

TESI DOCTORAL

Títol Contributions to Formal Communication Elimination f or System
Models with Explicit Parallelism

 Realitzada per Francesc-Xavier Babot Pagès

en el Centre La Salle. Universitat Ramon Llull

 i en el Departament d’Informàtica

 Dirigida per Prof. Miquel Bertran Salvans

C
.I.

F
. G

: 5
90

69
74

0
 U

ni
ve

rs
ita

t R
am

on
 L

ul
l F

un
da

ci
ó

 P
riv

ad
a.

 R
gt

re
. F

un
d.

 G
en

er
al

ita
t d

e
C

at
al

un
ya

 n
úm. 4

72
 (

2
8-

02
-9

0
)

 C. Claravall, 1-3
 08022 Barcelona
 Tel. 936 022 200
 Fax 936 022 249
 E-mail: urlsc@sec.url.es
 www.url.es

Francesc Babot Pagès

RESUM

Els mètodes de verificació formal s’estan usant cada vegada més en la indústria per es-
tablir la correctessa i trobar els errors en models de sistemes; per exemple la descripció de
hardware, protocols, programes distribüıts, etc. En particular, els verificadors de models ho
fan automàticament per sistemes d’estats finits, però estan limitats degut al problema de
l’explosió d’estats; i la verificació formal interactiva, l’àrea d’aquesta tesi, es necessita.

L’enfocament de la verificació automàtica treballa sobre el sistema de transicions del
model, el qual defineix la seva semàntica. Aquest sistema de transicions té sovint molts es-
tats, i sempre una mida gran comparada amb la mida del model del sistema, el qual és sempre
infinit. Aquestes consideracions suggereixen un enfocament de verificació estàtica com els
d’aquesta tesi, evitant els sistemes de transicions, treballant directament sobre el model
del sistema, en principi, la complexitat computacional hauria de ser menor. L’enfocament
estàtic d’aquest treball es fa sobre models de sistemes expressats en notació imperativa amb
paral·lelisme expĺıcit, sentències de comunicacions śıncrones i variables d’emmagatzematge
locals.

Els raonaments d’equivalència són molt empleats per números, matrius i altres camps.
Tanmateix, per programes imperatius amb paral·lelisme, comunicacions i variables, encara
que potencialment sigui un mètode de verificació molt intüıtiu, no han estat massa explorats.
La seqüencialització formal via l’eliminació de comunicacions internes, l’àrea d’aquesta tesi,
és una demostració basada en el raonament estàtic d’equivalències que, donat que disminueix
la magnitud del vector d’estats, pot complementar altres mètodes de demostració. Es basa en
l’aplicació d’un conjunt de lleis , apropiades per tal propòsit, com reduccions de reescriptura
del model del sistema. Aquestes depenen de la noció d’equivalència i de les suposicions de
just́ıcia.

Aquesta tesi contribueix a la quasi inexplorada àrea de l’eliminació de comunicacions for-
mal i seqüencialització de models de sistema. Les lleis estan definides sobre una equivalència
feble: equivalència d’interf́ıcie. L’eliminació de comunicacions està limitada a models sense
seleccions, per exemple models en els quals les comunicacions internes no estan dins de
l’àmbit de sentències de selecció. Aplicacions interessants existeixen dins d’aquest marc. Les
lleis són vàlides només per just́ıcia feble o sense just́ıcia. Aquesta ha estat desenvolupada
seguint la semàntica proposada per Manna i Pnueli per a sistemes reactius [MP91, MP95].
S’han formulat les condicions d’aplicabilitat per les lleis de la pròpia eliminació de co-
municacions. A més a més, es proposa un procediment de construcció de demostracions
per l’eliminació de comunicacions, el qual intenta aplicar automàticament les lleis de la
eliminació. També s’ha dissenyat un conjunt de procediments de transformació, els quals
garanteixen que la transformació equivalent sempre correspon a l’aplicació d’una seqüència
de lleis. Degut a que la construcció de les demostracions és impracticable, normalment
impossible, sense l’ajuda d’una eina, s’ha desenvolupat un demostrador interactiu per la
construcció semiautomàtica de la seqüencialització de models de sistemes i demostracions
d’eliminació. Tant els procediments de transformació com els de l’eliminació de comunica-
cions estan integrats en l’eina. Amb l’ajuda del demostrador s’ha constrüıt la demostració
de seqüencialització d’un model, no trivial, de processador pipeline. Per aquest exemple s’ha
assolit una reducció, respecte del model original, de la cota superior del nombre d’estats de
2−672.

Malgrat l’enorme quantitat d’esforç dedicat a l’àrea, abans i durant la tesi, encara queda
molt treball per a que l’eliminació de comunicacions i la seqüencialització sigui realment un
mètode pràctic. No obstant els resultats d’aquesta tesi han establert els fonaments i han
donat l’est́ımul necessari per continuar l’esforç.

RESUMEN

Los métodos de verificación formal se están usando cada vez más en la industria para estable-
cer la corrección y encontrar los errores en modelos de sistemas; por ejemplo, la descripción
de hardware, protocolos, programas distribuidos, etc. En particular, los verificadores de
modelos lo hacen automáticamente para sistemas de estados finitos, pero están limitados
debido al problema de la explosión de estados; y la verificación formal interactiva, el área
de esta tesis, es necesaria.

El enfoque de la verificación automática trabaja sobre el sistema de transiciones del
modelo, el cual define su semántica. Este sistema de transiciones tiene a menudo muchos
estados, y siempre un tamaño grande comparado con el tamaño del modelo del sistema, el
cual es siempre infinito. Estas consideraciones sugieren un enfoque de verificación estática
como los de esta tesis, evitando los sistemas de transiciones, trabajando directamente sobre
el modelo del sistema, en principio, la complejidad computacional tendŕıa que ser menor.
El enfoque estático de este trabajo se lleva a cabo sobre modelos de sistemas expresados
en notación imperativa con paralelismo expĺıcito, sentencias de comunicaciones śıncronas y
variables de almacenamiento locales.

Los razonamientos de equivalencia son muy empleados para números, matrices y otros
campos. Sin embargo, para programas imperativos con paralelismo, comunicaciones y vari-
ables, aún teniendo la potencialidad de ser un método de verificación muy intuitivo, no han
sido muy explorados. La secuencialización formal v́ıa la eliminación de comunicaciones
internas, el área de esta tesis, es una demostración basada en el razonamiento estático de
equivalencias que, ya que disminuye la magnitud del vector de estados, puede complementar
otros métodos de demostración. Se basa en la aplicación de un conjunto de leyes, apropiadas
para tal propósito, como reducciones de reescritura del modelo del sistema. Éstas dependen
de la noción de equivalencia y de las suposiciones de justicia.

Esta tesis contribuye a la casi inexplorada área de la eliminación de comunicaciones
formal y secuencialización de modelos de sistema. Las leyes están definidas sobre una equi-
valencia débil: equivalencia de interfaz. La eliminación de comunicaciones está limitada a
modelos sin selecciones, por ejemplo modelos en los cuales las comunicaciones internas no
están dentro del ámbito de sentencias de selección. Aplicaciones interesantes existen dentro
de este marco. Las leyes son válidas sólo para justicia débil o sin justicia. Ésta ha sido
desarrollada siguiendo la semántica propuesta por Manna y Pnueli para sistemas reactivos
[MP91, MP95]. Se han formulado las condiciones de aplicabilidad para las leyes de la propia
eliminación de comunicaciones. Además, se propone un procedimiento de construcción de de-
mostraciones para la eliminación de comunicaciones, el cual intenta aplicar automáticamente
las leyes de la eliminación. También se ha diseñado un conjunto de procedimientos de trans-
formación, los cuales garantizan que la transformación equivalente siempre corresponde a la
aplicación de una secuencia de leyes. Debido a que la construcción de las demostraciones es
impracticable, normalmente imposible, sin la ayuda de una herramienta, se ha desarrollado
un demostrador interactivo para la construcción semiautomática de la secuencialización de
modelos de sistemas y demostraciones de eliminación. Tanto los procedimientos de trans-
formación como los de la eliminación de comunicaciones están integrados en la herramienta.
Con la ayuda del demostrador se ha construido la demostración de secuencialización de un
modelo, no trivial, de procesador pipeline. Para este ejemplo se ha logrado una reducción,
respecto del modelo original, de la cota superior del número de estados de 2−672.

A pesar de la enorme cantidad de esfuerzo dedicado al área, antes y durante esta tesis,
todav́ıa queda mucho trabajo para que la eliminación de comunicaciones y la secuencia-
lización sea realmente un método práctico. Sin embargo los resultados de esta tesis han
establecido los cimientos y han dado el est́ımulo necesario para continuar el esfuerzo.

ABSTRACT

Formal verification methods are increasingly being used in industry to establish the cor-
rectness of, and to find the flaws in, system models; for instance, descriptions of hardware,
protocols, distributed programs, etc. In particular, model checking does that automatically
for finite-state systems, but it is limited in scope due to the state explosion problem; and
interactive formal verification, the broad area of this thesis, is needed.

Automatic verification approaches work on the transition system of the model, which
defines its semantics. This transition system has often infinitely many states, and always
a large size compared to the size of the system model, which is always finite. These con-
siderations suggest that static verification approaches such as those of this thesis, avoiding
the transition system, working directly on the system model would have less computational
complexity, in principle. The static approach of this work is carried out on system models
expressed in imperative notations with explicit parallelism and synchronous communication
statements, and with local storage variables.

Equivalence reasoning is heavily used for numbers, matrices, and other fields. However,
for imperative programs with parallelism, communications, and variables, although having
the potentiality of being a very intuitive verification method, it has not been much explored.
Formal sequentialization via internal communication elimination, the area of this thesis, is a
static equivalence reasoning proof that, since it decreases the size of the state vector, could
complement other proof methods. It is based on the application of a set of laws, suitable
for that purpose, as rewriting reductions to a system model. These proofs need both proper
communication elimination laws and auxiliary basic laws. These depend on the notion of
equivalence and on the fairness assumptions.

This thesis contributes to the almost unexplored area of formal communication elimi-
nation and system model sequentialization. The laws are defined over a weak equivalence:
interface equivalence. Communication elimination is confined to selection-free models, i.e.
models none of whose inner communications are within the scope of selection statements.
Interesting applications already exist within this framework. The laws are valid only with
weak fairness or no fairness. It has been developed following the same semantics as Manna
and Pnueli for reactive systems [MP91, MP95]. Applicability conditions for the proper
communication elimination laws are derived. In addition, a communication elimination
proof construction procedure, which attempts to apply the elimination laws automatically is
proposed. A set of transformation procedures, guaranteeing that the equivalence transforma-
tion always corresponds to the application of a sequence of laws have been designed as well.
Since the construction of elimination proofs is impractical, even impossible, without a tool,
an interactive prover for semi-automatic construction of system model sequentialization and
elimination proofs has been developed. Both transformation and communication elimina-
tion procedures are integrated within the tool. As a non-trivial example, a sequentialization
proof of a pipelined processor model, has been constructed with the help of the prover. A
reduction, with respect to the original model, of 2−672 on the upper bound on the number
of states has been achieved in this example.

In spite of the huge amount of effort already devoted to the area, before and during this
thesis, much work still needs to be done until communication elimination and sequentiali-
zation become a practical method. Nevertheless the results of this thesis have established
its foundations and given the necessary encouragement for continuing the effort.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deep gratitude to my advisor, Prof. Miquel
Bertran, for his enthusiasm, constant support and invaluable encouragement throughout all
the thesis. I am indebted to him for the opportunity of working in an original and interesting
research area.

I would also like to express my sincere gratitude to former director of La Salle, Universitat
Ramon Llull, Prof. Daniel Cabedo, who passed away on June 2006, and to Prof. Josep Mart́ı,
then chief of studies, for their acceptance, patience, and economical support during the first
half of my Ph.D. work.

I also thank the people of the grup de recerca en sistemes distribüıts, together with its
head August Climent for the support of the work; also the departament d’informàtica of La
Salle, Universitat Ramon Llull in general. Specially I am very grateful to Anna Villoslada
and Gabriel Salvà for helping me in different aspects during this work.

I would like to extend the acknowledgment to the group of General Systems Develop-
ment company: Albert Duran, Miquel Porta, Joan-Andreu Margalef and Román Duch.
They always supported and helped me in the usage and maintenance of PADD/RALE, the
distributed program development environment used in my thesis; and in many other ways
during this research work.

I am really glad that Prof. Zohar Manna accepted my visit to his group at Stanford
University, and for his invaluable comments along the thesis. Also many thanks to Tomás
Uribe, Nikolaj Bjørner, Bernd Finkbeiner, and Henny Sipma, for introducing me to the
temporal verification methodologies. Special thanks to Bernd Finkbeiner who followed and
encouraged this work from its beginning. Also the criticism of Prof. Ricardo Peña at a
certain stage of the work is appreciated.

The initial inspiration of the research leading into this thesis, occurred during the sab-
batical stay of my thesis advisor at the Rutherford Appleton Laboratory, British Science and
Engineering Research Council, invited by Dr. Robert Witty, also inventor of Dimensional
Flowcharting, the tree-like notation from which PADD was born. Together with my advisor,
I would like to acknowledge this and express my gratitude to Dr. Robert Witty.

I am also grateful to the coauthors of my communications and articles: Miquel Bertran,
August Climent, Jordi Riera, and Miquel Nicolau, for their help while writing the papers,
and to all the anonymous referees.

This research work would have not been possible without funding. In this regard, I would
like to thank General Systems Development company, La Salle, and the partial support from
the spanish Ministerio de Educación y Ciencia under the CICYT project TIN2006-14738-
C02-02.

Last but not least, the final acknowledgement is addressed to my family. I would like
to thank my parents Joan and Maria Dolors, and my brother Jordi for their unconditional
support and patience. To them and to my friends I dedicate this thesis.

CONTENTS

Page

List of Figures . xvii

List of Tables . xix

List of Procedures . xxi

1. Introduction . 1

1.1 Motivation . 1

1.2 Imperative Notations with Synchronous Communications 2
1.3 Formal Verification Methods . 3

1.4 Static Verification versus State Explosion 4

1.5 Communication Elimination and Equivalence Reasoning 5

1.6 Limitations of this Work . 6

1.7 The Need for Laws in a Suitable Equivalence 7

1.8 Interface Equivalence and Substitution Rules 8

1.9 Elimination Procedures and Program Sequentialization Proofs 9
1.10 Formal Parallelization . 9

1.11 Contributions and Plan of this Thesis 10

2. Modeling Notations and Grounding Notions 13

2.1 A Tree-like Notation . 13
2.1.1 Introduction . 13

2.1.2 Basic Statements . 14

2.1.3 Sequence . 14

2.1.4 Scoped Descriptions . 14

2.1.5 Sequential Iteration . 15

2.1.6 Parallelism . 16

2.1.7 Connections . 16
2.1.8 Internal and External Connections 17

2.1.9 Selection . 17

2.1.10 Abstract Communication Pairs 18

2.1.11 Communications Selection . 19

2.2 Textual Notation: Syntax and Related Notions 20

2.2.1 Introduction . 20

2.2.2 Basic Statements . 20

xii Contents

2.2.3 Compound Statements . 20

2.2.4 Related Notions . 21

2.3 Modular Procedures in PADD . 21

2.3.1 Procedure Interface . 22

2.3.2 Procedure Reference . 24

2.4 Modular Procedures in the Textual Notation 24

2.4.1 Syntax . 24

2.4.2 Procedure Reference Unhiding and Statement Hiding 25

2.5 Basic Notions for the Formal Semantics 26

2.6 Semantics of the Notation . 28

2.6.1 Introduction . 28

2.6.2 Auxiliary Notions . 28

2.6.3 Formal Semantics . 29

2.7 Interface Behaviors . 31

2.8 Interface Equivalence . 34

2.8.1 The Notion . 34

2.8.2 Deadlock Introduction . 36

2.8.3 Substitution Rules . 36

2.9 Laws for Interface Equivalence . 37

2.9.1 Introduction . 37

2.9.2 Repository of Laws . 38

2.9.2.1 Concatenation . 38

2.9.2.2 Cooperation . 39

2.9.2.3 Cooperation and Concatenation 39

2.9.2.4 Elimination of Redundant Variables and Statements 40

2.10 Conclusion . 41

3. Distributed Program Sequentialization Proofs 43

3.1 Introduction . 43

3.2 Communication Elimination Laws and Algorithms 44

3.2.1 Preliminary Notions . 44

3.2.2 Elimination Laws for Selection-free BC Statements 47

3.2.3 Elimination Algorithm for Selection-free BC Statements . . . 54

3.3 Extensions of DPS . 56

3.3.1 DPS for Non-BC Statements. The Fundamental Proof 56

3.3.2 Hierarchical Proof Organization Around Procedures 57

3.3.3 Hierarchical DPS Proofs . 57

3.3.4 Hierarchical DPS Proofs with Channel Hiding 58

3.4 Conclusion . 60

4. A Communication Elimination Reduction Procedure 63

4.1 Introduction . 63

Contents xiii

4.2 Binary Communication Elimination 65

4.2.1 Determine the Orders . 66

4.2.2 Construct Top Level Statements 72

4.2.3 Application of Elimination from a Binary Cooperation 75

4.2.4 Remove Nil Statements . 83

4.2.5 Remove Sequence and Parallelism Associations 85

4.2.6 Overall Computational Complexity 86

4.3 A Communication Elimination Example 87

4.4 Elimination from a k-ary Cooperation 102

4.5 General Communication Elimination 103

4.6 Conclusions . 105

5. The Interactive Prover Tool . 107

5.1 Interface Components and Overview 107

5.2 The Input Statement and its Preprocessing 108

5.3 The Basic Laws: Representation and Application 112

5.3.1 Notational Conventions . 112

5.3.2 Notation for the Laws . 112

5.3.3 Procedure Apply . 114

5.3.3.1 Structure Matching 115

5.3.3.2 Verification of Conditions 117

5.3.3.3 Example . 119

5.3.3.4 Transformation . 120

5.4 The Transformation Procedures . 122

5.4.1 Introduction . 122

5.4.2 Repository of Transformation Procedures 123

5.4.2.1 Communication Elimination 123

5.4.2.2 Cooperation Permutation 123

5.4.2.3 Cooperation Associativity 125

5.4.2.4 Binary Cooperation Associativity 127

5.4.2.5 Cooperation Flattening 128

5.4.2.6 Concatenation Permutation 130

5.4.2.7 Concatenation Association 132

5.4.2.8 Concatenation Flattening 134

5.4.2.9 Cooperation and Concatenation 136

5.4.2.10 Elimination of Redundant Variables 138

5.5 Conclusion . 138

6. Correctness Proof of a Pipelined Processor Architecture 141

6.1 Introduction to the DLX Processor 141

6.2 Simplified DLX-like Model . 143

6.2.1 Global View . 143

xiv Contents

6.2.2 Forwarding Unit . 145

6.2.3 The Pipeline2 Model . 146

6.2.3.1 Data Types . 147

6.2.3.2 Procedure IF . 147

6.2.3.3 Procedure IDpar . 148

6.2.3.4 Procedure EXpar 150

6.2.3.5 Procedure WBunh 152

6.2.4 The Pipeline1 Model . 153

6.2.4.1 Procedure IF . 153

6.2.4.2 Procedure IDseq . 154

6.2.4.3 Procedure EXseq . 154

6.2.4.4 Procedure WB . 155

6.2.4.5 Procedure Pipeline1 155

6.3 Proof Schema . 157

6.3.1 Overview . 157

6.3.2 State Vector Reduction . 161

6.3.3 Proof of Pipeline1 . 162

6.3.4 Proof of IDpar . 180

6.3.5 Proof of IDseq unh . 185

6.3.6 Proof of EXpar . 186

6.3.7 Proof of EXseq unh . 192

6.3.8 Proof of WBunh . 193

6.3.9 Final Step. Application of the Substitution Rule 194

6.4 Conclusion . 195

7. Conclusions and Future Work . 197

7.1 Summary and Conclusions . 197

7.1.1 Ground Notions . 197

7.1.2 Applicability Conditions for the Laws 198

7.1.3 Communication Elimination Procedures 198

7.1.4 An Interactive Prover . 199

7.1.5 An Example of Sequentialization Proof 199

7.1.6 Difficulty of Sequentialization 199

7.1.7 A Final Concluding Word . 200

7.2 Future Work . 200

7.2.1 Further Automation of DPS Proofs 200

7.2.1.1 Cooperation Substatement Closening 200

7.2.1.2 Concatenation Substatement Closening 202

7.2.1.3 Iterative Redundant Variable Elimination 203

7.2.1.4 General Substatement Closening 203

7.2.2 Further Generalization of Communication Elimination Laws . 204

7.2.2.1 Introduction . 204

Contents xv

7.2.2.2 Top Statements with P Partition 204
7.2.2.3 Alternative Construction of Top Statements 206

7.2.3 Deadlock Situations . 208
7.2.4 Elimination of Communications within Selection Scopes and

Non-disjoint Pairs . 210
7.2.4.1 Example . 211
7.2.4.2 Difficulties of general elimination 212

7.2.5 Completeness . 214

A. Soundness of the Laws . 217
A.1 Simple Cases . 217

A.1.1 Justification of the auxiliary laws 218
A.1.2 Communication Elimination Laws 223

A.2 Proof of Theorem 6 . 225

B. Proof of Pipeline1 . 233
B.1 Parallelism to Concatenation Transformation 233
B.2 Concatenation Commutativity . 239
B.3 Redundant Variable Elimination . 243
B.4 Obtaining first Von Neumann Body 260
B.5 Tail Statements . 269

C. Proof of IDpar and EXpar . 277
C.1 Proof of IDpar . 277
C.2 Proof of EXpar . 280

xvi Contents

LIST OF FIGURES

Figure Page

6.1 DLX stages and pipeline registers . 142
6.2 Pipeline2 block diagram . 144
6.3 Forwarding mechanism . 146
6.4 Pipeline2 stages . 146
6.5 IDpar stage block diagram . 148
6.6 EX stage block diagram . 150
6.7 Pipeline1 block diagram . 154
6.8 Hierarchical proof schema . 158

LIST OF TABLES

Table Page

2.1 An interface computation schema of the Pc procedure 32
2.2 Interface behaviour schema of the Pc procedure 33

4.1 Computation complexity of bin-comeli 87

6.1 Pipeline2 R-Type instructions. Arithmetical operations 143
6.2 Pipeline2 R-Type instructions. Logical operations 144
6.3 Local variables of procedure IF . 147
6.4 Local variables of procedure IDpar 150
6.5 Local variables of procedure EXpar 152
6.6 Local variable of procedure WBunh 153
6.7 Local variables of V NCycle . 162
6.8 Variables of Pipeline2 . 163

LIST OF PROCEDURES

Procedure Page
1 bin-comeli − binary communication elimination 66
2 step1 − determine the orders of Sl(ℓ) and Sr(m) 66
3 structorder − determine the structural order 70
4 step2 − put top level statements in the standard form 73
5 commstat − communicating statements 76
6 commprecede − communication order precedence restriction . . . 76
7 step3 − proper communication elimination 77
8 step4 − elimination of redundant nil statements 84
9 step5 − elimination of redundant statement associations 86
10 comeli − elimination form a selection-free BCS 102
11 gen-comeli − general elimination form a selection-free BCS 104
12 apply − apply a law . 115
13 cooppermut − cooperation permutation 124
14 coopasso − cooperation association 125
15 bincoopasso − binary cooperation association 127
16 coopflat − cooperation flattening 130
17 concatpermut − concatenation permutation 131
18 concatasso − concatenation association 133
19 concatflat − iterative concatenation flattening 135
20 coopconcat − cooperation and concatenation 136
21 itevarelim − iterative redundant variable elimination 203

Chapter 1

INTRODUCTION

The work reported in this thesis is about formal static communication elimination
from imperative programs and parallel program sequentialization, all via equivalence
reasoning. These are relatively unexplored topics. Thus, this chapter defines and
delimits the corresponding areas, and provides some motivation. It also introduces
the broad fields to which these topics pertain. The base theory which is needed for
the development of the proper thesis work is identified as well, but its review is left
for the second and third chapters.

1.1 Motivation

Equivalence reasoning is extensively used for numbers and matrices. Research on
equivalence reasoning in the area of concurrency and distribution has been carried
out in the very specific field of process algebras and action systems, such as CCS
[Mil80, Mil89], CSP [Hoa85] and ACP [BK84, BK85], where the equivalence is de-
fined on state transition systems and computation trees. These models are very
abstract, they are far from the intuitiveness of an imperative programming notation
with variables and boolean conditions. Effort on equivalence reasoning at the more
intuitive level of imperative program text is still needed for distributed, concurrent
and reactive system models.

Imperative concurrent, reactive and distributed programs, with explicit paral-
lelism and synchronous, handshaking, communications, are the framework of this
thesis. With them both software and hardware system models can be constructed.
This work contributes to the study of equivalence reasoning for these programs via
communication elimination and sequentialization.

2 1. Introduction

Equivalence reasoning for imperative concurrent and distributed programs, al-
though having the potentiality of being a very intuitive verification activity, remains
substantially unexplored within the broad field of interactive verification. Therefore,
conceptually, it deserves further attention.

An impediment for the widespread use of verification in engineering is the needed
expertise of the engineer in mathematical logic. Equivalence proofs remain at the
imperative notation level and its transformation laws; thus removing obstacles for
engineers. There is no need to go into invariants and predicate calculus. Mathema-
tical reasoning is only needed to justify soundness of the laws and the equivalences.
This has to be done only once, but not by the verifying engineer. In spite of not
being a general verification approach, this intuitiveness and simplicity gives and
additional motivation for studying the method and its application scope.

The widely researched area of model checking is affected by the state explosion
problem, since the checkers operate on the semantic model: the finite transition
system of the model program. Model checking algorithms have exponential com-
plexity in the size of the program. The algorithms studied in this thesis for the
automation of communication elimination and sequentialization proofs have poly-
nomial complexity in the size of the program, as will be apparent. Although these
proofs are not a general verification method, their complexity reduction makes their
study appealing.

1.2 Imperative Notations with Synchronous

Communications

Verification at the level of the source program is addressed in this work. Notation
has been recognised as a very important element in general, and for verification
in particular. Some of the pioneers of verification designed structured imperative
notations like Pascal so that verification was more natural, or even possible. As a
side comment, think about developing arithmetic in roman numerals. The notations
used in this work are imperative with parallelism and synchronous communications
and fall under the influence of Pascal.

Imperative notations with explicit parallelism and communication statements
provide an intuitive, explicit, and complete framework to express distributed pro-
grams and system models with perspective and clarity. OCCAM [IL85, IL88, Jon87],
ADA [Dep83, TDB+06], the simple programming language SPL of Manna and Pnueli
[MP91, MP95], PROMELA of the SPIN model checker [Hol91], and the shared-
variable language++, SVL++, in [dRdBH+01] are representatives of them.

To add motivation to study verification methods for imperative notations with
parallel processes and synchronous communications, as this work does, it is interes-

1.3. Formal Verification Methods 3

ting to realize that recent approaches to improve operating systems and general con-
current program correctness and dependability, advocate for the use of concurrency
in the form of parallel processes with local storage, communicating via rendez-vous;
the notational framework of this work. [Lee06] is an example, proposing coordina-
tion languages for expressing this type of communication among sequential processes
composed in parallel, as a way to avoid the more problematic shared storage concur-
rency. Also, in order to attain the above aims, new operating systems designed as
microkernels, with operating system processes around them have been proposed in
[THB06]. In an example of this approach, Minix3 [HBG+06], the microkernel offers
rendez-vous as the only means of interprocess communication.

An unavoidable problem in system development is mapping: the transformation
of the verified model into distributed software, or hardware, pertaining to the real
world. Mapping, into distributed software systems, of imperative programs with
parallelism and simple rendez-vous has been extensively treated in the literature for
an even more general notation: multiparty interaction, the notation IP (Interactive
Processes). The references [FF96, CRTC99, PCT04] are quite illustrative.

1.3 Formal Verification Methods

Formal methods are increasingly being used in industry to establish the correctness
of system models and to find the flaws in them; for instance, descriptions of hardware
and protocols. In particular, model checking [CE81, QS82, Hol91, MD93, CGP99,
MOSS99, Mer01, BK08] does that automatically for finite-state systems. However,
model checking is limited in scope due to the state explosion problem. Most practical
system descriptions, notably those of software, are therefore not directly amenable to
finite-state verification methods since they have very large or infinite state spaces.
For such systems, interactive theorem proving, for instance with the PVS prover
[OSRSC01a, SORSC01, OSRSC01b], or with STeP [BBC+95, BBMC+00], or with
ACL2 [KM09], has so far been the only viable alternative; in spite of its use requi-
ring manual effort and mathematical sophistication. Model checking often requires
much interaction in practice, for example for arriving at an initial model suitable
for checking. However, research on model checking for models with dynamic data
structures is underway [dMGMJS07, dMGMS08]. New paradigms and methods that
combine the ease of use of model checking with the power and flexibility of theorem
proving are needed. Such hybrid techniques started to emerge [MBSU98, SUM99].
Anyway, interactive verification is unavoidable and needs further research; the effort
reported in this dissertation contributes to it.

The formal methodology presented in this work is another interactive verification
approach, named Distributed Program Sequentialization (DPS). The goal is to obtain
a simpler model equivalent in some sense to the original distributed system. It is
based on equivalence proofs using a suitable set of laws applied as reductions to

4 1. Introduction

a program. An interactive prover tool is mandatory to carry out and store these
proofs.

1.4 Static Verification versus State Explosion

Though there are many different approaches to automatic verification of programs,
they are all limited by the space which is available on a given machine. Even small
programs may have a significantly large state-space, so that verifying programs which
implement solutions to realistic problems is difficult.

Automatic verification approaches work on the transition system of the program,
defining the semantics of the distributed system. This transition system has often
infinitely many states, and always a large size compared to the size of the program
modeling the distributed system, which is always finite. The situation in which small
programs correspond to exponentially large models is known as the state-explosion
problems. In order to grasp the magnitude of this problem, suppose, for instance,
that the number of variables of a program is n, each holding an integer of m bits. The
number of states may then be of the order of 2n×m, whereas the size of the program
remains of an order close to n. The size of the control-flow graph is proportional to
the number of statements in the program. The size of the transition system is much
larger since it is also proportional to the sizes of the variable domains. It is the size
of the transition systems which creates the difficulty in automatic verification.

Static analysis is the process of examining the control-flow graph of the program
(the system) to extract information on its semantics, without creating the seman-
tic model. The syntactic model is significantly smaller than the transition system
since it expands only the program counter and not the program variables, which
are the source for the enormous size of the semantic model. These considerations
suggest that static automatic verification approaches, avoiding the transition sys-
tem, working directly on the program would have less computational complexity, in
principle. Following this line of work, static analysis methods for state reduction
[CGL94, KLM+98, YG04] have been proposed as a step prior to model checking.
They reduce the size of the transition system and hence the complexity of model
checking. The verification method to be presented here falls within the broad cate-
gory of static verification, thus benefiting from its computational complexity advan-
tages. The size of the transition system would be reduced, indirectly, by working on
the source program, as the work of this thesis does.

1.5. Communication Elimination and Equivalence Reasoning 5

1.5 Communication Elimination and Equivalence

Reasoning

Sequentialization via internal communication elimination [BBCN01] is a static equi-
valence reasoning proof. It is based on the application of a set of laws, suitable for
that purpose, as reductions to a program. There are proper communication elimi-
nation laws, whose application removes communication statements, and auxiliary,
or basic, laws. After communications have been removed, parallel processes are
disjoint and can be reorganized with other laws, and redundant variables can also
be eliminated. When all this has been possible, a sequential program is obtained.















local a, b, x, y, z : integer
local α, β : channel of integer

Pa ::
[
produce a; α⇐ a;

]

||

P ::

[
[
α⇒ x ||β ⇒ y

]
;

[
z := x + y;
consume z;

]]

||
Pb ::

[
produce b; β ⇐ b;

]















As an illustration of communication elimination and sequentialization, consider
the above SPL program, having top-level parallel or cooperating disjoint processes
Pa, P and Pb. The inner process P is a concatenation whose first substatement is a
parallel composition of two synchronous communication, receive, substatements over
channels α and β. They match with synchronous communication, send, substate-
ments, over the same respective channels, in processes Pa and Pb respectively. The
same program expressed in PADD, another notation used in this work [BDP+09],
would be:

var
a, b, x, y, z: integer

con
alpha, beta: integer

| |
Pa

produce a
[]alpha:= a

P
| |

x:= <>alpha y:= <>beta
z:= x + y
consume z

Pb
produce b
[]beta:= b

6 1. Introduction

The elimination of synchronous communications, via α and β, followed by se-
quentialization, would give the equivalent program:







local a, b, z : integer

produce a; produce b;
z := a + b;
consume z







This form reflects the essential function of the original program, and can be ve-
rified, much more easily, with sequential program verification methods. The work
of this dissertation concentrates on the unexplored area of communication elimina-
tion and equivalence reasoning as illustrated by the above example. Other static
transformation systems were proposed in [dFS98, SO99, Sch99], exploring commu-
nication elimination in frameworks different from imperative distributed programs
with parallelism and synchronous rendez-vous communication.

Equivalence reasoning with communication elimination has applications in for-
mal design. Actually, using it in the opposite direction, as communication introduc-
tion. This is commented in subsection 1.10.

1.6 Limitations of this Work

This work applies to a certain class of models only. But, in addition, the assump-
tions on the underlying scheduler are restricted to weak fairness or no fairness at
all. Strong fairness is prohibited, since some of the laws are not valid under this
assumption. Parallel statements in the model should be disjoint : no written vari-
ables being shared. Data is communicated among parallel processes via synchronous
message passing only.

The results of this thesis are restricted to programs none of whose communica-
tion statements are under the scope of selections. Only sequential and parallelism
operators are accepted, like the example above. Nevertheless interesting examples,
like the pipeline processor in chapter 6, fall under this class. This limitation stems,
on purpose, from a research plan. Obviously elimination of communications outside
selection scopes is more tractable than general elimination. Nevertheless it is com-
plex enough to be approached in isolation. The plan was to tackle the selection free
case, taking its solution as a base, and then enter into the elimination of communi-
cations under selections. In fact, we are, as a joint effort outside the thesis scope, in
an advanced stage with respect to the latter case.

1.7. The Need for Laws in a Suitable Equivalence 7

The difficulties of elimination for general programs, where communications may
be under selections, are illustrated in subsection 7.2.4.2. The complexity of analyzing
the closely related problem of synchronization of concurrent programs has been
treated in [Tay83, Ram00].

1.7 The Need for Laws in a Suitable Equivalence

The transformation overviewed above needs laws such as P ;nil ≈ P , P ||nil ≈ P ,
and associativity of parallelism, which are auxiliary since they do not eliminate any
communication statement. It also requires a proper communication elimination law
such as:









H l;

α⇐ e ;

T l









||









Hr;

[
α⇒ u || P r

]
;

T r









≡









[
H l || Hr

]
;

[
u := e || P r

]
;

[
T l || T r

]









which is an instance of the communication elimination schema given in section 3.2.2.
H l and Hr statements do not communicate over channel α. The equivalence symbol
is general and will be given concretion in section 2.8.

This law, applied from left to right, eliminates the communication statements
over α, replacing their function with the assignment u := e. The auxiliary laws
are necessary in order to transform the program into a form ready for structure
matching with an elimination law.

The soundness of the laws depends on the notion of equivalence and on the
fairness assumptions [MP91]. A set of laws for OCCAM was given in [RH88]. Al-
though a simple communication elimination law was included, rather than com-
munication elimination, the focus there was to obtain normal forms and to define
the semantics of the notation. Communication closed layered systems are a special
class of distributed systems, introduced in [EF82]. Some laws for them are given
in [dRdBH+01], in the framework of SVL++. For instance, sequential-parallelism
transformation and iteration unfolding transformation laws. The aim there was for-
mal design by transformation, but no communication elimination law was reported.
Communication elimination proofs in this thesis use the latter as auxiliary laws.
Some laws for SPL are given in [MP91], with a very clear SPL semantics, based on
fair transition systems (FTS), but none is for communication elimination. Thus, the
work to be presented may be regarded as a concrete continuation line of all these
works.

8 1. Introduction

As a needed grounding work for this dissertation, a set of relations for commu-
nication elimination was given and proved sound in [BBCN01]. Its cardinality had
to be unbounded and strong fairness had to be prohibited. Only weak fairness or no
fairness at all are compatible with the soundness of these laws. In this earlier work,
the notion of equivalence was assimilated to the congruence of [MP91], a very strong
equivalence. This had the drawback of limiting the formulation of most communi-
cation elimination laws to unidirectional refinements. The need of working with a
weaker equivalence, for all laws and avoiding the asymmetry of refinement relations,
was outstanding.

1.8 Interface Equivalence and Substitution Rules

The notion of interface equivalence [BBC05b] is weaker than congruence, but strong
enough to preserve the input/output relation of distributed programs and to lead to
laws for communication elimination. It was also developed as a needed grounding
work for this dissertation. There are many other equivalences in the literature,
within process algebras [vG01], in the polychrony framework [GTL02], etc. It would
be interesting to study interface equivalence in their perspective. A very interes-
ting order among many equivalences has been reported in [dFEGR05, dFEVGR07,
dFEGR09]. There, the weakest is trace equivalence. Interface equivalence is at the
level of trace equivalence. In it all computations with the same intermediate results,
but with different relative orders, are equivalent. Interface equivalence is justified in
a semantics where each statement denotes a set of interface behaviors. These extend
the notion of reduced behavior given in [MP91]. In order to capture the complete
input/output relation, the former adds auxiliary variables, in addition to the usual
data state variables, to record the values traversing synchronous channels. This
makes explicit the fact that values may be input or output via channels, as well as
via proper variables. All these notions were introduced since they were the minimal
extensions needed while keeping this work within the framework Manna and Pnueli
books. In this semantic context, the grounding work with streams introduced in
[Bro97, Bro99, Bro01] is important, but in the concrete imperative program context
of this work a new model, where both channel and variable values were explicitly
taken into account and distinguished, was needed. The work on compatibility of
components [dA03] has some relation also.

Important components of equivalence reasoning are a procedure reference unhi-
ding rule and a rule for the substitution between procedure reference statements, to
equivalent procedures. These allow proof decomposition. Conditions for the validity
of such substitutions are also given and their justification outlined in [BBC05a] and
in this work. Altogether, equivalence and substitution rules establish the necessary
base theory for formal interface equivalence reasoning about distributed programs.

1.9. Elimination Procedures and Program Sequentialization Proofs 9

1.9 Elimination Procedures and Program

Sequentialization Proofs

For the elimination of communications under any nested structure of parallelisms,
an infinite set of communication elimination laws are required, [BBCN01]. Never-
theless, communication elimination procedures exist for the automatic application
of the laws as reductions. Preliminary work towards the justification of a com-
munication elimination procedure was undertaken in [BBCN01, BBC05b]. Proper
communication elimination laws were mathematically justified in the new weaker
equivalence in [BBC05a], and their complete set of applicability conditions was de-
rived as part of this thesis. In addition, a communication elimination reduction
procedure was proposed and justified, as part of this thesis also.

The inner communication-free program which results from the communication
elimination procedure can be transformed interactively, with another set of laws, into
a sequential program with less variables than the initial distributed program, but
equivalent to it. The whole proof constitutes a distributed program sequentialization
(DPS) proof. Since it decreases the size of the state vector, it could complement
and be combined with other proof methods, such as model checking or interactive
verification [BBMC+00, KM97] as a succeeding step, reducing overall proof comple-
xity. In many cases, only an equivalent purely sequential program has to be verified.
Such is the case for the pipeline processor example presented in chapter 6. Nowadays
combining different formal techniques is a promising direction for verifying complex
hardware and software system models. Nevertheless, this line is not explored in this
dissertation.

A DPS proof of a distributed fast Fourier transform was outlined in [BBCN01].
The result of another DPS proof of a pipelined processor model, carried out with
the help of a tool which implements a communication elimination procedure, was
reported in [BBC05b], without going into its steps. A very detailed report of the
steps of the proof is given in the present work, which also analyzes the substantial
state-space reduction obtained with it.

1.10 Formal Parallelization

The reported work is very relevant in the popular area of parallelization in for-
mal design. Communication elimination and sequentialization proofs are reversible,
since they are equivalence proofs. Consequently any sequentialization proof can
be reinterpreted as a formal parallelization process. The laws used in this work
would be applied then in the reverse direction; as a parallelism and communication
introduction step.

10 1. Introduction

References [SSB04, SJ00] provide examples in hardware / software partitioning.
A sequential specification is transformed, introducing parallelism and communica-
tions into a model of a hardware implementation. Formal design is not treated in
this thesis. It is an area of future work, section 7.2 of chapter 7.

At the beginning of our work [BBCN01] both communication elimination and
introduction were envisaged. Although the work evolved with a bias to elimination
and sequentialization, it could have evolved in the opposite direction. The adap-
tation of the procedures and tools of this dissertation to formal parallelization is
proposed as future work.

1.11 Contributions and Plan of this Thesis

For self containment reasons, and as an introduction to the presentation of the
main results of this thesis, chapter 2 treats notation and background notions which,
although needed for the presentation, do not form part of this thesis, whose main
contributions are the following:

- Formulation of applicability conditions for the communication elimination law
schema, for selection-free programs. This is discussed in chapter 3 and was
presented in [BBC05a].

- A communication elimination proof construction procedure, which attempts to ap-
ply the elimination laws automatically. This is treated in chapter 4. The
elimination procedure is integrated within a prover tool.

- A set of transformation procedures, that guarantee that the equivalence transfor-
mation always corresponds to the application of a sequence of laws. They have
been implemented to mechanize some tedious parts of DPS proofs. They are
detailed in chapter 5, and are integrated within a prover tool.

- The design and development of an interactive prover tool for the semi-automatic
construction of distributed program sequentialization proofs. The construction
of these proofs is impractical, even impossible, without such a tool. It is
described in chapter 5.

- A sequentialization proof of a pipelined processor model, carried out with the help
of the tool, with the communication elimination procedure embedded in it.
This proof example is detailed in chapter 6.

Throughout this thesis, communication elimination is confined to selection-free
programs, i.e. programs none of whose inner communications are in the scope of
selection statements. Interesting applications can already be attempted within this

1.11. Contributions and Plan of this Thesis 11

framework. The thesis work has created the essential base for the needed extension,
which is underway as continuation work.

12 1. Introduction

Chapter 2

MODELING NOTATIONS AND

GROUNDING NOTIONS

This chapter is on notation: syntax, semantics, and related grounding notions on
which the proper dissertation work depends. The mathematical apparatus needed
to justify communication elimination and DPS equivalence proofs in the notation,
the main concern of this dissertation, integrates various notions, which should be
defined with precision. Although this mathematical apparatus has been covered
elsewhere, this chapter gives an overview, without going into proofs.

After introducing two syntactic forms of modeling notation, a common seman-
tics is discussed: the fair transition systems of Manna and Pnueli with the extended
notion of interface behavior. An equivalence based on interface behaviors, some
basic laws for this equivalence, procedure unhiding/encapsulation rules, and pro-
cedure reference substitution rules constitute a minimal set of notions required to
construct equivalence proofs for distributed system models. This chapter presents
all these topics, which will prepare the reader to go into proper communication eli-
mination laws, a procedure for their automatic application, the interactive prover
tool embedding it, and complex DPS proofs. All these are left for other chapters.

2.1 A Tree-like Notation

2.1.1 Introduction

This section introduces informally the modeling notation, PADD [BDP+09], of the
prover tool. It adopts an explicit tree form: dimensional flowcharting, proposed
in [Wit77] and further elaborated into dimensional design [Wit81]. An algebraic
formalization of dimensional design is given in [Ber88].

Both, models to be equivalence proved and the tool itself are expressed in PADD.

14 2. Modeling Notations and Grounding Notions

As a side comment, a modeling and simulation based distributed program develop-
ment environment, RALE, exists for this notation and quite a number of interesting
systems have been developed in it at the General Systems Development company
[GSD]. The following are some of them: a simulator for an open air active noise
cancellation system where both the acoustic field and the digital signal processing
algorithms are modeled, a simulator of a packet switching communications network
for a power utility providing telecontrol, IP-routing, file transfer, and other sorts
of services, and many other systems. To give an idea of order of magnitude, the
telecommunication network model has about 3000 processes and 5000 communica-
tion connections (to be explained later in this chapter).

It should be stressed that, for this dissertation work, PADD is just another
syntactic form for the variant of SPL which has been used. Its formal semantics is
the same as the one described for such a variant later in this chapter.

2.1.2 Basic Statements

The basic statements are skip, nil, stop, the assignment u:= e, and the commu-
nication statements, send and receive, to be introduced later. Storage variables are
declared within a var construct.

2.1.3 Sequence

Sequential composition of statements, also referred to as concatenation, is expressed
by connecting them with vertical edges.

...
p1
p2
...
pn

The execution order starts with the upper statement, and continues down the list.
Execution ends when the last statement in the list ends.

2.1.4 Scoped Descriptions

Comments are scoped descriptions. They consist of a line of text describing its lower
diagonal tree, its scope.

2.1. A Tree-like Notation 15

... statements executed before those being described

Scoped description

... statements being described

... statements executed after those being described

Execution of a diagonally refined comment means execution of its diagonal subtree.
When it ends, execution continues at the statements connected vertically under the
description line. Within the notation, the diagonal edge denotes refinement. Scoped
descriptions may be used recursively.

2.1.5 Sequential Iteration

A sequential conditional iteration consists of the symbol ‘*’, denoting the fact that
an iteration occurs at this point of a sequence, and the iteration body, standing at
its diagonal lower subschema (its refinement).

... statements executed before the iteration

*
B1
 b

B2
... statements executed after the iteration

The boolean expression b can stand at any point of the body. The semicircle at
its left makes it more explicit. B1 and B2 are the parts of the body that execute
before and after the boolean condition. Both are optional but at least one of them
should be present.

Repetition takes place while the boolean evaluates to true. Otherwise exit occurs,
and execution continues with the process connected vertically under the iteration
symbol ‘*’.

...

* k:= 1..n
B

...

The usual indexed iteration, as shown above, is available also. B is the body of the
iteration, whose execution is repeated.

16 2. Modeling Notations and Grounding Notions

2.1.6 Parallelism

Parallelism is always explicit. The following is the typical parallelism schema con-
necting N statements in parallel

... statements executed before the parallelism

| |

P1

P1 statement.

P2

P2 statement.

... PN

PN statement.

... sentences to be executed after ALL parallel processes terminate

The execution of each of the statements corresponds to a process, which is a term
expressing the dynamical aspect of a statement. Parallel composition of statements
is also referred to as cooperation. It is defined with the parallel composition con-
struct. The items in the composition have a heading label Pi. Labels are connected
horizontally. The symbol ‘ ||’ represents the whole parallelism within a sequence.
The horizontal list of processes is its lower diagonal refinement, connected to it by
the diagonal edge.

Execution starts by creating and starting all processes. The relative order of
execution of their component subprocesses is unknown, in principle. Execution ends
only when all process end, and continues with the sentence connected in sequence
after the symbol ‘ ||’.

2.1.7 Connections

Connections are typed but memoryless points which enable synchronized half-duplex
point to point communication between two parallel processes. They are declared
before the parallelism operator, as in the following schema.

con
con1: TypeCon1
con2: TypeCon2
. . .

| |
P1

. . .
. . . PN

. . .

Connections will be used within the processes connected in parallel in order to
send and receive values. Communication takes place when communication state-

2.1. A Tree-like Notation 17

ments are executed. This will be explained later. The con construct declares con-
nections to be used within an algorithm. Their scope is the vertical subschema under
the keyword con. They are unseen anywhere else.

A con construct with a parallel composition of processes communicating through
the declared connections within its scope, defines the framework for a network of
communicating processes.

A connection should not be confused with an asynchronous channel, which con-
sists of a queue of messages and which is modeled as a process in PADD. Another
word for connection is synchronous channel.

2.1.8 Internal and External Connections

Throughout this work, connections are classified into internal and external. This
classification is associated with procedures, and will be explained later when modular
procedures are treated. Usually, the set of internal connections will be clear from
the context, and will be denoted by I.

2.1.9 Selection

The selection construct connects its alternatives with horizontal lines, through the
alternative headings (an structural dot, the ‘o’ character, in the current implemen-
tation). Each alternative Ai is headed by its boolean condition bi, preceded by a
left parenthesis.

... Sentences executed before the selection

?

 b1

A1

 b2

A2

...

 bn

An

... Sentences executed after the selection

The alternatives are connected horizontally under the diagonal scope of the se-
lection symbol ‘?’. The leftmost alternative whose condition evaluates to true is
selected for execution. At any possible execution, at least one boolean condition
should evaluate to true, otherwise this causes a run-time error. When else stands
in place of the boolean condition of the rightmost alternative, the last condition is
met always. When the else alternative does nothing a nil should be placed there.
Execution of the selection ends when the selected alternative ends. It continues with

18 2. Modeling Notations and Grounding Notions

the next process connected vertically under the symbol ‘?’. A different semantics,
non-deterministic, is followed throughout this work, where one alternative is selected
non-deterministically among those whose guard evaluates to true.

2.1.10 Abstract Communication Pairs

The actual event of communicating a value via a synchronous channel is specified
with communication operations within the algorithm of processes composed in pa-
rallel. There exist the send and receive operations associated to each type. They
will be referred to as Abstract Communication Pair (ACP) in the sequel.

An ACP is associated to a type and its two complementary operations, send and
receive, serve to communicate values of the type. The specific form in which the
communication takes place is unknown to the programmer, this is the motivation
for the word abstract.

Given c : t and v : t, a connection and a variable of type t, the following syntax
will be used for the receive and send operations respectively:

v :=<>c and []c := v

For nil typed connections, the syntax

<> c and []c

will be used. In this case, no value is passed, just two synchronizing signals.

Communication takes place without intermediate buffering, both processes syn-
chronize at their communication operations. When both are ready to communicate,
the value of type t is stored in the variable at the receive operation. Process execu-
tion continues in parallel. The first process that tries to communicate will wait for
the other. While waiting, a processor will be free and the scheduler will assign it to
some other process which is ready for execution.

A simple example will illustrate the constructs presented so far:

2.1. A Tree-like Notation 19

var
a1, a2: integer

con
c: integer

| |

a1:= <>cp
a1:= a1 + p
[]c:= a1
skip

a2:= <>cp
r:= <>c
a2:= r + a2
[]cr:= a2

Connections cp and cr communicate with other parallel processes; they are ex-
ternal. Variables p and r serve also to communicate values with others processes,
but via storage. Connection c is internal since its scope is limited to the binary
parallel statement. It enables communication between the two sub-process.

2.1.11 Communications Selection

Communications selection has alternatives connected in an horizontal list. The
execution of only one alternative is determined by boolean conditions bi and com-
munication operations (guards) ci located at alternative headings. The alternative
to be executed is selected depending on the evaluation of conditions and the possibi-
lities of communication with the implied neighbor processes. The logic disjunction
of all the conditions should evaluate to true in all possible executions of the selection.
Otherwise erroneous termination occurs.

...

?

 b1, c1

A1

 b2, c2

A2

...

 bn, cn

An

...

A non-deterministic semantics will be adopted. The alternatives whose boolean
guards bi evaluate to true are said to be open. Among the open alternatives, one
alternative among those whose communication guard can communicate is chosen
non-deterministically.

In the current implementation, the semantics is deterministic with left priority.

20 2. Modeling Notations and Grounding Notions

2.2 Textual Notation: Syntax and Related

Notions

2.2.1 Introduction

Programs will also be expressed in a variant of SPL, which is general enough to
express any practical program. Its syntax is presented now. Basically, the general
selection statement of SPL has been restricted to only boolean and guarded commu-
nication selection forms. Also, in an initial attempt to obtain the above mentioned
intuitive set of auxiliary equivalence relations, a nil statement has been introduced.

Any statement S may have explicit pre and post labels, ℓ and ℓ̂ respectively, as
in ℓ;S; ℓ̂ . They serve statement and/or control location identification purposes.
Control locations, to be further defined below, are classes in the label equivalence
relation, since more than one label may denote the same location in a program.

2.2.2 Basic Statements

There are the same basic statements introduced above, subsections 2.1.2, 2.1.7 and
2.1.8. The two communication statements have the syntax α⇐ e for the send, and
α ⇒ u for the receive. This work is limited to synchronous channels α, which will
be referred to as channels. In them both the sender and the receiver wait for each
other before exchanging a value and continuing execution. The two communication
statements will be referred to more simply as communications. Both channels and
variables are declared globally before their usage.

2.2.3 Compound Statements

The rest of the notation is defined recursively. The concatenation statement is n-ary:

S1; · · · ;Sn

The iteration statements are while c do S , where c is a boolean expression, and
the indefinite iteration

[loop forever do S]
def
= [while true do S].

The cooperation statement is also n-ary:

S1|| · · · ||Sn

2.3. Modular Procedures in PADD 21

Its substatements Sj are the top parallel statements of the cooperation statement,
which is the least common ancestor of them. It will be assumed throughout this work
that the Sj ’s are disjoint, and that they communicate values through synchronous
channels only.

The regular selection and the communication selection statements are non-deter-
ministic and have, respectively, the forms

b1;S1 or · · · or bn;Sn

and

b1, c1;S1 or · · ·or bn, cn;Sn

where the bi’s are boolean expressions referred to as boolean guards, and the ci’s are
synchronous communication statements referred to as communication guards.

2.2.4 Related Notions

Following the references [MP91, MP95], Substatements Si and Sj, i 6= j, of a coope-
ration are said to be parallel. Similarly for any pair of substatements, one in Si and
the other in Sj.

Also, if S′ is a substatement of S, it is said that S is an ancestor of S′. Every
statement is an ancestor of itself. A statement S is said to be a common ancestor of
S1 and S2 if it is an ancestor of both. Also, S is said to be a least common ancestor
(LCA) of statements S1 and S2 if it is a common ancestor of S1 and S2, and any
other common ancestor S̃ of S1 and S2 is an ancestor of S. Every two statements
have a unique least common ancestor.

Two statements are said to be disjoint when no variable written in one of them
is either read or written in the other or vice versa. Two statements are also said
to be parallel if their LCA is a cooperation statement that is different from both.
This is equivalent to the definition given at the beginning of this subsection. Two
communication substatements match if they are parallel, one of them is a send, and
the other is a receive over the same channel. Two statements communicate if one
of them has a communication substatement com(α) through channel α which has
a matching communication substatement ¯com(α) in the other statement. If two
substatements communicate, then they have to be parallel.

2.3 Modular Procedures in PADD

A modular procedure is a piece of a program which is given a name, and whose
relation with the rest of it is explicitly defined within its interface. The reason for

22 2. Modeling Notations and Grounding Notions

the name modular procedure is to avoid confusion with the procedures of sequential
programming languages, where parallelism and communication constructs are not
allowed. The notion combines some elements of the SPL module [MP91, FMS98]
and of procedure.

A modular procedure can be composed in parallel with other processes, which
may have the form of references to other modular procedures. Connection (syn-
chronous channel) names can be declared at the interface of a modular procedure.
This is one of its differences with sequential procedures. In the following, the name
modular will be dropped and modular procedures will be refered more simply as
procedures. When used in a sequential program, modular procedures become just
procedures.

Modular procedures may be invoked by procedure reference statements, which
make explicit the names of all the interface channels and variables. Common vari-
ables are prohibited.

The algorithm (alg) or body and the interface (int) are the two only parts of
a procedure. They stand as diagonal subtrees under the keywords alg and int,
respectively.

<proc_name>

int
... interface definition

alg
... algorithm sentences

The interface defines the relation of the procedure with the rest of the program.
This is done in terms of variables and connections through which values (data)
are interchanged. The algorithm defines the actions taken when the procedure is
executed. Thus, the interface is static whereas the algorithm is dynamic.

2.3.1 Procedure Interface

Both communication connections to exchange values with the rest of the program,
and variables that are used and/or computed by the procedure are declared in its
interface, whose syntax is shown within the following schema.

2.3. Modular Procedures in PADD 23

<proc_name>

int
res

Declaration of result vars or cons

pos
Postconditions relating

results to parameters

par
Declaration of parameter vars or cons

pre
Preconditions imposed

on parameters

alg
Algorithm sentences

The interface of a procedure has parameter (par) and result (res) subtrees,
where interface variables and connections are declared. Their scope is the whole
algorithm section of the procedure. When a parameter variable has to be modified
by the procedure, it should be declared as a result also. For the semantics, both
parameter and result variables are passed by reference. Therefore, a change of a
result variable carried out within the algorithm of a procedure is seen immediately
by any parallel procedure having the same variable as a parameter.

Every variable which is updated by a procedure should be declared as a result.
Forcing explicit interface declarations prevents hidden lateral effects. This has also
advantages concerning self-documentation, and forces a healthy programming style,
where structures and compound objects should be passed in order to decrease the
number of parameters and results needed.

Another possible form of relation of the procedure with the rest of the program
is the communication of values to parallel processes via connections. These commu-
nication connections form part of the interface and should be declared within it also.
Output and input connections go in the result and parameter sections respectively.
Input connections have names prefixed with the string “<>”. Output connections
have names prefixed with the string “[]”. The usage of these connections takes place
within the algorithm body.

As an example, the heading and interface of the example in page 19 could be the
following:

Pc
int

res
r: integer
[]cr: integer

par
p: integer
<>cp: integer

alg
...

24 2. Modeling Notations and Grounding Notions

2.3.2 Procedure Reference

A procedure reference starts with the list of actual results, followed by the assignment
symbol ‘:=’ and the procedure name. It ends with the list of actual parameters,
within parenthesis, even when this list is empty. Their relative orders and typings
should match the procedure interface declaration.

r1, r2, ... := Proc.Name(p1, p2, ...)

By forcing the explicit reference to all parameters and results there is no need
to examine the procedure body in order to determine which objects are updated
by the procedure execution, since only the actual results, stated in the procedure
reference, may change. This makes easier the implementation of the procedure
reference substitution rule.

2.4 Modular Procedures in the Textual Notation

2.4.1 Syntax

An example of procedure is given below. It is the same procedure of subsection
2.1.10. Its procedure reference stands at the left, and the procedure body at the right.
The reference takes also the role of the procedure heading; defining the name, the
parameters and the results with the semantics given above for the PADD notation.

(r, cr) ::= Pc(p, cp) ::




















out r : integer
out cr : channel of integer
in p : integer
in cp : channel of integer
local a1, a2 : integer
local c : channel of integer







cp⇒ a1;
a1 := a1 + p;
c⇐ a1;
skip






||







cp⇒ a2;
c⇒ r;
a2 := r + a2;
cr ⇐ a2


























The declaration of the interface is done in the four top statements of the body.
The simplified notation r ::= P (p) will be used for a procedure reference, where r
and p stand for the result and parameter lists of the interface.

2.4. Modular Procedures in the Textual Notation 25

2.4.2 Procedure Reference Unhiding and Statement Hiding

The meaning of a statement, one of whose substatements is a procedure reference,
is unchanged with the replacement of the reference substatement by the body of the
referred procedure. This replacement consists of three steps

1. Renaming those internal variables and connections, of a copy of the referred
procedure algorithm, that share their names with a variable or channel of the
embedding statement.

2. Proper replacement of the reference substatement by the copy of the procedure
algorithm, with the renamings.

3. Moving the procedure renamed algorithm declarations of variables, var sec-
tion, and of connections, con section, to the embedded statement heading.

This equivalence implies that interface variables should be passed by reference at
procedure invocation. In the equivalence prover, the procedure reference unhiding
rule implements this transformation.

Encapsulation, or hiding, of a substatement as a procedure is the reverse of
unhiding. A name and an interface set for the new procedure, which is to encapsulate
the substatement, have to be given.

Encapsulation may hide connections making them internal to the new proce-
dure. When a statement to be encapsulated has communication pairs over a given
connection c, within some of its cooperation substatements, and some operation
of a pair forms another pair with a matching, parallel, communication outside the
statement to be encapsulated, there would be internal and external communication
events with respect to the new procedure. This is forbidden, and has to be checked.
Henceforth, encapsulation is preceded by the check of some conditions. It has the
following operations:

1. Given a statement to be encapsulated and an interface set, check that

(a) the interface set is formed with statement variables and connections only.

(b) the statement variables and connections which are not in the proposed
interface are used within the statement only. These are named internal.

(c) no connection in the interface set is used for communications within the
statement.

2. Move the internal variable and connection declarations, within the embedding
statement, so that their scope is the statement to be encapsulated.

3. Form the new procedure. From the given name, interface set, and substate-
ment to be encapsulated, with its just moved heading local declarations.

26 2. Modeling Notations and Grounding Notions

4. Replace the statement to be encapsulated, with its heading declarations, by
the corresponding procedure reference substatement.

In the equivalence prover, the statement hiding rule implements this transformation.

2.5 Basic Notions for the Formal Semantics

The soundness of the laws, to be introduced later in this chapter, has been proved in
the formal semantics of Manna and Pnueli books, based on fair transition systems
(FTS), [MP91, MP95]. Some notions presented in these books are summarized in
this section. Some extended notions, needed later in this work are built on top of
them and will be introduced in another section. The rest of this section can be
skipped if the reader is familiar with the topic.

The meaning of statements will be defined in terms of state transition systems.
Then, the equivalence of statements will be based on the equivalence of their associa-
ted transition systems. Some basic notions are needed for that, and are introduced
in this chapter without much elaboration. The reader is referred to [MP91, MP95].

A fair transition system (FTS) S is the tuple 〈V,Σ,Θ,T ,J , C〉, where

• V is a finite set of system variables, expressible as V = Y ∪ {π}, where π is
the control variable, and Y = {y1, . . . , ym} is the set of data variables.

• Σ is the set of states.

• Θ, a satisfiable assertion, is the initial condition satisfied by all the initial
states of the FTS.

• T is a finite set of transitions.

• J is the set of just (weakly fair) transitions.

• C is the set of compassionate (strongly fair) transitions.

The control variable π contains the values of the program counters of each parallel
process, which are control locations, defined below.

A transition τ ∈ T is a relation on pairs of states (s, s′). s′ is a τ -successor of s.
τ(s) denotes the set of successors of s in the relation. The relation will be specified
by a transition relation ρτ (V, V ′), a first order formula which evaluates to true for
each state pair of the transition. V and V ′ correspond to state variables evaluated
at s and at s′. It has the general form

ρτ (V, V ′) : Eτ (V) ∧Dτ (V, V ′)

2.5. Basic Notions for the Formal Semantics 27

where conjunct Eτ depends only on the initial state s, and conjunct Dτ depends
on both states s and s′, and specifies the changes made on the variables by the
transition. Transitions correspond to atomic actions associated to statements.

A transition is enabled or disabled on state s when Eτ (V) evaluates to true or
false on s, respectively.

One of the transitions τI ∈ T is the idling transition. It is such that s′ = s for
every state s.

A run of a FTS is an infinite sequence of states

σ : s0, s1, s2, . . .

satisfying

• initiation (s0 |= Θ) and

• consecution (sj+1 ∈ τ(sj)).

A transition is just (weakly fair) if when it is continuously enabled in a run, then
it is taken eventually in the same run. Consequently it will be taken an indefinite
number of times as well.

A transition is compassionate (strongly fair) if when enabled an indefinite
number of times in a run, it is taken eventually in the same run. Consequently it
will be taken an indefinite number of times as well.

A computation of a FTS is a run all of whose transitions satisfy their correspon-
ding fairness requirements, expressed by the sets J and C.

In order to define a practical notion of equivalence between transition systems
it is enough to consider observable parts. Then, a reduced behavior σr is obtained
from a computation σ by retaining an observable part, relative to a set of observed
variables O, where π 6∈ O, and eliminating from it stuttering steps (equivalent to
idling transitions). In other words, deleting any state which equals its predecessor
but not all its successors. RO(S) is the set of all reduced behaviors of a transition
system S, with respect to the set O of observed variables.

Two transition systems S1 and S2 are equivalent relative to a set O of observed
variables, denoted by S1 ∼ S2 , if RO(S1) = RO(S2). A system Sc refines system
Sa, written Sc ⊑O Sa , if every reduced behavior of Sc is also a reduced behavior of
Sa.

A program context P [] is a program P one of whose statements corresponds to
a hole to be filled-in with an arbitrary statement S. With some abuse of notation
P [S] will denote a program context, where S denotes the arbitrary statement placed
in the hole.

28 2. Modeling Notations and Grounding Notions

Statement S1 refines S2, written S1 ⊑O S2, when for any program context P [·],
any reduced behavior of P [S1] is also a reduced behavior of P [S2].

S1 is congruent to S2, written S1 ≈O S2, when S1 ⊑O S2 and S2 ⊑O S1. Some
of the laws are congruence relations between statements.

2.6 Semantics of the Notation

2.6.1 Introduction

In order to define the equivalence used in the laws, it is mandatory to specify the
precise meaning of the notation before. Since there are slight variations in SPL
throughout the two framework books, and a variant is used in this work, a presen-
tation is necessary. This will be undertaken in this section.

Once this is done, the specific FTS associated to a program will be clear; more
specifically, the set of transitions, the runs and the behaviors. After this, the ex-
tended notions of interface behavior and interface equivalence will be introduced;
just before the basic laws for interface equivalence are presented.

Before going into the semantics, which will detail the transitions associated to
each statement of the SPL variant, some auxiliary notions are needed.

2.6.2 Auxiliary Notions

Following again Manna and Pnueli, a finite set of transitions, and a finite set of
control locations is associated with each statement S. An equivalence relation ∼L,
defined on statement labels, will put together labels which denote the same control
location.

A location is an equivalence class of the label relation ∼L. The location cor-
responding to label ℓ will be denoted by [ℓ]. It stands for the equivalence class
containing ℓ and all the labels that are ∼L equivalent to ℓ. Usually, ℓ and ℓ̂ are the
pre and post labels of a statement S, its pre and post control locations [ℓ] and [ℓ̂]
are also written as pre(S) and post(S) respectively.

The special variable π, introduced above, will range over sets of locations. Its
value on a state denotes all the locations in the program that are active on that
state. A state such that [ℓ] ∈ π will be referred to as an ℓ-state.

The predicates pres(U) and move(L, L̂)

pres(U) :
∧

u∈ U (u′ = u) and move(L, L̂) : L ⊆ π ∧ π′ = (π − L) ∪ L̂

2.6. Semantics of the Notation 29

express preservation of the values of the variables in U , and movement of control
from the set of control locations L to L̂. The pres predicate specifies the data
variables which are not changed by the transition. The move predicate specifies also
the set L of control locations which should be active in order for the transition to
be enabled, and the set L̂ of locations that are active at the end of the transition.

Some notation shortcuts will be introduced in connection with the move predi-
cate. As an example the expression move(ℓ, ℓ̂) will be used instead of move({[ℓ]}, {[ℓ̂]}).
A transition τℓ whose transition relation ρℓ is of the form

ρℓ : move(L, L̂) ∧ pres(Y)

will be referred to as a skip-type transition.

2.6.3 Formal Semantics

The table gives the semantics of some basic statements of the notation:

Statement Transition Relations Fairness Labels

ℓ : skip; ℓ̂ : ρℓ : move(ℓ, ℓ̂) ∧ pres(Y) J

ℓ : nil; ℓ̂ : ℓ ∼L ℓ̂

ℓ : stop; ℓ̂ :

ℓ : ū := ē; ℓ̂ : ρℓ : move(ℓ, ℓ̂) ∧ ū′ = ē ∧ pres(Y −{ū}) J

ℓ : α⇐ e; ℓ̂ :
m : α⇒ u; m̂ :

ρ<ℓ,m> : move({[ℓ], [m]}, {[ℓ̂], [m̂]}) ∧
u′ = e ∧ pres(Y − {u})

J

The skip statement involves a transition in the underlying fair transition system,
but without any effect on the data variables. It moves control and preserves the
values of all the variables.

The nil statement can be characterized by contributing no transition, but only
the equivalence between its pre and post labels. It has been introduced in this work
for convenience in algebraic manipulations.

The stop statement has neither transition nor label relation.

In the assignment statement the values of the variables after the transition,
written as ū′, take the values of their corresponding expressions in ē. The values of
the rest of the variables are preserved.

The last row of the table above states that the execution of a pair of matching
communication statements is atomic and simultaneous. The effect is equivalent to

30 2. Modeling Notations and Grounding Notions

the assignment ℓ : u := e; ℓ̂ : . Notice that this transition is in the just set. This is
required for the soundness of the laws as shown in [BBCN01].

The position of a pair of matching synchronous communication statements is
such that the above joint transition could be enabled. For instance a send and a
receive statement over the same channel may match but two send statements never
do. As indicated in subsection 2.2.4 matching communication statements should be
parallel.

Given a pair of matching synchronous communication statements, it is said that
one matches the other. When a joint synchronous communication transition is taken
in a computation it is said that a synchronous communication event takes place.
Two synchronous communication events are ordered if they take place in the same
order in any computation. For instance, when the four synchronous communica-
tion statements giving rise to two communication events are parallel, then the two
communication events are not ordered.

Some of the semantics of the compound statements is given in the following
table, to be completed in the paragraphs which follow it:

Statement Transition Relations

ℓ : [ℓ1 : S1; ℓ̂1 . . . ; ℓm : Sm; ℓ̂m]; ℓ̂ :

ℓ : [[ℓ1 : S1; ℓ̂1] || . . . || [ℓm : Sm; ℓ̂m]]; ℓ̂ : ρE
ℓ : move({[ℓ]}, {[ℓ1], . . . , [ℓm]})∧ pres(Y)

ρX
ℓ : move({[ℓ̂1], . . . , [ℓ̂m]}, {[ℓ̂]})∧pres(Y)

ℓ : [c1; S1 or . . . or cm; Sm]; ℓ̂ : ρi : move({ℓ}, {ℓi}) ∧ ci ∧ pres(Y)

ℓ : [c1, c(α1); S1 or . . . or cm, c(αm); Sm]; ℓ̂ : ρ<i,n> : move({ℓ, n}, {ℓi, n̂}) ∧ ci ∧ u′ =
e ∧ pres(Y − {u})

No transition is associated directly with the concatenation statement. All its
transitions are associated with its children statements. The labels ℓi and ℓ̂i, which
are not represented explicitly, are the pre and post labels of substatements Si. The
label relations associated with the concatenation statement are ℓ̂i ∼L ℓi+1 for i =
1..m− 1 , ℓ ∼L ℓ1 , and ℓ̂ ∼L ℓ̂m.

The cooperation statement has an entry and an exit transition, τE and τX

associated with it. They are in the justice set J . It also has the transitions associated
with its substatements Si.

Labels n and n̂ of the communication selection transitions τ<i,n> are the pre
and post labels of the communication statements matching c(αi); which form part
of some statement parallel to the communication selection. These transitions cor-
respond to synchronous communication events. Their fairness set is J , in accor-
dance with the entry for these joint transitions in the first table above. Pre la-
bels ℓi of the communications c(αi), and post labels ℓ̂i of substatements Si are not
shown explicitly in the table. The label relations associated with this statement are
ℓ ∼L ℓ1 ∼L . . . ∼L ℓm and ℓ̂ ∼L ℓ̂1 ∼L . . . ∼L ℓ̂m.

2.7. Interface Behaviors 31

Two transitions τ and τ ′ are competing if both have the same initial location,
and taking one of them disables the others. This is the case, for example, when they
are directly associated with the same selection statement.

2.7 Interface Behaviors

The following notions are extensions of the semantics used by Manna and Pnueli.
They are needed for the definition of interface equivalence, and the substitution
rule. A much more elaborated account of this and the following section is available
in [BBC05b]. The extensions are motivated by the explicit conservation, in the set
of behaviors, of the input/output relation of a procedure, with independence of the
intermediate computation orders and of the media through which values are passed;
be it either storage or channels.

The set OP of observed variables of a procedure Contains all proper
variables in the interface of P , i.e. in the result and parameter lists, and an auxiliary
channel variable for each channel in the interface.

A channel variable records, as a triplet, the values passed at each communication
event, an integer mark reflecting their order for each channel, and an input/output
mark (i, o). When the communication event is internal, a dot replaces either of
these marks. For the procedure Pc of page 24, this set is O : {r, p, cr, cp}, where
here cr and cp are interpreted as auxiliary variables associated with each respective
channel.

An interface computation records the changes of both the variables and the
channels of a procedure body, a statement, during an execution. It has a row for
each change and a column for each variable or channel. It is an extension of the
notion of computation, adding to it columns for channels. Whereas a computation
is a sequence of states only, an interface computation is a sequence of states where
the values crossing channels are also recorded.

Groups of computations will be represented as schemas, which have value varia-
bles. Computations have just values (integers, booleans, etc.).

A possible interface computation schema of the Pc procedure, repeated below,
is the following:

32 2. Modeling Notations and Grounding Notions

r p cr cp a1 a2 c

0 x p1 x x x x x
1 cp ⇒ a1 x p1 x cp1, 1, i cp1 x x
2 cp ⇒ a2 x p1 x cp2, 2, i cp1 cp2 x
3 a1 := a1 + p x p1 x cp2, 2, i cp1 + p1 cp2 x
4 c ⇐ a1||c ⇒ r cp1 + p1 p1 x cp2, 2, i cp1 + p1 cp2 cp1 + p1, 1, ·
5 a2 := r + a2 cp1 + p1 p1 x cp2, 2, i cp1 + p1 cp1 + p1 + cp2 cp1 + p1, 1, ·
6 cr ⇐ a2 cp1 + p1 p1 cp1 + p1 + cp2, 1, o cp2, 2, i cp1 + p1 cp1 + p1 + cp2 cp1 + p1, 1, ·

Table 2.1: An interface computation schema of the Pc procedure

(r, cr) ::= Pc(p, cp) ::




















out r : integer
out cr : channel of integer
in p : integer
in cp : channel of integer
local a1, a2 : integer
local c : channel of integer







cp⇒ a1;
a1 := a1 + p;
c⇐ a1;
skip






||







cp⇒ a2;
c⇒ r;
a2 := r + a2;
cr ⇐ a2


























The same procedure, above, is used as example. It has no selection statements
embedding communications, in accordance with the assumptions of this thesis. p1 ,
cp1 , cp2 , etc., are value variables, whereas a1, a2, r, and p are program variables. cp,
cr, and c are auxiliary channel variables. Giving integer values to p1, cp1, and cp2,
specific computations would be obtained. Each row corresponds to the transition
associated to the statement specified in the second column. The transition of row
4 is the joint transition of the synchronous communication over channel c. Observe
that, an integer count is associated to each new value of a channel variable. In this
case there is a terminal state, indexed with 6, repeating itself implicitly, resulting
from idle transition firings. A proper computation (as in Manna and Pnueli) schema
could be obtained from the above by deleting the cr, cp, c, and the two left columns.
Then deleting any row which equals its predecessor but not all of its successors.

An interface behavior may be viewed as a trace of the execution of a procedure
observed from outside, and including the values which traverse the channels. We
assume that OP is the procedure interface set, defined naturally from its interface
declaration.

Definition 1 (Interface Behavior of a Procedure): The result of deleting, from an in-
terface computation, all columns of variables not belonging to OP , and then deleting
any row which equals its predecessor but not all of its successors.

Due to event counters, all channel events are represented by at least one row
in an interface behavior. Therefore, consecutive events are not deleted when their

2.7. Interface Behaviors 33

values are equal. This is necessary in order to retain the input/output relation of the
procedure. An interface behavior has one row for each value change of a variable
v ∈ OP . It has to be a result variable. A parameter variable never changes its
value, unless it is also a result. Input and output channel variables exhibit value
changes. The following interface behavior schema results from the above interface
computation schema, table 2.1.

r p cr cp

0 x p1 x x

1 x p1 x cp1, 1, i

2 x p1 x cp2, 2, i

4 cp1 + p1 p1 x cp2, 2, i

6 cp1 + p1 p1 cp1 + p1 + cp2, 1, o cp2, 2, i

Table 2.2: Interface behaviour schema of the Pc procedure

Rows 3 and 5 have been deleted since they are equal to their predecessors 2 and
4 respectively, but distinct from all its successors. Suppose now that cp1 = cp2,
then row 2 would not be deleted due to the distinct values of the counter field of
the column of channel cp.

Definition 2 (Component of an Interface Behavior): The infinite list of values, a co-
lumn, corresponding to a variable of the interface behavior. But having deleted any
value in the list which equals its predecessor but not to all its successors.

There are both proper and channel variable components.

Definition 3 (Equivalence of Interface Behaviors): Two interface behaviors are equi-
valent when they share the same interface set, and any channel or variable component
of one of them is identical to the homologous channel or variable component of the
other.

It is important to observe that the relative order of value changes among different
components of the interface behavior is lost. Equivalence only requires that each pair
of homologous component lists be identical. This makes equivalent any computation
order which shares the same intermediate results.

34 2. Modeling Notations and Grounding Notions

2.8 Interface Equivalence

2.8.1 The Notion

It is a weak equivalence, defined below, within the class of trace equivalences, the
weakest equivalence given in [dFEGR05, dFEVGR07, dFEGR09]. In it, all com-
putations with the same intermediate results for each variable, but with different
relative orders among distinct variable value histories, are made equivalent. This is
what was needed for the pipeline processor example, shown in chapter 6.

Definition 4 (Interface-equivalent Procedures): Two procedures P1 and P2 are inter-
face equivalent with respect to their common interface set O, written P1 =O P2,
when any interface behavior of any of them is equivalent, as in definition 3, to an
interface behavior of the other.

This notion would also be very appropriate for two important applications: pro-
ving consistency of a multiprocessor with caches [CS99], and for correctness proofs
of concurrency control algorithms in distributed databases [BHG87]. In both cases it
has to be shown that the value histories of certain variables are the same, irrespective
of relative orders.

P1 Pn

wr1 rd1 wrn rdn

Ch1 · · · Chn

Snooping bus (with transaction)

Mem

P1 · · · Pn

wr1 rd1 wrn rdn

Simple bus with arbiter

Mem

2.8. Interface Equivalence 35

In the former application, the observer set would be formed with the vari-
ables of connections communicating each processor (Pi) with its cache (Chi), i.e.
O :{wr1, rd1, ..., wrn, rdn}; then the proof would have to show that the system with
caches and snooping bus is interface equivalent to a system without caches but with
a simple memory bus with its arbiter. They are the two systems in the figure above.

A stronger equivalence would be interface behavior set equivalence, b-set equi-
valence for short, where homologous behaviors are required to be identical. B-
set equivalent procedures are always interface equivalent but not vice versa. The
following is a procedure resulting from Pc of subsection 2.4 after elimination of
internal channel c. It has the same interface set.

(r, cr) ::= Pnc(p, cp) ::

[
[cp⇒ a1||cp⇒ a2];
r := a1 + p; a2 := r + a2; cr ⇐ a2

]

The reader may verify that each interface behavior of Pc is an interface beha-
vior of Pnc and vice versa. Therefore, they are b-set equivalent Pc =b−set O Pnc.
Consider also the procedures:

(r1, r2) ::= P1(cp1, cp2) ::
[
cp1⇒ r1; cp2⇒ r2

]

(r1, r2) ::= P2(cp1, cp2) ::
[
cp2⇒ r2; cp1⇒ r1

]

with the same interface set O. Now the two procedures are not b-set equivalent,
P1 6=b−set O P2, but they are interface equivalent, P1 =O P2.

Deadlock, with the meaning that some parallel processes are waiting forever
on a communication which no other parallel process will match, ends the value
history of some variables. Then interface equivalence would consider equivalent
two procedures, one of them with a deadlock and the other ending naturally. For
instance:

[v ::= A()] ={v} [v ::= B()]

where

v ::= A() ::
[
v := 1;α⇒ v; v := 2

]

and

v ::= B() ::
[
v := 1

]

where α is an internal connection of A, B terminates naturally whereas A terminates
due to deadlock; its last substatement will never be executed.

36 2. Modeling Notations and Grounding Notions

2.8.2 Deadlock Introduction

The relative order of value changes in distinct components is neglected in interface
equivalence. Therefore, substitution of a reference to a procedure by a reference
to another procedure, interface equivalent to the first, may introduce deadlock. As
an example, if the above P1 is parallel to a process which always offers an output
via channel cp1 before offering another output via cp2, and P1 is replaced by P2
in that program, deadlock is introduced, since the order of external communication
offerings is the opposite in P2.

Therefore, when procedure references are substituted in an equivalence proof,
the corresponding deadlock-freeness proof is mandatory. This proof is done, indi-
rectly, by the communication elimination procedure below. See Theorem 4 and the
communication elimination procedure of subsection 3.2.3 of chapter 3.

2.8.3 Substitution Rules

The first substitution to consider is the replacement of a procedure reference state-
ment by the body of the procedure, as detailed in section 2.4.2.

Lemma 1 (Procedure Reference Unhiding): Let S[r := P (p)] be a statement, one of
whose substatements is the procedure reference r := P (p), with interface setOP . Let
OS be the interface set formed with all variables and connections used in S. Let A
denote the algorithm of procedure P , and Arel be the algorithm after the relabelings
required by the unhiding within S, and the moving of declarations. Then

S[r := P (p)] =O S[Arel]

for any O such that O ⊆ OS

A justification could be elaborated on the following considerations. Note first
that OP ⊆ OS , and that the OP -components of r := P (p) are identical to the
homologous components of Arel, since OP proper variables are passed by reference at
procedure invocation, and they are never relabeled; also their changes are determined
by Arel in the execution of one side and by A in the execution of the other; but the
two A’s are OP -equivalent. A similar argument applies to connection components
in OP . Also, due to relabeling, the unhidden components of Arel are never in OS .

Another essential step of equivalence reasoning is substitution between reference
statements, to two interface equivalent procedures. It is used extensively in the proof
of chapter 6. The set of observed variables O is defined by the referred procedure
interface, which is the same for the two equivalent procedures. It is the following:

2.9. Laws for Interface Equivalence 37

Lemma 2 (Procedure Reference Substitution): Let S[r := A(p)] be a statement for-
med with concatenation, cooperation and selection statements, one of whose sub-
statements is the procedure reference which has been highlighted; and with OS

the observed set formed with all variables and connections used in S[r := A(p)].
Let S[r := A(p)] be deadlock-free, and r := A(p) be disjoint with all its parallel
substatements in S[r := A(p)]. Then, if

[r := A(p)] =O [r := B(p)],

and S[r := B(p)] is deadlock-free,

S[r := B(p)] =P S[r := A(p)]

for any P such that P ⊆ OS .

O is the interface set of both A and B, formed from variables and connections
in the lists r and p. The deadlock-freeness requirement of S[r := B(p)] is forced by
the possibility that r := A(p) has parallel statements in S[r := A(p)] when O has
connection variables.

Since there is the procedure reference unhiding rule stated in subsection 2.4.2
and the equivalence in lemma 1, one way to justify the procedure reference substi-
tution rule is to reason that the bodies of the two equivalent procedures, with their
pertinent relabelings, are interchangeable within the embedding statement S[]. In
other words, that

S[Arel] =OS
S[Brel]

has to be established, where Arel and Brel are the relabeled algorithms of procedures
A and B respectively. A justification could be elaborated on the following conside-
rations. Due to the relabelings implicit in the unhidings, components of interface
behaviors which are internal to the two equivalent procedures will have different
names from those in OS . Since there is no deadlock for any behavior of left side,
the portion corresponding to O of Arel can be interpreted as corresponding to O of
Brel and, thus as a behavior of the right side.

2.9 Laws for Interface Equivalence

2.9.1 Introduction

A set of basic laws has resulted from the interface equivalence presented above.
Although they do not eliminate communications, they are necessary to transform a

38 2. Modeling Notations and Grounding Notions

statement into a form where a proper communication elimination law can be applied.
This subsection gives a summary of this set.

2.9.2 Repository of Laws

Laws for concatenation and then for cooperation are presented in the first two sub-
sections. The laws hold only assuming weak fairness or no fairness. In other words,
all transitions are in the justice set J , no transition is in the compassion set C. The
remaining two subsections give laws used in DPS proofs, but after the communica-
tion elimination stage.

The soundness proofs of the basic laws given in subsections 2.9.2.1 and 2.9.2.2,
in the semantic framework of the Manna and Pnueli books, is available in appendix
A; together with the justification of the need of avoiding strong fairness. It contains
an updated version of part of [BBCN01]. It does not belong to the thesis; it has
been added to make this account more self-contained.

2.9.2.1 Concatenation

Law 1 (Concatenation with Nil):

nil;S ≈ S S; nil ≈ S

Law 2 (Concatenation with Skip):

skip;S ≈ S S; skip ≈ S

The two skip laws do not hold when strong fairness is assumed.

Law 3 (Concatenation Associativity):

S1; · · · ;Sk; · · · ;Sl; · · · ;Sn ≈ S1; · · · ; [Sk; · · · ;Sl]; · · · ;Sn ,

where k and l are integers such that 1 ≤ k < l ≤ n.

Law 4 (Concatenation Commutativity): Let pm(k), where k = 1..n, denote the k-th
integer of a permutation of the list 〈1, 2, . . . , n〉. Let the statements S1 , · · · , Sn be
pairwise disjoint and without external communication statements with the exception
of only one of them. Then:

S1; · · · ; Sn =O Spm(1); · · · ; Spm(n)

2.9. Laws for Interface Equivalence 39

2.9.2.2 Cooperation

Law 5 (Cooperation with Nil):

nil || S ≈ S S || nil ≈ S

Law 6 (Cooperation with Skip):

skip || S ≈ S S || skip ≈ S

Law 7 (Cooperation Commutativity):

S1|| · · · ||Sn ≈ Spm(1)|| · · · ||Spm(n)

where pm(j), for j = 1..n, denotes the j-th integer of the permuted list.

Law 8 (Cooperation Associativity):

[S1|| · · · ||Sk|| · · · ||Sl|| · · · ||Sn] ≈ [S1|| · · · || [Sk|| · · · ||Sl] || · · · ||Sn]

Laws 5, 6 and 8 do not hold with strong fairness.

2.9.2.3 Cooperation and Concatenation

This and the law of law 10 are used in the communication closed layers framework
[dRdBH+01, EF82]. The following illustrates the type of laws that are employed
after communication elimination in the sequentialization process.

Law 9 (Loop Forever Unfold):

[loop forever do S] ≈ [S; loop forever do S]

Law 10 (Binary Cooperation and Concatenation): Let the statements S1, S2, S3, and
S4 be non-communicating, have no external communication statement with the ex-
ception of at most one of them, and be pairwise disjoint, in the sense that no shared
variable is written to. Then:

[S1;S3] || [S2;S4] =O [S1||S2]; [S3||S4]

Law 11 (Cooperation and Concatenation): Let the statements S1, . . . , Sn have no com-
munication statements with the exception of at most one of them, and be pairwise
disjoint, in the above sense. Then:

40 2. Modeling Notations and Grounding Notions

S1|| · · · ||Sn =O Spm(1); · · · ; Spm(n)

where pm(j), for j = 1..n, denotes the j-th integer of the permuted of the list.

2.9.2.4 Elimination of Redundant Variables and Statements

Law 12 (Dummy Assignment Elim-intro):

[r := r] ≈ skip

Law 13 (Variable and Assignment Elim-intro): Let v be a variable which is not in the
observed set O. Let S1(v) have only read references to v, and no assignment into
any of the variables appearing within e, S2 have no read reference to v, and be either
the last statement within the scope of v or located just before a new assignment to
v, with respect to the concatenation order of the program. Then

[v := e;S1(v);S2] =O [S1(e);S2]

The justification would go along the following line of thought. The assignment of
a new value to v in the left hand side has no effect upon any reduced behavior since
v is not in the observed set, its effect being only via S1(v). Due to the conditions
imposed upon S1 and S2, the value of e in S1(e) will be the same as in the left hand
side. Therefore, in going from one side to the other no variable in the observed set
can change its value in any interface behavior.

The rest of this section collects special cases and generalizations which are di-
rectly used in the proof of chapter 6.

Law 14 (Simple Variable and Assignment Elim-intro): Let v not belong to the observed
set O. Let S2 satisfy the conditions of law 13. Then

[v := e; v1 := e1(v);S2] =O [v1 := e1(e);S2]

Law 15 (Simpler Variable and Assignment Elim-intro): Let w and v be variables
which are not in the observed set. Let S1 have references to neither v nor w. Then

[v := e;S1;w := v;S2] =O [w := e;S1;S2]

Law 16 (Double Variable and Assignment Elim-intro): Let e1 and e2 have references
to neither v1 nor v2. Then

2.10. Conclusion 41

[v1 := e1; v2 := e2;S1(v1, v2);S2] =O [S1(e1, e2);S2]

where S1(v1, v2) has only read references to v1 and v2, and S2 has read references
to neither v1 nor v2.

This would be derived by two applications of law 13. A more general equivalence
follows.

Law 17 (Multiple Variable and Assignment Elim-intro): Let v̄, (v.v1, ..., v.vn), be a list
of n variables, none of them being in the observed set O. Let S1(v̄) have only
read references to the variables in v̄, and no assignments into any of the variables
appearing in ē, S2 have no read references to them, and be either the last statement
within the scope of the variables in v̄ or located just before a new multiple assignment
to v̄, with respect to the concatenation order of the program. Then

[(v̄) := (ē);S1(v̄);S2] =O [S1(ē);S2]

In the following variant, only some variables of the multiple assignment are
eliminated.

Law 18 (Multiple variable and assignment partial elim-intro): Let (v.v1, ..., v.vn),
(e1, ..., en), S1(·), and S2 in law 17. Then

[(v.v1, ..., v.vi, ..., v.vj , ..., v.vn) := (e1, ..., ei, ..., ej , ..., en); S1(v.vi, ..., v.vj); S2]
=O

[(v.v1, ..., v.vi−1, v.vj+1, ..., v.vn) := (e1, ..., ei−1, ej+1, ..., en); S1(ei, ..., ej); S2]

These laws are sufficient to prove the equivalences of the pipelined processor
example of chapter 6 and other examples. Completeness has not been studied in
this work.

2.10 Conclusion

As a prerequisite for the presentation of the results of this work, the chapter has
covered the underlying notions, needed for mathematical justifications, and the no-
tational framework. The notation for expressing distributed system models of hard-
ware and software has been introduced. The presentation of the work is done in a
version of SPL, the notation for reactive systems of the Manna and Pnueli books.
The specific variant has been introduced in this chapter, since it has some additions

42 2. Modeling Notations and Grounding Notions

and changes. Another notation, PADD, was used in everyday work and has been
introduced as well; both, systems to be transformed, and the formal transformation
software tool are written in it. A reason for this notation is historical; another rea-
son is its special tree-like form, which facilitated the understanding and grasp of the
large statements which are generated in the inner steps of sequentialization proofs.
Both notations are in the Pascal structured programming inheritance.

The notion of modular procedure, common to the two notations has been intro-
duced. Proof decompositions in other chapters will be organized around them. The
partition of the set of communication operations of a statement into the internal
and the external classes stands as a basic assumption in this work. The set of in-
ternal channels will appear quite often. Modular procedures reflect this partition
by declaring external channels in their interface section. External channels cannot
be used for communications between parallel substatements in the procedure body.
Internal channels are declared within the procedure body. It is believed that this
partition does not restrict modeling power, but only imposes some healthy hierar-
chical structure.

The chapter has also summarized the semantics common to the two notations;
the fair transition systems semantics of the Manna and Pnueli books with a little
extension: instead of computations and reduced behaviors, interface computations
and interface behaviors are introduced as extensions of the latter two; adding to
them the values that are communicated through channels. Then, the interface set,
for the behaviors, has auxiliary observed variables for each channel, in addition to
the familiar observed data variables. The interface set has also been associated to
the interface of a modular procedure in a natural way.

The interface behavior semantics was the ground layer for the justification of both
interface equivalence, the equivalence in which the laws are formulated, the procedure
reference unhiding rule, and the procedure reference substitution rule. These rules
allow the hierarchical organization of proofs, and are used in the proof given in
chapter 6.

A set of basic laws has been presented in the chapter as well. Soundness proofs
are not included; they may be found in the referred works, where it is shown that
many of them do not hold if strong fairness is assumed. This is a basic requirement
for all the results in this dissertation.

Altogether the chapter has prepared the reader for the proper communication
elimination laws and other elements of sequentialization proofs, which are covered
in the following chapter.

Chapter 3

DISTRIBUTED PROGRAM

SEQUENTIALIZATION PROOFS

For many applications, communication elimination proofs need a continuation, to
simplify the resulting model. DPS proofs are, thus, the communication elimination
proofs with a continuation to obtain an equivalent sequential system model. The
notions needed to carry out these proofs are presented in this chapter. Different
forms of DPS proofs, to be used in the processor example of chapter 6 are presented
as well.

One of the contributions of this thesis is the formulation of a set of applicability
conditions for the proper communication elimination laws. This chapter presents
this topic also; first for bounded communication elimination statements and at the
end for more general statements, within the framework of DPS.

3.1 Introduction

Distributed program sequentialization, DPS, is a three step proof procedure applied
to a statement, S, that reduces a program with inner parallelism and internal com-
munication statements to an equivalent purely sequential one.

The first step is carried out by a communication elimination reduction proce-
dure, presented in chapter 4. When the procedure terminates successfully, the re-
sulting interface equivalent form has parallelism between disjoint substatements but
no internal communication statements. For instance, the following is a procedure
resulting from Pc, section 2.4 of page 24, after the elimination of internal channel c.

(r, cr) ::= Pnc(p, cp) ::







[cp⇒ a1||cp⇒ a2];
r := a1 + p;
a2 := r + a2;
cr ⇐ a2







44 3. Distributed Program Sequentialization Proofs

It has the same interface set, and each interface behavior of Pc is an interface
behavior of Pnc and vice versa, so Pc =O Pnc.

A DPS proof continues with a further step, parallelism to concatenation trans-
formation. It is carried out applying permutation laws, such as those of law 11 of
page 39, for transforming the parallel compositions of disjoint processes to interface
equivalent sequential forms. A sequential program interface equivalent to the initial
one is obtained.

The third and last step of DPS proofs is redundant variable elimination. State-
vector reduction comes with this last step. Both, redundant variables and statements
are eliminated; for instance by applying law 13 of page 40. The former usually come
from communication buffers, of the original distributed system, which are no longer
necessary after their inner communications have been eliminated.

The next section of this chapter presents the subclass of bounded communication
statements, the ones that DPS deals with, and the laws and notions needed in the
communication elimination step of DPS proofs. The extension of DPS proofs to
some classes of non-BC statements is presented in another section at the end of the
chapter.

3.2 Communication Elimination Laws and

Algorithms

3.2.1 Preliminary Notions

The analysis of communication elimination is started below for some bounded com-
munication (BC) statements. This and other required notions are introduced in this
section.

Definition 5 (Bounded Communication Statement): A statement S is said to be of
bounded communication if it meets the following requirements:

1. All its parallel substatements are disjoint, in the sense that they only read
their shared data variables, should they have some.

2. Any internal communication is outside statically non-unfoldable iteration bo-
dies.

Iteration with internal communications need to be unfolded to a sequential state-
ment. This unfolding has to be done statically. Execution of a bounded communi-
cation statement generates only a finite number of communication events.

3.2. Communication Elimination Laws and Algorithms 45

From now on, BC stands for bounded communication, and BCS stands for bounded
communication statement. Also S and I denote such a statement and the set of its
internal channels, respectively.

Also throughout this work, all parallel processes are assumed to be disjoint, in
the sense that a variable written in one process is neither written nor read in any of
its parallel processes.

Definition 6 (Communication Front): The communication front of S, written Com-
Front(I,S), is the subset of minimal elements of the set of communication statements
in its concatenation ordering.

Guards of communication selection statements may be in this set.

Definition 7 (Set of Competing Pairs): The set of competing pairs of S, written
CompPairs(I,S) is, by definition,

{ (ℓ,m) | ℓ,m ∈ ComFront(I, S) ∧ ℓ matches m }

In other words, it is the set of all possible matching pairs formed with statements
in ComFront(I,S).

Lemma 3 (Non-Communicating Heading Statements): Let G be either a communica-
tion ℓ over α ∈ I or a communication selection statement in S one of whose guards
is a communication statement ℓ over α ∈ I, and ℓ ∈ ComFront(I, S). Let H be
a statement in S which precedes G in its concatenation order. Then, H does not
communicate with any substatement P of S which is parallel to G.

Definition 8 (Selection-free BC Statement): A selection-free BC statement is a BC
statement all of whose internal communications are outside the scope of both selec-
tions and communication selections.

The execution of a selection-free BC statement generates a constant finite num-
ber of internal communication events. The analysis will be limited to these BC
statements. For any of its matching pairs (ℓ,m) ∈ CompPairs(I, S), S always has
a cooperation substatement which is the LCA of statements ℓ and m. Gl and Gr

are the top statements, in this cooperation, corresponding to ℓ and m, respectively.

Lemma 4 (Standard Form of Pair-embedding Top Statements): Symbol x denotes
both l and r, left and right.

• Let (ℓ,m) ∈ CompPairs(I, S), and α be its channel.

46 3. Distributed Program Sequentialization Proofs

• Let Gx, either Gl or Gr, be the top statement, embedding either ℓ or m, of
the LCA cooperation of ℓ and m.

• For k = 0, 1, . . . , let T x
k and P x

k be bounded communication statements,
in general with internal and external communications; and Hx

k be statements
which do not have internal communications.

• Let Gx
0 be either one of the communication statements α⇐ e and α⇒ u .

• Let Gx
k = Hx

k−1; [G
x
k−1||P

x
k−1];T

x
k−1 , for k = 1, 2, . . . , be a sequence of

statements.

• Then, S can be transformed into a congruent statement such that the embed-
ding top parallel substatements Gx, for x = l and x = r, have been replaced by
a statement of the form of Gx

nx
for some finite integers nl and nr, respectively.

Justification The reasoning is made for x = l, the other case would be similar.
It is clear that the statement Gl

0 can be identified within Gl, as either one of its
two possible forms in the lemma. Now, since S is selection-free and BC, Gl

0 can be
neither within the scope of any selection statement nor within any proper alternative
of a general communication selection statement. Hence, the LCA of Gl

0 is either a
concatenation or a cooperation.

In the former case, P l
0 is the nil statement, H l

0 and T l
0 correspond to the state-

ments preceding and succeeding Gl
0 in the concatenation. Hence, Gl

1 can be identified
as

Gl
1 = H l

0; [G
l
0|| nil]; T l

0

In the latter case, where the LCA of Gl
0 is a cooperation, if one of its top parallel

statements is the other Gr, then nl = 0, Gl = Gl
0. Otherwise, P l

0 corresponds to all
the parallel statements, and Gl

1 can be identified as

Gl
1 = H l

0; [Gl
0||P

l
0]; T l

0

where H l
0 or T l

0 may be nil. In the above cases, where Gl
1 has been identified within

Gl, the process can be continued. The same reasoning made with Gl
0 can be applied

now to Gl
1, either terminating or obtaining Gl

2. Hence, an inductive process can be
followed. But this process cannot go on forever since Gl is of finite size. Therefore,
it will stop at some Gl

nl
, after a finite number of iterations nl, as the lemma states.

Congruence with the initial Gl follows from the fact that all the nil statements can
be introduced by some of the auxiliary laws, always congruences, cited in chapter 2
and justified in [BBCN01].

�

3.2. Communication Elimination Laws and Algorithms 47

3.2.2 Elimination Laws for Selection-free BC Statements

The elimination of a single matching pair is considered first. The recursive eli-
mination of all the internal communications of S will be considered later. The
simplest case corresponds to [α ⇐ e || α ⇒ u] ≈ [u := e] which we identify with
[Gl

0 || G
r
0] ≈ G0. The following shows a basic communication elimination:

Law 19 (Simple Communication Elimination): Let H l and Hr be statements which
do not have communication statements through synchronous channel α, and T l and
T r be statements. Then








H l;

α⇐ e;

T l







||








Hr;

α⇒ u;

T r








=O








[H l || Hr];

u := e;

[T l || T r]








A proof of the soundness of this law is given in appendix A. Actually, this law
is a congruence. The channel variable of α should not belong to O.

As it will be shown later, for the more complex forms the elimination law is
defined for an arbitrary k ≥ 0 as









H l
k;

[
Gl

k || P
l
k

]
;

T l
k









||









Hr
k ;

[
Gr

k || P
r
k

]
;

T r
k









=O









[
H l

k || Hr
k

]
;

[
Gk || P l

k || P r
k

]
;

[
T l

k || T r
k

]









where the H statements have no inner communication. When this equivalence is
identified with [Gl

k+1 || Gr
k+1] =O Gk+1, a recursive definition of Gl

k, Gr
k, and

Gk is obtained. For a given value of k = k0, the corresponding law would be cons-
tructed recursively, applying the same equivalence to the inner Gk, which stands for
[Gl

k||G
r
k], for k = k0, k0 − 1, · · · , 1. Finally, the last inner parallelism [Gl

0||G
r
0] would

be replaced by the corresponding right hand side G0 of the basic congruence given
earlier, and the law for k = k0 would thus be obtained. There is a law for any finite
integer k = 0, 1, · · · which may be applied as a reduction from left to right in order
to eliminate a single communication pair.

Observe that some substatements, like T l
k and P r

k , are parallel in one side but not
in the other. This disordering may introduce deadlock. Nevertheless, there are cases
where deadlock is not introduced. For instance, for some communication closed layer
systems. These systems, together with their laws, are treated in [dRdBH+01], with
a semantics different to the one used here. But the laws also hold in our semantics.
The following is an example which we need later.

48 3. Distributed Program Sequentialization Proofs

Lemma 5 (Communication-closed-layers): Let the statement pairs (A1, B2) and (A2,
B1) be non-communicating, and [B1;A1] be disjoint with [B2;A2]. Then

[[B1;A1] || [B2;A2]] =O [[B1||B2]; [A1||A2]]

and either both sides are deadlock-free or none of them is.

Justification The only statements which change their concatenation order relation
are the pairs which do not communicate. Therefore deadlock can not be introduced,
since processes can only wait for internal communications to occur. Also, the same
pairs are disjoint as a consequence of the assumptions. This guarantees that va-
riable components do not change. Hence, interface behaviors of both sides remain
equivalent. See subsection 2.8.

�

Lemma 6 (G-statement Pairing Equivalence): Let all parallel statements below be
disjoint and O be the union of all variables and channel variables in them, but ex-
cluding the variables of internal channels. Let H l and Hr contain no communication
statements over internal channels. Then









H l;

[
Gl || P l

]
;

T l









||









Hr;

[
Gr || P r

]
;

T r









=O









[
H l || Hr

]
;

[
Gl || Gr || P l || P r

]
;

[
T l || T r

]









provided that the following statement pairs do not communicate: (P l, T r), (P r, T l),
(Gl, T r), (Gr, T l) . Also, under the same conditions, either both sides are deadlock-
free or none of them is.

Justification One of the changes of the concatenation order of the substatements
of both sides of the equivalence is due to T l, which is parallel to Hr, Gr, and P r

in the left but in concatenation with the same statements in the right. However,
it remains parallel to T r in both sides. A similar change takes place in relation
to T r. Due to this, the lemma follows by a two-fold application of lemma 5, the
communication restrictions of our lemma, and the fact that the H statements do
not have internal communications (see lemma 3).

�

3.2. Communication Elimination Laws and Algorithms 49

The communication elimination law presented earlier, would be derived by the
iterative application of the equivalence of lemma 6, from left to right starting at the
outermost level max(nl, nr) (see lemma 4) . For the moment, it can be assumed that
nl = nr. The general case is treated after Theorem 5. The restrictions of lemma 6
should be fulfilled at each application. But in addition, in all the other applications,
[Gl||Gr] at the right hand side of the equivalence of lemma 6 is reduced to G with
the same equivalence, applying it from left to right. Now, the substatements that
change order, considered in the justification of lemma 6 above, have P l and P r, at
the outer level, in parallel. This may be a further source of deadlock. The following
lemma formulates the conditions for deadlock prevention in this new situation. Some
notation is introduced before.

Definition 9 (Communication Precedence): Let C be a statement which is clear in
a given context, and statements A and B be parallel to C. Then, the symbolism
cw(A) ≤ cw(B) will mean that, within C and in the concatenation order, the com-
munications with A precede or are unordered with all the communications with
B.

Lemma 7 (Reduction of G-statement Parallelism): Let the equivalence of lemma 6
be represented as Ḡl||Ḡr =O Ḡ , where the substatements of the three Ḡ’s and the
statements below satisfy the conditions stated in it. Then









[
H̄ l || H̄r

]
;

[
Ḡl || Ḡr || P̄ l || P̄ r

]
;

[
T̄ l || T̄ r

]









=O









[
H̄ l || H̄r

]
;

[
Ḡ || P̄ l || P̄ r

]
;

[
T̄ l || T̄ r

]









provided that, within P̄ l and P̄ r,

cw(P l) ≤ cw(T r) , cw(P r) ≤ cw(T l) , cw(Gl) ≤ cw(T r) , cw(Gr) ≤ cw(T l)

Also, under the same conditions, either both sides are deadlock-free or none of them
is.

Justification In order to obtain the right hand side of the equivalence of this
lemma, the equivalence of lemma 6 is applied to the inner parallelism between Ḡl

and Ḡr. The only statements which are parallel to Ḡl and Ḡr in the left hand side
statement are P̄ l and P̄ r. Also, they are the only ones which are parallel to Ḡ in
the right hand side statement. But, in the G-statement pairing equivalence, the
statements (P l, T r), (P r, T l), (Gl, T r), and (Gr, T l) are parallel in the l.h.s. but

50 3. Distributed Program Sequentialization Proofs

concatenated in the above order in the r.h.s., therefore the communications with
these statements within P̄ l and P̄ r must have the same order, should they exist.
But this holds if the communication order restrictions of the lemma are fulfilled.
Finally, the equivalence follows from lemma 6.

�

All the restrictions of lemma 6, that have to be fulfilled in the iterative application
to [Gl

n+1||G
r
n+1] of the equivalence in it, are gathered in the following

Theorem 1 (Non-communication Restrictions for Eliminability): A set of necessary con-
ditions to be fulfilled by [Gl

n+1||G
r
n+1] for the eliminability of its communication pair

(ℓ,m) is that the following substatement pairs do not communicate

1. (P l
i , T

r
k) and (P r

i , T l
k) for k ∈ [0, n] and i ∈ [0, k]

2. (T r
i , T l

j) for i, j ∈ [0, n] , i 6= j

Justification In order to obtain the elimination law stated at the beginning of this
section, the equivalence of lemma 6 is applied from left to right for k = n first. At
this outermost level, its non communication restrictions apply to the pairs (P l

n, T r
n),

(Gl
n, T r

n) and the two symmetric ones (P r
n , T l

n), (Gr
n, T l

n). But Gl
n in the second pair

can be split, for n > 0 , into all of its substatements, giving the restrictions (P l
i , T

r
n),

(T l
i , T

r
n), for i = n − 1, n − 2, · · · , 1, 0. Together with the first pair, these can be

reexpressed as

(P l
i , T

r
n), for i = 0, · · · , n, and (T l

i , T
r
n), for i = 0, · · · , n− 1, for n > 0

Proceeding similarly with the two symmetric restriction pairs (P r
n , T l

n),(Gr
n, T l

n),
the following additional restriction pairs are obtained

(P r
i , T l

n), for i = 0, · · · , n, and (T r
i , T l

n), for i = 0, · · · , n− 1, for n > 0

However, similar restrictions have to hold at all levels k = n, n − 1, · · · , 1 of
application of the above reduction. But for n = 0 we have still the restrictions

(P l
0, T

r
0) , (Gl

0, T
r
0) , (P r

0 , T l
0) , (Gr

0, T
l
0)

Putting together all the P -T restrictions, we have that, for each k = 0, 1, · · · , n
the following communication restrictions should hold (P l

i , T
r
k), and (P r

i , T l
k), for

3.2. Communication Elimination Laws and Algorithms 51

i = 0, 1, · · · , k, which is restriction 1 of the lemma. Putting together all the T -T
restrictions, we have: (T l

i , T
r
k),(T r

i , T l
k), for k = 1, · · · , n and i = 0, · · · , k − 1. But

this is equivalent to restriction 2 of the lemma. Restrictions (Gl
0, T

r
0) and (Gr

0, T
l
0)

can be ignored since Gl
0 and Gr

0, which form a matching pair, communicate among
themselves only.

�

In a similar manner, all the restrictions of lemma 7 are gathered in the following.

Theorem 2 (Broad Communication Order Restrictions): A set of communication or-
der restrictions to be fulfilled by [Gl

n+1||G
r
n+1] for the eliminability of its communica-

tion pair (ℓ,m), without introducing deadlock, is that for k ∈ [1, n] and i ∈ [0, k−1],
within P l

k and P r
k

cw(P l
i) ≤ cw(T r

i) , cw(P r
i) ≤ cw(T l

i) , cw(Gl
i) ≤ cw(T r

i) , cw(Gr
i) ≤ cw(T l

i)

Justification We keep track of the communication order restrictions of lemma 7
in the recursive application to [Gl

n+1||G
r
n+1] of the equivalence of lemma 6, as a

reduction from left to right. Thus, concerning P l
n and P r

n , the second outermost
application gives the restrictions

cw(P l
n−1) ≤ cw(T r

n−1) , cw(P r
n−1) ≤ cw(T l

n−1)

and

cw(Gl
n−1) ≤ cw(T r

n−1) , cw(Gr
n−1) ≤ cw(T l

n−1)

Similarly, the next outermost application gives restrictions on the communi-
cations of P l

n−1 and P r
n−1 but also on those of P l

n and P r
n , since the two latter

statements are also parallel to Pn−2 , Tn−2 and to Gn−2 , Tn−2. These restrictions
on the communications within these four P statements are

cw(P l
n−2) ≤ cw(T r

n−2) , cw(P r
n−2) ≤ cw(T l

n−2) , cw(Gl
n−2) ≤ cw(T r

n−2) ,
cw(Gr

n−2) ≤ cw(T l
n−2)

Within P l
n and P r

n only , and continuing until the last application, at k = 1, the
following communication restrictions should hold: for i ∈ [0, n− 1],

cw(P l
i) ≤ cw(T r

i) , cw(P r
i) ≤ cw(T l

i) , cw(Gl
i) ≤ cw(T r

i) , cw(Gr
i) ≤ cw(T l

i)

These conditions should also hold within P l
k and P r

k , for all k ∈ [1, n] and i ∈
[0, k − 1], as the lemma states.

�

52 3. Distributed Program Sequentialization Proofs

The set of restrictions of Theorem 2 to be fulfilled for the eliminability of the
communication pair (ℓ,m), without introducing deadlock, can be reexpressed as in
the next theorem:

Theorem 3 (Communication Order Restrictions for Eliminability): A set of communi-
cation order restrictions to be fulfilled by [Gl

n+1||G
r
n+1] for the eliminability of its

communication pair (ℓ,m), without introducing deadlock, is that for all k ∈ [2, n],
within P l

k and P r
k ,

cw(P l
j) ≤ cw(T r

i) , cw(P r
j) ≤ cw(T l

i) , for i ∈ [0, k − 1] and j ∈ [0, i]

cw(T l
j) ≤ cw(T r

i) , cw(T r
j) ≤ cw(T l

i) , for i ∈ [1, k − 1] and j ∈ [0, i− 1]

and for k = 1, within P l
1 and P r

1

cw(P l
0) ≤ cw(T r

0) , cw(P r
0) ≤ cw(T l

0)

Justification The statements Gl
i and Gr

i in the last two conditions of Theorem 2
can be replaced by all their substatements P s and T s, with the exception of Gl

0 and
Gr

0, obtaining the equivalent conditions: for k ∈ [2, n] within P l
k and P r

k , and for
i ∈ [1, k − 1] and j ∈ [0, i− 1]

cw(P l
j) ≤ cw(T r

i) , cw(T l
j) ≤ cw(T r

i)

cw(P r
j) ≤ cw(T l

i) , cw(T r
j) ≤ cw(T l

i)

The case of i = 0 gives the restrictions cw(Gl
0) ≤ cw(T r

0), cw(Gr
0) ≤ cw(T l

0) within
P l

k and P r
k for k ∈ [2, n] , which need not be included since (Gl

0, G
r
0) is a pair whose

two communications communicate between themselves only.

We still have the restrictions for k = 1, within P l
1 and P r

1 : cw(Gl
0) ≤ cw(T r

0),
cw(Gr

0) ≤ cw(T l
0) , which can be removed by the same reason as before.

The above P -T restrictions can be put together with the P -T restrictions of
Theorem 2, holding for i ∈ [0, k − 1]. This results in the following conditions: for
k ∈ [2, n] within P l

k and P r
k ,

cw(P l
j) ≤ cw(T r

i), cw(P r
j) ≤ cw(T l

i), for i ∈ [0, k − 1] and j ∈ [0, i]

cw(T l
j) ≤ cw(T r

i), cw(T r
j) ≤ cw(T l

i), for i ∈ [1, k − 1] and j ∈ [0, i − 1]

3.2. Communication Elimination Laws and Algorithms 53

and for k = 1, within P l
1 and P r

1 ,

cw(Gl
0) ≤ cw(T r

0) , cw(Gr
0) ≤ cw(T l

0)

cw(P l
0) ≤ cw(T r

0) , cw(P r
0) ≤ cw(T l

0)

as the lemma states. The G-T restrictions are not in the lemma since they always
hold, because Gl

0 communicates only with Gr
0 only and vice versa.

�

Theorem 4 (Elimination from a Standard Form Binary Cooperation): Let S = [Gl
n||G

r
n],

be selection-free, and its two top statements have the standard form given in lemma
4. Let G0 = [u := e] , and for k = 1, 2, . . .

Gk = [H l
k−1||H

r
k−1]; [Gk−1||P

l
k−1||P

r
k−1]; [T

l
k−1||T

r
k−1]

Then Gn =O [Gl
n||G

r
n] , iff [Gl

n||G
r
n] satisfies the conditions of Theorems 1 and

2. Either both sides are deadlock-free or none of them is.

Justification The equivalence is obtained applying the following steps:

1. Recursive application of the equivalence of lemma 6, starting at [Gl
n||G

r
n] as

above, until the following statement is obtained


























[
H l

n−1 || Hr
n−1

]
;

















· · ·









[
H l

0 || Hr
0

]
;

[
[Gl

0 || Gr
0] || P l

0 || P r
0

]
;

[
T l

0 || T r
0

]









|| · · ·

· · ·

















;

[
T l

n−1 || T r
n−1

]


























2. Application, to its inner statement [Gl
0||G

r
0] , of the congruence [Gl

0||G
r
0] ≈ G0,

as a reduction from left to right.

54 3. Distributed Program Sequentialization Proofs

Thus, the equivalence Gn =O [Gl
n||G

r
n] is a direct consequence of lemma 6 and

the congruence of step 2. In the present scenario of disjoint processes communicating
only via synchronous communications, the only possible cause of deadlock is waiting
at communications that can never take place. This can only happen with communi-
cations within substatements that change from being parallel in [Gl

n||G
r
n] to being

concatenation ordered in Gn. The possible situations are captured by Theorems 1
and 2. Deadlock-freeness follows from the satisfaction of the conditions stated in
them. In any cases S may be deadlock-free but some of the applicability conditions
fail.

�

3.2.3 Elimination Algorithm for Selection-free BC

Statements

Given a general selection-free BCS with a non-empty set of competing pairs, the
elimination of any pair is feasible under the conditions of the following

Theorem 5 (Elimination from a Selection-free BCS): Let p = (ℓ,m) be one of the
pairs in CompPairs(I,S), and the top statements of the LCA parallelism of ℓ and m
be Gl and Gr. Then S can be transformed into an interface equivalent statement
without p if the standard forms of order n = max(nl, nr) of the two top statements
satisfy the conditions of Theorems 1 and 2.

In general, the orders nl and nr of the standard forms of Gl and Gr will not be
equal. Then, if nl > nr we make n = nl and construct Gr

n by inserting nl−nr layers
of nil H, P , and T statements immediately around Gr

nr . One proceeds similarly in
the opposite case. The insertion can be done in other ways, but we have chosen the
outermost one, which preserves the input statement form as it is.

Justification Due to commutativity and associativity of parallelism, S can always
be transformed into S[Gl||Gr], where the binary parallelism of the embedding top
statements has been isolated. Then S[Gl||Gr] =O S[Gl

n||G
r
n] =O S[Gn] by lemma 4,

Theorem 4, and monotonicity of interface equivalence.
�

Assuming that the conditions of Theorems 1 and 2 hold, the term Elim{(ℓ,m),S}
will represent the statement resulting after elimination of (ℓ,m) from S. Thus, the
result of the above theorem may be written as S =O Elim{(ℓ,m),S}.

Lemma 8 (Elimination Commutativity of Disjoint Pairs): Let p1 and p2 be two dis-
joint competing pairs of S. Then

3.2. Communication Elimination Laws and Algorithms 55

Elim{p2, Elim{p1, S}} =O Elim{p1, Elim{p2, S}}

Justification One has that S =O Elim{p1, S} and S =O Elim{p2, S}. But,
for the same reason

Elim{p2, S} =O Elim{p2, Elim{p1, S}} and

Elim{p1, S} =O Elim{p1, Elim{p2, S}}

The desired result follows, since the left hand sides of the last two equivalences are
both equivalent to S. �

Lemma 9 (Elimination of a Set of Disjoint Competing Pairs): Let ncp be the cardina-
lity of CompPairs(I,S), all of whose pairs cpi, i = 1, · · · , ncp are disjoint. Then,

S =O Elim{cp1, Elim{cp2, · · · , Elim{cpncp , S} · · ·}}

=O Elim{cpp(1), Elim{cpp(2), · · · , Elim{cpp(ncp), S} · · ·}}

where < p(1), · · · , p(ncp) > is any permutation of < 1, · · · , ncp >.

Justification This follows by linear induction. The base case, where ncp = 2 holds
by lemma 8. For the induction step, assume that the result is true for ncp = k, then
S =O Elim{cpp(1), Elim{cpp(2), · · · , Elim{cpp(k), S} · · ·}} for any permutation <
p(1), · · · , p(k) > of the first k integers. But any permutation of the first k+1 integers
can be obtained from a suitable permutation of the first k integers by inserting the
integer k + 1 at a convenient position l. Also,

Elim{cp(k+1), S} =O S

=O Elim{cp(k+1), Elim{cpp(1), Elim{cpp(2), · · · , Elim{cpp(k), S} · · ·}}}

After some applications of lemma 8, cp(k+1) can be moved to the l-th position. �

Assuming that all the pairs are mutually disjoint, the following communication
elimination algorithm is a consequence of the above results:

failure := F
while ¬failure ∧ { S has a competing pair p}

do (failure,S):= PElim(p, S);
if ¬failure

then if ComFront(I, S)=∅
then terminate with success
else terminate with deadlock

else terminate with failure

56 3. Distributed Program Sequentialization Proofs

Procedure PElim is the extension of Elim which checks applicability conditions.
It transforms Gl and Gr into standard form, as in the proof of lemma 4. After
structure matching and application of the law, nil statements are eliminated with
the basic congruences. When a true boolean result is returned, the applicability
conditions were not satisfied. When the loop terminates without failure, Comp-
Pairs(I,S) of the final statement is empty. When at the same time there is still some
communication left in the communication front, this indicates that no match can be
found for it. Then the initial statement is not deadlock-free.

3.3 Extensions of DPS

3.3.1 DPS for Non-BC Statements. The Fundamental

Proof

There exist many types of non-BC statements, where communications appear within
indefinite loops. Attention will be confined only in the following very common struc-
ture: S = [S1|| · · · ||Sm] , where the Sk’s are of the form Sk = loop forever do Bk.
The Bk’s are BC statements. Since they have communication statements and appear
within indefinite iterations, the whole statement is non BC.

Assume that the loop of each top substatement Sk is unfolded nk times, thus
obtaining the statement

Su = [Bn1
1 ;S1|| · · · ||B

nm
m ;Sm]

where the Bnk

k ’s stand for the concatenation of nk copies of Bk : Bk; . . . ;Bk .

DPS can be applied to Su partially, only considering its internal communications
in the Bnk

k statements. Assume that we succeed and obtain B;E , where B has no
internal communication but the ending statement E is non-BC, it may have both
parallelism and inner communication. Assume also that B;E is also reduced by
DPS, partially as before, to B;B;E . Then, as a consequence of linear induction,

S =O [Bn;E]

for any finite integer n, where Bn is both inner parallelism and communication
free. In the frequent case where the first elimination yields B;S , i.e. E = S,
then S =O loop forever do B and the right hand side statement has no inner
communication. In many practical systems this occurs already for nk = 1 ; k =
1, . . . ,m.

3.3. Extensions of DPS 57

3.3.2 Hierarchical Proof Organization Around Procedures

Without loss of generality, statement S of last subsection may be regarded as the
body of a procedure Pp. The top statements of S may also be embedded within
procedures P i

s , for i = 1, . . . ,m, and internal channel declarations added. Under
this formulation, the body of r := Pp(p) is of the form

DI [[r1 := P 1
s (p1)]|| · · · ||[rm := Pm

s (pm)]]

where DI is the declaration of the set of internal channels, and the ri := P i
s(p

i) are
sequential procedures. Their interface channels belong either to I, the set of internal
channels, or to the interface channels of Pp. As usual, the r’s and the p’s stand for
the result and parameter lists of procedure interfaces. With this new formulation,
the fundamental proof establishes the equivalence

[r := Ps(p)] =O [r := Pp(p)]

between two procedures, with the same interface, the above r := Pp(p) and r :=
Ps(p), referred to as sequential, whose body is of the form Bn;E as in last subsection.

By the substitution rule, the equivalence

DI [[r1 := P 1
s (p1)]|| · · · ||[rm := Pm

s (pm)]] =O Ps

is also established. Ps stands for the body of the sequential procedure.

3.3.3 Hierarchical DPS Proofs

Its objective is to establish an equivalence similar to the one of the fundamental
proof. However, in this new situation, the body of the starting procedure r := Pp(p)
is of the form

DI [[r1 := P 1
p (p1)]|| · · · ||[rm := Pm

p (pm)]]

where the P i
p’s have inner parallelism and communication as well, thus expressing a

hierarchy of parallelism. The proof steps are the following:

Step 1 Establish the equivalences [ri := P i
p(p

i)] =Oi
[ri := P i

s(p
i)] for

i = 1, . . . ,m, applying the fundamental proof m times. Then, the obtained P i
s ’s are

sequential, as defined above.

58 3. Distributed Program Sequentialization Proofs

Step 2 If Step 1 succeeds, apply the established equivalences to replace the
parallel by the sequential procedure references in the original program, thus obtain-
ing a program of the form needed for the application of the fundamental proof.

Step 3 Apply again the fundamental proof to the resulting program, obtaining
an equivalent sequential form Ps.

Lemma 10 (Hierarchical Proof): When all the steps of the hierarchical sequentializa-
tion proof succeed, the following holds

DI [[r1 := P 1
p (p1)] || · · · || [rm := Pm

p (pm)]] =O Ps

Justification Step 2 is justified by the rule of substitution of equivalent procedure
references of lemma 2, provided that Step 3 succeeds, thus showing that the original
and resulting statements are deadlock-free. Step 3 can be applied since the result of
Step 2 is of the form required by the fundamental proof.

�

3.3.4 Hierarchical DPS Proofs with Channel Hiding

Hierarchical proofs are simplified if channels are grouped, and the group can be
hidden under a newly defined abstract channel, to represent the group. This can
be done when the sends and receives of the channels in a group appear in the same
pattern everywhere in the program. For instance, they are everywhere composed in
sequence and in the same order. Although many other different patterns may be
considered, without loss of generality this possibility will be assumed.

In this situation, a new channel α can be introduced to represent the group.
Its type has to be a structure, product, with as many components as channels αi

in the group, typed as their corresponding channels. The global correspondence is
α ←→ (α1, . . . , αm) , which defines the hide and the unhide functions, and implies
the correspondences

[α⇐ v]←→ [α1 ⇐ v.v1; · · · ;αm ⇐ v.vm]

and

[α⇒ v]←→ [α1 ⇒ v.v1; · · · ;αm ⇒ v.vm]

for the send and receive statements. The type of v is the cartesian product of
the types of the αi’s, i.e. v.vi is of the type of αi. Notice that the two sides of
the correspondences are functionally equivalent. In both the same product value is
received and stored into, or retrieved and sent from, v.

3.3. Extensions of DPS 59

The hierarchical proof with channel hiding is a variant of the hierarchical proof.
At a certain stage of it, some channels are grouped and hidden under a new abstract
channel, as explained above. The body r := Pp(p) of the original parallel procedure
of the proof will be denoted now as

DI [[r̄1 := P̄ 1
p (p̄1)]|| · · · ||[r̄n := P̄n

p (p̄n)]]

Also, r̄i := P̄ i
s(p̄

i) will denote the result of the fundamental proof applied to
r̄i := P̄ i

p(p̄
i) . The superbars denote unhidden procedure interface lists and bodies.

However, distinctive of this variant is the fact that groups of internal channels, with
the correspondences for sends and receives defined above, can be formed in the result
and parameter lists, r̄i and p̄i, of all the P̄ i

s ’s. For this to be so, the following should
hold:

1. If a channel belongs to a group and it appears in the result and parameter
lists of the same or of two distinct procedure interfaces, then it can be made
to belong to the same group in all these interface lists.

2. The send and receive statements of a group of channels appear in the same
pattern within the bodies of procedures having the group in their interfaces.
As mentioned above, it is assumed that they are always composed in sequence
and in the same order.

Under these circumstances, hide and unhide functions introduced above in this
subsection can be established for all procedures r̄i := P̄ i

s(p̄
i) , of the original parallel

composition statement.

Hierarchical proof with channel hiding

It starts with the statement:

DI [[r̄1 := P̄ 1
p (p̄1)]|| · · · ||[r̄n := P̄n

p (p̄n)]]

Its steps are the following:

Step 1 Obtain r̄i := P̄ i
s(p̄

i) from r̄i := P̄ i
p(p̄

i) via the fundamental proof,
for all i.

Step 2 Obtain the statement:

60 3. Distributed Program Sequentialization Proofs

DI [[r̄1 := P̄ 1
s (p̄1)]|| · · · ||[r̄n := P̄n

s (p̄n)]]

from the initial statement, via substitution using the equivalences resulting from
Step 1.

Step 3 Define the channel hiding functions which will transform the r̄i :=
P̄ i

s(p̄
i) into the ri := P i

s(p
i). Apply them at once to the statement of Step 2, to

obtain:

DI [[r1 := P 1
s (p1)]|| · · · ||[rn := Pn

s (pn)]]

Step 4 Apply the fundamental proof to the last statement, obtaining a se-
quential form Ps.

Lemma 11 (Hierarchical Proof with Channel Hiding): When the steps of the hierar-
chical proof with channel hiding succeed, the following equivalence holds

DI [[r̄1 := P̄ 1
p (p̄1)]|| · · · ||[r̄n := P̄n

p (p̄n)]] =Ō Ps

Justification The statement resulting from Step 2 is equivalent to the initial one
due to the procedure reference substitution rule of lemma 2. Since the channel
hiding transformation preserves equivalence, as reasoned above in this subsection,
the statement resulting from Step 3 is equivalent to the one resulting from Step
2. This is also so since no hidden channel belongs to the interface of the original
statement. The equivalence of the lemma follows from the success of the fundamental
proof in Step 4.

�

3.4 Conclusion

The notion of bounded communication (BC) statement has been introduced in this
chapter. The execution of a BC statement gives a finite number of inner commu-
nication events. BC statements, whose inner communication operations are outside
the scope of selection substatements, form the base class for which communication
elimination has been studied. Extension of communication elimination and sequen-
tialization proofs to some non-BC statements, whose execution generates an infinite
number of inner communication events, has been treated at the end of this chapter.

3.4. Conclusion 61

The communication elimination algorithm evolves by eliminating matching com-
munication pairs whose elements are in the communication front of the statement,
the set of minimal elements in its communication operation order. The set of com-
peting pairs, as the set of matching pairs taken from the communication front, has
been introduced in the chapter together with the communication front.

The precise formulation of applicability conditions for the proper communication
elimination laws is one of the contributions of this dissertation. It has been presented
in this chapter. There is a linear infinite set of laws conforming to the possible struc-
tures of nested parallelisms encountered in models of general distributed programs
and hardware. Applicability conditions have an iterative structure reflecting the la-
yers of nested parallelisms; they restrict inner communication ordering and location
in substatements and warrant that deadlock is not introduced when applying the
law; since some parallelism has to be lost in this application.

The chapter has also reviewed important elements of sequentialization proofs.
Among them, a communication elimination proof construction algorithm has been
studied. It applies both basic and proper communication elimination laws intending
to obtain a statement free of inner communications. It has been mathematically
justified and its collateral deadlock analysis capabilities have been addressed. The
topics of hierarchical proof organization and channel hiding, needed in the pipelined
processor proof of chapter 6, have been covered in the chapter as well.

62 3. Distributed Program Sequentialization Proofs

Chapter 4

A COMMUNICATION ELIMINATION

REDUCTION PROCEDURE

A specific communication elimination reduction procedure for bounded communi-
cation statements is described in this chapter. It is based on the communication
elimination laws introduced in the previous chapter. The elimination takes place
only when the applicability conditions of Theorems 1 and 2 are satisfied. The chap-
ter provides enough detail to help understand the corresponding programs within
the prover. A communication elimination example is detailed at the end.

4.1 Introduction

The communication elimination reduction procedure is detailed step by step. The
elimination of a single matching pair of communication statements from a binary
cooperation statements is treated first. This gives a detailed implementation to what
was referred to as Elim{(ℓ,m), S} in section 3.2.3. The extension to n-ary cooper-
ation statements is given at the end of this chapter. The chapter adds algorithmic
details to the schema given in chapter 3.

Before explaining and detailing the communication elimination procedure, some
notions are reviewed first. In chapter 3 the notion of bounded communication state-
ments has been introduced. These are selection-free and loop-free statements, whose
substatements are concatenations, parallelisms and basic substatements only. From
now on in the text, bounded communication statements will be referred also as the
input program. S will denote such a statement.

Moreover the following requirements must hold:

- BC statements are free of scoped descriptions or comments. These are not
necessary for equivalence reasoning purposes.

64 4. A Communication Elimination Reduction Procedure

- All variable and synchronous channel declarations are outside the scope of BC
statements. Any declaration within the bounded statement must be moved
outside of it. If necessary, variable renaming must be applied.

When the bounded statement satisfies the above definitions, called well formed,
the communication elimination reduction can be applied.

An important requirement of the elimination reduction is that any transforma-
tion of the input BC statement be carried out by application of laws only. These
laws should have been justified beforehand by mathematical arguments. A repo-
sitory stores the laws. The procedure transforms the input program only via the
apply procedure, introduced later in this chapter, which transforms a part of the
program applying a law of the repository. The program, a part indicator, and the
law are passed as parameters. Each law can be applied from left to right or vice-
versa, and for each application a set of applicability conditions has to hold. These
are also checked by procedure apply.

Within the elimination procedure, the following notation is used sometimes:

{

[A] => [B]

}

It denotes the application of the transformation to A whose result is B. The symbol
=> corresponds to an explicit application of either a law or a set of laws or some
transformation procedures. The transformation procedures, which apply only a set
of laws or lemmas, are detailed in chapter 5.

Basically the communication elimination procedure removes a matching pair of
communication statements, (ℓ,m), from S, a bounded statement. Both ℓ and m
are locations within S that identify the communication statements. The matching
pair belongs to CompPairs(I, S), where I is the set of internal channels of S. S
can always be rewritten so that S :: [Sl(ℓ)||Sr(m)]. This is the binary parallelism
that matches the elimination law. The reasons for this are given in the justification
of Theorem 5 of chapter 3. Sl(ℓ) and Sr(m) are the top statements of the LCA of
both, which contain statements ℓ and m respectively.

Some nomenclature relating to the top statements Sl(ℓ) and Sr(m) is introduced.
The integer kl stands for k of Sl(ℓ). Similarly for kr.

Definition 10 (Structural Order): Given a bounded statement S, the structural order
of its substatement Sl(ℓ) is the integer kl that counts recursively the number of Gl

k

statement levels within Sl(ℓ), as in law 19 of page 47.

Similarly for Sr(m) and kr.

4.2. Binary Communication Elimination 65

Before explaining the procedure some more concepts are defined:

Definition 11 (Immediate Parallel Statement): Given a bounded statement S and a
statement S0 within S, S0 has an immediate parallel statement if there exists any
statement in parallel with it with the same LCA.

For instance, S :: [S0 || S1], S1 is in parallel with S0 and both have the same
LCA, then S1 is an immediate parallel of S0.

S0 and S1 are immediate parallel statements if both are top statements of the
same cooperation.

Definition 12 (Immediate Sequence Predecessor): Given a bounded statement S and
a statement S0 within S, S0 has an immediate sequence predecessor if there exists
a preceding statement in sequence with it.

For example S :: [S1; S0].

Definition 13 (Immediate Sequence Successor): Given a bounded statement S and a
statement S0 within S, S0 has an immediate sequence successor if there exists any
succeeding statement in sequence with it: S :: [S0; S1]

4.2 Binary Communication Elimination

The goal of this procedure, shown in next page, is to eliminate a matching pair
of communication statements in CompPairs(I, S) from a binary cooperation state-
ment S by the application of Theorem 5. S is a bounded communication statement.
Whenever this is not possible no transformation takes place and the procedure re-
ports a failure. Otherwise it returns as output a bounded communication statement
S′.

In step1 of the procedure the orders of the two parallel statements are ob-
tained. Once the procedure has constructed the top level statements in step2, the
communication elimination law, with the following general form,









H l
k;

[
Gl

k || P
l
k

]
;

T l
k









||









Hr
k ;

[
Gr

k || P
r
k

]
;

T r
k









=O









[
H l

k || Hr
k

]
;

[
Gk || P l

k || P r
k

]
;

[
T l

k || T r
k

]









can be applied, if the applicability conditions hold, obtaining the target statement
S′, step3, where the matching pair (ℓ,m) has been removed. Next subsections
describe each step in detail.

66 4. A Communication Elimination Reduction Procedure

Procedure bin-comeli − binary communication elimination

Input: S :: [Sl(ℓ)||Sr(m)] a bounded statement, and p = (ℓ,m) a matching
communication pair, with communication statement ℓ within Sl(ℓ)
and communication statement m within Sr(m).

Output: S′ a bounded statement equivalent to S, where p has been elimi-
nated, or a failure indication.

step1: Determine the orders kl and kr of Sl(ℓ) and Sr(m), respectively.

step2: Construct, via law applications, top level statements Gl
n(ℓ) and

Gr
n(m) equivalent to Sl(ℓ) and Sr(m), respectively, and whose

structures match Gl
k and Gr

k of chapter 3 for k = n, the maximum
of the two orders, kl and kr.

step3: Proper application, from left to right, of the law of Theorem 4 for
order n to [Gl

n(ℓ)||Gr
n(m)] to obtain S′.

step4: Elimination of redundant nil statements from S′ by applying sim-
ple laws.

step5: Elimination of redundant sequence and parallel associations intro-
duced in the Hx

k , P x
k and T x

k statements.

4.2.1 Determine the Orders

This corresponds to a preliminary processing of the input statement S, needed for
the transformation to the standard forms of law 19 of page 47.

Procedure step1 − determine the orders of Sl(ℓ) and Sr(m)

Input: S :: [Sl(ℓ)||Sr(m)] a bounded statement, and p = (ℓ,m) a matching
communication pair.

Output: Integers kl, kr, and n.

kl := structorder(S, ℓ)

kr := structorder(S,m)

n := max(kl, kr)

4.2. Binary Communication Elimination 67

Basically the procedure collects structural information of S, by identifying the
orders kl and kr of the statements Sl(ℓ) and Sr(m). Procedure structorder of
page 70 calculates the orders.

Observe that the top parallel statements, Gx, contain some characteristic loca-
tions that help the procedure to determine the correct order for any input form.
These are also locations of statement S. These are the following (see figure on top
of page 69):

• ℓLCA: It corresponds to the initial location of the binary cooperation state-
ment, ℓLCA : [Sl(ℓ)||Sr(m)].

• ℓGx
k
: Initial location of Gx

k statements, where x = l or r, and k = 0, 1, ..., n. G
statements are those that contain either ℓ or m. For instance the inner location,
ℓGl

0
, is related to ℓ, of the matching pair. If ℓ denotes a pure communication

statement then ℓGl
0

= ℓ.

The existence of the input communication pair, (ℓ,m), guarantees that at least
ℓGx

0
exists.

• ℓP x
k
: Initial location of the P x

k statements, where x = l or r, and k = 0, 1, ..., n.
The location identifies the P statements that are in parallel with a G statement.

• ℓGP x
k
: Initial location of the [Gx

k ||P
x
k] statements, where x = l or r, and k =

0, 1, ..., n.

• ℓHx
k
: Initial location of the Hx

k statements, where x = l or r, and k = 0, 1, ..., n.
The H statements can easily be identified as the immediate sequence prede-
cessors of ℓGP x

k
. In case that the predecessors be a sequence composition such

as Sx
1 ; · · · ;Sx

m, ℓHx
k

identifies the whole composition.

• ℓT x
k
: Initial location of the tail statements, T x

k , where x = l or r, and k =
0, 1, ..., n. This is identified as the immediate sequence successor of ℓGP x

k
. As

above ℓT x
k

identifies any sequential composition that follows in sequence the
[Gx

k||P
x
k] statements.

These locations are identifiable if the top statements are in their normal form as in
lemma 4 of page 45. In case of H, P and T statements do not exist then some of
the above locations are undetermined.

Example This example illustrates the locations on a binary cooperation S. The
left-hand side contains the base statement Gl

0 = [α ⇐ e] and the right-hand side
Gr

0 = [α⇒ u], where α is the synchronous channel.

68 4. A Communication Elimination Reduction Procedure

The following shows the S statement in PADD notation:

| |

Hl2
| |

Hl1
| |

Hl0
| |

[]a:= e Pl0
Tl0

Pl1

Tl1

Pl2

Tl2

Hr0
| |

u:= <>a Pr0
Tr0

and in SPL notation:















































Hl
2;































Hl
1;















Hl
0;

[
α ⇐ e || P l

0

]
;

T l
0








|| P l
1








;

T l
1
















|| P l
2
















;

T l
2
























||








Hr
0 ;

[
α ⇒ u || P r

0

]
;

T r
0































4.2. Binary Communication Elimination 69

Next figure shows all the locations within S, in SPL notation:

ℓLCA :

ℓ
Gl

3

:






























ℓ
Hl

2

: Hl
2
;

ℓ
GPl

2

:





















ℓ
Gl

2

:





















ℓ
Hl

1

: Hl
1
;

ℓ
GP l

1

:











ℓ
Gl

1

:











ℓ
Hl

0

: Hl
0
;

ℓ
GP l

0

:
[

ℓ : α ⇐ e || ℓ
Pl
0

: P l
0

]

;

ℓ
Tl
0

: T l
0











|| ℓ
P l
1

: P l
1











;

ℓ
Tl
1

: T l
1





















|| ℓ
P l
2

: P l
2





















;

ℓ
Tl
2

: T l
2






























||

ℓGr
1

:










ℓHr
0

: Hr
0
;

ℓGPr
0

:
[

m : α ⇒ u || ℓPr
0

: P r
0

]

;

ℓTr
0

: Tr
0










Observe that ℓGl
0

is actually ℓ.

Next figure shows the locations on the S statement in PADD notation, only some
of them are printed out:

ℓGl
1

ℓGl
2

ℓGl
3

ℓGr
1 m = ℓGr

0

ℓ = ℓGl
0

ℓLCA

ℓP r
0

ℓHr
0

ℓGP r
0

ℓTr
0

| |

Hl2
| |

Hl1
| |

Hl0
| |

[]a:= e Pl0
Tl0

Pl1

Tl1

Pl2

Tl2

Hr0
| |

u:= <>a Pr0
Tr0

70 4. A Communication Elimination Reduction Procedure

This example can be expressed as S :: [Gl
kl ||G

r
kr], but it does not match the

definition of the top statement form needed in the Theorem 5. Notice that kl 6= kr.
Since locations ℓGl

3
and ℓGl

1
can be identified, both structural orders, respectively as

kl = 3 and kr = 1, can be obtained.

The following procedure computes the structural order of Sx, which is either Sl(ℓ)
or Sr(m), within a bounded statement S. Basically it searches ancestors ascending
from Gx

0 , where x = l or r. Each ancestor is assigned to an auxiliary statement, SG,
which initially denotes the basic Gx

0 statement.

Procedure structorder − determine the structural order

Input: S :: [ℓLCA : [Sl(ℓ)||Sr(m)]], and [ℓGx
0

: Gx
0], where x can be either l or

r.
Output: An integer o.

o := 0
let SG :: Gx

0

ℓ1 while least ancestor of SG 6= S do
ℓ2 if SG has immediate parallel statement then

let SG :: least ancestor of SG

o = o + 1
ℓ3 if SG has immediate sequence predecessor then

let SG :: least ancestor of SG

else
ℓ4 if SG has immediate sequence successor then

let SG :: least ancestor of SG

else
ℓ5 if SG has immediate sequence predecessor then

let SG :: least ancestor of SG

o := o + 1

else
ℓ6 if SG has immediate sequence successor then

let SG :: least ancestor of SG

o := o + 1

4.2. Binary Communication Elimination 71

Checking for the presence of immediate parallel or sequential statements of SG

and identifying the locations shown before, the order can be calculated. The Gx
k

within S are seldom a complete top statement, such as [Hx
k ; [Gx

k || P
x
k]; T x

k], they
are in one of the following only possible combinations of Gx

k , Hx
k , P x

k , and T x
k :

- form 1 [Gx
k || P

x
k]

- form 2 [Hx
k ; [Gx

k || P
x
k]]

- form 3 [[Gx
k || P

x
k]; T x

k]

- form 4 [Hx
k ; Gx

k]

- form 5 [Gx
k ; T x

k]

Note that Hx
k and T x

k match any sequential composition, and P x
k any cooperation

statement. In general the procedure only verifies the relationship between Gx
k and

their neighbor statements. The construction of the standard forms Gx
k is done in

the next step. The procedure, by considering the above possible forms 1 to 5 at a
level, essentially counts the number of nested parallelisms embedding ℓ or m.

At the beginning SG is Gx
0 . When SG has an immediate parallel statement, the

condition at ℓ2 is true. This case matches the form 1, [Gx
k || P x

k], a G statement
has a P statement in parallel. The procedure continues by checking the presence
of an immediate sequence predecessor, line ℓ3, if the condition is true the new SG

matches the form 2, [Hx
k ; [Gx

k || P
x
k]]. Similarly for the successors, line ℓ4, and the

form 3, [[Gx
k || P x

k]; T x
k]. Note that the forms [Gx

k || P x
k], [Hx

k ; [Gx
k || P x

k]], and
[[Gx

k || P
x
k]; T x

k] has the same structural order, then variable o is incremented once.

When the condition at ℓ2 is false, SG does not have an immediate parallel state-
ment, the forms checked at lines ℓ5 and ℓ6 match respectively [Hx

k ; Gx
k] and [Gx

k ; T x
k].

The procedure ends when the least ancestor of SG, line ℓ1, is S, this means that
the procedure has already traversed the whole S, and the variable o contains the
number of levels of S.

The general form, [Hx
k ; [Gx

k || P
x
k]; T x

k], is not checked directly for the procedure.
It has the same order as [Hx

k ; [Gx
k || P

x
k]], checked in lines ℓ2 and ℓ3. Checking the

presence of T x
k is skipped since it does not give us further information about the

order. In general the number of possible Gx
k forms found establishes the structural

order of Sx.

72 4. A Communication Elimination Reduction Procedure

Example The example illustrates how the order o is calculated. The inputs of the
procedure are the following: S ::

ℓLCA :

[[[
S0; S1; S2;

[Gl
0 || S3]

]

||
[

S4

]

]

||
[

Gr
0

]

]

and ℓGl
0

: Gl
0.

Initially SG :: Gl
0. The while condition, line ℓ1, is satisfied, and the procedure

checks for the presence of immediate parallel and sequential statements. Since S3 is
in parallel with Gl

0, checked at line ℓ2, then the new SG is [Gl
0 || S3], which is the

least ancestor of Gl
0. The order o is incremented by 1, o = 1.

Next, line ℓ3 checks the presence of immediate sequence predecessor statements.
In our example they are [S0; S1; S2;], thus SG becomes its least ancestor, now it

is the following:

[
S0; S1; S2;

[Gl
0 || S3]

]

. The procedure loops and the while condition,

line ℓ1, is satisfied again. At line ℓ2, S4 is the immediate parallel statement, and SG

becomes:
[[

S0; S1; S2;

[Gl
0 || S3]

]

||
[

S4

]

]

and o = 2.

The next loop the procedure ends due to the least ancestor of SG is S.

Computational complexity of step1

Basically procedure step1 calls twice structorder. Since the latter procedure
traverses once all levels of Sx, the computational order is O(n), where n is the
structural order of S.

Cstep1 = O(n)

4.2.2 Construct Top Level Statements

The next procedure transforms Sl(ℓ) and Sr(m) to the standard forms Gl
n and Gr

n,
as in law 19 of page 47, where n = max(kl, kr). After the transformation, each Gx

k

within the output S′ statement of procedure step2 has the form [Hx
k−1; [G

x
k−1||P

x
k−1];T

x
k−1].

This guarantees that S′ is ready to match the communication elimination law for
order n of Theorem 4 of chapter 3, to be applied in the step3. In the following
N1, N2, N3 ≥ 1.

4.2. Binary Communication Elimination 73

Procedure step2 − put top level statements in the standard form

Input: S :: [Sl(ℓ) || Sr(m)], p = (ℓ,m) as in procedure bin-comeli, and, kl,
kr and n from procedure step1.

Output: S′ a bounded statement equivalent to S or a failure indication.

for x := l and r do
level := 1
let SG denote Gx

0 within S
while level ≤ n do

if level ≤ kx then
if SG within S does not have immediate parallel statement then

if SG within S does not have an immediate sequence successor
then

t1 transform

{

[SG] =>

[
[SG || nil];
nil

] }

else

t2 transform

{ [
SG;
S1; . . . ;SN1

]

=>

[
[SG || nil];
[S1; . . . ;SN1]

] }

else
if SG within S does not have an immediate sequence successor
then

t3 transform

{
[
SP1 || · · · ||SPi

||SG||SPi+2 || · · · ||SPN2

]
=>

[
[SG || [SP1 || · · · ||SPN2

]];

nil

]}

else

t4 transform

{ [
[SP1|| · · · ||SPi

||SG||SPi+2 || · · · ||SPN2
];

S1; . . . ;SN1

]

=>
[
[SG || [SP1 || · · · ||SPN2

]];

[S1; . . . ;SN1]

]}

let SG denote the resulting form, after the transformation.
if SG within S does not have an immediate sequence predecessor
then

t5 transform

{

[SG] =>
[
nil; SG

]
}

else

t6 transform

{
[
S1; . . . ;SN3 ;SG

]
=>

[
[S1; . . . ;SN3]; SG

]
}

else

t7 transform

{

[SG] =>





nil;
[SG || nil];
nil





}

let SG denote the resulting form, after the transformation.
level := level + 1

let Sx′

n denote SG, whose structural order is n.

t8 S′ :: [Sl′

n ||S
r′

n]

74 4. A Communication Elimination Reduction Procedure

Some parts of the procedure, shown in the previous page, labeled as tx, are
explained in more detail now:

Transformation t1
In line t1 the following transformation is applied:

{

[SG] =>

[
[SG || nil];
nil

] }

This applies only basic laws showed in section 2.9 of chapter 2. First, the congruence
{S ≈ S || nil} is applied to SG, then {S ≈ S; nil} is applied to the resulting form.
The transformation guarantees that the output form is a [[G||P];T] form, where
P = T = nil.

Transformation t2
The transformation applied in line t2, with N1 ≥ 1, is:

{ [
SG;
S1; . . . ;SN1

]

=>

[
[SG || nil];
[S1; . . . ;SN1]

] }

The first law is the same as above, then sequence associativity is applied, to S1; · · · ;SN ,
obtaining a [[G||P];T] form, where P is nil, and T is [S1; · · · ;SN1].

Transformation t4
This transformation:

{ [
[SP1|| · · · ||SPi

||SG||SPi+2|| · · · ||SPN2
];

S1; . . . ;SN1

]

=>

[
[SG || [SP1|| · · · ||SPN2

]];

[S1; . . . ;SN1]

]}

applies sequentially the following:

- Parallelism Permutation, due to commutativity:

[
SP1|| · · · ||SPi

||SG||SPi+2|| · · · ||SPN2

]
=>

[
SG||SP1 || · · · ||SPi

||SPi+2 || · · · ||SPN2

]

The permutation procedure is detailed in section 5.4.2.2 of chapter 5. SG is
permuted to the beginning of the cooperation statement.

- Cooperation Associativity (from section 5.4.2.3):

[
SG||SP1 || · · · ||SPi

||SPi+2|| · · · ||SPN2

]
=>

[
SG || [SP1 || · · · ||SPN2

]
]

4.2. Binary Communication Elimination 75

- Concatenation Associativity (from section 5.4.2.7):

[
S;
S1; . . . ;SN3

]

=>

[
S;
[S1; . . . ;SN3]

]

Computational complexity of step2

For each level of S, two transformations are applied at most. The complexity of
them could be, for the worst case, O(N1 + N3) or O(N2 + N3). The number st of
statements could be taken as an upper bound for the Ni’s. Hence

Cstep2 = O(n× st)

where n is the structural order of S.

4.2.3 Application of Elimination from a Binary Cooperation

The proper communication elimination laws given in section 3.2.2 of chapter 3, are
applied in this step of the procedure to the program resulting from last step.

As an example the following shows the communication elimination law of order
2.




















H l
1;



















H l
0;

[
α ⇐ e || P l

0

]
;

T l
0







|| P l

1












;

T l
1




















||




















Hr
1 ;



















Hr
0 ;

[
α ⇒ u || P r

0

]
;

T r
0







|| P r

1












;

T r
1




















=O















[
H l

1 || Hr
1

]
;















[
H l

0 || Hr
0

]
;

[
u := e || P l

0 || P r
0

]
;

[
T l

0 || T r
0

]







|| P l

1 || P r
1








;

[
T l

1 || T r
1

]















76 4. A Communication Elimination Reduction Procedure

From chapter 3 the applicability conditions have to be checked before application
of the law. There where two types of them: checking that two substatements are
communicating, and checking the order of communications of two statements with
respect to a third one. The next procedures carry out those checks now:

❏ Procedure CommStat

Procedure commstat verifies whether or not two statements communicate. They
communicate if a matching communication pair is found within them and are para-
llel. The next procedure checks that one of the two statements has an output and
the other an input over the same channel, and vice versa. They communicate if the
intersection of the input and output communication statement sets, InpSt and OutSt
respectively (detailed in section 5.3.3.2), is not empty, as the following shows:

Procedure commstat − communicating statements

Input: A,B are statements in parallel.

Output: A boolean b. b is true if A and B communicate.

b := (InpSt(A) ∩ OutSt(B) 6= ∅)
∨

(OutSt(A) ∩ InpSt(B) 6= ∅)

❏ Procedure CommPrecede

It computes the expressions cw(A) < cw(B) within P , introduced in definition 9 of
chapter 3. The procedure is the following:

Procedure commprecede − communication order precedence restriction

Input: P,A,B statements from any G statement.

Output: A boolean b. b is true if cw(A) < cw(B) within P .

b := true
if {commstat(P , A) ∧ commstat(P , B)} then

SPA :: set of matching pairs found in (P,A)
SPB :: set of matching pairs found in (P,B)
foreach element x of SPB do

if x precedes within P any communication pair of SPA then
b := f alse

p1 exit

4.2. Binary Communication Elimination 77

The procedure exits with failure, location p1, if any communication of (P,B)
precedes a communication of (P,A). The precedence between the above sets is
determined by checking within P , statement by statement and in its concatenation
order, that any element of SPB does not come before any element of SPA, otherwise
the procedure ends and the boolean variable b becomes f alse.

The overall procedure step3 checks the applicability conditions first. Only when
all are satisfied the elimination law is applied. Notice that, due to the current
implementation the index (n + 1) of the applicability conditions of Theorems 1 and
2, pages 50 and 51 respectively, has been changed to (n) in the procedure which is
the following:

Procedure step3 − proper communication elimination

Input: S :: [Sl
n(ℓ) || Sr

n(m)] the output of procedure step2, and n.

Output: S′ a bounded statement equivalent to S, where p has been elimi-
nated, or a failure indication.

if ℓ is an input communication statement then
e1 let S′ be the result of the transformation

{
[
Sl

n(ℓ) || Sr
n(m)

]
=>

[
Sr

n(m) || Sl
n(ℓ)

]
}

else let S′ :: S
let the P ’s, T ’s and G’s are the substatement of S′ in the rest.

e2 if {
∨

commstat(P l
i , T

r
k), for k ∈ [0, n− 1] and i ∈ [0, k] } then

exit with failure, some (P l
i , T

r
k) communicate

e3 if {
∨

commstat(P r
i , T l

k), for k ∈ [0, n − 1] and i ∈ [0, k] } then
exit with failure, some (P r

i , T l
k) communicate

e4 if {
∨

commstat(T l
i , T

r
j), for i, j ∈ [0, n− 1], i 6= j } then

exit with failure, some (T l
i , T

r
j) communicate

e5 if {
∨

[¬commprecede(P l
k, P

l
i , T

r
i) ∨ ¬commprecede(P l

k, P
r
i , T l

i) ∨
¬commprecede(P l

k, G
l
i, T

r
i) ∨ ¬commprecede(P l

k, G
r
i , T

l
i)],

for k ∈ [1, n − 1] and i ∈ [0, k − 1] } then
exit with failure, communication order restriction for P l

k not satisfied

e6 if {
∨

[¬commprecede(P r
k , P l

i , T
r
i) ∨ ¬commprecede(P r

k , P r
i , T l

i) ∨
¬commprecede(P r

k , Gl
i, T

r
i) ∨ ¬commprecede(P r

k , Gr
i , T

l
i)],

for k ∈ [1, n − 1] and i ∈ [0, k − 1] } then
exit with failure, communication order restriction for P r

k not satisfied

e7 (failure, S′) :: apply(S′, bincomelin, LftToRght)

78 4. A Communication Elimination Reduction Procedure

The procedure applies first a basic transformation needed for the matching of
the communication elimination law. Next the applicability conditions are checked,
if they hold the communication elimination can take place, otherwise the procedure
exits with failure. The parts of the procedure, labeled as ex, are detailed next.

Transformation e1

In case the communication statement ℓ be an input communication statement, then
the binary cooperation commutativity law is applied, moving the output communi-
cation statement to the left. This is necessary due to the definition of Theorem 5,
where Gl

0 and Gr
0 must contain α ⇐ e and α ⇒ u respectively. Now S′ matches

perfectly the communication law for order n.

Applicability conditions e2 and e3

The statement pairs (P l, T r) and (P r, T l) should not communicate. First the pair
(P l, T r) is checked. The next schema shows how these statements are in parallel in
the left hand side of the interface equivalence but after applying the reduction they
are in sequence. Since they do not communicate, no deadlock can be introduced in
the r.h.s.









H l;

[
Gl || P l

]
;

T l









||









Hr;

[
Gr || P r

]
;

T r









=O









[
H l || Hr

]
;

[
G || P l || P r

]
;

[
T l || T r

]









For example consider the following schema. It represents the r.h.s of the commu-
nication law for order 2. P l

1 and T r
0 statements can communicate since they are in

parallel before and after the reduction.














[
H l

1 || Hr
1

]
;













[
H l

0 || Hr
0

]
;

[
G0 || P l

0 || P r
0

]
;

[
T l

0 || T r
0

]






|| P l

1 || P r
1







;

[
T l

1 || T r
1

]














4.2. Binary Communication Elimination 79

Theorem 1 of page 50 expresses this condition as:

- The pairs (P l
i , T

r
k) do not communicate, for k ∈ [0, n − 1] and i ∈ [0, k]

The procedure calls commstat to verify whether or not P l and T r communicate.
The two statements communicate if a matching communication pair is found within
them. commstat has been detailed earlier in this section.

Example Given the communication elimination law of order 3, the procedure checks
that the following pairs do not communicate: (P l

0, T
r
0), (P l

0, T
r
1), (P l

1, T
r
1), (P l

0, T
r
2),

(P l
1, T

r
2), and (P l

2, T
r
2). If any conditions do not hold then the procedure stops and

exits reporting a failure.

Similarly for the pairs (P r, T l), where from Theorem 1:

- The pairs (P r
i , T l

k) do not communicate, for k ∈ [0, n − 1] and i ∈ [0, k]

Applicability conditions e4

The procedure checks the following expression, from Theorem 1:

- The pairs (T l
i , T

r
j) do not communicate, for i, j ∈ [0, n − 1], i 6= j

Note that statements with index i = j can communicate since they remain in
parallel after applying the communication elimination law.

Example The next figures show the elimination law of order 3, and how the pairs:
(T l

0, T
r
1), (T l

0, T
r
2), (T l

1, T
r
0), (T l

1, T
r
2), (T l

2, T
r
0), and (T l

2, T
r
1), are in parallel in the

l.h.s.:
































H l
2;











































H l
1;



















H l
0;

[
Gl

0 || P l
0

]
;

T l
0







|| P l

1












;

T l
1




















|| P l
2
























;

T l
2
































||































Hr
2 ;











































Hr
1 ;



















Hr
0 ;

[
Gr

0 || P r
0

]

T r
0

T r
1

T r
2

80 4. A Communication Elimination Reduction Procedure

and in sequence in r.h.s.:





















[
H l

2 || Hr
2

]
;



























[
H l

1 || Hr
1

]
;















[
H l

0 || Hr
0

]
;

[
G0 || P l

0 || P r
0

]
;

[
T l

0 || T r
0

]







|| P l

1 || P r
1








;

[
T l

1 || T r
1

]














|| P l
2 || P r

2














;

[
T l

2 || T r
2

]





















Communication order restriction e5 and e6

These restrictions are also conditions to be fulfilled before applying the elimina-
tion law, these are explained in Theorem 2 of page 51. The procedure checks the
communications precedence for each P l and P r.

Example Given the law of order 3, observe the communications within P l
2 with Gl

1

and T r
1 in both sides of the equivalence:

































H l
2;













































H l
1;




















H l
0;

[
Gl

0 || P l
0

]
;

T l
0








|| P l
1













;

T l
1





















|| P l
2

























;

T l
2

































||

































Hr
2 ;














































Hr
1 ;



















Hr
0 ;

[
Gr

0 || P r
0

T r
0

T r
1

T r
2

C1

C2

4.2. Binary Communication Elimination 81

=O
























[
H l

2 || Hr
2

]
;

































[
H l

1
|| Hr

1

]
;
















[
H l

0 || Hr
0

]
;

[
G0 || P l

0
|| P r

0

]
;

[
T l

0 || T r
0

]







|| P l

1 || P r
1









;

[

T l
1
|| T r

1

]

















|| P l
2 || P r

2

















;

[
T l

2 || T r
2

]
























C1

C2

Labels C1 and C2 denote the communication statements within P l
2 with Gl

1 and
T r

1 respectively. In the example the communication C1 always precedes C2 either in
the l.h.s. or r.h.s, thus no deadlock can be introduced after applying the elimination
reduction.

Rewriting the example changing the order of the communications within P l
2, the

next schema is obtained. Now in the l.h.s. C ′
2 precedes C ′

1. Statements Gl
1 and T r

1

are in parallel with P l
2 and both communication events can take place. In the r.h.s.

Gl
1 and T r

1 are not in parallel, therefore if C ′
2 precedes C ′

1 then a deadlock would be
introduced in case the elimination transformation took place. Since the restrictions
are not satisfied the communication elimination reduction can not be applied.

































H l
2;













































H l
1;




















H l
0;

[
Gl

0 || P l
0

]
;

T l
0








|| P l
1













;

T l
1





















|| P l
2

























;

T l
2

































||

































Hr
2 ;














































Hr
1 ;



















Hr
0 ;

[
Gr

0 || P r
0

T r
0

T r
1

T r
2

C′
1

C′
2

82 4. A Communication Elimination Reduction Procedure

=O
























[
H l

2 || Hr
2

]
;

































[
H l

1
|| Hr

1

]
;
















[
H l

0 || Hr
0

]
;

[
G0 || P l

0
|| P r

0

]
;

[
T l

0 || T r
0

]







|| P l

1 || P r
1









;

[

T l
1
|| T r

1

]

















|| P l
2 || P r

2

















;

[
T l

2 || T r
2

]
























C′
1

C′
2

In general, the set of communication order restrictions to be fulfilled are:

- Within P l
k for k ∈ [1, n − 1] and i ∈ [0, k − 1],

cw(P l
i) < cw(T r

i)
∧

cw(P r
i) < cw(T l

i)
∧

cw(Gl
i) < cw(T r

i)
∧

cw(Gr
i) < cw(T l

i)

- Also for P r
k for k ∈ [1, n − 1]

The expression cw(A) < cw(B) is explained in definition 9 of page 49, and it is
computed by procedure commprecede introduced in the beginning of this section.

Transformation e7

Finally the proper communication elimination law for n can be applied, whose
mnemonic is bincomelin, to S′ by calling procedure apply, explained in the next
chapter 5:

(failure, S′) :: apply(S′, bincomelin, LftToRght)

where law bincomelin is applied from l.h.s. to r.h.s., as parameter LftToRght indi-
cates.

When the procedure terminates without failure, indicated by boolean failure,
a bounded communication statement S′, interface equivalent to S, is obtained, and
the matching communication pair (ℓ,m) has been eliminated.

Computational complexity of step3

Procedure step3 computes the applicability conditions by calling procedures commstat

and commprecede, traversing all n levels of S n− 1 times.

Cstep3 = O(n2)

where n is the structural order of S.

4.2. Binary Communication Elimination 83

4.2.4 Remove Nil Statements

This step rearranges the statement S′, obtained in step3, by eliminating the redun-
dant nil statements introduced before applying the communication elimination law.
S′ has the structure of the r.h.s. of the proper communication elimination law given
in the subsection 3.2.2.

In previous steps the nil ’s are used to construct the G statements, for matching
with the l.h.s. of the communication elimination law. Now they are no longer needed.
The procedure applies the simple laws to reduce them.

Procedure step4, shown in the next page, operates at each level of the Sn

statement, starting at the inner most one. First it removes nil ’s from statements
[Gk||P

l
k||P

r
x]. Then, it eliminates the nil ’s from the tail statements [T l

k||T
r
k], and

finally simplifies the heading part [H l
k||H

r
k]. Most of the laws used in this procedure

are the ones applied in the step2 and detailed in subsection 2.9.2 of chapter 2. Here,
they are all applied from right to left.

Some steps of procedure step4, label as nx, are the following:

Transformation n1

In this step the following transformation is applied:

{
[

Gk || nil || nil
]

=>
[

Gk

]
}

It corresponds to double application of law 5 of page 39 of chapter 2.

Transformation n4

This transformation is derived in two steps as follows:

{ [
[SGP];

[nil || nil]

]

=>

[
SGP ;
nil

]

=>
[

SGP

]
}

{S ≈ S || nil}

{S ≈ S; nil}

The steps use Law 5 and Law 1 respectively.

Transformation n8

Applying {S ≈ nil || S } , obtaining:

{ [
[nil || Hr

k];
[SGP]

]

=>
[

H l
k; SGPT

]
}

84 4. A Communication Elimination Reduction Procedure

Procedure step4 − elimination of redundant nil statements

Input: S :: [Sn] the output of procedure step3, and n from step1.

Output: S′ a bounded statement equivalent to S.

for k := 0 to n do
if The two immediate parallel statements of Gk are nil then

n1 apply

{
[
Gk || nil || nil

]
=>

[
Gk

]
}

else
if statement P l

k is nil then

n2 apply

{
[
Gk || nil || P r

k

]
=>

[
Gk || P

r
k

]
}

else
if statement P r

k is nil then

n3 apply

{
[
Gk || P

l
k || nil

]
=>

[
Gk || P

l
k

]
}

let SGP denote the resulting form, after the transformation.

if The immediate sequence successor of SGP is a [nil || nil] statement
then

n4 apply

{ [
[SGP];

[nil || nil]

]

=>
[
SGP

]
}

else
if statement T l

k is nil then

n5 apply

{ [
[SGP];

[nil || T r
k]

]

=>
[
SGP ; T r

k

]
}

else
if statement T r

k is nil then

n6 apply

{ [
[SGP];

[T l
k || nil]

]

=>
[
SGP ; T l

k

]
}

let SGPT denote the resulting form, after the transformation.

if The immediate sequence predecessor of SGPT is a [nil || nil] statement
then

n7 apply

{ [
[nil || nil];

[SGPT]

]

=>
[
SGPT

]
}

else
if statement H l

k is nil then

n8 apply

{ [
[nil || Hr

k];
[SGPT]

]

=>
[
Hr

k ; SGPT

]
}

else
if statement Hr

k is nil then

n9 apply

{ [
[H l

k || nil];
[SGPT]

]

=>
[
H l

k; SGPT

]
}

S′ :: the resulting form, after removing all nil statements.

4.2. Binary Communication Elimination 85

Computational complexity of step4

For each level of S, three simple transformations are applied at most. Then,

Cstep4 = O(n)

where n is the structural order of S.

4.2.5 Remove Sequence and Parallelism Associations

The output of step4 still contains some redundant statement associations. These
have been introduced in procedure step2 to construct the appropriate G statements.

Procedure step5 is shown in the next page. First, line a1, it reduces the associa-
tion of a sequence of contiguous substatements into non-associated substatements.
This is done applying procedure concatflat of subsection 5.4.2.8 of next chapter 5.
The sequence association has been introduced in lines t2 and t5 of procedure step2.
This was necessary to arrange the H’s and T ’s for matching with the communication
elimination law.

In PADD notation, substatements can be associated under the scope of a com-
ment (a line starting with a ‘#’), called scoped descriptions and introduced in chap-
ter 2. The sequential association removal law applied by concatflat, can be
expressed in tree-like PADD notation as follows:

VAR

S

LHS

#

S

CND

RHS

S

CND

true

true

≈

The law notation is introduced in section 5.3 of chapter 5. Here is shown only as an
example.

The procedure traverses in preorder through the internal representation, remem-
ber that the PADD notation is a ternary tree representation, searching for sequen-
tial associations and applying the concatenation flattening transformation, which
removes it, and obtaining a new bounded statement S′ equivalent to S.

86 4. A Communication Elimination Reduction Procedure

The procedure continues by reducing the parallelism associations, line a2. These
also have been introduced at line t3 of step2. Applying procedure coopflat, de-
tailed in subsection 5.4.2.5 of chapter 5, they are reduced. Usually these associations
are located within [Gk ||P

l
k || P

r
k] statements as a result of applying the communi-

cation elimination law.

Procedure step5 − elimination of redundant statement associations

Input: S the output of procedure step4.

Output: S′ a bounded statement equivalent to S.

let S′ :: S

foreach sequence association, SS, found in preorder within S′ do
a1 S′ :: concatflat(SS, S′)

foreach parallelism association, SP , found in preorder within S′ do
a2 S′ :: coopflat(SP , S′)

Observe that the substatements within SP , line a2, can be associated as coopera-
tion substatements. For instance, SP :: [S1 || · · · || Sm] where S1 :: [S′

1 || · · · || S
′
m].

At line a2 coopflat visits all inner cooperation substatements of SP , and returns
an S′ equivalent to S, where the parallelisms have been flattened.

Computational complexity of step5

Since S is the output of the communications elimination transformation, it contains
at most two sequence associations and at most one parallelism association per level,
with O(st) complexity each, as pages 135 and 130 of chapter 5 show. Then,

Cstep5 = O(n× st)

where n is the structural order of S.

4.2.6 Overall Computational Complexity

The next table 4.1 summarizes the computational complexity of each step of proce-
dure bin-comeli.

Since binary communication elimination procedure, bin-comeli, is a composi-
tion of all the above steps, the higher degree of them determines its complexity.
Then, Cbin-comeli = O(n2 + n× st)

4.3. A Communication Elimination Example 87

Procedure Complexity

step1 − determine the orders of Sl(ℓ) and Sr(m) O(n)

step2 − put top level statements in the standard form O(n× st)

step3 − proper communication elimination O(n2)

step4 − elimination of redundant nil statements O(n)

step5 − elimination of redundant statement associations O(n× st)

Table 4.1: Computation complexity of bin-comeli

4.3 A Communication Elimination Example

This section describes in detail how the communication elimination reduction is
applied to a specific statement S. All the intermediate forms of each step of the
elimination are shown, these are the ones obtained after applying either a law or a
transformation.

Given the following bounded statement S, procedure bin-comeli is applied to
eliminate the matching pair (ℓ,m):

S ::





















S0;







S1 || S2 ||








S3;

S4;

α⇒ u;

S5

























||









S6;

S7;
[[

S8;

S9

]

|| α⇐ e

]



















The inputs of procedure bin-comeli, detailed in section 4.2, are:

- A statement S, which denotes a binary parallel composition [Sl(ℓ)||Sr(m)]

- A matching communication pair p = (ℓ,m)

Substatements Sl , Sr , and the pair (ℓ , m) are shown in next figure:

S ::






















S0;







S1 || S2 ||








S3;

S4;

α⇒ u;

S5

























||









S6;

S7;
[[

S8;

S9

]

|| α⇐ e

]




















88 4. A Communication Elimination Reduction Procedure

❏ step1 - Determine the orders.

The procedure computes the structural order of statements Sl and Sr by calling
twice procedure structorder of page 70. Its execution trace is the following:

• Sl: Initially SG :: Gl
0, where Gl

0 :: α⇒ u. The while condition is satisfied, line

ℓ1 of the procedure, since the ancestor of SG,








S3;

S4;

α⇒ u;

S5








is different from S.

Next, the procedure checks the presence of immediate statements of SG. As it
has only sequence predecessors and successors, ℓ2 is skipped. At ℓ5, S3 and S4

are the sequence predecessor statements, then variable o = 1 and SG becomes
its least ancestor:

∗ SG ::








S3;

S4;

α⇒ u;

S5








In the next iteration SG has immediate parallel statements, [S1||S2], checked
at ℓ2, then the structural order is increased, o = 2, and:

∗ SG ::








S1 || S2 ||








S3;

S4;

α⇒ u;

S5















Next, line ℓ3, S0 is the immediate sequence predecessor and the new SG is:

∗ SG ::











S0;







S1 || S2 ||








S3;

S4;

α⇒ u;

S5

























Variable o does not change, and the procedure ends due to the least ancestor
of SG = S.

4.3. A Communication Elimination Example 89

• Sr: Initially SG :: Gr
0, where Gr

0 :: α ⇐ e. SG has immediate parallel state-
ments, [S8;S9], ℓ2, o = 1 and:

∗ SG ::

[[
S8;

S9

]

|| α⇐ e

]

In the last step, ℓ3:

∗ SG ::









S6;

S7;
[[

S8;

S9

]

|| α⇐ e

]









o remains unchanged. The procedure exits and o = 1.

Since kl = 2, and kr = 1, then n = 2 and the matching communication elimina-
tion law is of order 2.

❏ step2 - Construct top level statements.

After collecting the information about S, the construction of statements G, pro-
cedure of page 73, takes place as follows:

• Initially SG denotes Gl
0 :: [α⇒ u].

◦ Arranging Sl for level = 1.

∗ SG has not parallel statements, but has immediate sequence succes-
sors, then the transformation t2 is applied:

{ [
SG;
S1; . . . ;SN

]

=>

[
[SG || nil];
[S1; . . . ;SN]

] }

obtaining:

{ [

α⇒ u;

S5

]

=>

[

[α⇒ u || nil];

S5

] }

The concatenation [S1; . . . ;SN] matches S5, where N = 1. In this
case, the sequence associativity is not applied.

90 4. A Communication Elimination Reduction Procedure

∗ The resulting form is: SG ::

[

[α⇒ u || nil];

S5

]

∗ Next step applies the transformation t6:

{
[
S1; . . . ;SN ;SG

]
=>

[
[S1; . . . ;SN]; SG

]
}

to SG , obtaining:

{









S3;

S4;

[α⇒ u || nil];

S5









=>










[

S3;

S4

]

;

[α⇒ u || nil];

S5










}

The concatenation [S1; . . . ;SN] matches [S3;S4], where N = 2, and
the sequence associativity is applied.

∗ Now SG is









[

S3;

S4

]

;

[α⇒ u || nil];

S5









which corresponds to Gl
1.

∗ level is incremented by 1, level = 2.

◦ Arranging Sl for level 2.

∗ Transformation t3:

{
[
SP1 || · · · ||SPi

||SG||SPi+2 || · · · ||SPN

]
=>

[
[SG || [SP1 || · · · ||SPN

]];
nil

]

}

is applied obtaining:
{

[
S1 || S2 || SG

]
=>

[
[SG || [S1 || S2]];
nil

]}

∗ Next, transformation t6 is applied. Note that concatenation [S1; . . . ;SN]
matches S0, where N = 1, hence sequence associativity is not applied.

4.3. A Communication Elimination Example 91

∗ The resulting form, which corresponds to Gl
2, is:

SG ::
















S0;

















[

S3;

S4

]

;

[α⇒ u || nil];

S5









|| [S1 || S2]









;

nil
















∗ level is incremented by 1, level = 3, exiting from the while loop.

◦ At this point Sl′

n is a standard top statement of order 2.

• Next iteration constructs Sr′

n . Initially SG denotes Gr
0 :: [α⇐ e].

◦ Arranging Sr for level = 1:

∗ Transformation t3 is applied:

{
[
SP1 || · · · ||SPi

||SG||SPi+2 || · · · ||SPN

]
=>

[
[SG || [SP1|| · · · ||SPN

]];
nil

]

}

to

[[

S8;

S9

]

; SG

]

, obtaining:

{ [[

S8;

S9

]

|| α⇐ e

]

=>







[

α⇐ e ||

[
S8;

S9

]]

;

nil







}

∗ SG becomes







[

α⇐ e ||

[
S8;

S9

]]

;

nil







∗ Applying transformation t6, sequence association, to S6 and S7:

92 4. A Communication Elimination Reduction Procedure

{












S6;

S7;
[

α⇐ e ||

[
S8;

S9

]]

;

nil












=>












[

S6;

S7

]

;

[

α⇐ e ||

[
S8;

S9

]]

;

nil












}

∗ The resulting form is SG ::












[

S6;

S7

]

;

[

α⇐ e ||

[

S8;

S9

]]

;

nil












which corre-

sponds to Gr
1.

∗ level is incremented by 1, level = 2.

◦ Arranging Sr for level 2.

∗ Transformation t7:

{

[SG] =>





nil;
[SG || nil];
nil





}

Note that SG has neither immediate sequence successors nor prede-
cessors.
After applying t7, the following is obtained:

{












[

S6;

S7

]

;

[

α⇐ e ||

[
S8;

S9

]]

;

nil












=>



















nil;























[

S6;

S7

]

;

[

α⇐ e ||

[

S8;

S9

]]

;

nil












|| nil












;

nil



















}

∗ Obtaining SG, which corresponds to Gr
2:

4.3. A Communication Elimination Example 93



















nil;























[

S6;

S7

]

;

[

α⇐ e ||

[

S8;

S9

]]

;

nil












|| nil












;

nil



















∗ level is incremented by 1, then level = 3 and the procedure exits.

• At the end, t8, the output S′ is the following:

S′ ::



























































S0;

















[

S3;

S4

]

;

[α⇒ u || nil];

S5









|| [S1 || S2]









;

nil
















||



















nil;























[

S6;

S7

]

;

[

α⇐ e ||

[

S8;

S9

]]

;

nil












|| nil












;

nil






























































After constructing the G top statements, both statements have the same struc-
tural order.

❏ step3 - Communication elimination. The trace of the execution of step3 is the
following:

94 4. A Communication Elimination Reduction Procedure

• Step e1 of procedure step3 checks whether the communication statement de-
noted by ℓ is an input or an output. In the example, Gl

0 denotes an input,
then the cooperation commutativity law is applied:

{
[
Sl

n(ℓ) || Sr
n(m)

]
=>

[
Sr

n(m) || Sl
n(ℓ)

]
}

the resulting form S is:



























































nil;























[

S6;

S7

]

;

[

α⇐ e ||

[
S8;

S9

]]

;

nil












|| nil












;

nil



















||
















S0;

















[

S3;

S4

]

;

[α⇒ u || nil];

S5









|| [S1 || S2]









;

nil
























































Now S matches perfectly the communication elimination law of order 2.

• Next schemas show all substatements that take part in the applicability con-
ditions of the communication elimination law:

4.3. A Communication Elimination Example 95

Sl ::























nil ;





























[

S6;

S7

]

;



 α⇐ e ||

[
S8;

S9

] 

;

nil















|| nil
















;

nil























H l
0 Gl

0 P l
0 T l

0 T l
1 P l

1 Gl
1 H l

1

Sr ::




















S0 ;






















[

S3;

S4

]

;

[α⇒ u || nil];

S5











|| [S1 || S2]












;

nil




















Hr
0 Gr

0 P r
0 T r

0 T r
1 P r

1 Gr
1 Hr

1

96 4. A Communication Elimination Reduction Procedure

• Before applying the elimination, the procedure verifies the applicability con-
ditions.
The first one is e2: the pairs (P l

i , T
r
k) do not communicate, for k ∈ [0, n − 1]

and i ∈ [0, k]. Detailing the pairs:

- The pair (P l
0, T

r
0)::

(
[
S5

]
,

[

S8;

S9

])

does not communicate. Since

our example is generic, S5, S8, and S9 are not detailed, hence the above
pairs can not be evaluated.

For instance, suppose the case:

(
[
γ ⇐ a

]
,

[

γ ⇒ b;

b := b + 1

])

, where

S5 :: [γ ⇐ a], S8 :: [γ ⇒ b], and S9 :: [b := b + 1].

The synchronous channel γ establishes a communication between P l
0 and

T r
0 , in this case the applicability condition becomes false.

- (P l
0, T

r
1)::

(
[
nil

]
,

[

S8;

S9

])

. Since T r
1 is nil, the pair does not

communicate.

- (P l
1, T

r
1) :: ([nil], [nil]) does not communicate.

• Applicability condition e3: the pairs (P r
i , T l

k) do not communicate for k ∈
[0, n − 1] and i ∈ [0, k].

- (P r
0 , T l

0) :: ([nil], [nil]) does not communicate.

- (P r
0 , T l

1) :: ([nil], [nil]) does not communicate.

- (P r
1 , T l

1) :: ([nil], [S1 || S2]) does not communicate.

• Applicability condition e4: the pairs (T l
i , T

r
j) do not communicate, for i, j ∈

[0, n − 1], i 6= j. The pairs are:

- (T l
0, T

r
1):: ([nil], [nil]) does not communicate.

- (T l
1, T

r
0):: ([nil], [S5]) does not communicate.

• Communication order restriction e5: within P l
k for k ∈ [1, n − 1] and i ∈

[0, k − 1],

cw(P l
i) < cw(T r

i)
∧

cw(P r
i) < cw(T l

i)
∧

cw(Gl
i) < cw(T r

i)
∧

cw(Gr
i) < cw(T l

i)

The restrictions respect to P l
1 are:

cw(P l
0) < cw(T r

0)
∧

cw(P r
0) < cw(T l

0)
∧

cw(Gl
0) < cw(T r

0)
∧

cw(Gr
0) < cw(T l

0)

4.3. A Communication Elimination Example 97

• Communication order restriction e6: within P r
k for k ∈ [1, n − 1] and i ∈

[0, k − 1],

cw(P l
i) < cw(T r

i)
∧

cw(P r
i) < cw(T l

i)
∧

cw(Gl
i) < cw(T r

i)
∧

cw(Gr
i) < cw(T l

i)

The restrictions respect to P r
1 are:

cw(P l
0) < cw(T r

0)
∧

cw(P r
0) < cw(T l

0)
∧

cw(Gl
0) < cw(T r

0)
∧

cw(Gr
0) < cw(T l

0)

• The communication elimination law for order 2 is applied at step e7, the ob-
tained form, S′, is the following:

S′ ::




















[
nil || S0

]
;

























[[

S6;

S7

]

||

[

S3;

S4

]]

;

[

u := e ||

[

S8;

S9

]

|| nil

]

;

[
nil || S5

]













|| nil || [S1 || S2]













;

[
nil || nil

]




















❏ step4 - Elimination of redundant nil statements. Statement S′ contains some
redundant nil statements introduced in step2. These are removed as follows:

• For k = 0:

∗ Applying the reduction n3:

{
[

G0 || P
l
0 || nil

]
=>

[
G0 || P

l
0

]
}

one obtains:

{ [

u := e ||

[

S8;

S9

]

|| nil

]

=>

[

u := e ||

[

S8;

S9

]] }

98 4. A Communication Elimination Reduction Procedure

∗ SGP is the above resulting form

[

u := e ||

[

S8;

S9

]]

∗ Applying the reduction n5:

{ [
[SGP];

[nil || T r
0]

]

=>
[

SGP ; T r
0

]
}

obtaining:

{







[

u := e ||

[

S8;

S9

]]

;

[nil || S5]







=>







[

u := e ||

[

S8;

S9

]]

;

S5







}

• For k = 1:

∗ Applying the reduction n2:

{
[

G1 || nil || P r
1

]
=>

[
G1 || P

r
1

]
}

one obtains:

{

























[[

S6;

S7

]

||

[

S3;

S4

]]

;

[

u := e ||

[

S8;

S9

]]

;

S5













|| nil ||
[

S1 || S2

]













=>

























[[

S6;

S7

]

||

[

S3;

S4

]]

;

[

u := e ||

[

S8;

S9

]]

;

S5













||
[

S1 || S2

]













}

4.3. A Communication Elimination Example 99

∗ Now SGP denotes the above resulting form.

∗ Reduction n4:

{ [
[SGP];

[nil || nil]

]

=>
[

SGP

]
}

after applying it, the following is obtained:

{








































[[

S6;

S7

]

||

[

S3;

S4

]]

;

[

u := e ||

[

S8;

S9

]]

;

S5













||
[

S1 || S2

]













;

[
nil || nil

]
















=>

























[[

S6;

S7

]

||

[

S3;

S4

]]

;

[

u := e ||

[

S8;

S9

]]

;

S5













||
[

S1 || S2

]













}

∗ SGPT is assigned to the above resulting form.

∗ Applying the reduction n8:

{ [
[nil || Hr

1];
[SGPT]

]

=>
[

Hr
1 ; SGPT

]
}

one obtains:

100 4. A Communication Elimination Reduction Procedure

{































[
nil || S0

]
;













[[

S6;

S7

]

||

[

S3;

S4

]]

;

[

u := e ||

[

S8;

S9

]]

;

S5













||
[

S1 || S2

]
















;
















=>


















S0;













[[

S6;

S7

]

||

[

S3;

S4

]]

;

[

u := e ||

[

S8;

S9

]]

;

S5













||
[

S1 || S2

]


















}

• Finally S′ ::


















S0;













[[

S6;

S7

]

||

[

S3;

S4

]]

;

[

u := e ||

[

S8;

S9

]]

;

S5













||
[

S1 || S2

]


















❏ step5 - Elimination of redundant statement associations.

• Sequence association: in this case there no associations to be removed by
applying concatflat, line a1.

• Parallelism association:

∗ One parallelism association is found in S′. It is shown below within a dot
frame. The statement to be flattened is denoted by the auxiliary SP :

4.3. A Communication Elimination Example 101

SP ::

























[[

S6;

S7

]

||

[

S3;

S4

]]

;

[

u := e ||

[

S8;

S9

]]

;

S5













||
[

S1 || S2

]













This step applies reduction coopflat, line a2.

❏ final equivalence

When the communication elimination reduction ends, the following interface
equivalence holds:

S =O S′

which, substituting statements S and S′, becomes:

S ::





















S0;







S1 || S2 ||








S3;

S4;

α⇒ u;

S5

























||









S6;

S7;
[[

S8;

S9

]

|| α⇐ e

]



















=O

S′ ::


















S0;













[[

S6;

S7

]

||

[

S3;

S4

]]

;

[

u := e ||

[

S8;

S9

]]

;

S5













|| S1 || S2


















Observe that the matching communication pair, (α⇒ u, α⇐ e) within S, has been
eliminated, and in S′ only remains the assignment u := e. The communication
elimination reduction also transforms many other statements, in the following some
of them are enumerated.

102 4. A Communication Elimination Reduction Procedure

- S0 is parallel to all Sr statements of S, but it does not remain parallel to any
in S′.

- The concatenation [S3;S4] remains in parallel with [S6;S7] after the trans-
formation, but [S8;S9] is in sequence in S′.

- [S6;S7] is parallel to S5 in S but in sequence in S′.

- S1 || S2 is always in parallel to the other statements either in S or S′.

In general the substatements which were not parallel in S continue being not
parallel in S′, and some substatements which were parallel in S, now are connected
in sequence in S′.

4.4 Elimination from a k-ary Cooperation

The previous section dealt with binary communication elimination, the removal of
a matching communication pair from a selection-free BCS, of the form [Sl||Sr].

This section presents the communication elimination from a k-ary cooperation
statement, S :: [· · · || Sl(ℓ) || · · · || Sr(m) || · · ·], based on Theorem 5 of page 54.
Any k-ary cooperation statement can always be transformed into S([Sl(ℓ)||Sr(m)]),
and within the obtained binary cooperation association the communication elimina-
tion can be applied. Next procedure details the implementation.

Procedure comeli − elimination form a selection-free BCS

Input: S :: [· · · || Sl(ℓ) || · · · || Sr(m) || · · ·], a selection-free BCS, and
p = (ℓ,m) a matching communication pair.

Output: S′ a selection-free BCS equivalent to S, where p has been elimi-
nated, or a failure indication.

S′ := S
if S′ contains > 2 parallel top statements then

iℓ := Index of the top statement of S′ which contains ℓ.
im := Index of the top statement of S′ which contains m.
S′ :: bincoopasso(S′, iℓ, im)

(failure, S′) :: bin-comeli(S′, p)

Basically, it calls the communication elimination, procedure bin-comeli, after
applying the binary parallelism association transformation, bincoopasso, intro-

4.5. General Communication Elimination 103

duced in the next section 5.4 of page 127. Procedure bincoopasso obtains a co-
operation where statements Sl(ℓ) and Sr(m) have been associated according to the
indexes iℓ and im.

Computational complexity

The procedure calls bincoopasso and bin-comeli. bincoopasso depends on the
number of cooperation statements within S, in this case k. The complexity of bin-

comeli is of order n2, as shown above in page 86.

Ccomeli = O(n2 + n× st + k)

where n is the structural order of [Sl(ℓ)||Sr(m)].

4.5 General Communication Elimination

The last step is the elimination of all pairs within an input statement S. Next
procedure, gen-comeli, is the implementation of the one of page 55. It applies
iteratively procedure comeli and tries to eliminate the first matching pair, p, ob-
tained from the competing pairs found within S′. The competing pairs are formed
with communication substatements found by procedure comfront , commented in
next page. The elimination order of the pair is not important as lemma 9 of page
55 establishes. The procedure, illustrated in the next page, ends in one of three
following states:

- Success: the iteration terminates and all inner matching pairs have been
eliminated, it means that no communication left in the output program S′,
the communication front is empty.

- Deadlock: some communications remains within S′, comfront(I, S′)6= ∅,
but no more matching pairs are found.

- Failure: when an applicability condition of a communication elimination law
is not satisfied, procedure bin-comeli within comeli reports a failure and the
procedure ends after exiting the while loop.

104 4. A Communication Elimination Reduction Procedure

Procedure gen-comeli − general elimination form a selection-free BCS

Input: S :: [S1 || S2 || · · · || Sk], a selection-free BCS.

Output: S′ a selection-free BCS equivalent to S, where all matching pairs
have been eliminated, or a failure indication.

S′ := S
failure := false
I := the set of internal channels of S′

while ¬failure ∧ { S′ has a competing pair p } do
(failure, S′) :: comeli(S′, p)

if ¬failure then
if comfront(I, S′)=∅ then

terminate with success

else
terminate with deadlock

else
terminate with failure

Procedure comfront calculates the communication front traversing the state-
ment recursively, searching for internal communication substatements in its concate-
nation ordering. Therefore, its computational complexity is O(st), where st is the
number of substatements of the input statement.

Computational complexity of gen-comeli

Informally the complexity of procedure gen-comeli depends on the number of
communication matching pairs to be eliminated, p, within S, and the complexity of
comeli, page 103.

Each iteration tries to remove a matching pair formed with substatements in
comfront(I, S′). The main loop consists of p iterations, where p is the number of
pairs to be eliminated.

Cgen-comeli = O(p× (st + n2 + n× st + k)))

4.6. Conclusions 105

where,

n is the structural order of [Sl(ℓ)||Sr(m)]
k the number of parallel statements of the LCA parallelism of the com-

munication pair
st the number of statements of the input S
p the number of pairs to be eliminated from S

The upper bound for p and n can be assumed to be st, then the complexity is
O(st3).

4.6 Conclusions

The detailed steps of a procedure for the elimination of a single matching pair of
communication operations from a selection-free BC statement have been presented in
this chapter. This was compulsory since the communication elimination procedure
of chapter 3 already used the elimination of a single pair as a fundamental step.
After studying the chapter, the reader is prepared to understand the corresponding
programs, which are expressed in PADD. Actually, this was one of the motivations,
transparency, for going into that level of detail. For truth’s sake, some parts of the
PADD programs would be written according to the guidelines of this chapter, if they
had to be written again.

The bulk of the chapter is on the elimination of a pair from a binary coopera-
tion statement, procedure bin-comeli. Expressed in other words, this involves the
operations required for the application of a proper communication elimination law
to a specific pair belonging to the front of a given statement.

In summary:

(a) The numbers of nested parallelisms embedding each communication operation
of the pair (called the two orders nl and nr) are determined, the law to be
applied depends on them.

(b) The original statement is filled-in with nil substatements via application of basic
laws, in preparation for structure matching.

(c) The applicability conditions of chapter 3 are checked; if satisfied the law is
applied, otherwise return with failure occurs.

(d) Remove redundant structures embedding nil statements, a cleanup final step.

The chapter has detailed the evolution of the procedure on a simple, order 2,
example.

106 4. A Communication Elimination Reduction Procedure

For the sake of completeness, procedure gen-comeli for the elimination of pairs
from an n-ary cooperation has been detailed. Computational complexity of gen-

comeli has been evaluated along the chapter, concluding to be of polynomial com-
plexity in the maximum order of O(st3).

Chapter 5

THE INTERACTIVE PROVER TOOL

Communication elimination and distributed program sequentialization proofs, can-
not be hand constructed. A tool is needed. This chapter gives details about the
interactive prover which has been developed. Given a system model, program, the
objective is obtaining an interface equivalent program by applying only laws and
transformation procedures. The tool guarantees that the program changes as a re-
sult of these applications only. It integrates the laws described in section 2.9 of
chapter 2, and reduction procedures such as communication elimination, procedure
substitution, forward variable elimination, cooperation and concatenation permuta-
tion, etc., which are detailed in section 5.4 below and in chapter 4. All applied steps
are stored to allow browsing of the proof, at a later stage. Among the objectives
of this chapter is the provision of information required both to use and to continue
development of the prover. The following are some of the overviewed topics: Input
statement inner representation and preprocessing; representation and application of
basic laws; and the transformation procedures.

5.1 Interface Components and Overview

The prover has the following interface components:

Top-level window. The laws and transformation procedures are selected and applied
to the input statement from this window. Each application results into a proof
step.

Navigation tree window. To browse the already applied proof steps, moving from
one to another, or deleting a step.

Repository of laws window. To browse over the set of laws. Only laws from the
repository can be applied. New laws can not be introduced directly into the
tool.

108 5. The Interactive Prover Tool

Repository of transformation procedures menu. These transformations can be ap-
plied, for instance, to simplify the input statement. No new transformation
procedures can be introduced since they are embedded within the tool.

The proof steps applied by the user are stored in a file. This file is displayed
as a vertical tree on the left hand side of the screen. Each node of the navigation
tree, may be unfolded, shows the name and parameters of either the law or the
applied transformation procedure. The navigation tree is implemented for browsing
purposes. The user can move from the beginning to the end of the proof, or inspect
the program form of an intermediate proof step.

5.2 The Input Statement and its Preprocessing

The input statement describes the system or model to work with. Any valid PADD
program can be loaded into the tool, from a purely sequential one to a complex
one with parallelism and internal communications. The program must contain at
least one procedure. It needs to be syntactically correct and to have correct typing
of variables and expressions. The prover tool has been developed assuming this
syntactic correctness. The tool displays the program on the right hand side of
the screen. Internally the prover codifies the input statement in an expanded PADD
notation. This is done to simplify the structure matching involved in the application
of the laws and reductions.

The expanded notation represents the expressions within the textual nodes of the
input PADD program in tree-like expanded form. The expansion builds a new tree
where each node contains either variable and function identifiers, terminal symbols
or numbers. The expansion preserves the input tree schema. This means that
the vertical predecessor and successor of each original node is not changed. The
expansion creates only diagonal and/or horizontal subtrees.

5.2. The Input Statement and its Preprocessing 109

The main terminal symbols are:

:= assignment symbol

() function or array symbol

true | false boolean values

+ | - | * | / infix arithmetic operators

< | > | <= | => | = | ¬= infix relational operators

¬ negation operator

<> | [] input and output connections operators

∞ indefinite loop symbol

? selection symbol

|| parallelism symbol

* iteration symbol

comment symbol

: declaration separator

.. subrange operator

In general all PADD keywords are terminal symbols.

A PADD parser, implemented within the prover, analyzes the expressions of each
node of the input statement. It returns a structure where the expression is stored
in tree form.

The following are examples of nodes which are expanded:

Assignments:

Consider the following example:

...

a:= b + c

...
➯

...

:=

a

...

+

b

c

The left hand side of ‘:=’ in the expression a := b + c, variable a, is moved after
the expansion as a new diagonal node, while the right hand side is expanded as

110 5. The Interactive Prover Tool

a new horizontal one. The same criteria is applied to b + c, the LHS of ‘+’, b, is
expanded to a diagonal node and c to a horizontal one.

In the case of multiple assignments, the LHS creates a new diagonal subtree
with a vertical list of variables to be written, similarly for the RHS but inserting the
auxiliary terminal symbol ‘()’. This is shown in the following example:

...

(a, b, c):= (x, 4*3, y)

...
➯

...

:=

a

b

c

...

()

x

*

4

y

3

Procedure References:

This expansion is similar to the assignment. The procedure name, func, is moved
to the horizontal node of the procedure reference symbol, (), while the results and
parameters of the procedure are listed in sequential order constructing a new sub-
tree in the diagonal of ” := ” and () respectively. Observe the connections in the
expanded form, the connection identifier is moved to the horizontal node of the
connection operator.

...

a, []c:= func(b, <>c, d)

...
➯

...

:=

a

[] c

...

()

b

<>

d

c

func

Iterations:

The iteration symbol remains in the same node, and the loop forever symbol is
expanded to its horizontal node. The body of the iteration is transformed as the
next example shows.

5.2. The Input Statement and its Preprocessing 111

...

*

a:= b(x)

x:= x + a

...

➯
...

*

:=

a

:=

x

+

x

a

()

x

b

...

Selections:

The basic selection structure remains unchanged, only the condition is expanded as
an expression with two operands and one infix operator. Note that the arrays are
expanded as procedure references, such as reg(wd.rd) in the following example.

...

?

 wd.w = true

reg(wd.rd):= wd.res

 else

nil

...

➯
...

?

=

wd.w

true

:=

()

wd.rd

reg

wd.res

else

nil

...

Declarations:

Variable and connection declarations are also expanded. The colon symbol, :, is
treated as an infix operator.

112 5. The Interactive Prover Tool

...

VAR

a, b: integer

CON

c: integer

| |

[]c:= a b:= <>c

...

➯
...

VAR

:

a

b

integer

CON

:

c

integer

| |

:=

[] c

a :=

b

<> c

...

5.3 The Basic Laws: Representation and

Application

5.3.1 Notational Conventions

Both the law application and the transformations are applied to a certain point
within the input statement, S. This applicability point is indicated as p within S,
where p stands also for the substatement within S starting at the point. In many
cases, p corresponds to a sequence of substatements. Usually the transformation
procedures are applied only to the top leftmost substatement of p.

5.3.2 Notation for the Laws

The laws presented in chapter 2 were expressed in textual form, but within the
prover tool they are represented in tree-like PADD notation. This facilitates their
matching with program statements. For instance, the Loop Forever Unfold law from
section 2.9 of chapter 2, will illustrate the tree-like law notation:

[loop forever do B] ≈ [B; loop forever do B]

which written in tree notation looks as follows:

5.3. The Basic Laws: Representation and Application 113

VAR
B

LHS

*
B

CND
true

RHS
B

*
B

CND
true

≈

In the above tree notation, both sides of the ≈ symbol in the textual form are
represented as horizontal sub-trees. The left hand side, [loop forever do B] is
written under the scope of the keyword LHS of the tree, and the right hand side
under RHS.

The law notation introduces the concept of variables for matching. They are
located and declared under the scope of the keyword VAR. Variables are separated
by commas and must be alphanumeric identifiers. These variables are always of type
statement.

The laws have applicability conditions. In the tree notation they are located
under the scope of the keyword CND. Next subsection 5.3.3.2 will detail them. In
general the laws can be applied from left to right and vice-versa. Applying the law
from left to right, the conditions to be fulfilled are the ones located under LHS.
Similarly for RHS. If the law does not have applicability conditions, as the above
one, then conditions are true. A false in CND indicates that the law can not be
applied in that direction.

As a second example, the basic communication elimination law is presented, it
was introduced in chapter 3. The textual form is:

[H l; α⇐ e; T l] || [Hr; α⇒ u; T r] =O [H l || Hr]; u := e; [T l || T r]

and in tree notation:

114 5. The Interactive Prover Tool

VAR
, u, e, Hl, Hr, Tl, Tr

LHS
| |

Hl
[] := e
Tl

Hr
u:= <>
Tr

CND
!((Hl))
!((Hr))

RHS
| |

Hl Hr
u:= e
| |

Tl Tr
CND

false

=O

αα

α

α Blng ConnSt

α Blng ConnSt

This law can only be applied from left to right, as its right hand side condi-
tion declares. In this case, the LHS conditions, relates channel α with Hl and Hr
statements. Explicitly neither Hl nor Hr should contain any reference to channel
α to apply successfully the law. The syntax and semantics are explained below in
subsection 5.3.3.2.

5.3.3 Procedure Apply

The application of a law involves several steps. These are encapsulated into proce-
dure apply, whose algorithmic details are shown below. It applies the input law
l at a specific point of S, and obtains an equivalent program. The application is
from left to right or vice-versa depending on the parameter d. The notation of the
input statement S is the one introduced in subsection 5.2, also the output S′ is in
expanded PADD notation. The first step checks whether the statement at location
p of the input statement, written as S[p], matches the side of law l indicated by d. In
case of applicability conditions, they must be fulfilled, and then the transformation
is carried out.

5.3. The Basic Laws: Representation and Application 115

Procedure apply − apply a law

Input: S is the input statement in expanded PADD notation, p is the ap-
plicability substatement within S, l is the law name, and d is the
applicability direction of l.

Output: S′ a program equivalent to S, where l has been applied, or a failure
indication.

Structure Matching: Determine whether the side of law l matches p within S,
and outputs a list r with the matching results.

if S(p) matches l then

Verification of Conditions: Check the applicability conditions of
law l over S.

if conditions of l are satisfied then

Transformation: Proper application of law l,
S is transformed into S′.

else
terminate with failure, applicability conditions of l are not fulfilled.

else
terminate with failure, p within S and l do not match.

Next subsections will explain each step of the procedure: Structure Matching,
Verification of Conditions, and Transformation.

5.3.3.1 Structure Matching

In general, given a tree T and a pattern P , which is also a tree, P matches T , if
there exists a one-to-one mapping from the nodes of P into the homologous nodes of
T . In case of a pattern matching with variables, P can contain “wild-card” variables
(called variables for matching). Note that a variable can match an entire subtree
within T . Tree pattern matching is used in a number of programming tasks such
as mechanical theorem proving, term rewriting, or symbolic computation. Several
techniques and algorithms are described in [AC75, HO82, RR92, SZ97]. The pattern
matching is used in the simplification of tree expressions.

In this step of procedure apply, a list r is created if the structure matching
succeeds. This list contains the relation between the variables of the law l and their
matching subtrees of the input statement S.

116 5. The Interactive Prover Tool

Consider program S1,

| |
P1

*
[]out:= s0
s0:= <>c0
[]sync

P2

*
[]c0:= s1
s1:= <>c1

P3

*
[]c1:= s2
s2:= <>in
<>sync

where in and out are external channels, c0, c1 and sync are internal channels, and
s0, s1, and s2 are local variables.

As an example, the unfolding law is applied to S1 from left to right:

[loop forever do B] ≈ [B; loop forever do B]

For instance, the applicability point is the first loop forever symbol of the leftmost
parallel process of S1. The following illustration shows the result of the structure
matching procedure, both the law and S1 are in expanded notation:

applicability point

match

match

match

...

LHS

*

B

...

RHS

...

| |

P1

*

:=

[] out

:=

s0

[] sync

<> c0

s0

...

5.3. The Basic Laws: Representation and Application 117

The matching procedure traverses S1 comparing its structure with the law, which
is the pattern. The terminal symbols of the pattern, in this case * and ∞, must
match exactly, otherwise the procedure ends with failure. The third element involved
in the structure matching is the variable B. It matches anything in the diagonal of
*. In this case:

B ::





[]out := s0

s0 := <>c0

[]sync





The procedure ends without failure when both trees match.

5.3.3.2 Verification of Conditions

The applicability conditions are expressed in terms of set operations and identifiers.
Identifier sets are introduced after the set operators. The elements of these sets
are either variable or connection identifiers of the input statement S. The basic set
operations implemented are:

• Unio: Union of two sets.

• Intsc: Intersection of two sets.

• Diff: Difference of two sets.

• Blng: An element belongs to a set.

The identifier sets are detailed next:

• Basic Sets:

– OutSt(S): Set of all output connection identifiers within statement S.

– InpSt(S): Set of all input connection identifiers within S.

– VarRSt(S): Set of all result (written) variables within S.

– VarPSt(S): Set of all parameter (read) variables of S.

• Compound Sets:

– ConnSt(S): All connection identifiers of S.
ConnSt(S) = OutSt(S) ∪ InpSt(S)

– RPVSt(S): Result and parameter variable set.
RPVSt(S) = VarRSt(S) ∩ VarPSt(S)

118 5. The Interactive Prover Tool

– ResSt(S): Result variables and output connections identifier set.
ResSt(S) = VarRSt(S) ∪ OutPSt(S)

– ParSt(S): Parameter identifiers set. ParSt(S) = VarPSt(S) ∪ InpPSt(S)

– VCnSt(S): Interface identifier set. VCnSt(S) = ResSt(S) ∪ ParSt(S)

For instance the following condition:

VCnSt(S1) Intsc VCnSt(S2) = empty

states that substatements S1 and S2 share neither connection, nor variables.

The applicability conditions are part of the laws and lemmas. If the conditions
are fulfilled then the law can be applied and the program is transformed according
to it. Complex laws and lemmas, the ones that can not be expressed as a simple
tree notation, are coded as transformation procedures, which also have applicability
conditions. Graphically (see page 114) the conditions are located under the scope of
the keyword CND, at the bottom of the law schema. Each law can contain several
conditions, one below the other, in sequence. This means that they are linked
implicitly with a boolean AND operator, thus all of them must be fulfilled before
applying the law.

The full grammar of the applicability conditions is the following:

condition ::= bool-value a boolean value: true or false
| ¬ (condition) | ! (condition) negation operator
| var Blng set belongs to, a set operator
| set infix set = empty set operations

infix ::= Unio union of two sets
| Intsc intersection of two sets
| Diff difference of two sets

set ::= InpSt(var) | OutSt(var) in/out connection sets
| ConnSt(var) connection set
| VarRSt(var) | VarPSt(var) result/parameter sets
| RPVSt(var) | ParSt(var) variable sets
| ResSt(var) | VarSt(var) variable and connection sets
| VCnSt(var)

bool-value ::= true | false

var ::= alpha { alpha | digit | } a variable identifier

alpha ::= [a− zA− Z]

digit ::= [0− 9]

5.3. The Basic Laws: Representation and Application 119

Note that empty is the keyword for the empty set (∅).

This grammar is enough to express the majority of the laws. However, some
complex elimination laws, with more complex applicability conditions, are treated
separately as transformation procedures.

5.3.3.3 Example

Given a program S2:

| |

| |

a0:= <>in
[]c0:= a0
nil

b0:= s[i]
b1:= <>c0
b0:= b0*b1
[]out:= b0

...

...

and the basic communication elimination law:

VAR
c , u, e, Hl, Hr, Tl, Tr

LHS
| |

Hl
[]c := e
Tl

Hr
u:= <>
Tr

CND
!((Hl))
!((Hr))

RHS
| |

Hl Hr
u:= e
| |

Tl Tr
CND

false

=O

α

α Blng ConnSt

α Blng ConnSt

The law is applied from left to right to the inner parallelism of S2, obtaining the
following matching results:

120 5. The Interactive Prover Tool

α :: c0

u :: b1

e :: a0

Hl :: a0 := <>in

Hr :: b0 := s[i]

Tl :: nil

Tr ::

[
b0 := b0 ∗ b1
[]out := b0

]

now the applicability conditions can be evaluated. According to the law, these are:

!(α Blng ConnSt(Hl))

where ConnSt(Hl) = ConnSt(a0 := <>in) = {in},

then !(c0 Blng {in}) = true

and !(α Blng ConnSt(Hr))

where ConnSt(Hr) = ConnSt(b0 := s[i]) = ∅, the expression becomes true

Since both applicability conditions are true, the law can be applied to S2.

5.3.3.4 Transformation

This is the last step of procedure apply. It is carried out if the applicability conditions
are satisfied. The input statement is transformed by substituting the matching tree
by the schema of the other side of the law, where the variables for matching are
replaced by their corresponding trees within list r.

In the above example, the equivalences of variables u, e, Hl, Hr, T l and Tr have
been obtained . The below transformation example uses them. The final form of
S′

2, which is the result of applying the law to S2, is shown at the right.

5.3. The Basic Laws: Representation and Application 121

...
LHS

...
RHS

| |

Hl Hr
u:= e
| |

Tl Tr
CND

false

| |

a0:= <>in b0:= s[i]

b1:= a0

| |

nil b0:= b0*b1

[]out:= b0

Continuing with the example, the transformation procedure basically copies the RHS
subtree of the law, and replaces the variables for matching. Then, the obtained tree
is connected at the applicability point of S2, after cutting and removing the original
subtree. S′

2 has the form:

| |

| |

a0:= <>in b0:= s[i]
b1:= a0
| |

nil b0:= b0*b1
[]out:= b0

...

...

122 5. The Interactive Prover Tool

5.4 The Transformation Procedures

5.4.1 Introduction

This section presents the transformation procedures, also called reduction procedures
in particular cases. Their goal is the transformation of the input statement applying
only the laws and lemmas described in 2.9. These guarantee that the transformation
always corresponds to the application of a sequence of laws.

The motivation for implementing a set of transformation procedures is to go
beyond the simplicity and the limitations of procedure apply, by making the prover
a more powerful tool. Some of their advantages are the following:

- Avoiding some tedious parts of the verification, since they can be encapsulated
in transformation procedures. For example, the communication elimination
procedure, to automate some of its preliminary steps, which apply basic laws,
before proper elimination.

- Allowing the iterative application of some laws. For instance, those that carry
out simplifications or reductions, such as the simple arithmetical expression
simplification. The basic implementation would be: given a law, the transfor-
mation searches the first applicability point within the input statement and
applies it, then the procedure repeats again these two steps until no more
applicability points are found.

- Complex applicability conditions can be integrated easily in the transformation
procedures, bypassing the limitations of the grammar presented in subsection
5.3.3.2. For example, communication elimination needs to verify a huge set of
conditions before applying the elimination law as seen in chapter 4.

- Bypassing the need of introducing of an infinity of laws in some situations.
For instance, in the case of concatenation associativity, law 3 of page 38.
This law has infinite possible forms depending on the values of k, l, and n.
Since procedure apply is based on pattern matching, a repository with infinite
representations of the concatenation associativity law would be needed, this
would be neither practical nor possible. Therefore implementing the law as a
transformation procedure is the approach taken in this work.

In the last situation, laws are not applied directly. The correctness of the trans-
formation procedure guarantees that the same transformation could be obtained by
direct application to the input statement of a sequence of laws. The following sub-
sections detail the transformation procedures implemented and embedded into the
prover tool.

5.4. The Transformation Procedures 123

5.4.2 Repository of Transformation Procedures

5.4.2.1 Communication Elimination

This is an iterative procedure that removes matching pairs of communication sub-
statements from the input statement. Since it is one of the main topics of this work,
it was explained in detail in chapter 4, after introducing the concepts in chapter 3.
The elimination implies complex applicability conditions, these are coded within this
transformation procedure. However the transformation is done by direct application
of laws.

5.4.2.2 Cooperation Permutation

The cooperation permutation transformation procedure is based on law 7 of page
39:

S1|| · · · ||Sn ≈ Spm(1)|| · · · ||Spm(n)

where pm(k), for k = 1..n, denotes the k-th integer of a permutation of the list
〈1, 2, . . . , n〉.

The law has infinite possible forms, thus the user must indicate which one he
wants to apply and the applicability point within the input statement. The interface
prompts the user to enter the desired permutation, a list of numbers separated by
commas. The numbers correspond to the final position of each statement Sx within
the output cooperation composition.

The procedure validates that a parallelism symbol is at the applicability point,
and the permutation list, pm, by verifying the following conditions:

1. Numbers within the list are not repeated.

2. The length of the list must equal the number of parallel statements of the
input cooperation statement.

3. The list must contain numbers in the interval [1..n].

If the conditions are not fulfilled, the procedure warns the user to enter again the
list. This verification process is done via the prover tool interface.

The procedure, shown below, has as inputs the statement S to be transformed,
a valid permutation list from the interface, and the applicability point within S. S′

is the output, and no indication of failure is needed since a congruence is applied
and any valid permutation is allowed.

124 5. The Interactive Prover Tool

Procedure cooppermut − cooperation permutation

Input: S is the input statement in expanded PADD notation, p is the ap-
plicability point within S, and pm is the permutation list.

Output: S′ a program equivalent to S, transformed as in the above law.

S′ := S
Stemp := p within S′

n := numbercoopstatement(Stemp)
for i := 1 to n do

a(i) := getcoopstatement(Stemp, i)

Stemp := removecoopstatements(Stemp)
for i := 1 to n do

Stemp := appendcoopstatement(Stemp, a(pm(i)))

p within S′ := Stemp

After the second assignment, Stemp equals the subtree at p within S′. The top
statement of Stemp must be a cooperation composition, and its root node be a parallel
symbol. These are preconditions guaranteed by the prover interface. Several basic
cooperation procedures are applied to obtain the output equivalent program. These
are the following:

- numbercoopstatement(S): returns the number of parallel substatements
of the top cooperation composition substatement within statement S.

- getcoopstatement(S, i): returns the i-th parallel substatement of the top
cooperation substatement within S. From now on, the parallel processes are
counted from the left.

- removecoopstatements(S): deletes all the cooperation substatements from
the top cooperation substatement within S, and returns the resulting state-
ment.

- appendcoopstatement(S, t): appends the parallel substatement t at the
right end of the top cooperation substatement within S, and returns the re-
sulting one.

The transformation is applied in two steps. First, all parallel substatements of
the cooperation composition Stemp are stored into array a, and then they are removed
from the cooperation, reducing it to an empty cooperation. The last step constructs
the new cooperation by appending to the right, one by one and starting with an

5.4. The Transformation Procedures 125

empty parallel statement, the substatements according to the list, pm, entered by
the user, thus obtaining S′ with the desired permutation.

The computational complexity is O(n), since the procedure traverses at least
twice the n parallel processes of the input statement S.

5.4.2.3 Cooperation Associativity

It applies law 8 of page 39, cooperation associativity:

[S1|| · · · ||Sk|| · · · ||Sl|| · · · ||Sn] ≈ [S1|| · · · || [Sk|| · · · ||Sl] || · · · ||Sn]

The implementation is quite similar to the previous transformation procedure.
The user is prompted to enter the interval of parallel statements to be associated.
For example, the above sample law, associates Sk through Sl. Then the user should
type k-l, where k and l are integers such that 1 ≤ k < l ≤ n. The prover interface
guarantees that a valid k-l interval is passed as parameter to the procedure, and that
the applicability point indicated by the user corresponds to a parallelism symbol.
Next procedure coopasso implements law 8.

Procedure coopasso − cooperation association

Input: S is the input statement in expanded PADD notation, p is the appli-
cability point within S, and the naturals k and l, where k < l ≤ n.

Output: S′ a program equivalent to S, transformed as in the above law.

S′ := S
Stemp := p within S′

for i := k to l do
a(i− k) := getcoopstatement(Stemp, i)

for i := k to l do
Stemp := delcoopstatement(Stemp, k)

S0 := newcoopstatement()
for i := k to l do

S0 := appendcoopstatement(S0, a(i− k))

Stemp := insertcoopstatement(Stemp, S0, k)

p within S′ := Stemp

It uses three new basic cooperation procedures:

126 5. The Interactive Prover Tool

- delcoopstatement(S, i): deletes the i-th parallel substatement from the
cooperation composition S, and returns the resulting statement. As a conse-
quence, the number of parallel statements of S is decreased by one.

- newcoopstatement(): returns an empty cooperation structure, which con-
tains only a parallel symbol.

- insertcoopstatement(S, t, i): inserts the parallel statement t at the i-th
position of the top cooperation composition within S, and returns the resulting
statement.

The procedure stores the parallel substatements involved in the association k-l,
in array a, before deleting them. A new cooperation, S0, is constructed with all the
elements in a. The last step of the transformation inserts S0 into the top cooperation
statement, Stemp, at the k-th position.

The computational complexity is O(n), since the procedure iterates at most
three times through n, where n is the number of parallel processes of the input
statement S.

As an example, the following schemas illustrate the input S, and output S′, of
the procedure, and the intermediate form S0:

S ::

...
| |

...

...
S1 S2 Sk Sl Sn

S0 ::

...
| |

...

...
Sk SlSk+1 Sl−1

S′ ::

...
| |

...
| |

...

...

...

S1 S2

Sk Sl

SnSk−1

Sk+1 Sl−1

Sl+1

After the transformation, the output statement S′ satisfies:

5.4. The Transformation Procedures 127

numbercoopstatement(S′) :=
numbercoopstatement(S)− numbercoopstatement(S0) + 1

5.4.2.4 Binary Cooperation Associativity

This is a special case of the previous transformation. Usually this transformation
is applied within the communication elimination transformation procedure, comeli

of page 102, as one of its pre-processing steps, as explained in chapter 4. Here
the user is prompted to enter two integers: k, l. The interface validates that the
applicability point is at a parallelism symbol, and the integers satisfy the inequality
1 ≤ k < l ≤ n, otherwise an error message is prompted.

Basically it applies two laws: first cooperation commutativity

[S1|| · · · ||Sk|| · · · ||Sl|| · · · ||Sn] ≈
[S1|| · · · ||Sk−1||Sk||Sl||Sk+1|| · · · ||Sl−1||Sl+1|| · · · ||Sn]

and then cooperation associativity

[S1|| · · · ||Sk−1||Sk||Sl||Sk+1|| · · · ||Sl−1||Sl+1|| · · · ||Sn]
≈

[S1|| · · · ||Sk−1|| [Sk||Sl] ||Sk+1|| · · · || · · · ||Sn]

The procedure is the following:

Procedure bincoopasso − binary cooperation association

Input: S is the input statement in expanded PADD notation, p is the appli-
cability point within S, and the integers k and l, where 1 ≤ k < l ≤ n.

Output: S′ a program equivalent to S, transformed as in the above laws.

n := numbercoopstatement(p within S)

pm := 〈1, . . . , k − 1, k, l, k + 1, . . . , l − 1, l + 1, . . . , n〉

S′ :=cooppermut(S, p, pm)

S′ :=coopasso(S′, p, k, k + 1)

The procedure calculates the desired cooperation permutation list, pm, according
to parameters k and l, before calling transformation cooppermut. Note that the
parallel process l is moved to position k + 1. Finally coopasso associates the two
parallel processes labeled as k and l.

128 5. The Interactive Prover Tool

The following are the input, intermediate and output forms of procedure bin-

coopasso:

S ::

...
| |

...

...
S1 S2 Sk Sl Sn

After ending cooppermut one obtains:

S′ ::

...
| |

...

...
S1 S2 Sk Sl SnSk−1 Sk+1 Sl−1 Sl+1

The output form is the following, after coopasso:

S′ ::

...
| |

...
| |

...

...

S1 S2

Sk Sl

SnSk−1 Sk+1

The procedure calls cooppermut and coopasso. Since their complexities are
O(n), the computational complexity of bincoopasso is O(n).

5.4.2.5 Cooperation Flattening

This transformation removes the cooperation associations found within a coopera-
tion statement by applying from right to left law 8 and iteratively. In general, the
statement can contain nested cooperation associations. The user must indicate the
applicability point within the input statement. The interface validates that the point
is at a parallel symbol, otherwise it prompts an error message.

The procedure searches, within the input cooperation statement, for parallel
subprocesses to be flattened. The goal is to obtain a statement without cooperation

5.4. The Transformation Procedures 129

associations.

As an example, the following program contains several cooperation associations:

...
| |

...
| |

| | | |
...

...

...

S1 S2

Si Sj Sk Sr Su

Sn

The procedure transforms the cooperation statement as follows:

...
| |

...

...
S1 S2 Si Sj Sk Sr Su Sn

Next example illustrates a situation where the flattening can not take place.

...
| |

...
| |

...

...

S1 S2

Si Sj

Sn

St

It has an inner nested parallelism concatenated with another statement.

The procedure, shown below, starts by identifying the parallel substatements
of the top cooperation statement of Stemp that can be flattened. This is carried

130 5. The Interactive Prover Tool

out with a traversing of the parallelism tree structure by procedure getcoop-

statementtoflat, which preserves any inner parallelism in concatenation with
some other statements. The obtained substatements are stored into array a. The
last step constructs the new cooperation by appending, one by one, the substate-
ments of a.

For instance, if the last example is used as the input of the procedure, the sub-
statements returned from getcoopstatementtoflat are the following:

{

S1 , S2 , ... ,

| |

Si Sj

St

, ... , Sn

}

Procedure coopflat − cooperation flattening

Input: S is the input statement in expanded PADD notation, and p is the
applicability point within S.

Output: S′ a program equivalent to S, but flattened.

S′ := S
Stemp := p within S′

a := getcoopstatementtoflat(Stemp)
Stemp := removecoopstatements(Stemp)
for i := 1 to length(a) do

Stemp := appendcoopstatement(Stemp, a(i))

p within S′ := Stemp

The procedure calls getcoopstatementtoflat which traverses Stemp, then
its computational complexity depends on the number of statements, st, of the input
statement, and the computational complexity of coopflat is O(st).

5.4.2.6 Concatenation Permutation

The transformation procedure applies law 4:

S1; · · · ; Sn ≈ Spm(1); · · · ; Spm(n)

5.4. The Transformation Procedures 131

where pm(k), for k = 1..n, denotes the k-th integer of a permutation of the list
〈1, 2, . . . , n〉.

The transformation has applicability conditions: the statements S1 , . . . , Sn

must be disjoint and have no communication statements.

The user indicates the desired permutation by entering a list of numbers sepa-
rated by commas. The permutation list must satisfy the following:

1. Numbers within the list are not repeated.

2. The length of the list must equal the number of sequential statements of the
input concatenation statement.

3. The list must contain numbers in the interval [1..n].

The interface checks that the applicability point indicated by the user is at a
concatenation with at least n substatements after it in the concatenation, otherwise
it prompts an error message.

The procedure is the following:

Procedure concatpermut − concatenation permutation

Input: S is the input statement in expanded PADD notation, p is the appli-
cability point within S, pm is the permutation list, and n the number
of concatenation statements involved in the permutation.

Output: S′ a program equivalent to S, but transformed as in the above law,
or a failure indication.

S′ := S
Stemp := p within S′

for i := 1 to n do
a(i) := getconcatstatement(Stemp, i)

if disjointnocomm(a, n) then
for i := 1 to n do

Stemp := replaceconcatstatement(Stemp, a(pm(i)), i)

else
exit with failure, statements within a are not disjoint and/or communi-
cate

p within S′ := Stemp

132 5. The Interactive Prover Tool

Some new concatenation procedures are used. These are the following:

- getconcatstatement(S, i): returns the i-th concatenated substatement of
S.

- disjointnocomm(a, n): returns true if the substatements a(1), a(2), . . . , a(n)
are disjoint and they do not contain any communication statement.

• They are disjoint if V arPSt(a(i)) ∩ V arRSt(a(j)) = ∅, and V arRSt(a(i))
∩ V arRSt(a(j)) = ∅, for i, j := 1..n and i 6= j,

V arPSt is the set of all read (parameter) variables within a(i), and
V arRSt is the set of all written (result) variables within a(j).

• They do not have communication statements if there exists at most one
a(i) such that ConnSt(a(i)) 6= ∅, for 1 ≤ i ≤ n.

ConnSt is the set of all communication statements within a(i).

- replaceconcatstatement(S, t, i): the i-th concatenation substatement of
S is replaced by substatement t, and returns the resulting statement.

The procedure stores the concatenation substatements into array a, and proce-
dure disjointnocomm checks whether they are disjoint and have no communication
statements. If the applicability conditions are satisfied then the concatenation sub-
statements are replaced according to the permutation list pm.

Procedure disjointnocomm traverses n times the n sequential processes of the
input statement S, then computational complexity of concatpermut is O(n2).

5.4.2.7 Concatenation Association

The transformation procedure applies law 3 from left to right:

S1; · · · ;Sk; · · · ;Sl; · · · ;Sn ≈ S1; · · · ; [Sk; · · · ;Sl]; · · · ;Sn

where k and l are integers such that 1 ≤ k < l ≤ n.

The interface prompts the user to enter the two integers k-l which must satisfy
the above inequality. The applicability point, indicated by the user, must be a
concatenation with at least l substatements after it in the concatenation, otherwise
it prompts an error message.

The procedure associates the sequential substatements by leaving them under
the scope of a PADD comment, see subsection 2.1.4.

5.4. The Transformation Procedures 133

The implementation is as follows:

Procedure concatasso − concatenation association

Input: S is the input statement in expanded PADD notation, p is the appli-
cability point within S, and the naturals k and l, where k < l ≤ n.

Output: S′ a program equivalent to S, transformed as in the above law.

S′ := S
Stemp := p within S′

for i := k to l do
a(i) := getconcatstatement(Stemp, i)

for i := k to l do
Stemp := delconcatstatement(Stemp, k)

S0 := newconcatstatement()
for i := k to l do

S0 := appendconcatstatement(S0, a(i− k))

Stemp := insertcommentstatement(Stemp, k)
Stemp := replacediagonal(Stemp, S0, k)
p within S′ := Stemp

Some new concatenation procedures are needed:

- delconcatstatement(S, i): deletes the i-th concatenated substatement of
S, and returns the resulting statement. As a consequence, the number of
sequential statements is decreased by one.

- newconcatstatement(): returns an empty concatenation structure.

- appendconcatstatement(S, t): appends the substatement t at the end of
the concatenation statement S, and returns the resulting one.

- insertcommentstatement(S, i): inserts a comment, a node with the symbol
#, at the i-th concatenated substatement of S, and returns the resulting one.

- replacediagonal(S, t, i): changes the diagonal subtree of the i-th substate-
ment of S to substatement t, and returns the resulting one.

The substatements to be associated, k and l, are stored in array a before deleting
them. A new concatenation, S0, is constructed with all the elements in a. S0 is

134 5. The Interactive Prover Tool

connected as the diagonal subtree of the comment node, which is inserted at k-th
position by insertcommentstatement.

As an example, the following schemas illustrate the input, S, and output, S′, of
the procedure, and the intermediate form S0; where k = 4 and l = 8:

S ::

...
Sn

S1

S2

S3

S4

S5

S0 ::

S4

S5

S6

S7

S8

S′ ::

#

...
Sn

S1

S2

S3

S4

S5

S6

S7

S8

S9

In S′, observe that concatenation S0 is placed at the diagonal of the inserted
comment symbol.

The computational complexity is O(n), since the procedure iterates at most
three times through n, where n is the number of sequential processes of the input
statement S.

5.4.2.8 Concatenation Flattening

This transformation removes the concatenation associations found within the input
sequential statement with associations by applying iteratively the following special
case of law 3:

[S1;S2;S3; · · ·]; · · · ;Sn ≈ S1;S2;S3; · · · ;Sn

with k = 1 and l is such that 1 < l ≤ n.

The iterative procedure that removes comment associations is the following:

5.4. The Transformation Procedures 135

Procedure concatflat − iterative concatenation flattening

Input: S is the input statement in expanded PADD notation.

Output: S′ a program equivalent to S, transformed as in the above law.

S′ := S
foreach concatenation association within S′ do

p := points at the comment node found
Stemp := p within S′

apply the law

{

[S1;S2;S3; · · ·]; · · · ;Sn ≈ S1;S2;S3; · · · ;Sn

}

to Stemp

p within S′ := Stemp

The procedure, shown above, traverses the input statement searching for com-
ment nodes. For each one found, an applicability point p is obtained, and the above
law is applied.

As an example, the following shows the input S with just one concatenation
association, the intermediate form obtained, Stemp, and the output S′:

S ::

#

...
Sn

S1

S2

S3

S4

S5

S6

S7

S8

S9

Stemp ::

#

...
Sn

S4

S5

S6

S7

S8

S9

S′ ::

...
Sn

S1

S2

S3

S4

S5

S6

S7

S8

S9

The procedure traverses all the substatements of the input statement, then the
computational complexity depends on the number of statements, O(st).

136 5. The Interactive Prover Tool

5.4.2.9 Cooperation and Concatenation

The transformation procedure applies law 11 of page 39:

S1|| · · · ||Sn =O Spm(1); · · · ;Spm(n)

where pm(k), for k = 1..n, denotes the k-th integer of a permutation of the list
〈1, 2, . . . , n〉. As applicability conditions, statements Sk must be disjoint and have
no communication statements.

The procedure is the following:

Procedure coopconcat − cooperation and concatenation

Input: S is the input statement in expanded PADD notation, p is the appli-
cability point within S, pm is the permutation list, and n the number
of statements involved in the permutation.

Output: S′ a program equivalent to S, transformed as in the above lemma,
or a failure indication.

S′ := S
Stemp := p within S′

for i := 1 to n do
a(i) := getconcatstatement(Stemp, i)

if checkcoopconcatappcond(a, n) then
Stemp := removecooperation(Stemp)
S0 := newconcatstatement()
for i := 1 to n do

S0 := appendconcatstatement(S0, a(pm(i)))

Stemp := insertconcatstatement(Stemp, S0), 1)

else
exit with failure, statements within array a are not disjoint and/or com-
municate

p within S′ := Stemp

The interface prompts the user to enter the permutation, a list of numbers sepa-
rated by commas. The numbers correspond to the final position of each statement
Sx in the concatenation order of the output statement. The procedure validates
that a parallelism symbol is at the applicability point, and the permutation list,
PermutList, by verifying the following conditions:

5.4. The Transformation Procedures 137

1. Numbers within the list are not repeated.

2. The length of the list must equal the number of parallel statements of the
input cooperation statement.

3. The list must contain numbers in the interval [1..n].

If they are not fulfilled, the interface warns the user to enter again the list.

The transformation is similar to the other permutations presented in this section.
The procedure extracts the parallel processes from the top cooperation of Stemp.
checkcoopconcatappcond procedure, detailed below, verifies whether they sa-
tisfy the applicability conditions. Finally, after removing the cooperation statement,
procedure removecooperation, the procedure constructs the new concatenation
S0, which is inserted at the top of Stemp.

Some new functions are used in the above procedure coopconcat:

- checkcoopconcatappcond(a, n): checks whether the n substatements of a
are disjoint and have no communication statements.

• They are disjoint if V arPSt(a(i))∩V arRSt(a(j)) = ∅, and V arRSt(a(i))
∩V arRSt(a(j)) = ∅, for i, j := 1..n and i 6= j,

where V arPSt is the set of all read variables within a(i), and V arRSt is
the set of all written variables within a(j).

• They do not have communication statements if there exists at most one
a(i) such that ConnSt(a(i)) 6= ∅, for 1 ≤ i ≤ n.

ConnSt is the set of all communication statements within its argument.

- removecooperation(S): deletes the top cooperation statement within S,
and returns the resulting statement.

- insertconcatstatement(S, t, i): inserts the sequential substatement t at
the i-th position, in the concatenation order, of S, and returns the resulting
statement.

The computational complexity is O(n2). This upper bound is determined by
procedure checkcoopconcatappcond, which checks the applicability conditions
of the TP.

138 5. The Interactive Prover Tool

5.4.2.10 Elimination of Redundant Variables

The variable elimination procedure applies law 13 of page 40,

[v := e;S1(v);S2] =O [S1(e);S2]

law 17 of page 41,

[(v̄) := (ē);S1(v̄);S2] =O [S1(ē);S2]

and law 18 of page 41,

[(v.v1, ..., v.vi, ..., v.vj , ..., v.vn) := (e1, ..., ei, ..., ej , ..., en); S1(v.vi, ..., v.vj); S2]
=O

[(v.v1, ..., v.vn) := (e1, ..., en); S1(ei, ..., ej); S2]

where ē is a list of n expressions, and v̄ is a list of n variables.

Procedure varelim tries to remove the redundant variable assignment, indicated
by the user, from the input statement S by applying one of the above lemmas. The
applicability conditions detailed in the lemmas are checked and must be fulfilled
before removing the variable assignment. S2 is tried to be identified, for certain
simple special forms. When this identification does not succeed, the procedure
exits with failure. More general forms for S2 will be included in future versions of
the procedure. Once S2 has been identified, S1 is established. In the last step of
procedure varelim, the read variables within S1 are replaced by their corresponding
expressions, as the above lemmas establish.

5.5 Conclusion

The design of an interactive prover to help in the construction of sequentializa-
tion proofs has been treated in this chapter. Being developed for mechanizing and
partially automating these equivalence proofs, it works from an input program or
statement which is transformed guaranteeing that only laws and transformation
procedures are applied.

Having in mind a final goal form, the user has to guide the prover, via commands,
in order to obtain the goal. An interface command selects a law or a transforma-
tion procedure, from two corresponding repositories, for application. In general,
a command specifies the application point within the current program, or state-
ment, which is the result of a sequence of commands applied to the input and to its
transformation successors up to the present state.

5.5. Conclusion 139

Any basic law transformation is carried out by the apply procedure. This checks
the applicability conditions of the law and, when they are satisfied, performs struc-
ture matching at a specified application point followed by the statement transforma-
tion. The substitution of procedure references by their bodies is another elementary
transformation at the same basic level as apply.

At a second complexity level, the prover has transformation procedures, TPs,
carrying out simple transformations such as parallelism permutation and flattening;
concatenation permutation, association, and flattening; elimination of redundant
assignments and variables, etc. A transformation procedure guarantees that the
output or resulting program can be obtained from its input statement by a sequence
of law applications, as reductions. In most of the cases the transformation is done
via a sequence of apply invocations.

More complex transformation procedures form a third layer. For instance for the
iterative application of TPs of the second layer. Also, more complex TPs such as
comeli for the automatic elimination of communication pairs, which was covered
in chapter 4, belong to the third layer.

The chapter has gone into much detail about the internal data structures used to
represent trees, for structure matching, representation of laws, etc. These have been
inspired by the dimensional flowcharting trees used in PADD; mostly for historical
reasons. The input statement is transformed into internal structure before any
transformation takes place. All this detail will be useful for those that may further
develop the tool.

The prover has an expandable design, admitting more TPs, being defined in
terms of existing ones, apply, and by other means. Further work on the automatic
construction of more parts of DPS proofs, such as TPs combining parallelism to
concatenation transformations with redundant variable elimination should be carried
out. This is outlined as future work in chapter 7.

140 5. The Interactive Prover Tool

Chapter 6

CORRECTNESS PROOF OF A

PIPELINED PROCESSOR

ARCHITECTURE

An equivalence proof of a pipelined processor model is presented. The first sections
detail the proposed architecture that performs only register to register instructions.
However, the complexity of a level of forwarding circuits is included. The model,
Pipeline2, is hierarchical with two levels of parallelism.

Last section describes with great detail the proof, which establishes interface
equivalence between the pipeline processor model, with parallelism and inner com-
munications, Pipeline2, and a simple purely sequential model, a Von Neumann
processor loop. The set of registers is the interface set O of the equivalence. Thus
for a given program and initial state of the registers both models give the same
register values as a result. This is very intuitive: a quite complex parallel archi-
tecture is formally equivalent to a simple typical processor loop. This is precisely
the function it should perform. Furthermore, due to the total elimination of inner
communications, deadlock freeness is established.

6.1 Introduction to the DLX Processor

A fundamental pipeline architecture is the DLX processor [HP90]. The DLX is
a relatively simple RISC-type architecture. It features a minimal instruction set,
relatively few addressing modes, and a processor organization designed to simplify
implementation. The pipelined processor hardware is organized in parallel stages.
These stages are the Instruction Fetch (IF), Instruction Decode (ID), Execute (EX),
Memory Access (MEM), and Write Back (WB). Any instruction read from the
memory is executed in steps as it traverses the stages of the pipeline, also data flows
between the parallel stages.

142 6. Correctness Proof of a Pipelined Processor Architecture

The DLX is a 32-bit word-oriented system. The CPU contains a 32-bit ALU and
32 general registers organized in a register file. The registers are part of the Decode
stage. There are four pipeline registers (IF/ID, ID/EX, EX/MEM, MEM/WB),
between every two consecutive stages to temporarily store the intermediate results
and/or information to be used in later stages. The DLX processor executes each
instruction in a number of physical steps, the pipeline stages. Because the pipe
stages are hooked together, all the stages must be ready to proceed at the same
time. The duration of a pipeline stage corresponds to one machine clock period.

The following diagram, figure 6.1, illustrates the basis of the pipeline architec-
ture. It is a very simple and regular design. Latches are the pipeline registers. It
is easy to observe how the instruction flows from the Fetch stage to the Write Back
stage.

Instruction Flow

In
st

ru
ct

io
n

F
et

ch

L
at

ch

D
ec

o
d
e/

R
eg

is
te

r
R
ea

d

L
at

ch

E
xe

cu
te

L
at

ch

M
em

or
y

L
at

ch

W
ri
te

B
ac

k
Figure 6.1: DLX stages and pipeline registers

DLX 32-bit instructions come in three formats: R-type, I-type, and J-type. All
instruction formats must specify an opcode; however, the other information in the
instruction varies by format. R-type (register) instructions specify three registers in
the instruction - two source registers and one destination register. I-type (immedi-
ate) instructions specify one source register, one destination register, and a 16-bit
immediate value that is sign-extended to 32 bits before it is used. J-type (jump) ins-
tructions consist of only the opcode and a 26 bit operand, which is used to calculate
the destination address.

The three instruction formats are summarized in this table:

Format Fields Comments
6 bits 5 bits 5 bits 5 bits 11 bits

R-type opcode rs1 rs2 rd function Arithmetic instruction format
I-type opcode rs1 rd immediate Transfer, branch, imm, format
J-type opcode offset Jump instruction format

There are several types of hazards that can stall the pipeline architecture. For
example, in the following two successive instructions:

6.2. Simplified DLX-like Model 143

LW R1, A (R1 ← A)
ADD R3, R1, R2 (R3 ← R1 + R2)

The ADD instruction has to wait, in the ID stage, for the data of the LW instruction
to be written into R1. This is known as a read-after-write (RAW) dependency. In
order to minimize this wait, special data forwarding buses are introduced in the
architecture. Data is forwarded whenever it is available back to EX to minimize
the stalls. In the above example, data would be available when LW terminates the
MEM stage.

6.2 Simplified DLX-like Model

6.2.1 Global View

The proof is applied to a simplified DLX-like pipeline processor architecture, which is
a software model, not a hardware design. It features only an ALU register-register
instruction set. Tables 6.1 and 6.2 give a summary of the R-Type instructions.
As commented above, they are register-register instructions, either arithmetical or
logical. They are executed by the ALU.

Instruction Format Description

add ADD RD, RS1, RS2 Add the contents of registers RS1 and RS2,
and the result is placed in register RD

subtract SUB RD, RS1, RS2 Subtract the contents of register RS2 from
RS1, and the result is placed in register RD

add unsigned ADDU RD, RS1, RS2 Like ADD, but assumes unsigned values
subtract unsigned SUBU RD, RS1, RS2 Like SUB, but assumes unsigned values

Table 6.1: Pipeline2 R-Type instructions. Arithmetical operations

144 6. Correctness Proof of a Pipelined Processor Architecture

Instruction Format Description

and AND RD, RS1, RS2 Performs a logical AND operation
or OR RD, RS1, RS2 Performs a logical OR operation
shift left logical SLL RD, RS1, RS2 The contents of register RS1 is shifted

left (and zero-filled) by the number
found in register RS2, and the result is
placed in register RD

shift right logical SRL RD, RS1, RS2 Like SLL, but performs a right logical
shift

set less than SLT RD, RS1, RS2 if (RS1 < RS2)

RD ← 1 else

RD ← 0

set less than unsigned SLTU RD, RS1, RS2 Like SLL, but assumes unsigned values

Table 6.2: Pipeline2 R-Type instructions. Logical operations

IF / ID EX / WBID / EX

Read
Address

Instruction
Memory

1

Add

Registers ALU

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
Data 1

Read
Data 2

PC

Forwarding
Unit

R
e
g
W

ri
te

MUX

MUX

rs1

rs2

rd

func

a

b

rs1

rs2

func

rd

w

res

rd

wControl

fdRD / cdxRD

fdFUNC / cdxFUNC

fdRS2

cdxRS2

fdRS1

cdxRS1

cdxA

cdxB

cdxW

cfd

dxW cxwW

dxA

dxB

caluB

wxRESb

wxRESa

selMuxB selMuxA

caluA

dxFUNC

cxwRD

cxwRES

cwdW

wxRD

cwdRES

cwdRD

rd

res

}
cwx

wx

dxRS2

dxRS1

Figure 6.2: Pipeline2 block diagram

6.2. Simplified DLX-like Model 145

The model does not have the Memory Access (MEM) stage, it only performs
register-register operations. The pipeline model is a parallel composition of the
following four stages:

Pipeline2 ::
[
IF || IDpar || EXpar || WBunh

]

Figure 6.2 shows a block diagram of the DLX-like architecture.

This design is a hierarchical model which has two levels of parallelism. The
first level is the four pipeline stages, and the second one corresponds to the inter-
mediate stages, IDpar and EXpar, these are also implemented with inner parallel
composition. The suffix par indicates a design with inner parallelism.

The architecture assumes synchronous communication channels between the
stages. Each stage is implemented as a procedure. Next subsection will explain
in detail each procedure of the Pipeline2 model.

Observe that in the Pipeline2 model the opcode field, used to distinguish bet-
ween instruction types, has been eliminated because in all R-Type instructions it
is equal to 0. The Instruction Decode stage always manipulates the same instruc-
tion format, and also the same fields: rs1 (source register 1), rs2 (source register
2), rd (destination register), func (function). The function field encodes the ALU
operation.

6.2.2 Forwarding Unit

The DLX-like model provides a bypassing logic hardware. The stages ID, EX, and
WB are involved in this mechanism.

The forwarding unit will solve the Read-after-Write (RAW) dependencies. These
take place when an instruction reads a register value before it has been updated by
the previous instruction.

As an example, consider the code:

ADD R1, R2, R3 (R1 ← R2 + R3)
SUB R5, R1, R6 (R5 ← R1 −R6)

where R1 causes a RAW dependency. The SUB instruction tries to read R1 in the
ID stage before it has been written by the ADD instruction. Without forwarding,
the DLX pipeline would have to wait until the WB stage has written the value back.

Figure 6.3 shows the forwarding bypass paths. The forwarding unit checks the
dependencies between the source register indexes of the current instruction and the
destination register index of the previous instruction, and it calculates the multi-
plexor selector controls to input to the ALU the appropriates values. This is done

146 6. Correctness Proof of a Pipelined Processor Architecture

EX / WBID / EX

ALU

Forwarding
Unit

MUX

MUX

a

b

rs1

rs2

func

rd

w

res

rd

w dxW cxwW

dxA

dxB

wxRESb

wxRESa

selMuxB selMuxA

caluA

dxFUNC

cxwRD

cxwRES

cwdW

wxRD

cwdRES

cwdRD

rd

res

}
cwx

wx

dxRS2

dxRS1

caluB

Figure 6.3: Forwarding mechanism

in this stage because the needed value is in the WB stage and instructions do not
need their operand values until the beginning of their EX stage.

6.2.3 The Pipeline2 Model

Each stage is modeled as a procedure. Procedures use some common data types.
These data types and the procedures are given next.

Instruction Flow

I
F

I
F

/I
D

I
D

p
a
r

I
D

/E
X

E
X

p
a
r

E
X

/W
B

W
B

u
n
h

fd dx xw

Figure 6.4: Pipeline2 stages

6.2. Simplified DLX-like Model 147

Pipelining the datapath requires that values passed from one pipe stage to the
next must be placed in the pipeline registers. These are fd, dx, and xw.

6.2.3.1 Data Types

This subsection gives the data types to be used in our model. These are the following:

Typ IR: (rs1: bit5, rs2: bit5, rd: bit5, func: bit11)
Typ DX: (w:bool, a:int32, b:int32, rs1:bit5, rs2:bit5, func:bit11, rd:bit5)
Typ XW : (w:bool, res:int32, rd:bit5)
Typ WX: (res:int32, rd:bit5)
Typ XX: (w:bool, rd:bit5)

where bit5 denotes five bits data type, bit11 eleven bits, and int32 a 32 bit integer.

6.2.3.2 Procedure IF

Fetches the instruction from memory, into the instr variable of type Type IR. It
is sent to the IF/ID (fd) register, of ID stage, via the cfd channel of type Typ IR.
The SPL form of this procedure is the following:

cfd ::= IF (mem) ::







loop forever do




instr := mem(pc);
pc := pc + 1;
cfd⇐ instr











Next table shows the variables of procedure IF , and their sizes.

Var Bits Var Fields Bits
pc 32 instr rs1 5

rs2 5
rd 5
func 11

32 26

Table 6.3: Local variables of procedure IF

The IF stage has 32 + 26 = 58 bits.

148 6. Correctness Proof of a Pipelined Processor Architecture

6.2.3.3 Procedure IDpar

This is the parallel form of the ID stage, as illustrated in figure 6.5. It accesses the
register file, reg(·), to read the registers. The values are passed to the EX stage via
cdxW , cdxA, cdxB, cdxRS1, cdxRS2, cdxFUNC, and cdxRD channels. Also the
ALU result at the WB stage is written into the destination register at the ID stage.
The next instruction is received via the cfd channel.

IF / ID EX / WBID / EX

Read
Address

Instruction
Memory

1

Add

Registers ALU

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
Data 1

Read
Data 2

PC

Forwarding
Unit

R
e
g
W

ri
te

MUX

MUX

rs1

rs2

rd

func

a

b

rs1

rs2

func

rd

w

res

rd

wControl

fdRD / cdxRD

fdFUNC / cdxFUNC

fdRS2

cdxRS2

fdRS1

cdxRS1

cdxA

cdxB

cdxW

cfd

dxW cxwW

dxA

dxB

caluB

wxRESb

wxRESa

selMuxB selMuxA

caluA

dxFUNC

cxwRD

cxwRES

cwdW

wxRD

cwdRES

cwdRD

rd

res

}
cwx

wx

dxRS2

dxRS1

IF / ID ID / EX

Registers

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
Data 1

Read
Data 2

R
e
g
W

ri
te

rs1

rs2

rd

func

Control

fdRD / cdxRD

fdFUNC / cdxFUNC

fdRS2

cdxRS2

fdRS1

cdxRS1

cdxA

cdxB

cdxW

Figure 6.5: IDpar stage block diagram

In our model this stage is implemented in procedure IDpar shown below. The
register file, reg, contains 32 registers of 32 bits. It is also a global variable of
Pipeline2, it is not a local variable of procedure IDpar.

6.2. Simplified DLX-like Model 149

(reg, cdxW, cdxA, cdxB, cdxRS1, cdxRS2, cdxFUNC, cdxRD) ::=

IDpar (reg, cfd, cwdW, cwdRES, cwdRD) ::






































































loop forever do (IF/ID (fd) register)








cfd ⇒ fd;
fdRS1 ⇐ fd.rs1;
fdRS2 ⇐ fd.rs2;
fdRD ⇐ fd.rd;
fdFUNC ⇐ fd.func



















|| 





































loop forever do (Registers)




































cwdW ⇒ wd.w;
cwdRES ⇒ wd.res;
cwdRD ⇒ wd.rd;
control ⇒ w;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(w, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
fdRS1 ⇒ ir.rs1;
fdRS2 ⇒ ir.rs2;
fdRD ⇒ ir.rd;
fdFUNC ⇒ ir.func;
cdxW ⇐ xdx.w;
cdxA ⇐ xdx.a;
cdxB ⇐ xdx.b;
cdxRS1 ⇐ xdx.rs1;
cdxRS2 ⇐ xdx.rs2;
cdxFUNC ⇐ xdx.func;
cdxRD ⇐ xdx.rd











































































|| 



loop forever do (Control)
[
c := true;
control ⇐ c

]
































































The local variables and their sizes are shown in the following table:

Registers

Var Fields Bits Var Fields Bits Var Fields Bits
wd w 1 ir rs1 5 xdx w 1

res 32 rs2 5 a 32
rd 5 rd 5 b 32

38 func 11 rs1 5
26 rs2 5

func 11
rd 5

91

150 6. Correctness Proof of a Pipelined Processor Architecture

fd register Control

Var Fields Bits Var Bits
fd rs1 5 c 1

rs2 5 1
rd 5
func 11

26

Table 6.4: Local variables of procedure IDpar

The ID stage has 26 + 38 + 26 + 91 + 1 = 182 bits.

6.2.3.4 Procedure EXpar

This is the parallel form of the EX stage, figure 6.6. The new instruction data is
received via cdxA and cdxB channels. The forwarding data comes from the WB
stage through the auxiliary wx register. Register dependencies are checked in the
Forwarding Unit, and sent to the ALU from the Mux selectors. The ALU performs

IF / ID EX / WBID / EX

Read
Address

Instruction
Memory

1

Add

Registers ALU

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
Data 1

Read
Data 2

PC

Forwarding
Unit

R
e
g
W

ri
te

MUX

MUX

rs1

rs2

rd

func

a

b

rs1

rs2

func

rd

w

res

rd

wControl

fdRD / cdxRD

fdFUNC / cdxFUNC

fdRS2

cdxRS2

fdRS1

cdxRS1

cdxA

cdxB

cdxW

cfd

dxW cxwW

dxA

dxB

caluB

wxRESb

wxRESa

selMuxB selMuxA

caluA

dxFUNC

cxwRD

cxwRES

cwdW

wxRD

cwdRES

cwdRD

rd

res

}
cwx

wx

dxRS2

dxRS1

EX / WBID / EX

ALU

Forwarding
Unit

MUX

MUX

a

b

rs1

rs2

func

rd

w

cdxRS1

dxW cxwW

dxA

dxB

caluB

wxRESb

wxRESa

selMuxB selMuxA

caluA

dxFUNC

cxwRD

cxwRES

cwdW

wxRD

rd

res

wx

dxRS2

dxRS1

Figure 6.6: EX stage block diagram

the operation specified by the cdxFUNC channel on the a and b values. The result

6.2. Simplified DLX-like Model 151

and the destination register are sent to next stage via cxwRES cxwRD channels
respectively.

This stage is implemented as six parallel processes in the following procedure:

(cxwW, cxwRES, cxwRD) ::= EXpar (cdxW, cdxA, cdxB, cdxRS1, cdxRS2, cdxFUNC, cdxRD, cwx) ::






































































loop forever do (ID/EX (dx) register)






dxA ⇐ dx.a; dxB ⇐ dx.b; dxRS1 ⇐ dx.rs1; dxRS2 ⇐ dx.rs2; dxFUNC ⇐ dx.func;
xxw.w := dx.w; xxw.rd := dx.rd;
cdxW ⇒ dx.w; cdxA ⇒ dx.a; cdxB ⇒ dx.b; cdxRS1 ⇒ dx.rs1; cdxRS2 ⇒ dx.rs2;
cdxFUNC ⇒ dx.func; cdxRD ⇒ dx.rd; cxwW ⇐ xxw.w; cxwRD ⇐ xxw.rd















||




loop forever do (wx register)
[
cwx ⇒ wx;
wxRESa ⇐ wx.res; wxRESb ⇐ wx.res; wxRD ⇐ wx.rd

]





||








loop forever do (Forwarding control)






dxRS1 ⇒ rs1; dxRS2 ⇒ rs2;
wxRD ⇒ rd;
selectA := (rs1 = rd); selectB := (rs2 = rd);
selMuxA ⇐ selectA; selMuxB ⇐ selectB















||






loop forever do (Multiplexor of ALU input A)




dxA ⇒ a; wxRESa ⇒ resA; selMuxA ⇒ selA;
if selA then [outA := resA] else [outA := a];
caluA ⇐ outA











||






loop forever do (Multiplexor of ALU input B)




dxB ⇒ b; wxRESb ⇒ resB; selMuxA ⇒ selB;
if selB then [outB := resB] else [outB := b];
caluB ⇐ outB











||








loop forever do (ALU)






caluA ⇒ aluA; caluB ⇒ aluB;
dxFUNC ⇒ func;
xxw.res := alures(func, aluA, aluB);
cxwRES ⇐ xxw.res












































































Table 6.5 contains the local variables, and their sizes.

The EX stage has 91 + 6 + 37 + 17 + 97 + 97 + 107 = 452 bits.

152 6. Correctness Proof of a Pipelined Processor Architecture

dx register wx register

Var Fields Bits Var Fields Bits Var Fields Bits
dx a 32 xxw w 1 wx res 32

b 32 rd 5 rd 5
rs1 5 6 37
rs2 5
func 11
w 1
rd 5

91

Forwarding control Multiplexor A Multiplexor B ALU

Var Bits Var Bits Var Bits Var Bits
rs1 5 a 32 b 32 aluA 32
rs2 5 resA 32 resB 32 aluB 32
rd 5 selA 1 selB 1 func 11
selectA 1 outA 32 outB 32 result 32
selectB 1 97 97 107

17

Table 6.5: Local variables of procedure EXpar

6.2.3.5 Procedure WBunh

This procedure provides the mechanism to store the ALU result into the register
file via cwdW , cwdRES and cwdRD channels. It also forwards results to EX via
the cwx channel. The data from the EX stage is received via cxwW , cxwRES and
cxwRD channels at the end of the cycle. This is the unhidden form of the WB stage
of section 6.2.4.4

(cwdW, cwdRES, cwdRD, cwx) ::= WBunh (cxwW, cxwRES, cxwRD) ::















loop forever do












cwdW ⇐ xw.w;
cwdRES ⇐ xw.res;
cwdRD ⇐ xw.rd;
cwx⇐ xw;
cxwW ⇒ xw.w
cxwRES ⇒ xw.res
cxwRD ⇒ xw.rd



























Table 6.6 shows the variable of procedure WBunh, and it size.

6.2. Simplified DLX-like Model 153

Var Fields Bits
xw w 1

res 32
rd 5

38

Table 6.6: Local variable of procedure WBunh

6.2.4 The Pipeline1 Model

This section presents Pipeline1, the sequential version of Pipeline2. It plays the
role of intermediate form in the global proof. Its stage procedures have no inner
parallelism. In the case of IDseq and EXseq, they will be proven interface equivalent
to their parallel versions. The block diagram has the same structure as before:

Instruction Flow

I
F

I
F

/I
D

I
D

s
e
q

I
D

/E
X

E
X

s
e
q

E
X

/W
B

W
B

fd dx xw

The following expression represents the architecture as a cooperation of four sequen-
tial processes communicating via synchronous channels:

Pipeline1 ::
[
IF || IDseq || EXseq || WB

]

The first level of parallelism is conserved in Pipeline1 but not the second one.
Procedures whose implementation was a parallel composition are replaced by their
equivalent sequential versions. A simplified schema is shown in figure 6.7.

Pipelining the datapath requires that values passed from one pipe stage to the
next must be placed in the pipeline registers. These are fd, dx, and xw. The
synchronous communication channels forwarding values to these registers are cfd,
cdx, and cxw. Channel cwd transfers result values back to the registers. Channel
cwx transfers forwarding data to the EX stage. The sequential procedures which
model the stages are introduced next.

6.2.4.1 Procedure IF

The same as subsection 6.2.3.2.

154 6. Correctness Proof of a Pipelined Processor Architecture

IF WBID

mem(·) reg(·)

PC

EX

}

fd

mem(pc)
cfd cdx}ir.rs1

ir.rs2

reg(ir.rs1)

w

reg(ir.rs2)

xdx

instr

cxw}alures

dx.rd

dx.w

xxw

xwdx

rd

b

a

func

rs1

w

rs1

rs2

rd

w

res

rd

}} wx.res wx.rdwx.wwd.res wd.rdwd.w

cwd cwx

alu1

alu2

ir.rd

wd wx

func

rs2

func

ir.func

Figure 6.7: Pipeline1 block diagram

6.2.4.2 Procedure IDseq

It is given below. Channel cwd brings from stage WB, at the beginning of the cycle,
the data to be written into reg. The two source values are then read from reg(·) and
are kept in the xdx variable. The next instruction is received via the cfd channel.
The values read from the registers and the register indexes (xdx) are passed to the
next stage via channel cdx.

(reg, cdx) ::= IDseq(reg, cfd, cwd) ::















loop forever do












cwd⇒ wd;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(w, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
cfd⇒ ir;
cdx⇐ xdx



























6.2.4.3 Procedure EXseq

It is given below. Channel cwx brings in forwarding data. Register dependencies
are checked in the if statements, to enable forwarding. The new instruction data

6.2. Simplified DLX-like Model 155

is received via the cdx channel. The ALU result and the corresponding destination
register index rd, are sent via the cxw channel to WB.

cxw ::= EXseq(cdx, cwx) ::













loop forever do










cwx⇒ wx;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
cdx⇒ dx;
cxw ⇐ xxw























6.2.4.4 Procedure WB

Transfers the ALU result, via the cwd channel, back to the ID stage. It also forwards
results to EX via the cwx channel, and receives new data from EX via channel cxw.

(cwd, cwx) ::= WB(cxw) ::







loop forever do




cwd⇐ xw;
cwx⇐ xw;
cxw ⇒ xw











6.2.4.5 Procedure Pipeline1

Its global program with the variable initializations is the following:

reg ::= Pipeline1(reg,mem) ::





















local reg : array[1..32] of int32
local pc : int32
local w : boolean
local instr, ir : Typ IR
local xdx, dx : Typ DX
local wd,wx, xxw, xw : Typ XW
local cfd : channel of Typ IR
local cdx : channel of Typ DX
local cwd, cxw, cwx : channel of Typ XW





















156 6. Correctness Proof of a Pipelined Processor Architecture





















































































w := true;
pc := 1;
(ir.rs1, ir.rs2, ir.rd, ir.func) := (0, 0, 0, 0);
(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd) := (false, 0, 0, 0, 0, 0, 0);
(xw.w, xw.res, xw.rd) := (false, 0, 0);
(wx.w, wx.res, wx.rd) := (false, 0, 0);

IF ::







loop forever do




instr := mem(pc);
pc := pc + 1;
cfd⇐ instr











||

IDseq ::















loop forever do












cwd⇒ wd;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(w, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
cfd⇒ ir;
cdx⇐ xdx



























||

EXseq ::













loop forever do










cwx⇒ wx;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
cdx⇒ dx;
cxw ⇐ xxw























||

WB ::







loop forever do




cwd⇐ xw;
cwx⇐ xw;
cxw ⇒ xw































































































6.3. Proof Schema 157

6.3 Proof Schema

6.3.1 Overview

The proof of the simplified DLX-like pipeline processor model establishes interface
equivalence between the parallelism and inner communications model, Pipeline2,
and a sequential model. This sequential model corresponds to a simple Von Neu-
mann loop processor model, which has neither inner parallelism nor communications.
The following program implements this sequential model:

reg ::= V NCycle(reg,mem) ::

















in-out reg : register file
external in mem : memory
local ir : Typ IR
local pc : int32

for k := 1..n do




ir := mem(pc);
pc := pc + 1;
reg(ir.rd) := alures(ir.func, reg(ir.rs1), reg(ir.rs2))





















The Von Neumann processor model executes a program of only register-register
instructions stored in the memory, mem. The program length is denoted by integer
n, assuming that n ≥ 1. First it fetches the instruction pointed to by the program
counter, pc, and stores it in variable ir. Then the program counter is updated to
point to the next instruction to be fetched. The source register indexes are ir.rs1
and ir.rs2, and the destination register index is ir.rd. Procedure alures performs
the requested operation, indicated by ir.func, on the two source register values, and
stores the result in the destination register, reg(ir.rd).

The main goal is to prove the following interface equivalence between the two
models with the same essential behavior:

[reg := Pipeline2(reg,mem)] =O [reg := V NCycle(reg,mem)] (6.1)

The observed set O is {reg,mem}, but since mem contains the program which
is only read, the observed set can be reduced to O = {reg}. The equivalence is
only proved for any finite length program, composed of register to register ALU
instructions. Hence, for the same initial values of the register file reg(·), the values
of the registers at the end of the program are the same as those resulting from the
same program running on VNCycle model.

158 6. Correctness Proof of a Pipelined Processor Architecture

Pipeline[IDpar, EXpar, WBunh]
︸ ︷︷ ︸

Pipeline2

=O V NCycle

P ipeline[IDseq, EXseq , WB]
︸ ︷︷ ︸

Pipeline1

=O V NCycle

P ipeline[IDpar, EXpar, WBunh]
︸ ︷︷ ︸

Pipeline2

=O Pipeline[IDseq, EXseq, WB]
︸ ︷︷ ︸

Pipeline1

Pipeline[IDpar, EXpar, WBunh]
︸ ︷︷ ︸

Pipeline2

=O Pipeline[IDseq unh, EXseq unh, WBunh]

ii

IDpar =O IDseq unh S EXpar =O EXseq unh

IDpar S EXpar

fundamental DPS proofStep 1 fundamental DPS proof

substitutionStep 2

hideStep 3

fundamental DPS proofStep 4

equivalence by transitivityStep 5

Figure 6.8: Hierarchical proof schema

The hierarchical model helps to organize the proof. It is decomposed into seve-
ral steps corresponding to proofs of intermediate interface equivalences. Its global
schema is shown in figure 6.8. An arrow corresponds to a proof step, whose result is
shown within its ending node, above the arrow. In the nodes, the lists of output and
input variables and channels of procedure references have been omitted for clarity.
Only the procedure name is displayed.

A generic procedure, Pipeline, is defined for convenience. This procedure has
three holes for the references to the procedures of the ID, EX and WB stages.

6.3. Proof Schema 159

Pipeline2 is defined as Pipeline with the references to the equivalent procedures
with inner parallelism and unhidden synchronous channels,

Pipeline2 = Pipeline[IDpar, EXpar,WBunh].

As mentioned before, Pipeline1 is defined with the references to sequential pro-
cedures,

Pipeline1 = Pipeline[IDseq, EXseq,WB].

The procedure of the IF stage is the same in both implementations.

Interface equivalence 6.1 is proved in five main steps which have to be proved
before, figure 6.8 illustrates them. Next subsections will detail each one. An overview
of the proof is as follows:

The proof starts by focusing on components IDpar and EXpar of Pipeline2, Step
1. The fundamental proof is applied to each of them obtaining the equivalences

IDpar =O IDseq unh and EXpar =O EXseq unh

This step corresponds to step 1 of the hierarchical proof with channel hiding of
subsection 3.3.4.

Interface equivalence 6.2 establishes the equivalence between the instruction de-
code (ID) stage, with inner parallelism and communications, and the sequential
version.

[(reg, coutID) := IDpar(reg, cfd, cinID)]

=O

[(reg, coutID) := IDseq unh(reg, cfd, cinID)] (6.2)

where coutID is the list of output channels:

coutID = (cdxW, cdxA, cdxB, cdxRS1, cdxRS2, cdxFUNC, cdxRD)

and cinID is the list of input channels:

cinID = (cwdW, cwdRES, cwdRD)

and cinID is the list of input channels:

cinID = (cwdW, cwdRES, cwdRD)

160 6. Correctness Proof of a Pipelined Processor Architecture

Procedures IDpar and IDseq unh are detailed respectively in subsections 6.2.3.3
and 6.3.5.

Similarly for the execution stage, interface equivalence 6.3 relates parallel and
sequential EX versions.

[(cxwW, cxwRES, cxwRD) := EXpar(cinEX)]

=O

[(cxwW, cxwRES, cxwRD) := EXseq unh(cinEX)] (6.3)

where cinEX is the list of input channels:

cinEX = (cdxW, cdxA, cdxB, cdxRS1, cdxRS2, cdxFUNC, cdxRD, cwx)

Procedures EXpar and EXseq unh are detailed respectively in subsections 6.2.3.4
and 6.3.7.

The two above equivalences are substituted into Pipeline, in Step 2, obtaining
the following equivalent procedure:

Pipeline[IDseq unh, EXseq unh,WBunh]

This step corresponds to step 2 of the hierarchical proof with channel hiding of
subsection 3.3.4.

Some groups of connections are identified and hidden in Step 3. The obtained
equivalences from procedure Pipeline2 are the following:

(reg, coutID) := IDseq unh(reg, cfd, cinID)

=O

[(reg, cdx) := IDseq(reg, cfd, cwd)] (6.4)

(cxwW, cxwRES, cxwRD) := EXseq unh(cinEX)

=O

6.3. Proof Schema 161

[cxw := EXseq(cdx, cwx)] (6.5)

(cwdW, cwdRES, cwdRD, cwx) := WBunh(cxwW, cxwRES, cxwRD)

=O

(cwd, cwx) := WB(cxw) (6.6)

where IDseq is detailed in subsection 6.2.4.2, EXseq in subsection 6.2.4.3, and WB
in subsection 6.2.4.4.

The channel hide-unhide correspondences are:

h1: cwd ←→ (cwdW, cwdRES, cwdRD)
h2: cxw ←→ (cxwW, cxwRES, cxwRD)
h3: cdx ←→ (cdxW, cdxA, cdxB, cdxRS1, cdxRS2, cdxFUNC, cdxRD)

Finally the substitution at once into Pipeline[IDseq unh, EXseq unh,WBunh]
leads to Pipeline1 completing the step. It corresponds to step 3 of the hierarchical
proof with channel hiding of subsection 3.3.4.

Interface equivalence 6.7 of Step 4

[reg := Pipeline1(reg,mem)] =O [reg := V NCycle(reg,mem)] (6.7)

is established applying the fundamental proof, as covered in chapter 3. DPS proofs
are carried out with the prover tool.

Last step, Step 5, applies transitivity to equivalences 6.2 and

[reg := Pipeline2(reg,mem)] =O [reg := Pipeline1(reg,mem)] (6.8)

obtaining the main goal, equivalence 6.1 of page 157.

6.3.2 State Vector Reduction

After proving the interface equivalence between the Pipeline2 and Von Neumann
processor models, we observe that most of the local variables of Pipeline2 proce-
dures have been removed due to the variable simplification step before obtaining

162 6. Correctness Proof of a Pipelined Processor Architecture

Procedure Variables Bits per Variable Total Bits per Procedure

V NCycle pc 32
ir 26

58

Table 6.7: Local variables of V NCycle

the V NCycle model. Its variables are shown in the above table 6.7. The ones of
Pipeline2 are listed in table 6.8.

The variable, reg, is common to both processor models. It includes 32 general
purpose registers of 32 bits each, then reg has 32×32=1024 bits.

The total number of bits of Pipeline2 is 58 + 182 + 452 + 38 + 1024 =
1754. In the case of V NCycle is 58 + 1024 = 1082. Note the state vector is
reduced drastically, from 1754, for the parallel model, to 1082 bits. The upper
bound reduction ratio is the following:

reduction ratio =
upper bound of num states of V NCycle
upper bound of num states of Pipeline2

=
21082

21754 = 2−672

6.3.3 Proof of Pipeline1

The proof shows that the distributed pipelined architecture Pipeline1 is equivalent
to the simple Von Neumann processor model, V NCycle, which has neither inner
parallelism nor communications. The interface equivalence, 6.7, to be proved is:

[reg := Pipeline1(reg,mem)] =O [reg := V NCycle(reg,mem)]

Global Description:

The goal of this proof is to obtain the following basic Von Neumann iteration body.

V Nbody ::





ir := mem(pc);
pc := pc + 1;
reg(ir.rd) := alures(ir.func, reg(ir.rs1), reg(ir.rs2))





The proof starts by unfolding five times the indefinite loops of the four parallel pro-
cesses in Pipeline1. This is the number required to obtain the first V N iteration
body. The unfoldings are necessary because the synchronous communication state-
ments should not appear within indefinite iterations, otherwise the communication
elimination reduction could not take place. After applying the communication eli-
mination, parallelism to concatenation, concatenation commutativity, and variable
elimination reductions the following form will be obtained:

6.3. Proof Schema 163

Procedure Variables Bits per Variable Total Bits per Procedure

IF pc 32
instr 26

58
IDpar fd 26

wd 38
ir 26
xdx 91
c 1

182
EXpar dx 91

xxw 6
wx 37
rs1 5
rs2 5
rd 5
selectA 1
selectB 1
a 32
resA 32
selA 1
outA 32
b 32
resB 32
selB 1
outB 32
aluA 32
aluB 32
func 11
result 32

452
WBunh xw 38

38

total . . . 730

Table 6.8: Variables of Pipeline2

Pipeline1 =O I;V Nbody;M ;E

where I denotes the variable initializations, V Nbody is the intermediate form which
contains the first Von Neumann iteration body after eliminating the redundant
variables, and M is a resulting form which has neither parallelism nor inner com-
munication. E is the tail statement which contains again the four parallel processes
of Pipeline1.

The proof continues by unfolding the indefinite loops of the four parallel processes
of E once, and applying again the DPS proof. As a result, a new form which contains
another V Nbody and the same tail statements, M ;E, is obtained, thus reaching the
equivalence:

M ; E =O V Nbody; M ; E

164 6. Correctness Proof of a Pipelined Processor Architecture

Then, from the two last equivalences, by induction and substitution, the following
equivalence will be obtained:

Pipeline1 =O I; [V Nbody]
n; M ; E

for any finite integer n. If n is equal to the length of the program in the instruction
memory, mem, the tail statements M ;E can be dropped since the state of the register
file, reg, after the nth instruction has written its result is the same in Pipeline1 and
in I; [V Nbody]

n.

The final form is:

Pipeline1 =O I; V Nbody
n

which is the desired result, for programs of length at most n, completing this proof
step.

The proof is partitioned in the following steps: constant replacement, unfolding,
communication elimination, parallelism to concatenation transformation, concatena-
tion commutativity, and redundant variable elimination. All these steps are carried
out with the interactive prover.

step (i) - Variable Replacement:

The value of variable w is replaced at IDseq of Pipeline1, obtaining Pipeline′1:

6.3. Proof Schema 165































































pc := 1;
(ir.rs1, ir.rs2, ir.rd, ir.func) := (0, 0, 0, 0);
(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd) := (false, 0, 0, 0, 0, 0, 0);
(xw.w, xw.res, xw.rd) := (false, 0, 0);
(wx.w, wx.res,wx.rd) := (false, 0, 0);

IF ::







loop forever do




instr := mem(pc);
pc := pc + 1;
cfd ⇐ instr











||

IDseq ::















loop forever do












cwd ⇒ wd;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
cfd ⇒ ir;
cdx ⇐ xdx



























||

EXseq ::













loop forever do










cwx ⇒ wx;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
cdx ⇒ dx;
cxw ⇐ xxw























||

WB ::







loop forever do




cwd ⇐ xw;
cwx ⇐ xw;
cxw ⇒ xw









































































step (ii) - Unfolding Step:

First the unfolding law (see law 9 of page 39) is applied interactively:

Loop Forever Unfold : [loop forever do S] ≈ [S; loop forever do S]

to each sequential parallel process of Pipeline′1.

The indefinite loops of the four parallel processes are unfolded five times, as
commented above, to unhide the synchronous communication statements.

The following shows how the unfolding law is applied five times to the Instruction
Fetch (IF) sequential procedure:







loop forever do




instr := mem(pc);
pc := pc + 1;
cfd⇐ instr











166 6. Correctness Proof of a Pipelined Processor Architecture

after applying it five times, one obtains,






































instr := mem(pc);
pc := pc + 1;
cfd⇐ instr;
instr := mem(pc);
pc := pc + 1;
cfd⇐ instr;
instr := mem(pc);
pc := pc + 1;
cfd⇐ instr;
instr := mem(pc);
pc := pc + 1;
cfd⇐ instr;
instr := mem(pc);
pc := pc + 1;
cfd⇐ instr;
loop forever do





instr := mem(pc);
pc := pc + 1;
cfd⇐ instr










































After applying to each parallel process, where the dots (· · ·) represent the four
repetitions of the prior program segments, the following is obtained:

6.3. Proof Schema 167






































































instr := mem(pc);
pc := pc + 1;
cfd ⇐ instr;
· · ·
loop forever do





instr := mem(pc);
pc := pc + 1;
cfd ⇐ instr



















||





























cwd ⇒ wd;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
cfd ⇒ ir;
cdx ⇐ xdx;
· · ·
loop forever do












cwd ⇒ wd;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
cfd ⇒ ir;
cdx ⇐ xdx








































||

























cwx ⇒ wx;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
cdx ⇒ dx;
cxw ⇐ xxw;
· · ·
loop forever do










cwx ⇒ wx;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
cdx ⇒ dx;
cxw ⇐ xxw


































||















cwd ⇐ xw;
cwx ⇐ xw;
cxw ⇒ xw;
· · ·
loop forever do





cwd ⇐ xw;
cwx ⇐ xw;
cxw ⇒ xw










































































step (iii) - Communication Elimination:

Once the synchronous communication statements are out of the indefinite iterations,
the iterative communication elimination reduction procedure, gen-comeli of page
104, can be applied. This will eliminate automatically all the matching pairs of
communication statements of the above SPL form. As an illustration next figure
shows the first eliminable pair which will generate a communication event over the
synchronous channel cwd.








































































instr := mem(pc);
pc := pc + 1;
cfd ⇐ instr;
· · ·
loop forever do





instr := mem(pc);
pc := pc + 1;
cfd ⇐ instr



















||































cwd ⇒ wd;

if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
cfd ⇒ ir;
cdx ⇐ xdx;
· · ·
loop forever do












cwd ⇒ wd;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
cfd ⇒ ir;
cdx ⇐ xdx










































||

























cwx ⇒ wx;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
cdx ⇒ dx;
cxw ⇐ xxw;
· · ·
loop forever do










cwx ⇒ wx;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
cdx ⇒ dx;
cxw ⇐ xxw


































||


















cwd ⇐ xw;

cwd ⇐ xw;
cwx ⇐ xw;
cxw ⇒ xw;
· · ·
loop forever do





cwd ⇐ xw;
cwx ⇐ xw;
cxw ⇒ xw















































































168 6. Correctness Proof of a Pipelined Processor Architecture

When the iterative communication elimination reduction ends, all internal com-
munications have been eliminated. The resulting form is I0;P0;P0;P0;P0;E0, there-
fore, the following equivalence holds:

Pipeline1 =O I0;P0;P0;P0;P0;E0 (6.9)

I0 contains the variable initializations of Pipeline1.

I0 ::











pc := 1;
w := true;
(ir.rs1, ir.rs2, ir.rd, ir.func) := (0, 0, 0, 0);
(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd) := (false, 0, 0, 0, 0, 0, 0);
(xw.w, xw.res, xw.rd) := (false, 0, 0);
(wx.w,wx.res,wx.rd) := (false, 0, 0)











P0 has no references to the local synchronous channels (cfd, cdx, cwd, cxw, cwx)
which have been eliminated. It has the form:

P0 :: (6.10)























wd := xw;
























[
instr := mem(pc);
pc := pc + 1

]

||







if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)













;

ir := instr









||

[
wx := xw

]











;

if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;
xw := xxw























The tail statement E0 contains the four indefinite iterations of E, preceded by
other statements.

6.3. Proof Schema 169

E0 :: (6.11)











































































wd := xw;























[
instr := mem(pc);
pc := pc + 1

]

||







if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w,xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)













;

ir := instr







||

[
wx := xw

]











;














































































































if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w,xxw.res,xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;




































































xw := xxw;






































loop forever do













cwx ⇒ wx;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w,xxw.res,xxw.rd)

:=
(dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
cdx ⇒ dx;
cxw ⇐ xxw





























||







loop forever do




cwd ⇐ xw;
cwx ⇐ xw;
cxw ⇒ xw



























































||














loop forever do











cwd ⇒ wd;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w,xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
cfd ⇒ ir;
cdx ⇐ xdx





















































































































||







loop forever do




instr := mem(pc);
pc := pc + 1;
cfd ⇐ instr
















































































































































step (iv) - Parallelism to Concatenation Transformation:

Some inner cooperation statements have appeared as a result of communication
elimination. These statements can be transformed to statements in sequence, in
the present step, with various applications of the Cooperation and Concatenation
transformation procedure of section 5.4.2.9 of page 136, and law 10 of page 39.
Thus obtaining a truly sequential form, with neither internal communication nor
parallelism.

170 6. Correctness Proof of a Pipelined Processor Architecture

Basically this step applies the following three lemmas from left to right:

[[A; B] || C] =O [A; [B || C]]

[[A || B]; C] =O [B; A; C]

[A || B] =O [B; A]

The aim of the step is the sequentialization of the parallel composition which
occurs at the beginning of the two statements 6.10 and 6.11. This common paral-
lelism is the following:

























[
instr := mem(pc);
pc := pc + 1

]

||







if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)













;

ir := instr









||

[
wx := xw

]











The goal of the transformation is to reach a form where the statements:

[
instr := mem(pc);
pc := pc + 1

]

and
[
ir := instr

]

are adjacent in sequence. This is motivated by the Von Neumann form of the goal
of the proof:

V Nbody ::







ir := mem(pc);

pc := pc + 1;

reg(ir.rd) := alures(ir.func, reg(ir.rs1), reg(ir.rs2))







Realizing that variable instr will be ultimately eliminated, the match will be com-
plete.

Reducing equivalence 6.9, as detailed in section B.1 of appendix B, one obtains:

Pipeline1 =O I0;P1;P1;P1;P1;P1;E (6.12)

where I0 is detailed in page 168, and

6.3. Proof Schema 171

P1 ::




























wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
instr := mem(pc);
pc := pc + 1;
ir := instr;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;
xw := xxw




























(6.13)

E ::
[
IF || ID || EX ||WB

]

From now on in the text of this proof, the four parallel processes of Pipeline1

are replaced by their identifiers. These are the following:

IF ::







loop forever do




instr := mem(pc);
pc := pc + 1;
cfd⇐ instr











ID ::















loop forever do












cwd⇒ wd;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
cfd⇒ ir;
cdx⇐ xdx



























EX ::













loop forever do










cwx⇒ wx;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
cdx⇒ dx;
cxw ⇐ xxw























172 6. Correctness Proof of a Pipelined Processor Architecture

WB ::







loop forever do




cwd⇐ xw;
cwx⇐ xw;
cxw ⇒ xw











The detailed explanation of each transformation can be found in section B.1 of
appendix B.

step (v) - Concatenation Commutativity:

The aim of the step is to rearrange the body of P1 so that the instruction fetch
statements:





instr := mem(pc);
pc := pc + 1;
ir := instr





and machine instruction execution statement corresponding to the just fetched:





...
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
...





which is located in the next P1 in sequence, become closer. This closening transfor-
mation is carried out in the first two P1 statements in the sequence within 6.12. Then
repeated on the form resulting from the second P1 and the third P1, and so forth
until the fifth P1 is transformed. This is possible since most of the statements of P1

are disjoint, and simple concatenation permutation rules can be applied. Proceeding
in this way, from equivalence 6.12 obtaining:

Pipeline1 =O I0;R0;P3;P3;P3;P3;E2;E (6.14)

where,

R0 ::





















wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;
xw := xxw





















6.3. Proof Schema 173

P3 ::



























wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
instr := mem(pc);
ir := instr;
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx;
xw := xxw



























E2 ::





instr := mem(pc);
ir := instr;
pc := pc + 1





This is in preparation for late stages of the proof, where a statement that will
match the third statement of the Von Neumann body is obtained:

V Nbody ::






ir := mem(pc);
pc := pc + 1;

reg(ir.rd) := alures(ir.func, reg(ir.rs1), reg(ir.rs2))






The above closening transformations are achieved by applying the concatenation
commutativity transformation procedure, section 5.4.2.6. It permutes disjoint and
non-communicating statements with the law:

[A; B] =O [B;A]

For further details see section B.2 of appendix B.

step (vi) - Redundant Variable Elimination:

Some redundant variable assignments have appeared in the latter sequential
composition due to the elimination of the synchronous channels done in the com-
munication elimination step. The aim of the stage is the interactive application
of the variable elimination reductions of section 5.4 to remove them and to reach a
simpler sequential form.

The variable elimination is carried out within the interactive prover by applying
the following variable and assignment elim-intro law (see law 13 of page 40):

[v := e;S1(v);S2] =O [S1(e);S2]

174 6. Correctness Proof of a Pipelined Processor Architecture

and multiple variable and assignment elim-intro law (see law 17 of page 41):

[(v.v1, ..., v.vn) := (e1, ..., en); S1(v.v1, ..., v.vn); S2] =O [S1(e1, ..., en); S2]

and multiple variable and assignment partial elim-intro law (see law 18 of page 41):

[(v.v1, ..., v.vi, ..., v.vj , ..., v.vn) := (e1, ..., ei, ..., ej , ..., en); S1(v.vi, ..., v.vj); S2]
=O

[(v.v1, ..., v.vn) := (e1, ..., en); S1(ei, ..., ej); S2]

They are applied from left to right.

In this step, variables instr, xw, xdx, wd, wx, dx.w, xxw.w, dx.rs1, and dx.rs2,
are removed from I0, R0, and P3 of equivalence 6.14. Also some simple ‘if ’ state-
ments with boolean conditions are simplified applying one of the following trivial
congruences:

if ‘true’ congruence: if true then S1 else S2 ≈ S1

if ‘false’ congruence: if false then S1 else S2 ≈ S2

The new equivalence obtained from 6.14 is:

Pipeline1 =O I1;R3;U1;U1;U1;E4;E (6.15)

where,

I1 ::







pc := 1;
(ir.rs1, ir.rs2, ir.rd, ir.func) := (0, 0, 0, 0);
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd) := (0, 0, 0, 0, 0, 0);
(wx.w,wx.res,wx.rd) := (false, 0, 0)







R3 ::







if (false) then [reg(0) := 0] else nil;
if (dx.rs1 = 0) then [dx.a := 0] else nil;
if (dx.rs2 = 0) then [dx.b := 0] else nil;
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd)







6.3. Proof Schema 175

U1 ::

















(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)
:=

(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
reg(xxw.rd) := xxw.res;
if (ir.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (ir.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1

















E4 ::






































(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)
:=

(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(wd.w,wd.res,wd.rd) := (true, xxw.res, xxw.rd);
(wx.w,wx.res,wx.rd) := (true, xxw.res, xxw.rd);
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (true, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx;
xw := xxw;
instr := mem(pc);
ir := instr;
pc := pc + 1






































The details can be found in section B.3 of appendix B.

step (vii) - Data Forwarding Elimination:

The essence of data forwarding is still present in U1. Observe its two consecutive
if statements. These pass the correct values to the two ALU inputs, dx.a and
dx.b, when they have been incorrectly read from the registers ir.rs1 and ir.rs2
in the first multiple assignment of U1. The correct value is xxw.res, which was
stored in register xxw.rd at the assignment preceding the if statements of U1. The
assignments, dx.a := xxw.res and dx.b := xxw.res, take place when an instruction
reads a register value before it has been updated by the previous instruction, which
is at the WB stage. The equalities dx.rs1 = xxw.rd and dx.rs2 = xxw.rd, check for
the incorrect read situation between source register indexes, variables dx.rs1 and

176 6. Correctness Proof of a Pipelined Processor Architecture

dx.rs2, of the current instruction and the destination register index of the previous
instruction, variable xxw.rd.

The aim of the stage is the elimination of the The data forwarding applying
the following lemma, from left to right:







(a, b, c, d, e, f) := (r(i), r(j), i, j, t, s);
r(k) := q;
[if i = k then a := q else nil];
[if j = k then b := q else nil]







=O

[
r(k) := q;
(a, b, c, d, e, f) := (r(i), r(j), i, j, t, s)

]

Justification Basically the lemma removes both if statements due to the
movement of the assignment r(k) := q. The equivalence guarantees that the va-
riables a and b have the same value in both sides. If the assignment r(k) := q is
placed before the multiple assignment, the variables a and b always have the correct
value, independent of the value of i and j, and the if statements are not longer
needed.

�

The lemma is applied to U1 with the following matchings:

(a, b, c, d, e, f) := (r(i), r(j), i, j, t, s) ::





(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)
:=

(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)





r(k) := q :: reg(xxw.rd) := xxw.res

if i = k then a := q else nil :: if (ir.rs1 = xxw.rd) then [dx.a := xxw.res] else nil

if j = k then b := q else nil :: if (ir.rs2 = xxw.rd) then [dx.b := xxw.res] else nil

After the reduction one obtains U ′
1:

U ′
1 ::













reg(xxw.rd) := xxw.res;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1













Observe that now the instruction fetch and the machine instruction execution
statements, located in two U ′

1 in sequence, are much closer. Notice that the bypass
mechanism has disappeared since the register, reg(xxw.rd) := xxw.res, is written
first.

6.3. Proof Schema 177

The overall equivalence obtained from 6.15 is:

Pipeline1 =O I1;R3;U
′
1;U

′
1;U

′
1;E4;E (6.16)

step (viii) - Obtaining the first Von Neumann Body:

The desired form will be obtained after applying again the concatenation commuta-
tivity, the redundant variable elimination and the simple ‘if ’ statements elimination
in the same way as the previous steps to equivalence 6.16. The resulting equivalence
contains the first Von Neumann body, it is the following:

Pipeline1 =O I;V N body;M ;E (6.17)

where,

178 6. Correctness Proof of a Pipelined Processor Architecture

I ::





pc := 1;
reg(0) := (alures(0, 0, 0);
reg(0) := alures(0, reg(0), reg(0))





V Nbody ::





ir := mem(pc);
pc := pc + 1;
reg(ir.rd) := alures(ir.func, reg(ir.rs1), reg(ir.rs2))





M ::















































ir := mem(pc);
pc := pc + 1;
(xxw.res, xxw.rd) := (alures(ir.func, reg(ir.rs1), reg(ir.rs2)), ir.rd);
ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(wd.w, wd.res, wd.rd) := (true, xxw.res, xxw.rd);
(wx.w, wx.res, wx.rd) := (true, xxw.res, xxw.rd);
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (true, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx;
xw := xxw;
instr := mem(pc);
ir := instr;
pc := pc + 1















































E ::
[

IF || ID || EX || WB
]

Each transformation applied is detailed in section B.4 of appendix B.

step (ix) - Tail Statements:

The goal of this step is to prove the following equivalence:

M ; E =O V Nbody; M ; E (6.18)

obtaining another V Nbody from tail statements. M and E are the tail statements of
equivalence 6.17. The details of each step of the next proof are explained in section
B.5 of appendix B, hence only a brief description is given.

Unfolding the indefinite loops of the four parallel processes of E once, and ap-
plying the communication elimination reduction, one obtains:

6.3. Proof Schema 179

M ; E =O M ; E0

E0, statement 6.11, is transformed as in the first steps of the proof, page 235 of
appendix B, obtaining the following new equivalence:

M ; E =O M ; P0; E (6.19)

where P0 corresponds to statement 6.10 of page 168.

The proof continues by reducing [M ; P0] applying the following transforma-
tions:

- concatenation commutativity

- redundant variable elimination

- data forwarding elimination

- simple ‘if ’ simplification

the steps are detailed in section B.5 of appendix B.

In the resulting form:

M ; P0 =O V Nbody; M

a new V Nbody statement is obtained, then the equivalence 6.18 results from 6.19.

step (x) - Induction Step:

The previous step proves that for each unfolding of the indefinite loops of the four
parallel processes of E, and applying again the DPS proof, a new V Nbody statement
is obtained, equivalence 6.18 establishes it. Thus, after n−1 unfoldings, the following
equivalence will be obtained:

M ; E =O [V Nbody]
n−1; M ; E (6.20)

After substituting equivalence 6.20 in 6.17 one obtains:

Pipeline1 =O I; [V Nbody]
n; M ; E

for any finite integer n.

Therefore for programs in the instruction memory, mem of length l = n, the tail
statements M ;E can be dropped as commented in the previous global description
paragraph. The final equivalence may be reduced to:

Pipeline1 =O I; [V Nbody]
n (6.21)

180 6. Correctness Proof of a Pipelined Processor Architecture

6.3.4 Proof of IDpar

Goal:

The proof shows how the process IDpar of subsection 6.2.3.3 is reduced to the
following sequential version:

(reg, cdxW, cdxA, cdxB, cdxRS1, cdxRS2, cdxFUNC, cdxRD) ::=
IDseq unh(reg, cfd, cwdW, cwdRES, cwdRD) ::































loop forever do




























cwdW ⇒ wd.w;
cwdRES ⇒ wd.res;
cwdRD ⇒ wd.rd;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
cfd⇒ ir;
cdxW ⇐ xdx.w;
cdxA⇐ xdx.a;
cdxB ⇐ xdx.b;
cdxRS1⇐ xdx.rs1;
cdxRS2⇐ xdx.rs2;
cdxFUNC ⇐ xdx.func;
cdxRD ⇐ xdx.rd



























































IDseq unh is obtained after applying indefinite loop unfoldings, and the DPS
proof (communication elimination, parallelism to concatenation, concatenation com-
mutativity, and variable elimination). The proof is similar to the previous one, only
some of the steps are outlined.

The interface equivalence, 6.2 of section 6.3.1, to be proved is:

[(reg, coutID) := IDpar(reg, cfd, cinID)]

=O

[(reg, coutID) := IDseq unh(reg, cfd, cinID)]

where:

coutID = (cdxW, cdxA, cdxB, cdxRS1, cdxRS2, cdxFUNC, cdxRD)
cinID = (cwdW, cwdRES, cwdRD)

It corresponds to the following nodes of the tree-schema shown in figure 6.8:

6.3. Proof Schema 181

IDpar =O IDseq

IDpar =O IDseq unh

IDpar

hide

fundamental DPS proof

Unfolding and Communication Elimination:

The proof starts by applying twice the indefinite loop unfolding law, this is the
number needed to obtain the first sequential body of IDseq unh. After the unfoldings,
when the iterative communication elimination reduction, gen-comeli of page 104,
ends, the following equivalence is obtained:

IDpar =O P0;E0 (6.22)

P0 has no references to the local channels, (fdRS1, fdRS2, fdRD, fdFUNC,
control), which have been eliminated. It has the form:

182 6. Correctness Proof of a Pipelined Processor Architecture

P0 ::
















































[
c := true

]
||





cwdW ⇒ wd.w;
cwdRES ⇒ wd.res;
cwdRD ⇒ wd.rd







 ;

w := c;






[
cfd⇒ fd

]
||







if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)













;

ir.rs1 := fd.rs1;
ir.rs2 := fd.rs2;
ir.rd := fd.rd;
ir.func := fd.func;


















[
c := true

]
||



















cdxW ⇐ xdx.w;
cdxA⇐ xdx.a;
cdxB ⇐ xdx.b;
cdxRS1⇐ xdx.rs1;
cdxRS2⇐ xdx.rs2;
cdxFUNC ⇐ xdx.func;
cdxRD ⇐ xdx.rd;
cwdW ⇒ wd.w;
cwdRES ⇒ wd.res;
cwdRD ⇒ wd.rd





































;

w := c













































6.3. Proof Schema 183

The tail statement E0 is the following:

E0 ::





















































































































































[
cfd ⇒ fd

]
||







if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w,xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)













;

ir.rs1 := fd.rs1;
ir.rs2 := fd.rs2;
ir.rd := fd.rd;
ir.func := fd.func;































































cfd ⇒ fd;









loop forever do







cfd ⇒ fd;
fdRS1 ⇐ fd.rs1;
fdRS2 ⇐ fd.rs2;
fdRD ⇐ fd.rd;
fdFUNC ⇐ fd.func




























||




















































cdxW ⇐ xdx.w;
cdxA ⇐ xdx.a;
cdxB ⇐ xdx.b;
cdxRS1 ⇐ xdx.rs1;
cdxRS2 ⇐ xdx.rs2;
cdxFUNC ⇐ xdx.func;
cdxRD ⇐ xdx.rd;






































loop forever do



































cwdW ⇒ wd.w;
cwdRES ⇒ wd.res;
cwdRD ⇒ wd.rd;
control ⇒ w;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w,xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(w, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
fdRS1 ⇒ ir.rs1;
fdRS2 ⇒ ir.rs2;
fdRD ⇒ ir.rd;
fdFUNC ⇒ ir.func;
cdxW ⇐ xdx.w;
cdxA ⇐ xdx.a;
cdxB ⇐ xdx.b;
cdxRS1 ⇐ xdx.rs1;
cdxRS2 ⇐ xdx.rs2;
cdxFUNC ⇐ xdx.func;
cdxRD ⇐ xdx.rd


















































































































































































































































||





loop forever do
[
c := true;
control ⇐ c

]
















































































Obtaining the first IDseq unh Body:

The inner cooperation statements in P0, which appeared as a result of communica-
tion elimination, and the redundant variables are reduced by applying Cooperation
and Concatenation and Variable Elimination transformations. The resulting equi-
valence from 6.22 is:

IDpar =O IDseq unh body;P1;E0 (6.23)

where IDseq unh body and P1 have the forms:

184 6. Correctness Proof of a Pipelined Processor Architecture

IDseq unh body ::





























cwdW ⇒ wd.w;
cwdRES ⇒ wd.res;
cwdRD ⇒ wd.rd;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
cfd⇒ ir;
cdxW ⇐ xdx.w;
cdxA⇐ xdx.a;
cdxB ⇐ xdx.b;
cdxRS1⇐ xdx.rs1;
cdxRS2⇐ xdx.rs2;
cdxFUNC ⇐ xdx.func;
cdxRD ⇐ xdx.rd





























P1 ::









cwdW ⇒ wd.w;
cwdRES ⇒ wd.res;
cwdRD ⇒ wd.rd;
c := true;
w := c









For further details see section C.1 of appendix C.

Induction Step:

The previous step proves that for each unfolding of the indefinite loops of the four
parallel processes of E, and applying again the DPS proof, a new V Nbody statement
is obtained, equivalence 6.18 establishes it. Thus, after n−1 unfoldings, one obtains:

Applying a similar reduction to P1;E0 the following equivalence is obtained:

P1;E0 =O [IDseq unh body]
n−1;P1;E0

After n− 1 steps, the following form will be obtained from equivalence 6.23:

IDpar =O [IDseq unh body]
n;P1;E0

For programs of length l = n, the equivalence may be reduced to:

IDpar =O [IDseq unh body]
n

6.3. Proof Schema 185

6.3.5 Proof of IDseq unh

Establishing the equivalence 6.4 of subsection 6.3.1:

[(reg, coutID) := IDseq unh(reg, cfd, cinID)]

=O

[(reg, cdx) := IDseq(reg, cfd, cwd)]

where coutID and cinID are the same as above, leads into the equivalence at the
top of the following schema, from figure 6.8:

IDpar =O IDseq

IDpar =O IDseq unh

IDpar

hide

fundamental DPS proof

IDseq is shown in subsection 6.2.4.2. This part of the proof consists of a hiding
simplification that groups channels of IDseq unh, shown in page 180. The hide
function of subsection 3.3.4, is applied with the next correspondences:

cdx ←− (cdxW, cdxA, cdxB, cdxRS1, cdxRS2, cdxFUNC, cdxRD)
cwd ←− (cwdW, cwdRES, cwdRD)

The type of cdx is Typ DX, which matches the cartesian product of the types of
cdxW , cdxA, cdxB, cdxRS1, cdxRS2, cdxFUNC, cdxRD channels. cwd channel
is of type Typ XW matching the product of the types of cwdW , cwdRES, cwdRD.

186 6. Correctness Proof of a Pipelined Processor Architecture

6.3.6 Proof of EXpar

Goal:

The interface equivalence, 6.3 of subsection 6.3.1, to be proved is:

[(cxwW, cxwRES, cxwRD) := EXpar(cinEX)]

=O

[(cxwW, cxwRES, cxwRD) := EXseq unh(cinEX)]

where cinEX is the list of input channels:

cinEX = (cdxW, cdxA, cdxB, cdxRS1, cdxRS2, cdxFUNC, cdxRD, cwx)

and

(cxwW, cxwRES,cxwRD) := EXseq unh(cdxW, cdxA, cdxB, cdxRS1, cdxRS2, cdxFUNC, cdxRD, cwx)






























loop forever do



























cwx⇒ wx;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
cdxW ⇒ dx.w;
cdxA⇒ dx.a;
cdxB ⇒ dx.b;
cdxRS1⇒ dx.rs1;
cdxRS2⇒ dx.rs2;
cdxFUNC ⇒ dx.func;
cdxRD ⇒ dx.rd;
cxwW ⇐ xxw.w;
cxwRES ⇐ xxw.res;
cxwRD ⇐ xxw.rd

























































As it was done for the decode stage, EXpar is reduced to its sequential version
EXseq unh. This step corresponds to the highlighted part of the following piece of
figure 6.8:

6.3. Proof Schema 187

EXpar =O EXseq

EXpar =O EXseq unh

EXpar

hide

fundamental DPS proof

The main steps are summarized. The proof is similar to the previous one.

Unfolding and Communication Elimination:

The proof starts by applying three times the indefinite loop unfolding law to obtain
the first sequential body of EXseq unh.

After the iterative communication elimination reduction, gen-comeli of page
104, ends, obtaining the equivalence:

EXpar =O P0;Q0;E0 (6.24)

where P0 has the form:





































a := dx.a;
[[

cwx⇒ wx;
resA := wx.res

]

||
[
b := dx.b

]
]

;

[
[
resB := wx.res

]
||

[
rs1 := dx.rs1;
rs2 := dx.rs2

]]

;

rd := wx.rd;
selectA := (rs1 = rd);
selectB := (rs2 = rd);
selA := selectA;
[

[
selB := selectB

]
||

[
if selA then [outA := resA] else [outA := a];
aluA := outA

]]

;

if selB then [outB := resB] else [outB := b];
aluB := outB;
func := dx.func;
xxw.w := dx.w; xxw.rd := dx.rd;
cdxW ⇒ dx.w; cdxA⇒ dx.a; cdxB ⇒ dx.b; cdxRS1⇒ dx.rs1; cdxRS2⇒ dx.rs2;
cdxFUNC ⇒ dx.func; cdxRD ⇒ dx.rd;
cxwW ⇐ xxw.w; cxwRD ⇐ xxw.rd





































188 6. Correctness Proof of a Pipelined Processor Architecture

Q0 is the following:


























































a := dx.a;
[[

cwx⇒ wx;
resA := wx.res

]

||
[
b := dx.b

]
]

;

[
[
resB := wx.res

]
||

[
rs1 := dx.rs1;
rs2 := dx.rs2

]]

;

rd := wx.rd;
selectA := (rs1 = rd);
selectB := (rs2 = rd);
selA := selectA;









[
selB := selectB

]
||
















[
if selA then [outA := resA] else [outA := a]

]

||

[
xxw.res := alures(func, aluA, aluB);
cxwRES ⇐ xxw.res

]







;

aluA := outA;



















;

if selB then [outB := resB] else [outB := b];
aluB := outB;
func := dx.func;
xxw.w := dx.w;
xxw.rd := dx.rd;
cdxW ⇒ dx.w;
cdxA⇒ dx.a;
cdxB ⇒ dx.b;
cdxRS1⇒ dx.rs1;
cdxRS2⇒ dx.rs2;
cdxFUNC ⇒ dx.func;
cdxRD ⇒ dx.rd;
cxwW ⇐ xxw.w;
cxwRD ⇐ xxw.rd


























































6.3. Proof Schema 189

and the tail statement is:

E0 ::





















































































a := dx.a;
[[

cwx ⇒ wx;
resA := wx.res

]

||
[
b := dx.b

]
]

;

[
[
resB := wx.res

]
||

[
rs1 := dx.rs1;
rs2 := dx.rs2

]]

;

rd := wx.rd;






































































































































selectA := (rs1 = rd);
selectB := (rs2 = rd);
selA := selectA;









[
selB := selectB

]
||
















[
if selA then [outA := resA] else [outA := a]

]

||

[
xxw.res := alures(func, aluA, aluB);
cxwRES ⇐ xxw.res

]







;

aluA := outA;



















;





































if selB then [outB := resB] else [outB := b];
aluB := outB;

























func := dx.func;






















xxw.w := dx.w;
xxw.rd := dx.rd;
cdxW ⇒ dx.w;
cdxA ⇒ dx.a;
cdxB ⇒ dx.b;
cdxRS1 ⇒ dx.rs1;
cdxRS2 ⇒ dx.rs2;
cdxFUNC ⇒ dx.func;
cdxRD ⇒ dx.rd;
cxwW ⇐ xxw.w;
cxwRD ⇐ xxw.rd;
T0























||





xxw.res := alures(func, aluA, aluB);
cxwRES ⇐ xxw.res;
T1





























||

[
T2

]





































||

[[
T3

]
||

[
T4

]]
































































||

[
T5

]




























































































































































190 6. Correctness Proof of a Pipelined Processor Architecture

where:

T0 ::















loop forever do












dxA⇐ dx.a; dxB ⇐ dx.b; dxRS1⇐ dx.rs1; dxRS2⇐ dx.rs2;
dxFUNC ⇐ dx.func;

xxw.w := dx.w; xxw.rd := dx.rd;
cdxW ⇒ dx.w; cdxA⇒ dx.a; cdxB ⇒ dx.b; cdxRS1⇒ dx.rs1;

cdxRS2⇒ dx.rs2;
cdxFUNC ⇒ dx.func; cdxRD ⇒ dx.rd; cxwW ⇐ xxw.w;

cxwRD ⇐ xxw.rd



























T1 ::









loop forever do






caluA⇒ aluA; caluB ⇒ aluB;
dxFUNC ⇒ func;
xxw.res := alures(func, aluA, aluB);
cxwRES ⇐ xxw.res















T2 ::







loop forever do




dxB ⇒ b; wxRESb⇒ resB; selMuxA⇒ selB;
if selB then [outB := resB] else [outB := b];
caluB ⇐ outB











T3 ::









loop forever do






dxRS1⇒ rs1; dxRS2⇒ rs2;
wxRD ⇒ rd;
selectA := (rs1 = rd); selectB := (rs2 = rd);
selMuxA⇐ selectA; selMuxB ⇐ selectB















T4 ::







loop forever do




dxA⇒ a; wxRESa⇒ resA; selMuxA⇒ selA;
if selA then [outA := resA] else [outA := a];
caluA⇐ outA











T5 ::





loop forever do
[
cwx⇒ wx;
wxRESa⇐ wx.res; wxRESb⇐ wx.res; wxRD ⇐ wx.rd

]





Obtaining the first EXseq unh Body:

The following form is obtained from equivalence 6.24 after removing the inner co-
operation statements and the redundant variables from P0;Q0:

EXpar =O EXseq unh body;Q1;E0 (6.25)

where EXseq unh body, and Q1 have the forms:

6.3. Proof Schema 191

EXseq unh body ::



























cwx⇒ wx;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
cdxW ⇒ dx.w;
cdxA⇒ dx.a;
cdxB ⇒ dx.b;
cdxRS1⇒ dx.rs1;
cdxRS2⇒ dx.rs2;
cdxFUNC ⇒ dx.func;
cdxRD ⇒ dx.rd;
cxwW ⇐ xxw.w;
cxwRES ⇐ xxw.res;
cxwRD ⇐ xxw.rd



























Q1 ::























































a := dx.a;
b := dx.b;
cwx⇒ wx;
resA := wx.res;
resB := wx.res;
rs1 := dx.rs1;
rs2 := dx.rs2;
rd := wx.rd;
selectA := (rs1 = rd);
selectB := (rs2 = rd);
selA := selectA;
if selA then [outA := resA] else [outA := a];
aluA := outA;
selB := selectB;
if selB then [outB := resB] else [outB := b];
aluB := outB;
func := dx.func;
xxw.w := dx.w;
xxw.rd := dx.rd;
cdxW ⇒ dx.w;
cdxA⇒ dx.a;
cdxB ⇒ dx.b;
cdxRS1⇒ dx.rs1;
cdxRS2⇒ dx.rs2;
cdxFUNC ⇒ dx.func;
cdxRD ⇒ dx.rd;
cxwW ⇐ xxw.w;
cxwRD ⇐ xxw.rd























































The details of the reductions can be found in section C.2 of appendix C.

192 6. Correctness Proof of a Pipelined Processor Architecture

Induction Step:

Applying a similar process to Q1;E0 the following equivalence is obtained:

Q1;E0 =O [EXseq unh body]
n−1;Q1;E0

After n−1 unfoldings, the following form will be obtained from equivalence 6.25:

EXpar =O [EXseq unh body]
n;Q1;E0

The equivalence for programs of length l = n may be reduced to:

EXpar =O [EXseq unh body]
n

6.3.7 Proof of EXseq unh

The interface equivalence, 6.5 of subsection 6.3.1, will be proved:

[(cxwW, cxwRES, cxwRD) := EXseq unh(cinEX)]

=O

[cxw := EXseq(cdx, cwx)]

where cinEX can be found in the previous subsection.

This step corresponds to the highlighted part of the following portion of figure
6.8:

EXpar =O EXseq

EXpar =O EXseq unh

EXpar

hide

fundamental DPS proof

EXseq is shown in subsection 6.2.4.3. In this step the hide function, subsection
3.3.4, is applied to EXsequnh, 186, with the following grouping channel correspon-
dences:

6.3. Proof Schema 193

cxw ←− (cxwW, cxwRES, cxwRD)
cdx ←− (cdxW, cdxA, cdxB, cdxRS1, cdxRS2, cdxFUNC, cdxRD)

The type of cwd is Typ XW , which matches the cartesian product of the types
of cwdW , cwdRES, cwdRD. cdx is of type Typ DX matching the product of the
types of cdxW , cdxA, cdxB, cdxRS1, cdxRS2, cdxFUNC, cdxRD channels.

6.3.8 Proof of WBunh

Last step establishes the equivalence 6.6 of subsection 6.3.1:

(cwdW, cwdRES, cwdRD, cwx) := WBunh(cxwW, cxwRES, cxwRD)

=O

(cwd, cwx) := WB(cxw)

The following part of figure 6.8 corresponds to this proof step:

WBunh =O WB

WBunh

hide

WBunh is shown in subsection 6.2.3.5 and WB in subsection 6.2.4.4. The hide
function is applied to WBunh with the following grouping channel correspondences:

cwd ←− (cwdW, cwdRES, cwdRD)
cxw ←− (cxwW, cxwRES, cxwRD)

The type of cwd and cxw is Typ XW , which matches the cartesian product of
the types of cwdW , cwdRES, cwdRD.

194 6. Correctness Proof of a Pipelined Processor Architecture

6.3.9 Final Step. Application of the Substitution Rule

The substitution can take place only when all the previous interface equivalences
have been proved. On the one hand, the equivalence:

[reg := Pipeline1(reg,mem)] =O [reg := V NCycle(reg,mem)]

where Pipeline1 = Pipeline[IDseq, EXseq,WB] was proved in subsection 6.3.3

and, on the other hand, the equivalences between parallel and sequential imple-
mentations of the pipeline stages were also proved. The substitution in parallelism,
lemma 2 of page 37, allows the replacement of all sequential stages by their parallel
equivalent ones, assuming that the deadlock-freeness condition holds. Note that the
substitution must replace IDseq, EXseq, and WB at once. Next schema shows it:

IDpar EXpar WBunhp

A

B
{

Pipeline1 = Pipeline [IDseq , EXseq , WBsq]

}

=O

V NCycle

substitution

After the substitution, obtaining the following equivalence:

{

Pipeline2 = Pipeline [IDpar , EXpar , WBunh]

}

=O

V NCycle

In the above, procedure Pipeline, with references to IDpar, EXpar, and WBunh

denotes Pipeline2, which is equivalent to V NCycle. The global result now is esta-
blished proving the goal interface equivalence, 6.1:

[reg := Pipeline2(reg,mem)] =O [reg := V NCycle(reg,mem)]

valid for programs of finite length.

6.4. Conclusion 195

6.4 Conclusion

In this chapter a complete equivalence proof of a pipelined processor model have
been presented. A non trivial model with forwarding circuits, inner parallelism,
and multiple communication statements, Pipeline2, has been proved equivalent to
a simple sequential Von Neumann processor model, V NCycle, which has neither
inner parallelism nor communications. The equivalence is valid only when both
models execute finite length programs of arithmetical register-register instructions
stored in the instruction memory.

The following figure illustrates the equivalence:

IF / ID EX / WBID / EX

Read
Address

Instruction
Memory

1

Add

Registers ALU

Read
Register 1

Read
Register 2

Write
Register

Write
Data

Read
Data 1

Read
Data 2

PC

Forwarding
Unit

R
e
g
W

ri
te

MUX

MUX

rs1

rs2

rd

func

a

b

rs1

rs2

func

rd

w

res

rd

wControl

fdRD / cdxRD

fdFUNC / cdxFUNC

fdRS2

cdxRS2

fdRS1

cdxRS1

cdxA

cdxB

cdxW

cfd

dxW cxwW

dxA

dxB

caluB

wxRESb

wxRESa

selMuxB selMuxA

caluA

dxFUNC

cxwRD

cxwRES

cwdW

wxRD

cwdRES

cwdRD

rd

res

}
cwx

wx

dxRS2

dxRS1

reg ::= V NCycle(reg, mem) ::






for k := 1..n do




ir := mem(pc);
pc := pc + 1;
reg(ir.rd) := alures(ir.func, reg(ir.rs1), reg(ir.rs2))











[reg := Pipeline2(reg,mem)] =O [reg := V NCycle(reg,mem)]

where the observed set, O, is {reg,mem}.

Since the program stored in mem(·) never changes, the equivalence indicates
that the histories of the value changes of the registers reg(·) of both models are the
same. Consequently, for the same initial values of the registers, and the same finite
length programs, stored in mem, two equivalent models end with the same register
file values.

196 6. Correctness Proof of a Pipelined Processor Architecture

In going from the left to the right hand side of the equivalence, the achieved
reduction on the upper bound on the state vector was 2−672, as subsection 6.3.2 has
shown.

Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary and Conclusions

Having completed the detailed presentation of the results of this dissertation, a sum-
mary of what has been accomplished, and of what remains to be undertaken, is in
order. This section concentrates on the former; pending work is reviewed in next
section. The thesis dealt with formal equivalence transformations of distributed
and parallel system models: communication elimination, sequentialization, and re-
dundant variable elimination, all with a simplification aim. These where viewed
as equivalence proofs constructed via application of laws as reductions in a system
model rewriting process. Systems were expressed in an imperative notation with ex-
plicit parallelism, cooperation, synchronous communication statements, and storage
variables. Chapter 2 introduced the two notations which have been used throughout
the dissertation, a variant of SPL and PADD. Two syntactic forms with the same
semantics.

7.1.1 Ground Notions

The theory needed to develop the proper dissertation results, has been summarized,
without proofs, in chapters 2 and 3. It includes a suitable equivalence between state-
ments, a set of basic program transformation laws for this equivalence, a procedure
reference unhiding rule, and a procedure reference substitution rule. A semantics
for the notation forms the ground layer for this theory. It is a small extension of the
Manna and Pnueli fair transition systems. It makes explicit, in both computations
and reduced behaviors, the values communicated via synchronous channels. These
two notions become interface computations and interface behaviors in the extension.
Altogether this has been overviewed in chapter 2. Some other notions, in the same
packet, summarized in chapter 3, are hierarchical proofs, organized around modular
procedures, and the possibility of hiding a set of channels under a common abstract

198 7. Conclusions and Future Work

channel. Both have been used in the pipelined processor sequentialization proof.

7.1.2 Applicability Conditions for the Laws

For general system models, an infinite set of proper communication elimination
laws is required. These are collected in a recursive schema. A contribution of
this dissertation, which is elaborated in chapter 3, has been the formulation of
applicability conditions of the schema of proper communication elimination laws.
They are necessary in order not to introduce deadlock, since these laws have to
sequentialize certain parallel substatements in some situations as the price for eli-
minating inner communication substatements.

The structure of the conditions reflects the recursive nature of the communication
elimination law schema. Pairs of substatements have to be examined for both the
presence and the order of communication operations within them. For certain given
substatement at one level, substatements at all the levels have to be examined.

7.1.3 Communication Elimination Procedures

A procedure for the elimination of a single pair of matching communications from
a bounded communication (BC) statement has been developed as another contri-
bution. It transforms the statement only by the application of laws as reductions.
It determines the order of the proper communication elimination law required by
the statement and the pair, transforms the statement for structure matching via
the introduction of nil statements, and checks the applicability conditions. It has
been used within another procedure for the automatic elimination of all matching
pairs of a statement. It tries to find a suitable sequence of laws which, applied as
reductions of a rewriting process, eliminates all the inner communication operations
from a given BC statement, whose inner communications are outside the scope of
selection statements. It has been proved that when the procedure terminates, in
the sense that all the required applicability conditions hold, deadlock freeness of the
original program can be decided from the termination state. When the procedure
does not terminate nothing can be said about this question. Although the proce-
dure to eliminate a single pair was covered in chapter 4, the iterative procedure to
eliminate all pairs of matching communication operations is dealt with in chapters
3 and 4. It has polynomial complexity, as shown in the main text.

7.1. Summary and Conclusions 199

7.1.4 An Interactive Prover

Communication elimination and sequentialization proofs are too cumbersome to be
carried out manually. The help of a suitable tool is needed. Therefore, as an-
other contribution, an interactive tool for the construction of these proofs has been
developed. Chapter 5 is devoted to it. The prover guarantees that transforma-
tions conform to the accepted laws; it has commands for the invocation of complex
procedures, such as communication elimination, and for simpler transformation pro-
cedures as well.

A set of such procedures carries out permutations on k-ary parallelisms, asso-
ciations, flattening of parallelisms with associations in them, etc. The basic trans-
formation with a non-communication elimination law is carried out with procedure
apply. The prover can be expanded with relative ease, thanks to its modular design.

7.1.5 An Example of Sequentialization Proof

As an application, a sequentialization proof of a pipelined DLX processor model,
incorporating four stages and forwarding circuits, has been constructed with the help
of the interactive prover. The proof involves proof decomposition around procedures,
channel hiding under abstract channels, the communication elimination procedure,
sequentialization, and redundant variable elimination; all of these items have been
either overviewed or summarized in the main text. The sequential model obtained
after the proof, which is interface equivalent to the original pipelined model, with
respect to the processor registers as the observed set O, is a simple loop whose body
has the four steps of a processor operating on its register file only: instruction fetch,
operand register read, ALU operation, and writing the result into the destination
register; a very intuitive equivalence. This is the function of a correct pipeline
implementation of a processor. The reduction of the upper bound on the number of
states of the model, attained in this transformation, is of 2−672, a quite impressive
result.

7.1.6 Difficulty of Sequentialization

A general observation in DPS proofs has been the size of the statement resulting from
the communication elimination stage. The pipelined processor proof is an example.
It is believed, however, that automatic construction of the needed simplification
parts of proofs will be possible in many cases; as it seems to be for the same example.
Nevertheless new examples will need new automatic simplification procedures, with
varying goals. Will this go on forever? This touches the issue of completeness, which
has not been even attempted in this work.

200 7. Conclusions and Future Work

7.1.7 A Final Concluding Word

This dissertation has contributed to essential formalization aspects of communica-
tion elimination and distributed program sequentialization proofs, and has made
them possible in practice; for statements whose inner communications are not selec-
tion embedded. It has allowed to envisage that further automatic proof construction
procedures are possible, and has also established the ground layer for the develop-
ment of general communication elimination and sequentialization automatic proof
construction for statements whose inner communications are selection embedded.

In spite of the huge amount of effort already devoted to the area, before and
during this thesis, much work still needs to be done until communication elimina-
tion and sequentialization become a practical method. Nevertheless the results of
this thesis have enlarged its foundations and given the necessary encouragement for
continuing the effort.

7.2 Future Work

7.2.1 Further Automation of DPS Proofs

The communication elimination step of DPS has already been automatized; but the
remaining parts are also candidates for automatization. For instance, TPs combining
parallelism to concatenation transformations with redundant variable elimination
would be applicable to partially automatize some steps of the DLX processor proof.
Some of the possibilities are outlined in this section. Using them, the fundamental
DPS proof of Step 4, figure 6.8 of page 158, would be carried out with about ten
interactive steps.

7.2.1.1 Cooperation Substatement Closening

This transformation procedure would try to mechanize the multiple applications of
the Cooperation to Concatenation reduction, as in step (iv) of the proof of Pipeline1
of page 169. The goal would be to reach a predetermined sequential form starting
from a parallel one, trying to eliminate parallelism from the original statement.

Basically the user would indicate a pair of statements within a statement formed
with cooperation and concatenations. The transformation procedure would apply
only Cooperation to Concatenation reductions in order to reach a sequential com-
position, where the two statements of the pair are closer in sequence and the inner
parallelism is removed.

The transformation would proceed as far as the parallel substatements are dis-

7.2. Future Work 201

joint and have no inner communication statements.

Procedure coopclosen − cooperation substatement closening

Input: S is the input statement in expanded PADD notation, having paral-
lelism and concatenation top substatements only,

a is the point of the first statement of the pair within S,

b is the point of the second statement of the pair within S,

p is the desired sequential order: [a; ...; b] or [b; ...; a], this order can
not be necessarily achieved in all situations.

Output: S′, a statement without cooperation operators equivalent to S after
applying several Cooperation to Concatenation reductions to it. So
that statements a and b are closer in sequence within S′, and in the
sequential order indicated by p.

The cooperation to concatenation laws are applied whenever the
disjointness and non-communication applicability conditions are ful-
filled.

Output: The desired order of a and b is achieved only if it is possible.

The position of these two statements within the obtained sequential
form does not matter.

When no transformation can be applied no transformation is carried
out, and a failure indication is reported.

For instance, step (iv) of Pipeline1 proof, page 169, now could be reduced in one
step applying CoopClosen transformation procedure, where the inputs are:

S ::



































[
instr := mem(pc);
pc := pc + 1

]

||







if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)













;

ir := instr



















||

[
wx := xw

]












b a p = [a; ...; b]

after the reduction, the following sequential form would be obtained.

202 7. Conclusions and Future Work

S′ ::














wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
instr := mem(pc);
pc := pc + 1;
ir := instr;















a

b

Observe that the obtained S′, statements a and b are in the desired sequential
order, as parameter p establishes, and the inner parallelism is removed. In this
example the transformation applies twice Cooperation to Concatenation reduction.

7.2.1.2 Concatenation Substatement Closening

The multiple applications of Concatenation Commutativity reduction of step (v) of
the proof of Pipeline1 of page 172, can be mechanized in a transformation proce-
dure. The concatenation closening transformation procedure would try that two
statements of sequential composition become closer. This is possible since most of
the statements of the initial sequential form are disjoint, and simple concatenation
permutation rules can be applied.

The user would be prompted to indicate two sequential statements within the
given input cooperation statement, and as a result a new sequential form would be
obtained. The transformation would have applicability conditions. The statements
to be permuted would have to be disjoint and have no communication statements.

Procedure concatclosen − concatenation substatement closening

Input: S is the input statement in expanded PADD notation,

a is the point of the first statement within S,

b is the point of the second statement within S.

Output: S′, a sequential composition equivalent to S after applying several
Concatenation Commutativity reductions to it, so that statements
a and b are closer in sequence within S′, The concatenation com-
mutativity laws are applied whenever the disjointness applicability
conditions are fulfilled.

When no transformation can be applied no transformation is carried
out, and a failure indication is reported.

7.2. Future Work 203

7.2.1.3 Iterative Redundant Variable Elimination

The redundant variable elimination step, for instance in the proof of Pipeline1 of
page 173 (step (vi)), is another candidate to be mechanized. In our proofs, after
applying communication elimination, some redundant variable assignments appear
in the resulting form. These can be eliminated applying variable and assignment
elim-intro law 13, page 40, and obtaining a simpler form.

The procedure, shown below, searches assignments within S by calling iteratively
procedure NextV arAssign which would search for the next assignment as a candi-
date to be removed and would return p, the point to the assignment. Next it would
apply V arElim transformation procedure, Elimination of Redundant Variables of
section 5.4, page 138, which would try to remove it and, if successful, would obtain
an equivalent statement S′.

Procedure itevarelim − iterative redundant variable elimination

Input: S is the input statement in expanded PADD notation.

Output: S′ a statement equivalent to S, where some of the redundant vari-
able assignments within S have been removed.

When an assignment can not be eliminated, varelim exits with
failure, but the procedure loops and searches for the next one.

S′ := S
(p, existp) := nextvarassign(S′)
while existp do

(S′, failure) := varelim(S′, p)
(p, existp) := nextvarassign(S′)

7.2.1.4 General Substatement Closening

A higher level transformation procedure could be defined on top of the above TP’s.
It would automatize the last DPS steps, those applied after the communication elimi-
nation: cooperation to concatenation, concatenation commutativity, and redundant
variable elimination.

The goal of this new TP would be to reach a predetermined simple sequential
form. Given two substatements within an input statement, the TP would try to put
these two substatements closer in sequence and in a predetermined order. It would
apply iteratively cooperation and concatenation closening, and simple simplifica-
tion TP’s until the desired sequential form is reached. Simple simplification would

204 7. Conclusions and Future Work

apply iterative redundant variable elimination, and basic arithmetic and boolean
expression simplifications.

7.2.2 Further Generalization of Communication

Elimination Laws

7.2.2.1 Introduction

The communication elimination law described in chapter 3 is not the unique eli-
mination law, there exist more general laws; nevertheless they are more complex.
Basically the communication elimination laws are based on the definition of the
standard form of top statements, lemma 4 of page 45. It could be generalizated by
partitioning the P statements, as the next subsection details.

7.2.2.2 Top Statements with P Partition

The form of the top level statements of lemma 4 is:

Gx
k = Hx

k−1; [G
x
k−1||P

x
k−1];T

x
k−1

This is used successfully in many examples, but there are other possibilities. The
recursive definition of the elimination laws, is shown below for an arbitrary k ≥ 0:









H l
k;

[
Gl

k || P
l
k

]
;

T l
k









||









Hr
k ;

[
Gr

k || P
r
k

]
;

T r
k









=O









[
H l

k || Hr
k

]
;

[
Gk || P l

k || P r
k

]
;

[
T l

k || T r
k

]









Observe that P l
k and T r

k are in parallel in the l.h.s. of the equivalence, but not in the
other side. In case of P l

k and T r
k communicate, the above laws can not be applied

due to applicability conditions not being satisfied.

In some situations where statements P and T may communicate, P may be
partitioned as a binary concatenation as:

P l
k =O [Pml

k ; P tl
k] and P r

k =O [Pmr
k ; P tr

k]

Then the new elimination laws, for k ≥ 0, become:

7.2. Future Work 205









H l
k;

[
Gl

k || P
l
k

]
;

T l
k









||









Hr
k ;

[
Gr

k || P
r
k

]
;

T r
k









=O











[
H l

k || Hr
k

]
;

[
Gk || Pml

k || Pmr
k

]
;

[[
P tl

k ;
T l

k

]

||

[
P tr

k ;
T r

k

]]











In the above new laws, the P tl
k ’s, the tail parts of the P l

k’s, are in sequence
with the T l

k’s and in parallel with the T r
k ’s in both sides of the equivalence, while the

Pml
k ’s, the heading part of the P l

k’s remains in parallel with the Gl
k’s and in sequence

with the T l
k’s and T r

k ’s in the r.h.s. Similarly for the P tr
k ’s and Pmr

k ’s.

These new laws are more general than Theorem 4, but they have some extra
complexity. For instance, the P ’s would have to be partitioned. However, in some
cases the binary partition does not help. The applicability conditions of the above
laws, similar to Theorems 1, 2, and 3 of chapter 3, would have to be rewritten to
include the new Pmx

k and P tx
k substatements in the elimination restrictions.

Example: Given the following statement S, we would like to eliminate the commu-
nication over channel α:

S ::

[[
c0 ⇒ α;
c1 ⇒ β

]

||
[

c2 ⇐ α || c3 ⇐ β
]

]

After transforming S, the top level form of lemma 4 for k = 0 would be reached,
obtaining S′:

S′ ::













nil;
[

c0 ⇒ α || nil
]
;

c1 ⇒ β






||







nil;
[

c2 ⇐ α || c3 ⇐ β
]
;

nil













Since the pair (P r
0 , T l

0) communicates, the elimination law of chapter 3 could not be
applied due to the applicability conditions, Theorem 1.

In this case, we could apply the new communication elimination law introduced
in this subsection. After the P partition, the new top level form would be the
following:

S′′ ::

















nil;
[

c0 ⇒ α ||

[
nil;
nil

]]

;

c1 ⇒ β









||









nil;
[

c2 ⇐ α ||

[
nil;
c3 ⇐ β

]]

;

nil

















206 7. Conclusions and Future Work

Now channel α would be eliminated applying the new laws.

The transformation obtained with the new laws would be:

S′′′ ::











[
nil || nil

]
;

[
c2 := c0 || nil || nil

]
;

[[
nil;
c1 ⇒ β

]

||

[
c3 ⇐ β;
nil

]]











Observe that in the above form P tr
0 and T l

0 remain in parallel after the elimi-
nation, so they could communicate in the resulting form and no deadlock would be
introduced. After simplifying the nil statements, one obtains:

S′′′′ ::





[
c2 := c0

]
;

[
c1 ⇒ β || c3 ⇐ β

]





7.2.2.3 Alternative Construction of Top Statements

The construction of the standard forms of the top statements, Gl and Gr, is defined
in Theorem 5 of page 54. Basically it adds outermost layers of nil statements
around the G statements. This is not the only possible construction, for instance
an innermost insertion also could be applied, as the next example illustrates.

Example: Given the following statements in parallel:

Sl ::



















H l
1;



















H l
0;

[
c1 ⇒ α || P l

0

]
;

T l
0







|| P l

1












;

T l
1



















|| Sr ::








Hr
0 ;

[
c2 ⇐ α || P r

0

]
;

T r
0








The goal is the elimination of the matching pair over channel α. Sl has a form of
order 2 and Sr of order 1, then we make n = 2 and construct Gl

2 and Gr
2. In this case

Gl
2 = Sl, and by inserting one innermost layer of nil statements we would obtain

Gr
2 from Sr:

7.2. Future Work 207

Gr
2 ::


















Hr
0 ;

















nil;
[

c2 ⇐ α || nil
]
;

nil







|| P r

0










;

T l
0


















Now we would apply the communication elimination to Gl
2 || G

r
2, obtaining the

following:














[
H l

1 || Hr
0

]
;















[
H l

0 || nil
]
;

[
c2 := c1 || P l

0 || nil
]
;

[
T l

0 || nil
]







|| P l

1 || P r
0








;

[
T l

1 || T r
0

]














The difference between the outermost addition and the innermost insertion lies
mainly in the construction of the G top statements. Procedure bin-comeli has been
implemented as a special case of Theorem 5, which adds outermost layers. However,
for orders n > 1, there are many possible ways of inserting nil statements. All would
be valid if they satisfy lemma 4 and the applicability conditions of Theorem 5.

In general the insertion of nil statements would depend on which pairs of T
statements, (T l

i , T
r
j) where i, j ∈ [0, n − 1], communicate. For instance, in the

example below, if T r
0 communicates with T l

0 then an outermost nil addition would be
the right choice. On the other hand, if T r

0 communicates with T l
1 then an innermost

nil insertion would be the right choice for the applicability conditions to hold.

208 7. Conclusions and Future Work



















H l
1;



















H l
0;

[
Gl

0 || P l
0

]
;

T l
0







|| P l

1












;

T l
1



















||









Hr
0 ;

[
Gr

0 || P
r
0

]
;

T r
0









?

In case of T l
0 communicates with T r

0 , we would construct the top statements of
the above example as follows:



















H l
1;



















H l
0;

[
Gl

0 || P l
0

]
;

T l
0







|| P l

1












;

T l
1



















||



















Hr
0 ;



















nil;
[

Gr
0 || P r

0

]
;

T r
0







|| nil












;

nil



















This construction combines outermost and innermost nil insertion. This is one of
the possible ways to achieve the communication elimination when the applicability
conditions of Theorem 5 are not satisfied. With this construction the communication
pair could be eliminated.

7.2.3 Deadlock Situations

The communication elimination can not be applied always. Sometimes it fails due
to the applicability conditions, which guarantee that no deadlock is introduced after
the elimination.

The communication elimination procedure, PElim of page 55, can end in one of
the following situations:

a) Successful termination. Then the initial statement S is deadlock-free.

7.2. Future Work 209

b) Unsuccessful termination. Then there is still some communication left in the
communication front of S, ComFront(I, S). The remaining unmatched com-
munication statements indicate that the initial statement S is not deadlock-free.

c) Exit with failure. Then the applicability conditions are not fulfilled. The resulting
statement would deadlock after applying the elimination. Nothing can be decided
from initial model deadlock-freeness.

Currently, failure may indicate either that the input statement deadlocks or that
after applying the law a deadlock would be introduced in the resulting statement.
Both situations are not distinguished now. For instance, the following statement S1

deadlocks:

S1 ::











H l
0;



 α⇐ a ||




β ⇐ b ;

γ ⇐ c







 ;

T l
0











||











Hr
0 ;

[

α⇒ d || γ ⇒ e
]

;

β ⇒ f











where H l
0, Hr

0 , and T l
0 do not have any communication statement. The deadlock

arises when β ⇐ b tries to communicate with β ⇒ f , and γ ⇐ c with γ ⇒ e. In
the above example, one of the applicability conditions of procedure bin-comeli,
page 66, checks only that P l

0 does not communicates with T r
0 . Adding the following

condition:

commprecede(P l
0, T

r
0 , P r

0)

where P l
0 ::

[
β ⇐ b;

γ ⇐ c

]

, P r
0 ::

[
γ ⇒ e

]
and T r

0 ::
[

β ⇒ f
]
.

Procedure commprecede, page 76, checks whether within P l
0, the communica-

tions with T r
0 precede the communications with P r

0 , and decides failure in the law
application. Actually, deadlock in the initial model could be decided with a more
elaborated processing.

This condition suffices to detect a deadlock situation. In general, we should
further study how to detect deadlock in input statements. Based on the whole
structure of the top parallel statements, new set of deadlock conditions could be
defined. They would warn about these anomalous situations.

210 7. Conclusions and Future Work

7.2.4 Elimination of Communications within Selection

Scopes and Non-disjoint Pairs

The communication elimination procedure, PElim of page 55, does not apply when
the synchronous communications to be eliminated are under the scope of selection
statements neither when the competing pairs, of the same front, share a communi-
cation statement, thus not being disjoint. This subsection introduces briefly some
notions needed to handle these cases. Their solution endows the application domain
of formal sequentialization with more generality.

The new communication elimination procedure would be implemented on top of
PElim. It would try to eliminate inner communications which may be under the
scope of selections and with possibly non-disjoint communication pairs. The goal
would be to build a top selection composition whose alternatives would be selection-
free BCS, where procedure PElim would be applied. In general, there are three
possible location cases for a communication c of a pair p in CompPairs(I,S) within
the scope of a selection construct:

a) as a guard of a communications selection

b) within an alternative, A[c], of a communications selection whose communication
guard is an external communication ext

c) within an alternative, A[c], of a normal selection

where the communication c has the forms α⇒ v or α⇐ v.

Corresponding to the above three situations, a new set of elimination laws should
be defined. An example of the first case is:

[
· · ·α1 ⇐ v1; · · · || · · · [b1, α1 ⇒ v2;A1 or b2, α2 ⇐ v3;A2]; · · · || · · ·α2 ⇒ v4 · · ·

]

where the bi’s are boolean guards, and the communications via channels α1 and
α2 stand as guards of a communications selection. The expression has two distinct
competing pairs : (α1 ⇐ v1 , α1 ⇒ v2) and (α2 ⇐ v3 , α2 ⇒ v4).

The following is an example of the second case:

[
· · ·α1 ⇐ v1; · · · || · · · [b1, cext⇒ v2; · · ·α1 ⇒ v3 · · · or R]; · · · || · · ·

]

where R stands for the rest of the selection statement. Here the pair is over channel
α1.

For the third case one has the statement:

[
· · ·α1 ⇐ v1; · · · || · · · [b1, · · ·α1 ⇒ v2 · · · or R]; · · · || · · ·

]

7.2. Future Work 211

7.2.4.1 Example

As an illustration of the elimination under selections, the following procedure models
a step of a stop and wait communications protocol:

(α, ack) ::= Step (m) ::





























local δ, η : channel of message
local γ channel of boolean
local ε : channel of nil

Emitter ::
[
η ⇐ m; γ ⇒ ack

]

||

DataChannel ::






local d : message

η ⇒ d;

[
true, δ ⇐ d;nil
or

true, ε⇐;nil

]






||

Receiver ::







local r : message
[
true, δ ⇒ r;α⇐ r; γ ⇐ T

]

or
[
true, ε⇒; γ ⇐ F

]



































There are three statements connected in parallel: Emitter, DataChannel, and
Receiver. The message to be sent is input to Step in variable m of global memory
within Emitter, which sends it to DataChannel via η and waits on channel γ for
acknowledgement. The message is delivered to Receiver via channel δ. A transmis-
sion error is simulated, non-deterministically, by communicating to Receiver through
channel ε of type nil. Only the implicit synchronization suffices, no value passing
is needed. The two options are the alternatives of the communications selection
within DataChannel, matched by a communications selection within Receiver. After
outputting the message from Step via channel α, Receiver acknowledges to Emitter
by passing a true value through channel γ. In case of an erroneous reception, a false
value is sent instead. This boolean is stored in variable ack of global memory as a
result of Step.

The interface set of the above example, Step, would be O : {α, ack,m}. The
equivalent program resulting from a DPS proof would be the following:

(α, ack) ::= SimpleStep (m) ::





[
true, [α⇐ m; ack := T]

]

or
[
true, [ack := F]

]





Observe that parallelism and inner channels, δ, η, γ, and ε, have been eliminated,
only remains a selection top statement as desired.

The overall equivalence would be: Step ={α,ack,m} SimpleStep.

212 7. Conclusions and Future Work

7.2.4.2 Difficulties of general elimination

In order to illustrate the difficulties of the elimination within selection scopes, the
following statement, UndSS:

UndSS ::




















































H1;





[b1, c1 ⇒;A1]

or

[b2, c2 ⇐;A2]




 ;

T1












||






















H2;



























b3;












H3;





[b31, c2 ⇒;B2]

or

[b32;B3]




 ;

T3























or
[
b4;H4; c1 ⇐;B4

]

















;

T2































































is a parallelism with two top statements which have selections. The set of internal
communications is I : {c1, c2}. The notations c⇒ and c⇐ denote send and receive
over a nil typed channel. Neither the Hi nor B4, T2 and T3 statements have internal
communications. Then

ComFront(I,UndSS): {<> c1, []c2, <> c2, []c1}

and

CompPairs(I,UndSS): {(<> c1, []c1), ([]c2, <> c2)}.

Notice that if, say, T3 had an internal communication it would be in the front when
b32 evaluates to true and B3 has no inner communication. The execution of the two
associated communication events depends on the truth value of boolean guards b1,
b2, b3, b4, b31 and b32. Thus it could be said, using the terminology of [Tay83], that
the two pairs are in the possible rendez-vous set. The choice of alternative in the

7.2. Future Work 213

upper communication selection depends on both boolean guard evaluation and on
the readyness of communications.

Since communication events depend on boolean guard evaluation, deadlock also
depends on that, adding an extra difficulty. For instance, in UndSS, the state where
b1, b3, and b31 are true, when control visits them, gives a deadlock when b2 evaluates
to false but does not when it evaluates to true; since then pair ([]c2, <> c2) will be
always taken. Similarly for the state where b2 and b4 are true when b1 is or is not
true.

The following illustrates boolean deadlock for case c) at the beginning of section
7.2.4,

Sb ::
[[[

b11, A11[c1]
]
or

[
b12, A12[c2]

]]
||

[[
b21, A21[c̄1]

]
or

[
b22, A22[c̄2]

]]]

Here the choice of an alternative does not depend on the communications, but on
boolean guards only. Now, boolean deadlock may take place even if one of the
conditions b11 ∧ b21 and b12 ∧ b22 are true. For instance, when b11 ∧ b21 ∧ b12 ∧ ¬b22,
the left parallel process may choose non-deterministically its second alternative,
the one whose guard is b12, while the one at the right can only choose its first
alternative, thus giving deadlock. But, in addition, when ¬b21 ∧ ¬b22 ∧ ¬b12, the
deadlock single alternative behavior A11(c1) is possible. Similar behaviors may occur
when ¬b11 ∧ ¬b12.

In order to assess the complexity of the general elimination problem, some bounds
based on the complexities of deciding whether a given pair is in the possible rendez-
vous set (PR set for short) of [Tay83] can be given. In that reference, the program
is assumed to have only one level of parallelism, with no recursive call. This is
a subclass of BC statements. Clearly, any pair in the PR set is eliminated by
a communication elimination procedure. Therefore, the complexity of elimination
cannot be lower than the complexities of the PR problem. Translating the results
of [Tay83] to the terminology used in this thesis, the general elimination from BC
statements has non-polynomial, NP-complete, complexity for the following classes
of BC statement:

1. Neither branches nor communication selection substatements allowed, but al-
lowing non-disjoint pairs.

2. Neither branches nor non-disjoint pairs allowed, but allowing communication
selection substatements.

Also, linear complexity proportional to the number of basic statements (nodes in
the flow-graphs of [Tay83]) is attained for BC statements with neither branches nor
communication elimination substatements, and having no non-disjoint pair. Notice

214 7. Conclusions and Future Work

that the polynomial complexity of the communication elimination procedure given
in this thesis is due to the removal of the single level of parallelism restriction.
Therefore, the cause of the NP complexity is the non-determinism common to cases
1 and 2 above. It is important to say that, in all these bounds, it has been assumed
that the elimination algorithm terminates, all applicability conditions being met, for
the classes of statements considered.

Let us turn our attention now to non-BC statements. A specific class of them
has been treated in this thesis: linear recursion or, equivalently, indefinite iteration.
The complexity would be polynomial for the proof of the pipelined processor. In
spite of the simplicity of this case, it is encountered very often in the applications.

Unfortunately, the elimination complexity for the general class, having arbitrary
structures of recursive procedure references is not decidable. This inference is based
on the work reported in [Ram00]. There, as in [Tay83], the problem of statically
deciding whether a pair belongs to the possible rendez-vous set is treated; and shown
to be undecidable. This gives a lower-bound, as in the BC statement case, on the
complexity of the general communication elimination procedure. Since, should it
terminate, it would give an effective way to compute the PR set.

In spite of these complexity results, further work has to be undertaken; since
most applications have relatively simple structures. In addition, deadlock situations
caused by improper boolean guards are assumed to be non-existent in the current
stage. All this has to be further studied. First for general BC statements with
any structure of selections embedding internal communications. This will involve
sequence and parallelism distributive laws, over selections. After that, the funda-
mental sequentialization proof for non-BC statements with linear recursion has to
be analyzed.

7.2.5 Completeness

Until now, only the soundness of the laws has been established. The work is in a
too early stage to attempt the study of completeness of a set of laws. More proofs
have to be done, and extension to selection embedded inner communications has to
be finished. Nevertheless, some comments on that will be provided in this section.

Informally, completeness may mean that for each statement belonging to a cer-
tain well defined class of statements SP , an equivalent sequential form can always
be derived applying laws belonging to a certain set L. This seems to be a sort
of minimal notion, since nothing is said about the sequential form, needing to be
transformed to a concrete form desired by the user. But these transformations may
be treated in the pertinent literature which would have to be searched and studied.

The first difficulty is encountered in the non-termination possibility of the com-

7.2. Future Work 215

munication elimination procedure. For which class of models is termination guaran-
teed? In section 7.2.2 above some changes to give more generality to the current
recursive communication elimination law schema have been suggested. Therefore,
the terminating class would be enlarged then.

A simple class of models for which termination seems to be guaranteed is commu-
nication-closed-layered models. In them communications are organized in time lay-
ers. As execution proceeds, the communication events of a layer never occur before
those of preceding layers.

Assuming that the class of models, within BC statements, for which communica-
tion elimination terminates has been clarified, then obtaining a sequential form after
communication elimination seems to be guaranteed, by application of parallelism
to sequence transformation laws. This is so since parallel statements are disjoint.
More specifically, the heading statements H, of the communication elimination law
schema, are disjoint and free of internal communications. Also, the tail statements
T are eventually reduced to either nil or to disjoint non-communicating statements
by the terminating communication elimination proof construction procedure.

These preliminary thoughts pend to be validated, modified, formalized, and
proved true in the course of a future effort.

216 7. Conclusions and Future Work

Appendix A

SOUNDNESS OF THE LAWS

The soundness proofs of the basic laws given in subsections 2.9.2.1 and 2.9.2.2, with a
proof of a law of the communication elimination schema, and of the unboundedness
of the schema, are given in this appendix. This is carried out in the semantic
framework of the Manna and Pnueli books. The justification of the need of avoiding
strong fairness is also proved (Theorem 6).

The appendix contains an updated version of part of [BBCN01]. It does not
belong to the thesis contribution; it has been added to make this account more
self-contained.

A.1 Simple Cases

The first set of auxiliary laws is based in the following congruences. Let pm(k),
where k = 1..m, denote the k-th integer of a permutation of the list 〈1, 2, . . . ,m〉.
Then:

nil;S ≈ S S; nil ≈ S S1|| . . . ||Sm ≈ Spm(1)|| . . . ||Spm(m)

S1; . . . ;Sk; . . . ;Sl; . . . ;Sm ≈ S1; . . . ; [Sk; . . . ;Sl]; . . . ;Sm

c1, S1 or . . . or cm, Sm ≈ cpm(1), Spm(1) or . . . or cpm(m), Spm(m)

c1, com(α1) , S1 or . . . or cm, com(αm) , Sm

≈
cpm(1), com(αpm(1)) , Spm(1) or . . . or cpm(m), com(αpm(m)) , Spm(m)

218 Appendix A. Soundness of the Laws

The justification of these congruences is simple, since from the semantic definition
of the notation, given in section 2.5, it can be seen that both sides of their congruence
symbols have the same associated transitions.

A.1.1 Justification of the auxiliary laws

Rules allowing the introduction and the elimination of the skip statement are needed
in the applications. The following remarks make their mathematical justification
hard.

Remark 1 (Skip Concatenation Non-congruences): Let S and S̃ be statements. Then

S 6≈ S; skip S; S̃ 6≈ S; skip; S̃

Hence, in general

S 6≈ skip;S

As an intuitive clue to justify this remark, deleting an skip statement may enable
transitions associated with the statement which immediately follows it, particularly
joint synchronous communication transitions formed with a statement parallel with
it in some program context. This leads into an infinite number of enablings when
the skip statement is within an infinite loop in the program context, and then some
computation may be excluded from one side due to the fairness requirements with
respect to the enabled transition, but not in the side where the skip is present.

Justification In order to prove the first relation, define the program context
P [S] as follows:

A.1. Simple Cases 219







































local x, y, z, v : boolean where x = T, y = T, z = T, v = T

local α, β, γ, δ : channel of boolean

































P1 ::









k0: while x do






k1: S; k2:





k3: β ⇒ x; k4: α ⇐ F; k5: γ ⇐ F

or

k6: γ ⇐ T



 ;

k7:















||

P2 ::

[
ℓ0: while y do

[
ℓ1: γ ⇒ y

]

]

||

P3 ::









m0: while z do






m1: α ⇒ z; m2:





m3: β ⇐ F; m4: α ⇒ z; m5: δ ⇐ F

or

m6: δ ⇐ T



 ;

m7:















||

P4 ::

[
n0: while v do

[
n1: δ ⇒ v

]

]







































































Then, all the computations of P [α ⇐ T] always terminate under the fairness
assumptions of section 2.5. This is due to the synchronization between P1 and P3

imposed by the synchronous communication via channel α. Just after this tran-
sition is taken, the joint transition between the same two processes, but via β, is
enabled. Since both communication statements occur within an indefinite loop in
both processes, this enabling occurs an indefinite number of times. But, since the
joint transition associated with synchronous communication statements are in the
compassion set (strongly fair), the synchronous communication via β has to be taken
eventually. Once this occurs, the variables x, z, v, and y take the value false and
the four processes terminate.

The communication via β may not occur in the program P [α⇐ T; skip] since
the presence of the new skip statement allows the existence of indefinite computa-
tions having no enabling of the communication via β. This is so since now, due to
the skip statement, the synchronization via channel α does not necessarily activate
simultaneously the control locations corresponding to labels k2 and m2, consequently
the joint transition of the synchronous communication via channel β may never be
enabled. Therefore program P [α ⇐ T; skip] has a non-terminating computation.
This proves the first non-congruence. The other two are consequences of the first.

�

Remark 2 (Skip and Nil Cooperation Non-congruences): Let S be a statement. Then

S 6≈ S || skip S 6≈ S || nil

220 Appendix A. Soundness of the Laws

Justification Let

S =





k0: β ⇒ x; k1: α ⇐ F; k2: γ ⇐ F

or

k3: γ ⇐ T





Define the program context P [S̃] as follows:

































local x, y, z, v : boolean where x = T, y = T, z = T, v = T

local α, β, γ, δ : channel of boolean



























P1 ::

[
k0: while x do

[

k1: α ⇐ T; k2: S̃ ; k3:
]

]

||

P2 ::

[
ℓ0: while y do

[
ℓ1: γ ⇒ y

]

]

||

P3 ::









m0: while z do






m1: α ⇒ z; m2:





m3: β ⇐ F; m4: α ⇒ z; m5: δ ⇐ F

or

m6: δ ⇐ T



 ;

m7:















||

P4 ::

[
n0: while v do

[
n1: δ ⇒ v

]

]



























































Then P [S] always terminates under the fairness assumptions of section 2.5, but
P [S||skip] and P [S||nil] have a non-terminating computation due to the existence
of the skip-type entry transition of the cooperation statement. The reasoning is
similar to the one of the previous remark.

�

The following two theorems are important since they identify, within the SPL
notation of section 2.5, the strong fairness assumptions about communication state-
ments as being responsible for the irregular behavior of the skip and nil statements,
as in the non-congruences of the above remarks.

Theorem 6 (Concatenated Skip Deletion): Let S be a statement. Let Sncs be a state-
ment which is neither a communication selection whose communication guards are
not all asynchronous sends, nor synchronous communications. Then

S;Sncs ≈ S; skip;Sncs

This congruence holds without the above restrictions upon Sncs when no transition
associated with communication statements is in the compassion set C.

A.1. Simple Cases 221

Notice that the congruence holds when Sncs is a selection all of whose guards are
asynchronous sends. As appendix A.2 shows, the restrictions of the lemma avoid
the activation of a front transition of Sncs, in a computation of the right hand side,
which is not taken in it. This would take place when the skip is deleted.

Theorem 7 (Parallel Skip and Nil Deletion): Let S be a statement. Let Sncs and S′
ncs

be statements which are neither communication selections whose communication
guards are not all asynchronous sends, nor synchronous communications. Let S̃ be
an arbitrary statement. Then

S;Sncs; S̃;S′
ncs ≈ S; [skip||[Sncs; S̃]];S′

ncs

and

S;Sncs; S̃;S′
ncs ≈ S; [nil||[Sncs; S̃]];S′

ncs

These congruences hold without the restrictions upon Sncs when no transition asso-
ciated with communication statements is in the compassion set C.

The justification is similar to the one of the previous theorem. When deleting the
parallel skip or nil, the binary cooperation disappears together with its entry and
exit transitions. Here these entry and exit transitions of the cooperation statement,
which are of the skip type, play the same role as the transition associated with the
skip statement in the previous theorem. Notice that no restriction is needed when
the order of the cooperation is greater than two. The detailed justification would
follow the same reasoning given in appendix A.2 for Theorem 6.

Lemma 12 (Associativity of Cooperation): Let k and l be integers such that 1 ≤ k <
m and 1 < l ≤ m. Then

[S1|| . . . ||Sk|| . . . ||Sl|| . . . ||Sm] ≈ [S1|| . . . || [Sk|| . . . ||Sl] || . . . ||Sm]

provided that the front statements of Sk, · · · , Sl are neither synchronous commu-
nication statements nor communication selection statements whose communication
guards are not all asynchronous sends.

This congruence also holds without the restriction upon the front statements of
Sk, · · · , Sl, when no transition associated with communication statements is in the
compassion set C.

Notice that the entry and exit transitions associated with the main cooperation
statement are present in the computations of both sides. However, the entry and exit
transitions of the inner cooperation statement are present in one side only, therefore

222 Appendix A. Soundness of the Laws

in moving from one side to the other these inner skip-type transitions are deleted
from the corresponding computations.

When deleting the entry transition of the inner cooperation, from a computation
of the right hand side, some front transition of either Sk, · · · , or Sl, which is not
taken in the computation, may be activated. The outer exit transition prevents this
activation when the exit transition of the inner cooperation is deleted. The detailed
justification would follow the same reasoning given in appendix A.2 for Theorem 6.
Nevertheless, its main line is given now.

Justification Let Sl and Sr denote the statements to the left and to the right
of the general congruence of the lemma. Let τE

l and τX
l denote the entry and exit

transitions of the cooperation statement Sl, and τE
r and τX

r denote the entry and
exit transitions of the main cooperation statement in Sr. Let τE

kl and τX
kl denote the

entry and exit transitions associated with the cooperation substatement in Sr. Let
P [S] be an arbitrary program context.

1. Let σ be a computation of P [Sl]. We construct from σ a computation σ′

of P [Sr] by replacing in σ any occurrence of transition τE
l by τE

r followed
immediately by τE

kl . Similarly, any occurrence of transition τX
l in Sl is re-

placed by τX
kl , followed immediately by τX

r . This last replacement is consistent
since whenever τX

l is enabled in σ, τX
kl should also be enabled in σ′. In this

situation, after taking τX
kl , transition τX

r becomes enabled and can be taken
immediately. Clearly, σr = σ′ r since skip-type transitions are replaced by
skip-type transitions or by two consecutive skip-type transitions and, by con-
struction, the number of times a transition τ is enabled or taken in both σ and
σ′ are the same. This is due to the fact that insertion of skip-type transitions
in a computation does not enable any new transition.

2. Let σ be a computation of P [Sr]. We construct from σ a computation σ′

of P [Sl] by replacing any occurrence of transition τE
r in σ by transition τE

l ,
and by deleting from σ every occurrence of transition τE

kl . Similarly, we delete
from σ every occurrence of transition τX

kl , and we replace every occurrence of
transition τX

r in σ by transition τX
l .

We have to show that σ′ satisfies the standard fairness requirements after
having deleted transitions τE

kl and τX
kl . In the case of τE

kl , the reasoning leading
to the impossibility of violating the standard fairness requirements would be
identical to the one made in connection with the τℓ skip-type transition in the
skip statement deletion Theorem 6, above. Now, however, statement S2 of
appendix A.2 can be the front statement of either Sl, · · ·, or Sr. This justifies
the restrictions upon these statements imposed in the lemma. Finally, the
case where transition τX

lk is deleted is simpler since its consecutive transition,

A.1. Simple Cases 223

which follow next to it in sequence, is the skip-type transition τX
r , which is

replaced by skip-type transition τX
l . Since a skip-type transition can not give

two front transitions, transition τ of lemma 16 of appendix A.2, which caused
the problem, can not exist.

�

A.1.2 Communication Elimination Laws

After the study of a simple communication elimination law, it is proven that no
finite set of laws suffices for communication elimination in general programs.

Lemma 13 (Simple Communication Elimination and Introduction): Let H l and Hr

be statements which do not have communication statements through synchronous
channel α, and T l and T r be statements. Then

[H l;α⇐ e;T l]||[Hr;α⇒ u;T r] ≈ [H l||Hr];u := e; [T l||T r]

provided that either no transition of a communication statement is strongly fair or
a skip is inserted automatically before communication or communication selection
statements, as explained above in this subsection.

This congruence is a special case of the recursive schema of subsection 3.2.2 of
the main text. The following congruence

[α⇐ e||α⇒ u] ≈ u := e

is a special case of the lemma, obtained by making H l = Hr = T l = T r = nil. As in
Theorems 6, 7, and lemma 12, the problem here is the deletion from the right hand
side computations of the entry transition of the cooperation [T l||T r].

Justification Let Sl and Sr denote the statements to the left and to the right
of the congruence symbol. Let τE

l and τX
l denote the entry and exit transitions

associated with the cooperation statement Sl. Let τE
h and τX

h denote the same
transitions for the cooperation substatement H l||Hr of Sr. Let τE

t and τX
t denote

the same transitions for the cooperation substatement T l||T r of Sr. Let P [S] be an
arbitrary program context.

1. Let σ be a computation of P [Sl]. A computation σ′ of P [Sr] is constructed as
follows: replace every occurrence of transitions τE

l and τX
l in σ by transitions

τE
h and τX

t in σ′, respectively. We replace every occurrence of joint transition
τ<α> in σ by transitions τX

h , τu:=e, and τE
t taken consecutively in σ′ in this

224 Appendix A. Soundness of the Laws

order. We can guarantee that this joint transition occurs in σ since H l and Hr

have no communication statement over α; hence these communications are at
the front of the cooperation statement.

2. Let σ be a computation of P [Sr]. A computation σ′ of P [Sl] is constructed as
follows: replace every occurrence of transitions τE

h and τX
t in σ by transitions

τE
l and τX

l in σ′, respectively. Transitions τX
h , τu:=e, and τE

t will appear in this
order in any computation σ of P [Sr], possibly having between them transitions
of parallel statements. We delete transitions τX

h and τE
t from each of these

subsequences in σ and replace τu:=e by joint transition τ<α>. This is done
in a single operation. This operation is consistent since when transition τu:=e

is taken in σ the locations post(H l) and post(Hr) are activated, and after
taking transition τu:=e and deleting transition τE

t control locations pre(T l)
and pre(T r) are activated. A reasoning similar to the one made for the skip-
deletion lemma above would show that, in the restricted notation, standard
fairness requirements are satisfied by σ′.

The following theorem is related to lemma 4 of section 3.2. The general line of
the proofs of both are the same.

Theorem 8 (Incompleteness of any Finite Set of Laws): No finite set of laws, congru-
ences or refinement relations, suffices to syntactically eliminate a pair of synchronous
communication statements from restricted SPL statements.

Justification It suffices to prove the theorem in the subset of statements con-
structed with basic statements and concatenation and cooperation operators only.
The congruence in lemma 13 does not eliminate matching synchronous communica-
tion operations from general statements. Consider, for instance, the following

[H l;α⇐ e;T l]||[Hr; [α⇒ u||P r];T r]

which is a simple extension of the left hand side of the congruence above, and where
P r is an arbitrary statement. The communication through synchronous channel α
can not be eliminated with the communications elimination lemma above, structure
matching with its left-hand side is not possible due to P r. Therefore, in order to
eliminate the synchronous communication we need to introduce a new law. Theorem
4 of section 3.2 gives a possible form for this law. Assume that such a law is

[H l;α⇐ e;T l||Hr; [α⇒ u||P r];T r] = [H l||Hr]; [u := e||P r]; [T l||T r]

which eliminates the communication pair. Actually, the exact form of the expression
is not essential for the reasoning. Restricting the statements to those constructed
with concatenation and cooperation operators only, assume that we have found a
relation

A.2. Proof of Theorem 6 225

[L || R] = G

such that G has not the synchronous communication pair that communicates
L and R. Statements G, L, and R match the obvious statements in the previous
elimination situation. Nevertheless, this second elimination law is not sufficient
either. In order to show this, let us complicate slightly anyone of the two parallel
statements. Let us select R. The situation is symmetric.

Prefixing or postfixing statements in concatenation with R does not change the
structure matching scenario, due to the associativity of concatenation. Composing
a new statement in cooperation with R has the same effect, since the associativity
and commutativity laws for cooperation allow its removal, leaving the same binary
cooperation schema as before. The only remaining way to obtain an essentially
different statement, using the two operators only, is to introduce a statement in
cooperation with R and to prefix and postfix statements in concatenation with this
new binary cooperation, obtaining

L || [H ; [R||P] ; T]

where H does not contain synchronous communication statements through α,
and the asynchronous communication to be eliminated is within R. With the stated
restrictions, there is no other way to obtain another expression which is not reducible
to the form L||R by structure matching. The assumed new law which elimina-
ted the communication from L||R obtaining statement G does not match with the
new statement, for the same reasons as before. Therefore, a new communication
elimination law is needed. This reasoning can be iterated indefinitely, introducing
new statements H, P , and T at each iteration step, thus creating the need of a new
law at each step, reaching the desired conclusion.

�

A.2 Proof of Theorem 6

The theorem is repeated here for easy reference

Concatenated Skip Deletion Theorem Let S be a statement. Let Sncs be a
statement which is neither a communication selection whose communication guards
are not all asynchronous sends, nor synchronous communications. Then

S;Sncs ≈ S; skip;Sncs

This congruence holds without the above restrictions upon Sncs when no transition
associated with communication statements is in the compassion set C.

226 Appendix A. Soundness of the Laws

We begin with some auxiliary definitions and lemmas. Let us forget, for a mo-
ment, about the fairness requirements of computations and work with runs instead,
as defined in section 2.5. A reduced run of a FTS is obtained from a run in the same
way that a reduced behavior was obtained there from a computation.

Definition 14 (Reduced Run): Let M be a FTS, and O a set of observed variables,
where π is not in O. Then a reduced run rr is obtained from a run r of M by
retaining the observable part of all the states appearing in r and deleting any state
which is equal to its predecessor but not equal to its successors.

Therefore, stuttering steps are removed from the observable part of a run pro-
vided that they do not correspond to a terminal state. Notice also that a reduced
run does not need to satisfy any fairness requirements. Then, reduced behaviors
would be the subset of reduced runs which satisfy the fairness requirements. The
concept of reduced run can be extended to programs, as the reduced run of the FTS
associated with the program.

Lemma 14 (Skip Congruence in a Wide Sense): Let P [.] be an arbitrary program con-
text. Then, the sets of reduced runs of

P [S1; S2] and P [S1; skip; S2]

are identical. We express this fact by saying that the two concatenation statements
are congruent in the wide sense.

Justification Introduce m as the post-label of S1 in P [S1;m : S2] and of skip
in P [S1; ℓ : skip;m : S2]. Also, ℓ will be the post-label of S1 in P [S1; ℓ : skip;m : S2]

1. Consider a run r of P [S1;m : S2]. We obtain a run r′ of P [S1; ℓ : skip;m : S2]
by requiring that whenever control reaches m, which is now relabeled as ℓ,
a skip transition τℓ is taken immediately. Clearly, r′ is a run of P [S1; ℓ :
skip;m : S2] and the reduced runs of both r and r′ are identical, since their
only differences are at the transitions τℓ which have been introduced in r′,
corresponding to the skip statement. These transitions have identical initial
and final states. For each such pair of states in r′, the run r has only one
state. But the first of the two equal states of such pairs will be deleted when
the corresponding reduced run is constructed, as it has been defined above.
Then, the reduced runs of both r and r′ will be equal.

2. Consider now a run r of P [S1; ℓ : skip;m : S2]. We obtain a run r′ of P [S1;m :
S2] by deleting the initial state of every transition corresponding to the skip
statement, when control reaches l. The same reasoning of the previous case
shows that the reduced runs obtained from r and r′ are identical. �

A.2. Proof of Theorem 6 227

Let us describe the deletion of skip transitions τℓ with some detail. The rest of
this appendix will need and refer to it. A computation σ of P [S1; ℓ : skip;m : S2]
will have state subsequences (there may be more than one instance, and perhaps
infinitely many) of the following form

τ1 l : τl m : τ2

——– ———– – ——— ———
. . . si−f−1, si−f , . . . , si, si+1, . . . , si+n−1, si+n, . . .

· · · ———— ————— · · ·
S1 S2

where si−f , . . . , si are ℓ-states, in the sense that the control location corresponding to
ℓ belongs to π in these states, si−f−1 is not an ℓ-state. Also, states si+1, . . . , si+n−1

are m-states, and the transition taken at si is the skip transition τℓ, si+n is not an
m-state. Hence, the last transition corresponding to S1 is taken at state si−f−1,
and a front transition of S2 is taken at state si+n−1. They will be referred to as
transitions τ1 and τ2. The l-states correspond to transitions of statements parallel to
S1 and S2. The same is true for m-states. Let us construct now the state sequence
σ′ by deleting all τℓ transitions from σ. This entails replacing ℓ by m in all the
l-states of σ. This sequence of states will have subsequences of the form

. . . si−f−1, si−f , . . . , (si ≡ si+1), . . . , si+n, . . .

which will correspond to the above subsequences of σ. The states si−f , . . . , (si ≡
si+1), . . . , si+n−1 become now m-states by construction. States si and si+1 collapse
into the same state. The rest of the sequence remains the same.

For realistic schedulers we would like that the congruence of lemma 14 was true
in a strict sense. In other words, that for an arbitrary program context P [.], the set
of reduced behaviors of P [S1;m : S2] and of P [S1; ℓ : skip;m : S2] were identical.
This is not true due to remark 1 of appendix A. However, the following lemma
expresses the fact that it is true in one direction.

Lemma 15 (Sequential Skip Insertion): Let P [.] be an arbitrary program context.
Then, any reduced behavior of P [S1; S2] is also a reduced behavior of
P [S1; skip; S2].

Justification Consider a computation σ of P [S1;m : S2]. We obtain a com-
putation σ′ of P [S1; ℓ : skip;m : S2] by requiring that whenever control reaches m,
a skip transition τℓ is taken immediately. The first m-state becomes now an l-state
by relabeling. The remaining m-states remain as such. Clearly, σ′, in addition to
being a run, is also a computation of P [S1; ℓ : skip;m : S2] since the construction
does not change the satisfaction of the fairness requirements for any transition. This

228 Appendix A. Soundness of the Laws

is due to the fact that the positions in which a transition τ is enabled or taken in
both σ and σ′ are the same when only skip transitions are inserted; since no varia-
ble value changes by the skip insertion. The reduced behaviors corresponding to σ
and to σ′ are identical, σr = σ′r. Since any reduced behavior is obtained from a
specific computation, and from any computation of P [S1;m : S2] a computation of
P [S1; ℓ : skip;m : S2] can be constructed in such a way that the two corresponding
reduced behaviors are identical, as it has just been shown, the lemma is proved. �

The reverse of lemma 15 is not true since, when deleting skip transitions from
a computation, there is the possibility that some transition which was not enabled
in the final state of the skip transition becomes enabled in the same state obtained
after the deletion. Hence, the satisfaction of fairness requirements may change for
such transition. This is due to the fact that the l-states change now to m-states; this
may enable some transition of S2. Therefore, in order to prove Theorem 6 we have to
identify the cases in which the fairness requirements are satisfied by a computation
with the skip statement but are not satisfied when the transition corresponding to
the skip statement is deleted from such computation. More specifically, the types of
S2 statement giving raise to the transitions violating the fairness requirements have
to be identified. The following lemma characterizes the cases where the above may
occur.

Lemma 16 (Unfairness Scenario): The only way in which σ, a computation of P [S1; ℓ :
skip;m : S2], can be fair to a transition τ but σ′, the state sequence of P [S1;m : S2]
constructed by deleting τℓ transitions as detailed above, be unfair to τ is if τ is
enabled infinitely often in σ′ but only finitely often in σ, and τ is taken only finitely
many times in both.

Justification By construction of the sequence σ′, a transition τ is taken the
same number of times in σ and in σ′. This is true, in particular, for a transition
τ of S2. Consequently, the case of τ being taken infinitely many times in both σ
and σ′ is excluded, since then there would be no possible way to violate any fairness
requirement by enabling the transition. The number of times that a transition τ is
enabled is not necessarily the same in both σ and σ′, since, as commented before,
the deletion of the transition corresponding to the skip statement modifies states
si−f , ..., si, and this may enable transitions in these states which were not enabled in
the corresponding states of σ. Therefore, fairness is violated only when τ is enabled
in a finite number of positions of σ and in an infinite number of positions of σ′. Then,
since the transition is taken in a finite number of positions of both state sequences,
fairness with respect to this transition will be violated in σ′. �

The infinite number of enabling positions may be either consecutive or not. In
the first case we have continuous enabling and weak fairness would be violated. In
the second case strong fairness would be violated.

A.2. Proof of Theorem 6 229

Lemma 17 (Compassionate Transition): If the state sequence σ′ is unfair with respect
to transition τ , which is enabled finitely often in P [S1; ℓ : skip;m : S2] but infinitely
often in P [S;m : S2], then the control location corresponding to label m is visited
an indefinite number of times, in both σ and σ′. Also, τ has to be a front transition
of S2 and compassionate (strongly fair).

Justification The only possible cause of the indefinite number of enablings in
σ′ is the deletion of the transitions corresponding to the skip. As detailed above,
the states si−f−1 and those in the sequence si+1, ..., si+n cannot be τ -enabling states
since they are not affected by the deletion. Therefore, the new enablings take place
when replacing the location of l for that of m in at least one of the states of the
sequence si−f , ..., si−1. Notice that this sequence has to have at least one state and
it is preceded and followed, in principle, by states where τ is not enabled. Also, τ
has to be a front transition of S2 since it is enabled when control is at the location
corresponding to m.

In addition, for an infinite number of new enablings when deleting just one skip,
either S2 is within an indefinite loop together with S1, or it is a loop itself, or it is
a terminal statement. In the latter case, the m-state would have to be a terminal
state repeating infinitely often. But for that to be possible, location [m] should also
be a terminal location. This could only happen if S2 was the nil statement. But
then transition τ would not exist since this statement has no associated transition.

The case of S2 being an indefinite loop, and hence generating an indefinite se-
quence, is excluded since then the first transition of S2 would be a transition from
a while statement which is of the skip-type with a boolean condition; and, as such,
a while statement can never have two enabled front transitions. Therefore τ and τ2,
as defined above, could not exist.

The above facts show that both S1 and S2 have to be within the same indefinite
loop, and exclude the possibility of an infinite sequence of continuous new enablings
of τ , leaving only the possibility of a sequence of intermittent new enablings of it.
Hence, τ can be a strongly fair transition only.

�

Lemma 18 (Disabling Transition): A τ -disabling transition τ ′′ occurs in both σ and
σ′ in one of the states of their state subsequence si−f , ..., si−1. This transition should
be competing with transition τ but should be parallel to the transitions associated
with statement S2.

Justification This has to be so since transition τ is enabled but not taken
only in a subsequence of the state sequence si−f , ..., si−1. Since it was caused by
replacing an ℓ by an m location in the states of this sequence. Furthermore, τ is
disabled in the sequence of states si+1, ..., si+n−1 which does not change in going

230 Appendix A. Soundness of the Laws

from σ to σ′. Therefore some transition τ ′′ is taken in one of the states of the first
sequence, disabling transition τ . Transition τ ′′ can not belong to S2, but it has to be
parallel to the transitions associated with S2, since the first transition of S2 which
is taken is a front transition of this statement. τ2, is taken in state si+n−1 as it was
pointed out before, and τ ′′ has to be taken in a prior state without moving control
from the location corresponding to m. Transition τ ′′ disables transition τ , hence it
should be competing with it.

�

Lemma 19 (Prohibited Statements): Within the reduced notation, The only possibi-
lities for statement S2 to give rise to the three transitions τ , τ2 and τ ′′ identified above
are to be a synchronous communication statement and a communication selection
statement.

Notice that if this lemma is true then the concatenated skip deletion theorem is
also true.

Justification After a review of the semantics of the notation as defined in
appendix 2.6, the only statements with transitions in the compassion set are the
synchronous communication, the asynchronous receive, and the request statement.
The communication selection statement gives rise to compassionate transitions when
either synchronous communication or asynchronous receive statements stand at its
front.

Statement S2 of lemma 17, or equivalently statement Sncs of Theorem 6, can
be neither an asynchronous receive nor a request statement, since then it could not
contribute to the two front transitions τ and τ2, as it should, according to lemma 17
and the justification of of lemma 18. Therefore, since τ has to be in the compassion
set, the only possibilities left for statement S2 are the ones stated in the lemma. In
the following we give details on the only possibilities:

1. Two possibilities when S2 is a synchronous communication statement:

(a) The synchronous communication statement, abbreviated as α in the pro-
gram schema













[
. . . ; S2 ::

[
α(may contribute to τ or to τ2)

]
; . . .

]

||


 . . . ;





ᾱ(contributes to τ) ; . . .
or

τ ′′; . . .



 ; . . .





||
[

. . . ; ᾱ(contributes to τ2) ; . . .
]













A.2. Proof of Theorem 6 231

forms two joint transitions: transition τ with a matching communications
statement (ᾱ) of a parallel selection statement, and transition τ2 with
another matching parallel communication statement, ᾱ in the bottom
process. Then transition τ ′′ corresponds to another front transition of
the parallel selection statement.

(b) The synchronous communication statement α, corresponding to S2, forms
two joint transitions, τ and τ2, with two parallel matching communica-
tion statements l : ᾱ, and m : ᾱ parallel between themselves.













[
. . . ; S2 ::

[
α(may contribute to τ or to τ2)

]
; . . .

]

||
[

. . . ; l : ᾱ(contributes to τ2) ; . . .
]

||
[

. . . ; m : ᾱ(may contribute to τ or to τ ′′); . . .
]

||
[

. . . ; α(contributes to τ ′′) ; . . .
]













Then the disabling transition τ ′′ corresponds to a joint transition between
the communication statement m : ᾱ contributing to transition τ , and a
fourth synchronous communication statement which is parallel to the
three, at the lower process.

2. Two cases for S2 being a communications selection statement.

(a) All communication statements are synchronous. A second selection state-
ment is parallel to S2.















. . . ; S2 ::





α(contributes to τ) ; . . .
or

τ2 ; . . .



 ; . . .





||


. . . ;





ᾱ(contributes to τ); . . .
or

τ ′′ ; . . .



 ; . . .

















Joint transition τ is contributed by a communication statement of each
selection statement. Transition τ2 is contributed by S2 also. Transition
τ ′′ is contributed by the selection statement which is parallel to S2.

(b) All communication statements are asynchronous. Two of them are para-
llel to S2 and between themselves.

232 Appendix A. Soundness of the Laws















 . . . ; S2 ::





receive(αas)(gives transition τ) ; . . .
or

τ2 ; . . .



 ; . . .





||
[

. . . ; receive(αas)(gives transition τ ′′); . . .
]

||
[

. . . ; send(αas) ; . . .
]













A receive statement belonging to S2 gives rise to transition τ . Transition
τ2 corresponds to a competing transition contributed by S2. A second
receive statement parallel to S2 gives rise to transition τ ′′ which, when
taken, disables τ when there is one data item in asynchronous channel
αas. A send statement, parallel to both, puts a data item on the empty
asynchronous channel αas, which is always received when transition τ ′′ is
taken, thus disabling τ . �

As a final remark, in the case where S2 is a communication selection statement,
all its communication guards can not be asynchronous sends, since these statements
contribute with weakly fair transitions.

Appendix B

PROOF OF PIPELINE1

B.1 Parallelism to Concatenation Transformation

This appendix details the steps after applying the iterative communication elimina-
tion reduction, gen-comeli of page 104, and starts from the following equivalence:

Pipeline1 =O I0;P0;P0;P0;P0;E0

I0 ::











pc := 1;
w := true;
(ir.rs1, ir.rs2, ir.rd, ir.func) := (0, 0, 0, 0);
(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd) := (false, 0, 0, 0, 0, 0, 0);
(xw.w, xw.res, xw.rd) := (false, 0, 0);
(wx.w,wx.res,wx.rd) := (false, 0, 0)











P0 ::






















wd := xw;
























[
instr := mem(pc);
pc := pc + 1

]

||







if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)













;

ir := instr









||

[
wx := xw

]











;

if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res,xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;
xw := xxw























234 Appendix B. Proof of Pipeline1

E0 ::


























wd := xw;























[
instr := mem(pc);
pc := pc + 1

]

||







if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)













;

ir := instr







||

[
wx := xw

]











;























if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w,xxw.res,xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;

[[
xw := xxw;
[EX || WB]

]

|| ID

]












|| IF






































From now on in the text of this proof, the four parallel processes of Pipeline1

are replaced by their identifiers. These are the following:

IF ::







loop forever do




instr := mem(pc);
pc := pc + 1;
cfd⇐ instr











ID ::















loop forever do












cwd⇒ wd;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
cfd⇒ ir;
cdx⇐ xdx



























EX ::













loop forever do










cwx⇒ wx;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
cdx⇒ dx;
cxw ⇐ xxw























WB ::







loop forever do




cwd⇐ xw;
cwx⇐ xw;
cxw ⇒ xw











Some inner cooperation statements have appeared as a result of the commu-
nication elimination. These can be transformed to sequential statements with va-
rious applications of the Cooperation and Concatenation transformation procedure
of law 11 of page 39, thus obtaining a truly sequential form, with neither internal
communication nor parallelism.

B.1. Parallelism to Concatenation Transformation 235

Reduction of E0:

Statement E0, the form obtained in the previous proof step, is reduced first. For
clarity E0 is rewritten as:

E0 :: (B.1)




























wd := xw;























[
instr := mem(pc);
pc := pc + 1

]

||







if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)













;

ir := instr







||

[
wx := xw

]











;























if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w,xxw.res,xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;

[[
xw := xxw;
[EX || WB]

]

|| ID

]












|| IF








































Next step applies the special case of law 10 (binary cooperation and concatena-
tion) of page 39:

[[A; B] || C] =O A; [B || C]

where A,B,C are disjoint processes, and (S1 = A), (S3 = B), (S4 = C). This lemma
is applied, from left to right, to the dot line framed substatement of E0. The
matchings are,

A ::







if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx







B ::

[[
xw := xxw;
[EX || WB]

]

|| ID

]

C :: [IF]

236 Appendix B. Proof of Pipeline1

The resulting form E′
0, which is interface equivalent to E0, is:

E′
0 ::





























wd := xw;























[
instr := mem(pc);
pc := pc + 1

]

||







if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)







;







ir := instr







||

[
wx := xw

]











;

if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w,xxw.res,xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;





[[
xw := xxw;
[EX || WB]

]

|| ID

]

|| IF

































Applying again the above binary cooperation and concatenation lemma from left
to right and within the dotted frame of E′

0. The matchings are: A :: [xw := xxw],
B :: [EX ||WB], and C :: [ID]. The resulting form E′′

0 is:

E′′
0 ::






























wd := xw;























[
instr := mem(pc);
pc := pc + 1

]

||







if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)







;







ir := instr







||

[
wx := xw

]











;

if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w,xxw.res,xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;





[
xw := xxw;

[
[EX || WB]

]
|| ID

]

|| IF


































Applying again the lemma to E′′
0 , with the matchings:

A :: [xw := xxw]

B :: [[EX ||WB] || ID]

C :: [IF]

B.1. Parallelism to Concatenation Transformation 237

obtaining E′′′
0 :

E′′′
0 ::



























wd := xw;























[
instr := mem(pc);
pc := pc + 1

]

||







if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)







;







ir := instr







||

[
wx := xw

]











;

if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w,xxw.res,xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;
xw := xxw;
[[[

EX || WB
]

|| ID
]

|| IF
]



























Finally the tail statements (EX, WB, ID, and IF) are arranged applying the
parallelism flattening and parallelism permutation transformations of section 5.4,
obtaining the following equivalence:

[[[EX ||WB] || ID] || IF] =O [IF || ID || EX ||WB]

The following interface equivalence for E0 is obtained after these applications:

E0 =O P0;E

where E :: [IF || ID || EX ||WB].

Therefore,

Pipeline1 =O I0;P0;P0;P0;P0;P0;E

It is important to remark that the numbers of repetitions of P0 in the equivalence
is the same as the number of unfolding rules applied in the first step of the proof.

Reduction of P0:

The proof continues with the parallelism to concatenation transformation of
each P0. Applying, within the interactive prover, the cooperation and concatena-
tion transformation procedure of section 5.4 of page 122, that basically applies the
following lemma from left to right:

[[A || B]; C] =O [B; A; C]

For the given P0, the matchings are:

238 Appendix B. Proof of Pipeline1

A ::

[
instr := mem(pc);
pc := pc + 1

]

B ::







if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)







C :: [ir := instr]

Obtaining P ′
0:

P ′
0 ::


























wd := xw;






















if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
instr := mem(pc);
pc := pc + 1;
ir := instr












||
[
wx := xw

]












;

if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w,xxw.res,xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;
xw := xxw


























A purely sequential form of P ′
0 is obtained after applying the law 11 for m = 2

and the permutation 〈2, 1〉:

[A || B] =O [B; A]

from left to right. The matchings are:

A ::













if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
instr := mem(pc);
pc := pc + 1;
ir := instr













B ::
[
wx := xw

]

The sequential form which is obtained is:

B.2. Concatenation Commutativity 239

P1 ::




























wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
instr := mem(pc);
pc := pc + 1;
ir := instr;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;
xw := xxw




























Therefore P1 =O P0, and the resulting interface equivalence is:

Pipeline1 =O I0;P1;P1;P1;P1;P1;E

B.2 Concatenation Commutativity

The goal of the proof is to reach the Von Neumann iteration. In order to reach this
goal, the body of P1, shown above, must be rearranged. This is possible since some
of the statements of P1 are disjoint, and simple concatenation permutation rules can
be applied. Thus, the body of P1 can be transformed into an equivalent sequential
form. The concatenation commutativity law (see law 4 of page 38) permutes disjoint
and non-communicating statements as follows:

[Ax; Bx] =O [Bx;Ax]

Applying the lemma from left to right to the substatements [pc := pc + 1; ir :=
instr] of P1, where

A1 ::
[

pc := pc + 1
]

B1 ::
[

ir := instr
]

240 Appendix B. Proof of Pipeline1

P ′
1 is obtained:

P ′
1 ::




























wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
instr := mem(pc);
ir := instr;
pc := pc + 1;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;
xw := xxw




























(B.2)

The resulting interface equivalence is:

Pipeline1 =O [I0;P1;P1;P1;P1;P1;E] =O [I0;P
′
1;P

′
1;P

′
1;P

′
1;P

′
1;E]

Next step applies the above commutative transformation to the concatenation
pair [P ′

1;P
′
1] expanded below:

B.2. Concatenation Commutativity 241




















































































wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
instr := mem(pc);
ir := instr;
pc := pc + 1;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;
xw := xxw



























;



























wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
instr := mem(pc);
ir := instr;
pc := pc + 1;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;
xw := xxw




















































































A2

B2

The matchings are:

A2 ::





instr := mem(pc);
ir := instr;
pc := pc + 1





B2 ::















if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;
xw := xxw;
wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil















Observe that B2 contains statements from two consecutive P ′
1 statements. The

resulting interface equivalence is:

Pipeline1 =O [I0;P
′
1;P

′
1;P

′
1;P

′
1;P

′
1;E] =O [I0;R0;P2;P2;P2;P2;E2;E]

242 Appendix B. Proof of Pipeline1

where:

R0 ::





















wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;
xw := xxw





















P2 ::



























wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
instr := mem(pc);
ir := instr;
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;
xw := xxw



























E2 ::





instr := mem(pc);
ir := instr;
pc := pc + 1





The last concatenation commutativity reduction is applied to P2 with the follo-
wing matchings:

A ::











instr := mem(pc);
ir := instr;
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)











B ::





if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd)





B.3. Redundant Variable Elimination 243

obtaining P3:

P3 ::



























wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
instr := mem(pc);
ir := instr;
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx;
xw := xxw



























(B.3)

and

Pipeline1 =O [I0;R0;P2;P2;P2;P2;E2;E] =O [I0;R0;P3;P3;P3;P3;E2;E]

B.3 Redundant Variable Elimination

Some redundant variable assignments have appeared in the above sequential com-
position, [I0;R0;P3;P3;P3;P3;E2;E], due to the elimination of the synchronous
channels done in the communication elimination step. The interactive application
of the variable elimination reductions of section 5.4 will remove them and a more
simpler sequential form will be reached.

The variable elimination is carried out within the interactive prover by applying
the following variable and assignment elim-intro law (see law 13 of page 40):

[v := e;S1(v);S2] =O [S1(e);S2]

and multiple variable and assignment elim-intro law (see law 17 of page 41):

[(v.v1, ..., v.vn) := (e1, ..., en); S1(v.v1, ..., v.vn); S2] =O [S1(e1, ..., en); S2]

which can be written more succinctly as:

244 Appendix B. Proof of Pipeline1

[(v̄) := (ē);S1(v̄);S2] =O [S1(ē);S2]

Both lemmas are applied from left to right.

Elimination of instr:

Variable instr is removed from each P3, statement B.3, applying the variable as-
signment elimination. The matchings for law 13 are:

v := e :: instr := mem(pc)

S1(v) :: [ir := instr]

S2 :: all the statements in sequence after S1(v)
ending in a new assignment to instr

Obtaining P ′
3:

P ′
3 ::


























wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx;
xw := xxw


























Elimination of xw:

This elimination is done in several steps. First xw is removed from [I0;R0], applying
the multiple assignment elimination. The matchings for law 17, where n = 3, are:

(v.v1, v.v2, v.v3) := (e1, e2, e3) :: (xw.w, xw.res, xw.rd) := (false, 0, 0)

S1(v̄) ::

[
wd := xw;
wx := xw

]

S2 :: all the statements in sequence after S1(v̄)
until a new assignment to xw

B.3. Redundant Variable Elimination 245

Obtaining [I ′0;R
′
0],
































I ′
0

::









pc := 1;
w := true;
(ir.rs1, ir.rs2, ir.rd, ir.func) := (0, 0, 0, 0);
(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd) := (false, 0, 0, 0, 0, 0, 0);
(wx.w, wx.res, wx.rd) := (false, 0, 0)









;

R′
0

::





















(wd.w, wd.res, wd.rd) := (false, 0, 0);
(wx.w, wx.res, wx.rd) := (false, 0, 0);
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;
xw := xxw




















































where variables wd and wx of R′
0 have been expanded in terms of their components.

Next step removes variable xw from [R′
0;P3] applying the variable elimination

lemma. The matchings are:

v := e :: xw := xxw

S1(v) ::

[
wd := xw;
wx := xw

]

S2 :: all the statements in sequence after S1(v)
until a new assignment to xw

Obtaining [R′′
0 ;P

′
3],

R′′
0

::



















(wd.w, wd.res, wd.rd) := (false, 0, 0);
(wx.w, wx.res, wx.rd) := (false, 0, 0);
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx



















246 Appendix B. Proof of Pipeline1

P ′
3

::

























wd := xxw;
wx := xxw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx;
xw := xxw

























and

Pipeline1 =O [I ′0;R
′′
0 ;P

′
3;P3;P3;P3;E2;E]

Remaining assignments to variable xw are removed applying the lemma to all
concatenations [P ′

3;P3]. The matching are the same as above. Obtaining [P ′′
3 ;P ′

3],
where P ′′

3 is:

P ′′
3 ::























wd := xxw;
wx := xxw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx























and

Pipeline1 =O [I0;R
′′
0 ;P ′′

3 ;P ′
3;P3;P3;E2;E] =O [I0;R

′′
0 ;P

′′
3 ;P ′′

3 ;P ′′
3 ;P ′

3;E2;E]

Elimination of xdx:

The multiple variable elimination is applied to remove xdx from R′′
0 and P ′′

3 state-
ments. The matchings are:

B.3. Redundant Variable Elimination 247

(v.v1, v.v2, ..., v.v7) := (e1, e2, ..., e7) ::





(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)
:=

(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)





S1(v̄) ::
[

dx := xdx
]

S2 :: all the statements in sequence after S1(v̄)
until a new assignment to xdx

The obtained interface equivalence is:

Pipeline1 =O [I ′0;R
′′
0 ;P ′′′

3 ;P ′′′
3 ;P ′′′

3 ;P ′′
3 ;E2;E] =O [I ′0;R1;P4;P4;P4;P8;E3;E]

where:

R1 ::

















(wd.w, wd.res,wd.rd) := (false, 0, 0);
(wx.w, wx.res,wx.rd) := (false, 0, 0);
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)

















P4 ::





















wd := xxw;
wx := xxw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)





















P8 ::






















wd := xxw;
wx := xxw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w,xxw.res,xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(xdx.w,xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx






















E3 ::







xw := xxw;
instr := mem(pc);
ir := instr;
pc := pc + 1







248 Appendix B. Proof of Pipeline1

E3 can also be expressed as [[xw := xxw]; E2]. Observe that variable xdx can not
be eliminated from P ′′

3 .

Elimination of wd:

Variable wd is removed from R1 and P4 applying again variable elimination. The
matchings for R1 are:

(v.v1, v.v2, v.v3) := (e1, e2, e3) :: (wd.w, wd.res, wd.rd) := (false, 0, 0)

S1(v̄) ::

[
(wx.w, wx.res, wx.rd) := (false, 0, 0);
if (wd.w) then [reg(wd.rd) := wd.res] else nil

]

S2 :: all the statements in sequence after S1(v̄)
until a new assignment to wd

and for P4:

v := e :: wd := xxw

S1(v) ::

[
wx := xxw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil

]

S2 :: all the statements in sequence after S1(v)
until a new assignment to wd

Obtaining R′
1 and P ′

4:

R′
1 ::















(wx.w,wx.res,wx.rd) := (false, 0, 0);
if (false) then [reg(0) := 0] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)















P ′
4 ::



















wx := xxw;
if (xxw.w) then [reg(xxw.rd) := xxw.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)



















B.3. Redundant Variable Elimination 249

Observe that the overall interface equivalence is now:

Pipeline1 =O [I ′′0 ;R′
1;P

′
4;P

′
4;P

′
4;P8;E3;E]

The assignment wd := xxw of P8 can not be eliminated because no other unhidden
assignment to wd is found in its sequential statements, [E3;E].

Elimination of wx:

As above, variable wx is eliminated from R′
1 and P ′

4. The matchings for R′
1 are:

(v.v1, v.v2, v.v3) := (e1, e2, e3) :: (wx.w, wx.res, wx.rd) := (false, 0, 0)

S1(v̄) ::

[
if (false) then [reg(0) := 0] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil

]

S2 :: all the statements in sequence after S1(v̄)
until a new assignment to wx

and for P ′
4:

v := e :: wx := xxw

S1(v) ::





if (xxw.w) then [reg(xxw.rd) := xxw.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil





S2 :: all the statements in sequence after S1(v)
until a new assignment to wx

One obtains R′′
1 and P ′′

4 :

R′′
1 ::













if (false) then [reg(0) := 0] else nil;
if (dx.rs1 = 0) then [dx.a := 0] else nil;
if (dx.rs2 = 0) then [dx.b := 0] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)













250 Appendix B. Proof of Pipeline1

P ′′
4 ::

















if (xxw.w) then [reg(xxw.rd) := xxw.res] else nil;
if (dx.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (dx.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)

















The assignment wx := xxw can not be eliminated from P8 due to no new un-
covered assignment to wx is found in [E3;E].

The interface equivalence is:

Pipeline1 =O [I ′′0 ;R′′
1 ;P ′′

4 ;P ′′
4 ;P ′′

4 ;P8;E3;E]

Elimination of dx.w:

The elimination of variable dx.w is carried out applying the multiple assignment
partial elimination law (see law 18 of page 41). This is the following:

[(v.v1, ..., v.vi, ..., v.vj , ..., v.vn) := (e1, ..., ei, ..., ej , ..., en); S1(v.vi, ..., v.vj); S2]
=O

[(v.v1, ..., v.vn) := (e1, ..., en); S1(ei, ..., ej); S2]

The lemma is applied from left to right.

First dx.w is eliminated from [I ′0;R
′′
1]. The matchings for i = j are:

v.vi :: dx.w

(v.v1, ..., v.vi, ..., v.vn) := (e1, ..., ei, ..., en) ::





(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)
:=

(false, 0, 0, 0, 0, 0, 0)





S1(v.vi) ::











if (false) then [reg(0) := 0] else nil;
if (dx.rs1 = 0) then [dx.a := 0] else nil;
if (dx.rs2 = 0) then [dx.b := 0] else nil;
(xxw.w, xxw.res, xxw.rd)

:=
(dx.w, alures(dx.func, dx.a, dx.b), dx.rd)











S2 :: all the statements in sequence after S1(v.vi)
until a new assignment to dx.w

Obtaining [I1;R
′′′
1], where:

B.3. Redundant Variable Elimination 251

I1 ::







pc := 1;
(ir.rs1, ir.rs2, ir.rd, ir.func) := (0, 0, 0, 0);
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd) := (0, 0, 0, 0, 0, 0);
(wx.w,wx.res,wx.rd) := (false, 0, 0)







R′′′
1 ::













if (false) then [reg(0) := 0] else nil;
if (dx.rs1 = 0) then [dx.a := 0] else nil;
if (dx.rs2 = 0) then [dx.b := 0] else nil;
(xxw.w, xxw.res, xxw.rd) := (false, alures(dx.func, dx.a, dx.b), dx.rd);
(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)













Next step eliminates dx.w from [R′′′
1 ;P ′′

4] with the following matchings:

v.vi :: dx.w

(v.v1, ..., v.vi, ..., v.vn) := (e1, ..., ei, ..., en) ::





(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)
:=

(false, 0, 0, 0, 0, 0, 0)





S1(v.vi) ::








if (xxw.w) then [reg(xxw.rd) := xxw.res] else nil;
if (dx.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (dx.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.w,xxw.res,xxw.rd) :=
(dx.w, alures(dx.func, dx.a, dx.b), dx.rd)








S2 :: all the statements in sequence after S1(v.vi)
until a new assignment to dx.w

One obtains [R2;P5]:

R2 ::













if (false) then [reg(0) := 0] else nil;
if (dx.rs1 = 0) then [dx.a := 0] else nil;
if (dx.rs2 = 0) then [dx.b := 0] else nil;
(xxw.w, xxw.res, xxw.rd) := (false, alures(dx.func, dx.a, dx.b), dx.rd);
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)













252 Appendix B. Proof of Pipeline1

P5 ::

















if (xxw.w) then [reg(xxw.rd) := xxw.res] else nil;
if (dx.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (dx.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (true, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)

















where the interface equivalence is:

Pipeline1 =O [I1;R2;P5;P
′′
4 ;P ′′

4 ;P8;E3;E]

The remaining assignments to variable dx.w are removed applying the same
lemma to all concatenations [P5;P

′′
4]. The matching are the same as above. Ob-

taining [P ′
5;P5], where P ′

5 is:

P ′
5 ::

















if (xxw.w) then [reg(xxw.rd) := xxw.res] else nil;
if (dx.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (dx.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (true, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)

















where,
Pipeline1 =O [I1;R2;P

′
5;P

′
5;P5;P8;E3;E]

Similarly for the concatenation, [P5;P8], obtaining [P ′
5;P

′
8].

P ′
8 ::
























wd := xxw;
wx := xxw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (true, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx
























B.3. Redundant Variable Elimination 253

The overall interface equivalence is now:

Pipeline1 =O [I1;R2;P
′
5;P

′
5;P

′
5;P

′
8;E3;E]

Elimination of xxw.w:

Variable xxw.w is eliminated from [R2;P
′
5;] applying the above lemma with

the following matchings:

v.vi :: xxw.w

(v.v1, ..., v.vi, ..., v.vn)
:= :: (xxw.w,xxw.res,xxw.rd) := (false, alures(dx.func, dx.a, dx.b), dx.rd)

(e1, ..., ei, ..., en)

S1(v.vi) ::










(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)
:=

(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
if (xxw.w) then [reg(xxw.rd) := xxw.res] else nil;
if (dx.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (dx.rs2 = xxw.rd) then [dx.b := xxw.res] else nil










S2 :: all the statements in sequence after S1(v.vi)
until a new assignment to xxw.w

One obtains [R′
2;P

′′
5] where:

R′
2 ::













if (false) then [reg(0) := 0] else nil;
if (dx.rs1 = 0) then [dx.a := 0] else nil;
if (dx.rs2 = 0) then [dx.b := 0] else nil;
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)













P ′′
5 ::

















if (false) then [reg(xxw.rd) := xxw.res] else nil;
if (dx.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (dx.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (true, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)

















where,
Pipeline1 =O [I1;R

′
2;P

′′
5 ;P ′

5;P
′
5;P

′
8;E3;E]

The remaining instances of variable xxw.w are removed applying again the
lemma to [P ′′

5 ;P ′
5] with the same matchings as above, obtaining [P6;P7], where

254 Appendix B. Proof of Pipeline1

P6 ::

















if (false) then [reg(xxw.rd) := xxw.res] else nil;
if (dx.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (dx.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)

















P7 ::

















if (true) then [reg(xxw.rd) := xxw.res] else nil;
if (dx.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (dx.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (true, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)

















and

Pipeline1 =O [I1;R
′
2;P6;P7;P

′
5;P

′
8;E3;E]

Similarly for [P7;P
′
5] obtaining [P ′

7;P7], where

P ′
7 ::

















if (true) then [reg(xxw.rd) := xxw.res] else nil;
if (dx.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (dx.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)

















and

Pipeline1 =O [I1;R
′
2;P6;P

′
7;P7;P

′
8;E3;E]

Finally, removing assignment to xxw.w from [P7;P
′
8], obtaining [P ′

7;P
′′
8].

B.3. Redundant Variable Elimination 255

P ′′
8 ::
























(wd.w,wd.res,wd.rd) := (true, xxw.res, xxw.rd);
(wx.w,wx.res,wx.rd) := (true, xxw.res, xxw.rd);
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (true, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx
























The overall interface equivalence has now been transformed into:

Pipeline1 =O [I1;R
′
2;P6;P

′
7;P

′
7;P

′′
8 ;E3;E]

Observe that the values of the variable components wd.w and wx.w of P ′′
8 have

been replaced.

Simple ‘if ’ statements Elimination:

After the variable elimination reduction step some simple boolean ‘if ’ statements
can be simplified applying a trivial simplification transformation:

if ‘true’ congruence: if true then S1 else S2 ≈ S1

if ‘false’ congruence: if false then S1 else S2 ≈ S2

Applying the second congruence to P6 with the matchings:

S1 :: reg(xxw.rd) := xxw.res

S2 :: nil

obtaining P ′
6. Next step applies the first if congruence to P ′

7, with the same mat-
chings as above, obtaining P ′′

7 :

256 Appendix B. Proof of Pipeline1

P ′
6 ::

















reg(xxw.rd) := xxw.res;
if (dx.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (dx.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)

















P ′′
7 ::

















reg(xxw.rd) := xxw.res;
if (dx.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (dx.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)

















where the interface equivalence is:

Pipeline1 =O [I1;R
′
2;P

′
6;P

′′
7 ;P ′′

7 ;P ′′
8 ;E3;E]

Propagation of variable dx.rs1 and dx.rs2:

The propagation of variable dx.rs1 and dx.rs2 is carried out applying the multiple
assignment partial elimination law (see law 18 of page 41). This is the following:

[(v.v1, ..., v.vi, ..., v.vj , ..., v.vn) := (e1, ..., ei, ..., ej , ..., en); S1(v.vi, ..., v.vj); S2]
=O

[(v.v1, ..., v.vi, ..., v.vj , ..., v.vn) := (e1, ..., ei, ..., ej , ..., en); S1(ei, ..., ej); S2]

Some variables of the multiple assignment are replaced with their value in S1. The
multiple assignment remains unchanged. This lemma is applied from left to right to
the concatenation [R′

2;P
′
6;P

′′
7 ;P ′′

7] with the matchings:

B.3. Redundant Variable Elimination 257

v.vi :: dx.w

(v.v1, ..., v.vi, ..., v.vj , ..., v.vn)
:=

(e1, ..., ei, ..., ej , ..., en)
::





(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)
:=

(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)





S1(v.vi, v.vj) ::





reg(xxw.rd) := xxw.res;
if (dx.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (dx.rs2 = xxw.rd) then [dx.b := xxw.res] else nil





S2 :: all the statements in sequence after S1(v.vi, v.vj)
until a new assignment to dx.rs1 and dx.rs2

obtaining [R′
2;P

′′
6 ;P ′′′

7 ;P ′′′
7], where:

P ′′
6 ::

















reg(xxw.rd) := xxw.res;
if (ir.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (ir.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)

















P ′′′
7 ::

















reg(xxw.rd) := xxw.res;
if (ir.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (ir.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)

















The overall interface equivalence is:

Pipeline1 =O [I1;R
′
2;P

′′
6 ;P ′′′

7 ;P ′′′
7 ;P ′′

8 ;E3;E]

The above interface equivalence can be relabeled as follows:

258 Appendix B. Proof of Pipeline1

R′
2 ::












if (false) then [reg(0) := 0] else nil;
if (dx.rs1 = 0) then [dx.a := 0] else nil;
if (dx.rs2 = 0) then [dx.b := 0] else nil;
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)












;

P ′′
6 ::
















reg(xxw.rd) := xxw.res;
if (ir.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (ir.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.res,xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)
















;

P ′′′
7 ::
















reg(xxw.rd) := xxw.res;
if (ir.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (ir.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.res,xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)
















;

P ′′′
7 ::
















reg(xxw.rd) := xxw.res;
if (ir.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (ir.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.res,xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)
















;

P ′′
8 ::






















(wd.w,wd.res,wd.rd) := (true, xxw.res,xxw.rd);
(wx.w,wx.res,wx.rd) := (true, xxw.res,xxw.rd);
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w,xxw.res,xxw.rd) := (true, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(xdx.w,xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx






















;

E3 ::







xw := xxw;
instr := mem(pc);
ir := instr;
pc := pc + 1







R3

U1

U1

U1

E4

obtaining the new equivalence:

Pipeline1 =O [I1;R3;U1;U1;U1;E4;E]

B.3. Redundant Variable Elimination 259

where,

R3 ::







if (false) then [reg(0) := 0] else nil;
if (dx.rs1 = 0) then [dx.a := 0] else nil;
if (dx.rs2 = 0) then [dx.b := 0] else nil;
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd)







U1 ::

















(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)
:=

(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
reg(xxw.rd) := xxw.res;
if (ir.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (ir.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1

















E4 ::






































(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)
:=

(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(wd.w,wd.res,wd.rd) := (true, xxw.res, xxw.rd);
(wx.w,wx.res,wx.rd) := (true, xxw.res, xxw.rd);
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (true, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx;
xw := xxw;
instr := mem(pc);
ir := instr;
pc := pc + 1






































260 Appendix B. Proof of Pipeline1

B.4 Obtaining first Von Neumann Body

Starting from equivalence 6.16 of page 177:

Pipeline1 =O I1;R3;U
′
1;U

′
1;U

′
1;E4;E

To reach the desired form the concatenation commutativity law is applied to the
first [U ′

1;U
′
1] concatenation:





























U ′
1 ::













reg(xxw.rd) := xxw.res;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1













;

U ′
1 ::













reg(xxw.rd) := xxw.res;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1









































with the following matchings:

A ::

[
ir := mem(pc);
pc := pc + 1

]

B :: reg(xxw.rd) := xxw.res

one obtains the expression:

B.4. Obtaining first Von Neumann Body 261







































reg(xxw.rd) := xxw.res;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
reg(xxw.rd) := xxw.res;











;















ir := mem(pc);
pc := pc + 1
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1











































Q1

U2

Relabeling the above concatenation, [Q1;U2] is obtained, where:

Q1 ::















reg(xxw.rd) := xxw.res;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
reg(xxw.rd) := xxw.res;
ir := mem(pc);
pc := pc + 1















U2 ::











(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)
:=

(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1











and

Pipeline1 =O I1;R3;Q1;U2;U
′
1;E4;E

Applying again the concatenation commutativity law to [U2;U
′
1] with the same

matchings, one obtains the expression:

262 Appendix B. Proof of Pipeline1



































(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)
:=

(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
reg(xxw.rd) := xxw.res;









;















ir := mem(pc);
pc := pc + 1
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1









































U3

U2

after relabeling, one obtains [U3;U2], where:

U3 ::













(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)
:=

(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd);
reg(xxw.rd) := xxw.res;
ir := mem(pc);
pc := pc + 1













The overall interface equivalence becomes the following:

Pipeline1 =O [I1;R3;Q1;U3;U2;E4;E]

Redundant Variable Elimination:

The V N iteration body will be obtained after the elimination of all redundant va-
riables.

Elimination of wx:

Variable wx is removed from [I1;R3;Q1; . . .] applying the multiple assignment
elimination law (see law 17 of page 41).

I1 ::







pc := 1;
(ir.rs1, ir.rs2, ir.rd, ir.func) := (0, 0, 0, 0);
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd) := (0, 0, 0, 0, 0, 0);
(wx.w,wx.res,wx.rd) := (false, 0, 0)







B.4. Obtaining first Von Neumann Body 263

and the matchings are:

(v.v1, v.v2, v.v3) := (e1, e2, e3) :: (wx.w,wx.res,wx.rd) := (false, 0, 0)

S1(v) :: R3

S2 :: is empty

Since wx is only present in I1, obtaining:

I ′1 ::





pc := 1;
(ir.rs1, ir.rs2, ir.rd, ir.func) := (0, 0, 0, 0);
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd) := (0, 0, 0, 0, 0, 0)





and

Pipeline1 =O [I ′1;R3;Q1;U3;U2;E4;E]

Elimination of dx.a, dx.b, dx.rs1, dx.rs2, dx.func and dx.rd:

Applying the variable elimination, dx.a, dx.b, dx.rs1, dx.rs2, dx.func and dx.rd,
will be removed from [I ′1;R3]. R3 is defined in page 259.

The matchings are:

v.vi, ..., v.vj , ..., v.vn :: dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd

(v.v1, ..., v.vi, ..., v.vj , ..., v.vn)
:= :: (dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd) := (0, 0, 0, 0, 0, 0)

(e1, ..., ei, ..., ej , ..., en)

S1(v.vi, ..., v.vj , ..., v.vn) ::







if (false) then [reg(0) := 0] else nil;
if (dx.rs1 = 0) then [dx.a := 0] else nil;
if (dx.rs2 = 0) then [dx.b := 0] else nil;
(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd)







S2 :: all the statements in sequence after S1(v.vi, ..., v.vj , ..., v.vn)
until a new assignment to dx.a, dx.b, dx.rs1, dx.rs2, dx.func and dx.rd

one obtains [I ′′1 ;R′
3], where:

I ′′1 ::

[
pc := 1;
(ir.rs1, ir.rs2, ir.rd, ir.func) := (0, 0, 0, 0);

]

R′
3 ::







if (false) then [reg(0) := 0] else nil;
if (0 = 0) then [0 := 0] else nil;
if (0 = 0) then [0 := 0] else nil;
(xxw.res, xxw.rd) := (alures(0, 0, 0), 0)







264 Appendix B. Proof of Pipeline1

and

Pipeline1 =O [I ′′1 ;R′
3;Q1;U3;U2;E4;E]

Simple ‘if ’ statements Elimination:

The boolean ‘if ’ statements of R′
3 can be simplified applying the following con-

gruences:

if ‘false’ congruence: if false then S1 else S2 ≈ S2

if ‘true expression’ congruence: if Exp = Exp then S1 else S2 ≈ S1

where Exp is an expression.

Applying the if ‘false’ congruence with the matchings:

S1 :: reg(0) := 0

S2 :: nil

obtaining R′′
3 .

R′′
3 ::







nil;
if (0 = 0) then [0 := 0] else nil;
if (0 = 0) then [0 := 0] else nil;
(xxw.res, xxw.rd) := (alures(0, 0, 0), 0)







The ‘nil’ statement is removed applying the concatenation with nil congruence
from R′′

3 :

nil;S ≈ S

where the matching is:

S ::





if (0 = 0) then [0 := 0] else nil;
if (0 = 0) then [0 := 0] else nil;
(xxw.res, xxw.rd) := (alures(0, 0, 0), 0)





obtaining R′′′
3 :

R′′′
3 ::





if (0 = 0) then [0 := 0] else nil;
if (0 = 0) then [0 := 0] else nil;
(xxw.res, xxw.rd) := (alures(0, 0, 0), 0)





B.4. Obtaining first Von Neumann Body 265

The second congruence is applied twice to eliminate the ‘if (0 = 0) . . .’ statements
of R′′′

3 . The matching for both are:

Exp = Exp :: 0 = 0 Exp = Exp :: 0 = 0

S1 :: 0 := 0 and S1 :: 0 := 0

S2 :: nil S2 :: nil

one obtains R4.

R4 ::
[

(xxw.res, xxw.rd) := (alures(0, dx.a, dx.b), 0)
]

Now the following equivalence has been reached:

Pipeline1 =O [I ′′1 ;R4;Q1;U3;U2;E4;E]

Elimination of dx:

The multiple assignment to dx is eliminated from Q1 with the matchings:

(v.v1, v.v2, ..., v.v6)
:=

(e1, e2, ..., e6)
::





(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)
:=

(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)





S1(v) ::
[

(xxw.res, xxw.rd) := (alures(dx.func, dx.a, dx.b), dx.rd)
]

S2 :: all the statements in sequence after S1(v)
until a new assignment to dx

obtaining Q′
1:

Q′
1 ::









reg(xxw.rd) := xxw.res;
(xxw.res, xxw.rd) := (alures(ir.func, reg(ir.rs1), reg(ir.rs2)), ir.rd);
reg(xxw.rd) := xxw.res;
ir := mem(pc);
pc := pc + 1









Variable dx is removed from U3 with the same matchings as above, obtaining
U ′

3:

U ′
3 ::







(xxw.res, xxw.rd) := (alures(ir.func, reg(ir.rs1), reg(ir.rs2)), ir.rd);
reg(xxw.rd) := xxw.res;
ir := mem(pc);
pc := pc + 1







266 Appendix B. Proof of Pipeline1

and similarly for U2, obtaining U ′
2:

U ′
2 ::





(xxw.res, xxw.rd) := (alures(ir.func, reg(ir.rs1), reg(ir.rs2)), ir.rd);
ir := mem(pc);
pc := pc + 1





At this stage one has:

Pipeline1 =O [I ′′1 ;R4;Q
′
1;U

′
3;U

′
2;E4;E]

Elimination of xxw:

First variables xxw.res and xxw.rd are eliminated from R4;Q
′
1 with the mat-

chings:

(v.v1, v.v2) := (e1, e2) ::
[

(xxw.res, xxw.rd) := (alures(0, 0, 0), 0)
]

S1(v) ::
[

reg(xxw.rd) := xxw.res
]

S2 :: all the statements in sequence after S1(v)
until a new assignment to xxw.res, xxw.rd

obtaining Q′′
1, since R4 has disappeared:

Q′′
1 ::









reg(0) := (alures(0, 0, 0);
(xxw.res, xxw.rd) := (alures(ir.func, reg(ir.rs1), reg(ir.rs2)), ir.rd);
reg(xxw.rd) := xxw.res;
ir := mem(pc);
pc := pc + 1









Removing again variables xxw.res and xxw.rd from Q′′
1 and U ′

3 with the mat-
chings:

(v.v1, v.v2, ..., v.v6)
:= ::

[
(xxw.res, xxw.rd) := (alures(ir.func, reg(ir.rs1), reg(ir.rs2)), ir.rd)

]

(e1, e2, ..., e6)

S1(v) ::
[

reg(xxw.rd) := xxw.res
]

S2 :: all the statements in sequence after S1(v)
until a new assignment to xxw

one obtains Q′′′
1 and U ′′

3 :

B.4. Obtaining first Von Neumann Body 267

Q′′′
1 ::







reg(0) := (alures(0, 0, 0);
reg(ir.rd) := alures(ir.func, reg(ir.rs1), reg(ir.rs2));
ir := mem(pc);
pc := pc + 1







U ′′
3 ::





reg(ir.rd) := alures(ir.func, reg(ir.rs1), reg(ir.rs2));
ir := mem(pc);
pc := pc + 1





At this stage one has:

Pipeline1 =O [I ′′1 ;Q′′′
1 ;U ′′

3 ;U ′
2;E4;E]

Elimination of ir:

The variable ir is removed from I ′′1 ;Q′′′
1 with the matchings:

(v.v1, v.v2, v.v3, v.v4) := (e1, e2, e3, e4) ::
[

(ir.rs1, ir.rs2, ir.rd, ir.func) := (0, 0, 0, 0)
]

S1(v) ::

[
reg(0) := (alures(0, 0, 0);
reg(xxw.rd) := xxw.res

]

S2 :: all the statements in sequence after S1(v)
until a new assignment to ir

obtaining I ′′′1 ;Q′′′′
1 :

I ′′′1 ::
[

pc := 1
]

Q′′′′
1 ::







reg(0) := (alures(0, 0, 0);
reg(0) := alures(0, reg(0), reg(0));
ir := mem(pc);
pc := pc + 1







The obtained equivalence is:

Pipeline1 =O [I ′′′1 ;Q′′′′
1 ;U ′′

3 ;U ′
2;E4;E]

The above expression can be relabeled to match equivalence 6.17 of page 177:

268 Appendix B. Proof of Pipeline1

I ′′′
1

::
[

pc := 1
]

Q′′′′
1 ::







reg(0) := (alures(0, 0, 0);
reg(0) := alures(0, reg(0), reg(0));
ir := mem(pc);
pc := pc + 1







U ′′
3

::





reg(ir.rd) := alures(ir.func, reg(ir.rs1), reg(ir.rs2));
ir := mem(pc);
pc := pc + 1





U ′
2 ::





(xxw.res, xxw.rd) := (alures(ir.func, reg(ir.rs1), reg(ir.rs2)), ir.rd);
ir := mem(pc);
pc := pc + 1





E4 ::





































(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)
:=

(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(wd.w, wd.res, wd.rd) := (true, xxw.res, xxw.rd);
(wx.w, wx.res, wx.rd) := (true, xxw.res, xxw.rd);
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (true, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx;
xw := xxw;
instr := mem(pc);
ir := instr;
pc := pc + 1





































E ::
[

IF || ID || EX ||WB
]

I

V Nbody

M

reaching:

Pipeline1 =O I;V N body;M ;E

B.5. Tail Statements 269

B.5 Tail Statements

This section starts from equivalence 6.19 of page 179:

M ; E =O M ; P0; E

Statement P0 of page 168, is reduced as in page 237, after the parallelism to
concatenation transformation one obtains P1, page 239.

Next step is detailed in section B.2 of this appendix. P1 is reduced to P ′
1, page

240, after applying the concatenation commutativity transformation.

Now the interface equivalence is:

M ; E =O M ; P ′
1; E

The proof continues by applying once again the concatenation commutativity
lemma ([A; B] =O [B;A]) to P ′

1 with the matchings:

A ::





instr := mem(pc);
ir := instr;
pc := pc + 1





B ::









if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;
xw := xxw









obtaining G1:

G1 ::



























wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
dx := xdx;
xw := xxw;
instr := mem(pc);
ir := instr;
pc := pc + 1



























The new interface equivalence is the following:

270 Appendix B. Proof of Pipeline1

M ; E =O M ; G1; E

After eliminating variables wd and wx from M , shown in page 178, and propa-
gating the value of variables dx.rs1 and dx.rs2 of M , obtaining M ′:

M ′ ::











































ir := mem(pc);
pc := pc + 1;
(xxw.res, xxw.rd) := (alures(ir.func, reg(ir.rs1), reg(ir.rs2)), ir.rd);
ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
if (true) then [reg(xxw.rd) := xxw.res] else nil;
if (ir.rs1 = xxw.rd) then [dx.a := xxw.res] else nil;
if (ir.rs2 = xxw.rd) then [dx.b := xxw.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (true, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx;
xw := xxw;
instr := mem(pc);
ir := instr;
pc := pc + 1











































Applying the ‘if ’ true congruence to the following statement of M ′,

if (true) then [reg(xxw.rd) := xxw.res] else nil

and the Data Forwarding Elimination, page 175, one obtains M ′′:

B.5. Tail Statements 271

M ′′ ::







































ir := mem(pc);
pc := pc + 1;
(xxw.res, xxw.rd) := (alures(ir.func, reg(ir.rs1), reg(ir.rs2)), ir.rd);
ir := mem(pc);
pc := pc + 1;
reg(xxw.rd) := xxw.res;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(xxw.w, xxw.res, xxw.rd) := (true, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx;
xw := xxw;
instr := mem(pc);
ir := instr;
pc := pc + 1







































To reach the desired form the concatenation commutativity is applied to M ′′

with the following matchings:

A ::

[
ir := mem(pc);
pc := pc + 1

]

B :: reg(xxw.rd) := xxw.res

obtaining M ′′′, where:

M ′′′ ::







































ir := mem(pc);
pc := pc + 1;
(xxw.res, xxw.rd) := (alures(ir.func, reg(ir.rs1), reg(ir.rs2)), ir.rd);
reg(xxw.rd) := xxw.res;
ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(xxw.w, xxw.res, xxw.rd) := (true, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx;
xw := xxw;
instr := mem(pc);
ir := instr;
pc := pc + 1







































272 Appendix B. Proof of Pipeline1

Variables xxw.res and xxw.rd is removed from M ′′′ applying the multiple as-
signment elimination law (see law 17 of page 41). The matchings are:

(v.v1, v.v2) := (e1, e2) ::





(xxw.res, xxw.rd)
:=

(alures(ir.func, reg(ir.rs1), reg(ir.rs2)), ir.rd)





S1(v) ::
[

reg(xxw.rd) := xxw.res
]

S2 :: all the statements in sequence after S1(v)
until a new assignment to xxw.res, xxw.rd

obtaining the concatenation [V Nbody;M1], where

M1 ::































ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
(xxw.w, xxw.res, xxw.rd) := (true, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx;
xw := xxw;
instr := mem(pc);
ir := instr;
pc := pc + 1































At this stage the resulting interface equivalence is:

M ; E =O V Nbody;M1; G1; E

Now the concatenation [M1;G1] is reduced. First, redundant variables dx.a, dx.b, . . .
and xdx.w, xdx.a, . . . are eliminated from M1, obtaining M ′

1:

M ′
1 ::























ir := mem(pc);
pc := pc + 1;
(xxw.w, xxw.res, xxw.rd) := (true, alures(ir.func, reg(ir.rs1), reg(ir.rs2)), ir.rd);
ir := mem(pc);
pc := pc + 1;
(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
xw := xxw;
instr := mem(pc);
ir := instr;
pc := pc + 1























B.5. Tail Statements 273

Next step applies the concatenation commutativity to G1 with the following
matchings:

A ::





(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)
:=

(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)





B ::





if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd)





one obtains G′
1:

G′
1

::



























wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx;
xw := xxw;
instr := mem(pc);
ir := instr;
pc := pc + 1



























Applying the concatenation commutativity to [M ′
1;G

′
1] with the following

matchings:

A ::





instr := mem(pc);
ir := instr;
pc := pc + 1





B ::











wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd)











274 Appendix B. Proof of Pipeline1

obtaining [M ′′
1 ;G′′

1]:


























































M ′′
1 ::





















ir := mem(pc);
pc := pc + 1;
(xxw.w, xxw.res, xxw.rd)

:=
(true, alures(ir.func, reg(ir.rs1), reg(ir.rs2)), ir.rd);
ir := mem(pc);
pc := pc + 1;
(dx.w, dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
xw := xxw





















G′′
1

::

































wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
instr := mem(pc);
ir := instr;
pc := pc + 1
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx;
xw := xxw;
instr := mem(pc);
ir := instr;
pc := pc + 1


























































































Next step eliminates the component variable dx.w of M ′′
1 obtaining M ′′′

1 . Finally,
the first assignment to variable instr of G′′

1 is eliminated and obtaining G′′′
1 :

B.5. Tail Statements 275

M ′′′
1 ::






















ir := mem(pc);
pc := pc + 1;
(xxw.w, xxw.res, xxw.rd)

:=
(true, alures(ir.func, reg(ir.rs1), reg(ir.rs2)), ir.rd);
ir := mem(pc);
pc := pc + 1;
(dx.a, dx.b, dx.rs1, dx.rs2, dx.func, dx.rd)

:=
reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
xw := xxw






















G′′′
1 ::
































wd := xw;
wx := xw;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (true, alures(dx.func, dx.a, dx.b), dx.rd);
ir := mem(pc);
pc := pc + 1
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
dx := xdx;
xw := xxw;
instr := mem(pc);
ir := instr;
pc := pc + 1
































and

[M ′′′
1 ; G′′′

1] =O M

Therefore, the equivalence 6.18 of page 178 have been proved:

M ; E =O V Nbody; M ; E

276 Appendix B. Proof of Pipeline1

Appendix C

PROOF OF IDPAR AND EXPAR

C.1 Proof of IDpar

Starting from equivalence 6.22 of page 181:

IDpar =O P0;E0

Obtaining first IDseq unh body:

The inner cooperation statements which appeared in P0, page 182, as a result of
the communication elimination, are transformed to sequential statements by apply-
ing Cooperation and Concatenation transformation procedure of law 11 of page 39.
The parallelism to concatenation transformations within P0 are the following ones:

{



[
c := true

]
||





cwdW ⇒ wd.w;
cwdRES ⇒ wd.res;
cwdRD ⇒ wd.rd







 =>







cwdW ⇒ wd.w;
cwdRES ⇒ wd.res;
cwdRD ⇒ wd.rd;
c := true







}

278 Appendix C. Proof of IDpar and EXpar

{







[
cfd⇒ fd

]
||







if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd)













=>









if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
cfd⇒ fd









}

and,

{



















[
c := true

]
||



















cdxW ⇐ xdx.w;
cdxA⇐ xdx.a;
cdxB ⇐ xdx.b;
cdxRS1⇐ xdx.rs1;
cdxRS2⇐ xdx.rs2;
cdxFUNC ⇐ xdx.func;
cdxRD ⇐ xdx.rd;
cwdW ⇒ wd.w;
cwdRES ⇒ wd.res;
cwdRD ⇒ wd.rd





































=>






















cdxW ⇐ xdx.w;
cdxA⇐ xdx.a;
cdxB ⇐ xdx.b;
cdxRS1⇐ xdx.rs1;
cdxRS2⇐ xdx.rs2;
cdxFUNC ⇐ xdx.func;
cdxRD ⇐ xdx.rd;
cwdW ⇒ wd.w;
cwdRES ⇒ wd.res;
cwdRD ⇒ wd.rd;
c := true






















}

An intermediate P ′
0 statement is obtained after the transformations.

Lemma 20 (Variable Grouping): Let v and w be variables of type T , where type T is
the cartesian product of the fields f1, f2, . . ., fn. The next sequence of assignments:







v.f1 := w.f1;
v.f2 := w.f2;
. . .
v.fn := w.fn







can be expressed as v := w.

The last step removes redundant variable assignments from the above P ′
0. These

are c, w, and fd. Before eliminating variable fd lemma 20 is applied, it is expressed
as:

C.1. Proof of IDpar 279

{







ir.rs1 := fd.rs1;
ir.rs2 := fd.rs2;
ir.rd := fd.rd;
ir.func := fd.func







=>
[
ir := fd

]
}

After the above reductions, the final equivalence is obtained:

IDpar =O IDseq unh body;P1;E0

where IDseq unh body and P1 have the forms:

IDseq unh body ::






























cwdW ⇒ wd.w;
cwdRES ⇒ wd.res;
cwdRD ⇒ wd.rd;
if (wd.w) then [reg(wd.rd) := wd.res] else nil;
(xdx.w, xdx.a, xdx.b, xdx.rs1, xdx.rs2, xdx.func, xdx.rd)

:=
(true, reg(ir.rs1), reg(ir.rs2), ir.rs1, ir.rs2, ir.func, ir.rd);
cfd⇒ ir;
cdxW ⇐ xdx.w;
cdxA⇐ xdx.a;
cdxB ⇐ xdx.b;
cdxRS1⇐ xdx.rs1;
cdxRS2⇐ xdx.rs2;
cdxFUNC ⇐ xdx.func;
cdxRD ⇐ xdx.rd






























P1 ::









cwdW ⇒ wd.w;
cwdRES ⇒ wd.res;
cwdRD ⇒ wd.rd;
c := true;
w := c









and E0 is shown in page 183.

Induction step:

The proof continues by unfolding once the indefinite loops. Applying again
all the above transformations (the communication elimination, the cooperation to
concatenation, and the variable elimination), a new IDseq unh body and the same tail
statements are obtained:

IDpar =O IDseq unh body; IDseq unh body;P1;E0

280 Appendix C. Proof of IDpar and EXpar

After ∞ unfoldings and transformations, the equivalence may be reduced to:

IDpar =O

[
loop forever do

[

IDseq unh body

]

]

then,

IDpar =O IDseq unh

Note that P1 and E0 do not appear since they will never be reached.

C.2 Proof of EXpar

Starting from equivalence 6.24 of page 187:

EXpar =O P0;Q0;E0

Obtaining first EXseq unh body:

The inner cooperation statements which appeared in P0, page 187, as a result of the
communication elimination, are transformed to sequential statements. The paral-
lelism to concatenation transformations applied to P0 are the following:

{ [[
cwx⇒ wx;
resA := wx.res

]

||
[
b := dx.b

]
]

=>





b := dx.b;
cwx⇒ wx;
resA := wx.res





}

{ [
[
resB := wx.res

]
||

[
rs1 := dx.rs1;
rs2 := dx.rs2

]]

=>





resB := wx.res;
rs1 := dx.rs1;
rs2 := dx.rs2





}

and,

{ [
[
selB := selectB

]
||

[
if selA then [outA := resA] else [outA := a];
aluA := outA

]]

=>





if selA then [outA := resA] else [outA := a];
aluA := outA;
selB := selectB





}

C.2. Proof of EXpar 281

An intermediate P ′
0 statement is obtained after the transformations.

The following cooperation and concatenation transformation is applied twice to
Q0 statement, from page 188, obtaining Q1:

{










[
selB := selectB

]
||
















[
if selA then [outA := resA] else [outA := a]

]

||

[
xxw.res := alures(func, aluA, aluB);
cxwRES ⇐ xxw.res

]

;







;

aluA := outA



















=>









xxw.res := alures(func, aluA, aluB);
cxwRES ⇐ xxw.res;
if selA then [outA := resA] else [outA := a];
aluA := outA;
selB := selectB









}

The last step removes the following redundant variable assignments from P ′
0,

obtaining EXseq unh body: a, b, resA, resB, rs1, rs2, rd, selectA, selectB, selA,
and selB.

The final equivalence is:

EXpar =O EXseq unh body;Q1;E0

where EXseq unh body, and Q1 have the next forms:

EXseq unh body ::



























cwx⇒ wx;
if (dx.rs1 = wx.rd) then [dx.a := wx.res] else nil;
if (dx.rs2 = wx.rd) then [dx.b := wx.res] else nil;
(xxw.w, xxw.res, xxw.rd) := (dx.w, alures(dx.func, dx.a, dx.b), dx.rd);
cdxW ⇒ dx.w;
cdxA⇒ dx.a;
cdxB ⇒ dx.b;
cdxRS1⇒ dx.rs1;
cdxRS2⇒ dx.rs2;
cdxFUNC ⇒ dx.func;
cdxRD ⇒ dx.rd;
cxwW ⇐ xxw.w;
cxwRES ⇐ xxw.res;
cxwRD ⇐ xxw.rd



























282 Appendix C. Proof of IDpar and EXpar

Q1 ::























































a := dx.a;
b := dx.b;
cwx⇒ wx;
resA := wx.res;
resB := wx.res;
rs1 := dx.rs1;
rs2 := dx.rs2;
rd := wx.rd;
selectA := (rs1 = rd);
selectB := (rs2 = rd);
selA := selectA;
if selA then [outA := resA] else [outA := a];
aluA := outA;
selB := selectB;
if selB then [outB := resB] else [outB := b];
aluB := outB;
func := dx.func;
xxw.w := dx.w;
xxw.rd := dx.rd;
cdxW ⇒ dx.w;
cdxA⇒ dx.a;
cdxB ⇒ dx.b;
cdxRS1⇒ dx.rs1;
cdxRS2⇒ dx.rs2;
cdxFUNC ⇒ dx.func;
cdxRD ⇒ dx.rd;
cxwW ⇐ xxw.w;
cxwRD ⇐ xxw.rd























































and E0 is shown in page 189.

Induction Step:

The proof continues by applying again all the above transformations to Q1;E0.
A new EXseq unh body and the same tail statements are obtained:

EXpar =O EXseq unh body;EXseq unh body;Q1;E0

After ∞ unfoldings and communication elimination transformations, the equi-
valence may be reduced to:

EXpar =O

[
loop forever do

[

EXseq unh body

]

]

then,

C.2. Proof of EXpar 283

EXpar =O EXseq unh

Q1 and E0 do not appear in the expression since they will never be reached.

284 Appendix C. Proof of IDpar and EXpar

BIBLIOGRAPHY

[AC75] Alfred V. Aho and Margaret J. Corasick. Efficient string matching:
an aid to bibliographic search. Commun. ACM, 18(6):333–340, 1975.

[BBC+95] N.S. Bjørner, A. Browne, M. Colón, A. Kapur, Z. Manna, H.B. Sipma,
and T.E. Uribe. STeP: The Stanford Temporal Prover, User’s Man-
ual. Technical Report STAN-CS-TR-95-1562, Stanford University,
Computer Science Department, November 1995.

[BBC05a] Francesc Babot, Miquel Bertran, and August Climent. A Static Com-
munication Elimination Algorithm for Distributed System Verifica-
tion. In Kung-Kiu Lau and Richard Banach, editors, Formal Methods
and Software Engineering. 7th International Conference on Formal
Engineering Methods, ICFEM 2005, volume 3785 of LNCS, pages
375–389, Manchester, England, November 2005. Springer.

[BBC05b] Miquel Bertran, Francesc-Xavier Babot, and August Climent. An In-
put/output Semantics for Distributed Program Equivalence Reason-
ing. Electronic Notes in Theoretical Computer Science, 137(1):25–46,
July 2005.

[BBCN01] Miquel Bertran, Francesc Babot, August Climent, and Miquel Nico-
lau. Communication and Parallelism Introduction and Elimination in
Imperative Concurrent Programs. In Patrick Cousot, editor, Static
Analysis. 8th International Symposium, SAS 2001, volume 2126 of
LNCS, pages 20–39, Paris, France, July 2001. Springer.

[BBMC+00] N.S. Bjørner, A. Browne, B. Finkbeiner M. Colón, Z. Manna, H.B.
Sipma, and T.E. Uribe. Verifying Temporal Properties of Reactive
Systems. A Step Tutorial. In Formal Methods in System Design, pages
227–270, June 2000.

[BDP+09] Miquel Bertran, Albert Duran, Miquel Porta, Joan-Andreu Mar-
galef, Roman Duch, and Francesc Babot. PADD Reference Manuals,
http://www.gsystemsd.com/paddrale.htm, April 2009.

286 Bibliography

[Ber88] Miquel Bertran. On a Formal Definition and Application of Dimen-
sional Design. Software-Practice and Experience, 18(11):1029–1045,
November 1988.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con-
currency Control and Recovery in Database Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1987.

[BK84] Jan A. Bergstra and Jan Willem Klop. Process algebra for syn-
chronous communication. Information and Control, 60(1-3):109–137,
1984.

[BK85] Jan A. Bergstra and Jan Willem Klop. Algebra of communicating
processes with abstraction. Theor. Comput. Sci., 37:77–121, 1985.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
MIT Press, 2008.

[Bro97] Manfred Broy. Refinement of time. In M. Bertran and T. Rus, editors,
4th International AMAST Workshop on Real-Time Systems and Con-
current and Distributed Software, volume 1231 of LNCS, pages 44–63.
Springer, January 1997.

[Bro99] Manfred Broy. A logical basis for component-based systems engineer-
ing. In M. Broy and R. Steinbrüggen, editors, Calculational System
Design. IOS Press, 1999.

[Bro01] Manfred Broy. Refinement of Time. Theoretical Computer Science,
253(1):3–26, February 2001.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of
synchronization skeletons using branching-time temporal logic. In
Dexter Kozen, editor, Logics of Programs, pages 52–71, Yorktown
Heights, 1981. Springer.

[CGL94] Edmund M. Clarke, Orna Grumberg, and D.E. Long. Model Checking
and Abstraction. ACM Transactions on Programming Languages and
Systems, 16(5):1512–1542, 1994.

[CGP99] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The
MIT Press, 1999.

[CRTC99] Rafael Corchuelo, David Ruiz, Miguel Toro, and Antonio Ruiz Cortés.
Implementing multiparty interactions on a network computer. In 25th
Euromicro Conference (EUROMICRO ’99), pages 2458–2465, Milan,
Italy, 1999. IEEE Computer Society.

Bibliography 287

[CS99] David E. Culler and Jaswinder P. Singh. Parallel Computer Architec-
ture: A Hardware/Software Approach. Morgan Kaufmann Publishers,
Inc., USA, 1999.

[dA03] L. de Alfaro. Game Models for Open Systems. In International Sym-
posium on Verification (Theory and Practice), volume 2772 of LNCS,
pages 269–289. Springer, 2003.

[Dep83] Department of Defense. Reference Manual for the Ada Programming
Language, 1983. ANSI/MIL-STD-1815A.

[dFEGR05] David de Frutos-Escrig and Carlos Gregorio-Rodŕıguez. Bisimulations
up-to for the linear time-branching time spectrum. In CONCUR 2005
- Concurrency Theory, volume 3653 of LNCS, pages 278–292, London,
UK, 2005. Springer-Verlag.

[dFEGR09] David de Frutos-Escrig and Carlos Gregorio-Rodŕıguez.
(Bi)simulations up-to characterise process semantics. Informa-
tion and Computation, 207(2):146–170, 2009.

[dFEVGR07] David de Frutos-Escrig, Fernando Rosa Velardo, and Carlos Gregorio-
Rodŕıguez. New bisimulation semantics for distributed systems. In
John Derrick and Jüri Vain, editors, FORTE, volume 4574 of Lecture
Notes in Computer Science, pages 143–159. Springer, 2007.

[dFS98] Nicoletta de Francesco and Antonella Santone. A Transformation Sys-
tem for Concurrent Processes. Acta Informatica, 35(12):1037–1073,
December 1998.

[dMGMJS07] Maŕıa del Mar Gallardo, Pedro Merino, Christophe Joubert, and
David Sanán. On-the-fly model checking for c programs with extended
cadp in fmics-jeti. In 12th International Conference on Engineering of
Complex Computer Systems (ICECCS 2007), pages 321–329, Auck-
land, New Zealand, July 2007. IEEE Computer Society.

[dMGMS08] Maŕıa del Mar Gallardo, Pedro Merino, and David Sanán. Model
checking c programs with dynamic memory allocation. In Jornadas
sobre Programación y Lenguajes, PROLE 2008, pages 195–209, Gijón,
Spain, October 2008.

[dRdBH+01] Willem-Paul de Roever, Franck de Boer, Ulrich Hanneman, Yassine
Lakhnech, Mannes Poel, and Job Zwiers. Concurrency Verification:
Introduction to Compositonal and Noncompositional Methods. Cam-
bridge University Press, 2001.

288 Bibliography

[EF82] Tzilla Elrad and Nissim Francez. Decomposition of Distributed Pro-
grams into Communication Closed Layers. Science of Computer Pro-
gramming, 2:155–173, 1982.

[FF96] Nissim Francez and Ira R Forman. Interacting Processes. A Multiparty
Approach to Coordinated Distributed Programming. Addison-Wesley,
1996.

[FMS98] B. Finkbeiner, Z. Manna, and H. Sipma. Deductive Verification of
Modular Systems. In In Compositionality: The Significant Difference,
COMPOS’97, volume 1536 of LNCS, pages 239–275. Springer, July
1998.

[GSD] GSD. General Systems Development company,
http://www.gsystemsd.com.

[GTL02] Paul Le Guernic, Jean-Pierre Talpin, and Jean-Christophe Le Lann.
Polychrony for System Design. Journal of Circuits, Systems and Com-
puters. Application Specific Hardware Design, August 2002.

[HBG+06] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and An-
drew S. Tanenbaum. Modular System Programming in MINIX 3.
;login: The USENIX Magazine, 31(2):19–28, April 2006.

[HO82] Christoph M. Hoffmann and Michael J. O’Donnell. Pattern matching
in trees. J. ACM, 29(1):68–95, 1982.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
Englewood Cliffs, NJ, 1985.

[Hol91] Gerald Holtzmann. Design and Validation of Computer Protocols.
Prentice Hall, 1991.

[HP90] John L. Hennessy and David A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San
Mateo, California, 1990.

[IL85] INMOS-Limited. Occam Programming Manual. Prentice Hall, 1985.

[IL88] INMOS-Limited. Occam 2 Reference Manual. Prentice Hall, 1988.

[Jon87] G. Jones. Programming in Occam. Prentice Hall, 1987.

[KLM+98] R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigun. Static
Partial Order Reduction. In B. Steffen, editor, Proceedings of
TACAS’98, volume 1384 of LNCS, pages 335–357, Noordwijkerhout,
The Netherlands, June 1-4 1998. Springer.

Bibliography 289

[KM97] Matt Kaufmann and J. Strother Moore. An Industrial Strength The-
orem Prover for a Logic Based on Common Lisp. IEEE Transactions
on Software Engineering, 23(4):203–213, 1997.

[KM09] Matt Kaufmann and J. Strother Moore. The ACL2 Home Page.
http://www.cs.utexas.edu/users/moore/acl2/. Dept. of Com-
puter Sciences, University of Texas at Austin, 2009.

[Lee06] Edward A. Lee. The Problem with Threads. IEEE Computer,
39(5):33–42, May 2006.

[MBSU98] Zohar Manna, Anca Browne, Henny Sipma, and Tomas Uribe. Vi-
sual Abstraction for Temporal Verification. In Algebraic Methods and
Software Technology, AMAST’98, volume 1548 of LNCS, pages 28–41.
Springer, 1998.

[MD93] K.L. McMillan and D.L. Dill. Symbolic Model Checking: An Approach
to the State Explosion Problem. Kluwer Academic, 1993.

[Mer01] S. Merz. Model checking: A tutorial overview. In F.Cassez, edi-
tor, Modeling and Verification of Parallel Processes, volume 2067 of
LNCS, pages 3–38. Springer, 2001.

[Mil80] R. Milner. A Calculus of Communicating Systems. Springer, 1980.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MOSS99] M.Muller-Olm, D.A. Schmit, and B. Steffen. Model Checking: A
Tutorial Introduction. In G.File A.Cortesi, editor, Static Analysis,
Proc. 6th Intl. Symp. SAS’99, volume 1694 of LNCS, pages 330–354,
Venice, Italy, September 1999. Springer.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Con-
current Systems. Specification. Springer, 1991.

[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems.
Safety. Springer, 1995.

[OSRSC01a] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert.
PVS Language Reference. Computer Science Laboratory, SRI Inter-
national, Menlo Park, CA, November 2001.

[OSRSC01b] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert.
PVS System Guide. Computer Science Laboratory, SRI International,
Menlo Park, CA, November 2001.

290 Bibliography

[PCT04] José A. Pérez, Rafael Corchuelo, and Miguel Toro. An order-based
algorithm for implementing multiparty synchronization: Research
articles. Concurrency and Computation: Practice and Experience,
16(12):1173–1206, 2004.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification
of concurrent systems in cesar. In Symposium on Programming, pages
337–351, 1982.

[Ram00] G. Ramalingam. Context-sensitive synchronization-sensitive analy-
sis is undecidable. ACM Transactions on Programming Languages
Systems, 22(2):416–430, 2000.

[RH88] A.W. Roscoe and C.A.R. Hoare. The laws of OCCAM programming.
Theoretical Computer Science, 60:177–229, 1988.

[RR92] R. Ramesh and I. V. Ramakrishnan. Nonlinear pattern matching in
trees. J. ACM, 39(2):295–316, 1992.

[Sch99] Michael Schenke. Transformation Design for Real-Time Systems. part
ii: From Program Specifications to Programs. Acta Informatica,
36(1):67–96, January 1999.

[SJ00] Qin Shengchao and He Jifeng. An algebraic approach to hard-
ware/software partitioning. In The 7th IEEE International Con-
ference on Electronics, Circuits and Systems (ICECS 2000), pages
273–276, Jounieh, Lebanon, Decembre 17-20 2000. IEEE Computer
Society Press.

[SO99] Michael Schenke and Ernst-Rüdiger Olderog. Transformation Design
for Real-Time Systems. part i: From Requirements to Program Spec-
ifications. Acta Informatica, 36(1):1–65, January 1999.

[SORSC01] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert.
PVS Prover Guide. Computer Science Laboratory, SRI International,
Menlo Park, CA, November 2001.

[SSB04] Leila Silva, Augusto Sampayo, and Edna Barros. A Constructive
Approach to Hardware/Software Partitioning. Formal Methods in
System Design, 24(1):45–90, 2004.

[SUM99] Henny B. Sipma, Tomas E. Uribe, and Zohar Manna. Deductive
Model Checking. Formal Methods in System Design, 15(1):49–74,
July 1999.

Bibliography 291

[SZ97] Dennis Shasha and Kaizhong Zhang. Approximate tree pattern
matching. In Pattern Matching Algorithms, pages 341–371. Oxford
University Press, 1997.

[Tay83] Richard N. Taylor. Complexity of Analyzing the Synchronization Sof
Concurrent Programs. Acta Informatica, 19:57–84, 1983.

[TDB+06] S. Tucker Taft, Robert A. Duff, Randall L. Brukardt, Erhard Ploed-
ereder, and Pascal Leroy. Ada 2005 Reference Manual. Language
and Standard Libraries. LNCS. Springer Berlin / Heidelberg, 2006.
International Standard ISO/IEC 8652/1995 (E) with Technical Cor-
rigendum 1 and Amendment 1.

[THB06] Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert Bos. Can
we Make Operating Systems Reliable and Secure. IEEE Computer,
39(5):44–51, May 2006.

[vG01] Rob J. van Glabbeek. Handbook of Process Algebra, chapter The Lin-
ear Time - Branching Time Spectrum I: The semantics of Concrete,
Sequential Processes. Elsevier, 2001.

[Wit77] Robert W. Witty. Dimensional flowcharting. Software-Practice and
Experience, 7:553–584, 1977.

[Wit81] Robert W. Witty. Small scale software engineering. Ph.d. dissertation,
Department of Computer Science, Brunel University, Uxbridge, UK,
September 1981.

[YG04] Karen Yorav and Orna Grumberg. Static Analysis for State-space
Reductions. Formal Methods in System Design, 25:67–96, 2004.

Aquesta Tesi Doctoral ha estat defensada el dia ____ d __________________ de 2009

al Centre ___

de la Universitat Ramon Llull

davant el Tribunal format pels Doctors sotasignants, havent obtingut la qualificació:

President/a

Vocal

Vocal

Vocal

Secretari/ària

Doctorand/a

C
.I.

F
. G

: 5
90

69
74

0
 U

ni
ve

rs
ita

t R
am

on
 L

ul
l F

un
da

ci
ó

 P
riv

ad
a.

 R
gt

re
. F

un
d.

 G
en

er
al

ita
t d

e
C

at
al

un
ya

 n
úm. 4

72
 (

28
-0

2-
90

)

 C. Claravall, 1-3
 08022 Barcelona
 Tel. 936 022 200
 Fax 936 022 249
 E-mail: urlsc@sec.url.es
 www.url.es

Francesc Babot Pagès

