easier that Pspace—complete but it is still too hard.

On the other hand, computing approximate solutions to PT, which can result in
either lower or upper bounds on ¢*(P™), the optimal cost of solutions for P, can
be polynomial.

The simplest and most efficient of such approximations, the h,,q, and h,gq heuris-
tics (Bonet and Geffner, 2001a), estimate the cost of achieving goal or action pre-
condition fluents individually. The heuristic estimator h is then defined to be some
suitably chosen function which combines individual fluent estimates. This allows a
parametric family of heuristic estimators, A", to be defined. m is the size of the
number of goal literals being considered simultaneously and whose time complexity
is polynomial on m. Ae, and hggq correspond to the case where m = 1.

h' Heuristics

The cost to individual literals is computed by adapting dynamic-programming meth-
ods for computing multiple—source shortest paths in graphs (Ford and Fulkerson,
1962).

2.6. REACHABILITY PLANNING HEURISTICS h™ 23

Definition 2.17. Let G'(P) = (V,E) be the directed graph derived from planning
problem P = (F,1,A,G) where vertex set V corresponds to fluents p € F plus a
dummy source node corresponding with to state I. The set of edges E is defined as:

E=|J{(.q) | p € Pre(a),q € Add(a)} U{(I,p) | p € I}
acA

The cost of achieving literal p is then reflected in the length of the paths that lead
to p from the graph node corresponding to I.

We will denote the cost of achieving a fluent p from state s as h(p; s). These estimates
can be defined recursively as

if I
Mpis) =10 el (22
mingeo(p [c(a) + h(Pre(a); s)] otherwise

where O(p) = {a | p € Add(a)}, operator min over an empty set is defined to be co
and h(C;s), with C being a set (conjunction) of fluents, is a combination functional
parameter of the heuristic estimator, whose nature determines the admissibility of
the resulting estimator.

Estimates h(p;s) are obtained from a simple forward chaining procedure in which
the estimates are initialized to 0 if p € s and to co otherwise. Then, for every action
a such that s = Pre(a), each fluent p € Add(a) is added to s and h(p; s) is updated
to

h(p;s) := min{h(p;s), c(a) + h(Pre(a);s)} (2.3)

These updates continue until the estimates h(p; s) do not change. The procedure is
polynomial in the number of literals and actions, and essentially is the same algo-
rithm as the Bellman—Ford algorithm for finding shortest paths in graphs (Ford and
Fulkerson, 1962).

As mentioned above, there are many possible ways to define h(C'’; s) which result in
different heuristics. Two such definitions have been proved to be very effective and
are still in use in many classical planners: the additive heuristic h,qq and the max
heuristic Amaz °

The additive heuristic is obtained by defining h(C} s) as follows:

hadd(C;5) =Y h(g; s) (2.4)

qeC

The intuition for this definition lies in assuming that literals ¢ € C can be achieved
independently by |C| sequential plans, which can be executed in any order. When the
assumption is true, it suffices to add up together the costs of these plans. Even in the
face of the possible over counting ¢ due to plans not being independent, it captures

5We would like to emphasize that strictly speaking hqqa cannot be considered part of the h™
family of heuristic functions since it is not admissible. We review it nonetheless along these because
its based on the same structural relaxation as the admissible A" (Amaz) heuristic.

5The simplest example of h,qq4 over counting actions is as follows. Consider action a and literals
p, q in Add(a). haada({p, q};s) would be counting action a twice.

24 CLASSICAL PLANNING

roughly but cheaply, relevant structural properties of planning problems (Keyder and
Geffner, 2009). It is also because of this over counting that h,4q is not an admissible
heuristic.

The admissible maz heuristic, hymqr or h', is obtained by defining h(C;s) in the
following way:

Bnan(C: 8) & h(q: 2.5
(C;s) max (4;5) (2.5)

The maz heuristic is a lower bound on ¢*(P) since it is only taking into account the
cost of achieving one of the literals ¢ € C. The rationale for h,,q, is that if all literals
q can be achieved by |C| parallel 7 plans, then suffices to take it as an estimate the
highest cost.

Higher—order h™ Heuristics

Computing higher—order reachability heuristics is also equivalent to computing short-
est paths on graphs G (P) (Haslum and Geffner, 2000), where vertices, rather than
being single fluents, as is the case for h!, are sets of fluents with size at most m. In
this G™(P) graph, there is an edge between two sets of fluents C' and B whenever
there exists an action a s.t.

B C R(C,a)

where R(C,a) denotes the operation of regressing set C' through action a, which is
in turn defined as

R(C,a) = {

0 C inconsistent with a
(C'\ Add(a)) U Pre(a) U Del(a) otherwise

The set C' is inconsistent with action a whenever C' contains fluents p € Del(a) or
there exists a fluent ¢ € Add(a) which is not a member of A. It is easy to see that
when m = 1 the resulting heuristic is exactly hge,. When m = 2, pairs of literals
(p,q) such that h%({p,q}) = oo correspond to pairs of fluents p,q which cannot be
simultaneously true in any valid state. The h™ heuristics with m > 2 elegantly
account for the notion of mutex sets first proposed and used by GRAPHPLAN (Blum
and Furst, 1995). While h! heuristics hpqee and hgqg completely disregard delete
lists, higher order A™ heuristics implicitly do in a limited way.

For the h? heuristic (Haslum and Geffner, 2000), where m = 2, the cost of evaluating
h on a search state becomes O(|F|?), making them considerably more expensive than
h' heuristics. The planning community has yet to come up with an effective h?-
based heuristic for satisficing planning, where the heuristic estimator is not required
to be admissible. This has in effect resulted in the higher order A™ heuristics being
banished altogether to optimal planning, and these have received little attention until
very recently (Haslum, 2009; Haslum et al., 2011).

2.7 Relaxed Plan Heuristics

On top of the basic h™ heuristics, more informed heuristic estimators can be defined
relying on the observation that the computation of h(C;s) for sets of fluents p € C

"Plans whose actions a whose effects do not affect Pre(b) or Add(b) of actions b in some other
plan.

2.7. RELAXED PLAN HEURISTICS 25

induces a critical path of actions branching out from fluents in that set (Haslum
et al., 2005). This was first noted by (Hoffmann and Nebel, 2001) who introduced
the notion of best supporter of a fluent p. Best supporters are the actions a with
lowest h(Pre(a)) and p € Add(a), and exploited it by introducing a backwards
chaining algorithm which computed the relazed plan, 77, a valid plan in PT, for
fluent set C. The relaxed plan heuristic is then defined as the sum of the costs of
the actions in plan 7™

ht(s)= Y c(a) (2.6)

where 7 is the relaxed plan extracted from state s.

This idea was later extended by (Keyder and Geffner, 2008), who generalized Hoff-
mann and Nebel’s (Hoffmann and Nebel, 2001) definition to account for any heuristic
using the same kind of structural relaxation as the one used by h! heuristics.

Given a best supporter function, the algorithm shown in Figure 2.2 extracts a plan
with at most a single instance of each operator.

Input: A planning problem II = (F, I, 0, G)
Input: A best supporter function BestSupporter : F +— O
Output: A relaxed plan 7 or DEAD-END

7+

supported = ();

to-support < G;

while to-support # () do

Choose p € to-support;

to-support < to-support \ {p};

if p & I then
if BestSupporter(p) = undefined then

| return DEAD-END;

7+ 7 U {BestSupporter(p)} ;
supported < supported U {p};

to-support < to-support U (Pre(BestSupporter(p)) \ supported);
return 7

Figure 2.2: Relaxed plan extraction algorithm.

As long as the plan represented by the best supporter function is well-founded (i.e.
does not contain cycles), this algorithm will terminate. Several ways of selecting
best supporters have been proposed that minimize different measures on the paths
to each fluent.

agdd denotes the best supporter chosen for fluent p by h*44, the h! additive heuristic

and hadd(agdd; s) denotes the cost of applying this action. These are given by the
following;:

26 CLASSICAL PLANNING

agdd oof argmin,e o) h2dd(a; s) (2.7)

R4 (g; 5) o cost(a) + h*(Pre(a); s)

RQis) E Y h N (g5s)
qeqQ

For the admissible h'-based max heuristic, the best supporter and estimated cost of
applying an action are similarly defined:

a, ™ = argmin,co)h" " (a;) (2.8)

R (a; s) oo cost(a) + h™**(Pre(a); s)

R(Qss) = max h™(g; s)
qe@

Relaxed plan heuristics are not admissible, so they can only be used for satisficing
planning. While being relatively inexpensive to compute — once the base h! heuristic
is computed — they provide accurate estimates in a surprisingly high number of
planning problems, and have become the key component of state—of-the—art planners.
Besides that, relaxed plan heuristics also provide us with insight into the causal
structure of planning problems, which can be exploited with notions such as helpful
actions (Hoffmann and Nebel, 2001; Helmert, 2006).

2.8 Heuristics Based on Planning Landmarks

Landmarks (Hoffmann et al., 2004; Richter et al., 2008; Keyder et al.) in a planning
problem are necessary features of solutions to planning problems. Fluent landmarks
are formulas over the set of fluents of the problem that must be satisfied by some
state that occurs during the execution of any valid plan:

Definition 2.18 (Fluent landmarks). A fluent landmark L is a formula over the
set of fluents F' of a planning problem, such that any valid plan © = (a1, ...,a,) has
a prefiz ™ = (ay,...,a;), possibly of length 0, whose application in the initial state
results in a state in which L is true, i.e. so[n'] = L.

These formulas are usually encoded in a very loose language, whose semantics are
similar to the Linear Temporal Logic unary operator <p, stating p to be necessarily
true at some point during the execution of any valid plan. In practice, landmarks
are expressed as either single literals or disjunctions of literals. Of special interest
are binary ordering relations between fluent landmarks, since they are essential to
figure out how to decompose planning problems into simpler ones.

It can be seen by choosing the empty prefix |7'| = 0 that all formulas true in the
initial state of the problem are landmarks. Similarly, choosing the prefix to be the
entire plan 7 implies that all formulas entailed by the goal are landmarks for the
problem as well.

The notion of fluent landmarks can be readily extended into actions:

2.9. STATE-OF—THE—ART PLANNERS 27

Definition 2.19 (Action landmarks). An operator landmark L is a formula over
the set of actions A of a planning problem, such that when any valid plan w is
interpreted as a truth assignment to the set of actions in the problem, with those
operators appearing in ™ having the value true and those not appearing in © having
the value false, L is satisfied.

The problem of deciding whether any given formula, over fluents or actions, is a
landmark for a planning problem is the Landmark problem:

Definition 2.20 (Landmark). Given a planning problem P, and a formula L over
the set of fluents F' or the set of operators A, Landmark(I1, L) is the following decision
problem:

INSTANCE: A planning problem P and a landmark formula L.

QUESTION: Is L a landmark for P?

The Landmark problem is known to be Pspace—complete (Hoffmann et al., 2004)
even when formulas are restricted to size 1, e.g. single fluent and single action land-
marks. Approaches to landmark finding therefore focus on finding landmarks for the
delete relaxation PT of planning problems, in which setting the problem of deciding
Landmark(P", L) when L is restricted to single fluent and operator landmarks can
be shown to be in P (Hoffmann et al., 2004).

Landmark—based heuristics (Richter et al., 2008) exploit this result to obtain partially—
ordered sets of fluent landmarks. This list is then checked against the plan prefix
leading to state s during search to obtain a numeric estimate of how many landmarks
still need to be satisfied. This is an uncalibrated heuristic, since its values do not
correspond to costs to reach the goal, but rather refer to a general notion of progress
towards a particular goal.

Landmark heuristics have been proven experimentally to complement nicely the
shortcomings inherent to h™ heuristics, especially the heuristics derived from graphs
similar to those h! operates on, which tend to exhibit plateaus when the goal involves
achieving independently fluents which are achieved by diverging plans. Increasing
m makes this problem to go away to some extent, but computing these stronger
heuristics conveys a severe performance hit during search.

2.9 State—of-the—art Planners

The LAMA planner (Richter and Westphal, 2008) has been the undisputed winner
in the last two International Planning Competitions satisficing tracks, held in 2008
8 and 2011°. We will devote this section to describe how all of the ideas discussed so
far coalesce into a robust and scalable satisficing planner.

8Detailed 2008 competition results can be found here: http://ipc.informatik.uni-freiburg.
de/Results

°For the 2011 competition results check: http://www.plg.inf.uc3m.es/
ipc2011-deterministic/Results

http://ipc.informatik.uni-freiburg.de/Results
http://ipc.informatik.uni-freiburg.de/Results
http://www.plg.inf.uc3m.es/ipc2011-deterministic/Results
http://www.plg.inf.uc3m.es/ipc2011-deterministic/Results

28 CLASSICAL PLANNING

LAMA can be broken down into three separate components and we will focus on dis-
cussing the last one, which together with the already discussed landmark heuristics,
constitute the most relevant features to explain LAMA outstanding performance:

1. PDDL planning problem description parsing and compilation into SAS™ (Biick-
strom and Nebel, 1995), a language more compact than STRIPS but otherwise
semantically equivalent.

2. Domain—independent heuristics portfolio, with efficient implementations of the
relaxed plan heuristic discussed in Section 2.7 based on the h,4q heuristic, along
with a similarly defined relaxed plan heuristic based in the notion of landmarks
discussed in Section 2.8.

3. A search engine implementing a sophisticated variant of Best—First Search, that
accommodates any—time behavior and sophisticated node expansion and evalu-
ation strategies which effectively exploit and enhance the information conveyed
by the heuristics in the portfolio.

Anytime algorithms are those that return a sequence of approximations to the opti-
mal solution such that each approximation is not worse than the previous one, i.e.
the algorithm can be stopped at any time. In order to do so, the search becomes
less greedy with respect to heuristic estimates as new candidate solutions are pro-
posed. The evaluation function f(n) used by LAMA during search is dynamic. It
starts with f(n) defined to be f(n) = h(n) while looking for the first solution, and
switches to f(n) = g(n) + (W - k)h(n) in each successive iteration, where k is a
constant and Wk is defined to be > 1. Besides that, the cost of the solution found
in the i-th search, ¢(m;), is used to prune nodes n with g(n) > ¢(m;) expanded during
the 7 + 1-th search. This effectively turns LAMA into an explicit branch & bound
search algorithm, where the probability of finding an optimal solution grows with
each search performed. Indeed, whenever LAMA reports no solution in any search
other than the first one, the previous solution reported is guaranteed to be an optimal
one (Richter and Westphal, 2010). This strategy aims at minimizing the amount of
search done and can indeed result in LAMA finding an optimal solution faster than
optimal planners in some planning problems.

The notion of helpful action (Hoffmann and Nebel, 2001) is used in a novel way in
the search. Rather than having one single open list as in the classical definition of
Best First Search, LAMA keeps as many as 2n open lists, where n is the number of
heuristics in the portfolio. For each of the heuristics, two lists are kept, one to store
nodes generated when applying helpful actions, and another for nodes generated with
actions not in the helpful action set, both sharing the same definition for f(n). When
a node is to be expanded, both lists are alternated with a frequency which depends
on whether successors for the node selected for expansion decreased the minimum
f(n) value for both sets of lists (Richter and Westphal, 2010).

Computing heuristic estimators’ values is typically the bottleneck in heuristic search
planners, and computing resources are wasted when a large proportion of the nodes
generated are never going to be considered for expansion. Delayed evaluation (Helmert,
2006; Richter and Westphal, 2010) seeks to minimize the impact of this issue, by not
evaluating the heuristic estimator for node n until it is expanded, using node n’s
parent heuristic value in f(n) in the meantime. While this might lead to poorer or-

2.10. EXAMPLE: ROBOSCHOOL IN STRIPS 29

dering of individual nodes, this effects tends to be offseted by the ability to generate
a larger part of the search space in less time.

2.10 Example: RoboSchool in Strips

Modeling a planning task with the STRIPS language can be broken down into several
steps defining the following:

1. The objects relevant to the task, their attributes and relations with other ob-
jects, which describe the state of the world,

2. The initial state and goal formula,

3. The actions in terms of their arguments, preconditions and effects.

We will discuss each step in order.

Describing World States: Objects & Predicates

For this particular task, it is straightforward to identify the objects we are interested
in tracking. Table 2.1 shows them grouped into sets, each set corresponding to a
PppL type (McDermott, 2000).

Type Objects
pieces P1,DP2, P35 -, D7
locations||AOQ, ..., A4, ..., EOQ,..., E4
bins bl, bg, b3
shapes box, sphere, cone
colors red, blue, green

Table 2.1: Objects in ROBOSCHOOL task depicted on Figure 1.1.

Elements in each set, and in the implicitly defined superset including all objects, are
denoted with variable symbols. We will use o to refer to any object, p for pieces, [
for locations, b for bins, s for shapes and ¢ for colors. ROBOSCHOOL predicates and
their meaning are shown in Table 2.2.

Predicate Meaning
trainerAt(() Trainer is at location [.
pieceAt(p, 1) Piece p is at location [.
binAt(b,) Bin b is at location I.
carries(p) Trainer carries piece p.
inside(p, b) Piece p is inside bin b.
connected(l;, ;)| The trainer can navigate from ; to l;.
adjacent(l;, ;) Locations [; and [; are adjacent.

Table 2.2: ROBOSCHOOL predicates used to describe world states.

30 CLASSICAL PLANNING

Examples of fluents describing the situation depicted in Figure 1.1 would be, pieceAt(pa, A1)
accounting for the green box at cell Al, connected(C0,C1) that would account for

the ability to freely move between C'0 and C'1 or adjacent(B4,C4) to account for the

fact that cell C4, though inaccessible, is adjacent to the accessible cell B4.

Initial and Goal States

The initial state I of our planning problem corresponds with the transcription, in
terms of fluents, of the situation depicted on Figure 1.1. A fragment of the initial
state representation, describing piece object locations would be:

I ={..., pieceAt(pa, Al), pieceAt(ps, A4), pieceAt(py, B1)...}

Goals in ROBOSCHOOL are also encoded as conjunctions (sets) of fluents. PDDL
allows to specify these as universally or existentially quantified formulas (McDer-
mott, 2000), and state-of-the—art planners can rewrite them into plain STRIPS with
ease (Gazen and Knoblock, 1997) as follows:

1. “Store all triangles in b;” becomes

G1 = {inside(ps, by1), inside(ps, b1)}
2. “Store all spheres in by” becomes

Go = {inside(p1, ba), inside(p7,b2)}
3. “Store all cubes in b3” becomes

G3 = {inside(ps, b3), inside(pg, b3) }
4. “Store red objects in by” becomes

G4 = {inside(p1, b2), inside(ps, ba), inside(ps, b2) }

5. “Store green objects in b3” is

G5 = {inside(pa, bs), inside(p7, b3)}

6. And “Store blue objects in b;” becomes

Ge = {inside(py, b1), inside(ps,b1)}

Describing Behavior: Actions

The usual practice when modeling planning problems is to use PDDL action schemas (Mc-
Dermott, 2000), which are lifted representations of STRIPS ground actions. Action
schemas consist of the following elements:

1. Action name,

2. An argument list, a list of typed variable names denoting objects,

2.11. SUMMARY 31

3. A precondition, a first—order formula defined over the variables in the argument
list and the predicates previously defined,

4. An effect formula, also defined over argument variables and predicates.

Very much like goals, PDDL allows preconditions and effects to be defined with a
very expressive language encompassing standard logical operators — A, V, D, = — as
well as quantifiers. Most planners support the full set of operators, grounding action
schemas and rewriting the formulas into DNF normal form as described by (Gazen
and Knoblock, 1997).

Action Preconditions Adds Deletes
walk(ly,l3) trainerAt(l;) |trainerAt(ls)|trainerAt(l;)
connected(l1, l2)
pickUp(p, 1) trainer At(() carries(p) | pieceAt(p,1)
pieceAt(p, 1)

drop(p, ,b) trainerAt(l) | inside(p,b) | carries(p)
carries(p)
binAt (b, 1)

throw(p, ly,12,b)|| trainerAt(ly) | inside(p,b) | carries(p)
carries(p)

binAt(b, l2)
adjacent(ly,l2)

Table 2.3: ROBOSCHOOL STRIPS action set A. p symbols denote pieces, b symbols denote
bins and [symbols are cells.

Table 2.3 shows the description of ROBOSCHOOL actions already compiled into
STRIPS. Action costs for walk actions going up, down, left and right, as well as,
pickUp and drop are 1. walk actions corresponding to moves along diagonals cost
V2. throw actions have a cost of 2.

Planning Problems & Plans

Solving a ROBOSCHOOL plan recognition problem actually involves considering five
different planning problems, one for each of the hypothetic goals G1, ..., G5, P[G1],
..., P[G5] and each of them with their corresponding set of valid plans IIp(Gy), ...,
I1p(G5). An optimal plan 7* for planning problem P[G;] would be:

m = (walk(A0, BO), pickUp(ps, BO),
walk(BO, C1), throw(ps, C1, D2, b))

with a total cost of 1 +1++1/2+2 = 4+ /2. Obtaining the plans for all of the P[G}]
problems above takes the LAMA planner less than 2 seconds.

2.11 Summary

We have offered an in-depth review of several key concepts such as optimal plans
and illustrated the features offered by planning factored representations that can

32 CLASSICAL PLANNING

be considered as the foundations for the formulation of plan recognition given in
Chapter 4. We have also reviewed the search algorithms and heuristics used by
state—of-the—art classical planners that allow these to scale up notably well, a fact
we exploit to solve plan recognition problems efficiently.

CHAPTER 3

Goal MDPs and POMDPs
Planning

In this chapter we will present models that account for non—deterministic actions
effects and partial feedback on the effect of actions on states. We will start by
discussing Markov Decision Processes (MDPs), planning models with probabilistic
action effects and full state observability and review the dynamic programming al-
gorithms that solve them optimally. Special attention will be given to the Labeled
Real-Time Dynamic Programming (Bonet and Geffner, 2003) algorithm, imple-
mented in the GPT (Bonet and Geffner, 2001b) planner that we use in the experi-
ments we discuss in Chapter 5. After that we will introduce a more expressive model
that supports partially observable world states, Partially-Observable Markov Deci-
sion Processes (PomDPs), and show how POMDPs can be solved by mapping them
onto a MDP defined over belief states. We end with an overview of the language used
by GPT to represent MDPs and POMDPs in a compact way.

3.1 Goal Markov Decision Processes

Shortest-path or goal MDPs provide a generalization of the state models traditionally
used in heuristic search and planning in AI, accommodating stochastic actions and
full state observability. In this thesis we used the definition given by (Bertsekas,
1995) extended to account for action costs.

Definition 3.1 (Shortest—path MDP). A shortest—path or goal MDP M = (S, s,
Sa, A, P,, ¢) is a six—element tuple consisting of:

e A discrete, finite and non—empty state space S,

e A known initial state sg € S

e A non-empty set of goal states Sg C S,

e A set of actions A, and applicability function A(s),

A probability distribution P,(s'|s) for a € A, s,s' € S, and
A positive cost function c(a,s) >0 fora € A and s € S\ Sg.

33

34 GOAL MDPS AND POMDPS PLANNING

We note that MbDpPs M and classical planning models II differ only in that the
transition function f(a, s) is replaced by | A| probability distributions P,(s’|s). States
s’ resulting from doing action a in state s can no longer be predicted with full
certainty, but are assumed to be fully observable, thus providing feedback for deciding
what action a’ to execute in s’

Due to the presence of feedback, the solution of an MDP is no longer an action
sequence but a policy:

Definition 3.2. A policy is a function m : S — A mapping states s into actions a
such that m(s) € A(s).

Policies implicitly assign probabilities to state trajectories t = (s, ..., Sn)
n—1
P(t|m, s0) = H Pr(sp)(si+1]si) (3.1)
i=0

Goal states s € S are assumed to be absorbing and cost-free; meaning P,(s|s) = 1
and c(a,t) = 0 for all a € A. We can define then the exzpected cost of a policy starting
its execution as:

Definition 3.3 (Expected cost of 7). The expected cost of executing a policy ©
starting in state s 1s

Vi(s)= Y P(tlm)e(t)

teT[s]

where T[s] is the set of state trajectories t = (so, s1,...) with sg = s and c(t) is

cft) = D elr(si),)

=0

Policies m with lower V7 are preferred, so policies guaranteeing the lowest V7 are
optimal solutions of Goal Mbpp M:

Definition 3.4 (Optimal policy 7*). An optimal policy 7* is a policy with minimum
expected cost V7 (s) over all states s € S.

Optimal policies existence is guaranteed when the conditions in the following Theo-
rem are met by M:

Theorem 3.5 ((Bertsekas, 1995)). An optimal policy 7 is guaranteed to exist for
Stochastic Shortest—Path MDP M if there exists, for every pair of states s € S and
s’ € Sq, a finite sequence of actions a = (a1, ...,a,) such that P,(s'|s) > 0.

However, such optimal solutions, very much like optimal solutions to the classical
planning model, do not need to be unique.

Stochastic shortest-path and Goal MDPs appear to be less expressive than discounted
reward MDPs (Puterman, 1994; Bertsekas, 1995), where there is no goal, rewards can
be positive, negative, or zero, and a parameter v, 0 < v < 1, is used to discount future
rewards. Yet, the opposite is true: discounted reward MDPs can be transformed into
equivalent Goal MDPs, but the opposite transformation is not possible (Bertsekas,

3.2. SOLVING MDPS BY DYNAMIC PROGRAMMING 35

1995). The same is true for discounted reward PoMDPs and Goal PoMDPs (Bonet
and Geffner, 2009).

We are interested in computing optimal, or near—optimal, policies. Since we are
assuming the initial state sg to be known, it is sufficient to compute a partial policy
that is closed relative to sp. Such a partial policy only prescribes the action 7(s) to
be taken over a subset S; C S of states in M:

Definition 3.6 (Partial policy). A policy 7 is a partial when m is defined as
TSy —> A

where S; C S.

such policies define a set of reachable states S(m,s):

Definition 3.7 (Reachable states of m). The set of reachable states of a policy 7
from a state s is the set:

S(m,s) = {s'| P(s'|s,m) > 0}

where P(s'|s,7) is the probability of reaching s’ from state s when following 7.
Reachable states for an optimal policy n* are the relevant states of M.

Partial policies of interest are those which are closed, that is, are guaranteed to take
actions which lead to states the policy is defined for:

Definition 3.8 (Closed policy). A partial policy 7 is closed with respect to state s
if and only if S(m,s) C Sy.

3.2 Solving MDPs by Dynamic Programming

Any heuristic function h defines a greedy policy mp:

7h(s) = argmin c(a, s) + Z P,(s'|s)h(s") (3.2)
s€A(s) s'es

where the expected cost from the resulting states s’ is assumed to be given by h(s’).
We call 7, (s) the greedy action in s for the value function h. If we denote the optimal
expected cost from a state s to one of the goal states Sg by V*(s), it is well known
that the greedy policy 7, is optimal when h is the optimal cost function V*(s).

We note that the greedy policy 7, is not unique, due to the presence of ties in Equa-
tion 3.2. We will assume through the thesis that these ties are broken systematically
using a static ordering on actions a. As a result, every value function V defines a
unique greedy policy my, and the optimal cost function V* defines a unique optimal
policy my«.

Computing optimal cost functions V* amounts to solving a system of |S| fixed point
equations (Bellman, 1957):

V(s) = min{c(a, DEDS Pa(3’|s)V(s')} (3.3)

€A
“ s'eS

36 GOAL MDPS AND POMDPS PLANNING

for all s € S\ Sg. This system of equations can be solved by the standard dynamic
programming Value Iteration (VI) method, that solves Equation 3.3 by plugging an
initial arbitrary guess in the right—hand side of Equation 3.3 and obtaining a new
guess on the the left—hand side. In the form of value iteration known as asynchronous
Value Iteration (Bertsekas, 1995), this operation can be expressed as

V(s) = min{c(a, OEDS Pa(s’|s)V(s/)} (3.4)

€A
“ s'eS

where V' is a vector of size |S|, which is set to V(s) = 0 for s € Sg and arbitrarily
for s € S\ Sg, and where we have replaced the equality in Equation 3.3 by an
assignment. The use of Equation 3.4 for updating a state value in V receives the
name of state update or simply update.

In standard, or synchronous, Value Iteration, all states are updated in parallel while
in asynchronous Value Iteration, only a selected subset of states is selected for update.
In either case it is guaranteed that V will eventually converge to the optimal value
function if all states are updated infinitely often (Bertsekas, 1995). However, for
Goal MDpPs M this is true only when the assumption that states Sg are reachable
with positive probability from every state s, holds (Bertsekas, 1995).

In practice, asynchronous Value Iteration is stopped when the Bellman error or
residual over all states s is sufficiently small:

Definition 3.9 (Bellman error (residual)). The Bellman error or residual is defined
to be the absolute value of the difference between the left and right hand sides of the
Bellman equation:

R(s) ¥

V(s) — min{c(a, OEDY Pa(sl\s)V(sl)}‘

€A
“ s'eS

In the discounted MDP formulation, a bound on the policy loss — the difference the
expected cost of the policy m and the expected cost of the optimal policy 7* — can be
obtained as a simple expression of the discount factor v and the maximum residual
V™ (s)—V™ (s). In Goal MDPs M there is no similar closed-form bound, although it
can be computed at some expense (Bertsekas, 1995; Hansen and Zilberstein, 2001).
Thus, one can execute Value Iteration until the maximum value for R(s) over all
states s becomes smaller than some bound e.

For these reasons, we will refer in this thesis to the task of computing value functions
V*(s) as that of computing V'(s) with residuals R(s) smaller than or equal to some
given positive parameter €. Since implicit in the definition of M is that the initial
state sg is known, it will be enough to consider that Value Iteration has converged
when residuals R(s) over states s € S(my, so) are smaller than e.

3.3 DP Algorithms for Goal Mdps

This section reviews Labelled Real-Time Dynamic Programming (LRTDP), the al-
gorithm at the heart of GpT, following closely the account in (Bonet and Geffner,
2003). LRTDP is an extension of RTDP (Barto et al., 1995) an implementation of the

3.3. DP ALGORITHMS FOR GOAL MDPS 37

concept of asynchronous Value Iteration that computes V* in an on-line, anytime
manner. We will first give a brief overview of RTDP and its theoretical and practical
convergence properties. After that LRTDP will be described, emphasizing how it
exploits the structure of the state space S to improve significantly over RTDP con-
vergence times. We will finally describe the domain—independent heuristic used by
GPT to initialize V, that has a substantial impact on LRTDP efficiency.

Real-time Dynamic Programming

RTDP is a simple dynamic programming algorithm that involves a sequence of trials
or runs, each starting in the initial state sp and ending in a goal state. Figure 3.1
shows a pseudo—code description of one RTDP trial.

Input: A state s

Input: Value function V'

while s ¢ Si do

a* < argmin,e 4(5) c(a, s) + Y- Pa(s'[s)V(s') ;
V(s) < c(a*,s) + > o P (s'|s)V(s);

Pick s with probability P,«(s'|s);

s+ s

Figure 3.1: RTDP trials

FEach Rrpp trial is the result of simulating the greedy policy my while updating the
values V' (s) using Equation 3.4 over the states s that are visited. Thus, RTDP is an
asynchronous value iteration algorithm in which a single state is selected for update
at each iteration. This state corresponds to the state visited by the simulation, that
samples a successor state s’ from the distribution of possible successors P,(s'|s).
This simple scheme turns out to be surprisingly strong when compared with general
asynchronous value iteration. Some of their properties are discussed next.

Theorem 3.10. (Bertsekas and Tsitsiklis, 1996) If states Sq of M are reachable
with positive probability from every state s € S, then RTDP must reach a goal state
in a finite number of steps.

Theorem 3.11. (Barto et al., 1995) If states S of M are reachable with positive
probability from every state s € S and the initial value function V is admissible, i.e.
V(s) < V*(s) for all states s € S, repeated RTDP trials will eventually yield optimal
values V (s) = V*(s) over all relevant states.

Unlike asynchronous value iteration, RTDP does not require states to be updated
infinitely often. Indeed, some states may not be updated at all. On the other hand,
the proof of optimality in (Barto et al., 1995) lies in the fact that relevant states will
be so updated.

For an efficient implementation of RTDP, a hash table T is needed for storing the
updated values of the value function V. Initially the values of this function are given
by an heuristic function h and the table is empty. Then, every time a value V (s) for
a state s is retrieved that was not previously stored in the table, a new entry for it

38 GOAL MDPS AND POMDPS PLANNING

is created. For states s in the table T, V(s) = T'(s) and for those not in the table,
V(s) = h(s).

The convergence of RTDP is asymptotic, and indeed, the number of trials before
convergence is not bounded. For instance, low probability transitions are taken
eventually by some trial but there is always a positive probability that they will not
be taken after any arbitrarily large number of trials. Thus for practical reasons, like
for value iteration, the termination of RTDP is defined in terms of a bound € > 0
on the residuals R(s) (Bonet and Geffner, 2003).

Labeled Real-time Dynamic Programming

RTDP behavior can be divided into two different phases (Bonet and Geffner, 2003):
a tmprovement phase, where the expected costs V™ conveyed by the value function
V' (s) under approximation improve rapidly, and a convergence phase, which involves
a much larger number of trials as V' converges to V*. Both phases are a consequence
of the exploration strategy inherent to RTDP, greedy simulation, which privileges
heavily the most likely trajectories ¢ resulting from the greedy policy my. These
are indeed the most relevant states given the current value function V', and it is the
reason why updating them produces a substantial impact on V™. On the other hand,
states lying along less likely paths are also needed for convergence, but these appear
with much lower frequency during trials.

LrTDP (Bonet and Geffner, 2003) improves on RTDP convergence by keeping track,
in a systematic way, of states s for which the convergence condition R(s) < € already
holds and avoid visiting those states — and its descendants — again, resulting in
dramatically shorter trials during the convergence phase. In order to accomplish this,
a labeling procedure is introduced that systematically traverses the greedy graph:

Definition 3.12 (Greedy graph). The greedy graph Gy = (N, E) is the graph
induced by the greedy policy my over the set of states Sy, , where vertices correspond
with reachable states N = Sr,,, and edges are given by:

E={(5,5)| Pr,(5)(s']s) >0, 5,5 € N}

The labeling procedure keeps two LIFO data structures, named OPEN and CLOSED,
respectively used to keep track of states whose residual R(s) needs to be checked
and to avoid cycles and duplicate work. At each step, a state s is extracted from
OPEN, inserted into CLOSED and its residual R(s) is checked against e. If R(s) < e
the action 7y is used to generate successor states s’ of s. Each successor state s’ is
then inserted into OPEN if it has not been already visited or it is still labeled as NOT
SOLVED. If R(s) > €, no states are added to OPEN. When there are no more states
in OPEN, and no state s was found with R(s) > ¢, then all states in CLOSED are
labeled as SOLVED. Otherwise, each state in CLOSED is updated as per Equation 3.4
in the reverse order that they were visited.

Time and space complexity of LRTDP is thus O(|S]) in the worst—case, while a tighter
bound is given by O(|S(my,s)|), which might be much smaller in certain domains
and depending on the quality of the heuristic used to initialize V' values (Bonet and
Geffner, 2003).

This labeling procedure has some interesting properties, given that V' is a monotonic
value function:

3.3. DP ALGORITHMS FOR GOAL MDPS 39

Definition 3.13. (Bonet and Geffner, 2003) A value function V' is monotonic iff

V(s) < H}g?)c(a,s) + Z P, (s'|s)V (s)
acA(s
s’'eS

for every s € S.

the updates in Equation 3.4 will always have a non—decreasing effect on V. As a
result, the following property can be established:

Theorem 3.14. (Bonet and Geffner, 2003) Assume V to be an admissible and
monotonic value function. Then, a call to the labeling procedure above either labels
a state s as SOLVED, or increases the value of some state by more than e¢ while
decreasing the value of none.

A consequence of the above theorem is that the labelling procedure alone can be
used to solve Goal MDPs M (Bonet and Geffner, 2003). However, in practice, there
are two problems with using it as a Goal MDP solver. First, it will label other states
as SOLVED before labeling so sg, unless Gy is a strongly connected graph. Second,
states that are close to the goal will normally converge faster than states that are
farther.

LrTDP (Bonet and Geffner, 2003) algorithm results from combining the labeling
procedure discussed above with RTDP. LRTDP trials are very much like RTDP trials
except that these terminate whenever a state s labeled as SOLVED is found, and the
labeling procedure is invoked in reverse order, from the last visited unsolved state
back to sg. LRTDP not only inherits RTDP properties of convergence in finite time,
but also guarantees that it will converge in a bounded number of trials:

Theorem 3.15. (Bonet and Geffner, 2003) Provided that at least one goal state
s’ € Sqg is reachable from every state s in M, and the initial value function V is
admissible and monotonic, then LRTDP solves M in a number of trials bounded by

S V))

seS

Domain—independent Heuristics for Real-Time Dynamic
Programming

Both RTpP and LRTDP greatly benefit from having V' value function initialized with
an admissible heuristic. GPT used the domain—independent heuristic described
in (Bonet and Geffner, 2003), which is based on solving Bellman equations on a
relaxation M’ of the Goal MDPM. This relaxation consists of doing away with
probabilistic results of actions and assuming that the most beneficial outcome of an
action will take place.

Definition 3.16 (V},;, Heuristic (Bonet and Geffner, 2003)). The optimistic deter-
minization heuristic hy;, ts defined in terms of the value function:
def

Vmin = i ; + . szn !
O pip @+ i Vo)

for non—goal states s € S, being Viin(s) = 0 for goal states s € Sg.

40 GOAL MDPS AND POMDPS PLANNING

This heuristic can be easily shown to be both admissible and monotonic (Bonet and
Geflner, 2003). In order to compute it GPT uses a variant of the LRTA* (Korf, 1990)
algorithm, modified by adding the labeling procedure used by LRTDP. Interestingly,
computing h.,;, accounts for a substantial part of the time required by LRTDP to
solve MDP models (Bonet and Geffner, 2003).

3.4 Goal POMDPs

Goal Pompps (Partially Observable Goal MDP) generalize Goal MDPs by mod-
eling agents that have incomplete state information (Sondik, 1971; Monahan, 1983;
Kaelbling et al., 1999) in the form of a prior belief by that expresses a probability
distribution over S, and a sensor model (QQq,(o|s) that describes the probability of
observing o € O upon entering state s after doing a.

Definition 3.17 (Goal PoMDP (Bonet and Geffner, 2009)). A Goal POMDP Mpys is
a tuple Mops = (S, bo, Si, A, Py, ¢, Obs, Q,) where each element is defined as follows:

o A non-empty, discrete and finite state space S,

e An initial belief state by, probability distribution P(s) over all s € S,
e A non—empty set of goal states Sg C S,

e A set of actions A, and applicability function A(s),

e Probability distributions P,(s'|s), for all s € S, a € A(s),

e A cost function c(a, s), c(a,s) >0 for all s € S, a € A,

e A set of observations Obs, goal signal og € Obs, and

e Probability distributions Qu(o|s) for a € A, o € Obs, s € S.

As with Goal MDPs M, goal states s € Sg are cost—free, c(a,s) = 0 for all a,
absorbing, P,(s|s) = 1 for all a, and fully observable, Qq(0oc|s) = 1, when s € Sg,
and Qq(og|s) = 0 otherwise. Goal beliefs are the beliefs b such that b(s) = 0 for
s € S\ Sg, in words, assign a probability of zero to non—goal states.

Discounted cost-based POMDPs (Sondik, 1978) differ from Goal POMDPs in two ways:
goal states are not required and a discount factor v € (0,1) is used instead. While
discounted POMDPs intuitively seem to be more expressive than Goal POMDPs , it
has been shown that they can be compiled into Goal PoMDPs following the trans-
formation discussed in (Bonet and Geffner, 2009).

3.5 Goal POMDPs as MDPs over Belief Space

The most common way to solve POMDPs is by formulating them as completely observ-
able MDPs over the belief states of the agent (Astrom, 1965; Sondik, 1978). Indeed,
while the effects of actions on states cannot be predicted, the effects of actions on
belief states can. More precisely, the belief b, that results from doing action a in the

3.5. CGOAL POMDPS AS MDPS OVER BELIEF SPACE 41

belief b, and the belief b7 that results from observing o after doing a in b, are:

ba(s) = Y Pa(s]s))b(s) , (3.5)

s'eS

ba(0) = Qal(0])ba(s), (3.6)
seS

bo(s) = Qalo|s)ba(s)/bal0) if bs(0) # 0. (3.7)

As a result, the partially observable problem of going from an initial state to a goal
state is transformed into the completely observable problem of going from one initial
belief state into a goal belief state. The Bellman equation for the resulting belief MDP
is

V(b) zrgleig{c(a, b+ Y. ba(o)V(bg)} (3.8)

0€0bs

for non-goal beliefs b and V*(bg) = 0 otherwise, where c(a, b) is the expected cost
> sescla,s)b(s), and bg is a goal belief.

This belief MDP can be solved with a suitably modified version of the RTpp (Barto
et al., 1995) or LRTDP (Bonet and Geffner, 2003) algorithm. The pseudo code for
RTDP-Bel , a straight—forward modification of RTDP , is shown in Algorithm 3.2.

Start with b = by;
Sample state s with probability b(s);
Evaluate each action a applicable on b as

Q(a,0) = c(a,0) + D _ ba(0)V(57)

0€0

initializing V' (b2) to h(b?) if b9 is not in the hash;
Select action a that minimizes Q(a, b);
Update V(b) to Q(a,b);
Sample next state s’ with probability P,(s'|s);
Sample observation o with probability Q,(o|s);
Compute b using Equation 3.7;
Finish if b9 is goal belief;
Else b := b2 and s := s’ and goto action evaluation step;

Figure 3.2: RTDP-Bel

RTDP-Bel is much like RTDP over a belief Goal MDP where states are replaced by
belief states that are updated according to Equation 3.8, with an additional provision.
When accessing the value V' (b) in the hash-table, b is replaced by d(b), where d is the
discretization function. Since b are probability distributions assigning real values in
(0,1) to states s, it is needed to bound the size of the hash table containing the values
of the function V' (b). The discretization function function d proposed in (Bonet and
Geffner, 2009) is extremely simple and maps each entry b(s) into the entry:

d(b(s)) = ceil(D b(s))

42 GOAL MDPS AND POMDPS PLANNING

where D is a positive integer, called the discretization parameter, and ceil(z) is the
least integer > .

Example 3.18 (Belief discretization). Let b(s) be the vector
b(s) = (0.22,0.44,0.34)
over the states s € S. When D = 10, the discretized belief d(b) results in the vector

d(b) = (3,5,4)

The discretized belief d(b) is not a belief b and does not have to represent one faith-
fully. It just represents the unique cell in the hash table that stores the value function
for b and of all other beliefs &’ such that d(b') = d(b). The discretization is used only
to access the hash table representing V' (b) and it does not affect the beliefs that
are generated during a trial. The discretization function d is a simple function ap-
prozimation device (Sutton and Barto, 1998; Bertsekas and Tsitsiklis, 1996) where a
single parameter, the value stored at cell d(b) in the hash table, is used to represent
the value of all beliefs &’ that are discretized into d(b') = d(b). The soundness of
this approximation relies on the assumption that the value of beliefs that are close,
should be close as well. Also important is that the discretization function preserves
supports (Bonet, 2002), the states s with b(s) > 0, and thus never collapses the value
of two beliefs if there is a state that it is excluded by one but not by the other, a
property important in problems involving action preconditions.

While RTDP-Bel is a quite simple and effective algorithm, the discretization func-
tion used to represent the value function V'(b), entails several theoretical conse-
quences (Bonet and Geffner, 2009). First, convergence is not guaranteed and actu-
ally the value in a cell may oscillate. Second, the value function approximated in this
way does not remain necessarily a lower bound. These two severe shortcomings of
RTDP-Bel can be addressed by storing in the hash table the value of a set of selected
states s, and then using suitable interpolation methods for approximating the value
for not stored states. This is what grid-based methods do (Hauskretch, 2000). These
interpolations, however, involve a substantial computational overhead, and do not
appear to be cost—effective (Bonet, 2002).

On the other hand, these limitations are common to most, if not all, of the linear
or non-linear function approximation schemes used in practice (Sutton and Barto,
1998), and RTDP-Bel discretization is no exception. Moreover, these theoretical
limitations do not seem to affect negatively the performance of RTDP-Bel when
compared with Point—based algorithms for Goal POMDPs (Pineau et al., 2006), that
are not subject to the limitations above. In practice, and over the benchmarks most
commonly referred to in the POMDP literature, RI'DP-Bel and LRTDP adapted for
belief MDPs perform comparably to point—based schemes and sometimes are able
to outperform those both in terms of the time to obtain a solution and the quality
of the solution found (Bonet and Geffner, 2009).

3.6 GPT Modeling Language

Both Goal MDpPs and Goal POMDPs are useful models for making explicit the math-
ematical structure of a wide class of planning problems with uncertainty. However,

3.6. GPT MODELING LANGUAGE 43

they are poor languages for describing them. This is due to the number and size
of the relations and parameters involved. Like in classical planning models, where
STRIPS and PDDL are used, it is preferable to describe problems compactly in terms of
modular, high—level, factored languages. In the experiments we have carried out and
described on Chapter 5 we have used the GPT planner (Bonet and Geffner, 2001b)
which allows for this type of compact representation, and solves Goal MDP and Goal
PoMDP models with LRTDP (Bonet and Geffner, 2003).

As we did when discussing classical planning problems in Chapter 2, we will dis-
tinguish between the GPT PoMDP planning model, where states and transition
functions are defined implicitly, and the standard Goal POMDP model, where states
and transition functions are defined explicitly:

Definition 3.19 (GPT Planning model). A GPT planning model is a tuple M =
(F,A,I,G) whose elements are

a set of functional fluents F,

a set of actions A,

a set of assignments to functional fluents f € F denoting the set of possible
initial states,

and a conjunction G of formulas over F denoting goal states.

Depending on the definition of I and A, GPT induces a corresponding Goal MDP M,
or Goal POMDP Mpys. For example, if some of the actions are defined so that their
effects are probabilistic and emit observation tokens, and I is a disjunction, the
GPT pre-processor will derive automatically a Goal PoMDP M), from the GpT
planning model M.

Functions, Objects and Types

The GPT language is an extension of FUNCTIONAL STRIPS (Geffner, 2000), a typed
first—order logical language that replaces the notion of relational fluents used in
STRIPS by that of functional fluents. This allows the planner to avoid the require-
ment that objects be referred by their unique names, and results in a more compact
representation. To illustrate this point, let’s recall how the trainer location in the
RoBOSCHOOL domain was encoded in STRIPS:

trainerAt(()

where [was a variable symbol to be replaced during grounding by some object of
type location. In FUNCTIONAL STRIPS fluents trainerAt(l) would be replaced by
one single functional fluent

trainerAt()

which would denote a O-arity function, whose domain would be that of objects of
type location. While this difference seems to be mere syntactic sugar, it results in
much more succinct representation.

44 GOAL MDPS AND POMDPS PLANNING

In the STRIPS representation, the size of the state space S is proportional to 2/tocations|
since each fluent would account for the fact that the trainer is at some determinate
location [, and these facts can be either true or false in any state s € S. FUNCTIONAL
STRIPS allows for a more succinct interpretation, since the underlying state space is
proportional to |locations| since the functional fluent trainerAt() can only have one
possible value.

STRIPS and FUNCTIONAL STRIPS are syntactically and, to some extent, semantically
similar. However, modeling tasks in GPT in such a way that the greater succinctness
of the latter is exploited requires abandoning common STRIPS modeling practices.
For instance, in the ROBOSCHOOL task, we had pieces objects the trainer agent
could interact with. These objects were decorated in a number of ways, namely,
color, shape and location. STRIPS common practice would be to model these as we
did in Table 2.2, introducing binary predicates, whose arguments would correspond
to the name of the piece and the value of that attribute. In FUNCTIONAL STRIPS we
define these as functional symbols

location : Piece — Location
color : Piece — Color

shape : Piece — Shape

where Piece, Location, Color and Shape refer to the types — sets of constant symbols
— with the same name, rather than as binary functions whose domain are boolean
constants true and false. Another example of a FUNCTIONAL STRIPS fluent for the
ROBOSCHOOL situation in Figure 1.1 would be the formula:

location(p1) = A0 (3.9)

which states that the location of piece py is cell A0. Note the difference with the
relational fluent location(pi, AO), that requires the object A0 to be explicit in the
fluent signature. Constant fluent symbols can be encoded as function symbols of
arity 0, while relational fluent symbols can be encoded as function symbols of the
same arity plus equality.

Functional symbols can be combined to denote more complex formulas, using the
standard logic connectives A, V, —, as well as equality =. Besides these, functional
symbols that map objects to the set of integers can be connected with the relational
operators <, >, < and >.

Given FUNCTIONAL STRIPS together with the relevant type and object declarations,
the states are then logical interpretations over this language. That is, a state s assigns
a denotation x° to any symbol z from which the denotations of atoms, terms and
formulas are obtained following the standard composition rules. Certain symbols,
such as A0, however, have a denotation that is fixed and independent of the state.
States thus have to assign a denotation to fluent symbols like location. Type and
object declarations for these symbols define possible sets of denotations, or values,
and all together implicitly define the state space S.

3.6. GPT MODELING LANGUAGE 45

Actions

FUNCTIONAL STRIPS model of agent actions a = (Pre, Ef f, Obs, c¢) consists of four
elements: a precondition formula Pre, a set of statements denoting action a effects
Eff, observation tokens Obs emitted and a cost ¢ > 0.

Preconditions can be any valid formula over functional symbols F'. They implicitly
define the set of applicable actions to some state s since the only actions a executable
are those whose preconditions have a true denotation in s.

Action effects depart significantly from those of STRIPS actions. In FUNCTIONAL
STRIPS action postconditions are sets o; of statements of the form:

ft) =w

that is, assignments of values — constant symbols — w to functional fluents f defined
over objects t.

To highlight the differences between STRIPS and FUNCTIONAL STRIPS consider the
move(A0, B0O) action from the ROBOSCHOOL example as a modeled in STRIPS:

Pre : trainerAt(A0)
Add : trainerAt(B0)
Del : trainerAt(A0)

becomes in FUNCTIONAL STRIPS

Pre : trainerAt() = A0
Effects : trainerAt():= B0

The most important difference lies in how action effects are specified. While in
STRIPS it is required to state explicitly that the precondition trainerAt(A0) is no
longer true, in FUNCTIONAL STRIPS this is implicitly stated when the value assigned
to the symbol trainerAt() is changed.

GPT extends FUNCTIONAL STRIPS by adding to action effects the notion of ramifica-
tion rules. These rules allow one to specify several possible outcomes of the execution
of an action a or to specify indirect effects of an action. Two kinds of ramification
rules are supported: conditional effects and probabilistic effects.

The former, denoted (x;, 0;), are the exact equivalent of ADL conditional effects (An-
derson et al., 1998). The conditional effect (z;, 0;) will only affect the state resulting
from executing an action if x; is true in the state s where the action is applied.
GPT probabilistic effects, denoted (p;, 0;), become true after action execution with
some probability p;. If an action has n probabilistic effects (p;, o;) then > | p; must
indeed be 1. A valid action description must have at least 2 probabilistic effects.

A natural example that arises in the ROBOSCHOOL task of the usage of ramification
rules is to consider the throw() action to have two probabilistic effects. One where
the piece thrown does actually fall into the target bin with probability p, and with
probability 1 — p that it falls outside but still near to the bin.

When a GPT planning model M does not contain any action a € A with probabilistic
effects, the transition probability distribution P, is indeed deterministic, so the state

46 GOAL MDPS AND POMDPS PLANNING

s’ resulting from executing action a in state s is like the latter, but replacing symbol
values by the new values prescribed in a’s effects. When probabilistic effects are
present, s’ is a random variable with domain S, the set of states s; resulting from
setting symbols z € o; to the new values prescribed.

For describing Goal POMDPs, it is necessary to further extend FUNCTIONAL STRIPS to
be able to describe what is observable, implicitly defining the sensor model Q4 (0ls).
GpT allows specifying observation tokens as formulas over F', attaching to action
descriptions fields o : (x = v) for each possible denotation v of z with different prob-
abilities that depend on the belief state where the action was done and the sensor
model as described by Equations 3.5-3.7.

For instance, if in the ROBOSCHOOL task, the location of some pieces was not known
to the trainer beforehand, we could have a seek(p) action and the observation would
be encoded by the following formula:

location(p) = trainer At()

This action would emit two different tokens, one corresponding to the case when the
formula above is true in s and the other corresponding to the case when the formula
is false.

Initial Beliefs and Goal States

Initial beliefs are specified by a set of assignments of values w to functional symbols,
very much like action effects. GPT extends FUNCTIONAL STRIPS by introducing
language constructs that specify sets of equally likely values for functional symbols
in F, so that the initial belief by becomes an actual probability distribution over S.
If possible states are not equally probable, then it is required to introduce a start
action with probabilistic effects that correspond to each possible initial state.

Goal states are denoted as conjunctions of FUNCTIONAL STRIPS formulas.

3.7 Summary

This chapter has introduced two models that allow more realistic representations
of agents and environments, by relaxing the restrictive assumptions regarding deter-
ministic action outcomes and full-observability made in classical planning. The com-
putational problem posed by solving these two models is also substantially harder,
and existing algorithms for this task have trouble scaling up as neatly as classical
planners do over many domains. One of the reasons for this shortcoming lies in the
inability of existing algorithms to effectively analyze factored representations and
propagate updates to Q(a, s) values so these simultaneously affect many states shar-
ing common features. The other reason lies in the inability to avoid processing those
parts of the state or belief state space which are not relevant or necessary to consider
in order to find an optimal solution. These two abilities, present in classical planners
through domain—independent heuristics and search algorithms operating on a implic-
itly defined search space, would significantly speed up the computation of solutions.
Improving scalability on MDPs and POMDPs is an active field of research (Kolobov
et al., 2009; Silver and Veness, 2010) and we expect the current situation to change
rapidly over the next few years.

PART 11

Planning—based Plan Recognition

47

CHAPTER 4

PR over Classical Planning
Theories

This chapter starts presenting a crisp definition of plan recognition problems in terms
of STRIPS planning domains and their solutions. Solutions to plan recognition prob-
lems are functions defined over the costs of optimal plans for the underlying classical
planning problems defined by a set of hypothetical goals that comply with the ob-
served action sequence. We then discuss the goal filtering scheme first presented
in (Ramirez and Geffner, 2009) and its limitations. These are addressed slightly
reformulating plan recognition problems to accomodate a prior probability distribu-
tion over hypothetical goals. Solutions then become a well-founded posterior goal
distribution P(G|O) over hypothetical goals G. This distribution is founded on the
relationship between costs of optimal plans satisfying the provided observation se-
quence and those which do not (Ramirez and Geffner, 2010). After presenting the
theoretical and practical contributions of our framework for plan recognition, we fin-
ish the chapter by introducing several plan recognition tasks we use to evaluate our
formulation for plan recognition. These are either derived from well-known bench-
marks used by the planning community or are the result of mapping plan libraries,
discussed in the plan and action recognition literature, into suitably defined plan-
ning problems. The chapter ends with a detailed explanation of the experimental
setup used to evaluate our formulation and the results of optimal and approximate
algorithms to compute P(G|O).

4.1 Preliminary Definitions

We start defining the plan recognition problem:

Definition 4.1 (Plan recognition problem). A plan recognition problem or theory
is a triplet T = (P]-], Gr, O) composed by

e A planning domain P[] = (F, A, I),
e g set of possible goals Gr, each G € Gr and G C F,

e an observation sequence O = (01, ...,0,), where each 0; € A.

49

50 PR OVER CLASSICAL PLANNING THEORIES

The planning domain P[] implicitly encodes the behavior the observed agent may
engage into, for any goal expressed as a subset of fluents F. Possible goals are
circumscribed to those explicitly stated in Gp. For a goal G € Gr, the set of
hypothetical goals, P[G] defines a complete classical planning problem.

Observation sequences O are totally ordered sequences of actions specified in the
planning domain. It is not required for actions in O to be contiguous actions in some
plan, nor to O to be a plan prefix. For example an agent following the plan

WZ(a,b,c,d,e,f)

may generate the following observation sequences: O = (b,d, f), O = (a, f) and
indeed O = (a, b, ¢).

In general, some of the valid plans 7 for planning problems P[G], G € Gr, will not
account for the observed action sequence O. For example, the plan

m = (a,b,d,a,c,a)

satisfies the observation sequences O1 = (a,d,a) and O = (b,a,a), but does not
satisfy sequence O3 = (¢, b,d). In words, there is in 7 an occurrence of each of the
actions in O; and these occur in the same order, e.g. a before d and d before a. This
can be formalized by introducing a function that maps observation indices in O into
action indices in .

Definition 4.2 (Plan 7 satisfying observation sequence O). A plan m = (a1, ..., ay)
satisfies the observation sequence O = (01,...,0p,) if there ezists a strictly monotonic
function f mapping the observation indices i = 1,...,m into action indices j =
1,...,n such that az;y = 0;.

For example, the unique function f that establishes a correspondence between the
actions o; observed in Oy and the actions a; in 7 is f(1) = 2, f(2) =4 and f(3) = 6.
This function must be strictly monotonic' so that the action sequences 7 preserve
the ordering of the actions observed. On the other hand, no such function f exists
for the observation sequence O3 = (¢, b, a), since there is no occurrence of ¢ in 7 with
an index lower than 2, which is the position of the only occurrence of b. As a result
7 satisfies Oy but not Os.

Existence of plans 7 satisfying O, for one of the problems P[G] conveyed by T, is
indeed sufficient to determine that G is relevant for explaining O. However, the
mere existence of such plans does not allow to leverage how adequate or contrived is
the explanation of O conveyed by goal G. Obviously, if one finds that there is one
single goal GG in our hypothetic goal set Gr admitting valid plans 7 that satisfy O,
solving 1" would amount to select G as the actual agent goal. This is rarely the case
in many plan recognition problems.

Let us see what goals have plans that satisfy the observations in the ROBOSCHOOL
task depicted on Figure 1.1. In this case we observe the trainer to pick up the red
triangle first and then the blue triangle — objects p3 and py4. Since there are plans 7;
satisfying O for each of the goals G; € Gr, we would end up considering all the goals
in the G set as equally good explanations of the observed actions, since every goal

LA function is monotonic if for any two x >y, f(x) > f(y).

4.2. ACCOUNTING FOR RATIONAL AGENTS 51

G in Gy admits a valid plan which would satisfy that observation sequence. On the
other hand, if the observation sequence was just to see the trainer to leave its initial
position — cell £0 — and move into cell DO, then the existence criterion would select
as well all the hypothetic goals Gr and this would indeed be reasonable, since all
plans for any of the goals would necessarily contain that action.

4.2 Accounting for Rational Agents

Finding a plan for P[G] satisfying O does tell us that G is a possible goal when O is
observed, but does not really tell us to what extent satisfying O would be a necessary
property of plans achieving goal G. This is precisely the gist of the objections raised
by (Kautz and Allen, 1986a; Charniak and Goldman, 1993) on earlier approaches to
plan recognition (Schmidt et al., 1978; Perrault and Allen, 1980) which relied on the
possibility to find plans that matched observations O as the only reason for deeming
a goal GG as a possible explanation of O.

We note that one can relate the property of plans satisfying observation sequences
O, and that of O being necessary for achieving G through another property of plans:
their cost. Inferring the goals behind other agents’ observed behavior consists in
showing that there is a causal relation between the observed agent knowledge and
goals and the plans they execute to achieve those goals. (Dennett, 1983) convincingly
argues that such a causal relationship should be governed by the principle of ratio-
nality. That is, the expectation that intentional agents will tend to choose actions
that achieve their goals most efficiently, given their knowledge of the actual world
state. A STRIPS planning domain augmented with a cost function captures well the
notion of efficiency and optimal plans® achieving a goal G set the benchmark by
being indeed the most efficient plans for that goal.

Plan cost functions and optimal plans allow us to specify to what degree a plan
satisfying O deviates from the most efficient — optimal — plan for a goal G. This
constitutes a crisp criterion to leverage how necessary is to come up with a plan that
satisfies some given observation sequence O in order to achieve a goal GG in the most
efficient possible manner. Therefore, the notion of rationality in our formulation
of plan recognition corresponds with that of agents seeking and pursuing optimal
plans for a given planning problem P[G]. Plan recognition system designers should
be aware that the cost function they expect to be minimized by the observed agent
encoded in the cost function ¢, might possibly be different from that the observed
agent actually cares about.

Since cost of optimal plans is a property of planning problems P[G], or more precisely,
of goals alone, then it becomes apparent that we can rank goals G € G by comparing
the minimum cost of plans satisfying O.

Definition 4.3 (Minimum cost of satisfying plans O). The minimum cost of plans
7 that satisfy observation sequence O for problem P[G] is defined as

cp(G,0) = roein o) c()

2See Definition 2.8, where we introduce the notion of cost functions in STRIPS planning, and
Definition 2.9, where optimal plans are defined.

52 PR OVER CLASSICAL PLANNING THEORIES

where I p(G, O) is the set of all valid plans wo for P[G| that satisfy O, and p(G,0) C
IIp(G), the set of all valid plans for P[G].

with the minimum cost of achieving G regardless of O:

Definition 4.4 (Minimum cost difference A(G, O)). The deviation of plans for P[G]
from optimal solutions to the planning problem P[G]| when satisfying O, A(G,O) is

A(G,0) = |ep(G, 0) = cp(G)]

so a relationship is established between the lower bound on the cost of plans that
achieve G and the lower bound on the cost of plans that both achieve G and satisfy
0.

4.3 A Qualitative Model of Plan Recognition

With these definitions in place, we are ready to offer a definition of qualitative solu-
tions to plan recognition theories 7.

Definition 4.5 (Optimal goal set). The qualitative solution to a theory T = (P, Gr, O)
consists in computing the optimal goal set G1. which comprises the goals G € G such

that A(G,0) = 0.

The solution to a plan recognition theory T is given then by the hypothetic goals
G € Gr that admit an optimal plan that is compatible with the observations, or in
other words, the goals G for which there is no cost increase in the plans that achieve
G when O must be satisfied.

In order to illustrate the discussion in this Section, we will refer to the example plan
recognition theory depicted in Figure 4.1. Out of the six goals in Gr only two have
optimal plans that satisfy the observation sequence

O = (walk(C0, B1), pick(ps, A4))

These goals are G, “store all triangles into b,” and G4, “store all red objects into
by”, since A(G1,0) = 0 and A(Gy4,0) = 0. For the other four goals, while they all
have valid plans that satisfy O, these have a cost higher than the optimal cost to
achieve them.

For instance, for goal Ga, “store all spheres into b2”, the deviation when satisfying O,
A(G3,0), is 2 + 3v/2, because of the additional actions that require to be executed
in order to comply with the observed actions in O. Table 4.1 shows the optimal plan
for achieving G2 and the optimal plan for achieving that same goal while satisfying

0.

This example illustrates the intuition behind the plan recognition schemes discussed
in Sections 4.5 and 4.7, that of plan costs being the criterion that follows from the
assumed rationality of the observed agent. If the agent is to prefer efficient plans over
those less efficient, then goals whose most efficient plans that satisfy the observation
sequence O are found to have a cost higher than that of optimal plans, are not an
explanation as good as those goals where satisfying O does not entail executing a
worse quality plan. Next section explains how plans which satisfy or do not satisfy
O can be efficiently computed.

4.4. COMPUTING PLANS THAT SATISFY OBSERVATIONS 53

A B C D
0 @
1 M,

pick(p3,A4)

Figure 4.1: A ROBOSCHOOL plan recognition theory. Planning domain P[-] and hypo-
thetic goal set Gr are the same as those described on Section 2.10. The trainer starts at
cell £0, marked with a capital I letter. Observation sequence O consists of two actions:
walk(CO, B1), shown by an arrow between those two cells, and pick (ps, A4), displayed by
the text next to the cell in question.

4.4 Computing Plans that Satisfy Observations

In this section we present a scheme to compute optimal plans that satisfy observation
sequences O with an off-the—shelf classical planner, that is, without modifying its
code in any way. We will show that obtaining costs of plans for goals G that satisfy,
or are guaranteed to not satisfy, an observation sequence O, amounts to compute
the costs of plans for slightly different goal G’, G C G’. This requires to add to
the original planning domain P[] fluents that account for observations in O being
embedded in the proper order in the plan, as well as additional actions, which are
like original actions in P[-] but with the addition of the fluent corresponding with
an observation only when all previous observations have been already accounted for.

So rather than tweaking the planner or its heuristic as in previous approaches to
plan recognition using planners (Schmidt et al., 1978; Perrault and Allen, 1980), we
derive from each of the planning problems P[G] present in a plan recognition theory
T, planning problem P'[G + O] (P'[G + O]), where G 4 O (G + O) is the modified
goal formula, whose valid plans, either optimal or otherwise, are guaranteed to satisfy
(not satisfy) observation sequence O.

For simplicity in the presentation, we will assume that no pair of observations o; and
o0j in O refer to the same action a in P. When this is not the case, we can create a
copy & of action a so that o; refers to o’ and o; refers to a.

54

PR OVER CLASSICAL PLANNING THEORIES

GQ Gg and O
walk(E0, DO) walk(E0, DO
walk(DO0, C0) walk(DO0, C0

walk(C0, BO)
pick(iq, BO)
walk(B0, B1)
throw(ig, B1, ba, A2)
walk(B1, C2)
walk(C2, D3)
walk(D3, E3)
piCk(i7, E3)
walk(E3, D3)

)
)
walk(C0, B1)
walk(B1, BO)
pick(iq, BO)
walk(B0, B1)

thI‘OW(’i4, Bl, bQ, A2)

walk(B1, C2)

walk(C2, D3)

walk(D3, E3)
pick(i7, E3)

walk(D3, C'3) walk(E3, D3)
walk(C3, B3) walk(D3, C3)
throw(i7, B3, by, A2) walk(C3, B3)
walk(B3, A4)

pick(iz, A4)
walk(A4, B3)
throw (i7, B3, by, A2)
11 +2v2 13+ 5v/2

Table 4.1: Two valid plans for P[G2]. On the left, an optimal plan achieving goal G is
shown, which does not satisfy the observation sequence O = (walk(C0, B1), pick(ps, 44)).
On the right, we see the minimum cost plan that both satisfies O and achieves G2. Bottom
row values show costs of both plans.

Mapping observations into actions

We will compile the observations away by mapping the theory T' = (P, Gr, O) into
an slightly different theory 77 = (P’,Gp, O’) with an empty set O’ of observations.
P’ is like P but for the actions a corresponding with observations o € O:

Definition 4.6 (Mapping observations into actions). For a domain P = (F,I, A)
and the observation sequence O, the new domain is P = (F',I', A’ with

o ' =FU{p, | a €O}
o I'=1TU{-p, | acO}
e A=A

where pg s a new fluent and the actions a € A’ that are in O have an extra effect:

e) — p, when a is the first action in O

® Py, — pg when b is the action that immediately precedes a in O

The mapping above requires to extend STRIPS with two language features that en-
hance its expressiveness and allow to represent planning problems in a more succint
way (Pednault, 1989). One are conditional effects * so p, — p, prescribes that p, is

3 Already introduced in Section 2.2.

4.4. COMPUTING PLANS THAT SATISFY OBSERVATIONS 55

added to the state s’ resulting from applying the action only when p, was already
true in the state s the action is being applied. The second is negation, which allows
to handle explicitly the fact that a certain observation b € O has not been already
accounted for, i.e. pp is false in some state s. Both extensions to STRIPS can be
compiled into regular STRIPS representations (Gazen and Knoblock, 1997).

The purpose for the mapping above is that we want the planner to compute, in
parallel, plans and satisfiability of O, without either computation interfering in any
way with the other. In order to do so, it suffices to add the fluents p, and modify
actions in the manner described by Definition 4.6. Adding the fluents p, and mod-
ifying actions as per Definition 4.6, checking whether a plan 7 satisfies O becomes
a side effect of plan execution, so its implicitly computed by a standard classical
planner. In the transformed domain P’, the state s’ resulting of applying plan 7 on
the initial situation I, not only encodes the world situation after plan execution, but
also encodes explicitly whether the plan is satisfying the observation sequence O or
not.

This allows to partition implicitly the set of valid plans for P[G] into two distinct
sets. Namely, the set of plans that satisfy O, so the fluent p, corresponding to the
last observed action a in O is true after these plans are executed. Conversely, the
set of plans that do not satisfy O is also implicitly defined to be those plans that do
not make this fluent true after its execution.

Partitioning the Space of Valid Plans

The compilation procedure in Definition 4.6 splits the set of valid plans for a goal
IIp(G) into two disjoint subsets corresponding with the sets of plans that satisfy,
or do not satisfy, the observation sequence O. This split is achieved implicitly by
altering the planning domain P[] so the semantics of P[G], the set of valid plans
for goal G identity, and the costs of such plans are preserved.

We start by introducing goals G + O

G+O:GU{pb}

and G + O

G+5=GU{—\pb}

where py is the last action in observation sequence O. Plans for each of these two
goals correspond exactly to plans that respectively satisfy or do not satisfy O, as we
show with the following theorems.

Theorem 4.7. Letm = (a1, ..., a,) be a plan for P|G] that satisfies O = (o1, ...,0m).
Then the goal G + O is true after the execution of m on initial state I', G U {py,, } €
I'[r].

Proof. We observe that G will be true after the execution of m on I’ since the trans-
formation in Definition 4.6 does not modify in any way actions precondition of un-
conditional effects. We will prove that py, € I'[r] when 7 satisfies O by induction.

56 PR OVER CLASSICAL PLANNING THEORIES

We recall from Definition 4.2 that when 7 satisfies O, then exists f, monotone map-
ping between indices [1, m] corresponding to actions in O and [1, n] indices of actions
in 7, such that for every b; € O, f(j) = i and a; = b;, and that for any b, € O,

k> j, then f(k) > f(j).

It is easy to see that py, € I'[a,...,ap)], since ay) € A’ has conditional effect
)’ = pp, which unconditionally adds fluent p,. We assume to be true that Db, €
I'lay, ..., ag] since conditional effect py, , — ppy, has been triggered. In order to
show that py,., € I'[a1,...,af(;41)] we rely on a proof by contradiction.

If py,,, ¢ I'ax,...,ap;+1)] then the conditional effect p,, — pp, , associated with
action af(j+1) has not been activated. Since py; € I'lay,... ,af(j)], and given that
f(j) < f(j+1) by Definition 4.2 and there is no action a’ € A’ deleting fluent py; then
for any action a; € 7, we know that py, € I'[ay, ..., ax], with f(j) <k < f(j +1).

This contradicts the assumption that py,,, ¢ I'[a1,...,az(41)], since conditional
effects are necessarily triggered when the their conditions are entailed by the state
where action they are associated to is being executed. Therefore we can conclude
that py, € I'[a1,...,ap;] for all j, 1 < j < m when 7 satisfies O. O

We next show that plans = for P'[G + O] correspond to plans for P[G] that satisfy
O:

Theorem 4.8. Let m = (aq,...,a,) be a plan for P'|G + O]. Then w is a plan for
P[G] that satisfies O = (01, ...,0m) as per Definition 4.2.

Proof. If m is a plan for P'[G + O] then G C I[r], since actions a’ € A" have each
a matching action a € A with the same precondition and unconditional effects. In
order to 7 to satisfy O there must exist f, monotone mapping of indices [1,m] of
actions in O into indices [1,n] of actions in w. Such a mapping can be obtained by
defining f as follows

f(i) = max{i | py, € Adds(s,a;), a; € 7}
We know f to be monotone since plans for P'[G+ O] implicitly define such a mapping
as shown on Theorem 4.7. 0
The correspondence between plans for P[G] that do not satisfy O and plans for
P'[G + O] is guaranteed by the following Theorem:

Theorem 4.9. Let 7 = (ai,...,a,) be a plan for PG| that does not satisfy O =

(01,...,0m). Then 7 is a plan for P'|G + O].

Proof. In order to show that 7 is a plan for P'[G + O] it suffices to see that
G U {=pp,, } C I'[n]

We recall that —p, € I’, so in order to 7 to be a plan for P'[G + O] it is required
to show that —p,,, will not be deleted by any action a € A’ in the plan 7. We will
prove that this is indeed the case by contradiction.

Let aj be an action in plan 7, where 1 < k < n, conditional effect py,, , — pp,,. In
order to pp,, to be asserted when executing ay, it is required that there exists some

4.4. COMPUTING PLANS THAT SATISFY OBSERVATIONS 57

action a; € m, such that 1 <1 < k, with conditional effect py,, , — pp,, ,. It is easy
to see that this eventually lead to py, € I'[r], and by extension, to the existence of
a monotone mapping f between indices of actions in O and 7. This, in turn, would
mean that m does actually satisfy O, which contradicts our earlier statement of 7
not doing so. O

Finally we need to see that plans 7w for P'[G + O] are plans for P[G] that do not
satisfy O:

Theorem 4.10. Let m = (aq,...,ay) be a plan for P'|G + O]. Then 7 is plan for
P[G] that does not satisfy O = (01,...,0m).

Proof. Let f be the following mapping between [1,m], indices of actions in O, and
[1,n], the indices of actions in plan 7:

f: [1,m] — [1,n]
J= j,ai:bj,aiGW,bjEO

Since —py,, € I'[] either one of the following must be true:

1. There exists some b; € O such that f(j) is not defined.

2. There exist actions b;, b; € O, with 1 < j <i < m such that f(j) > f(i).

Either condition prevents a monotone mapping f to exist between actions in O and
7, so we can conclude that 7 indeed does not satisfy O. O

The previous results can be summarized in the following Corollary:

Corollary 4.11 (Correspondence between plans). Let G+ O stand for goal GU{ps}
and G+O for goal GU{—p,}, where a denotes the last action in observation sequence
O. The following correspondence between plans exist:

1. mw is a plan for P[G] that satisfies O iff w is a plan for P'|G + O]
2. 7 is a plan for P[G] that does not satisfy O iff = is a plan for P'|G + O].

The following two Theorems state that the deviation from optimal behavior A(G, O)
from Definition 4.4 is preserved for transformed domains P’[-]. First, cost of plans is
not altered by the transformation described by Definition 4.6:

Theorem 4.12 (Preservation of plan costs in P[] and P'[]). Let P[] = (F,I,A)
be a planning domain, G C F an arbitrary subset of the fluent set F, and m be a
plan for P[G]. Let © be a plan for P[G]. Let ©’ be a plan for problem P'|G], where
P[] is the result of applying Definition 4.6 to P[-]. Then it holds that

cf(m) = (")

Proof. As stated by the Theorem 4.11 there is a surjective mapping between plans
7 in the set IIp[G] and those plans 7’ in the set Ip/[G + O] UTlp/[G + O]. The
number of actions in 7 and 7’ is not changed. Therefore, since Definition 4.6 does
not prescribe any change in the cost function associated with P[], the cost of m and
that of 7’ is the same. O

58 PR OVER CLASSICAL PLANNING THEORIES

So A(G, O) can be formulated directly as the difference between the optimal costs
of plans for goals G + O and G in the transformed domain P'[-]:

Theorem 4.13 (A(G, O) preserved by Definition 4.6). For any goal G and obser-
vation sequence O, it holds that:

1. &(G,0) = ¢ (G + 0)
2. cp(G) = cp(G)

where ¢, and ¢}, are respectively the optimal costs of P|G] and P'[G], P'[-] denotes
the planning domain that results from applying Definition 4.6 on planning domain
P[]. As a result the deviation A(G,O) from optimal solutions to the planning prob-
lem P[G] when satisfying O becomes

A(G,0) = |cp(G,0) = cp(G)| = [¢p (G + O) = ¢pi(G)]

Proof. Since costs of plans in P[] do not change with respect to their cost in
P[-] from Theorem 4.12 then the minimum cost of any set of plans does not either
change. O

Once presented the formulation for obtaining plans that satisfy observation sequences
O and having shown it to be correct, we now discuss the implications of the mapping
given in Definition 4.6 with respect to the efficiency of plan search.

Efficiency

In general, compilation of conditional effects implies an exponential increase in the
number of actions in the STRIPS representation. This blow—up depends on the num-
ber of fluents in the antecedent of a conditional effect. As it is obvious, in the case of
the mapping above, the antecedent size is bounded by a constant, and this constant
is 1. In effect, planners not supporting natively conditional effects will be handling
a domain with twice as many operators.

On the other hand, adding fluents p, also potentially increases the number of states
S in the state space II induced by planning domain P[] from 2/¥1 to 21F+1Ol that
is, 2|91 times bigger. However, the number of reachable states, which are the states
which can actually be reached from initial state I during plan search, does not. It is
easy to see that there are just |O| times more reachable states:

Theorem 4.14 (Reachable states increase). Let P'[-] be the planning domain re-
sulting from applying Definition 4.6 to some planning domain P[-]. The number of
reachable states in P'[-], for any goal G, is |O| times the number of reachable states

Proof. Let s C F’ be a state where fluent p, is true and fluent p, is false, a and b
being actions in O, and b comes before a in O. This state cannot be reached from I’
since in order for p, to be true, py needs to have been made true at some point by
some action with conditional effect p. — pp, ¢ being an action preceding both a and
b in O, or an action with conditional effect () — p; if b is the first action in O. In
order to pp and p, to be simultaneously false and true, there must exist some action

4.5. COMPUTATION OF OPTIMAL GOAL SET 59

d deleting py. But there does not exist any action in P’[:] doing so. Hence, we can
conclude that there is no state s reachable from I’ where there are fluents p, and py
being respectively true and false and b being an action preceding a in O. O

Since O is totally ordered, and this is enforced by the conditional effects antecedents
and the semantics of STRIPS actions, there are many possible combinations of true
(false) fluents p, as actions in O plus one.

4.5 Computation of Optimal Goal Set

Now we have all the components needed to propose an algorithm for solving plan
recognition theories 7' that relies on classical planners:

Proposition 4.15 (Computation of G). Let T = (P,Gr,O) be a plan recognition
theory, and T" = (P',Gr,O') be the theory resulting the transformation described in
Definition 4.6 to T'. Then G} can be computed as:

gr ={G|G € Gr, A(G,0) =0}

that requires 2 - |G| calls to an optimal classical planner to obtain ¢, (G + O) and
i (G).

Computing G; with the procedure outlined above provides us with a qualitative
solution to a plan recognition theory. That is, the set of goals that are found to
be consistent with the assumption that the observed agent tries to achieve its goals
in the most efficient manner. Goals G with A(G,0) > 0 are a worse explanation
for O than goals G’ with A(G’,0) = 0, as the former are not consistent with this
assumption. If G was to be the actual goal, the fact that best plan supporting O
has worse quality than a plan that does not support it, would point to the agent not
behaving in the most cost efficient possible way. This qualitative notion intuitively
appeals to the probabilistic notion of the likelihood of being O observed when G is
being pursued.

4.6 Limitations of Qualitative Model

For plan recognition problems such as the one shown in Figure 4.1, the procedure
for computing G- given on Definition 4.15 is indeed selecting the most likely goals
amongst the hypothetical goal set G, under the assumption of the observed agent
being rational as in preferring optimal plans over other plans. However, it does not
take into account to what extent observing the actions in O might be a necessary
condition in order to minimize the cost to attain a goal. The following example
illustrates this shortcoming.

Figure 4.2 illustrates one case where the cost deviation alone A(G,O) does not
account well for the intuitive probability of G given O. In this example, the compu-
tation defined at Proposition 4.15 would yield the following G7:

g’jlk‘ - {G27 G5}

60 PR OVER CLASSICAL PLANNING THEORIES

Figure 4.2: ROBOSCHOOL plan recognition theory where minimizing A(G, O) does not
entail maximizing P(G|O). As in the theory depicted in Figure 4.1, the trainer starts at cell
E0, but now the observation sequence O is (walk(C0, B0)).

that is, would qualify as equally likely the goals “get all spheres into bin by” and
“get all the green objects into bin b3”. There are indeed optimal plans satisfying O
for both goals, but while for GG there is no optimal plan that does not satisfy O, for
G5 there are several optimal plans not complying with O. Namely, the trainer could
make a diagonal move from CO0 into B1, or bypass entirely cell C0 going along cells
D0, C1, B1 to pick up the green square, without incurring in any additional cost. On
the other hand, the minimum cost plans for G5 that do not satisfy O have a higher
cost than those satisfying O. Rather than moving from cell C0 into BO with one
single walk action, they would involve two, e.g. walk(C0, B1), walk(B1, B0) with a
cost of 1+ v/2 rather than 1.

In order to do better than this, we need to consider how well does a goal G predict
observation sequence O. In other words, we want to establish to what degree the
satisfaction of O is a necessary condition for optimality when pursuing goal G. To
leverage this, we can compare A(G,0) with A(G,O), the deviation from optimal
behavior when not satisfying O. That is, if we find the latter to be zero, so ¢}/(G) =
¢ (G + O), then clearly G is not predicting O very well, since A(G,0) = 0 tells us
that the actions in O are not essential to attain G in an efficient manner.

In the ROBOSCHOOL task presented in Figure 4.2, while A(G,0O) = 0 for both Gs
and G5, A(Go,0) is 2 4+ /2, while A(G5,0) is 0. So G predicts better O under
the assumption of observed agents pursuing the most efficient course of action, since
plans for P[G5] which do not satisfy O result in more cost efficient plans than those
that satisfy O.

Yet another limitation of the algorithm presented in Section 4.5 resides in coping
with non—optimal behavior. Figure 4.3 depicts several plan recognition problems
over a grid of 11x11 tiles where an agent, initially at the center of the bottom row —

4.6. LIMITATIONS OF QUALITATIVE MODEL 61

Figure 4.3: Grid navigation problem where observed actions lead to several plausible or
no plausible goals.

cell marked I — heads to one of the possible goals A, B, C, D, E or F, by performing
three types of moves: horizontal and vertical moves at cost 1, and diagonal moves
at cost v/2. The arrows show the path taken by the agent, with numbers 3, 6 and
11 indicating the time an action was done. Taking as observation sequences Oz, Og
and Op; all actions done by the agent up to time steps 3, 6 and 11 respectively, we
obtain three different plan recognition problems T3, Tg and 711 that only differ in
their associated observation sequence O.

As shown in Figure 4.3 the goal being pursued by the agent and eventually achieved
is E. We note that this goal would not be considered a plausible one in any of the
three plan recognition problems. For T3 the plausible goal set G7, would include goals
A, B and C, since Os is a prefix for all optimal plans achieving either of these three
goals. For Ty and T11 G would be empty, since observation sequences Og and O11
are not satisfied by any optimal plan for any of the hypothetic goals. Whatever the
reason, the observed agent is not pursuing goals in the most efficient way, although
it is obvious that for Ty goal D looks more plausible than goal C, and goal C' more
plausible than either A or B. When considering 771, goals £ and F' look to be more
plausible than any other goal.

We want a more robust characterization of plausible goal sets, that allows deviations
from optimal behavior and allows to rank goals according to how likely they are given
O. There are several possible settings where this is needed. Namely, in those case
where the agent pursuing one of the goals in Gy and another goal which the modeler
has not taken into account. Pursuing robustness we will abandon the qualitative
notion of G7 altogether and move into a Bayesian probabilistic reasoning setting
where goals are ranked according to a posterior probability distribution P(G|O),
that describes how well do observation sequences O support the hypothesis of an
agent pursuing goal G.

62 PR OVER CLASSICAL PLANNING THEORIES

4.7 Probabilistic Model of Plan Recognition

In order to infer the hypothetic goals posterior probability distribution, P(G|O), we
need to modify Definition 4.1 to accomodate information about goals prior proba-
bility distribution.

Definition 4.16. A probabilistic plan recognition theory or problem is a tuple T =
(P['],Gr, O, Prob) where P is a planning domain, Gr is a set possible goals G, O 1is
an observation sequence and Prob is a probability distribution over Gr .

Goal priors are supposed to be set accordingly by the plan recognition system de-
signer, to account for knowledge that might make certain goals more likely than
others, and which cannot be easily encoded into a planning domain P[-]. For in-
stance, in a plan recognition task embedded into a smart house application, the day
of the week might and the hour make more or less likely that the observed agent is
pursuing the goal “take the car out of the garage”.

The posterior goal probabilities P(G|O) will be characterized by the Bayes Rule:

P(G|0) = aP(0|G)P(G) (4.1)

where « is a normalizing constant and P(G) is Prob(G). The challenge in this
formulation is the definition of the likelihoods P(O|G) that express the probability
of observing O when the goal pursued is G. Adopting the agent rationality postulate
discussed in Section 4.1, that assumes observed agents to pursue goals in the most
efficient manner, then P(O|G) has to take into account how much — if at all — does the
agent deviate from optimal behavior to comply with the observations. The notion
of how necessary is O in order to attain the most efficient behavior is implicit in
the proportionality between P(O|G) and P(O|G). When P(O|G) = P(O|G) then
clearly O is not instrumental in achieving GG in the most efficient manner possible.

In the extreme case that a goal G becomes unfeasible, that is, there is no valid plan
for P[G] that satisfies O, then the likelihood of observing the agent doing the actions
in O while pursuing goal G, P(O|G), should be zero. At the other extreme, when
there is no valid plan for P[G] that does not satisfy O, the likelihood of not observing
O when G is being pursued, P(O|G), should be zero. When the latter is true, then
G is a perfect predictor for O.

The natural way to define the likelihoods P(O|G) is
P(O|G) = ZP O|r) - P(x|G) (4.2)

where 7 ranges over all possible action sequences, as the observations are independent
of the goal G given 7. In this expression we can set P(O|r) to 1 if 7 is an action
sequence that satisfies O, and 0 otherwise. Moreover, assuming that P(7|G) is 0 for
m which are not valid plans for G, Equation 4.2 can be rewritten as:

P(0|G) = ZP 7|@) (4.3)

4.7. PROBABILISTIC MODEL OF PLAN RECOGNITION 63

where 7 ranges now over the valid plans for G that comply with O. Exact compu-
tation of P(O|G) as per Equation 4.3, amounts to count all plans for P[G]. This
is something which is likely to be expensive for any planning problem P[G] whose
domain P[] models agent behavior with some degree of flexibility, regarding the
ordering of actions in a valid plan or the possibility of attaining certain fluents (sets
of fluents) with more than one action.

Approximating P(O|G)
We can approximate P(O|G) if we make the following two assumptions:

1. The probability of a plan 7 for G is proportional to

exp{—pBc(m)}

which follows from our initial assumption of agents pursuing goals in the most
efficient manner, and

2. The sum in Equation 4.3 is dominated by its largest term, so that probabilities
corresponding with different plans for the same goal are not added up.

The first assumption consists in considering probabilities of plans to be inversely
proportional to their cost and distributed according to a exponential distribution
with £ being the rate parameter. This allows plan recognition system developers
to soften the implicit assumption of the agent being rational as in preferring those
plans that minimize their total cost. The smaller the value of 8 the more will the
distribution resemble a uniform distribution as probabilities of plans with different
costs become more similar.

The second assumption is an order—of-magnitude approximation, of the type that
underlies Qualitative Probability Calculus (Goldszmidt and Pearl, 1996). This ap-
proximation is reasonable when cheaper plans are much more likely than more ex-
pensive plans, and the best plans for G + O and G + O are unique or have different
costs.

Let us consider the case where the agent has two actions available a and b with cost
1, and the hypothetical goal set Gr to comprise two goals, G; and G5. Action a
achieves G1 but disables action b by deleting one of the fluents in Pre(b). Action
b achieves G5 but disables action a, since it is deleting a fluent in Pre(a). Now we
observe two different performances by the agent, obtaining observation sequences

01 = {a} and Oy = {b}.

As we stated above, P(O|G) semantics state how good is G at predicting O. In the
case of Oy and G, P(O2|G1) should be 0. No rational agent — that is, one seeking
goal GG1 — will use action b since that executing that action would indirectly preclude
the possibility of achieving GG; by executing a. On the other hand, the only plan
achieving G uses action a but not b, so P(Oz|G1), the likelihood of not having to
comply with Oy to achieve Gy, is 1.

The relationship between likelihoods P(O|G), P(O|G) and the cost difference be-
tween cp/(G, O) and cp/(G, O) becomes apparent:

64 PR OVER CLASSICAL PLANNING THEORIES

1. When A(G,O) = oo then P(O|G) = 0.
2. When A(G,0) = oo then P(O|G) = 0.
3. When A(G, 0) < A(G,O) then P(O|G) > P(O|G).

4. When A(G,0) < A(G,0) then P(0|G) > P(0|Q).

Likelihoods for P(O|G) and P(O|G) follow from our general assumption about non—
optimal plans being less likely than optimal plans for G and the assumption made
on the probability distribution of P(7|G)

P(0|G) ¥ o/exp{—f (¢(G, 0) — c(G))} (4.4)

P(0|G) ¥ a/exp{~B («(G,0) — ¢(G))} (4.5)

We note that o’ is a normalization constant that ensures that P(O|G) and P(O|G)
add up to 1. If we take the ratio of these two equations, we get

P(0|G)/P(0|G) = exp{—B A(G)} (4.6)
where A(G) is the cost difference
A(G) = ¢(G,0) — ¢(G, 0) (4.7)
and the term ¢(G) appearing in Equations 4.4 and 4.5 is canceled out. Since
P(O|G) + P(O|G) =1 (4.8)
and given that
P(0|G) = exp{—B A(G)} P(O|G) (4.9)

we can rewrite Equation 4.8 as follows:

exp{—BA(G)} POIG) + POIG) = 1 (4.10)
POIC)(1 + expl—BA@)) = 1
POIG) = !

1+exp{—BA(G)}

so P(O|G) corresponds exactly with one member of the class of sigmoid functions,
a logistic curve with argument 5 A(G) as the one shown on Figure 4.4.

4.8. COMPUTATION OF POSTERIOR GOAL PROBABILITIES WITH CLASSICAL
PLANNERS 65

Delta(G,0)

Figure 4.4: P(O|G) as a logistic curve evaluated over SA(G) with § = 1.

4.8 Computation of Posterior Goal Probabilities with
Classical Planners

Having characterized in a precise way P(O|G) and given the priors specified in the
probabilistic plan recognition problem, one can readily obtain P(G|O) from equa-
tion 4.1.

Proposition 4.17 (Computation of P(G|0)). Let T = (P, Gr, O, Prob) be a prob-
abilistic plan recognition problem, and T' = (P', Gr, O') be the plan recognition
problem resulting from compiling observation sequence O into domain P. The pos-
terior distribution P(G|O) for all possible goals G; € G is to be computed by:

1. Compute cp/(G; + O) and cp/(G; + O) invoking an optimal classical planner
twice.

2. Compute A(G;) as per Equation 4.7.

3. Compute P(O|G;) as per Equation 4.10.
This algorithm involves 2|Grp| calls to a classical planner.

When priors are equal, it is trivial to verify that the most likely goals G C Gr will
be the ones that minimize A(G, O).

Two optimizations can be directly applied on the basic algorithm proposed in Propo-
sition 4.17. The first deals with the overhead entailed by the transformation described

in Definition 4.6 and the second with the fact that no plans might exist for P'[G+O|.

Algorithm 4.5 addresses the first possible optimization by reducing to just one the
number of calls over the transformed planning domain P’[-], which might be more
expensive than computing a plan for G over the original domain P[-]. The algorithm

66 PR OVER CLASSICAL PLANNING THEORIES

Input: Planning domain P[]

Input: Observation sequence O

Input: Hypothetic goal set Gr

Output: Costs cp/(G + O), cpi(G + O) for each G € Gr

foreach G € Gr do

Compute optimal plan 7 for P[G] with classical planner;
if m satisfies O then

Set cp/ (G + O) = e(m);

Compute cp(G + O) with classical planner;
else

Set cp/ (G + O) = ¢(7);
Compute cp/(G + O) with classical planner;

Figure 4.5: Optimized computation of cp/(G + O) and cp/(G + O)

exploits the result in Theorem 4.11 that states that plans over domain P[-] and P'[]
for the same goal G are equivalent.

For the second optimization we will rely on the notion of action landmarks discussed
in Section 2.8, actions that are necessarily featured by all valid plans for some goal
G. In certain planning domains, goals G + O may become unreachable from the
initial state I’ when one of the actions in O happens to be an action landmark for
either the goal G or a precondition of another observed action:

Proposition 4.18. Given that ¢(Q) # oo and observation sequence O = (ay, ..., ay),
cp (G + 0) = oo iff:

1. ay, € O last action in O, ay action landmark for G, and

2. Observation a; is an action landmark for Pre(ait1)

Action landmarks can be computed inexpensively with the A' max heuristic described
in Section 2.6 as shown on Algorithm 4.6.

Input: Planning domain P[] = (F, I, A)
Input: Observation sequence O
Input: Goal G

Remove a,, from A, yielding planning domain P, [-];

Compute hpaq(G; I) over domain P, [-], if co return False;
foreach a; € 0,i=1,...,n—1do

Remove a; from A, yielding planning domain P,,[-];
Compute hpaz(Pre(a;y1); 1) over domain Py, [-], if co return False;

Return T'rue;

Figure 4.6: Algorithm for checking that P’[G + O] is solvable.

4.8. COMPUTATION OF POSTERIOR GOAL PROBABILITIES WITH CLASSICAL
PLANNERS 67

This relative inexpensive computation allows huge savings when P'[G + O] is not
reachable from the initial state I’, since planning heuristics other than the ™ heuris-
tics with m > 1 cannot detect dead ends.

Example

Figure 4.7 illustrates how the posterior distribution P(G|O) changes as we observe
more of the agent behavior shown in Figure 4.3. At each time step ¢, observation
sequences O; contain all the actions done by the agent up to t.

0.75

|

LI [
MMQUO®>

0.5 . -
. 1@

P(G|Ox)
*
£¢)
pr
Ty
OO0

1 2 3 4 5 6 7 8 9 10 11 12 13
Time Steps

Figure 4.7: P(G|O;) as function of time ¢.

At each time step ¢ P(G|O;) is computed from scratch using the algorithm described
in Proposition 4.17 while updating observation sequence O;. Note that computing
P(G|0Oy) will involve solving optimally 26 classical planning problems, 2 for each of
the 13 time steps.

As it can be seen on Figure 4.7, until time step 3 the most likely goals are A, B and
C, which corresponds exactly with our intuition. Between time steps 3 and 7 we see
how first goal A and then goal B likelihoods sharply decrease as the agent departs
from the optimal plans to achieve them, being replaced by goal D. From time step 7
onwards we see how goal E' likelihood raises steadily as the agent progresses towards
the top—right corner of the grid, while the other goals likelihoods become nearly zero
as the agent reaches goal E. It is interesting to note that the likelihood of goal F
never ever really got off the ground, even at time step 11 after the agent goes towards
the right edge of the grid. At time step 11 the cost to reach F' and comply with O,
cp/(F 4 Oq1), is 6 + 61/2 ~ 14.5 nearly twice as much as the cost of reaching F
without complying with O11, cp/(F + O11), which is 1 4+ 5v/2 ~ 8.

68 PR OVER CLASSICAL PLANNING THEORIES

Using Satisficing Classical Planners to Approximate P(G|O)

While Proposition 4.17 uses optimal classical planners to compute costs cp/(G + O)
and cp/(G + O), in practice, optimal classical planners do not scale up as well as
satisficing classical planners do. In the last decade the classical planning community
has devoted huge efforts to develop very efficient satisficing planners as discussed in
Chapter 2. Satisficing planners do scale well, so practical plan recognition systems
built on top of the principles presented in this thesis can use them as the core of
their processing.

Nonetheless, there is one important caveat about using satisficing planners. Costs
computed by satisficing planners are not guaranteed to be a lower—bound on plan cost.
Empirical results for state—of—the—art satisficing planners show that, depending on
the structure of the planning problem considered, there is a huge variability on how
close reported solutions costs are from optimal solutions costs. This can potentially
lead to very different posteriors so a goal G that maximizes P(G|O) when computed
with an optimal planner, might not do so when P(G|O) is computed with a satisficing
planner.

Anytime planning systems such as LAMA (Richter and Westphal, 2008), allow us to
control to what side in the trade—off between scalability and robustness inferences
fall by allocating a bounded amount of time to plan search. We will further analyze
this issue when we present the empirical evaluation of our approach to probabilistic
plan recognition in Section 4.11.

4.9 Evaluation Domains from Planning Benchmarks

In this section we will present three different plan recognition tasks which we will
use to empirically test the formulation we have presented in Section 4.7. For each
domain we will describe the associated planning domains and hypothetical goal sets
Gt , so the reader can appraise the expressiveness contributed by using a relatively
simple modeling language such as STRIPS and compare it with previous approaches
to plan recognition.

Block Words

In this plan recognition task, the agent wants to assemble a word from an English
word vocabulary by assembling a tower of toy blocks with letters painted on them.
The observer expects the agent to aim at one of 20 possible words made up by up to
6 different letters.

The action theory modeling agent behavior is obtained by borrowing the BLock
WORLD domain introduced in the 2nd International Planning Competition bench-
marks 4. In this planning domain the agent can interact with several blocks located
on top of a table with an unlimited surface. Blocks can initially be either on top of
the table or on top of another block.

4Available at http://www.loria.fr/~hoffmanj/ff-domains.html under the label
Blocksworld-4ops (retrieved on October 2011).

http://www.loria.fr/~hoffmanj/ff-domains.html

4.9.

EVALUATION DOMAINS FROM PLANNING BENCHMARKS

Fluent Meaning
clear(b;) ||Block b; has no other block b; on top.
on(b;, bj) Block b; is on top of block b;.
onTable(b;) || Block b; lays directly on the table.
holding(b;) Agent holds block b; in her hand.
handEmpty|() Agent hand is empty.

Table 4.2: BLocK WORLDS fluent set F'.

69

Fluents describing world states are listed on Table 4.2. The agent can manipulate
the blocks in several ways to arrange them into one or more towers. Agent actions
STRIPS description is listed on Table 4.2.

Action Preconditions Adds Deletes
pickUp(b;) clear(b;) holding(b;) clear(b;)
onTable(b;) handEmpty ()
putDown(b;) || holding(b;) |handEmpty()| holding(b;)
onTable(b;)
stack(b;, b;) || holding(b;) on(b;, bj) clear(b;)
clear(b;) |handEmpty()| holding(b;)
clear(b;)
unstack(b;, b;)|| on(b;, b)) holding(b;) on(b;, bj)
clear(b;) clear(b;) clear(b;)
handEmpty() handEmpty()

Table 4.3: BLOCK WORLDS STRIPS action set A.

>

O

E C

W

Ii»zv

Figure 4.8: BLOCKWORDS PR task example. On the left is shown the initial configuration
I, and on the right one of the possible goals G € Gr.

Initial states I can describe any valid configuration of blocks such as the one depicted
on Figure 4.8. The set of possible goals Gr is encoded as conjunctions of fluents
shown on Table 4.2 describing towers of blocks, whose letters when read from top
to bottom, configure some English word. Figure 4.8 shows the tower of blocks cor-
responding with the word “draw”. In our experiments we set Gr to include twenty
different towers corresponding with English words.

70 PR OVER CLASSICAL PLANNING THEORIES

One of the many ® optimal plans for the planning problem P[G] in Figure 4.8 could
be:

1. unstack(D, A) 2. putDown(D) 3. unstack(A,C)
4. stack(A, W) 5. unstack(R, P) 6. stack(R, A)
7. pickUp(D) 8. stack(D, R)

We note that there is potentially a high degree of ambiguity between different goals,
since it is very likely that partially observed plans for different goals will have in
common a substantial number of actions, and these tend to as well ordered in the
same way. Consider the plan for the goal consisting on building a tower reading the
word “crow”:

1. unstack(D, A) 2. putDown(D) 3. unstack(A4,C)
4. putdown(A) 5. pickUp(O) 6. stack(O, W)
7. unstack(R, P) 8. stack(R,0) 9. pickUp(C)
10. stack(C, R)

If the observed sequence of actions is O = { putDown(D), unstack(R, P) } both
goals, that is assembling towers for words “draw” and “crow”, will have the same
probability P(G|O).

BrLock WORDS is a challenging domain for approaches to plan recognition based
on plan libraries because of the very high number of valid plans existing even for
simple tasks as the one depicted in Figure 4.8. All action effects are reversible so
there several optimal goals and a huge number of non—optimal valid plans. In our
formulation, the huge search space entailed by this domain poses a challenge to
optimal planners. On the other hand, satisficing planners find plans very quickly,
though sometimes these plans quality is substantially worse than that of optimal
plans.

Logistics

Here the task for the observer is to deduce the destination — locations in two cities —
of up to 6 different packages. Packages start in locations in the same or a different
city than that of their destination, and can be located at either locations or airports,
or inside trucks and airplanes. Table 4.4 details the fluents F in the planning domain
P[] of the plan recognition problem.

In order to deliver the packages, trucks can load and unload them and travel between
locations in the same city. When a package needs to be delivered to a location in
a different city, it is required to ferry it by airplane, hauling it first to the city
airport. Table 4.5 detail actions in the planning domain P[-] associated with these
plan recognition problems.

In our experiments we have considered five different possible initial situations I,
by assigning randomly trucks, packages and airplanes to suitable locations. The

5All other optimal plans for the goal shown in Figure 4.8 involve stacking block D on top of any
block other than W.

4.9. EVALUATION DOMAINS FROM PLANNING BENCHMARKS 71

Fluent ||Meaning
inCity(l, ¢)||Location [is in city c.
at(o,1) ||Object o, either a truck or a package, can be found
at place [, either a location or an airport.
in(p,v) ||Package p is located inside vehicle v, either a
truck or an airplane.

Table 4.4: LogisTIcs fluent set F.

Action Preconditions| Adds |Deletes
load Truck(p, t,1) at(t,1) in(p,t) | at(p,!)
at(p, 1)
loadAirplane(p, a,l) at(a,l) in(p,a) | at(p,)
at(p, 1)
unloadTruck(p, ¢,1) in(p, t) at(p,l) | in(p,t)
at(t,l)
unloadAirplane(p, a,l) in(p,a) at(p,l) |in(p, a)
at(a,l)
driveTruck(t, l1, 12, c) Iy # 1y at(t,la) |at(t, 1)
at(t,l1)
inCity (11, ¢)
inCity(lo, ¢)
fly Airplane(a, l1, I3, ¢) I # o at(a,ly)|at(a,l;)
at(a,ly)

Table 4.5: LOGISTICS STRIPS action set A. p are packages, ¢ trucks, [locations

hypothetical goal set Gr consists of up to 10 different combinations of assignments
of packages to locations such as

G1 @ at(p1y, Lo,), at(p2s, l15)
Ga @ at(p1y, lag), at(p2,, l15)
G3 @ at(pis, la,), at(p2,, 1)

(), at()

Gy : at p13,l22 ,at

where goal 1 would read aloud as “package pi, is at location la, and package pa,
is at location I;,”.

The Logistics domain is not a challenge for the state—of-the—art in either optimal
or satisficing planning. On the other hand, it is simple but expressive enough to
capture an interesting (Liao et al., 2007) plan recognition task, where the degree of
precision we can achieve identifying the actual goal being pursued is clearly related
to the number of fluents goals G; do share.

72 PR OVER CLASSICAL PLANNING THEORIES

IPC-Grid

The planning domain for this collection of plan recognition tasks is inspired on 2nd
International Planning Competition GRID benchmarks 6. The observed agent navi-
gates through a graph, where nodes model rooms and edges between nodes denote
that there is a door between two rooms. Figure 4.9 depicts one of the graphs we
consider.

A B C 1
k2
D E F
‘ 1
G
k3
]
I

Figure 4.9: GRID PR task example. Boxes are rooms and lines between them denote that
they are connected. Lock shapes — numbers 1, 2 and 3 — are shown only for locked rooms FE,
F and H. ki, ko and k3 are keys whose shapes correspond with that of locks of rooms F, H
and F respectively. The observed agent starts in room A.

These rooms might be either open or closed. In the latter case the agent cannot
enter the room, unless she has the right key to open it. Keys can open all rooms
whose lock shape matches that of the key. In the tasks included in our benchmark
there are up to five possible key shapes and types of locks. Tables 4.6 and 4.7 show
the fluent and action set of the planning domain.

Fluent Meaning

connected(z,y)||Rooms = and y are connected by a door
keyShape(k, s) || Key k has shape s
lockShape(z, s)||Lock at room x has shape s
atKey(k,z) |[Key k is in room z
atAgent(x) | Agent is in room z
locked(x) Room z is locked
carrying(k) |[Agent is carrying key k
open(z) Room z is open

Table 4.6: GRID fluent set F.

Agent goals are to get into one room, which correspond with goals consisting of
one single atAgent(z) fluent. Since connections between rooms are quite sparse and
several keys might be placed in the same room, goal rooms widely separated on the
graph might predict equally well many observation sequences.

SAvailable at http://www.loria.fr/~hoffmanj/ff-domains.html under the label Grid (re-
trieved on October 2011).

http://www.loria.fr/~hoffmanj/ff-domains.html

4.10. EVALUATION DOMAINS FROM PLAN LIBRARIES 73

Action Preconditions Adds Deletes
unlock(z, y, k, s)||connected(z,y)| open(z) | locked(z)
keyShape(k, s)
lockShape(z,)

atAgent(x)
locked(y)
carrying(k)

move(z,y) atAgent(x) |atAgent(z)|atAgent(y)

connected(z, y)
open(z)

pickUp(z, k) atAgent(x) |carrying(k)|atKey(k,x)

atKey(k, x)

Table 4.7: GRID STRIPS action set A.

As an illustration of the observation above, let us consider the following two goals
for the task depicted in Figure 4.9:

G : atAgent(F)
G : atAgent(])

Plans for both GG; and G2 involve moving to room C' to pick up just ko, when the
actual goal is Ga, or both ki and ko, when the actual goal is G;. Note ko is also
relevant for G, since it allows to unlock room H and pick up k3 which unlocks room
F.

4.10 Evaluation Domains from Plan Libraries

This section discusses three benchmarks obtained from plan recognition tasks dis-
cussed in recent literature on plan recognition (Geib and Goldman, 2001; Wu et al.,
2007; Bui et al., 2008). This presented a challenge because of the general vagueness
when defining the modeling language used to describe plan recognition tasks. In
general, the plan recognition community has settled for a simplified form of the HTN
modeling language (Erol et al., 1994) to specify in a compact way plan libraries.

Compared with STRIPS, HTN not only provides with the description of world states
and what actions the agent can use to affect these, but also with strategies for
executing tasks. HTN tasks are the rough equivalent of STRIPS goals, and HTN
domain definitions can indeed be understood as a library of plans, as methods are
actually short plans prescribing how to achieve some simpler task or goal.

We settled for establishing a compromise between a faithful rendition of the original
problem semantics — giving formal guarantees about correspondence of solutions
when possible — and showcasing the flexibility of STRIPS when it comes to model
plan recognition tasks. This flexibility allows us to transform plan libraries into
STRIPS action theories whose valid plans correspond with the plans in the library, as

74 PR OVER CLASSICAL PLANNING THEORIES

well as taking into account additional constraints entailed by the context where the
observed agent performance takes place.

While algorithms exist to compile HTN decompositions into STRIPS planning do-
mains (Lekavy and Névrat, 2007), we chose to translate the ones on Figure 4.10 with
the following mapping into STRIPS:

Definition 4.19. Let L = (T,T, Sub, Depend) be a hierarchical plan library, where
T are top—level tasks, T are primitive tasks t and “end tasks” End., Sub are tuples
(r,t), T € T, t € T, denoting that t is a subtask of T and Depend are tuples (t,t)
denoting that t' € T requires t € T to be completed before being executed. The
planning domain Pr[-| = (F,I, A) resulting from compiling L into STRIPS is defined
as follows:

1. F ={done(t) |t € T} U{completed(t)|T € T}

2.1=10

3. A= AT U AT where AT = {a;|t € T}, t not an end action

a) Pre(a;) = {done(t') | (t',t) € Depend}
b) Add(ay) = {done(t)}
and AT = {a? |7 € T} where
a) Pre(al ;) = {done(t)|(t', End,) € Depend}
b) Add(al,,;) = {completed(r)}

A decomposition ¢ is a path — sequence of edges — that traverses the graph implicitly
defined by the library L, subject to some constraints:

Definition 4.20 (Library graph G(L)). The library graph G(L) = (V, E) vertex set
V is defined as the union of the library top—level and primitive tasks

V=TUT

and edge set E
E = {<T7 t)7 (t7 T) ’ (T, t) (S SUb} U Depend

Definition 4.21 (Decomposition of top-level task 7). The decomposition of a top—
level task T € T of library L is a path ¢

6= (61,62,...en)

such that e; belongs to the edge set E of G(L), and satisfying the following conditions:

o ¢y = (7,t), (1,t) € Sub(T)
e ¢, = (t',7), (1,t') € Sub(r)
e Forallt € T, such that t € e;, Depend(t) C §

where Sub(t) = {(7,t)|(7,t) € Sub} and Depend(t) = {(t',t) | (¢',t) € Depend}.

4.10. EVALUATION DOMAINS FROM PLAN LIBRARIES 75

A decomposition ¢ is minimal when

|6] = min |0
§'eA(L,T)
that is, consists of the minimum possible number of steps amongst all possible de-
compositions of top—level task 7 in the library L, A(L, 7).

The relation between minimal decompositions § of top—level tasks 7 in L and optimal
plans in Py, for goals G = {completed(7)} is described in the following theorem:

Theorem 4.22. There exists an exact correspondence between minimal decompo-
sitions for top—level tasks T in L and wvalid, optimal plans for Pr|G|, where G =
{completed(T)} and c(a) =1 for all actions a.

Proof. We prove the theorem above by contradiction. Let m = {a1, ..., a;, ..., a;
...,an} be a valid, optimal plan for Pr[G] which does not correspond to a minimal
decomposition for 7 in L and s; be the set of fluents p € F true after ai,...,aq; is

executed. Since 7 is a valid plan then necessarily completed(r) € s,,. Because of 7
being optimal, the shortest possible valid plan, we can assume that action a,, = a .
Again, since 7 is optimal, it must hold for any set of fluents s; that Pre(a;+1) C s;.
We observe that all preconditions are composed of done(t) fluents, which are only
added by the corresponding a; action. Then, there must exist actions a;, a; in w such
that a; = a; = a;. In that case, @ would not be an optimal plan, since there are no
actions in Pr[G] deleting fluents done(t) and hence a; actions need to be executed

exactly once. O

Theorem 4.22 establishes a link between past approaches to plan recognition using
plan libraries and the formulation given in Section 4.7. Under the assumption of
rationality embodied in the optimality of plans, the most likely observation sequences
will be those that satisfy some optimal plan in Py, and those plans correspond with
the minimal decompositions of plan libraries L as shows Theorem 4.22.

Intrusion Detection

This task is adapted from the application of plan recognition on intrusion detec-
tion systems (IDS), an interesting and relevant compute security domain, described
in (Geib and Goldman, 2001). In this case the observing agent is a surveillance
system which gets to observe the interaction of a malicious computer hacker with a
network server. Observed agent goals and plans are encoded into simple hierarchical
plans (Erol et al., 1994) as depicted on Figure 4.10.

We have made one change to (Geib and Goldman, 2001) which consists in modeling
the routines above so plan recognition tasks could accomodate multiple, concurrent
attacks on several different servers. This amounts to add a new type of object —
server — and modify accordingly predicate and action schemas. This simple change
allows for a more realistic scenario and also provides us with a parameter that allows
us studying how well our approach scales.

In order to generate the plan recognition tasks used in the experimental evaluation,
we take care of excluding from generated observation sequences O actions a’ ;, which
would indeed give the game away.

76 PR OVER CLASSICAL PLANNING THEORIES

vandalism

break-in

break-in mod-webpage
- 'S
deleted-logs deleted-logs

Figure 4.10: Hierarchical plan libraries for the INTRUSION DETECTION task (Geib and
Goldman, 2001). Square boxes denote primitive tasks and rounded boxes denote composite
tasks and ellipses denote primitive tasks “side effects”. Solid arrows between primitive tasks
are precedence constraints and discontinue arrows relate primitive tasks and effects.

Campus

In CaMPUS plan recognition tasks the observer agent needs to find out the activity
being performed by a college student, whose movements around the campus are
being tracked (Bui et al., 2008). Possible plan libraries, rather than being full-
fledged hierarchical plans are specified as directed acyclic graphs of primitive tasks,
which (Bui et al., 2008) refer to as routines. An example of one of the two routines
discussed in (Bui et al., 2008) is shown on Figure 4.11.

Take Lecture
Have #2 \
Breakfast Have

Coffee

Take Lecture

#1 ~—a Group Meeting
#1

Figure 4.11: Student routine from (Bui et al., 2008) which consists of having breakfast,
attending to classes, meeting with other students, and ending with having coffee.

We note that these activities are hidden from the observer, all the info she gathers
concern student changes in location. Such changes are providing indirect evidence
for a certain activity being executed, since they can only take place in certain campus
areas.

We have encoded this task into a STRIPS action theory by, first, encoding the task
dependency graph as described on Definition 4.19, and second, modeling the observed
changes in location as STRIPS actions that allow the student agent to navigate across
a fully connected graph, whose vertices correspond with campus landmarks. Fluents
and actions in our resulting model are depicted on Table 4.8 and 4.9.

For our experiments we have considered five different landmarks. Four are meant
to be surrogates for campus buildings, two buildings for the classrooms where lec-
tures take place, another for the campus library and a fourth one for the students’
cafeteria. The fifth is representing the entrance to the campus, and is the location
where the student starts in our benchmarks. Adding a more complex and constrained

4.10. EVALUATION DOMAINS FROM PLAN LIBRARIES 7T

Fluent | Meaning
done(t) ||Task ¢t has been executed
at(l) Student at landmark [
canDo(t,1)|| Task ¢ can be performed at landmark I

Table 4.8: CAMPUS fluent set F.

navigation map would just require to add more landmarks to the underlying naviga-
tion map and introduce connected(z,y) fluents to denote the possibility of moving
directly from landmark = to landmark y.

Action Preconditions Adds |Deletes
move(z, y) at(x) at(y) | at(z)
do(t,1) canDo(t,1) done(t)
done(t"),V (¥',t) € Depends

Table 4.9: CAMPUS STRIPS action set A.

The hypothetical goal set Gr for each routine consists on having performed all of
the tasks in its corresponding activity dependency graph. The goal corresponding
with the graph in Figure 4.11 would be the following conjunction of fluents from
Table 4.8:

G : done(haveBreakfast), done(takeLecturel),
done(takeLecture2), done(groupMeeting1),
done(haveCoffee)

We note that STRIPS semantics enforce that the tasks have been executed in the
proper order.

This two—level modeling allows us to pose interesting subtle problems to our plan
recognition scheme. One possible observation sequence O could be:

move(entrance, cafeteria)

This observation would make routines involving the tasks haveBreakfast and have-
Coffee to be more likely than those not featuring them. Another interesting sequence
would be

O = (move(entrance, cafeteria), move(library, cafeteria))

in this case, routines (goals) involving performing an activity in the cafeteria before
going to the library to do something else and engaging in another task in the cafeteria
afterwards would be more likely than routines not featuring this basic structure.

Kitchen

KITCHEN plan recognition tasks are taken from (Wu et al., 2007). The authors
discuss an application of activity recognition to the problem of home automation

78 PR OVER CLASSICAL PLANNING THEORIES

or domotics. The observing agent is meant to be such a system, which needs to
recognize the tasks being done by people dwelling in the house, in order to assist
them. For instance, observing one house dweller to take a milk carton from the
fridge - possible by rigging the carton with a RFID emitter - could lead the system
to conclude that the person is going to prepare breakfast and proceed by starting
the induction cookers or programming the microwave oven.

As in (Bui et al., 2008) the authors provide an activity dependency graph and make a
distinction between observable activities — taking objects from containers and using
appliances — and non—observable activities — such as “make a toast”. Figure 4.12
depicts the activity dependency graph for the “make breakfast” activity.

Take Spoon
Make Tea
Take Bowl
\ Make Cereals P Make
/ Breakfast
Take Milk
Take Bread P Use Toaster \
. Make Buttered
Take Knife — Toast
Take Butter /

Figure 4.12: MAKE BREAKFAST activity (Wu et al., 2007).

We obtain STRIPS planning domain — fluent and action sets are depicted on Ta-
bles 4.10 and 4.11 — applying the translation procedure described in Definition 4.19
only to non—observable activities. Observable activities are modeled as “natural”
STRIPS fluents and actions, and non—observable activities requiring one or more ob-
servable activities have in their preconditions fluents representing statements such as
“the agent holds object 0” or “appliance a is on”.

Fluent Meaning
inside(o, ¢) ||Object o is inside container c
done(t) || Task t has been executed
holding(o) ||Agent is holding object o
turnedOn(a) || Appliance o is turned on

Table 4.10: KITCHEN fluent set F'.

All objects o, that are representing a variety of foodstuffs, start inside some container
¢, such as the fridge, or one of the kitchen drawers. Observation sequences are limited
to contain either take(o,c) or turnOn(a) actions.

4.11. EXPERIMENTAL RESULTS 79

Action Preconditions Adds Deletes
take(o, ¢) inside(o, ¢) holding(o) |inside(o,)
turnOn(a) turnedOn(a)

do(t) holding(o) for o relevant done(t)
turnedOn(a) for a relevant
done(t'),V (t',t) € Depends

Table 4.11: CAMPUS STRIPS action set A.

“Top—level” or rather, final, activities in (Wu et al., 2007) might be completed by
different routines. This can be easily handled in a way analogous as how disjunctive
preconditions are handled when instantiating PDDL schemas into STRIPS. We allow
for this by introducing as many STRIPS actions adding achieved(t) fluents as op-
tional routines are specified, each action having a precondition that involves having
performed the prescribed activities.

4.11 Experimental Results

We have tested the formulation given for probabilistic plan recognition over action
theories described in Section 4.7 on six different benchmarks, which have already been
presented in Section 4.9. We will next describe how the plan recognition theories
are generated, give some implementation notes on the plan recognition algorithm
and finish with a discussion of the results of our evaluation. All the problems and
code used in the evaluation can be found at https://sites.google.com/site/
prasplanning.

Implementation Notes

Plan recognition theories 7 = (P, O, Gr, Prob) elements are represented in the fol-
lowing way:

e P[] is given as a template of a planning task definition in PpDL. In par-
ticular, hooks for injecting the appropriate PDDL statements are provided in
action effects, initial and goal situations. This allows to easily compile ob-
servation sequences O automatically and simplifies the implementation of the
transformation described in Definition 4.6.

e (O is given as a list of names of STRIPS actions, that is, PDDL action schemas
with variables already substituted by suitable objects and constants.

e Gpr is a list of conjunctions of STRIPS propositional fluents, that is, PDDL
predicate schemas with variables substituted by the appropriate object and
constant names.

e Probs is a list of real numbers, where each element in the list corresponds with
one element in Gr and denote each hypothetical goal prior probability.

https://sites.google.com/site/prasplanning
https://sites.google.com/site/prasplanning

80 PR OVER CLASSICAL PLANNING THEORIES

The input above is then compiled into propositional STRIPS, generating for each of
the hypothetic goals G € Gr two planning problems P[G + O] and P[G + O]. These
two problems are fed into a classical planner and their output — reporting failure to
find a solution or a plan and its cost — is processed to obtain P(G|O). We did not
modify the code of the planners in any case. The planners source code was compiled
and the binary executable was invoked over the UNiX shell. The code driving the
whole process was written in PYTHON.

The planners we have used in our evaluation are two. HSP7% is an optimal plan-
ner (Haslum et al., 2005; Haslum, 2008) that uses the admissible A™ heuristic h?
described on Section 2.6. The other planner we have used is LAMA (Richter et al.,
2008), a satisficing planner discussed in Section 2.9. LAMA is used in its two modes
operation available: as a greedy planner that stops after the first plan is found, and
as an anytime planner that reports the best plan found in a given time window. The
running times for HSP7%., anytime LAMA, and greedy LAMA were limited to four
hours, 240 seconds, and 120 seconds respectively, per plan recognition problem. FEach
plan recognition problem involves |Gr| possible goals, requires the computation of
2|Gr| costs, and hence, involves running the planners over 2|Gr| planning problems.
Thus, on average, each of the planners needs to solve this number of planning prob-
lems in the given time window. The experiments were conducted on a dual-processor
Xeon "Woodcrest’ running at 2.33 GHz and 8 Gb of RAM. All action costs have been
set to 1.

Generation of Observation Sequences

We generated a total of 90 different plan recognition problems, applying the following
process to each of the domains considered:

1. A goal G € Gr is chosen with uniform probability.
2. A plan 7 = (a1, ...,a,) is computed for the planning problem P[G].
3. A first observation sequence is obtained from taking 7 on an as is basis.

4. Four observation sequences are obtained from 7 by sampling 10%, 30%, 50%
and 70% of action indices i € [1,n] uniformly without replacement. The sam-
pled indices are then ordered to yield observation sequence O.

For the domains BLOCKSWORDS, LoGISTICS, IPC-GRID and INTRUSION DETEC-
TION, plans 7 are obtained from invoking the optimal classical planner H SP}‘ on
P[G]. Plans for CAMPUS and KITCHEN were obtained choosing at random one of
the plans encoded by the plan library for goal GG, and embedding into them subse-
quences of randomly chosen plans for other goals G’ in the library. The length of
these subsequences varies randomly between 10% and 70% of the actions in the plan
for G’.

Results

The results over the six domains are summarized in Table 4.12. The number of
observations in each row correspond with the percentage of actions sampled from

4.11. EXPERIMENTAL RESULTS 81

the plan 7 for the hidden goal G: 10%, 30%, 50%, 70%, and 100% as shown. For
each domain, the average size of the set G is shown.

HSP; | LAMA (240s) | Greedy LAMA
Domain| O T Q S L T Q S T Q S

10| 118423 1 6 10|228.040.754.75|52.79 0 1.67
BLock |30 | 1269.31 1 3.2511/239.59 1 3 |53.01 0.5 2
WORDS | 50 | 1423.05 1 2.2311[241.77 1 2.23| 53 054 1.23
IG|=20|70| 1787.67 1 1.2712|241.53 1 1.2753.06 0.73 1.2

100| 210021 1 1.1312|241.51 1 1.13|53.470.73 1.07

10| 7338 0.751.38 15| 22.15 0.751.38| 3.96 0.75 1.38
EAsy |30| 15547 1 1 17|6463 1 1 [538 1 1.08
Ipc |50| 20269 1 1 17|7177 1 1 |92 1 1
GRID |70] 32964 1 1 20[9284 1 1 [11.23 1 1
|G| =7.5/100] 4356 1 1 18[9022 1 1 |13.07 1 1
INTRU | 10| 2629 1 1.8 18| 6238 1 1.8] 3690 1 22
SIoN | 30| 73.08 1 1.1319[142.63 1 1.13[4.09 1 1.13
DETEC |50 | 10358 1 1 20(19455 1 1 |444 1 1
TION | 70| 18844 1 1 21(22397 1 1 |496 1 1
|G| =15|100| 179.41 1 1 21(22496 1 1 [594 1 1

10| 120.94 0.9 2.3 21[215.32 0.9 2.3 | 435 06 1.8
Locis | 30| 1071.91 1 1.0722(236.29 1 1.07| 4.55 0.87 1.13
Tics |50 | 81336 1 1.2 23(23887 1 12537 1 12
IG|=10{70| 606.87 1 1 24[24338 1 1 |629 1 1

100| 525.44 1 1 24|247.04 1 1 |834 1 1

10 0.67 0.931.3310| 0.97 0.931.33| 0.74 0.67 1.27
30 0.92 1 1 11} 113 1 1 |07 08 1.07
CAMPUS | 50 1.11 1 1 11} 131 1 1 |077 08 1.13
IGl=2|70 1.41 1 1 11| 163 1 1 0.8 0.8 1

100{ 1.56 1 1 11} 184 1 1 (082 1 1.2
10| 77.85 0.881.25 11| 80.74 0.881.25| 1.55 0.88 1.25
30| 144.58 0.931.21 11| 80.82 0.931.21| 0.67 0.93 1.21
KiTcHEN 50 | 21851 1 1.3311|80.86 1 1.33|0.71 1 1.27
|G|=3|70| 245.88 1 1.2 11|80.86 1 1.2]0.73 1 147
100 488 1 147128116 1 14]082 1 1.6

Table 4.12: Evaluation with optimal and two satisficing planners. Each row describes
averages over 15 different plan recognition problems. The columns stand for % of actions
in plan for hidden goal sampled, average time in seconds for each complete plan recognition
problem (T), average quality measuring fraction of problems where hidden goal is among the
most likely (Q), average number of most likely goals (S).

The columns in Table 4.12 for HSP} express the “normative” results, regarding how
robust is the P(G|O) distribution obtained, since it is derived from the optimal costs
¢ (G +0) and ¢, (G + O). Column T in all cases shows the average time per plan
recognition problem. These times are larger for the optimal planner, approaching
the 240 seconds time limit for the anytime planner, and are lowest for the greedy
planner. For example, the time of 53 seconds reported in the third row for greedy
LaMa, means that 53 seconds was the average time over the 15 Block Word plan
recognition problems that resulted from sampling 50% of the observations. Since the
problem involves 20 possible goals, we can deduce that the time to obtain P(O|G) for
each of the 20 possible goals was of about 2.6 seconds. The more accurate P(O|G)
estimate obtained from anytime LLAMA is of 11 seconds, and getting the exact P(O|G)
requires 5 times as much time, about 60 secs.

On this same set of plan recognition problems anytime LAMA exhausts the allotted

82 PR OVER CLASSICAL PLANNING THEORIES

time, which points to the planning task being significantly challenging for LAMA
planner heuristics and search strategy. If we look at the times reported by anytime
LAMA on the IPC—GRID domain we can see that they are well below the 240 seconds
deadline. This means that LAMA obtained an optimal plan, therefore obtaining ex-
actly the same P(G|O) as HSP} does. This observation is very relevant for engineers
developing applications of plan recognition using our approach, since it makes evi-
dent the necessity to calibrate state—of-the—art satisficing classical planners on the
action theory corresponding with their application domain. It is indeed possible that
there is a planner which really works well, obtaining optimal plans with significantly
less effort than optimal planners, performing the computation of solutions to the
P[G] planning problems which are used to derive P(G|O).

The column L displays average optimal plan length, an statistic which helps to
visualize how much information is conveyed by observation sequences. For example,
observation sequences obtained from sampling up to 10% of the actions in optimal
plans, might include as few as 2 actions. This information can well be insufficient
to identify the true hidden goal with certainty, due to the ambiguous nature of the
actions observed, as in the case of LOGISTICS plan recognition problems where it is
just observed a truck moving in and out of a location where packages relevant to
several goals lie.

Columns @ and S provide information about the quality of the solutions by focusing
on the goals found to be the most likely, the set:

G° ¢ argmax P(G|O)
Gegr

Q is measuring how often the true hidden goal used to generate observations O was
among the goals in G°. So we can see that the P(G|O) elucidated by an optimal
planner rarely — 25% of the time for the IPc—GRID problems with the shortest ob-
servation sequences — fails to include the true hidden goal in G¥. S is reporting the
size of the set of most likely goals, and is useful to determine how similar is the like-
lihood of plans for different goals given an observation sequence. When Observation
sequences O are very short and plans for Gy share many actions — an event common
in BLOCKWORDS since the initial configuration of the blocks in the table is the same
for all goals — such sequences might be ambiguous enough to deem — incorrectly — as
the most likely goal another than the true one.

We want to note that it is not always the case that the hidden goal used to generate
the observations will turn out to be the most likely given the observations, even when
O is compatible with an optimal plan for G. Indeed, if there are optimal plans for G
that do not agree with O, and there is another achievable goal G’ that has not such
optimal plans, then in the formulation above, P(G’|O) will be higher than P(G|O).
This is entirely reasonable, as G’ is then a perfect predictor of O, while G is not.

4.12 Summary

This chapter contains the primary contribution of the thesis, namely, a formulation of
a model-based, generative approach to plan recognition. Plan recognition problems
are formalized as plan recognition theories T whose solution is a posterior probability
distribution P(G|O) over goals G in the hypothetical goal set G considered by theory

4.12. SUMMARY 83

T. In order to obtain P(G|O) we approximate the likelihood P(O|G) of observations
O for each of the possible hypothetical goals G, as a function over the costs of
optimal plans for planning problems P[G] that either satisfy or do not satisfy the
observation sequence O. These costs are obtained by performing calls on optimal
planners, without needing to modify the planner code in any way.

Along with the formulation and computational framework, several plan recognition
tasks are discussed in depth. The flexibility granted by planning languages to model
interesting and challenging plan recognition problems is made apparent, and is also
shown how to convert plan libraries described in the literature into planning domains.
Finally, experimental results are discussed that show that our approach scalability
is directly tied with that of the planners used.

CHAPTER

PR over POMDP Theories

In this chapter we will introduce the extension of the model-based framework for plan
recognition presented in the previous chapter to a more expressive class of models,
Goal PoMmDPs. We will start by showing a motivational example in a very simple
task, where the observed agent has partial information on world state and effects
of actions are not deterministic. Then we will discuss how Goal Recognition can
be performed on the Goal POMDP setting when the we have full access to all the
actions performed by the observed agent when pursuing a given goal, thus extending
the work in (Baker et al., 2009) which applies to the less expressive Goal MDP models.
After that, we will show how the posterior goal distribution P(G|O) can be obtained
from an observation sequence which contains only part of the actions executed by
the observed agent. Then we will introduce the POMDP tasks where we test our Goal
Recognition scheme over partial observation sequences, based on sampling executions
of a soft-max policy 7 defined over optimal value functions V*. The robustness and
efficiency of this method is tested empirically over several plan recognition tasks.

5.1 Motivation

As an illustration of how a plan recognition problem can be naturally cast in the
Goal POMDP setting, let us consider an agent that is looking for an item A or B
each of which can be in one of three drawers 1, 2, or 3, with probabilities P(AQ7)
and P(BQji) equal to:

P(AQ@1) = 0.6 , P(A@2) = 0.4 , P(A@3) = 0
P(B@1) =0.1 ,P(B@2) = 0.6 , P(B@3) = 0.3

where AQj denotes the fact “item A is in drawer 7”.

The actions available to the agent are to open and close the drawers, to look for an
item inside an already open drawer, and to grab an item from a drawer if it is known
to be there. When the agent actively looks for a certain item in a drawer, there is
a probability of 0.2 that she fails spotting the item when it actually is inside that
drawer. The probability of observing an item inside a drawer when that item is not
inside the drawer is 0. No more than one drawer can be open at all times.

85

86 PR OVER POMDP THEORIES

The hypothetical goal set G consists of three goals, G1, G2 and 3, which correspond
with having item A, item B and both. The prior probability distribution P(G) over
goals G € Gr is

0.4
P(Gy) =04
0.2

meaning that it is considered to be equally likely that the agent is interested in
either item, while the hypothesis of the agent being interested in finding both items
is considered to be less likely.

We want to find out the goal posterior probabilities when the behavior of the agent
is partially observed. In our setting, the observer gets to see some of the actions
done by the agent, but not necessarily all of them. The observer must then fill up
the gaps in order to deduce which goal G is the observed agent pursuing. Let us
assume that it is observed that the agent opens drawer 1, then drawer 2, and then
drawer 1 again. These correspond to the following observation sequence

O = (open(1), open(2), open(1))

Under the assumption that the observed agent tries to minimize the number of actions
executed while pursuing a goal, the most likely explanation for the observed actions
O is that the agent is looking for item A. With this premise in mind, the choice the
agent makes between opening either drawer is based on the expected cost to achieve
its goal having doing so. Since the agent starts by looking in drawer 1, where the
probability of finding B is 0.1, it makes little sense, if the number of actions is to be
minimized, that she chose to open that drawer if B is the item being sought. This
intuition is further reinforced by the fact that O starts and ends opening drawer 1.
A likely explanation is that the agent did not observe A in that drawer, then closed
it, and then looked for A in drawer 2. Then, probably the agent did not find A in
drawer 2, and thus looked again in drawer 1, having to open it again.

Indeed, the algorithm that we will describe, concludes that the posterior probabilities
for the three possible goals are P(G1|0) = 0.53, P(G2|0O) = 0.31, and P(G3|0) =
0.16, with GG1 as the most likely goal.

There are no other systems or formulations that can handle this type of scenarios
where the agent gets partial observations from the environment, and the observer
gets partial information about the actions of the agent, with some of the agent actions
going possibly unnoticed.

5.2 Goal Recognition for Goal Pomdps

As in the fully—observable and deterministic setting described in the previous Chap-
ter, the Goal POMDP describing the possible range of behaviors the observed agent
can engage into, is assumed to be known by both the agent and the observer, except
for the actual goal G of the agent. Instead, the set of hypothetical goals Gy is given
along with the priors P(G) for each goal G

5.2. GOAL RECOGNITION FOR GOAL POMDPS 87

Definition 5.1 (Plan recognition theory on a Goal POMDP setting). A plan recog-
nition problem or theory is a triplet T = (M][],G, O, Prob) composed by

e A GpT Goal POMDP domain M|| = (F, A, I),

e o set of hypothetical goals Gr, each G € Gr where G are formulas over
functional symbols in F,

e an observation sequence O, where each o; € O corresponds with some action
a€ A,

e and a prior probability distribution Prob defined over G € Gr.

which is similar to Definition 4.1 with the provision of substituting the STRIPS domain
P[] by a GPT Goal POMDP planning domain M|-]!.

As for plan recognition theories in the classical setting, the solution to a plan recogni-
tion theory T' in the Goal POMDP setting is a posterior goal probability distributions
P(G|O), where goals G € Gr are ranked according to how well do they predict obser-
vation sequence O. Posterior goal probabilities P(G|O) are obtained from the Bayes
rule:

P(G|0) = aP(0|G)P(G) (5.1)

where « is a normalizing constant that does not depend on G. The problem of
inferring the posteriors P(G|O) gets thus mapped into the problem of defining and
computing the likelihoods P(O|G).

The key assumption is that if the agent is pursing goal G, the probability P(a|b, G)
that she will choose action a in the belief state b is given by the Boltzmann policy:

P(alb,G) = d’exp{BQc(a,b)} (5.2)

where o/ is a normalizing constant and 3 captures the principle of rationality (Den-
nett, 1983; Baker et al., 2009) in a soft way. For large values of the § parameter,
the agent chooses her actions minimizing the expected cost Qg to achieve goal G,
and indeed acts optimally when Q¢ is optimal. For low § values, the agent selects
actions in a random basis, paying little heed to the information about the merit of
doing a encoded by Qg¢-.

The term Qg (a,b) expresses the expected cost — see Definition 3.3 — to reach the
goal G from b, when the action a executed while being in the belief state b, is given
by the following formula

Qa(a,b) = c(a,b) + > balw)Va(by) (5.3)

weObs

Vi stands for the solution to the Bellman equation for the belief b — see Equation 3.8
— assuming that the goal states are those in which G is known to be true with
certainty and The term c(a,b) denotes the expected cost of action a in b. b,(w) and
b¥, which were defined in Equation 3.5, stand for the probability that agent obtains
observation token w after doing action a in b, and the probability distribution that
results from doing a in b and actually getting observation token w.

We will leave the definition of observation sequences O to Sections 5.3 and 5.4 where
we offer two different accounts of goal recognition depending on the assumptions

1See Definition 3.19.

88 PR OVER POMDP THEORIES

made regarding missing actions and the availability or not of observation tokens w
to the observer.

5.3 Complete Observation Sequences

When discussing plan recognition in the classical setting on Chapter 4 we only explic-
itly addressed the problem of handling incomplete observation sequences O. This is
indeed a more general problem than that of considering just the prefiz of some clas-
sical plan, and the results presented in Chapter 4 do indeed apply, without further
work, for that case.

We will however specifically address complete observation sequences when moving
into the Goal POMDP setting, since it provides us with the opportunity of generaliz-
ing a recent (Baker et al., 2009) account of goal recognition for the Goal MDP setting
which makes two assumptions which limit its flexibility. One is that of requiring ob-
servation sequences O to be complete, and the other, that of assuming that the
states of the MDP model resulting from the observed agent performance, are fully
observable for both the observer and the agent.

Both assumptions result in a pretty restrictive framework, but serve to reduce the
goal recognition problem to a simple probabilistic inference problem. In this section,
we take (Baker et al., 2009) into a Goal POMDP setting, thus gaining a great deal
of flexibility. The observed agent now is modeled as having partial knowledge of the
world state s, modeled with a belief state — see Section 3.4 — a probability distribution
b over possible states s.

The knowledge the agent has about the actual state s is modified by those observation
tokens she gathers while doing actions. We assume that these tokens w are available
to the observer along with executed actions, as per Definition 5.2. This is a critical
yet subtle difference, since rather than requiring the full description of state s, only
the feedback actually gathered by the observed agent after doing an action is needed
to characterize the likelihood P(O|G) of observing sequence O while pursuing goal
G.

Hence observation sequences are defined in order to account for the partial knowledge
the observed agent has of its environment and how the actions done change it:

Definition 5.2 (Complete observation sequences). A complete observation sequence
O in the Goal POMDP setting is a sequence

O = ((al,w1>, RN (ai,wi>, RN <amwn>)

of n pairs {a;,w;), where a; is an action in the planning domain M|[-] action set A,
and w; is the observation token belonging to the Obs set prescribed by M|, obtained
after doing action a;.

Implicit in this definition is the assumption that the observer receives exactly the
same feedback, in the form of observation tokens w;, the observed agent got from
doing actions a;.

In order to obtain the likelihood P(O|b,G), for the complete observation sequence
O = ({(a1,w1) ..., (a;,w;) ..., {(an,wn)), we just need to rely on Equations 3.5 which

5.4. INCOMPLETE OBSERVATION SEQUENCES 89

describe how the agent initial belief state by changes as actions a; are executed
and observation tokens w; are retrieved, resulting in the sequence of beliefs by, (w;).
Since consecutive beliefs b%) are independent, P(O|b, G) follows from this recursive
decomposition

P(Oi,n|bi, G) = P(ai|b,-, G) bai (wl) P(Oi+17n’bgii, G) (5.4)

where O; ,, is the subsequence of O which comprises actions aj, ..., an, a; is the i-th
action executed, b; is the belief state resulting from executing action a;_1, bg,(w;)
being the probability of w; being the token observed for belief b; and executing a;.
bgi is the belief that results from integrating the knowledge about action a; effects
and the information conveyed by observation token w;.

We then obtain the desired posterior goal probabilities P(G|O) by setting the likeli-
hood P(O|G) to P(O1|by, G), and plugging it into Equation 5.1.

The POMDP planner enters into this formulation by providing the expected costs
Va(b) to reach G from b, that are used via the factors Qa(a,b) for defining the
probability that the agent will do action a when in belief state b. This probability
distribution is given by the policy the observed agent is assumed to be following.
One possible example is the Boltzmann policy depicted in Equation 5.2, but it could
well be any other policy the plan recognition system designer might find suitable for
the application at hand.

5.4 Incomplete Observation Sequences

In the account given in Section 5.3, the information conveyed by the observation
sequence O that is available to the observer describes both the actions done by the
agent, and the observation tokens that the agent receives from the environment.
Moreover, this sequence of actions and tokens is assumed to be complete, meaning
that no one is missed by the observer. In this section we will discuss a formulation
of goal recognition where these two restrictions are lifted.

In this formulation we use the definition we gave of observation sequences O for the
classical setting — see Section 4.1 — that is, the observation sequence O is a sequence
of actions aq,...,a, which is not necessarily complete. It is assumed that some of
the agent actions may have gone unnoticed to the observer, who cannot then assume
a priori that action a;41 is the action that the agent did right after a;. Besides that,
the observation tokens gathered by the observed agent are no longer available.

Still, as before, the posterior goal probabilities P(G|O) can be derived using Bayes
rule (5.1) from the priors P(G) and the likelihoods P(O|G) that can now be defined
as

P(0|G) = > P(OJr)P(7|G) (5.5)

where 7 ranges over the possible policy executions that arise when the agent pursues
goal G and chooses actions a according to some policy m with probability P(a|b, G).
Executions 7 = (ay,...,a;,...,a,) contain the complete sequence of agent actions,
from the initial belief by until a belief state b where the goal is a certain known
property of the underlying hidden state s.

90 PR OVER POMDP THEORIES

In order to obtain P(O|1) we rely on the notion of action sequences satisfying obser-
vation sequences O presented in Definition 4.2 so that P(O|r) is defined as:

1 if isfi
POr) = { if 7 satisfies O (5.6)

0 otherwise

which follows from the fact that executions 7 which do not have O embedded cannot
be generating it.

5.5 Computation of Observation Likelihoods

With the definition of P(O|7) above, then the sum in Equation 5.5 can be approxi-
mated by sampling executions 7 from distribution P(7|G) and counting the frequency
the executions obtained comply with the observation sequence O

P(O|G) = mo/m (5.7)

where m is the total number of executions sampled for each goal G € Gr, and mo is
the number of such executions that complies with O.

In order to sample P(7|G) it is required to identify which is the policy 7 the agent
is actually using. This is an application specific problem, and we conduct our exper-
iments assuming the agent follows the Boltzmann policy described in Equation 5.2.
The policies particular to each goal G € Gr are furnished by the POMDP planner,
that computes the value functions Viz(b) from the Goal POMDP problem Mj,, [G]
that results from composing each goal with the domain M|[-] specified.

Executions are then sampled by performing a policy roll-out or simulation, a two—
step procedure that involves first sampling action a with probability P(alb, G), and
second, to sample the observation token w that results from executing the sampled
action a on the current belief state b according to the distribution b, (w). This second
step is required since in this formulation the observation tokens gathered by the agent
are no longer assumed to be available in O.

The process described above is applied on the initial belief by, provided by the domain
description M -], iteratively until a belief state b is found such that it can be concluded
that a goal state s’ € Sg has been reached with certainty e.g. the probability b(s’)
assigned by belief b to state s’ is 1.

The result of the roll-out procedure is the trajectory followed across belief space
bo, ag, wo, b1, a1, wi, . ..

where b;;1 = by for b = b;, a = a; and w = w;, actions a; and observations tokens
w; have been sampled with probability P(a;|b;, G) and b,(w;) respectively, for b = b;
and a = a;. Executions 7 are the actions a; appearing on this trace.

Once m executions 7 have been obtained, then the likelihood P(O|G) is computed
through Equation 5.7 and plugged into Equation 5.1 from which the posterior goal
probabilities P(G|O) are obtained.

In order to analyze later in Section 5.7 this formulation, we characterize the goal
recognition system as a binary classifier GR™ that maps goals G € Gr into labels

5.6. EVALUATION DOMAINS 91

T, F where T stands for “true hidden goal” and F' for “false hidden goal”. This clas-
sifier requires parameters m and (3, which correspond to the number m of executions
7 being sampled for each goal G and § parameter of the Boltzmann policy. The
influence of both parameters in the accuracy and robustness of this formulation are
evaluated in Section 5.7 over three benchmarks which are described in Section 5.6.

Goal recognition system designers, besides considering what policy and selection
of parameter m suits their application best, should take into account as well that a
substantial part of the computational cost of this account can be performed in an off-
line manner. Value functions Vi over beliefs can be precomputed and stored so they
are readily used in on-line estimation of likelihoods P(O|G) following Equation 5.7
by gathering simulated executions sampled from the probability distribution that
results from the policy they choose to use.

5.6 Evaluation Domains

We have designed three different Goal POMDP domains in order to test the approach
to goal recognition over incomplete observation sequences presented on Section 5.4.
They cover three possible plan recognition tasks similar to those presented in Chap-
ter 4. All three domains involve the need of reasoning about feedback obtained by
doing information gathering actions, as well non—deterministic effects. OFFICE and
KITCHEN cover situated agents that need to both navigate across a map and interact
with objects in diverse complex ways in order to achieve some goal. DRAWERS, on
the other hand, is a simple task that features in a clear way the possibilities of our
proposed formulation for goal recognition.

Name S| [A[| [Obs| | [bo| | |G] | T
OFFICE 2,304 | 23 15 4 3 3.4
DRAWERS | 3,072 | 16 16 6 3 4.5
KIiTCHEN | 69,120 | 29 32 16 | 5 | 10.1

Table 5.1: Features of the four domains: number of states, actions, observation tokens,
states in initial belief, and possible goals. T is time in seconds to compute Vi (bg) for all
goals G in G.

Table 5.1 shows the number of states, actions, observations, goals, and possible
initial states for each of the three domains we have used to evaluate the proposed
goal recognition scheme described on Section 5.4. These problems are relatively easy
to solve for state-of-the—art Goal POMDP solvers, but possess some of the features
that make POMDPs an interesting model for goal recognition. Namely, uncertainty
in the initial state, actions with noisy effects and noisy observations. We will describe
the domains next.

Drawers

DRAWERS is the task we discussed in the Motivation Section at the start of the
chapter.

92 PR OVER POMDP THEORIES

Signature Domain Observable
loc(7) {hand, d1, d2, d3} No
open(d) {T, F} Yes

carries(7) {T, F} Yes
sees(1) {T, F} Yes

Table 5.2: DRAWERS state variables. hand is the object denoting the observed agent hand,
dl, d2 and d3 denote drawers. T and F' denote the boolean constants True and False.

World state is represented with the fluents shown on Table 5.2. The fluents loc(7) that
denote the actual location of items A or B are hidden from the agent, since these are
randomly tossed at the start into drawers according to the probability distribution
detailed in Section 5.1. Fluents carries(i) and sees(i) are used to represent the
knowledge the agent actually has about item locations. Note that only actions whose
preconditions are known to be true, i.e. b(s) =1 for s where the precondition holds,
can be executed.

The agent hypothetic goals Gr are

Gy : carries(A)
Ga: carries(B)
Gs : carries(A) A carries(B)

that is, to be holding either an object named A, an object named B or both.

We consider both singleton goals to be random independent events, with equal prior
probability, and we set the probability of the joint goal to P(holding A)P(holding B).
This follows from P(ANB) = P(A)P(B) when A and B are considered to be random

independent events.

Signature Precondition Effects Obs
open(d) open(d) = F open(d) =T None
close(d) open(d) =T open(d) = F None
pick(d, 7) open(d) =T loc(i) = d — carries(i) =T | carries(z)
sees(i) =T
lookUp(d,z) | open(d) =T | loc(i) =d — sees(z) =T [0.7] sees ()

Table 5.3: DRAWERS observed agent actions. Preconditions with more than one fluent
are assumed to be conjunctions unless noted otherwise. Effects of the form x — y denote a
conditional effect. When [p] appears next to an effect means that the specified effect is an
outcome of the action with probability p. All actions have the same cost, which is set to 1.

The actions available to the observed agent are described on Table 5.3. The most
interesting action is lookUp(d, i), that the observed agent can use to search for item
1 inside drawer d. The action effect consists of one single conditional effect, which
makes visible to the agent with probability 0.7 item ¢, when that item is indeed inside
drawer d. If this is the case, action lookUp emits the observation token sees(i) =
T. This effect is implicitly defining the sensor model probabilities Q(o|s,a). The
probability of actually getting the observation b, (w) is given by the probability b(s)
the current belief b assigns to a state s where item i is inside drawer d and Q(o|s, a).

5.6. EVALUATION DOMAINS 93

Office

OFFICE is adapted from the plan recognition task discussed in (Bui, 2003). In our
version the observed agent is at a lab which consists of two rooms: one is her office,
where she has a workstation and a cabinet to store her coffee cup and blank spare
paper for printing. The other is the club, where the coffee machine and printer are
placed. The two rooms are connected by a corridor. The agent goals might be to
print an article, have a cup of coffee or accomplish both things.

The agent is initially at the corridor and knows her own location. However, the
agent does not know about the initial status of the printer which can be either out
of paper, clogged, both or none. To print an article, the agent needs to get to the
workstation in her office, send the file to the printer queue and then get to the printer
to retrieve it. The outcome of this sequence of actions depends on the initial state of
the printer and also on whether the printer clogs itself when printing the paper. The
unreliability of the printer is modeled by assigning two possible outcomes to print
commands, with the outcome of the printer getting clogged having probability 0.2.
If the printer was initially clogged or out of paper, the observed agent will need to
either service it by removing the paper clogging the printer paper feed, or to go back
to her office to fetch blank paper.

Table 5.4 shows the functional fluents used to model states. Two types are used in
our modeling, item and object. Items are those objects the observed agent can carry,
an event which is represented with carries(i) functional fluent being true. Items in
our benchmark include a mug, a slab of blank paper, and an article printout. Objects
is used to denote those objects the observed agent cannot carry but can interact with
provided she is in front of them, represented with the inFrontOf(o) fluent. These
consist of the printer, the agent’s computer and office cabient, and the cof fee
machine.

Signature Domain Observability

carries(1) {T, F} Yes
at() {of fice, corr, club} Yes
inFront(o) {T, F} Yes

outOfPaper() {T, F} Initially Unknown

clogged() {T, F'} Initially Unknown
available() {T, F} Yes
queued() {T, F} Yes
hasCoffee() {T, F} Yes
drank() {T, F'} Yes
read() {T, F} Yes
queued() {T, F} Yes

Table 5.4: OFFICE state variables. Fluent meaning is described in the text. ¢ denote
arguments of type item and o arguments of type object. corr stands for the corridor.

The agent location is described by its general location — the at() fluent value — and
whether it is in a position inFront(o) which allows her to interact with objects o in
that location. Finally, outOfPaper() and clogged() are used to track the state of the
printer, while available() and queued() represent whether the paper has been already
printed or is waiting to be processed in the printer’s queue.

94 PR OVER POMDP THEORIES

We note that the initial belief by for the resulting Goal POMDP is a probability
distribution b(s) over four possible states s all of them with probability 0.25. Each
possible initial state corresponds with one of each possible combinations of clogged|()
and outOfPaper() values, denoting the situations where the printer is neither clogged
or out of paper, it is in either condition or suffers from both conditions at the same
time. at() = corr initially and all other fluents are false.

The hypothetical goals Gr are then defined as:
G- read() =T

Gs: drank() =
Gs: read() =T Adrank() =

that is, that the observed agent wants to read the paper, wants to drink some coffee
or desires to do both.

Signature Precondition Effects Obs
walk(lab, corr) at() = lab at() = corr None
inFront(computer) = F
inFront(cabinet) = F
walk(corr, lab) at() = corr at() = ladb None
walk(corr, club) at() = corr at() = club None
walk(club, corr) at() = club at() = corr None
inFront(printer) = F
inFront(cof fee) = F
walkTo(computer) at() = lab inFront(cabinet) = F None
inFront(computer) =T
walkTo(cabinet) at() = lab inFront(computer) = F None
inFront(cabinet) =T
walkTo(cof fee) at() = club inFront(printer) = F None
inFront(cof fee) =T
walkTo(printer) at() = club inFront(cof fee) = F None
inFront(printer) =T
takeMug() at() = lab carries(mug) =T None
inF‘ront(cabznet) T
takePaper() at() = ladb carries(paper) =T None
1nF‘ront(cabmet) =T
checkPaper() at() = club outOfPaper()
1nFront(prmter) =T
openCanopy () at() = club clogged|()
1nFront(prmter) =T
getArticle() at() = club carries(article) =T None
inFront(prmter) = true
available() =T
readArticle() carries(article) =T read() =T None
pourCoffee() at() = club hasCoffee() =T None
inFront(cof fee) =T
carries(mug) =T
drinkCoffee() hasCoffee() = T drank() =T None

Table 5.5: OFFICE observed agent simple actions. More complex actions are detailed in
the text.

Table 5.5 details actions with simple deterministic effects, more complex actions are
described next. The observed agent can submit the article to the printer with the
action submitPrintJob(). The precondition for doing so requires her to be at the

5.6. EVALUATION DOMAINS 95

club and in front of the computer, noted in GPT notation below:
at() = lab A inFront(computer) =T

When executed, the action has two possible outcomes. With probability 0.2 the
printer gets clogged while trying the print the article, though the print job remains
in the queue. This outcome is encoded by setting to true the relevant fluents:

queued() =T
clogged() =T

With probability 0.8, when the printer is not clogged nor out of paper, the article
becomes available to be picked up at the printer tray. This is encoded with the
following conditional effect:

outOfPaper() = F' A clogged() = F' — available() =T

In the case that the above is not true in the hidden state s, the article is not printed
but remains in the queue:

outOfPaper() = TV clogged() =T — queued() =T

Note that the agent is always aware whether the article got printed or not, which
gives her a hint that further actions are needed to get it printed.

These actions involve servicing the printer by either reloading its blank paper tray
or to unclog the blank paper feed. The first activity corresponds with the action
reloadPaperTray(), with precondition:

outOfPaper() = T' A inFront(printer) = T A carries(paper) =T

In order to execute this action, the agent needs first to check the tray itself, by
executing the information gathering action checkPaper() that reveals the value of
outOfPaper() fluent. If the conditions above are met, then the article gets printed
provided it was already waiting on the queue and the printer is not clogged:

clogged() = F' A queued() = T — available() =T

Unclogging the printer is achieved with the action servicePrinter(), that requires
the agent to have previously checked the paper feed with the information gathering
action openCanopy()

clogged() = T A inFront(printer) =T

which establishes the truth value of fluent clogged(). When executed, servicePrinter()
will make the article available, provided the printer is not out of paper and the article
was in the queue:

outOfPaper() = F' A queued() =T — available() =T

GPT modeling language allows us to express in a compact form a simple yet lively
task by combining probabilistic and conditional effects. We note that the best, as in
minimizing expected cost, policy for goal G starting from the initial belief consists in
going directly to the computer, submitting the job and then fetching paper from the
cabinet in case the printer is out of paper. The executions resulting from executing
this policy can overlap in many ways with the best policy for G2, which only uses
deterministic actions.

96 PR OVER POMDP THEORIES

Kitchen

The KITCHEN plan recognition task is inspired in the domain discussed by (Fern
et al., 2007) in the context of using Goal POMDPs as a computational framework to
develop helper agents that assist humans in a interactive way to make easier everyday
tasks.

Here the observed agent is a person who is known to be interested in cooking one of
four possible dishes. Each dish requires up to 3 ingredients out of a possible 4 given
ingredients 41, 19, i3, 74, and mix them in a bowl. Ingredients are known to be inside
cupboards, though the precise locations of the ingredients is not known to the agent
— nor the observer.

Besides getting a hold of the ingredients, the observed agent some of the dishes
require to cook the ingredients in the bowl by either boiling or frying the mix and
possibly having to both as well. One of the dishes does not require the ingredients
to be cooked, but have to be served on a tray. For this she needs to get the required
kitchenware from a third cupboard, and put them on the stove. In order to obtain

Signature Domain Observability
container(7) {0,1} Observable

inside(4 {T,F} | Initially Unknown

location {0,...,4} Always

)

9)
onHand() | {0,...,7} “
onStove() | {0,...,3} :
capacity() | {0,...,3} .

Table 5.6: KITCHEN state variables. Fluent meaning is described in the text. ¢ denote
ingredients being taken as arguments by the fluent.

a compact Goal PoMDP for this task, we have used the fluents shown on Table 5.6.
The cupboards, the bowl and the stove ovens are modeled as discrete locations. We
have modeled these locations as integers, mapping each of the three cupboard into
the range [0,2], while 3 and 4 represent the location of the bowl and that of the
stove, respectively.

Ingredients initial location is modeled with the inside(7) fluents, where the integers 0
and 1 identify the cupboards containing them. Kitchenware location is not modeled
explicitly by one single fluent. Rather than that, we have chosen to model it with
the onStove() and onHand() fluents, whose values correspond to either kitchenware
on the stove — 1 for the pan, 2 for the pot, 3 for both, 0 to denote that no piece of
kitchenware lies on the stove — or which are being carried on her hands by the agent
— 5 for the pan, 6 for the pot and 7 for the tray. If no kitchenware is on the stove
or being carried by the agent, then it is in the third cupboard, since the agent is not
able to carry more than one item on his hands.

The fluent capacity() models the limited volume of the bowl, so that at most 3
different ingredients can be in it. This allows us to constraint significantly the possible
observed behaviors and to showcase a practical example of the succint manner in
which GPT supports actions affecting numerical quantities.

The initial belief by comprises 16 different possible states s, corresponding to each
of the permutations of ingredients and cupboards. All possible states s have the

5.6. EVALUATION DOMAINS 97

same probability bg(s). The hypothetical goal set Gy consists of 4 goals, one for each
possible dish. Goals are encoded as shown below, replacing integers by the names of
the objects for the sake of clarity:

G1: inside(iq) = T A onHand() = tray A position() = bowl
Go : inside(iy) = T Ainside(iz) = T' A onStove() = pan&pot
Gs : inside(ig) = T A onStove() = pot

Gy : inside(i1) = T A inside(iz) = T' A onStove() = pan

These terminal situations correspond with the precondition of a goal-specific action
that sets a dummy fluent to signal that the goal has been achieved. We note that
the confection of each dish requires executing actions so that observation sequences
conveying incomplete executions can lead to situations where P(G|O) can be very
similar for two different goals G; and Gj. For instance, achieving G3 shares with G
that the agent will have to eventually reach for the pot and put it on the stove.

Signature Precondition Effects Obs
moveTo(l) position() # [position() =1 None
inspect(c) position() = ¢ container(ii;) = ¢
container(iz) = ¢
container(iz) = ¢
container(is) = ¢
pick(i, ¢) position() = ¢ onHand() =4 None
container () = ¢
onHand() = empty
take(k) position() = ¢3 onHand() = & None
onHand() = empty
putAway (k) position() = ¢3 onHand() = empty None
onHand() = k
putStove(k) position() = stove | onHand() = empty None
onHand() = k
removeStove(k) | position() = stove onHand() = k None
onHand() = empty
pour(z) position() = bowl inBowl(z) =T None
capacity() > 0 onHand() = empty
inBowl(i) = F capacity() =
capacity() — 1
clearBowl() capacity() < 3 capacity() = 3 None
inBowl(i1) = F
inBowl(iz) = F
inBowl(i3) = F
inBowl(i4) =

Table 5.7: Actions available to the observed agent in the kitchen KITCHEN task.

Actions available to the observed agent are listed on Table 5.7. Inspecting the cup-
boards holding the ingredients is modeled with the inspect(c) action, where ¢ denotes
any of the two possible cupboards. This is an information gathering action, which
produces the observation tokens container(i) = ¢ that allow the observed agent to
learn whether ingredient ¢ can be found inside cupboard c.

The agent can move freely between any of the locations modeled — cupboards, bowl
and stove — doing the moveT o(l) actions, where [stands for some location. In order

98 PR OVER POMDP THEORIES

to avoid loops that severely impact GPT performance when computing value function
Ve (b), we set a its precondition that the destination is a different location than the
one the agent currently is.

Ingredients i can be picked up from cupboards ¢ with the action pick(i,c). In order
to be possible to pick an ingredient, the agent needs first to have done inspect(c)
on that cupboard as well as having her hands empty. Actions take(k), putAway(k),
putStove(k) and removeStove(k) allow the agent to take and store kitchenware k into
its cupboard and to put it, or remove it, on top of the stove in order to cook the
ingredients required by a dish.

Once the agent gets hold of an ingredient ¢, she can pour them into the bowl with
the action pour(:). In order to do so, the bowl needs to have spare room for the
ingredient, and cannot contain it already, in order to avoid loops. The bowl has a
limited capacity — in this particular task, it can hold up to three different ingredients
— which is decreased each time the agent pours an ingredient into it. If for any reason,
the wrong ingredient is poured into the bowl, the agent can restart the procedure,
by doing the clearBowl() action, which removes all ingredients from the bowl and
resets its capacity.

5.7 Experimental Results

For testing the goal recognition scheme proposed in Section 5.4, we used the POMDP
planner GPT (Bonet and Geffner, 2001b) built around the Labeled RTpDP-BEL al-
gorithm (Bonet and Gefiner, 2003) and described on Section 3.3. The software for
the goal recognition part was implemented on PYTHON, making calls to GPT when
necessary. All the domains described in the previous Section, code and datasets
discussed in this Section can be obtained from https://sites.google.com/site/
prasplanning.

Experimental Dataset

The dataset we use in our experiments is made up of a set of instances, which
are generated automatically and consist of pairs (O, G), where O is an observation
sequence and G one of the hypothetical goals in Gp. These pairs are obtained by
applying the following process to each of the domains discussed in Section 5.6:

1. For each of the goals G in Gr, the value function Vi (b) is computed for the
Goal PoMDP problem P[G| with the GPT planner.

2. 100 executions 7 of the greedy policy over Vi (b) — see Definition — are generated.

3. 10 executions are selected at random from the previous set, and 10 observation
sequences O are obtained by selecting up to 30% of the actions in the sampled
execution.

4. The procedure above is repeated, but changing the rate of actions selected to
50% and repeated again taking 70% of the observation sequences.

5. Each generated sequence O is paired with its goal G, yielding the pairs (O, G).

https://sites.google.com/site/prasplanning
https://sites.google.com/site/prasplanning

5.7. EXPERIMENTAL RESULTS 99

The true goal G is kept along O for validation purposes, and subsequently remains
hidden to the goal recognition system.

Goal Recognition as a Binary Classification Problem

As discussed on Section 5.4 we pose the problem of goal recognition as that of labeling
hypothetical goals G € Gr in one of two classes, that of “true” hidden goals and that
of “false” hidden goals, on the basis of the evidence supporting the hypothesis of O
being the result of the observed agent pursuing hypothetical goals Gr.

The classifier GR™? is then characterized by the equation below

T if G = argmaxgieg, P(G'|O)

. (5.8)
F otherwise

GR™P(G,0) = {

where m is the number of executions obtained by simulating the Boltzmann policy
over Vg (b) with parameter §.

Since P(G|O) is a real valued function we set a tolerance threshold for the argmax
function over floating point numbers, z and 2/, such that equality x = 2’ is defined
as follows

T iflx—a|<e

EQ(x,2 ¢) = { (5.9)

F' otherwise
In the experiments discussed next we set € to 10~ which, given the context of the
computation, we consider to be adequate.

Performance Metrics

Rather than reporting posterior probabilities P(G|O) for each hypothetical goal G,
we report the performance of the classifier GR™” measured in terms of well-known
classifier performance metrics used in the Machine Learning community (Fawcett,
2006) over a range of values for parameters m and /.

The basis of the performance metrics used rely on the notions of positive (P) and
negative (N) classification tests. A goal recognition each instance (O,G) will be
tested against each hypothetic goal G’ and it will be deemed as positive whenever
GR™P(G',0) =T, i.e. G’ is found to be the most likely goal that generated O, and
negative when GR™?(G’,0) = F.

A positive test (O, G) for goal G’ is a true positive (T'P) if it is a positive instance
and G’ is equal to the actual hidden goal G, and is a false positive (FP) if not.
Similarly, a negative test (O,G) for goal G’ is true negative (T'N) if G’ is indeed
different from the actual hidden goal G, and a false negative (FN) otherwise.

The classifiers GR™” are evaluated according to the standard metrics detailed below
obtained from GR™” confusion matrix:

TPR= 1I£ (True Positive Ratio)
FPR = F—]\f (False Positive Ratio)
ACC = TII;L]\}N (Accuracy)
PPV = T;Jr% (Precision)

100 PR OVER POMDP THEORIES

The True Positive Ratio and False Positive Ratio allow to measure to what extent
the classifier GR™” is reliable when it deems a hypothetical goal G’ as the goal
being pursued by the agent that generated observation sequence O. The relationship
between these two measures allows to detect if the classifier is significantly better
than deeming goals G’ as true on a random basis, that entails that both TPR and
F PR would have a value of 0.5. Accuracy assesses the overall reliability of GR™? for
discriminating goals in Gy since it leverages true positive and true negative results
simultaneously. Finally, precision is useful to detect when observation sequences O
are ambiguous so many hypothetic goals are deemed as the true hidden goal.

Results

Figure 5.1 shows the aggregate results of the goal recognizer GR™” over the three
benchmarks discussed in Section 5.6 in the form of a receiver operating characteristics
(ROC) graph (Fawcett, 2006) that plots TPR against FPR. As it can be seen, the
performance of the goal classifier approaches the optimal vertex (1,0) as the number
of samples m becomes large. Performance is good — high TPR, low FPR — for
m > 1,000 and high § values.

T T .7
0.9 | T
(o] A ’/”
o .-
° . i L
0.6 | |
oot L
o
=
0.3 §
0 2l ! ! !
0 0.3 0.6 0.9
FPR

Figure 5.1: ROC graph showing aggregate results for goal classifier GR.(m,) for different
m and [values (number of samples and noise level in action selection). Squares, triangles
and circles denote different m values: 100, 1000 and 10000. Black, gray, and light gray denote
different 8 values: 1, 10, 40. Results for random strategy represented by the dotted line.

Table 5.8 offers a detailed picture of the performance of the classifier GR™# setting m
to 10,000 and 3 to 40. We see across all domains how the accuracy of goal recognition
increases as more information is conveyed by the input observation sequence, with
near optimal results in all cases as the ratio of observation approaches 70%.

Processing one observation sequence involves simulating the Boltzmann policy m
times for each goal, hence the similarity between the run-times for OFFICE and
DRAWERS, whose hypothetical goal sets Gr have the same size. However, the latter
is somewhat more expensive since the agent might need to inspect a drawer several
times until she finds the object, leading to longer executions.

5.7. EXPERIMENTAL RESULTS 101

Domain|Obs %| L | T |ACC|PPV|TPR
30 14.9124.6/0.99]0.97|1.00
office 50 | 7.6(24.7/1.00|1.00]|1.00
70 110.8|24.8|1.00 | 1.00 | 1.00
30 |3.8195.2/0.86(0.73(0.73
kitchen| 50 5.8 195.1/0.93 |0.85|0.85
70 18.3195.2|10.9810.95|0.95
30 |2.9(38.8/0.84]0.77(0.77
drawers| 50 3.9 [38.8/0.87{0.80|0.80
70 16.0(38.8/0.96 0.93|0.93

Table 5.8: Performance of classifier GR(m = 10,000,3 = 40): domains, observation
ratio, average length of observation sequences (L), average time in seconds to process O (T),
average accuracy (ACC), precision (PPV) and True Positive rate (TPR).

In general, runtime grows as m increases and as [decreases. The reasons for the
former are that as more simulations are required to check whether they are compat-
ible with O the more time takes to perform the computation. However, the relation
between run—time and [is not that obvious. We note that as § decreases, the de-
cision making gets more random, since differences between Q(b, a) values tend to be
ignored. This usually leads to significantly longer executions.

We will next take a look at the OFFICE domain and compare the recognition accuracy
of the quasi—greedy Boltzmann policy resulting from setting 8 = 40 with the greedy
policy as the number of samples taken m increases. One would expect to obtain
perfect recognition when using the same policy that generated O, but we will see
that this expectation ignores the possible — and frequent — ambiguity of actions in

0.

Figure 5.2 shows the accuracy of using both policies to obtain our estimates of
P(O|G) over observation sequences with very few actions on the OFFICE domain.
First, we can see that the GR™Pusing the greedy policy is not achieving maximum
accuracy. Second, and startlingly, the quasi—greedy policy is performing slightly bet-
ter than the greedy policy. We offer next a cogent explanation for both phenomena.

The reason for not achieving maximum accuracy is that for O such as
walk(corridor, lab), walk(lab, corridor), walk(corridor, club)

P(O|G) is equal for all three goals. While the joint goal is discarded because of
having a lower P(G), there is no information available to identify the true hidden
goal. Therefore, there is a minimum attainable F'PR which depends on whether
policies for goals share some action subsequence and the observation level, so the
lower it is the more likely is to obtain a sequence which perfectly fits both goals.
This issue has a greater effect in the KITCHEN and DRAWERS domains.

The value functions Vi (b) computed by RTDP-BEL are optimal in the sense that
they minimize the expected cost to achieve G, which can be a quite conservative
estimate of the actual cost of the resulting execution. The greedy policy for the
goal read() of the OFFICE domain will take the agent directly to the cabinet in her
office to fetch blank paper just in case the printer is out of paper. However, with

102 PR OVER POMDP THEORIES

1 T T T IIIII| T T T IIIII| T T T L
R R b R -
0.95 L .

&)
O 09 F]

<
0.85 . _
0.8 L L L
10 100 1000 104
m

Figure 5.2: Goal recognition accuracy of the Boltzmann policy setting § = 40 — dashed
line — and the greedy policy — continuous line — on the OFFICE domain over increasing values
of m. Observation sequences tested were obtained from sampling the 30% of actions featured
by greedy policy executions.

the Boltzmann policy there is a chance that the agent will get nowhere near to the
cabinet while pursuing the print article goal.

The agent might not take the action a that minimizes Vg (b') for b resulting from
execution a and the printer might have paper available so there is no need of blank
paper. On the other hand, the agent will necessarily get to the cabinet to achieve the
have coffee goal, since she needs to take the cup inside. When trying to recognize
the hidden goal for an observation sequence O such as

walk(corridor, lab), walkTo(cabinet), walk(lab, corridor)

with the greedy policy, both goals have the same posterior probability. In contrast,
when GR™# is using the Boltzmann policy with 3 = 40, the drank() goal is slightly
more probable than read(). For m = 1000, as many as 100 out of the 1000 simulations
involved did not require the agent to fetch paper to achieve print article, lowering
the likelihood of that goal. As in the example above, the classifier GR™? using the
greedy policy incur in a false positive error, while the classifier using a quasi—greedy
policy does not.

5.8 Summary

This chapter has extends the approach to model-based, generative plan recognition
introduced in Chapter 4 to consider models where the outcomes of actions done by
the agent are not deterministic and the feedback provided to the agent by the envi-
ronment is limited. The computation of P(O|G) now consists in sampling executions
of a Boltzmann policy defined over the value function V* associated with the Goal

5.8. SUMMARY 103

MbP or Goal POMDP domain that models agent behavior. The value function V*
is computed off-line by the GPT planner, which is not modified in any way.

Several domains are discussed in depth, describing their actions and states, showing
the flexibility granted by the factored modeling language supported by GpT. Experi-
mental results over these domains are presented, and show the approach to be robust
and to provide with accurate estimates of the posterior goal distribution P(G|O) for
these domains.

PART 111

Discussion

105

CHAPTER

Approaches to Plan Recognition

In this chapter we review some of the most significant works on plan recognition
produced over the past thirty years. The content of the present chapter is not meant
to be a complete and thorough survey of the field, but rather a selection of those
approaches the author finds most relevant to provide a context for the model-based
framework for plan recognition introduced in Chapters 4 and 5.

6.1 BELIEVER

The earliest, plan recognition system proposed was BELIEVER (Schmidt et al., 1978).
Portrayed as the implementation of a psychological theory of how human observers
understand the actions of others, the authors aimed at offering a comprehensive
framework to account for three different queries related to observed actions:

1. Recognizing the goal of the observed agent, which is referred in the paper as
“summarizing observed agent actions”.

2. Inferring missing actions from the input sequence, referred as “recalling ac-
tions”.

3. Predicting the actions the agent will do after the observed sequence.

BELIEVER inputs are two: the observed action sequence, and a model of agent be-
havior and its environment. This model is an extension of the original STRIPS (Fikes
and Nilsson, 1971) planning model, that allows to describe agent beliefs on the ac-
tual world situation and non—deterministic action effects, thus closely matching the
contemporary definition of contingent planning (Bertoli et al., 2001) problems.

The authors break down their planning domain into three separate sub—models: the
Person domain, the World domain and the Planning domain. The World domain
consists of statements, made in the language of first—order logic, that the observer
believes to be true about the world, such as if a particular object is stored in a
container or not. The Person domain specifies the beliefs and desires of the agent on
particular statements in the World domain by introducing second—order statements
such as Beliefs, Knows, Likes and Wants. Finally, the Planning domain is composed
of action schemas and the definition of valid plans. Such schemas are parametrized

107

108 APPROACHES TO PLAN RECOGNITION

descriptions of the actions the agent can do, the conditions that enable them and a
separate specification of the actual outcome of the action and the intended outcome
of the action. Table 6.1 depicts the action schema describing the act of moving
between two different places.

Field Value
Name WALK
Parameters | Name Type

Actor | PERSON
From | LOCATION
To | LOCATION
Opportunities | (Loc Actor From)
Outcome (Loc Actor To)
Goal (Loc Actor To)

Table 6.1: Schema for the WALK action discussed in (Schmidt et al., 1978). Opportunities
refer to action preconditions, Outcome is the actual action effect and Goal is the intended
action effect. In this particular example, action intended and actual outcomes are always the
same.

It is interesting to note that the definition of valid plans is left as something particular
to the plan recognition problem at hand. In the light of current practice in planning
such an statement results baffling, and certainly, of little practical value. In fact, the
authors are referring to the causal structure implicitly available on action schemas,
or possible causal links (Sacerdoti, 1975) between actions in a valid plan. Input
observation sequences are composed of grounded action schemas, along with a precise
description of what statements in the World and Person domains become true and
false, and finally, a complete description of agent beliefs and hypothetical goal. In
other words, (Schmidt et al., 1978) notion of O conveys much more information
than required in our definition of observation sequences O given on Section 4.1,
which only contains grounded action schemas. BELIEVER is not really deducing what
hypothetical goals explain best observations, but rather checking whether, under the
assumptions implicit in the models given for the agent and its environment, some
certain goal is a logical consequence of observed actions.

At its core BELIEVER consists of a heavily modified version of Sacerdoti’s planner
NoAH (Sacerdoti, 1975), which is used to generate plans for the hypothetic goal en-
coded in the input observation sequence. Once the plan is generated, it is checked
whether it is consistent with the input observation sequence. If it is not, then a new
plan is generated taking into account the conflicts between the previously generated
plan and the input observation sequence. This so—called “revision process” is imple-
mented by mean of plugging new plan critics — that is, pruning rules — to the planner
backward—chaining search process which are selected from a hand—coded library of
pruning rules specific for the input planning domain.

BELIEVER prefigures many aspects of subsequent approaches to plan recognition. It
proposes a very rich language for reasoning on plans based on STRIPS, yet heav-
ily relies on knowledge engineering both in the characterization of agent behavior
and also in the process of searching for plans that account for the input sequence.
Surprisingly, the planning domains discussed by BELIEVER authors consider single
statements — rather than a conjunction of statements — as agent goals. The reasons

6.2. PLAN RECOGNITION AND NATURAL LANGUAGE 109

for them not considering slightly more complex, but much more expressive, goal
descriptions are not mentioned at all, though the action schemas discussed actually
contain preconditions consisting of conjunctions of fluents. BELIEVER is also the first
system where it is discussed the implications of assuming the observed agent to be
cooperative, non—cooperative, or just not caring at all about being observed.

As with much work done on Artificial Intelligence in the late 70s, BELIEVER is more
the concept for a plan recognition system that an actual, practical system. There
are lengthy text descriptions of examples illustrating the plan recognition process,
but there is no sign of BELIEVER actually solving any plan recognition problem.

6.2 Plan Recognition and Natural Language

The next approach to plan recognition we will present was not actually meant to
address plan recognition but rather, an application of plan recognition, that of infer-
ring the purpose questions made by a speaker (Cohen et al., 1981). The authors are
clearly inspired by the work of Appelt (Appelt and Luria, 1982), who took automated
planning modeling languages (Fikes and Nilsson, 1971) and solvers (Sacerdoti, 1975)

off-the-shelf and applied them to solve the problem of natural language generation .

While similar to the approach taken in BELIEVER (Schmidt et al., 1978), Allen and
Perrault (Perrault and Allen, 1980) approach is less ambitious and at the same
time, way more clear and appealing. The relevant automated planning concepts and
algorithms are described in a precise manner and concrete computational results are
sought.

Several simplifying assumptions are made by (Perrault and Allen, 1980) which are
commonly made in subsequent research on plan recognition:

1. Plan recognition involves two entities, the observer and the observed agent,
and the observer is assumed to share the planning domain with the observed
agent.

2. It is assumed that the observed agent is not changing goals while it is being
observed.

3. The observed agent is cooperative, that is, she wants the observer to understand
his actions, in an intentional or does not want to hide her intentions from others.

These assumptions allow the authors to consider the processes of plan generation,
done by the observed agent, and that of goal inference, done by the observing agent,
as one single chain of plausible inferences operating on goals and observed actions.
This is achieved by computing plans that contain, simultaneously, actions consistent
with the observations made and actions required to achieve one of the hypothetical
goals. Again, goals are not considered to be a separate entity from plans, but rather,
a mere sub—product of the computed plan.

!Research on natural language generation continues to rely on developments in automated plan-
ning to this day, see (Koller and Stone, 2007) and (Rieser and Lemon, 2011).

110 APPROACHES TO PLAN RECOGNITION

The planning algorithm presented by Perrault & Allen actually corresponds to PocL (Weld,
1994), that is, planning in the space of partially ordered plans, rather than the state—
space search methods discussed in Chapter 2. Branching on the space of partial plans

is guided by the following heuristics and pruning rules:

1. Select actions so to make true the preconditions of actions already in the plan
but still false.

2. Prune partial plans where one or more of the observed actions cannot be in-
cluded in the plan.

3. Select actions whose effects are relevant to the goal being sought by the observed
agent.

The third heuristic is actually a domain—specific hard—coded decision making proce-
dure, and the authors do not give any further specific details. Whenever for a given
goal no complete plan can be found, the goal is dismissed as a valid or relevant goal
for the partially observed plan in the input.

Allen and Perrault work is of special significance to this thesis. As we will present
in Chapter 4, we make very much the same assumptions made in (Perrault and
Allen, 1980) and we seek the same objects: plans that comply with the goals and the
observations simultaneously. Nonetheless, we achieve this in a more principled way
and need not to modify the planner by introducing hard—coded heuristics. Actually,
heuristics 1 and 3 above are the foundation of the domain-independent heuristics
computed automatically by contemporary planners.

6.3 Plan Recognition as Minimum Set Cover

One of the works with the longest term influence into plan recognition research is
that by Henry Kautz and James Allen, first presented in (Kautz and Allen, 1986b)
and recapitulated a few years later in (Kautz, 1991). Kautz's framework makes
two major contributions, one methodological and the other technical. The first
contribution is that it clearly specifies what conclusions — goals — are absolutely
justified on the basis of the observed actions, the observer’s knowledge about the
observed agent possible behaviors and a number of explicitly made “closed world”
assumptions. This contrasts starkly with the vague definitions one can typically find
in (Schmidt et al., 1978) or (Perrault and Allen, 1980). The second contribution is
that for the first time the computation of the conclusions drawn on the observed
agent behavior does not rely on ad—hoc heuristics to guide the inferences made by
the plan recognition system, but are rather suggested by the theory being proposed.

Rather than representing the observer knowledge with a theory that implicitly de-
scribes possible observed agent behavior, Kautz representation is an explicit de-
scription of possible behaviors in terms of an event hierarchy. Events can be either
actions or whole plans, and the hierarchy, besides accounting for inclusion of actions
in plans, also allows to express functional relationships between actions, such as that
of precedence.

Figure 6.1 depicts a simple event hierarchy presented in (Kautz, 1991). At the
root of the hierarchy we find the End event, which accounts for the observed agent

6.3. PLAN RECOGNITION AS MINIMUM SET COVER 111

End
- Kl v ¥ _
- - / N S ~
- ’ S ~<
_- - / N N ~ o -
Phe 4 N ~N -
- ya ~ ~
Go Hiking Hunt Rob Bank Cash Check
Go To Woods Get Gun Go To Bank

Figure 6.1: Example event hierarchy in (Kautz, 1991). Boxes denote events, dashed arrows
represent specialization — is a — relationships and solid arrows represent inclusion — has part
— relationships. Inclusion relationships between events are indexed according to their order
e.g. s; tokens denote that event comes before any other labeled as s;, j > ¢. Plans encoded
by this hierarchy are discussed in the text.

achieving a goal. Specialization relationships allow to specify what are the set of
possible plans the agent will be executing, or alternatively, the set of possible goals
the agent might be pursuing. Inclusion relationships allow to express how a certain
plan can be decomposed into a totally—ordered sequence of sub—plans or primitive
actions. The hierarchy in Figure 6.1 is encoding a total of 4 different plans, each
plan corresponding to a single goal:

For the goal Go Hiking, the plan is (GoToW oods).

For the goal Hunt, the plan is (GetGun, GoToW oods).
For the goal Rob Bank, the plan is (GetGun, GoToBank).
For the goal Cash Check, the plan is (GoToBank).

While the notion of event hierarchies naturally appeals to a graphical representation,
it is certainly unwieldy to define what are its semantics: the set of possible plans.
Kautz actually encodes event hierarchies as a knowledge base made up of first—order
axioms which describe precisely the plans. The event hierarchy in Figure 6.1 is thus
encoded as the following set of first—order axioms:

1. Vz.GoHiking(x) D End(x)

2. Vx. Hunt(x) D End(x)

3. Vz. RobBank(z) D End(x)

4. Vz.CashCheck(x) D End(x)

5. Vx. GoHiking(x) D GoT'oWoods(sl(x))

6. Vx. Hunt(z) D GetGun(sl(x)) A GoToW oods(s2(x))

7. Yx. RobBank(z) D GetGun(sl(z)) A GoToBank(s2(x))

112 APPROACHES TO PLAN RECOGNITION

8. Vx.CashCheck(x) D GoToBank(sl(x))

as well as further axioms encoding assumptions needed so that the event hierarchy
is complete, that is, whenever an event different from End occurs, it must be part
of some other event, and the relationship from event to component appears in the
event hierarchy. The assumptions are:

1. Ezhaustiveness — Or closed world assumption: the ways of specializing an event
type in the event hierarchy are the only ways of specializing it. In other words,
there are no valid plans other than the ones encoded in the models of the
knowledge base.

2. Disjointness — The different ways to specialize the End event are mutually
exclusive. That is, the observed agent is assumed to be pursuing exactly one
of the “top—level” goals.

3. Use — A plan or action implies the disjunction of the plans which use it as a
component.

4. Minimum Cardinality — The number of plans and actions is minimized.

Making these assumptions allows Kautz to formulate a model theory for plan recog-
nition, by borrowing the model theory of circumscription (McCarthy, 1980).

The plan recognition process then, consists in deducing from FE, the event hierarchy
and O, a first-order formula encoding what actions (events) are observed and in
what order, a minimum—cardinality truth assignment for the predicates in E. The
predicates specializing the End predicate which are true in such an assignment, are
then the minimum set of possible goals that justify the observations.

This computation, in the general case, is undecidable and both (Kautz, 1991) and
posterior works relying on the notion of event hierarchy or plan libraries have stuck
to a purely propositional representation, which while still intractable — minimum cost
satisfiability is NP-HARD — it can be effectively approximated in a greedy manner.

The methodological and technical contributions discussed above come at a great
price, as recognized in (Kautz, 1991). The above is only appropriate for domains
where one can enumerate in advance all plans achieving a goal, or those domains
where one is interested in recognizing stereotypical behavior, that is, only a small
fraction of the possible plans is deemed interesting. The assumption of complete
knowledge on part of the system designer is fundamental for the validity of the
approach.

This is admitted by (Kautz, 1991) to be a case of “making virtue out of necessity”.
The flexibility of previous approaches (Perrault and Allen, 1980), where the space of
possible plans is infinite, entailed a search problem which was well out of reach for
the planners available at the end of the 1980s. Quoting (Kautz, 1991)

We decided to maintain the assumption of complete knowledge, and
only construct plans by specialization and decomposition, as described
below, until we have developed methods of controlling the combinatorial
problem.

6.4. PROBABILISTIC MODELS FOR PLAN RECOGNITION 113

This observation was all but forgotten, as plan recognition research eventually be-
came out of touch with the planning community. So from the early 90s to the present
thesis, almost nobody — the one notable exception is (Lesh and Etzioni, 1995) — made
again the connection with automated planning, even when significant advances were
made in the early nineties, with the advent of GRAPHPLAN (Blum and Furst, 1995)
and SATPLAN (Kautz and Selman, 1992).

Another unfortunate consequence of compiling possible plans into event hierarchies
or plan libraries was that of blurring a previously crisply defined concept, that of
goal. In approaches based on automated planning models, goals are STRIPS goals:
formulas specifying a particular truth assignment on predicates modeling world state.
Posterior research on plan recognition missed the correspondence of (Kautz, 1991)
End root event, with that of the End action in planning systems such as (Currie and
Tate, 1991) whose precondition is the goal formula. This is not surprising since event
hierarchies and plan libraries compile away world states, throwing away significant
information. Indeed, if all possible plans are those encoded in the hierarchy, then
it does not matter what was the particular world state supporting actions and plan
execution.

The most charring criticism of (Kautz, 1991) is that set minimization, as the com-
putational framework for an abductive reasoning task such as plan recognition is not
adequate (Charniak and Goldman, 1993). In Kautz’s formulation, a goal G consist-
ing of the conjunction for goals G and G5 from the example described in Section 1.2,
would be less likely than either GGy or G5 regardless of the observation sequence O. In
other words, it is assuming that the agent is more likely to pursue “simpler” goals, or
if we used our planning—based formulation in Chapter 4, the goals with cheaper opti-
mal plans. Something that might well be a common occurrence in many settings, but
which is ways better to make this assumption explicitly in a Bayesian framework by
setting priors P(G) accordingly, than to hide it inside the computational machinery
of the formulation.

Therefore, after (Kautz, 1991), plan recognition research veered towards reasoning
over knowledge bases rather than reasoning over plans, as the focus and the efforts of
the plan recognition community was put on matching a pattern — the observed action
— against a database of plans rather than on deducing the purpose of the pattern.

6.4 Probabilistic Models for Plan Recognition

(Charniak and Goldman, 1993) argue that the problem of plan recognition is a prob-
lem of abductive reasoning under uncertainty, and propose the framework of Bayesian
probability theory and Bayesian networks (Pearl, 1988) for inferring explanations of
the observed sequences of actions.

Plan recognition is then formulated as the problem of building and evaluating plan
recognition networks or PRN. These Bayesian networks are to be derived according
to a set of provided construction rules which map knowledge about actions and plans
into variables and conditional probability tables, resulting in factored representations
of posterior probability distributions P(7|O) over some set of hypothetic plans w. The
authors acknowledge that the construction procedure can indeed lead to infinite size
networks for very simple planning domains.

114 APPROACHES TO PLAN RECOGNITION

Knowledge about plans and actions is represented a first—order logic program, where
the head of the rule denotes a hypothetic plan and the body is a conjunction of
clauses encoding constraints that prescribe which are the possible actions — or sub—
plans — that can be components of the hypothetic plan. Plans are then encoded as
a conjunction of n clauses of the form:

(inst p plantype)(= (stp1 p)a1) ... (= (stpn) an)

where each (= (stp; p)a;) clause denotes that the action a; is to be executed on the
plan step or slot stp;. The stp function sub—index, though, does not have temporal
semantics denoting just membership. In order to infer the plan — if such plan exists
— from observed actions, it is necessary to define what actions a; can fill plan steps
stp;. It can be seen that (Charniak and Goldman, 1993) representation of planning
domains is not very different from the plan libraries used in (Kautz, 1991).

These logic programs are then encoded into a Bayesian network N by mapping each
proposition in the knowledge—base into boolean variables. Hypothetic, top—level,
plans are root variable nodes (inst p plantype) of the network. These are linked to
(= (stp;) a) nodes, which in turn are linked to the nodes representing the actions or
plans a that can fill up the step (stp;) as defined. Links between nodes are fleshed
out in a straightforward manner. Hypothetic plans prior probability distributions
P(7) and conditional probability distributions P(a|stp;) are assumed to be Bernoulli
distributions, unless otherwise noted. The networks resulting from this mapping are
not necessarily acyclic, since slot clauses might be related by more than one plan,
and a plan might be a sub—plan of other plans.

This translation procedure runs into problems because an action a can well be a valid
action for a slot in many plans, and because of allowing plans to be recursively defined
in terms of actions and sub—plans, leading to a network structure that would be
equivalent to a clique with all nodes connected or to infinite size networks. Analogous
problems to the two above can be found on (Kautz, 1991) proposed plan libraries.

The first problem is addressed by first, computing paths between actions and hy-
pothetic plans in the moral graph of the PRN implicitly described in the plan and
action knowledge base. Then these paths are evaluated by a set of domain—specific
rules that prune away “meaningless” paths. The problem posed by recursive plans
is not discussed any further after being introduced.

No details are either given on the computational complexity of evaluating the result-
ing networks. However, given the small size of the examples presented in the text,
the subsequent MAP query posed to the network seem to be well within the limited
computational capabilities of the time. The computational intractability of MAP
Bayesian networks queries, and how to overcome that problem by relying on approx-
imated algorithms, has been a major topic in most work that followed Charniak and
Goldman’s notion of plan recognition, such as (Bui, 2003), which will be reviewed in
Section 6.6.

The present thesis owes to (Charniak and Goldman, 1993) the insight of considering
plan recognition as a probabilistic abductive reasoning task. However, the formula-
tion presented on Chapter 4 represents plans and actions in a planning formalism and
posterior goal probabilities are deduced from the properties of solutions to planning
models, computed with dedicated planning solvers. While the issue with recursive

6.5. PLANNERS GENERATING PLAN LIBRARIES 115

plans does not apply at all to our formulation, the issue regarding an action — or
sequence of actions — being present in optimal plans for many goals G does apply to
some extent.

This issue is addressed by the way we approximate likelihoods P(O|G) presented
on Section 4.7 implicitly addresses this, since it builds the estimates P(O|G) by
selecting just one amongst all plans for a goal G with the same cost, and actions in
those plans are selected in order to minimize that cost. Otherwise than that, having
actions which are relevant to many goals does not pose other problem than that of
very short observation sequences O leading to many goals being assigned the same
P(G|O), which is hardly an issue that can be addressed.

6.5 Planners Generating Plan Libraries

The work by Lesh and Etzioni (Lesh and Etzioni, 1995) is a model-based plan recog-
nition formulation that is at first sight quite similar to the one presented in Chapter 4.
First, rather than representing the possible agent plans explicitly in a plan library,
it also uses a planning domain expressed in a language closely related to STRIPS.
Second, solutions to plan recognition problems are defined as subsets of a set of
hypothetic goals, similarly as we do in the qualitative plan recognition account de-
scribed on Section 4.5. However, as we discuss next, there are some significant and
critical differences.

The first and most obvious difference lies in the observation sequences O considered
by Lesh & Etzioni and the observation sequences we consider in Section 4.1. While
the former are required to be plan prefizes, that is the first n actions in some plan, the
latter might be any subset of actions in a plan. Hence, Lesh & Etzioni’s formulation
of plan recognition problems is a special case of the more general formulation that
we have presented.

Lesh & Etzioni — as we do — compute plans that satisfy the observation sequence O.
However, while we consider cost optimal plans, Lesh & Etzioni formulation relies on
the notion of irredundant valid plans. Irredundant in this context means that plans
are guaranteed to feature only actions a which either add one of the facts in the goal
G, or a fact which is in some precondition of an action in the plan.

This notion is weaker than that of optimal plans, since all optimal plans are irre-
dundant, while there are potentially many irredundant plans which are not optimal.
Therefore, the semantics of the goal subset computed by Lesh & Etzioni are very
different from that of the optimal goal sets introduced in Definition 4.5. Optimal goal
sets contain those hypothetic goals whose best plans satisfy observations, capturing
in a limited way the degree in which those observations are necessary in order to
achieve the goals. In Lesh & Etzioni formulation is not taking into account that irre-
dundant plans might achieve several goals as a side effect, and therefore the presence
or not of a goal in the selected goal set, does not give a good leverage on the observed
agent intentions.

The computational framework discussed in (Lesh and Etzioni, 1995) relies on having
compactly encoded the set of all possible plans the agent can execute in a directed
graph, with nodes corresponding to actions and goal formulas. Edges connect two
nodes n, n’ if n is an action adding facts in the precondition of the action or the goal

116 APPROACHES TO PLAN RECOGNITION

formula represented by node n/. Lesh & Etzioni assume this graph to be computed
in an off-line manner. However, as the authors acknowledge, such a graph can easily
become unfeasible to compute or store as its size grows exponentially with the length
of the longest plan considered.

Irredundant goal sets are obtained by applying iteratively a set of pruning rules
which discard nodes and edges when there is no path between the nodes representing
the actions in the observed plan prefix. While Lesh & Etzioni claim the described
procedure to be sound, that is, limited to consider irredundant plans, it is not proved.

While in some respects this work is quite close to the formulation of plan recognition
we have presented, in other aspects follows the practice of performing its computa-
tion on a explicit representation of possible plans, and amounts to be a plan—library
approach to plan recognition with the novelty of libraries being computed from plan-
ning domains by doing a potentially very big number of calls to a planner.

6.6 Plan Recognition and Dynamic Bayesian Nets

The work comprised by (Bui, 2003) and (Bui et al., 2008) is a quite clear and coher-
ent integration of two key lines of research pursued in plan recognition. One is that
of deeming plan recognition as a problem of probabilistic inference over a Bayesian
network encoding possible agent plans, initiated by (Charniak and Goldman, 1993)
and already discussed in Section 6.4. The other is that of considering agent actions
to have non—deterministic effects, an extension to the classical planning model im-

plicit in (Kautz, 1991) characterization of agent actions and plans and first discussed
by (Pynadath and Wellman, 2000).

Bui’s framework for plan recognition departs from (Charniak and Goldman, 1993)
in two key aspects. First, rather than having a dual representation of plans and
actions, it does away with the logic program representation of the plan library, and
models directly agent behavior as a Bayesian network. Another crucial difference
is that Bui’s capitalizes Dynamic Bayesian network (DBN) development (Murphy,
2002) in order to account for the passage of time. DBN’s allow to model temporal
data — such as the sequence of observed actions of interest in plan recognition — in
a natural way, so that conditional probabilities in the nodes corresponding to events
occurring at different points of time can be estimated independently.

As in (Charniak and Goldman, 1993) the networks used by Bui to model agent
behavior are not amenable to exact inference. This difficulty is bridged relying on
the well-founded and efficient Rao—Blackwellised particle filter proposed by (Doucet
et al., 2000) to perform approximate probabilistic inference over DBNs.

A more interesting departure in the formulation lies in modeling agent behavior as
a MDP. As discussed in Section 3.1, when actions have non—deterministic effects,
the results of such action can no longer be predicted with full certainty. This kind
of agent models render plan libraries useless, if effects of actions can no longer be
predicted, subsequent actions cannot be either. Such a setting was first considered
by (Pynadath and Wellman, 2000) that proposed a representation of agent plans
and actions based on probabilistic grammars. Bui takes this idea a step further by
introducing a control automaton producing observed actions and encoding it into

6.7. PLAN RECOGNITION AS PARSING 117

Hierarchical Hidden—-Markov Models (HHMMs) (Murphy, 2002), a specific type of
dynamic Bayesian networks.

This an efficient and crisp formulation of plan recognition, which suffers heavily from
the lack of expressive power to capture succinctly agent behavior. HHMMs handle
very well tasks which can be easily mapped into the problem of traversing a graph.
However, since no factored planning language is used, it relies in representing such
graphs explicitly, something that is hardly feasible unless very simple domains are
considered. Furthermore, it can not handle at all interleaved execution of plans. In
this respect, Bui’s approach inherits the problem suffered by plan—library approaches,
where something simple such as considering goals — or top—level plans — which are a
combination of other goals becomes extremely complex or just unfeasible.

Yet another problem is that of handling incomplete observation sequences. In this
case the problem does not lie on actions being missing, but in determining which
observation node in the HHMM corresponds to the first action in the observation
sequence.

6.7 Plan Recognition as Parsing

Perhaps the approach to plan recognition that has generated the most literature
is that of formulating plan recognition tasks as parsing (Vilain, 1990). In this ap-
proach possible agent behavior — in the form of plans with deterministic action ef-
fects — is encoded into a grammar I', where terminal symbols represent actions and
non—terminals with multiple production rules associated represent tasks. The start
symbol of I" represents the goal GG that the agent might want to achieve. Observation
sequences O are then checked to be terminals produced by grammar I'.

In order to decide if the grammar I' encoding the plans for GG is a good explanation
for O, it is checked — with parsing algorithms — whether I" can produce the sequence
of terminal symbols (actions) in O.

Non—terminal symbols in I" are representing goals and sub—goals, along with the set
of alternative plans — the set of possible of productions of the non—terminal — that can
achieve them. This representation is remarkably similar to the notion of tasks, which
can be found in the independently developed notion of Hierarchical-Task Networks
(HrN) (Erol et al., 1994). HTNs are regular STRIPS planning domains augmented
with methods that implicitly describe a set of plans that achieve the goal represented
by the task.

However, grammars and task networks are far from being equivalent. HTNs take into
account explicitly the notion of world state as represented by STRIPS states defined
in Section 2.2. Grammars I', very much like plan libraries, do not represent states
explicitly. Like libraries, states are implicitly represented in the context of an action,
the path that goes from a node representing a top—level goal to that particular action.
In the case of plan recognition as parsing formulations, these are paths in the parse
tree of the grammar.

PHATT (Geib and Goldman, 2009) is a recent system based on the parsing approach
to plan recognition which subsumes in an elegant way past formulations and provides
with posterior goal distributions P(G|O) over a set of hypothetical top—level goals G.

118 APPROACHES TO PLAN RECOGNITION

Rather than obtaining P(G|O) formulating plan recognition as a problem of prob-
abilistic inference solved by using some form of belief propagation over a Bayesian
network as in (Charniak and Goldman, 1993; Bui, 2003), PHATT uses the generative
capabilities of grammars I' to obtain an approximation of P(G|0O). This may ap-
pear somewhat similar to probabilistic formulation of plan recognition as planning
we proposed in Section 4.7.

There are however several notable and key differences. While the basis for our
probabilistic model are costs of plans which only depend on the definition of the
planning problem P[G], (Geib and Goldman, 2009) requires to augment the grammar
I" with probability distributions for production rules. The purpose of these is to model
the preferences the agent might have to accomplish a certain goal or sub—goal with
one particular plan. Yet another difference can be found in how P(G|O) is defined

P(G|O) = ZP Gle)P(e|O)

where e are the possible explanations in I' for O. These explanations consist of a
pair of partial derivation trees for grammar I' where each action in O corresponds
to a terminal symbol, along with the set of substitutions of non—terminal symbols
corresponding to each partial derivation tree.

P(Gle) is defined to be 0 for those explanations that do not include the top-level
non—terminal accounting for the goal G, and 1 if they do. The likelihood of a plan
given a sequence of observations P(e|O) is

P(e]O) = aP(e) - P(Ole)

where P(O|r) is the probability for e to generate O and « is a normalization constant.
This should not be confused with our definition of P(O|G) in Equation 4.2

P(O|G) = ZPO|7T P(n|G)

since explanations e are not single plans w. Explanations are actually the sets of
plans that achieve O and satisfy O as per Definition 4.2. While the approximation
of P(O|G) we propose in Section 4.7 is obtained from one of the best possible plans
that satisfy O, PHATT computes P(O|e) — distribution which has the same semantics
as P(O|G) — considering all plans in the library that satisfy O.

In order to obtain P(Ole) PHATT relies on a substantial number of parameters
consisting of three different types of probability distributions that characterize the
chances of a certain production rule in I' to be activated. Namely, the prior prob-
ability of goals, the probability of choosing a grammar rule amongst other rules
associated to the same non—terminal and the probability of choosing to expand one
non—terminal over another, when two of them appear unordered in a production rule
body. This contrasts with the reduced number of parameters in our formulation,
costs of actions a and the prior probability distribution over hypothetical goals Gp.

P(O|e) is computed in two steps. First, the probability distributions relevant to the
explanation are obtained by traversing the partial derivation trees in the explanation.

6.8. PLAN RECOGNITION AS INVERSE GOAL MDP PLANNING 119

Second, P(Ole) is directly computed as the product of the retrieved probabilities for
each derivation step. While the computation procedure described in (Geib and Gold-
man, 2009) is straightforward, its computational complexity is NP—hard, the same
as that of searching for plans solving a STRIPS planning problem P[G]. Further-
more, we find that there are some implicit assumptions being made that consider
the probability for selecting a production rule and that of the order of expanding
non—terminals to be independent.

6.8 Plan Recognition as Inverse Goal MDP planning

The last work we will review in this chapter (Baker et al., 2009) is another model-
based approach to plan recognition which computes posterior goal distributions
P(G|O). This paper is a noteworthy example of the interest that plan recognition
raises in fields other than Computer Science, such as the Cognitive Sciences.

We find this work to be of particular relevance to this Thesis, since we find it to
be the approach which is the closest, conceptually and methodologically, to the
contributions discussed in Chapter 4 and Chapter 5. Plan and goal recognition
models and algorithms to solve these are of special relevance to the Cognitive Sciences
studies on the nature of anticipatory systems (Rosen, 1985):

A system containing a predictive model of itself and/or its environment,
which allows it to change state at an instant in accord with the model’s
predictions pertaining to a latter instant.

Cognitive agents are conceived as such systems, able to reason about the future and
fulfill their goals relying on these predictive models. Experimental evidence of the
existence of such anticipatory mechanisms in the human brain has been gathered in
recent years (Pezzulo, 2008) and it has been observed to be of crucial importance in
a number of cognitive functionalities such as vision, motor control, learning, moti-
vational and emotional dynamics. The availability of robust, efficient and workable
computational models is crucial for Cognitive Sciences because they allow to test
hypothesis about such representations in a natural way by contrasting the observed
behavior of simulated agents with that of actual humans.

In contrast with other formulations of plan recognition originated outside of the Al
community, such as (Schmidt et al., 1978) BELIEVER, (Baker et al., 2009) relies on
a crisply defined mathematical formulation and a solid and well-defined planning
model, that of Goal MDPs described in Chapter 3.

(Baker et al., 2009) model the agent executing a Boltzmann policy 7 for a goal G,
where the probability of the agent executing an action a on a given state s is defined
as

P(als) x exp{fQc(s,a)}

which approximates the principle of rationality (Dennett, 1983) discussed in Sec-
tion 4.2 and Qg (s, a) is the expected cost to reach a goal state Sg from the current
state s. We have directly borrowed this idea and used it in our formulations of plan

120 APPROACHES TO PLAN RECOGNITION

recognition in Section 4.7 and Section 5.2. We note that this is not an essential
component of our formulation nor that of (Baker et al., 2009), both can be trivially
parametrized over the action selection probability distribution.

Qc(s,a) values are assumed to be defined over the optimal value function V* of
the Goal MpP M |G|, which is computed off-line using the Dynamic Programming
algorithms discussed in Section 3.2. We note that the classical planning problem state
models S(P) are a special case of Goal MDPs, since these can be readily obtained from
S(P) by replacing transition function f(a,s) by probability distribution P(s'|s,a)
such that

P(f(a,s)|s,a) =1

and set to 0 for any state s’ # f(a,s). For this special case, our formulation in
Section 4.7 rather than computing V*(s) for all s, it is computing these on a as
needed basis using a classical planner.

The biggest difference between our formulation and that of (Baker et al., 2009) lie at
the definition of observation sequences O and in the flexibility our formulations enjoy
because of using a factored representation of both classical planning problems and
Goal MDPs. Regarding the former, (Baker et al., 2009) only consider observations O
which are prefizes, while we allow O to be any subsequence of the actions appearing
on possible plans or selected when executing a policy. This allows our formulations
to be useful in a greater variety of plan recognition tasks.

The fact that (Baker et al., 2009) does not use a factored representation forces them
to put forward three different formulations of plan recognition where increasingly
less restrictive assumptions on the behavior of the observed agent are made. The
most simple formulation assumes that the agent is seeking one single goal GG, that
is, reaching a state Sg. While this might seem equivalent to our definition it is
not. Since we use a factored representation of states s, our formulations can define
implicitly the set of goal states Sz and combine goals to consider the conjunction or
the disjunction of two goals G an G’. This simple operation becomes easily unwieldy
when dealing with a explicit representation of the planning task.

The second formulation caters for agents that change goals over time. From a plan-
ning perspective this is somewhat ill-defined, since the agent is actually expected by
(Baker et al., 2009) to switch goals randomly according to some parameter 7. We
find this noisy goal switching notion to attempt to capture plan recognition tasks
where achieving a goal GG involves reaching some states s in no particular order. We
observe that such random goal switching is at odds with the principle of rational-
ity. If the agent is assumed to prefer engaging in optimal behavior, then the order
in which these goals are achieved will probably matter. The third an most general
formulation covers the case of agents whose goal requires visiting some to visit some
states s’ before reaching a goal state in Sg, in some particular order.

The three formulations proposed by (Baker et al., 2009) are subsumed by ours, since
they can be accounted either by composing goals or tweaking the definition of P[-].
We note that when a goal G is defined as the conjunction of two other goals G
and Ga, the order in which those goals are achieved is left for the agent to decide.
So rather than having an agent that randomly switches between them, in our case
the agent is actually computing the order — and possibly interleaving the pursuit of
either goal — in a way that its performance is most efficient.

6.9. SUMMARY 121

Accounting for the third model involves changing the definition of P[] so that the
goal G can only be achieved if plans that achieve Gy, ..., G, in this order. This can
be done by introducing dummy fluents pg,, pe and adding conditional effects

Gi Npa,_, — pa;

in the definitions of actions a such that G;N Pre(a) # () 2, as well as a dummy action
with precondition
G Npg,

and effect pgq.

In either case, the formulation remains unchanged, all that is needed is to operate
on the definition of the planning task at hand.

6.9 Summary

In the present chapter we have reviewed a small yet significant and relevant part of
the existing literature of plan recognition, covering the major developments in the
field between 1978 and today. We are conscious that this is a partial view of the
field, and the reader may find missing some published work.

We note that we have consciously limited ourselves to review in depth only those
works we found to offer something new to the field and which can be seen regularly
cited in the most recent literature in plan recognition as a key influence. We also
wanted to discuss at least an example for each of three major “families” of formula-
tions. Namely, model-based and generative, as the one subject of this thesis, those
relying on probabilistic inference over a plan library compiled into a graphical model,
and library—based, generative approaches using parsing algorithms and grammars to
solve and represent plan recognition problems.

2This is necessary in order to avoid bloating action definitions.

CHAPTER

Conclusions

We conclude offering a summary of the topics discussed in the previous chapters,
as well as a summary of the contributions and a discussion of their significance.
No research is ever finished and the one discussed in this thesis is no exception.
Section 7.2 exposes the loose ends we see in our contribution and Section 7.3 discusses
further immediate work that we find would round it up.

Chapters 2 and 3 have covered Classical, MDP and POMDP planning models, avail-
able modeling languages for describing real-world tasks in terms of such models, and
algorithms for solving the models resulting from such descriptions. Chapter 4 has
presented the formulation of plan recognition over classical planning domain the-
ories, formally defining plan recognition problems and their solution, in terms of
costs of classical plans. The domains used to evaluate the proposed approach have
also been described with detail, closing with the results of the evaluation itself.
Chapter 5 extends the formulation given in Chapter 4 to domain theories modeling
partially—observable, stochastic environments. Formal definitions for plan recogni-
tion problems and solutions are adapted to such a setting, and algorithms given to
find those solutions, that rely on MDP and POMDP solvers used in an off-the—shelf
way. The reformulated framework is further illustrated with detailed descriptions of
the benchmarks used to evaluate it. Finally, a selection of the most relevant previous
work on plan recognition is reviewed in Chapter 6, which aims at highlighting both
the influences and deep, significant differences between our proposed approach to the
problem of plan recognition and others previously published.

7.1 Contributions

The main contribution of this thesis is a novel and crisp formulation of single—agent,
keyhole (Kautz and Allen, 1986a) plan recognition as planning. Instances of plan
recognition tasks are formalized in terms of probabilistic plan recognition theories
T = (P[],Gr, O, Probs) in Section 4.7. These theories account in a crisp and con-
sistent way for a three elements common in all approaches to plan recognition.

The first element is the problem of representing knowledge about the observed agent
possible actions, plans and goals. In our formulation this knowledge comes in the
form of planning domains P[-] , which are instances of formal planning models. These

123

124 CONCLUSIONS

domains are encoded with planning languages which support factored representations
of world states, action preconditions and effects. Past approaches to plan recogni-
tion (Schmidt et al., 1978; Perrault and Allen, 1980; Lesh and Etzioni, 1995; Baker
et al., 2009) have introduced some or just one of the previously mentioned notions,
but none includes all of them nor integrates planning models with varying expressive
power in a coherent, comprehensive way using state—of—the—art planning languages.

The second element is the representation of observed agents intentions. In our for-
mulation, these are encoded as a set of hypothetical goals G which are in turn logical
formulas that denote implicitly sets of world states. This allows us to account in a
simple, straightforward and elegant way with the problems posed by agents pursuing
several goals simultaneously, by syntactic means alone. Accounting for constraints
on how these goals are achieved is also possible to do by operating on P[-] modifying
actions preconditions and effects, so that the set of possible trajectories over the state
space is reduced to match those that satisfy such constraints. Also the definition of
this hypothetical goal set Gr is not assumed to be restricted to some specific subsets
of the possible state space, but can rather include any subset of states that satisfy
the goal conditions.

The third element is that of the observed agent behavior. In our formulation observa-
tions are totally ordered sequences of actions O which are not assumed to be complete
in the sense that between the actions observed there might be an unspecified number
of actions done by the agent and not observed. Furthermore, no assumption is made
about the position of the actions in O, these could be actions done at the beginning,
end or the middle of agent performance.

A crisp definition of solutions to the plan recognition problems represented by the-
ories T' is given in terms of a posterior goal probability P(G|O) distribution. This
distribution is characterized within the framework of Bayesian inference appealing
to the Bayes rule

P(G|0) = aP(O|G)P(G) (7.1)

where the prior goal probability distributions P(G) € Probs defined over goals
G € Gr are included as part of the theory to be solved. Observation sequence O like-
lihoods P(O|G) are approximated by relying on the principle of rationality (Dennett,
1983) which in a planning context relies on the notion of agents being more likely
to execute actions a so that the sum of the costs of the actions necessary to achieve
a goal G is minimized. Agents with bounded rationality are considered by assuming
them to execute actions according to a Boltzmann distribution with parameter g
for controlling the degree in which agents deviate from optimal — minimum cost —
performance.

Defining the precise details of P(O|G) computation depends on the underlying plan-
ning model, and we give them for the case of classical planning models, with full-
feedback from actions that have deterministic effects, as well as for Goal MDP and
Goal PoMDP models where feedback from actions is limited and action outcomes
are non—deterministic. In any case, the particular computation is defined as a call
to a planner, without requiring any change in the planner code.

Generative approaches to compute P(G|O) are not either new, but previous formu-
lations either use a much more limited representation of actions, states and goals,
relying on algorithms whose assumptions are not entirely clear (Geib and Goldman,
2009), or they operate on explicit representations of the state space with much more

7.2. LOOSE ENDS 125

stringent assumptions being made on the nature of observation sequences O (Baker
et al., 2009).

Another contribution made is that of a set of ready to use, easily available bench-
marks including the domains used to evaluate our formulation. A major problem
when developing the research presented in this thesis has been the lack of publicly
available benchmarks, as is the common practice in the automated planning com-
munity. We expect those benchmarks not only to illustrate our work, but also to
provide other researchers with a solid foundation for evaluating their own work.

7.2 Loose Ends

While we consider our contribution to be addressing many of the issues and limita-
tions hindering previous approaches to plan recognition, it is not free from limitations
and loose ends. Leaving aside relatively trivial questions such as defining P(O|G)
for other planning models such as conformant and contingent planning (Cimatti and
Roveri, 2000) or trying alternate planners on existing definitions of P(O|G), we will
focus on those we consider to be fundamental, and we do not know how to address
them effectively at the time of writing this thesis.

Sensitivity of the Order of Magnitude Approximation

In Section 4.11 we have shown the approximation of P(O|G) we use in Section 4.7
to be very robust and to have an accuracy proportional to the information conveyed
by the observation sequence O. However, we could do potentially better by rather
than just considering one of the best plans for P[G + O] and P[G + O], we rather
considered the N best plans for each of these two planning problems.

This would allow to take into account the number of plans that actually satisfy O.
Consider a planning domain where we have an agent navigating through a corridor
represented by tiles arranged in 2 rows and m columns. The agent starts at the
tile on the upper-right corner of the corridor, and she is expected to reach either
the tile at positions (2,7n) or (2, §), corresponding to hypothetical goals G1 and G
respectively. We observe the agent to move to the right from the starting tile.
When the priors for P(G1) and P(G2) are defined to be equal, both goals would have
the same probability P(G|O). However, if we recall that P(O|G), when the agent is
behaving optimally, is defined as

P(0|G) =>_ P(O|r)P(x|G)

then we can see that the sum over plans m will give a slightly higher value to goal
G, since there are m — 1 optimal plans satisfying O for goal (G1 and there are 7 — 1
plans for goal Ga.

The problem lies in how to define, in a principled way, an approximation that would
require 2|Gr| calls to a classical planner in order to obtain a possibly more accurate
approximation of P(O|G). Yet another problem, is how to account for the prob-
abilities P(7|G) when agents are considered to be choosing actions according to a
Boltzmann policy, that is, occasionally deviating from optimal behavior.

126 CONCLUSIONS

Partially-Ordered Observation Sequences

We could further relax our assumptions over the observation sequence O, so that
rather than being a totally—ordered sequence of actions was instead a sequence of
partially—ordered actions. The ability to handle such observation sequences would
be relevant for plan recognition applications where the exact times at which actions
were executed are only partially known.

This would require to come up with an alternate mapping to the one given in Defini-
tion 4.6. These partially ordered actions would induce a directed graph which would
be needed to be mapped efficiently into actions conditional effects, so that valid plans
for G should embed a serialization of the partially—ordered actions. We note as well
that this graph does not need to be a tree, and could have cycles. Ambiguities also
rise when actions appear mentioned more than once, and the partial orderings induce
potentially many possible serializations.

7.3 Future Work

Other loose ends in the work described in this thesis, which can be readily overcome
by either extending or reformulating part of the contributions presented, are next
reviewed in the order we deem to go from the most concrete to the purely speculative.

Bridging the Gap Between Classical and MDP Accounts

The experimental evaluation in Section 5.7 shows the proposed formulation for plan
recognition over Goal POMDP to be robust and to have an accuracy proportional to
the amount of information conveyed by the observation sequence O. However, we are
not entirely satisfied with the definition of P(O|G) given in Section 5.5. The reasons
for this are that we need an additional parameter m, the number of execution being
sampled.

In the domains we have tested the approach based on sampling executions, we have
found sampling variance to not be of much concern. But we cannot really guarantee
that this will be as well the case for other domains. Also it is a concern that the
definition for P(O|G) in the classical setting takes into account the likelihood P(O|G)
explicitly, while the definition for Goal MDPs and Goal POMDPs does in a implicit
way.

An elegant way of doing away with sampling is that of estimating P(O|G) and
P(O|G) directly by mapping the problem of finding the maximum likelihood trajec-
tory over states Sy« for which the optimal value function V(b) is defined, in to that
of computing a minimum cost plan over a planning problem P[G] = (F,I, A, ¢, G)
defined as follows:

1. A fluent set F' where fluents represent states in Sy

F={ps|seS:U{pa}

where ps are fluents that correspond to a state s which is visited by the greedy
policy over V*, and pg is a dummy fluent that denotes that a goal state has
been reached.

7.3. FUTURE WORK 127

2. An action set A with actions accounting for state transitions that could occur
when executing the Boltzmann policy

Qs : Ps — Py

for each action a and states s,s’ € Sy such that P(s|s,a) > 0, along with an
action to account for the fact that a goal state has been reached

as,G - Ps — PG

for states s € Sg.

3. Action costs c¢(as) accounting for the likelihood of selecting action a on state s
and reaching state s’

—log{P(als,G) - P(s'|s,a)}

where P(als,G) is the probability of selecting a on a state s when executing a
Boltzmann policy.

4. With initial state I = {ps,},
5. and goal state G = {pg}.

Order of magnitude approximations of P(O|G) and P(O|G) can be readily obtained
from applying a slightly modified version of the mapping given in Definition 4.6
to compile observations into goals and conditional effects. We note the resulting
planning problems P[G + O], P[G + O] are delete—free and actions conform closely
to the relaxation implicit in the h' heuristic. However it is not clear that classical
planners will be able to process very efficiently with the potentially huge numbers of
fluents and actions resulting from compiling MDPs and PoMDPs with the mapping
outlined above.

Agent POMDP Model Partially Known By the Observer

In our formulation, the observed agent model is known by the observer except for the
hidden goal. Incomplete information about the initial state of the agent, however,
can be accommodated as well. The simplest approach is to define a set Z of possible
initial states each with a probability P(I). The formulation can then be generalized
to deal with both hidden goals G and hidden initial belief states I, and the posterior
probabilities over the collection of such pairs can be computed in a similar manner.

Failure To Observe Actions That Must Be Observed

As argued in (Geib and Goldman, 2009), information about actions a that if done,
must always be observed. This information is valuable since the absence of such
actions from O implies that they were not done. This information can be used
in a direct manner in our formulation by adjusting the notion of when a plan
or execution 7 complies with O. In the presence of must-see actions, plans m or
executions 7 comply with O when 7 (7) embeds O, and every must-see action appears
as many times in 7 (7) as in O.

128 CONCLUSIONS

Observing What the Agent Observes

We have assumed that the observer gets a partial trace of the actions done by the
agent and nothing else. Yet, in the setting of Goal POMDPs, if the observer gets to
see some of the observation tokens w € Obs gathered by the agent, she can use this
information as well. In particular, the number mo in 5.7 would then be set to the
number of sampled executions for G that comply with both O and Obs.

Noise In the Agent—Observer Channel

In the Goal PoMDP setting, if the observer gets to see the actions done by the
agent through a noisy channel where actions can be mixed up, then the problem of
determining where a sample execution 7 complies with the observations O is no longer
a boolean problem where P(O|7) is either 0 or 1. It rather becomes a probabilistic
inference problem that can be solved in linear-time with Hidden Markov Model
(HMM) algorithms, that would yield a probability P(O|7) in the interval [0, 1]. For
this, the model must be extended with probabilities Q'(o|a) of observing token o
from the execution of action a, and hidden chain variables t; = j expressing that the
observation token o; in O = o1, ..., 0, has been generated by action a; in the sample
execution 7 = ay,...,an.

Bibliography

Each reference indicates the pages where it appears.

C. Anderson, D. Smith, and D. Weld. Conditional effects in graphplan. In R. Sim-
mons, M. Veloso, and S. Smith, editors, Proceedings of the Fourth International
Conference on Al Planning Systems (AIPS-98), pages 44-53. AAAT Press, 1998.
15, 45

D.E. Appelt and M. Luria. Planning natural language utterances. In Proc. 1982
AAA/Conf, volume 59, page 62, 1982. 109

K. Astrom. Optimal control of markov decision processes with incomplete state
estimation. J. Math. Anal. Appl., 10:174-205, 1965. 40

D. Avrahami-Zilberbrand and G. A. Kaminka. Fast and complete symbolic plan
recognition. In Proceedings of IJCAI pages 653-658, 2005. 3

C. Béckstrom and B. Nebel. Complexity results for SAST planning. Computational
Intelligence, 11(4):625-655, 1995. 28

Christer Backstrom and Peter Jonsson. All pspace-complete planning problems are
equal but some are more equal than others. In SOCS, 2011. 17

C. L. Baker, R. Saxe, and J. B. Tenenbaum. Action understanding as inverse plan-
ning. Cognition, 113(3):329-349, 2009. xvii, 85, 87, 88, 119, 120, 124, 125

J. Balcazar. The complexity of searching implicit graphs. Artificial Intelligence, 1
(86):171-188, 1996. 17

A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic pro-
gramming. Artificial Intelligence, 72:81-138, 1995. 36, 37, 41

R. Bellman. Dynamic Programming. Princeton University Press, 1957. 35

P. Bertoli, A. Cimatti, Marco Roveri, and Paolo Traverso. Planning in nondetermin-
istic domains under partial observability via symbolic model checking. In Proc.
1JCAI-01, 2001. 107

D. Bertsekas. Dynamic Programming and Optimal Control, Vols 1 and 2. Athena
Scientific, 1995. 33, 34, 36

D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
1996. 37, 42

A. Blum and M. Furst. Fast planning through planning graph analysis. In Proceedings
of IJCAI-95, pages 1636-1642. Morgan Kaufmann, 1995. 4, 24, 113

B. Bonet. An e-optimal grid—based algorithm for partially observable markov de-
cision processes. pages 51-58. Morgan Kaufmann, 2002. ISBN 1-55860-873-7.
42

B. Bonet and H. Geffner. Planning as heuristic search: New results. In Proceedings
of ECP-99, pages 359-371. Springer, 1999. 20

129

130 BIBLIOGRAPHY

B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelligence, 129
(1-2):5-33, 2001a. 4, 17, 21, 22

B. Bonet and H. Geffner. Gpt: A tool for planning with uncertainty and partial
information. In Proc. IJCAI Workshop on Planning with Uncertainty and Partial
Information, 2001b. 33, 43, 98

B. Bonet and H. Geffner. Labeled RTDP: Improving the convergence of real-time
dynamic programming. In Proc. 13th Int. Conf. on Automated Planning and
Scheduling (ICAPS-2003), pages 12-31. AAAT Press, 2003. 33, 36, 38, 39, 40,
41, 43, 98

B. Bonet and H. Geffner. Solving POMDPs: RTDP-Bel vs. Point-based algorithms.
In Proceedings IJCAI-09, pages 1641-1646, 2009. 35, 40, 41, 42

B. Bonet and M. Helmert. Strengthening landmark heuristics via hitting sets. In
Proceedings of ECAI 2010, volume 215, pages 329-334, 2010. 20

B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection mechanism
for planning. In Proceedings of AAAI-97, pages 714-719. MIT Press, 1997. 17, 20

H. H. Bui. A general model for online probabilistic plan recognition. In Proc. IJCAI-
03, pages 1309-1318, 2003. 3, 7, 93, 114, 116, 118

H. H. Bui, D. Phung, S. Venkatesh, and H. Phan. The hidden permutation model
and location-based activity recognition. In Proc. AAAI-08, 2008. xxii, 73, 76, 78,
116

T. Bylander. The computational complexity of STRIPS planning. Artificial Intelli-
gence, 69:165-204, 1994. 11, 16, 17, 22

E. Charniak and R. P. Goldman. A bayesian model of plan recognition. Artificial
Intelligence, 64:53-79, 1993. 3, 8, 51, 113, 114, 116, 118

A. Cimatti and M. Roveri. Conformant planning via symbolic model checking. Jour-
nal of Artificial Intelligence Research, 13:305-338, 2000. 125

P. R. Cohen, C. R. Perrault, and J. F. Allen. Beyond question answering. In
W. Lehnert and M. Ringle, editors, Strategies for Natural Language Processing.
LEA, 1981. 3, 109

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press, 1989. 16

K. Currie and A. Tate. O-Plan: the open planning architecture. Artificial Intelli-
gence, 52(1):49-86, 1991. 113

D.C. Dennett. Intentional systems in cognitive ethology: The ”panglossian paradigm
defended”. Behavioral and Brain Sciences, 6:343-390, 1983. 51, 87, 119, 124

A. Doucet, N. de Freitas, K. Murphy, and S. Russell. Rao-Blackwellised particle
filtering for dynamic Bayesian networks. In Proc. UAI-2000, pages 176-183, 2000.
116

K. Erol, J. Hendler, and D. S. Nau. HTN planning: Complexity and expressivity. In
Proc. AAAI-94,1994. 73, 75, 117

T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, (27):
861-874, 2006. 99, 100

A. Fern, S. Natarajan, K. Judah, and P. Tadepalli. A decision-theoretic model of
assistance. In Proc. of AAAI volume 6, 2007. 96

G. Fey, J. Shi, and R. Drechsler. Efficiency of multi-valued encoding in sat-based
atpg. In Multiple- Valued Logic, 2006. ISMVL 2006. 36th International Symposium

BIBLIOGRAPHY 131

on, pages 25-25. IEEE, 2006. 8

R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 1:27-120, 1971. 7, 13, 107, 109

L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,
1962. 22, 23

M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of AI Research, 20, 2003. 15

B. Gazen and C. Knoblock. Combining the expressiveness of UCPOP with the
efficiency of Graphplan. In Proc. ECP-97, pages 221-233. Springer, 1997. 15, 30,
31, 55

H. Geffner. Functional strips. In J. Minker, editor, Logic-Based Artificial Intelligence,
pages 187-205. Kluwer, 2000. 7, 43

C. W. Geib and R. Goldman. Plan recognition in intrusion detection systems. In
Proc. DARPA Information Survivability Conference & Exposition (DISCEX-01),
2001. xxi, 73, 75, 76

C. W. Geib and R. P. Goldman. A probabilistic plan recognition algorithm based on
plan tree grammars. Artificial Intelligence, 173(11):1101-1132, 2009. 3, 7, 8, 117,
118, 119, 124, 127

M. Goldszmidt and J. Pearl. Qualitative probabilities for default reasoning, belief
revision, and causal modeling. Artificial Intelligence, 84(1-2):57-112, 1996. 63

E. Hansen and S. Zilberstein. Lao™: A heuristic search algorithm that finds solutions
with loops. Artificial Intelligence, 129:35-62, 2001. 36

P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. Syst. Sci. Cybern., 4:100-107, 1968. 11, 20,
21

P. Haslum. Additive and Reversed Relaxed Reachability Heuristics Revisited, 2008.
Proceedings of the 2008 Internation Planning Competition. 80

P. Haslum. hm (p)= hl (pm): Alternative characterisations of the generalisation
from hmax to hm. In Proceedings ICAPS 2009, pages 354-357, 2009. 24

P. Haslum and H. Geffner. Admissible heuristics for optimal planning. In Proc. of
the Fifth International Conference on AI Planning Systems (AIPS-2000), pages
70-82, 2000. 21, 24

P. Haslum, B. Bonet, and H. Geffner. New admissible heuristics for optimal planning.
In Proc. AAAI-05, 2005. 21, 25, 80

P. Haslum, J. Slaney, and S. Thiébaux. Incremental lower bounds for additive
cost planning problems. In HDIP 2011 3rd Workshop on Heuristics for Domain-
independent Planning, page 15, 2011. 24

M. Hauskretch. Value—function approximations for partially observable markov de-
cision processes. Journal of Artificial Intelligence Research, 13:33-94, 2000. 42

M. Helmert. Complexity results for standard benchmark domains in planning. Ar-
tificial Intelligence, 143(2):219-262, 2003. 17

M. Helmert. A planning heuristic based on causal graph analysis. In Proc. ICAPS-0/,
pages 161-170, 2004. 17

M. Helmert. New complexity results for classical planning benchmarks. In Proceed-

ings of the 6th International Conference on Automated Planning and Scheduling
(ICAPS-06), pages 52-62, 2005. 11, 17

132 BIBLIOGRAPHY

M. Helmert. The Fast Downward planning system. Journal of Artificial Intelligence
Research, 26:191-246, 2006. 4, 26, 28

M. Helmert and R. Mattmiiller. Accuracy of admissible heuristic functions in selected
planning domains. In Proceedings of the 23rd AAAI Conference on Artificial In-
telligence, pages 938-943, 2008. 19

J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253-302, 2001. 4,
15, 17, 20, 22, 25, 26, 28

J. Hoffmann, J. Porteous, and L. Sebastia. Ordered landmarks in planning. Journal
of Artificial Intelligence Research, 2004. URL http://www. jair.org. 26, 27

J. Hoffmann, I. Weber, and F. M. Kraft. Sap speaks pddl. In Proceedings of the 24th
AAAI Conference on Artificial Intelligence, 2010. 7

H. H. Hoos. Sat-encodings, search space structure, and local search performance. In
International Joint Conference on Artificial Intelligence, volume 16, pages 296—
303. Citeseer, 1999. 8

M. J. Huber, E. H. Durfee, and M. P. Wellman. The automated mapping of plans
for plan recognition. In Proc. UAI-94, pages 344-351, 1994. 3

L. P. Kaelbling, M. Littman, and A. R. Cassandra. Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101:99-134, 1999. 40

H. Kautz. A formal theory of plan recognition and its implementation. In Reasoning
about Plans, pages 69-124. Morgan Kauffmann Publishers, 1991. xxii, 3, 4, 110,
111, 112, 113, 114, 116

H. Kautz and J. F. Allen. Generalized plan recognition. In Proc. AAAI-86, pages
32-37, 1986a. 3, 8, 51, 123

H. Kautz and J. F. Allen. Generalized plan recognition. In Proceedings of the Fifth
National Conference on Artificial Intelligence, pages 32—-38, 1986b. 110

H. Kautz and B. Selman. Unifying SAT-based and Graph-based planning. In
T. Dean, editor, Proceedings I1JCAI-99, pages 318-327. Morgan Kaufmann, 1999.
4

H. A. Kautz and B. Selman. Planning as satisfiability. In Proceedings of the Tenth
European Conference on Artificial Intelligence (ECAI’92), pages 359-363, 1992.
113

E. Keyder and H. Geffner. Heuristics for planning with action costs revisited. In
Proceedings 18th European Conference on Artificial Intelligence (ECAI-08), 2008.
25

E. Keyder and H. Geffner. Trees of shortest paths vs. steiner trees: Understanding
and improving delete relaxation heuristics. In Proc. 21st Int. Joint Conference on
Al (IJCAI-09), 2009. 24

E. Keyder, S. Richter, and M. Helmert. Sound and complete landmarks for and/or
graphs. pages 335-340. 26

B. Knox and P. Stone. Combining manual feedback with subsequent mdp reward
signals for reinforcement learning. In Proceedings of the 9th International Confer-

ence on Autonomous Agents and Multiagent Systems, volume 1, pages 5-12, 2010.
7

A. Koller and M. Stone. Sentence generation as a planning problem. In Annual
Meeting Association For Computational Linguistics, volume 45, page 336, 2007.
109

http://www.jair.org

BIBLIOGRAPHY 133

A. Kolobov, D.S. Weld, et al. Retrase: integrating paradigms for approximate prob-
abilistic planning. In Twenty-First International Joint Conference on Artificial
Intelligence, 2009. 46

R. Korf. Depth-first iterative-deepening: an optimal admissible tree search. Artificial
Intelligence, 27(1):97-109, 1985. 20

R. Korf. Real-time heuristic search. Artificial Intelligence, 42:189-211, 1990. 40
R. Korf. Linear-space best-first search. Artificial Intelligence, 62:41-78, 1993. 19

M. Lekavy and P. Navrat. Expressivity of Strips-like and HTN-like planning. In
Proc. 1st KES Int. Symp.KES-AMSTA 2007, pages 121-130, 2007. 7, 74

N. Lesh and O. Etzioni. A sound and fast goal recognizer. In Proc. IJCAI-95, pages
1704-1710, 1995. xvii, 3, 113, 115, 124

L. Liao, D.J. Patterson, D. Fox, and H. Kautz. Learning and inferring transportation
routines. Artificial Intelligence, 171(5-6):311-331, 2007. 71

V. Lifschitz. On the semantics of STRIPS. In M. Georgeff and A. Lansky, editors,
Proc. Reasoning about Actions and Plans, pages 1-9. Morgan Kaufmann, 1986. 13

J. McCarthy. Circumscription — a form of non—monotonic reasoning. Artificial In-
telligence, 13:27-39, 1980. 112

J. McCarthy and P.J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. Machine intelligence, 4(463-502):288, 1969. 13

D. McDermott. Using regression-match graphs to control search in planning. Arti-
ficial Intelligence, 109(1-2):111-159, 1999. 21

D. McDermott. The 1998 Al Planning Systems Competition. Artificial Intelligence
Magazine, 21(2):35-56, 2000. 13, 15, 29, 30

G. Monahan. A survey of partially observable markov decision processes: Theory,
models and algorithms. Management Science, 28(1):1-16, 1983. 40

K. P. Murphy. Dynamic bayesian networks. Probabilistic Graphical Models, 2002.
116, 117

A. Newell and H. Simon. Human Problem Solving. Prentice-Hall, Englewood Cliffs,
NJ, 1972. 11

N. Nilsson. Principles of Artificial Intelligence. Tioga, 1980. 11, 20

R. Nissim, J. Hoffmann, M. Helmert, et al. Computing perfect heuristics in polyno-
mial time: On bisimulation and merge-and-shrink abstraction in optimal planning.
In HDIP 2011 3rd Workshop on Heuristics for Domain-independent Planning,
page 5, 2011. 20

J. Orkin. Agent architecture considerations for real-time planning in games. Proceed-
ings of the 1st AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2005. 7

C. M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Mas-
sachusetts, 1994. ISBN 0201530821. 16, 17

J. Pearl. Heuristics. Addison Wesley, 1983. 11, 17, 18, 19, 20, 21, 22

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
113

E. Pednault. ADL: Exploring the middle ground between Strips and the situation
calcules. In R. Brachman, H. Levesque, and R. Reiter, editors, Proc. KR-89, pages
324-332. Morgan Kaufmann, 1989. 54

W. Pentney, A. Popescu, S. Wang, H. Kautz, and M. Philipose. Sensor-based un-

134 BIBLIOGRAPHY

derstanding of daily life via large-scale use of common sense. In Proc. AAAI-06,
2006. 3

C. R. Perrault and J. F. Allen. A plan-based analysis of indirect speech acts. Com-
putational Linguistics, 6(3-4):167-182, 1980. 3, 13, 51, 53, 109, 110, 112, 124

G. Pezzulo. Coordinating with the future: The anticipatory nature of representation.
Minds € Machines, (18):179-225, 2008. 119

J. Pineau, G. Gordon, and S. Thrun. Anytime point-based approximations for large
pomdps. JAIR, 27:335-380, 2006. 42

M. Puterman. Markov Decision Processes — Discrete Stochastic Dynamic Program-
ming. John Wiley and Sons, Inc., 1994. 34

D. V. Pynadath and M. P. Wellman. Probabilistic state-dependent grammars for
plan recognition. In Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence, pages 507-514, 2000. 3, 116

M. Ramirez and H. Geffner. Plan recognition as planning. In Proceedings of the
21st International Joint Conference on Artificial Intelligence (IJCAI-09), pages
1778-1783. AAAI Press, 2009. xvii, 49

M. Ramirez and H. Geffner. Probabilistic plan recognition using off-the-shelf classical
planners. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-10), 2010. xvii, 49

M. Ramirez and H. Geffner. Goal recognition over pomdps. In Proceedings of the
22nd International Joint Conference on Artificial Intelligence (IJCAI-11), 2011.
xvii

S. Richter and M. Westphal. The LAMA planner: using landmark counting in heuris-
tic search, 2008. Proceedings of the 2008 International Planning Competition. 4,
17, 20, 21, 27, 68

S. Richter and M. Westphal. The LAMA planner: Guiding cost-based anytime
planning with landmarks. Journal of Artificial Intelligence Research, 39:127-177,
2010. 20, 28

S. Richter, M. Helmert, and M. Westphal. Landmarks revisited. In Proc. AAAIL
pages 975-982, 2008. 26, 27, 80

V. Rieser and O. Lemon. Natural language generation as planning under uncertainty
for spoken dialogue systems. Empirical methods in natural language generation,
pages 105-120, 2011. 109

R. Rosen. Anticipatory Systems. Pergamon Press, 1985. 119

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-
Hall, Englewood Cliffs, NJ, 2nd edition edition, 2003. 16, 19

E. Sacerdoti. The nonlinear nature of plans. In Proceedings of IJCAI-75, pages
206-214, Thilisi, Georgia, 1975. 108, 109

C. Schmidt, N. Sridharan, and J. Goodson. The plan recognition problem: an
intersection of psychology and artificial intelligence. Artificial Intelligence, 11:
45-83, 1978. xv, xvi, xvii, xxiv, 3, 13, 51, 53, 107, 108, 109, 110, 119, 124

D. Silver and J. Veness. Monte-carlo planning in large pomdps. Advances in Neural
Information Processing Systems (NIPS), 2010. 46

E. Sondik. The Optimal Control of Partially Observable Markov Processes. PhD
thesis, Stanford University, 1971. 40

E. Sondik. The optimal control of partially observable markov decision processes

BIBLIOGRAPHY 135

over the infinite horizon: discounted costs. Operations Research, 26(2), 1978. 40

R. Sutton and A. Barto. Introduction to Reinforcement Learning. MIT Press, 1998.
42

M. Vilain. Getting serious about parsing plans: A grammatical analysis of plan recog-
nition. In Proceedings of the Fighth National Conference on Artificial Intelligence,
pages 190-197, 1990. 117

T. Walsh. Sat v csp. Principles and Practice of Constraint Programming—CP 2000,
pages 441-456, 2000. 8

D. S. Weld. An introduction to least commitment planning. Al Magazine, 15(4):
27-61, 1994. 110

J. Wu, A. Osuntogun, T. Choudhury, M. Philipose, and J.M. Rehg. A scalable
approach to activity recognition based on object use. In Proc. of ICCV-07, 2007.
xxii, 73, 77, 78, 79

Q. Yang. Activity Recognition: Linking low-level sensors to high-level intelligence.
In Proc. IJCAI-09, pages 20-26, 2009. 3

	Abstract
	Resum
	Resumen
	Preface
	List of Figures
	List of Tables
	Planning Background
	Introduction
	Motivation
	Example: RoboSchool
	Planning and Plan Recognition
	Overview of Contributions
	Outline of the Thesis

	Classical Planning
	The Classical Planning Model
	Factored Representations in Strips
	Complexity of Strips planning
	Heuristics
	Heuristic search algorithms
	Reachability Planning Heuristics hm
	Relaxed Plan Heuristics
	Heuristics Based on Planning Landmarks
	State–of–the–art Planners
	Example: RoboSchool in Strips
	Summary

	Goal MDPs and POMDPs Planning
	Goal Markov Decision Processes
	Solving MDPs by Dynamic Programming
	DP Algorithms for Goal Mdps
	Goal POMDPs
	Goal POMDPs as MDPs over Belief Space
	GPT Modeling Language
	Summary

	Planning–based Plan Recognition
	PR over Classical Planning Theories
	Preliminary Definitions
	Accounting for Rational Agents
	A Qualitative Model of Plan Recognition
	Computing Plans that Satisfy Observations
	Computation of Optimal Goal Set
	Limitations of Qualitative Model
	Probabilistic Model of Plan Recognition
	Computation of Posterior Goal Probabilities with Classical Planners
	Evaluation Domains from Planning Benchmarks
	Evaluation Domains from Plan Libraries
	Experimental Results
	Summary

	PR over POMDP Theories
	Motivation
	Goal Recognition for Goal Pomdps
	Complete Observation Sequences
	Incomplete Observation Sequences
	Computation of Observation Likelihoods
	Evaluation Domains
	Experimental Results
	Summary

	 Discussion
	Approaches to Plan Recognition
	BELIEVER
	Plan Recognition and Natural Language
	Plan Recognition as Minimum Set Cover
	Probabilistic Models for Plan Recognition
	Planners Generating Plan Libraries
	Plan Recognition and Dynamic Bayesian Nets
	Plan Recognition as Parsing
	Plan Recognition as Inverse Goal MDP planning
	Summary

	Conclusions
	Contributions
	Loose Ends
	Future Work

	Bibliography

