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Experimental and Numerical Investigation of the Flow in a Toroidal Cavity

By

Mohammad Yousuf Suliman Al-Shannag

Supervisor:  Professor Francesc Giralt i Prat
Co-supervisor:  Dr. Joan Herrero i Sabartés

The shear-driven incompressible flow in a toroidal cavity of square cross-

section (DxD) and radius of curvature Rc has been studied both experimentally and

numerically. The flow has been realized in two toroidal cavities driven by an external

channel flow adjacent to the top flat lid of the toroid (open-cavity flow configuration).

The first toroidal cavity has been designed and constructed for a curvature ratio

(δ = D/Rc) of about δ = 0.51 (D = 100.0 mm and Rc = 195.0 mm). In addition, the

toroid test section, previously, designed by Cushner (2001), for δ = 0.25 (D = 50.0

mm and Rc = 200.0 mm) has been used to construct the second facility.

The Particle Image Velocimetry (PIV) technique and a Rheoscopic fluid have

been used to visualize the motion of liquid water at certain vertical and horizontal

planes of the flow domain. Numerical solutions have been obtained by integrating

the incompressible time-dependent Navier-Stokes equations using a fourth-order

accurate code. In addition to the open-cavity flow arrangement, the toroidal cavity

driven by sliding the top flat wall, Lid-driven cavity (LDC) problem, has been

considered in the calculations.

The flow visualization experiments have captured the three-dimensional

periodic structures of Taylor-Görtler vortices (TGV) at Reynolds number of about



xx

Re = 1000. Three-dimensional calculations of idealized LDC and open-cavity flow

arrangement have resulted in steady two-dimensional flow solutions for small

Reynolds numbers. When Reynolds number is sufficiently increased, the two-

dimensional flow becomes unstable to different centrifugal-type of modes depending

on curvature of the toroid. Steady modes of short wavelength render the LDC flow,

driven by sliding the top wall radially outward, three-dimensional in a slightly curved

enclosure (δ ≤ 0.125). When the motion is induced by sliding the top wall radially

inward, the same type of mode has been obtained regardless of the δ value. The

dominant modes become time-periodic and of longer wavelength for both open-

cavity flow (δ = 0.25 and 0.51) and idealized LDC flow (sliding wall radially outward

with δ = 0.25) cases. From the Eulerian viewpoint, the dynamic flow behavior is

characterized by periodic alternation in the sense of rotation of the TGV. In contrast,

for a strongly curved enclosure (δ ≥ 0.51) with an outwardly sliding lid, the modes are

stationary and of very long wavelength. 

Heat transport accompanying both 2D and 3D LDC flows has been

investigated numerically. The transfer rates have been calculated for a range of

Reynolds numbers and curvature ratios. A comparison between the 2D and 3D

numerical results demonstrates the importance role of Taylor-Görtler vortices in

improving the heat transfer processes. While, for δ = 0.125, the heat transfer rate

increases slightly when the 2D flow becomes three-dimensional, a drastic increase in

the heat transfer has been noticed for δ = 1.0. Thus, Taylor-Görtler modes of longer

wavelength favor the mixing process largely.

Calculations of the kinetic energy and vorticity budgets have demonstrated

that the first active modes are caused mainly by stretching/tilting of vorticity

fluctuations and through an energy exchange between the fluctuating and the mean

vorticity fields.
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1

1. INTRODUCTION

Shear-driven cavity flows in which fluid motion is induced by a parallel shear

action concern a wide range of industrial, biological, and environmental applications.

The problem of flow of burned and unburned fluids in the combustion chambers is

approximated by motion in a channel with a cavity to investigate the stability of flame

(Sand, 1991). Many manufacturing devices, such as flexible blade coaters and short-

dwell coaters (Aidun et al., 1991), used to produce high quality papers and

photographic films, and continuos drying chambers (Alleborn et al., 1999), have

shear flow phenomena. The present class of flows finds applications in the mixing

processes of biological suspensions and blending of viscous fluid, where the thermal

energy and molecular species transfer are greatly enhanced (Miles et al., 1995, Jana

et al, 1994, Ottino, 1989). In botany, the plant nutrient vessels are modeled as

axisymmetric vessels with periodically distributed cavities in order to study the

transport phenomena of physiological liquids (Jeje and Zimmerman, 1979). In the

environment, shear-driven cavity flows can provide a good test bed to study the

waterborne pollutant creation in large lakes or ponds (Cuesta et al., 1999).

 Many shear-driven cavity flow problems of complicated geometry are simplified

by a well-known version called lid-driven cavity (LDC). Usually, it consists of a

rectangular enclosure where the fluid motion is induced by sliding one or more

distinct solid walls. The shape of the cavity and the way of creating the motion

depend on the purpose of the study. The problem of incompressible fluid flow in

rectangular parallelepiped enclosures, which is driven by sliding one solid wall has
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been widely studied over the past three decades in numerous research centers (see

the sketch in Fig. 1.1a). Many engineering situations have flow regimes similar to the

rectangular LDC hydrodynamics, such as the flow over cavities on the surfaces of

aircrafts or on the walls of heat exchangers (Prasad and Koseff, 1989). Indeed, the

simple domain and the easily posed boundary conditions have made this type of

shear-driven flow an attractive benchmark for Navier-Stokes solvers. Furthermore,

this flow arrangement offers the opportunity to better understand many fundamental

problems in fluid mechanics. Several phenomena typical of incompressible flows

occur in LDC such as: separation of streamlines (corner eddies and primary eddy),

corner singularities, local features of centrifugal instability such as Taylor-Görtler-like

vortices (TGV), complex and chaotic mixing motions, transition, and turbulence. It

can be said that the LDC flow problem is very rich in its physics. Most of the previous

studies have been conducted on LDC flows in a rectangular geometry.

The toroidal cavity shown in Fig. 1.1(b) represents a generalized configuration for

the shear-driven cavity flow problems (Phinney and Humphrey, 1996; Sudarsan et

al., 1998). Since the end-walls of the parallelepiped are absent in the toroidal

geometry, this permits the experimental and the numerical realization of the

axisymmetric flow at low Reynolds numbers and the investigation of the first

transition, solely due to centrifugal instability. The literature review will show that few

studies have investigated the shear-driven cavity flow in this geometrical

configuration. Thus, the attention of this investigation has focused on the LDC flows

with the toroidal geometry shown in Figs. 1.1b and 1.3.

1.1 Literature review

A review of the literature reveals that many numerical studies have used

direct numerical simulation (DNS) or a linear stability analysis to investigate the two-
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and three-dimensional characteristics of LDC flows. In contrast, few experiments of

the LDC flow problem appear in the literature. Some of the numerical investigations

reported a qualitative agreement with the experiments. However, most of these

studies correspond to three-dimensional (3D) flow calculations and have failed to

obtain a clear picture of the flow behavior because of the high cost of the

computations.

1.1.1 Two-dimensional rectangular LDC flows

The steady two-dimensional rectangular LDC flow (see Fig. 1.1a) has been

calculated by many different numerical techniques (Burggraf, 1966; Pan and Acrivos,

1967; Benjamin and Denny, 1979; Ghia et al., 1982; Schreiber and Keller, 1983;

Prasad and Koseff, 1989; Luchini, 1991; Nishida and Satufoka, 1992). These studies

have found that the flow structure is characterized by a primary large eddy and that

secondary vortices form near the lower corners; see Fig. 1.2(a). Steady flow

solutions have been reported for Reynolds number up to approximately Re = 10000.

Benjamin and Denny (1979) have found that when the Reynolds number is

increased beyond about Re = 1200, an additional secondary eddy appears at the

upper upstream corner. Ghia et al. (1982) have obtained highly accurate solutions

using the coupled strongly implicit and multigrid methods with a grid as fine as

(257x257). At Re = 7500 and 10000, Ghia et al. (1982) have reported the

appearance of two tertiary vortices in the corner regions.

Time dependent two-dimensional rectangular LDC flow has been computed by

several investigators including Goodrich et al., 1990; Shen, 1991; and Poliashenko

and Aidun, 1995. In a rectangular LDC of unit height-to-width ratio (aspect ratio),

Shen (1991) has found that the flow is periodic in time (which indicates Hopf

bifurcation) for 10000<Re≤15000. At Re = 15500, the flow loses time periodicity and



Chapter 1            Introduction

4

becomes quasi-periodic. When the aspect ratio of the cavity is equal to 2:1, Goodrich

et al. (1990) have noticed persistent time oscillation of the 2D flow at Re = 10000.

Poliashenko and Aidun (1995) have calculated the sequence of transitions from

steady state to chaotic flow in the plane LDC of aspect ratios 0.8,1.0, and 1.5. They

have showed that, depending on the cavity aspect ratio, the first transition from

steady flow to a time periodic flow could be through a supercritical or a subcritical

Hopf bifurcation.

1.1.2 Three-dimensional rectangular LDC flows

Koseff and coworkers (Rhee et al., 1984, Koseff and Street, 1984a, b, c; Koseff

et al., 1983, 1985; Freitas et al., 1995; Prasad et al., 1988; Prasad and Koseff, 1989)

have studied both experimentally and numerically the three-dimensional flow in the

LDC for Reynolds numbers in the range 1000<Re<10000. Koseff and Street (1984)

have visualized the main circulation cell and the three-dimensional structures, such

as corner vortices in the end-wall region and longitudinal Taylor-Görtler-like vortices

(see Fig. 1.2). The flow field has been visualized using the thymol-blue technique

and by means of a rheoscopic liquid illuminated by laser-light sheets. Quantitative

velocity profiles have been measured using a two-component laser-Doppler

anemometer. The gross flow characteristics are in a qualitative agreement with the

previous two-dimensional calculations. By varying the span-to-width aspect ratio

(SAR), Koseff and Street (1984) have noticed that the size of the downstream

secondary eddy (DSE) increases as Re increases from 1000 to 10000 for a SAR of

3:1, while for SAR’s of 1:1 and 2:1 the DSE reduces in size when Re>2000. Before

the appearance of turbulence, at Re ≈ 6000, they have observed TGV that form

between the primary circulating cell and the DSE one (see Fig. 1.2b). Another

feature of the three-dimensionality of the flow is the corner vortex. The existence of
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this vortex is attributed to the adjustment of the shear and pressure forces to the no-

slip condition imposed at the end-walls.

Freitas and Street (1988) have simulated numerically the three-dimensional flows

in a 150 mm by 150 mm by 450 mm cavity (SAR of 3:1) at Re = 3200. They have

included in their numerical simulations the effect of end-walls viscous damping,

which results in a pressure-driven secondary flow. The TGV predicted by their

numerical simulation posses wavelengths in the range 30-50 mm and time scales

between 40 and 140 s.

 Aidun et al. (1991) have visualized experimentally the flow in a cavity of

square-cross section (50.8 mm by 50.8 mm), with a SAR of 3:1, over a range of Re

from 100 to 2000. Their cavity has allowed some through-flow due to fluid losses

from the downstream corner of the moving lid. They have found that the flow

becomes time-periodic at Re = 825. The critical period of oscillation is about

Λ = 3.0 s and it decreases by about 20% at Re = 1000. Time-periodic spiral-shaped

vortices appear to travel from the symmetry plane to the end-walls. For Re>1900, six

pairs of TGV are produced in the form of mushroom-shaped structures. The flow

visualizations show that these structures are irregularly spaced and nonuniform in

size. By increasing Re, their size shrinks but their number remains unchanged.

When Re is suddenly decreased from Re = 2000 (unsteady state) to Re<500, Aidun

et al. have identified a steady three-dimensional vortex flow which fills the whole

cavity.

Jordan and Ragab (1994) have used both direct numerical simulation (DNS) and

large eddy simulation (LES) methodologies to predict the unsteady and turbulent

flow characteristics at Re = 5000 and 10000. Their cavity had square-cross section

with a SAR of 1.5:1. Their DNS results at Re = 5000, show an unsteady 3D laminar
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flow which is characterized by nine pairs of TGV spanning the cavity bottom and by

3D corner vortices owing to the end-walls effect. The Taylor-Görtler vortices change

rapidly in size and they meander only locally. Using LES at Re = 10000, Jordan and

Ragab have found a distortion of the TGV and an irregular development of the DSE

because of the random combined effects of the main circulation cell, TGV, and the

3D corner vortices. The quantitative measurements done by Benson and Aidun

(1992) in the same apparatus using wall-mounted hot-film probes have confirmed

the existence of the unstable mode in the LDC flow problem of Aidun et al. (1991).

Other studies have used linear stability methods to analyze the onset of instability

in the rectangular LDC flows. These studies have imposed periodic boundary

conditions in the spanwise direction in order to investigate centrifugal instability, the

responsible for the generation of TGV cleanly. Ramanan and Homsy (1994) have

computed first the 2D base flows over a range of Reynolds numbers. Then, they

have perturbed these mean flows with three-dimensional disturbances. They have

observed that the mean flow losses stability due to a long wavelength steady mode

at a critical Reynolds number of Re = 594. A second unstable mode, with wavelength

close to the cavity width, is found at Re = 730. Ding and Kawahara (1998) have

investigated the linear stability of the same LDC flow by means of the mixed finite

element method. They have noticed that the three-dimensionality in the flow appears

at a critical Reynolds number of 920, with an unsteady mode of wavenumber

4.7=κ .

Recently, Albensoeder et al. (2001a) have carried out linear stability analyses with

shorter wavelength modes for rectangular cavities of different aspect ratios. They

have found that the first instability in the square LDC flow is characterized by a

steady mode with a critical Reynolds number, Re = 786 and a critical wavenumber
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4.15=κ . They have calculated the energy-transfer rates from the base flow to the

critical perturbation mode and they have concluded that the physical instability

mechanism responsible for the formation of the steady three-dimensional vortex flow

is due to a centrifugal process. They have found that the critical Taylor-Görtler mode

receives most of its energy from a banana-shaped region near the upstream wall. It

is therefore clear that Ramanan and Homsy (1994) and Ding and Kawahara (1998)

have missed this steady mode since the true critical wave number is out of the

boundary of their linear stability analyses. Albensoeder et al. (2001a) have confirmed

experimentally the steady mode in a square cavity with a large span-to-width aspect

ratio (SAR of 6.55:1). Their linear stability analyses have predicted a three-

dimensional steady mode with a long wavelength for deep cavities. For shallow

cavities, the mode is unsteady with very short wavelength. The unsteady mode

consists of three-dimensional short waves propagating in the spanwise direction of

the cavity.

Other studies have investigated both laminar and turbulent flows characteristics

in the LDC problem. Leriche and Gavrilakis (1999) have simulated directly the flow in

a lid-driven cubical cavity at a Reynolds number above 10000. They have reported

an unsteady laminar flow within the cavity for Re between 10000 and 18000.

Deshpande and Milton (1998) have investigated the Kolmogorov scales in a cubical

cavity by means of DNS. They have found that a value of 0.01 times the size of the

cubical cavity is a good representative value for the Kolmogorov length scales at

Re = 10000. A review of the lid-driven cavity flow problem is given by Shankar and

Deshpande (2000).

Kuhlmann and coworkers (Kuhlmann et al., 1997, 1998; Albensoeder et al.,

2001b; Blohm and Kuhlmann, 2002) have investigated both numerically and
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experimentally the incompressible vortex flows in two-sided lid-driven cavities in a

set of recent studies. In these studies, two opposite walls of the cavity move steadily

in parallel or anti-parallel directions with the same velocity value and some cases

with different velocities. They have reviewed some interesting topics in the LDC flow

problem such as non-uniqueness of the basic two–dimensional flow and the elliptic

instability, which destabilizes the basic flow through steady or unsteady three-

dimensional modes.

1.1.3 Toroidal lid-driven cavity flows

In parallelepiped lid-driven cavity, the centrifugal forces driving the TGV in the

bulk of the flow differ in magnitude from the pressure forces driving 3D corner

vortices near end-walls. Non-linear interaction between the forces of the two types

can affect the critical values that characterize the Taylor-Görtler mode. Hence, the

presence of end-walls in the parallelepiped lid-driven cavity prevented many

researchers to capture the correct mode in their experiments or numerical

simulations.

Phinney and Humphrey (1996) have proposed curving the finite parallelepiped

LDC upon itself such that the two end-walls will merge to form a toroid of rectangular

cross-section as shown in Fig. 1.1b. In this way, the pressure gradient induced near

the end-walls is removed. The motion in the toroid is characterized by the Reynolds

number, the aspect ratio, and curvature ratio ( cRD=δ ); where D is the width of the

toroid cross-section, Rc = (Ri +Ro)/2 is the toroid radius of curvature.

 In the study of Phinney and Humphrey (1996), the motion within the toroid is

generated by imposing a constant radial velocity at the top flat wall. Steady

axisymmetric calculations are performed for values of the Reynolds number equal to
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2400, 3200, and 4000 and values of δ ranging from 5.0x10-6 to 1.0. For values of

the curvature ratio below δ = 0.05, the typical two-dimensional gross flow pattern of

the rectangular cavity is reproduced. At a given value of the Reynolds number, a

critical curvature ratio is found above which the primary circulating cell has migrated

toward the upper downstream corner. Humphrey and Phinney have specified the

transition boundary for migration of the primary vortex by the relation:

5141 Re58.3 −=δcr .

Cushner (2000) has realized experimentally the shear-driven flow of liquid

water in a toroid of square-cross section and of a curvature ratio (δ = 0.25);

D = 50.0 mm and Rc = 200 mm. As shown in Fig. 1.3, the motion within the cavity is

induced by an stream of the same fluid that expands radially outward through the

external channel located between the bottom of the lid and the top of inner-radius

and the outer-radius walls of the cavity. Another new parameter, gap-to-width ratio

( Dh /=γ ) is specified to characterize the fluid motion, where h is the gap width of

the external channel. Reynolds number has been defined as ν= /Re DUh , where hU

is the channel-width average velocity at the inlet section shown in Fig 1.3. For

Re = 5000 and 015.0=γ , Cushner has reported the presence of Taylor-Görtler

vortices with a wavenumber 0.13=κ , approximately.

Spassov (2001) has used both linear analysis and numerical simulation to

study the stability of the lid-driven incompressible flows in toroidal cavities of square-

cross section and five different curvature ratios, namely, δ= 0 (parallelepiped),

0.125, 0.25, 0.5, and 1. The fluid motion within the toroid was induced by sliding the

upper flat wall radially outward. The radial velocity along the upper flat wall is

inversely proportional to the radial distance. For small curvatures, 125.0≤δ , the
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steady three-dimensional mode of the straight LDC flow predicted by Albensoeder et

al. (2001a) has been reproduced. Spassov (2001) has reported two other types of

modes. For 25.0=δ , the mode is unsteady and its wavelength is twice the

wavelength of the modes corresponding to the small curvatures. For larger curvature

5.0≥δ , a steady type of modes with wavelength five times longer than the

wavelength at smaller curvatures has been obtained. Furthermore, Spassov (2001)

has found that the critical modes at δ= 0.125 and 0.25 draw their energy from a

region near the dividing streamlines between the primary vortex and the upstream

secondary eddy. For 5.0≥δ , this region is located between the primary vortex and

the downstream secondary eddy.

1.2 Objectives of this study

The aim of the present study is to identify, numerically and experimentally, the

structure and the dynamics of the isothermal flow of liquid water and its mixing

process within toroidal cavities of different curvature ratios. This will be achieved

through the following specific objectives:

(a) Design and construction of a shear-driven cavity apparatus which has a toroid of

square-cross section (D = 100.0 mm) and radius of curvature (Rc = 195.0 mm).

This toroidal cavity is characterized by curvature ratio of about δ = D/Rc = 0.51.

Another toroidal cavity apparatus with δ = 0.25 will be built as a part of the

present investigation using the toroid, previously, designed by Cushner (2000),

with square-cross section (D = 50.0 mm) and radius of curvature

(Rc = 200.0 mm).
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(b) Measurement of the velocity field at given planes of the toroidal cavity with

δ = 0.51, gap-to-width ratio ( 04.0/ ==γ Dh ), and Reynolds number of about

1000. Furthermore, a possible three-dimensional flow structures will be visualized

under these operating conditions in the toroidal cavity with δ = 0.25.

(c) Unsteady two- and three-dimensional calculations will be performed for the

toroidal geometry of both LDC flow and open-cavity flow arrangements, sketched

in Figs. 1.1(b) and 1.3, respectively, using a fourth-order finite difference

discretization algorithm. The numerical results will be compared with the

corresponding experimental results.

(d) Calculation of the kinetic energy and vorticity budgets to provide an insight into

the instability mechanism that originates the three-dimensional vortex flows in the

toroidal cavity.

(e) Assessment of the effect of Taylor-Görtler vortices on the mixing process within

the toroidal cavity. The calculated heat transfer rates of the axisymmetric flows

will be compared with the corresponding rates of the three-dimensional flows.
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(a) (b)

Figure 1.1. Schematic of lid-driven cavity (LDC) flow. (a) Coordinate system and
view of the overall flow field in rectangular LDC; (b) Coordinate system of toroidal
LDC flows for one-quarter of the toroid.
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problem.
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Figure 1.3. Front view of the open-cavity with a toroidal geometry. The circulation of the fluid is induced by the shearing action of
the external channel flow.
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2. THEORY

2.1 Equations of motion 

The present investigation presumes an incompressible flow of constant

properties, Newtonian fluid. Hence, the continuity equation and the Navier-Stokes

equation can be described in general vectorial form as:

Continuity equation:

0ˆ ��u� (2.1)

Navier-Stokes equation:

uuuu ˆˆ1ˆ)ˆ(
ˆ 2

��� ��
�

����
�

� p
t

(2.2)

where û  is the velocity vector, t is time, p̂  is the dynamic pressure, , �  is the fluid

viscosity, �  is the fluid density, ����  is the fluid kinematic viscosity, � is the

gradient operator, and �2 is the Laplacian operator.

2.2 Boundary conditions

At all solid surfaces of the cavity, the no slip condition requires that 0ˆ �u . For

the purpose of the numerical calculations in the open-cavity arrangement (Fig. 1.3),

the following boundary conditions are assumed:

- At the inlet section of the external flow (Fig. 1.3), a flat or a parabolic velocity profile

have been used along the axial direction.

- At the outlet section shown in Fig. 1.3, the derivatives of the circumferential and

axial velocity components in the radial direction are set to zero:

0
ˆˆ

�
�

�
�

�

�
�

r
u

r
u z (2.3)
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where 
�

û  and zû are the circumferential and axial velocity components in the � and z

cylindrical coordinate directions, respectively. The radial velocity component, rû , is

computed so that the continuity equation (2.1) at this outlet section is accomplished.

For the LDC flow case shown in Fig 1.1(b), the radial velocity component is

assumed inversely proportional with the radial distance,

r
Crur

1)(ˆ � (2.4)

In all three-dimensional  calculations  of  both  the  open-cavity flow

arrangement, Fig. �1.3, and the LDC flow case, Fig. 1.1(b), periodic boundary

conditions are applied in circumferential direction, that is: 

� � � �
max�����

� pp ˆ,ˆˆ,ˆ uu 0 (2.5)

where max�  is the angel of the circumferential sector in which the 3D calculation is

performed. Obviously, when the calculations are performed over the whole

circumferential domain, it is equal to ��� 2max .

2.3 Vorticity conservation equations

The vorticity vector, ω̂ , of a fluid motion is defined as:

uω ˆˆ �� � (2.6)

and the vorticity conservation equation for incompressible flows is (Tritton, 1988):

)ˆ(ˆ)ˆ(ˆ)ˆ(
ˆ ωuωωuω 2

��� ������
�

�

t
(2.7)

In the above equation, the term ωu ˆ)ˆ( ��  represents the rate of change of ω̂

due to convection of vorticity. The term uω ˆ)ˆ( ��  represents the action of velocity

gradients on ω̂  (the rate of change of vorticity due stretching and tilting of the vortex

lines). This term is absent in 2D flows because ω̂  is perpendicular to the plane of

flow. In three-dimensional flows, in contrast, there are vorticity-changing processes
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associated with the vortex stretching and tilting term uω ˆ)ˆ( �� . The last term of

Eq.�(2.7) represents the diffusion of ω̂  down a vorticity gradient, in the same way

that the term )ˆ( u2
��  in the Navier-Stokes equation (2.2) represents the diffusion of

momentum down a momentum gradient.

2.4 Scaling of variables

For the purpose of better understanding the physics of the flow and

presenting the results consistently, the following non-dimensional variables are

defined (Humphrey and Phinney, 1996):

D
zZ � , 

D
rR �

averageUD
t

�� , 

averageU
uu
ˆ

� , and 
averageU
pp

2

ˆ
�

� (2.8)

Based on the above non-dimensional variables, the non-dimensional stream-

function is defined as:

caveragedRU
�

��
ˆ (2.9) 

and the non-dimensional vorticity vector is scaled as:

averageU
Dωω

ˆ
� (2.10) 

where D is the width of the toroid cross-section, Rc = (Ri+Ro)/2 is the radius of

curvature of the toroid, and averageU is velocity characteristic of the toroidal cavity. For

open-cavity arrangement sketched in Fig. 1.3, preliminary 2D flow calculations have

shown that the plane-average value of the radial velocity in the external channel

equals approximately to channel-width average velocity at r = Rc. Thus, the latter has
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been used to define averageU  which can be estimated by applying the mass balance

between the feed tube region and the mid cross-section of the channel:

c

tube
average hR

Ud
U

8

2

� (2.11)

where d is the feeding tube diameter and Utube is the averaged velocity in the

feeding  tube. For the LDC type of flow, averageU  denotes the radially-averaged radial

velocity corresponds to the top wall of the toroid and is given by:

��
�

�
��
�

�

�

�
	

2/
2/ln2

DR
DR

D
CU

c

c
average (2.12)

By using the above scaled variables defined by Eqns. (2.8-2.12), the continuity

equation (2.1), the Navier-Stokes equation (2.2), and the vorticity conservation

equation (2.7) can be written in a nondimensional form as:

Continuity equation:

0��u� (2.13)

Navier-Stokes equation:

uuuu 2

Re
1)( ��� �����

��

� p (2.14)

Vorticity conservation equation:

)(
Re
1)()( ωuωωuω 2

��� �����
��

� (2.15)

where the Reynolds number characteristic of the cavity is defined as:

�

�
�

DUaverageRe (2.16)

The dimensionless continuity equation, the radial, circumferential and axial

momentum conservation equations, and the vorticity conservation equations in a

cylindrical coordinate system are presented in Appendix A.
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2.5 Fluctuation kinetic energy and vorticity budgets

It is useful to decompose the flow field into a mean and fluctuating flow in

order to gain more physical understanding of three-dimensional flow mechanisms

(Tennekes and Lumley 1972). The dimensionless velocity vector, the vorticity vector,

and the pressure are decomposed as follows:

uUu ���� , pPp ���� (2.17)

ωΩω ���� (2.18)

The vector variables U �  and Ω�  and the scalar variable P �  are defined as the time

average of the velocity vector, the vorticity vector, and the pressure, respectively,

� �
dt
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�
�� uU 1 , 
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t

tif
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�
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1 (2.19)

and they should be independent of ti and tf for the decomposition to make sense.

Substituting Eqns. (2.17) into the Navier-Stokes equation, Eq. (2.14), gives:

uU

uuuUUuUUu

22
��������

�����������������
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����

����

Re
1

Re
1

)()()()(

Pp
(2.20)

Taking the time-average of all terms of Eq. (2.20) and assuming that the mean value

of a fluctuating quantity itself is zero gives:

UuuUU 2
������������ ����

Re
1)()( P (2.21)

The conservation equations of the velocity fluctuations are obtained now by

subtracting Eq. (2.21) from Eq. (2.20),

uuuuuuUUuu 2
���������������������

��

��
������

Re
1)()()()( p (2.22)

The perturbed vorticity equation is obtained by a similar procedure. The final

fluctuating vorticity conservation equation is:
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ωuωuωuΩUω
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On the other hand, the equation governing the time-averaged fluctuating

kinetic energy, u.u ��

2
1 , is obtained by multiplying Eq. (2.22) by the fluctuation

velocity vector, u� , and taking the time average of all terms. Thus, the fluctuation

kinetic energy budget is written in a scalar form as:
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where ijS� is the mean rate of strain defined by:
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and ijs�  is the fluctuation rate of strain defined by:
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The equation for the mean-square vorticity fluctuations, ω.ω ��

2
1 , is also

obtained by multiplying Eq. (2.23) by the fluctuation vorticity vector, ω� , and taking

the time average of all terms. The final equation is written in a scalar form as:
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To understand how the circumferential fluctuations can destabilize the mean

flow for the cases where the 3D-flow is stationary and is periodic in the
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circumferential direction, the dimensionless velocity vector, the vorticity vector, and

the pressure are decomposed into a circumferentially-averaged and a

circumferentially-fluctuating quantity as follows:

iii uUu ������ , iii ωΩω ������ , pPp ������ (2.28)

where iu �� , i� �� , and p �� are fluctuating quantities and iU �� , i��� , and P ��  are

circumferentially-averaged quantities defined as:
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By using the decomposition of Eq. (2.28), the governing equation for the

circumferentially-averaged kinetic energy, uu �����

2
1 , is:
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and the equation for the circumferentially-averaged vorticity fluctuations ω.ω ����

2
1  is:
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The over bar stands now for averaging the terms over the circumferential direction.

The circumferentially-averaged and -fluctuating rates, ijS ��  and ijs �� , of strain are:
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2.6 Taylor-Görtler phenomena in the LDC flow problem

The inviscid centrifugal instability mechanism was firstly investigated by

Rayleigh (1916). He considered the revolving motion of inviscid fluid with a basic-

state velocity )(ru
�

, an arbitrary function of the radial distance r from the rotation

axis. Rayleigh derived his criterion of stability that characterized by the following

discriminant:

drr
d

3

2)(�
�� (2.34)

where � is the circulation defined by:

�
�� ru (2.35)

and he showed that the necessary and sufficient condition for the existence of

inviscid axisymmetric instability is the appearance of any negative value of the

discriminant,� , in the flow field. This criterion is known as the Rayleigh’s circulation

criterion. Drazin and Reid (1981) demonstrated that this Rayleigh’s criterion is a

sufficient condition for the instability of Couette flow, the flow between two rotating

coaxial cylinders, of an inviscid fluid. Bayly (1988) proposed the extension of the

Rayleigh’s centrifugal instability theory to general inviscid 2D flows. He found that the

sufficient condition for centrifugal instability is that the streamlines be convex closed

curves in some region of the flow. Rayleigh’s inviscid theory was extended by Taylor

(1923) to study experimentally and theoretically the stability of viscous circular

Couette flow. Taylor found that Rayleigh’s circulation criterion is only a necessary

condition for a centrifugal instability. This is attributed to the stabilizing effect of the

viscosity, and thus, the instability is described in term of Rayleigh’s discriminant and

another new parameter (Taylor number) to consider the viscous effect. The flow in a

curved channel (Dean instability problem) and the flow in a boundary layer on a
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concave surface (Görtler Problem) are other examples of viscous flow that exhibit

centrifugal instability (Drazin and Reid, 1981).  

Lid-driven cavity flow instability is referred to as Taylor-Görtler instability since

it is due to the development of a boundary layer on a concave surface (Görtler) and

the flow is characterized by closed streamlines (Taylor). The Görtler number is

defined by (Freitas and Street, 1988):

�

�

�
�

� mUG (2.36)

where m�  is the momentum boundary layer thickness, � is the radius of curvature of

the streamlines, and U� is the characteristic velocity out of the boundary layer. The

Görtler number is approximated here using the following assumptions (Freitas and

Street, 1988): m� � the larger size of the resulting Taylor-Görtler vortices,

���� 2/D , and U� is approximately equal to the tangential velocity corresponds to

the loop of the radius �  just next to the momentum boundary layer.

2.7 Energy conservation equation

The present study has considered the forced convection-heat transfer process

accompanying the toroidal LDC flow. It is assumed that no new flow phenomena

arise because the velocity field is unaffected by the temperature variations. After

calculating the velocity field, the temperature distributions can be determined by

solving the following differential equation that describes the conservation of energy

(Bird et al., 1960):

 *2*
* 1 TTT

��
RePr

���
��

� u (2.37)
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where � �chc TTTTT ��� )(*  is the dimensionless temperature, cT  and hT  are the

temperatures at the bottom wall (Z = 0) and at the top wall( Z = 1), respectively, and

Pr is the Prandtl number defined as:

k
CP�

�Pr (2.38)

Here, PC  is the fluid heat capacity and k is the fluid thermal conductivity and they are

assumed as constant. 

The boundary conditions of Eq. (3.37) are defined as follows. The (inner-

radius) and (outer-radius) walls are adiabatic, which implies:

0
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One of the following boundary conditions are used at the top and the bottom walls:

- Constant wall temperature: 0
0
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- Constant heat flux:                   C
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Periodic boundary conditions are assumed in the circumferential direction, that is:

max

*
0

*
�����

�TT (2.42)

Since the (inner-radius) and the (outer-radius) walls are assumed adiabatic, the

global heat balance requires that:
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where � is the local heat transfer coefficient. A surface-average value for �  is given

by:
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The performance of the forced-convection heat-transfer is expressed in term

of the average Nusselt number, Nu , defined as:

k
D�

�Nu (2.45)
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3. METHODOLOGY

This chapter describes two experimental facilities mounted as a part of the

present research to realize the shear-driven flow of liquid water in an open-cavity of

square cross-section and of curvature ratio δ = 0.25 and 0.51. The chapter explains

also the experimental and the numerical methodologies utilized to visualize and to

simulate the flow.

3.1 Experimental description of the toroidal cavity flow apparatuses

Shear-driven flows of liquid water have been realized experimentally in two

toroidal cavities under isothermal conditions. One cavity has been designed in the

present study and its curvature ratio is δ = D/Rc = 0.51. The other designed by

Cushner (2000) with δ = 0.25, allows to examine the effect of toroid curvature on the

flow behavior. Figure 3.1 shows the dimensions of these two cavities.

3.1.1 The experimental apparatus for the toroidal cavity with δ = 0.51

The apparatus corresponds to the test section of δ = 0.51 has been mounted

at the Laboratory of Hydrodynamic Tunnel of Chemical Engineering Department,

Rovira i Virgili University. Figure 3.2 shows a front view of the toroidal cavity

apparatus in its assembled form. Liquid water has been pumped from a circular tank

(500.0 mm in diameter) into an another one (600.0 mm in diameter) to stabilize the

flow and to absorb the disturbances caused by the centrifugal pump. The pump has

a constant volumetric flow rate of 1000 L/hr. A recirculating line has been used to

adjust the flow rate to the desired Reynolds number. Water flows up through a



Chapter 3 Methodology

28

Plexiglas feeding tube, 300.0 mm in length and 100.0 mm in diameter. This feeding

tube has been connected to the circular mouth of the elliptical mould which has been

made of Polyurethane resin, see Fig. 3.1(a), and it has been painted in a black color

to reduce the light reflection. Within the mould, the water goes up within a tubular

space (85.0 mm vertical length), then it flows through a trumpet-shaped space. The

purpose of this trumpet-shaped curvature is to reduce the disturbances of the

external flow entering the cavity. Water enters the cavity through a circular channel

of width h = 4.0 mm (gap-to-width ratio, Dh /=γ =0.04). The lid rests on the toroid at

three points where three 4.0 mm drill bits, 120 degrees apart, are placed on the

upper surface of the outlet section. Three C-clamps have been used to resist any

possible vibration caused by the external flow and to hold the lid in position. The

external channel flow causes the motion of fluid in the cavity and then leaves through

the outlet channel section. The existing water falls down into a collector of square

cross-section (800x800x150 mm), and then it has been re-circulated to the circular

tank (500.0 mm in diameter) using a centrifugal pump. The outlet section is 55.0 mm

long and has the same vertical gap as in the inlet channel section. The external

cylinder of the cavity has been made from a 5.0 mm thick transparent Plexiglas tube.

The Plexiglas base, the mould, and the external cylinder joints have been perfectly

sealed so that no leakage of water has been noticed.

3.1.2 The experimental apparatus for the toroidal cavity with δ = 0.25

This apparatus has been assembled at the Aerospace Research Laboratory

of Mechanical and Aerospace Engineering Department, University of Virginia. All

parts of the test section shown in Fig. 3.1(b) have been made from Plexiglas. The lid

has a cusp at its center to stabilize the stagnation location of the fluid. A circular

gutter has been implemented in the lid and a circular wall has been built around the
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outer perimeter of the outlet channel section. This is to have an overflow of water

into a gutter instead of water running down the walls of the test section. For further

details on the toroid test-section (δ = 0.25), see Cushner (2000). Figure 3.3 show a

front view of the toroidal cavity apparatus with δ = 0.25. The cavity sits on three 6”

long, ½” diameter rubber-capped bolts distributed 120 degrees apart to provide

leveling mechanism for the test section.

Water liquid flows down from 38 L head tank. The height for the head tank is

set to 2.5 m to achieve the maximum desired Reynolds number. Then, water passes

vertically upward through the rotameter and flow conditioning section, which consists

of 20.0 mm in diameter and 400.0 mm long feeding tube. A stainless steel screen

has been put at the inlet section of the tube. The first 200.0 mm long of the tube has

been filled with a bundle of drinking straws and a second screen is placed at the end

of these straws. The next 200.0 mm long has been left to be unobstructed and then

the water passes through a third screen which is located at the outlet section of the

tube where the trumpet-shaped space of the toroid has been reached. Cushner

(2000) has found that the flow in the trumpet-shaped space first decelerates and

then it accelerates once it passes 60.0 mm radial distance. Thus, two relatively fine

cylindrically-shaped screens have been used to reduce significantly the size and the

intensity of the separation bubble. All screen used in the experiments consist of

0.508 mm thick stainless steel wire with 0.2954 mm2 spaces. The lid sits on three

points where three UNC 10-32 fine-thread screws placed 120 degrees apart have

been used to determine the vertical distance between the lid and the cavity. Water

enters the cavity through a gap of 2.0 mm ( γ = 0.04), it induces the motion of fluid in

the cavity and then it leaves through the outlet channel section. After the outlet

channel section, water has been driven to the gutter of the lid through an overflow
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process. Peristaltic pump has been used to recirculate the water from the gutter to

the head tank. It has been noticed that the outflow stream of the pump is a mixture of

air and water. Hence, a slight vacuum, P ≈ 0.9 atm, has been applied in the head

tank to blow out air from the recirculating water.

3.2 Flow visualization techniques

The open-cavity flow has been visualized using two experimental techniques.

Particle Image Velocimetry (Raffel, 1998) has been used for velocity measurements

of the flow in the toroidal cavity of δ = 0.51. In the toroidal cavity of δ = 0.25, a

rheoscopic fluid (light-reflecting microscopic particles suspended in water) has been

used to obtain a qualitative visualization of the flow.

3.2.1 Particle Image Velocimetry (PIV) technique

Particle Image Velocimetry (PIV) has been used to measure the velocity

vectors in the (R-Z) plane with θ = 0 and in a nearly square part of (R-θ) mid-plane.

The present arrangement of the experimental apparatus with δ = 0.51 has not

allowed us to measure the velocities in a vertical planes at specific values of R since

the side views of the toroid have been obstructed by the dropping-down water.

Pliolite spherical micro-particles have been used in PIV experiments. These

particles are characterized by a high reflectivity and a density of about 1004 Kg/m3.

They range in diameter from 75 to 150 µm. The light sheets used to illuminate planes

in the cavity has been provided using a 150 W lamp projector. The light is shone

through a thin slit made in a darkness slide and the lens of the lamp projector has be

adjusted so that a light sheet of about 1.0 mm thickness has been obtained. The light

sheet has directed vertically through the toroid lid to illuminate the (R-Z) plane. It has

been oriented horizontally through the side of the cavity to illuminate the (R-θ) planes

that seen through the top of the cavity. An electronic RS-170 CCD video camera with
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a resolution of (640x480) pixels has been used to take a sequence of frames with a

sampling frequency of about 18 Hz. The two-frame cross correlation algorithm of

Microsoft TSI INSIGHT has been used to determine the particle displacement

between two selected frames.

In measuring the velocity vectors in a vertical (R-Z) plane, the camera should

be ideally mounted in the normal PIV system arrangement, e.g., with the camera

axis perpendicular to both radial and axial directions. However, the image observed

in doing so is distorted in both directions. This is due to the presence of the

cylindrical Plexiglas wall between the camera and the illuminated plane. To minimize

the distortion problem, the camera has been positioned instead above the lid of the

cavity so that it is perpendicular to the radial axis and inclined about the axial axis by

around I1 = 68 degrees; see Fig. 3.4. With this arrangement, only axial distortion of

the image appears because of the light refraction among air, Plexiglas cavity lid, and

water.

For the purpose of correcting the axial distortion, it has been assumed in the

sketch of Fig. 3.4 that the rays of the light, originating at different axial positions,

realz , and crossing the Plexiglas cover at different horizontal positions, travel towards

the camera with a constant angle I1. The above assumption leads to a linear model,

which correlates the real position, realz to the corresponding image one, imagez  by:

bzaz imagereal += (3.1)

The justification for Eq. (3.1) may be obtained as follows. Applying Snell’s law

(Klein, 1970) between air and glass gives:







= −

Plexiglas

air

N
IN

I
)sin(

sin 11
2 (3.2)
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where, as shown in Fig. 3.4, I2 is the angle between the light ray in Plexiglas medium

and the normal to the horizontal surface. Nair, and NPlexiglas are the refraction indexes

of air and Plexiglas with values of 1.00 and 1.50, respectively. Applying Snell’s law

between glass and water gives:





= −

water

Plexiglas

N
IN

I
)sin(

sin 21
3 (3.3)

where I3 is the angle between the light ray in the water medium and the normal to the

Plexiglas surface and Nwater is the refraction index of water with a value of 1.33. It is

clear from the figure that:

)tan( 2cov Ithickx er=∆ (3.4)

and,

)90tan( 3I
z

x real

−
= (3.5)

The linear treatment developed here assumes that the extension of the light

ray, traveling through the air medium towards the camera, will reach the

corresponding image location, imagez  in Fig. 3.4. Thus,

)90tan()( 1cov Ixxthickz erimage −∆+=+ (3.6)

By substituting the results of x and x∆ , Eqns. (3.4) and (3.5), into Eq. (3.6):





 −

−
−+

−
−= )tan(

)90tan(
0.1

)90tan(
)90tan(
)90tan(

2
1

3cov
1

3 I
I

Ithickz
I
I

z erimagereal (3.7)

Comparing Eqns. (3.1) and (3.7) gives:

)90tan(
)90tan(

1

3

I
I

a
−
−= (3.8)

and,
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



 −

−
−= )tan(

)90tan(
0.1

)90tan( 2
1

3cov I
I

Ithickb er (3.9)

Based on this approximated linear model, the axial velocity component will be

corrected as:

image
z

imagereal
z ua

t
z

a
t

z
u real =

∆
∆

=
∆

∆= (3.10)

The linear model of Eq. (3.7) has been verified experimentally for three

camera angles, I1 = 68o, 60o, and 52o. Figure 3.5 shows the measured image

locations for several values of zreal. It is clear in the figure that the linear model

agrees with the experimental results for I1 = 68o. When I1 is reduced to 60o and 52o,

the linear approximation does not work well. Hence, the camera has been positioned

and inclined about the axial axis by around I1 = 68 degrees.

3.2.2 Rheoscopic fluid flow visualizations

Rheoscopic fluid has been used to provide a qualitative flow visualization in

the open-cavity with δ = 0.25. The fluid used is Kalliroscope Corp. AQ-1000

rheoscopic concentrate, which consists of suspensions of 6x30x0.07 µm crystalline

platelets in water. When the suspended platelets are put into motion, they orient to

align their larger dimension with local shear stress direction thereby making flow

patterns visible. In the presence of incident light, rheoscopic platelets will reflect

differing intensities light areas such that a striking white floodlight image is produced.

The rheoscopic suspension has been added progressively, in 10.0 ml increments, to

the gutter of the lid until the concentration is enough to easily view the flow structure.

It has been found that a concentration of around 1% by volume is high enough to

produce an adequate flow visualization.

A green light beam is generated using a Coherent Innova 70 5-w Argon ion

laser and a TSI COLORBURST Multicolor Beam Separator. The beam coming from
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a TSI fiberoptic probe (Model 9833) is used to produce a light sheet of around 4 mm

thickness by passing the beam through a cylindrical lens. The light sheets have been

oriented vertically through the toroid lid to view the flow at the vertical planes with

R = 3.6, 3.8, 4, 4.2, and 4.4. They are oriented horizontally through the side of the

cavity to visualize the flow in the horizontal (R-θ) planes with Z = 0.1, 0.3, and 0.5,

and 0.7. The 3D-flow behaviors corresponding to these planes have been recorded

over a period of about 2 minutes using a commercial video camera. This is in order

to observe any time-dependent phenomenon of the vortex flow and instantaneous

still images have been acquired from the video records.

3.3 Estimation of uncertainties in the experiment

The sources of uncertainty associated with the experiments arise from

experimental and instrumentation errors. Most importantly, the uncertainty of the

Reynolds number must be estimated. Equation (2.16) shows that Re is a

combination of the channel-width average velocity, averageU  at r = Rc (see Fig. 1.3),

the width of the toroid cross-section, D, the density, ρ , and the viscosity, µ, of the

operating fluid. The variations in density and viscosity have been reduced to

negligible amounts due to the following reasons. Firstly, in the flow visualization

experiments in the cavity with δ = 0.25, a small quantity of rheoscopic fluid (1% by

volume) have been mixed with the liquid water. For the PIV experiments in the cavity

with δ = 0.51, small amounts (around 2 g) of the Pliolite particles (its density is

around 1004 Kg/m3) have been added to a relatively big quantity (it is around

250 Kg) of liquid water. Secondly, the temperature of the operating fluid has been

continuously measured  using a Mercury glass-thermometer (the reading uncertainty

is ±0.5 oC). The temperature was nearly  constant during the time of running the
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experiment. Thus, the changes in density and viscosity of water due to temperature

variation are considered negligible.

The channel-width average velocity, averageU , is a function of the radially-

averaged axial velocity in the feeding tube, Utube, the feeding tube diameter, d, the

radius of curvature of the toroid, Rc, and the gap of the external flow region, h; see

Eq. (2.11). The design errors in the toroid test-section and the feeding tube of both

cavities (δ = 0.25 and 0.51) do not exceed ±0.3% of the cavity width, and thus the

uncertainties in D, d, and Rc, have been considered negligible. Furthermore, the gap

of the external flow region has been measured using a dial caliper; the uncertainty of

the reading is ±0.005 mm which can be also considered negligible.

 The radially-averaged axial velocity in the feeding tube, Utube is calculated

from the corresponding volumetric flow rate of liquid water. The flow meters used in

the apparatus of δ = 0.25 and 0.51 are graduated in increments of 0.1 gpm and

20.0 L/h, respectively. By estimating the reading uncertainty as half of the smallest

graduated increment, the uncertainty in the reading is ±0.05 gpm and ±10.0 L/h for

the apparatus of δ = 0.25 and 0.51, respectively. For gap-to-width ratio, 04.0=γ , the

error in the experimental Re is ±6.3% and ±5.7% for the facility of δ = 0.25 and 0.51,

respectively.

On the other hand, a possible misalignment of the toroid lid leading to a non-

axisymmetric gap width of the external channel will give a significant source of

uncertainty in experiments. This source of error has been minimized as follows. The

gap width has been measured using the dial caliper at six different circumferential

positions. The toroid test section has been leveled carefully by a digital level

accurate to 1/10th of a degree. Then, the C-clamps, used to hold the lid in position

have been tightened gently.
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3.4 Numerical procedure

Calculations have been performed using the CUTEFLOWS-II program, which

is a recent evolution of the original CUTEFLOWS code (Humphrey et al., 1995). The

acronym CUTEFLOWS stands for Computing Unsteady Three-dimensional Elliptic

Flows. The CUTEFLOWS code calculates unsteady incompressible flows in

Cartesian or cylindrical coordinates. The original code, developed in the late eighties

by the group of J. A. C. Humphrey at UC Berkeley, is globally second order accurate

in space and time. It has been successfully tested and applied to many flows

geometries, including LDC flow (Humphrey and Phinney, 1996) and flow between

corotating disks (Schuler et al., 1990; Humphrey et al., 1992; Humphrey et al., 1995;

Iglesias and Humphrey, 1998; and Herrero et al., 1999a, b). The code uses a

staggered grid control-volume arrangement to discretize the conservation equations

in terms of the primitive variables. Details of the staggered control-volume

arrangement may be found in the book of Patankar (1980). The diffusion terms are

discretized by central difference approximations. The convection terms are

interpolated at the faces of the respective control volumes by means of the QUICK

(Quadratic Upstream Interpolation for Convective Kinematics) upwind scheme

(Leonard, 1979). A Poisson equation, resulting from the imposition of the mass

conservation equation in the scalar control volume, is solved by means of the

conjugate gradient method to obtain the pressure field at each time step. A solution

procedure akin to the SIMPLE method described by Patankar is used to obtain the

velocity corrections that will fulfill the mass and momentum conservation laws

simultaneously. A second order explicit Euler method is used to integrate the system

of ordinary differential equations resulting from the spatial discretization of the

conservation equations in the calculation grids.
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The evolution of the code, CUTEFLOWS-II, has been recently developed at

the Transport Phenomena research group of the Universitat Rovira i Virgili. The new

features of the CUTEFLOWS-II program are the following:

(a) A higher accuracy in the schemes of spatial discretization. CUTEFLOWS-II

features a fourth-order accurate centered, and a fifth-order accurate upwind

scheme in the diffusion and convection terms, respectively (Rai and Moin, 1991).

A pseudo-spectral (Fourier) approximation is also available for flows that feature

periodic boundary conditions in one coordinate direction.

(b) Two new Runge-Kutta algorithms, second- and fourth-order accurate,

respectively, have been added for the explicit time integration of the discrete

conservation equations.

(c) The Poisson equation for pressure is solved more efficiently by means of a

refined version of the conjugate gradient method which includes a pre-

conditioning of the matrix of coefficients (Golub, 1996).

(d) The code is completely written in Fortran 90. This makes it more flexible. For

example, it is not necessary to recompile the whole package each time that the

size of the grid, or a particular boundary condition is changed. Also, pre-compiler

directives are no longer needed. This makes the new code portable to any

operating system with the only requirement of a Fortran-90 compiler that

complies with the standards.

(e) The interaction of the user with the code is quite straightforward. It is easy for the

user to select between several available options at the input file and to define a

new problem from scratch, that is, to specify what are the boundary conditions,

the calculations grids, etc.
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3.4.1 Code testing

The original CUTEFLOWS code has been used to calculate flows between

corotating disks by Schuler et al. (1990), Humphrey et al. (1992, 1995), Iglesias and

Humphrey (1998), and Herrero et al. (1999a, b). This type of flow will therefore be

employed to test the performance of CUTEFLOWS-II before using it to predict the

toroidal flows that are the subject of the present investigation. The test geometry is

sketched in Fig. 3.6. It corresponds to the configuration previously used by Herrero

et al. (1999a, b) to analyze the constant-property laminar flow and heat transfer in

the space between coaxial disks corotating in a cylindrically enclosure. Zero width of

the gap between the rim of each disk and the curved enclosure (A = 0) has been

assumed in their study. These authors have assessed the performance of

CUTEFLOWS program in axisymmetric flow calculations for the configuration shown

in Fig. 3.6 at a Reynolds number of 56520Re 2
2 =µΞρ= R  (this value of Re

corresponds to an angular velocity of 300=Ξ rpm for air at 25 oC). Calculations have

been performed using two grid node distributions: one with (NRxNz)  =  (74x40)

nodes and a much finer one with (200x100) nodes in order to check the effect of grid

refinement on the calculated results.

Figures 3.7, 3.8, 3.9, and 3.10 show the time records of the axial velocity

component at two mid-plane (z/H = 0.5) points located at 2RrR = = 0.81 and 0.90.

These time records correspond to calculations performed with the original

CUTEFLOWS (Herrero et. al, 1999a) and with the CUTEFLOWS-II code with both

the QUICK and the fifth-order upwind schemes for the convection terms. The

calculation on the finer (200x100) calculation grid has been also obtained with

CUTEFLOWS-II and the fifth-order accurate scheme. Qualitatively, it is apparent that
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the periodic behavior of the axial velocity component predicted by CUTEFLOWS is

reproduced by CUTEFLOWS-II. Quantitatively, Table 3.1 shows the values of the

dimensionless oscillation frequencies and the root-mean-square (rms) values of the

axial velocity component obtained from each calculation at the two mid-plane

monitoring locations. The dimensionless frequency of the axial velocity predicted by

the CUTEFLOWS-II/5th order algorithm in the finest 200x100 grid is F *= 0.060 (see

Fig. 3.10). This value has been considered as a reference in evaluating the

performance of the three algorithms on the (74x40) grid. The original CUTEFLOWS

code with the (74x40) grid yields F* = 0.071 with a 18% departure from the reference

value; see Fig. 3.7. The oscillation frequencies calculated by CUTEFLOWS-II/QUICK

and CUTEFLOWS-II/5th order with the (74x40) grid over-predict the reference value

by 10% and 6.7%, respectively (see Figs. 3.8 and 3.9). The rms values are not

comparable with a reference value for the (200x100) grid because the location of the

monitoring points in the two grids do not coincide. Only slight differences have been

observed between the rms values predicted by the three algorithms on the (74x40)

grid for the mid-plane location R = 0.81. In contrast, the percent rms values at the

location with R = 0.90 are 0.468, 0.248, and 0.277, which have been obtained using

CUTEFLOWS, CUTEFLOWS-II/QUICK, and CUTEFLOWS-II/5th, respectively. This

means that predictions at the monitoring location with R = 0.90 obtained with both

CUTEFLOWS-II schemes are similar, so what differs is CUTEFLOWS. In

CUTEFLOWS-II/QUICK, the diffusion terms in Eqns. (A.1.2–A.1.4) have been

discretized using a fourth-order centered scheme whereas CUTEFLOWS uses

second order approximation in the diffusion as well as in the source curvature terms.

Such a difference in the discretization schemes is the most probable cause for the

discrepancies in the predicted rms velocity values shown in Table 3.1. The use of
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QUICK or the fifth-order accurate scheme in the convection terms does however

produce only slight differences between the respective results.

Recently, Al-Shannag et al. (2002) have considered the effect of the gap on

the corotating disk flow in a fixed cylindrical enclosure. The dimensions of the test

geometry are given in Fig. 3.6 but with A/R2 = 0.0064, 0.013, 0.026, 0.052 and

0.077. At A/R2 = 0.026, the 3D numerical results obtained using CUTEFLOWS-II

program faithfully reproduce, for the first time, the experimental variations of the

mean and rms circumferential velocities measured by Schuler et al. (1990); see

Fig. 7 in Appendix B.

Further tests of the code have been performed by comparing our results

obtained using CUTEFLOW-II for the LDC flow problem with the corresponding

numerical results reported by Albensoeder et al. (2001a) and Spassov (2001); see

Sec. 4.2.1.

3.4.2 Calculation grid in the toroidal cavity

 The calculation grid of the open-cavity arrangement has been constructed in

the (R-Z) plane as follows. As shown in Fig. 3.11, the grid nodes in the Z-direction

have been distributed uniformly in the external flow region (Z >1.0). Within the body

of the cavity, the spacing between the nodes in the Z-direction increases linearly by

an expansion factor not larger than 1.2. A uniform grid has been also used in the R-

direction within the cavity. The radial grid spacing also increases linearly in the

outflow region by a factor below 1.2. The grid independence of the calculated results

has been examined first. For each Re, a coarse grid has been first used and then it

has been gradually refined until the numerical results with the two finest grids

coincide.
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Two-dimensional (axisymmetric) flow calculations have been performed for

the toroidal cavity with δ = 0.51 at Re = 500 and 1000. The numerical study of

Spassov (2001) of the LDC flow in a toroidally shaped geometry has reported a

steady 2D flow behavior for Re = 500 and for curvature ratios in the range 0≤δ≤1.0.

Depending on the toroid curvature ratio, three-dimensionality in the flow appears at

critical Reynolds number in the range 500<Re<1000. Therefore, the values Re = 500

and 1000 have been selected to examine the grid independence of the numerical

results. Table 3.2 shows the number of grid nodes prescribed in both the axial and

the radial directions. The calculations have been initiated from zero values of all

variables within the flow domain and the boundary conditions are those described in

Sec. 2.2. The results calculated on the different grids have been presented and

compared in terms of the centerline velocity profiles.

Figures 3.12 and 3.13 show the centerline velocity profiles obtained in the three

grids at Re = 500 and 1000, respectively. It is clear that the velocity profiles obtained

with the (32x42) and the (72x72) grids do not agree, while the latter basically

coincide with the profiles obtained with the finest (127x127) grid. Therefore, the

calculation grids consisting of (NRxNz) = (72x72) nodes have been chosen as the

optimal one for performing unsteady 3D calculations with Re = 500 and 1000.

For the LDC flow arrangement shown in Fig. 1.1b, a uniform grid consisting of

(NRxNz) = (72x72) nodes has been used in the (R-Z) plane. This grid is 1.75 more

refined than the one used in the 3D flow calculations of Spassov (2001). In the LDC

flow calculations, the dimensionless integration time step was set as  01.0≤τ∆  to

guarantee a stable convergence and to rule out its influence on the results. In the

open-cavity flow calculations, the time step was reduced even more 004.0≤τ∆ . This
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is due to the dependence of the integration time step on the minimum spacing of the

calculation grid.

In the 3D flow calculations, a periodic boundary condition has been prescribed

in the θ-direction. The same optimal (NRxNZ) calculation grids used in the 2D flow

calculations have been used in the (R-Z) plane to perform the 3D ones. The θ-grid

calculation nodes have been distributed uniformly in the circumferential direction. 3D

calculations have been firstly performed over the entire domain of the toroid. When

few 3D-flow structures have been produced, the θ-grid has been refined to capture

these structures correctly. For the calculation cases in which many 3D-flow

structures are obtained, the θ-grid refinement is of very high cost of calculation. The

periodicity of the flow in the θ-direction permits us to re-make these calculations over

a sector of angle maxθ , which contains at least two full 3D-flow structures. Figure 3.14

summarizes the 3D flow calculation cases performed as a part of the present work.
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Re = 20 565, Grid nodes: (NRxNz) = (74x40)
RMS x 100Numerical Algorithm Dimensionless

frequency R = 0.81 R = 0.90
CUTEFLOWS 0.071 1.070 0.468
CUTFLOWS-II/QUICK 0.066 1.099 0.248
CUTEFLOW-II/5th Order 0.064 1.096 0.277
Re = 20 565, Grid nodes: (NRxNz) = (200x100)
Numerical Algorithm Dimensionless

frequency
CUTEFLOWS-II/5th Order 0.060

Table 3.1. Performance of the original CUTEFLOWS and the new code
CUTEFLOWS-II.

Re Ncavity Nchannel Ntotal = Ncavity + Nchannel -1
500, 1000 34 9 42
500, 1000 64 9 72
500, 1000 117 11 127

(a)

Re Ncavity Noutlet flow region Ntotal = Ncavity + Noutlet flow region -1
500, 1000 21 12 32
500, 1000 51 22 72
500,1000 101 27 127

(b)

Table 3.2. Grid node distributions used in 2D-cavity flow calculations (open-cavity
flow arrangement). (a) in the Z-direction; (b) in the R-direction.
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(a)

(b)

Figure 3.1. Toroidal cavity dimensions with curvature ratio δ = 0.51(a) and 0.25(b).
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Figure 3.2. Front view of the toroidal cavity apparatus with curvature ratio, δ = 0.51.
1) Cavity, 2) Feeding tube, 3) Dropping water collector of square cross-section
(800 x 800 x 150 mm), 4) Circular tank 600 mm  in diameter, 5) Rotameter,  6)
 Regulating valve, 7) Centrifugal pump, 8) Circular tank 500 mm in diameter, 9)
PEBD tube, 25 mm in diameter, 10) Recirculating line pump, and 11) Truss structure.
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Figure 3.3. Front view of the toroidal cavity apparatus with curvature ratio, δ = 0.25.
1) Cavity, 2) Rotameter, 3) Regulating valve, 4) Tygon tubes 25 mm in diameter, 5)
Head tank, 6) Peristaltic pump, and 7) Tygon tubes 8 mm in diameter, 8) Mount
table, 9) Bolt (6” long ½ diameter), 10) Rubber doorstop cap, and 11) Truss
structure, 12) UNC 10-32 fine-thread screws. 13) Flow stabilizing screens (0.508 mm
wire with 0.2954 mm2 spaces, 14) 20 cm long drinking straws.
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Figure 3.4. Sketch of the refraction of the light from a point at the base of the cavity
to the camera lens.
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Figure 3.5. Variation of the real axial locations with their corresponding values in the
distorted image.
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Figure 3.6. Schematic of the test section configuration for the air flow in the
unobstructed space between a pair of the disks. In the present study, R1 = 56.4 mm,
R2 = 105 mm H = 9.53 mm, h = 1.91 mm, A = 0 mm.
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Figure 3.7. Time variation of the axial velocity component at two mid-plane locations
with R = 0.81 and R = 0.90, obtained from two-dimensional calculations with
Re = 20565, and (NRxNz) = (74x40) nodes, using CUTEFLOWS (Herrero et al.,
1998a).
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Figure 3.8. Time variation of the axial velocity component at two mid-plane locations
with R = 0.81 and R = 0.90, obtained from two-dimensional calculations with
Re = 20565, and (NRxNz) = 74x40 nodes, using CUTEFLOWS-II/QUICK.
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Figure 3.9. Time variation of the axial velocity component at two mid-plane locations
with R = 0.81 and R = 0.90, obtained from two-dimensional calculations with
Re = 20565, and (NRxNz) = 74x40 nodes, using CUTEFLOWS–II/5th order.
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Figure 3.10. Time variation of the axial velocity component at two mid-plane
locations with R = 0.81 and R = 0.90, obtained from two-dimensional calculations
with Re = 20565, and (NRxNz) = 200x100 nodes, using fourth-order CUTEFLOWS –
II/5th order.
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Figure 3.11. Schematic of the calculation grid in the (R-Z) plane of the open-cavity
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Figure 3.12. Velocity profiles along the horizontal and vertical centerlines, obtained
from 2D calculations for Re = 500 with three different grids.

Figure 3.13. Velocity profiles along the horizontal and vertical centerlines, obtained
from 2D calculations for Re = 1000 with three different grids.
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(a)

(b)

(c)

Figure 3.14. Summary of the 3D flow calculations performed as a part of the
investigation. (a) Open-cavity flow arrangement, (b) LDC flow arrangement (sliding
top wall radially outward), and (c) LDC flow arrangement (sliding top wall radially
inward).
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4. RESULTS AND DISCUSSION

4.1 Experimental results

The experiments have focused on the 3D-flow features in the open-cavity

shown in Fig. 1.3. The flow has been viewed through the top and the downstream

(outer-radius) walls of the toroid using a light sheet. During the beginning of the

experiment, the fluid is allowed to stabilize and remove transients for a period of

about 10 minutes. When the experiment has been run at low Reynolds numbers, the

fluid in the external channel region penetrates largely into the cavity. Unfortunately, it

was not possible to realize 2D LDC flow expected at low Reynolds numbers. The

external flow penetration has been reduced by increasing the gap-to-width ratio to

the maximum possible value � = 0.04 and by running the experiment at higher

Reynolds numbers. 

Flow visualizations using a rheoscopic fluid have been performed for the flow

with � = 0.25, ��=�0.04, and Re = 1000�63. Figure 4.1(a)-(c) provide instantaneous

snapshots, of the flow in the (R-�) planes with Z = 0.1, 0.3, and 0.5, respectively. As

shown in Fig. 4.1(a), at Z = 0.1, the counter rotating Taylor-Görtler pairs aligned in

radial direction separate the flow into 3D structures near the bottom of toroid. These

structures have the same shape and size. Each one of them is related to one vortex

pair. It has been observed that the 3D structures are distributed periodically over the

whole circumferential domain. Three of these structures are contained in a sector of

about 21 degrees. Thus, the total number of the vortex pairs in the entire domain has

been approximated as N = 51�1. For toroidal cavity flows, the wavenumber, � , is
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defined as � � NRDND c ������� /2 ; where �  is the dimensional wavelength.

Based on this definition, the flow in the toroid with � = 0.25 and � = 0.04 is

characterized by an experimental wavenumber, 25.075.12 ��� . At larger axial

location (Z = 0.3 and 0.5), the circumferentially periodic vortices are aligned near the

upstream (inner-radius) wall and orient themselves in the axial direction (normal to

the paper); see Fig. 4.1(b) and (c). As can be seen in Figs. 4.2(a)-(e), the 3D flow

structures in the vertical planes with R = 3.6, 3.8, 4.0, 4.2, and 4.4 are located near

the bottom wall. Close to the downstream (outer-radius) wall at R = 4.2 and 4.4,

other 3D flow structures appear near the external channel region. During the real-

time observation of the flow, it is noticed that the vortices disappear and reappear

alternatively over a period on the order of one minute. This unsteady flow regime is

similar to the one observed in the same toroid with ��=�0.015 and Re�=�5000

(Cushner, 2000; Humphrey et al., 2001, 2002(appendix C)).

The particle image velocimetry (PIV) technique has been used to measure the

flow of liquid water in the toroidal cavity shown in Fig. 1.3 with � = 0.51 and � = 0.04

at Re = 1000�57. Figure 4.3(a) shows the experimental velocity vectors in the (R-Z)

plane with � = 0. In the PIV flow visualizations, the statistical cross-correlation

algorithm deploys a uniform grid on the measurement section. The height and the

width of each grid cell must be greater than the displacement of the tracer particles.

As shown in the figure, the PIV system is unable to capture the velocity vectors at the

upper part of the vertical plane, where the velocity is highest. A primary flow cell

appears to occupy the bulk of the toroid cross-section. Null values of the velocity

vectors appear also in the lower part of the plane because of the too low velocity

values. The measured velocity vectors in a nearly square part of the (R-�) mid-plane

are shown in Fig. 4.3(b). They demonstrate the presence of three-dimensional
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structures in the toroidal cavity flow at the experimental Reynolds number

Re�=�1000�57. One pair of TGV appears in the (R-�) plane of the figure, which

corresponds, to a sector of a round 23 degrees. The total number of three-

dimensional flow structures in the toroid is about N�=�16�1 and thus, the flow is

characterized by a wavenumber 51.016.8 ��� . 

4.2 Numerical results

Unsteady three-dimensional calculations have been performed for the shear-

driven cavity of both LDC and open-cavity flow arrangements sketched in Fig 1.1(b)

and Fig. 1.3, respectively. Calculations have been realized using a Kernel PC

machine with a 900 MHz Intel processor and 1.0 Gbytes of RAM and a AT/AT

compatible PC machine which has two 1800 MHz AMD processors and 2.0 Gbytes of

RAM. All  3D-flow  calculation  cases  and  their corresponded  grids have  been

described   in Sec.�3.4.2. The 3D calculation grid, for example, of the open-cavity flow

arrangement consists of (NRxNzxN�)�=� (72x72x204) nodes and occupies around

410�Mbytes of RAM. The calculation CPU-times are found to be 8.9 hours, using the

900 MHz Intel processor, and 4.0 hours, using the 1800 MHz AMD processor, for a

dimensionless integration time of � = 10.

4.2.1 Toroidal lid-driven cavity flow (sliding the top wall radially outward)

The LDC flow arrangement in which the motion is induced by sliding the top

flat wall radially outward, see Fig. 1.1(b), has been considered first in order to

investigate the flow instability cleanly, that is, excluding the effect of the external

channel flow. The effect of the curvature ratio of the toroid has been studied by

performing unsteady 3D calculations for ��=�0 (parallelepiped), 0.125, 0.25, 0.51, and

1.0. For the parallelepiped lid-driven cavity, a steady mode of 7.15��  has been
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obtained at Re�=�850. This result is in excellent agreement with the corresponding

result reported by Albensoeder et al. (2001a) and by Spassov (2001). The numerical

results presented in this subsection are in excellent agreement with the

corresponding results found by Spassov (2001).

Toroid with � = 0.125. A steady mode with 0.16��  has been found at Re�=�850. The

toroidal cavity of small curvature has the same flow behavior of the parallelepiped

cavity. The velocity vector plots in the (R-�) mid-plane, Fig 4.4(a), and in the (Z-�)

mid-plane, Fig 4.4(b), present counter-rotating TGV near the upstream (inner-radius)

wall and near the bottom of the toroid, respectively. 

The three-dimensional structures of TGV have been visualized in the entire

field of the toroid by plotting isosurfaces of helicity, ωu ��� , the dot product of

velocity and vorticity. Note that the axisymmetric flow has zero helicity. The velocity

vector plots  shown in Figs. 4.4(a) and (b)  and  the isosurfaces of  helicity  shown  in

Fig. 4.4(c) indicate the presence of the 3D-vortex flow in a region between the

upstream wall and the bottom of the cavity. 

Toroid with � = 0.25. A time-dependent 3D flow has been obtained at Re = 880.

Figure 4.5 displays the time-variations of the three velocity components at

(R,Z,�)�=�(4,0.25,0.06�). The time records show time-periodic behavior with a

dimensionless oscillation frequency 556.02 **
����F , where DUaverage /*

���  is

the dimensionless period of oscillation. The three-dimensional flow is also periodic in

the �-direction with a wavenumber 5.7�� .

The dynamics of the TGV has been examined next; movies of the velocity

vectors in a vertical and horizontal planes of the toroid have been obtained over the

period of oscillation to watch the evolution of the flow. The instantaneous velocity
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vectors of Figs. 4.6(a) and (b) clearly show that the counter-rotating vortices appear

to alternate between two identical but spatially displaced states of motion during half

cycle of oscillation ( *
� /2). The sizes, shapes, and the number of TGV at the times

�1�= 2720 and � = �1+ *
� /2 = 2725.65 are exactly the same. Relative to a fixed

reference point, the projection of the two pairs of TGV shown in Figs. 4.6(a) and (b)

undergo a circumferential displacement of half wavelength (�/2). Owing to this

circumferential displacement, the structures of the fluctuating flow appear to alternate

the sense of rotation periodically with time; see Figs. 4.7(a) and (b). In addition to

that, the number of the structures of the time-averaged flow has been doubled and

thus, the average wavelength is reduced to the half; see Fig. 4.8. Indeed, from

Eulerian viewpoint, movie would shows time-periodic alternation in the sense of

rotation of TGV every 2/*
� . 

A time sequence of isosurfaces of helicity has been obtained over the period

of oscillation *
�  with dimensionless time steps of 32/*

�  (beginning with �1 = 2720).

The circumferential domain consists of two wavelengths. Figures 4.9(a)-(f) show the

evolution of TGV structures in the form of isosurfaces plots of helicity every 6/*
� .

As shown in Fig. 4.9(a), the isosurfaces indicate that the 3D structures of TGV are

aligned between the bottom and the upstream wall of the toroid. During the first half

of the period of oscillation, Figs. 4.9(a)-(d) show that the two pairs of TGV are

decaying and other two pairs are appearing in new positions with a circumferential

displacement of �/2. The new pair will decay during the second half of *
�  and the old

pairs will be reproduced, see Figs. 4.9(d), (e), (f), and (a). 

Toroids with � = 0.51 and 1.0. A steady mode has been found at Re�=�800 for

��=�0.51 and at Re�=�600 for ��=�1.0. Figures 4.10(a) and (b) present the velocity
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vectors for � = 0.51 in the (Z,�) and (R,�) mid-planes, respectively. Five pairs of TGV

are seen in the entire circumferential domain. Figures 4.11(a) and (b) show that for

��=�1.0, three pairs of TGV appear in the (Z,�) and (R,�) mid-planes. Thus, the 3D

flow is characterized by a steady mode of long wavelength, 0.30.2 ��� , at large

curvature ratios.

In addition, the 3D flow structures have been visualized by the helicity

isosurfaces plotted in Fig. 4.11(c) for � = 1.0. The axially aligned structures near the

upstream (inner-radius) wall depict the region for the presence of TGV. Other

circumferentially aligned 3D structures appear near the core of the toroid. 

4.2.2 Toroidal lid-driven cavity flow (sliding the top wall radially inward)

Unlike the flow in the parallelepiped LDC, the effect of the curvature of the

toroidal cavity is to accelerate/decelerate the fluid of the main circulation cell. The

present study has examined numerically the effect of this acceleration/deceleration

process on the flow behavior. Three-dimensional calculations have been performed

for the LDC flow arrangement, in which the fluid motion is generated by sliding the

top wall of the toroid radially inward. The numerical solutions show that the toroidal

cavity 3D-flow in this arrangement is steady for all discrete values of the curvature

ratios (� = 0.125, 0.25,0.51, and 1.0) considered. For � = 0.125, 0.25, and 0.51, a

three-dimensional flow has been obtained at Re = 850. When the curvature of the

toroid has been increased to � = 1.0, a higher value of Reynolds number, Re�=�1250,

has been required to generate a steady 3D flow.

Figures 4.12 (a)-(d) present one pair of the counter-rotating TGV in a sector of

�/60, �/30, �/14.7, and �/7.5 for � = 0.125, 0.25, 0.51, and 1.0, respectively. As the

curvature ratio increases, the total number of TGV in the toroid increases in a way
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such that the wavenumber, N��� , will remain constant and equal to 15�� .

Therefore, this LDC flow is characterized exactly by the same type of mode

predicted in the present study and reported by Albensoeder et al. (2001) and

Spassov (2001) for the rectangular LDC flow case. The  isosurfaces  of   helicity   in

Fig. 4.13 show three-dimensional flow structures distributed uniformly near the

upstream (outer-radius) wall and the bottom of the toroid. 

4.2.3 Toroidal shear-driven cavity flow (open-cavity arrangement)

Unsteady 3D calculations have been performed for the open-cavity sketched

in Fig. 1.3 for curvature ratios � = 0.25 and 0.51 and a gap-to-width ratio of ��=�0.04.

They have been firstly performed over a sector of the toroid where periodic boundary

conditions have been prescribed in the �-direction. These 3D calculations have

yielded steady axisymmetric solutions for Reynolds numbers below Re = 850 in the

toroid with � = 0.51 and for Re < 1000 in the toroid with � = 0.51.  

Figures 4.14(a) and (b) show isocontours of dimensionless stream-function at

Re = 800 for the toroids with � = 0.25 and 0.51, respectively. The streamlines show

some encroachment of the external flow into the cavity. These plots give an overall

picture of the steady axisymmetric flow pattern. The flow structure is characterized,

as in the LDC flow problem, by a primary vortex near the geometric center of the

toroid and a pair of secondary weaker eddies develop in the lower corners of the

cavity. For the two cases investigated, the curvature of the cavity has little effect on

the axisymmetric flow structure which is similar to the steady 2D rectangular LDC

flow structure discussed in Sec. 1.1.1. 

 Three-dimensional calculations have been performed over the entire

circumferential domain of toroid. The 3D solutions corresponding to � = 0.25 and 0.51
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have shown a similar 3D flow behavior. Thus, only numerical results obtained for

��=�0.51 have been presented and discussed in this section.

Figures 4.15(a)-(c) show   the  calculated  time  records  of  the  axial,  radial,

and  circumferential  velocity  components, respectively,  at  location  with

(R,Z,�) �=� (1.95,0.25,0.22�). In contrast to the corresponding LDC case with ��=�0.51,

the three-dimensional flow is time-periodic with a dimensionless frequency of

F*
�=�0.154. This value is 3.61 times smaller than the dimensionless frequency of the

LDC flow with � = 0.25. It is clear that the external channel flow affects the 3D-flow

behavior of the toroidal cavity. 

The instantaneous distribution of the circumferential velocity component in the

horizontal (R-�) planes (Z = 0.1) is shown in Fig. 4.16. As can be seen, seventeen

flow structures are distributed uniformly along the circumferential direction. Thus, the

calculated 3D flow in a toroid with � = 0.51 and ��=�0.04 has a wavenumber 67.8��

at Re�=�850. An identical wavenumber has been obtained in a toroid with � = 0.25

and ��=�0.04 at Re = 1000. This wavenumber value is in a good agreement with the

experimental wavenumber, 51.016.8 ���  obtained from the PIV measurements for

the open-cavity case of ��=�0.51 and � = 0.04. Although 3D calculations predict the

same wavenumber for the two toroids investigated, the experimental one

corresponding to 25.00.13 ���  for ��=�0.25 deviates from the calculated one. 

Figure 4.17 displays the instantaneous velocity vectors in the horizontal (R-�)

plane with Z = 0.62 at the instant � = 3440. The figure shows the pairs of counter-

rotating TGV distributed near the upstream (inner-radius) wall and oriented in the

axial direction (normal to the paper). The instantaneous velocity-vector plots in the

vertical (Z-�) mid-plane show the pairs of counter-rotating TGV near the bottom of the
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cavity oriented in the radial direction; see Figs. 4.18(a) and (b). The dynamic

behavior of TGV explained in Sec. 4.2.1 for the LDC flow case (� = 0.25) has been

reproduced in this open-cavity arrangement. 

Figure 4.19 presents instantaneous isosurfaces with dimensionless helicity

04.0���  in one-quarter of the toroid. The isosurfaces of helicity suggest that the

counter-rotating vortex tubes occupy banana-like regions near the upstream (inner-

radius) wall. Smaller structures with non-zero helicity are also observed near the

external flow region and near the downstream (outer-radius) wall.  

4.2.4 Kinetic energy and vorticity analysis

The kinetic energy and vorticity transfer rates corresponding to circumferential

fluctuations have been calculated for the flows of steady modes. When the flow is

time-dependent, the transfer rates corresponding to time-fluctuations have been

estimated.  

4.2.4.1 Circumferentially-fluctuating kinetic energy and vorticity budgets

Equation (2.30) has been used to estimate the rates of the dissipation and the

production of the circumferentially-fluctuating kinetic energy. All terms of Eq. (2.30)

have been firstly calculated. For all 3D steady modes, the second and the third terms

on the right-hand side of the equation dominate the kinetic energy balance and the

other terms are negligible. Hence, the equation is reduced to:

EE D ���� ���0 (4.1)  

where ijjiE Suu ��������� ��  and ijijE ssD ��������

Re
2  are the mean rates of production and

dissipation of the fluctuating kinetic energy, E �� , respectively.

Figure 4.20 shows isocontours of the mean quantities of the production, E� �� , and

the dissipation, ED �� of the fluctuating energy in the (R-Z) plane for the LDC flow case
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(sliding the top wall radially outward) with � = 0.125. The isocontours of E� ��

presented in Fig.�4.20(a) demonstrate the production of TGV in the same region

visualized by the isosurfaces of helicity; see Fig. 4.4(c). As shown in Fig. 4.20(b), the

TGV are dissipated in the region near the upstream wall.

In this context, it is even more interesting to analyze the production and the

dissipation rates of the fluctuating vorticity; see Eq. (2.31). On calculating all terms of

the equation, it is found that the spatial variations of all mean quantities except

i��� and iU �� , the production ijji s ��� ��� �� , and the mixed production ijij s ��� ��	 ��  are negligible.

Thus, Eq. (2.31) is reduced to:

�
���� ���� ��� D210 (4.2)  

where 
j

i
ij X

u



	 ��

� ������� ��1 , and ijji S ��� ��� ���� ��2  represent the production terms of ω.ω ����

2
1

and 
j

i

j

i

XX
D

�

� ���

�

� ���
����

� Re
1  represents the corresponding dissipation term. 

Figure 4.21 shows the distributions of the mean quantities of the production and

the dissipation of the fluctuating vorticity in the (R-Z) plane for the same LDC flow

case with � = 0.125. Their corresponding spatial distributions are shown in Fig 4.22.

As shown in Figs. 4.21(a) and 4.22(a), the production 1� ��  occurs mostly near the

upper upstream corner of the toroid. The production 2� ��  concentrates in regions

between the upstream (inner-radius) wall and the bottom of the toroid; see Figs.

4.21(b) and 4.22 (b). Figures�4.21(c) and 4.22(c) show the dissipation of the

fluctuating vorticity near the shear layers of the top and the upstream walls. The

integration of the mean terms 1� ��  and 2� ��  over the (R-Z) plane indicates that about

75% of the three-dimensional vortex flow is produced by 2� �� . This means that most of



Chapter 4 Results and Discussion

65

the production has been caused mostly by the stretching/tilting of vorticity

fluctuations by the mean rate of strain ijS �� . The rest of the production comes through

a vorticity exchange between ω.ω ����

2
1  and Ω.Ω ����

2
1 , which is represented by 1� �� .

At a larger curvature ratio (� = 1.0), about 75% of the fluctuation vorticity comes

through 1� ��  instead. As shown in Fig. 4.23(a), the 1� ��  foci are localized near the

upper part of the downstream (outer-radius) wall. The term 2� ��  has about 25% of the

production, which occurs near the top wall of the toroid; see Fig 4.23(b). This

suggests that the circumferentially-aligned 3D structures, see Fig. 4.11(c), are

produced through an energy exchange between the fluctuating vortex flow ( ω.ω ����

2
1 )

and the mean vorticity ( Ω.Ω ����

2
1 ). Figure 4.23(c) shows that the dissipation of the

fluctuation vorticity occurs near the viscous boundary layer of both the downstream

(outer-radius) and top walls. The vorticity production and dissipation regions are also

confirmed by the energy budget analysis shown in Figs. 4.24(a) and (b).

When the fluid motion in the toroid is induced by sliding the top wall radially

inward, the production and the dissipation of fluctuating energy, not shown here, are

predicted near the upstream (outer-radius) wall for the toroids with � = 0.125, 0.25,

and 0.51. For a larger curvature ratio (� = 1.0), the fluctuating energy is produced

near the dividing streamlines between the core vortex and the downstream eddy;

see Fig. 4.25(a). This local field information suggests that Taylor-Görtler vortices

originate near the concave separation surface of downstream eddy. As can be seen

in Fig 4.25(a), another part of the kinetic energy is also produced near the upper part
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of the downstream (inner-radius) wall. Figure�4.25(b) shows that the dissipation is

primarily in the same regions of the kinetic energy production. 

4.2.4.2 Time-fluctuating vorticity budget 

The numerical analysis of the time-fluctuating vorticity, Eq. (2.27), shows that

the production 
j

i
ij X

u
�

���
�������1  and ijji S��������2 , and the dissipation

j

i

j

i

XX
D

�

���

�

���
���

� Re
1  are the dominant terms in the equation. The equation governs

the fluctuating vorticity transfer is therefore approximated by:

�
�������� D210 (4.3)  

Figures 4.26(a) and (b) show isocontours of 1��  and 2��  in the (R-Z) plane,

respectively, for the flow case with � = 0.25. As can be seen, the fluctuating vortex is

produced mainly in the region between the upstream and the bottom walls. The

isocontours of the corresponding
�
�D , shown in Fig 4.26(c), demonstrate the

dissipation of TGV near the upstream and the top walls. Note that the isocontours of

�
����� Dand,, 21  presented in Fig 4.26 as a circumferentially-averaged quantities in the

(R-Z) plane. The integration of these terms over the (R-Z) plane gives about 30% of

the production through 1��  and about 70% through 2�� . Like the circumferential

fluctuation of the steady mode at � = 0.125, most of the production is caused by the

stretching/tilting of the time vorticity fluctuations by the mean rate of strain ijS� .

The fluctuating vorticity equation has been also analyzed for the open-cavity

flow with � = 0.51. Figure 4.27 shows the mean streamlines together with the

isocontours of 1�� , 2�� , and
�
�D in the (R-Z) plane. It is seen in Figs. 4.27(a) and (b) that
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the production and the dissipation of fluctuating vorticity is highly concentrated near

the dividing streamlines between the core vortex and the external flow region and

near the upper upstream corner where the fluid leaves the toroid. Notwithstanding,

TGV are still produced through 2��  that peak in banana-like foci near the upstream

(inner-radius) wall; see Fig 4.28 (Here, 2��  denotes local quantities of the production

and not circumferentially averaged ones).

4.2.5 Forced-convection heat transfer in the toroidal lid-driven cavity 

The presents study has also assessed the role of Taylor-Görtler vortices in

improving the mixing process of the toroidal LDC flows. The heat transfer rates

accompanying the toroidal cavity flow (sliding top wall radially outward) have been

calculated using the boundary conditions of Eq. (2.40) or Eq. (2.41). The initial

condition used to solve the energy transport equation (Eq. (2.37)) is that the

temperature is constant over the entire flow domain. Prandtl numbers, Pr = 0.71(air)

and 7.1(water) have been chosen in carrying out the numerical simulations. The heat

transfer rates have been presented in terms of the average Nusselt number, Nu ,

defined by Eq. (2.45). 

Figure 4.29(a) shows the dependence of heat transfer rate on the curvature of

the toroid obtained from both 2D and 3D calculations at Re = 880 and Pr�=�7.1. Note

that for all discrete values of � considered, a three-dimensional flow is obtained in

the 3D calculation. The top and the bottom walls have constant temperatures. As

shown in Fig. 4.29(a), the heat transfer rates of the 3D flow solutions are higher than

the corresponding rates of the 2D flow solutions for any discrete value of �

considered. This is due to the fact that the counter-rotating TGV begin to interact

with the main circulation cell exchanging heat between the bulk and the near-wall
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regions, and therefore enhancing the mixing process; see Fig. 4.30. The same trend

shown in Fig. 4.29(b) has been obtained when the boundary conditions of constant

heat flux have been applied at both the top and the bottom walls of the cavity.

When the Prandtl number is decreased, the Peclet number (Pe = RePr) is

also decreased, thereby increasing the viscous transport term of the energy

conservation equation, Eq.�(4.37). This leads to an increase in the thermal boundary

layer and, thus, the heat transfer coefficient is reduced. Due to this fact, the heat

transfer rates at Pr�=�0.71 are lower than the corresponding rates at Pr = 7.1; see

Fig. 4.31. 

Figure 4.32 presents the variations of heat transfer rate with Reynolds number

in a toroid with � = 0.125 and at Pr = 7.1. In the 2D flow region, it can be seen that

the average Nusselt number varies with the Reynolds number according to the linear

relation: 0.010Re3.77Nu �� ; (200 � Re � 800). At Re�=�200, the streamlines shown

in Fig. 4.33(a) demonstrate that the stronger primary vortex occupies the bulk of the

toroid. This primary vortex starts to transfer heat from the top to the bottom of the

toroid. While the secondary corner eddies grow slightly in size by increasing

Reynolds number from Re�=�200 to 800, the primary vortex still occupies the bulk of

the toroid; see Fig. 4.33(b).  The  streamlines of  the  primary  vortex   shown   in

Fig. 4.33(b) have now higher circulation velocities that lead to a notable increase in

the heat transfer rate. Although the flow becomes three-dimensional at Re�=�850, the

heat transfer rate only increases slightly since the incipient TGV are still very week.

Indeed, in the 3D flow region, the linear relationship ( 0.035Re16.53Nu ��� ) has

been obtained for Re in the range 850���Re���1000. The larger slope value of this
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linear relation compared to 0.010 for the 2D flow indicates the positive role of TGV in

increasing the transfer rates. 

At a larger curvature ratio (� = 1.0), Fig. 4.34 shows that the heat transfer rate

is not practically affected by Reynolds number variation in the 2D flow region

(200���Re���550). In contrast to case with � = 0.125, the averaged Nusselt number

has a nearly constant value of about 3.7�Nu . Although the bulk of the toroid is

occupied by the primary vortex cell at Re�=�200, see Fig. 4.35(a), a low transfer rate

is obtained due to the low circulation velocities at this Reynolds numbers. As can be

observed in Fig. 4.35(b), as the Reynolds number increases from Re�=�200 to 550

the primary vortex becomes smaller in size and it migrates toward the upper

downstream corner of the toroid. The lower part of the toroid is occupied by a weaker

counter rotating vortex, which transfers small amounts of heat from the bulk to the

bottom of the toroid. At the same time that 2D-3D transition occurs at Re�=�600, the

circumferentially-averaged streamlines presented in Fig.�4.36 above show that the

mean primary vortex returns has expanded in size. Indeed, the weaker cell

occupying the lower part of the toroid at Re�=�550 is damped and the more usual

secondary vortices are developed in the lower corners of the cavity. This leads to the

drastic increase, noticed in Fig 4.34, in the average Nusselt number ( 7.9Nu � ). In

the 3D flow region, the average Nusselt number varies with Re according to the

linear relation: 0.010Re1.44Nu ��  for Reynolds numbers in the range

600�Re��1000. Since slope value of this relation is smaller than the corresponding

value for the case of ��=�0.125, it can be concluded that the heat transfer rate is less

sensitive to Re variations when the toroid radius of curvature is large. 
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(a)

(b)

(c)

Figure 4.1. Experimental visualization of the instantaneous open-cavity flow in a
toroid with δ = 0.25 and γ = 0.04 and at Re = 1000±63. Pictures show views of (R-θ)
plane with Z = 0.1 (a), 0.3 (b), and 0.5 (c).
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(a)

(b)

(c)
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(d)

(e)

Figure 4.2. Experimental visualization of the instantaneous open-cavity flow for the
conditions of Fig. 4.1. Pictures show views of the flow in the vertical plane with
R = 3.6 (a), 3.8 (b), 4.0 (mid-plane) (c), 4.2 (d), and 4.4 (e).



Chapter 4 Results and Discussion

73

(a)

(b)

Figure 4.3. Experimental velocity vectors obtained using PIV velocity measurements
for the open-cavity flow with δ = 0.51 and γ = 0.04 and at Re = 1000±57. (a) Velocity
vectors in the (R-Z) plane with θ  = 0 and (b) Velocity vectors in a section of the (R-θ)
mid-plane. The arrows in the right of the figures correspond to a dimensionless
velocity of 0.1.
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 (a) (b)

(c)

Figure 4.4. Plots  of (a) Velocity  vectors in (R-θ) mid-plane; (b) Velocity vectors in
(Z-θ) mid-plane, and (c) Isosurfaces of the dimensionless helicity (levels = ±0.10) for
the LDC flow (sliding wall radially outward) with δ = 0.125 and Re = 850.
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(a)

(b)

(c)

Figure 4.5. Time variations of the dimensionless velocity components for the LDC
flow (sliding wall radially outward) with δ = 0.25 and at Re = 880: (a) Axial velocity
component; (b) Radial velocity component; and (c) Circumferential velocity
component. The plots correspond to the location (R,Z,θ) = (4.0,0.25,0.06π).
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(a)

(b)

Figure 4.6. Instantaneous velocity vectors in the (R-θ) mid-plane at τ = 2720 (a) and
2725.65 (b) and for the conditions of Fig. 4.5. The arrows in the right of the figures
correspond to a dimensionless velocity of 0.1.
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(a)

(b)

Figure 4.7. Fluctuating velocity vectors in the (R-θ) mid-plane at τ = 2720 (a) and
2725.65 (b) and for the conditions of Fig. 4.5. The arrows in the right of the figures
correspond to a dimensionless velocity of 0.1.
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Figure 4.8. Mean velocity vectors in the (R-θ) mid-plane for the conditions of Fig. 4.5.
The arrow in the right of the figure corresponds to a dimensionless velocity of 0.1.
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Figure 4.9. Temporal variation of isosurfaces of helicity (dimensionless levels = ±0.1)
over the dimensionless period of oscillation *Λ  for the conditions of Fig. 4.5.
τ = τ1 = 2720 (a), τ1+0.1667 *Λ (b), τ1+0.3333 *Λ (c), τ1+0.5 *Λ (d), τ1+0.6667 *Λ (e), and
τ1+0.8335 *Λ  (f).
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(a)

(b)

Figure 4.10. Plots of (a) Velocity vectors in (Z-θ) mid-plane and (b) Velocity vectors
in (R-θ) plane with Z = 0.6 for the LDC flow (sliding wall radially outward) with
δ = 0.51 and at Re = 800. The arrows in the right of the figures correspond to a
dimensionless velocity of 0.1.
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(c)

Figure 4.11. Plots of (a) Velocity vectors in (Z-θ) mid-plane; (b) Velocity vectors in
(R-θ) plane with Z = 0.6; and (c) Isosurfaces of the dimensionless helicity
(levels = ±0.10) for the LDC flow arrangement (sliding wall radially outward) with
δ = 1.0 and at Re = 600. The arrows in the right of the figures (a) and (b) correspond
to a dimensionless velocity of 0.1.
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(a) (b)

(c) (d)

Figure 4.12. Velocity vectors in the vertical (Z-θ) mid-planes for the LDC flow
arrangement (sliding wall radially inward) with: (a) δ = 0.125, Re = 850; (b) δ = 0.25,
Re = 850; (c) δ = 0.51, Re = 850; and (d) δ = 1.0, Re = 1250. The arrows in the right
of the figures correspond to dimensionless velocity of 0.1.
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(a) (b)

(c) (d)

Figure 4.13. Isosurfaces of helicity (dimensionless levels = ±0.1) for the LDC flow
arrangement (sliding wall radially inward) with: (a) δ = 0.125, Re = 850; (b) δ = 0.25,
Re = 850; (c) δ = 0.51, Re = 850; and (d) δ = 1.0; Re = 1250.
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(a)

(b)

Figure 4.14. Isocontours of the dimensionless stream-function of the axisymmetric
flows obtained from unsteady 3D calculations at Re = 800 for the open-cavity flow
arrangement with γ = 0.04 and δ = 0.25 (a) and 0.51 (b).
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 (a)

(b)

(c)

Figure 4.15. Time variations of the dimensionless velocity components for the open-
cavity flow arrangement with δ = 0.51 and γ = 0.04 and at Re = 850. (a) Axial velocity
component; (b) Radial velocity component; and (c) Circumferential velocity
component. The plots correspond to the location (R,Z,θ) = (1.95,0.25,0.22π).
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Figure 4.16. Instantaneous distribution of the dimensionless circumferential velocity
component in the (R-θ) plane with Z = 0.1 at τ = 3440 and for the conditions of
Fig. 4.15.

1.0E-02
8.0E-03
6.0E-03
4.0E-03
2.0E-03
0.0E+00

-2.0E-03
-4.0E-03
-6.0E-03
-8.0E-03
-1.0E-02



Chapter 4 Results and Discussion

88

Figure 4.17. Instantaneous velocity vectors in the (R-θ) plane with Z = 0.62 at
τ = 3440 and for the conditions of Fig. 4.15. The arrow in the right of the figure
corresponds to a dimensionless velocity of 0.1.
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(a)

(b)

Figure 4.18. Instantaneous velocity vectors at times: τ = 3440 (a) and 3460 (b) in the
(Z-θ) mid-plane for the conditions of Fig. 4.15. The arrows in the right of the figures
correspond to a dimensionless velocity of 0.1.
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Figure 4.19. Instantaneous isosurfaces of the dimensionless helicity, Π , presented
in one quarter of the toroid at τ = 3440 for the conditions of Fig. 4.15. The
dimensionless levels of helicity = ±0.04.
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(a)

(b)

Figure 4.20. Circumferentially averaged streamlines together with the distributions of
the production and dissipation of the fluctuating energy in the (R-Z) plane for the
LDC flow arrangement (sliding wall radially outward) with δ = 0.125 and at Re = 850.
(a) The energy production EΡ ′′  and (b) The energy dissipation ED ′′ .
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(c)

Figure 4.21. Circumferentially averaged streamlines together with the distributions of
the production and dissipation of the fluctuating vorticity in the (R-Z) plane for LDC
flow arrangement (sliding wall radially outward) with δ = 0.125 and at Re = 850. (a)
Vorticity production 1Ρ ′′ ; (b) Vorticity production 2Ρ ′′ ; and (c) Vorticity dissipation ω′′D .
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(a)
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 (c)

Figure 4.22. Local distributions of the production and the dissipation of fluctuating
vorticity over one wavelength for the LDC flow arrangement (sliding wall radially
outward) with δ = 0.125 and at Re = 850. (a) Isosurface of the vorticity production 1Ρ ′′ ;
(b) Isosurface of the vorticity production 2Ρ ′′ ; and (c) Isosurface of vorticity dissipation

ω′′D . The dimensionless level of the isosurface = 1.5 (Production) and –1.5
(Dissipation).
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(c)

Figure 4.23. Circumferentially-averaged streamlines together with the distributions of
the production and dissipation of the fluctuating vorticity in the (R-Z) plane for the
LDC flow arrangement (sliding wall radially outward) with δ = 1.0 and at Re = 600. (a)
The vorticity production 1Ρ ′′  (b) The vorticity production 2Ρ ′′ ; and (c) The vorticity
dissipation ω′′D .
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(a)

(b)

Figure 4.24. Circumferentially averaged streamlines together with the distributions of
the production and dissipation of the fluctuating kinetic energy in the (R-Z) plane for
the LDC flow arrangement (sliding wall radially outward) with δ = 1.0 and at
Re = 600. (a) The energy production EΡ ′′  and (b) The energy dissipation ED ′′ .
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(a)

(b)

Figure 4.25. Circumferentially-averaged streamlines together with the distributions of
the production and dissipation of the fluctuating kinetic energy in the (R-Z) plane for
the LDC flow arrangement (sliding wall radially inward) with δ = 1.0 and at Re = 1250.
(a) The energy production EΡ ′′  and (b) The energy dissipation ED ′′ .
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(c)

Figure 4.26. Circumferentially- and time-averaged streamlines together with the
distributions of the production and dissipation of the fluctuating vorticity in the (R-Z)
plane for the LDC flow arrangement (sliding wall radially outward) with δ = 0.25 and
at Re = 880. (a) The vorticity production 1Ρ′  and (b) The vorticity production 2Ρ′ ; and
(c) The vorticity dissipation ω′D .
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(c)

Figure 4.27. Circumferentially- and time-averaged streamlines together with the
distributions of the production and dissipation of the fluctuating vorticity in the (R-Z)
plane for open-cavity flow arrangement with δ = 0.51 and γ = 0.04 and at Re = 850.
(a) The vorticity production 1Ρ′  and (b) The vorticity production 2Ρ′ ; and (c) The
vorticity dissipation ω′D .
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Figure 4.28. Local distributions of the fluctuating vorticity production 2Ρ′  over one
wavelength for the conditions of Fig. 4.27. The dimensionless level of the
isosurface = 0.1.
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Figure 4.29. Variations of average Nusselt number as a function of the toroid
curvature obtained from the 2D and 3D calculations for the LDC flow arrangement
(sliding wall radially outward) at Re = 880 and Pr = 7.1(water). Boundary condition of
(a) Constant temperature and (b) Constant heat flux have been used at the top wall
and bottom walls.
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Figure 4.30. Velocity vectors together with isocontours of the dimensionless
temperatures in the (Z-θ) mid-plane for the LDC flow arrangement (sliding wall
radially outward) with δ = 1.0, Re = 600, and Pr = 7.1(water). Boundary conditions of
constant temperature have been applied at the top and bottom walls.
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Figure 4.31. Variations of average Nusselt number as a function of the toroid
curvature obtained from the 2D and 3D calculations for the LDC flow arrangement
(sliding wall radially outward) at Re = 880 and Pr = 0.71(air). Boundary conditions of
(a) Constant temperature and (b) Constant heat flux have been used at the top and
bottom walls.
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Figure 4.32. Variations of average Nusselt number as a function of Reynolds number
for the LDC flow arrangement (sliding wall radially outward) with δ = 0.125 and
Pr = 7.1 (water). Boundary conditions of constant temperature have been applied at
the top and bottom walls.
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(a)

(b)

Figure 4.33. Streamlines together with isocontours of the dimensionless
temperatures in the (R-Z) plane for the LDC flow arrangement (sliding wall radially
outward) with δ = 0.125, Pr = 7.1 (water), and Re = 200 (a) 800 (b). Boundary
conditions of constant temperature have been applied at the top and bottom walls.
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Figure 4.34. Variations of average Nusselt number as a function of Reynolds number
for the LDC flow arrangement (sliding wall radially outward) with δ = 1.0 and Pr = 7.1
(water). Boundary conditions of constant temperature have been applied at the top
and bottom walls.
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(a)

(b)

Figure 4.35. Streamlines together with isocontours of the dimensionless
temperatures in the (R-Z) plane for LDC flow arrangement (sliding wall radial
outward) with δ = 1.0, Pr = 7.1 (water), and Re = 200 (a) and 550 (b). Boundary
conditions of constant temperature have been applied at the top and bottom walls.
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Figure 4.36. Circumferentially-averaged streamlines together with isocontours of the
circumferentially-averaged temperatures in the (R-Z) plane for the LDC flow
arrangement (sliding wall radially outward) with δ = 1.0, Pr = 7.1 (water), and
Re = 600. Boundary conditions of constant temperature have been applied at the top
and bottom walls.
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5. CONCLUSIONS AND FUTURE WORK

Direct Numerical Simulations (DNS) and flow visualization experiments have

been used to study the flow structure in a toroidal cavity of square cross-section. The

calculated Görtler numbers, Eq. (2.36), of the toroidal LDC and open-cavity flow

arrangements considered are greater than ten. This satisfies the stability criterion for

the appearance of Taylor-Görtler vortices (TGV), due to the curvature of the

streamlines of recirculating core flow and not because of the geometrical curvature of

the toroid (Freitas and Street,1988). 

The centrifugal-type  instabilities of LDC flow (sliding top wall radially outward)

are characterized by three different types of modes: i) steady modes of short

wavelength at low curvature, ii) unsteady modes of long wavelength at ��=�0.25, and

iii) steady modes of even longer wavelength at high curvature. 

The 3D open-cavity flows with curvature ratios ��=�0.25 and 0.51 have a time-

periodic regimes with the same wavenumber for both curvatures. Comparison of the

numerical results of the LDC and open-cavity flow arrangements shows that the

external channel flow affects the 3D-flow behavior. The dynamic behavior of TGV is

as follows. From Eulerian viewpoint, the vortices alternate the sense of rotation

periodically every half period of oscillation. Relative to a fixed reference point, the

vortices disappear and reappear with a circumferential shift of half wavelength every

half period of oscillation.
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Flow visualizations have allowed for the first time to capture TGV in the

toroidal cavities (Humphrey et al., 2001 ; 2002(see appendix C)). At ��=�0.25, the real-

time observations have shown unsteady flow regime characterized by disappearance

and reappearance of the vortices alternatively over a period of order of one minute.

Moreover, the PIV measurements of the flow in the open-cavity with ��=�0.51 have

given a wavenumber in agreement with the calculated one. 

Like the circumferentially-fluctuating vorticity budget of the steady LDC flow at

low curvature, the TGV of the unsteady flow regimes are caused mostly by

stretching/tilting of the time vorticity fluctuations by the mean rate of strain. The rest of

the production comes through an exchange between the time-fluctuating and the

mean vorticity fields. 

When the LDC motion is induced by sliding the top wall radially inward, steady

modes of short wavelength will dominate the 2D-3D transition process for any �

value. For small curvatures of the inward LDC, the vortices are produced mostly near

the upstream wall. By increasing the curvature ratio to ��=�1.0, higher Reynolds

number (Re = 1250) is required to produce the TGV near the concave separation

surface of downstream eddy and near the upper part of the downstream wall.

While the spatial distributions of the 3D vortex production and dissipation

depend on the toroidal cavity flow configuration and its curvature, TGV are always

aligned in banana-like structures between the upstream wall and the bottom of the

cavity for all toroidal flow arrangements. 

Comparison of the heat-transfer rates corresponding to two- and three-

dimensional flows shows the important role of TGV in enhancing the transport
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process in the toroidal cavity. In particular, Taylor-Görtler modes of longer

wavelength are preferred to improve the mixing process. 

On the other hand, it is worthy to measure, in a future research, the time

variations of velocity at certain points of the flow domain using, for example, Laser-

Doppler velocimetry (LDV), thereby allowing the experimental verification of the time-

periodic flow behavior. Numerical analysis of the complex dynamic of TGV during the

earlier stages of 3D flow development would be helpful to obtain a complete

explanation of the periodic alternation in the sense of rotation of vortices. In addition,

it would be interesting to investigate the breakdown of the Taylor-Görtler vortex flow

and the transition to turbulence. 

For rectangular LDC flows (� = 0), Albensoeder et al. (2001a) have reported three

different types of modes that depending on the aspect ratio of cavity cross-section. It

is recommended to study the dependency of 2D-3D flow transition on the aspect

ratio at  different curvatures.

 From practical engineering point of view, toroidal cavity flow configuration

provides an interesting geometry for industrial fermentation processes where high

level of mixing are required at moderate levels of the mechanical stresses exert upon

the microorganisms.
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APPENDIX A:

A.1 Equations of motion in cylindrical coordinates:

Continuity equation: 
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Z-momentum:
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A.2 Equations of vorticity in cylindrical coordinates:
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R-component vorticity equation:
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Z-component vorticity equation:
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A.3 Energy conservation equation in cylindrical coordinates:
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ABSTRACT
Numerical results are obtained for the isothermal laminar flow of air between a pair of

disks attached to and rotating with a hub in a fixed cylindrical enclosure.  The presence of radial
clearances or “gaps” between the rims of the disks and the curved enclosure wall, and the finite
thickness of the disks, are considered in the calculations. The gaps allow time- and
circumferentially-dependent axially-directed air flow exchanges between the contiguous inter-
disk spaces. As a consequence, axisymmetric calculations of the flow, whether using boundary
conditions in the gaps or extended to include the entire flow domain, fail to faithfully reproduce
the experimentally measured radial variations of the mean and rms circumferential velocity
components in the inter-disk space.  Likewise, three-dimensional calculations using the
symmetry-plane boundary condition in the gaps also fail to reproduce these variations.  In
contrast, computationally intensive three-dimensional calculations of the entire flow domain,
including the gaps, yield results in very good agreement with the measured mean and rms
velocities.  These three-dimensional calculations reveal large velocity fluctuations in the gap
regions accompanied by corresponding large fluctuations of the inter-disk flow, reflecting a
destabilization of the structure and dynamics of the latter by the former.  The axisymmetric
calculations as well as those using the symmetry-plane condition in the gap are included in this
study principally to elucidate their shortcomings in simulating the three-dimensional flows
considered; they are not the main goal of the study.  Notwithstanding, the physically approximate,
full domain axisymmetric calculations yield useful qualitative results. They show that increasing
gap size decreases disk surface shear and the associated disk torque coefficient, but at the cost of
destabilizing the inter-disk flow.  This observation is in agreement with earlier findings and is
better understood as the result of the present study.

INTRODUCTION

Problem Statement
The unobstructed motion of a fluid driven by a pair of coaxial disks corotating in a fixed

cylindrical enclosure is of fundamental interest and has interesting mixing applications.  This
configuration has also been proposed as a first approximation for modeling the bulk flow of air in
disk drives; see Schuler et al. [1], Abrahamson et al. [2], and Humphrey et al. [3] for early
reviews and Herrero et al. [4.5] for more recent references.  Of interest here is the case shown in
Fig.1 which includes the two end spaces defined by the outer surface of each disk and the flat (top
or bottom) fixed enclosure wall facing it.  The disks are attached to a hub and rotate at constant
angular velocity, Ω , such that the Reynolds number is Re = Ω  R2

2/ν, where R2 is the radius of the
disks and ν is the kinematic viscosity of the fluid.  The presence of a small gap of width A
between the rim of each disk and the curved enclosure wall allows axial flow exchanges between
the contiguous inter-disk and disk/end-wall spaces.  Notwithstanding, earlier work relating to disk
drives has mostly ignored, assumed negligible, or oversimplified the effect of the gaps on the
inter-disk and disk/end-wall flows.  This investigation is concerned with quantifying the effect of
the gaps on the structure and dynamics of the flows in these regions as well as on the torque
required to rotate the disks.

Background
Many recent experimental fluid mechanics studies of coaxial disks corotating in

cylindrical enclosures have typically involved several disks in a stack and have focused on
visualizing and measuring the velocity field.  Although necessary to allow disk rotation, in these
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studies the effects of the gaps on the flow have not been systematically investigated.  An
exception is the work by Hudson and Eibeck [6] who measured the total torque required to
corotate a stack of N disks (N =1, 3 and 5) as a function of the Reynolds number, Re, the
dimensionless inter-disk spacing, H/R2, and the dimensionless gap width, A/R2.  (Abrahamson et
al. [2], Hudson and Eibeck [6], Humphrey et al. [7] and others have also investigated the
influence of an obstruction on the inter-disk flow but that effect is not considered here.)  Hudson
and Eibeck [6] found a weak dependence of the torque on the gap width for values A/R2 < 0.08
and H/R2 < 0.2 when 8 x 104 < Re < 2.8 x 105.  Analytical investigations by Schuler et al. [1] and
Humphrey et al. [7], and numerical studies by Humphrey et al. [8], Iglesias and Humphrey [9]
and Herrero et al. [4,5] have assumed A = 0, or have imposed a symmetry-plane or a periodic-
plane boundary condition in the gap regions.  In spite of these simplifications, these studies have
quantified the nature and characteristics of the unsteady, 3D, vortical flow between a pair of
corotating disks as a function of H/R2 and Re.  In particular, Iglesias and Humphrey [9] show that
the presence of gaps lowers the threshold value of Re required for transition from a steady
axisymmetric flow to the corresponding unsteady axisymmetric flow.  Similarly, Herrero et al. [4]
show that, for fixed H/R2, the flow between a pair of corotating disks evolves from a steady
axisymmetric state to an unsteady 3D state with increasing Re.  (Henceforth, in this
communication all references to “axisymmetric” flow imply a 2D flow that is circumferentially
symmetric.)

The assumption of a symmetry-plane boundary condition in the gaps precludes axial flow
through them.  This limitation is somewhat relieved by resorting to a periodic-plane boundary
condition but, to be applied in a logically consistent manner, such a condition requires the
assumption of axisymmetric flow.  The result is a flow across the gaps that may change its axial
sense of motion with time but which, instantaneously, is everywhere (circumferentially) directed
in the same (axial) direction.  It is clear that the imposition of a symmetry-plane or periodic-plane
boundary condition in the gaps leads to unrealistic constraints on fluid motion and, in particular,
that such conditions do not apply to the gaps associated with the two end disks in an enclosure.

The calculations performed by Tzeng and Fromm [10] and by Humphrey et al. [7] apply
to a stack of disks where the gap regions are part of the calculation domain.  While limited to
axisymmetric flows, the results point to the importance of avoiding artificial gap boundary
conditions by including the gap regions in the calculation domain.  The problem then becomes
one of ensuring sufficient grid refinement to obtain accurate results throughout the entire flow
field, but especially in the gap regions which affect the accuracy of the calculations elsewhere in
the domain.

Purpose of this Study
As will be shown, the presence of gaps between the rims of the corotating disks and the

fixed curved enclosure wall in the geometry of Fig. 1 significantly affects the structure and
dynamics of the flow in the inter-disk space.  Earlier attempts to match measurements and
calculations of the mean and rms circumferential velocity components in the inter-disk space
have met with mixed success.  For example, Fig. 4 (discussed below) provides a comparison
between measurements and calculations of these two quantities along the mid-plane, Z  = 0, of the
center pair of disks in a stack of N disks.  The measurements are obtained in a stack with N = 4
disks while all the calculations have been made in a stack with N = 2 disks; otherwise, the
measured and calculated flow conditions correspond exactly.  The measurements are from
Schuler et al. [1] for a geometry with the dimensions given in Fig. 1 and a disk speed of rotation
of 300 rpm corresponding to Re = 2.1 x 104.  Of immediate interest here is the comparison
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between these measurements and the 3D calculations of Humphrey et al. [8], performed for a pair
of disks of zero thickness using a symmetry-plane boundary condition in the gaps.  (In this and
the following figures, R = r/R2 , Z = z/H , U  = <u>/ΩR2 , Urms = urms/ΩR2, V = <v>/ΩR2 ,
Vrms = vrms/ΩR2, W = <w>/ΩR2 , and Wrms = wrms/ΩR2, where “< >” and the subscript “rms”
denote the mean and rms values of the velocity components.)  Both the calculated mean and rms
circumferential velocities show qualitative agreement with the experimental data but significant
discrepancies arise, particularly for the rms velocity.  The rms measurements (and calculations)
peak markedly at three distinct radial locations where flow unsteadiness contributes to the
velocity fluctuations.  The large experimental values of the rms at R  ≤ 0.75 contrast with the
results obtained from both theoretical and numerical analyses performed to date which predict
solid body rotation conditions for the flow in this region.

The purpose of this study is to accurately assess the effects of the gaps on the flow in a
fixed cylindrical enclosure containing a pair of corotating disks.  The geometry of interest is that
of Fig.1, where the linear dimensions correspond to the experiment of Schuler et al. [1] assuming
two disks, as opposed to four, in the enclosure.  The structure and dynamics of the flow, as well
as the variation of the disk torque coefficient, CM, are analyzed numerically as a function of A/R2
for a fixed value of Re = 2.1 x 104.  Both axisymmetric and 3D calculations are performed and
the effects on the flow of imposing symmetry-plane or periodic-plane boundary conditions in the
gaps are examined.  The axisymmetric calculations as well as those using the symmetry-plane
condition in the gap are included in this study for completeness. They elucidate the shortcomings
in simulating the three-dimensional flows considered; they are not the main goal of the study.
Notwithstanding, as will be shown, the physically approximate, full domain axisymmetric
calculations yield useful qualitative results.

CONSERVATION EQUATIONS
The constant property, unsteady, axisymmetric or 3D, laminar flow of air is assumed.  The

corresponding mass and momentum conservation equations expressed relative to a fixed
cylindrical coordinate system (see Fig. 1) are:
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In Eqns. (2-4), u, v, w are the velocity components in the r, θ and z coordinate directions, p
is pressure, and t is time.  D/Dt denotes the operator ( ) ( ) ( )[ ]∂θ∂∂∂∂∂∂∂ rvruzwt +++ , not to
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be confused with the substantial derivative since the base vector variation terms have been placed
on the right-hand side of these equations.

For both axisymmetric and 3D flows, Eqns. (1-4) are solved subject to the following
boundary conditions,

u = w = 0; v = Ω  r           on all rotating surfaces (hub and disks)       (5a)
u = v = w = 0 on all fixed surfaces (curved, top and bottom walls of the enclosure)     (5b)

The conditions for the 3D flows investigated in this work lead to aperiodic, modulated
motions corresponding to “Region II” type flows in the study by Herrero et al. [4].  Therefore, it
is necessary to resolve the entire flow field in the circumferential coordinate direction; that is,
over a 360 degree θ domain.  For this, circumferentially-periodic boundary conditions are
imposed for the three velocity components in the θ-coordinate direction.

For those flow calculations restricted to the inter-disk space, one of the following two
boundary conditions is implemented in the gap, R2 < r < R2+A:
a) Symmetry-plane:

0==
∂
∂=

∂
∂ w

z
v

z
u  at z = ± (H+h)/2         (6)

b) Periodic-plane:

22 h)/(Hz(u,v,w,p)h)/(Hz(u,v,w,p) +==+−=         (7)

NUMERICAL ALGORITHM
The calculations have been performed using an upgraded version of the CUTEFLOWS

numerical algorithm developed for unsteady, constant property, 2D and 3D flows.  CUTEFLOWS
(Computing Unsteady Three-dimensional Elliptic Flows) is second-order accurate in both space
and time and has been extensively tested and used for a wide variety of problems; see Humphrey
et al. [8], Iglesias and Humphrey [9], Herrero et al. [4,5] and the references therein. The upgraded
algorithm is fourth-order accurate in both space and time.  Both algorithms are based on a
staggered-grid, control-volume discretization approach for deriving finite difference forms of the
conservation equations in terms of their primitive variables.  Mass conservation yields a discrete
Poisson equation that is solved for pressure using the conjugate gradient method.  The upgraded
algorithm uses an upstream-biased differencing scheme (Rai and Moin [11]) for the convection
terms.  The spatially discretized momentum conservation equations are explicitly integrated in
time by means of a fourth-order Runge-Kutta scheme. Like the original CUTEFLOWS code, the
upgraded algorithm is capable of reproducing all known features of the unsteady, 3D, vortical
flow between a pair of corotating disks. For further details see the references cited above.

Effect of grid refinement
The grid independence of the calculated results is established first for the case of

axisymmetric flow.  For this, the case with a gap ratio A/R2 = 0.026 is investigated for the
conditions shown in Fig. 1, corresponding to the experiment of Schuler et al. [1].  This case is
solved using increasingly refined (R-Z) grids until the numerical results for the two finest grids
essentially coincide. (Meaning that maximum discrepancies between calculated velocity
components on the finest two grids are less than 5%, the average being 2%.)  These are full
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domain calculations with no boundary conditions imposed in the gaps.  We comment below on
the results obtained for this case on three grids referred to as “coarse,” “medium” and “fine.”

In all cases the grids are non-uniform in the R and Z directions.  They are constructed as
in Herrero et al. [4] who calculated the flow between a pair of disks with the dimensions of Fig. 1
but with A = 0.  As in that work, current near-wall node densities allow for the presence of at least
five nodes in the disk Ekman layers and the curved wall boundary layer.  In the inter-disk space
and in each of the disk/end-wall spaces, the spacing between nodes increases linearly from each
wall by a grid expansion factor not larger than 1.2.  In addition, the grid spacing is not allowed to
exceed 5% of the total distance covered by the grid in the radial and axial directions.  Table 1
summarizes the minimum and maximum spacings and expansion factors used in the tests
conducted for A/R2 = 0.026.  In the gap regions the grid is distributed uniformly in the radial and
axial directions, with a spacing equal to the minimum spacing listed in Table 1.  All calculations
are performed using a dimensionless integration time step, ∆τ = Ω  ∆t, set to ∆τ ≤ 0.003.  This
time step corresponds to a physical displacement equal to or less than 5.4 degrees for a disk
rotating at 300 rpm (Ω  = 10 π rad/s) and guarantees stable and accurate convergence.

Figures 2(a)-(c) and 3(a)-(c) show the axisymmetric flow results obtained for the case
with A/R2 = 0.026 on the three grids.  Profiles of the mean and rms velocity components are
compared in Figs. 2(a)-(c).  It is clear from these two figures, particularly in the gap regions
shown in Fig. 2(c), that the results of the coarse grid (90 x 132) and the medium grid (118 x 164)
do not agree.  However, the results of the medium grid essentially coincide with those obtained
with the fine grid (182 x 240).  Time records of the dimensionless axial velocity component
corresponding to two mid-plane locations with R = 0.9 and R = 1.0 are shown in Figs. 3(a)-(c).
While the coarse grid does not accurately resolve the velocity oscillations and amplitudes, the
records obtained on the medium and fine grids are in very good agreement. From these tests we
conclude that a non-uniform grid consisting of 118 x 164 (R-Z) nodes is sufficiently accurate for
axisymmetric calculations of the flow with A/R2 = 0.026.  Table 2 shows the values of the (R-Z)
grids used for each of the axisymmetric cases investigated.

For the 3D calculations, tests are performed for the case with A/R2 = 0.026 using the
above 118 x 164 (R-Z) grid in combination with 64 or 128 equally spaced grid nodes in the θ
direction. The differences between the results obtained with these two grids are sufficiently small
(on average, less than 2% for the mean and less than 4% for the rms) to allow calculations of the
cases with A/R2 = 0.026 and A/R2 = 0.013 using 64 nodes in the θ direction.  (Note that setting 64
nodes in the θ direction yields a circumferential grid refinement that is more than twice that
employed by Humphrey et al. [8].)  The adequacy of the final 3D grids used is further confirmed
by the goodness of the mean and rms velocity results obtained for the case with A/R2 = 0.026
(Fig. 7, discussed below) relative to the experimental measurements.

RESULTS
The dimensions of the geometry shown in Fig. 1 match those of the experiment performed

by Schuler et al. [1] for which A/R2 = 0.026.  In addition to this case, detailed calculations are
performed for the case with A/R2 = 0.013 to further elucidate the effects of the gap on the flow.
Cases with other values of A/R2 (0.0064, 0.013, 0.026, 0.052 and 0.077) are also examined for
their effects on the disk torque coefficient.  In order to vary A/R2 for these cases, the quantity A is
changed by varying the inside radius of the cylindrical enclosure.  Each calculation case,
corresponding to a particular value of A/R2, is started from a fluid at rest and extended over a time
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period long enough to ensure a statistically stationary flow.  A single disk angular velocity is
considered corresponding to the experimental value of 300 rpm (Re = 2.1 x 104).

Effect of the Gaps on the Flow Structure and Dynamics

The structure and dynamics of the flow are investigated in detail for two gap ratios
(A/R2 = 0.026 and 0.013).  The geometry with A/R2 = 0.026 is solved first, by restricting attention
to the inter-disk space and imposing symmetry-plane or periodic-plane boundary conditions in
the gaps.  For this: i) axisymmetric and 3D calculations are performed with the symmetry-plane
condition (Eq. 6); and, ii) axisymmetric calculations are performed with the periodic-plane
condition (Eq. 7).  Radial profiles of the mean and rms circumferential velocity components
calculated along the mid-plane (Z = 0) are plotted in Figs. 4(a) and (b).  The best overall
calculation of the mean is obtained assuming axisymmetric flow and using the periodic-plane
boundary condition.  Both the axisymmetric and 3D results using the symmetry-plane boundary
condition significantly overpredict the mean.  The best near-wall calculations of the rms are
obtained with the symmetry-plane condition, but neither set of boundary conditions yields
accurate predictions of the rms for R < 0.98.  Notwithstanding, it is clear that by allowing
axisymmetric flow reversals in the gaps the periodic-plane boundary condition better reproduces
the trend for the large rms values arising at R < 0.94.  In contrast, with the symmetry-plane
condition imposed it makes little difference to the calculation of the mean velocity whether the
inter-disk flow is treated as axisymmetric or 3D, the differences between these two sets of results
being almost indistinguishable.

In spite of the somewhat better results obtained for the flow in the inter-disk space,
especially the mean velocity, when computed with a periodic-plane boundary condition applied in
the gaps, the axisymmetric flow assumption is highly constraining.  Similarly, irrespective of
whether the inter-disk flow is calculated as axisymmetric or 3D, the imposition of a symmetry-
plane boundary condition in the gaps is also very limiting.  As shown below, these shortcomings
are removed in two steps, first by extending the axisymmetric calculation to encompass the entire
flow domain, thus removing the need to specify a gap boundary condition, and then by removing
the axisymmetric constraint and performing a 3D calculation.

Figures 5(a)-(c) present time-averages of the cross-stream flow streamlines and of the mean
and rms circumferential velocity components for an axisymmetric calculation of the entire flow
domain.  Figures 6(a)-(c) show the same quantities for the corresponding 3D calculation, where
the quantities plotted have been averaged both with respect to time and along the circumferential
coordinate direction.  Although these axisymmetric and 3D calculations yield unsteady flows
(with the 3D results showing relatively strong departures from time-periodicity), the mean
velocity plots are fairly similar with the main cross-stream flows in the inter-disk and disk-end
wall spaces being determined by the strong radial outflows along the disk Ekman layers.  These
radial outflows are also responsible for the additional pair of much smaller cross-stream flows
arising in the gap regions.  In contrast, distributions of the rms, shown in Figs. 5(c) and 6(c),
reveal larger levels of this quantity in the inter-disk space for the 3D calculation case compared to
the axisymmetric.  In particular, the 3D results show stronger radial and axial penetrations, driven
by the cross-stream flows between the disks and in the gaps, of fluid with low circumferential
velocity and high rms.  Such penetrations induce a small departure of the mean flow from the
condition of solid body rotation for R < 0.8.  Both the axisymmetric and 3D calculations yield
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rms levels larger than 10% near the curved enclosure wall and as high as 20% in the gaps.
Although not shown here, the intensity of the strongly sheared flow in and around the gaps varies
significantly with time.

Radial profiles of full domain mean and rms circumferential velocities obtained along the
inter-disk mid-plane are compared in Fig. 7(a) and (b) with corresponding experimental results.
(Also shown are the results obtained in a 3D calculation with A/R2 = 0.013, discussed below.)  It
is clear that removing the specification of a gap boundary condition and extending the calculation
dimensionality to predict a fully unconstrained 3D flow leads to significantly improved results for
both the mean and rms velocities for all values of R.  The circumferential dependence of the full
domain 3D flow is illustrated in Figs. 8(a)-(d).  These plots show cross-stream flow streamlines
(derived from the cross-stream velocity components) for the same instant in time at four θ–
planes.  The plots reveal a main cross-stream flow that oscillates strongly about the inter-disk
mid-plane and which is accompanied by significant axial displacements of fluid in the gaps.  The
circumferentially-dependent axial flows in the gaps induce large non-axisymmetric variations in
the cellular structures of the cross-stream flow in the inter-disk space and, to a smaller extent, in
the end-wall spaces.  The depth of penetration towards the hub of the oscillatory mid-plane flow
varies with time and from plane to plane, leading to the large values of the rms observed in the
inter-disk space.  Such variations in the inter-disk space are not predicted assuming axisymmetric
flow (regardless of whether gap boundary conditions are imposed or not), nor are they predicted
by a 3D flow calculation using the symmetry-plane boundary condition.

Axisymmetric and 3D full domain calculations of the case with A/R2 = 0.013 both yield
time varying flows but their respectively averaged velocity fields are practically
indistinguishable. Time- and θ-averaged values of cross-stream flow streamlines, and of the mean
and rms circumferential velocities, are plotted in Fig. 9.  A comparison between these results and
those obtained for A/R2 = 0.026, in Fig. 6(a)-(c), shows similar spatial distributions for the mean
velocity but somewhat different ones for the rms.  In particular, while both cases have equally
high values of the rms in the gaps, the case with A/R2 = 0.013 has significantly lower values of
the rms in the bulk of the inter-disk space; see Fig. 7(b) also.

Effect of the Gaps on the Disk Torque Coefficient

The disk torque coefficient, CM, is a dimensionless measure of the total torque required to
rotate a disk and includes: a) the torques associated with each of the flat surfaces of a disk; b) the
torque associated with the rim surface of a disk; and, c) the torques due to the sections of the hub
associated with a disk.

In the present geometry each of the two disks has an “inner” surface (I) that faces the
surface of the opposite corotating disk, and an “outer” surface (O) that faces a fixed flat enclosure
wall.  It makes sense to define the above three contributions to the torque coefficient for each of
the two surfaces of a disk.  Thus, call C M disk

I
, the mean torque acting on the inner surface of a

disk, C M rim
I

, the mean torque acting on the peripheral half-surface of the rim associated with the
inner surface of a disk, and C M hub

I
, the mean torque acting on the peripheral half-surface of the

hub associated with the inner surface of a disk.  The corresponding quantities for the outer surface
of a disk are C M disk

O
, , C M rim

O
,  and C M hub

O
, .  These quantities are calculated from the following

expressions:
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where the vertical bars denote time-averaged wall values of the velocity gradients indicated.  In
these expressions the superscript “ I  ” denotes the disk, rim, or hub surfaces associated with the
inner surface of a disk and the superscript “ O ” denotes the disk, rim, or hub surfaces associated
with the outer surface of a disk.  Thus, with reference to Fig.1, C M disk

I
, is evaluated at z = ± H/2

and C M disk
O

, at z = ± (H/2 +h); C M rim
I

, is evaluated from z1 = ± H/2 to z2 = ± (H/2 +h/2) and
C M rim

O
, from z1 = ± (H/2 + h/2) to z2 = ± (H/2 +h); C M hub

I
, is evaluated from z1 = 0 to z2 = ± H/2

and C M hub
O

, from z1 = ± (H/2 + h) to z2 = ± (3H/2 + h).

From the above equations it is possible to obtain the following quantities:
Mean torque coefficient for a disk near the middle of a stack of disks in a cylindrical enclosure

C C C CM
MD

M disk
I

M rim
I

M hub
I= + +2( ), , ,      (9-a)

Mean torque coefficient for a single disk in a cylindrical enclosure

C C C CM
SD

M disk
O

M rim
O

M hub
O= + +2( ), , ,     (9-b)

Mean torque coefficient for a disk at the end of a stack of disks in a cylindrical enclosure

C C C C C C C C CM
ED

M disk
I

M disk
O

M rim
I

M rim
O

M hub
I

M hub
O

M
MD

M
SD= + + + + + = +( ) / ( ), , , , , , 1 2      (9-c)

Mean torque coefficient for a stack of N disks in a cylindrical enclosure

C N C C N C CM
Stack

M
MD

M
ED

M
MD

M
SD= − + = − +( ) ( )2 2 1     (9-d)

Note that in the above four equations it is implied that the various contributions to the torque
coefficient are additive and the results discussed below support this assumption.

Calculated values of C M
MD  and C M

SD are given in Fig. 10 where they are plotted as a
function of the gap ratio A/R2.  In all cases Re = 2.1 x 104 and both full domain axisymmetric and
3D values are presented, the latter being limited to two gap sizes because of the long calculation
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times involved.  As expected, the calculations show that C M
SD  > C M

MD , by a factor as large as four
at intermediate values of A/R2.  They also reveal an insensitivity of C M

SD  with respect to the gap
size.  In the A/R2 range investigated we find C M

SD  ≈ 0.024, in close agreement with the results
obtained using the single disk correlations of Daily and Nece [12] ( C M

SD  = 0.020), Hudson and
Eibeck [6] ( C M

SD  = 0.021), and Humphrey et al. [7] (C M
SD  = 0.020) by setting Re = 2.1 x 104.

The figure also compares present calculations of C M
MD  with the correlation proposed by

Hudson and Eibeck [6] for Re > 8 x 104.  The correlation is given by
( ) ( ) 07.0

2
5.0

2
35.0 //46.0 −−= RARHReC MD

M  and, as observed for C M
SD , shows a very weak

dependence on A/R2.  Agreement between the calculations and the experimental fit varies
between 1% and 15% in the range 0.010 < A/R2 < 0.060.  In contrast, the calculated value of
C M

MD  for the largest gap explored, A/R2 = 0.077, is significantly smaller than the value given by
the fit.  The discrepancy is partly due to the lower Re of the current study (large gaps in disk
flows at high Re are expected to facilitate turbulent exchanges of momentum that can
significantly increase the disk torque coefficient), but may also be  attributed to the over-
constraining assumption of axisymmetric flow. In this respect, while there is good agreement
between the axisymmetric and 3D calculations of C M

MD  and C M
SD for the case with A/R2 = 0.013, a

12% discrepancy arises between the values for  C M
MD   for the more critical case with

A/R2 = 0.026. As discussed further above, such a discrepancy is explained by the inability of the
axisymmetric calculations to  fully capture the physics of the inter-disk flow for A/R2 = 0.026.
Thus, while the  axisymmetric calculations  follow the empirical trend and predict decreasing
C M

MD   with increasing A/R2, they should only be used for qualitative guidance, especially for large
values of A/R2.

Increasing A/R2 might be viewed as a convenient way to reduce the torque, and hence the
power requirement of a stack of disks. However, the rms values in Fig. 7(b) show that such a
reduction will come at the expense of a more unstable inter-disk flow.  A related observation has
been made by Humphrey et al. [7] who show that the inwards radial displacement of fluid with
high circumferential momentum works to reduce total disk torque at the cost of destabilizing fluid
motion in the inter-disk space.  That study also supports the observation made here, that axial
transport of circumferential momentum across the gaps can significantly alter the structure and
dynamics of the inter-disk flow while not significantly affecting the flows in the disk-end wall
spaces.

CONCLUDING REMARKS
Present numerical calculations show that the structure and dynamics of the flow in the

space between a pair of disks corotating in a fixed cylindrical enclosure at Re = 2.1 x 104 are
sensitive to the size of the gaps between the rims of the disks and the curved enclosure wall.  This
is due to axial transport of circumferential momentum between the inter-disk spaces connected by
the gaps.  In this regard, regardless of the imposition or not of symmetry-plane or periodic-plane
boundary conditions in the gaps, the assumption of axisymmetric flow yields results that, while
numerically accurate, fail to faithfully reproduce measured variations of the mean and rms
circumferential velocities.  Likewise, a 3D calculation using the symmetry-plane boundary
condition in the gaps also fails to reproduce the variations observed in the measurements.  In
contrast, a 3D calculation of the flow including the gaps and the inter-disk spaces as parts of an



137

interconnected flow domain yields mean and rms velocities in very good agreement with the
corresponding measurements.

  At a qualitative level, present full domain axisymmetric calculations suggest that
increasing A/R2 works to significantly reduce the disk torque coefficient, but at the expense of
increasing flow unsteadiness as revealed by the calculations of the rms circumferential velocity.
This observation agrees with previous related findings and suggests that while disk torque may be
significantly reduced by increasing gap size, the reduction may come at the expense of a
significantly destabilized flow due to the enhanced axial exchanges of momentum through the
gaps. However, it is important to keep in mind that, because of the differences in flow structure
and dynamics predicted by axisymmetric and 3D calculations, respectively, axisymmetric values
of the disk momentum coefficient are not reliable at a quantitative level, especially for large
values of A/R2. For accurate predictions of all flow behavior, computationally intensive full
domain 3D calculations are required, even for integral quantities such as the disk momentum
coefficient.

From a practical standpoint, present calculations suggest that equations 9(a)–(d) can be
used together with previously reported empirical correlations, analytical equations or full domain
3D numerical results to predict the torque coefficients associated with one or more disks
corotating in a cylindrical enclosure. However, because most previous results have been obtained
for conditions corresponding to moderate and high values of the Reynolds numbers, as illustrated
here, their use to predict torque at lower values of Reynolds than for which they were derived
must be viewed with caution.
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Coordinate Grid (Nodes)
Minimum
Spacing,

mm

Maximum
Spacing,

mm

Expansion
factor

Coarse (90) 0.15000 0.88955 1.20

Medium (118) 0.12273 0.68972 1.10R-direction

Fine (182) 0.07500 0.49968 1.05

Coarse (132) 0.14690 0.47530 1.20

Medium
(164) 0.12273 0.25720 1.10

Z-direction

Fine (240) 0.07346 0.24562 1.05

Table 1. Minimum and maximum spacing and
expansion factors used in the axisymmetric flow
calculations with A/R2 = 0.026.

A/R2

Coordinate
0.0064 0.013 0.026 0.052 0.077

R-direction
(nodes) 104 108 118 140 162

Z-direction
(nodes) 164 164 164 164 164

Table 2. Grid nodes used in the axisymmetric flow
calculations of the various A/R2 cases.

Figure 1. Sketch of the flow configuration investigated
numerically. The geometrical parameters shown match
those of the test section investigated experimentally by
Schuler et al. [1] in which: R1 = 56.4 mm, R2 = 105 mm,
H = 9.53 mm, h = 1.91 mm and A = 2.7 mm. In this
study calculations are performed for five gap sizes (A/R2

 = 0.0064, 0.013, 0.026, 0.052 and 0.077) with Re = 2.1
x 104.
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Figure 2. Effect of grid refinement on axisymmetric
calculations of the mean and rms velocities for Re  = 2.1
x 104 with A/R2 = 0.026.  (a) Axial profiles of radial
velocity components at R=1.0. (b) Axial profiles of the
circumferential velocity components at R=0.9. (c)
Radial profiles of the axial velocity components at
Z=0.25.
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Figure 3. Effect of grid refinement on the time
dependence of the axial velocity component at Z = 0 for R
= 0.90 and 1.0. Calculation conditions correspond to Fig.
2.
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Figure 4. Measured and calculated radial profiles of the
mean (a) and rms (b) circumferential velocities along
the inter-disk mid-plane, Z = 0, for the case with
A/R2 =0.026. Calculations are restricted to the inter-disk
space of Fig. 1 using symmetry-plane (Eq. 6) or
periodic-plane (Eq. 7) boundary conditions in the gaps.
The axisymmetric results are averaged over time and the
3D results (and the measurements) are averaged over
time and in the circumferential direction. The 3D
calculations by Humphrey et al. [8] are for a pair of
disks of zero thickness using symmetry-plane boundary
conditions in the gaps.
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Figure 5. Cross-stream distributions of the time-
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Figure 6. Cross-stream distributions of the time- and
circumferentially-averaged flow obtained in a full
domain 3D calculation for the geometry of Fig. 1 with
A/R2 = 0.026. (a) Cross-stream flow streamlines based
on the axial and radial velocity components
(unlabelled). (b) Contours of the mean circumferential
velocity component. (c) Contours of the rms
circumferential velocity component.
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Figure 7. Measured and calculated radial profiles of the
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Figure 8. Instantaneous cross-stream flow streamlines
(unlabelled) corresponding to the full domain 3D
calculation conditions of Fig. 6 (A/R2 = 0.026).
Contours are plotted at selected (R-Z) planes
corresponding to: (a) θ  = 0.72π; (b) 0.84π; (c) 1.03π;
(d) 1.91π.
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ABSTRACT

The two-dimensional wall-driven flow in a plane rectangular enclosure and the three-
dimensional wall-driven flow in a parallelepiped of infinite length are limiting cases of the
more general shear-driven flow that can be realized experimentally and modeled numerically
in a toroid of rectangular cross-section. Present visualization observations and numerical
calculations of the shear-driven flow in a toroid of square cross-section of characteristic side
length D and radius of curvature Rc reveal many of the features displayed by sheared fluids in
plane enclosures and in parallelepipeds of infinite as well as finite length. These include: the
recirculating core flow and its associated counter-rotating corner eddies; above a critical value
of the Reynolds (or corresponding Goertler) number, the appearance of Goertler vortices
aligned with the recirculating core flow; at higher values of the Reynolds number, flow
unsteadiness and vortex meandering as precursors to more disorganized forms of motion and
eventual transition to turbulence. Present calculations also show that, for any fixed location in
a toroid, the Goertler vortex passing through that location can alternate its sense of rotation
periodically as a function of time, and that this alternation in sign of rotation occurs
simultaneously for all the vortices in a toroid. This phenomenom has not been previously
reported and, apparently, has not been observed for the wall-driven flow in a finite-length
parallelepiped where the sense of rotation of the Goertler vortices is determined and stabilized
by the end wall vortices. Unlike the wall-driven flow in a finite-length parallelepiped, the
shear-driven flow in a toroid is devoid of contaminating end wall effects. For this reason, and
because the toroid geometry allows a continuous variation of the curvature parameter,
δ = D/Rc ,  this flow configuration represents a more general paradigm for fluid mechanics
research.

INTRODUCTION
The two-dimensional (2D) wall-driven flow in a plane rectangular enclosure, also referred

to as the “lid- or wall-driven cavity flow,” has been a computational fluid dynamics paradigm
of long-standing interest. Although such a flow cannot be realized experimentally,
approximations have been obtained in enclosures shaped like parallelepipeds of rectangular
cross-section and of finite length. In the parallelepiped geometry, fluid motion is induced by
the in-plane sliding of one of the four longitudinal walls of the parallelepiped, in a direction
normal to the parallelepiped’s longitudinal axis.

In the case of the plane square enclosure (Fig. 1-a), the flow is characterized by the
Reynolds number Re = D U/ν, where D is the enclosure cross-section length, U is the sliding
wall velocity, and ν is the kinematic viscosity of the fluid. In the case of a parallelepiped of
square cross-section (Fig. 1-b), in addition to Re it is necessary to specify the longitudinal to
cross-section length ratio, L/D. In contrast to the 2D flow in the idealized plane square
enclosure, that in a finite-length parallelepiped is 3D due to pressure gradient effects induced
by the viscous action of the end walls. In addition, above a critical value of Re (or an
equivalent Goertler number) centrifugal instabilities trigger the appearance of pairs of
counter-rotating vortices with axes aligned along the recirculating core flow direction. The
wavelength of these vortices scales with D and in a finite-length parallelepiped their sense of
rotation is permanently fixed by the end wall vortices.

  We propose a new geometrical configuration for the investigation of instabilities of
shear-driven flows in enclosures that is realizable experimentally and numerically without
incurring the end wall bias present in the finite-length parallelepiped configuration. This
consists of the shear-driven flow in a toroid of square cross-section where, in the limit of low
Re and large radius of curvature, Rc, fluid motion approaches that in the idealized plane square
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enclosure. As for the parallelepiped configuration, at a critical value of Re in a toroid
centrifugal instabilities trigger the appearance of Goertler vortex pairs that, with increasing
Re, become unsteady and ultimately transition to a turbulent state of motion. In addition to
circumventing the end wall bias, the toroid configuration allows the investigation of the effect
of the geometrical curvature parameter, δ = D/Rc ,  on shear-driven flows. For these reasons,
therefore, it represents a more general fundamental paradigm than its parallelepiped
predecessors.

EARLIER WORK
Numerical calculations of the 2D wall-driven flow in a plane rectangular enclosure have

been performed by, for example, Ghia et al. [1], Iwatsu et al. [2, 3] and Nishida and Satofuka
[4]. Corresponding 3D calculations of the parallelepiped geometry have been performed by
Koseff et al. [5], Freitas et al. [6], Kim and Moin [7], Freitas and Street [8], and Iwatsu et al.
[2, 3]. Experimental investigations of the finite-length parallelepiped geometry include the
pioneering studies performed by Koseff and Street [9 – 11], and later by Prasad and Koseff
[12] and Aidun et al. [13]. The stability of the 2D base flow to longitudinal disturbances in an
infinitely long parallelepiped has been investigated numerically by Ramanan and Homsy [14],
Ding and Kawahara [15, 16] and Albensoeder et al. [17]. By means of linear stability analysis
and experiments, Albensoeder et al. [17] demonstrate the dependence of the instabilities
observed on the enclosure cross-section dimensions. For parallelepipeds of cross-section
equal to or close to square, they conclude that the steady 2D flow destabilizes to a steady 3D
flow of dimensionless wavenumber κ (≡ 2π/(λ/D)) = 15.43 for a critical Re = 786.3. They also
find from their experiments that end wall effects can suppress instabilities in finite-length
parallelepipeds.

With reference to Fig. 1, the investigations performed in infinite- and finite-length
parallelepipeds reveal significant (u, w) cross-stream motions in x-z planes perpendicular to
the wall-driven recirculating core flow. These motions are induced by: a) pressure gradients
arising at each of the two end walls in finite-length parallelepipeds; and, b) centrifugal
instabilities responsible for the Goertler vortices that arise above a critical value of the
Reynolds number (or an equivalent Goertler number) in both infinite- and finite-length
parallelepipeds. The vortices appear as counter-rotating pairs periodically distributed in the
longitudinal direction (x-direction in Fig. 1-b) and their axes are aligned with the recirculating
core flow. They have been referred to as Taylor-Goertler-like vortices in the literature but,
because of the manner of shearing, appear to have more in common with the centrifugal
instability investigated by Goertler [18] in curved boundary layers than the centrifugal
instability investigated by Taylor [19] in the space between concentric cylinders in relative
rotation. In this regard, see Freitas and Street [8] for an application of the Goertler stability
criterion to predict the onset of centrifugal instabilities in the wall-driven flow in a
parallelepiped.

  The end wall pressure gradients in finite-length parallelepipeds fix the sense of rotation
of the first vortex next to each end wall. In turn, the end wall vortex fixes the sense of rotation
of the Goertler vortex next to it and so on. Because the end wall pressure-gradient forces
differ in magnitude from the centrifugal forces, and because of secondary instabilities, non-
linear interactions among the vortices can induce time- and space-dependent variations among
them as well as in their number. Although interesting in its own rigth, there is an unavoidable
bias in the finite-length parallelepiped configuration that unnecessarily complicates both the
physical understanding and the numerical calculation of 3D shear-driven enclosure flows.
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A NEW SHEAR-DRIVEN ENCLOSURE FLOW PARADIGM
The end wall bias present in the finite-length parallelepiped geometry can be completely

removed by converting the parallelepiped into a toroid. This is accomplished conceptually by
curving the parallelepiped uniformly around a pair of parallel longitudinal walls and
“dissolving” the end walls at the common plane where they meet to create a continuous,
unobstructed toroid of square cross-section (Fig. 2-a). In this idealized configuration, one of
the flat walls of the toroid (the top wall in Fig. 2-a) is made to slide radially outwards (or
inwards) with an axisymmetric velocity distribution in order to drive the flow in the toroid by
viscous shearing. In addition to Re, the new quantity δ = D/Rc  (a geometrical curvature
parameter) must be specified to characterize fluid motion. Clearly, for values of δ →  0, the
effects of geometrical curvature are rendered negligible, resulting in a flow configuration
which: i) at sufficiently low Re rigorously approximates the 2D wall-driven flow in a plane
square enclosure; ii) at sufficiently high Re will display the Goertler vortices observed in
finite-length parallelepipeds, but devoid of end wall bias; and, iii) at even higher Re will
undergo transition to turbulence. In this sense then, the shear-driven flow in a toroid
represents a more general fundamental fluid mechanics paradigm than its predecessors.

Using the second order accurate (space and time) explicit CUTEFLOWS Navier-Stokes
solver of Humphrey et al. [20], Phinney and Humphrey [21] and Sudarsan et al. [22] have
calculated the wall-driven flow in a toroid of square cross-section corresponding to Fig. 2-a to
investigate the effects of varying δ and Re. The bulk of this work is for 2D (axisymmetric)
flow. However, time averages of 3D results calculated for Re = 3200 and δ = 0.005 yield very
good agreement with the Goertler vortices and time-averaged velocity profiles obtained by
Koseff and Street [9, 11] in a finite-length parallelepiped with Re = 3300; see Sudarsan et al.
[22]. For Re = 3200 and δ = 0.005 as well as for Re = 2400 with δ = 0.25, the instantaneous
flow is unsteady and the Goertler vortices are observed to meander chaotically. Sudarsan et al.
[22] conclude that above a critical value of Re, depending on the value of δ, the flow in a
toroid becomes 3D due to the appearance of Goertler vortex pairs distributed periodically in
the circumferential coordinate direction. They also obtain evidence to suggest that the
Goertler vortices in a toroid can simultaneously alternate their sense of rotation periodically as
a function of time with characteristic dimensionless frequency ω = 2π /(TU/D).

The present study explores more carefully the 3D, unsteady, shear-driven flow in a toroid
of square cross-section. The effort is part of an ongoing collaboration between the University
of Virginia and the University of Rovira i Virgili. We are concerned with two basic flow
configurations differing solely in the way fluid motion is induced. In one configuration, flow
through a narrow gap, g, shown in Figs. 2-b and –c, is involved. With reference to Fig. 2-a,
Configuration One (the idealized case) consists of a toroid with g/D = 0, the flow in the toroid
being driven by the shearing action of the top wall sliding radially outwards with an
axisymmetric, constant velocity U. With reference to Fig. 2-b, Configuration Two (the
experimental case) consists of a toroid with 0 < g/D << 1, the flow in the toroid being driven
by the shearing action of the wall-jet that emerges from the gap, g, to expand radially
outwards along the toroid top wall. For Configuration Two, the Reynolds number is defined
as Reg = Ug D/ν, where Ug is the mean velocity of the fluid in the gap at the plane where it
enters the toroid.

In this communication we present results for Configuration Two. For this configuration
numerical calculations are performed for Reg = 1143 and g/D = 0.04 in two toroids: one with
δ = 0.25 and another with δ = 0.51. The main flow visualization results are obtained in a
toroid with Reg = 5000, g/D = 0.015 and δ = 0.25. Following the procedure outlined by Freitas
and Street [8], all three of these cases yield estimates of the Goertler number of order 10,
exceeding the stability criterion for the appearance of Goertler vortices. In the calculations the
upper limit on Reg is imposed by grid refinement considerations. In the flow visualization
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experiments the lower limit on Reg is imposed by the construction of the test section.
Unfortunately, with the current apparatus it is not possible to obtain a large overlap in Reg

between the experiment and the calculations.

Experimental Apparatus
The experiments are performed in a flow apparatus that uses water as the working fluid. A

toroid with D = 0.05 m and Rc = 0.20 m is accurately machined from a transparent Plexiglass
block 24” x 24” x 8” using a CNC milling machine. With reference to Figs. 2-b and -c, the
inlet flow passage to the toroid is defined by a trumpet-shaped surface (machined into the
same Plexiglass block) and a separate, flat, circular, Plexiglass lid of diameter 0.50 m and
thickness 2.26 cm. The curvature of the trumpet-shaped surface is geometrically defined by
rotating a quarter-ellipse 360 degrees around the toroid axis of symmetry. The major and
minor axes of this ellipse are a = 0.165 m and b = 0.060 m. The distance between the circular
lid and the top of the toroid, defining the gap dimension g, is continuously adjustable between
0 and 5 mm using three UNC 10-32 fine-thread screws placed 120 degrees apart. The entire
Plexiglass test section rests on a laboratory table where it is leveled by means of three 6” long,
½” diameter, rubber-capped bolts that pass through threaded bearings 120 degrees apart in the
table to support the test section from below.

The test section is part of a recirculating flow system that redirects water leaving the
toroid into a sump tank from where it is pumped into a constant head tank with an overflow
line leading back to the sump tank. Tygon tubing is used for all flow connections and this
serves to minimize the transmission of possible mechanical vibrations. A circular gutter built
into the Plexiglass lid permits the continuous removal of water from the test section thus
allowing unobstructed side and top views of the toroid. A globe valve controls the flow of
water from the head tank into the test section, and the rate of flow is measured by means of a
King flowmeter (0 - 1.5 gpm, ± 0.01 gpm). After the flowmeter the water passes vertically
upwards through a flow conditioning section consisting of a glass tube of inner diameter 0.02
m and length 0.40 m. The inlet to this tube contains a bundle of tightly packed straws 0.20 m
long located between a pair of stainless steel screens. This is followed by an unobstructed
length of tube wherein the flow relaxes before passing through a third screen to finally
connect with the inlet to the trumpet-shaped section, also of diameter 0.02 m. The flow in the
trumpet-shaped section first decelerates slightly and then accelerates strongly as it approaches
the toroid. A tendency of the flow to separate in the decelerating section is suppressed by the
insertion of two relatively fine, cylindrically-shaped, concentric stainless steel screens. These
additional screens further reduce any residual inhomogeneities in the flow approaching the
toroid.

A rheoscopic fluid manufactured by Kalliroscope Corp. (AQ-1000 Rheoscopic
Concentrate, consisting of micron-sized guanine platelets in suspension) is added to the water
(1% by volume) for flow visualization purposes.  The flow in the toroid is illuminated using a
plane of light generated by passing the beam from a 5-mW He-Ne laser through a cylindrical
lens. While  it  is  possible  to  obtain images of the flow in  planes  normal to  the  r-, z- and
θ-coordinate directions, the highest quality and least optically-distorted images are obtained in
r-θ planes, normal to the z-coordinate direction. Photographs of the flow are taken with a
Canon T90 camera using a 50 mm Canon Macrolens and Kodak Select B&W 200 ASA film.

Among the uncertainties affecting the experiment, those associated with geometrical
dimensions during fabrication and assembly of the test section, water temperature variations,
and mechanical vibrations are negligible, and those associated with optical distortion of
images are small or correctable if necessary. Two sources of uncertainty affect the value of Ug

in the Reynolds number, Reg . One is due to the reading error (± 0.01 gpm) of the flowmeter
scale, and the other is due to the positioning error (± 25 µm) of the circular lid which leads to
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an uncertainty in the gap width, g. The result is a final maximum percent rms uncertainty of
± 5% in Reg. Of more concern is a possible misalignment of the lid leading to a non-
axisymmetric gap width, g. Such a misalignment will induce uneven shearing of the flow in
the toroid with corresponding distortions of the flow structures in it. However, with care this
effect can be minimized. For further details on the experimental apparatus, procedure and
uncertainties see Cushner [23].

Numerical Calculations
A fourth order (space and time) version of the CUTEFLOWS code referred to above is

employed for the new calculations presented here, corresponding to Configuration Two. The
code solves unsteady, 3D, constant property forms of the momentum and continuity equations
in Cartesian or cylindrical coordinates. The numerical procedure is based on a staggered-grid,
control-volume discretization approach for deriving finite difference forms of the
conservation equations in terms of the primitive variables, velocity components and pressure.
A fourth-order-accurate central differencing scheme is used to approximate the pressure and
diffusion terms in the momentum equations. A quadratic upstream-weighted scheme is used
for the convection terms. Continuity yields a discrete Poisson equation that is solved for
pressure using the conjugate gradient method. The algorithm is explicit in time and uses a
fourth-order Runge-Kutta solver. The dimensionless integration time-step is typically
t/(D/U) < 0.01 and is small enough to guarantee both stable convergence and accuracy in the
course of a calculation.

The calculation domain consists of the entire toroid (full 360 degrees) with the
impermeable, no-slip condition imposed for velocity at all its internal surfaces. With reference
to Fig. 2-c, the flow at the plane where it enters the toroid is taken as essentially fully
developed Poiseuille flow. The flow leaving the toroid redevelops in an exit gap of the same
height, g/D, as the inlet plane gap, and of length l/D = 0.55. Calculations are started from
corresponding 2D (axisymmetric) solutions. Earlier linear stability analyses have shown that
the 2D wall-driven flow in an infinitely long parallelepiped is unstable to infinitesimal
disturbances. Using the present fourth order numerical scheme, the Goertler vortices appear
spontaneously and it is unnecessary to seed disturbances. A typical run time for Configuration
Two on a dual processor Dell workstation (PWS620) is about 10 hours for 100 seconds of
numerical flow development.

Substantial grid refinement tests are first performed, culminating in the choice of a grid
with (Nr =72, Nz = 72, Nθ = 192) nodes. The nodes in the r-z plane are unequally spaced while
those in the θ direction are equally spaced. Although not shown here, subsequent additional
testing with this grid has yielded vortical flow structures with characteristics in excellent
agreement with those obtained by Albensoeder et al. [17]. Namely, using periodic boundary
conditions in the x-direction for the wall-driven flow in a parallelepiped of square cross-
section corresponding to Fig. 1-b with g/D = 0 and L/D = 2, we find κ = 15.7 and ω = 0 at
Re = 850 compared to the experimental values of κ = 15.43 and ω = 0 at Re = 786.3.

RESULTS AND DISCUSSION
A summary of some main findings follows below for Configuration Two.

Experimental Results
Flow visualization experiments have been performed in the range 103 ≤ Reg ≤ 9 x 103 in a

toroid with δ = 0.25 for gap widths corresponding to g/D = 0.015, 0.030, 0.040 and 0.060; see
Cushner [23]. Here we comment on the main observations made with a focus on the
visualization results obtained for Reg = 5000 with g/D = 0.015.
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Because of the viscous action of the circular lid on the flow, there can be a significant
penetration of the radially-expanding wall-jet into the toroid. For each gap width, g, a value of
Reg exists above which this penetration is minimal and for g/D = 0.015 this corresponds to
Reg ≈ 1600. For Reg > 2000, views of the flow in the r-z plane, made at an angle through the
lid, clearly reveal the recirculating core flow and the two bottom corner eddies typical of 2D
wall-driven flows in plane rectangular enclosures. (Note, however, with reference to Fig 1-a,
that the eddy arising in the top left-hand corner of a wall-driven plane enclosure flow is not
clearly visible in the experiment, and is not predicted numerically for the values of Reg and
g/D investigated.)  The wall-jet penetration is discussed further below in relation to the
numerical calculations performed.

Depending on the value of g/D, between Reg = 1000 and 2000 a first instability leads to
the appearance of Goertler vortices in the flow. (The exact value of Reg cannot be determined
in the current apparatus because of the wall-jet penetration limitation.) For the flow with
g/D = 0.015 and Reg = 2000 the dimensionless wavenumber of a vortex pair is κ ≈ 6.3, and
between Reg = 3000 and 4000, approximately, this doubles to κ ≈ 12.6. In the latter range of
Reg a slight meandering of the vortices (smaller in extent than half a wavelength) is observed
over time periods of about 5 min. At Reg ≈ 4100 a second, marked instability, in the form of a
Hopf bifurcation, is observed. This involves the continuous merging and splitting of the
Goertler vortices. Beyond Reg ≈ 6500 the vortices are subjected to a strong wavy motion
which, by Reg ≈ 8000, is disorganized and turbulent (although the intermittent presence of
Goertler vortices is observed).

Flow visualization results corresponding to Reg = 5000 with g/D = 0.015 are shown in
Figs. 3 and 4. (In these and subsequent figures r* ≡ (r-ri)/(ro-ri) and z* ≡ z/D.) The results in
Fig. 3 correspond to a snapshot of the flow in the z*-θ plane at r* = 0.90. Those in Fig. 4 are
obtained at different times at different r*-θ planes. Although the flow conditions correspond to
an unsteady flow regime, it is not possible to extract a single characteristic frequency from the
visualization observations. Notwithstanding, Goertler vortices of wavenumber κ ≈ 12.5 are
clearly observed. At small values of z* (near the toroid bottom wall), the vortices are aligned
in the radial direction and fill the entire space between r* = 0 and 1. With increasing z* the
vortices orient themselves axially, along the z* coordinate direction, and are especially
prominent along the inner curved half of the toroid, r* < 0.5.

Numerical Results
Numerical calculations are performed for Reg = 1143 and g/D = 0.04 in two toroids: one

with δ = 0.25 and another with δ = 0.51. Because the details of these two flow are very
similar, and because their Goertler vortices have essentially the same wavenumber, we focus
on the results obtained for δ = 0.51. Calculated values of the instantaneous circumferential
velocity component, visualized using shades of gray ranging from white to black, are shown
in Fig. 5. The results correspond to t* (≡ tUg /4D) = 856 and are in excellent qualitative
agreement with the experimental observations at higher Reg and lower δ in so far as the spatial
structure, distribution, and orientation of the vortices are concerned. For the conditions
calculated, the wavenumber of the vortices is κ = 8.7 and the flow displays a time dependence
of dimensionless frequency ω = 0.154. (Note that in the toroid the dimensionless wavenumber
κ (≡ 2π/(λ/D)) = (2πRc/λ) (D/Rc)= N δ, where N (= 17) is the total number of vortex pairs in
the toroid.)

Figure 6 shows calculated time records of the dimensionless circumferential velocity
component (u*

θ = uθ /Ug) at two axial locations z* = 0.25 and z* = 0.50 with  r* = 0.5 and
θ = 0.22π. The calculations correspond to the conditions of Fig. 5. Although the magnitudes
of these monitor velocity components and their changes are small, and while the recirculating
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flow has experienced about 22 toroid periphery “turnovers” in the course of its development,
it appears to still be evolving. Thus, we cannot state definitively whether the flow dynamics
will continue to evolve towards a final, periodic state with ω = 0.154, or will orbit, instead,
within the basin of a strange attractor at some frequency close to ω = 0.154.

Nevertheless, it is especially noteworthy for the numerical conditions explored that the
entire flow field in the toroid alternates between two identical but spatially displaced states of
motion as a function of time. This Hopf-like bifurcation is clearly illustrated by the velocity
vector plots shown in Fig. 7 for two consecutive times of an oscillation cycle (ω = 0.154) in
the z*-θ  plane located at r* = 0.5. While the shape, size and number of the calculated
structures are virtually the same at both times, their positions relative to a fixed reference
point are displaced by half a wavelength in the θ-coordinate direction. A movie of this flow
reveals a sequentially alternating pattern of Goertler vortices in the main recirculating core
flow direction. At any instant in a cycle, the two vortices in any vortex pair have a particular
sense of rotation, the vortices in this pair counter-rotating with respect to each other. At a later
time in the cycle, this vortex pair gives way to a new pair, displaced by half a wavelength in
the θ-coordinate direction, in which the vortices now rotate in the opposite sense to the
original pair. At all times, however, the vortices remain equally spaced in the θ-coordinate
direction.

From an Eulerian viewpoint, the visual effect at a fixed location in the toroid is to observe
in situ time-periodic alternations in sense of rotation of the vortices. This sign alternation in
sense of rotation occurs simultaneously for all the vortices in a toroid, thus implying a phase
shift in the recirculating core flow direction. We suggest that the periodic changes in sense of
rotation of the vortices is due to a phase-shifted coupling between the tilting and stretching of
circumferential, θ- component of vorticity at the convex (inner-radius) wall and the tilting and
stretching of the same component of vorticity at the concave (outer-radius) wall.

We referred earlier to a basic difference between the toroid flows corresponding to
Configuration One (Fig. 2-a) and Configuration Two (Fig. 2-b and -c) that has to do with the
way fluid motion is induced by shearing. In Configuration Two, a wall-jet expands radially
outwards along the circular lid over the toroid. The viscous action of the lid on the wall-jet
results in a penetration of the flow into the toroid and the formation of a stagnation line along
the outer concavely-curved wall. This stagnation line falls below the exit gap by an amount
p/D that depends on the values of Reg and g/D. Figure 8 shows an instance of the calculated
flow in the r*-z* plane corresponding to the maximum penetration depth of the wall-jet when
Reg = 1143, g/D = 0.04 and δ = 0.51. (The corresponding plot for the minimum penetration
depth in an oscillation cycle is virtually the same.) While the radially-decelerating expanding
wall-jet and the flow in the vicinity of the stagnation line represent potential sources for
additional instabilities in the toroid, these are not observed in the calculations. If they exist in
the experiment it is not known how much they influence the centrifugal instability leading to
the formation of the Goertler vortices.

CONCLUSIONS
Because of the absence of end wall effects, the shear-driven flow in a toroid of rectangular

cross-section represents a more general fluid mechanics paradigm than its parallelepiped
predecessors. In addition, radial accelerations and decelerations of fluid motion, induced by
geometrical curvature, render this flow type especially rich in its physics.

Numerical calculations of the flow in a toroid can be performed assuming that a sliding
wall shears the fluid. In contrast, an experimental realization of the flow requires the use of a
wall-jet to shear the fluid. We refer to the former as Configuration One and to the latter as
Configuration Two.
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In the limit δ →  0 and at sufficiently low Reynolds number, the wall-driven flow in a
toroid corresponding to Configuration One approximates the 2D flow in a plane enclosure.
For δ = 0 and above a critical value of Re, the same configuration represents the wall-driven
flow in an infinitely long parallelepiped. Our 3D calculation approach yields results in
excellent agreement with 2D plane square enclosure flows and with the 3D results of
Albensoeder et al (2001) for the flow in a wall-driven parallelepiped of finite length
(experiment) and infinite length (analysis). Thus, for the latter we obtain κ = 15.7 and ω = 0
at Re = 850 compared to κ = 15.43 andω = 0 at Re = 786.3 for the resulting Goertler vortices.
Earlier calculations in a finite-length parallelepiped for Re = 3200 and δ = 0.005 have yielded
results in very good agreement with the Goertler vortices and time-averaged velocity profiles
obtained experimentally by Koseff and Street [9, 11] for Re = 3300;

Present calculations for Configuration Two with δ = 0.51 (and δ = 0.25), g/D = 0.04 and
Reg = 1143 reveal the same basic flow pattern as observed in Configuration One when the
Goertler stability criterion is exceeded. This consists of a recirculating core flow and two
smaller eddies at the bottom corners of the toroid, and centrifugally-induced Goertler vortex
pairs of wavenumber κ = 8.7 superimposed on and aligned with the recirculating core flow.
Especially noteworthy, however, is the observation that for any fixed location in the toroid,
the Goertler vortex passing through that location alternates in its sense of rotation periodically
as a function of time, and that this sign alternation occurs simultaneously for all the other
Goertler vortices in the toroid. From an Eulerian viewpoint, the visual effect is to observe in
situ, simultaneous, time-periodic alternations in the sense of rotation of all the vortices in the
toroid at frequency ω = 0.154. Such behavior is precluded for the wall-driven flows in finite-
length parallelepipeds where the sense of rotation of the Goertler vortices is determined and
stabilized by the sense of rotation of the end wall vortices. A comparison between the
calculated results with δ = 0.25 and δ = 0.51 suggests that vortex wavenumber is independent
of curvature at this value of Reynolds.

Flow visualization observations in a toroid with δ = 0.25, g/D = 0.015 and Reg = 5000
reveal Goertler vortices of wavenumber κ ≈ 12.5 which appear to alternately merge and split
around their average locations. The experimental results suggest that for a toroid with
δ = 0.25 vortex wavenumber increases with increasing Reynolds number.

While these are interesting and significant findings, further work is necessary to
experimentally verify the periodic alternations in sense of rotation of the Goertler vortices. (In
this regard, we have made new, encouraging observations in the existing experimental
apparatus but the results are not definitive.) In addition, it is important to establish: a) the
dependence on Reg , δ and g/D for transition from 2D to 3D flow and the appearance of flow
unsteadiness; b) the conditions leading to, and a full understanding of, the time-dependent
alternations in sense of rotation of the Goertler vortices; and, c) vortex structure breakdown
and transition to turbulence as a function of the relevant geometrical and dynamical
parameters.

In summary, while the physics of the shear-driven flow in a toroid has yet to be fully
understood, this new configuration poses a number of significant questions related to
centrifugally-driven flow instabilities while serving as a well-defined and challenging test
case for computational fluid dynamic procedures aimed at solving complex, 3D, unsteady,
laminar and turbulent flows.
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Figure 1. Wall-driven flows in enclosures of square cross-section. (a): 2D flow in a plane
enclosure. (b): 3D flow in a parallelepiped. At sufficiently large Re, centrifugal instabilities
trigger Goertler vortices in the parallelepiped where the two end walls fix the sense of rotation
of the corner (“c”) vortices and, as a consequence, of the remaining (“G”) vortices. The sense
of rotation of the vortices in the bottom half of the parallelepiped is shown projected on an x-z
plane.
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Figure 2. a) Top and side views of the idealized toroid (Configuration One); b) side view of
the experimental configuration (Configuration Two); c) view showing one (r-z) plane of the
360 degree calculation domain corresponding to Configuration Two. Note that g/D = 0 for
Configuration One and g/D << 1 for Configuration Two. The drawings are not to scale.
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Figure 3.  Visualization of the instantaneous flow in a toroid with Reg = 5000, δ = 0.25 and
g/D = 0.015.  Picture shows a z*-θ  plane at r* = 0.90 as seen through the curved outer side
wall of the toroid.
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Figure 4.  Visualization of the instantaneous flow in a toroid with Reg = 5000, δ = 0.25 and
g/D = 0.015.  Pictures show views of r*-θ planes as seen through the top wall of the toroid
over a sector of 18 degrees: (a) z* = 0.9; (b) 0.7; (c) 0.5; (d) 0.3; and (e) 0.1.
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Figure 5. Instantaneous distributions of the calculated circumferential velocity component at
t* = 856 in r*-θ planes of a toroid with Reg = 1143, δ = 0.51 and g/D = 0.04: (a) z*=0.7; (b) 0.5
and (c) 0.1. Black and white areas denote regions of opposite velocity.

(c)
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Figure 6. Time records of the dimensionless circumferential velocity component at (a)
z* = 0.25, r* = 0.5 and θ = 0.22π (b) z* = 0.5, r* = 0.5 and θ = 0.22π  for  the  conditions of
Fig.  5.
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(a)

(b)

Figure 7. Instantaneous dimensionless velocity vectors at times t* = 860 (a) and t* = 865 (b) in
the lower half of the z*-θ  plane at r* = 0.5 for the conditions of Fig. 5.
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Figure 8. Instantaneous streamlines obtained from a full domain 3D flow calculation in a
toroid with Reg = 1143, δ = 0.51 and g/D = 0.04. The wall jet flows from left to right at the
top of the toroid thus inducing a clock-wise circulation of the core flow. Results shown
correspond to the maximum penetration depth in an oscillation cycle. The maximum
penetration depth is p/D = 0.079 and the minimum is p/D = 0.076.
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