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Abstract

Ab initio embedded cluster calculations have been employed to calculate a large number of

electronic structure parameters of three different spin ladders, namely SrCu2O3, CaCu2O3, and

Sr2Cu3O5. Using the iterative difference dedicated configuration interaction methodology, mag-

netic couplings J and hopping amplitudes t are determined for first to fourth nearest neighbors.

In addition, the four-body cyclic exchange Jring is extracted and the direct exchange K, the

neutral-ionic hopping integral t0 and the on-site repulsion U are calculated for first and second

nearest neighbor copper ions. The spin ladders can be considered as an interpolation between the

one-dimensional spin chains and the two-dimensional antiferromagnets. Hence, results are com-

pared with similar parameters in the spin chain Sr2CuO3, and the two-dimensional antiferromagnet

La2CuO4.
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I. INTRODUCTION

The rapid increase of the dimensions of the exact Hamiltonian prohibits the ab initio

study of collective properties in the copper oxide planes of the lamellar cuprates and other

compounds as quasi one-dimensional (1D) spin 1/2 chains, or spin ladders. For this reason,

the low-energy physics is often mapped onto a model Hamiltonian parameterized by a set of

effective parameters. This largely reduces the computational cost and has been shown to be

a very successful way to study the intriguing physics of the copper oxide compounds. One

of the simplest model Hamiltonians contains two parameters, namely the nearest neighbor

magnetic interaction parameter J and the hopping integral t, leading to the so-called t-J

model.1 This model is easily extended by considering not only the nearest neighbor interac-

tions but also the interaction between centers that are more separated in space.2–4 In this

way, interactions along the diagonal of the plaquettes in CuO2 planes, interplane or inter-

chain interactions can be included in the model. The extension of the t-J model is however

not limited to next nearest neighbor magnetic or hopping parameters, but parameters of

different nature can also be included. One example is the four-spin cyclic exchange term.

This interaction has been invoked to explain the large side band of the 0.4 eV peak observed

in the lamellar cuprates.5,6 The interaction has also been suggested to be of importance in

the spin ladders.7–9 The fitting of the magnetic susceptibility10 and neutron scattering data11

with just Jrung and Jleg leads to a ratio between the two magnetic interaction parameters

of 0.5. This surprising result changes to a more isotropic ratio when the four-spin cyclic

exchange is included in the analysis of the experimental data.

Despite the successes of the model Hamiltonian approach to explain and/or predict many

details of the cuprate physics, it has the draw-back that in some cases the effective model

parameters are not easily derived from experiment. For compounds with just one dominant

superexchange path, the magnetic interaction parameter can be accurately derived from

neutron scattering or magnetic susceptibility data. However, for more complicated systems

the result of the fitting of the experimental data can be dependent on the number and

nature of interactions considered in the fitting as illustrates the case of the spin ladders

mentioned above. It is even more difficult to extract accurate estimates of the hopping

parameters from experiment. The value of the nearest neighbor hopping parameter of 0.5

eV derived for La2−xSrxCuO4 is commonly extrapolated to other cuprates with similar Cu-
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O-Cu bonds. Although this is certainly not an absurd assumption, it is not completely

clear to what extent this hopping parameter varies from compound to compound. Similar

considerations can be made about next-nearest neighbor hopping interactions, which has

been claimed to be involved in the formation of charge stripes in the CuO2 planes of the

lamellar cuprates.12–15

An alternative way to obtain information about the magnitude of the effective model

parameters is to perform electronic structure calculations. In many studies band struc-

ture density functional calculations are performed, where the electron-electron interaction is

treated in the local density approximation (LDA). This means that the exchange-correlation

part of the functional is taken from a model system corresponding to the non-interacting

electron gas. In the case of the strongly correlated cuprates this approximation has rather

important consequences. LDA predicts many cuprate compounds to be metallic, where

experimentally a clear insulating character is observed.16–19 It is by now well-known that

magnetic interaction parameters derived from LDA calculations do not reflect realistic val-

ues. For example, J (LDA) for La2CuO4 is more than 1 eV,20,21 while it is generally accepted

(both confirmed from experimental and from theoretical studies22–27) that this interaction

is accurately parameterized by a J -value of 0.13 eV. It is not very well established to what

extent the hopping parameters derived from LDA calculations give an accurate parameteri-

zation of the dynamics of the holes.

Density functionals that introduce non-local terms do not improve upon the LDA

results,21 while the application of hybrid functionals or LDA+U 28,29 introduces a parameter

in the calculations (the amount of exact Fock exchange and the on-site repulsion, respec-

tively) that can be optimized to give the desired result.30–32 An alternative theoretical scheme

is offered by the wave function based methods, which allow for a rigorous treatment of the

electron correlation effects. It is generally not possible to go beyond the Hartree-Fock level

in a band structure calculation with a wave function based computational scheme, but the

embedded cluster model approach avoids this limitation and will be applied here to derive

ab initio electronic structure parameters for the two-leg spin ladder compounds CaCu2O3

and SrCu2O3, and the three-leg ladder compound Sr2Cu3O5.

The spin ladder compounds interpolate between the 1D spin chains and the 2D antiferro-

magnetic planes found in the parent compounds of the superconductors and, hence, form a

very interesting object of study.33–35 Experimental data and theoretical studies with model
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Hamiltonians indicate that the transition from 1D to 2D is far from smooth. Even-legged

ladders exhibit a spin gap and finite spin-spin correlations, whereas the odd-legged ladders

behave as effective 1D spin chains, i.e. no spin gap and no spin ordering when T→0.36–38

There are however several points that need to be clarified or studied in more depth. In

the first place, as has already been mentioned before, it is not completely clear how Jrung

relates to Jleg. Secondly, it is almost always assumed that the spin ladders can be treated

as isolated systems, although the interladder interactions have been claimed to be signifi-

cant by some authors.39 Furthermore, it is interesting to have independent estimates of the

different hopping parameters and the four-spin cyclic exchange in the three compounds in

order to assess the dependence of these parameters on the geometry of the Cu-O-Cu bonds.

In SrCu2O3 and Sr2Cu3O5 these bonds have angles of approximately 180 (rung and leg) or

close to 90 degrees (interladder), whereas in CaCu2O3 the deformation of the Cu2O3 planes

causes Cu–O–Cu angles of 123 degrees.

II. DEFINITION OF THE MODEL PARAMETERS

We parametrize an extended model Hamiltonian that includes up to fourth neighbor

magnetic interactions and hopping parameters. Moreover, we calculate the cyclic exchange

Jring, the direct exchange K, the neutral-ionic hopping integral t0, and the on-site repulsion

U . Fig. 1 illustrates the interactions that we consider in this study.

The first neighbor interaction parameters Jinter and tinter measure the strength of the

interladder coupling. The rectangular Cu–O–Cu bonds suggests that this interaction is

rather weak and ferromagnetic in nature. In the case of the strontium compounds, the

second neighbor interactions Jrung, Jleg, and the respective t’s take place along linear Cu–

O–Cu bonds and are the strongest present in these spin ladder compounds. Their relative

size is controversial and will be discussed in this paper. For the calcium ladder, a strong

spatial anisotropy is expected in its second neighbor interactions. The bending of the Cu–

O–Cu bond along the rung makes the interaction along the leg much larger than along the

rung. The interactions between third neighbors (Jdiag and tdiag) and fourth neighbors (J ′
leg,

J ′
rung and the respective t’s) are small, but probably important corrections. In the three leg

ladder compound Sr2Cu3O5 we distinguish between inner and outer legs as indicated in Fig.

1.
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FIG. 1: Schematic view of the Cu2O3 layer in Sr2Cu3O5. Open circles represent Cu ions, oxygen

ions (not shown) are located halfway on the thin gray lines that connect coppers. The different

interactions between the Cu ions are indicated with black lines. The same nomenclature is used

for the hopping parameters.

Finally, K, t0 and U have been calculated for first (interladder) and second (rung + leg)

neighboring copper ions.

Interactions between different ladder planes are expected to be very small for the planar

spin ladder compounds. The relative orientation of the CuO4 units is similar to that in the

spin chain compounds Ca2CuO3 and Sr2CuO3. For these compounds the nearest neighbor

interchain magnetic coupling has been estimated to be as small as 1 meV.40 Therefore we

do not consider such interactions in the present study. The situation is somewhat different

in the buckled Ca ladder compound, for which significant interplane interactions have been

suggested based on periodic LDA calculations.41 In the discussion of the results we will

shortly review some results of ab initio calculations on this subject.42

III. COMPUTATIONAL APPROACH

A. Material model

The local nature of the interactions under study allows us to model the material within

the so-called cluster model approach. There exist by now a large amount of evidence of
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FIG. 2: Cu2O6 cluster embedded in TIPs and point charges (only partially shown) used to calculate

Jinter and tinter in SrCu2O3 with the refined structure. Black spheres represent Cu ions, gray

spheres represent O and light gray spheres represent Sr. Large spheres connected by black-gray

lines are cluster atoms, TIPs are connected to the cluster atoms by thin black lines and small

spheres are point charges.

the reliability of the cluster model approach to calculate such interactions. Several studies

have been published that contrast the cluster results with periodic calculations. In all cases,

the calculated values are very similar given that the approximation to the N -electron wave

function is identical in both approaches.43–46

A small cluster is cut from the crystal and is treated with state-of-the-art quantum

chemical techniques to obtain highly correlated N -electron wave functions. This cluster

contains the copper ions involved in the interaction and its direct oxygen neighbors. To

include the remainder of the crystal in the material model, the cluster is embedded in a

static potential that accounts for the long-range electrostatic interactions with a point charge

approximation and the short-range interaction between cluster and immediate surroundings

by means of properly designed total ions potentials (TIPs).47

Fig. 2 shows the cluster model to extract the first neighbour interactions in SrCu2O3.

The quantum chemically treated region corresponds to a Cu2O6 cluster, which is embedded
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TABLE I: Cluster models used to extract the different magnetic interactions between copper ions.

The same applies for the hopping parameters.

Number of Cu centers Cluster model Interaction

two centers Cu2O6 Jinter

Cu2O7 Jrung, Jleg−2

three-centers Cu3O8 (triangular) Jleg

Cu3O10 (linear) J ′
leg, J ′

rung, J ′
leg−2

four-centers Cu4O12 (rectangular) Jdiag, Jring

in 6 TIPs for Cu2+, 8 TIPs for Sr2+ and point charges (only a small fraction is shown in Fig.

2). The clusters used to extract the other interactions have been constructed in a similar

fashion and are tabulated in Table I. Although a cluster with just two copper ions seems

the natural choice to calculate the magnetic interaction along the leg, the inclusion of the

copper ion on the neighboring leg has a relatively large effect on the magnetic coupling of

the copper ions along the leg, and therefore, we use the triangular Cu3O8 cluster to calculate

this interaction. In the discussion of the results we will come back to this point.

Structural parameters have been taken from the literature.48–50 For SrCu2O3, we compare

the results obtained from the original structural determination by Hiroi et al.48 and the

refinement proposed by Johnston.49

B. Approximation to the exact N -electron wave function

The strong electron correlation effects are incorporated in the electronic wave function

by state-of-the-art quantum chemical methods. Here, we opt for the difference dedicated

configuration interaction (DDCI) scheme, specially designed to calculate energy differences

with high accuracy.51,52 Over the last decade, this method has been successfully applied

to calculate magnetic interaction parameters in biradicals, inorganic molecules and a wide

family of ionic insulators including the parent compounds of the high-Tc superconductors

(see Refs. 24,46,53–57 and references therein).

The reference wave function for the DDCI is obtained by distributing the unpaired elec-

trons in all possible ways over the Cu-3dx2−y2 orbitals, i.e. a complete active space CI
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(CASCI), which corresponds to the well-known Anderson model with unscreened param-

eters. The open-shell orbitals are the active or magnetic orbitals, while all other orbitals

will be referred to as inactive or virtual orbitals, depending on the occupation in the refer-

ence wave function. The fact that U is overestimated by a factor of 3 in the CASCI wave

function explains that the magnetic interaction parameters obtained at this level are far

too small and improvement is required. The DDCI space is constructed by all single and

double replacements of electrons with respect to the reference under the restriction that at

least one active orbital is involved. This precisely excludes the double replacements from

the inactive to the virtual orbitals, which are most numerous and hence largely reduces

the computational demand of the calculation. The justification of this restriction lies in

the observation that up to second-order perturbation theory the double replacements from

inactive to virtual orbitals shift all diagonal elements in the CI matrix by the same amount

and do not contribute to the off-diagonal elements. Hence, these double replacements do

not contribute to the energy difference of the electronic states.

The choice of the orbitals to construct the Slater determinants that form the basis of the

CI space is somewhat arbitrary. A common choice is to take the Hartree-Fock orbitals of

the spin state with highest multiplicity. This can, however, bias the results and to eliminate

any dependence of the results on the orbital choice, we adopt an iterative scheme of the

DDCI method (IDDCI).58 After the diagonalization of the CI space, the one-particle density

matrices of the electronic states involved in the interaction are averaged and diagonalized.

The DDCI procedure is repeated with the resulting average natural orbitals until convergence

in the energy differences of the electronic states is obtained.

For the four center cluster used to calculate Jring, the DDCI expansion is too large to

be handled by present computer resources. Therefore, a more approximate computational

scheme has been applied. The reference wave function is extended with oxygen to copper

charge transfer configurations, but the CI space is built from single excitations only. This

extended-CAS + singles method gives approximately the same results for the two-center

cluster as the more rigorous DDCI but the computational cost is much lower.59–61

Finally, to expand the one-electron functions (or so-called orbitals), we use an atomic

natural orbital basis set with (5s, 4p, 3d) contracted Gaussian type functions for Cu and

(4s, 3p) contracted functions for O.62,63 Calculations have been performed with the molcas

5.4 Quantum Chemistry software package64 and the casdi code.65

8



C. Extraction of the effective parameters

With the N -electron wave functions of Sec. III B as approximations to the eigenfunctions

of the exact non-relativistic Hamiltonian of the cluster models defined in Sec. III A, it is

possible to calculate all the electronic structure parameters discussed above. In the two-

center and three-center clusters, the magnetic interaction parameters are directly related

to the energy differences of the electronic states that arise from the different couplings of

the spin moments localized on the Cu ions. The mapping of the energy eigenvalues onto

the eigenvalues of the Heisenberg Hamiltonian defines Jrung, Jleg−2 and Jinter as the energy

difference of the singlet and the triplet: E(S)-E(T). The Heisenberg Hamiltonian for the

linear and triangular three-center clusters is

Ĥ = −J1(Ŝ1 · Ŝ2 + Ŝ2 · Ŝ3)− J2Ŝ1 · Ŝ3. (1)

The energy eigenvalues of the electronic eigenstates are related to J1 and J2 by the following

relations: J1 = 2/3(ED1 − EQ); and J2 = J1 − (ED1 − ED2), with ED1, ED2, and EQ

the energy eigenvalues of the two doublets and quartet states, respectively. For the linear

clusters, J1 and J2 correspond to Jleg and J ′
leg, respectively. In case of the triangular cluster,

J1 and J2 correspond to Jinter and Jleg. The calculation of the hopping parameters discussed

in Sec. IV B requires the use of doped clusters, i.e. with one electron less compared to the

calculation of the magnetic interaction parameters. When the cluster with two magnetic

centers exhibits an inversion center, t’s are obtained from half the energy difference of the

electronic states in which either the bonding or anti-bonding combination of the magnetic

orbitals is occupied.23

To extract the other electronic structure parameters, the energy eigenvalues are not suf-

ficient and also information about the wave function is necessary. For this purpose the

effective Hamiltonian theory is applied, in which the IDDCI wave functions are projected

onto a simple valence effective Hamiltonian. The matrix elements of this effective Hamilto-

nian can be related to the electronic structure parameters as described in Refs. 55,59,60.
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TABLE II: Magnetic coupling parameters (in meV) for SrCu2O3, CaCu2O3 and Sr2Cu3O5. The

two values for values for Jleg and J ′
leg in case of Sr2Cu3O5 correspond to the outer leg and inner

leg (leg-2 in Fig. 1), respectively. All results correspond to IDDCI values, except Jdiag, which is

given at the extended-CAS + singles level.

SrCu2O3 CaCu2O3 Sr2Cu3O5

Idealized Refined

Jleg -155 -155 -139 -190 / -186

Jrung -150 -125 -11.5 -175

Jinter 34.9 35.5 28.2 34.5

J ′
leg -2.7 -2.7 0 -4 / -3.6

J ′
rung -3

Jdiag -13 -0.4 -14

IV. RESULTS

A. Magnetic interaction parameters

1. Leg interactions

Starting with the second neighbor interactions, we observe rather similar magnetic cou-

pling along the legs of the ladders in all three compounds, see Table II. Given the similarity

of the Cu–O–Cu exchange path, this is not a surprising observation. Furthermore, we do

not see a significant difference in Jleg comparing the idealized structure of SrCu2O3 to the

refinement reported by Johnston.49 As stated in Sec. III A, we find a moderate cluster size

dependency of the interaction along the leg. Adding a third copper ion on the same leg

hardly affects Jleg as observed in many other applications. However, adding the nearest

Cu2+ on the leg of the next ladder has a significant effect on Jleg, which decreases by ap-

proximately 17%. To check the convergence of Jleg with the cluster size, we constructed a

four center cluster with two copper ions on one leg and two on the leg of the neighboring

ladder (see Fig. 3).

In Table III, we compare the results of several approximations for the N -electron wave

function, because the DDCI calculation is not feasible for the cluster with 4 Cu centers.
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a

b

c

FIG. 3: Schematic representation of the two, three and four-center clusters used to investigate the

cluster size convergence of Jleg

The complete active space second-order perturbation theory (CASPT2) method provides

a perturbational treatment of the electron correlation effects and has been proven to give

a rather good description of the magnetic coupling in TM materials.53 DDCI1 and DDCI2

diagonalize subsets of the complete DDCI space and commonly reproduce between 50%-70%

of the full DDCI value. At all levels of approximation, the magnetic coupling parameter

reduces going from the two-center cluster to the triangular three-center cluster but stays

nearly constant when a fourth Cu center is added to the cluster. Extrapolating these findings

to the DDCI calculations, we conclude that the DDCI value of the three-center cluster is

free of cluster size effects. Similar effects occur for Jleg in CaCu2O3 and Sr2Cu3O5. Cluster

size effects have been studied before in other cuprates (Li2CuO2, Sr2CuO3 and La2CuO4)

and nickel compounds (NiO, KNiF3 and K2NiF4), but in none of these cases a significant

effect has been found.40,60,66,67 Also in the present study, we not only performed a cluster size

study for Jleg but also for Jrung in Sr2Cu3O5. In this case, the results are almost identical for

the two-center cluster (half of the rung) and the three-center cluster containing a complete

rung. Hence, the overestimation of Jleg in the two-center cluster for the spin ladders seems

to be a special case, probably due to the appearance of a third Cu atom very close to the

Cu–O–Cu exchange path along the leg.

In an attempt to clarify the cluster size effect due to the third copper (center c in Fig.

3), we analyze two possible mechanisms that could affect Jleg. In the first place, we verify

the validity of the embedding of the two-center cluster by replacing the third copper center

with a diamagnetic Zn2+ cation. The ionic radius of Zn2+ is very similar to the one of Cu2+,

and hence, this diamagnetic cation gives a good representation of the charge distribution

of a real Cu2+ ion without having to deal with unpaired electrons. It can be argued that
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TABLE III: Jleg (in meV) for SrCu2O3 with the refined structure obtained with two-center, three-

center and four-center clusters.

CASSCF CASPT2 DDCI1 DDCI2 DDCI IDDCI

two centers -34.3 -130.6 -91.1 -96.5 -158.8 -186.0

three-centers -32.8 -123.8 -86.7 -92.4 -122.2 -154.9

four-centers -32.5 -122.3 -87.9 -93.0

the representation of center c with a TIP in the two-center clusters is too approximate

being located so close to the magnetic exchange path. Nevertheless, we do not observe any

significant difference in Jleg with the Cu-TIP replaced by a real Zn2+ ion.

Having established that the reduction of Jleg cannot be ascribed to the embedding, we

determine how this additional copper center modifies the kinetic exchange between the two

copper centers on the same leg (centers a and b in Fig. 3). Before doing that we shortly

review the usual kinetic exchange process considering only the centers a and b and the

bridging ligand. The major contribution to the kinetic exchange between these centers

arises from the process schematically depicted in Fig. 5.

Since all intermediate determinants are external to the model space S, we only have to

consider the following term of the complete fourth-order perturbation theory expression to

estimate the sign and magnitude of the pathways:

∑
α/∈S

∑
β /∈S

∑
γ /∈S

〈ΦI |V̂ |Φα〉〈Φα|V̂ |Φβ〉〈Φβ|V̂ |Φγ〉〈Φγ|V̂ |ΦJ〉
(E0

J − E0
α)(E0

J − E0
β)(E0

J − E0
γ)

, (2)

where ΦI corresponds to the |llab| determinant and ΦJ to the |llba| determinant. The

interaction matrix elements along the pathways are obtained using the definitions in Fig. 4 of

the effective hopping parameters: 〈a|Ĥ|l〉 = −〈b|Ĥ|l〉 = tpd. With this parametrization, the

nominator is equal to t4pd. Expressing the relative energies of the intermediate determinants

with respect to the final determinant ΦJ in terms of the on-site repulsion U and the ligand

to metal charge transfer energy ∆, the denominator in Eq. 2 for the pathway in Fig. 5 is

given by −∆ ·−U ·−∆ = −∆2U . The final perturbative expression for the kinetic exchange

contribution to the magnetic coupling is therefore −4t4pd/∆
2U (the factor four is due to

the fact that there are four possible pathways that connect |allb〉 and |allb〉), in accordance

with the usual understanding that this effect gives an antiferromagnetic contribution to the
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a b
l

t’ t’

-tpdtpd

FIG. 4: Definition of the hopping parameters used in the fourth-order perturbation analysis of the

changes in the kinetic exchange due to the third copper ion

FIG. 5: Kinetic exchange mechanism between two copper ions on the same leg. Interaction matrix

elements between the subsequent states are indicated below the arrows. Relative energies are also

shown.

magnetic coupling between the two copper centers (see also Sec. IV C).

The analysis for the three-center cluster is somewhat more involved, but follows exactly

the same reasoning. Starting form the |llabc| determinant, there are twelve four-step path-

ways to reach the |llbac| determinant, not counting the usual pathways described above

when center c is not considered. Fig. 6 schematizes the six pathways in which the elec-

tron movement is clockwise and Fig. 7 denotes the other six pathways with anti-clockwise

electron movement.

The hopping from an electron involving center c is parametrized as 〈a|Ĥ|c〉 = 〈b|Ĥ|c〉 =

t′ (see Fig 4). In the determination of the sign of the nominator one should carefully

take into account the permutations in the respective determinants. In the figures of the

clockwise and anti-clockwise pathways, we denote the interaction matrix elements following
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t’
-tpdtpd

-tpd

tpd

t’

-tpd

t’

t’
tpd

t’ t’

FIG. 6: Four-step pathways with clockwise electron movement.

the procedure of maximal coincidence of the two determinants involved. For example the

upper anti-clockwise pathway considers the following matrix elements: 〈llabc|V̂ |blabc〉 =

−tpd; 〈blabc|V̂ |bllbc〉 = tpd; 〈bllbc|V̂ |bllcc〉 = t′; 〈bllcc|V̂ |bllac〉 = t′. This leads to −t2pdt
′2 for

all six anti-clockwise pathays. However, to convert the final determinant in the desired form

|llbac| one needs to permute b and l, causing a change in the sign of the overall expression,

and hence a positive nominator. The same holds for the other five anti-clockwise pathways.

For the six clockwise pathways, the nominator is−t2pdt
′2. An even number of permutations

is required to get the desired ΦJ , and therefore these nominators do not change sign and

remain negative. Remembering that the denominator in Eq. 2 is always negative, the

clockwise pathways decrease the kinetic exchange leading to a more ferromagnetic Jleg,

while the anti-clockwise pathways enhances the kinetic exchange and lead to a more effective

magnetic coupling along the leg.

Since the absolute value of the nominators is the same in all cases, the relative importance

of the different pathways can only be assessed through the denominators. As before, we

express the relative energies in terms of U and ∆, which implies the assumption that ∆ is

equal for charge transfer from the ligand to any of the three metal centers. Furthermore, we
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FIG. 7: Four-step pathways with anti-clockwise electron movement.

neglect the contribution to the energy of the magnetic coupling between unpaired electrons

in this perturbative analysis. It can readily be seen that the only difference between the two

diagrams arises from the determinant in the middle. The energy of the |aabbl| determinant

intervening in four of the six clockwise pathways lies at U +∆, while the |ccalb| determinant,

which appears four times in the anti-clockwise pathways, only has a relative energy of ∆.

From this, we expect a larger contribution to the kinetic exchange of the anti-clockwise

pathways, which would lead to a stronger antiferromagnetic coupling along the leg. This

is opposite to what we observe comparing the two-center with the three-center cluster (see

Table III). Hence, we conclude that the reduction of Jleg is caused by other mechanisms (e.g.

spin polarization or any other process discussed in Ref. 68) which become very cumbersome

to analyze with perturbation theory arguments.

2. Rung interactions

The results in Table II show that the interactions across the rung are very different in

the spin ladders with Sr and the one with Ca. The bending of the Cu–O–Cu angle causes a
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TABLE IV: SrCu2O3Madelung potential (in eV) at atomic sites for idealized and refined structures.

Or and Ol refer to the oxygens located on the rung and leg, respectively.

Atom Idealized Refined

Cu −24.38 −24.97

Sr −19.67 −18.98

Or 21.35 22.09

Ol 22.45 22.25

∆Mad(Or-Cu) 45.73 47.06

∆Mad(Ol-Cu) 46.82 47.21

drastic decrease of the magnetic coupling along the rung in CaCu2O3. Actually the decrease

is such that this compound is better understood as containing quasi 1D spin 1/2 chains with

weak interchain interactions, Jrung and Jinter. Another remarkable feature is the noticeable

difference between the magnetic coupling in the idealized structure of SrCu2O3 and the

refined one. In the latter structure, we calculate a value which is almost 15% smaller than

in the idealized structure. At first sight this is rather surprising since geometrical parameters

as the Cu–O–Cu bond angle and the Cu–O bond length hardly change the exchange path

along the rung, whereas there are small changes on the leg, for which the magnetic coupling

is constant. The explanation can be found in the Madelung potential at the atomic centers

listed in Table IV. The potential is calculated assuming formal charges for all atoms, i.e.

2+ for Cu and Sr and 2- for O. In a simple ionic model, the difference in Madelung potential

between the copper and oxygen sites ∆Mad is a measure of the charge transfer energy. For

smaller absolute difference, a lower oxygen to metal charge transfer energy is expected and

hence a larger magnetic coupling. Table IV shows that this energy difference increases both

for the leg and rung oxygen, but the change is much more pronounced for the rung oxygen,

explaining the relatively large decrease of Jrung for the refined structure.

3. Other magnetic interactions

Although the Cu-Cu distance is smallest for the interladder interaction, its magnitude

is much smaller than the interaction along the leg or rung of the spin ladders. The Cu–
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O–Cu bond angle of approximately 90 degrees makes that two orthogonal O-2p orbitals

are involved in the superexchange process, instead of only one for bonding angles around

180 degrees. This causes a much less effective superexchange and hence a smaller magnetic

coupling. Moreover the short Cu-Cu distance increases the direct exchange between the

copper ions, which explains the ferromagnetic character of the interladder interaction in all

three spin ladders. The ratio between the interladder coupling and the coupling along the

legs never exceeds the value of 0.2. It has been shown that below this limit, the interladder

interaction does not significantly affect the values of the intraladder interactions when fitting

to experimental data.49

The only remaining magnetic interaction of significant magnitude is the diagonal coupling

between Cu on different legs of the same ladder. Several studies have been concerned with

the influence of this coupling on the phase diagram of the the spin 1/2 ladders.69–71 LDA+U

calculations indicate that this coupling in the spin ladders is ferromagnetic49 in contrast to

what is found, both experimentally and theoretically, in the closely related two-dimensional

antiferromagnet La2CuO4, for which this interaction is antiferromagnetic with an amplitude

of about -5 to -10 meV.59,60,72 Our ab initio values for Jdiag indicate that this is also the case

for the planar spin ladders, whereas it is very weak for CaCu2O3. We conclude that in the

study of the phase diagram of spin 1/2 ladders, a realistic set of parameters should include

a moderate antiferromagnetic diagonal coupling. The other couplings are of the order of a

few meV and can probably be neglected.

B. Hopping parameters from doped clusters

The second group of calculations addresses the size of the parameters that control the

mobility of holes doped into the lattice. The 2D parent compounds of the high Tc supercon-

ductors are commonly doped with holes by replacing some of the trivalent ions (e.g. La3+

or Y3+) by divalent ions as Sr2+. Alternatively, interstitial oxygen ions can be introduced

to create holes in the copper-oxide planes. Actually, the spin ladder systems studied here

are not commonly submitted to this type of doping. The most common experimental real-

izations of hole-doped ladder systems are found in the incommensurate Sr14−xCaxCu24O41

compounds, for which superconductivity has been found for x=13.6.73

It is well-known that the holes are not localized on the copper sites but have a more delo-
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TABLE V: IDDCI effective hopping parameters (in meV) for SrCu2O3, CaCu2O3 and Sr2Cu3O5.

The two values for tleg and t′leg in case of Sr2Cu3O5 correspond to the outer leg and inner leg (leg-2

in Fig. 1), respectively.

SrCu2O3 CaCu2O3 Sr2Cu3O5

Idealized Refined

tleg -653 -655 -599 -638 / -650

trung -609 -561 -240 -658

tinter 103.3 165 141 103

t′leg -51 -18 -18 / -76

t′rung -50

calized character and extend onto the nearest neighbor oxygens. This behavior is correctly

reproduced in ab initio cluster calculation as demonstrated by Calzado, Sanz and Malrieu

for holes in La2CuO4.25 In line with these results, we find a similar delocalization of the

holes onto the oxygens for the spin ladders. Beside this qualitative validation of the cluster

model to correctly describe doping in ionic copper oxide structures, it is also convenient

to have a more quantitative test of the cluster model validity. In previous applications of

this approach it was already shown that quantum chemical cluster calculations satisfacto-

rily reproduce the generally accepted value of t=500 meV for La2CuO4 and related lamellar

cuprates.23,25,46 Additional evidence has been given in a study of the spin chains Ca2CuO3

and Sr2CuO3, where it was found that the LDA values of cluster and periodic calculations

are very similar.40 Moreover, it has been shown that t is relatively insensitive to the com-

putational strategy applied; LDA, CASSCF, DDCI (and other schemes) give approximately

the same result.40,74 This allows us to assess the validity of the cluster model by comparing

our IDDCI estimate for trung in CaCu2O3 with the recently published estimate of the same

parameter based on periodic LDA calculations.41

Table V lists the IDDCI hopping parameters for the three ladder systems. The largest

hopping parameters are found along the (almost) linear Cu–O–Cu bonds, i.e. along the legs

in all three ladder systems and along the rungs in the Sr ladders. The values are comparable

to the hopping along similar Cu–O–Cu bonds found in the two-dimensional antiferromagnets

La2CuO4
25 and related cuprates.46 The buckling of the Cu2O3 planes in the Ca compound
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reduces the hopping amplitude of the holes along the rung with a factor of about 2.5. The

loss of the linearity in the Cu–O–Cu linkage reduces the overlap between the metal centered

orbitals that accommodate the unpaired electron. The interladder hopping amplitudes are

still smaller in line with the decreasing Cu–O–Cu angle.

Our IDDCI estimate of -240 meV for trung in CaCu2O3 is in remarkable good agreement

with the periodic LDA value of ∼250 meV recently reported by Kim et al.41 These authors

also find important hopping parameters along the c-axis, i.e. between ladders in different

planes. The fit of the LDA band structure results in a tc of ∼125 meV. DDCI cluster

calculations reported in Ref. 42 give tc=134 meV and confirm the importance of the hopping

between different ladder planes. Nevertheless, the conclusion of Kim et al. that this relatively

large hopping leads to important magnetic coupling along the c-axis was not confirmed in

the DDCI study. The J-values for magnetic coupling along the c-axis are less than 1 meV.

C. Other electronic structure parameters

The valence Hamiltonian descriptions of magnetic coupling by Anderson75, Hay,

Thibeault and Hoffmann76, and Kahn and Briat77 are based on the balance between the

ferromagnetic contribution JF of the direct exchange between the magnetic moments and

the antiferromagnetic contribution JAF due to kinetic exchange of the unpaired electrons.

J = JF + JAF = 2K − 4t20
U

. (3)

As shown in previous studies,54,55 the two effects can be accurately parametrized by pro-

jecting the IDDCI wave functions onto an effective Hamiltonian. Of the three effective

Hamiltonians discussed in Ref. 55, we opt here for the Gram-Schmidt effective Hamilto-

nian, since this avoids the non-hermiticity of the Bloch Hamiltonian78 and does not force

to fix one of the parameters from the start as is the case for the intermediate effective

Hamiltonian.79

Defining a and b as orthogonal magnetic orbitals localized on the magnetic centers A

and B respectively, t0 is the matrix element between the neutral and ionic valence bond

determinants:

t0 =
1

4
〈(ab + ba)|Ĥ|(aa + bb)〉, (4)
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TABLE VI: IDDCI estimates of the direct exchange K (in meV), neutral-ionic hopping parameter

t0 (in meV) and on-site repulsion U (in eV) for SrCu2O3, CaCu2O3 and Sr2Cu3O5. The two values

for Sr2Cu3O5 correspond to the inner and outer leg, respectively.

SrCu2O3 CaCu2O3 Sr2Cu3O5

Idealized Refined

K leg 2.9 3.6 4.6 4.8 / 6.4

rung 5.4 3.9 8.8 16.5

inter 17.4 19.1 14.6 17.3

t0 leg -547 -556 -499 -550 / -545

rung -500 -462 -223 -561 / -530

inter 0.7 59.2 36.2 1.8

U leg 6.1 6.2 6.5 5.9 / 5.7

rung 6.0 6.3 6.8 5.5 / 6.2

inter 5.2 5.3 5.4 5.2

and U is defined as the difference of the energy expectation values of the ionic and neutral

valence bond determinants:

U =
1

4
[〈(aa + bb)|Ĥ|(aa + bb)〉 − 〈(ab + ba)|Ĥ|(ab + ba)〉]. (5)

The hopping integral t0 should not be confused with the hopping amplitudes derived in

Sec. IVB for the doped clusters. Results in Table VI show that the t0 values for the

neutral clusters are indeed different from the hopping parameters listed in Table V. In

general smaller values are obtained for the neutral clusters and especially significant is the

reduction by a factor of approximately two of the hopping parameter for the interladder

interactions.

The largest K’s are obtained for the interladder interactions. In this case the two copper

ions are least separated (<3.0 Å) and hence have the largest direct exchange. The inter-

atomic Cu distance along leg and rung is much larger (≈ 4.0 Å), which is reflected in a

significantly smaller K. In between these two extremes, there is K=8.8 meV for the rung

in CaCu2O3. The two copper ions on the same rung are separated by only 3.3 Å because of

the buckling of the ladder planes.
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TABLE VII: Estimates of the magnetic coupling parameter with the perturbative superexchange

relation. The perturbative estimate Jpert is decomposed in its ferromagnetic and antiferromagnetic

(JF and JAF ) components. Variational IDDCI estimates are added for comparison. All values in

meV

JF JAF Jpert Jvar

SrCu2O3 leg 5.88 -197 -191 -186

(Idealized) rung 10.7 -164 -154 -150

inter 34.9 -0.0 34.9 34.9

SrCu2O3 leg 7.16 -199 -192 -186

(Refined) rung 7.86 -135 -127 -125

inter 38.2 -2.7 35.5 35.5

CaCu2O3 leg 9.2 -152 -143 -139

rung 17.5 -29.0 -11.5 -11.5

inter 29.2 -1.0 28.2 28.2

Sr2Cu3O5 leg 9.5 -206 -197 -190

leg-2 12.9 -206 -193 -186

rung 33.0 -203 -170 -165

inter 34.5 -0.0 34.5 34.5

The three-legged compound Sr2Cu3O5 gives rise to slightly different electronic structure

parameters along inner and outer leg. Because the copper ions on the rung are not identical,

the ionic determinants |aa〉 and |bb〉 are no longer degenerate in this case. Therefore, Table

VI also lists two values for t0 and U for the rung in Sr2Cu3O5.

With the ab initio values of the parameters in Eq. 3 at hand, it can be tested to what

extent this perturbative expression leads to consistent estimates of the magnetic coupling.

It has been suggested recently that the reduction of the magnetic coupling parameter to its

kinetic exchange part only (the second term in Eq. 3) leads to poor estimates of J when

the t parameter is extracted from the doped cluster.42

However, Table VII shows that the complete equation gives excellent result when the

hopping parameter from the undoped clusters is used. In all cases the IDDCI magnetic

coupling (Jvar) is reproduced within a few meV with the perturbative expression. For the
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linear Cu–O–Cu magnetic interactions paths, the kinetic exchange is the leading term and

only a small (but not completely negligible) contribution is observed of the direct exchange.

For the interladder interactions, the magnetic coupling is dominated by the direct exchange,

the kinetic exchange is almost reduced to zero. On the other hand, the rung interaction in

CaCu2O3 is a balance between two comparable contributions. The kinetic exchange is not

as dominant as in the rung and leg interactions in the other ladder compounds because of

the large deviation from linearity of the Cu–O–Cu linkage, although this contribution is not

as small as in the interladder interaction since the angle is still far away from 90 degrees.

D. Four-spin cyclic exchange

Rectangular four center Cu4O12 clusters have been used to determine the cyclic exchange

terms in these systems. For SrCu2O3, we use the idealized crystal structure. As mentioned

above, the evaluation of these effective parameters requires the combination of the energy

eigenvalues and the wave functions of the six states implicated, by means of the Effective

Hamiltonian Theory. These states arise from the combination of the six Sz=0 determinants

resulting from the distribution of four spins on four centers. All the information required can

be obtained from truncated CI calculations (extended-CAS + single excitations). Details

regarding this strategy can be found in Refs. 59 and 60. Besides the four-body cyclic terms,

these calculations supply estimates of the third neighbor interactions Jdiag (cf. Table II), and

provide us additional information about the dependency of the second neighbor magnetic

coupling constants on the cluster size.

Three different four-body terms can be distinguished, as shown in Figure 8: a circular

movement of the four spins in the plaquette (Jring1, upper part of Fig. 8), a simultaneous

exchange along the legs (Jring2, middle part of Fig. 8) and a simultaneous exchange across

the rungs (Jring3, lower part of Fig. 8). Following perturbation theory-based arguments it

is possible to derive the following relations between the four-spin exchange terms and the
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1/2 Jring1

1/2 Jring2

1/2 Jring3

FIG. 8: The three four-body terms: (upper) Circular movement of the electrons, Jring1, (middle)

Simultaneous exchange along the legs, Jring2, and (lower) Simultaneous exchange across the rungs,

Jring3.

two-body interactions (Jleg, Jrung and Jdiag):80,81

Jring1 = 80
t2legt

2
rung

U3
' 5JlegJrung

U
, (6a)

Jring2 = 80
t2legt

2
diag

U3
' 5JlegJdiag

U
, (6b)

Jring3 = 80
t2rungt

2
diag

U3
' 5JrungJdiag

U
, (6c)
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TABLE VIII: Four-spin cyclic terms (in meV) for SrCu2O3, CaCu2O3, and Sr2Cu3O5.

SrCu2O3 CaCu2O3 Sr2Cu3O5

Jring1 34 4 39

Jring2 4.1 1.3 4.1

Jring3 2.7 ∼10−2 3.3

Jring1/Jrung 0.23 0.35 0.22

5JlegJrung

U 23.0 1.2 28.2

5
JAF

leg JAF
rung

U 26.7 3.3 35.9

Jring2/Jring1 0.120 0.325 0.105

Jdiag/Jrung 0.087 0.035 0.080

Jring3/Jring1 0.079 0.002 0.085

Jdiag/Jleg 0.070 0.003 0.074

Jring2

Jring1
=

Jdiag

Jrung
, (7a)

Jring3

Jring1
=

Jdiag

Jleg
, (7b)

where the direct exchange contributions to the two-body interactions have been neglected.

Table VIII reports the variationally determined Jring values as well as the perturbative

estimates, i.e. the outcomes of Eq. 6 using the IDDCI values listed in Table VI and

VII. In SrCu2O3 and Sr2Cu3O5, the Jring1 term is around 35 meV, larger than for the two-

dimensional (2D) La2CuO4 cuprate (14 meV).59,60 The folding of the Cu-O-Cu rung angle in

CaCu2O3 system affects the four-spin cyclic term, which adopts here a value of only 4 meV,

significantly smaller than in the rest of the systems here considered. The parameters Jring2

and Jring3 are small in all cases, especially for CaCu2O3 due to the distortion introduced by

the buckling of the lattice. The Jring1/Jrung ratio is around 0.3, in rather good agreement

with the value proposed by Matsuda et al.8 for the two legged ladder La6Ca8Cu24O41 and

the value suggested by Brehmer et al.7 from their perturbative analysis.

Table VIII shows that the ratios Jring2/Jring1 and Jring3/Jring1 compare rather well with

the ratios Jdiag/Jrung and Jdiag/Jleg, as predicted by Eq. 7. This indicates that Eqs 6 and 7
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are useful expressions to analyze the enhancement of the four-body terms in the strontium

spin ladders with respect to two-dimensional cuprates. The increase of Jring1 coincides

with an increase of the second neighbor coupling constants (Jrung and Jleg in Table VII to

be compared with J=-130 meV in La2CuO4
23–27) and a decrease of the on-site Coulomb

repulsion U (values in Table VI with respect to U= 7.4 eV in La2CuO4
55).

The decrease of the on-site Coulomb repulsion U by approximately 1 eV contradicts the

usual assumption that this parameter is material independent (see for instance, Ref. 82).

The smaller U in the spin ladders is probably due to the polarization effects in the solid,

which will be different depending on the specific structure of the system.

The increase of J should be interpreted as a subtle interplay between changes in U , the

hopping integral tpd and the charge transfer energy ∆ as shows the fourth-order perturbation

theory expression of the AF contribution to J (cf. Fig. 5):

JAF ∝ −
t4pd

∆2U
. (8)

tpd corresponds to the hopping between the bridging O-2p and the Cu-3d orbitals, and ∆

is the energy associated to the transfer of an electron from the ligand to a Cu 3d orbital.

The ferromagnetic contribution to J can be assumed to be almost constant in the ladders

and the 2D cuprates given that the variation in the Cu–Cu distance, the determining factor

in the size of the direct exchange, is not large enough to cause significant changes in this

parameter.

The hopping integral tpd decreases exponentially with the Cu-O distance.83–85 Since mean

Cu-O distances are slightly larger in ladder than in 2D cuprates, it can be expected that

tladder
pd ≤ t2D

pd . There is, however, an additional factor controlling the hopping integral, namely

the difference in Madelung potential at Cu and O sites ∆Mad. When this difference increases,

also the energy difference between the O 2p and Cu 3d orbitals is enhanced. This produces

a less efficient 2p-3d overlap, and consequently, a reduction of the t value.86 Table IX shows

that ∆Mad is larger for La2CuO4 than for the rest of systems. As a result of these two

opposite effects, t values are only slightly affected by the material as shown in Table VI.

The charge transfer energy ∆ is also strongly affected by the difference in Madelung

potential at Cu and O sites:

∆ = ∆Mad − EI(Cu)− EA(O)− Epol, (9)
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TABLE IX: Madelung potential (in eV) at atomic sites for the 2D AFM La2CuO4; the spin

ladders SrCu2O3, CaCu2O3, and Sr2Cu3O5; and the 1D spin chain Sr2CuO3. Or and Ol refer

to the oxygens located on the rung and leg, respectively. ∆Mad corresponds to the difference in

Madelung potential at O and Cu sites. (a) inner leg, (b) outer leg.

Atom La2CuO4 SrCu2O3 CaCu2O3 Sr2Cu3O5 Sr2CuO3

Cu -28.62 -24.38 -24.18 -24.73a, -24.27b -24.17

Or 20.98 21.35 23.22 21.32 –

Ol 20.98 22.45 22.82 21.18a, 22.45b 20.08

cation -27.95 -19.67 -21.44 -19.71 19.74

∆Mad(Or-Cu) 49.6 45.73 47.40 46.05a, 45.59b –

∆Mad(Ol-Cu) 49.6 46.82 47.00 45.91a, 46.72b 44.25

where EI(Cu) represents the atomic ionization energy of the Cu atom, EA(O) is the second

electron affinity of oxygen, and Epol is the screening energy due to the polarizability of

the oxygen anions.87 Neglecting the differences in the oxygen polarizability in the different

environments, it is possible to correlate directly the charge transfer energy with the difference

in Madelung potential; a large ∆Mad gives a large ∆, which in turn leads to smaller JAF .

La2CuO4 presents the largest difference in the Madelung potential at Cu and O sites, and

indeed the smallest J value. In summary, the increase of U and ∆Mad and the stable value

of tpd are in agreement with the larger two-body interactions and the four-body terms in the

strontium ladders with respect to the 2D cuprates.

In line with this rather simple analysis of the increase of J in the spin ladders with respect

to the 2D cuprates, we can also explain why this parameter is still larger in the 1D spin

chain compound Sr2CuO3, J ∼-245 meV.40,88,89 For this compound, ∆Mad is still smaller

than in the ladder cuprates (see last column of Table IX) and U is also slightly smaller (5.8

eV). This results in a smaller denominator in Eq. 8, and hence a larger J can be expected.

V. SUMMARY AND CONCLUDING REMARKS

The particular crystal structure of the spin ladders compounds gives rise to a large num-

ber of different interactions between the Cu2+ centers in the lattice. Ab initio calculations
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by means of the IDDCI scheme on properly embedded cluster models are applied to extract

information about these interactions. For the magnetic coupling, the second-neighbor inter-

actions are dominant, but first-neighbor and third-neighbor interactions are non-negligible.

The interactions along linear Cu–O–Cu paths are slightly larger than in the 2D cuprate

La2CuO4 whereas the buckling of the ladder planes in the calcium ladder strongly reduces

the interaction along the rungs. Hence, this compound is better understood as a quasi-1D

spin chain, although the interchain interactions (Jrung and Jinter) are not so small as in

Sr2CuO3 or Li2CuO2, two compounds with significantly lower Néel temperature (5.4 K and

9.4 K)90,91 than the ∼ 25 K for CaCu2O3.50 The same conclusions hold for relative sizes of

the hopping parameters calculated from the doped clusters.

The effective parameters that define the valence Hamiltonian for magnetic coupling (U , t0,

and K) are extracted from the IDDCI calculations using the effective Hamiltonian theory.

Especially interesting is the observation that the t’s derived from the undoped clusters

deviate substantially for the corresponding parameters obtained from the doped clusters.

Furthermore, we observe that the direct exchange, although small, is not negligible. This has

important consequences in the applicability of the superexchange relation J = 2K − 4t2/U .

Often, the direct exchange is not considered and t is taken as the parameter that measures

the mobility of the holes, i.e. the value of the doped clusters. This simplification leads

to unreliable estimates of J , whereas the correct usage of the formula gives perturbative

estimates in perfect agreement with the IDDCI J-values.

The four-body interactions in the strontium ladders is found to be larger than the ones in

the copper oxide planes in La2CuO4. An analysis based on perturbation theory arguments

shows that this is inherent to the more antiferromagnetic interactions along leg and rung

in the spin ladders. This increase of the magnetic coupling is related to the differences in

the Madelung potential between the 2D cuprates and the spin ladders. The increase of the

Madelung potential (i.e. less negative value) on the copper sites explains the smaller U

in the spin ladders and the decrease in the difference between the Madelung potential on

copper and oxygen sites lowers the ligand to metal charge transfer energy. Both effects are

in line with a more antiferromagnetic interaction.

27



Acknowledgments

The authors have had the privilege to collaborate with Jean-Paul Malrieu in various occa-

sions and to share his inexhaustible enthusiasm, creativity and perception of science, always

oriented towards the understanding of physics. We want to express our profound gratitude

for this. Financial support has been provided by the Spanish Ministry of Science and Tech-

nology under Project No. BQU2002-04029-C02-02, and the DURSI of the Generalitat de

Catalunya (grant SGR01-00315).

∗ Electronic address: coen@correu.urv.es

1 F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

2 M. S. Hybertsen, E. B. Stechel, M. Schluter, and D. R. Jennison, Phys. Rev. B 41, 11068 (1990).

3 J. H. Jefferson, H. Eskes, and L. F. Feiner, Phys. Rev. B 45, 7959 (1992).

4 A. Nazarenko, K. J. E. Vos, S. Haas, E. Dagotto, and R. J. Gooding, Phys. Rev. B 51, 8676

(1995).

5 J. Eroles, C. D. Batista, S. B. Bacci, and E. R. Gagliano, Phys. Rev. B 59, 1468 (1999).

6 J. Lorenzana, J. Eroles, and S. Sorella, Phys. Rev. Lett. 83, 5122 (1999).

7 S. Brehmer, H.-J. Mikeska, M. Müller, N. Nagaosa, and S. Uchida, Phys. Rev. B 60, 329 (1999).

8 M. Matsuda, K. Katsumata, R. S. Eccleston, S. Brehmer, and H.-J. Mikeska, Phys. Rev. B 62,

8903 (2000).
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