
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
"#$%!&'("')*+!
!
!
!

"#$%&!! !
!!!!!!!!!!!

'()*+,-.!%/!"0%!1234%)!52&&3&*4!1234*&!12$0%46.!
!
!
! 72*&,$8*9*!:24!!! ;,42,*!<,=%&2.!>244*!
!
!

2)!2&!52)$42!! ?*!>*&&2!
!
!
!
! ,!2)!2&!'2:*4$*+2)$! @&2-$4A),-*!
!
!
!
! ',4,B,9*!:24! C*D,24!<,&*.#.!5*49%)*! !
!
!
!
!
!

!"
#"$
"%&
'%(
)*
+)
,-
*%
%.
/0
12
34
056
5%7
68
9/
%:
;<
<%$
;/
=6
>0
?%
@3
01
6=
6"
%7
A5
32
"%$
;/
="
%&
2/
23
6<
056
5%=
2%!
65
6<
;/
B6
%/
C8
"%-
,D
%ED
FG
*D
G)
*H
%

!

%%%!"%!<63616<<I%JGK%
%%%*F*DD%L63>2<9/6%
%%%M2<"%)K+%*DD%D**%
%%%$6N%)K+%*DD%D-)%
%%%OG860<'%;3<4>P42>";3<"24%
%%%QQQ";3<"24%
!

Acknowledgments

Vull donar les gràcies al meu marit per la seva ∞ paciència, per estar
allà, per donar-me suport, per cuidar-me cada dia i per un conjunt gairebé
no numerable de coses més.
A la meva famı́lia, pare, mare, germà i l’Estel. A la Sara. A la meva famı́lia
poĺıtica, la Carme, l’Eusebio, la Maika i en Gabi. A la Sònia. Finalment al
meu director de tesi, en Xavier Vilaśıs.

3

4

Summary

In this dissertation we review the two neuron Cellular Neural Network
stability using the Lyapunov theory, and using the different local dynamic
behavior derived from the piecewise linear function. We study then a geo-
metrical way to understand the system dynamics. The Lyapunov stability,
gives us the key point to tackle the different convergence problems that can
be studied when the CNN system converges to a fixed-point. The geometric
stability shed light on the convergence to limit cycles. This work is basically
organized based on these two convergence classes.

We try to make an exhaustive study about Cellular Neural Networks
in order to find its intrinsic difficulties, and the possible uses of a CNN.
Understanding the CNN system in a lower dimension, give us some of the
main keys in order to understand the general case. That’s why we will focus
our study in the one dimensional CNN case with only two neurons.

Based on the Lyapunov function study, we propose some methods to avoid
the dependence on initial conditions problem. Its intrinsic characteristics as
a quadratic form of the output values gives us the key points to find param-
eters where the final outputs do not depend on initial conditions. At this
point, we are able to study different CNN applications for parameter range
where the system converges to a fixed-point. We start by using CNNs to re-
produce Bernoulli probability distributions, based on the Lyapunov function
geometry. Secondly, we reproduce linear functions while working inside the
unit square.

The existence of the Lyapunov function allows us to construct a map,
called convergence map, depending on the CNN parameters, which relates
the CNN inputs with the final outputs. This map gives us a recipe to design
templates performing some desired input-output associations, and drive us
into the template composition problem. We study the way different tem-
plates can be applied in sequence. From the template design analysis, we
may think on finding a functional relation between the external inputs and
the final outputs. This correspondence can be thought as a classification
problem, because the set of final states is discrete thanks to the piecewise

5

6

linear function. Each one of the different classes is defined by the different
final states which, will depend on the CNN parameters.

Next, we study which classifications problems can be solved by a two neu-
ron CNN, and relate them with weight parameters. In this case, we also find
a recipe to design templates performing these classification problems. The
results obtained allow us to tackle the problem to realize Boolean functions
using CNNs, and show us some CNN limits trying to reproduce the header
of a universal Turing machine.

Based on a particular limit cycle example extracted from Chua’s book, we
start this study with anti symmetric connections between cells. The results
obtained can be generalized for CNNs with opposite sign parameters. We
have seen in the stability study that limit cycles have the possibility to exist
for this parameter range. Periodic behavior of these curves is computed in a
particular case. The limit cycle period can be expressed as a function of the
CNN parameters, and can be used to generate clock signals.

Finally, we compare the CNN dynamic behavior using different output
functions, hyperbolic tangent, and piecewise linear function. Many times in
the literature, hyperbolic tangent is used instead of piecewise linear function
because of its differentiability along the plane. Nevertheless, in some par-
ticular regions in the parameter space, they exhibit a different number of
equilibrium points. Then, for theoretical results, hyperbolic tangent should
not be used instead of piecewise linear function.

Contents

1 Introduction 11

1.1 Framework . 11
1.2 CNN dynamics . 14
1.3 Outline . 18

I Convergence 21

2 CNN stability 23

2.1 Two neuron CNN . 24
2.2 Bounded states . 24
2.3 Lyapunov stability . 26
2.4 Geometric stability . 30

2.4.1 Symmetric parameter range 31
2.4.2 Non symmetric parameter range 39

2.5 Conclusions . 42

II Convergence to a fixed-point 45

3 Dependence on initial conditions 47

3.1 Lyapunov function . 48
3.2 Dependence problem . 51
3.3 Example . 53
3.4 Conclusions . 56

4 On CNN applications 57

4.1 Probability distributions . 58
4.2 Reproducing linear functions 60
4.3 Template design . 61
4.4 Classification problems . 73

7

8 CONTENTS

4.5 Realizing Boolean functions 83
4.6 The header of a universal Turing machine 84
4.7 Conclusions . 87

III Convergence to a limit cycle 91

5 Limit Cycles: Antisymmetric Case 93

5.1 Geometry on the CNN. 94
5.2 Limit cycles . 95

5.2.1 Searching limit cycles 95
5.2.2 Boundary problem . 97
5.2.3 Towards limit cycles 98
5.2.4 Example . 99

5.3 Antisymmetric case. 104
5.4 Conclusions . 108

6 Limit Cycles: General Case 109

6.1 General case . 109
6.2 Conclusions . 118

7 Limit cycle period 123

7.1 Computing the period function 123
7.2 Generating clock signals using CNNs 127
7.3 Conclusions . 130

IV Convergence comparison 133

8 Topological equivalence 135

8.1 The Chua-Yang and tanh x models 135
8.2 Topological equivalence . 137
8.3 Conclusions . 144

V Conclusions 145

9 Conclusions and Future work 147

9.1 Conclusions . 147
9.2 Final discussion: The present and the future 150

CONTENTS 9

VI Appendix 153

A Convergence map 155

B Input-output relations 165

C Wolfram’s 7-4 Universal Turing machine 189

D Limit cycles: Antisymmetric Case 191

E Limit cycles: General case 199

Bibliography 223

10 CONTENTS

Chapter 1

Introduction

1.1 Framework

Artificial Neural Networks (ANN) emerged after the introduction of sim-
plified neurons by McCulloch and Pitts in 1943 [45]. These neurons were
presented as models of biological neurons and as conceptual components for
circuits that could perform computational tasks. Usually, a model artificial
neuron as can be seen in Figure 1.1, receives input from a number of other
units or external sources, weights every input and adds them up. If the total
input is above a threshold, the output of the unit is one; otherwise it is zero.
Therefore, the output changes from 0 to 1 when the total weighted sum of
inputs is compared to the threshold.

Figure 1.1: Graphical representation of an artificial neuron model.

Mathematically, an Artificial Neural Network is any computational model
with the following elements: a state, an activation function, a threshold and
the topology defining its neuron connections. The state xi(t) is an internal
variable of the neuron. Its value is defined by the states of neighboring
neurons. In the simplest model, a linear combination of these states defines
their influence. The coefficients of this linear combination are called weights,

11

12 CHAPTER 1. INTRODUCTION

since they weigh the influence of a neuron over another. Such influence can
be continuous or discrete, bounded or unbounded.

xi ∼
�

i

wijxj

An activation function f(·) controls the neuron output amplitude. It must
be chosen according to the nature of the neuron state. Usually, an acceptable
output range lies between 0 and 1 or −1 and 1. Typical activation functions
are step functions, sign functions or logical functions. For continuous valued
neurons, linear, hyperbolic tangent or sigmoid functions can be used.

The threshold µ defines the minimal excitation level needed to fire a bi-
valuated neuron. It is understood as a term added to the contribution of
the neighboring neurons to the activation of a cell. The update rule of the
neuron, having n neighbors, is generally given by

xi = f

�
n�

j=1

wijxj − µ

�

The topology describes the pattern connections between the different neurons
using the appropriate weights wij. It has direct implications on the dynamical
structure of the neural network.

Artificial Neural Networks have been applied successfully to many fields
such as: pattern and sequence recognition, image analysis, function approx-
imation and adaptive control. These are used to construct software agents
or autonomous robots. The possibility of learning is what has attracted the
most interest in ANN. Given a specific task to solve, learning means using
a set of observations to find an algorithm which changes the neuron weights
in order to find a solution for the task in some optimal sense. This is one of
the greatest advantages of ANNs, and it is particularly useful in applications
where the data or task complexity makes the design of such a function by
hand highly impractical.

Cellular Automaton (CA) were developed by John von Neumann and
Arthur Burks [72] in the 1940s. A cellular automaton is a collection of cells
on a grid of a specific shape which evolve through a number of discrete time
steps according to a set of rules based on the states of neighboring cells.
Formally, a cellular automaton is represented by a lattice, a set of states S, a
neighborhood and a local transition function. The lattice is either a finite or
infinite discrete regular grid of cells on a finite number of dimensions. Each
cell is defined by its discrete position and by its discrete value. The state of
a cell at certain discrete time t, is a function of the present state and of the
finite neighboring cells N . From the cells surrounding the observed one, the

1.1. FRAMEWORK 13

local transition function f : SN → S calculates the value of a single future
cell.

The simplest type cellular automaton is a binary, nearest-neighbor, one-
dimensional automaton. Such automaton were named elementary cellular
automaton by S. Wolfram [64], who studied their properties. Each cell has
rules that depend only on nearest neighbor values, and it can have two possi-
ble states 0 or 1. As a result, the evolution of an elementary cellular automa-
ton can be completely described by a table with the state of a cell based
on the value of the cell to its left, the cell to its right and its own value
(Table 1.1). In the one-dimensional case, there are 23 = 8 possible binary
states for the three cells neighboring a given one. There are then 28 = 256
elementary cellular automaton, each of which can be indexed by a unique
binary number. The decimal representation of which is known as the rule
for the particular automaton. The evolution of a one-dimensional cellular
automaton can be illustrated by starting with the initial state in the first
row named generation zero, the first generation on the second row and so on.
Depending on where the evolution leads (homogeneous configuration, peri-
odic patterns, chaotic patterns or complex structures) rules can be divided
into four different classes.

For example, Wolfram’s rule 110, like the Game of Life, exhibits a Class
4 behavior, evolving to complex long-lived structures. The Game of Life was
invented by John Conway, and popularized by Martin Gardner in a Scientific
American article [29]. Table 1.1 describes the different states of a cell for rule
110. The image below (Figure 1.2) shows its history evolution where each
pixel is colored white for 0 and black for 1. Matthew Cook proved that some
of these structures were rich enough to support universality. In fact, rule 110
has been the basis over which some of the smallest universal Turing machines
have been built [16].

current pattern 111 110 101 100 011 010 001 000
new state for center cell 0 1 1 0 1 1 1 0

Table 1.1: Rule 110 of an elementary cellular automaton.

Cellular Neural Networks (CNN) were proposed by Leon O.Chua and
L.Yang [5] in 1987. Cellular Neural Networks share the best features of two
worlds, adjacent cells are locally connected and so they have a similar struc-
ture to Cellular Automaton. On the other hand, they have an asynchronous
parallel processing, continuous-time dynamics and global interaction of net-
work elements just like Artificial Neural Networks. Locality allows to over-
come a well known drawback for the hardware implementation of artificial

14 CHAPTER 1. INTRODUCTION

Figure 1.2: History evolution for rule 110 of an elementary cellular automa-
ton.

neural networks. Since electronic units are planar by construction, the num-
ber of allowed connections is heavily reduced. The structure of a CNN is
particularly suited to be implemented in hardware.

1.2 CNN dynamics

A CNN is any spatial arrangement of locally-coupled cells, where each cell
is a dynamical system which has an input, an output, and a state evolving
according to some prescribed dynamical laws [12].

Figure 1.3: Isolated cell with the input, threshold, state and output.

Mathematically, each cell can be modeled by a nonlinear dynamical sys-
tem where information is encoded via the initial state xij, the inputs uij, a
threshold zij and the output values yij (Figure 1.3). The state of standard
isolated cell Cij is weighted by the sum of the inputs, the outputs and the
threshold . The corresponding state equation is

dxij

dt
= −xij + aijf(xij) + bijuij + zij (1.1)

where aij and bij are weighting coefficients, and the output values are
defined by the piecewise linear function (Figure 1.4).

1.2. CNN DYNAMICS 15

yij = f(xij) =
1

2
(|xij(t) + 1|− |xij(t) + 1|) =






1 xij ≥ 1

xij |xij| < 1

−1 xij ≤ −1

(1.2)

Figure 1.4: Piecewise linear function.

Each CNN cell is coupled locally only to those neighbor cells which lie
inside a sphere of influence S(i, j)r (Figure 1.5).

S(i, j)r = {C(k, l)|max{|k − i|, |l − j|} ≤ r, 1 ≤ k ≤ M, 1 ≤ l ≤ N}

Figure 1.5: A CNN cell with a 3× 3 sphere of influence.

The input uij of each neighbor cell injects a weighted contribution to the
cell Cij called B template

B(uij) =
�

kl∈S(i,j)r,kl �=ij

bklukl

The output contributes with A template in a similar way,

A(uij) =
�

kl∈S(i,j)r,kl �=ij

aklykl.

16 CHAPTER 1. INTRODUCTION

Templates (A, B, z) configure the CNN parameters and are called cloning
template. The standard CNN equation is then

dxij

dt
= −xij + A(yij) + B(uij) + zij = (1.3)

= −xij +
�

kl∈S(i,j)r

aklykl +
�

kl∈S(i,j)r

bklukl + zij.

Observe that the state equation is not completely defined for boundary
cells. Therefore, additional boundary conditions must be specified. The
three most commonly chosen boundary conditions are: the Dirichlet bound-
ary conditions, Newmann boundary conditions, and Toroidal boundary con-
ditions. The former, takes xkl at the boundary as fixed constant values.
Newmann boundary conditions takes xkl of neighboring cells perpendicular
to the boundaries equal to each other. The latter, identifies first last rows
(columns) of the array thereby forming a torus.

Cellular Neural, Nanoscale, Nonlinear Networks usually called CNNs,
have been an interesting subject of study since their introduction back in
1988. The idea of CNN processors was introduced by Leon O. Chua and Lin
Yang’s in [5] and [6]. There, they outlined the mathematics behind CNN pro-
cessors and studied the CNN system stability. They suggested some of the
possible applications of CNNs like image processing and pattern recognition.
A useful summary of definitions, CNN types, dynamics, implementations and
applications of Cellular Neural Networks is provided in [4].

The first algorithmically analog CNN processor was introduced in [7].
This article proved that CNN could be produced and provided a physical
platform to test the different theories on this CNN universal processor. Other
universal properties like being a universal Turing machine have been also
studied using the Game of Life algorithm. In [8] its shown that the Game of
Life can be reproduced by 3-D Cellular Neural Network, thus the 3-D CNN
is a universal machine in the Turing sense.

Another important feature of CNNs is that, in spite of their simplic-
ity, its dynamics range from the convergence to single equilibrium points to
chaotic behavior. The CNN stability has been widely studied in the litera-
ture. In their original paper [5], the authors studied the complete stability
(convergence to a fixed-point) for symmetric templates. The first complete
analysis of the global stability properties of a two neuron CNN was made
in [25]. In [26] they extended the stability analysis providing simple criteria
for checking different stability types: the complete one, the asymptotic one,
and stability almost everywhere. Their results allow to check the stability
via simple conditions on the template elements. Nevertheless, the complete

1.2. CNN DYNAMICS 17

stability problem, looking for parameters conditions to make the system con-
verge to a fixed-point, has been studied many times in the literature. For
instance in [61], they found necessary and sufficient conditions for two-cell
CNNs to be globally stable. Or in [62] where the stability for a two neuron
CNN was studied under the assumptions that biases are set to zero and the
self-coupling coefficients take the same value greater than one.

Many stability studies have been carried out for a particular parameter
range like for opposite-sign templates or for non symmetric templates. For
instance, in [13] where authors scrutinize the stability problem form a dif-
ferent point of view using the Gauss-Seidel method. We can find another
example in [75], where it was found that the complete stability for opposite-
sign templates is not always preserved, due to the existence of a limit cycle
for certain parameter conditions.

Although a large number of papers concerning the global stability of
CNNs have been published so far, a complete analysis of the stability pro-
cess, non only those where the system converge to a fixed-point but also the
convergence to different limit cycles is still missing.

Apart from stability, the CNN template design problem is another im-
portant theme where researchers have devoted their efforts to. In [10] they
study the universe of stable CNN templates. In [9], a method based on a set
of inequalities that must be satisfied by the CNN parameters allows them to
design templates for simple applications. In [23], the stability criteria turn
out to be useful in the template design problem. The ”Art of CNN Template
Design” in [74] describes useful templates to perform some of the common
CNN uses for binary inputs and outputs. Sometimes, templates are classified
into groups based on their properties. The template design for CNNs with
1-Bit weights studied in [42], would be an example.

Again, there are many other references taking on this challenge, but a
simple and general algorithm to design templates has not been found yet.
Usually to perform a given operation, template libraries are used. However,
depending on the concrete problem to be solved, a single one may not be
enough. In this case, different templates are applied in sequence. The tem-
plate composition problem is another key point in the designing task that
must be studied in a deeply way.

Another problem which arises from the stability studies is the existence of
limit cycles. In [77], the two cell autonomous system is investigated finding
a Hopf-like bifurcation at which the dynamic behavior changes from asymp-
totically stable to periodic. In [54], they study how and when a global propa-
gation of information is possible through a 1-D CNN for certain connections
between the neurons. For a particular case, a periodic solution is computed
analytically and also the period function. The existence of limit cycles allows

18 CHAPTER 1. INTRODUCTION

a comparison between the dynamic behavior of different CNN models such
as the original Chua-Yang model and the full-range model. It was proved
in [24] that these models are not topologically equivalent via the existence
of periodic solutions. Some applications using the existence of limit cycles
for example to store individual patterns are shown in [17]. Nevertheless, a
complete study of the existence of limit cycle and a classification of them
depending on the CNN weights has not been done yet.

1.3 Outline

In this dissertation we will review the two neuron CNN stability in Chap-
ter 2 using the Lyapunov theory and using the different local dynamic be-
havior derived from the use of the piecewise linear function which gives us a
geometrical way to understand the system dynamics. The Lyapunov stabil-
ity establishes the fundamentals to adress the different convergence problems
that can be studied when the CNN system converges to a fixed-point. The
geometric stability, shed light on the convergence to limit cycles. This work
is basically organized based on these two convergence classes.

The different system stability, the template design problem, the depen-
dence on initial conditions or the composition of the different templates
needed in order to make possible a concrete association between an input
and an output are some of the problems which has to be dealt in order to
understand completely the CNN system. So we try to make an exhaustive
study about Cellular Neural Networks in order to find the intrinsic difficulties
and the possible uses of a CNN. Understanding the CNN system in a lower
dimension can give some of the main keys in order to understand the general
case. That’s why we will focus our study in the one dimensional CNN case
with only two neurons. Furthermore, this simple CNN case has the invalu-
able advantage of allowing the possibility to understand the existence and
kind of limit cycles.

From the results obtained using the Lyapunov function, we propose in
Chapter 3 some methods to avoid the problem of the dependence on initial
conditions. Its intrinsic characteristics as a quadratic form of the output
values, gives us the key points to find a parameters where the final outputs
do not depend on initial conditions.

At this point we are able to study different CNN applications for the
parameter range where the system converges to a fixed-point. Each section
in Chapter 4 describes these different problems. We start by using CNNs to
reproduce Bernoulli probability distributions based on the geometry of the
Lyapunov function. Secondly, we reproduce linear functions while working

1.3. OUTLINE 19

inside the unit square. The template design problem is studied in the third
section. The existence of the Lyapunov function allows to construct a map,
which we call convergence map, depending on the parameters of the CNN
template. It relates the CNN inputs with the final outputs. This map gives
us a recipe to design templates performing some desired input-output associ-
ations. The results obtained drive us into the template composition problem.
We will study the way different templates can be applied in sequence.

From the results obtained in the template design problem, we may think
on finding a functional relation between the external inputs and the final
outputs. Due to the piecewise linear function, the set of final states is discrete.
The input-output correspondence can be thought then as a classification
problem. Each one of the different classes is defined by the different final
states which, will depend on the parameters of the CNN system. Fourth
section study which classifications problems can be solved by a two neuron
CNN, and relate them with the weight parameters. In this case, we also
find a recipe to design templates performing these classification problems.
The results obtained drive us into the problem to realize Boolean functions
using CNNs in section five, and show us some of the CNN limits, trying to
reproduce the header of a universal Turing machine.

Chapters 5 and 6, study the existence and kind of limit cycles. Based
on a particular limit cycle example extracted from Chua’s book [12], we
start this study with antisymmetric connections between cells. The results
obtained can be generalized for CNNs with opposite sign parameters. From
the stability study, limit cycles has the possibility to exist for this parameter
range. The periodic behavior of these curves, is computed in a particular
case in Chapter 7. The limit cycle period can be expressed as a function
of the CNN parameters, and can be used to generate clock signals. Finally,
conclusions and ideas for the future work are sketched.

Appendix A deals with the intrinsic difficulties of the convergence map
construction. In Appendix B, we list the different input-output relations
that can be obtained while solving classification problems and resume the
correspondent templates. The problem to reproduce the header action of a
universal Turing machine problem is treated in Appendix C. At last, different
limit cycles cases for an antisymmetric template and for a general template
are summarized in the final Appendices D and E.

20 CHAPTER 1. INTRODUCTION

Part I

Convergence

21

Chapter 2

CNN stability

Many living brains and intelligent machines are made of elementary units
which exhibit two stable states. CNNs wanted initially to mimic brain func-
tions [45] and this is one of the reasons why this bistable character must be
studied. Moreover, this is the main reason why the output of each cell of the
CNN is defined by the piecewise linear function. This bi-stability is achieved
if all trajectories converge to an equilibrium point where the magnitude of
each state is bigger than one. The stability of a dynamical system is one of
the main tools of the differential equations theory. In the CNN case, it is
necessary to study it mainly because CNNs were initially designed to perform
image processing [6]. Specifically, the original application of CNN processors
was to perform real-time ultra-high frame-rate processing unachievable by
digital processors. For some concrete CNN implementation, the CNN sys-
tem needs to have a one to one correspondence between an initial state and
a final output. Usually, the initial state of a CNN for image processing prob-
lems is taken as the external one (u0, u1) with constant values. The final
output is taken as (y0, y1) at the end of the process.

In this section, we will see mainly that the states of each neuron are always
bounded, the system converge to a fixed-point for some parameter range, and
the final output can take values +1,−1 under certain parameter conditions.
There are basically two methods by which to study the system stability. One
way is using the Lyapunov theory. The existence of a Lyapunov a function
implies that the system is not chaotic, and it is a basic tool in order to
demonstrate that the system will converge to a fixed-point as final output.

Another way to study the system stability is the geometric one. Thanks
to the piecewise linear function, the input space {(u0, u1), ui ∈ R} can be
divided into nine different regions where the CNN system locally behaves
like a linear one. Studying the CNN system in each of these nine regions,
we find the local equilibrium points, and the trajectories in the phase plane.

23

24 CHAPTER 2. CNN STABILITY

These information let us assure that the system will converge to a fixed-point
as final output. Still, there exist the possibility to obtain periodic solutions
for certain parameter range.

2.1 Two neuron CNN

Along this dissertation, our notation for the two neuron CNN piecewise
linear system will be

�
ẋ0 = −x0 + sy0 + p+y1 + b0u0 + b+u1 + I

ẋ1 = −x1 + sy1 + p−y0 + b−u0 + b0u1 + I
(2.1)

where variables xi are the internal states of the neuron. They characterize
intrinsically the neuron and are usually taken in [−1, 1]. The external states
yi are defined by the piecewise linear function (Figure 1.4), in the simple
CNN model.

yi = f(xi) =
1

2
(|xi(t) + 1|− |xi(t)− 1|) , i = 0, 1. (2.2)

External inputs are ui and they shall be constant in time. The other param-
eters configure the network cloning template (A, B, z) where

A = (p−, s, p+), B = (b−, b0, b+), z = I.

In order to simplify this analysis, the external influence on the CNN
system is described using the notation u� = Bu + I

�
u�0 = b0u0 + b+u1 + I

u�1 = b−u0 + b0u1 + I
(2.3)

We define the action on (u0, u1) to obtain (u�0, u
�
1) as B-transformation.

2.2 Bounded states

To tackle the system stability problem, we first study the state-boundedness
criterion like in [5].

Theorem 1. All states xi for i = 0, 1 in a Cellular Neural Network are
bounded for all time t > 0 and the bound xmax is :

xmax = 1 + |s| + max{|p+|, |p−|} +
1�

j=0

|bij| + |I| (2.4)

2.2. BOUNDED STATES 25

Proof. First, let us rewrite the state equation (2.1) as

ẋi(t) = −xi(t) + fi(t) + gi(u) + I i = 0, 1 (2.5)

where
f0(t) = sy0 + p+y1, f1(t) = sy1 + p−y0,

g0(u) = b00u0 + b01u1, g1(u) = b11u1 + b10u0.

Solving the equation (2.5) as a linear first-order ordinary differential equation
we obtain xi(t).

ẋi(t) = −xi =⇒ ln xi = −t + C =⇒ xi(t) = Ke
−t

ẋi(t) = K
�(t)e−t −K(t)e−t = −K(t)e−t + fi(t) + gi(u) + I =⇒

=⇒ K(t) =

�
e

t (fi(t) + gi(u) + I) dt

� �� �
I(t)

+C =⇒

=⇒ xi(t) = Ce
−t + e

−t
I(t)

xi(0) = C + I(0) =⇒ C = xi(0)− I(0) =⇒ xi(t) = xi(0)e−t + e
−t(I(t)− I(0))

This solution can be rewritten as:

xi(t) = xi(0)e−t +

�
t

0

e
−(t−τ)[fi(τ) + g(u) + I]dτ

At this point, we are able to bound xi(t).

|xi(t)| ≤ |xi(0)e−t| +
����
�

t

0

e
−(t−τ)[fi(τ) + g(u) + I]

���� ≤

≤ |xi(0)|e−t +

�
t

0

e
−(t−τ)[|fi(τ)| + |g(u)| + |I|]dτ ≤

≤ |xi(0)|e−t + [Fi + Gi + |I|]
�

t

0

e
−(t−τ)

dτ =

≤ |xi(0)|e−t + [Fi + Gi + |I|](1− e
−t) ≤ |xi(0)| + [Fi + Gi + |I|]

where
Fi = max

t
|fi(t)| ≤ |s| + max{|p+|, |p−|}

because |yi(t)| ≤ 1 for all t, because its defined by the piecewise linear func-
tion, and

Gi(u) = max
u

|gi(u)|

26 CHAPTER 2. CNN STABILITY

Since |xi(0)| and |ui| satisfy conditions |xi(t)| ≤ 1, ∀t, |ui| ≤ 1, it follows
that

max
t

|xi(t)| ≤ 1 + |s| + max{|p+| + |p−|} +
1�

j=0

|bij| + |I|

2.3 Lyapunov stability

The Lyapunov theory is based on the basic notion that some measure of
energy dissipation of a system of differential equations, allows us to determine
the system stability. If this energy dissipation can be measured, then it is
not necessary to explicitly integrate the system equations. To scrutinize the
system stability in such a way, a Lyapunov function should be found. In the
two neuron CNN case, a Lyapunov function can be defined if the feedback
coefficients p+ = p− = p are symmetric.

Definition 1. Let us define a function L(t),

L(t) = −1

2
(sy2

0 + py0y1 + py1y0 + sy
2
1) +

1

2
(y2

0 + y
2
1)− u

�
0y0 − u

�
1y1 =

= −py0y1 −
S

2
(y2

0 + y
2
1)− u

�
0y0 − u

�
1y1 (2.6)

where S=s-1 and u�
i
= biiui + bijuj + I for i=0,1.

Based on some general stability results obtained in [5], next theorems
prove that L(t) fulfills the necessary conditions to be a Lyapunov function.

Theorem 2. Function L(t) defined in (2.6) is bounded from below.

Proof.

|L(t)| = |− py0y1 −
S

2
(y2

0 + y
2
1)− u

�
0y0 − u

�
1y1| ≤

≤ |p||y0||y1| +
S

2
(|y0|2 + |y1|2)+

+(|b00||u0| + |b01||u1| + |I|)|y0| + (|b10||u0| + |b11||u1| + |I|)|y1| ≤

≤ |p| + |S|
2

(1 + 1) +
1�

i,j=0

|bij| + 2|I| = |p| + |S| +
1�

i,j=0

|bij| + 2|I|

because |ui| ≤ 1,|yi| ≤ 1 for i = 0, 1.

2.3. LYAPUNOV STABILITY 27

Theorem 3. Function L(t) defined in (2.6) is a monotone-decreasing func-
tion, that is

˙L(t) ≤ 0

Proof. In order to study the Lyapunov function derivative we first must be
careful about the outputs. They are defined by the piecewise linear function,
which it is not differentiable at the break points (1.2). To solve this problem,
we define the derivative at the break points xi = ±1 as 0.

dyi

dxi

=

�
1 |xi| < 1

0 |xi| ≥ 1

Then, we are able to derive L(t) along the trajectories (Lie derivative) in
order to see that ˙L(t) ≤ 0.

˙L(t) = −p(
dy0

dx0
ẋ0y1 +

dy1

dx1
ẋ1y0)− S

1�

i=0

dyi

dxi

ẋiyi −
1�

i=0

u
�
i

dyi

dxi

ẋi =

=






0 |xi| ≥ 1, i = 0, 1

−p(ẋ1y0)− Sẋ1y1 − u�1ẋ1 |x0| ≥ 1, |x1| < 1

−p(ẋ0y1)− Sẋ0y0 − u�0ẋ0 |x0| < 1, |x1| ≥ 1

−p(ẋ0y1 + ẋ1y0)− S
�1

i=0 ẋixi −
�1

i=0 u�
i
ẋi |xi| < 1, i = 0, 1

=

=






0 |xi| ≥ 1, i = 0, 1

−ẋ1 (py0 + Sx1 + u�1) |x0| ≥ 1, |x1| < 1

−ẋ0 (py1 + Sx0 + u�0) |x0| < 1, |x1| ≥ 1

−ẋ0(py1 + Sx0 + u�0)− ẋ1(py0 + Sx1 + u�1) |xi| < 1, i = 0, 1

=

Substituting the cell circuit equation (2.1) in our expression we obtain,

˙L(t) =






0 |xi| ≥ 1, i = 0, 1

− (ẋ1)
2 |x0| ≥ 1, |x1| < 1

− (ẋ0)
2 |x0| < 1, |x1| ≥ 1

−
�1

i=0(ẋi)2 |xi| < 1, i = 0, 1

≤ 0

28 CHAPTER 2. CNN STABILITY

Theorem 4. For any given input ui i=0,1 and any initial state xi i=0,1 of
a Cellular Neural Network, we have

lim
t→∞

L(t) = constant and lim
t→∞

dL(t)

dt
= 0

Proof. From Theorems (2) and (3), L(t) is a bounded monotone decreasing
function of time t. Hence L(t) converges to a constant limit and its derivative
converges to 0.

lim
t→∞

L(t) = k ∈ R,

lim
t→∞

dL(t)

dt
= lim

t→∞

dk

dt
= 0.

Therefore, L(t) is a Lyapunov function and so the system is stable in the
sense of Lyapunov. Moreover, this study let us know the dynamic behavior
of the different states at the end of the process.

lim
t→∞

dL

dt
= − lim

t→∞

1�

i=0

�
dxi(t)

dt

�2

= 0

Corollary 1. In the limit as t tends to ∞, the CNN system output fulfills

lim
t→∞

yi(t) = k ∈ R i = 0, 1 or lim
t→∞

dyi(t)

dt
= 0 i = 0, 1

At this point, we are able to study the steady-state behavior of the CNN
as t tends to infinity and see where the CNN system can converge. Three
different cases describe the state of a cell.

Case 0. If the state of a cell xi in the limit is |xi| < 1, then yi = xi and
limt→∞

dL

dt
= − limt→∞

�1
i=0(ẋi)2 = 0. Hence, limt→∞ ẋi = limt→∞ ẏi =

0. In this case, the system converges to a fixed-point inside the unit
square.

Case 1. If the state of a cell in the limit is |xi| ≥ 1 and limt→∞
dL

dt
=

− limt→∞(ẋi)2 = 0, then limt→∞ ẋi = 0. In this case, the steady-state
is out from the unit square. The final output is then yi = ±1 because
of the piecewise linear function.

Case 2. If the state of a cell in the limit is |xi| ≥ 1 and limt→∞ ẋi �= 0,
then xi may be a periodic or aperiodic but bounded function in view
of Theorem 2.4.

2.3. LYAPUNOV STABILITY 29

This three different cases: converge to an isolated point inside the unit
square (Case 0), out from the unit square (Case 1) or converge to a bounded
function (Case 2), can not co-exist for certain parameter range when the
Cellular Neural Network is in its steady state. Only two of them can exist
at the same time.

Next theorem will give us one of the main results on the convergence
study. For certain parameter conditions, the system will converge to fixed-
points where the final output yi will take binary values ±1. Two neuron CNN
will then be completely stable in the sense that every trajectory converges
to an attractive equilibrium point.

Definition 2. A dynamical system ẋ = f(x) is said to be completely stable
if for each initial condition �x0 ∈ Rn,

lim
t→∞

x(t, �x0) = const

where x(t, �x0) is a trajectory starting from �x0.

Theorem 5. Let us consider a completely stable CNN. If parameter s of a
symmetric template satisfies s > 1, the output of every cell yi is +1 or −1
for i = 0, 1 (Case 1).

Proof. Let us rewrite the state equation (2.1) as

�
ẋ0 = −f(x0) + g0(t)

ẋ1 = −f(x1) + g1(t)
where






f(x0) = x0 − sy0

g0(t) = py1 + u�0

f(x1) = x1 − sy1

g1(t) = py0 + u�1

where g(xi) describes the influence of the neighboring cells and the external
inputs. Since the CNN is completely stable, xi(t) converges to a constant
state. At this final state, gi(t) is constant because it depends only on the
external inputs and yi, which are constants, and can be seen as a translation
of the function f(xi). The curve representing the dynamics of the CNN, is a
three-segment piecewise-linear curve as can be seen in Figure 2.1 for s > 1.

ẋi = −xi + syi + gi(t) =






−xi − x + gi(t) xi < −1
(−1 + s)xi + gi(t) |xi| ≤ 1
−xi + gi(t) xi > 1

Let us note that there can be one, two or three points where the system can
converge depending on gi(t) sign. To study if these points are attractive or
repulsive, we study the sign of ẋi in each case. First let us call xQ, xM and
xP the points where ẋi = 0 for xi < −1, |xi| ≤ 1 and xi > 1 respectively
(Figure 2.1).

30 CHAPTER 2. CNN STABILITY

Figure 2.1: Dynamic routes for different gi(t) values.

• For xi < −1, ẋi = −xi + xQ. If xi > xQ, then ẋi < 0. Otherwise,
ẋi > 0. So xQ < −1 is an attractive point and the system can converge
to it. The final output is in this case yi = −1.

• For |xi| ≤ 1, ẋi = (s − 1)xi + (s − 1)xM . If xi > xM , then ẋi > 0.
Otherwise, ẋi < 0. So |xM | < 1 is a repulsive point and the system can
not converge to it.

• For xi > 1, ẋi = −xi + xP . If xi > xP , then ẋi < 0. Otherwise, ẋi > 0.
So xP > 1 is an attractive point and the system can converge to it.
The final output is in this case yi = +1.

• For xQ = −1 or xP = +1, both points are attractive and so the system
can converge to them with final output values ±1.

Hence, the attractive points where the system can converge share the
common property to be out from region |xi| ≤ 1. It means that the output
yi of every cell is +1 or −1 if parameter s > 1.

2.4 Geometric stability

Another way to study the system stability is studying the system trajec-
tories, its equilibrium points type and position in each of the nine regions
where the CNN system is linear. The geometric representation of the trajec-
tories in the phase plane, is an invaluable tool in studying dynamical systems.
This reveals information such as whether a stable point, a repulsive point, or
a limit cycle is present in the dynamic behavior for some chosen parameter
values.

In general, a linear system ẋ = F (x), x ∈ Rn can be written in matrix
form as ẋ = Ax, A ∈ Rn×n. Points x∗ where F (x∗) = 0, named equilibrium

2.4. GEOMETRIC STABILITY 31

Figure 2.2: Regions on the plane where the CNN system is linear.

points, and the eigenvalues and eigenvectors of matrix A, let us print the
system trajectories in the phase plane. This analysis help us to understand
the relation between the parameters of the cloning template and the final
trajectory solutions.

We divide this geometric study into two different sections. The symmet-
ric one, where we should obtain similar results as those obtained from the
Lyapunov study and the general one.

2.4.1 Symmetric parameter range

For a symmetric parameter range p+ = p− = p, we will study the system
equilibrium points in order to see that the final outputs of the CNN system
are +1 or −1 if parameter s is bigger than 1.

Let Ri, i ∈ {0, . . . , 8} be the nine regions of the plane limited by lines
xi = ±1 for i = 0, 1 where the CNN system is linear (Figure 2.2). The central
region is called R0, the middle regions are called R1, R2, R3 and R4 and the
out regions R5, R6, R7 and R8. Local equilibrium points of each region are
(mi, ki), i = 0, . . . , 8.

Cellular Neural Network general equations can not be solved at once.
Due to the piecewise linear function yi = pwl(xi), trajectory solutions must
be found solving the differential equations system along the process in each
region Ri. �

ẋ0 = −x0 + sy0 + py1 + u�0

ẋ1 = −x0 + sy1 + py0 + u�1
(2.7)

Let Ai be the CNN matrix of the system corresponding to each one of the
nine regions Ri for i = 0, 1, . . . , 8 in the symmetric case. The matrix form
for the CNN system equations (2.7) can then be written as ẋk = Aixk + u�

k
,

32 CHAPTER 2. CNN STABILITY

x∗
i

mi ki

R0 0 0

R1 − p

s−1 s− p2

s−1

R2 s− p2

s−1 − p

s−1

R3
p

s−1 −s + p2

s−1

R4 −s + p2

s−1
p

s−1

R5 p− s −p + s

R6 p + s p + s

R7 −p + s p− s

R8 −p− s −p− s

Table 2.1: Symmetric parameter range. Equilibrium points (mi, ki) in each
of the nine regions Ri where the system is linear in the autonomous case
where u�

j
= 0, j = 0, 1.

k = 0, 1, where u�
k

= Buk + I corresponds to the B-transformation (2.3).
Local equilibrium points in each region can be seen in Table 2.1 for u�

i
= 0.

In region R0, the CNN matrix A0 of the system is:

A0 =

�
s− 1 p

p s− 1

�
(2.8)

In the central and out regions, CNN matrices are:

A1 = A3 =

�
s− 1 0

p −1

�
, A2 = A4 =

�
−1 p

0 s− 1

�
,

A5 = A6 = A7 = A8 =

�
−1 0
0 −1

�
.

(2.9)

Central region R0

Working inside R0, where yi = xi, CNN system equations can be written
as:

�
ẋ0

ẋ1

�
=

�
s− 1 p

p s− 1

� �
x0

x1

�
+

�
u�0
u�1

�

To linearize the system, we do the variable change,

x0 = X0 + m0, x1 = X1 + k0 (2.10)

2.4. GEOMETRIC STABILITY 33

where m0 = (1−s)u�0−pu�1
p2−(1−s)2 and k0 = (1−s)u�1−pu�0

p2−(1−s)2 . Now, in order to find the
diagonal form, we must find the eigenvalues and the eigenvectors.

p(λ) = det

�
s− 1− λ p

p s− 1− λ

�
= 0

Eigenvalues are λ0 = (s − 1) + p, λ1 = (s − 1) − p and the associated
eigenvectors are (1√

2
,± 1√

2
). The linear system solutions are then,

�
X0

X1

�
=

�
1√
2

1√
2

1√
2
− 1√

2

��
C0e

(s−1+p)t

C1e
(s−1−p)t

�

where C0 and C1 are arbitrary constants, and their Cartesian equations are

X0 + X1 = 2C0(e
t)s−1+p

, X0 −X1 = 2C1(e
t)s−1−p ⇒

(X0 + X1)
s−1−p = K(X0 −X1)

s−1+p

At this point, we are able to discuss the equilibrium point kind depending
on parameters s and p. Let us suppose p ≥ 0. The equilibrium point in this
region is:

(m0, k0) =

�
(s− 1)u�0 − pu�1
p2 − (s− 1)2

,
(s− 1)u�1 − pu�0
p2 − (s− 1)2

�

1. If λ0 �= λ1 ∈ R, ⇒ p �= 0.

(a) If s− 1 < −p, equilibrium point is an attractive point called sink.

(b) If −p < s−1 < p, CNN solutions explode whether when t → ±∞
except along the straight line solution associated to each eigen-
value. In this case, equilibrium point is a saddle.

(c) If s − 1 > p, CNN solutions explode tangent to the straight line
solution associated to the biggest eigenvalue. Equilibrium point
must be a source.

(d) If s− 1 = ±p, the system has zero as an eigenvalue and the other
eigenvalue is λ = 2(s − 1). In this case, there exists a line of
equilibrium points. If s < 1, the straight line solutions tend to
the line of equilibrium points (parallel to he eigenvector associated
to the eigenvalue λ), and if s > 1 the straight line solutions get
away from the line of equilibrium points.

34 CHAPTER 2. CNN STABILITY

2. If λ0 = λ1 ∈ R ⇒ p = 0, the CNN matrix is diagonal. For s < 1, solu-
tions (except for the equilibrium point) are straight lines approaching
the equilibrium point. For s > 1, solutions goes to infinity straight in
every direction.

From this study we can conclude that trajectories will leave the unit
square if parameter s is bigger than one because in these cases, there is a
repulsive local equilibrium point. Now we are going to do a similar study of
the dynamic behavior in the other regions named middle and out regions.

Middle regions: R1, R2, R3, R4

Studying the local equilibrium points in each of these regions, we will
find the parametric system solutions, and the different possible equilibrium
points kinds depending on the CNN parameters.

• Region R1. The state equation in region R1 = {(x0, x1) ∈ R|x0 ∈
[−1, 1], x1 > 1} is:

�
ẋ0 = −x0 + sx0 + p + u�0

ẋ1 = −x1 + s + px0 + u�1

The local equilibrium point is:

(m1, k1) =

�
−p + u�0

s− 1
, s + u

�
1 −

p

s− 1
(p + u

�
0)

�

Applying the linear change x0 = X0 + m1, x1 = X1 + k1 at �̇x = A1�x,
we obtain a diagonal system with eigenvalues λ0 = s − 1, λ1 = −1
and associated eigenvectors S(λ0) = ker(A1 − λ0Id) =< (s, p) >, and
S(λ1) = ker(A1 − λ1Id) =< (0, 1) >.

Parametric solutions are:
�

x0(t) = α0se
(s−1)t + m1

x1(t) = α0e
(s−1)t + α1e

−t + k1

(2.11)

Cartesian solutions are:

(x0 −m1)(s(x1 − k1)− p(x0 −m1))
s−1 = C,

where C = sα0(sα1)s−1.

Local equilibrium point (m1, k1) can be attractive or repulsive depend-
ing on parameter s as can be seen in Table 2.2.

2.4. GEOMETRIC STABILITY 35

Attractor node s < 0
Improper attractor node s = 0

Attractor node 0 < s < 1
Saddle point if λ1 < 0 < λ0 s > 1

Table 2.2: Equilibrium point kind (m1, k1) of region R1. The special case
where s = 1 do not have a single equilibrium point but a line of them.

For s = 1, the system has zero as an eigenvalue and there exists a line
of equilibrium points. The other eigenvalue is −1 and so the straight
line solutions tend to the line of equilibrium points parallel to the eigen-
vector associated to the eigenvalue −1.

• Region R2. The state equation in R2 = {(x0, x1) ∈ R|x0 > 1, x1 ∈
[−1, 1]} is: �

ẋ0 = −x0 + s + px1 + u�0

ẋ1 = −x1 + sx1 + p + u�1

Local equilibrium point is:

(m2, k2) =

�
s + u

�
0 −

p

s− 1
(p + u

�
1),−

p + u�1
s− 1

�

Doing a linear change x0 = X0+m2, x1 = X1+k2, we obtain a diagonal
system with eigenvalues λ0 = −1, λ1 = s − 1 just like in Region R1.
The associated eigenvectors are: S(λ0) = ker(A2 − λ0Id) =< (1, 0) >

and S(λ1) = ker(A2 − λ1Id) =< (p, s) >.

Parametric solution is:
�

x0(t) = α0e
−t + α1pe

(s−1)t + m2

x1(t) = α1se
(s−1)t + k2

Cartesian solution is:

(x1 − k2)(s(x0 −m2)− p(x1 − k2))
s−1 = C,

where C = sα1(sα0)s−1. Local equilibrium point (m2, k2) can be an
attractor node, a saddle point or an improper attractive point just like
the equilibrium point of region R1 (Table 2.2).

• Region R3. The state equation in R3 = {(x0, x1) ∈ R|x0 ∈ [−1, 1], x1 <

−1} is: �
ẋ0 = −x0 + sx0 − p + u�0

ẋ1 = −x1 − s + px0 + u�1

36 CHAPTER 2. CNN STABILITY

Equilibrium point is:

(m3, k3) =

�
p− u�0
s− 1

, u
�
1 − s +

p

s− 1
(p− u

�
0)

�

Doing a linear change x0 = X +m3, x1 = X1 + k3 we obtain a diagonal
system with eigenvalues λ0 = s− 1, λ1 = −1 with associated eigenvec-
tors like in in Region R1: S(λ0) = (s, p) and S(λ1) = (0, 1). Parametric
solution is: �

x0(t) = α0se
(s−1)t + m3

x1(t) = α0pe
(s−1)t + α1e

−t + k3

Cartesian solution is:

(x0 −m3)(s(x1 − k3)− p(x0 −m3))
s−1 = C,

where C = sα0(sα1)s−1. And the local equilibrium point (m3, k3), as
in Region 1, can be an attractor node, a saddle point or an improper
attractor node (Table 2.2).

• Region R4. The state equation in R4 = {(x0, x1) ∈ R|x0 < −1, x1 ∈
[−1, 1]} is: �

ẋ0 = −x0 − s + px1 + u�0

ẋ1 = −x1 + sx1 − p + u�1

Equilibrium point is:

(m4, k4) =

�
u
�
0 − s +

p

s− 1
(p− u

�
1),

p− u�1
s− 1

�

The system eigenvalues and eigenvectors are the same as in Region R2:
λ0 = −1, λ1 = s− 1, (1, 0) and = (p, s).

Parametric solution is:
�

x0(t) = α0e
−t + α1pe

(s−1)t + m4

x1(t) = α1se
(s−1)t + k4

Equilibrium point (m4, k4), as in Region R2, can be an attractor node,
a saddle point or an improper attractor node (Table 2.2) .

Cartesian solution is:

(x1 − k4)(s(x0 −m4)− p(x1 − k4))
s−1 = C,

where C = α1s(sα0)s−1.

2.4. GEOMETRIC STABILITY 37

Out regions: R5, R6, R7, R8

We will study the equilibrium points kind of the CNN system in each one
of the out regions. From the eigenvalues and eigenvectors obtained in each
case, we will deduce the local system solution.

• Region R5. The state equation in R5 = {(x0, x1) ∈ R|x0 < −1, x1 > 1}
is: �

ẋ0 = −x0 − s + p + u�0

ẋ1 = −x1 + s− p + u�1
(2.12)

Local equilibrium point is:

(m5, k5) = (u�0 + p− s, u
�
1 − p + s)

Eigenvalues are : λ0 = λ1 = −1 < 0 with associated eigenvectors
S(λ0) = (1, 0) and S(λ1) = (0, 1). The parametric solution is:

�
x0(t) = α0e

−t + m5

x1(t) = α1e
−t + k5

and the Cartesian one is: (x0 −m5) = C(x1 − k5) where C = α0/α1.
The local equilibrium point (m5, k5) is an attractor focus, because A
diagonalize and do not depend on parameter s.

• Region R6. The state equation in R6 = {(x0, x1) ∈ R|x0 > 1, x1 > 1}
is: �

ẋ0 = −x0 + s + p + u�0

ẋ1 = −x1 + s + p + u�1

Local equilibrium point is:

(m6, k6) = (u�0 + p + s, u
�
1 + p + s)

Eigenvalues and eigenvectors are equal to Region R5. The parametric
solution is: �

x0(t) = α0e
−t + m6

x1(t) = α1e
−t + k6

And Cartesian solution is: (x0 −m6) = C(x1 − k6). Equilibrium point
(m6, k6) is an attractor focus.

38 CHAPTER 2. CNN STABILITY

• Region R7. The state equation in R7 = {(x0, x1) ∈ R|x0 > 1, x1 < −1}
is: �

ẋ0 = −x0 + s− p + u�0

ẋ1 = −x1 − s + p + u�1

Local equilibrium point is:

(m7, k7) = (u�0 − p + s, u
�
1 + p− s)

Eigenvalues and eigenvectors are equal to Region R5. The system so-
lution is: �

x0(t) = α0e
−t + m7

x1(t) = α1e
−t + k7

And Cartesian solution is: (x0 −m7) = C(x1 − k7). Equilibrium point
(m7, k7) is again an attractor focus.

• Region R8. The state equation in R8 = {(x0, x1) ∈ R|x0 < −1, x1 <

−1} is: �
ẋ0 = −x0 − s− p + u�0

ẋ1 = −x1 − s− p + u�1

Local equilibrium point is:

(m8, k8) = (u�0 − p− s, u
�
1 − p− s)

Eigenvalues and eigenvectors are equal to Region R5. The parametric
solution is: �

x0(t) = α0e
−t + m8

x1(t) = α1e
−t + k8

Cartesian solution is: (x0−m8) = C(x1− k8). Local equilibrium point
(m8, k8) is an attractor focus.

From this study we can conclude that for parameter s > 1, every local
equilibrium point located in central and middle regions, is not an attractive
point (Figure 2.3). Only in the out regions there exist attractive equilibrium
points so, if they are located inside their corresponding regions, the system
will converge to one of them. The final output will then be +1 or −1 because
of the local equilibrium points position.

On the other hand, for a symmetric template p+ = p− = p, almost
one of the equilibrium points of the out regions must be placed inside its

2.4. GEOMETRIC STABILITY 39

Figure 2.3: Stability results for equilibrium points of central and middle
regions.

corresponding region becoming a fixed-point for the general CNN system.
On the contrary, if all attractive points are out from their regions,

m5 = u
�
0 + p− s > −1, m6 = u

�
0 + p + s < 1,

m8 = u
�
0 − p− s > −1, m7 = u

�
0 − p + s < 1.

we obtain for a positive parameter p,

u
�
0 > max{s− 1− p, s− 1 + p} > 0

and
u
�
0 < min{−(s− 1)− p,−(s− 1) + p} < 0

which is a contradiction.
From these results, we can conclude that for a symmetric A0 template,

the system converges to a fixed-point. Furthermore, if parameter s > 1,
such fixed-point is located inside an out region and so, the final state takes
a value |xi| > 1. Final outputs of the CNN system belongs then to S =
{(+1, +1), (+1,−1), (−1,−1), (−1, +1)}.

2.4.2 Non symmetric parameter range

Although parameters in this section are not symmetric, the procedure
to study the system stability will be the same as used before. As we are
interested on the CNN dynamics we will study the autonomous case where
u�

k
= 0 without loss of generality. Using the same plane division (Figure 2.2),

general equilibrium points in each region are shown in Table 2.3.

• Central region: R0. Following the same procedure as in the symmetric
case, the CNN matrix in this region is A0 (2.13), with eigenvalues

40 CHAPTER 2. CNN STABILITY

x∗
i

mi ki

R0 0 0
R1 − p+

s−1 s− p+p−
s−1

R2 s− p+p−
s−1 − p−

s−1

R3
p+

s−1 −s + p+p−
s−1

R4 −s + p+p−
s−1

p−
s−1

R5 +p+ − s −p− + s

R6 p+ + s p− + s

R7 −p+ + s p− − s

R8 −p+ − s −p− − s

Table 2.3: Non symmetric parameter range. Equilibrium points in each of
the nine regions where the system is linear for the autonomous case u�

i
= 0.

λ0 = (s − 1) +
√

p+p−, λ1 = (s − 1) − √p+p− and eigenvectors �v0 =�
p+,
√

p+p−
�

and �v1 =
�
−p+,

√
p+p−

�
.

A0 =

�
s− 1 p+

p− s− 1

�
(2.13)

Parametric solutions for the local CNN system are shown in Table 2.4,
where (X0, Y0) is the result of the variable change (2.10), and ρ,β are
described as C0 = ρ sin β and C1 = ρ cos β.

p+p− > 0 p+p− < 0�
X0 = C0e

(s−1+
√

p+p−)t

X1 = C1e
(s−1−√p+p−)t

�
X0 = ρe(s−1)t cos(β −

�
|p+p−|t)

X1 = ρe(s−1)t
�
|p−
p+
| sin(β −

�
|p+p−|t)

Table 2.4: Parametric solution in the central region for the non symmetric
case.

Again, CNN parameters will determine the local equilibrium point
(m0, k0) type.

1. If λ0 �= λ1 ∈ R ⇒ p+p− > 0.

(a) If s− 1 < −√p+p−, equilibrium point P0 is a sink.

(b) If −√p+p− < s−1 <
√

p+p−, equilibrium point P0 is a saddle.

(c) If s− 1 >
√

p+p−, equilibrium point is a source.

2.4. GEOMETRIC STABILITY 41

2. If λ0 = λ1 ∈ R ⇒ p+p− = 0. So λ0 = λ1 = s− 1.

(a) If p+ = p− = 0 and s < 1, solutions are straight lines ap-
proaching the equilibrium point. For s > 1, solutions go to
infinity straight in every direction.

(b) If p+ or p− are different form zero. For s < 1, solutions tend
to the equilibrium point (m0, k0) tangent to the only straight
line solution. For s > 1, solutions go to infinity tangent to
the straight line solution

(c) If s = 1, both eigenvalues are 0.

3. If λi ∈ C, this is p+p− < 0 then λi = (s − 1) ± j
�
|p+p−| and

depending on the real part we will have different solutions.

(a) If s < 1, equilibrium point is a spiral sink.

(b) If s > 1, equilibrium point is a spiral source.

(c) If s = 1, solutions are periodic. Equilibrium point is called
center and the trajectory directions are determined by the
complex part sign.

• Middle regions: R1, R2, R3, R4. Like in the symmetric case, CNN matri-
ces Ai, i = 1, 2, 3, 4 (2.14) allow us to find the eigenvalues determining
the local equilibrium points type. The main difference in this general
case is that we work with parameters p+ and p− instead of p. Never-
theless, the discussion and the results obtained are the same because
the equilibrium point kind only depends on parameter s (Table 2.2).
In the middle regions, equilibrium points can be attractor nodes for
s < 1, improper attractor nodes for s = 0 and saddle points for s > 1.

A1 = A3 =

�
s− 1 0
p− −1

�
; A2 = A4 =

�
−1 p+

0 s− 1

�
(2.14)

• Out regions: R5, R6, R7, R8. Exactly the same discussion as in the sym-
metric case. CNN matrices are equal (2.15), and each local equilibrium
point xi∗, i = 5, 6, 7, 8 is an attractor focus.

A5 = A6 = A7 = A8 =

�
−1 0
0 −1

�
(2.15)

The dynamic behavior for a non symmetric parameter range is exactly the
same as in the symmetric case for real valued eigenvalues (p+p− ≥ 0). In
the case where eigenvalues are complex numbers, the feedback parameters p+

and p− have different sign and there can be closed trajectories. Conclusions

42 CHAPTER 2. CNN STABILITY

when p+ and p− have the same sign are then similar as those obtained for a
symmetric parameter range. For s > 1, the local equilibrium points in the
middle and central regions are repulsive while in the out ones are attractive.
If one of the local attractive points is located inside its region, it becomes a
fixed-point where the system converges.

Summarizing the results obtained, a two neuron CNN in the non-symmetric
case can have basically two different dynamic behavior: converge to a fixed-
point if one attractive equilibrium point lays inside its region or converge to
a closed curve (closed trajectory or limit cycle).

On the other hand, solve the system equations in a parametric way allows
to design a program to print the system solutions on the plane. Fixing the
parameters relating both neurons A = (p+, s, p−), and fixing the external
influence (u�0, u

�
1), we start the network evolution at a point (x0(0), x1(0)),

usually located into the unit square (region R0). We compute the parametric
equations x0(t), x1(t) in each region Ri, i = 0, . . . , 8, moving parameter t at a
fixed ratio δ. To print the CNN solutions, basically one single problem must
be solved: how to connect solutions belonging to neighboring regions. An
easy way to solve it is by doing a linear interpolation between the last point
of one region and the first one of the next region. From this result we will
be able to print the CNN system solutions in each case. Along the paper,
figures showing the different convergence results like for example those where
the system converges to a limit cycle are printed using this program.

2.5 Conclusions

These results are significant for Cellular Neural Networks because they
implies that working in certain parameter range, the circuit converges to a
binary valued output. For a symmetric template p+ = p− = p, the system
converges to a fixed-point as final output. Furthermore, for parameter s > 1,
each CNN cell settles down at a stable equilibrium point with magnitude
greater than 1 and so, because of the piecewise linear function, the system
has binary-value outputs yi = ±1, i = 0, 1. For s < 1 the system is com-
pletely stable, it can converge to a fixed-point but it can be out from the
saturation regions. So the output can not be +1 or −1. It will depend on
the local attractive equilibrium points position. From the results obtained,
it’s reasonable to use the parameter range where the final output is already
known in order to find some possible CNN applications. Let us note that
the use of the piecewise linear function defining the final outputs has been
crucial in order to determine their concrete values.

Due to the geometry of the problem, for the rest of the parameter range

2.5. CONCLUSIONS 43

we can have basically two different dynamic behavior: converge to a fixed-
point or converge to a closed curve. These two different convergence options,
characterize the two neuron CNN dynamics. Next chapters are then classified
into the possible problems and uses when the system converges to a fixed-
point and those when the system converges to a closed curve.

44 CHAPTER 2. CNN STABILITY

Part II

Convergence to a fixed-point

45

Chapter 3

Dependence on initial

conditions

Once the system stability has been studied, another problem related to
CNN convergence arise: the dependence on initial conditions of the final CNN
output. In this chapter we analyze this dependence using the Lyapunov
function L(t) (2.6) defined previously to study the stability of the CNN
system. We will use it as a quadratic form of the output values yi, i = 0, 1.
From this point of view, L(t) = L(y0(t), y1(t)) can be an elliptic paraboloid, a
hyperbolic paraboloid or a parabolic cylinder depending on the CNN weights
s and p.

Its existence, and the restriction to work in certain parameter range,
assures that the network evolves to a fixed-point. It is logical then to think
on use it, in order to find a parameter range where the final output does not
depend on initial conditions (x0(0), x1(0)).

Usually these initial conditions are taken inside the unit square. Hence,
(y0(0), y1(0)) are also inside it. At this point, Max-min theorem can be used
to conclude that L(y0, y1) has a local minimum in the square to which the
system will converge.

Working inside the compact domain defined by the unit square, we study
in each of the three cases mentioned before, where does the center and the
principal axes of the Lyapunov quadratic form remain. These geometrical
elements determine different regions in the unit square, with different final
outputs where the system can converge. If the network evolution starts at a
point out from the significant lines of the quadratic form, and inside the unit
square, the system will converge to the point with lowest Lyapunov function
value without any dependence. Moreover, as we have seen in the previous
section, for parameter s > 1, this point will be one of the four corner points

47

48 CHAPTER 3. DEPENDENCE ON INITIAL CONDITIONS

S of the unit square.

S = {(+1, +1)(+1,−1), (−1, +1), (−1,−1)}.

Yet, to completely avoid any dependence on initial conditions, the prin-
cipal directions and the center of the quadratic form must be out from the
unit square, if we consider that the network evolution starts inside it. We
are going to find some parameter conditions to assure that these elements
do not pass across the unit square. Cutting the Lyapunov function with the
four border lines of the unit square, different local curves are obtained. The
location of the maximum of these local curves is the key point to find the
desired parameter conditions. If this point is out from [−1, 1] for any local
curve, the system converges to the point with lower Lyapunov function value
with independence of initial conditions.

Since, the position and kind of Lyapunov function will let us design tem-
plates where the system converge to a point without any dependence on
initial conditions. Of course, another way to solve this problem is starting
always the network evolution at the same initial point. For instance, we can
take the origin (0, 0) as this point.

3.1 Lyapunov function

In this section we will see that the Lyapunov function (2.6) is a quadratic
form as a function of the output values y0(t) and y1(t). On this ground, it
can be classified depending on the CNN weights s and p. Theorem 7 shows
that in fact it can only be an elliptic paraboloid, a parabolic cylinder or a
hyperbolic paraboloid. Its geometry will give us the key points to manage
the dependence on initial conditions problem. In order to prove it, we will
use Max-Min theorem.

Theorem 6 (Max-Min theorem). If f is a continuous function defined on
a compact set K ⊂ R2, then f has an absolute maximum and an absolute
minimum on K. In particular, f must be bounded on the compact set K.

Proof. Since K is a compact(bounded and closed) set in the plane and f is
a continuous function, f(K) is compact. The compact set f(K) is bounded
so that f is bounded on K. The compact set f(K) also contains its infimum
and supremum, so f has an absolute minimum and maximum in K.

Theorem 7. The Lyapunov function L(t) (2.6) is a quadratic form as a
function of the output values L(y0(t), y1(t)). It can be classified as a parabolic
cylinder for (s − 1)2 = p2, an elliptic paraboloid for (s − 1)2 > p2, and as a
hyperbolic paraboloid for (s− 1)2 < p2.

3.1. LYAPUNOV FUNCTION 49

Proof. We will find the diagonal form of the Lyapunov function using the
Lagrange method in order to classify it. Let us remember the use of the
B-transformation (2.3) to simplify our notation u�0 = b0u0 + b+u1 + I, u�1 =
b−u0 + b0u1 + I, and let us define S = s− 1.

L(t) = −py0y1 −
S

2
(y2

0 + y
2
1)− u

�
0y0 − u

�
1y1 =

= −
��

S

2
y0 +

u�0√
2S

�2

−
��

S

2
y1 +

u�1√
2S

�2

−
��

p

2
y0 +

�
p

2
y1

�2

+

+
p

2
y

2
0 +

p

2
y

2
1 +

1

2S
(u�0)

2 +
1

2S
(u�1)

2

At this point, we are going to apply different linear changes in order to
simplify the quadratic form expression. First linear change is





Y0 =

�
S

2 y0,

Y1 =
�

S

2 y1.

�
U0 = u�0√

2S
,

U1 = u�1√
2S

.

L(t) = −(Y0 + U0)
2 − (Y1 + U1)

2 − p
2

S
Y0Y1 + U

2
0 + U

2
1 .

Second linear change, �
Y �

0 = Y1 + U0,

Y �
1 = Y1 + U1.

L(t) = −(Y �
0)

2 − (Y �
1)

2 − 2p

S
(Y �

0 − U0)(Y
�
1 − U1) + U

2
0 + U

2
1 .

Third linear change, �
Y �

0 = Y ��
0 − p

S
Y �

1 ,

Y �
1 = Y ��

1 .

L(t) = −(Y ��
0 −

p

S
Y
��
1)2 − (Y ��

1)2 − 2p

S
(Y ��

0 −
p

S
Y
��
1)Y 1�� +

2p

S
U0Y

��
1 +

+
2p

S
U1(Y

��
0 −

p

S
Y
��
1)−2p

S
U0U1 + U

2
0 + U

2
1

� �� �
K

= −(Y ��
0)2 + 2

p

S
Y
��
0 Y

��
1 −

−(
p

S
)2(Y ��

1)2−(Y ��
1)2−2p

S
Y
��
0 Y

��
1 +(

2p

S
)2

Y
��2
1 +

2p

S
U0Y

��
1 +

2p

S
U1Y

��
0 −2(

p

S
)2

Y
��
1 U1+K.

Fourth linear change, �
Y ��

0 = Y ���
0 + p

S
U1,

Y ��
1 = Y ���

1

50 CHAPTER 3. DEPENDENCE ON INITIAL CONDITIONS

L(t) = −
�
Y
���
0 +

p

S
U1

�2
+

2p

S

�
Y
���
0 +

p

S
U1

�
U1 − Y

���2
1 (1−

�
p

S

�2
)

+Y
���
1 (−2

�
p

S

�2
U1 +

2p

S
U0) + K

Finally, let us rewrite A = (1−
�

p

S

�2
), and B = (−2

�
p

S

�2
U1 + 2p

S
U0)

L(t) = −(Y ���
0)2−2p

S
Y
���
0 U1+

2p

S
Y
���
0 U1−A(Y ���

1)2+By−
�

p

S

�2
U

2
1 + 2

�
p

S

�2
U

2
1 + K

� �� �
K�

=

= −(Y ���
0)2 − A(Y ���

1)2 + BY
���
1 + K

� = L(t)

Now, depending on parameters A and B we can have different quadratic
forms (Figure 3.1).

1. If A=0 ⇒ S2 = p2, L(t) is a parabolic cylinder.

2. If A �= 0 and A > 0 ⇔ S2 > p2, L(t) is an elliptic paraboloid.

3. If A �= 0 and A < 0 ⇔ S2 < p2, L(t) is a hyperbolic paraboloid.

Figure 3.1: Lyapunov functions in each of the three different cases. A
parabolic cylinder is obtained for parameters p = s− 1 = 2, u�0 = 1, u�1 = 3,
an elliptic paraboloid for parameters p = 1 < s− 1 = 2, u�0 = u�1 = 2, and a
hyperbolic paraboloid for p = 2 > s− 1 = 1, u�0 = u�1 = 2.

3.2. DEPENDENCE PROBLEM 51

At this point, and using the Max-Min theorem, we are able to see that
the Lyapunov function has a minimum in the unit square where yi(t) belongs
thanks to the piecewise linear function.

Using the Lyapunov function (Figure 3.1) as a quadratic form of y0, y1,
and working inside the unit square domain D=[−1, 1] × [−1, 1], L(y0, y1) is
a C∞-function of two variables. It is a two variables polynomial defined in a
closed and bounded domain D⊂ R2. Therefore, from the Max-Min Theorem
L(y0, y1) has a minimum in D.

3.2 Dependence problem

To study the dependence on initial conditions, we will use the Lyapunov
function geometry in each of the three cases studied before. We are going
to find their principal axes and the center of the original Lyapunov function.
To do it, we can not use the Lagrange study used before, but we can do an
orthogonal diagonalisation to find the center and the axes.

Let us rewrite the Lyapunov function (2.6) in a matrix way.

L(t) =
�
y0 y1

�T

�
−(s− 1)/2 −p/2
−p/2 −(s− 1)/2

�

� �� �
L

�
y0

y1

�
−

�
u�0 u�1

�T

�
y0

y1

�

Let us consider a rotation of angle θ centered at the origin.

Rθ =

�
cos θ − sin θ

sin θ cos θ

�

Applying the rotation to the Lyapunov function, we make a base change in
order to diagonalize the matrix of the quadratic form.

D = R
T

θ

�
−(s− 1)/2 −p/2
−p/2 −(s− 1)/2

�
Rθ =

�
λ0 0
0 λ1

�

This implies that p = 0 or sin2
θ = cos2 θ. If p = 0, we already have a

diagonal form and so it’s not necessary to diagonalize. The diagonal matrix
is then:

L = D =

�
−(s− 1)/2 0

0 −(s− 1)/2

�

If sin2
θ = cos2 θ, then tan θ = ±1 ⇔ θ = π

4 + k
π

2 , k ∈ Z. For instance,
for θ = π

4 , and k = 0, the diagonal form is:

D =

�
−(s− 1 + p)/2 0

0 −(s− 1− p)/2

�
.

52 CHAPTER 3. DEPENDENCE ON INITIAL CONDITIONS

Now applying the rotation to L(t) in this case, we obtain:

L = RθDR
T

θ
=

�
y0 y1

�T
RθDR

T

θ� �� �
L

�
y0

y1

�
−

�
u�0 u�1

�T
RθR

T

θ

�
y0

y1

�
=

=

�
R

T

θ

�
y0

y1

��T

D

�
R

T

θ

�
y0

y1

��
−

�
R

T

θ

�
u�0
u�1

��T �
R

T

θ

�
y0

y1

��

Let us rename

R
T

θ

�
y0

y1

�
=

�
Y0

Y1

�
R

T

θ

�
u�0
u�1

�
=

�
U0

U1

�

The diagonal quadratic form is then:

L(t) = λ0Y
2
0 + λ1Y

2
1 − U0Y0 − U1Y1,

where λ0 = − s−1+p

2 and λ1 = − s−1−p

2 .
To find the center and the principal axes, we must now distinguish the

different Lyapunov function cases. If L(t) is an elliptic paraboloid then S2 >

p2, if it is a hyperbolic paraboloid then S2 < p2 and at last , if it is a parabolic
cylinder, parameters fulfill S2 = p2, where S = s− 1.

In the elliptic and hyperbolic cases, principal axes of the Lyapunov func-
tion L(t) are described by lines Y0 − 1

2λ0
U0 = 0, and Y1 − 1

2λ1
U1 = 0.

L(t) = λ01

�
Y0 −

1

2λ0
U0

�2

+ λ1

�
Y1 −

1

2λ1
U1

�2

−
�

U0

2λ0

�2

−
�

U1

2λ1

�2

Undoing the changes made to diagonalize, and choosing the angle θ = π

4 ,
we obtain L(t)-principal directions.

r0 : y0 + y1 = −1
p+S

(u�0 + u�1)
r1 : −y0 + y1 = 1

p−S
(−u�0 + u�1)

The Lyapunov function center can be found via the axes intersection.

(C0, C1) =
1

S2 − p2
(−Su

�
0 + pu

�
1, pu

�
0 − Su

�
1)

At this point, we study the center, and the principal directions possible
positions in the plane. To avoid the dependence on initial conditions, in the
elliptic case, center (C0, C1) must be out from the unit square, and the axes
must not pass across it. In the hyperbolic case, center (C0, C1) must be again
out from the square, but only one of the axes, determined by the direction of

3.3. EXAMPLE 53

the eigenvector associated to the biggest eigenvalue, must not pass across the
unit square. At last, in the parabolic cylinder case where parameters fulfill
S2 = p2, one of the eigenvalues λi is 0.

If λ0 �= 0, and λ1 = 0, the Lyapunov function L(t) is

L(t) = λ0Y
2
0 + U0Y0 + U1Y1 = λ1

�
Y0 +

1

2λ0
U0

�2

− U0

2λ0

2

+ U1Y1

Principal direction is

r0 : y0 + y1 =
1

2λ0
(u�0 + u

�
1).

This line divides the square into two different convergence regions. Therefore,
if it does not pass across the unit square, we avoid the dependence on the
initial conditions problem. On the other hand, if λ0 = 0, and λ1 �= 0, the
Lyapunov function is

L(t) = λ1Y
2
1 + U0Y0 + U1Y1 = λ1

�
Y1 +

1

2λ1
U1

�2

− U1

2λ1

2

+ U0Y0

Principal direction in this case is

r1 : −y0 + y1 =
1

2λ1
(−u

�
0 + u

�
1)

In order to see and understand how to use a Lyapunov function in the
dependence on initial conditions problems, let us study it in a couple of
examples.

3.3 Example

Using the hyperbolic paraboloid case for parameters p = 2, S = s−1 = 1
and u�0 = u�1 = 2, the Lyapunov function is:

L(t) = −2y0y1 −
1

2
(y2

0 + y
2
1)− 2y0 − 2y1

The associated eigenvalues and eigenvectors are λ0 = −3/2, λ1 = 1/2, �v0 =
(1√

2
,

1√
2
), and �v1 = (− 1√

2
,

1√
2
). The hyperbolic paraboloid center is

(C0, C1) = (−2

3
,−2

3
)

54 CHAPTER 3. DEPENDENCE ON INITIAL CONDITIONS

Principal direction associated to the first eigenvalue is y1 = y0. The second
one, which is the projection of the concave parabola separating the square in
two different convergence regions, is y1 = −y0 − 4

3 .
In Figure 3.2, we can see two different views of the Lyapunov function

in the hyperbolic case. Principal direction, which divides the unit square
into two different convergence regions, can be seen as a plane cutting the
quadratic form. In this case, the system will converge to (+1, +1) or (−1,−1)
depending on where the network evolution starts.

Figure 3.2: Hyperbolic paraboloid for s − 1 = 1 and p = 2 with principal
directions across the unit square.

Let us note that if principal direction do not cross the unit square, then
starting the network evolution at any point inside it, the system converges
to the same final output. This output will depend on the CNN parameters,
and is the point where the Lyapunov function takes its minimum. To see this
dependence we print on the plane the level curves in each case as can be seen
in Figure 3.3. Clearly, we can see that the network evolution will depend
on the initial conditions position because principal directions pass across the
unit square.

From this study we are able now to find sufficient conditions for the CNN
parameters in order to avoid the dependence on initial conditions. Our main
objective is to find a way to assure that the Lyapunov function principal
directions do not cross the unit square. We will cut the quadratic form with
the unit square borders yi = ±1. From this intersection, four different curves
are obtained. If the maximum of these curves lies out from [−1, 1], principal

3.3. EXAMPLE 55

Figure 3.3: Level curves in the hyperbolic case for parameters S = 1 and
p = 2.

axes will not pass across the unit square. These axes divide the square into
different convergence regions. Therefore, if they do not pass across it, we will
not have such a dependence.

In order to find it, let us cut the Lyapunov function (2.6) with planes
y0 = ±1 and y1 = ±1, in order to study where does the maximum of the
intersection curve remains. If the maximum is out from [−1, 1], there is no
dependence on initial conditions.

1. L(t)
�
{y0 = 1}. Intersection curve is

L(1, y1(t)) = −py1 −
S

2
(1 + y

2
1)− u

�
0 − u

�
1y1.

To find the maximum of this curve, we look for its derivative to be zero.

d

dt
L(1, y1(t)) = −dy1

dt
(p + Sy1 + u

�
1) = 0

Solving this equation, the extreme candidate is y1 = −p+u�1
S

for S �= 0.
Our purpose is to find the necessary conditions to make this maximum
to be out form [−1, 1]. For this, parameters must fulfill |p + u�1| > |S|.

2. L(t)
�
{y0 = −1}. Intersection curve is

L(−1, y1(t)) = +py1 −
S

2
(1 + y

2
1) + u

�
0 − u

�
1y1

d

dt
L(−1, y1(t)) =

dy1

dt
(p− Sy1 − u

�
1) = 0

The extreme candidate is y1 = −p−u�1
S

for S �= 0. Again, if parameters
fulfill |p− u�1| > |S|, the maximum is out from the unit square.

56 CHAPTER 3. DEPENDENCE ON INITIAL CONDITIONS

3. L(t)
�
{y1 = 1}. Intersection curve is

L(y0(t), 1) = −py0 −
S

2
(1 + y

2
0)− u

�
0y0 − u

�
1

d

dt
L(y0(t), 1) = −y

�
0(p + Sy0 + u

�
0) = 0

The extreme candidate is y0 = −p+u�0
S

for S �= 0. If parameters fulfill
|p + u�0| > |S|, the maximum is out from the unit square.

4. L(t)
�
{y1 = −1}. Intersection curve is

L(y0(t),−1) = +py0 −
S

2
(1 + y

2
0) + u

�
0y0 − u

�
1

d

t
L(y0(t), 1) = y

�
0(p− Sy0 − u

�
0) = 0

The extreme candidate is y0 = p−u�0
S

for S �= 0. If parameters fulfill
|p− u�0| > |S|, the maximum is out from the unit square.

From this study, we can conclude that working with parameters p and S

fulfilling equation (3.1), the maximum in all the possible cases, is out from
[−1, 1]. Principal direction dividing the square into different converge re-
gions do not cross the unit square. Hence, there is no dependence on initial
conditions.

|p ± u
�
i
| > |S|, i = 0, 1. (3.1)

3.4 Conclusions

From the existence of the Lyapunov function, we have seen that it can
be used to avoid the problem of the dependence on initial conditions. Using
its geometry as a quadratic form of the output values y0(t) and y1(t), which
depends on the CNN parameters, we can work in a parameter range where
its center is out from the unit square. Principal direction dividing it into
different convergence regions do not cross the unit square. Starting the net-
work evolution at any point (x0(0), x1(0)) inside the unit square, the CNN
system will converge to the point with lowest Lyapunov function value.

To find this parameter range, we have cut the quadratic form with planes
delimiting the unit square obtaining four different curves. This let us study
where does the maximum of these curves remains. Imposing this maximum
to be out from [−1, 1], we have obtained the parameter conditions were is
needed to work in order to solve this problem.

Chapter 4

On CNN applications

Although the autonomous two neuron CNN is determined by simple gen-
eral equations defining a non linear system, its dynamic behavior allows the
system to converge either to a fixed-point or to closed curve. The way each
cell is related with its neighbors and the use of the piecewise linear function
to define the final outputs, characterize its dynamics and limits the different
problems that can be solved.

Many of the usual tasks that should be dealt with a CNN, requires a
relation between an input and an output. For this, we will focus our study in
the case where the system converges to a fixed-point as final output. Usually,
in the literature, the output choice is the external state at the end of the
process yi, and the internal states xi(0) or the external ones ui, i = 0, 1, are
chosen as input. The consequences of this choice are the different problems
that can be solved.

Choosing initial conditions xi(0), i = 0, 1 as inputs, we can use the CNN
system to reproduce some probability distributions. For certain parameter
range, the different final outputs obtained from the stability analysis are
S = {(±1,±1)}. They can be used to define a probability space (S,A, p)
where A is a σ-algebra, and p is a probability function. On this ground, we
will discuss about different ways to assign probabilities to each point in S
using statistical results, and the Lyapunov function geometry.

On the other hand, choosing the external inputs ui, i = 0, 1 as inputs, we
can reproduce linear functions, find a way to design templates performing
some input-output relations, and solve classification problems. Each one of
these applications need the system to converge to a fixed-point. Again, pa-
rameters must fulfill some restrictions. To reproduce linear functions, only
one restriction is needed: work inside the unit square [−1, 1]× [−1, 1]. Tem-
plate design and classification problems requires the use of the Lyapunov
function so, symmetric parameter range, and a self feedback parameter larger

57

58 CHAPTER 4. ON CNN APPLICATIONS

than one are needed in order to assure the final outputs existence in S.
To design templates, we will construct a map in the plane relating the

CNN parameters, the inputs, and the outputs. This map will be crucial not
only to design but also to address another important problem, the composi-
tion of different templates.

The results obtained from the classification problems let us use the CNN
system to reproduce different Boolean functions. Finally, we will try to
reproduce the header action of a universal Turing machine.

4.1 Probability distributions

Choosing the internal inputs xi(0), i = 0, 1 in the unit square as inputs
for the CNN system, we can reproduce some probability distributions. To
do it, let us consider the experiment of running the CNN system with these
initial conditions in order to obtain the external inputs y0, y1. Outputs yi can
be considered as discrete random variables assuming values +1 and −1. For
this random event we need the correspondence input-output to be unique.
Therefore, we are going to use the Lyapunov function (2.6) inside the unit
square for parameter s > 1 where it’s known that the system converge to one
of the points in S.

The probability space where we are going to work is (S,A, p) where S
is the sample space, A is the sigma algebra, and p the probability function.
There are different ways to define the probability function p. One way is
using statistic results of convergence. Taking the initial conditions xi(0),
i = 0, 1 uniformly distributed inside [−1, 1] :

x0 = −1 +
k0

n
, n ∈ {0, . . . , 2n}, x1 = −1 +

k1

m
, m ∈ {0, . . . , 2m},

and running the CNN with these initial conditions, we count how many times
the network has converged to one of the four possible output points. These
results let us define a (y0, y1)−joint probability function p : S → [−1, 1] as

p(i, j) = P (y0 = i, y1 = j) =
�times converging to (i, j)

(2n + 1)(2m + 1)
i, j ∈ {−1, 1}

The correspondent marginal density functions of y0 and y1 are then:

py0(k) = P (y0 = k) =
�

l∈{−1,1}

P (y0 = k, y1 = l) k ∈ {−1, 1}

4.1. PROBABILITY DISTRIBUTIONS 59

py1(l) = P (y1 = l) =
�

k∈{−1,1}

P (y0 = k, y1 = l) l ∈ {−1, 1}

Outputs y0 and y1 are then Bernoulli random variables with probability pi =
P (yi = 1), and qi = 1− pi = P (yi = −1) for i = 0, 1.

Another way to define a probability function is the geometric one. Using
the Lyapunov function L(y0, y1) as a quadratic form of (y0, y1), we study
the regions of the unit square where its minimum remains. The area of this
region will be defined as the probability function.

To begin, let us remember that depending on parameters s and p, L(y0, y1)
can be an hyperbolic paraboloid if |s − 1| < |p|, a parabolic cylinder if
|s− 1| = |p| or an elliptic paraboloid if |s− 1| < |p| (Figure 3.1) as we have
seen previously.

Like in the dependence on initial conditions study, this quadratic form
becomes diagonal doing a rotation of certain angle centered at the origin.
L(y0, y1) axes are then parallel to oy0 and oy1. Applying a translation, the
Lyapunov function center moves to the origin. This result let us recognize
L, find its principal elements, its principal directions, and its center.

�
y0 − C0 = −(y1 − C1)
y0 − C0 = +(y1 − C1)

(C0, C1) =

�
−(s− 1)u�0 + pu�1

(s− 1)2 − p2
,
pu�0 − (s− 1)u�1
(s− 1)2 − p2

�

Theses axes divide the unit square into different convergence regions de-
pending on the center’s position on the plane: inside or outside the unit
square. Printing the level curves of the Lyapunov function (Figure 4.1),
we find in all the cases that one of the principal axes, which correspond to
the eigenvector of maximum eigenvalue, defines two different convergence
regions. This study let us define a (y0, y1)−joint probability distribution as:

Figure 4.1: Level curves and principal axis in the paraboloid, hyperbolic and
cylinder cases.

60 CHAPTER 4. ON CNN APPLICATIONS

p(i, j) = P (y0 = i, y1 = j) =
Aij

4
i, j ∈ {−1, 1},

where Aij ≥ 0 is the area of the region containing the local minimum point
(i, j) of the Lyapunov function for i, j = ±1.

The correspondent marginal density functions of yi ∼Bernoulli(pi) are

pyi(k) = P (yi = k) =
�

P (yi = k, yj = l) i, j, k, l ∈ {−1, 1}

At last, let us note that Bernoulli variables y0 and y1 are not independent.
For certain parameters s and p, like for example those of Figure 4.1, y0 and y1

are not independent because P (y0 = 1, y1 = 1) = 0 �= P (y0 = 1)P (y1 = 1).

P (y0 = 1) = P (y0 = 1, y1 = 1) + P (y0 = 1, y1 = −1) = 0 + A1−1

4

P (y1 = 1) = P (y0 = 1, y1 = 1) + P (y0 = −1, y1 = 1) = 0 + A−11

4

4.2 Reproducing linear functions

The CNN dynamical system converges to a fixed-point for certain pa-
rameter range, as we have seen in the stability analysis. Output values,
defined by the piecewise linear function (1.2), are restricted to be either ±1
or xi ∈ (−1, 1) depending on where does the system converges. Commonly,
CNN applications are restricted to the case where it has binary valued out-
puts. Nevertheless, possible CNN applications for the system converging to
a fixed-point located inside the unit square, can be an interesting subject
of study. We will see that, in this case, two neuron CNNs can be used to
reproduce linear functions y = F (u). Actually, input-output relation inside
region R0 is linear because the system dynamic behavior in this case is purely
linear.

In order to reproduce a linear functional relation (4.1) between an input
and an output, let us take ui, i = 0, 1 as input variables, and yi, i = 0, 1
at the end of the process, as the output ones. We will work inside the unit
square where piecewise linear function defines yi = xi, i = 0, 1. From the
geometrical stability analysis explained in Chapter 2, we know that CNN
systems can converge to a fixed-point located in the unit square, for certain
parameter conditions.

y0 = F0(u0, u1)
y1 = F1(u0, u1)

(4.1)

The CNN system settle down to the steady state if ẋi = 0. From this, we
obtain the system equations

�
0 = −x0 + sy0 + p+y1 + u�0
0 = −x1 + sy1 + p−y0 + u�1

4.3. TEMPLATE DESIGN 61

Working inside the unit square where xi = yi, we solve this system finding
yi as a function of ui, i = 0, 1.

�
y∗0 = 1

(s−1)2−p+p−
(p+u�1 − (s− 1)u�0)

y∗1 = 1
(s−1)2−p+p−

(p−u�0 − (s− 1)u�1)

Now, applying the B-transformation (2.3) to work in ui-plane we obtain:




y∗0 =

�
b0(1−s)+p+b−
(s−1)2−p+p−

�
u0 +

�
b+(1−s)+p+b0

(s−1)2−p+p−

�
u1 + I

1−s+p+

(s−1)2−p+p−

y∗1 =
�

b0p−+(1−s)b−
(s−1)2−p+p−

�
u0 +

�
p−b++(1−s)b0
(s−1)2−p+p−

�
u1 + I

1−s+p−
(s−1)2−p+p−

This result gives us a linear function (y0, y1) = (F0(u0, u1), F1(u0, u1) relating
the external inputs ui, i = 0, 1 and the final outputs.

y0 = F0(u0, u1) = A00u0 + A01u1 + C0

y1 = F1(u0, u1) = A10u0 + A11u1 + C1

Parameters A00, A01, A10 and A11 are:

A00 =
b0(1− s) + p+b−

(s− 1)2 − p+p−
A01 =

b+(1− s) + p+b0

(s− 1)2 − p+p−
C0 = I

1− s + p+

(s− 1)2 − p+p−

A10 =
b0p− + (1− s)b−
(s− 1)2 − p+p−

A11 =
p−b+ + (1− s)b0

(s− 1)2 − p+p−
C1 = I

1− s + p−

(s− 1)2 − p+p−

Let us note that this functional relation is consistent if and only if the
external variables yi are located inside the unit square. Therefore, functions
must be defined as Fi : [−1, 1] → [−1, 1]. In addition, linear parameters must
fulfill conditions |A00u0 + A01u1 + C0| ≤ 1 and |A10u0 + A11u1 + C1| ≤ 1.

4.3 Template design

In this section we will study the template design problem in order to relate
an input to a desired output. The geometry and position on the plane of the
Lyapunov function will give us the key point. Choosing the external inputs
ui as inputs, and using the Lyapunov function (2.6), we will construct a map.
This convergence map relates ui, the parameters of the cloning template, and
the final outputs yi. From this map, we will find a recipe to find the template
parameters τ = (I, b0, b+, b−, p, s).

Of course, to make this happens, we need some restrictions on the CNN
parameters. Those relating both neurons must be symmetric p+ = p− =

62 CHAPTER 4. ON CNN APPLICATIONS

p and the center element of the cloning template s > 1. From this, the
magnitude of the CNN system fixed-points is bigger than 1, and so the output
function yi = f(xi) takes values {+1,−1}.

To study where does the system converges, let us now compare the Lya-
punov function (2.6) at this four possible final outputs

S = {(+1, +1), (−1, +1), (+1,−1), (−1,−1)},

in order to find where does its minimum remains. This comparison will let
us relate the CNN external inputs (u0, u1) with the final outputs (y0, y1)
obtaining the convergence map.

Firstly, we will work with u�
i
, i = 0, 1 (2.3). Then, we will apply the

B-transformation to relate the CNN parameters with the external inputs
ui, i = 0, 1.

L(+1, +1) = −p− S

2
(1 + 1)− u

�
0 − u

�
1 = −p− S − u

�
0 − u

�
1

L(+1,−1) = +p− S

2
(1 + 1)− u

�
0 + u

�
1 = p− S − u

�
0 + u

�
1

L(−1, +1) = +p− S

2
(1 + 1) + u

�
0 − u

�
1 = p− S + u

�
0 − u

�
1

L(−1,−1) = −p− S

2
(1 + 1) + u

�
0 + u

�
1 = −p− S + u

�
0 + u

�
1

Comparing these four different Lyapunov function values, we find its mini-
mum depending on the CNN parameters, and u�

i
, i = 0, 1 as can be seen in

Table 4.1.

L(+1, +1) ≤ L(−1,−1) −p− S − u�0 − u�1 ≤ −p− S + u�0 + u�1 u�0 + u�1 ≥ 0
L(+1, +1) ≤ L(−1, +1) −p− S − u�0 − u�1 ≤ p− S + u�0 − u�1 p + u�0 ≥ 0
L(+1, +1) ≤ L(+1,−1) −p− S − u�0 − u�1 ≤ p− S − u�0 + u�1 p + u�1 ≥ 0
L(−1, +1) ≤ L(+1,−1) p− S + u�0 − u�1 ≤ p− S − u�0 + u�1 u�0 ≤ u�1
L(−1,−1) ≤ L(−1, +1) −p− S + u�0 + u�1 ≤ p− S + u�0 − u�1 u�1 ≥ p

L(−1,−1) ≤ L(+1,−1) −p− S + u�0 + u�1 ≤ p− S − u�0 + u�1 u�0 ≥ p

Table 4.1: Lyapunov comparison table for symmetric parameters p+ = p−
and s > 1.

At this point, we are able to relate the CNN parameters with the final
outputs looking for the minimum value of the Lyapunov function. Figure 4.2
shows the convergence map obtained from the comparison study.

1. L(+1, +1) is the minimum if {u�0 + u�1 ≥ 0; u�0 ≥ −p; u�1 ≥ −p}

4.3. TEMPLATE DESIGN 63

2. L(−1,−1) is the minimum if {u�0 + u�1 ≤ 0; u�0 ≤ p; u�1 ≤ p}

3. L(−1, +1) is the minimum if {u�0 ≤ −p; u�0 − u�1 ≤ 0; u�1 ≥ p}

4. L(+1,−1) is the minimum if {u�0 ≥ p; u�0 − u�1 ≥ 0; u�1 ≤ −p}

Figure 4.2: Convergence map showing the different convergence regions for
parameters p > 0 and p < 0 in the u�-plane.

Applying the B-transformation defined on (2.3), we relate the external
inputs ui with their correspondent u�

i
, i = 0, 1. For sake of clarity, it can be

written as T : R2 → R2,

T (u0, u1) = B(u0, u1) + (I, I) = (t ◦B)(u1, u1) (4.2)

where t is a translation of vector (I, I) and B is a linear application defined
by the B-matrix (2.3).

Using this transformation (4.2), we map the director vectors of the bound-
ary lines of the convergence regions, and the corresponding intersection points
in order to find the convergence map in the ui, i = 0, 1 plane. To transform
the director vectors defining the different lines, we apply only the linear trans-
formation B because translation does not modify lines direction. Let us take
a modulus 1 vector �v = (cos θ, sin θ) in {u0, u1}-plane, in order to relate it
with the director vector �w ∈ R2 of the image lines in the {u�0, u�1}-plane.

B(cos θ, sin θ) = �w

We will first fix parameter p < 0 and then we will repeat the study for p > 0.

1. Director vectors mapped to lines u�0 = ±p, p < 0.

B : R2
{u0,u1} −→ R2

{u�0,u�1}
rp −→ u�0 = p

r−p −→ u�0 = −p

64 CHAPTER 4. ON CNN APPLICATIONS

B�v =

�
b0 b+

b− b0

� �
cos θ

sin θ

�
=

�
b0 cos θ + b+ sin θ

b− cos θ + b0 sin θ

�
= λ

�
1
0

�
⇒

tan θ = −b−

b0
and λ =

∓ det B�
b2
0 + b2

−

The lines incline corresponding to u�0 = ±p is m0 = −b−
b0

= tan θ0.

2. Director vectors mapped to lines u�1 = ±p, p < 0.

B : R2
{u0,u1} −→ R2

{u�0,u�1}
sp −→ u�1 = p

s−p −→ u�1 = −p

B�v =

�
b0 b+

b− b0

� �
cos θ

sin θ

�
=

�
b0 cos θ + b+ sin θ

b− cos θ + b0 sin θ

�
= µ

�
0
1

�
⇒

tan θ = − b0

b+
and µ =

± det B�
b2
0 + b2

+

The lines incline corresponding to u�1 = ±p is m1 = −b0
b+

= tan θ1.

3. Intersection point mapped to (p, p), p < 0.

T : R2
{u0,u1} −→ R2

{u�0,u�1}
(xp, yp) −→ (p, p)

T (u0, u1) =

�
b0 b+

b− b0

� �
xp

yp

�
+

�
I

I

�
=

�
b0xp + b+yp + I

b−xp + b0yp + I

�
=

�
p

p

�
⇒

(xp, yp) =
p− I

b+b− − b2
0

(b+ − b0, b− − b0)) =
I − p

b0

�
m1 + 1

m0 −m1
,

m0 + 1)

m0 −m1

�

Let us note that if b2
0 − b−b+ = detB �= 0, then m0 �= m1 because

m0 = − b−
b0
�= − b0

b+
.

4. Intersection point mapped to (−p,−p), p < 0.

T : R2
{u0,u1} −→ R2

{u�0,u�1}
(x−p, y−p) −→ (−p,−p)

⇒
�

x−p

y−p

�
=

1

b2
0 − b+b−

�
b0 −b+

−b− b0

� �
−I − p

−I − p

�

4.3. TEMPLATE DESIGN 65

(x−p, y−p) =
I + p

b+b− − b2
0

(b0 − b+, b0 − b−) =
I + p

b0

�
1 + m1

m0 −m1
,

1 + m0

m0 −m1

�

Line u�0 = u�1 in plane {u�0, u�1} is the lineal transformation of the line

u1 − yp =
�

b0−b−
b0−b+

�
(u0 − xp) connecting points (xp, yp) and (x−p, y−p) in the

plane {u0, u1}. Simplifying the line equation, we obtain u1 =
�
m1

1+m0
1+m1

�
u0.

Let us study now where do intersection points go under the linear trans-
formation for a positive parameter p.

1. Intersection point mapped to (−p, p), p > 0.

T : R2
{u0,u1} −→ R2

{u�0,u�1}
(x−p, yp) −→ (−p, p)

T (x−p, yp) =

�
b0 b+

b− b0

� �
x−p

yp

�
+

�
I

I

�
=

�
−p

p

�
⇒

⇒
�

x−p

yp

�
=

1

b2
o
− b+b−

�
b0 −b+

−b− b0

� �
−p− I

p− I

�

(x−p, yp) =

�
I(b+ − b0)− p(b+ + b0)

detB
,
p(b0 + b−) + I(b− − b0)

detB

�
=

=
1

b0

�
(p− I)−m1(I + p)

m1 −m0
, m1

(p− I)−m0(p + I)

m1 −m0

�

2. Intersection point mapped to (p,−p), p > 0.

T : R2
{u0,u1} −→ R2

{u�0,u�1}
(xp, y−p) −→ (p,−p)

T (xp, y−p) =

�
b0 b+

b− b0

� �
xp

y−p

�
+

�
I

I

�
=

�
b0x + b+y + I

b−x + b0y + I

�
=

�
p

−p

�
⇒

⇒
�

xp

y−p

�
=

1

b2
0 − b+b−

�
b0 −b+

−b− b0

� �
p− I

−p− I

�

(xp, y−p) =

�
I(b+ − b0) + p(b+ + b0)

detB
,
I(b− − b0)− p(b− + b0)

detB

�
=

=
1

b0

�
m1(p− I)− (I + p)

m1 −m0
, m1

m0(p− I)− (I + p)

m1 −m0

�

66 CHAPTER 4. ON CNN APPLICATIONS

Line u�0 + u�1 = 0 in plane {u�0, u�1} is the lineal transformation of line

(u1 − yp) = −
�

b0+b−
b0+b+

�
(u0 − x−p) =

�
m1

m0−1
m1−1

�
(u0 − x−p) connecting points

(x−p, yp), and (xp, y−p) in {u0, u1}-plane .

incline {u0, u1} plane {u�0, u�1} plane

(x−p, y−p) = I+p

b0

�
m1+1

m0−m1
, m1

m0+1
m0−m1

�
(−p,−p)

(xp, yp) = I−p

b0

�
m1+1

m0−m1
, m1

m0+1
m0−m1

�
(p, p)

m1 = − b0
b+

(u1 − y−p) = m1(u0 − x−p) u�1 = −p

m0 = − b−
b0

(u1 − y−p) = m0(u0 − x−p) u�0 = −p

m1 (u1 − yp) = m1(u0 − xp) u�1 = p

m0 (u1 − yp) = m0(u0 − xp) u�0 = p

m1
1+m0
1+m1

u1 = m1

�
1+m0
1+m1

�
u0 u�1 − u�0 = 0

Table 4.2: Intersection points and boundary lines of the convergence regions
for p < 0.

incline {u0, u1} plane {u�0, u�1} plane

(x−p, yp) = 1
b0

�
(p−I)−m1(I+p)

m1−m0
, m1

(p−I)−m0(p+I)
m1−m0

�
(−p, p)

(xp, y−p) = 1
b0

�
m1(p−I)−(I+p)

m1−m0
, m1

m0(p−I)−(I+p)
m1−m0

�
(p,−p)

m1 (u1 − yp) = m1(u0 − x−p) u�1 = p

m0 (u1 − yp) = m0(u0 − x−p) u�0 = −p

m1 (u1 − y−p) = m1(u0 − xp) u�1 = −p

m0 (u1 − y−p) = m0(u0 − xp) u�0 = p

m1
1−m0
1−m1

(u1 − yp) = m1

�
1−m0
1−m1

�
(u0 − x−p) u�1 + u�0 = 0

Table 4.3: Intersection points and boundary lines of the convergence regions
for p > 0.

From this study, we can now print the boundary lines of the convergence
regions in {u0, u1} plane. Depending on p-sign, we have different regions as
can be seen in Tables 4.2 and 4.3.

The convergence map obtained establishes the main points in order to
design templates τ = (I, b0, b+, b−, p, s) making a set of inputs converge to
some desired outputs.

Let us suppose to have an amount of points which we want to classify.
We have seen that the convergence regions are determined basically on four
parameters: two slopes, and two intersection points (m0, m1, P0, P1). We

4.3. TEMPLATE DESIGN 67

Figure 4.3: Regions of convergence for p > 0 and p < 0 in the u-plane.

can choose them adequately in order to make the system converge where we
want. Choosing two slopes of the four parallel lines,

m0 = −b−

b0
, m1 = − b0

b+
,

we can determine parameters b− and b+ depending on b0. Choosing two
intersection points, we complete the convergence map design. In each par-
ticular example, we will decide the parameter p sign depending on the input
sets geometry.

For instance, let us suppose a set of points located inside four different
circles Ci in the plane R2 with centers Pi an radius ri. Each of these sets con-
tains elements which has to be classified into four different elements. These
different elements can be mapped to the four final possible outputs S. The
convergence map lines should be designed in order to separate each different
circle.

C1(P1, r1) = {(u0, u1) ∈ R2|(u0 − 6)2 + (u1 − 4)2 ≤ 1}
C2(P2, r2) = {(u0, u1) ∈ R2|(u0 − 8)2 + (u1 + 2)2 ≤ 1}
C3(P3, r3) = {(u0, u1) ∈ R2|(u0 + 7)2 + (u1 − 3)2 ≤ 1}
C4(P4, r4) = {(u0, u1) ∈ R2|(u0 + 5)2 + (u1 + 5)2 ≤ 1}

Let us note that there are different solutions to solve this problem, and
they strongly depend on the position of circles Ci.

To begin, let us choose parameter p sign as negative (choice 0). This
choice will determine the geometry of the convergence map, and the line
equations. Next, an incline of the line between circles C1 and C2 (choice 1).

m0 = −1

4
(4.3)

68 CHAPTER 4. ON CNN APPLICATIONS

Now, we take the incline of the line between circles C1 and C3 (choice 2).

m1 =
4

3
. (4.4)

At this point, we can find the line connecting intersection points.

u1 = m1

�
m0 + 1

m1 + 1

�
u0 =

3

7
u0.

Last choices are now the two intersection points P0 = (xp, yp) and P1 =
(x−p, y−p) connecting the five different convergence map lines.

P0 = (xp, yp) =
I − p

b0

�
28

19
,
12

19

�
P1 = (x−p, y−p) =

I + p

b0

�
28

19
,
12

19

�

which clearly depend on parameters I, p and b0.
For instance, taking the scalar factor (choice 3),

I + p

b0
= −19

12
(4.5)

and the other one (choice 4),

I − p

b0
=

19

12
(4.6)

intersection points are determined, and so the line equations defining a con-
vergence map for this particular example (Table 4.4).

intersection points
P1 = (x−p, y−p) = (7/3, 1) P0 = (xp, yp) = (−7/3,−1)

line equations
3(u1 − 1) = 4(u0 − 7/3) 4(u1 − 1) = −(u0 − 7/3)
3(u1 + 1) = 4(u0 + 7/3) 4(u1 + 1) = −(u0 + 7/3)

u1 = 3/7u0

Table 4.4: Intersection points and lines defining a convergence map.

Once the convergence map is found, we are able to find the six template
parameters named τ = (I, b0, b+, b−, p, s). As m0 = − b−

b0
(4.3) and m1 = − b0

b+

(4.4), parameters b− = 1
4b0 and b+ = −3

4b0 are determined by the scalar
b0. Solving the system equations (4.5) and (4.6), parameter I = 0 and
p = −19/12b0. A general template solving this problem will then be:

τ = (0, b0,−
3

4
b0,

1

4
b0,−

19

12
b0, s)

4.3. TEMPLATE DESIGN 69

Figure 4.4: In the first image we can see the four different circles. In the
second one, we have printed the convergence map classifying them into four
different final outputs.

For parameter p < 0, we need b0 to be positive. For example: b0 = 4. This
choice gives us τ -template,

τ = (0, 4,−3, 1,−19/3, s)

Let us note that parameter s plays no role in the template design problem.
It can be fixed to any value bigger than one in order to assure the system
convergence to the final outputs S. We can take for instance s = 2 and so

τ = (0, 4,−3, 1,−19/3, 2) (4.7)

This example is a linearly separable one. Nevertheless, a two neuron CNN
can solve problems slightly more difficult than theses ones, like those shown
in Figure 4.5.

Figure 4.5: Convergence map examples for non linearly separable problems.

From the results obtained, we may think on a new problem: the composi-
tion of different templates. If one template is not enough to solve a concrete

70 CHAPTER 4. ON CNN APPLICATIONS

problem, we can sequentially apply different templates. Using the conver-
gence map to design a new template ,outputs of the first one are inputs for
the second one.

When we compose two templates, the first one shall drive the system to
one of the four points in S. Studying the position of these points in the new
convergence map obtained from a second template, we can make the system
converge to a desired final output. Moreover, this effect can be used to design
a template that changes the output assignment of the first one.

Let us suppose that for certain template τ0 = (I, b0, b+, b−, p, s), we have
obtained as output values (y0, y1) ∈ S. We are going to use these values as
new external inputs (u0, u1) ∈ S of a second template τ1. To design this
second template, we apply the B-transformation to the external inputs in
order to obtain the correspondent u�-value. This let us use the convergence
map in the u�-plane, and decide which are the new parameters to make
possible some desired input-output relation. For instance, to map points of
circles C1 and C3 to (−1, 1), and points of circles C2 and C4 to the same
outputs as the first template, we can compose τ0 = τ (4.7) with another one
τ1, to map point (1, 1) to (−1, 1) as can be seen in Figure 4.6.

τ0 τ1

R2 → S → S
�uτ0 → �yτ0 = �uτ1 → �yτ1

C1 → (+1, +1) → (−1, +1)
C2 → (+1,−1) → (+1,−1)
C3 → (−1, +1) → (−1, +1)
C1 → (−1,−1) → (−1,−1)

In general, to find a new template changing the initial input-output asso-
ciation, we study where does outputs (y0, y1) ∈ S of the first one goes under
the B-transformation. Let us take the external inputs (u0, u1) of a second
template inside the output subset S, and let us apply the B-transformation
composed with a translation (4.2), to each one of these four points.

• If (u0, u1) = (+1, +1), T (+1, +1) = (b0 + b+ + I, b0 + b− + I)

• If (u0, u1) = (+1,−1), T (+1,−1) = (b0 − b+ + I,−b0 + b− + I)

• If (u0, u1) = (−1, +1), T (−1, +1) = (−b0 + b+ + I, b0 − b− + I)

• If (u0, u1) = (−1,−1), T (−1,−1) = (−b0 − b+ + I,−b0 − b− + I)

4.3. TEMPLATE DESIGN 71

Figure 4.6: Template composition using a convergence map. First figure
shows the map obtained from the first template τ0, and the second one shows
a new map obtained from a second template τ1. Outputs of the first one are
printed as inputs in the second convergence map.

Now we are able to define a new convergence map for these four points
in order to make the system converge where we want using this second tem-
plate. For example, to make T (+1, +1) = (u�0, u

�
1) converge to one of the

convergence regions, we impose the correspondent parameters to fulfill the
necessary conditions to place it inside a convergence region.

To make T (+1, +1) be inside convergence region L(+1, +1) in the {u�0, u�1}-
plane,

{b0 + b+ + I ≥ −p, b0 + b− + I ≥ −p, 2b0 + 2I + b− + b+ ≥ 0}

To be inside convergence region L(−1,−1),

{b0 + b+ + I ≤ p, b0 + b− + I ≤ p, 2b0 + 2I + b− + b+ ≤ 0}

To be inside convergence region L(−1, +1),

{b0 + b+ + I ≤ −p, b0 + b− + I ≥ p, b+ − b− ≤ 0}

At last, to be inside convergence region L(+1,−1),

{b0 + b+ + I ≥ p, b0 + b− + I ≤ −p, b+ − b− ≥ 0}

Table 4.5 summarize the different conditions for T (−1,−1), T (1,−1) and
T (−1, 1). Finally from all this study, we have obtained the necessary infor-
mation to find a recipe to design CNN templates. From the geometry of the
convergence map, we have seen that only four parameters are necessary: b+,
b−, p and , I. This significant result, clearly simplifies the learning problem,
and let us design different templates performing some desired input-output

72 CHAPTER 4. ON CNN APPLICATIONS

T (−1,−1) T (1,−1) T (−1, 1
L(+1, +1) I − b0 − b+ ≥ −p b0 − b+ + I ≥ −p −b0 + b+ + I ≥ −p

convergence I − b0 − b− ≥ −p −b0 + b− + I ≥ −p b0 − b− + I ≥ −p

region 2I − 2b0 ≥ b− + b+ 2I + b− − b+ ≥ 0 2I − b− + b+ ≥ 0

L(−1,−1) I − b0 − b+ ≤ p b0 − b+ + I ≤ p −b0 + b+ + I ≤ p

convergence I − b0 − b− ≤ p −b0 + b− + I ≤ p b0 − b− + I ≤ p

region 2I − 2b0 ≤ b+ − b− ≤ 0 2I + b− − b+ ≤ 0 2I + b− − b+ ≤ 0

L(−1, 1) I − b0 − b+ ≤ −p b0 − b+ + I ≤ −p −b0 + b+ + I ≤ −p

convergence I − b0 − b− ≥ p −b0 + b− + I ≥ p b0 − b− + I ≥ p

region −b+ + b− ≤ 0 2b0 − b+ − b− ≤ 0 −2b0 + b+ +−b− ≤ 0

L(1,−1) I − b0 − b+ ≥ p b0 − b+ + I ≥ p −b0 + b+ + I ≥ p

convergence I − b0 − b− ≤ −p −b0 + b− + I ≤ −p b0 − b− + I ≤ −p

region −b+ + b− ≥ 0 2b0 − b+ − b− ≥ 0 −2b0 + b+ + b− ≥ 0

Table 4.5: Parameter conditions for inputs T (−1,−1), T (1,−1) and T (−1, 1)
to be inside each convergence region in order to construct a second template
in the template composition problem.

relation depending on the scalar factor b0. Choosing two slopes m0 (choice
1) and m1 (choice 2), and two intersection points P0 = (xp, yp) (choice 3) and
P1 = (x−p, y−p) (choice 4) in the p negative case, there is enough information
to construct a converge map.

Nevertheless, to design a template, parameters s and b0 are needed. We
have seen that these parameters are not relevant, b0 is only a scalar factor,
and s bigger than one plays an indirect role on the network output.

A general recipe in order to find the CNN parameters requires first to print
in the plane the convergence problem in order to visualize the possible solu-
tions. Once p sign is fixed, we find the CNN parameters τ = (I, b0, b+, b−, p, s)
following instructions:

1. choose incline m0,

2. choose incline m1,

3. choose intersection point P0,

4. choose intersection point P1.

From these choices, we obtain parameters I, b+, b− and p depending
on the scalar factor b0.

5. At last, we choose b0 and s.

4.4. CLASSIFICATION PROBLEMS 73

Let us note that using the convergence map (Figure 4.3) we can solve more
than linearly separable problems. We may speak of piecewise linear separable
problems. On the other hand, the particular shape of the convergence map
seems to limit the kind of problems which can be solved using a two neuron
CNN. In order to determine whether this limitation is apparent or real, one
can use the convergence map and the template composition to find which
input-output relations can be achieved.

4.4 Classification problems

Using one more time the results obtained from the Cellular Neural Net-
works stability study, we have seen that working in a symmetric parameter
range, CNN system is completely stable, in the sense that it converges to
a fixed-point. Moreover, if the central element s > 1, fixed-point lays in a
region where output values at the end of the process yi(∞) are {+1,−1}.
Hence, one may think on using the external inputs ui to work in this param-
eter range in order to study the existence of a functional relation between
the external inputs u�

i
s and the final outputs y�

i
s.

yi = F (ui)

For every input ui, we can run the CNN system in order to find the
correspondent output yi. Because the set of final states is discrete, this
correspondence can be thought as a classification problem where each one
of the different classes is defined by the different final states which, will
depend on the parameters of the CNN system. This will be the objective of
this section: study which input-output functional relations can be performed
using a CNN, and scrutinize the way to find the parameters solving such a
problems.

Given a set of input points {(u0, u1)i, i = 1, . . . n}, we run the CNN system
using the adequate CNN parameters. Depending on the position of the fixed-
points where the system converges, we obtain the output values in S =
{(+1, +1), (−1, +1), (+1,−1), (−1,−1)}. Therefore, inputs can be classified
into different subsets which are defined by four different final outputs.

In order to tackle the classification problems that can be solved using
a CNN, we use the Lyapunov function (2.6). L(t) let us find convergence
regions, and learn the adequate CNN parameters in order to make some
desired input-output functional relation.

To begin, we restrict the input choice (u0, u1) to values ±1, without loss
of generality. Using the B-transformation (2.3), we shall find their images
B(±1,±1), and the necessary parameter conditions to place them into a

74 CHAPTER 4. ON CNN APPLICATIONS

pre-established convergence region in the {u�0, u�1}-plane (Figure 4.2). This
may be done by studying if each one of the image points B(i, j), i, j = ±1,
are equal to one of the four possible outputs S located in each of the four
different convergence regions. If the output points are located on a boundary
line dividing different convergence regions, we shall translate the image points
(i, j) + (ε, ε), i, j = −1, 1, ε �= 0, and proceed as we have explained before.

To simplify the notation, let us rename S-points with the correspondence
shown in Table 4.6. Convergence regions L(i, j) will then be R(i), for i =
1, 2, 3, 4.

1 ≡ (+1, +1) 2 ≡ (+1,−1) 3 ≡ (−1,−1) 4 ≡ (−1, +1)

Table 4.6: S-points correspondence.

Nevertheless, both notations will be used along the paper in order to clar-
ify some explanations. Taking the different input points ui ∈ S = {1, 2, 3, 4}
and using the B-transformation, we impose ui to converge to an output point
yi ∈ S = {±1,±1} located in each one of the convergence regions R(i),
B(ui) = yi. From the system equations obtained, we find the CNN parame-
ters defining the cloning template Ti which perform the desired input-output
association.

For example, let us study input 1 ≡ (1, 1) convergence for a positive pa-
rameter p. If we take (1, 1) converging to itself, B(1) = (1, 1), this condition
implies that for p > 0, B-parameters fulfill:

�
b0 + b+ + I = 1,
b− + b0 + I = 1.

(4.8)

Next we consider the different outputs where input 3 ≡ (−1,−1) can con-
verge. If B(3) = (1, 1) we have

�
−b0 − b+ + I = 1,
−b− − b0 + I = 1.

(4.9)

Solving the system equations (4.8) and (4.9), we find parameters

I = 1, b+ = b− = −b0.

This relation is compatible with a 2-neuron CNN. Now we study the four
possible outputs for inputs 2 ≡ (1,−1) and 4 ≡ (−1, 1) where B(2) =
(1− 2b0, 1 + 2b0) and B(4) = (1 + 2b0, 1− 2b0), summarized in Table 4.7.

Let us note that parameter conditions are incompatible for certain values
of b0. Using those shown in Table 4.7, we obtain that input point 2 can

4.4. CLASSIFICATION PROBLEMS 75

2 4 parameter conditions
R(1) R(1) p > max{−1− 2b0,−1 + 2b0}
R(2) R(4) p < −1 + 2b0

R(3) R(3) ×
R(4) R(2) p < −1− 2b0

Table 4.7: Convergence study for points (−1, 1) and (1,−1).

converge to outputs (1, 1), (1,−1) and (−1, 1) depending on parameters p,
b0.

If −1 − 2b0 < −1 + 2b0, then max{−1 − 2b0,−1 + 2b0} = −1 + 2b0.
This implies that b0 > 0. If b0 > 1/2, then −1 + 2b0 > 0 and so, for
p > −1 + 2b0 > 0 input 2 converges to (1, 1),

B(2) = (1, 1) ∈ R(1) ⇔ p > −1 + 2b0, b0 > 1/2,

and for 0 < p < −1 + 2b0, input 2 converges to (1,−1),

B(2) = (1,−1) ∈ R(2) ⇔ p < −1 + 2b0, b0 > 1/2.

Figure 4.7: Convergence study for input 2 depending on parameter p > 0.

Otherwise if 0 < b0 < 1/2 and p > 0, input point 2 can only converge to
(1, 1) because −1 + 2b0 < 0 (Figure 4.7). In a similar way but for a negative
parameter b0, input 2 can converge either to (1, 1) or to (−1, 1).

However, some input-output associations can not be performed. For in-
stance if B(3) = (−1, 1), we have

�
−b0 − b+ + I = −1,
−b− − b0 + I = 1.

(4.10)

Solving the system equations (4.8) and (4.10), parameter I must be equal
to 0 and 1. Therefore, such an association can not be achieved by one

76 CHAPTER 4. ON CNN APPLICATIONS

single 2-neuron CNN. In a similar way, input 3 can not converge to (1,−1)
because there is no solution for the system equations obtained from (4.8) and
B(3) = (1,−1).

Finally, input 3 converges to itself for parameters, I = 0 and b+ = b− =
1 − b0. The other B-images are B(2) = (−1 + 2b0, 1 − 2b0) = −B(4) and
lay on a boundary line of the convergence map. In this case, we apply a
translation to the image points (±1,±1) → (±1,±1) + (ε, ε) in order to
solve B(i) = (±1 + ε,±1 + ε), ε ∈ R− {0}, i = 1, 2, 3, 4.

From equations B(1) = (1, 1) + (ε, ε) and B(3) = (−1,−1) + (ε, ε), we
find parameters

I = ε, b+ = b− = 1− b0.

The rest of the B-images are then B(2) = (−1 + 2b0 + ε, 1 − 2b0 + ε) and
B(4) = (1 − 2b0 + ε,−1 + 2b0 + ε). Using the convergence map, input 2
converges to (1, 1) if and only if conditions defining this convergence region
(4.11) are fulfilled.






−1 + 2b0 + ε > −p

1− 2b0 + ε > −p

1− 2b0 + ε ≥ 1− 2b0 − ε ⇒ ε ≥ 0
(4.11)

Parameter conditions are then p > max{−1 + 2b0 − ε, 1 − 2b0 − ε}, ε ≥ 0.
Doing a similar study for the other convergence regions we obtain the rest.

Table 4.8 summarize all possible input-output relations obtained for the
case where the first input point 1 converges to itself and p > 0. We use the
two row notation in order to describe it. For example,

�
1 2 3 4
1 1 1 1

�

represents the convergence of each input point {1, 2, 3, 4} to output 1 ≡ (1, 1).
To design a template τ1 performing this input-output relation, parameters
must fulfill I = 1, b+ = b− = −b0, p > max{−1 ± 2b0} and s > 1.
Choosing b0 = 2, p = 4 > 3 and s = 3 we find τ1 = (I, b0, b+, b−, p, s) =
(1, 2,−2,−2, 4, 3).

In Appendix B we describe the rest of the input-output relations for p > 0
and p < 0 with their correspondent parameter conditions.

Let us note that parameter conditions in order to reproduce a desired
input-output relation, are determined by p and b0. The rest, b+ and b−,
depend in each particular case, on b0. From the different system equations,
parameter I gives us the key point in order to discuss the existence of a
solution. Therefore, only 3 parameters (b0, p, s) are relevant to design a
CNN template.

4.4. CLASSIFICATION PROBLEMS 77

input-output parameter conditions�
1 2 3 4
1 1 1 1

�
p > max{−1− 2b0,−1 + 2b0}

�
1 2 3 4
1 2 1 4

�
0 < p < −1 + 2b0

�
1 2 3 4
1 4 1 2

�
0 < p < −1− 2b0

�
1 2 3 4
1 4 3 2

�
0 < p < min{−1 + 2b0 ± ε}

�
1 2 3 4
1 2 3 4

�
0 < p < min{1− 2b0 ± ε}

�
1 2 3 4
1 1 3 1

�
p > max{±(−1 + 2b0)− ε}, ε > 0

�
1 2 3 4
1 3 3 3

�
p > max{±(−1 + 2b0)− ε}, ε < 0

Table 4.8: Possible outputs for the case where B(1) = (1, 1).

We have found 25 possible convergence options with their correspondent

template parameter conditions. Rewriting Ti = (abcd) =

�
1 2 3 4
a b c d

�
we

summarize the different input-output relations obtained in Table 4.9.

T1 (1111) T2 (2222) T3 (1131) T4 (3313) T5 (2242)
T6 (1333) T7 (3111) T8 (2244) T9 (4422) T10 (2442)
T11 (4224) T12 (3232) T13 (3434) T14 (1214) T15 (1412)
T16 (3432) T17 (3234) T18 (4121) T19 (1232) T20 (1432)
T21 (3412) T22 (3214) T23 (4123) T24 (2341) T25 (1234)

Table 4.9: 25 elements converging to one, two, three and four output values.

They can be classified into four sets, depending on the convergence to
one , two, three or four different outputs. Let us name

S1 = {(aaaa), a = 1, . . . , 4},

the set where any input converges to one single output,

S2 = {(aaba), (baaa), (aabb), (abba), (abab), a, b = 1, . . . , 4},

the set where inputs converge to two different outputs,

S3 = {(abac), (abcb), a, b, c = 1, . . . 4},

78 CHAPTER 4. ON CNN APPLICATIONS

the set where inputs converge to three different outputs and S4 a set belonging
to the permutation group P4 of four elements.

Observing Table 4.9 we may remark that there are missing relations such
as (2222) or (1121), so we will compose the 25 elements found above in order
to obtain all the possible input-output relations between points in S using a
two neuron CNN.

The elements composition will be written as a product using the two row
notation. For example, taking an arbitrary element Ti and T7,

Ti ◦ T7 =

�
1 2 3 4
a b c d

� �
1 2 3 4
3 1 1 1

�
=

�
1 2 3 4
c a a a

�
.

Beginning with input 1 of Tj, 1 moves to 3, then 3 moves to c in Ti. So the
final element moves 1 to c.

Composing for instance T1 = (1111) with any other input-output relation
where input 1 converges to 2, we obtain (2222). For example, composing T1

and T5,

T5 ◦ T1 =

�
1 2 3 4
2 2 4 2

� �
1 2 3 4
1 1 1 1

�
=

�
1 2 3 4
2 2 2 2

�
.

Using T1 every input choice converges to output 1. Taking output 1 as a
new input we apply T5 where 1 converges to output 2. In the same way,
T9 ◦ T1 = (4444). So we found all possible elements of S1-set.

S1 = {(1111), (2222), (3333), (4444)}

Now we are going to find all the possible input-output relations belonging
to S2. To do it, we start with subset S

(1)
2 = {(aaba), a, b = 1, . . . 4} ⊂ S2.

Only three elements T3 = (1131), T4 = (3313) and T5 = (2242) has been
found in the B-transformation study. Composing them with the rest of S2-
elements, we obtain for example T11 ◦ T3 = (4424).

T11 ◦ T3 =

�
1 2 3 4
4 2 2 4

� �
1 2 3 4
1 1 3 1

�
=

�
1 2 3 4
4 4 2 4

�
.

Yet, elements like (1121) can not be found composing T3 with the rest of the
Si-elements because for every Ti, when input 1 → 1, then input 3 converges
either to 1 or 3, and when 3 → 2, input 1 converges to 2 or 4. Using T4 and
T5 we can neither find different elements of this kind. There are only four
elements in this case.

S
(1)
2 = {(1131), (3313), (2242), (4424)}.

4.4. CLASSIFICATION PROBLEMS 79

Next, subset S
(2)
2 = {(baaa), a, b = 1, . . . 4} ⊂ S2 has elements T6 =

(1333) and T7 = (3111). Composing T10 and T11 with T3 we obtain the rest

of S
(2)
2 elements.

T10 ◦ T6 = (2442)(1333) = (2444)

T11 ◦ T3 = (4224)(1333) = (4222)

Again, no other combinations of this kind can be found. For example
(3222) do not belong to S

(2)
2 because we would need an element in which 1

moves to 3 and 2 moves to 2 and we have not found any convergence element
fulfilling this property.

S
(2)
2 = {(1333), (3111), (2444), (4222)}.

Subset S
(3)
2 = {(aabb), a, b = 1 . . . 4} has elements T8 = (2244) and T9 =

(4422). Composing T23 and T24 with T8 we obtain the rest of S
(3)
2 elements.

T23 ◦ T8 = (4123)(2244) = (1133)

T24 ◦ T8 = (2341)(2244) = (3311)

Since there is no element where 2 converges to 3 and 4 converges to
2, combinations like (3322) can not be found. From this, S3

2 -set is S
(3)
2 =

{(2244), (4422), (1133), (3311)}.
Subset S

(4)
2 = {(abba), a, b = 1, . . . 4} has elements T10 = (2442) and

T11 = (4224). Composing 25 and 26 with T10 we obtain the rest of S
(4)
2 .

T23 ◦ T10 = (4123)(2442) = (1331)

T24 ◦ T10 = (2341)(2442) = (3113)

This subset is then, S
(4)
2 = {(2442), (4224), (1331), (3113)}.

At last but not least, subset S
(5)
2 = {(abab), a, b = 1 . . . 4} has elements

T12 = (3232) and T13 = (3434). From the composition study we have found
ten more elements of this kind.

T3 ◦ T12 = (1131)(3232) = (3131) T4 ◦ T12 = (3313)(3232) = (1313)
T5 ◦ T12 = (2242)(3232) = (4242) (4424) ◦ T12 = (4424)(3232) = (2424)
T14 ◦ T12 = (1214)(3232) = (1212) (4121) ◦ T12 = (4121)(3232) = (2121)
T15 ◦ T12 = (1412)(3232) = (1414) (2143) ◦ T12 = (2143)(3232) = (4141)
T24 ◦ T12 = (2341)(3232) = (4343) (4321) ◦ T12 = (4321)(3232) = (2323)

So,

S
(5)
2 = {(3232), (2323), (3131), (1313), (4242), (2424), (1212), (2121), (1414),

(4141), (3434), (4343)}.

80 CHAPTER 4. ON CNN APPLICATIONS

Let us note that in this case we have used some new elements found before
and some new elements which will be found in the S4 and S3 sets.

Moreover, from the composition study we have found another two subsets
of S2, S

(6)
2 = {(abaa), a, b = 1 . . . 4} = {(1311), (3133), (2422), (4244)} and

S
(7)
2 = {(aaab), a, b = 1 . . . 4} = {(1113), (3331), (2224), (4442)}.

(1131)(2341) = (1311) (1131)(4123) = (1113)
(3313)(1311) = (3133) (3313)(4123) = (3331)
(2242)(3133) = (4244) (2242)(3331) = (4442)
(2242)(2341) = (2422) (2242)(4123) = (2224)

Let us study now the case where elements convergence to three differ-
ent outputs. In S3 there are two subsets of the form S

(1)
3 = {(abac), a, b, c =

1, . . . 4} = {(1214), (1412), (3234), (3432)} and S
(1)
3 = {(abcb), a, b, c = 1, . . . 4} =

{(1232), (4121)}. Again the composition study let us find every convergence

element belonging to S
(1)
3 and S

(2)
3 .

(4123)(1214) = (4143) (4321)(1214) = (4341)
(2143)(1214) = (2123) (2341)(1214) = (2321)
(1214)(2341) = (2141) (3412)(4121) = (2343)
(4321)(4121) = (1434) (3214)(4121) = (4323)
(4123)(4121) = (3414) (2143)(4121) = (3212)
(4321)(4121) = (1434) (3214)(4121) = (4323)

In the remaining of the section we shall focus on the only but bijective
input-output relations summarized in Table 4.10. Let us rename them p1 to
p8. They are obtained by the action of a single template except p3 and p8

which come from the composition of two templates p3 = p7 ◦ p2, p8 = p7 ◦ p5.

p1 (1234) p2 (1432) p3 (2143) p4 (2341)
p5 (3214) p6 (3412) p7 (4123) p8 (4321)

Table 4.10: Cases where the CNN converges to four different outputs.

In this particular case, pi can be written as permutations of four differ-
ent objects: the input points in S. Remark that we have found only eight
bijective relations, while using four elements S, we might expect the set of
all possible permutations, the symmetric group S4 of 4! = 24 elements. To
shed light in the number of different templates which perform a functional
relation between all the four elements, we compose the eight ones described
in Table 4.10.

4.4. CLASSIFICATION PROBLEMS 81

For example, the composition of p2 and p3 is:

p3 ◦ p2 = (2143)(1432) = (2341) = p4

p2 ◦ p3 = (1432)(2143) = (4123) = p7

The result of all the composition templates represented by product permu-
tations is shown in Table 4.11.

p1 p2 p3 p4 p5 p6 p7 p8

p1 p1 p2 p3 p4 p5 p6 p7 p8

p2 p2 p1 p7 p8 p6 p5 p3 p4

p3 p3 p4 p1 p2 p7 p8 p5 p6

p4 p4 p3 p5 p6 p8 p7 p1 p2

p5 p5 p6 p4 p3 p1 p2 p8 p7

p6 p6 p5 p8 p7 p2 p1 p4 p3

p7 p7 p8 p2 p1 p3 p4 p6 p5

p8 p8 p7 p6 p5 p4 p3 p2 p1

Table 4.11: Template composition for all the permutations pi founded in a
two neuron CNN.

We have found a special subset of group S4 that fulfill the group proper-
ties, this is a subgroup. With these results we set a Convergence Lemma.

Lemma 1. Let us consider a two neuron CNN defined by equations (2.1)
where parameters fulfill s > 1 and p+ = p− = p. Let us name S = {(±1,±1)}
the four possible output values set where the CNN can converge. There
exist only eight different cases where the CNN system converges to the four
different outputs S summarized in Table 4.10.

At this point, all possible input-output relations which can be performed
using a two neuron CNN has been found. The results obtained let us scruti-
nize every two neuron CNN design problem. In Appendix B, we summarize
all different elements obtained with their correspondent parameter range.

The particular geometry of the convergence map, limits the different con-
vergence sets yet also gives us the key points in order to design templates,
and drive us into the template composition problem. The B-transformation
relating the external inputs ui and u�

i
’s has been crucial in this study.

Also we have reduced the number of parameters needed to perform an
input-output relation. Initially, the two neuron CNN system depends on 6
parameters defining a cloning template (I, b0, b+, b−, p, s). One of the conse-
quences of our study is that choosing only 3 of them (b0, p, s) we are able to

82 CHAPTER 4. ON CNN APPLICATIONS

design a template performing a specific input-output association. This result
allows us to simplify the template design problem giving an easy way to find
a template. From this analysis, we have established which combinations are
possible and which are not.

To design a template, we propose the following procedure. Given a par-
ticular classification problem between four elements T , it can be written as
T = {(abcd), a, b, c, d ∈ Z/(4)}. Using this notation, it’s easy to know if a
concrete problem can or can not be solved looking for φ in Table B.11 where
all elements are described. If it belongs to those which can be solved, we find
the CNN parameters τ = (I, b0, b+, b−, p, s) following the recipe:

1. If T belongs to the elements obtained by single templates,

• choose p sign,

• parameter I is already determined,

• choose parameter b0 (parameters b+ and b− are then determined),

• choose parameter p,

• choose parameter s > 1.

2. If T belongs to those obtained composing two single templates,

• choose an element composition Ti ◦ Tj(Table B.13),

• find template parameters describing the single templates τi and
τj, as we have done before.

Moreover, these results answer the question about the number of neces-
sary templates needed to solve a desired problem T . From the composition
study made between Ti ◦ Tj, i, j = 1, . . . 25 (Table B.13), we have seen that
one or two templates are enough in order to solve T . It is due to the fact
that S1, S2, S3 or S4 have a self-contained structure, and so any combination
between Si elements belongs to < S1, S2, S3, S4 >.

The convergence sets obtained has been classified into those converging
to one, two, three or four different outputs. Not every possible combination
between four elements can be achieved. Only those compatible with the
convergence map. Let us note that any input-output relation of Si, i =
1, 2, 3, 4, can be obtained from the composition between different elements.
Nevertheless, a priori any combination in order to obtain such an element is
valid.

4.5. REALIZING BOOLEAN FUNCTIONS 83

4.5 Realizing Boolean functions

Working with values ±1, one may think on using the results obtained
in the previous section to implement Boolean functions. Taking as function
domain a special subset of the external inputs space S = {(u0, u1) ∈ R2|ui =
±1}, we can define Boolean functions,

Fi : S ⊂ R2 → R

which assign to each input (u0, u1) a particular component of the final output
like for example F0(u0, u1) = y0(∞) or F1(u0, u1) = y1(∞).

At this point, one may ask if a two neuron CNN can realize any of the
24 Boolean functions of this kind or only a limited number of them. More-
over, we study if any Boolean function is realized using a single template
or composing different templates. For example, using the Boolean func-
tion F0(u0, u1) = y0(∞) and the correspondence (−1, 1) to (0, 1), element
T1 = (1111) reproduce the Boolean function 1111, and element T16 = (3432)
reproduce 0001 as can be seen in Table 4.12.

(u0, u1) T16 (y0, y1) y0(∞) Boolean function
(+1, +1) 3 (−1,−1) −1 0
(+1,−1) 4 (−1, +1) −1 0
(−1,−1) 3 (−1,−1) −1 0
(−1, +1) 2 (+1,−1) +1 1

Table 4.12: Truth table corresponding to element T16 = (3432) for Boolean
function F0.

In a similar way we find which element allows us to reproduce each of the
16 Boolean functions as can be seen in Table 4.13.

From the results obtained, any Boolean function can be realized using one
single template Ti but the XOR one, where element composition is needed.
We may think this result as a universal property of the two neuron CNN
nevertheless, defining the vectorial Boolean function

F : D ⊂ R2 → S ⊂ R2

The 64 elements obtained in the input-output relation study, limit the differ-
ent Boolean functions which can be performed by a two neuron CNN. Hence,
the universal property is missing in this particular case.

84 CHAPTER 4. ON CNN APPLICATIONS

element Ti Boolean function element Ti Boolean function
T1 = (1111) 1111 T2 = (3333) 0000
T14 = (1214) 1110 T16 = (3432) 0001
T3 = (1131) 1101 T4 = (3313) 0010
T8 = (2244) 1100 T9 = (4422) 0011
T15 = (1412) 1011 T17 = (3234) 0100
T44 = (1313) 1010 T12 = (3232) 0101
T20 = (1432) 1001 T11 = (4224) 0110
T6 = (1333) 1000 T7 = (3111) 0111

Table 4.13: Boolean function F0 reproduced by Ti elements using a single
template except one of them, the XOR using a template composition, T44 =
T4 ◦ T12 = (1313).

4.6 The header of a universal Turing machine

Another example where we can see the results obtained in the classifica-
tion section, is trying to implement the header action of the Minsky’s 7-state
4-color universal Turing machine illustrated in Figure 4.8. One may think
that it can be possible using a two neuron CNN because as shown in [8], a
programmable 3× 3 CNN is universal in the Turing sense because the Game
of Life algorithm can be implemented on it.

A Turing machine [64] consists of a tape that can be moved back and
forth, a head that possesses a state and can change the property known as
color of the active cell below it, and a set of instructions which let the head
modify the active cell and move the tape. A Turing machine is universal in
the sense that, by appropriate programming using a finite length of input
tape, it can act as any Turing machine whatsoever. In 1962 Marvin Minsky
discovered a 7-state 4-color universal Turing machine illustrated in Figure
4.8.

To represent the header action on the tape, we use a symmetric two
neuron CNN for s > 1, with their 4-possible output values coding the four
colors. The input color will be coded on ui’s while the output color will be
obtained from the final state yi’s of the neurons (Figure 4.9).

In this way, each state of the machine corresponds to a template or to
a combination of templates relating the four possible input symbols to their
correspondent output symbols. To design these templates, we shall use the
convergence map relating the CNN parameters with the final outputs, the
template composition study, and the results summarized in Tables 4.2 and
4.3.

4.6. THE HEADER OF A UNIVERSAL TURING MACHINE 85

Figure 4.8: Generalization of Minsky’s 7-state 4-color universal Turing ma-
chine made by Macura [64].

Figure 4.9: One possible correspondence between Turing machine colors and
2-neuron CNN four states.

Let us note that there are 4! different options for this choice. The conse-
quence of this selection could be the number of templates needed in order to
achieve some desired input-output association, or the difficulties on the tem-
plate design. A priori any selection can be done, so we choose for example
the association between the colors and the four points shown in Figure 4.9.

From this, the seven states defining the universal Turing machine can be
written as elements like {(abcd), a, b, c, d = 1 . . . 4} (Table 4.14).

state s1 (2141)
state s2 (2243)
state s3 (1143)
state s4 (1443)
state s5 (1243)
state s6 (1133)
state s7 (2132)

Table 4.14: Universal Turing machine written as elements (abcd).

Moreover, state s6 = (1133) belongs to S2 and has been obtained from
the composition of T8 = (2244) and T23 = (4123). So for example, if we
want to design a template reproducing s6, we look for parameter conditions

86 CHAPTER 4. ON CNN APPLICATIONS

corresponding to T8 and T23 (Table B.12). Element T8 has been found in
Case 6 of Appendix B, for parameters fulfilling p < 0, I = 0, b+ = 1 − b0,
b− = −1−b0, b0 > 2 and p < min{±(1−2b0), 1+2b0}. Choosing for example
b0 = 3, p = −6 and s = 2 we find τ8 template

τ8 = (I, b0, b+, b−, p, s) = (0, 3,−2,−4,−6, 2)

Element T23 has been found in Case 4 of Appendix B, for parameters p > 0,
I = 0, b+ = −1− b0, b− = 1− b0, and p > max{−1− 2b0,−1 + 2b0}. So for
example we can take b0 = 1, p = 2 and s = 2 obtaining τ23 template.

τ23 = (I, b0, b+, b−, p, s) = (0, 1,−2, 0, 2, 2)

From these parameter values, we can show now an example showing how to
define the convergence map. For template τ8, parameter p is negative. Using
Table 4.2, we find the lines equations and the intersection points which let us
print the correspondent convergence map. Inclines of the boundary lines are
m0 = −b−/b0 = 4/3, m1 = −b0/b+ = 3/2 and m1

1+m0
1+m1

= 7/5. Intersection
points are (xp, yp) = (−30,−42), (x−p, y−p) = (30, 42). Boundary lines of
convergence regions are then,

u1 − 42 = 4/3(u0 − 30), u1 − 42 = 3/2(u0 − 30),
u1 + 42 = 4/3(u0 + 30), u1 + 42 = 4/3(u0 + 30).

For template τ23, parameter p is positive. From Table 4.3 we find the lines
equations and the intersection points. Inclines of the boundary lines are
m0 = −b−/b0 = 0, m1 = −b0/b+ = 1/2 and m1

1−m0
1−m1

= 1. Intersection points
are (x−p, yp) = (2, 2), (xp, y−p) = (−2,−2). Boundary lines of convergence
regions are then,

u1 + 2 = 0, u1 − 2 = 0,
u1 + 2 = 1/2(u0 + 2), u1 − 2 = 1/2(u0 − 2).

Printing the correspondent convergence maps, we see that using template
τ8, which can be written as T8 = (2244), input points 1 and 2 converge to
(1,−1) and the rest converge to (−1, 1). Using these output values as new
inputs, we apply a second template τ23. From Figure 4.10 it is clear that
(1,−1) = 2 converges to (1, 1), and (−1, 1) = 4 converges to (−1,−1). We
have found then a template composition performing s6 = (1133).

Nevertheless, it is clear that only state s1 ∈ S3 and state s6 ∈ S2 can be
reproduced by a two neuron CNN. The rest do not belong to any set Si de-
scribed in the previous section. Of course, these results seems to depend on

4.7. CONCLUSIONS 87

Figure 4.10: Convergence maps geometry for elements T8 and T23 respec-
tively.

the choice between colors and S-points. So one may think on choosing a dif-
ferent relation between S-points and the Turing machine colors to implement
the states.

To see it, the key point is state s5 because it is the unique state belonging
to permutations subgroup. We may try then different associations fulfilling
s5. We shall see in all the cases that they do not fulfill some other state si,
i �= 5, i = 1, . . . , 7, where the system converges to three different outputs.
We can conclude that a 2-neuron CNN can not be used to reproduce this
header action of the universal Turing machine.

For instance, another possible choice between colors and input points can
be for example those shown in Figure 4.11.

Figure 4.11: Another correspondence between the Turing machine colors and
S-points.

From this selection, seven states of the universal Turing machine are
shown in Table 4.15. In this case, permutation state s5 is fulfilled by a two
neuron CNN because it can be performed by p5 while for example other states
like s4 or s7 are not included in the elements set S3. Other possible cases are
summarized in Appendix B.

4.7 Conclusions

In this chapter we have done a deep analysis about the different problems
that can be solved using a two neuron CNN when it converges to a fixed-
point. From the stability results, we have basically used the existence of the

88 CHAPTER 4. ON CNN APPLICATIONS

state s1 (2412)
state s2 (3414)
state s3 (3212)
state s4 (3211)
state s5 (3214)
state s6 (3232)
state s7 (4432)

Table 4.15: Universal Turing machine written as elements (abcd) using a new
association between colors and S-points.

Lyapunov function limiting the template parameter range for p+, p− and s.
Basic probability distributions like the Bernoulli ones, can be reproduced by
a two neuron CNN based on the results obtained from the stability study.
The linear equations of the CNN system while working inside the unit square
allows us to reproduce linear functions relating the external inputs with the
final outputs.

On the other hand, the Lyapunov function has been the key point to con-
struct a convergence map. The importance of this map can be clearly seen
in the template design problem. In this particular two neuron CNN system,
the common algorithms to learn their parameters like for example gradient
descend methods exhibit little success. Nevertheless, the convergence map
has given us a way to find a simple recipe to design templates. It also allows
us to create template libraries solving those problems which perform differ-
ent input-output associations compatible with the CNN system. Moreover,
it shed light on the template composition problem. The composition of two
templates Ti ◦Tj has been done running the CNN system using the first tem-
plate Tj. This drive the system to one of the four points �y ∈ S. Using these
points as external inputs �u = �y and finding the correspondent convergence
map for the second template Tj, we can design a new template mapping each
one of these new inputs to some desired output.

One of the main uses of very many models of Artificial Neural Networks
is to solve classification problems, which immediately rises the discussion
about which kind of problems can be solved with this particular type. Using
the different final outputs where the CNN system converges, we are able
to classify different inputs (u0, u1) when they belong to S. We have seen
that a two neuron CNN can solve more than linearly separable problems but
of course there are some limits. In order to see and understand which are
these possible CNN limits, we have done a complete study of the different
classification problems that can be solved using a two neuron CNN. From

4.7. CONCLUSIONS 89

this study, we have obtained a relation between the CNN parameters and
the output values which is more than a learning process since we may design
the system parameters by fixing the problem specifications. Of course, we
do not learn exactly the parameter values but we obtain enough information
to place them into a region of the plane. Hence, we are able to design a
CNN performing an input-output relation. Also, we have found that not all
combinations are possible in a classification problem. This fact answer the
question if the CNN system can converge where we want composing different
templates formulated in the convergence map section. Clearly the answer is
no. It can only solve those problems compatible with the convergence map.

One important consequence of this study is that a 2-neuron CNN can
not perform any logical bijective function but only a subset of them. We
have seen as an example, the problem to reproduce the header action of the
universal Turing machine. Only some of the input-output functional relations
between the four colors of the Turing machine can be performed using a two
neuron CNN. We have seen that there is no dependence on the different
possible choices between the colors and the S elements. In all the cases, we
obtain similar results.

The two neuron CNN is also capable to realize any Boolean function
defined by F (u0, u1) = yi(∞), where yi(∞) is one of the two final output
values where the system converges at the end of the process. The results
obtained in the classification problems are compatible with this application,
and gives us a novel approach for designing, in an easy way, CNN templates.
Like in [20], the two neuron CNN has the universal property in the sense
that every 222

local Boolean functions of two input variables can be realized.
Nevertheless, thinking each classification problem performing an input-

output relation as a vectorial Boolean function F (u0, u1) = (y0(∞), y1(∞))
we have found that not all of them can be realized by a two neuron CNN.

This leads to the discussion about the universality of Cellular Neural
Networks. From [8] we know that a CNN is a universal Turing machine in
higher dimensions. We may then ask which should be the minimal number
of neurons needed in a CNN to be a universal Turing machine.

90 CHAPTER 4. ON CNN APPLICATIONS

Part III

Convergence to a limit cycle

91

Chapter 5

Limit Cycles: Antisymmetric

Case

Cellular neural networks are a complex dynamical system. As such they
exhibit all forms of stable dynamical behavior: they may converge to a fixed-
point or a limit cycle or evolve along a chaotic trajectory. In the autonomous
two neuron CNN case, there are no chaotic trajectories yet the possibility of
having limit cycles still remains. However, an exhaustive study relating the
CNN parameter values to the dynamical behavior does not exist, and no suf-
ficient conditions for a general case are defined nor a systematic classification
of the dynamical behavior is performed.

In this chapter we focus on the regions in parameter space related to limit
cycles for the two neuron autonomous continuous time CNN. As we have
seen in the stability analysis, there can be such a curves in a non-symmetric
parameter range. We start from a particular example with an anti-symmetric
template, where a limit cycle exists, in order to develop the main concepts for
a systematic method to determine sufficient existence conditions. Then we
generalize the results obtained to the antisymmetric case. The key elements
are a combination of the background ideas of the Poincaré-Bendixon theorem,
which cannot be applied as is, with some properties of the index theory, and
the geometry of the CNN equilibrium points positions.

We explain the main tools to find sufficient conditions for the existence of
limit cycles and apply them on a classical example from [12] before tackle the
anti-symmetric case. There are many cases to be treated in the antisymmetric
CNN so we focus our explanation only in some significant ones, and explain
the rest on Appendix D.

93

94 CHAPTER 5. LIMIT CYCLES: ANTISYMMETRIC CASE

5.1 Geometry on the CNN.

The geometric representation of the trajectories in the phase plane, is
an invaluable tool in studying dynamical systems. This reveals information
such as whether a stable point, a repulsive point, or a limit cycle is present
in the dynamic behavior for a chosen parameter values.

In general, a linear system ẋ = F (x), x ∈ Rn can be written in matrix
form as ẋ = Ax, A ∈ Rn×n. In dimension two, points x∗ where F (x∗) = 0,
named equilibrium points, and the eigenvalues and eigenvectors of matrix A,
let us print the system trajectories moving in the phase plane. For the CNN
case, it can help us to understand the relation between the parameters of the
cloning template and the final trajectory solutions. Hence, it let us find limit
cycles.

Two neuron network general equations studied on (1.1) is a piecewise
linear system which can be solved as a linear system in nine different regions
as we have seen in Chapter 2. In this chapter, we fix u�0 = u�1 = 0 in order
to simplify the study. Let us remember Ri, i ∈ {0, . . . , 8} the nine regions
of the plane limited by lines xi = ±1 for i = 0, 1 where the CNN system is
linear (Figure 2.2). We use Ai as the notation for the system CNN matrices
corresponding to each one of the nine regions Ri for i = 0, 1, . . . , 8.

Table 5.1: Equilibrium points in each of the nine regions where the system
is linear in the general case.

x∗
i

mi ki

R0 0 0
R1 − p+

s−1 s− p+p−
s−1

R2 s− p+p−
s−1 − p−

s−1

R3
p+

s−1 −s + p+p−
s−1

R4 −s + p+p−
s−1

p−
s−1

R5 +p+ − s −p− + s

R6 p+ + s p− + s

R7 −p+ + s p− − s

R8 −p+ − s −p− − s

Parameter range we are going to work is defined by s > 1 and p+p− < 0,
where it’s known that the system can converge to a limit cycle. For this
parameter range, equilibrium point x∗0 of the linear system in region R0, is
a spiral source because the CNN matrix A0 (2.13) has a complex pair of

5.2. LIMIT CYCLES 95

eigenvalues λi = s− 1 ±√p+p− with positive real part. Equilibrium points
x∗

i
, i = 1, . . . 4 are saddle points because eigenvalues λ0 = s− 1 and λ1 = −1

have different sign. The rest, are stable nodes with the special case of having
equal eigenvalues λ0 = λ1 = −1 (Figure 5.1).

Figure 5.1: Equilibrium types: spiral source, saddle point and stable node.

The actual combination of equilibrium points x∗
i

= (mi, ki), i = 0, . . . 8
(Table 5.1) position and principal directions, defined by the eigenvectors
of the CNN matrix, determines the overall system dynamical behavior. In
particular, the existence of limit cycles. Since these positions depend on the
cloning template, we find here the way to set the relation between the system
parameters and the existence of limit cycles. Let us note that we can have a
large number of combinations of equilibrium point positions.

5.2 Limit cycles

Limit cycles are inherently nonlinear phenomena: they cannot occur in
linear systems. Therefore they cannot be found in a single region Ri. Of
course a linear system can have closed orbits, but they won’t be isolated. A
limit cycle is an isolated closed trajectory of the system. This means that
neighboring trajectories are not closed, they spiral either towards or away
from the limit cycle.

5.2.1 Searching limit cycles

Poincaré-Bendixon theorem establishes conditions for the existence of
closed orbits and it is a common tool to prove limit cycles existence in system
dynamics.

Theorem 8 (Poincaré-Bendixon theorem). Suppose that:

(a) D is a closed, bounded subset of the plane;

96 CHAPTER 5. LIMIT CYCLES: ANTISYMMETRIC CASE

(b) ẋ = F (x) is a continuously differentiable vector field on an open set
containing D;

(c) D does not contain any equilibrium points; and

(d) There exists a trajectory C that is confined in D, in the sense that it
starts in D and stays in D for all future time.

Then either C is a closed orbit, or it spirals towards a closed orbit as t →∞.
In either case, D contains a closed orbit.

Obviously (b)-condition is not satisfied by our system because of the
piecewise linear function. Therefore, Poincaré-Bendixon theorem can not be
applied, but it shall be of help to find limit cycles: we shall keep the idea
of finding a connect, closed set in the plane with no equilibrium points nor
fixed-points inside, where trajectories (x0(t), x1(t)) remain for t→ ∞. If so,
in that region we shall not have simple closed orbits nor chaotic ones, for
there is no chaos in two dimensions, and this such trajectories may be limit
cycles.

Equilibrium points of the nine linear systems can be also equilibrium
points for the general CNN system (2.1) if they are located inside their cor-
responding region. Stable nodes are attractive points so, they can become
fixed-points for the general system.

To guarantee no equilibrium points are present inside region D, we study
the equilibrium points position on the plane. We must also take care of
the boundaries of regions Ri, i = 0, . . . 8. In effect, although in each of the
nine regions system trajectories are consistent, on the boundary lines we can
have fixed-points. We just need trajectories from neighboring regions having
opposite directions which converge from each side onto the border line, and
the system will have a fixed-point.

Therefore, we aim at finding a closed, connected and bounded region D,
containing no fixed-points nor equilibrium points. It will be limited by two
closed, non-overlapping boundary curves C1 and C2, as can be seen in Figure
5.2. These curves will fulfill the following conditions:

• Inside C1, there must exist an unstable equilibrium point so that any
trajectory crossing C1 is driven into region D.

• Any trajectory crossing C2 is driven into region D or, at least, is tangent
to C2, but never leaves region D.

If these conditions are fulfilled, it becomes clear that any trajectory entering
D shall stay bounded in D. Since there are no fixed-point by construction,
we should find a closed orbit in D.

5.2. LIMIT CYCLES 97

Figure 5.2: Region D where a limit cycle can exist.

To assure that there are no fixed-points in the boundaries of the different
regions Ri, i = 0, 1, . . . 8 and inside region D, we need to define first the index
of a curve.

5.2.2 Boundary problem

The index of a closed curve C is an integer that measures the winding of
the vector field defining the differential equation on C [57]. If we represent
at each point on C, the value of the vector field as we move counterclockwise
around C, vector rotates an angle 2ICπ. We call IC the index of C.

Therefore, the index of a closed curve containing no fixed-points can be
calculated by integrating the change in the angle of the vectors at each point
in C around C,

IC =
1

2π

�

C

dφ =
1

2π

�

C

d

�
tan−1 ẋ1

ẋ0

�

where φ is the angle made by the vector field with the horizontal axis. IC

is the net number of counterclockwise revolutions made by the vector field
as x moves one around C. To compute the index we only need to know the
vector field along C.

Using index properties of a curve we can deduce that fixed-points must
not be on the boundaries of the different regions Ri, i = 0, . . . , 8.

First, the index of a closed trajectory of the system C i.e. a closed orbit,
is IC = +1 simply because vector field is tangent to the trajectory and so
it can only make one full turn. Now, the index of a closed curve C � that
can be continuously deformed into C without passing through a fixed-point
must have the same index as C. Since the index of a limit cycle must be
+1 and C1 and C2 must be closed curves around C that can be continuously
deformed into C they must have index +1,

IC1 = IC2 = IC = +1. (5.1)

98 CHAPTER 5. LIMIT CYCLES: ANTISYMMETRIC CASE

The index of an isolated equilibrium point x∗ is defined as IC where C

(not necessarily a system solution) is any closed curve that encloses x∗ and
no other equilibrium points. From this, we see that the index of a saddle
point is −1 while for any other type of equilibrium point or for a periodic
orbit is +1.

If C is a closed trajectory for the system, then it must enclose equilibrium
points whose indices sum to +1 and IC = +1. Furthermore, if a closed
curve C surrounds n isolated equilibrium points x∗

i
for i = 1, . . . , n, then

IC =
�

n

i=1 Ix∗i
.

Finally, let us note that if we reverse the sense of the vector field , the
index is unchanged. This last property will be useful if we need to reverse
all trajectory senses. These index properties set the conditions to define C1

and C2 correctly with respect to the system equilibrium points.

5.2.3 Towards limit cycles

We shall now tackle the existence of limit cycles using the properties
mentioned above. The index of a limit cycle C, if it exists, must be IC = 1
just as the indices of C1 and C2, IC1 = IC2 = +1 because they are closed
curves surrounding C which can be continuously deformed into C without
passing through a fixed-point (5.1). Therefore, there cannot be equilibrium
points in the region D limited by C1 and C2, as required.

Taking C1 around x∗0 = (0, 0) (Table 5.1), we obtain that x∗0 must be a
repulsive point with index +1. For parameters s > 1 and p+p− < 0 this
equilibrium point is a spiral source.1

On one hand, this choice ensures that trajectories crossing C1 go into
region D and IC1 = +1, which are conditions required to C1. On the other
hand, trajectories crossing C2 must either go into D or remain tangent to
the boundary of region D, but never leave it. So C2 cannot be inside region
R0, (condition needed on C2). In short, C2 has to be a curve surrounding C1

and x∗0, and no other equilibrium points, so its index must be +1.
The other equilibrium points are already determined. In regions Ri for

i = 5, 6, 7, 8, x∗
i

are stable nodes. Therefore, they may not be inside region D

limited by C1 and C2: they must be outside. In regions Ri for i = 1, 2, 3, 4,
x∗

i
are saddle points and they cannot be in D either. This region will be

bounded by x∗0, and the remaining equilibrium points.
To define the geometry of curve C2 we use the saddle point positions and

their principal directions defined by

1We are not considering here degenerate cases where p+ = 0 or p− = 0.

5.2. LIMIT CYCLES 99

r
∗
i

: x
∗
i
+ λ �vij; i = 1, . . . , 4; j = 0, 1, λ ∈ R

where �vij are the eigenvectors of the corresponding CNN-matrix. To meet
the requirements, curve C2 must be such that trajectories cannot cross the
principal lines. In this way, all the system flow remains in region D. Remark
that principal directions in regions Ri for i = 1, 2, 3, 4, have certain symmetry
because their director vectors are the same, { �vi0 = (s, p−), �vi1 = (0, 1)} in
R1, R3 because the CNN matrices A1 and A3 are equal (2.14). Director
vectors are also equal in R2, R4 where { �vi0 = (1, 0), �vi1 = (p+, s)}.

From these results we will construct C2 using the repulsive principal direc-
tions of the saddle points in regions R1, R2, R3, R4 composed with curves in
regions R5, R6, R7 and R8. Such curves do not include, by construction, any
equilibrium point of the above mentioned regions in D, and will be defined
using the geometry of the problem in each case.

5.2.4 Example

In order to illustrate these results, let us study a particular example [12]
where parameter values are 2 = s, p+ = −p− = 2 and u�0 = u�1 = 0. Let
us note that in this case, parameters p+ and p− are totally antisymmetric.
Calling ps = p++p−

2 and pa = p+−p−
2 , we have that ps = 0 and pa = 2 �= 0.

x∗
i

R0 R1 R2 R3 R4 R5 R6 R7 R8

mi 0 −2 6 2 −6 0 4 0 −4
ki 0 6 2 −6 −2 4 0 −4 0

Table 5.2: Equilibrium points for 2 = s, p+ = −p− = 2 and u�0 = u�1 = 0

Equilibrium points positions (Table 5.2) are antisymmetric with respect
x∗0 and there exist π/2 rotation centered on x∗0 called Gπ/2 between x∗

i
, i =

1, 2, 3, 4 and x∗
j
, j = 5, 6, 7, 8 as can be seen in Figure 5.3. Studying x∗1 we

can deduce x∗
i
, i = 2, 3, 4 positions because x∗

i
= G

i−1
−π/2(x

∗
1) and studying x∗5,

we can deduce x∗
j
, j = 6, 7, 8 because x∗

j
= G

j−5
−π/2(x

∗
5).

Hence, there is a central symmetry between R1-trajectories and R3-trajectories
with respect the origin x∗0. We shall use this symmetry in the limit cycle
search. Using the geometry of the equilibrium points positions, we can find
C1 and C2 continuously closed curves limiting the desired closed region D.

In R0, we take C1 as a circle surrounding the spiral source x∗0 = (0, 0),
so C1 have index 1 and all trajectories starting inside C1 pass across leaving

100 CHAPTER 5. LIMIT CYCLES: ANTISYMMETRIC CASE

Figure 5.3: Equilibrium points positions for s = p+ = −p− = 2.

the inner region.

C1 = {(x0, x1) ∈ R2|x2
0 + x

2
1 = ρ

2
, ρ ∈ (0, 1)} (5.2)

In effect, using polar coordinates x0 = ρ cos θ, x1 = ρ sin θ we obtain that

ẋ0 = ρ̇ cos θ − ρ sin θθ̇ = (s− 1)ρ cos θ + paρ sin θ. (5.3)

ẋ1 = ρ̇ sin θ + ρ cos θθ̇ = (s− 1)ρ sin θ − paρ cos θ. (5.4)

Doing (5.3) cos θ + (5.4) sin θ ,we obtain ρ̇ = (s − 1)ρ > 0 for s > 1. Hence,
trajectories leave C1-inner region.

Now, to find C2 we will use x∗1, . . . , x
∗
8 and their trajectory directions.

Studying in more detail each case and using the geometry of the problem,
we focus our study on x∗5 and x∗1 and extend by symmetry the results. As
x∗5 is an stable node out from its region, trajectories on R5 must connect
R4-trajectories with R1-trajectories.

C2 can not be inside R0, and must be a continuous closed curve with
index +1 so, it has to be defined in regions R1, . . . , R8 connecting curves C2j

from adjacent regions.

C2 = {C2j; if (x0, x1) ∈ Rj, j = 1, . . . 8}.

These curves should not let system solutions cross outside D. Now, in the
saddle points regions, we are going to use their repulsive principal directions
to define C2i , i = 1, 2, 3, 4. For instance, in region R1 we define

5.2. LIMIT CYCLES 101

C21 = {(x0, x1) = x
∗
1 + λ(2,−2), λ ∈ R}

where (2,−2) = (s, p−) = �v0 is an eigenvector of region R1. In this particular
case, C21 = {(x0, x1) ∈ R2|x1 = −x0 + 4}.

Doing the phase portrait in this case, we see that trajectories leaving
region R5 reach R1 at a point under C21 connecting trajectories from regions
R4 and R1 (Figures 5.4 and 5.5).

Figure 5.4: Phase portrait for s = p+ = −p− = 2 and u�0 = u�1 = 0.

Figure 5.5: Construction of C21 line connecting regions R5 and R6.

Now in region R5 we define C25 as a line connecting C21 with C24. It is
a line including the points in which C21 and C24 reach their corresponding

102 CHAPTER 5. LIMIT CYCLES: ANTISYMMETRIC CASE

boundary lines. In this case, C25 = {(x0, x1) ∈ R2|x1 = 2x0+7}. Trajectories
do not cross this line, and they leave the inner region D because of the
equilibrium point position x∗5 ∈ R1.

From the central symmetry of this problem, we define the remaining
curves C2i in regions R2, R3, R4, R6, R7, R8. Let C2 be a closed curve which
trajectories cannot cross leaving D. A trajectory starting in R0 cross C1 leav-
ing R0 and will remain in region D for t →∞ (See Figure 5.7). Let us note
that, in this example, equilibrium points lay all out of their corresponding
region and so they are not fixed-points for the system.

These conditions are sufficient to demonstrate the existence of a limit
cycle. There can not be another possible output for a trajectory remaining
inside D. In effect, if there was a fixed-point O∗ ∈ D (See Figure 5.6), it
would be on a border of a region Ri, i = 1, . . . , 8 where two trajectories with
opposite sense would meet. Its index would then be IO∗ �= 0 and so from
the index properties IC2 = Ix∗0

+ IO∗ �= 1 . This can not be possible because
C2-index sums to +1 (5.1). This is a general property. In a concrete example,
we can also find trajectory directions on the border regions lines in order to
study the existence of such a point O∗ .

Figure 5.6: Fixed-point O∗ on a boundary line of the unit square.

A limit cycle must then exists because there is no chaotic behavior in
autonomous two dimensional systems. Remark that from this example we
see that the fact that parameters of the cloning template are totally antisym-
metric is not enough to ensure the existence of a limit cycle. Equilibrium
points positions and its principal directions play also an important role on
its existence. Finally, let us note that system dynamics does not depend on
initial conditions. Starting inside the unit square, the system will always
converge to a limit cycle around R0.

5.2. LIMIT CYCLES 103

Figure 5.7: Limit cycle for s = p+ = −p− = 2 in region D limited by curves
C2 and C1.

104 CHAPTER 5. LIMIT CYCLES: ANTISYMMETRIC CASE

5.3 Antisymmetric case.

We shall now proceed to generalize the particular result to the autonomous
antisymmetric case ps = 0, pa = p+ = −p− and u�0 = u�1 = 0. The argument
of the previous section relies only on the nature and position of the equilib-
rium points so we need to obtain similar geometric conditions. Fixed-point of
R0 is a spiral source and so s > 1 and p+p− = p2

s
− p2

a
= −p2

a
< 0. From this

s value, equilibrium points in R1, R2, R3, R4 are saddle points and in regions
R5, R6, R7, R8 are stable nodes (Table 5.3). Let us note that equilibrium
points positions are antisymmetric with respect x∗0 just like in the example
so we only need to study two of them like for example x∗1 and x∗5.

x∗
i

mi ki

R0 0 0

R1 − pa

s−1 s + p2
a

s−1

R2 s + p2
a

s−1
pa

s−1

R3
pa

s−1 −s− p2
a

s−1

R4 −s− p2
a

s−1 − pa

s−1

R5 pa − s pa + s

R6 pa + s s− pa

R7 s− pa −s− pa

R8 −s− pa pa − s

Table 5.3: Equilibrium points for s > 1, ps = 0

To reproduce a similar argument in order to demonstrate the existence
of a limit cycle, curve C1 can be taken as in the example, namely, a circle
centered on x∗0 with radius ρ ∈ (0, 1) (5.2). Trajectories cross C1 towards
region D. To get the equilibrium points in the same regions as in the example
studied before we need x∗1 ∈ R5 and x∗5 ∈ R1. For this, parameters fulfill

pa > s− 1; s + p2
a

s−1 > 1; |pa − s| < 1 and pa + s > 1.

x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 x∗7 x∗8

Ri R5 R6 R7 R8 R1 R2 R3 R4

Studying the rest of the regions we obtain:

s > 1 |pa − s| < 1

Focusing our study on saddle points and their principal directions, we take
for example the principal direction in R1 with director vector (s,−pa). To

5.3. ANTISYMMETRIC CASE. 105

define C21 as a line passing across x∗1 with incline tan β = −pa

s
as in the

example, we study necessary conditions to make the trajectories connect its
neighboring regions R5 and R6 (Figure 5.8). Inclines of these lines tan β and

Figure 5.8: Inclines of the lines C21 and C22 in regions R1, R2.

tan α must fulfill tan α < tan β and so

s + p2
a
/(s− 1)− 1

−pa/(s− 1)
< −pa

s
⇔ (s− 1)[−s(s− 1)− pa(pa − 1)]

s[pa + (s− 1)]
< 0

⇔ s(s− 1) + pa(pa − 1) > 0 ⇔

(s− 1/2)2 + (pa − 1/2)2
>

1

2
(5.5)

because s > 1 and pa > 0
In region R2, we do a similar study where principal direction has director

vector (pa, s) and so its incline is tan β = s

pa
. The incline of the line passing

across x∗2 and (−1,−1) is tan α. In this region α < β and so

tan α < tan β ⇔ pa/(s− 1) + 1

s + p2
a
/(s− 1)− 1

<
s

pa

⇔ (s− 1)[−s(s− 1)− pa(pa − 1)]

pa[p2
a
+ (s− 1)2]

< 0 ⇔ s(s− 1) + pa(pa − 1) > 0

we obtain the same condition as we have found before. This condition is also
valid for regions R3 and R4. Hence, curve C21 is defined as

C21 = {(x0, x1) = x
∗
1 + λ(s,−pa), λ ∈ R} = {sx1 + pax0 = p

2
a
+ s

2}

106 CHAPTER 5. LIMIT CYCLES: ANTISYMMETRIC CASE

Figure 5.9: C2 construction in regions R1 and R5.

Last but not least, to define C2 curve in R5, we study the relative position
of x∗5 in region R1 and we find that x∗5 ∈ C21 because

sk5 + pam5 = s(pa + s) + pa(pa − s) = spa + s
2 + p

2
a
− spa = p

2
a
+ s

2

Therefore, trajectories leaving R5 reach R1 in points under C21 (Figure 5.3).
Now we can define C25 as the line connecting C21 and C24. Trajectories on
this line will not leave the inner region D. In a same way we can define
C26, C27 and C28. From this study, we have obtained sufficient conditions to
ensure a limit cycle will exist in D.

Finally, by symmetry, if pa < −(s − 1) a similar study can be done so
that the sufficient conditions to get a limit cycle are:

(s− 1/2)2 + (pa + 1/2)2 >
1
2

s > 1 |pa + s| < 1

From these results we may now discuss the existence of limit cycles around the
unit square depending on the equilibrium points position, and so depending
on s and pa. We have seen that for s > 1 and ps = 0, equilibrium points in the
nine regions are either spiral sources, saddle points or stable nodes. Studying
their positions on the plane (Table 5.5), and doing the phase portrait in each
case, we find in which cases a limit cycle exists. We have studied case named
O1 where

s > 1; |pa − s| < 1; s(s− 1) + pa(pa − 1) > 0

Plotting on (pa, s)-plane (Figure 5.10) the boundary lines determined by
the different conditions obtained in each case Oi, i = 1, . . . 6 and I1, we find
the CNN parameter regions in the antisymmetric case, and also we find a
functional relation between CNN parameters and CNN outputs.

In Appendix D, we study the rest of these different parameter regions
classified into different cases. Out cases Oi for i = 2, 3, 4, 5, 6, where all
equilibrium points are out from their corresponding region, and In-cases I1
where all of them are inside their region (Tables 5.4 and 5.5).

5.3. ANTISYMMETRIC CASE. 107

Figure 5.10: Parameter regions where a limit cycle exist. Case Oi correspond
to those parameter regions where the system converge to a limit cycle. Inside
regions OIi, system converges to a limit cycle across the unit square. Taking
parameters inside I1, it converges to a fixed-point.

O1 s > 1 |pa − s| < 1; (s− 1/2)2 + (pa − 1/2)2 > 1/2
O2 s > 1 pa > s + 1
O3 s > 1 pa < −1− s

O4 s > 1 |pa + s| < 1; (s− 1/2)2 + (pa − 1/2)2 > 1/2
O5 s > 1 |pa − s| < 1; (s− 1/2)2 + (pa − 1/2)2 < 1/2
O6 s > 1 |pa + s| < 1; (s− 1/2)2 + (pa − 1/2)2 < 1/2
I1 s > 1 |pa| < s− 1

Table 5.4: Different parameter regions in the antisymmetric case.

x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 x∗7 x∗8

O1 R5 R6 R7 R8 R1 R2 R3 R4

O2 R5 R6 R7 R8 R6 R7 R8 R5

O3 R6 R7 R8 R5 R4 R1 R2 R3

O4 R6 R7 R8 R5 R8 R5 R6 R7

O5 R5 R6 R7 R8 R1 R2 R3 R4

O6 R6 R7 R8 R5 R8 R5 R6 R7

I1 R1 R2 R3 R4 R5 R6 R7 R8

Table 5.5: Equilibrium points positions in each case.

108 CHAPTER 5. LIMIT CYCLES: ANTISYMMETRIC CASE

5.4 Conclusions

In this section, we have found sufficient conditions for the existence of
limit cycles in the antisymmetric case. For this, we must work in a parameter
range where limit cycles has a chance. If we are able to work with local
repulsive equilibrium points or with attractive local equilibrium points but
placed out from their correspondent region, then the system can not converge
to a fixed-point. As we work with the autonomous two neuron CNN, there
is no chaotic behavior and so, the system must converge to a closed orbit.

In order to find it, we have used the idea of Poincaré-Bendixson theorem
to construct two different curves C1 and C2 which act as boundary lines
of a closed region surrounding a cyclic dynamic behavior. Firstly, we have
studied an example where it’s known that a limit cycle exist [12]. Then, we
have extended the results to the autonomous antisymmetric case. Using the
geometry of the dynamic behavior, we have used the local equilibrium points
kind to construct curves limiting the possible limit cycle. Depending on the
position on the plane of the different equilibrium points, we have obtained
different cases named Out or In cases.

From this study, we can conclude that in the Out cases, if condition (5.5)
is fulfilled there exists a limit cycle around R0 because curves C1 and C2 can
be found as described above. If condition (5.5) is not fulfilled, parameters
are in region O5. In this case, there exists also a limit circle but it goes
then through regions R0, R1, R2, R3 and R4, because curve C21 (and also
C2j, j = 2, 3, 4) reaches the unit square.

However if one equilibrium point is inside its own region, then all of them
are inside their corresponding regions (case I1) because of the symmetry
between them. In this case, a limit cycle around R0 can not exist. The
system will converge to a stable node, and so the final output will be in
S = (±1,±1). These different configurations depend then on parameters s

and pa for s > 1.
Actually, we can establish two classes of dynamic behavior for the CNN,

depending on the equilibrium points positions. Figure 5.10 shows parameter
range limiting this behavior. Taking parameters inside Oi zones, limit cycles
exist around R0 or crossing R0. Inside I1, limit cycles do not exist, the
system is completely stable and will converge to one of the equilibrium points
x∗

i
, i = 5, 6, 7, 8.

Chapter 6

Limit Cycles: General Case

In this chapter we will extend the results in the previous section to the
non symmetric template case, using the same techniques. Again we will
define two curves: C1 and C2 where on C1, trajectories cross leaving the
inner region and on C2 trajectories never go through but, they go tangent
or stay inside region D. To define these curves we will use again the system
geometry depending on equilibrium points type and position on the plane.

6.1 General case

As we have seen in the stability analysis, working in the parameter range
s > 1, p+p− < 0 the local equilibrium points (mi, ki) are repulsive except
those of the Out regions. Inside the unit square, the origin behaves as a
spiral source while in the middle regions we have saddle points. In the Out
regions the equilibrium points are stable nodes.

In this general case, where parameters p+ and p− only has the restriction
to have different sign, local equilibrium points are those shown in Table 6.1.

Using the repulsive behavior of the equilibrium point located on the origin
as we have done in the antisymmetric case, curve C1 will be defined as a circle
around the origin with radius lower than 1 (5.2).

To define C2 we use again the rest of the equilibrium points. Let us note
first that there is a central symmetry between some of the equilibrium points
as can be seen in Table 6.1. Hence, we only need to study four of them,
x∗1, x

∗
2, x

∗
5 and x∗6.

x
∗
3 = Gπ(x∗1); x

∗
4 = Gπ(x∗2); x

∗
7 = Gπ(x∗5); x

∗
8 = Gπ(x∗6)

Next, all stable equilibrium points lay on the repulsive principal directions
of the saddle points. For example, x∗5 = (p− − s, s− p−) lay on repulsive

109

110 CHAPTER 6. LIMIT CYCLES: GENERAL CASE

x∗
i

mi ki

R0 0 0
R1 m1 = − p+

s−1 k1 = s +−p−p+

s−1

R2 m2 = s− p−p+

s−1 k2 = − p−
s−1

R3 −m1 = p+

s−1 −k1 = −s + p−p+

s−1

R4 −m2 = −s + p−p+

s−1 −k2 = p−
s−1

R5 m5 = p+ − s k5 = −p− + s

R6 m6 = p+ + s k6 = p− + s

R7 −m5 = −p+ + s −k5 = p− − s

R8 −m6 = −p+ − s −k6 = −p− − s

Table 6.1: Local equilibrium points in each region Ri where parameters p+

and p− only has the restriction to have different sign.

principal direction r1 of the saddle point x∗1 because it fulfill line equation
p−x0 = sx1 − s2 + p+p−. In a same way, equilibrium point of region R6,
x∗6 = (p+ + s, p− + s) ∈ r2 where r2 is the repulsive principal direction on
region R2 with equation sx0 = p+x1 + s2 − p+p−. Using the symmetry of
the problem, equilibrium points x∗7 and x∗8 are on its corresponding repulsive
principal directions r3 and r4.

Finally, equilibrium points are restricted to be in some regions on the

plane. For example, x∗1 =
�
−ps+pa

s−1 , s− p2
s−p2

a
s−1

�
can only be in regions R5, R1

and R6 because parameters s > 1 and p+p− < 0 and so s− p2
s−p2

a
s−1 > 1.

Figure 6.1: Possible positions for the equilibrium point x∗1.

Studying all equilibrium points positions, we find all the cases summarized
in Table 6.2.

For example case O1:

6.1. GENERAL CASE 111

x∗1 x∗2 x∗5 x∗6 x∗1 x∗2 x∗5 x∗6

O1 R5 R6 R1 R7 OI1 R5 R2 R1 R6

O2 R5 R6 R1 R2 OI2 R5 R2 R6 R6

O3 R5 R6 R6 R7 OI3 R1 R6 R5 R7

O4 R5 R6 R6 R2 OI4 R1 R6 R5 R2

O5 R6 R7 R4 R1 OI5 R1 R7 R4 R6

O6 R6 R7 R8 R1 OI6 R1 R7 R8 R6

O7 R6 R7 R4 R5 OI7 R6 R2 R5 R1

O8 R6 R7 R8 R5 OI8 R6 R2 R5 R5

I1 R1 R2 R5 R6 I2 R1 R2 R5 R6

Table 6.2: Equilibrium points position in each case.

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p− p+ R5 R6 R1 R7

Equilibrium points are out from their corresponding region, so stable
nodes of the outer regions can not be fixed-points for the system. As in the
antisymmetric case, index theory assures that there are no fixed-points in
the boundaries of the unit square. Therefore, there exist a limit cycle.

To construct curve C2 as in the antisymmetric case, repulsive principal
directions of saddle points are connected through lines in the outer regions
R5, R6, R7 and R8.

Figure 6.2: Positions for saddle point x1.

In region R1, saddle point x∗1 is out from its region. Its repulsive principal
direction l1 can reach the unit square or the neighboring outer region R6 as
can be seen in Figure 6.2.

l1 : p−x0 = sx1 − s
2 + p+p−

112 CHAPTER 6. LIMIT CYCLES: GENERAL CASE

To study it, we intersect l1 with the border of the unit square x1 = 1 obtaining

x̄0 =
s(1− s) + p+p−

p−

If x̄0 > 1, l1 does not reach the unit square. Parameters in this case fulfill
L1 : s(s− 1)+ p−(1− p+) > 0. Otherwise, the line reach the unit square and
parameters fulfill L1 : s(s− 1) + p−(1− p+) < 0.

The same study can be done in region R2. In this case, repulsive principal
direction across x∗2 is

l2 : sx0 − s
2 + p+p− = p+x1

Again we intersect this line with the border of the unit square x1 = −1
obtaining x̃0. If x̃0 > 1, line l2 not reach the unit square and parameters
fulfill L2 : s(s− 1)− p+(1 + p−) > 0. Otherwise, it reaches the unit square.
However for the parameter range we are working on, |p+−s| < 1, p− < −1−s

only first condition is fulfilled and so line l2 pass across region R2 connecting
its neighboring regions R5 and R6.

We can conclude that we have two possibilities for C2 construction de-
pending on the parameter range of the cloning template as can be seen in
Figures 6.3−6.4.

Figure 6.3: Case 1 : L1 > 0, L2 > 0 and Case 2 : L1 < 0, L2 > 0.

There can be different limit cycles here like for example those passing
around the unit square in Case 1 where curves L1 and L2 are both positive
or passing across all the regions except R6 and R8 in Case 2 where L1 is
negative and L2 is positive.

Another example can be case OI1 where not all the equilibrium points
are out from their region.

6.1. GENERAL CASE 113

Figure 6.4: Parameter range for s > 2 and 1 < s < 2.

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p− p+ R5 R2 R1 R6

Saddle point x∗2 and stable node x∗6 are inside their regions, and so the
stable node becomes a fixed-point where trajectories can converge. In Figures
6.5−6.6 we see that for this parameter range, curve C2 can not be constructed
as we have done in the previous case.

Figure 6.5: Case 1: L1 > 0, L2 > 0 and Case 3: L1 > 0, L2 < 0.

In this case, the system can have two dynamic behavior: converge to one
of the stable nodes x∗6 or x∗8 located in their region or converge to a limit
cycle different from those found before.

All other cases are detailed in Appendix E. The overlap of the limiting pa-
rameter regions for the different cases finally boils down to three topological
distributions according to the value of s. These different distributions depend
on the existence of limit cycles, limit cycles coexisting with two fixed-points,
and the converge to one of the four stable nodes.

114 CHAPTER 6. LIMIT CYCLES: GENERAL CASE

Figure 6.6: Parameter range for s > 2 and for 1 < s < 2.

As a summary we show in Figures 6.7−6.9 C2 construction in each dif-
ferent parameter region.

6.1. GENERAL CASE 115

Figure 6.7: Convergence map for s > 2.

116 CHAPTER 6. LIMIT CYCLES: GENERAL CASE

Figure 6.8: Convergence map for 1+
√

2
2 < s < 2.

6.1. GENERAL CASE 117

Figure 6.9: Convergence map for 1 < s <
1+
√

2
2 .

118 CHAPTER 6. LIMIT CYCLES: GENERAL CASE

6.2 Conclusions

From the results obtained in previous sections we may now discuss the
existence of limit cycles depending on the equilibrium points position on the
plane and therefore depending on parameter values s, p+ and p−.

For s > 1, equilibrium points in the nine regions are a spiral source in
the middle with, saddle points and stable nodes all around. Their layout
establishes in which cases a limit cycle exists, because it determines the
geometry of the necessary limiting curve C2. The CNN system can then be
classified into three cases:

• Out cases: Oi, i = 1, . . . 8 where all equilibrium points are out from
their corresponding region,

• Out-In cases: OIi, i = 1, . . . 8 where four equilibrium points are inside
their region,

• In cases: I1, I2 where all of them are inside their region.

In Out regions Oi, i = 1, . . . 8, parameter range is

{p+ > s− 1, p− < 1− s} ∪ {p+ < 1− s, p− > s− 1},

and the system converges to a limit cycle. There are no fixed-points for
the system because all stable nodes are out from their region so, sufficient
conditions for the existence of limit cycles can be proven by defining curves
C1 and C2 which delimit a region where trajectories remain as t tends to ∞.
Repulsive principal directions of saddle points are the bases to define curve
C2 which trajectories will not cross. Moreover, we have also found different
types of limit cycles according to the regions Ri, i = 1, . . . 8 they cross. For
example, for s = 1.1,p+ = 0.2,p− = −1.3 there exist a limit cycle crossing
regions R0 → R1 → R3 and for s = 1.1,p+ = 0.9,p− = −1.3, the limit cycle
pass across regions R0 → R3 → R0 → R4 → R0 → R1 → R0 → R2 → R0

(Figure 6.10).
On the other hand, for cases OIi, i = 1, . . . 8, parameter range is

{|p+| < s−1, |p−| > s−1, p+p− < 0}∪{|p−| < s−1, |p+| > s−1, p+p− < 0}

Four of the equilibrium points, two saddle points and two stable nodes are
inside their corresponding region so the system has two possible dynamical
behaviors: converge to a fixed point or converge to a limit cycle crossing the
unit square and two saddle regions as can be seen in Figures 6.13−6.14.

6.2. CONCLUSIONS 119

Figure 6.10: Examples of a limit cycle for an Out-In region and a limit cycle
for an Out region.

This parameter range has been studied in [24], where a heteroclinic orbit
connecting the two repulsive principal directions which reach the unit square
exist if and only if CNN parameters fulfill :

ln

� �
|p+p−|

(s− 1)
�

(s− 1)2 − p+p−

�
− s− 1�

|p+p−|
arctan

�
s�

|p+p−|

�
= 0. (6.1)

Parameter space can then be separated by this condition in two regions with
different dynamic behavior. A region where CNN converges to a fixed-point
if the left hand side of ([24]) is negative and a region where converge to a
limit cycle if the right hand side is positive. Figure 6.11 shows an example of
these different dynamic behaviors. Let us note that in this case, limit cycles
will pass only through three different regions because of the geometry of the
saddle points.

Figure 6.11: Examples for s = 1.3, p+ = −2;−4, p− = 0.1; 0.2 respectively.

Moreover, in [60] necessary and sufficient conditions for a CNN to con-
verge to a fixed-point are found. For any s value different than 2, and
s− 1 ≥

�
|p+p−|, the system converges to a fixed-point.

For cases 2.1 and 3.1 where s− 1 ≤
�
|p+p−| , a function g is defined

120 CHAPTER 6. LIMIT CYCLES: GENERAL CASE

Figure 6.12: Convergence map for p+ > 0, p− < 0 and s < 2.

6.2. CONCLUSIONS 121

g(
�
|p+p−|, s) = exp

�
2(s− 1)�
|p+p−|

arctan

�
s�

|p+p−|

��
+

p+p−

(s− 1)2(s2 − p+p−)

As on (6.1), the function sign determines sufficient conditions for the
existence of limit cycle. If g(

�
|p+p−|, s) ≤ 0, the system converge to a limit

cycle, else converge to a fixed-point.
In dark zones of cases 1.2 and 1.1 in Figure 6.12, repulsive principal

directions does not reach the unit square. This fact avoid the construction of
the heteroclinic orbit. Hence, sufficient conditions for the existence of a limit
cycle has not been found. Finally, for In cases: Ii, i = 1, 2, all equilibrium
points are inside their corresponding region and the system converge to one
of the stable nodes becoming fixed-points for the system.

In Figures 6.13-6.14 we can see six different limit cycles that can be found
in the autonomous case. Limit cycles passing across more than three regions
(B,D,E,F) corresponds to Out cases while those passing across only three
regions (A,C) correspond to Out-In cases .

Figure 6.13: Examples for s = 1.1, p+ = 0.2; 0.9; 1.3, p− = −1.3;−1.3;−0.2
respectively.

These features may prove useful on classification problems. Each type of
limit cycle is related to an area in parameter space. This allows us to design
CNNs whose outputs are only limit cycles choosing the parameters of the
cloning template adequately.

These different limit cycles let us think on classification problems. Pa-
rameter regions are related with each one of these different limit cycles, and
let us found a mapping relation between them and the parameters of the
CNN. This allows us to design CNNs whose outputs are only limit cycles
choosing the parameters of the cloning template adequately. Furthermore,

122 CHAPTER 6. LIMIT CYCLES: GENERAL CASE

Figure 6.14: Examples for s = 1.37, p+ = 2, p− = −1.5, s = 1.5, p+ =
0.6; 2.4, p− = −2.4;−0.6 respectively.

adding points {(±1,±1)} where the system converge in the complete stable
cases, generic CNN can show up to ten possible outputs namely six limit
cycles and four fixed points.

Classification problems with ten or less classes, might be solved by map-
ping a general CNN parameter space to classification problem variables. Al-
though, a careful analysis of initial conditions would be required. In partic-
ular for Out-In cases where the system can move from a stable fixed point
to a limit cycle.

Chapter 7

Limit cycle period

The non linearity of Cellular Neural Networks allows the CNN system to
show different dynamic behavior such as converge to a fixed-point, to a closed
curve or to a limit cycle. In the two neuron CNN case, limit cycles have been
found for example in [24], [59], [60] and their existence and classification in
the autonomous case has been studied in previous sections. Moreover, for
circular CNNs with periodic boundary conditions the period of a limit cycle
was computed in [54].

In this chapter, we are going to address the problem of finding the period
value in the simplest case where a limit cycle exist : the autonomous anti-
symmetric two neuron CNN. In this case, we have found that there are two
different limit cycles kinds depending on parameter range where they exist.
Firstly, those passing around the unit square and secondly, limit cycles pass-
ing across the unit square. We will start focusing our study about the period
value in the first case.

7.1 Computing the period function

As limit cycles kind depend on the CNN parameters, their period P will
be found as a function of them P (pa, s). Working in the parameter range,

R = {(pa, s) ∈ R2|s− 1 < |pa|, s > 1, (pa −
1

2
)2 + (s− 1

2
)2

>
1

2
}, (7.1)

the CNN system in the autonomous antisymmetric case, converges to a limit
cycle around the unit square. To find the correspondent period we are going
to use the problem symmetry, and the CNN system dynamic behavior in the
different regions. In the middle regions Ri, i = 1, 2, 3, 4, local equilibrium
points are saddle points (mi, ki) and they are symmetric with respect the

123

124 CHAPTER 7. LIMIT CYCLE PERIOD

origin. In fact, there is a π/2 rotation between them. A similar symmetric
behavior appears in the out regions Ri, i = 5, 6, 7, 8 where equilibrium points
are attractive points but none of them are located inside their region. This
symmetric property is also valid for the limit cycle as can be seen in Figure
7.1.

As the dynamic behavior of the limit cycle is different depending on the
region it crosses, we will compute the period locally inside each one of these
regions. Let us name Pi, i = 1, . . . 8 the local part of the period in each
region Ri, i = 1, . . . , 8.

From the symmetric property mentioned before, the local part of the
period in the middle regions are the same, P1 = P2 = P3 = P4 just like in
the out regions where P5 = P6 = P7 = P8. So the limit cycle period is:

P (pa, s) =
i=8�

i=1

Pi(pa, s) = 4P1(pa, s) + 4P5(pa, s) (7.2)

For instance, Figure 7.1 shows a limit cycle for parameters s = 2 and
pa = 2. Using the symmetry of this curve, we can see that computing P1 and
P5 we can obtain the limit cycle period, and so the period of each output cell
yi(t). To do it, we will use points Q0, Q1 and Q2 connecting a closed curve
between middle regions and out regions. Let Q0 be the connecting point
between regions R4 and R5, Q1 the corresponding one connecting regions R5

and R1, and point Q2 connecting regions R1 and R6.
Limit cycles directions depends on pa sign. For a positive parameter pa, it

will follows a clock direction R6, R2, R7, R3, R8, R4, R5, R1, . . . (7.3) otherwise,
limit cycle goes counterclockwise.

�
1
1

�
→

�
1
y1

�
→

�
1
−1

�
→

�
y0

−1

�
→

�
−1
−1

�
→

�
−1
y1

�
→ (7.3)

→
�
−1
1

�
→

�
y0

1

�
→

�
1
1

�
→ . . .

To compute P1 corresponding to region R1, let us remind the CNN para-
metric solution (2.11) found on the stability chapter. For sake of clarity, let
us name x1

0(t) and x1
1(t) the parametric solution of region R1,

�
x1

0(t) = α1
0se

(s−1)t + m1

x1
1(t) = −α1

0pae
(s−1)t + α1

1e
−t + k1

where (m1, k1) =
�
− pa

s−1 , s + p2
a

s−1

�
is the local equilibrium point, and index

k = 1 of xk

i
corresponds to region R1 (Table 5.3). Limit trajectory will start

7.1. COMPUTING THE PERIOD FUNCTION 125

Figure 7.1: Limit cycle for parameters s = 2 and pa = 2 with periods P1 and
P5.

at
Q1 = (x1

0(0), x1
1(0)) = (−1, x1

1(0))

and will end at

Q2 = (x1
0(P1), x

1
1(P1)) = (+1, x1

1(P1))

as can be seen in Figure 7.2. Imposing these initial conditions, we obtain the
system equations

�
x1

0(0) = α1
0se

0 + m1 = −1
x1

0(P1) = α1
0se

(s−1)P1 + m1 = 1

This system solution let us obtain P1 corresponding to middle region R1.

P1(pa, s) =
1

s− 1
ln

�
pa + s− 1

pa − (s− 1)

�
. (7.4)

Now, we are going to do a similar study in out region R5 in order to find
P5. Again, using the parametric solution of the CNN system (2.12). Let us
name x5

0(t) and x5
1(t) the parametric solution of region R5,

126 CHAPTER 7. LIMIT CYCLE PERIOD

Figure 7.2: Initial and final points of limit cycle across region R1.

�
x5

0(t) = α5
0e
−t + m5,

x5
1(t) = α5

1e
−t + k5,

where (m5, k5) = (pa − s, pa + s) (Table 5.3) is the local equilibrium point,
we will find P5. The limit trajectory in this region starts at the boundary
point

Q0 = (x5
0(0), x5

1(0)) = (x5
0(t0), +1)

and ends at
Q1 = (x5

0(P5), x
5
1(P5)) = (−1, x5

1(P5))

as can be seen in Figure 7.2. From this, we obtain the system equations
which solution in this out region is P5 (7.5) .

�
x5

1(0) = α5
1e

0 + k5 = 1,
x5

0(P5) = α5
0e
−P5 + m5 = −1.

P5(pa, s) = ln

�
α5

0

s− 1− pa

�
(7.5)

Nevertheless P5 depends on parameter α5
0 of the parametric solution. To

find it, we use the limit cycle symmetry, and the fact that limit cycle is a
closed curve in the limit. Boundary points connecting limit cycle curves of
neighboring regions must then fulfill equations (7.6).






x5
1(0) = 1

x1
0(0) = −1

x1
1(0) = x5

1(P5)
x1

1(P1) = −x5
0(0)

(7.6)

7.2. GENERATING CLOCK SIGNALS USING CNNS 127

Solving these conditions we find α5
0 value as,

α5
0 = − 1

2s
(pa[(s− 1− pa)A + s− 1 + pa]+

+
�

p2
a
(s− 1− pa)2A2 + p2

a
(s− 1 + pa)2 − A(2p2

a
+ 4s2)(p2

a
− (s− 1)2)

�

where A =
�

pa−(s−1)
pa+s−1

� 1
s−1

.

Therefore using (7.4) and (7.5), the period of this kind of limit cycle is
P (pa, s),

P (pa, s) = 4 1
s−1 ln

�
s−1+pa

pa−(s−1)

�
+ 4 ln

�
−α5

0
pa−(s−1)

�
=

4 ln

��
s−1+pa

pa−(s−1)

� 1
s−1 · −α5

0
pa−(s−1)

� (7.7)

In Figure 7.3, we can see the period function (7.7) depending on param-
eters s and pa.

Figure 7.3: Period function P (pa, s).

Yet complex, this formula is analytical, and so allows us to evaluate be-
forehand the limit cycle frequency obtained from a given set of parameters s

and pa. A quick analysis shows that periods become infinite in some limits,
and hints the fact that a minimum period Pa or maximum frequency should
exist.

7.2 Generating clock signals using CNNs

The results obtained from the period study drive us into the possible
applications of limit cycles like for example, use them to generate clock sig-
nals. We propose using a simple continuous time two neuron CNN with the

128 CHAPTER 7. LIMIT CYCLE PERIOD

standard piecewise linear output function, to tackle this problem. We will
work with fully antisymmetric weights so that the system is in particular
limit cycle condition. By the nature of the piecewise linear function, neuron
outputs can be used as highly stable and well shaped clock signals. The clock
frequency is actually a direct function of the connection values and might be
modified by reprogramming the weights to cover a very wide range of values.

There are many different options to implement CNN weights. For in-
stance, based on reference [40] where a model of neuron cell with programmable
memristor connections is described, CNN weights can be described in such a
way. The Memristor, proposed by L.O.Chua in 1971 [15] as a missing linear
response circuit element, beyond the resistor, the capacitor and the induc-
tor, was finally found in a nanoscale implementation acting as a resistive
memory [56]. Among the very many applications of such a device, we find
synapse implementation for artificial neural networks [55]. Based on this,
reference [40] proposes a cell structure for a Cellular Neural Network where
the interconnecting weights are memristors whose value is programmable to
any continuous value in continuous time, with circuitry implemented in the
cell structure.

By looking at Figure 7.1, we get a qualitative description of the behavior
of the cell outputs. If we take, for instance, neuron 0. When the system is in
regions R6, R2 and R7, which are run consecutively, neuron state x0 is larger
than one and thus, output value y0 is 1. Reversely, when the system is in
region R8, R4 and R5, x0 is lower than one and so y0 is −1. In region R3,
y0 transients from 1 to −1 while in region R1 rises from −1 to 1. This is,
in fact, the behavior of a clock signal. Naturally, neuron 1 output behaves
just the same, delivering an identical signal because of the system symmetry
but, delayed. The delay can be estimated to be the transit time in region
R5, which, by symmetry is the same as the transit time in regions R6, R7 or
R8.

Quantitatively, we may observe the signal shapes from the exact solution
of the differential equations in Figure 7.4, which confirms the fact that both
outputs generate very clear delayed clock signals.

If we now look at the clock parameters, frequency shall be given, by the
inverse of the period P , and as such, can be tuned by modifying the CNN
parameters. The rise time is the transit time through region R1.

trise = P1(pa, s) = tfall

By symmetry, it is equal to the fall time. The time spent at maximum and
minimum values is then,

t1 = P1(pa, s) + 2P5(pa, s),

7.2. GENERATING CLOCK SIGNALS USING CNNS 129

Figure 7.4: Periodic states and outputs for parameters s = 2 and pa = 2
where the system converges to a limit cycle around the unit square.

130 CHAPTER 7. LIMIT CYCLE PERIOD

and the delay between the clock signals is P5(pa, s). Since the period is
a bivariate continuous function, we may consider tuning the parameters in
order to obtain a given period, and then play to set the rise time or the delay
between both clocks.

The tuning possibilities are, in principle not unlimited. Since, to repro-
duce a periodic behavior on the CNN outputs, we must work in the parameter
range (7.1) where symmetric limit cycles exist. At first sight, this parameter
range is not finite but we can bound it in each particular case. This is im-
portant because to use memristors as weight parameters, we need to work in
a bounded range [s1, s2] ∈ [0, 1] of the window function f [40]. In our case,
for certain parameter s, antisymmetric parameter pa belongs to [Pa(s), k],
Pa < k < ∞. Rescaling this range into [s1, s2] where s1 = Pa/k + 1 and
s2 = k/k+1, the weight state belongs to [0, 1]. This means that we will work
in a bounded parameter range, and so a minimum and a maximum value of
the period function and therefore frequency shall exist.

7.3 Conclusions

In this section we have studied the period function in the particular case
in which two neurons have opposite sign connection values, also known as the
antisymmetric case. The limit cycle period as a function of the self-feedback
parameter s and the antisymmetric one pa, has been obtained using the local
study made in each of the nine regions where the CNN system is linear. The
symmetry of the problem has allowed to work only in two different regions:
middle region R1 and out region R5. On the rest, system dynamics is the
same and so, the local period functions of middle regions are all equal to the
local one P1 while in the out ones, are equal to P5. The computation of this
two local parts of the period function, gives us the key point to determine
the general one Pa = 4P1 + 4P5.

From the parametric solutions, we have found a curve starting at a point
Q1 of the boundary line x0 = −1 of middle region R1 and ending at Q2 on
line x0 = 1. Similar arguments are used to find the local period in out region
R5 but additional conditions of symmetry are necessary to find the necessary
arbitrary constants of the parametric solutions.

As we can see on the period figure (Figure 7.7), P (pa, s) is an increasing
function. Working inside the period domain one can think that it should
have a minimum value representing a break point between periods of limit
cycles surrounding the unit square and those passing across the unit square.
Nevertheless, the study of the different period properties such as the existence
of a minimum value or its behavior on the boundary curves of its domain is

7.3. CONCLUSIONS 131

still lacking.
At last, we may discuss about some possible uses of this result like for

example use limit cycles to store individual memories or use it to reproduce
a clock signal. As CNNs have a periodic behavior for certain range of their
weights, states of each neuron behaves then like a periodic signal and so
the final outputs. On this grounds, each of the saturation regions (out
regions) where the limit cycle pass across (P5) could be thought as memory
state. Transitions from one memory state to another are done when it passes
across the middle regions (P1).

On the other hand, the combination of the cell model with memristor con-
nections proposed by Lehtonen and Laiho [40] using the limit cycles charac-
teristics of the two neuron Cellular Neural Network with fully antisymmetric
connections allows us to generate digital clocks with almost arbitrary fre-
quency.

132 CHAPTER 7. LIMIT CYCLE PERIOD

Part IV

Convergence comparison

133

Chapter 8

Topological equivalence

The original model of Cellular Neural Networks (CNN) introduced by
Chua and Yang [5] use the piecewise linear function (1.2) as activation func-
tion which is in fact non bijective and non differentiable at x = ±1. To avoid
the difficulties of these features, for both theoretical and practical consid-
erations, many authors [12],[5],[51] resort to a sigmoidal function, typically
hyperbolic tangent as activation function. The core argument for this sub-
stitution is the similar behavior of both functions around three important
domains, namely the origin and the two asymptotic limits x → ±∞, as
shown in Figure 8.1. We might summarize the strategy saying that hyper-
bolic tangent is a differentiable and bijective version of piecewise linear func-
tion. As such, dynamic behavior of these two systems should be the same.
On this grounds, results established for hyperbolic tangent are extended to
the piecewise linear case.

However, in our analysis of the dynamic behavior of the two neuron CNN,
we have found that the non-bijective nature of the piecewise linear function
plays an important role. For this reason we decided to peruse this equiva-
lence. For an autonomous two neuron CNN, we will compare the stability
of these two dynamical systems [22]. Both systems show the same dynamic
behavior except for some regions of parameter space.

8.1 The Chua-Yang and tanh x models

As we have seen in the stability chapter, a CNN can be described by a
system equations like ẋ = −x + Ay + Bu + z, where each cell is a dynamical
system which has an external input, an output and a state: u, y, x. Output
y may be any function of the input or the threshold but, for a standard
CNN the output is defined by the piecewise linear function of the states

135

136 CHAPTER 8. TOPOLOGICAL EQUIVALENCE

Figure 8.1: Hyperbolic tangent and piecewise linear function.

y = f(x) = pwl(x) (1.2), as we have been using along the different chapters.
For the hyperbolic one, it is defined by the hyperbolic tangent y = f(x) =
tanh(x).

To compare both systems we first study some of the main differences
between them. First, if output is defined by the hyperbolic tangent, then the
system is differentiable along the plane while in the piecewise linear one, we
loose the differentiability on lines xi = ±1.

The state space for the piecewise linear system is classified into nine re-
gions where the dynamic behavior is different. Namely, the central region
where |xi| ≤ 1, four saturation regions where |xi| > 1 and four partial satu-
ration regions where |xi| > 1 and |xj| ≤ 1 for i, j = 0, 1. On the border of
these regions, there is a significant change on the CNN dynamics. On the
other hand, the differentiable nature of the hyperbolic tangent does not allow
for such a partition of phase space.

In general, mathematical criteria to study the stability of both systems
is similar. For example the State-Boundedness Criterion, which assures that
the state of each cell is bounded, is valid for f(x) = tanh(x) and for f(x) =
pwl(x) because they both are bounded functions.

However, original CNN system is not a differentiable model at the border
of the different linear regions, so some standard dynamical system theorems
such as Bendixson’s criterion or the Lyapunov theory, which require this
hypothesis can not be directly applied. Meanwhile, the hyperbolic model is
a differentiable one, so these tools can be used as follows.

Theorem 9 (Bendixon criterion). Given a simply connected region D in
the plane. If the divergence of the vector field is always positive or is always
negative inside D, then there cannot be a periodic orbit inside D.

Hyperbolic vector field is

F (x0, x1) = (F0(x0, x1), F1(x0, x1)) =

8.2. TOPOLOGICAL EQUIVALENCE 137

(−x0 + s tanh x0 + p+ tanh x1,−x1 + s tanh x1 + p− tanh x0)

Hence, the vector field divergence is:

divF =

�
∂F0

∂x0
+

∂F1

∂x1

�
=

−1 + s(1− tanh2
x0)− 1 + s(1− tanh2

x1) =

= −2 + s(1− tanh2
x0 + 1− tanh2

x1) < 2(s− 1)

For s < 1, the divergence of the vector field is always negative, and so the
system does not converge to a periodic orbit. Therefore, both models show
exactly the same behavior in the symmetric case. For a symmetric template,
theorem used in [5] to assure the stability of a CNN is fulfilled.

Theorem 10 (Complete Stability Criterion). All trajectories of the hyper-
bolic CNN converge to an equilibrium state, which in general depends on
initial states, if:

1. The cloning template is symmetric, AT = A,

2. The scalar function f(xi) is differentiable with positive slopes and
bounded,

3. All equilibrium points are isolated.

In the hyperbolic case, function f(x) = tanh x is differentiable with pos-
itive slopes and bounded, so there exist a Lyapunov function

V (x0, x1) = −1

2
(y0, y1)

T
A(y0, y1) +

1�

i=0

�
yi

θ

f
−1(τ)dτ

The system then, converges to an attractive equilibrium point. In the piece-
wise linear case, function f(x) = pwl(x) is not differentiable and it is not
injective in the saturation regions. Therefore, theoretically this criterion can
not be applied. Many times, the argument of being arbitrarily closely to an
injective function such as the hyperbolic one has been used in the literature.
This would only hold if both systems are topologically equivalent.

8.2 Topological equivalence

In order to establish if both systems are topologically equivalent, let us
recall first the definition of the concept.

138 CHAPTER 8. TOPOLOGICAL EQUIVALENCE

Definition 3. A function between two topological spaces is called a homeo-
morphism if it has the following properties:

1. f is a bijection,

2. f is continuous,

3. the inverse function f−1 is continuous.

Homeomorphisms are the isomorphisms in the category of topological
spaces, that is, they are mappings which preserve all topological properties
of a given space.

Definition 4. Two vector fields X0 and X1 are said to be topologically con-
jugate if there exist an homeomorphism h : ∆0 ⊂ R2 → ∆1 ⊂ R2 such that

Dh(X0(p)) = X1(h(p)).

Definition 5. Let X and Y be topological spaces. A flow ϕ on X is topo-
logically semiconjugate to a flow ψ on Y if there is a continuous surjection
h : Y → X such that

ϕ(h(y), t) = h(ψ(y, t))

for each y ∈ Y, t ∈ R. If h is a homeomorphism then ψ and ϕ are topologically
conjugate.

This means that if there exist a homeomorphism between two dynamical
systems, every trajectory from the first one corresponds to a trajectory from
the second. If both systems are topologically equivalent, there should be a
one-to-one correspondence between the equilibrium points of the two vector
fields and a one-to-one correspondence between limit cycles.

Equilibrium points of the hyperbolic model, can be found solving

(F0(x0, x1), F1(x0, x1)) = (0, 0)

From this, we obtain equations

C0 : p−x0 = sx1 − (s2 − p+p−) tanh x1

C1 : p+x1 = sx0 − (s2 − p+p−) tanh x0
(8.1)

The number of intersection points of these curves is the number of equilibrium
points. In many particular cases, both systems have the same number of
equilibrium points located in the same regions of the plane. Let us note that
the origin is always a solution of (8.1), and so (0, 0) is an equilibrium point
just like in the piecewise linear system. Furthermore, using a linearisation

8.2. TOPOLOGICAL EQUIVALENCE 139

technique we can see that for parameter range s > 1 and p+p− < 0 the origin
is a repulsive equilibrium point like in the piecewise linear system (2.1).

ẋ0 = F0(0, 0) + ∂F0(0,0)
∂x0

x0 + ∂F0(0,0)
∂x1

x1 =
= (−1 + s)x0 + p+x1

ẋ1 = F1(0, 0) + ∂F1(0,0)
∂x0

x0 + ∂F1(0,0)
∂x1

x1 =
= (−1 + s)x1 + p−x0

Eigenvalues of this CNN matrix are λ = (s − 1) ± j
√

p+p−. Its real part is
positive for s > 1, and so it is a repulsive point. Solving system (8.1) can
be hard, so to find the number of solutions we intersect the asymptotic lines
of a curve with the other one. For example, an asymptotic line of curve C0

with curve C1,

�
C0 asymptotic line: p−x0 = sx1 − (s2 − p+p−)
C1 curve: p+x1 = sx0 − (s2 − p+p−) tanh x0

which can be written as:
�

x1 =
p−

s
x0 −

s2 − p+p−

s
, tanh x0 =

x0

s
− p+

s

�
(8.2)

Figure 8.2: Intersection between curve C1 : p+x1 = sx0− (s2− p+p−) tanh x0

and the asymptotic line p−x0 = sx1 − (s2 − p+p−) of curve C0. .

Solving equation (8.2) means to intersect line x1 = x0
s
− p+

s
with hyperbolic

tangent function. There can be one, two or three intersection points of these
curves depending on the line incline and position. In fact, solution will
depend on parameter s. Finding the tangent line of function tanh x0 with
incline 1

s
for parameter s > 1, we can study the number of solutions of system

(8.2).

x1 =
1

s
x0 −

�
1− 1

s
+

1

s
tanh−1

��
1− 1

s

�
=

x0

s
− n

s

140 CHAPTER 8. TOPOLOGICAL EQUIVALENCE

This tangent line is equal to line (8.2) if and only if

p+ = s

�
1− 1

s
− tanh−1

�
1− 1

s
:= n

Let us note that for s < 1, do not exist such a line. In this case, there is only
one intersection point but for s > 1 and p+ > 0,

p+ > n > 0 ⇒ there exist only one intersection point,
p+ = n ⇒ there exist two intersection points,
0 < p+ < n ⇒ there exist three intersection points.

The same study can be done for the other tangent line (Figure 8.2). For
p+ < 0,

p+ < −n ⇒ there exist only one intersection point,
p+ = −n ⇒ there exist two intersection points,
0 > p+ > −n ⇒ there exist three intersection points.

From the intersection of the two asymptotic lines of C0 with curve C1, and
doing the same study for the asymptotic lines of C1 with curve C0, we obtain
the number of intersection points. Hence, we can deduce the number of
equilibrium points of the system. If parameters fulfill 0 > n > p+ and
p− > |n| for s > 1, there is one point from each intersection. This corresponds
to one equilibrium point for the system: the origin (first graph in Figure 8.3),
or three equilibrium points (first graph in Figure 8.4). We obtain three points
from each intersection of the tangent lines with the curve if n < p+ < 0 ,
which means that there are nine equilibrium points for 0 > p+ > n and
0 < p− < |n| (second graph in Figure 8.4).

Finally, if we obtain three points from the intersection of the asymptotic
lines of C0 with curve C1, and one point from the other intersection or vice
versa, there are five equilibrium points for the system(second graph in Figure
8.3). With these results, we can print an equilibrium point map which is
symmetric with respect the origin.

Let’s note that this map is different from the piecewise linear map because
in general n �= s − 1. This means that there are some parameter regions
where the systems exhibit different dynamic behavior because they have a
different number of equilibrium points (Figure 8.5). Therefore, they are not
topologically equivalent.

For instance, for s = 1.1, p+ = −0.0.5 and p− = 3, piecewise linear
system has five equilibrium points while there is a single equilibrium point
for the hyperbolic one. The original system can converge to one of the two

8.2. TOPOLOGICAL EQUIVALENCE 141

Figure 8.3: Examples of one and five equilibrium points. Black points are
the equilibrium points and the red ones, are the intersection points between
the asymptotic line and the hyperbolic tangent function.

Figure 8.4: Examples of three and nine equilibrium points. Let us note
that in the first graph, there is only one intersection point between the red
asymptotic line and the hyperbolic tangent just like in the first example
of Figure 8.3 but corresponding to three equilibrium points of the system
instead of one.

142 CHAPTER 8. TOPOLOGICAL EQUIVALENCE

Figure 8.5: Equilibrium points regions for the hyperbolic model and for the
piecewise linear model for p+ < 0 and p− > 0.

Figure 8.6: Example of different number of equilibrium points for parameters
s = 1.1, p+ = −0.0.5 and p− = 3. There are five equilibrium points for the
piecewise linear system and so depending on the initial conditions (inside
or outside the gray region defined by an heteroclinic orbit) the system can
converge to a limit cycle or to an attractive fixed-point in a saturation region.
For the hyperbolic one, there exist only one repulsive equilibrium point (0, 0)
and so a trajectory can not converge to a fixed-point.

8.2. TOPOLOGICAL EQUIVALENCE 143

attractive fixed-points or to a limit cycle depending on the initial conditions
(Figure 8.6). On the other hand, hyperbolic system will converge to a limit
cycle without any dependence on initial conditions.

Nevertheless, in some regions the number of equilibrium points is the
same, and so they are likely to show an equivalence while in others they are
manifestly not. Equilibrium points of the hyperbolic system should then be
close the piecewise linear ones. To study it we use for example the equilibrium
point x∗ = (p+ − s,−p− + s) from one of the saturation regions {(x0, x1) ∈
R2|x0 < −1; x1 > 1}. Evaluating this point in the vector field of system
(2.1) using the hyperbolic output, we can approximate the distance between
equilibrium points of both systems.

F0(x∗) = −(p+ − s) + s tanh(p+ − s) + p+ tanh(−p− + s)
F1(x∗) = −(s− p−) + s tanh(−p− + s) + p− tanh(p+ − s)

As we can not evaluate the hyperbolic tangent on this points, we use the
asymptotic expansion tanh x1 ∼ 1− e−2x1 and tanh x0 ∼ −1 + e2x0 .

F0(x∗) ∼ −(p+ − s) + s(e2(p+−s) − 1) + p+(1− e−2(−p−+s))
F1(x∗) ∼ −(s− p−) + s(1− e−2(−p−+s)) + p−(e2(p+−s) − 1)

For example, first component of vector field F0(x∗),

−(p+ − s) + s(−1 + e
2(p+−s)) + p+(1− e

−2(−p−+s)) =

= se
2(p+−s) − p+e

−2(−p−+s) → 0 if x
∗ → (−∞, +∞)

If equilibrium point of the hyperbolic system is far from the boundary of
this saturation region, the distance tends to 0. If this point is close to the
boundary, which means that value s− p+ is near to −1 and value −p− + s is
near to +1,

F0(x
∗) ∼ s

e2(−p++s)
− p+

e2(−p−+s)
<

s

e2
− s− 1

e2
=

1

e2

F1(x
∗) ∼ −s

e2(p+−s)
+

p−

e2(−p−+s)
<

s

e2
− s− 1

e2
=

1

e2

the distance is bounded by 1
e2 ∼ 0.1353352. The same value is obtained

for the other equilibrium points located in saturation regions. They can be
attractive fixed-points for the piecewise linear system if parameter s is larger
than 1, and p+p− < 0. The distance between the equilibrium points of both
systems is lower than 1

e2 . If they are close to the boundaries of the saturation
regions, this means that they can be in different regions depending on the
system we use. This is important because in the piecewise linear system,

144 CHAPTER 8. TOPOLOGICAL EQUIVALENCE

equilibrium points kind depend on the region where they are located. For
instance, in the partial saturation regions they are saddle points, while in
the saturation ones they are attractive points.

8.3 Conclusions

We have compared two dynamical systems with different output func-
tions, the piecewise linear and the hyperbolic one. Both systems seem to be
topologically equivalent and so the hyperbolic one has been used many times
instead of the original because it is differentiable along the plane. From the
results obtained, we have seen that in general this is not true. There are
some particular regions in the parameter space where they exhibit a different
number of equilibrium points, so for theoretical results the hyperbolic tangent
should not be used instead of the piecewise linear function. Furthermore, for
future applications of the CNN different limit cycles, this result could be
relevant because both systems exhibit a different dynamic behavior in some
particular regions. On the other hand, there are other regions where both
systems has a similar dynamic behavior. The number of equilibrium points
in these regions is equal, so for the actually known practical applications it
can be valid to use the hyperbolic model instead of the piecewise linear one.

Part V

Conclusions

145

Chapter 9

Conclusions and Future work

9.1 Conclusions

In this dissertation we have presented different aspects related to the two
neuron CNN. Partial conclusions are given at the end of each Chapter, how-
ever we now summarize the main results obtained and outline the future
work. First of all, we have studied the system stability from two different
points of view, using the Lyapunov theory and doing a local equilibrium
points analysis. From both methods, we have seen that in a symmetric pa-
rameter range p+ = p−, the system converges to a fixed-point. Moreover, for
s > 1, fixed-point is located in a saturation region (out region) and so output
values are restricted to ±1. This is important because many applications
such as image processing, classification problems or reproduce probability
distributions use these bi-valuated output states.

In a non symmetric parameter range, the CNN system has basically two
different dynamic behavior: converge to a fixed-point or converge to limit
cycles. At this point, we divide the rest of the CNN study into two main
parts. In the first one we focus our efforts on some of the different problems
and applications for the CNN system converging to a fixed-point. In the
second, we reproduce a similar scheme but in the case where the CNN system
convergence to limit cycles.

The Lyapunov function has demonstrated to be an effective approach
to tackle the dependence on initial conditions problem. We have found the
parameter range where the system must work in order to converge to a final
output without any dependence, using the Lyapunov function as a quadratic
form of the outputs (y0, y1) while working inside the unit square.

The dynamic behavior of the entire CNN system is defined basically by
its initial conditions, its inputs, and the cell interconnect (weights). Due to

147

148 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

the CNN system architecture, there are two different choices for the CNN
inputs: the external ones ui or the internal ones at the beginning of the
process xi(0). We have seen that using the internal ones, we can reproduce
Bernoulli probability distributions on the output variables derived by the
Lyapunov function geometry. Yet, commonly external inputs are usually
chosen to find CNN applications like reproduce linear functions, Boolean
functions or solve classification problems.

We have studied the CNN system convergence in the two dimensional
case constructing a map relating the external inputs {u0, u1}, the final out-
puts {y0, y1} and the parameters of the CNN cloning template. This result
let us design templates performing an specific functional task, and let us un-
derstand the convergence problem. Nevertheless, we have found that there
are some restrictions on the CNN parameters such as the symmetry of the
cloning template, p+ = p− = p. Furthermore, from this study we have also
seen that not all the CNN parameters plays a direct role in the geometry
of the convergence map. From six parameters τ = (I, b0, b+, b−, p, s) needed
to design a symmetric CNN template, only four are significant: I, b+, b−, s.
Parameter b0 is only a scalar factor, and parameter s bigger than one plays
an indirect role on the network output.

Usually, there are two methods by which to select a template or weights.
Training the processor using back-propagation or genetic algorithms does not
work in this particular CNN case, so weights has to be determined off line.
Convergence map has given us a recipe to define templates performing an
specific task based on its geometry: lines inclines and intersection points.

To solve classification problems, sometimes a single template is not enough,
so the composition of different templates gives us the key point to tackle this
problem. We have seen that one template shall drive the system to one of
the four possible outputs of the system

S = {(1, 1), (−1, 1), (1,−1), (−1,−1)}.

Using these points as new inputs, a second template can be found in order
to obtain the desired outputs designing a new convergence map. The con-
vergence map will be useful in order to design template libraries to solve
different classification problems. Moreover, we have seen that the problems
that can be solved using the convergence map, are slightly more complex
than the linearly separable ones. In fact, we may speak of piecewise-linear
separable problems.

From the convergence map, we have found CNN parameters performing
an input-output functional relation. Due to the fact that the final states set
is discrete S, this correspondence can be thought as a classification problem

9.1. CONCLUSIONS 149

where each one of the different classes is defined by the different final states,
which will depend on the parameters of the CNN system. Given four subsets,
they can be classified into one, two, three or four different classes. From this
analysis we have established which input-output combinations are possible
and which are not. A a new recipe to design CNN templates performing this
task depending on only three parameters b0, p, s has been found, and also the
minimum number of necessary templates to solve a particular classification
problem.

However, like other simple neural networks, functions that can be im-
plemented are limited. We have seen that that a two neuron CNN is able
to reproduce any Boolean function defined as F (u0, u1) = yi, even the non-
linear function XOR by composing two different templates. We may say then
that using these functions, a two neuron CNN is a universal machine. This
universal property is missing when we try to reproduce Boolean functions of
the form F (u0, u1) = (y0, y1).

Moreover, we have tried to reproduce the header action of a universal
Turing machine without success. On higher dimensions, CNN processors has
been one of the simplest realization of Conway’s Game of Life and Wolfram’s
Rule 110, known universal Turing machine. For further investigations, one
may ask which should be the minimal number of neurons needed in a CNN
to be a universal Turing machine.

On the other hand, complex dynamics of Cellular Neural Networks let
us show all forms of stable dynamical behavior. They may converge to a
fixed-point or a limit cycle or evolve along a chaotic trajectory. In the au-
tonomous two neuron CNN case, there are no chaotic trajectories yet there
exist different limit cycles. We have done an exhaustive study relating CNN
parameter values to dynamical behavior. A systematic classification of this
dynamics has been studied, and we have found sufficient conditions for the
existence of limit cycles in the general case.

Six different kinds of limit cycles had been found depending on the phase
plane regions where they pass across. This result may prove useful on clas-
sification problems. Each limit cycle kind is related to a region in parameter
space. This let us design CNNs whose outputs are only limit cycles, choos-
ing the cloning template parameters adequately. Furthermore, adding points
S where the system converge in the complete stable cases, generic CNN can
show up to ten possible outputs namely six limit cycles and four fixed points.
Classification problems with ten or less classes might be solved by mapping
a general CNN parameter space to each one of these closed curves. However,
a careful analysis on initial conditions would be required. Moreover, the ex-
istence and kind of limit cycles in the non autonomous case should also be
studied.

150 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

Periodic behavior related with limit cycles, and the relation between limit
cycles period and CNN parameters, is an interesting subject to study. For
limit cycles around the central region (unit square), in the antisymmetric
case, we have found the period formula depending on CNN parameters. We
may think then on the possible uses of this result for further investigations
just like for example, use limit cycles to reproduce a clock signal, or use
it to store individual memories. We have started to study the problem to
reproduce clock signals for a particular parameter range where the limit cycle
period can be computed.

Finally, we have compared the CNN dynamic behavior using different
output functions, hyperbolic tangent and piecewise linear function. Many
times in the literature, hyperbolic tangent is used instead of piecewise linear
function because of its differentiability along the plane. In some particular
regions in the parameter space, they exhibit a different number of equilibrium
points. Hence, for theoretical results, hyperbolic tangent should not be used
instead of piecewise linear function. A priori, this result seems to be irrelevant
because working in certain parameter range, both systems exhibit similar
dynamic behavior. Nevertheless, for future limit cycles applications, this
result could be relevant because both systems exhibit different convergence
sets in some particular regions.

9.2 Final discussion: The present and the fu-

ture

In this theoretical dissertation, a detailed study of the two neuron Cellular
Neural Network has been attempted. Initially, we would not expect singular
results from the analysis of such a simple system, since, for instance, the
use of constant inputs forbids the presence of chaotic behaviors. However,
the system has pleasantly shown a rich set of features so as to exhaust the
present thesis.

A Cellular Neural Network is a biologically inspired system where com-
putation emerges from a collection of simple nonlinear locally coupled cells
[20]. The system complexity lies on its non linearity but also on the large
number of freedom of freedom. The study of a simple case, such as the two
neuron one, sheds the focus on set one of those aspects, the non linearity,
and allows the application of analytical techniques. The results should con-
tain the essence of the system nonlinearity and points towards the dues to
understanding of the full real system. As such, this thesis is a piece of a large
program, a ground state of first step. In this case we are not expecting to

9.2. FINAL DISCUSSION: THE PRESENT AND THE FUTURE 151

provide a large number of applications out of the thesis results. We want to
completely explore and understand two neuron Cellular Neural Networks.

Mathematics behind the CNN system is one of the main tools we have
investigated. They establish the fundamentals of the network dynamic be-
havior. Moreover, they gives us the basis to find some possible CNN ap-
plications. For instance, the convergence map obtained from the stability
analysis and the B-transformation, offers an alternative way to find cloning
templates, while having an input-output functional relation or a classifica-
tion problem. Other interesting applications derived from limit cycles, are
the possibility to generate clock signals with a wide range of frequencies, or
use them to increase the number of classification sets. These results may be
useful for practical applications or electronics devices yet we haven’t found
them explicitly.

On these grounds, future work should be the generalization of some re-
sults obtained either to one dimensional CNN systems with n cells or to
higher dimensional Cellular Neural Networks. The idea of solving the CNN
system in each region where it is linear, can also be used on higher dimen-
sions. In the symmetric case, a similar Lyapunov function can be found.
Diagonalize this system and scrutinize it in each of these regions, can show
up different local dynamic behaviors. Stability study on this way, could then
be extended. Another main idea that can be used in a a general case, is the
B-transformation. CNN system analysis is simplified if we group its external
influence. Therefore, the convergence map may be useful for a similar study
either on higher dimensions or on non constant inputs system. The con-
sequences of this idea will let us tackle different problems like reproducing
Boolean functions or solve classification problems. We have seen that not
every Boolean function can be performed, nor any classification problem can
be solved by a two neuron CNN. Study these applications on higher dimen-
sions can show up the characteristic limitations of CNNs like for example
study the universality problem. Yet one must be very careful on universal
definitions, a deep study on this grounds would also be really interesting in
order to describe intrinsic CNN properties.

On the other hand, limit cycles study using external inputs is a concrete
problem that can be extended. In this study, they have been found only
for the autonomous case. If external inputs are different from zero, general
dynamic behavior of the CNN system should be almost the same because
they do not change equilibrium points kind but only its position on the
plane. This should be done in order to completely close the limit cycles
classification problem. Moreover, limit cycles applications like reproducing
clock signals or use it as an individual memory is a very interesting subject to
study on further investigations. A deeper study of period function in order to

152 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

locate its minima position, and map the period sensitivity against parameter
variations should be done.

Nevertheless, some other results may not be extended because they are
only valid in the plane. As an example, the way we have found limit cy-
cles using the idea of Poincaré-Bendixson theorem does not hold on higher
dimensions. We should then think another way to demonstrate limit cycles
existence yet the essence of this work should help to find them.

In addition, the two neuron CNN study is not completely closed yet. The
system response using non constant external inputs, can open new problems
to take on as a challenge. Chaotic behavior may be expected and all the
chaos consequences [77]. General CNN cases, CNNs with functional external
inputs, or CNN limits from a universal point of view, are attractive candi-
dates for future work. We hope the results explained in this thesis to be
useful in order to guide us traveling along CNNs roads.

”Roads go ever ever on,
under cloud and under star,

yet feet that wandering have gone,
turn at last to home afar”

J.R.R.Tolkien

Part VI

Appendix

153

Appendix A

Convergence map

The Lyapunov function obtained while studying CNN stability has let
us construct a map relating the CNN the external inputs, the outputs, and
weight parameters. Working with variables u�, which concentrate the external
influence of each neuron, we have found a simple model of this map. Via
the B-transformation, the original convergence map in the u-plane can be
found by mapping each one of the simple model principal elements. These
principal elements are basically two intersection points P , and five boundary
lines (Figure 4.3). There are four convergence regions limited by two or three
of these boundary lines.

In this section we are going to study the consistence convergence regions
in u-plane. To do it, we will use B-transformation (2.3) defined as T (u0, u1) =
(u�0, u

�
1) in order to study the intersection points preimage T−1(P �) = P . For

sake of clarity we have used notation R(i), i = 1, 2, 3, 4 to denote the different
convergence regions L(i, j), for (i, j) ∈ S. These points (±1,±1) are renamed
as (+1, +1) ≡ 1, (+1,−1) ≡ 2, (−1,−1) ≡ 3, and (−1, +1) ≡ 4.

Convergence regions for p < 0

Convergence region R(1) = L(+1, +1):

T−1 : R2
{u�0,u�1}

→ R2
{u0,u1}





u�0 ≥ −p

u�1 ≥ −p

u�0 + u�1 ≥ 0






b0u0 + b+u1 + I ≥ −p

b−u0 + b0u1 + I ≥ −p

(b0 + b−)u0 + (b+ + b0)u1 + 2I ≥ 0

To study the intersection point position in u-plane, we intersect bound-
ary lines b0u0 + b+u1 + I = −p and b−u0 + b0u1 + I = −p obtaining

155

156 APPENDIX A. CONVERGENCE MAP

�
− (I+p)(b0−b+)

detB
,− (I+p)(b0−b−)

detB

�
.

For this correspondence to be consistent, this point should be inside
region defined by (b0 + b−)u0 + (b+ + b0)u1 + 2I ≥ 00 just like the
correspondent one in {u�0, u�1}-plane.

(b0 + b−)

�
−(I + p)(b0 − b+)

detB

�
+(b+ + b0)

�
−(I + p)(b0 − b−)

detB

�
+2I =

= −(I + p)

detB
(2b2

0 − 2b+b−) + 2I = −2(I + p) + 2I = −2p > 0

because we work with a negative parameter p.

Convergence region R(3) = L(−1,−1): A similar study can be done in
this case. Intersection point obtained from boundary lines b0u0+b+u1+
I = p and b−u0 + b0u1 + I = −p, must lay on region defined by (b0 +
b−)u0 + (b+ + b0)u1 + 2I ≤ 0.

T−1 R2
{u�0,u�1}

→ R2
{u0,u1}





u�0 ≤ p

u�1 ≤ p

u�0 + u�1 ≤ 0






b0u0 + b+u1 + I ≤ p

b−u0 + b0u1 + I ≤ p

(b0 + b−)u0 + (b+ + b0)u1 + 2I ≤ 0

(b0 +b−)

�
−(p− I)(b+ − b0)

detB

�
+(b+ +b0)

�
−(p− I)(b− − b0)

detB

�
+2I =

= −(p− I)

detB
(2b+b− − 2b2

0) + 2I = 2(p− I) + 2I = 2p < 0

because p < 0.

To continue studying the consistence of the convergence regions, let us
tackle now this problem by studying some points position. Taking an inte-
rior point inside one region in u�-plane, via using the B-transformation, we
find its preimage. The point obtained, should be inside the correspondent
region in the u-plane. From the boundary lines conditions, we can check this
consistence for any point.

For instance, let us take point (−p + 1,−p + 1) ∈ L(+1, +1) in u�-plane.
Its image T (−p + 1,−p + 1) must be inside the corresponding convergence
region R(1) in u-plane.

�
−p + 1
−p + 1

�
=

�
b0 b+

b− b0

� �
x(−p+1,−p+1)

y(−p+1,−p+1)

�
+

�
I

I

�

157

�
x(−p+1,−p+1)

y(−p+1,−p+1)

�
=

p + I − 1

det B

�
b+ − b0

b− − b0

�

To see the convergence map consistence, we will see that T (−p+1,−p+1)
fulfill the necessary conditions to be placed inside convergence region R(1).

1. u�0 + u�1 ≥ 0,
(b0 + b−)u0 + (b+ + b0)u1 + 2I =

1

det B
(b0+b−)(b+−b0)(I+p−1)+

1

det B
(b++b0)(b−−b0)(I+p−1)+2I =

= −2p + 2 ≥ 0 because p < 0
√

2. u�0 ≥ −p,
b0u0 + b+u1 + I =

b0

det B
(b+ − b0)(p + I − 1) +

b+

det B
(b− − b0)(p + I − 1) + I =

= −p + 1 ≥ −p
√

3. u�1 ≥ −p,
b−u0 + b0u1 + I =

b−

det B
(b+ − b0)(p + I − 1) +

b0

det B
(b− − b0)(p + I − 1) + I =

= −p + 1 ≥ −p
√

Let us take now point (p− 1, p− 1) ∈ L(−1,−1) in order to study if its
image T (p− 1, p− 1) is inside the corresponding convergence region R(3).

�
p− 1
p− 1

�
=

�
b0 b+

b− b0

� �
x(p−1,p−1)

y(p−1,p−1)

�
+

�
I

I

�

�
x(p−1,p−1)

y(p−1,p−1)

�
=

p− I − 1

det B

�
b0 − b+

b0 − b−

�

1. u�0 + u�1 ≤ 0,
(b0 + b−)u0 + (b+ + b0)u1 + 2I =

1

det B
(b0+b−)(b0−b+)(p−I−1)+

1

det B
(b++b0)(b0−b−)(p−I−1)+2I =

= 2p− 2 ≤ 0 because p < 0
√

158 APPENDIX A. CONVERGENCE MAP

2. u�0 ≤ p,
b0u0 + b+u1 + I =

b0

det B
(b0 − b+)(p− I − 1) +

b+

det B
(b0 − b−)(p− I − 1) + I =

= p− 1 ≤ p
√

3. u�1 ≤ p,
b−u0 + b0u1 + I =

b−

det B
(b0 − b+)(p− I − 1) +

b0

det B
(b0 − b−)(p− I − 1) + I =

= p− 1 ≤ p
√

Let us take point (p,−p) ∈ L(−1, +1) in order to study if its image
T (p,−p) is inside the new convergence region R(4) in u-plane.

�
p

−p

�
=

�
b0 b+

b− b0

� �
x(p,−p)

y(p,−p)

�
+

�
I

I

�

�
x(p,−p)

y(p,−p)

�
=

1

det B

�
p(b+ + b0) + I(b+ − b0)
−p(b− + b0) + I(b− − b0)

�

Now let us see the consistence:

1. u�0 − u�1 ≤ 0,
(b0 − b−)u0 + (b+ − b0)u1 =

=
(b0 − b−)

det B
(p(b+ − b0) + I(b+ − b0))+

(b+ − b0)

det B
(−p(b− + b0) + I(b− − b0)) =

= 2p ≤ 0 because p < 0
√

2. u�0 ≤ −p,
b0u0 + b+u1 + I =

=
b0

det B
(p(b+ + b0) + I(b+ − b0))+

b+

det B
(−p(b− + b0) + I(b− − b0))+I =

= p ≤ −p because p < 0
√

3. u�1 ≥ p,
b−u0 + b0u1 + I =

b−

det B
(p(b+ + b0) + I(b+ − b0))+

b0

det B
(−p(b− + b0) + I(b− − b0))+I =

= −p ≥ p
√

159

Finally, let us take point (−p, p) ∈ L(+1,−1), to proceed as we have
explained before in order to see the convergence map consistence.

�
−p

p

�
=

�
b0 b+

b− b0

� �
x(−p,p))

y(−p,p)

�
+

�
I

I

�

�
x(−p,p))

y(−p,p)

�
=

1

det B

�
b0 −b+

−b− b0

� �
−p− I

p− I

�
=

=
1

det B

�
−p(b+ + b0) + I(b+ − b0)
p(b− + b0) + I(b− − b0)

�

Now let us see the consistence:

1. u�0 − u�1 ≥ 0,
(b0 − b−)u0 + (b+ − b0)u1 =

=
(b0 − b−)

det B
(−p(b+ − b0) + I(b+ − b0))+

(b+ − b0)

det B
(p(b− + b0) + I(b− − b0)) =

= −2p ≥ 0 because p < 0
√

2. u�0 ≤ p,
b0u0 + b+u1 + I =

=
b0

det B
(−p(b+ + b0) + I(b+ − b0))+

b+

det B
(p(b− + b0) + I(b− − b0))+I =

= −p ≥ p because p < 0
√

3. u�1 ≤ −p,
b−u0 + b0u1 + I =

b−

det B
(−p(b+ + b0) + I(b+ − b0))+

b0

det B
(p(b− + b0) + I(b− − b0))+I =

= p ≤ −p
√

Convergence regions for p > 0.

Convergence region R(4) = L(−1, +1): Inside convergence region L(−1, +1)
, let us see if the intersection point between lines b0u0 + b+u1 + I = −p

and b−u0 + b0u1 + I = p is inside the convergence region R(4) defined
by (b0 − b−)u0 + (b+ − b0)u1 ≤ 0. Intersection point of the first two
lines is:

(x, y) =

�
−b0(p + I)− b+(p− I)

detB
,
b0(p− I) + b−(p + I)

det B

�

160 APPENDIX A. CONVERGENCE MAP

(b0 − b−)
−b0(p + I)− b+(p− I)

detB
+ (b+ − b0)

b0(p− I) + b−(p + I)

det B
=

=
(p + I)(−b2

0 + b0b− + b−b+ − b0b−) + (p− I)(−b0b+ + b+b− − b2
0 + b0b+)

det B
=

=
−2p det B

det B
= −2p ≤ 0

because p > 0.

Convergence region R(2) = L(+1,−1): Inside convergence region L(+1,−1)
, let us study again if the intersection point of b0u0 + b+u1 + I = p and
b−u0 + b0u1 + I = −p is inside the convergence region R(2) defined by
(b0 − b−)u0 + (b+ − b0)u1 ≥ 0. Intersection point in this case is:

(x, y) =

�
b0(p− I) + b+(p + I)

det B
,
−b0(p + I)− b−(p− I)

det B

�

(b0 − b−)
b0(p− I) + b+(p + I)

det B
+ (b+ − b0)

−b0(p + I)− b−(p− I)

det B
=

=
(p + I)(b2

0 − b0b+ − b−b+ + b0b+) + (p− I)(b0b+ − b+b− + b2
0 − b0b+)

det B
=

=
2p det B

det B
= 2p ≥ 0

because p > 0.

To continue studying the convergence regions consistence, we will take
any point P inside one region in order to see where does its image T (P) goes
under the B-transformation. Taking point (p, p) ∈ L(+1, +1) in u�-plane, let
us study if its image T (p, p) is inside region R(1).

�
p

p

�
=

�
b0 b+

b− b0

� �
x(p,p)

y(p,p)

�
+

�
I

I

�

�
x(p,p)

y(p,p)

�
=

1

det B

�
b0 −b+

−b− b0

� �
p− I

p− I

�
=

p− I

det B

�
b0 − b+

b0 − b−

�

Now let us see the consistence:

1. (b0 − b−)u0 + (b+ − b0)u1 + 2I ≥ 0,

(b0 + b−)u0 + (b+ + b0)u1 + 2I =

p− I

det B
(b0 + b−)(b0 − b+) +

p− I

det B
(b+ + b0)(b0 − b−) + 2I =

= 2p ≥ 0 because p > 0
√

161

2. b0u0 + b+u1 + I ≥ −p,

b0u0 + b+u1 + I =

b0

det B
(b0 − b+)(p− I) +

b+

det B
(b0 − b−)(p− I) + I =

= p ≥ −p
√

3. b−u0 + b0u1 + I ≥ −p,

b−u0 + b0u1 + I =

b−

det B
(b0 − b+)(p− I) +

b0

det B
(b0 − b−)(p− I) + I =

= p ≥ −p
√

A similar study can be done with point (−p,−p) ∈ L(−1,−1) in u�-plane.
Its image T (−p,−p) must be inside convergence region R(3).

�
−p

−p

�
=

�
b0 b+

b− b0

� �
x(−p,−p)

y(−p,−p)

�
+

�
I

I

�

�
x(−p,−p)

y(−p,−p)

�
=

1

det B

�
b0 −b+

−b− b0

� �
−p− I

−p− I

�
=

p + I

det B

�
b+ − b0

b− − b0

�

Now let us see the consistence:

1. (b0 − b−)u0 + (b+ − b0)u1 + 2I ≤ 0,

(b0 + b−)u0 + (b+ + b0)u1 + 2I =

p + I

det B
(b0 + b−)(b+ − b0) +

p + I

det B
(b+ + b0)(b− − b0) + 2I =

= −2p ≤ 0 because p > 0
√

2. b0u0 + b+u1 ≤ p,
b0u0 + b+u1 + I =

b0

det B
(b+ − b0)(p + I) +

b+

det B
(b− − b0)(p + I) + I =

= −p ≤ p
√

162 APPENDIX A. CONVERGENCE MAP

3. b−u0 + b0u1 + I ≤ p,
b−u0 + b0u1 + I =

b−

det B
(b+ − b0)(p + I) +

b0

det B
(b− − b0)(p + I) + I =

= −p ≤ p
√

Let us take point (−p− 1, p + 1) ∈ L(−1, +1) in order to check its image
T (−p− 1, p + 1). It must be inside convergence region R(4).

�
−p− 1
p + 1

�
=

�
b0 b+

b− b0

� �
x(−p−1,p+1)

y(−p−1,p+1)

�
+

�
I

I

�

�
x(−p−1,p+1)

y(−p−1,p+1)

�
=

1

det B

�
b0 −b+

−b− b0

� �
−p− I − 1
p− I + 1

�
=

=
1

det B

�
−(p + 1)(b+ + b0) + I(b+ − b0)
(p + 1)(b− + b0) + I(b− − b0)

�

Now let us see the consistence:

1. (b0 − b−)u0 + (b+ − b0)u1 ≤ 0,

(b0 − b−)u0 + (b+ − b0)u1 =

=
1

det B
((p + 1)[−(b+ + b0)(b0 − b−) + (b+ − b0)(b− + b0)] + I) =

= −2(p + 1) ≤ 0 because p > 0
√

2. b0u0 + b+u1 + I ≤ −p,

b0u0 + b+u1 + I =

=
b0

det B
(−(b+ + b0)(p + 1) + I(b+ − b0)) +

+
b+

det B
((b− + b0)(p + 1) + I(b− − b0)) + I =

= −p− 1 ≤ −p because p > 0
√

3. b−u0 + b0u1 + I ≥ p,
b−u0 + b0u1 + I =

b−

det B
(−(b+ + b0)(p + 1) + I(b+ − b0)) +

+
b0

det B
((b− + b0)(p + 1) + I(b− − b0)) + I =

= p + 1 ≥ p
√

163

Finally, let us take point (p + 1,−p − 1) ∈ L(+1,−1). Its image T (p +
1,−p− 1) must be inside convergence region R(2).

�
p + 1
−p− 1

�
=

�
b0 b+

b− b0

� �
x(p+1,−p−1))

y(p+1,−p−1)

�
+

�
I

I

�

�
x(p+1,−p−1))

y(p+1,−p−1)

�
=

1

det B

�
b0 −b+

−b− b0

� �
p + 1− I

−p− 1− I

�
=

=
1

det B

�
(b+ + b0)(p + 1) + I(b+ − b0)
−(b− + b0)(p + 1) + I(b− − b0)

�

Now let us see the consistence:

1. (b0 − b−)u0 + (b+ − b0)u1 ≥ 0,

(b0 − b−)u0 + (b+ − b0)u1 =

=
1

det B
([(b+ + b0)(b0 − b−)− (b+ − b0)(b− + b0)](p + 1) + 0I) =

= 2(p + 1) ≥ 0 because p > 0
√

2. b0u0 + b+u1 + I ≥ p,
b0u0 + b+u1 + I =

=
b0

det B
((b+ + b0)(p + 1) + I(b+ − b0)) +

+
b+

det B
(−(b− + b0)(p + 1) + I(b− − b0)) + I =

= p + 1 ≥ p because p > 0
√

3. b−u0 + b0u1 + I ≤ −p,

b−u0 + b0u1 + I =

b−

det B
((b+ + b0)(p + 1) + I(b+ − b0)) +

+
b0

det B
(−(b− + b0)(p + 1) + I(b− − b0)) + I =

= −p− 1 ≤ −p
√

164 APPENDIX A. CONVERGENCE MAP

Appendix B

Input-output relations

In this Appendix we summarize the different convergence study made for
parameter p > 0 and p < 0 respectively. We have classified the different
possible CNN outputs into eight different cases. Case 1 where B(1, 1) =
(1, 1), p > 0 has been explained before. We describe now the remaining
cases. To describe the input-output relations, we use the two row notation
in order to clarify the results.

At last, we summarize the different convergence sets obtained with their
correspondent parameter conditions (Tables B.11, B.12). We have classified
them depending on the different number of output values where a given
set can converge. Some of them can be obtained directly while the rest
have been found from the composition of two elements. Of course, different
element compositions let us find a particular input-output relation. We have
described in Table B.13 each element using one possible element combination.
The rest can be seen in different tables where we list all the different element
compositions.

Case 2

�
1 2 3 4
2 ∗ 4 ∗

�
p > 0

For a positive parameter p, if B(1, 1) = (1,−1) then B(−1,−1) = (−1, 1)
for parameters

I = 0, b+ = 1− b0, b− = −1− b0.

Point (−1,−1) can not converge anywhere else because there are no param-
eters fulfilling the equations obtained. For instance, if B(−1,−1) = (1, 1),
parameters must fulfill equations (B.1), and so parameter I must be equal

165

166 APPENDIX B. INPUT-OUTPUT RELATIONS

to 1 and 0. 




b0 + b+ + I = 1
−b0 − b+ + I = 1
b− + b0 + I = −1
−b− − b0 + I = 1

(B.1)

Possible convergence outputs for (−1, 1) and (1,−1) are found solving the
system equations obtained by B(−1, 1) = (±1,±1) and B(1,−1) = (±1,±1).
Using the convergence map for parameter p > 0, we find parameter conditions
obtained imposing the image point to be inside a convergence region. For
instance, let us take B(1,−1) = (−1 + 2b0,−1− 2b0).

• B(1,−1) ∈ R(1) ⇔






−1 + 2b0 > −p

−1− 2b0 > −p

−1− 2b0 > 1− 2b0

⇔ −1 > 1⊗

• B(1,−1) ∈ R(2) ⇔
�

−1 + 2b0 > p

−1− 2b0 < −p
⇔ p < min{±1 + 2b0} =

−1 + 2b0

• B(1,−1) ∈ R(3) ⇔






−1 + 2b0 < p

−1− 2b0 < p

−1− 2b0 < 1− 2b0

⇔ p > max{−1 ± 2b0}

• B(1,−1) ∈ R(4) ⇔
�
−1 + 2b0 < −p

−1− 2b0 > p
⇔ p < min{±1 − 2b0} =

−1− 2b0

In a similar way, we study B(−1, 1) = (1− 2b0, 1 + 2b0).

• B(−1, 1) ∈ R(1) ⇔ p > max{−1− 2b0,−1 + 2b0}

• B(−1, 1) ∈ R(2) ⇔ p < min{−1− 2b0, 1− 2b0} = −1− 2b0

• B(−1, 1) ∈ R(3)×

• B(−1, 1) ∈ R(4) ⇔ p < min{−1 + 2b0, 1 + 2b0} = −1 + 2b0

The results obtained are summarized in Table B.1.

167

(1,−1) (−1, 1) parameter conditions two row notation

R(3) R(1) p > max{−1− 2b0,−1 + 2b0}
�

1 2 3 4
2 3 4 1

�

R(2) R(4) p < −1 + 2b0

�
1 2 3 4
2 2 4 4

�

R(4) R(2) p < −1− 2b0

�
1 2 3 4
2 4 4 2

�

Table B.1: Case 2. Convergence study for case where B(−1,−1) = (−1, 1)
and p > 0, I = 0, b+ = 1− b0, b− = −1− b0.

Case 3

�
1 2 3 4
3 ∗ 1 ∗

� �
1 2 3 4
3 ∗ 3 ∗

�
p > 0

If B(1, 1) = (−1,−1) and p > 0, then B(−1,−1) = (1, 1) for parameters,

I = 0, b+ = −1− b0, b− = −1,−b0,

or B(−1,−1) = (−1,−1) for parameters

I = −1, b+ = −b0, b− = −b0.

In the first case, points are located on a boundary line so, we translate them
(±1,±1) + (ε, ε) obtaining the same parameter values but I = ε. Possible
convergence outputs for (−1, 1) and (1,−1) are summarized in Tables B.2,
B.3.

(1,−1) (−1, 1) parameter conditions two row notation

R(3) R(3) p > max{−1− 2b0,−1 + 2b0}
�

1 2 3 4
3 3 3 3

�

R(2) R(4) p < −1 + 2b0

�
1 2 3 4
3 2 3 4

�

R(4) R(2) p < −1− 2b0

�
1 2 3 4
3 4 3 2

�

Table B.2: Case 3. Convergence study for case where B(−1,−1) = (−1,−1)
and p > 0, I = −1, b+ = b− = −b0.

168 APPENDIX B. INPUT-OUTPUT RELATIONS

(1,−1) (−1, 1) parameter conditions two row notation

R(1) R(1) p > max{−1− 2b0 − ε, 1 + 2b0 − ε}, ε > 0

�
1 2 3 4
3 1 1 1

�

R(2) R(4) p < min{1 + 2b0 + ε, 1 + 2b0 − ε}
�

1 2 3 4
3 2 1 4

�

R(3) R(3) p > max{−1− 2b0 + ε, 1 + 2b0 + ε}, ε < 0

�
1 2 3 4
3 3 1 3

�

R(4) R(2) p < min{−1− 2b0 + ε,−1− 2b0 − ε}
�

1 2 3 4
3 4 1 2

�

Table B.3: Case 3. Convergence study for case where B(−1,−1) = (1, 1)
and p > 0, I = ε, b+ = b− = −1− b0.

Case 4

�
1 2 3 4
4 ∗ 2 ∗

�
p > 0

If B(1, 1) = (−1, 1) and p > 0, then B(−1,−1) = (1,−1) for parameters,

I = 0, b+ = −1− b0, b− = 1− b0.

Possible convergence outputs for (−1, 1) and (1,−1) are summarized in Table
B.4.

(1,−1) (−1, 1) parameter conditions two row notation

R(1) R(3) p > max{−1− 2b0,−1 + 2b0}
�

1 2 3 4
4 1 2 3

�

R(2) R(4) p < −1 + 2b0

�
1 2 3 4
4 2 2 4

�

R(4) R(2) p < −1− 2b0

�
1 2 3 4
4 4 2 2

�

Table B.4: Case 4. Convergence study for case where B(−1,−1) = (1,−1)
and p > 0, I = 0, b+ = −1− b0, b− = 1− b0.

Case 5

�
1 2 3 4
1 ∗ 1 ∗

� �
1 2 3 4
1 ∗ 3 ∗

�
p < 0

169

For a negative parameter p, if B(1, 1) = (1, 1) then B(−1,−1) = (1, 1) for
parameters

I = 1, b+ = −b0, b− = −b0,

and B(−1,−1) = (−1,−1) for parameters

I = 0, b+ = 1− b0, b− = 1− b0.

Now we study the possible convergence outputs for (−1, 1) and (1,−1).

(1,−1) (−1, 1) parameter conditions two row notation

R(1) R(1) p > max{−1− 2b0,−1 + 2b0}
�

1 2 3 4
1 1 1 1

�

R(2) R(4) p < −1 + 2b0, b0 > 0

�
1 2 3 4
1 2 1 4

�

R(4) R(2) p < −1− 2b0, b0 < 0

�
1 2 3 4
1 4 1 2

�

Table B.5: Case 5. Convergence study for case where B(−1,−1) = (1, 1)
and p < 0, I = 1, b+ = b− = −b0.

(1,−1) (−1, 1) parameter conditions two row notation

R(2) R(4) p < −1 + 2b0, b0 > 2

�
1 2 3 4
1 2 3 2

�

R(4) R(2) p < −1− 2b0, b0 < 2

�
1 2 3 4
1 4 3 2

�

Table B.6: Case 5. Convergence study for case where B(−1,−1) = (−1,−1)
and p < 0, I = 0, b+ = b− = 1− b0.

Case 6

�
1 2 3 4
2 ∗ 4 ∗

�
p < 0

If B(1, 1) = (1,−1) and p < 0, then B(−1,−1) = (−1, 1) for parameters

I = 0, b+ = 1− b0, b− = −1− b0.

The possible convergence outputs for (1,−1) and (−1, 1) are:

170 APPENDIX B. INPUT-OUTPUT RELATIONS

(1,−1) (−1, 1) parameter conditions two row notation

R(2) R(4) p < min{±(1− 2b0), 1 + 2b0}, b0 > 2

�
1 2 3 4
2 2 4 4

�

R(2) R(2) p < min{1− 2b0,±(1 + 2b0)}, b0 < 2

�
1 2 3 4
2 2 4 2

�

R(3) R(1) p > max{−1 + 2b0,−1− 2b0}
�

1 2 3 4
2 3 4 1

�

Table B.7: Case 6. Convergence study for case where B(−1,−1) = (−1, 1)
and p < 0, I = 0, b+ = 1− b0, b− = −1− b0.

Case 7

�
1 2 3 4
3 ∗ 1 ∗

� �
1 2 3 4
3 ∗ 3 ∗

�
p < 0

If B(1, 1) = (−1,−1) and p < 0, then B(−1,−1) = (1, 1) for parameters

I = 0, b+ = −1− b0, b− = −1− b0,

and B(−1,−1) = (−1,−1) for parameters

I = −1, b+ = −b0, b− = −b0.

The possible convergence outputs for (1,−1 and (−1, 1) are:

(1,−1) (−1, 1) parameter conditions two row notation

R(2) R(4) p < −1− 2b0, b0 < −2

�
1 2 3 4
3 2 1 4

�

R(4) R(2) p < 1 + 2b0, b0 > −2

�
1 2 3 4
3 4 1 2

�

Table B.8: Case 7. Convergence study for case where B(−1,−1) = (1, 1)
and p < 0, I = 0, b+ = b− = −1− b0.

Case 8

�
1 2 3 4
4 ∗ 2 ∗

�
p < 0

171

(1,−1) (−1, 1) parameter conditions two row notation

R(2) R(4) p < −1− 2b0, b0 < 2

�
1 2 3 4
3 2 3 4

�

R(4) R(2) p < −1 + 2b0, b0 > 2

�
1 2 3 4
3 4 3 2

�

R(3) R(3) p > max{−1 ± 2b0}
�

1 2 3 4
3 3 3 3

�

Table B.9: Case 7. Convergence study for case where B(−1,−1) = (−1,−1)
and p < 0, I = −1, b+ = b− = −b0.

If B(1, 1) = (−1, 1) and p < 0, then B(−1,−1) = (1,−1) for parameters

I = 0, b+ = −1− b0, b− = 1− b0.

The possible convergence outputs for (1,−1) and (−1, 1) are:

(1,−1) (−1, 1) parameter conditions two row notation

R(2) R(4) p < min{−1 + 2b0, 1 + 2b0}, b0 > 2

�
1 2 3 4
4 2 2 4

�

R(4) R(2) p < min{1− 2b0,−1− 2b0}, b0 < 2

�
1 2 3 4
4 4 2 2

�

R(1) R(1) p > max{−1 + 2b0,−1− 2b0}
�

1 2 3 4
4 1 2 1

�

Table B.10: Case 8. Convergence study for case where B(−1,−1) = (1,−1)
and p < 0, I = 0, b+ = −1− b0, b− = 1− b0.

172 APPENDIX B. INPUT-OUTPUT RELATIONS

S1 (aaaa) (1111) (2222) (3333) (4444)

S2 (aaba) (1131) (2242) (3313) (4424)
(abaa) (1311) (2422) (3133) (4244)
(abbb) (1333) (2444) (3111) (4222)
(aaab) (1113) (2224) (3331) (4442)
(aabb) (1133) (2244) (3311) (4422)
(abba) (1331) (2442) (3113) (4224)
(abab) (1212) (2121) (3131) (4141)

(1313) (2323) (3232) (4242)
(1414) (2424) (3434) (4343)

S3 (abac) (1214) (2123) (3234) (4143)
(1412) (2321) (3432) (4341)

(abcb) (1232) (2141) (3212) (4121)
(1434) (2343) (3414) (4323)

S4 (abcd) (1234) (2341) (3214) (4123)
(1432) (2143) (3412) (4321)

Table B.11: 64 elements converging to one, two, three and four output values.

173

(abcd) Ti (I, b0, b+, b−, p, s) restrictions s > 1

S1 (1111) T1 (1, b0,−b0,−b0, p, s) p < 0, p > max{−1 ± 2b0}
p > 0, p > max{−1 ± 2b0}

(3333) T2 (−1, b0,−b0,−b0, p, s) p > 0, p > max{−1 ± 2b0}
p < 0, p > max{−1 ± 2b0}

S2 (1131) T3 (ε, b0, 1− b0, 1− b0, p, s) p > max±(2b0 − 1)− ε

p > 0, ε > 0
(3313) T4 (ε, b0,−1− b0,−1− b0, p, s) p > max{±(1 + 2b0) + ε}

p > 0, ε < 0
(2242) T5 (0, b0, 1− b0, 1− b0, p, s) p < min{1− 2b0,±(1 + 2b0)}

p < 0, b0 < 2
(1333) T6 (ε, b0, 1− b0, 1− b0, p, s) p > max{±(1 + 2b0)− ε}

p > 0, ε < 0
(3111) T7 (ε, b0,−1− b0,−1− b0, p, s) p > max{±(1 + 2b0) + ε}

p > 0, ε > 0
(2244) T8 (0, b0, 1− b0,−1− b0, p, s) p > 0, p < −1 + 2b0

(0, b0, 1− b0,−1− b0, p, s) p < 0, p < 1− 2b0, b0 > 2
(4422) T9 (0, b0,−1− b0, 1− b0, p, s) p > 0, p < −1− 2b0

(0, b0,−1− b0, 1− b0, p, s) p < 0, p < min{±1− 2b0}, b0 < 2
(2442) T10 (0, b0, 1− b0,−1− b0, p, s) p > 0, p < −1− 2b0

(4224) T11 (0, b0,−1− b0, 1− b0, p, s) p > 0, p < −1 + 2b0

(0, b0,−1− b0, 1− b0, p, s) p < 0, p < min{±1 + 2b0}, b0 > 2
(3232) T12 (−1, b0,−b0,−b0, p, s) p < 0, p < min{±1− 2b0}, b0 < 0
(3434) T13 (−1, b0,−b0,−b0, p, s) p < 0, p < min{±1 + 2b0}, b0 > 0

S3 (1214) T14 (1, b0,−b0,−b0, p, s) p < 0, p < −1 + 2b0, b0 > 0
(1412) T15 (1, b0,−b0,−b0, p, s) p < 0, p < −1− 2b0, b0 < 0
(3432) T16 (−1, b0,−b0,−b0, p, s) p > 0, p < −1− 2b0

(3234) T17 (−1, b0,−b0,−b0, p, s) p > 0, p < −1 + 2b0

(4121) T18 (0, b0,−1− b0, 1− b0, p, s) p < 0, p > max{−1 ± 2b0}
(1232) T19 (0, b0, 1− b0, 1− b0, p, s) p < 0, p < −1− 2b0, b0 < 2

S4 (1432) T20 (ε, b0, 1− b0, 1− b0, p, s) p > 0, p < min{−1 + 2b0 ± ε}
(0, b0, 1− b0, 1− b0, p, s) p < 0, p < −1− 2b0, b0 < 2

(3412) T21 (ε, b0,−1− b0,−1− b0, p, s) p > 0, p < min{−(1 + 2b0) ± ε}
(0, b0,−1− b0,−1− b0, p, s) p < 0, p < 1 + 2b0, b0 > −2

(3214) T22 (ε, b0,−1− b0,−1− b0, p, s) p > 0, p < min{1 + 2b0 ± ε}
(0, b0,−1− b0,−1− b0, p, s) p < 0, p < −1− 2b0, b0 < −2

(4123) T23 (0, b0,−1− b0, 1− b0, p, s) p > 0, p > max{−1 ± 2b0}
(2341) T24 (0, b0, 1− b0,−1− b0, p, s) p > 0, p > max{±(1 + 2b0) + ε}

(0, b0, 1− b0, 1− b0, p, s) p < 0, p > max{−1 ± 2b0}
(1234) T25 (ε, b0, 1− b0, 1− b0, p, s) p > 0, p < min{1− 2b0 ± ε}

Table B.12: Input-output associations using a single template with their
parameter conditions.

174 APPENDIX B. INPUT-OUTPUT RELATIONS

S1 (aaaa) (2222) T26 = T5 ◦ T1 (4444) T27 = T9 ◦ T1

S2 (aaba) (4424) T28 = T11 ◦ T3

(abaa) (1311) T29 = T3 ◦ T24 (3133) T30 = T4 ◦ T24

(4244) T31 = T8 ◦ T17 (2422) T32 = T5 ◦ T24

(abbb) (2444) T33 = T10 ◦ T6 (4222) T34 = T11 ◦ T3

(aaab) (1113) T35 = T3 ◦ T23 (3331) T36 = T4 ◦ T23

(4442) T37 = T9 ◦ T14 (2224) T38 = T5 ◦ T23

(aabb) (1133) T39 = T23 ◦ T8 (3311) T40 = T24 ◦ T8

(abba) (1331) T41 = T23 ◦ T10 (3113) T42 = T24 ◦ T10

(abab) (1212) T43 = T14 ◦ T12 (1313) T44 = T4 ◦ T12

(1414) T45 = T15 ◦ T12 (2121) T46 = T18 ◦ T12

(2323) T47 = T23 ◦ T13 (2424) T48 = T11 ◦ T13

(3131) T49 = T3 ◦ T12 (4141) T50 = T24 ◦ T13

(4242) T51 = T5 ◦ T12 (4343) T52 = T24 ◦ T12

S3 (abac) (2123) T53 = T24 ◦ T15 (2321) T54 = T24 ◦ T14

(4143) T55 = T23 ◦ T14 (4341) T56 = T23 ◦ T15

(abcb) (1434) T57 = T20 ◦ T19 (2141) T58 = T14 ◦ T24

(2343) T59 = T16 ◦ T18 (3212) T60 = T19 ◦ T22

(3414) T61 = T23 ◦ T18 (4323) T62 = T16 ◦ T24

S4 (abcd) (2143) T63 = T24 ◦ T20 (4321) T64 = T20 ◦ T24

Table B.13: Input-output associations using template compositions.

175

T1 ◦ Tj = (1111) T2 ◦ Tj = (2222)

Tj ◦ T1 Tj ◦ T2

T1 (1111)(1111) = (1111) (1111)(2222) = (1111)
T2 (3333)(1111) = (3333) (3333)(2222) = (3333)
T3 (1131)(1111) = (1111) (1131)(2222) = (1111)
T4 (3313)(1111) = (3333) (3313)(2222) = (3333)
T5 (2242)(1111) = (2222) (2242)(2222) = (2222)
T6 (1333)(1111) = (1111) (1333)(2222) = (3333)
T7 (3111)(1111) = (3333) (3111)(2222) = (1111)
T8 (2244)(1111) = (2222) (2244)(2222) = (2222)
T9 (4422)(1111) = (4444) (4422)(2222) = (4444)
T10 (2442)(1111) = (2222) (2442)(2222) = (4444)
T11 (4224)(1111) = (4444) (4224)(2222) = (2222)
T12 (3232)(1111) = (3333) (3232)(2222) = (2222)
T13 (3434)(1111) = (3333) (3434)(2222) = (4444)
T14 (1214)(1111) = (1111) (1214)(2222) = (2222)
T15 (1412)(1111) = (1111) (1412)(2222) = (4444)
T16 (3432)(1111) = (3333) (3432)(2222) = (4444)
T17 (3234)(1111) = (3333) (3234)(2222) = (2222)
T18 (4121)(1111) = (4444) (4121)(2222) = (1111)
T19 (1232)(1111) = (1111) (1232)(2222) = (2222)
T20 (1432)(1111) = (1111) (1432)(2222) = (4444)
T21 (3412)(1111) = (3333) (3412)(2222) = (4444)
T22 (3214)(1111) = (3333) (3214)(2222) = (2222)
T23 (4123)(1111) = (4444) (4123)(2222) = (1111)
T24 (2341)(1111) = (2222) (2341)(2222) = (3333)
T25 (1234)(1111) = (1111) (1234)(2222) = (2222)

Table B.14: Composition study for T1-element and T2-element.

176 APPENDIX B. INPUT-OUTPUT RELATIONS

T3 ◦ Tj Tj ◦ T3

T3 (1131)(1131) = (1131) (1131)(1131) = (1131)
T4 (1131)(3313) = (3313) (3313)(1131) = (3313)
T5 (1131)(2242) = (1111) (2242)(1131) = (2242)
T6 (1131)(1333) = (1111) (1333)(1131) = (1131)
T7 (1131)(3111) = (3111) (3111)(1131) = (3313)
T8 (1131)(2244) = (1111) (2244)(1131) = (2242)
T9 (1131)(4422) = (1111) (4422)(1131) = (4424)
T10 (1131)(2442) = (1111) (2442)(1131) = (2242)
T11 (1131)(4224) = (1111) (4224)(1131) = (4424)
T12 (1131)(3232) = (3131) (3232)(1131) = (3333)
T13 (1131)(3434) = (3131) (3434)(1131) = (3333)
T14 (1131)(1214) = (1111) (1214)(1131) = (1111)
T15 (1131)(1412) = (1111) (1412)(1131) = (1111)
T16 (1131)(3432) = (3131) (3432)(1131) = (3333)
T17 (1131)(3234) = (3131) (3234)(1131) = (3333)
T18 (1131)(4121) = (1111) (4121)(1131) = (4424)
T19 (1131)(1232) = (1131) (1232)(1131) = (1131)
T20 (1131)(1432) = (1131) (1432)(1131) = (1131)
T21 (1131)(3412) = (3111) (3412)(1131) = (3313)
T22 (1131)(3214) = (3111) (3214)(1131) = (3313)
T23 (1131)(4123) = (1113) (4123)(1131) = (4424)
T24 (1131)(2341) = (1311) (2341)(1131) = (2242)
T25 (1131)(1234) = (1131) (1234)(1131) = (1131)

Table B.15: Composition study for T3-element.

177

T4 ◦ Tj Tj ◦ T4

T4 (3313)(3313) = (1131) (3313)(3313) = (1131)
T5 (2242)(3313) = (4424) (3313)(2242) = (3333)
T6 (1333)(3313) = (3313) (3313)(1333) = (3111)
T7 (3111)(3313) = (1131) (3313)(3111) = (1333)
T8 (2244)(3313) = (4424) (3313)(2244) = (3333)
T9 (4422)(3313) = (2242) (3313)(4422) = (3333)
T10 (2442)(3313) = (4424) (3313)(2442) = (3333)
T11 (4224)(3313) = (2242) (3313)(4224) = (3333)
T12 (3232)(3313) = (3333) (3313)(3232) = (1313)
T13 (3434)(3313) = (3333) (3313)(3434) = (1313)
T14 (1214)(3313) = (1111) (3313)(1214) = (3333)
T15 (1412)(3313) = (1111) (3313)(1412) = (3333)
T16 (3432)(3313) = (3333) (3313)(3432) = (1313)
T17 (3234)(3313) = (3333) (3313)(3234) = (1313)
T18 (4121)(3313) = (2242) (3313)(4121) = (3333)
T19 (1232)(3313) = (3313) (3313)(1232) = (3313)
T20 (1432)(3313) = (3313) (3313)(1432) = (3313)
T21 (3412)(3313) = (1131) (3313)(3412) = (1333)
T22 (3214)(3313) = (1131) (3313)(3214) = (1333)
T23 (4123)(3313) = (2242) (3313)(4123) = (3331)
T24 (2341)(3313) = (4424) (3313)(2341) = (3133)
T25 (1234)(3313) = (3313) (3313)(1234) = (3313)

Table B.16: Composition study for T4-element.

178 APPENDIX B. INPUT-OUTPUT RELATIONS

T5 ◦ Tj Tj ◦ T5

T5 (2242)(2242) = (2222) (2242)(2242) = (2222)
T6 (1333)(2242) = (3333) (2242)(1333) = (2444)
T7 (3111)(2242) = (1111) (2242)(3111) = (4222)
T8 (2244)(2242) = (2242) (2242)(2244) = (2222)
T9 (4422)(2242) = (4424) (2242)(4422) = (2222)
T10 (2442)(2242) = (4424) (2242)(2442) = (2222)
T11 (4224)(2242) = (2242) (2242)(4224) = (2222)
T12 (3232)(2242) = (2222) (2242)(3232) = (4242)
T13 (3434)(2242) = (4444) (2242)(3434) = (4242)
T14 (1214)(2242) = (2242) (2242)(1214) = (2222)
T15 (1412)(2242) = (4424) (2242)(1412) = (2222)
T16 (3432)(2242) = (4424) (2242)(3432) = (4242)
T17 (3234)(2242) = (2242) (2242)(3234) = (4242)
T18 (4121)(2242) = (1111) (2242)(4121) = (2222)
T19 (1232)(2242) = (2222) (2242)(1232) = (2242)
T20 (1432)(2242) = (4424) (2242)(1432) = (2242)
T21 (3412)(2242) = (4424) (2242)(3412) = (4222)
T22 (3214)(2242) = (2242) (2242)(3214) = (4222)
T23 (4123)(2242) = (1131) (2242)(4123) = (2224)
T24 (2341)(2242) = (3313) (2242)(2341) = (2422)
T25 (1234)(2242) = (2242) (2242)(1234) = (2242)

Table B.17: Composition study for T5-element.

179

T6 ◦ Tj Tj ◦ T6

T6 (1333)(1333) = (1333) (1333)(1333) = (1333)
T7 (1333)(3111) = (3111) (3111)(1333) = (3111)
T8 (1333)(2244) = (3333) (2244)(1333) = (2444)
T9 (1333)(4422) = (3333) (4422)(1333) = (4222)
T10 (1333)(2442) = (3333) (2442)(1333) = (2444)
T11 (1333)(4224) = (3333) (4224)(1333) = (4222)
T12 (1333)(3232) = (3333) (3232)(1333) = (3333)
T13 (1333)(3434) = (3333) (3434)(1333) = (3333)
T14 (1333)(1214) = (1313) (1214)(1333) = (1111)
T15 (1333)(1412) = (1313) (1412)(1333) = (1111)
T16 (1333)(3432) = (3333) (3432)(1333) = (3333)
T17 (1333)(3234) = (3333) (3234)(1333) = (3333)
T18 (1333)(4121) = (3131) (4121)(1333) = (4222)
T19 (1333)(1232) = (1333) (1232)(1333) = (1333)
T20 (1333)(1432) = (1333) (1432)(1333) = (1333)
T21 (1333)(3412) = (3313) (3412)(1333) = (3111)
T22 (1333)(3214) = (3313) (3214)(1333) = (3111)
T23 (1333)(4123) = (3133) (4123)(1333) = (4222)
T24 (1333)(2341) = (3331) (2341)(1333) = (2444)
T25 (1333)(1234) = (1333) (1234)(1333) = (1333)

Table B.18: Composition study for T6-element.

180 APPENDIX B. INPUT-OUTPUT RELATIONS

T7 ◦ Tj Tj ◦ T7

T7 (3111)(3111) = (1333) (3111)(3111) = (1333)
T8 (3111)(2244) = (3311) (2244)(3111) = (4222)
T9 (3111)(4422) = (1111) (4422)(3111) = (2444)
T10 (3111)(2442) = (1111) (2442)(3111) = (4222)
T11 (3111)(4224) = (1111) (4224)(3111) = (2444)
T12 (3111)(3232) = (1111) (3232)(3111) = (3333)
T13 (3111)(3434) = (1111) (3434)(3111) = (3333)
T14 (3111)(1214) = (3131) (1214)(3111) = (1111)
T15 (3111)(1412) = (3131) (1412)(3111) = (1111)
T16 (3111)(3432) = (1111) (3432)(3111) = (3333)
T17 (3111)(3234) = (1111) (3234)(3111) = (3333)
T18 (3111)(4121) = (1313) (4121)(3111) = (2444)
T19 (3111)(1232) = (3111) (1232)(3111) = (3111)
T20 (3111)(1432) = (1131) (1432)(3111) = (3111)
T21 (3111)(3412) = (1131) (3412)(3111) = (1333)
T22 (3111)(3214) = (1131) (3214)(3111) = (1333)
T23 (3111)(4123) = (1311) (4123)(3111) = (2444)
T24 (3111)(2341) = (1113) (2341)(3111) = (4222)
T25 (3111)(1234) = (3111) (1234)(3111) = (3111)

Table B.19: Composition study for T7-element.

181

T8 ◦ Tj Tj ◦ T8

T8 (2244)(2244) = (2244) (2244)(2244) = (2244)
T9 (2244)(4422) = (4422) (4422)(2244) = (4422)
T10 (2244)(2442) = (2442) (2442)(2244) = (4422)
T11 (2244)(4224) = (4224) (4224)(2244) = (2244)
T12 (2244)(3232) = (4242) (3232)(2244) = (2222)
T13 (2244)(3434) = (4444) (3434)(2244) = (4444)
T14 (2244)(1214) = (2224) (1214)(2244) = (2244)
T15 (2244)(1412) = (2422) (1412)(2244) = (4422)
T16 (2244)(3432) = (4442) (3432)(2244) = (4422)
T17 (2244)(3234) = (4244) (3234)(2244) = (2244)
T18 (2244)(4121) = (4222) (4121)(2244) = (1111)
T19 (2244)(1232) = (2242) (1232)(2244) = (2222)
T20 (2244)(1432) = (2442) (1432)(2244) = (4422)
T21 (2244)(3412) = (4422) (3412)(2244) = (4422)
T22 (2244)(3214) = (4224) (3214)(2244) = (2244)
T23 (2244)(4123) = (4224) (4123)(2244) = (1133)
T24 (2244)(2341) = (2442) (2341)(2244) = (3311)
T25 (2244)(1234) = (2244) (1234)(2244) = (2244)

Table B.20: Composition study for T8-element.

182 APPENDIX B. INPUT-OUTPUT RELATIONS

T9 ◦ Tj Tj ◦ T9

T9 (4422)(4422) = (2244) (4422)(4422) = (2244)
T10 (4422)(2442) = (4224) (2442)(4422) = (2244)
T11 (4422)(4224) = (2442) (4224)(4422) = (4422)
T12 (4422)(3232) = (2424) (3232)(4422) = (2222)
T13 (4422)(3434) = (2222) (3434)(4422) = (4444)
T14 (4422)(1214) = (4442) (1214)(4422) = (4422)
T15 (4422)(1412) = (4244) (1412)(4422) = (2244)
T16 (4422)(3432) = (2224) (3432)(4422) = (2244)
T17 (4422)(3234) = (2422) (3234)(4422) = (4422)
T18 (4422)(4121) = (2444) (4121)(4422) = (1111)
T19 (4422)(1232) = (4424) (1232)(4422) = (2222)
T20 (4422)(1432) = (4224) (1432)(4422) = (4422)
T21 (4422)(3412) = (2244) (3412)(4422) = (4422)
T22 (4422)(3214) = (2442) (3214)(4422) = (4422)
T23 (4422)(4123) = (2442) (4123)(4422) = (1133)
T24 (4422)(2341) = (4224) (2341)(4422) = (1133)
T25 (4422)(1234) = (4422) (1234)(4422) = (4422)

T10 ◦ Tj Tj ◦ T10

T10 (2442)(2442) = (2442) (2442)(2442) = (4224)
T11 (2442)(4224) = (2442) (4224)(2442) = (2442)
T12 (2442)(3232) = (4444) (3232)(2442) = (2222)
T13 (2442)(3434) = (4242) (3434)(2442) = (4444)
T14 (2442)(1214) = (2422) (1214)(2442) = (2442)
T15 (2442)(1412) = (2224) (1412)(2442) = (4224)
T16 (2442)(3432) = (4244) (3432)(2442) = (4224)
T17 (2442)(3234) = (4442) (3234)(2442) = (2442)
T18 (2442)(4121) = (2242) (4121)(2442) = (1111)
T19 (2442)(1232) = (2444) (1232)(2442) = (2222)
T20 (2442)(1432) = (2244) (1432)(2442) = (4224)
T21 (2442)(3412) = (4224) (3412)(2442) = (4224)
T22 (2442)(3214) = (4422) (3214)(2442) = (2442)
T23 (2442)(4123) = (2244) (4123)(2442) = (1331)
T24 (2442)(2341) = (4422) (2341)(2442) = (3113)
T25 (2442)(1234) = (2442) (1234)(2442) = (2442)

Table B.21: Composition study for T9 and T10-elements.

183

T11 ◦ Tj Tj ◦ T11

T11 (4224)(4224) = (4224) (4224)(4224) = (4224)
T12 (4224)(3232) = (2222) (3232)(4224) = (2222)
T13 (4224)(3434) = (2424) (3434)(4224) = (4444)
T14 (4224)(1214) = (4244) (1214)(4224) = (4224)
T15 (4224)(1412) = (4442) (1412)(4224) = (2442)
T16 (4224)(3432) = (2422) (3432)(4224) = (2442)
T17 (4224)(3234) = (2224) (3234)(4224) = (4224)
T18 (4224)(4121) = (4424) (4121)(4224) = (1111)
T19 (4224)(1232) = (4222) (1232)(4224) = (2222)
T20 (4224)(1432) = (4422) (1432)(4224) = (2442)
T21 (4224)(3412) = (2442) (3412)(4224) = (2442)
T22 (4224)(3214) = (2244) (3214)(4224) = (4224)
T23 (4224)(4123) = (4422) (4123)(4224) = (3113)
T24 (4224)(2341) = (2244) (2341)(4224) = (1331)
T25 (4224)(1234) = (4224) (1234)(4224) = (4224)

T12 ◦ Tj Tj ◦ T12

T12 (3232)(3232) = (3232) (3232)(3232) = (3232)
T13 (3232)(3434) = (3232) (3434)(3232) = (3434)
T14 (3232)(1214) = (3232) (1214)(3232) = (1212)
T15 (3232)(1412) = (3232) (1412)(3232) = (1414)
T16 (3232)(3432) = (3232) (3432)(3232) = (3434)
T17 (3232)(3234) = (3232) (3234)(3232) = (3232)
T18 (3232)(4121) = (2323) (4121)(3232) = (2121)
T19 (3232)(1232) = (3232) (1232)(3232) = (3232)
T20 (3232)(1432) = (3232) (1432)(3232) = (3434)
T21 (3232)(3412) = (3232) (3412)(3232) = (1414)
T22 (3232)(3214) = (3232) (3214)(3232) = (1212)
T23 (3232)(4123) = (2323) (4123)(3232) = (2121)
T24 (3232)(2341) = (2323) (2341)(3232) = (4343)
T25 (3232)(1234) = (3232) (1234)(3232) = (3232)

Table B.22: Composition study for T11 and T12-elements.

184 APPENDIX B. INPUT-OUTPUT RELATIONS

T13 ◦ Tj Tj ◦ T13

T13 (3434)(3434) = (3434) (3434)(3434) = (3434)
T14 (3434)(1214) = (3434) (1214)(3434) = (1414)
T15 (3434)(1412) = (3434) (1412)(3434) = (1212)
T16 (3434)(3432) = (3434) (3432)(3434) = (3232)
T17 (3434)(3234) = (3434) (3234)(3434) = (3434)
T18 (3434)(4121) = (4343) (4121)(3434) = (2121)
T19 (3434)(1232) = (3434) (1232)(3434) = (3232)
T20 (3434)(1432) = (3434) (1432)(3434) = (3232)
T21 (3434)(3412) = (3434) (3412)(3434) = (1212)
T22 (3434)(3214) = (3434) (3214)(3434) = (1414)
T23 (3434)(4123) = (4343) (4123)(3434) = (2323)
T24 (3434)(2341) = (4343) (2341)(3434) = (4141)
T25 (3434)(1234) = (3434) (1234)(3434) = (3434)

T14 ◦ Tj Tj ◦ T14

T14 (1214)(1214) = (1214) (1214)(1214) = (1214)
T15 (1214)(1412) = (1412) (1412)(1214) = (1412)
T16 (1214)(3432) = (1412) (3432)(1214) = (3432)
T17 (1214)(3234) = (1214) (3234)(1214) = (3234)
T18 (1214)(4121) = (4121) (4121)(1214) = (4141)
T19 (1214)(1232) = (1212) (1232)(1214) = (1212)
T20 (1214)(1432) = (1412) (1432)(1214) = (1412)
T21 (1214)(3412) = (1412) (3412)(1214) = (3432)
T22 (1214)(3214) = (1214) (3214)(1214) = (3234)
T23 (1214)(4123) = (4121) (4123)(1214) = (4143)
T24 (1214)(2341) = (2141) (2341)(1214) = (2321)
T25 (1214)(1234) = (1214) (1234)(1214) = (1214)

Table B.23: Composition study for T13 and T14-element.

185

T15 ◦ Tj Tj ◦ T15

T15 (1412)(1412) = (1214) (1412)(1412) = (1214)
T16 (1412)(3432) = (1214) (3432)(1412) = (3234)
T17 (1412)(3234) = (1412) (3234)(1412) = (3432)
T18 (1412)(4121) = (2141) (4121)(1412) = (4141)
T19 (1412)(1232) = (1414) (1232)(1412) = (1212)
T20 (1412)(1432) = (1214) (1432)(1412) = (1214)
T21 (1412)(3412) = (1214) (3412)(1412) = (3234)
T22 (1412)(3214) = (1412) (3214)(1412) = (3432)
T23 (1412)(4123) = (2141) (4123)(1412) = (4341)
T24 (1412)(2341) = (4121) (2341)(1412) = (2123)
T25 (1412)(1234) = (1412) (1234)(1412) = (1412)

T16 ◦ Tj Tj ◦ T16

T16 (3432)(3432) = (3234) (3432)(3432) = (3234)
T17 (3432)(3234) = (3432) (3234)(3432) = (3432)
T18 (3432)(4121) = (2343) (4121)(3432) = (2121)
T19 (3432)(1232) = (3434) (1232)(3432) = (3232)
T20 (3432)(1432) = (3234) (1432)(3432) = (3234)
T21 (3432)(3412) = (3234) (3412)(3432) = (1214)
T22 (3432)(3214) = (3432) (3214)(3432) = (1412)
T23 (3432)(4123) = (2343) (4123)(3432) = (2321)
T24 (3432)(2341) = (4323) (2341)(3432) = (4143)
T25 (3432)(1234) = (3432) (1234)(3432) = (3432)

Table B.24: Composition study for T15 and T16-elements.

186 APPENDIX B. INPUT-OUTPUT RELATIONS

T17 ◦ Tj Tj ◦ T17

T17 (3234)(3234) = (3234) (3234)(3234) = (3234)
T18 (3234)(4121) = (4323) (4121)(3234) = (2121)
T19 (3234)(1232) = (3232) (1232)(3234) = (3232)
T20 (3234)(1432) = (3432) (1432)(3234) = (3432)
T21 (3234)(3412) = (3432) (3412)(3234) = (1412)
T22 (3234)(3214) = (3234) (3214)(3234) = (1214)
T23 (3234)(4123) = (4323) (4123)(3234) = (2123)
T24 (3234)(2341) = (2343) (2341)(3234) = (4341)
T25 (3234)(1234) = (3234) (1234)(3234) = (3234)

T18 ◦ Tj Tj ◦ T18

T18 (4121)(4121) = (1414) (4121)(4121) = (1414)
T19 (4121)(1232) = (4121) (1232)(4121) = (2121)
T20 (4121)(1432) = (4121) (1432)(4121) = (2141)
T21 (4121)(3412) = (2141) (3412)(4121) = (2343)
T22 (4121)(3214) = (2142) (3214)(4121) = (4323)
T23 (4121)(4123) = (1412) (4123)(4121) = (3414)
T24 (4121)(2341) = (1214) (2341)(4121) = (1232)
T25 (4121)(1234) = (4121) (1234)(4121) = (4121)

T19 ◦ Tj Tj ◦ T19

T19 (1232)(1232) = (1232) (1232)(1232) = (1232)
T20 (1232)(1432) = (1232) (1432)(1232) = (1434)
T21 (1232)(3412) = (3212) (3412)(1232) = (3414)
T22 (1232)(3214) = (3212) (3214)(1232) = (3212)
T23 (1232)(4123) = (2123) (4123)(1232) = (4121)
T24 (1232)(2341) = (2321) (2341)(1232) = (2343)
T25 (1232)(1234) = (1232) (1234)(1232) = (1232)

Table B.25: Composition study for T17,T18 and T19-elements.

187

T20 ◦ Tj Tj ◦ T20

T20 (1432)(1432) = (1234) (1432)(1432) = (1234)
T21 (1432)(3412) = (3214) (3412)(1432) = (3214)
T22 (1432)(3214) = (3412) (3214)(1432) = (3412)
T23 (1432)(4123) = (2143) (4123)(1432) = (4321)
T24 (1432)(2341) = (4321) (2341)(1432) = (2143)
T25 (1432)(1234) = (1432) (1234)(1432) = (1432)

T21 ◦ Tj Tj ◦ T21

T21 (3412)(3412) = (1234) (3412)(3412) = (1234)
T22 (3412)(3214) = (1432) (3214)(3412) = (1432)
T23 (3412)(4123) = (2341) (4123)(3412) = (2341)
T24 (3412)(2341) = (4123) (2341)(3412) = (4123)
T25 (3412)(1234) = (3412) (1234)(3412) = (3412)

T22 ◦ Tj Tj ◦ T22

T22 (3214)(3214) = (1234) (3214)(3214) = (1234)
T23 (3214)(4123) = (4321) (4123)(3214) = (2143)
T24 (3214)(2341) = (2143) (2341)(3214) = (4321)
T25 (3214)(1234) = (3214) (1234)(3214) = (3214)

T23 ◦ Tj Tj ◦ T23

T23 (4123)(4123) = (3412) (4123)(4123) = (3412)
T24 (4123)(2341) = (1234) (2341)(4123) = (1234)
T25 (4123)(1234) = (4123) (1234)(4123) = (4123)

T24 ◦ Tj Tj ◦ T24

T24 (2341)(2341) = (3412) (2341)(2341) = (3412)
T25 (2341)(1234) = (2341) (1234)(2341) = (2341)

Table B.26: Composition study for T20, 21,T22, T23 and T24-elements.

188 APPENDIX B. INPUT-OUTPUT RELATIONS

Appendix C

Wolfram’s 7-4 Universal Turing

machine

In this section we will study all the different possible choices between
colors and S-points fulfilling state s5 of the universal Turing machine. This
particular element is the only one which can be written as a permutation
and so, it is the key point in order to look for every possible color-points
association. At s5, two colors are interchanged while the other ones remain
fix. There are eight different options for this choice. The first one has been
already studied.

Figure C.1: Different possible choices between colors and states of the uni-
versal Turing machine.

Let us now see in each particular case, that a two neuron CNN can not
reproduce all states si, i = 1 . . . 7 at once. For example state s1 which

189

190 APPENDIX C. WOLFRAM’S 7-4 UNIVERSAL TURING MACHINE

converges to three different output values in all the different choices, does not
not belong to S3 where elements are (abac) or (abcb). We can conclude then
that a two neuron CNN can not reproduce the header action of a universal
Turing machine.

choice 2 choice 3 choice 4 choice 5 choice 6 choice 7 choice 8
s1 (4412) (3112) (3312) (3422) (3442) (3411) (3413)

s2 (3212) (3432) (1412) (3414) (3212) (3432) (1412)
s3 (3414) (1412) (3432) (3212) (3414) (1412) (3432)
s4 (3114) (1422) (2432) (3213) (3314) (1442) (4432)
s5 (3214) (1432) (1432) (3214) (3214) (1432) (1432)
s6 (3434) (1414) (3434) (1212) (1414) (1212) (3232)
s7 (2432) (3314) (3114) (1442) (1422) (3213) (3211)

Table C.1: Universal Turing machine written as elements (abcd) using every
possible colors-points association.

Appendix D

Limit cycles: Antisymmetric

Case

All cases Oi, i = 1, . . . 6, I1, I2 obtained in the antisymmetric case are
studied in this section, but those studied before.

O2={(pa, s) ∈ R2|s > 1, pa > s + 1}. In this case, named O2, equilibrium
points are in regions:

x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 x∗7 x∗8

Ri R5 R6 R7 R8 R6 R7 R8 R5

To make x∗1 ∈ R5 and x∗5 ∈ R6 parameters must fulfill:

x
∗
5 ∈ R6 ⇒ pa > s + 1; pa > 1− s ⇒ pa > s + 1,

x
∗
1 ∈ R5 ⇒ s +

pa

s− 1
> 1; pa > s− 1 ⇒ pa > s− 1.

Curve C1 is defined as a circle centered on the origin with radius lower
than 1. Curve C2 is constructed using the saddle points principal di-
rections. The symmetry of the problem let us define this curve only in
two regions: R1 and R6, and extend the results to the rest. In region
R1, C2 is defined as the repulsive principal direction of the saddle point
x∗1

C21 = {(x0, x1) = x
∗
1 + λ(s,−pa), λ ∈ R},

and in region R6, it is defined as the line connecting C21 with C22.

Example 1. Example for s = 1.5 and pa = 3 > s + 1. Equilibrium
points are:

x∗1 = (−6, 19.5) x∗2 = (19.5, 6) x∗3 = (6,−19.5) x∗4 = (−19.5,−6)
x∗5 = (1.5, 4.5) x∗6 = (4.5,−1.5) x∗7 = (−1.5,−4.5) x∗8 = (−4.5, 1.5)

191

192 APPENDIX D. LIMIT CYCLES: ANTISYMMETRIC CASE

Figure D.1: Limit cycle and C21 construction for s = 1.5 and pa = 3.

Figure D.2: C21 construction for s = 1.5 and pa = 3 > s + 1

193

O3={(pa, s) ∈ R2|s > 1, pa < −s− 1}. In this case, named O3, equilibrium
points positions are:

x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 x∗7 x∗8

Ri R6 R7 R8 R5 R8 R5 R6 R7

To make x∗1 ∈ R6 and x∗5 ∈ R8 parameters must fulfill:

x
∗
5 ∈ R8 ⇒ pa < s− 1; pa < −s− 1

x
∗
1 ∈ R6 ⇒ − pa

s− 1
> 1; s +

p2
a

s− 1
> 1 ⇒ pa < −s + 1

Example 2. Example for s = 2, pa = −3.5 with equilibrium points

x∗0 = (0, 0)
x∗1 = (3.5, 14.25) x∗2 = (14.25,−3.5) x∗3 = (−3.5,−14.25) x∗4 = (−14.25, 3.5)
x∗5 = (−5.5,−1.5) x∗6 = (−1.5, 5.5) x∗7 = (5.5, 1.5) x∗8 = (1.5,−5.5)

Figure D.3: C21 construction for parameters s = 2 and pa = −3.5.

C2 construction is the same as in regions O1, O2, using the repulsive
principal directions in the saddle regions and connecting them by lines
in the output regions.

O4={(pa, s) ∈ R2|s > 1, |pa + s| < 1, s(s− 1) + pa(pa − 1) > 0}. In this case,
named O4, equilibrium points positions are:

x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 x∗7 x∗8

Ri R6 R7 R8 R5 R4 R1 R2 R3

194 APPENDIX D. LIMIT CYCLES: ANTISYMMETRIC CASE

To make x∗1 ∈ R6 and x∗5 ∈ R4 parameters must fulfill:

x
∗
5 ∈ R4 ⇒ pa − s < −1; pa + s ∈ (−1, 1) ⇒ |pa + s| < 1

x
∗
1 ∈ R6 ⇒ − pa

s− 1
> 1; s +

p2
a

s− 1
> 1 ⇒ pa < −s + 1

Example 3. Example for s = 2, pa = −3.5 with equilibrium points

x∗0 = (0, 0)
x∗1 = (2.5, 8.25) x∗2 = (8.25,−2.5) x∗3 = (−2.5,−8.25) x∗4 = (−8.25, 2.5)

x∗5 = (−4.5,−0.5) x∗6 = (−0.5, 4.5) x∗7 = (4.5, 0.5) x∗8 = (0.5,−4.5)

Figure D.4: C21 construction for parameters s = 2 and pa = −2.5.

C2 can be construct as we have done in the previous cases. Using saddle
points and its principal directions in the inner regions, one can connect
these lines with the output ones.

O5∪O6={(pa, s) ∈ R2|s > 1, |pa − s| < 1, s(s− 1) + pa(pa − 1) < 0}
�
{(pa, s) ∈ R2|s > 1, |pa + s| < 1, s(s + 1) + pa(pa + 1) < 0}

Equilibrium points in cases named O5 and O6 are in the same regions
as O1 and O4 respectively. In case O5, we can not construct C2 in the
same way as in O1 because the line passing through x∗1 with director
vector (s,−pa) reaches the unit square.

To find C2 curve limiting region D, we use the saddle points principal
directions. Lines in regions R1, . . . , R4 are the same as we have used
before

C2j = x
∗
j
+ λ�v, λ ∈ R, j = 1, 2, 3, 4

195

Figure D.5: C21 construction .

where �v is the eigenvector of A-matrix. The problem now is how to
find C25. Let us take C25 as the line x1 = 1 connecting C21 with C22,
and let us study the trajectory directions on it.

ẋ1 = (s− 1)x1 − pax0|x1=1 = (s− 1)− pax0 = 0 ⇔ p0 =
s− 1

pa

.

Principal direction passing across x∗1 is

sx1 + pax0 = p
2
a
+ s

2

Let us name q0 the intersection point between the principal direction
and line x1 = 1. Let us name p0 the point where trajectory directions
change from going out from R0 and going inside.

sx1 + pax0 = p
2
a
+ s

2 ∩ x1 = 1 ⇒ q0 = pa + s
s− 1

pa

Comparing p0 and q0 positions, we obtain

p0 < q0 ⇔
s− 1

pa

< pa + s
s− 1

pa

⇔ 0 < pa +
(s− 1)2

pa

Hence, q0 > p0 for pa > 0, and ẋ1 < 0 ⇔ x0 > p0. This implies
that trajectories moves under x1 = 1 as can be seen in Figure D.5.
A similar study can be done in the other regions. We can conclude
then that there exist a limit cycle passing across R0. An example for
parameters s = 1.1, pa = 0.8 can be seen in figure D.6.

Using the symmetry of the problem, curve C2 can be constructed in a
same way for case O6. From these results, a limit cycle passing across
R0, R1, R2, R3, R4 will exist.

196 APPENDIX D. LIMIT CYCLES: ANTISYMMETRIC CASE

Figure D.6: Limit cycle across R0 in case OI1.

I1={(pa, s) ∈ R2||pa| < s− 1}. In this case, each equilibrium point is inside
their corresponding region x∗

i
∈ Ri.

In the boundary line x1 = 1 of region R1 = {(x0, x1) ∈ R2; |x0| ≤
1, x1 > 1},

ẋ1 = (s− 1)− pax0 ≥ (s− 1) + pa > 0,

because |pa| < s − 1, x0 ∈ [−1, 1]. So x1(t) leave region R1 and never
returns to region R0. Saddle point x∗1 is inside region R1, so trajectories
will go to regions R5 or R6 where equilibrium points x∗5 or x∗6 are stable
nodes. Therefore, the system converge to one of these points.

In the boundary line x0 = 1 of region R2 = {(x0, x1) ∈ R2; |x1| ≤
1, x0 > 1},

ẋ0 = (s− 1) + pax1 ≥ (s− 1)− pa > 0

because |pa| < s − 1, x1 ∈ [−1, 1]. Hence, x0(t) leave region R2 and
never returns to region R0. As x∗2 ∈ R2 is a saddle point, trajectories
will go to regions R6 or R7 where equilibrium points x∗6 or x∗7 are stable
nodes.

Using one more time the symmetry of the problem, we can conclude
that a similar dynamic behavior occurs in saddle regions R3, R4. The
system will always converge to one of the stable equilibrium points of
the output regions R5, R6, R7, R8 and so (y0, y1) converge to (±1,±1).

197

Figure D.7: Trajectory for s = 2 and pa = −0.2.

Figure D.8: Trajectory for s = 1.5 and pa = 0.45.

198 APPENDIX D. LIMIT CYCLES: ANTISYMMETRIC CASE

Appendix E

Limit cycles: General case

Now we are going to address the general case for parameters p+ > 0 and
p− < 0, except the cases studied before. Then, we will continue the study of
the CNN dynamic behavior for parameters p+ < 0 and p− > 0.

O2={(s, p+, p−) ∈ R3||p− − s| < 1, |p+ − s| < 1}. All equilibrium points are
out from their corresponding region, so there are no fixed-points for the
system. Then a limit cycle will exist.

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p− p+ R5 R6 R1 R2

In order to prove it, we find curve C2 using the repulsive principal
directions of saddle points. We obtain four different cases for C2 con-
struction.

Parameter range map for this case depends on parameter s. If we
intersect curves L1 and L2, we find

L1 ∩ L2 ⇒
�

s(s− 1) + p−(1− p+) = 0

s(s− 1)− p+(1 + p−) = 0
⇒ p

2
− + p− + s(s− 1) = 0

There exist a solution for this equation if parameter s fulfill

−4s2 + 4s + 1 ≥ 0 ⇒ 1−
√

2

2
≤ s ≤ 1 +

√
2

2

Studying curves L1 and L2 we find that curve L1 pass across (s−1, s−1).
It has a vertical asymptote in p+ = 0, and an horizontal one in p− = −1
. Line L2 pass across (1−s, 1−s) and has a vertical asymptote in p+ = 1
and an horizontal one in p− = 0. We have basically three cases for these
curves position depending on s > 2, 1+

√
2

2 < s < 2, and 1 < s <
1+
√

2
2 .

199

200 APPENDIX E. LIMIT CYCLES: GENERAL CASE

Figure E.1: O2. Case 1 : L1 > 0, L2 > 0, and Case 2 : L1 > 0, L2 < 0.

Figure E.2: O2. Case 3: L1 < 0, L2 > 0 and Case 4: L1 > 0, L2 < 0.

201

• For s > 2, we have only Case 1,

• For 1+
√

2
2 < s < 2, we can have Case 1, Case 2 and Case 3,

Figure E.3: Parameter range for s > 2 and for 1+
√

2
2 < s < 2.

• For 1 < s <
1+
√

2
2 , we can have Cases 1,2,3 and Case 4.

Figure E.4: Parameter range for 1 < s <
1+
√

2
2 .

where 




Case 1: L1 > 0, L2 > 0

Case 2: L1 > 0, L2 < 0

Case 3: L1 < 0, L2 > 0

Case 4: L1 < 0, L2 < 0

.

202 APPENDIX E. LIMIT CYCLES: GENERAL CASE

O3={(s, p+, p−) ∈ R3|p− < 1− s, p+ > s + 1}. All equilibrium points are out
from their corresponding region, so there are no fixed-points for the sys-
tem. Then a limit cycle will exist. In order to prove it, we find curve
C2 using the repulsive principal directions of the saddle points.

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p− p+ R5 R6 R6 R7

In this case L1 > 0 and L2 > 0 so there is only one option for C2

construction.

Figure E.5: O3. Case 1 : L1 > 0, L2 > 0 .

Parameter range in this case does not depend on s. We can only have
Case 1.

Figure E.6: O3. Parameter range for 1 < s < 2.

203

O4={(s, p+, p−) ∈ R3||p− − s| < 1, p+ > s + 1}. All equilibrium points are
out from their corresponding region, so we obtain sufficient conditions
for a limit cycle to exist. To construct C2, we must distinguish again
the relative position of the repulsive principal directions of the saddle
points, which depends on L1 and L2 sign.

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p− p+ R5 R6 R6 R2

Figure E.7: O4. Case 1: L1 > 0, L2 > 0 and Case 3: L1 > 0, L2 < 0.

Figure E.8: O4. Parameter range for s > 2 and for 1 < s < 2.

204 APPENDIX E. LIMIT CYCLES: GENERAL CASE

OI2={(s, p+, p−) ∈ R3|1− s < p− < 0, p+ > s + 1}. Not all the equilibrium
points are out from their corresponding region, so we don’t have suffi-
cient conditions for a limit cycle to exist. There are four points inside
their region, two saddle points, and two stable points which become
fixed-points for the CNN system.

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p− p+ R5 R2 R6 R6

Figure E.9: OI2. Case 1: L1 > 0, L2 > 0 and Case 3: L1 > 0, L2 < 0.

Figure E.10: OI2. Parameter range for s > 2 and for 1 < s < 2.

OI3={(s, p+, p−) ∈ R3|p− < −1− s, 0 < p+ < s− 1}. Four equilibrium points
are inside their corresponding region so we can not assure the existence
of a limit cycle.

205

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p− p+ R1 R6 R5 R7

Figure E.11: OI3. Case 1: L1 > 0, L2 > 0 and Case 3: L1 < 0, L2 > 0.

Figure E.12: OI3. Parameter range for s > 2 and for 1 < s < 2.

206 APPENDIX E. LIMIT CYCLES: GENERAL CASE

OI4={(s, p+, p−) ∈ R3||p− − s| < 1, 0 < p+ < s− 1}. Four equilibrium points
are inside their corresponding region so we can not assure the existence
of a limit cycle.

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p− p+ R1 R6 R5 R2

Figure E.13: OI4. Case 1: L1 > 0, L2 > 0 and Case 3: L1 < 0, L2 > 0.

Figure E.14: OI4. Parameter range for s > 2 and for 1 < s < 2.

207

I1∪I2={(s, p+, p−) ∈ R3|0 < |p+| < s− 1, 0 < |p−| < s− 1, p+p− < 0}. All equi-
librium points are inside their corresponding region, so we can not as-
sure the existence of a limit cycle.

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p− p+ R1 R2 R5 R6

Figure E.15: I1,I2. Case 1: L1 > 0, L2 > 0 and parameter range which does
not depend on s.

In fact in this case, the system will converge to one of the fixed-points
because on the boundary of the unit square, trajectories pass across
leaving the inner region and do not enter again.

• In x0 = 1, ẋ0 = −x0 + sy0 + p+y1|x0=1 = s − 1 + p+x1 > 0 for
|x1| < 1.

• In x1 = 1, ẋ1 = −x1 +sy1 +p−y0|x1=1 = s−1+p−x>0 for |x0| < 1.

• In x0 = −1, ẋ0 = −x0 + sy0 + p+y1|x0=−1 = 1− s + p+x1 < 0 for
|x1| < 1.

• In x1 = −1, ẋ1 = −x1 + sy1 + p−y0|x1=−1 = 1− s + p−x1 < 0 for
|x0| < 1.

Hence, a trajectory starting inside the unit square will leave it going
to a saddle region or going to a stable one. In both cases, trajectories
converge to a stable node inside its corresponding stable region.

Now we begin the study for p+ < 0 and p− > 0. In these cases,
trajectories have opposite directions as those of the cases studied before.

208 APPENDIX E. LIMIT CYCLES: GENERAL CASE

In region R1 repulsive principal direction is

l1 : p−x0 = sx1 − s
2 + p+p−

Let us intersect it with line x1 = 1 in order to study conditions to reach
the unit square or not.

l1

�
x1 = 1 ⇒ x0 =

s(1− s) + p+p−

p−

�
x0 < −1 ⇒ L3 : s(s− 1)− p−(1 + p+) > 0

x0 > −1 ⇒ L3 : s(s− 1)− p−(1 + p+) < 0

Curve L3 pass across (s − 1, s − 1). It has a vertical asymptote at
p+ = −1, and an horizontal one at p− = 0.

In region R2 repulsive principal direction is

l2 : p+x1 = sx0 − s
2 + p+p−

Let us intersect it with line x1 = 1, in order to study the necessary
conditions to make it reach the unit square or not.

l2

�
x1 = 1 ⇒ x0 =

s2 + p+ − p+p−

s

�
x0 > 1 ⇒ L4 : s(s− 1) + p+(1− p−) > 0

x0 < 1 ⇒ L4 : s(s− 1) + p+(1− p−) < 0

Curve L4 pass across (1−s, 1−s). It has a vertical asymptote at p+ = 0
,and an horizontal one at p− = 1. These curves does not pass across
the square with vertices the origin and (1− s, s− 1). Now we begin to
study all the cases for this parameter range.

OI5={(s, p+, p−) ∈ R3|1− s < p+ < 0, |p− − s| < 1}. There are four equi-
librium points inside their corresponding region, so we can not find
sufficient conditions for the existence of a limit cycle. The system can
converge to one of the stable nodes which are inside their region or to
a limit cycle.

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p+ p− R1 R7 R4 R6

209

Figure E.16: OI5. Case 1: L3 > 0, L4 > 0 and Case 2: L3 < 0, L4 > 0

Figure E.17: OI5. Parameter range for s > 2 and 1 < s < 2.

210 APPENDIX E. LIMIT CYCLES: GENERAL CASE

OI6={(s, p+, p−) ∈ R3|1− s < p+ < 0, p− < s + 1}. There are four equilib-
rium points inside their corresponding region, so we can not find suf-
ficient conditions for the existence of a limit cycle. The system can
converge to one of the stable nodes which are inside their region or to
a limit cycle.

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p+ p− R1 R7 R8 R6

Figure E.18: OI6. Case 1: L3 > 0, L4 > 0 and Case 2: L3 < 0, L4 > 0

Parameters range map for this two different cases are:

Figure E.19: OI6. Parameter range for s > 2 and 1 < s < 2.

211

OI7={(s, p+, p−) ∈ R3||p+ + s| < 1, 0 < p− < s− 1}. There are four equi-
librium points inside their corresponding region, so we can not find
sufficient conditions for the existence of a limit cycle. The system can
converge to one of the stable nodes which are inside their region or to
a limit cycle.

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p+ p− R6 R2 R5 R1

Figure E.20: OI7. Case 1: L3 > 0, L4 > 0 and Case 2: L3 > 0, L4 < 0.

Figure E.21: OI7. Parameter range for s > 2 and 1 < s < 2.

212 APPENDIX E. LIMIT CYCLES: GENERAL CASE

O5={(s, p+, p−) ∈ R3||p+ + s| < 1, |p− − s| < 1}. All equilibrium points are
out form their corresponding region, so we have sufficient conditions for
the existence of a limit cycle.

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p+ p− R6 R7 R4 R1

Figure E.22: O5. Case 1: L3 > 0, L4 > 0 and Case 2: L3 < 0, L4 > 0

Figure E.23: O5. Case 1: L3 > 0, L4 < 0 and Case 2: L3 < 0, L4 < 0

213

Figure E.24: O5. Parameter range for s > 2 and 1+
√

2
2 < s < 2.

Figure E.25: O5. Parameter range for 1 < s <
1+
√

2
2 .

214 APPENDIX E. LIMIT CYCLES: GENERAL CASE

O6={(s, p+, p−) ∈ R3||p+ + s| < 1, p− > s + 1}. All equilibrium points are
out form their corresponding region, so we have sufficient conditions
for the existence of a limit cycle.

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p+ p− R6 R7 R8 R1

Figure E.26: O6. Case 1: L3 > 0, L4 > 0 and Case 2: L3 > 0, L4 < 0.

Figure E.27: O6. Parameter range for s > 2 and 1 < s < 2.

215

OI8={(s, p+, p−) ∈ R3|p+ < −1− s, 0 < p− > s− 1}. Four equilibrium points
are inside their corresponding region, so we can not find sufficient con-
ditions in order to demonstrate the existence of a limit cycle. The
system can converge to one of the stable nodes or to a limit cycle.

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p+ p− R6 R2 R5 R5

Figure E.28: OI8. Case 1: L3 > 0, L4 > 0 and Case 2: L3 > 0, L4 < 0

Figure E.29: OI8. Parameter range for s > 2 and 1 < s < 2.

216 APPENDIX E. LIMIT CYCLES: GENERAL CASE

O7={(s, p+, p−) ∈ R3|p+ < −1− s, |p− − s| < 1}. All equilibrium points are
out form their corresponding region, so we have sufficient conditions for
the existence of a limit cycle.

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p+ p− R6 R7 R4 R5

Studying the repulsive principal directions of the saddle points and the
equilibrium points positions, we find two possibilities for C2 depending
on the parameters of the cloning template.

Figure E.30: O7. Case 1: L3 > 0, L4 > 0 and Case 2: L3 < 0, L4 > 0

Figure E.31: O7. Parameter range for s > 2 and 1 < s < 2.

217

O8={(s, p+, p−) ∈ R3|p+ < −1− s, p− > s + 1}. All equilibrium points are
out from their corresponding region, so we have sufficient conditions
for the existence of a limit cycle. Parameter range in this case does not
depend on s.

−1− s 1− s 0 s− 1 s + 1 x∗1 x∗2 x∗5 x∗6

p+ p+ R6 R7 R8 R5

Figure E.32: O8. Case 1 : L3 > 0, L4 > 0 .

Figure E.33: O8. Parameter range for 1 < s < 2.

218 APPENDIX E. LIMIT CYCLES: GENERAL CASE

From this study we conclude that in the general case, there are also
three different topological distributions according to parameter s value.
These different distributions depends on the existence of limit cycles,
limit cycles coexisting with two fixed-points, and the converge to one
of the four stable nodes. Let us note that limit cycles has certain
symmetry with respect those found in case p+ > 0 and p− < 0 but
reversing the arrows. From the results founded in this Appendix , we
print a limit cycle map in Figures E.34, E.35 and E.36.

219

Figure E.34: C2 construction and regions for s > 2 .

220 APPENDIX E. LIMIT CYCLES: GENERAL CASE

Figure E.35: C2 construction and regions for 1+
√

2
2 < s < 2.

221

Figure E.36: C2 construction and regions for 1 < s <
1+
√

2
2 .

222 APPENDIX E. LIMIT CYCLES: GENERAL CASE

Bibliography

[1] Arik, S., Tavsanoglu,V. (1994) A Weaker Condition for the Stability of
Nonsymmetric CNNs, IEEE International Workshop on Cellular Neu-
ral Networks and their Applications, pp. 15-20.

[2] Arik, S., Tavsanoglu,V., Ozcan,N. (2003) New Criteria for the Exis-
tence of Stable Equilibrium Points in Nonsymmetric Cellular Neural
Networks, Journal of Electrical and Electronics Engineering, vol. 5,
pp. V-753-V-756.

[3] Balsi, M. (1993) Recurrent Back-Propagation for Cellular Neural Net-
works, Proceedings of ECCTD93- Circuit Theory and Design, Elsevier,
pp. 677-682.

[4] Cimalaggi, V., Balsi, M. (1994) Cellular Neural Networks: A Review,
E. Caianiello (ed.): ”Neural Nets WIRN Vietri-93”, World Scientific,
Singapore, pp. 55-84.

[5] Chua, L.O., Yang, L. (1988) Cellular Neural Networks: Theory, IEEE
Trans. Circ. Syst., vol. 35, pp. 1257-1272.

[6] Chua, L.O., Yang, L. (1988) Cellular Neural Networks: Applications,
IEEE Trans. Circuits and Systems, CAS-35, pp. 1273-1290.

[7] Chua, L.O., Roska, T. (1993) The CNN Universal Machine: an Ana-
logic Array Computer, IEEE Trans. Circuits and Systems, vol. 40, pp.
163-173.

[8] Chua, L.O., Roska, T., Venetianer, P. (1993) The CNN is Universal as
the Turing Machine, IEEE Trans. Circuits Syst. I, vol. 40, no. 4, pp.
289-291.

[9] Chua, L.O., Thiran, P. (1991) An Analytic Method for Designing Sim-
ple Cellular Neural Networks, IEEE Trans. on Circuits and Systems,
vol. 38, no. 11, pp. 1332-1341.

[10] Chua, L.O., Wu, C.W. (1992) The Universe of Stable CNN Templates,
International Journal of Circuit Theory and Applications, vol.20, pp.
497-517.

223

224 BIBLIOGRAPHY

[11] Chua, L.O., Roska, T., Venetianer, P. (1990) Stability of a Class of
Nonreciprocal Cellular Neural Networks, IEEE Trans. Circuits Syst. I,
vol. 37, no. 12, pp. 1520-1527.

[12] Chua, L.O. (1998) CNN: a Paradigm for Complexity, World Scientific.

[13] Chua L.O., Takahashi,N. (1998) On the Complete Stability of Nonsym-
metric Cellular Neural Networks, IEEE Trans. Circuits Syst. I, vol. 45,
no. 7, pp 754-758.

[14] Chua L.O., Takahashi,N. (1997) A new Sufficient Condition for Non-
symmetric CNNs to Have a Stable Equilibrium Point, IEEE Trans.
Circuits Syst. I, vol. 44, no. 11, pp. 1092-1094.

[15] Chua, L.O. (1971) Memristor-The Missing Circuit Element, IEEE
Trans. on Circuits and Systems II, Vol. 18, no. 5, pp. 507-519.

[16] Cook, S. (1971) The Complexity of Theorem Proving Procedures, Pro-
ceedings of the Third Annual ACM Symposium on Theory of Comput-
ing. pp. 151–158.

[17] Deshpande,V., Dasgupta, C. (1991) A Neural Network for Storing In-
dividual Patterns in Limit Cycles , J. Phys. A Math. Gen., vol. 24, pp.
5105-5119.

[18] Doan, M. D., Halgamuge, S., Glesner M., Braunsforth (1996) Applica-
tion of Fuzzy, GA and Hybrid Methods to CNN Template Learning,
Proceedings of CNNA-96, pp. 327-332.

[19] Dmitriev, A.S, Panas, A.I, Starkov, S.O (1991) Storing and recognizing
information based on stable cycles of one-dimensional maps, Physics
Letters A, vol. 155, pp 494-499.

[20] Dogaru, R., Chua,L.O. (1999) Universal CNN Cells, International Jour-
nal of Bifurcation and Chaos, vol. 9, no. 1, pp. 1-48.

[21] Dogaru, R. (2008) Systematic Design for Emergence in Cellular Non-
linear Networks, vol. 95, Springer-Verlag.

[22] Gilli, M. (1994) Stability of Cellular Neural Networks and Delayed Cel-
lular Neural Networks with Nonpositive Templates and Nonmonotonic
Output Functions, IEEE Trans. Circuits Syst. I, vol. 41, no. 8, pp.
518-528.

[23] Gilli, M. (1999) Design of Stable Cellular Neural Network Templates,
IEEE Trans. Circuits Syst. vol. 35, no. 12, pp. 986 -987.

[24] Gilli, M., Corinto, F. (2003) Comparison between the Dynamic Behav-
ior of Chua-Yand and Full-range Cellular Neural Networks, Interna-
tional Journal of Circuit Theory and Applications, vol. 31, pp. 423-441.

BIBLIOGRAPHY 225

[25] Gilli, M., Civalleri, P. (1993) On the Dynamic Behaviour of Two-Cell
Cellular Neural Networks, Journal of Circuit Theory and Applications,
vol. 21, pp. 451-471.

[26] Gilli,M. , Civalleri,P. (1999) On Stability of Cellular Neural Networks,
Journal of VLSI signal Processing, vol. 23, pp. 429-435.

[27] Gilli,M., Corinto,F., Checco, P. (2004) Periodic Oscillations and Bifur-
cations in Cellular Nonlinear Networks, IEEE Trans. Circuits Syst. I,
vol. 51, no. 5, pp 948-962.

[28] Gómez-Ramı́rez, E., Mazzanti, F. (2002) Cellular Neural Networks
Learning using Genetic Algorithms, Reconocimiento de Patrones:
avances y perspectivas, Dı́az de León J., Yáñez, C. Eds. IPN, México.

[29] Gardner, M. (1970) The Fantastic Combinations of John Conway’s
New Solitaire Game ‘Life’, Sc. Am. 222:4, pp. 120-123.

[30] Guyon, I., Stork, D. (2000) Linear Discriminant and Support Vector
Classifiers, In Smola et al Eds. Advances in Large Margin Classifiers.
MIT Press, pp. 127-169.

[31] Hebb, D.O. (1949) The Organization of Behavior. Wiley, New York.

[32] Hopfield, J. J. (1982) Neural Networks and Physical systems with
Emergent Collective Computational Abilities. Proc. Natl. Acad. Sci.
USA, 79, Biophysics.

[33] Jankowski, S., Wanczuk, R. (1992) Nonlinear CNN Cloning Templates
for Image Thicking, Proceedings of CNNA-92, pp. 197-201.

[34] Jankowski, S., Wanczuk, R. (1994) CNN models of Complex Pattern
Formation in Excitable Media, IEEE Int. Workshop on Cellular Neural
Networks and their Applications,, Rome, Italy, pp. 333-338.

[35] Jankowski, S., Tworek, J., Lozowski, A. (1996) Chaotic CNN for Image
Segmentation, Proceedings of IEEE Int. Workshop on Cellular Neural
Networks and Applications, Sevilla, Spain, pp. 219-223.

[36] Joy, M., Tavsanoglu, V. (1993) A New Parameter Range for the Stabil-
ity of Opposite-Sign Cellular Neural Networks, IEEE Trans. Circuits
Syst. I, vol 40, no. 3, pp. 204-207.

[37] Khalil, Hassan K. (1996) Nonlinear Systems, 2nd edition, Prentice Hall.

[38] Li, X., Huang, L. (2004) Exponential Stability and Global Stability
of Cellular Neural Networks, Applied Mathematics and Computation,
vol. 147, pp. 843–853.

226 BIBLIOGRAPHY

[39] Lippmann, R. P. (1987) An introduction to Computing with Neural
Nets. IEEE ASSP Magazine.

[40] Lehtonen, E., Laiho, M. (2010) CNN Using Memristors for Neighbor-
hood Connections, IEEE Cellular Nanoscale Networks and their Ap-
plications, pp. 1-4.

[41] Lehtonen, E., Laiho, M. (2010) Cellular Nanoscale Network Cell with
Memristors for Local Implication Logic and Synapses, Circuits and
Systems (ISCAS), Proceedings of IEEE Inte. Symposium on, pp. 2051-
2054.

[42] Laiho, M.m Paasio, A., Halonene, Kari A.I. (2008) Template Design for
Cellular Nonlinear Networks with 1-Bit Weights, IEEE Transactions on
Circuits and Systems, vol. 55, no. 3, pp. 904-913.

[43] Mimura1,K., Kawamura, M., Okada, M. (2004) The Path-integral
Analysis of an Associative Memory Model Storing an Infinite Num-
ber of Finite Limit Cycles. Journal of Physics A: Mathematical and
General, vol. 37, pp. 6437–6454.

[44] Minsky, M., Papert, S. (1969) Perceptrons: an Introduction to Com-
putational Geometry. MIT Press, Cambridge, MA.

[45] McCulloch,W. S., Pitts,W. (1943) A Logical Calculus of the Ideas Im-
manent in Nervous Activity. Bulletin of Mathematical Biology, vol. 52,
no. 1-2, pp. 99-115.

[46] Nossek, J.A. (1994) Design and Learning with Cellular Neural Net-
works, Cellular Neural Networks and their Applications, 1994. CNNA-
94., pp. 137-146.

[47] Nemes,L., Chua,L.O, Roska,T. (1998) Implementation of Arbitrary
Boolean Functions on the CNN Universal Machine, International Jour-
nal of Circuit theory and Applications, vol. 26, no. 6, pp. 593-610.

[48] Roska, T., Chua, L.O. (1993) The CNN Universal Machine: An Ana-
logic Array Computer, IEEE Transactions on Circuits and Systems II,
vol. 40, no. 3, pp. 163-173.

[49] Roska, T., Kék, L., Nemes, L., Zaràndy, À., Brendel M. (2000) CSL-
CNN Software Library. Report of the Analogical and Neural Com-
puting Laboratory, Computer and Automation Institute, Hungarian
Academy of Sciences, Budapest, Hungary.

[50] Rosenblatt,F. (1958) The Perceptron: A probabilistic model for infor-
mation storage and organization in the brain. Psychological Review,
65.

BIBLIOGRAPHY 227

[51] Slavova, A. (2003) Cellular Neural Networks: Dynamics and Modelling,
Kluwer Academic Publishers.

[52] Savaci, F.A., Vandewalle, J., (1992) On the Stability Analysis of Cel-
lular Neural Networks, Proc. IEEE Second Int. Workshop on Cellular
Neural Networks and Their Applications, pp. 240-245.

[53] Setti, G., Thiran, P., Hasler, M. (1998) An Approach to Information
Propagation in 1-D Cellular Neural Networks- Part I: Local Diffusion,
IEEE Trans. Circuits Systems I, vol. 45, n. 8, pp. 777-789.

[54] Setti, G., Thiran, P., Hasler, M. (1998) An Approach to Information
Propagation in 1-D Cellular Neural Networks- Part II: Global Propa-
gation, IEEE Trans. Circuits Systems I, vol. 45, n. 8, pp. 790-811.

[55] Snider, G. (2007) Self-organized Computation with Unreliable Mem-
ristive Nanodevices, Nanotechnology, vol. 18, pp. 1-13.

[56] Strukov, D., Snider, G., Stewart, D., Williams, S., Stanley, R. , (2008)
The Missing ,Memristor Found, Nature, vol.453, pp. 80-83.

[57] Strogatz, S.H. (1994) Nonlinear Dynamics and Chaos, Perseus Books,
Massachusetts.

[58] Taraglio S., Zanela A. (1996) Cellular Neural Networks: a Genetic
Algorithm for Parameters Optimization in Artificial Vision Applica-
tions., Cellular Neural Networks and their Applications. Proceedings
of CNNA-96, pp. 315-320.

[59] Takahashi,N. , Yamakawa,T., Nishi,T. (2005) Realization of Limit Cy-
cles by Neural Networks with Piecewise Linear Activation Function,
Proceedings of ECCTD, Cork, Ireland, vol. 3, pp. III/7 - III10. .

[60] Takahashi,N. , Nishi,T. (2001) On the Global Stability of Two-Cell
Cellular Neural Networks with Opposite-Sign Connections, Proceed-
ings of the 15th European Conference on Circuit Theory and Design
(ECCTD2001), Espoo, Findland, vol.3, pp.93-96.

[61] Takahashi,N. , Nishi,T. (2002) Necessary and Sufficient Condition for
Two-Cell CNNs with Space-Invariant Connections to be Globally Sta-
ble, International Symposium on Nonlinear Theory and its Applica-
tions (NOLTA2002), Xian, pp.611-614.

[62] Takahashi,N. , Nishi,T. (2006) Necessary and Sufficient Condition for a
Class of Planar Dynamical Systems Related to CNNs to be Completely
Stable, IEEE Trans. Circuits Syst. I, vol. 53, no. 8, pp. 727-733.

[63] Thiran,P., Crounse,K. R., Chua, L.O, Hasler, M. (1995) Pattern forma-
tion properties of Autonomous Cellular Neural Networks, IEEE Trans-

228 BIBLIOGRAPHY

actions on Circuits and Systems, Part I, vol. CAS-42 (I), vol. CAS 42,
pp. 757-774.

[64] Weisstein, Eric W. ”Turing Machine.” From MathWorld–A Wolfram
Web Resource. http://mathworld.wolfram.com/TuringMachine.html

[65] Vinyoles, M., Vilaśıs, X. (2010) Generating Clock signals using Cel-
lular Neural Networks with Memristor Connections, submitted to IS-
CAS2011, Rio de Janeiro, Brazil.

[66] Vinyoles, M., Vilaśıs, X. (2010) Can you achieve any function with a 2-
neuron CNN?, NOLTA International Symposium on Nonlinear Theory
and its Applications, Krakow, Poland.

[67] Vinyoles, M., Vilaśıs, X. (2010) Classifying with a two neuron CNN,
submitted to International Journal of Bifurcation and Chaos.

[68] Vinyoles, M., Vilaśıs, X. (2010) Two neuron CNNs: Search for limit
cycles, International Journal of Bifurcation and Chaos, vol.20, no. 4
pp. 1137-1173.

[69] Vinyoles, M., Vilaśıs, X. (2009) Comparison between Chua-Yang and
hyperbolic CNNs, IEEE Trans. Circuits Syst, Poster session, Antalya,
Turkey, pp. 551-554.

[70] Vilaśıs, X., Vinyoles, M. (2008) Sufficient conditions for limit cycles in
autonomous antisymmetric two neuron CNNs, International workshop
on Cellular Neural Networks, Santiago de Compostela, Spain, pp. 236-
241.

[71] Vilaśıs, X., Vinyoles, M. (2005) On cellular neural network learning,
Proc. of European Conference on Circuit Theory and Design (EC-
CTD’05), Cork, Ireland, vol. 1, pp. I/153 - I/156.

[72] Wolfram, S.,(1986) Theory and Applications of Cellular Automata,
World Scientific.

[73] Wolfram, S., (1984) Universality and Complexity in Cellular Automata,
Physica D, 10.

[74] Zaràndy, À. (1999) The Art of CNN Template Design. International
Journal. of Circuit Theory and Applications, vol. 27, pp. 5-23.

[75] Zou,F., Nossek, J.A. (1991) Stability of Cellular Neural Networks with
Opposite-Sign Templates, IEEE Trans. Circuits Syst. I, vol. 38, no. 6,
pp. 675-677.

[76] Zou,F., Nossek, J.A. (1991) A Chaotic Attractor with Cellular Neural
Networks, IEEE Trans. Circuits Syst. I. , vol. 38, no. 7, pp. 811-812.

BIBLIOGRAPHY 229

[77] Zou,F., Nossek, J.A, (1993) Bifurcation and Chaos in Cellular Neural
Networks, IEEE Trans. Circuits Syst. I. , vol. 40, no. 3, pp. 166-173.

!
!
!
!
!

!
!
!
"#$%&'(!)%&*!+,-',.(/!0(!%&'('!1%2%3&(1(!%/!1*(!!4444!1!!444444444444444444!1%!4444!
!
(/!5%3'.%!444!
!
1%!/(!63*7%.&*'('!8(9,3!:/$//!
!
1(7(3'!%/!).*;$3(/!2,.9('!<%/&!+,-',.&!&,'(&*=3(3'&>!0(7%3'!,;'*3=$'!/(!#$(/*2*-(-*?@!
!
!
!!

!
!

!
!
A.%&*1%3'B(!
!
4444444444444444444444444444444!
!
!
C,-(/!
!
4444444444444444444444444444444!
!
C,-(/!
!
4444444444444444444444444444444!
!
C,-(/!
!
4444444444444444444444444444444!
!
D%-.%'(.*BE.*(!
!
4444444444444444444444444444444!
!
!
+,-',.(31B(!
!
!
!
!
!

!"
#"$
"%&
'%(
)*
+)
,-
*%
%.
/0
12
34
056
5%7
68
9/
%:
;<
<%$
;/
=6
>0
?%
@3
01
6=
6"
%7
A5
32
"%$
;/
="
%&
2/
23
6<
056
5%=
2%!
65
6<
;/
B6
%/
C8
"%-
,D
%ED
FG
*D
G)
*H
%

!

%%%!"%!<63616<<I%JGK%
%%%*F*DD%L63>2<9/6%
%%%M2<"%)K+%*DD%D**%
%%%$6N%)K+%*DD%D-)%
%%%OG860<'%;3<4>P42>";3<"24%
%%%QQQ";3<"24%
!

