
 
DEPARTAMENT DE FARMACOLOGIA 
 
 
 
 
 
 
 
 
 
 
MITOCHONDRIAL ROLE OF APOPTOSIS-INDUCING 
FACTOR (AIF): OXIDATIVE PHOSPHORYLATION AND 
REACTIVE OXYGEN SPECIES 
 
 
 
 
 
 
 
 
 
 
NADEZDA APOSTOLOVA 
 
 
 
 
 

UNIVERSITAT DE VALÈNCIA 
Servei de Publicacions 

2008 
 
 

 



Aquesta Tesi Doctoral va ser presentada a València el dia 12 de 
març de 2008 davant un tribunal format per: 
 

- D. Salvador Aliño Pellicer 
- D. Leonardus G.J. Nijtmans 
- D. Nicholas A. Joza 
- D. Jordi Muntané Relat 
- Dª. Pilar D’Ocón Navaza 
 
 

 
Va ser dirigida per: 
D. Juan Vicente Esplugues Mota 
D. Kenneth James McCreath 
Dª. Ana María Cervera Zamora 
 
 
 
 
©Copyright: Servei de Publicacions 
Nadezda Apostolova 
 
 
 
 
 
 
 
 
Depòsit legal:  
I.S.B.N.:978-84-370-7115-2 

Edita: Universitat de València 
Servei de Publicacions 
C/ Artes Gráficas, 13 bajo 
46010 València 
Spain 
Telèfon: 963864115 



i 

 

UNIVERSITAT  DE  VALÈNCIA 
 

FACULTAT  DE  MEDICINA  I  ODONTOLOGIA 
 

DEPARTAMENT  DE  FARMACOLOGIA 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

TESIS DOCTORAL 
 

NADEZDA APOSTOLOVA  
 
 

Valencia, 2008

“MITOCHONDRIAL ROLE OF 

APOPTOSIS-INDUCING FACTOR (AIF): 

OXIDATIVE PHOSPHORYLATION 

AND REACTIVE OXYGEN SPECIES” 



ii  

UNIVERSITAT  DE  VALÈNCIA 
 

FACULTAT DE MEDICINA I ODONTOLOGIA 
 

DEPARTAMENT DE FARMACOLOGIA 
 

 
 
Dr. Juan Vicente Esplugues Mota, Catedrático del Departamento de 
Farmacología de la Universidad de Valencia, 
 

Dr. Kenneth James McCreath, Investigador de la Fundación Centro Nacional de 

Investigaciones Cardiovasculares Carlos III (CNIC) y 

 

Dra. Ana María Cervera Zamora, Investigadora de la Fundación Centro Nacional 

de Investigaciones Cardiovasculares Carlos III (CNIC)  

 

hacen constar: 

 

Que el trabajo titulado ”Mitochondrial role of Apoptosis-inducing factor (AIF): oxidative 

phosphorylation and reactive oxygen species”, presentado por la licenciada Nadezda 

Apostolova para obtener el grado de Doctora, ha sido realizado en la Unidad Mixta de 

Investigación CNIC-UVEG (Centro Nacional de Investigaciones Cardiovasculares-

Universitat de València), bajo nuestra dirección.  

Concluido el trabajo experimental y bibliográfico, autorizamos la presentación y la 

defensa de esta Tesis Doctoral. 

 

                                    en Valencia, a 20 de enero de 2008 

 

 

                                    
                                     Fdo. Dr. Juan V. Esplugues Mota 
 
                                       
                                       
                                     Fdo. Dr. Kenneth J. McCreath 
                                       

 
 

                                     Fdo. Dra. Ana M. Cervera Zamora 
 



iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my family  
 
 
 
 
 
 
 



 

iv  

PREFACE 
 

After finishing University and obtaining a Degree in Biology I had just a few 

clear ideas. Luckily, one of them was that I knew I wanted to do science, although I 

was not quite certain of what that actually meant. Even now, nearly 7 years later, after 

working in several laboratories and meeting many people, I still cannot define  “doing 

science ”. It can definitely mean many quite different things, “research ” being the 

most meaningful and worthy scientific activity.  

 

Therefore, I am glad that I was able to do true research while working on my 

Doctoral Thesis, although it often meant wasting precious time, nerves and energy 

(and sometimes even more precious reagents!). When I started working on this project 

it felt like I was jumping into a big, blue ocean full of life, light and colourful shapes 

but I also expected that it would certainly be full of surprises and hide dark and 

dangerous places. Thus  “taking the plunge” into this big ocean was thrilling but it took 

courage. Doing this Doctoral Thesis has been a challenge for me from the very first 

day until now, when I see it coming to an end. 

 

 I am glad to have learnt many things; not only theoretical scientific knowledge 

but also how to read articles (not surprisingly also called “papers”!) without getting 

frustrated, how to be persistent, how to think, how to plan and organize an experiment 

and later present the data (often the most tricky part of the whole procedure!), how to 

build a personal opinion, how to cope with technical and other difficulties. I have 

understood that there is no, nor should there be, such a thing as positive and negative 

data, it is all simply  “data”. Some of these abilities may eventually fade, vanish or 

become unnecessary for my future work, yet there are some skills that I hope never to 

forget. These include the special ability to be surprised (it somehow diminishes with 

age) and to feel excited and enthusiastic about little things even when they do not look 

promising at first glance. 

 

 

 

 

 

 



 

v 

ACKNOWLEDGEMENTS 

 

Many people, directly and indirectly, with and without knowing it, have 

contributed to this Doctoral Thesis. 

In the first place, I would like to express my most sincere gratitude to my three 

thesis directors, Dr. Juan Vicente Esplugues, Dr. Kenneth J. McCreath and Dr. Ana M. 

Cervera, without whose patience, knowledge and experience this thesis would never 

have been possible. Thank you Juan Vicente, for giving me this marvellous opportunity, 

for believing in me since the very beginning and for sharing with me your knowledge 

on scientific and other, no less interesting, subjects. Thank you Kenneth, for always 

being there for me, for teaching me every day over the last few years, for encouraging 

me in difficult times and for your remarkable sense of humour. Many thanks to Ana for 

helping me in the everyday lab work, for your useful suggestions and advice, and your 

always positive attitude. 

Furthermore, I would like to thank my colleagues and lab-mates who were 

always there to give me a hand (and literally!) and with whom I have shared 

unforgettable moments in the lab and outside it. Many thanks to Loles Barrachina, M. 

Angeles Martínez, Miguel Martí, Sara Calatayud, Juan Serrador, Ángeles Álvarez, Carlos 

Hernández, Elsa Quintana, Cristina Amezcua, Paqui Rodríguez, Cristina Núñez, Víctor 

M. Víctor, Milagros Rocha, Sales Ibiza, Irene Boscá, Irene Díez, Nuria Martínez, Ana 

Blas, Fran Baixauli, Maria José Igual, Dolores Ortiz, Annia Riaño and Mario Andrade. 

More specifically, I would like to thank Alejandra Sanjuan, Paco Luna and Reme 

García with whom I worked most closely. It was a pleasure to work with you! Many 

thanks for your inestimable help, for your friendship and for putting up with my terrible 

moods when things became difficult. 

I would also like to acknowledge the endless support of my family. I am 

grateful to my husband, José Mª Gómez, for his love and understanding, for his infinite 

patience, for listening to me and for always encouraging me to continue. Special 

thanks to my parents, Mirjana and Aleksandar Apostolovi, for being unique, for giving 

me a choice and for teaching me that “knowledge is power”. Lastly, I would like to 

thank my sister, Ema, for loving me, for believing in me and very importantly, for 

always making me laugh. Tato, mamo i Em~e, vi blagodaram i silno ve 

gu¡kam! 

 

To you all, my deepest gratitude. 



 

vi  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Funding 

 

This thesis was supported by Predoctoral fellowship FPU (ref. nº: AP2003-1400) from 

the Ministerio de Educación, Cultura y Deporte de España, a grant (ref nº: SAF2003-

02291) from Ministerio de Ciencia y Tecnología de España to Kenneth J. McCreath, as 

well as by the predoctoral programme of the Fundación Centro Nacional de 

Investigaciones Cardiovasculares (CNIC). 



 

vii 

ABBREVIATIONS 

 
aa Amino acids (amino acid residues) 
ACTB Beta-actin 
ActD Actinomycin D 
AD Alzheimer´s disease 
ADP Adenosine diphosphate 
AIDS Acquired immunodeficiency syndrome 
AIF Apoptosis-inducing factor 
AIFL AIF-like 
ALDOA Aldolase A 
αααα-KGDH Alpha-ketoglutarate dehydrogenase 
ALS Amyotrophic lateral sclerosis 
ALT Adult T-cell leukaemia 
AMID AIF-homologous mitochondrion-associated inducer of death 
AMS 4-acetamido-4´-maleimidylstilbene-2,-2´-disulfonic acid 
Apaf-1 Apoptotic peptidase activating factor 1 
APS Ammonium persulfate 
ARE Antioxidant response element 
ASK-1 Apoptosis signaling kinase-1 
Asp Asparagine 
ATP Adenosine triphosphate 
Atr Atractyloside 
Bak Bcl-2 homologous antagonist/killer 
Bax Bcl-2 associated X protein 
BCA Bicinchoninic acid 
Bcl-2 B-cell lymphoma 2 
ββββ-NF Beta-naphtoflavone 
BSA Bovine serum albumin 
CAD Caspase-activated DN-ase 
CAT Catalase 
cDNA Complementary DNA  
CI(39) Complex I 39 kDa subunit 
CI(20) Complex I 20 kDa subunit 
CMFDA 5-Chloromethylfluorescein diacetate 
c-myb v-myb myeloblastosis viral oncogene homologue 
c-Myc v-myc myelocytomatosis viral oncogene homologue 
CNS Central nervous system 
COX1 Cytochrome c oxidase-subunit I 
COX2 Cytochrome c oxidase-subunit II 
CYCA Rat Cyclophilin A 
CYPA Human Cyclophilin A 
Cys Cysteine 
cyt c Cytochrome c 
DCFH Dichlorofluorescin 
∆∆∆∆ψm Mitochondrial transmembrane potential 
DEPC Diethylpyrocarbonate 
Dld Dihydrolipoyl dehydrogenase  
DMEM Dulbecco´s modified Eagle´s medium  
DMSO Dimethylsulfoxide 
dNTPs Deoxinucleoside triphosphates  



 

viii  

dsRNA Double-stranded RNA 
DTT Dithiothreitol 
EB Embryonic body 
E. coli Escherichia coli 
EDTA Ethylenediamine tetraacetic acid 
ER Endoplasmatic reticulum 
ERK Extracellular-regulated kinase 
ES cells Embryonic stem cells 
ETC Electron transport chain 
EthBr Ethidium bromide  
F Forward 
FAD Flavine adenine dinucleotide 
FBS Fetal bovine serum 
FISH Fluorescent in situ hybridization 
GAPDH Glyceraldehyde-3-phosphate dehydrogenase 
GFP Green fluorescent protein 
GLUT1 Facilitated glucose transporter 1 
Gpx Glutathione peroxidase 
GR Glutathione reductase 
GSH  Reduced glutathione 
GSSG Oxidized glutathione (Glutathione disulfide) 
hAIF Human AIF 
HBSS Hank's buffered salt solution 
HCl Hydrochloric acid 
HD Huntington´s disease 
HE Hydroethidine (Dihydroethidium) 
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  
HIF-1 Hypoxia-inducible factor-1 
HIV Human immunodeficiency virus 
Hq Harlequin 
HRE Hypoxia-response element 
HRP Horseradish peroxidase 
Hsp70 Heat-shock protein 70 
HTLV-I Human T-cell leukaemia virus Type-I  
H2O2  Hydrogen peroxide 
IAP Inhibitor of apoptosis protein 
IF-γγγγ Interferon-gamma 
IκκκκB Inhibitor of NF-κB 
IL-1 Interleukin-1 
IMM Inner mitochondrial membrane 
IMS Intermembrane space 
Kb Kilobase 
KD Knock Down 
KDa Kilodalton 
KEAP1 Kelch-like ECH-associated protein 1 
KO Knock Out 
LB Luria Bertani 
LHON Leber´s hereditary optic neuropathy 
LIF Leukaemia inhibitory factor 
LPS Lipopolysaccharides 
Lys Lysine 
mAIF Mouse AIF 



 

ix 

MAO Monoamine oxidase 
MAPK Mitogen-activated protein kinase 
Me-Hg Methylmercury 
MEM Minimal essential medium 
MMP Mitochondrial membrane permeabilization 
MPP+ N-methylpyridinium ion 
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
mtDNA Mitochondrial DNA 
NAC N-acetyl cysteine 
NAD Nicotinamide adenine dinucleotide 
NADP Nicotinamide adenine dinucleotide phosphate 
NADPH  Reduced nicotinamide adenine dinucleotide phosphate 
n.e.a.a. Non-essential amino acids 
NF-κκκκB Nuclear factor-kappa B 
NLS Nuclear localization sequence 
NMDA N-methyl-D-aspartate 
NQO1 NAD(P)H quinone oxidoreductase 
Nrf2 Nuclear factor (erythroid-derived 2)-like 2 
O2• Superoxide 
OH• Hydroxyl radical 
OMM Outer mitochondrial membrane 
o/n Over night 
Ox-LDL Oxidized low density lipoprotein 
OxPhos Oxidative phosphorylation 
PBS Phosphate-buffered saline 
PCD Programmed cell death 
pCMPS Para-chloromercuryphenylsulphonic acid  
PCR Polymerase chain reaction 
PD Parkinson´s disease 
PI Propidium iodide 
PI3K Phosphoinositide 3-kinase 
PNPP Para-nitrophenylphosphate 
Pol III RNA polymerase III 
PRG3 p53-responsive gene 3 
Pro Proline 
Prx Peroxiredoxin 
PTP Permeability transition pore 
R Reverse 
RHD Rel homology domain 
RNAi RNA interference 
ROS  Reactive oxygen species 
RT Room temperature 
RT-PCR Reverse transcriptase polymerase chain reaction 
SDS-PAGE Sodium dodecyl sulphate-polyacrilamide gel electrophoresis 
Ser Serine 
siRNA Small interfering RNA 

Smac/Diablo Second mitochondria-derived activator of apoptosis/ Direct 
inhibitor-of-apoptosis-protein-binding protein with low pI 

SOD Superoxide dismutase 
Sp-1 Specificity protein-1 
STS Staurosporine 
Tº Temperature 



 

x  

t-BHQ Tert -butylhydroquinone 
TBS-T Tris-buffered saline-Tween 
TCA Trichloroacetic acid 
TEMED N,N,N´,N´-tetramethylethylendiamine 
Thr Threonine 
TMRM Tetramethylrhodaminemethylester 
TNF-αααα Tumour necrosis factor alpha 
Tris Trishydroxymethylaminomethane 
Trp Tryptophane 
Trx Thioredoxin 
TUBA Alpha-Tubulin 
Tyr Tyrosine 
VDAC Voltage-dependent anion channel 
WB Western blot 
WT Wild type 
Z-VAD.fmk Carbobenzoyl-Val-Ala-Asp-fluoromethylketone 
 

 



 

xi 

LIST OF FIGURES 
 
 
I.1. Mitochondrial control of apoptosis. 

 
4 

I.2 Phylogenetic tree showing the relationship between AIF and 
other oxidoreductases from different species. 

7 

I.3. Sequence alignment of mouse and human AIF with BDSF from 
Pseudomonas putida. 

9 

I.4. AIF-tridimensional model. 
 

11 

I.5.  Schematic representation of the molecular structure of AIF. 
 

13 

I.6.  Mitochondrial physiology, molecular connections between ETC 
and the Krebs cycle. 

34 

I.7. Complex I structure. 
 

35 

I.8.  Schematic representation of part of the mitochondrial ETC, 
showing ROS generation. 

40 

I.9. Mechanism of mitochondrial dysfunction. 
 

41 

I.10. Simplified schematic representation of the fate of mitochondrial 
ROS. 

43 

I.11. Enzymatic reactions catalyzed by SOD and CAT. 
 

43 

I.12. The GSH and Trx system. 
 

45 

I.13. Parallelism between HIF-1 and Nrf2 regulation. 
 

50 

III.1. AIF-silencing vector and cassettes. 
 

62 

III.2. Luciferase-mediated oxidation of luciferin to oxyluciferin is a 
double-step reaction.  

66 

III.3. Glucose conversion to 6-phospho-gluconate.  
 

66 

III.4. Oxidation of atmospheric oxygen is the principle of the chemical 
reaction taking place in the Clark-type oxygen electrode.  

83 

IV.1. RT-PCR analysis of AIF expression in human normal and tumour 
tissues. 

88 

IV.2. RT-PCR results of AIF expression in human control and tumour 
cDNA, after BamHI digestion. 

89 

IV.3. Transient AIF silencing is accompanied by an increase in ROS 
levels. 

90 

IV.4. Analysis of the ρº phenotype. 92 

IV.5. Transient AIF silencing in Hep3B ρº cells is not followed by an 
increase in the ROS levels.  

93 



 

xii  

IV.6. Generation of stable siAIF cell lines. 
 

  94 

IV.7. H2O2 concentration in stable siAIF cell lines compared to wild 
type He3B cells and control stable silenced cell line, SURF-A7. 

97 

IV.8. Analysis of the ROS levels in AIF1-10 cells versus control pU6-2 
cell line. 

98 

IV.9. Analysis of the redox status of siAIF cells versus controls. 
 

99 

IV.10.  HIF-1α expression in stable AIF-silenced cell lines. 
 

102 

IV.11. AIF expression is increased upon prolonged H2O2 treatment. 
 

103 

IV.12. WB analysis of NF-κB and Nrf2 expression in pU6-2 and AIF1-10 
cells. 

105 

IV.13. RT-PCR analyses of redox-sensitive genes. 
 

106 

IV.14. Analysis of the O2 consumption in intact cells. 
 

108 

IV.15. Analysis of the O2 consumption in digitonin-permeabilized cells. 
 

110 

IV.16. Analysis of the glycolytic capacity of siAIF cells versus controls. 
 

113 

IV.17. Cell proliferation in siAIF and control cell lines. 
 

115 

IV.18. WB analysis of Complex I 39 and 20 kDa subunits. 
 

117 

IV.19. Analysis of Complex I 39 and 20 kDa subunits expression after 
an antioxidant treatment. 

117 

IV.20. Analysis of AIF expression in mouse ES cell lines, AIF-KO and the 
control WT cell line. 

119 

IV.21. Analysis of the phenotypic characteristics of the mouse ES cell 
lines, AIF-KO and the control WT line. 

120 

IV.22. Trx expression analysis in siAIF cells and the control pU6-2 cell 
line. 

123 

IV.23. Overexpressed Trx2 but not Trx2∆ is targeted to mitochondria. 
 

126 

IV.24. Trx overexpression in AIF1-10 and the control pU6-2 cells. 
 

128 

IV.25. Analysis of the relationship between AIF and Trx2 in our cellular 
model. 

130 

V.1. Sources of ROS in the mitochondrion and connections with 
NAD/NADP metabolism. 

140 

V.2. Schematical model of the function of AIF in the mitochondrion. 142 

 



 

xiii 

LIST OF TABLES 
 
 
I.1. Composition of the mitochondrial ETC. 32 

I.2. Reactive oxygen species generated in a mammalian cell. 38 

I.3. Some of the genes known as down-stream transcriptional 
targets of HIF-1 and Nrf2.  

49 

III.1. PCR conditions and primer sequences for genomic PCR.  70 

III.2.  RT-PCR: Primer pairs and PCR conditions used. 72 

III.3.  WB: Primary and secondary antibodies used. 77 

IV.1. Screening for stable AIF-silenced cell lines. 95 

 

 

 

 

 

 

 

 

 

 



 

xiv  

ABSTRACT 

 

The apoptotic function of Apoptosis-inducing factor (AIF) is well documented in the 

literature, but its physiological role in the mitochondrion is less certain. Using a small 

interfering RNA (siRNA) strategy, we studied whether modulation of AIF in cultured 

cells influenced the production of reactive oxygen species (ROS). We found that siAIF-

transfected cells had reduced AIF protein levels and this was paralleled by a significant 

increase in ROS. We tested the generality of this response by using two different 

human cell lines, Hep3B and HeLa, and also by employing a mouse ES AIF-KO cell line. 

The increased ROS were mitochondrial in origin as a similar silencing strategy in cells 

devoid of a functioning electron transport chain (ETC) did not result in a ROS-increase. 

The augmented ROS levels were sufficient to activate Hypoxia-inducible factor 1α 

(HIF-1α), a ROS-sensitive transcription factor, and this effect could be reversed using 

antioxidants, both the broad-range antioxidant (N-acetyl cysteine) and a specific 

mitochondrial-targeted antioxidant (MitoQ), proving the implication of ROS in the HIF-

1α  stabilization. 

Examination of oxygen consumption revealed that AIF-depleted cells had a major 

impairment of respiration, at Complex I in the ETC. Western blot analysis also showed 

a loss of Complex I 39 and 20 kDa subunits. Studies using the antioxidants mentioned 

above, revealed that the respiratory competence could be regained in AIF-silenced 

cells. However, neither of the antioxidant treatments we used could recover Complex I 

assembly. Studies of the energetic state of siAIF cells showed that despite a 30% 

decrease in the overall intact cell respiration, these cells maintain normal basal levels 

of ATP, due to a higher glycolytic capacity and a lower proliferation rate. Moreover, we 

analyzed the expression of thioredoxin by Western blot and found that the 

mitochondrial isoform, Trx2, was significantly decreased when AIF was silenced. 

Preliminary co-immunoprecipitation analyses and proteomic studies failed to show any 

direct correlation between AIF and Trx2 at the protein level.  

 

Our results lead us to the conclusion that the defect in respiration in siAIF cells is 

downstream of Complex I protein loss and is presumably due to ROS-mediated 

damage to the ETC. This suggests an integral mitochondrial function of AIF, as a redox 

modifier and chaperone-like molecule, necessary for Complex I assembly. Additional 

studies are required to define the detailed mechanism of the AIF enzymatic activity in 

the mitochondrion and to establish its binding partners. 
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I. INTRODUCTION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“We are made of dreams” 
 

William Shakespeare (1564-1616) 



  Introduction 
 

2 
 

I.1. Apoptosis - chronicle of a death foretold 

 
Programmed cell death (PCD) is known to play a major role in the development and 

stress responses of all three metazoan kingdoms (Plantae, Animalia and Fungi). It is 

essential for organ development, tissue homeostasis, aging and removal of infected or 

damaged cells [Jacobson M.D. et al., 1997]. Every year humans lose their body weight 

in cells through the process of PCD. Failure to invoke appropriate cell death can result 

in autoimmune disorders or cancer, whereas increased PCD leads to degenerative 

processes such as immunodeficiency and neurodegenerative diseases [Thompson C.B., 

1995; Okouchi M. et al., 2007]. The biochemical and ultrastructural features of PCD are 

highly conserved throughout the evolution of multicellular animals [Jacobson M.D. et 

al., 1997].  

 
Classical apoptosis, the best known phenotypic expression of PCD, consists of two 

phases, initiation and execution. The initiation phase can be triggered by extrinsic 

pathways - through activation of the death receptors, on the cell membrane, and 

intrinsic pathways - involving mitochondria and other organelles such as the 

endoplasmatic reticulum (ER) or lysosomes (Fig.I.1). 

 

Generally, the apoptotic changes in a mammalian cell comprise shrinkage and loss of 

the cell volume, degradation of proteins, chromatin condensation and DNA loss, 

“blebbing” of the cell surface and exposure of specific phospholipids, namely 

phosphatidylserines, and breakdown in the mitochondrial integrity.  

 

In contrast to a couple of decades ago, when it was believed that only or mainly nuclei 

undergo important structural and biochemical modifications in dying cells, it is now 

recognized that mitochondria are the central player in the majority of the PCD-events 

in mammalian cells [Green D.R. and Kroemer G., 1998; Kroemer G. and Reed J.C., 

2000]. Mitochondrial damage can directly activate apoptosis or amplify receptor-

mediated apoptotic pathways, as shown in Fig.I.1. 

 
One of the decisive steps of the apoptotic cascade is the permeabilization of the outer 

mitochondrial membrane (OMM), culminating in the release of soluble intermembrane 

proteins from the mitochondrion to the cytosol [Zamzami N. et al., 1996; Susin S.A. et 

al., 1996]. Such proteins are: cytochrome c (cyt c), procaspase-2, -3 and –9 [Mancini 

M. et al., 1998; Krajewski S. et al., 1999], the inhibitor of apoptosis proteins (IAP), 
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Smac/Diablo [Du C. et al., 2000], endonuclease G and AIF (Fig.I.1). The exact 

mechanisms of mitochondrial membrane permeabilization (MMP) are still a matter of 

debate. Physical disruption of OMM, due to swelling of the matrix has been suggested 

by several authors [Petit P.X. et al., 1998]. Others postulate the existence of non-

specific protein permeable pores in OMM [Desagher S. et al., 1999; Shimizu S. et al., 

1999]. Irrespective of the exact mechanism(s) of MMP, it appears that anti-apoptotic 

members of the Bcl-2 family such as Bcl-2 or Bcl-xl stabilize the mitochondrial 

membrane whereas the pro-apoptotic Bcl-2 homologues such as Bax or Bak 

compromise the mitochondrial barrier function. The first apoptogenic intermembrane 

protein to be identified was cyt c [Liu X. et al., 1996]. Soon, many investigators 

assumed that cyt c is the major rate-limiting factor of apoptotic cell death, a finding 

that was later found to be insubstantial.  

 

Other important hallmarks of mitochondria in apoptotic cells are the disruption 

(decrease) of the mitochondrial transmembrane potential (∆ψm), present in most 

models of apoptosis [Hirsch T. et al., 1997] and the increase in reactive oxygen species 

(ROS). These phenomena, which are very closely related, have been shown to be both 

a cause and a consequence of the apoptotic process in mitochondria.  

 

Mammalian PCD, apoptosis, is mostly coupled to the activation of caspases. But, in 

contrast to a previous belief, inhibition of caspases per se does not prevent cell death 

in most mammalian models of apoptosis induction. Thus, when cell death is induced by 

Bax [Xiang J. et al., 1996, Pastorino J.G. et al., 1998; Marzo I. et al., 1998], Bak 

[McCarthy N.J. et al., 1997], c-Myc [McCarthy N.J. et al., 1997], ligation of 

glucocorticoid receptors [Hirsch T. et al., 1997; Brunet C.L. et al., 1998], tumour 

necrosis factor (TNF-α), [Vercammen D. et al., 1998], interferon-γ (IF−γ), [Quignon F. 

et al., 1998], staurosporine (STS), [Deas O. et al., 1998; Bossy-Wetsel E. et al., 1998] 

and DNA-damage [Hirsch T. et al., 1997; Sun X.M. et al., 1999], cells normally die 

from full-blown apoptosis and manifest caspase activation. However, pancaspase 

inhibitors do not prevent cytolysis, nor do they prevent MMP, although they usually 

abolish oligonucleosomal DNA fragmentation. The morphology of cells dying in the 

presence of caspase inhibitors resembles that of unicellular eukaryotes (which lack 

caspases), induced to undergo PCD-like death. When caspase activation is inhibited 

indirectly, for instance by culturing cells in conditions in which both glycolytic and 

respiratory ATP generation are prevented, cells also die without oligonucleosomal DNA 
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fragmentation and without shell shrinkage [Leist M. et al., 1997; Eguchi Y. et al., 1997; 

Bradham C.A. et al., 1998], yet manifest nuclear condensation and DNA cleavage into 

large 50-150 kb fragments, undistinguishable from that seen in the early stage of 

apoptosis [Dong Z. et al., 1998]. Moreover, there are several well-studied models of 

apoptosis where no caspase activation is detected. For example, the neurotoxic agents 

hydrogen peroxide (H2O2) and methylmercury (Me-Hg), provoke apoptosis of cultured 

rat cerebellar granule cells without activation of the caspase-3 pathway [Fonfria E. et 

al., 2002].  

 

Altogether, there are different observations that underline the existence of controlled 

caspase-independent death mechanisms in the mammalian system. 

 

 
 
Figure I.1. Mitochondrial control of apoptosis. Many cellular death-promoting 
pathways converge at the mitochondrion. Furthermore, mitochondria participate in 
both caspase-dependent and -independent cell suicide [modified from Taha T.A. et 
al., 2006]. 
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I.2. Apoptosis-inducing factor (AIF) - balancing life and death 
 

I.2.1. The discovery 

 

In 1996, Santos A. Susin and co-workers found that the mitochondrial intermembrane 

protein fraction contains an activity which suffices to force isolated HeLa nuclei to 

adopt an apoptotic morphology and to lose part of their DNA content [Zamzami N. et 

al., 1996; Susin S.A. et al., 1996]. This activity was termed “apoptosis-inducing factor” 

(AIF). Based on a semi-automated cytofluorometric assay allowing measurement of the 

frequency of subdiploid nuclei exposed to mitochondrial proteins, Guido Kroemer and 

colleagues purified a protein that maintained its activity in the presence of the broad-

range caspase inhibitor Z-VAD.fmk [Susin S.A. et al., 1999 A]. AIF was found to be an 

ubiquitous FAD-binding flavoprotein [Susin S.A. et al., 1999 B]. Cloning of the full-

length cDNAs, corresponding to mouse AIF (mAIF), 612 amino acids (aa) and human 

AIF (hAIF), 613 aa, revealed that AIF is strongly conserved between these two 

mammalian species (92% aa identity in the whole protein) and bears a highly 

significant homology with oxidoreductases from all eukaryotic and prokaryotic 

kingdoms in its C-terminal portion (95% aa identity between aa 128-612 in mAIF and 

hAIF), [Susin S.A. et al., 1999 B]. The aa sequence homology between hAIF and mAIF 

and their more distant relative from Pseudomonas putida can be appreciated in Fig.I.3. 

 

I.2.2. Evolutionary origins and phylogeny of AIF 

 

The evolutionary origins of AIF are worth studying. AIF possesses significant homology 

with NADH ferredoxin reductases, from both Eubacteria and Archaebacteria [Lorenzo 

H.K. et al., 1999]. As represented in Fig.I.2, the strongest homology among 

eukaryotes, is seen with several plant ascorbate oxidoreductases, in particular with 

dehydroascorbate reductase from Arabidopsis thaliana, monodehydroascorbate 

reductase from Cucumis sativus and the ascorbate free radical reductase from 

Lycopersicum esculentum [Lorenzo H.K. et al., 1999]. Several, among these plant 

genes, are induced by stress such as heat, cold, superoxide anion, fungal pathogens or 

wounding [Grantz A.A. et al., 1995; Van Camp W. et al., 1996; Vanacker H. et al., 

1998]. More studies are needed to be able to determine whether these plant proteins 

have a true apoptogenic function, yet it is very intriguing that dehydroascorbate 

reductase has been reported to redistribute from mitochondria to cytosol in the dark-
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induced senescence of Pisum sativum leaves [Jimenez A. et al., 1998]. 

 

Phylogenetic analyses reveal that AIF has a very significant homology with four 

putative oxidoreductases from vertebrate (Xenopus laevis), invertebrate animals 

(Drosophila melanogaster, Caenorabditis elegans), as well as Saccharomyces pombae 

[Lorenzo H.K. et al., 1999]. In contrast, there is no AIF homologue in S. cerevisiae.  

 
Most if not all amino acids supposed to interact with the prosthetic groups FAD and 

NAD are strongly conserved between AIF and two reductases, whose three-

dimensional structure have been elucidated, namely dihydrolipoamide dehydrogenase 

from Pseudomonas putida and human glutathione reductase (GR). The core consensus 

of the typical motif GXGXXG/A of the Rossman fold [Rossmann M.G. et al., 1975] is 

found at two distinct regions of the AIF sequence (aa 138-143 and aa 307-312 in 

human AIF), as displayed in Fig.I.3, the more N-terminal motif seems to be involved in 

the NAD(P)H binding, whereas the more C-terminal one binds to FAD. Moreover, AIF 

does not belong to the subfamily of disulfide reductases because it lacks two cysteines  

(Cys) essential to form the redox-active disulfide bond in the catalytic site and it does 

not belong to the superfamily of flavoprotein disulfide oxidoreductases, which include: 

mercuric reductase, alkylhydroperoxide reductase, glutathione reductase, 

dihydrolipoamide reductase and thioredoxin reductase [Lorenzo H.K. et al., 1999]. 

However, the strong conservation of NAD/FAD binding motifs (Fig.1.4) strongly 

suggests that AIF possesses an oxidoreductase activity. The oxidoreductase and the 

apoptogenic activity of AIF can be separated because the entire AIF protein precursor 

(aa 1-612), which does not bind FAD, the group indispensable for the electron 

donor/acceptor function, becomes apoptogenic when refolded in vitro [Susin S.A et al., 

1999 B].  

 
AIF is believed to be part of a particularly ancient PCD pathway, highly conserved 

through evolution. In this direction, it is very important to emphasize that AIF is 

strikingly ubiquitious, both at the phylogenetical and oncogenetical level. AIF 

homologues have been found in all metazoan phyla [Lorenzo H.K. et al., 1999], 

including organisms that lack clear-cut homologues of caspases, such as plants and 

fungi, as shown in Fig.I.2. Interestingly, these AIF homologues show similar cellular 

behaviour to mammalian AIF. For example, the AIF homologue in the slime mold, 

Dictyostelium discoideum, normally localizes in mitochondria and is translocated to the 

nucleus during developmental cell death. Even more intriguingly, recombinant D. 
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discoideum AIF can induce chromatin condensation in purified HeLa nuclei [Arnoult D. 

et al., 2001]. AIF mRNA and protein can be detected all throughout murine 

embryogenesis and in all developmental organs [Joza N. et al., 2001]. 

 

All together, these observations point to a role of AIF in early stages of phylogeny, 

which makes it a very interesting subject of phylogenetic comparisons, undertaken to 

weigh the relative importance of death pathways (especially caspase-dependent versus 

caspase-independent death programs) and to apprehend the original death machinery.  

 
 

 
 
Figure I.2. Phylogenetic tree showing the relationship between AIF (human AIF in 
red) and other oxidoreductases from different species. The PIR accession numbers 
are enumerated following the abbreviation of the species: AA: Aquifex aeolicus; AC: 
Acinetobacter calcoaceticus; AF: Archaeoglobus fulgidus; AT: Arabidopsis thaliana; 
BC: Burkholderia cepacia; BS: Bacillus subtilis; CE: Caenorhabditis elegans; DD: 
Dictyostelium discoideum; DM: Drosophila melanogaster; EC: Escherichia coli; HS: 
Homo sapiens; LS: Lycopersicon esculentum; MJ: Methanocaldococcus jannaschii; 
MM: Mus musculus; MTH: Methanobacterium thermoautotrophicum; NA: 
Novosphingobium aromaticivorans; PF: Pseudomonas fluorescens; PH: Pyrococcus 
horikoshii; PO: Pseudomonas oleovorans; PP: Pseudomonas putida; PS: 
Pseudomonas sp.; PSA: Pisum sativum; RE: Rhodococcus erythropolis; RG: 
Rhodococcus globerulus; RS: Rhodococcus sp.; SP: Schizosaccharomyces pombae; 
SS: Sphingomonas sp.; XL: Xenopus laevis [modified from Lorenzo H.K. and Santos 
S.A., 2004]. 
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AIF has also distantly-related homologues in humans, called AIF-homologous 

mitochondrion-associated inducer of death, also known as p53-responsive gene 3 

(AMID-PRG3) and AIF-like (AIFL). It has been described that AMID-PRG3 also exerts a 

pro-apoptotic function, although there is conflicting evidence about its localization [Wu 

M. et al., 2002; Ohiro Y. et al., 2002]. AIFL is a mitochondria-confined ubiquitously 

expressed protein, able to provoke apoptosis through caspase-dependent pathway [Xie 

Q. et al., 2005]. 

 

I.2.3. Morphology, structure and distribution of AIF 

 

I.2.3.1. Biogenesis of AIF 

 

The mouse AIF cDNA codes for a protein which is organized in three domains: an 

amino-terminal mitochondrial localization sequence (MLS) of 100 aa, a spacer region of 

27 aa and a carboxyterminal of 485 aa oxidoreductase domain (Fig.I.5). Natural AIF 

purified from mouse liver mitochondria was found to be a FAD-binding protein and 

recombinant AIF can be refolded in vitro, in the presence of FAD, resulting in stable 

FAD binding [Daugas E. et al., 2000 A]. A recombinant protein corresponding to the 

mAIF precursor does not bind FAD when purified from inclusion bodies of E. coli, 

whereas a shorter protein lacking the MLS (AIF ∆1-100) or lacking the MLS and part of 

the spacer region (∆1-120) does [Susin S.A et al., 1999 B]. Similarly, mature AIF 

protein from mitochondria (∆1-101) is a flavoprotein. 

 

These data suggest the following scenario for biogenesis of AIF. The AIF precursor, 

encoded by a nuclear gene, is synthetized in the cytosol and then imported into 

mitochondria through the general import pathway [Susin S.A et al., 1999 B]. Once in 

the mitochondrial intermembrane space (IMS), the MLS of the AIF precursor is 

proteolytically removed as described for other mitochondrial flavoproteins [Robinson 

K.M. and Lemire B.D., 1996]. Next, the protein refolds, while non-covalently 

incorporating the FAD prosthetic group at a molar ratio 1:1. 

 

Santos A. Susin and colleagues raised an antibody against aa 151-200 of AIF which 

recognized a single protein with a relative molecular mass of 57 kDa in mitochondria 

from many different tissues. In contrast, the primary transription/translation product of 

AIF cDNA in vitro is 67 kDa [Susin S.A et al., 1999 B].  
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When imported into mitochondria in vitro, this gives rise to a shorter protein 

corresponding to mature AIF whose first amino acid is at position 102 of the full-length 

precursor protein. There is no mitochondrial import if residues 1-120 of the protein are 

deleted, which proves the existence of a true MLS [Susin S.A et al., 1999 B].  

 

Figure I.3. Sequence alignment of mouse and human AIF (GenBank accession 
numbers AIF100927 and AIF100928, respectively) with BDSF from Pseudomonas 
putida (benzene 1,2-dioxygenase ferredoxin NADH reductase), an AIF homologue 
showing 30% identity with AIF. Dashes indicate aa identity, lined boxes indicate aa 
similarity.  Predicted MLS is shown in orange whereas the site of the MLS-domain 
cleavage upon mitochondrial import is marked with an arrow. NLS is shown in green 
and the conserved Rossmann fold motifs in grey [modified from Susin S.A. et al.,  
1999 B]. 
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However, a detailed study by Hidenori Otera and colleagues published in the EMBO J. 

[Otera H. et al., 2005], suggested a different biogenesis process of AIF. According to 

this study, mature mitochondrial AIF is a 62 kDa protein and its apoptotic release from 

the mitochondria needs proteolytic processing from 62 kDa to the apoptotic form of 57 

kDa. 

 

AIF∆1-120 does not contain significant amounts of metals, including Ca2+, Co2+, Cu2+, 

Mg2+, Fe2+, Se2+ and Zn2+, however it contains phospho-groups among Ser and Thr 

residues [Miramar M.D. et al., 2001]. Moreover, it has 3 Cys in its sequence but none 

of them engages in a disulfide link [Miramar M.D. et al., 2001]. Recombinant AIF has 

been shown to act as a monomer in solution and it is possible that AIF dimerizes upon 

interaction with putative protein or DNA partners or after post-translational 

modifications [Mate M.J. et al., 2002]. 

 

 I.2.3.2. Molecular structure of AIF 

 

In 2002, María J. Maté and co-workers revealed the fine structure of mAIF at 2 Å. The 

overall structure of AIF displays a GR-like fold and includes one FAD molecule per 

monomer. Similarly to other enzymes of the GR family, AIF’s oxidoreductase domain is 

organized in three subdomains: a FAD-binding region (aa 122-262 and 400-477), 

NADH-binding region (aa 263-399) and a C-terminal region (aa 478-610), which in GR 

constitutes most of its dimer interface. Both the FAD and the NADH-binding domain 

show a classical Rossmann fold, whereas the C-terminal domain is composed of five 

anti-parallel β-strands followed by two α-helices. A tridimensional model of AIF is 

shown in Fig.I.4. 

 

It seems that structurally the most similar protein to AIF is BphA4, the ferredoxin 

reductase part of biphenyl dioxygenase from Pseudomonas sp. The structural 

comparison of AIF, BphA4 and GR from E.coli highlights their overall similarity, 

however with the presence of several important differences. The most remarkable 

difference is a long C-terminal insertion region present only in AIF (aa 509-559), 

(Fig.I.4). The N-terminal part of this insertion displays a defined secondary structure: 

two short helices that fold back onto the FAD-binding domain. Following the short 

helices is a Pro-rich loop, creating an open conformation, stabilized by crystal contacts 

with a neighbouring monomer. 
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It has been suggested that this C-terminal insertion is related to the pro-apoptotic 

function of AIF but the fact that some AIF homologues from non-mammalian species 

such as D. discoideum lack this region and still display a pro-apoptotic role, clearly 

denies this hypothesis.  

 

 
 
 

 

 

Figure I.4. AIF-tridimensional model. The C-terminal region is represented in black. 
In blue, the AIF-specific insertion (Lys 509-Tyr 559). 
 

However, the Pro-rich loop includes a PEST sequence [Rogers S. et al., 1986], which is 

characteristic of proteins with a rapid intracellular turn-over and is also involved in 

protein-protein interactions [Ernst M.K. et al., 1995]. Moreover, the insertion contains a 

Pro-rich motif (PPSAPAVPQVP) which displays an extended, left-handed oriented helical 

conformation, termed the polyproline-2-helix (PPII). This structural motif suggests a 

presence of interaction with proteins containing modules such as SH3 or WW, involved 

in a variety of cellular processes. Also, the open structure of the insertion could 

indicate putative binding for different proteins such as chaperones. Actually, to date, 

one chaperone, Heat shock protein-70 (Hsp70) has already been shown to interact 

with AIF [Ravagnan L. et al., 2001]. 

  

The second important structural difference corresponds to the presence of two long α-

helices in GR from E.coli. This region is essential for catalysis and dimerization and 

includes 64 aa residues in GR. The equivalent regions in AIF and BphA4 are shorter (47 

and 25 aa residues respectively), so that they adopt a more extended conformation 

without the formation of the α-helices. 

NADH-binding domain 
  

FAD-binding domain 
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The same authors describe the non-covalent interaction between AIF and NAD and it 

seems quite similar to the described interaction in other flavoproteins. 

 

Unlike the FAD binding domain, the NADH binding domain of AIF is quite specific and 

shows some differences in comparison with BpHA4 of GR from E. coli. GR-like proteins 

possess a conserved disulfide bridge which acts as an electron acceptor to oxidize the 

isoalloxazine ring of the nucleotide. This centre is missing in AIF and BphA4 and 

instead, there is a specific stretch of three aa, namely Trp-Ser-Asp. Moreover, the Trp 

residue of this sequence is largely exposed to the solvent and probably is involved in 

electron transport in BphA4 whereas in AIF this Trp (Trp482) is occluded from the bulk 

solvent because the helical region of the C-terminal insertion folds back onto the FAD-

binding domain of the protein. The NADH-binding pocket of AIF is comparatively larger 

and contains fewer specific contact spots for NADH than the same structure in similar 

proteins. This might suggest a weaker NADH binding. The presence of a bigger NADH-

binding pocket may also be an indication of the presence of a binding site for some 

unknown substrate that could be reduced by FADH2. 

 

In this publication, María J. Maté and colleagues claimed that they had not found any 

obvious DNA-binding structural motifs in mAIF. However, the C-terminus of the D. 

discoideum AIF homologue has been proposed to include a helix-turn-helix motif 

[Arnoult D. et al., 2001]. Moreover, there have been several publications proving that 

AIF does actually bind to DNA and RNA [Vahsen N. et al., 2006]. The crystal structure 

of AIF revealed the presence of a strong positive electrostatic potential at its surface, 

despite the calculated neutral isoelectrical point, hence AIF could be binding DNA 

through electrostatic interactions [Ye H. et al., 2002]. The interaction of AIF with DNA 

is in line with one hypothesis in which AIF might induce chromatin condensation and 

DNA fragmentation not directly but by increasing the susceptibility of DNA to latent 

nucleases.  

 

I.2.3.3. The AIF gene and transcript variants 

 
Eric Daugas and co-workers, using the Fluorescent in situ hybridization technique 

(FISH), revealed that only one single mouse chromosome hybridizes with the Aif cDNA 

[Daugas E. et al., 2000 A]. So, the Aif gene is localized within the mouse X 

chromosome region A6 which is syntenic to the human X chromosome region Xq25-26.  
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Figure I.5. Schematic representation of the molecular structure of AIF. The location 
of the structural domains of AIF is schematically shown but not on scale. 
 

FISH analyses confirmed that human cells only contain one AIF on Xq. Based on 

Northern blot analysis using full-length AIF cDNA as a probe, only one single 2.4 kb 

AIF mRNA species could be found and it is expressed ubiquitously in human tissues 

[Daugas E. et al., 2000 A]. This finding was corroborated at the protein level for mouse 

tissues using an antibody raised against aa 151-200 of AIF which recognizes a single 

protein band of about 57 kDa. Thus, in spite of the several cDNA variants listed in the 

GenBank data base (AF100928, AL049703 and AL049704) suggesting alternative 

splicing of the primary AIF transcript, these authors could only discern one dominant 

AIF mRNA and protein species, by standard Northern and Western blot techniques 

[Daugas E. et al., 2000 A]. 

 

One year later, Markus Loeffler and colleagues reported the existence of a second 

splice form of AIF mRNA, corresponding to the cDNA with accession number 

AL049703. The AIF gene is composed of a total of 16 exons. RT-PCR cloning using 

primers for the extreme 5’ and 3’ termini of the AIF coding sequence yielded an AIF 

cDNA species (AIF-exB), [Loeffler M. et al., 2001], that differed from the original AIF 

sequence [Susin S. et al., 1999 B]. These results, originally obtained with the murine 

Aif gene, were then confirmed for the human AIF, yielding two very similar sequence 

variants [Loeffler M. et al., 2001]. Alternative exon usage was shown to affect part of 

the 100-aa N-terminal MLS. Both exons possess significant homology in the C-terminal 

moiety. When green fluorescent protein (GFP) was fused to the C-terminus of AIF 

(AIF-GFP) or AIF-exB (AIF-exB-GFP) to generate chimeric proteins, transient 

transfection of COS cells revealed that the GFP-dependent fluorescence was targeted 

to mitochondria [Loeffler M. et al., 2001]. These observations indicate that the 
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alternative exon 2 usage does not affect the mitochondrial import of AIF. It may be 

expected, then, that the mature AIF arising from canonical AIF cDNA of AIF-exB would 

be the same protein. The AIF transcript variant corresponding to the accession number 

AL049704 lacks several in-frame exons in the 5´-coding region, resulting in a 

significantly shorter protein, however the presence of this form has not been described 

in cell lines or tissues so far. 

 

More recently, two new isoforms of AIF were described, named AIFsh (AIFshort) and 

AIFsh2, restricted to cytoplasm and mitochondria respectively [Delettre C. et al., 2006 

A; Delettre C. et al., 2006 B]. AIFsh is a 35 kDa cytosolic protein, resulting from 

transcription of exons 10-16 of the AIF gene using an alternate transcriptional site 

located at intron 9. AIFsh2 contains the MLS and the oxidoreductase domain but lacks 

the C-terminal part due to the transcription of additional exon 9b which contains a 

transcription stop-code. Whilst AIFsh is translocated to the nucleus upon induction of 

cell death, AIFsh2 is released from mitochondria but cannot be translocated to the 

nucleus, in accord with the absence of NLS. 

 

I.2.3.4. Cellular and sub-cellular localization of AIF 

 

AIF has so far been detected in numerous human tissues and human cancer cell lines 

(more than 65 lines tested so far). It is ubiquitously expressed all throughout 

embryonic development as well as in adults [Daugas E. et al., 2000 A]. Some of the 

AIF splicing variants, however, are not ubiquitously expressed [Delettre C. et al., 2006 

B]. 

 

In normal, non-apoptotic cells, the sub-cellular localization of AIF is the mitochondria. 

This has been proved many times. In vitro assays performed with the primary 

transcription/translation product of full-length AIF cDNA revealed that AIF is imported 

into mitochondria and that this import is dependent on the presence of the N-terminal 

MLS [Susin S.A. et al., 1999 B]. Transient transfection of COS cells with GFP fused to 

the C-terminus of AIF to generate a chimeric AIF-GFP protein, targets this GFP to 

mitochondria [Vieira H.L. and Kroemer G., 1999]. In contrast, a truncated AIF-GFP 

fusion protein in which the N-terminal MLS was removed (AIF-GFP-∆1-100), exhibits a 

diffused cytoplasmic localization of AIF, compared to the staining pattern obtained with 

GFP alone [Vieira H. and Kromer G., 1999]. Immunofluorescence staining of 
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untransfected cells with an AIF-specific antiserum, raised against aa 151-200, revealed 

that endogenous AIF is exclusively found in the mitochondria. [Susin S.A. et al., 1999, 

B]. Detailed sub-cellular and sub-mitochondrial fractionation experiments showed that 

in healthy, non-apoptotic cells, AIF is confined to the mitochondrial IMS [Susin S.A. et 

al., 1999 B]. However, Xiaopeng Zhang and co-workers in 2002, working on brain 

traumatic injury in rats and using immunoelectronmicroscopy, detected AIF in the 

hippocampus as a mitochondrial protein within the cristae and the inner membrane 

(IMM), [Zhang X. et al., 2002]. Similar results were obtained by Hidenori Otera and 

colleagues, in 2005, who showed that AIF is a type-I inner membrane protein with its 

N-termuinus in the matrix and the bulk of the C-terminal portion in IMS [Otera H. et 

al., 2005]. 

 

I.2.4. AIF and apoptosis 

 

I.2.4.1. Translocation of AIF 
 

Sub-cellular fractionation, immunoelectronmicroscopy as well as immunofluorescence 

experiments have established that AIF in normal, healthy cells is confined to 

mitochondria [Daugas E. et al., 2000 B]. Nevertheless, AIF undergoes mitochondrio-

nuclear translocation upon apoptosis induction, provoked by a plethora of pro-

apoptotic stimuli such as the second messengers ceramide and ganglioside GD3, the 

protein kinase inhibitor STS, ROS and reactive nitrogen species (RNS) such as H2O2 and 

peroxinytrite, adriamycin, glucocorticoids, arsenite, the chemotherapeutic, genotoxic 

agents etoposide, doxorubicin and cisplatin, the alkylating agents, melphalan and 

chlorambucil, neurotoxic agents, such as the environmental pollutant Me-Hg and the 

microtubule-disrupting agent colchicine, Complex II inhibitor 3-nitropropionic acid (3-

NP), the permeability-transition-pore (PTP) opening agents atractyloside, Ca2+, tert-

butylhydroperoxide or serum withdrawal [Susin S.A et al., 1999 B; Daugas E. et al., 

2000 A; Daugas E. et al., 2000 B; Susin S.A et al., 2000; Loeffler M. et al., 2001; 

Zhang X. et al., 2002; Fonfria E. et al., 2002; Almeida S. et al., 2006]. AIF 

translocation has also been shown in several specific models of apoptosis such as T-

cell hybridoma cells treated with dexamethasone [Susin S.A. et al., 1999 B] or human 

glioma cell lines subjected to hyperthermia [Fukami T. et al., 2004]. 

 

AIF translocation has been observed in a variety of cell lines induced to undergo 



  Introduction 
 

16 
 

apoptosis, including peripheral T-lymphocytes, CEM and Jurkat lymphoma cells, COS 

renal cells, fibroblats, Rat-1, HeLa cervix carcinoma cells, primary rat neurons, SHEP 

neuroblastoma cells [Susin S.A. et al., 1999 B; Daugas E. et al., 2000 B; Vieira H.L. and 

Kroemer G., 1999; Loeffler M. and Kroemer G., 2000; Jacotot E. et al., 2000; Dumont 

C. et al., 2000; Ferri K.F. et al., 2000 C; Braun J.S. et al., 2002; Zhang X. et al., 2002]. 

The translocation of AIF has also been reported for cell death occurring in vivo, in 

models of retinal degeneration [Hisatomi T. et al., 2001], in the ipsilateral cortex and 

hippocampus after traumatic brain damage in rats [Zhang X. et al., 2002], as well as 

brain damage induced by hypoglycaemia or ischaemia, or in myocardial infarction. The 

mitochondrial release of AIF is inhibited by cyclosporin A, a specific inhibitor of PTP 

[Miramar M.D. et al., 2001]. It is also important to mention that the translocation of 

AIF can occur both in apoptosis and necrosis and thus can participate in the common 

death pathways [Daugas E. et al., 2000 B], in line with the belief that early phases of 

apoptosis and of some types of necrosis may involve common mitochondrial events. 

Also, AIF translocation is a rapid event occurring in an all-or-nothing fashion [Loeffler 

M. et al., 2001]. Taken together, it seems completely certain that AIF translocation 

invariantly accompanies apoptosis. 

 
In contrast to cyt c which remains cytosolic after its translocation from the 

mitochondrion, AIF moves to the nucleus [Susin S.A et al., 1999 B; Daugas E. et al., 

2000 B; Ferri K.M et al., 2000 A], concomitant to the initial phase of chromatin 

condensation. In a model of traumatic brain injury in rats, translocated neuronal AIF 

was found to accumulate in the euchromatin regions and euchromatin-heterochromatin 

boundries of the nucleus [Zhang X. et al., 2002]. The nuclear translocation of AIF is 

compatible with the presence of several putative NLS present within the 

oxidoreductase domain of AIF [Susin S.A et al., 1999 B]. AIF translocation, in the 

model of photoreceptor apoptosis induced by retinal detachment, is inhibited by 

injection of nerve cell growth factor [Hisatomi T. et al., 2002].  AIF translocation in 

general, seems to be inhibited by Bcl-2 as shown by the transfection-enforced 

overexpression of Bcl-2 [Daugas E. et al., 2000 A; Loeffler M. et al., 2001]. In clear 

contrast, different studies have showed that none of the apoptogenic effects of ectopic 

(extramitochondrial) AIF are prevented by overexpression of Bcl-2 [Loeffler M. et al., 

2001; Susin S.A. et al., 1996; Susin S.A. et al., 1999 B]. Transfection with AIF ∆1-100 

or AIF ∆1-100-GFP causes accelerated cell death, as compared to full-lenth AIF cDNA 

or AIF-GFP overexpression which does not (Loeffler M. and Kroemer G., 2000; Loeffler 
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M. et al., 2001; Ravagnan L. et al., 2001]. 

 

So, all together, there is a widely accepted belief that only ectopic (extramitochondrial)  

AIF fulfils an apoptogenic function, while eutopic (mitochondrial) AIF is innocuous. 

 

The true mechanism for translocation of AIF is still a subject of debate and whether 

the mitochondrio-cytosolic-nuclear translocation of AIF is dependent on caspase 

activation remains unclear. Several publications suggest that AIF translocation is 

caspase-independent, as it is not prevented by pharmacological inhibition using Z-

VAD.fmk [Daugas E. et al., 2000 B]. Similarly, the translocation of AIF can be observed 

in vitro in cells where there is no caspase activation, owing to knock out (KO) of Apaf-

1, caspase-9 or caspase-3 [Susin S.A. et al., 2000]. However, there is also strong 

evidence that in some death programs AIF is released secondary to caspase activation. 

For example, when caspase activation occurs early during apoptosis, as in CD95-

triggered cell death via caspase-8 [Susin S.A. et al., 1997] or during etoposide-induced 

apoptosis where the activation of caspase-2 occurs upstream of MMP [Lassus P. et al., 

2002]. Moreover, it is quite clear that caspases and caspase-activated proteins can 

trigger the release of AIF, as shown in purified mitochondria [Zamzami N. et al., 2000]. 

All these observations then suggest that there are crosstalk pathways between AIF and 

caspases probably at several levels. Yet, the most acceptable idea, at the moment, is 

that AIF translocation and whether it is dependent on caspases or not is governed by 

the apoptotical “context” such as the cell type and pro-apoptotic stimulus used.  

 

In several models of apoptosis induction, the release of AIF from mitochondria 

precedes that of cyt c, although how AIF can be released before cyt c is not clear. AIF 

is translocated prior to cyt c in STS-induced apoptosis [Susin S.A et al., 1999 B; 

Daugas E. et al., 2000 B], apoptosis induced by HIV-1 infection [Ferri K.M et al., 2000 

A; Genini D. et al., 2001] or apoptosis triggered by fusion of cells expressing the HIV-1 

envelope (Env) glycoprotein complex with cells expressing CD4 [Ferri K.M et al., 2000 

A; Ferri K.M. et al., 2000 B]. In some of these paradigms of cell death, neutralization of 

AIF prevents mitochondrial release of cyt c, underscoring the possibility of AIF being 

required for cyt c-dependent caspase activation in some models. However, in other 

examples of cell death, mitochondria release AIF well after cyt c [Cregan S.P. et al., 

2002], which underlines the idea that several MMP mechanisms can cooperate in 

apoptosis. 



  Introduction 
 

18 
 

Also of interest is the relation between the translocation of AIF and the dissipation of 

∆ψm which is also a subject of an ongoing debate. In some models, the translocation of 

AIF and/or cyt c is strongly associated with ∆ψm reduction [Susin S.A et al., 1999 B; 

Daugas E. et al., 2000 B], whereas in others it appears to be accompanied by a 

transient increase in ∆ψm, [Vander Heiden M.G. and Thompson C.B., 1999] or no 

change in ∆ψm [Goldstein J.C. et al., 2000]. 

 
The exact rules governing the AIF import to the nucleus are also yet to be fully 

described. Nuclear apoptosis induced by microinjected AIF is inhibited by co-

microinjection of the lectin wheat-germ agglutinin which acts as an active nuclear 

transport inhibitor. Blockade of the lectin moiety by N-acetylglucosamine abolished the 

wheat-germ agglutinin mediated inhibition of AIF-induced nuclear apoptosis. This 

observation suggests that AIF would be imported into the nucleus through an active 

and energy-consuming process. However, AIF has been shown to translocate to the 

nucleus in conditions of ATP-depletion [Daugas E. et al., 2000 B] and is expected to 

interact with DNA in a non-specific fashion as a result of its basic pI [Miramar M.D. et 

al., 2001]. 

 

As mentioned previously, Santos A. Susin and co-workers in 1999 suggested that AIF is 

synthetized in the cytosol as a 67 kDa precursor, further it gets cleaved after 

mitochondrial import by mitochondrial proteases giving rise to a 57 kDa mature form 

which translocates to the nucleus after a pro-apoptotic stimulus. Yet, there are several 

publications where the size of AIF in the nucleus and/or mitochondria are shown to be 

different than the suggested by Santos A. Susin. In 2002, Xiaopeng Zhang and 

colleagues reported the AIF species in the nucleus of cultured primary rat neurons 

treated with peroxynitrite, was of 67 kDa. The same authors performed an in vivo 

traumatic brain injury experiment in rats and found that the predominant AIF species 

in the neuronal mitochondria was 67 kDa and this band size was also predominant in 

the ipsilateral hippocampus after the brain injury. However, a 57 kDa AIF band was 

predominantly detected in the nuclei of ipsilateral cortex cells in the same experiment 

[Zhang X. et al., 2002].  

 

I.2.4.2. The apoptotic role of AIF  

 

The apoptotic role of AIF after its translocation from the mitochondrion has been 
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studied extensively. 

 

In cell-free systems, when added to purified nuclei from HeLa cells, recombinant AIF 

induces DNA loss [Loeffler M. et al., 2001], peripheral chromatin condensation and 

large-scale DNA fragmentation, into 50 kb fragments, but no oligonucleosomal 

fragmentation or generation of nuclear bodies [Susin S.A et al., 1999 B]. This pattern 

of chromatin modification is clearly distinct from that induced by CAD or Acinus 

[Samejima K. et al., 1998; Sahara S. et al., 1999]. The large-scale DNA fragmentation 

can be inhibited by EDTA or by the thiol-reactive compound p-

chloromercuryphenylsulphonic acid (pCMPS) but not by Z-VAD.fmk [Susin S.A et al., 

1999 B]. This type of DNA fragmentation precedes oligonucleosolmal DNA degradation 

in several cellular models of apoptosis [Lagarkova M.A. et al., 1995] and can be 

caspase-independent [Trbovich  A.M. et al., 1998; Susin S.A. et al., 1999 B].  The 

nuclear effects of AIF are observed in the absence of cytosolic extracts. However, AIF 

has no effect on pre-heated nuclei (56 °C, 30 min) or naked DNA. Moreover, AIF has 

no intrinsic DNAse activity. All these data suggest that the effects of AIF on purified 

nuclei depend on the functional and/or physical interaction with some nuclear protein, 

likely a sessile nuclear DNase.  

 

In addition to its nuclear effects, recombinant AIF also acts on isolated mitochondria. 

In strict contrast to isolated nuclei, AIF has no direct effect on purified mitochondria in 

vitro. Only in the presence of a thermo-labile cytosolic co-factor (abolished by mild 

heat treatment of the cytosolic extract at 70 °C, for 30 min), AIF causes purified 

mitochondria to dissipate the ∆ψm and also to release pro-apoptotic proteins such as 

cyt c and procaspase-9 [Susin S.A. et al., 1999 B]. Again, this effect of AIF occurs in 

the presence of Z-VAD.fmk which means it is caspase-independent. 

 

Microinjection of recombinant AIF into the cytoplasm of live cells induces several 

hallmarks of “typical” apoptosis such as: dissipation of ∆ψm, nuclear chromatin 

condensation and DNA loss and exposure of phosphatidylserine on the outer leaflet of 

the plasma membrane [Susin S.A. et al., 1999 B; Loeffler M. et al., 2001]. None of 

these effects either on intact cells or isolated organelles can be prevented by 

overexpression of Bcl-2 nor by addition of Z-VAD.fmk, indicating that they are caspase-

independent [Susin S.A et al., 1999 B].  Similar in vivo effects have been seen by 

transfection-enforced overexpression of mAIF cDNA in Jurkat cells [Susin S.A. et al., 
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1999 B] or overexpression of a truncated AIF-GFP construct lacking the N-terminal MLS 

(AIF-GFP-∆1-100), [Vieira H.L. and Kroemer G., 1999]. COS cells transfected with AIF-

GFP, AIF-exB-GFP and AIF-∆1-100 constructs undergo nuclear apoptosis, both stage 1 

and 2, in such a way that stage 1 is not, whereas progression to stage 2 is inhibited by 

Z-VAD.fmk preincubation [Loeffler M. et al., 2001]. In the same study, it is shown that 

when cells are transfected with suitable AIF-GFP or cyt c-GFP fusion constructs 

targeted to mitochondria, microinjection of recombinant AIF rapidly triggers the release 

of either AIF-GFP or cyt c-GFP, suggesting that AIF, once present in the cytosol, can 

trigger the release of further AIF from mitochondria and thus engages in a positive 

feedback amplification loop [Loeffler M. et al., 2001]. Such a feed-forward system 

would accelerate the process of AIF release upon apoptotic induction. This action of 

AIF was found to be independent of caspases [Loeffler M. et al., 2001]. It is also 

important to mention that AIF microinjection has similar consequences in wild-type 

mouse embryonic fibroblasts (MEF) and MEF lacking the caspase activator Apaf-1 or 

caspase-3, which underscores, once again, the fact that AIF can act in a caspase-

independent way [Susin S.A. et al., 2000]. 

 
Taken together, extramitochondrial AIF is a well-accepted candidate for a caspase-

independent cell death effector. Nevertheless, how AIF mediates its apoptogenic role 

still remains elusive. Neither the AIF-interacting protein(s) in the cytosol nor its 

target(s) in the nucleus have so far been fully identified.  

 

Full-length AIF precursor protein (without FAD), AIF ∆1-100 and AIF ∆1-120 (both with 

FAD) all induce nuclear apoptosis when added to purified HeLa nuclei [Daugas E. et al., 

2000 A]. This indicates that the oxidoreductase activity (which depends on the 

presence of the prosthetic group) is not relevant to the apoptogenic effects of AIF. 

However, deletions affecting parts of the oxidoreductase domain (∆1-351, ∆155-612, 

∆538-612) abolish the apoptotic potential of AIF, both on isolated nuclei or 

mitochondria and in live cells, indicating that at least some of the structural features of 

the oxidoreductase domain are necessary for the apoptotic effects of AIF [Susin S.A et 

al., 1999 B]. Yet, recombinant AIF precursor protein becomes apoptogenic after 

refolding on a nickel-affinity matrix even in the absence of FAD. This function seems to 

be conformation-dependent as it can be readily destroyed by trichloric acid treatment, 

exposure to mild heat (65 °C) or precipitation with ammonium sulphate [Susin S.A et 

al., 1999 B].  
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AIF has also been implicated in several disease models. Illustratively, syncytia arising 

from the fusion of cells expressing the HIV type-1 envelope glycoprotein complex and 

cells expressing the CD4/CXC chemokine receptor 4 complex undergo AIF-dependent 

apoptotic cell death [Ferri K.F. et al., 2000 A], indicating that AIF may be involved in 

the pathogenesis of HIV infections. Another case is the microglial and neuronal 

apoptosis in the hippocampus caused by Pneumococcus infections where caspase-

independent, AIF-dependent apoptosis is thought to play a role [Braun J.S. et al., 

2001], indicating the AIF may be involved in meningitis pathogenesis.  

 

But, is AIF required for apoptosis to occur? 

 

This question has been addressed in various studies and currently there is not an 

established consensus yet. Although, AIF can clearly induce certain aspects of cell 

death in cultured cells and cell models, the question as to whether it is really essential 

for PCD in vivo remains unresolved [Joza N. et al., 2001]. It seems that the real role of 

AIF in the cell death initiation and/or executing is strongly dependent on the cell type 

and the cell death context. Also, AIF may be an important executioner of apoptosis in 

scenarios where the role of caspases is not prominent [Braun J.S. et al., 2001]. 

 

Still, at least in some pathways of apoptosis induction, AIF is both sufficient and 

required to induce apoptosis. For example, microinjection of a specific antiserum into 

the cytoplasm of Rat-1 cells treated with STS prevents nuclear apoptosis. Control 

experiments involving a pre-immune antiserum or an anti-AIF antibody blocked by pre-

incubation with the AIF-derived immunogenic peptides, yielded no inhibition of STS-

stimulated apoptosis [Susin S.A. et al., 1999 B]. Taking into account the fact that in 

several models of apoptosis, AIF translocation precedes that of cyt c, one may 

postulate a slightly different hypothesis for the importance of AIF in the early stages of 

cell death initiation rather than in the final execution. In that direction, microinjection 

of the AIF-specific antiserum abolishes morphological signs of atractyloside (Atr)-

induced nuclear apoptosis, although it does not impede the Atr-induced ∆ψm 

dissipation and later cell death [Susin S.A. et al., 1999 B]. 

 

There are several studies which link AIF to PCD at the genetic level. 

 

The KO of the AIF gene, in embryonic stem (ES) cells, using homologous 
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recombination technology, refined the knowledge on the contribution of AIF to 

apoptosis [Joza N. et al., 2001]. It was performed in male ES cells, leading to an Aif –/y 

genotype. Unlike cyt c -/-, Apaf1-/- and caspase-9-/- ES cells [Yoshida H. et al., 1998; 

Hakem R. et al., 1998; Li K. et al., 2000], Aif  –/y ES cells display normal susceptibility 

to death induced by STS, etoposide, anisomycin, UV-radiation, azide or tert-

butylhydroperoxide. This normal susceptibility to apoptosis was observed both in the 

absence and the presence of Z-VAD.fmk. Nevertheless, the Aif –/y ES cells were 

resistant to cell death following serum withdrawal [Joza N. et al., 2001]. Moreover, in 

the presence (but not in its absence) of Z-VAD.fmk, Aif  –/y ES cell lines failed to die in 

response to vitamine K3 (menadione) as pro-apototic treatment [Joza N. et al., 2001]. 

Thus, AIF seems rate-limiting for some pathways of cell death induction. 

 
As to the role of AIF in embryogenesis, the same authors showed that AIF-deficient ES 

cells can differentiate into cells from all three germ layers, suggesting that it is not 

generally required for proliferation and differentiation. However, they found that AIF is 

essential for cavitation, a phenomenon which comes as a result of the first wave of 

apoptotic cell death during embryogenesis and is essential for the initiation of 

gastrulation [Coucouvanis E. and Martin G.R., 1995]. This early developmental process 

can be mimicked in vitro by culturing aggregates of ES cells in the absence of 

leukaemia inhibitory factor (LIF) and/or feeder cells which results in formation of 

embryonic bodies (EBs). The inner cells of these structures later undergo PCD to form 

cystic EBs, which mimics the cavitation process in the embryo. The role of AIF in 

cavitation was thus tested in the process of EBs formation using Aif +/y and Aif –/y ES 

cells. Both cell lines were able to form simple and complex EBs with comparable 

kinetics. However, whereas a significant proportion of Aif +/y EBs underwent cavitation, 

EBs from differentiated Aif –/y ES cells exhibited complete inhibition of the cavitation 

process [Joza N. et al., 2001]. Cavitation was shown to be normal in Aif +/y EBs in the 

presence of Z-VAD.fmk. Further analysis in the same publication, showed that the 

impaired cavitation in Aif –/y EBs is not caused by enhanced proliferation but is due to a 

failure of the inner cells to undergo apoptosis which underlines the important role of 

AIF in the embryonic apoptosis program. Considering that cavitation is essential for 

embryogenesis, these results are in line with the fact that no viable mouse embryos 

can be generated from Aif –/y ES cells [Joza N. et al., 2001], whereas Apaf1-/- and 

caspase-9-/- mice are viable until birth, although affected by severe developmental 

defects, particularly in the central nervous system (CNS), [Yoshida H. et al., 1998; 
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Hakem R. et al., 1998; Cecconi F. et al., 1998]. Cyt c was found to be released from 

mitochondria of WT, Apaf1-/- and caspase-9-/- inner mass cells undergoing cavitation-

associated apoptosis. Still, there was no cyt c translocation from mitochondria to the 

cytosol in inner mass cells of Aif –/y EBs, indicating that the OMM failed to permeabilize. 

So, during cavitation in EBs, AIF seems to act upstream of cyt c and independently of 

the cyt c/Apaf1-triggered caspase activation cascade, making this another case of AIF-

dependent but caspase-independent PCD pathway. Moreover, the AIF-regulated 

pathway of PCD required for embryonic cavitation exhibits classical ultrastructural 

features of apoptosis with the exception of caspase-dependent advanced chromatin 

condensation [Joza N. et al., 2001].  

 

Another genetic model to address the importance of AIF in embryogenesis was the 

study of Apaf-1 KO mice, which fail to activate caspases [Cecconi F. et al., 1998; 

Yoshida H. et al., 1998]. In such mice, the interdigital web persists transiently during 

embryonic development, although interdigital cells eventually die without caspase 

activation, which allows generation of correctly formed toes [Cecconi F. et al., 1998; 

Yoshida H. et al., 1998]. Moreover, addition of a chemical caspase inhibitor to 

explanted embryonic limbs fails to inhibit cell death in vitro which proves the caspase 

independency of interdigital cell death. Importantly, it appears that in dying Apaf-1-/- 

cells, AIF is overexpressed and translocated to the nucleus. 

 

Of note, a recent publication by Doris Brown and colleagues analyzed the 

consequences of inactivating Aif function in the early mouse embryo [Brown D. et al., 

2006]. Unexpectedly and in contrast to pervious reports, these authors found that Aif 

function was not required for apoptotic cell death in the embryo. Moreover, by 

embryonic day 9, loss of Aif function caused abnormal cell death, leading to death of 

Aif null embryos at embryonic day 12.   

 

So, it seems quite clear that AIF is involved in early stages of ontogeny, however this 

finding awaits future detailed research. 

 

I.2.5. The oxidoreductase function of AIF 

 

In accordance with its flavoprotein structure, AIF has an oxidoreductase function. This 

electron transport function of AIF in vitro was thoroughly analyzed by María Dolores 
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Miramar and collaborators in 2001. They found that the absorption spectrum of AIF 

shows the typical features of an oxidized FAD flavoprotein, with the visible maximum at 

378 nm and 450 nm and a shoulder at 467 nm [Miramar M.D. et al., 2001]. AIF has a 

redox potential strongly influenced by pH. Assuming a two-electron reduction step, the 

midpoint redox potential is –308±15 mV at pH 7.5, whereas it reaches –373±15 mV at 

pH 9.0. In the same publication, these authors also showed that natural AIF purified 

from mitochondria and recombinant AIF purified from bacteria (AIF∆1-120) exhibit 

NADH oxidase activity and can generate superoxide anion (O2·) upon addition of 

NADH or NADPH. The Km for NADH was calculated as 99.4±10 µM with a turnover 

number of 2.09 min-1, whereas if NADPH is used as an electron donor, the Km value is 

52.9±12 µM and the turnover number 2.8 min-1. These kinetics parameters are very 

similar to values described for other NADH oxidases forming O2·. Addition of 

exogenous FAD does not stimulate the NADH oxidase activity of AIF∆1-120, in contrast 

to NADH oxidases from bacteria. It also catalyzes cyt c reduction in the presence of 

NADH, with a Km of 0.46 mM and a kcat of 21.76 min-1. In addition, AIF exhibits 

monodehydroascorbate reductase activity with a specific activity of 8.8 units/mg and a 

kcat of 0.505 min-1, a feature common to several AIF homologues described in plants 

[Lorenzo H.K. et al., 1999]. Both the cyt c reductase and the monodehydroascorbate 

reductase activity of AIF can be inhibited by the enzyme superoxide dismutase (SOD), 

indicating that the reaction occurs via O2· formation. In addition, the same authors 

show that AIF does not exhibit peroxidase activity. 

 

Altogether, the results from this work show that AIF has a marked NADH oxidase 

activity, thus according to the classification by Vincent Massey [Massey V., 1994], it 

may belong to the electron-transferase class of NADH reductases, as it can rapidly 

react with oxygen, forming O2·and flavoprotein neutral radical as products. Several 

NADH oxidases from bacterial sources have been isolated and characterized [Arcari P. 

et al., 2000], their putative role is expected to be in the maintenance of the cellular 

redox balance under aerobic conditions, by converting NADH to NAD+ [Toomey D. and 

Mayhew S.G., 1998]. However, AIF is not similar to any of the previously described 

NADH oxidases. First, it is monomeric, whereas bacterial NADH oxidases are usually 

dimeric or tetrameric [Jarasch E.D. et al., 1981]. Second, AIF transfers electrons 

without the involvement of cysteinyl groups, whereas other NADH oxidases rely on a 

redox-active disulfide center formed by two vicinal cysteine residues [Toomey D. and 

Mayhew S.G., 1998; Arcari P. et al., 2000]. Third, AIF oxidizes NADH via a mechanism 
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that does not require the addition of exogenous FAD, whereas several NADH oxidases 

from bacteria do require FAD [Toomey D. and Mayhew S.G., 1998; Arcari P. et al., 

2000]. Fourth, in contrast to several NADH oxidases [Toomey D. and Mayhew S.G., 

1998], AIF does not function as a H2O2 scavenger. 

 

Very importantly, AIF has an oxidoreductase function which can be dissociated from its 

apoptogenic activity, both in cell-free systems and in intact cells [Miramar M.D. et al., 

2001]. First, addition of NADH or NADPH fails to enhance the apoptogenic activity of 

AIF∆1-120 and second, inhibition of the oxidoreductase activity by removal of FAD or 

external addition of SOD or diphenyleneiodonium (DPI, an inhibitor of flavonoid-

containing enzymes) fails to modify the apoptogenic activity of AIF [Loeffler M. et al., 

2001; Miramar M.D. et al., 2001]. In contrast, pCMPS abolishes the pro-apoptotic 

function of AIF without affecting its oxidoreductase activity [Miramar M.D. et al., 

2001]. Moreover, recombinant AIF-precursor protein becomes apoptogenic after 

refolding on a nickel-affinity matrix even in the absence of FAD, indicating that the 

oxidoreducatse activity is unnecessary for its apoptogenic function [Susin S.A. et al., 

1999 B]. 

 

I.2.6. Second role of AIF 

 

There is not a single cell line or primary tumour analyzed in which AIF expression is not 

present. Taking into account this highly ubiquitous distribution, it is possible to suggest 

that, in addition to its apoptogenic function, AIF also exerts a yet-to-be-defined vital 

function, perhaps related to its oxidoreductase activity [Daugas E. et al., 2000 A].  

 

Like cyt c, AIF is likely to be a phylogenetically old, bifunctional protein with an 

electron donor/acceptor function and a second, independent apoptogenic function. Yet, 

AIF has no shown homology with any of the members of the mitochondrial electron 

transport chain (ETC), [Susin S.A. et al., 1999 B]. It is tempting to speculate that AIF 

may act as a vital oxidoreductase catalyzing electron transfer between cyt c and NAD 

[Loeffler M. et al., 2001]. Little attention has been given to the physiological role of AIF 

within the mitochondria [Mate M.J. et al., 2002]. 

 

A very important break-through in the search for the second role of AIF was the work 

of Jeffrey A. Klein and colleagues published in Nature, 2002. They studied the 
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Harlequin (Hq) mutant mice model which harbours a murine ecotropic pro-viral 

insertion in intron 1 of the Aif gene. As a consequence of this mutation, the Aif 

transcript and protein levels in homozygous Hq mice are reduced by 80% relative to 

wild-type levels in the cerebellum, as well as in other organs such as brain, kidney, 

muscle, heart, eyes and liver. Hq mice are a late-onset neurodegenerative mouse 

model which can be phenotypically identified by the complete loss of hair in 

hemizygous males (Hq/Y) and homozygous females (Hq/Hq), ataxia and blindness, due 

to loss of cerebellar and retinal neurons, progressive with age [Barber B.R., 1971; 

Bronson R.T. et al., 1990]. Moreover, loss of AIF was shown to lead to oxidative stress 

as catalase activity and glutathione levels are increased in the cerebella of Hq mice 

compared to wild-type controls [Klein J.A. et al., 2002]. Interestingly, neither of these 

effects was seen in the other parts of the brain and there were no detected changes in 

the expression of SOD1 and SOD2. Moreover, lipid peroxides were increased in Hq 

cerebella, as well as the remainder of the brain and in the heart and oxidatively 

damaged DNA was detected both in cerebellum and retina of Hq mice. In addition, 

down-regulation of AIF was shown to confer sensitivity to both exogenous and 

endogenous peroxides in cultured granule cerebellar cells measured by cell viability 

assays. This is very specific for granule cerebellar cells as other types of neurons such 

as cortical neurons, are more resistant to oxidative stress-induced cell death. Also, 

cultured mutant cerebellar granule cells showed increased sensitivity to non-oxidative 

stress-mediated cell death such as serum withdrawal. However, no differences in cell 

death were observed between Hq mutant and wild-type granule cells subjected to 

either etoposide or STS. This last result is in line with the result obtained using ES cells 

lacking AIF [Joza N. et al., 2001]. Further studies on the Hq mouse model showed an 

important antioxidant role of AIF in the myocardium [van Empel V.P. et al., 2005]. 

Namely, Hq mouse cardiomyocytes demonstrated increased sensitivity to H2O2-induced 

cell death and Hq hearts subjected to ischemia/reperfusion revealed more cardiac 

damage compared to wild-type counterparts. 

 

Taken together, the results obtained with the Hq mouse model suggested, for the first 

time, that AIF has an antioxidant activity, particularly as a peroxide scavenger, in line 

with its structure similar to glutathione peroxidase, a potent scavenger of peroxides in 

mammalian cells [Klein J.A. et al., 2002].  

 

In their paper detailing protein structure of mAIF, María J. Maté and co-workers [Mate 
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M.J. et al., 2002] suggested that the analysis of the structure of AIF as well as the 

function of the non-apoptogenic homologues of AIF should offer an essential 

framework to study the mitochondrial, physiological and non-cytocidal role of AIF. In 

that direction, these authors compared AIF with its most similar homologue, the 

bacterial protein BphA4. This enzyme reduces the ferredoxin component (BphA3) of 

the biphenyl dioxygenase complex. Interestingly, BphA3 is similar to the ferredoxin 

from the mitochondrial cytochrome bc1 complex which is the complex that catalyzes 

the electron transfer from ubiquinone to cyt c in the mitochondrial ETC. Indeed, the 

globular domain of this iron-sulphur protein is exposed to the IMS, which is where AIF 

is believed to be located. These comparative structural analyses suggest a possible role 

of AIF in the electron transfer in the mitochondrial ETC. 

 

When this work was initiated, the idea about the second role of AIF was still vague and 

elusive. However, the fact that AIF holds a mitochondrial role, different from its role in 

apoptosis, is nowadays widely accepted. Several publications showed that AIF-depleted 

cells have compromised oxidative phosporylation (OxPhos). Very recently, Eric C.C. 

Cheung and colleagues managed to dissociate this dual AIF function and showed a 

novel role of AIF, in controlling mitochondrial morphology and cristae structure 

[Cheung E.C. et al., 2006]. 

 

I.2.7. AIF and the electron transport chain (ETC)  

 

In the course of this thesis, several publications appeared reporting a connection 

between AIF and Complex I of the ETC. Nicola Vahsen and co-workers found that 

reduced OxPhos in retina and some brain regions of Hq mice correlates with decreased 

expression of nuclear-encoded respiratory Complex I subunits [Vahsen N. et al., 2004]. 

This group also reported that inhibition of AIF expression in both mouse and human 

cells by either homologous recombination or siRNA results in severe reduction of 

Complex I expression and activity. Moreover, mice in which Aif  has been inactivated 

specifically in cardiac and skeletal muscle exhibit impaired activity and protein 

expression of respiratory Complex I, leading to development of severe skeletal muscle 

atrophy and heart failure [Joza N. et al., 2005]. In this work, loss of AIF was shown to 

result in increased levels of some markers of oxidative stress, such as lipid peroxidation 

products and catalase activity. However, the authors postulate a primary role of AIF in 

regulating Complex I integrity rather than primarily acting as a ROS scavenger. 
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Likewise, neurons from forebrain-specific AIF null mice have decreased Complex I 

expression and defective mitochondrial respiration, leading to defects in the cortical 

development and reduced neuronal survival [Cheung E.C. et al., 2006]. Also, Aif null 

embryos display diminished Complex I protein expression and impaired Complex I 

activity [Brown D. et al., 2006]. Since AIF is not an integral part of Complex I, it was 

assumed to play a role in the organizing and/or maintenance of the integrity of this 

complex. Importantly, AIF does not directly bind to Complex I, nor does its loss affect 

transcription of Complex I subunits [Vahsen N. et al., 2004]. Despite the remarkable 

progress in this research, what is the exact mechanism by which AIF interacts with 

Complex I, remains unclear and needs future investigation. 

 

Interestingly, it has been reported that cells deficient in Complex I display a lower 

efficiency in H2O2 detoxification [Zoccarato F. et al., 2004]. On the other hand, 

however, it was also shown that KO or silencing of AIF in various cancer cell lines 

reduces ROS levels, possibly correlated with Complex I decreased activity [Urbano A. 

et al., 2005]. This can be reversed by over-expressing AIF with intact NADH-binding 

capacity, thus demonstrating that the oxidoreductase activity of AIF is required for 

Complex I function [Urbano A. et al., 2005]. Recent studies have revealed possible 

links between Complex I deficiency and AIF translocation in certain models of 

neurodegeneration. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP) is a 

cytotoxic compound which causes AIF translocation from the mitochondria to the 

nucleus in both neuron-differentiated PC-12 cells [Liou A.K. et al., 2005] and a mouse 

mesencephalic dopaminergic cell line [Chee J.L. et al., 2005]. It has been postulated 

that N-methylpyridinium (MPP+) blocks Complex I and consequently inhibits OxPhos 

which triggers cell death. In light of these data, one could speculate that inhibition of 

Complex I by MPP+ could perturb the Complex I-associated oxido-reductase activity of 

AIF.  

 

Noteworthy, Complex I deficiency has been shown to be the main cause of several 

mitochondrial diseases such as Leber´s hereditary optic neuropathy (LHON), 

mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) 

etc. Moreover, a 30-40% decrease in Complex I activity has been reported in the 

substantia nigra of idiopathic patients with Parkinson´s disease (PD), [Jellinger K.A., 

1999] and Complex I was shown to be misassembled and oxidatively damaged in 

neocortical samples of PD patients obtained post-mortem [Keeney P.M. et al., 2006].  
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I.2.8. AIF and neurodegenerative disorders 

 

Alterations in the function of mitochondrial proteins, both mitochondrial- and nuclear 

encoded, can result in abnormal energy production and/or generation of ROS. Either 

effect can progress into PCD. Mitochondrial dysfunction and PCD, resulting in selective 

neuron loss, have been implicated in numerous neurodegenerative diseases including 

PD, Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Huntington´s disease 

(HD), diabetic encephalopathy and retinal degeneration [Cassarino D.S. and Bennet 

J.P. Jr., 1999; Almeida S. et al., 2006; Krantic S. et al., 2007].  

 

Oxidative stress has been observed in neurons of patients with several 

neurodegenerative diseases, yet the means by which such stress is generated and how 

it leads to cell death, is not fully understood. Moreover, in several models, such as 

cerebral ischaemia, AD, Pick’s disease and intractable temporal lobe epilepsy, oxidative 

stress-induced neuronal apoptosis has been correlated with abortive cell cycle re-entry 

[Klein J.A. et al., 2002; Klein J.A. and Ackerman S.L., 2003]. The oxidative stress 

manifested as presence of ROS-induced damage in proteins, lipids and nucleic acids in 

dying neurons is age-related and consistent with the disease severity.  

 

Growing biochemical and pharmacological evidence suggests that AIF is involved in 

many neuropathies, both chronic and acute. The best studied model for the 

importance of AIF in such diseases is the Hq mouse mutant [Klein J.A. et al., 2002]. In 

this model, the expression pattern of AIF is much wider then the tissues phenotipically 

affected by its down-regulation, similar to many gene products involved in 

neurodegenerative disorders. In the brain, AIF is expressed in cerebellar neurons, 

hippocampus, dentate gyrus, olfactory bulb, brainstem nuclei and cerebral cortex. In 

the Hq mouse model of neurodegeneration, neuronal loss is not observed in non-

cerebellar brain structures. 

 
Another approach to address the role of AIF in neurodegenerative disorders is to first 

study its involvement in acute neuronal apoptosis. The translocation of AIF has been 

observed in several paradigms of post-mitotic-neuronal apoptosis, including death of 

photoreceptors induced by retinal detachment [Hisatomi T. et al., 2001], neuronal cell 

death induced by brain traumatic injury in vivo [Zhang X. et al., 2002] and cerebral 

ischaemia [Zhu C. et al., 2003].   As to the pro-apoptotic agents which trigger neuronal 
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AIF translocation, there have been several reported: H2O2, peroxynitrite, the 

topoisomerase I inhibitor camptothecin, 3-NP, the excitotoxin N-methyl-D-aspartate 

(NMDA), Aβ  peptides, MPTP etc. Moreover, several of these apoptotic programs 

appear to be caspase-independent. On the other hand, certain contexts of 

neurodegeneration involve increased AIF protein expression in the mitochondria 

without major AIF nuclear translocation, as suggested by the data obtained from 

surgical resections of the temporal lobe from patients suffering medically intractable 

epilepsy [Schindler C.K. et al., 2006]. 

 

It is interesting to mention also the fact that AIF expression is age-related in normal 

neuronal tissues, such as the human cerebral cortex where it increases with age, 

however this increase does not occur in AD patients [Reix S. et al., 2007]. Herein, this 

increase of AIF has been attributed a protective role, presumably as a defense 

mechanism aimed at maintaining the integrity and function of the respiratory chain 

against age-related changes in the brain, such as increase in the ROS production. In 

addition, AIF expression patterns regarding its different isoforms have also been shown 

to vary with the age, from the neonatal stage throughout the adulthood, as it is the 

case with the total protein extracts of rat parietal cortex [Zhang X. et al., 2002; Zhu C. 

et al., 2003]. 

 

In all, the role of AIF in neurodegeneration remains very intriguing. The same way its 

physiological role is clearly dual, its involvement in neurodegenerative pathologies may 

be dual. It could be based on its direct apoptotic function outside the mitochondria as 

well as its vital function in the mitochondria, in maintenance of OxPhos and the ROS 

status, which may be an indirect apoptotic regulator. 

 

I.2.9. Clinical aspects 

 

It has been shown that AIF is required for experimental apoptosis induction in several 

human cancers such as T-cell lymphoma, lung or cervix carcinoma. Thus, it is tempting 

to speculate that the identification of AIF targets and AIF inhibitors (both endogenous 

and exogenous) may lead to the generation of a new class of cytotoxic or 

cytoprotective drugs which can be used for the gene therapy of cancer [Daugas E. et 

al., 2000 A]. Generating a dominant apoptosis inducer (AIF-∆1-100) that overcomes 

Bcl-2 mediated apoptosis inhibition can be a useful tool in a gene therapy-induced 
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ablation of cancer cells, naturally over-expressing caspase inhibitor proteins and/or 

anti-apoptotic Bcl-2-like proteins [Loeffler M. et al., 2001]. 

 

As there is growing evidence for involvement of AIF in neurodegenerative disorders, 

through AIF-depending and AIF-related cell death programs, another possible 

neuroprotective strategy could be based on blocking mitochondrial release and/or its 

take-up by the nucleus [Krantic S. et al., 2007]. 

 

It is evident that clinical aspects of AIF remain elusive and future detailed studies are 

necessary.  

 

I.3. Mitochondria- more than just “power houses of the cell” 

 

Virtually all eukaryotic cells contain mitochondria. These cytoplasmic organelles, 0.5-1 

µm in size, were once free-living bacteria which adapted to life inside larger cells some 

2 billion years ago. On average, there are 300-400 mitochondria in every cell, giving 

rise to 10 million billion in the entire human body, which is about 10% of our body 

weight. Metabolically active cells, such as brain, muscle or kidney cells, can have 

thousands of mitochondria in a single cell, making up some 40-50% of the cytoplasm. 

Every mitochondrion contains 5-10 copies of its genome, in a circular, bacterial-like 

chromosome, which means that there are hundreds or thousands of copies of the 

mitochondrial genome in a single cell. Human mtDNA is a 16 569 bp, double-stranded 

DNA molecule containing 37 genes which encode only 13 proteins. The rest of the 

mitochondrial proteins, some 1000, are encoded by nuclear genes. This is due to the 

fact that modern mitochondria have lost the bulk of their genes through the course of 

evolution, as most were transferred across to the nucleus. 

 

Mitochondria have versatile functions in the cell. Although an extensive review of the 

complex mitochondrial role is beyond the scope of this thesis, some mention of the 

importance of mitochondria is warranted.  

 

Energy generation 

 

Mitochondria generate almost all our energy, in form of ATP, in the OxPhos process 

[Tyler D.D., 1992]. In this process, electrons liberated from reducing substrates, 
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produced in the Krebs cycle and β-oxidation, are delivered to O2 via a chain of 

multimeric protein complexes (complexes I-IV of the ETC), embedded in the IMM (for 

detailed composition of the complexes, see Tab.I.1). Some of the respiratory 

complexes function as  proton (H+) pumps, pumping H+ form the negative matrix to 

the positive IMS, establishing a H+ gradient across the IMM, as initially suggested by 

Peter Mitchell [Mitchell P. and Moyle J., 1965]. This provides electrochemical energy to 

drive ATP synthesis at complex V (ATP synthase), (Fig.I.6). 

 

There are tens of thousands of complete respiratory chains in a single eukaryotic cell, 

enabling the mitochondria to produce approximately 15 times more ATP than the 

glycolytic pathway, a condition which has given the mitochondria their traditional 

moniker of “power houses of the cell”.  

 

The function of the OxPhos system began to be revealed with the discovery of ATP and 

its role in energy metabolism in the 1930s. Three-dimensional structures at atomic 

resolution are now available, giving a complete picture of the arrangement of the ETC. 

However, despite these advances in understanding the molecular structures of the 

complexes, the overall respiratory chain synthesis, organization and regulation remain 

largely unknown. 

 

Complex Name Nº of proteins Prosthetic groups 
I NADH Dehydrogenase 46 FMN, 8 Fe-S centers 
II Succinate-CoQ reductase 5 FAD, cyt b

560
,3 Fe-S centers 

III CoQ-cyt c Reductase 11 cyt b
H
, cyt b

L
, cyt c

1
, Fe-Srieske 

IV Cytochrome c Oxidase 13 cyt a, cyt a
3
, Cu

A
, Cu

B
 

 

Table I.1.  Composition of the mitochondrial ETC. 

 

More than 80 different proteins take part in the assembly of the ETC complexes, 13 of 

which are encoded by mtDNA. The mtDNA-encoded proteins are all essential for 

OxPhos and include seven subunits of Complex I, one subunit of Complex III, three 

subunits of Complex IV and two subunits of Complex V. The rest are nuclear encoded 

and can be divided into two groups: structural components of ETC and proteins which 

control the formation, assembly and turnover of the respiratory complexes.  

 

Mammalian ETC consists of five macromolecular complexes, as depicted in Fig.I.6. 

Complex I (NADH-ubiquinone oxidoreductase; EC 1.6.5.3), one of the most 
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complicated enzymes of the eukaryotic cell, is the point of entry for the major fraction 

of electrons that traverse the respiratory chain. Although four decades have passed 

since the first isolation of Complex I from bovine heart mitochondria by Joe Hatefi and 

co-workers, information on its structure and mechanism of action is still limited. This 

enzymatic complex is the largest (and least understood) of the respiratory complexes, 

consisting of 46 subunits and with a total relative molecular mass of 980 kDa [Hirst J. 

et al., 2003]. It is L-shaped and composed of 14 central or “core”  subunits and 32 

accessory subunits organized in two major domains or “arms” separated by a thin 

collar, the membrane-embedded arm and the peripheral arm protruding into the 

mitochondrial matrix (Fig.I.7). The peripheral arm contains a non-covalently-bound 

FMN prosthetic group and eight Fe-S clusters (two binuclear and six tetranuclear), 

[Grigorieff N., 1998]. The enzyme oxidizes NADH, transfers the electrons through FMN 

and eight Fe-S centres and finally reduces ubiquinone (coenzyme Q10 or just Q) using 

the energy released in this process to pump H+ across the IMM (Fig.I.7). The exergonic 

transfer of two electrons from NADH to Q is coupled to translocation of four H+. What 

is the exact pathway of the electron transfer through the subunits of Complex I and 

how is this transfer linked to the proton translocation is still a matter of debate as 

several models for the energy transduction have been proposed. Moreover, as Complex 

I is a large, multiunit enzyme, under bigenomic control, its biogenesis and assembly 

are very complicated and still poorly understood. Recent investigation has shown that 

assembled Complex I associates with Complex III and Complex IV into supercomplexes 

or “respirasomes” which may have a role in complex stability and/or substrate 

channelling [Schägger H., 2002; Schägger H. et al., 2004]. 

 

Research on Complex I has recently taken on greater significance since the finding that 

many human mitochondrial diseases (even 50% of the reported cases) involve 

structural and functional defects at the level of this enzyme complex and it is involved 

in a growing list of human pathological conditions such as neurodegenerative disorders 

or diabetes. Complex I is the target of many environmental toxins and molecules such 

as pesticides and insecticides. There is also a long list of natural inhibitors of Complex 

I, derived from microorganisms and plants.  

 

Complex II (succinate-ubiquinone reductase) participates in the citric acid cycle (Krebs 

cycle) by oxidizing succinate to fumarate, thus transferring electrons to the ubiquinone 

pool but without translocating protons (schematically shown in Fig.I.6). 
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Figure I.6. Mitochondrial physiology, molecular connections between ETC and the 
Krebs cycle. Abbreviations: I-V (ETC complexes I-V), c (cytochrome c). 
 

Complex III (cytochrome bc1, or ubiquinol/cyt c oxidoreductase) delivers electrons from 

ubiquinol (QH2) to cyt c and pumps protons across the IMM. The electron flow from cyt 

c continues to the binuclear copper centre CuA and to the heme a2-CuB in Complex IV 

(cyt c oxidase). This is where electrons are donated to molecular oxygen, reducing it to 

water. Complex V (ATP synthase) utilizes the electrochemical gradient generated by 

Complexes I, III and IV to generate ATP, from ADP and Pi (Fig.I.6). 

 

ROS generation 

 

Mitochondria are a significant and in most cells, major source of ROS. This production 

is both a physiological and a pathological phenomenon. High, non-physiological levels 

of ROS have been correlated with aging and an increasing number of diseases (cancer, 

diabetes, neurodegenerative diseases, inflammation, heart failure). Yet, mitochondrial 

ROS are not just damaging by-products of respiration, but important players in cell 

signalling [Brookes P.S. et al., 2002], (the involvement of mitochondrial ROS in human 

I 

II 

III 

IV 

V 

c 
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disease is schematically shown in Fig.I.9) 

 

Figure I.7. Complex I structure. A. Diagram showing the electron flow through 
Complex I. B. Schematic representation of human Complex I and the topology of its 
subunits; mtDNA-encoded subunits are underlined.   
 

PCD 

 

As mentioned in the chapter “I.1. Apoptosis-chronicle of a death foretold”, it is now 

well known that mitochondria play a major role in regulating cell death. Regarding this, 

mitochondria can both initiate the death signalling by changes in ATP, NAD(P)H and 

Ca2+ concentration, ROS generation, ∆ψm disruption  or respond to external stimuli and 

thus amplify the cellular death signal. Mitochondria contain many proteins involved in 
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the apoptotic process such as: procaspases -2,-3 and -9, Smac/Diablo, AIF, cyt c, Endo 

G, Omi/HtrA2. 

 

Ca2+ homeostasis 

 

Mitochondria also play a very important role in regulating spatiotemporal Ca2+ 

homeostasis in the cell, thus participating in different physiological and pathological 

paradigms [Babcock D.F. et al., 1997]. This control occurs at two levels: by 

maintenance of the intracellular energetic levels (if mitochondria become dysfunctional 

and ATP synthesis is impaired, cellular Ca2+ homeostasis is rapidly affected) and 

secondly, by active accumulation of high concentrations of Ca2+ (1 µM in the 

mitochondrial matrix), mainly by the activity of a selective uniporter.  

 

Metabolic pathways 

 

Mitochondria are the site of important metabolic reactions such as the urea cycle, the 

carnitine cycle, the Krebs cycle, β-oxidation, steroid and porphyrin synthesis, inter-

conversion of amino acids and xenobiotic metabolism [Lehninger A.L., 1964]. Of note, 

mitochondria are active regulators of the cytosolic concentrations of many molecules 

such as inorganic ions and NAD+. 

 

Thermogenesis 

 

Heat generation (thermogenesis) is achieved when the chemical energy contained in 

reduced substrates is released, but not used for ATP synthesis i.e. the OxPhos process 

is uncoupled. This is essential in cold-adapted, hibernating and newborn mammals, 

where the body temperature is maintained in a manner independent of shivering and is 

due to the presence of mitochondrial uncoupling proteins [Nicholls D.G. and Locke 

R.M., 1984]. 

 

Mitochondrial pathologies 

 

Since the 1960s, over 120 human mitochondrial diseases have been discovered. Many 

of them have been associated with specific, inherited mtDNA mutations producing ETC 

deficiencies. Mitochondrial diseases are surprisingly common (it is believed that 1 in 
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5000 newborns carries some kind of a mitochondrial disorder) and bizarre (some do 

not follow Mendel´s laws of inheritance due to the astonishing fact that mtDNA is 

almost exclusively maternally inherited). Mitochondrial diseases typically affect 

metabolically active tissues such as the brain and muscle, producing movement 

disorders and neuronal diseases, known alltogether as mitochondrial 

encephalomyopathies. The most common ones are: LHON, MELAS, MERRF (myoclonus 

epilepsy with ragged red fibers) and the Leigh syndrome. 

 

I.4. Reactive oxygen species (ROS) 

 

ROS are generated by all aerobic cells as by-products of a number of metabolic 

reactions and in response of various stimuli [Fridovich I., 1978]. The term ROS is often 

replaced by the term “free oxygen radical” though they are not synonymous. Some of 

the ROS are indeed free radicals as defined by the chemical definition of a free radical 

being the atom or molecule that contains one or more unpaired electrons (Tab.I.2). 

Yet, as some ROS are not free radicals, it is more appropriate to speak of ROS when 

referring to this complex group of molecules. Intracellular generation of ROS occurs in 

many different cellular compartments and situations. The endogenous ROS sources 

include the mitochondrial ETC, NADPH oxidase, peroxisomes, cytochrome p450, 

glucose oxidase, xanthine oxidase, cyclooxygenase, lipooxygenase and γ-glutamyl 

transpeptidase as well as several non-enzymatic autooxidation processes [Sauer H. et 

al., 2001]. The number of enzymes which can directly generate ROS or indirectly 

contribute to ROS synthesis, under certain physiological and pathological 

circumstances, is growing rapidly. In addition to endogenous sources, many exogenous 

agents such as hyperoxia, anoxia/reoxygenation, mineral dusts, smoke, toxins and 

ionising radiation are capable of inducing ROS formation at the cellular level. ROS can 

cause cell injury by reacting with proteins, lipids and nucleic acids but they are also an 

essential part of normal physiology, such as signal transduction and the killing of 

micro-organisms by phagocytic cells. 

 

I.4.1. Mitochondrial ROS  

 

In most cell types, mitochondria are considered a predominant source of ROS, which 

mainly include O2·, H2O2, and the hydroxyl free radical (OH·), [Loschen G. et al., 1971; 

Chance B. et al., 1979].  
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Since mitochondria consume about 85-90% of the oxygen used by the cell, the 

mitochondrial ETC generates a substantial amount of intracellular ROS [Shigenaga M.K. 

et al., 1994]. During mitochondrial respiration under normal conditions, 1-5% of the 

electron flow is reported to result in the formation of H2O2 [Chance B. et al., 1979]. 

Yet, given that these initial estimates were made on isolated mitochondria in the 

presence of high, non-physiological concentrations of O2, the in vivo rate of 

mitochondrial ROS production is, most likely, considerably less. Several studies have 

proven that mitochondria produce low levels of ROS that can be effectively scavenged 

by the cellular antioxidant defences at resting conditions. The steady state intracellular 

concentration of O2· and H2O2 have been estimated as ~10-11 and 10-9 M respectively 

[Boveris A. and Cadenas E., 1997; Forman H.J. and Boveris A., 1982]. These low basal 

level of ROS produced by mitochondria at rest, makes mitochondrial ROS ideal 

signalling molecules providing a physiologically safe window for redox signalling, which 

allows the cell to regulate mild to moderate oxidative changes and critically respond to 

them by activating cellular processes such as proliferation and differentiation. 

Mitochondrial ROS also fulfil other pre-requisites of a second messenger since they are 

short-lived (rapidly generated and degraded), produced in response to a stimulus, 

specific in action, enzyme-regulated, highly diffusible and ubiquitously present in most 

cell types. 

 

Reactive oxygen species 

Radicals Non-radicals 
  
       Superoxide (O2·-)   Hydrogen peroxide (H2O2) 

       Hydroxyl (OH·)   Ozone (O3) 

       Peroxyl (RO2·)   Singlet oxygen (1∆∆∆∆gO2) 
       Alkoxyl (RO·)  

       Hydroperoxyl (HO2·)  

 

Table I.2. Reactive oxygen species generated in a mammalian cell. 

 

Mitochondrial ROS are mainly generated at the ETC. As electrons pass through the 

mitochondrial ETC, some electrons leak out to molecular oxygen (O2) to form O2·. It 

has been shown that the ETC can produce O2· at Complex I and Complex III (Fig.I.8). 

Whereas some studies claim that the later accounts for 80% of the total generation 

under normal conditions, others suggest Complex I to be a more relevant location for 
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ROS formation [Brand M.D. et al., 2004; Adam-Vizi V. and Chinopoulos C., 2006]. The 

molecular source of O2· at Complex III is believed to be the ubisemiquinone radical 

intermediate (QH·), formed during the Q cycle at the Qo site of Complex III [Muller F.L. 

et al., 2003]. In the case of Complex I, several domains have been suggested to be 

the site of ROS generation, including some of the Fe-S centers, the flavin moiety and 

the enzyme-bound NADH [Krishnamoorthy G. and Hinkle P.C., 1988; Genova M.L. et 

al., 2001; Kudin A.P. et al., 2004]. It is likely that Complex I and III actually generate 

two different pools of superoxide, Complex I releases it in the matrix, while Complex 

III in the IMS [Jezek P. and Hlavata L., 2005]. 

 

Generated O2· has a short life and under normal conditions is rapidly dismutated by 

manganese superoxide dismutase (MnSOD) to form H2O2 [Loschen G. et al., 1971; 

Boveris A. and Cadenas E., 1975]. A reductive transition metal-dependent homolytic 

cleavage of H2O2 produces the highly oxidative and cytotoxic hydroxyl radical (OH·). 

This (Fenton) reaction, is balanced by the metal chaperone proteins present in the 

mitochondrial matrix. OH· is also produced when H2O2 reacts with O2· in a reaction 

that also generates a molecule of water and molecular oxygen. While O2· and H2O2 are 

not extremely toxic, OH· has strong cytotoxic affects. Furthermore, O2· can also react 

with nitric oxide (NO) and thus generate the harmful radical peroxynitrite (ONOO·). 

Both H2O2 and O2· can enter the cytosol and further participate in redox signaling. 

H2O2 produced within the mitochondria is highly diffusible in contrast to O2·, which 

cannot diffuse through membranes, making it easily compartmentalized. Thus, 

mitochondrial generated O2· may be kept separated from the cytosol until an 

appropriate stimulus releases it through VDAC [Han D. et al., 2003]. Another route for 

O2· release may be through PTP, as low molecular weight compounds up to molecular 

weight 1500, can be exchanged between the mitochondrial matrix and the cytosol via 

this pore [Szewczyk A. and Wojtczak L., 2002]. Since PTP is reported to reversibly 

open/close naturally in intact cells without resulting in apoptosis, mitochondrial 

signaling molecules could be exchanged with the cytosol by the transient “flickering” 

(open/closing) of the PTP in response to certain stimuli [Minamikawa T. et al., 1999]. 

In regard to turning the mitochondria ROS signal off, cellular antioxidant defenses such 

as SOD, catalase, and glutathione peroxidase easily degrade ROS, which terminates 

the signal.  

 

Mitochondria are highly dynamic structures capable of changing their shape (by 
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elongation, branching, swelling) and their location inside a living cell [Bereiter-Hahn J. 

and Voth M., 1994]. These dynamic changes can create sub-compartments or 

“microzones” within the cytoplasm and this is very important for signal transduction as 

it depends on the close proximity of substrates and effector molecules. 

Compartmentalization has already been reported to play a key role in redox signaling 

and this attribute should be considered when describing the mitochondria as a signal 

transducer [Pani G. et al., 2001]. In adult cells, mitochondrial clustering functions to 

create steep gradients of low molecular weight species such as O2, ATP, and pH 

resulting in specialized microzones that may facilitate signal specificity [Aw T.Y., 2000].  

 

 

Figure I.8. Schematic representation of part of the mitochondrial ETC, showing ROS 
generation. O2· is generated at Complex I and Complex III. (Succ: succinate; Fum: 
fumarate; UQ: ubiquinone; UQ· : ubisemiquinone), [modified from Nohl H. et al., 
2005]. 
 

Many, versatile endogenous and exogenous stimuli have been described to induce 

incremented ROS production in the mitochondria. They include: disruption of the ETC, 

changes in the O2 concentration (ischaemia-reperfusion), changes in ∆ψm (particularly 

increase but decrease has also been shown), lack of ADP, increment in the 

NADH/NAD+ ratio, decompartmentalization of Ca2+, endogenous molecules such as 

ceramide, TNF-α as well as a long list of drugs (for eg. ETC inhibitors such as 

rotenone, MPP+ ion, 3-NP, piericidin, antimycin A, azide, cyanide; uncoupling agents), 

[Adams J.D. Jr et al., 1993; Quillet-Mary A. et al., 1997; Rosenstock T.R. et al., 2004]. 

Nevertheless, a number of signalling pathways involved in triggering mitochondrial 

ROS production remain largely unknown.  
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The pathologically increased mitochondrial ROS can lead to oxidative stress, a 

condition characterized by damage of proteins, lipids and nucleic acids which 

culminates in cell death by apoptosis or necrosis.  

 

Mitochondria-derived pathological ROS have been implicated in numerous diseases and 

in the aging process [Harman D., 1956; Balaban R.S. et al., 2005], as schematically 

depicted in Fig.I.9. The human CNS is relatively deficient in oxidative defences [Marttila 

R.J. et al., 1988], rendering it more susceptible to ROS-induced damage. Oxidative 

damage has been implicated in the major neurodegenerative disorders such as AD, PD, 

ALS and Friedreich´s ataxia [Beal M.F., 1995; Swerdlow R.H. et al., 1996]. 

 

Figure I.9. Mechanism of mitochondrial dysfunction; mtDNA mutations, ETC defects 
and increased ROS production are closely related. The respiratory chain defect 
generates ROS which can produce mtDNA mutations and lead to drop in the 
mitochondrial membrane potential and further damage of ETC. This can result in 
drop in the ATP production. Consequently, these effects can provoke diseases and 
aging [modified from Rustin P. et al., 2000]. 
 

In addition to the respiratory chain, a significant amount of ROS in mitochondria can 

be produced by the TCA cycle enzyme α-ketoglutarate dehydrogenase (α-KGDH), 

located in the mitochondrial matrix [Starkov A.A. et al., 2004; Tretter L. and Adam-Vizi 

V., 2004] and the monoamine oxidase (MAO) in the OMM [Andreyev A.Y. et al., 2005]. 

 

I.4.2. Detoxification of ROS 

 

Detoxification of ROS is one of the pre-requisites for all aerobic life forms, thus multiple 
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enzymatic and non-enzymatic defence systems have evolved forming the oxidant 

defence network. An imbalance between these defence mechanisms and ROS 

generation leads to a state termed “oxidative stress”. Both acute and chronic oxidative 

stress can have deleterious effects, as alterations in the cellular redox state clearly 

reflect in alterations of many cellular functions such as proliferation and differentiation. 

Antioxidants are molecules that combat oxidative stress by direct scavenging of ROS, 

act to prevent ROS formation or can repair cellular and tissue damage caused by this 

stress.  

 

The non-enzymatic antioxidant defences comprise versatile low molecular weight 

molecules such as vitamins (vitamin A, C and E), coenzyme Q, cyt c, glutathione 

(GSH), NADPH, melatonin, uric acid, α-keto acids, bilirubin, carotenoids as well as 

metal-binding proteins (transferrin, ferritin, albumin).  

 

The antioxidant-reacting enzymes mainly include: superoxide dismutase (SOD), 

catalase (CAT) and the thiol-reducing system members: glutathione peroxidases (Gpx) 

and peroxiredoxins (Prx). The main enzymatic ROS-detoxifying system is schematically 

shown in Fig.I.10. 

 

SOD is a metalloprotein that can very efficiently dismutate superoxide to H2O2 and 

molecular oxygen, as shown in the chemical reaction represented in Fig.I.11. Although 

dismutation of superoxide occurs rapidly without catalysis, SOD accelerates this 

reaction by 104 fold. Two types of SOD are found inside eukaryotic cells: Cu/ZnSOD 

(SOD1) and MnSOD (SOD2), interestingly showing no significant sequence homology. 

SOD1 is a homodimeric enzyme composed of subunits of molecular weight of 15.6 

kDa, predominantly located in cytosolic fractions, but also found in peroxisomes and 

nuclei and even the mitochondrial IMS. Interestingly, it has also been shown to 

generate toxic OH· from H2O2, under certain circumstances [Yim M.B. et al., 1990]. 

SOD2 is a homotetrameric enzyme whose subunits have molecular weight of 23 kDa. It 

is located in the mitochondrial matrix and encoded by a nuclear gene. There is a 

relationship between the metabolic activity and MnSOD levels. Tissues with high 

metabolic activity and correspondingly increased ROS production, such as liver, kidney, 

heart and brain, possess higher levels of MnSOD [Marklund S.L. et al., 1982]. 

 

Unlike SOD1, SOD2 is strongly induced by a wide variety of factors such as hyperoxia, 
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irradiation, TNF-α, lipopolysaccharides (LPS), interleukin-1 (IL-1), oxidized low density 

lipoprotein (ox-LDL) and IF-γ.  

 

Interestingly, SOD2 expression was reported to decrease during hypoxia. The crucial 

importance of this enzyme has been shown with KO studies, i.e. mutant mice lacking 

MnSOD die within 10-21 days of life from severe cardiomyopathy, neurodegeneration 

and metabolic acidosis [Lebovitz R.M. et al., 1996]. In contrast, the phenotype of 

SOD1 KO mice is less dramatic, as they are fairly normal but more susceptible to 

neuronal injury [Reaume A.G. et al., 1996].  

 

Figure I.10. Simplified schematic representation of the fate of mitochondrial ROS. 

CAT is a homotetrameric ferriheme protein that removes H2O2 by the reaction 

represented in Fig.I.11 CAT is one of the most efficient enzymes known with a 

turnover of 300 000 sec-1. In most cells, CAT is confined to peroxisomes, where it 

detoxifies the H2O2 generated in the process of lipid oxidation. Interestingly, it has also 

been found in the IMM. In humans, most tissues possess only low levels of CAT. 

 

Figure I.11. Enzymatic reactions catalyzed by SOD and CAT. 

 

I.4.2.1. Thiol-reducing systems: the thioredoxin and the glutathione 
systems 
 

Proteins in the extracellular environment or on the cell surface are rich in disulfides. In 

contrast, the inside of the cell is kept reduced and proteins contain free sulfhydryl 

groups rather than disulfides. There are several systems which are in charge of 
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maintaining proteins in their reduced state. In some cases, thiol-disulfide reactions 

overlap with ROS-detoxifying reactions. 

 

The glutathione system 

 

Reduced glutathione (GSH) is recognized as one of the most important intracellular 

and extracellular non-enzymatic antioxidants. It is a cysteine-containing tripeptide (γ-

glutamyl-cysteinyl-glycine) which exists in very large (mM) levels inside cells where it 

acts by quenching free radicals, detoxifies peroxides and participates in maintaining 

other important redox molecules in their reduced state (α-tocopherol, ascorbic acid) 

[Tarpey M.M. et al., 2004]. GSH is continuously regenerated from its oxidized form 

GSSG by the action of NADPH-dependent glutathione disulfide reductase (GR or GSSG-

R), as depicted in Fig.I.12. The balance of GSH and GSSG concentrations (GSH/GSSG 

ratio) is a dynamic indicator of oxidative stress. GSH is a substrate for the glutathione 

peroxidases (Gpx), a family of Se-requiring proteins which reduce H2O2 or 

alkylhydroperoxides, such as those generated by the oxidation of polyunsaturated 

lipids. Gpx is localized both in the cytoplasm and the mitochondrion. 

 

The thioredoxin system 

 

Thioredoxins are small, ubiquitously expressed, multifunctional proteins whose main 

function is to reduce disulfide bonds formed between Cys residues in a target protein. 

These disulfide bonds formed between Cys residues can occur as a part of a catalytic 

cycle or are often produced by ROS damage [Ritz D. and Beckwith J., 2001]. The 

active centre of the thioredoxins is characterized by the presence of two redox-active 

cysteine residues, as a part of a conserved amino acid sequence: -Cys-Gly-Pro-Cys-, 

thus they participate in redox reactions through the reversible oxidation of their active 

centre dithiol to a disulfide. Trx acts as a protein disulfide reductant for ribonucleotide 

reductase and several transcription factors including NF-κB, and AP-1, p53 and the 

glucocorticoid receptor [Ueno M. et al., 1999; Nordberg J. and Arnér E.S., 2001]. 

 

Oxidized Trx are reduced to the dithiol form by the selenocysteine-containing 

flavoenzyme Trx reductase (TrxR), with the use of electrons from NADPH [Powis G. 

and Montfort W.R., 2001], as shown in Fig.I.12. Several studies have shown that TrxR 

and Trx have considerably different expression patterns in different mammalian tissues 
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[Rozell B. et al., 1985, Spyrou G. et al., 1997]. It is also suggested that TrxR of higher 

organisms can reduce many other substrates, in addition to reducing Trx-S2 (Arner 

E.S. et al., 1999). Thus, it is perfectly established that both Trx and TrxR can modulate 

signal transduction properties of ROS by the reduction of intracellular disulfides.  

 

It is also important to say that Trx exerts part of its antioxidant properties through Trx 

peroxidases (also called peroxiredoxins, Prx). This is a family of non-Se peroxidases 

expressed in several subcellular compartments including mitochondria, which use –SH 

groups, obtained from Trx or GSH as reducing equivalents. Trx reduces the oxidized 

form of Trx peroxidase and the reduced Trx peroxidase scavenges ROS, such as H2O2 

[Kang S.W. et al., 1998], (Fig.I.12).  

 

 

Figure I.12. The GSH and Trx system. The regeneration of both systems is possible 
in the presence of NADPH equivalents. 
 

The human Trx system has been related to several pathological conditions since its 

discovery. Such cases are the adult T-cell leukaemia (ALT), caused by human T-cell 

leukaemia virus Type-I (HTLV-I) infection and the acquired immunodeficiency 

syndrome (AIDS), caused by human immunodeficiency virus (HIV), [Masutani H. et al., 

2005]. In the case of ALT, Trx expression has been shown to be augmented in HTLV-I-

transformed T-cell lines which may result in stimulated growth and inhibited apoptosis 

of these cells leading to cellular transformation and leukemogenesis. HIV-infected T-
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cells, on the contrary, display downregulation of the Trx system which accounts for the 

increased apoptosis in these cells, a well-known hallmark of AIDS. However, the 

plasma levels of Trx in HIV-infected individuals have been shown to be elevated 

reflecting the presence of chronic oxidative stress in AIDS patients. 

 

There are two mammalian forms of Trx, the cytosolic, Trx1 and the mitochondrial, 

Trx2. Trx1, lack of which is embryonic lethal [Matsui M. et al., 1996], is the major 

dithiol reductant in the cytosol. It has numerous functions such as defence against 

oxidative stress, control of growth and apoptosis and is also secreted with co-cytokine 

and chemokine activities [Arner E.S. and Holmgren A., 2000]. These multiple roles of 

Trx1 have been also observed in transgenic mice, as constitutively overexpressing Trx1 

confers elongated lifespan and protection against acute lung failure, ischemic injury or 

diabetes mellitus [Hotta M. et al., 1998; Takagi Y. et al., 1999; Mitsui A. et al., 2002; 

Hoshino T. et al., 2003]. Most of these functions, but probably not all of them, depend 

on the disulfide reductase activity of Trx1. 

 

Human Trx2 was cloned in 1997 [Spyrou G. et al., 1997]. It possesses a Cys-rich active 

site common for Trx but lacks the structural cysteines present in Trx1. Trx2 has a MLS 

at the N-terminus and after the cleavage by a mitochondrial peptidase, the mature 

protein has a relative molecular weight of 12.2 kDa. Its presence in mitochondria is 

accompanied by the presence of a mitochondrial isoform of TrxR. Specific sub-

mitochondrial localization to the IMM and high resistance to oxidation suggest that 

Trx2 provides a primary line of defence against oxidative stress, caused by ROS 

generated at the ETC [Spyrou G. et al., 1997; Masutani H. et al., 2005]. 

 

Trx2 also displays a documented anti-apoptotic role, based on the inhibition of 

apoptosis signal-regulating kinase 1 (ASK1), [Zhang R. et al., 2004] and prevention of 

cyt c release from the mitochondrion [Chen Y. et al., 2002], a critical hallmark of 

mitochondria apoptosis-signalling pathway. Also, overexpression of Trx2 confers an 

increase in ∆ψm and resistance to etoposide-induced cell death [Damdimopoulos A.E. 

et al., 2002], whereas suppression of Trx2 expression in a conditional Trx2-defficient 

chicken B cell line, DT-40, causes accumulation of ROS and induced cyt c release and 

apoptosis [Tanaka T. et al., 2002]. The KO of the Trx2 gene in mice is embryonic 

lethal, indicating that Trx2 is indispensable for cell survival and that Trx1 and Trx2 

cannot compensate for each other [Nonn L. et al., 2003].  
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The mitochondrial Trx system has been demonstrated to play a role in cell survival and 

cell cycle progression. A biological role for TrxR2 in cell growth was demonstrated in 

HeLa cells using a dominant negative form of TrxR2 (TrxR2DN), [Kim MR et al., 2003]. 

An increase of G1 to S phase transition, cell growth, and transcription of cell cycle 

genes was induced by TrxR2DN expression. TrxR2DN expression was suggested to 

increase intracellular H2O2, which in turn signalled cell proliferation. Alterations in 

cellular redox status by increased expression of TrxR2 have been suggested to play a 

role in the growth of hepatocellular carcinomas [Choi J.H. et al., 2002]. In addition, it 

has been reported that mice lacking TrxR2 die in the embryonic stage because of 

reduced myocardial function and perturbed hematopoiesis [Conrad M. et al., 2004]. 

 

In summary, the known physiological roles of the Trx system are many and have 

grown in a remarkable way over the last few decades. Interestingly, one could 

speculate that the pro-apoptotic function of AIF might be regulated by Trx1 and/or 

Trx2 in some way [Masutani H. et al., 2005]. 

 

In addition, it is important to stress that the thiol-reducing and related systems are 

clearly coupled to NADPH oxidation. Thus, the cellular levels of NADPH play a very 

important role in the thiol and antioxidant reactions. In this respect, it is worth noting 

that the cellular NADPH pool is normally maintained in an equilibrium between the 

NADPH-generating processes which include the pentose phosphate pathway above all 

and the NADPH-consuming processes such as lipogenesis, monooxygenations and 

urogenesis. The major metabolic impact of perturbing the redox state NADP/NADPH is 

not completely elucidated. 

 

I.5. Redox-dependent transcription factors 

 

Several mammalian transcription factors have been shown to be redox-regulated, in a 

direct or indirect way. They include Hypoxia-inducible factor 1 (HIF-1), Nuclear factor 

E2-related factor 2 (Nrf2), Nuclear factor–kappa B (NF-κB), p21ras, Activator protein 1 

and 2, p53, c-Myb, Sp-1 and others. 

 

I.5.1. Hypoxia-inducible factor 1 (HIF-1) 

 

HIF-1 is a heterodimer consisting of a HIF-1α subunit and a HIF-1β subunit (also 
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known as ARNT), [Wang G.L. and Semenza G.L., 1995]. HIF-1 was first described as a 

hypoxia-inducible DNA-binding factor that mediates transcriptional activation of the 

human erythropoietin gene enhancer [Semenza G.L. and Wang G.L., 1992]. The HIF 

heterodimer recognizes a conserved DNA consensus sequence, known as the hypoxia-

response element (HRE), located usually in the promoters of target genes (Fig.I.13). At 

least 70 genes have been identified so far as targets of HIF, comprising of genes 

encoding for proteins involved in different cellular metabolic functions such as cell 

proliferation, cell survival, glucose metabolism, oxygen transport and apoptosis, as 

indicated in Tab.I.3. For full transcriptional activity, HIF-1 recruits the transcriptional 

coactivator p300/CREB-binding protein (CBP), [Arany Z. et al., 1996].  

 

Both HIF-1 subunits are constitutively expressed in cells at mRNA level. However, in 

normoxia (normal oxygen concentrations), HIF-1α protein is rapidly degraded by the 

proteasome after the hydroxylation of two Pro residues and subsequent ubiquitination 

(Fig.I.13). Apart from this oxygen-depending regulation, HIF-1α can also be regulated 

by oxygen-independent mechanisms. Several oncogenes, growth factors, hormones 

and inflammation mediators have been shown to activate HIF-1α [Bardos J.I. and 

Ashcroft M., 2004]. The majority of these factors converge on two common cellular 

kinase pathways: the mitogen-activated protein kinase (MAPK) and the 

phosphoinositide 3-kinase (PI3K)/ Akt pathways.  

 

An important non-hypoxic stimulus that induces HIF-1 activation is oxidative stress. 

Different mediators such as growth factors, thrombin or insulin have been shown to 

promote the HIF-1 response following stimulation of cellular ROS generation [BelAiba 

R.S. et al., 2004; Leek R.D. et al., 2005]. This response can be inhibited by 

antioxidants or overexpression of redox-modifying enzymes.  

 

I.5.2. Nuclear factor E2-related factor 2 (Nrf2) 

 

Nrf2 was identified in 1994 as a factor that binds to the NF-E2 repeat of the β-globin 

gene promoter [Moi P. et al., 1994]. It is a member of the Cap´n´Collar family of basic 

region-leucine zipper (bZIP) transcription factors and acts as a central regulator of both 

constitutive and inducible antioxidant-related gene expression [Nguyen T. et al., 2003]. 

Nrf2-deficient mice although viable (and not showing a very strong phenotype) display 

an altered antioxidant genetic program and a higher susceptibility to oxidative damage 
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and chemical toxicity [Ramos-Gomez M. et al., 2001; Chan K. et al., 2001]. Of note, 

Nrf2 is ubiquitously expressed in a wide range of tissues and cell lines. 

 

However, under normal conditions, Nrf2 is bound to the cytoskeleton-associated Kelch-

like ECH-associated protein 1 (Keap1), [Jaiswal A.K., 2000], which targets it for 

ubiquitin-dependent degradation, as represented in Fig.I.13. Many pro-oxidant and/or 

toxic molecules such as tBHQ, sodium m-arsenite, sulforaphane and β-naphtoflavone 

(β-NF) have been shown to provoke Nrf2 stabilization and translocation to the nucleus. 

Once in the nucleus, Nrf2 recruits other leucine zipper proteins, such as small Maf, 

which are necessary for its transactivation activity (Fig.I.13).  

 

Together with these interaction partners Nrf2 binds to cis-acting elements, called 

antioxidant response element (ARE), located in the promoters of target genes 

[Rushmore T.H. et al., 1991] which are involved in different cellular functions such as 

maintenance of the cellular redox homeostasis, cell growth and apoptosis, 

inflammatory response and the ubiquitin-mediated degradation pathway. Some of the 

best studied Nrf2-regulated genes are shown in Tab.I.3.  

 

Cis-acting 
sequence 

        Target gene 
         function 

                          Target gene 

ARE NAD(P)H:quinone reductase (NQO1) 

 γ-glutamylcysteine synthetase heavy subunit (γ-GCSh) 
 γ-glutamylcysteine synthetase light subunit (γ-GCSl) 
 

Antioxidant and phase 
II detoxifying enzymes 

Heme oxygenase 1 (HO-1) 

HRE Angiogenesis Vascular endothelial growth factor (VEGF) 

 Vascular tone Endothelin 1 (ET1) 

  Heme oxygenase (HO-1) 

 Erythropoiesis Erythropoietin (EPO) 

 Fe metabolism Ceruloplasmin 

  Transferrin 

 Glucose transporter 1 (GLUT-1) 

 Aldolase A (AldoA) 

 

Glucose metabolism 

Lactate dehydrogenase A 

  Gliceraldehyde-3-phosphate dehydrogenase (GADPH) 

 Proliferation Insulin-like growth factor 2 (IGF2) 

  Cyclin G2 

 

Table I.3. Some of the genes known as down-stream transcriptional targets of HIF-1 
and Nrf2.  
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Figure I.13. Parallelism between HIF-1    and Nrf2 regulation. Under basal conditions 
(A), HIF-1αααα is hydroxylated by proline hydroxylases (PHD) in the presence of O2, 
Fe2+, 2-oxoglutarate (2-OG) and ascorbate, tagged for ubiquitination and 
subsequently proteolytically degraded. Nrf2 binds to Keap1 and is also ubiquinated 
and proteolytically degraded by the 26S proteasome. In response to different 
stimuli (B), proline hydroxylation is inhibited, HIF-1αααα is not targeted for degradation 
and is thus stabilized. Nrf2 dissociates from Keap1 and is thus stabilized in the 
cytosol. After migration to the nucleus HIF-1αααα dimerizes with HIF-1ββββ, binds to 
transcriptional co-activators and transactivates  HRE-containing target genes. As to 
Nrf2, it translocates to the nucleus and transactivates ARE-containing genes. 
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This Nrf2-mediated defence response has been suggested to play a protective role in 

many human pathological conditions such as cardiovascular diseases, cancer, chronic 

inflammation diseases (ex. lupus-like autoimmune nephritis) and neurodegenerative 

disorders (for ex. PD), [Zhang D.D., 2006].  

 

A large body of evidence demonstrates that Nrf2 activity is regulated by 

phosphorylation and several upstream kinases have been reported to be involved in 

this regulation, namely the MAPK pathway, PI3K and extracellular-regulated kinase 

(ERK). Apart from this, post-transcriptional regulation, certain endogenous and 

exogenous  stimuli, such as inorganic arsenic, keratocyte growth factor and the 

pyrethroid pesticide, deltamethrin have been reported to increase Nrf2 expression at 

the transcriptional level [Braun S. et al., 2002; Pi J. et al., 2003; Li H-Y. et al., 2007]. 

 

I.5.3. Nuclear factor–kappa B (NF-κκκκB) 

 

Since its discovery in 1986, NF-κB has been widely studied and it is now known to play 

a central role in the regulation of the expression of many genes involved in cellular 

defense mechanisms.  

 

The NF-κB family (also known as the Rel/NF-kB family) of transcription factors consists 

of five members: p50, p52, RelA (or p65), RelB and c-Rel [Baeuerle P.A., 1991; Grilli 

M. et al., 1993]. All carry a Rel homology domain (RHD), which contains a NLS and is 

involved in homomeric and heteromeric dimer formation among the members. 

Dimerized NF-κB family members translocate to the nucleus, bind to DNA in a 

sequence-specific manner and thus trans-activate target genes. The proteins encoded 

by these NF-κB-responsive genes play important roles in inflammation as well as innate 

and acquired immunity (comprise cytokines, cytokine receptors, cell adhesion 

molecules and hematopietic growth factors). Importantly, NF-κB proteins interact with 

members of the IκB family (in the cytoplasm or the nucleus), which renders them 

transcriptionally inactive. NF-κB appears to be present in most cell types of higher 

vertebrates, sequestered in the cytoplasm by IκB proteins. 

 

Binding of cytokines, growth factors and other inflammatory stimuli, such as TNF-α, IL-

1, phorbol esthers or LPS, to specific sub-cellular receptors, as well as traumatic 

insults, ionizing radiation or UV-C, lead to activation of the NF-κB pathway.  
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Many of these mediators use ROS as second messengers and an increase of the ROS 

level has been shown to activate NF-κB in several cellular physiological and 

pathological paradigms [Piette J. et al., 1997]. In addition, a large number of studies 

have demonstrated that the majority of the stimuli known to activate NF-κB, can be 

blocked using antioxidants, such as NAC, vitamin E and thiols.  
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Scientific artists are the visual storytellers of science. They need a strong 
scientific focus but also a keen imagination as they often illustrate what 
cannot be seen. These days scientific art is everywhere, on the internet, in 
magazines and posters. Now more than ever are artists demanded because 
they can thus bring complicated research closer to the general public.  

Mitochondria  (acrylic on canvas in wood, 12”x 18”) 
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II. OBJECTIVES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“Science may set limits to knowledge, but should never set limits to 
imagination” 

 
Bertrand Russell (1872-1970) 
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The aim of this study was to analyze the role of AIF in the mitochondria. To achieve 

this goal, we set up several objectives: 

 

 

1. Design efficient siRNA cassettes to abolish the expression of the AIF gene. 

 

 

2. Generate stable AIF KD cell lines in a appropriate cellular background. 

 

 

3. Characterize these cell lines, using biochemical and molecular approaches. 

 

 

4. Establish a correlation between the observed phenotype in the AIF-silenced 

cells and the physiological role of AIF in order to elaborate a theoretical model 

of the mitochondrial role of AIF. 
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III. MATERIALS  AND  METHODS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“Life is like riding a bicycle, one can only fall if one stops pedalling” 
 

 Frederic Bonomelli (1959- )
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III.1. Reagents 

 

All reagents used in this study were of analytical grade. 

 

Unless otherwise stated, most of the general chemical reagents were purchased from 

Sigma-Aldrich. These include: sodium chloride (NaCl), magnesium chloride (MgCl2), 

potassium chloride (KCl), sodium acetate (CH3COONa), sodium metavanadate (NaVO3), 

sodium molybdate (Na2MoO4), sodium fluoride (NaF), sodium dodecyl sulphate (SDS), 

Tween-20, β-mercaptoethanol, dithiothreitol (DTT), bromophenol blue, sodium cyanide 

(NaCN), potassium cyanide (KCN), ethidium bromide (EthBr), uridine, dimethylsulfoxide 

(DMSO), glucose, glycerol, bovine serum albumin (BSA), Hank's buffered salt solution 

(HBSS), mannitol, potassium hydrogen phosphate (K2HPO4), β-glycerolphosphate, p-

nitrophenylphosphate (PNPP), adenosine diphosphate (ADP), adenosine triphosphate 

(ATP), nicotinamide adenine dinucleotide phosphate (NADP), hexokinase, glucose-6-

phosphate dehydrogenase, galactose, malic acid, succinic acid, glutamic acid, 

actinomycin D, rotenone, hydrogen peroxide (H2O2), N-acetyl cysteine (NAC) and Luria 

Bertani (LB) broth for bacterial culture. 

 

NP-40 was from Pierce Biotechnology, Inc. Tris-base, glycine and agarose were from 

Roche Diagnostics. Methanol, ethanol and iso-propanol were from Merck. Magnesium 

sulphate 7-hydrate (MgSO4·7H2O), sucrose and ethylenediamine tetraacetic acid (EDTA) 

were from Panreac Quimica S.A. HEPES and phosphate-buffered saline (PBS) were from 

Gibco. Acetic acid, ammonium bicarbonate (NH4HCO3) and acetonitrile were from Fluka. 

 

The mitochondria-targeted antioxidant MitoQ was a kind gift of Dr. Michael P. Murphy 

(Wellcome Trust MRC-Dunn Human Nutrition Unit, Cambridge, UK). 

 

III.2. Cell culture 

 

The cell lines used in this study were: the human hepatoblastoma cell line Hep3B (ATCC 

HB-8064), the human cervical carcinoma cell line HeLa (ATCC CCL-2) and  two sublines 

of the mouse embryonic stem cell (ES) line E14K. 

 

Hep3B cells were cultured in minimal essential medium (MEM), supplemented with 10% 

heat-inactivated fetal bovine serum (FBS), 2 mM L-glutamine, 1 mM non-essential 
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amino acids (n.e.a.a) and 1 mM sodium pyruvate. 

 

HeLa cells were routinely cultured in Dulbecco´s modified Eagle´s medium (DMEM) with 

high glucose concentration (4.5 g/L) and supplemented with 10% heat-inactivated FBS, 

2 mM L-glutamine, 1 mM sodium pyruvate and 1 mM n.e.a.a.  

 

Mouse ES cell lines were maintained in DMEM-GlutaMaxTM with high glucose 

concentration (4.5 g/L) and supplemented with 10% heat-inactivated FBS, 2 mM L-

glutamine, 1 mM n.e.a.a, 0.8% (v/v) β-mercaptoethanol and 1000 U/mL LIF (Chemicon, 

UK), [Smith A.G., 1991]. These cell lines were a generous gift from Dr. Josef Penninger 

(Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, 

Austria). 

 

All cell culture media were supplemented with antibiotics, penicillin (50 units/mL) and 

streptomycin (50 µg/mL). These and all the other reagents used for cell culture, 

indicated above, were purchased form GIBCO, Invitrogen. Cell cultures were maintained 

in a cell culture incubator (IGO 150, Jouan) at 37 ºC, with a humidified atmosphere of 

5% CO2/ 95% air (AirLiquide). All cell lines were subcultured once they reached 90-95% 

confluence, using Trypsin-EDTA (GIBCO, Invitrogen) to detach them and re-fed with 

fresh medium every 2-3 days. For all experiments, we used sub-confluent cell cultures 

of passage nº lower than 25. 

 

III.2.1. Generation and maintenance of rhoº cells 

 

In order to generate rhoº cell lines, routinely cultured Hep3B and HeLa cells were 

treated with the mutagenic chemical ethidium bromide (EthBr), 100 ng/mL, to deplete 

mtDNA and the medium was supplemented with uridine at 50 µg/mL [Mansfield K.D. et 

al., 2005]. The treatment was continued over 6 weeks, changing the culture medium 

every 2 days.  

 

III.2.2. Hypoxia experiments 

 

For hypoxia experiments, cells were seeded the day before the experiment at cell 

density of approximately 70% and re-fed with fresh medium immediately before the 

experiment. Cellular hypoxia was achieved placing the cells in a hypoxic incubator (IG 
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650/750, Jouan), maintaining a humidified environment at 37 ºC and the following gas 

mixture: 92% N2/ 3% O2/ 5% CO2 (AirLiquide). Hypoxic treatment was routinely 

performed over 4 h.  

 

III.2.3. Transfection experiments 

 

For transfection experiments, we used LipofectAMINETM 2000 (Invitrogen Life 

Technologies) and followed the protocol supplied by the manufacturer. Cells were 

seeded the day before the experiment, at cell density of approximately 90-95%. 

DNA/Lipofectamine complexes were formed in the serum-free OptiMEM (GIBCO, 

Invitrogen), usually 10 µg of plasmid DNA was used per 25 cm2 tissue culture flask. 

Transfections were performed in complete cell culture medium without antibiotics, over 

5 h and then cells were re-fed with fresh complete medium containing antibiotics. 

 

III.3. Plasmid construction 

 

III.3.1. Silencing of AIF and TRX2 by RNA interference 

 

In order to silence AIF and TRX2 in our model cells, we used RNA interference (RNAi), a 

potent and highly specific posttranscriptional gene silencing process mediated by 

double-stranded RNA (dsRNA), [Fire A. et al., 1998]. More specifically, we used the DNA 

vector-based RNAi technology and silencing cassettes were generated following a 

hairpin small interfering RNA (siRNA) strategy, as this strategy was proved to be very 

efficient [Yu J.Y. et al., 2002]. In addition, RNA polymerase III (Pol III) promoter was 

used to direct in vivo synthesis of functional siRNA. 

 

The murine Pol III U6 promoter was amplified from genomic DNA using the primer pair: 

U6 Forward (F) (5´-GCGGATCCGACGCCGCCATCTCTA-3´) and U6 Reverse (R)(5´-

CGAATTCGAAGACCACAAACAAGGCTTTTCTCCAA-3´). Engineered restriction sites were 

added at both ends to facilitate future clonings. The amplified PCR product was then 

cloned into pBlueScript vector (Stratagene) opened at BamHI and EcoRI. This new 

vector, named pBS U6/Pol III, was used for cloning and expressing the siRNA cassette. 

To target different regions of the AIF transcript, three siRNA cassettes were designed, 

termed siAIF1, siAIF2 and siAIF3 as represented in the Fig.III.1. The targeted sites from 

the gene, accession number NM_004208, are schematically shown in Fig.III.1.B. These 
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sites comprise (sense strand): GTACTGATTGTATCTGAAGAT (for siAIF1), 

GTAGTACAGCTGGATGTGAGA (for siAIF2), and GACCACATAGTGGCAGCTGTG (for 

siAIF3). Each siRNA cassette is composed of two complementary oligonucleotides and a 

short loop in between (TTCAAGAGA). These siRNA cassettes were verified by sequence 

analysis and cloned into pBS U6/PolIII vector opened at BbsI-HindIII in a 5´-

3´orientation. The vector obtained was termed pBS U6/PolIII/siRNA (Fig.III.1.A).  

 

TRX2 was silenced in a very similar way. Two different silencing cassettes were 

designed and named siTrx2-A and siTrx2-B. The targeted sites from this gene, 

accession number NM_012473, were (sense strand): GACTTCTTCTGAGGAGGTTCC (for 

siTrx2-A) and GACAATATACACCACGAGGAT (for Trx2-B). 

 

For transient silencing of AIF, Hep3B and HeLa cells were transfected with pBS 

U6/PolIII/siRNA, twice, at 24 h intervals and processed for analysis 48 h after the 

second transfection. For transient silencing of TRX2, Hep3B cells were transfected with 

pBS U6/PolIII/siRNA and processed for analysis at 72 h after the transfection. In both 

cases, we also used a control siRNA directed to the GFP transcript as described [Sui, G 

et al., 2002], which we named pU6 GFP. 

 

 

Figure III.1. AIF-silencing vector and cassettes. A. pBS U6/PolIII/siRNA vector. 
Black arrows indicate the position of the pair of primers used for screening for 
positive clones by genomic PCR. B. The three siRNA cassettes (siAIF1, siAIF2 and 
siAIF3) and their corresponding targeting regions in AIF mRNA. 
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after the transfection, we selected for resistant clones in growth medium containing 200 

µg/ml geneticin (G-418 sulphate), (GIBCO, Invitrogen). Cells were maintained under 

selection until colonies were visible (about 14 days); individual clones were then isolated 

with cloning cylinders and amplified under selection in complete growth medium. 

As an additional control, in some experiments we used a stable Hep3B cell line, in which 

the SURF1 gene had been silenced by the same methodologies.  

 

III.3.2. Protein overexpression plasmids 

 

To construct Trx1 and Trx2 expression vectors, the respective full length cDNA were 

amplified by standard PCR from a sample of Hep3B RNA after single-strand 

complementary DNA was synthesized using RT-PCR. The following primers were used: 

Trx1-5 CAG GGA TCC AAG ATG GTG AAG CAG ATC GAG AGC AAG and Trx1-3 CGG AAT 

TCT TAG ACT AAT TCA TTA ATG GTG GC amplified the Trx1 cDNA (accession number 

NM_003329), including BamHI and HindIII sites underlined respectively); Trx2-5 CGC 

AAG CTT AAG ATG GCT CAG CGA CTT CTT CTG AGG and Trx2-3 CGG AAT TCT CAG 

CCA ATC AGC TTC TTC AGG AAG GC amplified the Trx2 cDNA (accession number 

NM_012473), including HindIII and EcoRI sites underlined respectively). The PCR 

products were gel purified and cloned into the “pGEM-T Easy vector” (Promega), using a 

T-A cloning strategy. Nucleotide sequence analysis of various clones confirmed the 

correct structure of the Trx1 and Trx2 genes.  

 

A Trx2 construct with a deletion of the mitochondrial targeting sequence (aa1-60), 

[Zhang R. et al., 2004], named Trx2∆, was also prepared by using the primer Trx2-5∆ 

CGC AAG CTT AAG ATG ACA ACC TTT AAT ATC CAG GAT GG ACC T in conjunction with 

Trx2-3. Both the Trx2 full length cDNA and also Trx2∆ were also epitope-tagged using 

the FLAG peptide. This was done using a two-step PCR extension strategy using the 

primers FLAG1, GTC TTT GTA GTC GCC AAT CAG CTT CTT CAG GAA GGC, and FLAG2, 

TTA CTT ATC GTC ATC GTC TTT GTA GTC GCC AAT CAG.  

 

All the cloning procedures in this thesis, namely digestions, ligations and 

transformations, were performed using standard molecular biology procedures. The E. 

coli strain used was DH5α. Bacterial cells were cultured in Innova 4200 Incubator 

Shaker, New Brunswick Scientific (Edison, NJ, USA) and for centrifugation we used 

SORVALL RC5Cplus centrifuge, Kendro® Laboratory Products (Philadelphia, PA, USA). 
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The restriction enzymes and buffers used in the cloning procedures, were from New 

England Biolabs Inc., whereas “Rapid DNA ligation kit” was from Roche Diagnostics. 

Ampicillin was purchased from Sigma. The DNA molecular weight markers used were 

“Ready-LoadTM 100bp DNA ladder” and “TrackItTM 1 Kb DNA Ladder”, both purchased 

from Invitrogen. 

 

 III.4. Cell proliferation assay 

 

Cell proliferation was detected by two methods. The first method consists of counting 

the cells using a hemacytometer (Bright Line Counting Improved Neubauer Chamber, 

Hausser Scientific). It contains an etched glass chamber and a cover glass. The 

hemacytometer is filled with the cell suspension by capillary action. For this, the 

attached cells were washed with PBS and trypsinized. Consecutively, they were 

resuspended in complete culture medium and mixed thoroughly in order to 

homogenize the suspension. A portion of it was taken to the hemacytometer and the 

cells were counted. We also performed selective staining of cells which not only 

facilitates visualization and counting but also discriminates the live from the dead cells. 

Here, the cell suspension was mixed with an equal volume of trypan blue solution (0.4 

% (w/v) trypan blue (Sigma) in PBS) and incubated for 2-3 min at RT. The dead cells 

are stained blue. 

 

The second method is using the MTT assay. Yellow MTT (3-(4,5-Dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide, a tetrazole) is reduced to purple formazan in the 

mitochondria of living cells [Mosmann T., 1983]. This reduction takes place only when 

mitochondrial reductase enzymes are active and therefore the conversion is directly 

related to the number of viable cells. A solubilization solution, usually either DMSO or a 

solution of the detergent SDS in dilute hydrochloric acid (HCl), is added to dissolve the 

insoluble purple formazan product into a colored solution. The absorbance of this 

solution is quantified by measuring at a 500-600 nm wavelength by a 

spectrophotometer.  

 

In our experiments, cells were seeded the day before the experiment using 96-well cell 

culture plates, 100 µL/well. In order to assess the cell proliferation, MTT reagent 

(Roche) was added (20 µL/well) and cells were incubated for 4 h in the cell culture 

incubator. Then, medium was discarded and DMSO was added, to solubilize the cells, 
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at 100 µL/well. The plate was incubated for 5 min, at 37 ºC, in the dark and 

immediately after this, absorbance was measured at 570 nm and 690 nm using a 

“Multiscan” plate-reader spectrophotometer (Thermo Labsystems). Results were 

obtained subtracting the absorbance value recorded at 690 nm (background 

absorbance) from the 570 nm absorbance value, as indicated in the instructions 

provided with the kit. 

 

III.5. Measurement of lactate concentration 

 

Lactate concentration in the cell culture medium was measured spectrophotometrically. 

The measurement is based on two consecutive reactions. First, lactic acid is converted 

to pyruvate and H2O2 by lactate oxidase. Then, in the presence of the formed H2O2, 

horseradish peroxidase (HRP) catalyzes the oxidative condensation of a chromogen 

precursor to produce a colored dye with an absorption maximum at 540 nm [Barhan D. 

and Trinder P., 1972]. The increase in absorbance is directly proportional to the lactate 

concentration in the sample. In our experiment, we used a lactate reagent (Sigma) 

which contains all the necessary compounds for the chemical reaction. Lactate standard 

solution (Sigma) was used to generate a standard curve (range: 12.5-400 µg/mL).  

 

The experiment was carried out by the following protocol. Cells were seeded and 

allowed to grow in complete growth medium for the indicated period of time. Later, the 

culture medium was collected, filtered using 0.2 µm syringe filters (Millipore) and stored 

at –20 ºC until the measurement. Cells were also collected by trypsinization and 

counted using a hemacytometer, in order to normalize the results. The measurement 

was performed in a 96-well plate, in triplicate, adding 2-10 µL of the standard serial 

dilutions or the culture medium and 100 µL of the lactate reagent. Complete culture 

medium without cells was used to assess background absorbance. The plate was 

incubated at 37 ºC, for 10 min, in the dark. Absorbance was measured at 570 nm, using 

a “Multiscan” plate-reader spectrophotometer (Thermo Labsystems). 

 

III.6. Measurement of ATP concentration  
 

Intracellular ATP concentration was assessed in a bioluminescent assay based on the 

luciferase oxidation of luciferin to oxyluciferin, as described in Fig.III.2. For this, we 

used the “ATP Bioluminescence kit” (Roche) and the assay was performed according to 
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the manufacturer´s protocol. Briefly, cells were detached by trypsinization and counted 

using a hemacytometer. 

 

luciferin + ATP                                luciferyl adenylate + Ppi    
luciferyl adenylate + O2                                  oxyluciferin + AMP + light 

 

Figure III.2. Luciferase-mediated oxidation of luciferin to oxyluciferin is a double-
step reaction. 
 

Then, 1 million cells were resuspended in 1 mL dilution buffer. ATP standard curve was 

prepared (10-10-10-3 M) using ATP stock solution (10 mg/mL) provided by the kit in 

dilution buffer in order to minimize the background luminescence. Moreover, 25 µL of 

the sample or the standard solution were applied per well in a 96-well plate, in 

triplicate. Then, 25 µL of cell lysis buffer were added to all wells and the plate was 

incubated for 5 min, at RT. It was then taken to the Luminoscan (Thermo Labsystems) 

and luminescence was detected immediately after injecting 50 µL/well of the luciferase 

reagent by the luminoscan dispenser. 

 

In order to normalize the ATP concentration values with the protein amount, after the 

cell lysis had been performed 10 µL/well of the cell lysate solution were removed and 

total protein concentration determined using the “BCA Protein Assay Kit” (Pierce), (see 

section: “III.13.2. Protein quantification”). 

 

III.7. Glucose-uptake detection 

 

In this spectrophotometric assay, we detected the concentration of glucose in the 

culture medium as an indicator of the cellular glucose uptake. The mechanism of the 

reaction is shown in Fig.III.3. 

 
glucose     hexokinase                  glucose-6-phosphate      
                             
                  ATP    ADP 
        
glucose-6-phosphate     glucose-6-phosphate-dehydrogenase     6-phospho-gluconate      
                                    
                                                           NADP   NADPH 
 

Figure III.3. Glucose conversion to 6-phospho-gluconate. 
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The detection was carried out by measuring NADPH maximal absorbance at 340 nm, 

which is equivalent to the glucose concentration in the sample. Linear range glucose 

standard curve (0.016-1 g/L) was prepared, using the culture medium (1 g/L glucose) 

as a standard stock solution of glucose. The reaction was performed in a 96-well plate, 

adding 20 µL of the standard or the sample and 200 µL of the reaction mixture and 

incubated at RT, for 5 min. The reaction mixture was prepared fresh, composition: 0.3 

M Tris-HCl pH 7.5, 10 mM MgSO4·7H2O, 10 mM ATP, 0.8 mM NADP, 4.5 U/mL 

hexokinase and 5 U/L glucose-6-phosphate dehydrogenase. Absorbance was recorded 

using a “Multiscan” plate-reader spectrophotometer (Thermo Labsystems). In parallel, 

the cell number was also assessed, using a hemacytometer, in order to normalize the 

results. 

 

III.8. Detection of ROS using the “Amplex Red Kit” 

 

To evaluate ROS production, particularly H2O2, in cultured cells, we employed the 

“Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit” (Molecular Probes, A22188). This 

kit uses the Amplex Red Reagent (10-acetyl-3,7-dihydroxyphenoxazine) to detect H2O2 

released from cells [Mohanty J.G. et al., 1997]. In the presence of HRP, Amplex Red 

reacts with H2O2 in a 1:1 stoichiometric ratio and turns into red-fluorescent oxidation 

product, resorufin, which can be detected both fluorometrically (emission at 587 nm) 

and spectrophotometrically (absorbance at 563 nm). In our case, we used a “Multiscan” 

plate-reader spectrophotometer (Thermo Labsystems) and absorbance was quantified at 

570 nm.  

 

In order to detect H2O2 production, cells were seeded the day before the experiment. 

The following day, they were washed using PBS, detached by trypsinization and 

resuspended in HBSS. H2O2 was detected in the cell suspension and quantified using 

H2O2 standard curve ranging 0-40 µM and prepared in HBSS with serial dilutions using 

3% H2O2 stock, provided by the kit. The assay was performed in a 96-well plate by 

applying, per well, 20 µL of blank (HBSS), standard (H2O2 solution) or sample (5x104-

10x104 cells) and further adding 100 µL of the reaction mixture, containing 0.1 U/mL 

HRP and 50 µM Amplex Red in HBSS. Results were normalized with the cell number, 

having counted the cells in the suspension with a standard hemacytometer (see chapter 

“III.4. Cell proliferation assay”), and expressed as concentration of H2O2 (nmol/5x104 

cells). 
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III.9. Confocal microscopy 

 

The aim of the confocal microscopy experiments was to study the intracellular ROS 

levels, the redox status (assessed as glutathione concentration) and the ∆ψm status in 

our model cells. For this purpose, we used the following suitable fluorochromes: 

hydroethidine (Dihydroethidium, HE), 2’7’-dichlorofluorescin diacetate (DCFH-DA), 

tetramethylrhodaminemethylester (TMRM) and 5-chloromethylfluorescein diacetate 

(CMFDA). In the presence of superoxide, HE is oxidized to become ethidium which emits 

red fluorescence [Rothe G. and Valet G., 1990]. DCFH-DA is hydrolysed by cellular 

esterases to dichlorofluorescin (DCFH) and is then oxidized to a green fluorescent 

product dichlorofluorescein (DCF) primarily by H2O2 [Rothe G. and Valet G., 1990; 

Carter W.O. et al., 1994]. TMRM which fluoresces in red, is a fluorochrome used to 

detect mitochondrial inner membrane potential [Nieminen A.L. et al., 1997], whereas 

CMFDA (green fluorescence) detects glutathione (GSH). 

 

For these measurements, cells were seeded one day before the experiment in complete 

culture medium. Prior to the staining, the medium was removed and cells were re-fed 

with MEM supplemented with 2% FBS. Cells were stained with Hoechst 33342 (blue 

fluorescence) at 10 µg/mL to stain the nuclei. TMRM was added at 0.05 µM, CMFDA at 

0.5 µM, HE at 10 µM and DCFH-DA at 0.4 µM. Incubation was carried out in the dark, at 

37 ºC, for 30 min. Cell viability was assessed with the fluorochrome propidium iodide 

(PI), at 0.001%, which fluoresces in red and this incubation was performed for 3 min. 

All fluorochromes were purchased from Molecular Probes. 

 

Cellular fluorescence intensity was visualized using a Radiance 2100 Confocal 

microscope (BioRad, Hampstead, England). Digital image analysis from cellular 

fluorescence was carried out with Laserpix Software (BioRad). In all the experiments, 

the mean fluorescence intensity was captured per image (404 µm2) corresponding to 

25-35 cells. At least three images were captured per experiment and these experiments 

were repeated three times. 

 

III.10. Glutathione (GSH) concentration measurement by fluorimetry 

 

GSH was also detected by a fluorometric method, using the fluorochrome 

monochlorobimane [Rice G. et al., 1986; Sebastiá J. et al., 2003]. This is a common 
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technique to measure GSH in cultured cells as monochlorobimane can readily pass the 

plasma membrane and form an intracellular fluorescent GSH-monochlorobimane 

adduct in a reaction catalyzed by glutathione S-transferase. 

 

For the measurement, cells were seeded in standard culture medium in a 96-well plate, 

5x104/well, and left to attach for 6 h. Then, the culture medium was discarded and 95 

µL/well of HBSS were added. A standard curve, using GSH (Sigma) was prepared in 

HBSS, to minimize the background fluorescence, in the range of 10-8–10-3 M GSH. After 

this, 5 µL/well of monochlorobimane (Molecular Probes), final concentration of 0.04 mM, 

was added both to standards and to samples, all measured in triplicate. Then, the plate 

was incubated at 37 ºC, for 30 min, in the dark. Fluorescence was detected using a 

Fluoroscan (Thermo Labsystems), at λexc of 355 nm and λemis of 460 nm and the results 

obtained were expressed as concentration of GSH (nmol/5x104 cells). 

 

III.11. Gene reporter assay 

 

The gene reporter assay was used to study the transcriptional activity of HIF-1. As a 

reporter gene we used the firefly (Photinus pyralis) luciferase, coupled to several 

minimal hypoxia responsive elements (HRE), a normal regulatory sequence present in 

the promoter and enhancers of HIF-target genes. 

 

The experimental reporter gene construct used in this experiment, pHRE-1, was kindly 

gifted by Dr. Kaye Williams (University of Manchester, UK). It contains 3 copies of a 

synthetic oligonucleotide of the minimal phosphoglucose kinase (PGK-1) HRE, cloned 

upstream of a simian virus SV40 minimal promoter in the pGL3 vector (Promega).  

 

The control reporter gene construct used in our experiments was pHTK-RL; contains a 

thymidine kinase promoter cloned upstream of the Renilla luciferase gene. Its activity 

serves as a background control and is used to correct the obtained result for the 

transfection efficiency. The experiment was performed using the “STOP and GLOW 

reporter assay system” (Promega). Following the manufacturer´s suggestions and after 

transfecting with both vectors, Dual-GloTM Luciferase reagent-lysed cells were 

transferred to a 96-well plate and luminescence was detected using a luminometer 

(Thermo Labsystems), obtaining a ratio between the Firefly and the Renilla luciferase 

activity.  
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III.12. PCR analyses 

 

III.12.1. Genomic PCR 

 

Genomic DNA from mammalian cells was obtained by resuspending cellular pellets in 

50 µL lysis buffer containing 10 mM Tris-HCl pH 8.0, 50 mM KCl, 1.5 mM MgCl2, 0.5% 

NP-40, 0.5% Tween and 100 µg/mL Recombinant Proteinase K (Roche Diagnostics). 

Samples were incubated at 65 ºC, for 40 min followed by heat-inactivation of 

proteinase K at 95 ºC, for 10 min. Normally, 10 µL of lysate were used as a template 

for genomic DNA.  

 

The genomic PCR was used to detect the presence of the integrated siRNA cassettes in 

the stable clones of silenced AIF. The product obtained by the PCR amplification 

corresponds with part of the murine PolIII U6 promoter (Fig.III.1.A). The details of this 

PCR are summarized in Tab.III.1.  

 

PCR conditions 
 

             Primer sequences 

       
      95 ºC      4 min 
      95 ºC      30 sec 
      57.5 ºC   30 sec     30 or 35 cycles 
      72 ºC      30 sec 
      72 ºC      2 min 

 
     F: 5´-GACGCCGCCATCTCTAGG-3´ 
     R: 5´ACAAGGCTTTTCTCCAAG-3´ 

 

Table III.1. PCR conditions and primer sequences for genomic PCR. 
 

III.12.2. RT-PCR 

 

Total RNA from mammalian cells was isolated using the “RNeasy Mini Kit” (Qiagen) 

according to manufacturer´s instructions. In brief, cellular pellets were resuspended in 

350 µL lysis buffer and lysed by passage through a 20-Gauge needle. Then, 350 µL of 

70% ethanol was added and the samples were applied to a column which retains RNA. 

After the column had been washed appropriately, RNA was eluted in 40-50 µL diethyl 

pyrocarbonate (DEPC), (Sigma)-treated H2O (0.1% v/v). The concentration of the total 

RNA obtained was determined spectrophotometrically, using “GeneQuant pro” 

spectrophotometer (Amersham) and considering that one absorbance unit at 260 nm 
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wavelength correlates with about 40 µg/mL of RNA in the solution. RNA amount and 

integrity were also checked by standard electrophoresis (agarose gels containing EthBr 

and buffer TAE 1x). 

 

Complementary DNA (cDNA) was synthetized using 1 or 2 µg of total RNA. For this, we 

used SuperscriptTM RNase H-Reverse Transcriptase (Invitrogen). The reaction was 

performed as suggested in the manufacturer´s protocol, in 20 or 40 µL final volume 

and the presence of buffer (50 mM Tris-HCl pH 8.3, 75 mM KCl, 3 mM MgCl2), 10 mM 

DTT, 40 or 80 U RNAseOut Recombinant Ribonuclease Inhibitor (Invitrogen), oligo-dT 

primer (Invitrogen) and 0.5 mM mixture of deoxinucleoside triphosphates (dATP, dCTP, 

dGTP and dTTP, 0.5 mM each), (dNTPs), (Roche Diagnostics).  

 

Reverse transcriptase PCR (RT-PCR) was performed using 2 µL cDNA, in a final volume 

of 20 µL. For this, we used “FastStart Taq Polymerase” (Roche Diagnostics). The 

reactions were performed in PCR buffer supplied by the manufacturer (50 mM Tris-HCl, 

2 mM MgCl2, 10 mM KCl and 5 mM (NH4)2SO4; pH 8.3), 200 µM dNTPs (Roche 

Diagnostics), 2 µM F primer, 2 µM R primer and 1 U Taq DNA polymerase. The RT-

PCRs were carried out using a PTC-200 DNA Engine Thermal Cycler (MJ Research) and 

RT-PCR products visualized by standard electrophoresis on 1-2% agarose gels 

containing EthBr and using buffer TAE 1x (20 mM Tris, pH 7.8, 10 mM sodium acetate 

and 0.5 mM EDTA). All RT-PCRs were performed in duplicate and together with a 

negative control (H2O instead of cDNA). 

 

The primer pairs were synthetized by Oswell DNA Service, UK, except for the 

oligonucleotide pair for GA3PDH which was purchased from BD Clontech (Control 

Amplimer set #5406-1). The optimal RT-PCR conditions for each pair of primers were 

established in pilot experiments, such that linear reaction rates were obtained and all 

PCR products were sequenced for verification. The primer sequences and PCR 

conditions are specified in Tab.III.2. 

 

RT-PCR using commercial human cDNA panels 

 

In order to analyze the expression of several potential AIF transcript variants in human 

tissues, we used Multiple Tissue cDNA (MTCTM) Panels, namely Human Tumor MTCTM 

Panel and the Human MTCTM Panels I and II (all from Clontech, BD Biosciences). 
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Gene 
(mRNA, 
GenBank) 

     PCR conditions 
         Tº               Nº     
   annealing     cycles                   

Primer sequences 

   ACTB 

   (NM_001101) 58 ºC 25/30   F: 5´-TGGCACCACACCTTCTACAATGAGC-3´ 
  R: 5´-GCACAGCTTCTCCTTAATGTCACGC-3´ 

   AIF 

   (NM_004208) 66.8 ºC 35   F: 5´-GGCTCACGGTGTTTGACCCGT-3´ 
  R: 5´-CTCGGGGAAGAGTTGAATCAC -3´ 

   mAIF 

   (NM_012019) 63.9 ºC 32   F: 5´-AAGACTGGCGGACTGGAAATAGAT -3´ 
  R: 5´-AGGGGCGCTGGGAGGAA -3´ 

   ALDOA 

   (NM_000034) 67 ºC 35   F: 5´-CACTGGGATCACCTTCCTGT-3´ 
  R: 5´-ACGACACCACACACCACTG-3´ 

   CAT 

   (NM_001752) 66.1 ºC 35   F: 5´-CAGATGGACATCGCCACATG-3´ 
  R: 5´-AAGACCAGTTTACCAACTGGG-3´ 

   CYPA 

   (NM_021130) 
56 ºC 20   F: 5´-CGTCTCCTTTGAGCTGTTTG-3´ 

  R: 5´-GGTGATCTTCTTGCTGGTCT -3´ 

   CYCA 

   (NM_017101) 
60 ºC 30   F: 5´-CGTCTGCTTCGAGCTGTTTG-3´ 

  R: 5´-GTAAAATGCCCGCAAGTCAA -3´ 

    GAPDH 

   (NM_002046) 66 ºC 28   F: 5´-TGAAGGTCGGAGTCAACGGATTTGGT -3´ 
  R: 5´-CATGTGGGCCATGAGGTCCACCAC -3´ 

   GLUT1 

   (NM-006516) 67 ºC 30   F: 5´-ATGAAGGAAGAGAGTCGGCA-3´ 
  R: 5´-TGAAGAGTTCAGCCACGATG-3´ 

   HIF-1αααα 

   (NM_001530) 55 ºC 40   F: 5’-CACAGCCTGGATATGAA-3’ 
  R: 5’-GAATTCTTGGTGTTATATATATATG -3’ 

   KEAP1 

   (NM_203500) 63.9 ºC 35   F: 5´-CAGAGGTGGTGGTGTTGCTTAT -3´ 
  R: 5´-AGCTCGTTCATGATGCCAAAG -3´ 

   NQO1 

   (NM_000903) 
66.1 ºC 35   F: 5´-GCCTAGCACAAGTACCACTCTTGGTC-3´ 

  R: 5´-CTGAGGCAGGAGAATTGCTGGAACC-3´ 

   NRF2 

   (NM_006164) 
63.9 ºC 35   F: 5´-AGATTCACAGGCCTTTCTCG-3´ 

  R: 5´-CAGCTCTCCCTACCGTTGAG-3´ 

   SOD1 

   (NM_000454) 
66.1 ºC 35   F: 5´-GCGACGAAGGCCGTGTGCGTGC-3´ 

  R: 5´-ACTTTCTTCATTTCCACCTTTGCC-3´ 

   SOD2 

   (NM_000636) 66.1 ºC 35   F: 5´-CTTCAGCCTGCACTGAAGTTCAAT-3´ 
  R: 5´-CTGAAGGTAGTAAGCGTGCTCCC -3´ 

    all RT-PCRs were performed:   95 ºC      5 min 
                                                95 ºC      30 sec 
                                                Tºann       30 sec          nº cycles 
                                                72 ºC      30/60 sec 
                                                72 ºC      5 min 

 
 
Table III.2. RT-PCR: Primer pairs and PCR conditions used. 



  Materials and Methods 
 

73 

Using the primers for AIF (Tab.III.2), we were aiming to amplify three different cDNA 

variants of human AIF, listed in the GenBank namely AF100928, AL049703 and 

AL049704 [Daugas E. et al., 2000 A]. The RT-PCRs were performed using 5 µL of the 

panel cDNA, in a total reaction volume of 20 µL and as described above. Negative 

control (water instead of DNA) was included. Also, for all the reactions we used human 

cDNA positive control, following the instructions provided with the cDNA panels. 

 

Real time quantitative RT-PCR  

 

Total RNA from mammalian cells was isolated and cDNA synthetized as indicated 

above. Quantitative real time RT-PCR was carried out in a LightCycler instrument with 

the use of LightCycler-FastStart DNA Master SYBR Green I kit, both from Roche 

Diagnostics. Samples containing 1 µL of cDNA were PCR-amplified in a final volume of 

10 µL, in the presence of 0.5 µM primers F and R, 2 mM MgCl2, 5% DMSO and 1 µL of 

the FastStart Reagent supplied by the kit, which contains the necessary buffer, the 

SYBR Green-marked nucleotides and the DNA polymerase. All reactions were 

performed in duplicate and a negative control, water instead of cDNA, was included in 

each run. Specificity was confirmed by melting curve analysis and agarose gel 

electrophoresis. In order to quantify the result as number of amplified copies in each 

reaction, we generated standard curves by PCR-amplifying serial dilutions of a 

previously purified PCR product for each primer pair, SOD1, SOD2 and Cyclophilin A 

(CYPA), (the primer sequences are shown in Tab.III.2). The later, was used as a 

housekeeping gene and results were normalized taking into consideration its 

expression.  

 

III.13. Protein analyses 

 

III.13.1. Protein extracts 

 

Whole-cell extracts 

 

Cells were collected on ice by the following procedure: the medium was removed, then 

the cells were washed with a suitable volume of ice-cold phosphate-buffered saline 

(PBS) and immediately after, scraped using plastic lifters (Corning Inc.), again in a 

suitable volume of ice-cold PBS (for ex. 1.5 mL of PBS for a t-25 flask). Immediately, 
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this cell suspension was centrifuged in a microcentrifuge (5415-R, Eppendorf) at 4 ºC, 

for 5 min, at 500 g. Supernatant was discarded and cell pellets were resuspended in 

50-100 µL complete lysis buffer (depending on the size of the cell pellet, for example a 

pellet obtained from a confluent t-25 flask was normally lysed in 100 µL). The 

composition of the complete lysis buffer was: 20 mM HEPES pH 7.4, 400 mM NaCl, 

20% (v/v) glycerol, 0.1 mM EDTA, 10 µM Na2MoO4. Immediately prior to use, 1 mM 

DTT, protease inhibitors (“Complete Mini” protease inhibitor cocktail, and “Pefabloc”, 

both purchased from Roche Diagnostics), and phosphatase inhibitors mixture: 10 µM 

NaF, 10 mM NaVO3, 10 mM p-nitrophenylphosphate (PNPP) and 10 mM β-

glycerolphosphate were added. Then, samples were vortexed at maximum speed, for 

15 sec, incubated on ice, for 15 min, vortexed again at maximum speed, for 30 sec 

and subsequently centrifuged in a microcentrifuge at 4 ºC, for 15 min, at 16100 g. 

Supernatants (whole-cell protein extracts) were collected and stored at –20 ºC until 

future use.  

 

Mitochondria-enriched extracts 

 

For these experiments, we routinely used confluent cell cultures plated in t-25 flasks. 

After washing with 5 mL ice-cold PBS, cells were scrapped in 1.5 mL ice-cold PBS and 

collected in a 1.5 mL ice-chilled eppendorf tubes. Immediately after, the suspension 

was centrifuged in a 4 ºC-chilled microcentrifuge (5415-R, Eppendorf), at 500 g, for 5 

min. The supernatant was discarded and the cell pellet was resuspended in 0.5 mL 

fractionation buffer (10 mM Tris-HCl pH 7.5, 0.25 M sucrose and 1 mM EDTA) and 

immediately after lysed on ice by a passage through a 23-gauge needle in a 1 mL 

plastic syringe. Unbroken cells were pelleted by centrifugation in a microcentrifuge at 4 

ºC, for 10 min, at 500 g. The supernatant was collected, transferred to a new 

eppendorf tube and centrifuged at 4 ºC, for 30 min, at 16100 g. The supernatant 

resulting from this centrifugation was collected representing the cytosolic fraction, 

whereas the pelleted mitochondrial fraction was washed by adding 1 mL fractionation 

buffer. Subsequently, another centrifugation step was performed, in a chilled 

microcentrifuge at 11000 g, for 10 min and the pellet obtained was resuspended in 50 

µL mitochondrial buffer (10 mM Tris-acetate pH 8.0, 0.5% NP-40, 5 mM CaCl2, 1 mM 

DTT and protease inhibitor cocktail, (Roche)), thus giving rise to a mitochondria-

enriched cellular fraction. Next, the protein extracts obtained this way were stored at –

20 ºC for further use. 
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Nuclear and cytoplasmic extracts 

 

In order to obtain nuclear and cytoplasmic extracts, we used confluent cell cultures 

plated in t-25 flasks. After washing with 5 mL ice-cold PBS, cells were scrapped in 1.5 

mL ice-cold PBS and further collected in a 1.5 mL ice-chilled eppendorf tubes. An 

immediate centrifugation step followed in a 4 ºC-chilled microcentrifuge (5415-R, 

Eppendorf), at 500 g, for 5 min. The supernatant was discarded and the cell pellet was 

resuspended in 100 µL Dig A Buffer which contains 10 mM HEPES pH 7.4, 1.5 mM 

MgCl2, 10 mM KCl and 0.2% NP-40. Prior to use, this solution was supplemented with 

1 mM DTT, protease inhibitors (“Complete Mini” protease inhibitor cocktail, and 0.1 

mM “Pefabloc”, both from Roche Diagnostics), and phosphatase inhibitors mixture: 10 

µM NaF, 10 mM NaVO3, 10 mM PNPP and 10 mM β-glycerolphosphate. Samples were 

vortexed at maximum speed, for 10 sec, then incubated on ice for 10 min, vortexed 

again at maximum speed, for 10 sec and centrifuged in a microcentrifuge at 4 ºC, for 1 

min, at 13000 g. Supernatants (cytoplasmic fraction) were collected and immediately  

after stored at –20 ºC until future use. Next, the pellets were resuspended in 30 µL of 

Dig C Buffer, whose composition is: 20 mM HEPES, 1.5 mM MgCl2, 400 mM KCl, 25% 

glycerol and 0.2 mM EDTA. In a similar fashion as Dig A Buffer, Dig C Buffer was also 

supplemented prior to use, with 1 mM DTT and protease inhibitors (“Complete Mini” 

protease inhibitor cocktail, and 0.1 mM “Pefabloc”, both purchased from Roche 

Diagnostics). Then, the samples were vortexed at maximum speed, for 10 sec, 

followed by a 15 min-incubation on ice, and vortexed again at maximum speed, for 10 

sec. This was followed by 1 min-centrifugation, at 16000 g, in a 4 ºC-chilled 

microcentrifuge. The supernatant (nuclear fraction) was collected and maintained at –

20 ºC until use. 

 

III.13.2. Protein quantification 

 

In order to quantify the protein content in the whole-cell and mitochondria-enriched 

cellular extracts, we used the Bicinchoninic acid (BCA) assay. This method combines 

the well-known Biuret reaction (reduction of Cu2+ to Cu1+ by protein in an alkaline 

medium) with a colorimetric detection of the Cu1+, based on its chelation with two 

molecules of BCA. The purple-colored reaction product exhibits a strong absorbance at 

562 nm which is nearly linear with increasing protein concentrations over a broad 

working range. 
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To perform the assay we used “BCA Protein Assay Kit” (Pierce). A standard curve was 

prepared using BSA, serial dilutions (1-0.0156 mg/mL) were prepared in the same 

buffer as the samples to minimize the background absorbance. Both the samples and 

the standard dilutions were assayed in triplicate. Then, 20 µL of standard or sample 

were applied per well in a 96-well plate and 200 µL/well of working reagent was 

added. This reagent was always prepared fresh, mixing 50 parts of the BCA reagent A 

with 1 part of BCA reagent B, as indicated in the manufacturer´s protocol. The plate 

was then incubated at 37 ºC, for 30 min, with gentle shaking and protected from light. 

The absorbance was measured at 570 nm using a “Multiscan” plate reader 

spectrophotometer (Thermo Labsystems).  

 
III.13.3. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis 
(SDS-PAGE) and Western blot (WB) 
 

SDS-PAGE and WB were performed using standard methods. SDS-PAGE was performed 

using “Mini-PROTEAN 3 Cell” System (BioRad). Polyacrylamide gels were prepared 

using mixture of acrylamide/bisacrylamide solution, ratio 37.5:1, (Sigma), resolving 

gels with different % of polyacrylamide were prepared in 0.375 M Tris-HCl pH 8.8 and 

0.1% SDS, whereas stacking gels containing 3.75% polyacrylamide were prepared in 

0.125 M Tris-HCl pH 6.8 and 0.1% SDS. To catalyze the reaction of polymerization we 

used ammonium persulfate (APS), (Biorad) and N,N,N´,N´-tetramethylethylendiamine 

(TEMED), (Fluka). Protein extracts, containing equal total protein amounts, were 

prepared before loading by adding Laemmli loading buffer (0.5 mM Tris-HCl pH 6.8, 

25% glycerol v/v, 10% SDS, 0.5% v/v β-mercaptoethanol and 0.5% bromophenol 

blue) and boiled at 100 ºC for 5 min to enable protein denaturation [Laemmli U.K., 

1970]. Commercial molecular weight marker was loaded in parallel to determine the 

molecular weight of the polypeptides on the gel (“Precision Plus Protein Standard-

Kaleidoscope” from BioRad, or “Full Range Rainbow Molecular Weight Marker” from 

Amersham Biosciences). Electrophoresis was performed in running buffer (25 mM Tris 

pH 8.3, 192 mM glycine and 0.1% SDS), at constant voltage of 100-120 volts. 

 

Then, resolved proteins were transferred from the polyacrylamide gel to a 0.2 µm 

Hybond ECL nitrocellulose membrane (Amersham), using “Mini Trans-Blot 

Electrophoretic Transfer Cell” (BioRad). The transfer was performed during 1 h, at 4 ºC 

and constant electric current of 0.35 amperes, in transfer buffer (25 mM Tris pH 8.3, 

192 mM glycine and 20% methanol). 
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   Primary antibodies 
            Protein                                   Antibody                                Work.solution 

ACTB   rabbit polyclonal (Sigma) 1:500 / 1:1000 

AIF   rabbit polyclonal (ψProSci) 1:500 

CI(39)    mouse monoclonal (Molecular Probes) 1:1000 

CI(20)    mouse monoclonal (Molecular Probes) 1:1000 

COXI   mouse monoclonal (Molecular Probes) 1:250 

COXII   mouse monoclonal (Molecular Probes) 1:250 

Flag epitope   rabbit polyclonal   (Sigma) 1:500 

HIF-1αααα   mouse monoclonal (BD Transduct. Lab.) 1:250 

Nrf2 (C-20)   rabbit plyclonal (Santa Cruz Biotech. Inc.) 1:200 

Nrf2 (H-300)   rabbit plyclonal (Santa Cruz Biotech. Inc.) 1:200 

Porin   mouse monoclonal (Molecular Probes) 1:500 

SDHB   mouse monoclonal (Molecular Probes) 1:800 

SOD2   sheep polyclonal (Abcam) 1:200 

SURF1   mouse monoclonal (Molecular Probes) 1:500 

Survivin   rabbit polyclonal (Abcam) 1:1000 

Trx1   rabbit polyclonal (Abcam) 1:1000 

Trx2   rabbit polyclonal (Abcam) 1:1000 

TUBA   mouse monoclonal (Sigma) 1:8000 

Secondary antibodies 
                                                         Antibody                                 Work. solution                                           
  Peroxidase-labeled goat anti-rabbit IgG (Vector laboratories) 1:5000 

  Peroxidase-labeled goat anti-mouse IgG (Dako) 1:2000 

  Peroxidase-labeled anti-goat IgG (Santa Cruz Biotechnology Inc.) 1:3000 

 

Table III.3. WB: Primary and secondary antibodies used. 

 

After the transfer, the nitrocellulose membrane was incubated in fresh-made blocking 

solution (5% fat-free milk powder, in TBS-T buffer), with continuous gentle shaking, 

for 1 h, at RT or o/n, at 4 ºC. The composition of Tris-buffered saline-Tween (TBS-T) 

was: 20 mM Tris-HCl pH 7.2, 150 mM NaCl and 0.1% v/v Tween-20. The membrane 

was then incubated with the primary antibody, prepared in blocking solution containing 

0.02% sodium azide (NaN3), (Merck), for 3 h, at RT or o/n, at 4 ºC. After a washing 

step, the membrane was incubated with the secondary antibody, prepared fresh in 

blocking solution, for 1 h, at RT. Another washing step followed. Both washing steps 
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were performed in TBS-T, 4x10 min, at RT, with vigorous shaking. Details about the 

antibodies used are summarized in Tab.III.3. 

 

Immunolabeling was detected by enhanced chemiluminescent reagent (ECL), 

(Amersham) or SuperSignal WestFemto (Pierce) and visualized with a digital 

luminescent image analyzer (FUJIFILM LAS 3000). Densitometric analyses were 

performed using ImageQuant software. 

 

Stripping 

 

The stripping process removes bound antibodies from the nitrocellulose membrane 

which enables to probe the same membrane with other antibodies. For this, after the 

completed immunoblot and visualization of the proteins, the membrane was washed in 

TBS-T for 15 min, at RT. Then, the membrane was incubated for 30 min, at 56 ºC and 

vigorous shaking in stripping buffer (62.5 mM Tris-HCl pH 6.7, 100 mM β-

mercaptoethanol and 2% SDS). Subsequently, the membrane was washed 3x5 min in 

TBS-T, at RT. After this, the Western blotting continued as in the standard protocol, 

starting with blocking the membrane with fresh-made blocking solution, with 

continuous gentle shaking for 1 h, at RT or o/n, at 4 ºC, followed by primary and 

secondary antibody incubation, as described above. 

 

III.13.4. Immunoprecipitation and co-immunoprecipiration 

 

Immunoprecipitation of AIF and co-immunoprecipitation of Trx2 were performed by 

standard procedures. For the immunoprecipitation experiments, we cultured 

approximately 15 t-75 flasks of pU6-2 and AIF1-10 cells in complete MEM following the 

standard routine. Once the cultures reached confluence, the cells were trypsinized and 

cellular pellets collected. Whole-cell extracts were obtained and total protein amount in 

them determined, as described in chapter “III.13.1. Protein extracts”. Then, whole-cell 

extracts containing 5 mg of total protein were diluted to 1 mL with complete lysis 

buffer and incubated with 60 µL (30 µg Ig) of agarose coupled to mouse monoclonal 

antibody against AIF (AIF (E-1): sc-13116, Santa Cruz Biotechnology, Inc.), for 1 h, at 

4 ºC , with gentle shaking. Further, the samples were centrifuged in a microcentrifuge 

at 400 g, for 3 min, at 4 ºC and supernatant discarded. The agarose-conjugate pellet 

was then washed 3-5 times with 1 mL lysis buffer, in the absence of phosphatases and 
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proteases inhibitors (the composition of lysis buffer is described in chapter “III.13.1. 

Protein extracts”). Lastly, the agarose-conjugate pellet was resuspended in 60 µL 

Laemmli loading buffer 2X and boiled at 100 ºC, for 5 min. After another centrifugation 

step (microcentrifuge 400 g, 3 min, 4 ºC), the supernatant was collected and loaded 

on a polyacrylamide gel. Next, a standard procedure for SDS-PAGE followed (see 

chapter “III.13.3. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) and Western blot (WB)”). Immunoprecipitated AIF was detected with the 

corresponding antibodies indicated in Tab.III.3. As a control, we used whole-cell 

extracts without immunoprecipitation. 

 

For co-immunoprecipitation, the extract obtained from the immumoprecipitation was 

divided into two portions, one to detect the immunoprecipitated AIF and the other for 

Trx2, the protein assayed for co-immunoprecipitation. Standard SDS-PAGE and WB 

were performed employing the same primary and secondary antibodies as those used 

in the ordinary WB experiments (Tab.III.3).  

 

III.13.5. Proteomic studies 

 

For this approach, we cultured 20 t-150 flasks of pU6-2 and AIF1-10 cells in complete 

MEM following the standard routine and once the cultures reached confluence, the cells 

were detached by trypsinization and cellular pellets collected. Next, whole-cell extracts 

were obtained and total protein amount in them determined, following the protocol 

described in chapter “III.13.1. Protein extracts”.  

 

Immunoprecipitation 

 

Whole-cell extracts containing 75 mg of total protein were diluted to 15 mL with 

complete lysis buffer and incubated with 500 µL (about 250 µg Ig) of agarose coupled 

to mouse monoclonal antibody against AIF (AIF (E-1): sc-13116, Santa Cruz 

Biotechnology, Inc.), in an orbital shaker, at 4 ºC, o/n. The samples were further 

centrifuged in a microcentrifuge at 400 g, for 3 min, at 4 ºC and the supernatant 

discarded. The immune matrices generated this way were further washed with basic 

lysis buffer, not containing detergent (composition: 20 mM HEPES pH 7.4, 400 mM 

NaCl, 0.1 mM EDTA). Three washing steps were carried out, the first one was with 15 

mL of the basic lysis buffer, whereas the other two with 1 mL. Final equilibration in 50 
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mM ammonium bicarbonate was required for a further trypsin digestion process and 

mass spectrometric analysis. This was done by washing the immune matrices 5 times 

with 1 mL of fresh prepared 50 mM ammonium bicarbonate.  

 

Also, 1/10 of the bound material was eluted by boiling in Laemmli loading buffer and 

processed for Western blot in order to corroborate specific AIF immunoprecipitation. A 

standard procedure for SDS-PAGE and WB followed (see chapter III.13.3), using the 

anti-AIF antibody indicated in Tab.III.3.  

 

On-bead digestion for LC-MS/MS analysis 

 

Resin-bound immunoprecipitated proteins were washed with 50 mM ammonium 

bicarbonate. After removing the liquid carefully, a volume equivalent to that of the 

resin of digestion buffer (20% v/v acetonitrile in 50 mM ammonium bicarbonate) was 

added to the beads. Samples were digested with 1 µg of modified porcine trypsin 

(Sequence grade, Promega), for 1 h, at 37 ºC under shaking conditions (1300 rpm). 

The reaction was quenched by adding a few microliters of glacial acetic acid and the 

digested material was loaded onto Handee spin columns (Pierce) and centrifuged (500 

rpm) to collect the supernatant. The resulting solution was dried down on a speed-

vacuum centrifuge at room temperature and finally re-dissolved in 5% acetonitrile with 

0.5% acetic acid. A small aliquot of this material was analyzed by MALDI-TOF to check 

the tryptic digestion performance as well as to assess the complexity of the sample. 

 

Nano-liquid chromatography and Ion-trap tandem mass spectrometric 
analysis of tryptic peptides 
 

The resulting tryptic peptides were on line injected onto a C-18 reversed-phase self-

packing nano-column (Discovery® BIO Wide pore, Supelco, Bellafonte, PA) and 

analyzed in a continuous acetonitrile gradient consisting of 0-50% buffer B for 50 min, 

50-90% buffer B for 1 min, (buffer B contains acetonitrile 95% and acetic acid 0.5%). 

A flow rate of approximately 250 nL/min was used to elute peptides from the reversed-

phase nano-column to a PicoTip™ emitter nano-spray needle (New Objective, Woburn, 

MA) for real-time ionization and peptide fragmentation on an Esquire HCT Ultra ion-

trap (Bruker-Daltoniks, Bremen, Germany) mass spectrometer. Every 1 s, the 

instrument cycled through acquisition of a full-scan mass spectrum and two MS/MS 

spectra. A 3 Da window (precursor m/z±1.5), an MS/MS fragmentation amplitude of 
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0.90 V and a dynamic exclusion time of 0.20 min were used for peptide fragmentation. 

Nano-liquid chromatography was automatically performed on an advanced nano-

gradient generator (Ultimate nano-HPLC, LC Packings, Amsterdam, The Netherlands) 

coupled to an autosampler (Famos, LC Packings). The software Hystar 3.4 was used to 

control the whole analytical process. 

 

Database analysis 

 

MS/MS spectra were batch-processed by using DataAnalysis 3.4 and BioTools 3.0 

software packages and searched against the NCBI protein database using Mascot 

software (Matrix Science, London, UK). 

 

III.13.6. Analysis of the redox state of Trx2 

 

The aim of this experiment was to analyze the in vivo redox status of Trx2 in our 

model cells. For this we used 4-acetamido-4´-maleimidylstilbene-2,2´-disulfonic acid 

(AMS), a thiol-reactive probe which reacts with thiol groups in proteins and hence 

modifies their molecular weight by ca. 500 Da per free thiol. This enables the oxidized 

and the reduced form of the protein to be visualised as two different bands on a 

standard Western blot [Kobayashi T. et al., 1997]. A protocol modified from Patrick J. 

Halvey and co-workers was used [Halvey P.J. et al., 2005]. Confluent t-25 flasks were 

washed with ice-cold PBS and cells collected by scrapping. Pellets were obtained by 

centrifugation in a microcentrifuge (5415-R, Eppendorf) at 4 ºC, for 5 min, at 500 g. 

Supernatant was discarded and the cell pellet resuspended in 100 µL ice-cold 10% 

trichloroacetic acid (TCA), (Fluka) and incubated on ice, for 30 min, with gentle flicking 

of the tubes every 5 min. The suspension was then centrifuged in a microcentrifuge at 

12000 g, for 10 min, at 4 ºC. The pellet was resuspended in 100 µL 100% acetone 

(Aldrich) and incubated on ice, for 30 min, with gentle flicking every 5 min. A 

centrifugation step followed, in a microcentrifuge at 12000 g, for 10 min, at 4 ºC. The 

supernatant was discarded and the pellet resuspended in 50 µL Tris-HCl 20 mM, pH 

8.0. Then, the samples were incubated with 15 mM AMS (Invitrogen), for 3 h, at RT, 

protected from the light and with gentle shaking. Subsequently, Laemmli loading buffer 

without any reducing agent was added (0.5 mM Tris-HCl pH 6.8, 25% glycerol v/v, 

10% SDS, and 0.5% bromophenol blue) and samples were boiled at 100 ºC, for 5 min. 

As a control, the same samples were used but without incubation with AMS. These 
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controls were boiled with Laemmli loading buffer containing the reducing agent DTT, 

the usual buffer for standard SDS-PAGE. All samples were then used for a standard 

SDS-PAGE and WB (see “III. Material and Methods”, section III.13.3). 

 

III.13.7. Confocal immunofluorescence microscopy 

 

This technique was employed in order to monitor the location of Trx2 after its transient 

transfection in cells. First, HeLa cells were transfected with Trx2 (the vector 

construction was described in chapter “III.3.2. Protein overexpression plasmids”) 

tagged with a Flag sequence. This enabled us to distinguish between the endogenous 

and the overexpressed Trx2, as the latter can be probed with anti-Flag antibody.  

 

For the transfection, 2x105 cells/well were plated in 24-well plate, where the wells had 

previously been covered with UV-sterilized coverslips. The transfection was performed 

using LipofectAMINETM 2000 (Invitrogen Life Technologies), as described in chapter 

“III.2.3. Transfection experiments”. Next, at 27 h after the transfection, the culture 

medium was removed and prewarmed growth medium containing 500 nM Mitotracker 

Red 580 (Molecular Probes) added. Then, the cells were incubated at 37 ºC, for 45 

min. After this, the cells were PBS-washed and fixed using 2% p-formaldehyde (Sigma) 

PBS solution. The fixation was performed at RT, for 10 min, after which the plates 

were rinsed with TBS to eliminate the formaldehyde. Next, the cells were 

permeabilized by incubation in ice-cold acetone (Aldrich) for 30 sec and rinsed with 

TBS, 3 times.  

 

For the immunofluoresce, we blocked with 30 µL of blocking solution (1% BSA in TBS), 

at RT, for 30 min, followed by 1 h incubation at RT with 30 µL of the primary antibody. 

We used rabbit polyclonal anti-Flag antibody (Sigma), at 8 µg/mL in TBS. 

Subsequently, we washed 3x5 min in TBS, at RT. After this, the coverslips were 

incubated with 30 µL of the secondary antibody solution (1% BSA in TBS), at RT, for 

30 min. As a secondary Ab, we used anti-rabbit Ig FITC-conjugated (DAKO). Another 

washing step followed, 3x5 min in TBS, at RT. Finally, the coverslips were rinsed with 

distilled water and mounted on a slide glass with the aqueous mounting medium, 

Mowiol (Fluka). Then, the slides with the coverslips were taken to the confocal 

microscope (Leica TCS-SP confocal microscope, Heidelberg, Germany) and Mitotracker 

Red 580 fluorescence (in red) and Flag immunofluoresence (in green) visualized. 
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III.14. Oxygen consumption 

 

The cellular oxygen (O2) consumption was measured using a Clark-type electrode 

(Rank Brothers, Bottisham, UK). The Clark electrode [Clark L.C. et al., 1953; 

Severinghaus J.W. and Astrup P.B., 1986] measures oxygen on a catalytic platinum 

surface using the reaction represented in Fig.III.4. 

 

O2  +  2e− +  2H2O    →   H2O2  +  2OH−  
 

Figure III.4. Oxidation of atmospheric oxygen is the principle of the chemical 
reaction taking place in the Clark-type oxygen electrode. 

 

The electrode compartment is isolated from the reaction chamber by a thin teflon 

membrane; the membrane is permeable to molecular oxygen and allows this gas to 

reach the cathode, where it is electrolytically reduced. This reduction allows a current 

to flow which creates a potential difference recorded on a flatbed chart recorder. The 

trace is thus a measure of the oxygen activity of the reaction mixture, where the 

current flowing is proportional to the activity of oxygen. 

 

Before performing the measurement, the electrode was calibrated in air-saturated 

respiration buffer, considering the atmospheric O2 concentration as maximal: 200 µM 

O2. Electrode zero setting was performed by adding excess of sodium dithionite 

(Na2S2O4), (Panreac), to the chamber. O2 consumption was usually detected over a 

period of 30-40 min and mitochondrial respiration specificity was confirmed by adding 

1mM KCN to the chamber. 

 

The data from the electrode were obtained using the “DUO.18 programme” (World 

Precision Instrument, Sarasota, FL, USA) and analyzed with the “Tarragona 

programme” (Custom Written Software, University College London).  

 

Oxygen consumption in intact cells 

 

For these experiments, cells were detached immediately before the measurement and 

counted using hemacytometer. Then, 2-3 million cells were resuspended in HBSS as 

respiration buffer and taken to the respiration chamber, where the suspension is 

constantly stirred and maintained at 37 ºC. 
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Oxygen consumption in permeabilized cells 

 

Eukaryotic cell membranes are selectively permeabilized with the non-ionic detergent 

digitonin to render a system in which mitochondrial respiration, dependent on 

exogenous substrates, can be measured rapidly and with considerable sensitivity 

[Hofhaus G. et al., 1996]. At moderate concentrations of digitonin the plasma 

membrane is permeabilized while mitochondria remain intact.  

 

The aim of this experiment was to study the mitochondrial O2-consumption on 

individual mitochondrial complexes by addition of exogenous substrates to the 

respiration chamber. For this, the cell culture was performed as usual, but cells were 

permeabilized immediately prior to the O2 consumption measurement, basically 

following the protocol described by Antoni Barientos [Barrientos A., 2002]. Generally, 

2-3 million cells were trypsinized and resuspended in 1 mL respiration buffer (10 mM 

K2HPO4, 10 mM KCl, 5 mM MgCl2 and 0.3 M mannitol, pH adjusted to 7.4). 100 µg/mL 

of digitonin (GIBCO) was added and the suspension was incubated for 2 min, at RT, 

with gentle shaking. Then, the permeabilization was stopped by adding 5 volumes (5 

mL) of respiration buffer containing 1 mg/mL BSA and the suspension was centrifuged 

at RT, for 5 min, at 300 g. Permeabilized cells were resuspended in 0.5 mL respiration 

buffer with 1 mg/mL BSA and 0.5 mM ADP and taken to the respiration chamber where 

the electrode had been previously calibrated with the same buffer. The respiration 

without any substrates added, corresponds with the basal level of O2 consumption. 

After this consumption had been recorded, the following compounds were added using 

a Hamilton syringe: 30 mM glutamic acid, 0.4 mM malic acid, 6 µM rotenone, 10 mM 

succinic acid and 0.2 mM ATP. All respiration substrates had previously been adjusted 

to pH 7.  

 

III.15. Statistical analyses 

 

Statistical analyses were performed using the “Student´s t-test” provided by the 

GraphPad software programme. Unless indicated differently, we applied unpaired, two-

tailed t-test, with confidence interval of 95%. Values were considered significantly 

different if p<0.05. 
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The Harlequin mouse 
 
 
 
 
 
 

 
 
 
 
 
In 2002, Dr. Susan Ackerman´s group at Jackson laboratory, USA, reported the 
identification of a mouse gene implicated in oxidative stress and neurodegeneration. 
This gene was Aif and thus a new and promising field was opened for the AIF 
research. Hq mouse became the first mouse model for studying the role of oxidative 
stress on aberrant cell cycle re-entry and subsequent neuronal death - a hallmark of 
many human neurodegenerative disorders. 
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IV. RESULTS 
 

 

 

 

 

 

 

 

 

 

 

 

 “There are no such things as applied sciences, only applications of science” 
 

Louis Pasteur (1822-1895) 
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IV.1. Analysis of the splicing variants of AIF 

 

We were interested in studying the expression pattern of AIF in different human 

tissues and to analyze the presence of the three transcript variants, described in the 

literature, at that time, listed in the GenBank as AF100928, AL049703 and AL049704 

[Daugas E. et al., 2000 A]. This was important for us because we wanted to design AIF 

silencing vectors which would be general for all potential splicing variants. For this, we 

performed RT-PCR with primers to amplify specific AIF species and employed 

commercially available human cDNA panels. The primers we first used were designed 

in such a way, that they could amplify all three splicing variants. Variant 2 (accession 

number AL049703) differs from variant 1 as it contains an alternative exon II, called 

exon IIB, but the overall protein length is the same (Fig.IV.1.A). Variant 3 (accession 

number AL049704) has a large central deletion and is shorter in length (Fig.IV.1.A). 

Performing RT-PCR in the human normal tissue cDNA we obtained a single band, of  

1080 bp corresponding to the amplified fragment of AIF variant 1 and 2, but not 

variant 3 which was expected to give rise to a smaller (221 bp) product (Fig.IV.1.B). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure IV.1. RT-PCR analysis of AIF expression in human normal and tumour tissues. 
A. Schematic representation of AIF transcript variants 1, 2 and 3. Note that AIF 
variants 1 and 2 are similar in length unlike variant 3 which is shorter. B. RT-PCR 
reveals that variant 3 is absent both in normal and tumour human tissues. 
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Interestingly, some tissues display higher expression levels of AIF, namely pancreas, 

thymus, testis, whereas the brain, lung and skeletal muscle express less AIF, as shown 

in Fig.IV.1.B.  

 

A similar result was obtained when using the human tumour cDNA panel. In this case, 

only a single 1080 bp band was visible in all tissues with significant differences in the 

strength, pointing to higher expression of AIF in breast carcinoma, colon 

adenocarcinoma CX-1 and prostatic adenocarcinoma, and lower expression in 

pancreatic and colon adenocarcinoma GI-112 (Fig.IV.1.B). 

 

Next, we aimed to find out whether the amplified 1080 bp fragment corresponded to 

splicing variant 1 or with variant 2, as the designed pair of primers could amplify both 

AIF species. For this, we exploited the fact that AIF splicing variant 1 has a single 

BamHI restriction site, whereas splicing variant 2 has two. After RT-PCR was 

performed, the amplified DNA fragment was ethanol-precipitated and the pellet 

suspended in water. Next, BamHI digestion was performed by a standard procedure. 

Then, the digested products were run on an agarose gel (containing EthBr and using 

buffer TAE 1x) and the fragments were visualized. If only variant 1 was present, we 

expected to see a duplet band of approximately 500 bp, whilst, on the contrary, BamHI 

digestion of AIF splicing variant 2 should release a doublet fragment, at 300 and 200 

bp, and a single fragment at 500 bp.  

 

 

 

 

 
 

 

 
 
 

 

Figure IV.2. RT-PCR results of AIF expression in human control and tumour cDNA, 
after BamHI digestion. The presence of a single band ≈ 500 bp in size suggests the 
presence of only AIF spicing variant 1 in all the samples. 
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As shown in Fig.IV.2, both normal and tumour cDNA panels displayed only one DNA 

fragment, at 500 bp, after BamHI restriction, suggesting that splicing variant 2 was not 

present in any tissue, at least to the limits of detection of our experimental approach. 

Water instead of cDNA was employed as a negative control. This experiment was 

repeated with Hep3B mRNA, with similar results (not shown). 

 

IV.2. Transient AIF silencing and ROS levels 

 

As there was evidence for a connection between AIF and the cellular ROS status, we 

first decided to assess the basal cellular ROS levels in AIF-silenced cells. In order to 

avoid cell type specific phenotypes, we performed this experiment in two different cell 

lines, the human hepatoma cell line Hep3B and the human cervical carcinoma cell line 

HeLa. In both cases, sub-confluent cell cultures growing in t-25 flasks, were transiently 

transfected with pBS U6/PolIII empty vector, the pBS U6/PolIII vector containing the 

control silencing cassette siGFP and two AIF-silencing vectors: pBS U6/PolIII/siAIF1 

and pBS U6/PolIII/siAIF2. Test transfections with pU6 GFP (siGFP) resulted in a robust 

knockdown of a co-transfected GFP expression vector (results not shown).  

 

 

 

 

 

 

 
Figure IV.3. Transient AIF silencing is accompanied by an increase in ROS levels. A. 
WB showing AIF expression in transiently transfected Hep3B cells (left panel) and 
HeLa cells (right panel). B. H2O2 concentration in transiently transfected Hep3B cells 
(left panel) and HeLa cells (right panel). Results are represented as mv±SEM, n=2, 
*p<0.05. 
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At 72 h after the transfection, cells were collected and split in two halves, one half of 

the cells was immediately processed for H2O2 detection, using the “Amplex red kit”, the 

other half was used to obtain whole-cell protein extracts. This experiment was 

performed twice, with similar results. As shown in Fig.IV.3, transient AIF silencing is 

followed by significant increase in ROS levels, determined as extracellular H2O2 

concentration. In Hep3B cells, the H2O2 levels recorded were 0.23±0.016 

nmolH2O2/5x105cells in the case of siAIF1-transfected cells and 0.24±0.022 

nmolH2O2/5x105cells in the case of siAIF2-transfected cells, both values significantly 

higher in comparison with the control value of 0.14±0.019 nmolH2O2/5x105cells, 

recorded in cells transfected with the empty pU6 vector. In HeLa cells, siAIF1-

transfected cells show H2O2 level of 0.19±0.001 nmolH2O2/5x105cells, an equal level 

was recorded in siAIF2-transfected cells, 0.19±0.017 nmolH2O2/5x105cells, both 

significantly higher as compared to the control pU6-transfected cells with 0.12±0.002 

nmolH2O2/5x105cells. 

 

Of note, this occurs both in Hep3B and HeLa cells and using both AIF-silencing vectors. 

It is not an artifact produced by intracellular RNA interference processes, as 

transfection with the control siGFP vector does not modify the basal ROS level in 

Hep3B nor in HeLa cells. 

 

IV.3. H2O2 concentration measurement in Hep3B rhoº cells 

 

We were interested in studying the origin of the observed increased ROS levels 

following silencing of AIF. As the mitochondrial ETC is a major source of intracellular 

ROS in most cell types, we decided to generate rhoº (ρº) cells and assess their ROS 

levels after transient AIF silencing in this cellular model. To this end, ρº cells were 

generated in the Hep3B background by a prolonged treatment with EthBr as described 

in chapter “III. Materials and methods”. EthBr is a known genotoxic compound which, 

used at an appropriate concentration, associates with mtDNA and disrupts mtDNA 

transcription. As a consequence, there is a lack of the mtDNA-encoded proteins and 

thus an inhibition of the OxPhos process, leading to the characteristic ρº phenotype: 

slower cellular proliferation, inhibited cellular respiration, and a reduced capacity to 

grow on non-fermentable sugars (eg. galactose).  

 

We verified the ρº status of these cells by assessing the cellular proliferation in 
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glucose- and galactose-containing medium, using a hemacytometer to count the cells 

in culture; performed WB to analyze the expression of mtDNA-encoded ETC proteins, 

such as cytochrome c oxidase subunit II (COX2) and finally determined the respiration 

of intact cells by measuring O2 consumption using a Clark-type electrode. 

 

All of these parameters verified the ρº status of our cells (Fig.IV.4). The generated 

Hep3B ρº cells displayed significantly lower basal rate of proliferation (at day 4, ρº 

cells only proliferated 28% of the control Hep3B ρ+ cells) and they were virtually 

unable to grow on galactose instead of glucose (Fig.IV.4.C). COX2 expression was also 

completely abolished (Fig.IV.4.B) and as expected, there was a dramatic decrease in 

the cellular respiration (remaining 15% of the WT O2 consumption levels), as depicted 

in Fig.IV.4.A.   

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure IV.4. Analysis of the ρρρρº phenotype. A. O2 consumption in intact Hep3B ρρρρ+ and 
ρρρρº cells, results represented as mv±SEM, n=4, ***p<0.001. B. Representative WB 
showing COX2 expression in mitochondria-enriched protein extracts of Hep3B ρρρρ+ 
and ρρρρº cells.  C. Cell proliferation of Hep3B ρρρρ+ (left panel) and ρρρρº cells (right panel), 
in glucose- (orange) and galactose-containing (brown) growth medium, results are 
represented as mv±SD, n=3, p<0.05. 
 

After confirming the ρº status, we next aimed to transiently silence AIF in these cells 

and determine the ROS levels. For this, both Hep3B WT (ρ+) and Hep3B ρº cells were 

transiently transfected with pBS U6/PolIII/siAIF1 and pBS U6/PolIII/siGFP, as a control. 
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As shown in Fig.IV.5, AIF was successfully silenced in both cell lines and interestingly, 

while this silencing was correlated with higher H2O2 concentration in Hep3B WT cells 

(0.32±0.013 nmolH2O2/5x105cells in AIF-silenced cells as opposed to 0.20±0.006 

nmolH2O2/5x105cells in control cells), there was no significant increase of H2O2 levels in 

Hep3B ρº cells (0.10±0.009 nmolH2O2/5x105cells in AIF-silenced Hep3B ρº cells versus 

0.09±0.034 nmolH2O2/5x105cells in control Hep3B ρº cells). In addition, we found that 

the basal ROS levels of ρº cells were significantly lower compared to the WT 

background (Fig.IV.5.B). This experiment was performed three times, with similar 

results. Also, we repeated this approach in HeLa cells and obtained a similar result (not 

shown). 

 

In summary, our finding points to the need of a functional mitochondrial ETC for the 

increase in ROS levels observed upon AIF silencing in our cellular model.   

 

 

 
 
Figure IV.5. Transient AIF silencing in Hep3B ρρρρº cells is not followed by an increase 
in the ROS levels. A. WB showing AIF expression in whole cell extracts obtained of 
transiently transfected Hep3B ρρρρ+ and ρρρρº cells B. H2O2 concentration in transiently 
transfected Hep3Bρρρρ+ and ρρρρº cells. Results are represented as mv±SEM, n=3. 
 

IV.4. Generation of stable siAIF cell lines 

 

Having shown that AIF silencing corresponds with ROS increase in two different cell 

lines and that this increase requires a functional mitochondrial ETC, we next decided to 

generate stable siAIF cell lines, in order to study this phenomenon in detail. As 

described in the “III. Materials and Methods” chapter, t-25 flasks of Hep3B cells were 

co-transfected with pBS U6/PolIII/siRNA and the pcDNA3 vector containing a 

Neomycin-resistance gene, in a 10:1 mass ratio.  
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Figure IV.6. Generation of stable siAIF cell lines. AIF expression at the protein level 
was analyzed by WB in the clones obtained after transfection with the empty 
silencing vector pBS U6/PolIII/ (A),  vector pBS U6/PolIII/AIF1 (B), vector pBS 
U6/PolIII/AIF2 (C) and vector pBS U6/PolIII/AIF3 (D). Genomic PCR was used to 
look for the presence of integrated pU6 vector (E). Clones AIF1-10 and AIF2-4 
maintain low AIF levels after prolonged time in culture, detected by WB (F) and 
semi-quantitative RT-PCR (G). The control cell line SURF-A7 displays lower SURF1 
expression without changes in AIF, as shown by WB (H). 
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This was performed in order to ensure that the cells which had integrated the Neo 

gene also possessed the RNAi cassette. Then, 24 h after the co-transfection, the cells 

were transferred to plates (Ø 90 mm) where selection was performed with 200 µg/mL 

geneticin (G418-sulphate), until individual colonies were visible (about 14 days). These 

were then isolated and sub-cultured separately in compete growth medium containing 

the same concentration of geneticin. When the subcultures (clones) reached a constant 

cellular proliferation and enough cells could be harvested, we collected cells of each 

one for analyses.  

 

A total of 53 clones were obtained, 46 of which were generated by transfection with 

siAIF cassettes (16 with the cassette siAIF1, 14 with the cassette siAIF2 and 16 with 

the cassette siAIF3) and the other 7 clones, were control clones obtained by 

transfection with the pBS pU6/PolIII/ empty vector.  

 

The screening of the clones included performing WB analyses, using whole-cell protein 

extracts, to assess the AIF expression and genomic PCR analyses to locate the 

integrated pU6 vector (see “III. Materials and methods”, chapters III.3.1 and III.12.1). 

Fig.IV.6 (A, B, C and D) shows representative WB analysis in some of the clones of all 

three silencing cassettes and the control pU6 clones, whereas representative genomic 

PCR results are shown in Fig.IV.6.E.  

 

 AIF1 AIF2 AIF3 pU6 

nº of isolated cell 
lines 

16 14 16 7 

pU6 positive cell 
lines (PCR) 

8 
(50%) 

13 
 (92.8%) 

14 
(87.5%) 

6 
(85.7%) 

AIF-silenced cell 
lines (WB) 

4 
(25%) 

6  
(42.9%) 

3  
(18.8%) 

/ 

 

Table IV.1. Screening for stable AIF-silenced cell lines. Genomic PCR analysis 
revealed the presence of the integrated pU6 vector, whereas WB was used to assess 
the AIF expression.  
 

The overall screening results are summarized in Tab.IV.1. To our surprise, the 

generation of siAIF cell lines by stable transfection was not very efficient. Out of 46 

putative siAIF clones, 35 had integrated the pU6 plasmid and only 13 of these 

displayed a significant decrease in AIF expression. The cassette siAIF2 seemed to be 
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the more successful as to the number of generated siAIF clones. 

 

Next, we chose two clones, one of cassette siAIF1, named AIF1-10 and one of the 

cassette siAIF2, AIF2-4, for characterization. As the level of AIF silencing was not 

satisfactory in any of the siAIF3 clones, none of the latter was chosen. The selected 

clones were maintained in culture for longer periods, in the presence of 200 µg/mL 

geneticin and AIF expression was verified. Importantly, AIF expression was constant 

after prolonged passaging of the cells, even over several months (up to passage nº 

20). This was verified by both WB and RT-PCR analysis, as shown in Fig.IV.6.F and 

Fig.IV.6.G respectively.  

 

In some experiments, as an additional control for the stable siAIF lines, we used the 

SURF-A7 a cell line, where the SURF1 protein, a chaperone of the mitochondrial ETC 

Complex IV, was stably silenced by the same methodology and in the same cellular 

background as the AIF silencing. The expression of AIF and SURF1 at the protein level 

in this cell line are represented in Fig.IV.6.H. 

 

IV.5. Analysis of the redox status in stable AIF-silenced cell lines 

 

IV.5.1. H202 measurement using the Amplex red kit 

 

As transient AIF silencing was shown to be followed by a significant increase in ROS 

levels, we next wanted to examine whether this increase is present in the stable siAIF 

cell lines. For this purpose, we measured H2O2 concentration by the same protocol, 

using the “Amplex red kit” as indicated in “III. Materials and methods”, chapter III.8.  

As represented in Fig.IV.7, both siAIF cell lines, showed significantly incremented levels 

of ROS (0.12±0.011 nmolH2O2/5x105cells in AIF1-10 cells and a very similar level of 

0.12±0.010 nmolH2O2/5x105cells  in AIF2-4 cells), compared to the detected in the 

control cell lines, Hep3B and SURF-A7 (0.08±0.006 nmolH2O2/5x105cells and 

0.07±0.010 nmolH2O2/5x105cells, respectively). Also, WT Hep3B cells have similar H2O2 

level as pU6-2 cells (result not shown). These H2O2 measurements were performed 

many (at least six) times, using cells of different passage numbers. Fig.IV.7 comprises 

the data obtained in two separate experiments, using cells of passage nº 5-10.  

 

Of note, prolonged maintenance of these siAIF lines in cell culture does not lead to 
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normalizing of the H2O2 levels as high passage number cells of AIF1-10 and AIF2-4 

have very similar, increased H2O2 levels as low passage number cells (data not shown). 

 

Figure IV.7. H2O2 concentration in stable siAIF cell lines compared to wild type 
Hep3B cells and control stable silenced cell line, SURF-A7. Results are represented 
as mv±SEM, n=6, *p<0.05. 
 

IV.5.2. ROS level quantification by confocal microscopy 

 

In order to obtain a more accurate quantification of the intracellular ROS production, 

we next conducted confocal microscopy experiments of the stable siAIF and control 

cells. This technique also enabled us to distinguish among different reactive oxygen 

species, which was achieved by using different redox-sensitive fluorochromes. We used 

HE to detect superoxide and DCFH-DA to determine H2O2 and hydroxyl radical 

concentration. As shown in Fig.IV.8, both HE (red) and DCFH-DA (green) fluorescence 

in AIF1-10 cells are increased in comparison with the control cell line, pU6-2, indicating 

higher intracellular levels of ROS. When quantified, the data of three independent 

experiments revealed that HE fluorescence in AIF1-10 was increased almost twice, 

compared to pU6-2 value, whereas in the case of DCFH-DA, the increase is even 2.5 

fold, as depicted in the bar charts in Fig.IV.8. 

  

IV.5.3. Analysis of the mitochondrial transmembrane potential (∆ψm) 

 

After having shown that AIF silencing is accompanied by increase in the intracellular 

levels of ROS, we assessed the mitochondrial transmembrane potential (∆ψm), which is 

a ROS-related parameter. The latter assay was performed by confocal microscopy 

using the fluorochrome TMRM. Interestingly, compared to the control pU6-2 cell line, 
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AIF-10 cells display significantly lower ∆ψm, visualized as a decreased TMRM 

fluorescence (in red), as shown in Fig.IV.9.A. The quantification, comprising data of 

three separate experiments, represented as a bar chart in Fig.IV.9.A, revealed that the 

reduction of the TMRM fluorescence in AIF1-10 was about 50% compared to pU6-2 

(value normalized to 100%). 

  

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure IV.8. Analysis of the ROS levels in AIF1-10 cells versus control pU6-2 cell 
line. Representative confocal images of pU6-2 and AIF1-10 cells and corresponding 
data quantification are shown. Cells were stained with HE (red), DCFH-DA (green), 
and Hoechst 33342 (blue). Graphs indicate mean fluorescence intensity of three 
separate experiments, mv±SEM, n=3, *p<0.05. 
 

IV.5.4. Quantification of intracellular glutathione (GSH) levels 

 

The intracellular concentration of reduced (non-oxidized) glutathione (GSH) is an 

accurate and thus, often-used indicator of the intracellular redox status. We therefore, 

aimed to analyze the GSH levels in siAIF cells compared to control cell lines. Confocal 

images obtained by staining the cells with the thiol-sensitive probe CMFDA (green 

fluorescence) did not reveal any significant differences in the fluorescence intensity 

between AIF1-10 and pU6-2 cells (Fig.IV.9.A). Nevertheless, a fluorimetric assay 

performed on two siAIF cell lines, AIF1-10 and AIF2-4, and two control lines, the 

Hep3B WT cells and pU6-2 cell line, showed a visible (though non-significant) tendency 

of AIF1-10 to display lower levels of GSH (Fig.IV.9.B). More in a detail, AIF1-10 cells 

had 1.02±0.226 nmol GSH/5x104 cells, compared to the 1.46±0.318 nmol GSH/5x104 

cells displayed by pU6-2 cells. 
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Thus in summary, silencing of AIF in our cell model, only leads to a slight, but non-

significant, decrease of the GSH levels. 

 
 
 
 
 
 
 
 
 
 
  

   

  

Figure IV.9. Analysis of the redox status of siAIF cells versus controls. A. 
Representative confocal images of pU6-2 and AIF1-10 cells and corresponding data 
quantification. Cells were stained with TMRM (red), CMFDA (green) and Hoechst 
33342 (blue). Graphs indicate mean fluorescence intensity of three individual 
experiments, mv±SEM, n=3, *p<0.05. B. Graph showing intracellular GSH levels in 
two independent siAIF cell lines (AIF1-10 and AIF2-4) versus control cell lines 
(Hep3B and pU6-2),  mv±SEM, n=3, p>0.05. 
 

IV.6. HIF-1αααα expression in stable AIF-silenced cell lines  

 

There is solid experimental evidence supporting the relationship between intracellular 

ROS levels and HIF-1α stabilization, under both normoxic and hypoxic conditions. This 

made HIF-1α an interesting candidate transcription factor to be studied in our model 

AIF-silenced cells. Prior to the analysis of HIF-1α expression in AIF-silenced cells, we 
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aimed to assess HIF1-α expression in the control pU6-2 line and test its stabilization 

under hypoxic conditions. For this, we exposed pU6-2 cells to 3% O2 atmospheric 

environment, as described in the chapter “III.2. Cell culture”, for 4 h. Next, whole-cell 

extracts were obtained and WB analysis was performed to observe HIF1-α expression. 

As shown in Fig.IV.10.A, basal normoxic (21% O2) levels of HIF1-α in pU6-2 cells are 

very low or virtually non-existent and a similar result was obtained using another 

control cell line, SURF-A7. However, as expected, subjecting pU6-2 cells to 3% O2, 

stabilizes HIF-1α (Fig.IV.10.A). As a control, house-keeping, gene we used β-actin 

expression. This experiment was performed a minimum of six times, with a very similar 

result. 

 

As a further control, we treated pU6-2 cells with H2O2 and analyzed whether direct and 

short-term H2O2 treatment could stabilize HIF-1α, a phenomenon described in the 

literature. For this, sub-confluent cell cultures growing in t-25 flasks were treated with 

H2O2 for 30 min, after the standard growth medium had been replaced by HBSS. We 

did not maintain the cells in the standard growth medium MEM in order to avoid any 

influences of the presence of serum and other components of the MEM, as H2O2 is 

quite an unstable substance. This experiment was performed four times with similar 

results. Fig.IV.10.B shows a representative WB of HIF-1α expression and the control 

expression levels of the house-keeping protein ACTB. H2O2 treatment (both 50 and 100 

µM) stabilized HIF-1α and these levels are in a similar range to HIF1-α stabilization 

under 4 h hypoxic treatment (3% O2).  

 

Next, we aimed to study the steady-state, normoxic expression of HIF-1α in our siAIF 

cells and found that it was significantly increased compared to control cell lines 

(Fig.IV.10.C). This observation raised a question about whether HIF-1α stabilization in 

AIF-silenced cells is a direct consequence of the increased ROS levels. To address this 

question, we decided to treat the cells with antioxidants. Thus, siAIF and control cell 

lines were cultured for 3 h in the presence of the broad-range antioxidant N-acetyl 

cysteine (NAC, 5 mM) and we then performed WB analysis on whole-cell extracts using 

an antibody directed to HIF-1α. These results, shown in Fig.IV.10.C, reveal that 

whereas the control cell lines Hep3B (WT) and pU6-2 express only basal levels of HIF-

1α, both AIF1-10 and AIF2-4 express augmented levels of HIF-1α and these could be 

reduced by prior incubation with the antioxidant NAC. Hypoxic (3% O2) Hep3B protein 

sample was used as a control. This experiment was performed three times and the 



Nadezda Apostolova                                 Doctoral Thesis: “Mitochondrial role of AIF: OxPhos and ROS”  
 

101 

obtained results had a similar trend. Another antioxidant, the mitochondria-targeted 

Mitoquinone (MitoQ) showed a similar effect (data not shown). 

 

Interestingly, semi-quantitative RT-PCR analyses revealed that HIF1-α mRNA was 

unchanged in siAIF cell lines (data not shown), indicating that a post-transcriptional 

mechanism is responsible for HIF-1α up-regulation in our model cells.  

 

Extending these findings, we used an HIF-1α luciferase reporter construct and showed 

that HIF1-α protein in siAIF cell lines, AIF1-10 and AIF2-4, is not only stabilized but 

fully transcriptionally active. The reporter levels in both AIF-silenced cell lines were >2-

fold higher compared to the pU6-2 control cell line, as shown in Fig.IV.10.E. As a 

control condition for the HIF-1α lucifearse reporter construct we used hypoxia-treated  

(4 h, 3% O2) pU6-2 cells (Fig.IV.10.D). Both experiments were performed three times 

and similar results were obtained. 

 

Finally, we also studied the hypoxic stabilization of HIF-1α and found that there were 

no visible differences in the HIF-1α stabilization in the AIF-KD cells compared to 

controls, at least under the hypoxic conditions routinely used (4 h, 3% O2), (result not 

shown). 

 

Overall, these data suggest that the increased level of HIF-1α protein in AIF-silenced 

cells was a direct consequence of the increased levels of ROS. 

 

IV.7. AIF expression analysis after H2O2 treatment 

 

The fact that lack of AIF in our cellular model leads to increase of ROS levels, points to 

a role of AIF the maintenance of the cellular redox balance. To further investigate this 

hypothesis, we wanted to analyze the expression of AIF after H2O2 treatment of the 

control pU6-2 cells. Short-term (up to 45 min), direct addition of H2O2 (concentration 

range 1 µM-1 mM) to cells in a suitable volume of HBSS did not lead to visible 

alterations in AIF expression, neither when mitochondria-enriched nor when whole-cell 

extracts were used  for WB (data not shown).  

 

However, prolonged (4 h) treatment of pU6-2 cells with H2O2 up-regulated the 

expression of AIF. 
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Figure IV.10. HIF-1αααα expression in stable AIF-silenced cell lines. A. Representative 
WB showing HIF-1αααα stabilization in pU6-2 under hypoxia (3% O2, 4 h). B. 
Representative WB of HIF-1αααα after H2O2 treatment of pU6-2 cells, hypoxia (3% O2, 
4 h) was used as a control condition. C. Upper panel: Representative WB of HIF-1αααα 
in siAIF and control cell lines with and without NAC treatment, hypoxia (3% O2, 4 h) 
was used as a control condition; lower panel: densitometry of the previous WB, HIF-
1αααα expression levels normalized to ACTB expression and considering Hep3B control 
(without NAC) as 100% expression of HIF-1αααα. D. HRE-luciferase reporter assay to 
analyze hypoxic HIF-1 transcriptional activity. E. HRE-luciferase reporter assay to 
analyze steady-state HIF-1 transcriptional activity in our cell lines. For both gene 
reporter assays, data are represented as relative luciferase ratio (Firefly luciferase 
activity/ Renilla lucifearse activity), mv±SEM, n=3, *p<0.05, **p<0.005. 
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This experiment was performed in t-25 flasks containing sub-confluent cultures of pU6-

2 cells, in HBSS. We did not use the standard culture medium MEM because some of 

its components would otherwise rapidly degrade any added peroxide.  H2O2 was added 

in boluses every 15 min [Chandel N.S. et al., 2000], to a final concentration of 250 or 

500 µM. This protocol enabled us to have a prolonged and relatively stable treatment 

with H2O2. After the treatment, cells were harvested, whole-cell extracts were obtained 

and WB performed following a standard procedure (see “III. Materials and Methods”, 

chapters III.13.1, III.13.2 and III.13.3). As shown in Fig.IV.11.A, exogenous H2O2 

addition up-regulates the expression of AIF. As anticipated, HIF-1α expression was 

also increased, more significantly upon treatment with 250 µM H2O2.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure IV.11. AIF expression is increased upon prolonged H2O2 treatment. A. 
Representative WB showing HIF-1α α α α and AIF expression after H2O2 treatment (250 
and 500 µµµµM in boluses over 4 h). B. Representative WB of HIF-1αααα and AIF 
expression after H2O2 treatment (250 and 500 µµµµM in boluses over 4 h), with and 
without ActD pre-treatment (1 µµµµg/mL, 15 min). 
 

Next, we aimed to see whether the observed AIF up-regulation is due to increase in 

the expression of the AIF gene. For this, we pretreated the cells with Actinomycin D 

(Act D), a general inhibitor of transcription. To this end, we added 1 µg/mL of ActD 

wad added to the cells 15 min prior to the addition of the first H2O2 bolus. As 

represented in Fig.IV.11.B, ActD-pretreatment of the cells did not impede AIF up-

regulation induced by H2O2, pointing to a post-transcriptional mechanism responsible 

of the up-regulation of AIF. Both experiments were performed twice, with a very 

similar result. It would be interesting to pursue this avenue of research further.    

 

Taken together, these data strongly confirm that AIF is involved in the ROS 

metabolism of our model cells. 
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IV.8. NF-κκκκB and Nrf2 expression in stable AIF-silenced cell lines 

 

As described in previous chapters, detailed studies showed that the transcription factor 

HIF-1 is up-regulated in the siAIF cell lines. Next, we assessed two other redox-

sensitive transcription factors, namely NF-κB and Nrf2, to determine whether this was 

a general consequence. Western blot analysis using a specific antibody directed to the 

p65 subunit of NF-κB, both in whole-cell (Fig.IV.12.A) and nuclear protein extracts 

(Fig.IV.12.B) of siAIF cell lines, AIF1-10 and AIF2-4, did not reveal any significant 

differences in the expression levels, compared to the control pU6-2 cells.  

 

However, WB analysis of Nrf2 showed higher levels of this transcription factor in AIF1-

10 cells compared to control pU6-2, both in whole-cell extracts (Fig.IV.12.A) and 

nuclear protein extracts (Fig.IV.12.B). These experiments were performed several 

times (minimum 4) and similar results were obtained. Moreover, analysis of Nrf2 

expression in cytoplasmic versus nuclear extracts revealed that a portion of Nrf2 in 

AIF1-10 cells was translocated into the nucleus (Fig.IV.12.B).  

 

As a control condition for the Nrf2 expression we used pU6-2 cells treated with H2O2 

over a prolonged period of time (4 h). The experiment was carried out in an identical 

manner to the one described in the section IV.7. Briefly, sub-confluent cell cultures of  

pU6-2 cells were treated with H2O2 boluses (250 and 500 µM final concentrations) 

every 15 min. Then, the cells were collected, whole-cell protein extracts obtained and 

WB performed. As represented in Fig.IV.12.C, Nrf2 expression in pU6-2 cells is induced 

by H2O2 treatment. This experiment was performed three times with very similar 

results. 

 

Next, we examined whether the increase of Nrf2 expression in our siAIF cells was due 

to modifications in the transcription of NRF2 or its inhibiting binding partner KEAP1. 

Semi-quantitative RT-PCR using RNA obtained of AIF1-10 and AIF2-4 cells and the 

control cell lines, Hep3B and pU6-2, showed that there were no significant changes in 

the basal transcription levels of neither NRF2 nor KEAP1 (data not shown). 

 

Taken together these data suggest that Nrf2 but not NF-κB is up-regulated in stable 

siAIF cells and that this increase occurs at the protein level and does not result from 

augmented NRF2 transcription. 
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Figure IV.12. WB analysis of NF-κκκκB and Nrf2 expression in pU6-2 and AIF1-10 cells. 
A. Representative WB showing the basal expression of NF-κκκκB (p65 subunit) and 
Nrf2 in whole cell extracts of pU6-2 and AIF1-10 cells. B. Representative WB 
showing the basal expression of NF-κκκκB (p65 subunit) and Nrf2 in nuclear and 
cytoplasmic extracts of pU6-2 and AIF1-10 cells. C. Representative WB showing 
Nrf2 expression in whole cell extracts of H2O2-treated pU6-2 cells. 
  

IV.9. Analysis of the expression of redox-active enzymes: SOD1, 
SOD2, CAT and NQO1. 
 

Next, we addressed the question about whether our siAIF cell lines displayed 

alterations in the expression of redox-related enzymes, such as cytosolic superoxide 

dismutase (SOD1), mitochondrial superoxide dismutase (SOD2), catalase (CAT) and 

NAD(P)H: quinone reductase (NQO1). As addressed in the Introduction chapter “I.5.2. 

Nuclear factor E2-related factor 2 (Nrf2)”, NQO1 is a well-known target gene for the 

Nrf2 transcription factor. The other enzymes are direct players in the cellular redox-

defense machinery, thus they all promised to be interesting subjects to study. Semi-

quantitative RT-PCR of SOD1, CAT and NQO1, performed on AIF1-10 and pU6-2 RNA 

revealed that there were no significant changes in the expression of any of these 

genes, though there was a slight tendency towards a decrease of SOD2 expression in 

AIF1-10, yet without statistical significance. Fig.IV.13.A shows an image of a 

representative RT-PCR of SOD1, SOD2, CAT and NQO1 in pU6-2 and AIF1-10 cells 

where cyclophilin A (CYPA) was used as a house-keeping control. The bar chart in Fig. 

IV.13.B depicts the levels of expression of the genes of interest, represented as a ratio 
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between the expression in pU6-2 and AIF1-10 cells, previously normalized with the 

CYPA expression (normalized value of 1).   

 

As a complementary approach, and in particular as SOD2 expression showed to be 

slightly diminished in AIF1-10 cells, we performed real-time quantitative RT-PCR 

analysis of SOD1 and SOD2 expression in pU6-2 and AIF1-10 cells. The bar chart 

depicted in Fig.IV.13.C summarizes the data obtained in 4 independent experiments, 

represented as a relative ratio of the expression (nº of RT-PCR-amplified units) in pU6-

2 and AIF1-10. Both SOD1 and SOD2 results were previously normalized with the 

cyclophilin A expression value in each cell line. Again, the pU6-2/AIF1-10 expression 

ratio seemed to be slightly higher for SOD2 indicating a lower, though without 

statistical significance, expression of this gene in AIF1-10 cells. 

 

 
 

Figure IV.13. RT-PCR analyses of redox-sensitive genes A. Representative result of 
semi-quantitative RT-PCR for SOD1, SOD2, CAT, NQO1 in pU6-2 and AIF1-10 mRNA, 
using cyclophilin A (CYPA) as a house-keeping gene. B. Bar chart representing 
relative pU6-2/AIF1-10 expression in semi-quantitative RT-PCR of SOD1 (n=8), 
SOD2 (n=8), CAT (n=6) and NQO1 (n=7), previously normalized to CYPA 
expression, data represented as mv±SEM, p>0.05. C. Bar chart representing relative 
pU6-2/AIF1-10 expression in real-time RT-PCR of SOD1 (n=4) and SOD2 (n=4), 
previously normalized to CYPA expression, data represented as mv±SEM, p>0.05. 
 

To support the result obtained by RT-PCR studies, we performed WB analysis of the 

basal SOD2 expression, in whole-cell and mitochondria-enriched extracts. However, we 

could not detect any changes in the expression of SOD2 in siAIF compared to control 

cell lines (data not shown), probably due to the technical sensitivity limits. 
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IV.10. O2 consumption measurement in intact cells 
 

Next, we addressed the question as to whether the increased ROS levels in siAIF cell 

lines could participate in causing respiratory dysfunction, a well-known outcome of ETC 

damage. For this, we measured the steady-state cellular respiration in intact cells by 

monitoring the O2 consumption using a Clark-type O2 electrode. A representative graph 

of basal O2 consumption in intact cells of pU6-2, AIF-10 and AIF2-4 is shown in 

Fig.IV.14.A. These experiments revealed that siAIF cell lines, AIF1-10 and AIF2-4, 

(1.38±0.030 nmolO2/min/106cells, n=11, P<0.001 and 1.59±0.050, n=6, P<0.05, 

respectively) had an approximately 35% decrease in the basal O2 consumption rate, 

compared to pU6-2 and SURF-A7 control cells (2.2±0.080 nmolO2/min/106cells, n=12 

and 2.04±0.060, n=4), as represented in Fig.IV.14.B. We also confirmed that the 

respiration we were monitoring was mitochondrial by adding a specific inhibitor of 

OxPhos, 1 mM KCN, directly to the respiration chamber and recording the O2 

consumption subsequently (result not shown).  

 

In order to investigate the implication of the increased ROS output in this respiration 

defect, we attempted to rescue this phenotype by performing antioxidant pretreatment 

of the cells in culture. For this, t-75 subconfluent cultures of siAIF cells and control 

pU6-2 cell lines, maintained in the normal growth medium, were treated with 5 mM 

NAC or 0.5 µM MitoQ, for 16 h. Then, the cells were detached and counted, using a 

hemacytometer. We could not detect any visible alterations in the cellular proliferation 

after the antioxidant treatment (result not shown), neither in the control cell lines, 

pU6-2 and SURF-A7, nor in the siAIF cell lines. Immediately, 2-3 million cells, 

suspended in HBSS, were added to the oxygen chamber and the cellular respiration 

monitored. Interestingly, preculturing with either NAC or MitoQ could reverse the 

respiratory defect in siAIF cells (Fig.IV.14.C). AIF1-10 steady-state O2 consumption 

was recorded as 1.38±0.030 nmolO2/min/106cells, compared to the NAC-pretreated      

which was 1.98±0.100 and MitoQ-pretreated 2.1±0.110 nmolO2/min/106cells. In the 

case of AIF2-4 the mean values were as follows: 1.59±0.050 nmolO2/min/106cells for 

the basal respiration, 2.45±0.050 in NAC-pretreated cells and 1.87±0.700 in MitoQ-

pretreated cells.  Importantly, neither of these antioxidants had any effect on the basal 

respiration in pU6-2 cells (basal respiration of 2.2±0.080 nmolO2/min/106cells versus 

NAC-pretreated respiration of 2.33±0.127 nmolO2/min/106cells and MitoQ-pretreated 

of 2.26±0.134 (Fig.IV.14.C) or SURF-A7 cells (data not shown). 
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Figure IV.14. Analysis of the O2 consumption in intact cells. A. Representative graph 
showing basal O2 consumption in siAIF cells and control cell lines. B. Bar chart 
summarizing the results of basal O2 consumption in pU6-2 (n=12), SURF-A7 (n=4), 
AIF1-10 (n=11) and AIF2-4 (n=6), data shown as mv±SEM, *p< 0.05, ***p <0.001. 
C. Bar chart summarizing the results of basal O2 consumption and O2 consumption 
after pretreatment with antioxidants in pU6-2 (n=7), AIF1-10 (n=5) and AIF2-4 
(n=2), data shown as mv±SEM, *p< 0.05, ***p <0.001. 
 

IV.11. O2 consumption measurement in permeabilized cells 
 

As described in the previous chapter, measurement of the cellular O2 consumption 

using a Clark-type oxygen electrode revealed a significant decrease in the basal cellular 

respiration rate in siAIF cells, compared to control cell lines. For a more detailed study 

of this defect, at the sub-mitochondrial level, we analyzed the O2-consumption 

dependent on the ETC complexes individually. This was approached by measuring the 

cellular respiration in digitonin-permeabilized cells. By addition of specific respiratory 

substrates, this method allowed us to study the respiration dependent on individual 

ETC complexes separately. As Complex I is very susceptible to ROS damage, we 
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hypothesized that this was the most likely candidate for the basal respiration defect in 

siAIF cells. To assess the respiration dependent on Complex I, Complex I-specific 

respiratory substrates, malate (0.4 mM) and glutamate (30 mM), were added to the 

digitonin-permeabilized cell suspension in the calibrated respiration chamber, where 

basal O2 consumption had been previously recorded. Next, Complex I-dependent 

respiration was inhibited by the Complex I-specific inhibitor rotenone (6 µM) and 

further, the Complex II specific electron donor, succinate (10 mM), was added to the 

respiration chamber in order to assess Complex II-dependent O2 consumption. As 

shown in Fig.V.15.A, both siAIF lines respired poorly on malate and glutamate (about 

30% reduction compared to pU6-2). Furthermore, unlike the control (pU6-2) O2 

consumption, which could be inhibited by 90% with addition of rotenone, Complex I-

dependent O2 consumption in siAIF cells was almost insensitive to rotenone. When 

succinate was added in order to bypass Complex I-dependent respiration, both siAIF 

lines displayed respiration rates identical to the control cell line (Fig.V.15.A). This 

finding suggested that only Complex I and not Complex II is affected by AIF silencing. 

The experiment was performed several times and 3-5 determinations of each condition 

were obtained. Together with succinate, ATP (0.2 mM) was routinely added to the 

respiration chamber, as this stops the reaction of the competitive inhibitor oxaloacetate 

on the succinate dehydrogenase.  

 

In addition, we aimed to study whether a pretreatment of siAIF cells with antioxidants 

could restore their respiration defect at Complex I. For this, the cells were pretreated 

in the same fashion as described in chapter “IV.10. O2 consumption measurement in 

intact cells”. We cultured subconfluent t-75 cultures of siAIF cells and the control cell 

line pU6-2, with 0.5 µM MitoQ for 16 h, maintaining the cells in the normal growth 

medium. Then we permeabilized the cells and proceeded with the measurement of O2 

consumption as described previously. Of note, the antioxidant pretreatment of siAIF 

cells could reverse their phenotype of diminished Complex I-dependent respiration 

without affecting significantly the other respiration parameters (Fig.IV.15.B). In the 

case of AIF1-10 cells, the mean steady-state value of Complex I-dependent O2 

consumption was 0.59±0.043 nmolO2/min/106 cells and after the antioxidant recovery 

it reached 2.15±0.191, whereas the same values for AIF2-4 were 0.55±0.040 

nmolO2/min/106 cells and 2.05±0.011, respectively. Also, the O2-consumption of pU6-2 

cells was not altered significantly by the antioxidant pretreatment (1.9±0.105 

nmolO2/min/106 cells in the control cells versus 2.27±0.090 nmolO2/min/106 in the 
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MitoQ-pretreated cells). This experiment was repeated three times.   

 

 

 
 
Figure IV.15. Analysis of O2 consumption measurement in digitonin-permeabilized 
cells. The basal respiration and the respiration rates after addition of malate + 
glutamate, rotenone and succinate, for the three cell lines: pU6-2, AIF1-10 and 
AIF2-4 are shown. A. O2 consumption of cells without previous antioxidant 
treatment, data represented as mv±SEM, n=3-5. B. O2 consumption of cells after 
previous MitoQ treatment, data represented as mv±SEM, n=3.  
 

IV.12. Analysis of the glycolytic capacity of siAIF cell lines 

 

Having shown that siAIF cells display a significant decrease in the O2 consumption and 

have a compromised OxPhos, the next parameter we considered to study was the 

glycolytic capacity of these cells.  

 

The ATP concentration was determined using a bioluminescent assay and the values 

obtained where normalized to the protein amount in the cell lysates. The measurement 

of the basal ATP levels in Hep3B, pU6-2 and AIF1-10 cells was repeated five times and 

no significant differences were registered (Fig.IV.16.A, left panel). 
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glucose-free MEM for 6 h. Briefly, the cells were counted and seeded in t-25 flasks and 

allowed to attach. The following day, the culture medium was replaced with either 

complete MEM or MEM without glucose. After 6 h, the cells were collected and the ATP 

measurement was performed as described in the chapter “III.6. Measurement of ATP 

concentration”. The experiment was performed twice, with three flasks per cell line 

analyzed each time. Interestingly, whilst in the control pU6-2 cells, glucose withdrawal 

from the culture medium provokes a significant increase in the ATP production, there is 

just a slight increase in AIF1-10 cells, as shown in Fig.IV.16.A, right panel. This result 

points to the possibility that siAIF cells rely on glycolysis for ATP production and have a 

decreased capability of ATP production by the OxPhos process, when other substrates, 

rather then glucose, are used.  

 

Next, we aimed to study the lactate production in siAIF cells versus the control cell 

line, pU6-2, by employing a spectrophotometric assay which determines the lactate 

concentration in the extracellular culture medium (i.e. detection of the lactate 

extrusion). First, we monitored the lactate production in pU6-2 and siAIF cell cultures, 

maintained under basal conditions. For this, 2x104 cells/well were seeded in 6-well 

plates, in triplicate, in three sets of wells, one set of wells was left in cell culture for 2 

days, the second one for 4 days and the last one for 8 days without refreshing the 

culture medium, in order to allow lactate accumulation in the extracellular medium. 

Then, lactate concentration was determined and normalized to the number of cells 

which had proliferated in each well and represented as lactate amount (ng) per 5x104 

cells. The results obtained in this experiment, repeated 4 times, revealed that there 

was no significant difference between siAIF cell lines, AIF1-10 and AIF2-4, and the 

control cell line, pU6-2, in the lactate production over a period of 2 days in culture. 

However, siAIF cells had released more lactate in the medium in comparison with the 

control, in prolonged, 4 and 8 days, periods in culture, as shown in Fig.IV.16.B, left 

panel.  

 

A complementary approach to the lactate release measurement under standard culture 

conditions (glucose-containing MEM), was the detection of lactate production when 

cells were cultured in the absence of glucose or in a culture medium where the glucose 

had been replaced by the same concentration of the non-fermentable sugar, galactose 

(5.56 mM). The remainder of the components of the culture medium (Complete MEM, 

see chapter “III.2. Cell culture”) were the same.  
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Here, we seeded pU6-2 and siAIF cells in 6-well plates, at 2x104 cells/well, per 

triplicate and cultured them for 4 days without refreshing the medium, under the 

conditions indicated above. This experiment was repeated twice and the mean values 

are represented in Fig.IV.16.B, right panel. While there were no significant differences 

in the lactate production among the cell lines when the cells were cultured in glucose-

containing medium, siAIF cells produced significantly lower amounts of lactate 

compared to pU6-2 cells, when maintained in glucose-free MEM. Moreover, all cell lines 

showed a major decrease in lactate production when cultured in the absence of 

glucose. A similar decrease occurred when cells were cultured in galactose-instead-of-

glucose containing MEM, however without significant differences among cell lines 

(Fig.IV.16.B, right panel). 

 

Next, we studied the glucose up-take rate, knowing that the standard MEM we 

employed to routinely culture siAIF cells and the control cell lines contain 1 g/L (5.56 

mM) glucose. In order to analyze the glucose up-take by the cells in culture, we 

monitored the decrease of the glucose concentration in the medium, when the cells 

were cultured. For this, we seeded 4 sets of 1x105cells/well in a 6-well plate, in 

triplicate and allowed the cells to proliferate freely. Each set of wells was examined at 

the determined period of time, from day 1 to day 4. The culture medium was collected 

and glucose concentration was determined. Also, the cells in each well were detached 

and counted using a hemacytometer. Fig.IV.16.C summarizes the data of 4 individual 

experiments. The left panel in Fig.IV.16.C describes the mean values of the cellular 

proliferation rate of pU6-2 and AIF1-10 cells, over a period of 4 days. This cellular 

proliferation was followed by glucose concentration decrease in the culture medium, 

which can be seen in Fig.IV.16.C, right panel. Notably, AIF1-10 cells have a 

significantly lower proliferation rate compared to pU6-2 cells and thus the decrease of 

the glucose concentration in the culture medium is lower. However, when these data 

are normalized to the number of cells present in culture, it appears that the average 

glucose consumption in 4-days culture period is higher in AIF1-10 cell compared to 

pU6-2. 

 

To complement this study, we performed RT-PCR analysis using mRNA of siAIF and 

control cell lines, directed to examine the basal expression of glycolytic genes, such as 

aldolase A (ALDOA), facilitated glucose transporter 1 (GLUT1) and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH).  
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Figure IV.16. Analysis of the glycolytic capacity of siAIF cells versus controls. A. 
Basal levels of ATP concentration, data represented as mv±SD, n=5, p>0.05 (left 
panel), ATP concentration in pU6-2 and AIF1-10 cells, growing in medium with and 
without glucose, data represented as mv±SEM, n=2, **p<0.005 (right panel). B. 
Left panel: Lactate production in siAIF cell lines compared to control cell line pU6-2, 
over 2 (yellow bars), 4 (orange bars) and 8 days (brown bars), data represented as 
mv±SEM, n=4, *p<0.05, #p<0.05 in one-tailed t-test; right panel: lactate 
production in pU6-2 (yellow bars), AIF1-10 (orange bars) and AIF2-4 cells (brown 
bars) over 4 days culture in glucose-containing, glucose-free and galactose instead 
of glucose containing medium, data shown as mv±SEM, n=2, *p<0.05. C. Glucose 
uptake assay. Left graph: Cell proliferation, right graph: Parallel glucose 
concentration in the cell culture medium, data represented as mv±SEM, n=4. Bar 
chart: Average glucose consumption over 4 days in culture, data represented as 
mv±SEM, n=4, **p<0.005. D. Representative RT-PCR result for GAPDH expression 
in siAIF and control cell lines where ββββ-actin was used as a house-keeping gene. 
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Whilst there were no significant differences in the expression of the first two genes 

(result not shown), GAPDH expression was significantly increased in AIF-10 and AIF2-4 

cells (Fig.IV.16.D). This experiment was performed three times, with similar results.  

 

In summary, all these data suggest that siAIF cells possess a higher glycolytic activity, 

compared to their control counterparts.  

 

IV.13. Morphology and cell proliferation  

 

As mentioned in previous chapters, we routinely cultured stable siAIF cell lines 

together with control cell lines, in  parallel, over prolonged periods of time (even up to 

several months). Passaging of the cells was generally carried out once a week, 

whereas medium was refreshed every 2-3 days. Observation of siAIF cells in 

comparison with control cell lines, using a standard inverted light microscope, at 

several cell densities and passage nº, revealed that all cell lines displayed a similar 

morphology. No significant differences could be appreciated in neither the cell shape 

or the cell size (Fig.IV.17.C).  Nevertheless, siAIF cells clearly proliferated more slowly 

and displayed a different distribution in the cellular monolayer as a siAIF cell culture of 

a similar visual cell density as a control one, was very likely to contain a lower number 

of cells, compared to the control cell line. Unfortunately, we were not able to approach 

this observation in any experimental way. 

 

Assessment of the cell proliferation of siAIF cells and controls was performed many 

times and using two different techniques: by direct counting of the cells using a 

hemacytometer and using the MTT spectrophotometric assay. All these measurements 

showed that siAIF cells proliferate about 30-40% slower than control cell lines 

(Fig.IV.17.A and B).  

 

Apart from assessing the cellular proliferation under basal conditions, i.e. the standard 

conditions of cell culture (Complete MEM which contains 5.56 mM glucose), we also 

wanted to address the question concerning the cellular proliferation in a medium 

containing a non-fermentable sugar, such as galactose, instead of glucose. For this 

purpose, we cultured the cells in complete MEM containing galactose, at 5.56 mM, the 

same concentration at which glucose is normally present in the standard MEM medium. 

To this end, siAIF and control cells were seeded in t-25 flasks at a cell density of 0.5 
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million of cells per flask and allowed to proliferate for 4 days. The culture medium was 

refreshed at day 2. This experiment was performed several times, the results shown in 

Fig.IV.17.A comprise the data of two independent experiments. As depicted in 

Fig.IV.17.A left panel, AIF1-10 and AIF2-4 cells, cultured in glucose-containing medium 

proliferate slower than their control counterparts (Hep3B and pU6-2). More specifically, 

at day 4, siAIF cell number was about 65% of the control cell number mean value, 

with AIF1-10 displaying a larger reduction of the proliferation (57% of the control cell 

lines mean value), in comparison with AIF2-4 (72% of the control cell lines mean 

value).  

 
 

 

 

Figure. IV.17. Cell proliferation in siAIF and control cell lines. Control cell lines are 
depicted in orange, siAIF cell lines in brown. A. Cell proliferation over 4 days in 
medium containing 5.56 mM glucose (left panel) and 5.56 mM galactose, instead of 
glucose (right panel), the graphs represent the mean values of two independent 
experiments, *p<0.05. B. Bar chart representing the cell number after 4 days in 
culture, with and without 1 mM NAC, data represented as mv±SEM, n=2. C. 
Representative images of sub-confluent cultures of pU6-2 and AIF1-10. 
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As to the cell proliferation in galactose-containing culture medium (Fig.IV.17.A, right 

panel), we observed a significant decrease in the cell number, both at day 2 and at day 

4, compared to the culture in glucose-containing medium, for all 4 cell lines tested.  

However, siAIF cell lines displayed a more severe reduction of the cellular proliferation. 

Under the presence of galactose as opposed to glucose in the culture medium, AIF1-10 

cell number at day 4 was 43% of the control cell lines mean value, whereas, as 

expected, AIF2-4 showed a lower reduction of 64% of the control cell lines under the 

same conditions.  

 

In summary, siAIF cells not only proliferate at a lower rate, compared to control cell 

lines, but they are also more susceptible to replacing the culture medium glucose with 

galactose. This result is in line with the observation that siAIF cells possess increased 

glycolytic capacity, shown in chapter IV.12. 

 

Furthermore, we aimed to investigate whether the reduction of the cellular proliferation 

rate of siAIF cell lines under basal conditions, was a consequence of the incremented 

ROS levels. For this, we attempted to reverse the siAIF cell proliferation phenotype by 

culturing the cells in the presence of antioxidants. Both the general antioxidant NAC 

and the mitochondria-specific antioxidant MitoQ were used, at several concentrations, 

over a period of one week in culture. To our surprise, neither of the treatments could 

restore the cellular proliferation rate in siAIF cells. The bar chart in Fig.IV.17.B shows 

the data of two separate experiments, where 0.5 million cells of pU6-2 and AIF1-10 

had been initially seeded in t-25 flasks. The result is represented as the number of cells 

after 4 days in culture. 

 

IV.14. Analysis of Complex I expression 

 

To further understand the respiration defect of Complex I in siAIF cells, we decided to 

investigate the expression of its subunits. During this time, a publication in the EMBO 

J. [Vahsen N. et al., 2004] suggested that two Complex I subunits, CI(39) and CI(20) 

had a diminished expression when AIF was silenced. We thus studied these two 

subunits by WB in whole-cell and mitochondria-enriched extracts, using specific 

antibodies and found that the steady-state levels of both these subunits were also 

reduced in siAIF cells (Fig.IV.18). These experiments were performed several times (at 

least 3), using cells with different passage numbers. 
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Next, we attempted to reverse the Complex I expression defect by antioxidant 

treatment. For this, pU6-2 and AIF1-10 cells were treated with 5 mM NAC or 0.5 µM 

MitoQ for 16 h prior to cell harvesting and protein extraction. These were the same 

conditions, as those successfully used to reverse the respiration defect in siAIF cells 

(see chapter “IV.10. O2 consumption measurement in intact cells”). Also, whole-cell 

extracts were obtained and WB performed following the standard protocol. As, 

demonstrated in Fig.IV.19, neither MitoQ nor NAC treatment could reverse the 

Complex I expression phenotype. This experiment was repeated, using higher 

concentrations of the antioxidants, and longer time of exposure (24 h), but none of the 

attempts resulted in recovery of Complex I subunits expression (data not shown). 

 

 

Figure IV.18. WB analysis of Complex I 39 and 20 kDa subunits. A. Representative 
WB using whole-cell extracts of pU6-2 and two siAIF cell lines, AIF1-10 and AIF2-4, 
showing AIF, CI(39), CI(20) and ACTB expression. B. A summary of WB data, 
expressed as relative CI(39), left graph, and CI(20) expression, right graph, in AIF1-
10 cells compared to pU6-2 (pU6-2 expression was normalized to 100% in each 
experiment), results shown as mv±SEM, n=5, for CI(39), and n=3, for CI(20), 
*p<0.05. 
 

 
 

Figure IV.19. Analysis of Complex I 39 and 20 kDa subunits expression after an 
antioxidant treatment. Representative WB using whole-cell extracts of pU6-2 and 
AIF1-10, showing AIF, CI(39), CI(20) and ACTB.  
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the expression levels of other proteins, also members of the mitochondrial ETC. Using 

whole-cell and mitochondria-enriched protein extracts to perform WB analysis, we 

assessed the expression of Complex II subunit B (SDHB), Complex IV subunits 1 and 2 

(COXI and COXII) and none of these proteins showed any differences in the expression 

levels (results not shown). 

 
Moreover, we analyzed by WB the basal expression levels of other mitochondrial 

proteins, not involved in the ETC, such as survivin and could not detect any significant 

differences between siAIF and control cells either (result not shown). 

 

IV.15. Analysis of the siAIF phenotype in mouse ES cell lines 

 

As a further support for our studies, we wished to assess the siAIF phenotype in a 

different cell type model and see if we could verify the results obtained in our 

hepatoma cell line. We, thus used two mouse ES lines: AIF-KO line and the control WT 

line, derived from the parental mouse ES line E14K by homologous recombination 

technology in the laboratory of Dr. Josef Penninger. The AIF KO cell line was generated 

using a targeting vector that deleted exon 3 of the murine Aif gene [Joza N. et al., 

2001; Vahsen N. et al., 2004]. We cultured these lines routinely and harvested cells of 

different passage nº to assess the levels of AIF. The AIF-KO cell line, however, 

expressed some residual levels of AIF, shown both by WB, in whole-cell and 

mitochondria-enriched extracts, and by RT-PCR analysis. Fig.IV.20.A shows a 

representative RT-PCR with mRNA obtained of WT and AIF-KO cells, where cyclophilin 

A (CYCA) was used as a house-keeping control, whereas Fig.IV.20.B is a representative 

WB using whole-cell protein extracts. The bar chart presented in Fig.IV.20.C 

summarizes the data of AIF expression levels in whole-cell extracts of AIF1-10 and 

pU6-2 cell line and the ES cell lines, WT and AIF-KO, obtained in 4 independent WB 

experiments using cells of different passage numbers. In each separate experiment, 

the AIF expression level was normalized with the house-keeping gene β-actin (ACTB) 

expression. The AIF levels in the control cell lines, pU6-2 and WT, were considered as 

100% AIF expression and then compared to AIF1-10 and AIF-KO expression, 

respectively. Of note, AIF expression in AIF1-10 was 10.81±2.73% compared to pU6-2 

and AIF expression in AIF-KO was 6.86±3.75%, compared to ES WT line. 

 

In summary, AIF-KO displays similar reduction of AIF protein expression compared to 
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AIF1-10 cell line. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure IV.20. Analysis of AIF expression in mouse ES cell lines, AIF-KO and the 
control WT cell line. A. Representative RT-PCR result of AIF expression in AIF-KO 
and the WT cells. B. Representative WB result of AIF expression in ES cell lines 
versus Hep3B cell lines. C. Summary of the quantification of WB results showing 
relative AIF expression, mv± SEM, n=4, ***p<0.001. 
 

Once we had quantified the expression levels of AIF in the mouse ES cell lines, we 

performed several experiments in order to characterize the phenotype. More 

specifically, we assessed the cellular proliferation of AIF-KO versus WT cells using the 

MTT assay and this was done in parallel with the cellular proliferation assessment of 

Hep3B cell lines, AIF1-10 and pU6-2. In both groups, cells were plated the day before 

the experiment in 96-well plates in complete culture medium and allowed to proliferate 

freely. The MTT assay was performed and absorbance recorded at three time points, 

as represented in the graphs in Fig.IV.21.A. The left panel describes the cellular 

proliferation in ES cells where AIF-KO cells (brown trace) display a significantly lower 

proliferation compared to the control cell line WT (orange trace). This reduction is 

slightly lower in comparison with the one presented by AIF1-10 cells (brown trace, 

right panel) versus their control cell line pU6-2 (orange trace, right panel). In detail, at 

day 3, AIF1-10 cell number was 73.24±4% of the control cell line pU6-2 mean value,  

whereas AIF-KO showed a lower reduction of the proliferation (80.71±3.65% of the 

control WT cell line mean value).  
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Next, we assessed the O2 consumption in intact ES cells using Clark-type O2-electrode. 

The protocol was the same as the one used in pU6-2 and siAIF cells measurements 

(see “IV.10. O2 consumption measurement in intact cells”). As expected, we found that 

AIF-KO cells have a lower O2 consumption rate, compared to the control WT cells, as 

shown in Fig.IV.21.B. The mean value of O2 consumption in AIF-KO cells, of three 

separate experiments was 0.73±0.09 nmolO2/min/106cells, which compared to the rate 

of the control WT cells (1.02±0.08 nmolO2/min/106cells) results in some 28% 

reduction, similar to that displayed by the stable siAIF cells in Hep3B background used 

previously.  

  

 

 

 

Figure IV.21. Analysis of the phenotypic characteristics of the mouse ES cell lines, 
AIF-KO and the control WT line. A. Cell proliferation of AIF-KO and WT cells (left 
panel), and AIF1-10 and pU6-2 cells (right panel), results represented as mv±SEM, 
n=6. B. O2 consumption in AIF-KO and WT cells, results shown as mv±SEM, n=3, 
*p<0.05, analyzed by one-tailed student t-test. C. H2O2 levels in AIF-KO compared 
to control WT cell line, results are represented as mv±SEM, n=5, *p<0.05, analyzed 
by one-tailed student t-test. 
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experiments carried out previously, with stable siAIF cells and controls (see chapter 

“IV.5.1. H202 measurement using the Amplex red kit”). Here, we observed higher levels 

of H2O2 in AIF-KO (0.063±0.009 nmolH2O2/5x105cells) versus WT cells (0.031±0.011 

nmolH2O2/5x105cells), which is in accordance with the results shown previously, 

obtained with stable siAIF cells and controls in Hep3B background. 

 

Taken together, these data suggest that the stable silencing of AIF  in Hep3B cells 

leads to a general and not an isolated phenotype, as it can be observed in other 

cellular models where AIF expression has been nearly abolished, such as a specific 

AIF-KO ES cell line.   

 

IV.16. Analysis of the relationship between Trx and AIF  

 

IV.16.1. Basal Trx1 and Trx2 expression in siAIF cells 

 

Silencing of AIF in our cellular model is accompanied by a significant increase in the 

ROS levels as shown in previous chapters. In order to broaden the knowledge of the 

mechanism of this increase, we decided to study the expression of several redox-active 

proteins and redox-sensitive transcription factors, some of which were shown to be 

modified (see chapters IV.6, IV.8 and IV.9). Knowing this, we also decided to analyze 

the expression of thioredoxins, a group of important redox-active enzymes involved in 

the cellular redox signaling and ROS scavenging. We assessed the steady-state levels 

of expression of both Trx1 (cytosolic form) and Trx2 (mitochondria-localized form) by 

performing WB analysis on whole-cell and mitochondria-enriched protein extracts of 

stable siAIF cell line and controls. These studies suggested that Trx1 expression was 

not significantly modified in siAIF cells whilst Trx2 levels were largely diminished, as 

shown in Fig.IV.22.A and B. The panel A shows a representative WB performed on 

whole-cell extracts of pU6-2 and two siAIF cell lines: AIF1-10 and AIF2-4. Fig.IV.22.B 

summarizes the densitometry data of several separate WB experiments which suggest 

about 55% reduction of Trx2 expression in AIF1-10 cells and about 70% in AIF2-4 cells 

i.e. remaining 45% and 30% of the expression, respectively, compared to Trx2 

expression in the control pU6-2 cell line, which was normalized to 100%. Importantly, 

reduction in the protein levels of Trx2 is a constant phenomenon, visible in both stable 

siAIF cell lines and using cell cultures with different passage numbers, and is not 

modified by their prolonged culturing. 
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Next, we aimed to study whether the decrease in Trx2 protein levels was a real 

consequence of AIF silencing and not an artifact resulting from prolonged culturing of 

the stable siAIF cells. To this end, we transfected t-25 flask cultures of Hep3B cells 

with pBS U6/PolIII/siAIF1 and pBS U6/PolIII/siGFP (control silencing cassette), and 72 

h later looked at AIF and Trx2 protein levels in whole-cell extracts by standard WB. 

This experiment was performed three times, with a similar result. As shown in 

Fig.IV.22.C, transient silencing of AIF in Hep3B cells is accompanied by a reduction of 

Trx2 levels. Thus, we concluded that the decrease in Trx2 protein we observed in 

stable siAIF cell lines is not an artifact due to prolonged culturing of these cells. 

 

To examine more closely the consequences of the decreased Trx2 expression in siAIF 

cells, we attempted to reverse this effect with antioxidant treatment of the cells in 

culture and thus determine whether the increased ROS levels in siAIF cells are related 

to the reduction of Trx2 expression. In more detail, we pretreated pU6-2 and AIF1-10 

cells with 0.5 µM MitoQ or 2.5 mM NAC over 16 h and harvested the cells to obtain 

whole-cell protein extracts. Later, WB analysis was performed and Trx2 expression 

assessed. These experiments were carried out several times and the results suggested 

that neither MitoQ nor NAC treatment could restore the Trx2 expression levels in AIF1-

10 cells (data not shown).  

   

IV.16.2. Analysis of the redox state of Trx2 

 

Having seen that Trx2 expression was significantly reduced in siAIF cells, we next 

wished to study its redox state. Using the specific thiol-binding compound AMS (see 

“III. Materials and methods”, section “III.13.6. Analysis of the redox state of Trx2”), 

we were able to assess the in vivo redox state of Trx2. These experiments revealed 

that Trx2 present in AIF1-10 cells and theTrx2 expressed in the control pU6-2 cells 

were in the same redox state (seen as an absence of size shift in the Trx2 specific 

band on the WB). This assay was performed three times and a representative result is 

shown in Fig.IV.22.D (lanes 1 and 2 show pU6-2 and AIF1-10 protein samples without 

treatment with AMS, whereas lanes 3 and 4 show AMS-treated extracts). As a control 

condition we used H2O2 treatment, a stimulus known to modify the redox state of 

redox-active proteins, such as Trx2. For this, t-25 flasks of pU6-2 cells were treated 

with 1 mM H2O2 in HBSS for 30 min. Then, the cells were harvested and processed for 

Trx2 redox state analysis. As shown in Fig.IV.22.E, treatment of pU6-2 cells with H2O2 
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provoked oxidation of Trx2, seen as a shift in the molecular size of the Trx2 band in 

the WB (lane 3 and 4). This experiment was repeated three times with a similar result.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure IV.22. Trx expression analysis in siAIF cells and the control pU6-2 cell line. A. 
Representative WB showing Trx1 and Trx2 expression in siAIF cells and control 
pU6-2 cells. B. Quantification of WB results for Trx1 expression in pU6-2 (n=5), 
AIF1-10 (n=4) and AIF2-4 (n=2) results shown as mv±SEM, p>0.05; and Trx2 
expression in pU6-2 (n=6), AIF1-10 (n=4) and AIF1-10 (n=2), results shown as 
mv±SEM, *p<0.05. C. Representative WB showing that transient AIF silencing in 
Hep3B cells also leads to decrease in Trx2 expression. D. Analysis of the in vivo 
redox state of Trx2 in pU6-2 and AIF1-10 cells-a representative WB. E. Analysis of 
the in vivo redox state of Trx2 in pU6-2 cells after H2O2 treatment-a representative 
WB. 
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IV.16.3. Trx1 and Trx2 overexpression experiments 

 

In order to further examine the relationship between thioredoxins and AIF we decided 

to overexpress Trx1 and Trx2 in our cellular model. For this, we generated several 

vectors, as described in detail in chapter “III.3.2. Protein overexpression plasmids”. We 

made a single construct to overexpress Trx1, called pcDNA3/Trx1 which contained full 

length, wild type Trx1 cDNA whereas four Trx2-expressing vectors were generated, 

namely pcDNA/Trx2 expressing the entire WT human Trx2, pcDNA/Trx2-F expressing a 

Flag-tagged human Trx2, as well as pcDNA3/Trx2∆, expressing a truncated form of 

Trx2 which lacks the putative MLS (aa 1-60) and pcDNA3/Trx2∆-F, the truncated form 

of Trx2 tagged with Flag (a C-terminal 11 aa tag). These four constructs are 

schematically depicted in Fig.IV.23.C. 

 

Prior to the experiments of Trx2 overexpression in siAIF cells and controls, we aimed to 

assess the amount and localization of the overexpressed AIF in our cellular model. This 

was of particular importance, as we wanted to ensure that the overexpressed Trx2 was 

truly targeted to the mitochondrion and could thus have a more physiological effect. 

While Trx2 was expected to accumulate in the mitochondrion after transfection of the 

cells with the corresponding plasmid, the deleted form of Trx2, Trx2∆ was not 

expected to be directed to the mitochondria and would accumulate in the cytosol as a 

result of the absence of the MLS. 

 

To address the question of the localization of the overexpressed Trx2, we developed 2 

different experimental approaches. In the fist approach, t-25 flasks of Hep3B cells were 

transiently transfected with pcDNA3/Trx2-F and pcDNA3/Trx2∆-F as described in 

chapter “III.2.3. Transfection experiments”. Then, 72 h after the transfection, the cells 

were harvested and mitochondria-enriched protein extracts obtained. Next, we 

performed WB analysis, which showed that the bulk of the overexpressed Trx2 was 

localized in the mitochondrial fraction as opposed to Trx2∆. The overexpressed 

proteins were tagged with Flag and thus membranes were probed with anti-Flag 

antibody, in order to distinguish between the endogenous and the overexpressed Trx2. 

Tubulin and Porin were analyzed as house-keeping genes to verify protein loading and 

the purity of the cytosolic and mitochondria-enriched fractions. This experiment was 

performed twice with the same result. A representative WB is shown in Fig.IV.23.A.   
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In the second approach, the overexpressed Trx2 was labeled by immunofluorescence 

and visualized by confocal microscopy. For these analyses, we employed 24-well plates 

of HeLa cell cultures, which were transiently transfected with pcDNA3/Trx2-F and 

pcDNA3/Trx2∆-F. Later, 27 h after the transfection the cells were fixed on the coverslip 

glasses and incubated with anti-Flag antibody followed by incubation with secondary 

FITC-conjugated antibody. In order to visualize mitochondria, we used the 

fluorochrome Mitotracker Red. As expected, in the HeLa cells transfected with 

pcDNA3/Trx2-F, the red fluorescence of Mitotracker Red co-localized with Flag 

(fluorescence in green), indicating that Trx2 was targeted to the mitochondria (Fig. 

IV.23.B). This co-localization was not visible in the HeLa cells transfected with 

pcDNA3/Trx2∆-F, suggesting that Trx2∆-F was not in the mitochondria but distributed 

in the cytosolic compartment. This experiment was performed twice with a very similar 

result. 

 

Having shown the mitochondrial localization of overexpressed Trx2, next we wanted to 

study if Trx2 and Trx1 overexpression could reverse some of the parameters altered in 

siAIF cells. More in detail, we aimed to analyze the expression of Complex I 39 and 20 

kDa subunits, which, as described in previous chapters, is diminished in siAIF cells. 

Also, we aimed to look at the normoxic HIF-1α expression levels, which, we showed, 

are increased in siAIF cells. To this end, t-25 flasks of AIF1-10 and pU6-2 cells were 

transfected with pcDNA3/Trx1, pcDNA3/Trx2 and control pcDNA3 empty vector. Then, 

72 h later, the cells were harvested and whole-cell or mitochondria enriched protein 

extracts were obtained. Standard WB analyses were performed to examine Complex I 

subunits and HIF-1α expression. Also, the levels of Trx1, Trx2 and house-keeping 

protein β-actin were assessed. As shown in Fig.IV.24.A, Complex I subunits expression 

levels, in whole-cell protein extracts, were not reversed after transient Trx1 or Trx2 

overexpression in AIF1-10 cells. These experiments were performed several times (not 

less than four) and similar results were obtained.  

 

However, when we examined normoxic HIF-1α stabilization in whole-cell protein 

extracts of AIF1-10 cells by WB, interestingly we observed that it was partially restored 

to control levels after both Trx1 and Trx2 overexpression. Of note, Trx2 overexpression 

was much more effective and could almost completely reverse the normoxic HIF-

1α phenotype in AIF1-10 cells. This result was recorded in three independent 

experiments and representative WB images are shown in Fig.IV.24.A. We also 
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overexpressed the deleted MLS-lacking form of Trx2, Trx2∆, but this, neither could 

restore Complex I subunits or HIF-1α expression to the wild type levels detected by 

WB in whole-cell extracts (results not shown).  

 

 

  
 
 
 

 

 

Figure IV.23. Overexpressed Trx2 but not Trx2∆∆∆∆ is targeted to mitochondria. A. 
Representative WB showing Trx2 expression in the mitochondria-enriched and 
cytosolic protein fractions of Hep3B cells were Trx2-F and Trx2∆∆∆∆-F have been 
transiently overexpressed. B. Representative confocal immunofluorescence 
microscopy images of HeLa cells, transfected with pcDNA3/Trx2-F and 
pcDNA3/Trx2∆∆∆∆-F, marked with Mitotracker Red and Flag fluorescence. C. Schematic 
representation of Trx2-WT (contains MLS, aa 1-60), the truncated form Trx2∆∆∆∆ which 
lacks the MLS and the corresponding Flag-tagged proteins (Trx2-F and Trx2∆∆∆∆-F), not 
to scale.  
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We also wanted to see if Trx2 overexpression in AIF1-10 cells could reverse the 

respiration defect these cells present (see chapter “IV.10. O2 consumption 

measurement in intact cells”). For this, t-75 flasks of pU6-2 and AIF1-10 cultures were 

transfected with pcDNA3 empty vector or pcDNA3/Trx2, using LipofectAMINETM 2000 

as described previously. Then, 72 h after the transfection, the cells were detached 

using Trypsin-EDTA and counted with a hemacytometer. Immediately, 2-3 million cells 

were suspended in HBSS and taken to the O2 chamber in the previously calibrated 

Clark-type oxygen electrode and O2 consumption was recorded. Another portion of the 

cellular suspension was immediately centrifuged and the cellular pellet frozen for WB. 

This analysis was later carried out in order to assess the Trx2 expression levels at the 

time point when O2 consumption was monitored and verify the efficacy of the Trx2 

overexpression.  

 

The graph represented in Fig.IV.24.B summarizes the data obtained in four 

independent experiments, suggesting that Trx2 overexpression does not modify basal 

O2 consumption in the control pU6-2 cells (2.42±0.280 nmolO2/min/106cells in Trx2-

overexpressed pU6-2 cells versus 2.40±0.121 nmolO2/min/106cells recorded in empty 

vector-transfected pU6-2 cells), whereas it can recover the respiration defect present 

in AIF1-10 cells (1.53±0.101 nmolO2/min/106cells in Trx2-overexpressed AIF1-10 cells 

versus 1.86±0.223 nmolO2/min/106cells recorded in empty vector-transfected pU6-2 

cells).  

 

However, the recovery we registered was only partial and not statistically significant 

when all the data together were analyzed with the t-test. Although the levels of 

overexpressed Trx2 seemed quite high in these experiments, as analyzed by WB in 

whole-cell and mitochondria-enriched protein extracts (a representative result of a WB 

using whole-cell protein extracts is shown in Fig.IV.24.C), we believe that it might have 

been not enough to fully reverse the respiration phenotype in siAIF cells.  Alternatively, 

Trx2 expression and rescue of the respiration are independent. 

 

In summary, both Trx1 and Trx2 overexpression can restore the normal normoxic 

expression levels of HIF-1α in siAIF cells but neither of these redox-active proteins is 

able to recover Complex I subunits expression. Also Trx2 overexpression can partially 

reverse the O2 consumption defect of siAIF cells detected in intact-cell respiration 

experiments. 
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Figure IV.24. Trx overexpression in AIF1-10 and the control pU6-2 cells. A. 
Representative WB result of Trx1 and Trx2 overexpression in pU6-2 and AIF1-10 
cells, protein levels of HIF-1αααα, AIF, CI(39), CI(20), Trx1, Trx2 and the house-
keeping ACTB are shown. B. O2 consumption in intact pU6-2 and AIF1-10 cells after 
Trx2 overexpression, results shown as mv±SEM, n=4, p>0.05. C. Representative 
WB images showing Trx2 overexpression in pU6-2 and AIF1-10 cells (O2 
consumption experiment). 
 

IV.16.4. Transient silencing of TRX2  

 

To further investigate the relationship between the Trx2 expression decrease in our 

stable siAIF cells and the phenotype these cells display, we decided to transiently 

silence TRX2 and analyze the expression of specific proteins. To achieve this, we 

transfected t-25 flasks cultures of Hep3B cells with pBS U6/PolIII/siTrx2-cassete A, pBS 

U6/PolIII/siTrx2-cassete B, and pBS U6/PolIII/siGFP (control silencing cassette). Then, 

72 h later, we harvested the cells and obtained whole-cell protein extracts. Standard 

WB protocol was employed to look at the expression of several proteins of interest: 
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AIF, CI(39) and CI(20). We also verified Trx2 levels and used β-actin expression as a 

house-keeping control. As shown in Fig.IV.25.A, transient silencing of TRX2 in Hep3B 

cells using both siTrx2-cassete A and cassette B resulted in large reduction of Trx2 

protein expression. This, however, does not alter AIF or Complex I subunits levels, at 

least in our model. The experiment was repeated three times with a similar result. 

 

IV.16.5. Co-immunoprecipitation of AIF and Trx2  

 

Having shown that both stable and transient AIF silencing leads to significant and 

constant decrease in Trx2 protein expression in our cellular model, we hypothesized 

that these two proteins may be in a close contact in the mitochondria. One way of 

addressing this question was to perform co-immunoprecipitation studies and analyze 

whether AIF and Trx2 could co-immunoprecipitate. To this end, pU6-2 and AIF1-10 cell 

cultures, grown under standard culturing conditions, were collected and whole-cell 

extracts obtained. A small portion of these extracts was not processed for 

immunoprecipitation and was kept as a control loading on the WB. Then, whole-cell 

protein extracts on pU6-2 and AIF1-10 cells were applied on an agarose resin, 

conjugated to anti-AIF antibody to immunoprecipitate AIF (for details, see chapter 

“III.13.4. Immunoprecipitation and co-immunoprecipitation”). Later, WB analysis was 

carried out to look at immunoprecipitated AIF and co-immunoprecipitated Trx2. On the 

same Western blot, we applied whole-cell extracts of pU6-2 and AIF1-10 as a control. 

As represented in Fig.IV.25.B, AIF was successfully immunoprecipitated, the band 

corresponding with AIF is clearly visible in the immunoprecipitated samples, however a 

large higher-molecular band is also visible in these samples, probably arising from the 

heavy chain of the  anti-AIF Ig. Of note, we could not observe any co-

immunoprecipitated Trx2. This experiment was performed several times (at least four), 

with similar results.  

 

In order to overcome the detection limits of this technique, we additionally increased 

the amount of resin used, or the amount of total protein in the whole-cell extract which 

was incubated with the resin, but none of these protocol modifications enabled us to 

visualize any Trx2 band on the WB after co-immmunoprecipitation.  

 

Thus, in conclusion, in our hands  and with our immunoprecipitation approach, AIF and 

Trx2 can not co-immunoprecipitate.   
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Figure IV.25. Analysis of the relationship between AIF and Trx2 in our cellular 
model. A. Representative WB showing Trx2, AIF, CI(39) and CI(20) expression in 
Trx2-silenced Hep3B cells. B. Representative WB of immunoprecipitated AIF 
showing an absence of  co-immunoprecipitated Trx2.  
 

IV.16.6. Proteomic studies on AIF 

 

To further study the role of AIF in the mitochondria, we analyzed the proteins to which 

AIF may bind or closely interact with. Also, it was of a particular interest for us to find 

out whether Trx2 is one of these putative AIF partners. To study these protein-AIF 

interactions, we developed pull-down experiments coupled to mass spectrometry (MS) 

for direct protein identification. We employed AIF as bait in immunoprecipitation 

assays, using pU6-2 and AIF1-10 cell extracts, being AIF1-10 the most adequate, 

internal control. The proteins detected by mass spectrometry analysis were the same 

for pU6-2 immunoprecipitated sample and the negative internal control sample, AIF1-

10. These proteins include: Ig kappa chain V-II region 26-10 (KV2A7_MOUSE), Ig 

gamma-2B chain C region, membrane-bound form (GCBM_MOUSE), Thioredoxin-

dependent peroxide reductase, mitochondrial precursor (PRDX3_HUMAN), Tubulin 

alpha-ubiquitous chain (TBAK_HUMAN) and Tubulin beta-5 chain (TBB5_HUMAN). The 

fact that these proteins were detected in both pU6-2 and AIF1-10 suggests that these 

are not specific for AIF. Moreover, surprisingly we were not able to detect AIF in the 

pU6-2 sample, meaning that possibly there was not enough starting protein material or 
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the conditions of the immunoprecipitation have to be improved. 

 

As indicated in Materials and Methods, Chapter “III.13.5. Proteomic studies”, a small 

portion of the immunoprecipitated protein extracts were checked for the presence of 

AIF by WB, revealing that AIF had been successfully immunoprecipitated (result not 

shown). However, it must be taken into account that WB is a signal-amplification 

technique, whereas MS is a direct technique requiring a minimal amount of protein for 

positive detection. Furthermore, binding partners of interest probably are low 

abundance proteins. Thus, small amounts of protein partners, binding specifically to 

the AIF bait, could be masked by the more abundant, non-specific binders to both the 

antibody and the solid support employed in the pull-down experiment.  

 

In summary, these preliminary proteomic results were attained with a single 

experiment, and are therefore not conclusive. It would be necessary to repeat this 

proteomic study using an improved protocol to draw conclusions about AIF protein 

interactions and binding.  
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“If you are going to doubt something, doubt your limits” 
 

Don Ward (1964- ) 
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In the last few decades, there has been an increased interest in mitochondrial 

research, unequivocally proved by the large number of scientific publications, which 

deal with a number of different issues regarding mitochondria. The reasons for the 

large increase in the mitochondrial research field are many and are mainly due to 

several discoveries over the last couple of decades, some of which were real 

breakthroughs that revolutionized and accelerated mitochondrial research. Several of 

these important steps are listed: 

 

• Mitochondria hold a central place in cellular metabolism and cellular signaling 

networks. 

• Mitochondria are crucial players in PCD, an indispensable and universal biological 

phenomenon.  

• Mitochondria are responsible for the so called “mitochondrial diseases”. 

Mitochondrial cytopathies include more than 40 different identified disorders that 

have varying genetic features but all include failure in mitochondrial function. It is 

estimated that about one in every 5000 new born children develops a 

mitochondrial disease by the age of 10 years. Thus, there is a development of 

mitochondrial medicine- a new and rapidly growing medical sub-specialty. 

• Mitochondria are involved in a wide range of clinically important conditions such as 

type 2 diabetes, atherosclerotic heart disease, stroke, cancer, aging and 

neurodegenerative disorders, including Parkinson's disease and Alzheimer's 

disease.  

 

Taking into consideration the points listed above, it is easy to understand why studying 

the mitochondrial role of AIF seems promising. When this work was initiated, AIF had 

already been extensively studied as a mitochondrial protein involved in a variety of 

apoptotic events, some related to clinically-relevant conditions. However, the true 

physiological function of this protein in healthy, non-apoptotic cells was not known. 

Nevertheless, there was some challenging evidence in the literature suggesting that this 

physiological, mitochondrial role of AIF was related to the ROS metabolism and this 

seemed likely considering the fact that AIF is NADH-reductase. Armed with this 

knowledge, we decided to silence AIF in a cellular model and examine the cellular 

steady-state ROS levels. Notably, transient AIF silencing in two different human cell 

lines, Hep3B and HeLa, was accompanied by a significant increase in H2O2 levels. This 

effect was also observed when AIF was silenced in a prolonged, stable fashion in Hep3B 
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background and also in a mouse ES AIF-KO cell line. During the course of this work, 

several groups reported their data on ROS levels related to AIF, and  surprisingly, AIF 

depletion in cells and animal models was shown to be correlated with both increased 

oxidative stress [Klein J.A. et al., 2002; Joza N. et al., 2005] and decreased levels of 

ROS [Urbano A. et al., 2005]  or even with no alterations in the redox state [Vahsen N. 

et al., 2004]. The causes of these discrepancies may be various. These differences may 

reflect cell type and model-specificity and further arise from the different technical 

approaches used to detect and quantify ROS levels. In addition, many publications do 

not report direct measurements of ROS but rather assess ROS-related parameters 

and/or study the consequences of oxidative damage in vitro or in vivo.     

 

After the increase in the ROS levels was determined in our experimental model, several 

questions emerged.  

 

• Where do these ROS come from?  

• Is this increase in ROS levels relevant? 

• What are the biological consequences of this increase? 

 

The fact that AIF is localized to the mitochondrion, and knowing that these organelles 

are the main site of intracellular ROS production, led us to hypothesize that the source 

of ROS generation after AIF silencing was the mitochondrion. Using rhoº cells, which 

lack functional mitochondrial ETC, we were able to show that this increase in ROS 

levels depends on the existence of a functional ETC as it does not occur in Hep3B rhoº 

cells. An alternative reading of this result could point to the mitochondrial ETC as the 

direct source of the ROS generated in siAIF cellular models. Due to the used 

methodological approach, we cannot distinguish between these two possibilities.  

 

The ETC, particularly Complex I and III, is a notorious ROS-production site [Muller F.L. 

et al., 2003; Adam-Vizi V. and Chinopoulos C., 2006] but there are several other 

mitochondrial enzymes known to produce ROS, such as: aconitase, alpha-ketoglutarate 

dehydrogenase (α-KGDH), monoamine oxidases (MAO), glycerol-3-phosphate 

dehydrogenase, dihydroorotate dehydrogenase and cytochrome b5 reductase 

(Fig.V.1), [for review see Andreyev A.Y. et al., 2005]. Of a particular interest is the 

dihydrolipoyl dehydrogenase (Dld) component of α-KGDH which has been shown to 

have  an important ROS-forming potential. Very intriguingly, a shift in the 
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intramitochondrial NADH/NAD+ redox couple towards NADH has been suggested to 

cause ROS production by α-KGDH [Tretter L. and Adam-Vizi V., 2004; de Grey A.D., 

2005]. Interestingly, α-KGDH is tightly bound on the IMM, on the matrix side [Maas E. 

and Bisswanger H., 1990], as represented in Fig.V.1. and even more intriguingly it has 

been shown to bind Complex I [Sumegi B. and Srere P.A., 1984]. ROS generation by 

this enzyme in relation to neurodegeneration has also been reported [Tretter L. and 

Adam-Vizi V., 2005].  

 

Whether α-KGDH activity is altered in our siAIF cellular mode awaits future studies. To 

the best of our knowledge, there is no bibliographical evidence for any connection 

between AIF and this TCA enzyme. Also, Yulia Kushnareva and co-workers suggested 

that the reduction of the ROS-forming site in Complex I is regulated by the 

NAD+/NADH ratio [Kushnareva Y. et al., 2002]. Of note, the mitochondrial NAD pool is 

normally almost all in an oxidized state (i.e. NAD+), but a deficient respiratory chain  is 

predicted to cause it to become more reduced. Yet, we are unable to say whether 

silencing of AIF in our model leads to changes in the mitochondrial concentration of 

the NAD+/NADH redox couple. 

 

Mitochondrially-derived ROS are important for a multitude of cell redox-signaling 

processes and perturbations in mitochondrial ROS generation can, therefore, affect 

different life aspects such as cell cycle, cell proliferation and oxygen sensing. Various 

proteins (kinases, phosphatases and transcription factors) have been shown to be 

redox-sensitive. Thus, we were interested in studying the effects of the increased ROS 

levels in our cellular model and for this reason, we examined several redox-sensitive 

transcriptions factors, namely HIF-1α, NF-κB, and Nrf-2. While there were no visible 

changes in the protein levels of NF-κB, both HIF-1α and  Nrf2 expression under basal 

conditions appeared to be increased. The normoxic stabilization of HIF-1α can have 

important physiological consequences. In tumours, rapid expansion of proliferating 

cells means that they can outgrow their vascular supply, resulting in impaired oxygen 

delivery and regions of tumour hypoxia. However, tumour cells often undergo genetic 

alterations which confers them resistance to these conditions. Of note, HIF1-α is highly 

expressed in a wide variety of cancers including colon, breast and prostate carcinomas  

[Zhong H. et al., 1999].  

 

Importantly, the normoxic HIF-1α stabilization in our stable siAIF cells can be reversed 
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by antioxidant treatments, using MitoQ and NAC, and also by overexpression of the 

redox-active protein thioredoxin. This finding points to the fact that the steady-state 

HIF-1α stabilization is a direct consequence of the increased ROS levels in these cells, 

which suggests that this ROS increase is relevant at the cellular level. 

 

Another transcription factor which was up-regulated in siAIF cells is Nrf2. We showed 

that not only steady-state expression of Nrf2 is increased but also part of it is 

translocated to the nucleus. Also to establish a possible link between Nrf2 activation 

and ROS increase in our model, we tested whether exogenous addition of H2O2 in the 

control cells could lead to up-regulation of Nrf2. In a similar fashion as the stabilization 

of HIF-1α, H2O2 treatment of these cells resulted in increased steady-state levels of 

Nrf2 protein. In addition, we looked at the expression of several genes known to be 

transcriptional targets of Nrf2, such as CAT or NQO1 but their expression was not 

altered. Thus, what the effects of Nrf2 increase in our model are, is not clear and 

awaits additional studies. In this context, it is important to stress that investigation of 

Nrf2 opens up new opportunities in understanding how antioxidant defense pathways 

work and may also serve as a possible target for designing novel therapies for 

treatment of diseases in which oxidative stress and toxicity are implicated. For 

example, Nrf2 has been shown to confer neuroprotection against mitochondrial 

damage induced by the mitochondrial complex II inhibitor 3-nitropropionic acid [Shih 

A.Y. et al., 2005]. 

 

To our surprise, others redox-active enzymes such as SOD1 and SOD2 were not 

significantly altered in our siAIF cellular model. We detected just a slight decrease in 

SOD2 expression, both at mRNA and protein level, but whether this decrease was 

relevant was not studied further. Moreover, we did not register significant alterations in 

the overall cellular concentrations of GSH, suggesting that the ROS insult in siAIF cells 

is either not very strong or these cells have developed adaptive mechanisms to 

maintain the redox state of glutathione at physiological (WT) levels. The bibliographic 

evidence for GSH alterations in AIF-depleted models is ambiguous. Several studies 

have shown unchanged GSH levels, as in the case of wild type and mutant mouse 

hearts where Aif had been genetically removed [Joza N. et al., 2005] or when GSH was 

assessed in AIF-deficient ES cells [Vahsen N. et al., 2004]. On the contrary, when 

studying the regulation of cytoplasmic stress granules by AIF, Celine Candé and 

colleagues found that AIF-negative cells under stress conditions depleted non-oxidized 
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glutathione more rapidly than the cells expressing AIF [Candé C. et al., 2004]. 

 

Furthermore, we aimed to study mitochondrial ETC assembly and function. We and 

others have shown that Complex I assembly is compromised in siAIF cells. In addition, 

we have shown that Complex I respiratory function is deficient in our model, measured 

as Complex I-dependent O2 consumption in digitonin-permeabilized cells, resulting in 

an overall 30% reduction in intact cell respiration. This finding is important, knowing 

that deficiency of Complex I is the most common cause of disorders of the oxidative 

phosphorylation system in humans. Many neuropathies as well as cancer diseases 

present Complex I deficiencies, significantly correlated with the disease prognosis. The 

mechanism(s) by which AIF regulates mitochondrial respiration through Complex I 

remains to be determined. AIF is not an integral part of Complex I, rather it has been 

postulated that AIF holds some chaperone-like function regulating Complex I 

biogenesis and/or stability. 

 

We aimed to study the link between Complex I defect and ROS, though it presented 

many difficulties. It is generally known that the inhibition of Complex I can lead to 

formation of ROS [Adams Jr J.D. et al., 1993]. It has also been suggested that this 

incremented production of ROS could be due to shunting of electrons through Complex 

II, which may generate 5-7 times as many ROS as passing through Complex I (Dykens 

J.A., 1994). Clinically relevant is the fact that several examples of enhanced ROS 

production in genetic defects of Complex I are known in the literature, pointing to the 

fact that dysfunctional Complex I may subject cells to oxidative stress  [Pitkanen S. 

and Robinson B.H., 1996; Robinson B.H., 1998]. In the same line, superoxide 

production was shown to be inversely related to Complex I activity in inherited 

Complex I deficiency [Verkaart S. et al., 2007].  

 

But can we be certain, at least theoretically, that Complex I is the origin of the 

increased ROS that we have detected in siAIF cells? 

 

When studying ROS and Complex I, one faces the apparent paradox that damaged and 

non-functional Complex I produces ROS but also oxidative stress can damage Complex 

I and thus compromise its function. Often, these effects merge and cannot be 

discriminated. There is a wealth of bibliographical evidence showing that ROS can 

inhibit Complex I activity and this occurs even dose-dependently. In vitro studies on in 
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situ synaptic mitochondria have shown that 16-30% inhibition of Complex I is sufficient 

to stimulate ROS generation and lead to a collapse of ∆ψm in the presence of a 

concomitant oxidative stress [Chinopoulos C. and Adam-Vizi V., 2001].  Moreover, ROS 

insult can indirectly affect mitochondrial respiration. Treatment of isolated rat heart 

mitochondria with H2O2 was shown to result in a decline of state 3 NADH-linked 

respiration [Nulton-Persson A.C. and Szweda L.I., 2001]. These authors reported that 

exogenous addition of H2O2 to isolated mitochondria inactivated certain mitochondrial 

TCA enzymes (aconitase, α-KDGDH and SDH) without damaging ETC complexes. 

 

How increased ROS are related to the defect of Complex I 39 and 20 kDa subunits 

expression in our cellular model remains elusive. All our attempts to reverse this defect 

with antioxidant treatments, using antioxidants (both a general and mitochondria-

targeted antioxidant) and overexpressing Trx2 as an endogenous antioxidant, have 

failed. A similar result is described in the literature and it was obtained when CI 

expression was studied in AIF-deficient ES cells. In this scenario, Complex I levels 

could not be recovered by antioxidant treatment such as addition of tocopherol, 

decylubiquinone or GSH ester [Vahsen N. et al., 2004].  Thus, we are unable to 

establish a direct link and claim that the decrease in Complex I expression is 

exclusively due to ROS increase. Alternative, indirect mechanisms can also account for 

the Complex I defect, resulting from AIF silencing. The redox activity of AIF might play 

a role in controlling the redox status of key components of Complex I, necessary for its 

correct maintenance and function. It is also plausible to suggest that AIF may 

participate in the redox modification of regulatory molecules, not themselves direct 

components of Complex I. In this respect, several groups have underlined the 

importance of native lipids for the stabilization and activation of Complex I within the 

IMM [Hirst J. et al., 2003]. Tightly bound cardiolipin may be required for structural 

integrity of the complex and can even have a functional role. Notably, cardiolipin is a 

well-known target of oxidative stress damage. Knowing this, we may speculate that 

AIF is related to cardiolipin in a direct way or via the ROS insult produced when AIF is 

silenced.  

 

In summary, additional functional studies on Complex I biogenesis and stability need to 

be undertaken in order to reveal the true mitochondrial role of AIF.   

 

Remarkably, the respiration defect in siAIF cells can be reversed using antioxidant 
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treatment (NAC or MitoQ), or partially upon Trx2 overexpression. In view of this 

finding, we suggest that there is a direct link between the increased ROS production 

and loss of respiratory capacity in siAIF cellular model. This assumption has precedents 

in the literature, as it has been described in many pathophysiological models such as 

that of cardiac ischemia/reperfusion injury where there is a build-up of ROS which, in 

turn, can inactivate the mitochondrial ETC at Complex I and Complex III and thus lead 

to a decrease in oxygen consumption [Petrosillo G. at al.,  2003; Paradies G. et al., 

2004].  

 

 

Figure V.1. Sources of ROS in the mitochondrion and connections with NAD/NADP 
metabolism. ROS-producing enzymes are marked with a star. Abbreviations: ACO 
(aconitase), COX (cytochrome c oxidase), c (cytochrome c), CI (Complex I),  CIII 
(Complex III), PDHC (pyruvate dehydrogenase complex), SDH (succinate 
dehydrogenase), ααααGDH (αααα-glycerolphosphate dehydrogenase), MDH (malate 
dehydrogenase), IDH (isocitrate dehydrogenase), KGDHC (αααα-ketoglutarate 
dehydrogenase complex), MAO (monoamine oxidase), TH (transhydrogenase), GR 
(glutathione reductase), DHOH (dihydroorotate dehydrogenase), ME (malic enzyme) 
[modified from Andreyev A.Y. et al.,  2005]. 
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Also, NAC treatment  has been shown to improve the impaired OxPhos process in 

cybrids harboring a T8993G point mutation in mtDNA [Mattiazzi M. et al., 2004]. This 

antioxidant has also been reported to protect against age-related inactivation of 

Complex I in mouse synaptic mitochondria [Banaclocha M.M. et al., 1997].  

 

Considering our results and the bibliographical evidence, we can suggest a dual 

mechanism for Complex I deficiency and ROS in our cellular model. We propose that 

AIF is necessary for Complex I assembly and this is prior to any ROS generation at the 

level of this complex. However, ROS coming from ETC and/or elsewhere contribute to 

the respiration defect as it can be improved using antioxidants. Thus, Complex I 

respiration deficiency can be due to both the lack of proper protein complex assembly 

and oxidative stress. The general model of AIF´s role in the mitochondrion is 

schematically represented in Fig.V.2. 

 

As a further support for the proposed function of AIF as a redox modifier was the 

finding that AIF is up-regulated upon H2O2 treatment of cells and this increase occurs 

at a post-transcriptional level. To our knowledge this is the first time that the 

expression of AIF is shown to be up-regulated in cells by acute oxidative stress. 

 

Moreover, the inhibition of Complex I has been shown to lead to loss of ∆ψm [Wu E.Y. 

et al., 1990]. This is interesting as our siAIF cells display a significant decrease in ∆ψm. 

It is important to stress that ∆ψm is a very important cellular parameter, often 

employed as an indicator of cellular viability. Disruption of ∆ψm can have many 

consequences as it is not only important for ATP generation but is also required for 

mitochondrial protein import and metabolite transport regulation. A severe drop in the 

∆ψm targets cells for apoptosis or alternatively, necrosis. Interestingly, many studies 

have proven the correlation between ROS production and ∆ψm. In this respect, 

increases in ROS can lead to ∆ψm reduction but also some articles provide evidence for 

the inverse phenomenon where changes in ∆ψm provoke ROS generation in the 

mitochondrion. Both increased and decreased ∆ψm have been shown to induce ROS 

formation or at least occur concomitantly, in different models. 

 

The next question we addressed was, how does the respiration defect and the increase 

in ROS levels affect the overall metabolism of siAIF cells? For this, we assessed several 

parameters.  
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Figure V.2. Schematic model of the function of AIF in the mitochondrion. A. AIF is 
present in the mitochondrion, Complex I is assembled. B. AIF is absent, Complex I is 
misassembled, ROS production at ETC or other sources is increased. Abbreviations: 
pyr. (pyruvate), citr. (citrate), isocitr. (isocitrate), αααα-ketoglut. (αααα-ketoglutarate), 
succ. (succinate), fum. (fumarate), mal. (malate), oxalac. (oxalacetate). 
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Observed under ordinary light microscope and proliferating under normal cell culture 

conditions, siAIF cells and control cell lines show similar size, and morphology. Also,  

siAIF cells do not display any external signs of cell damage or death. However, siAIF 

cells proliferate at a significantly lower rate compared to wild type Hep3B cells and the 

control pU6-2 cell line, which proliferate at a very similar rate. Of note, the ATP levels 

of siAIF cells were very similar to that detected in control cells which led us to analyze 

the glycolytic capacity of these cells.  

 

Expectedly, siAIF cells had a higher glycolytic capacity as they presented a higher 

glucose up-take and accumulated more lactate over a prolonged period of time in 

culture compared to control cell lines. We also observed that these cells manifested a 

lower capacity of growing on non-fermentable sugars such as galactose.  

 

All these data suggest that the cellular metabolism in siAIF cells is switched towards 

glycolysis in order to cover the deficit of ATP generation by the OxPhos process. Very 

similar observations concerning the increased glucose dependency and lower 

proliferation rate were reported in AIF-deficient ES cells [Vahsen N. et al., 2004]. The 

fact that siAIF cells have an increase in glycolysis and the fact that they proliferate 

slower (have lower energetic demands in this respect) explains why these cells can 

maintain normal (WT) ATP levels under basal conditions. Remarkably, different human 

tumour cells have been shown to display enhanced glycolysis dependency directly 

linked to the attenuated mitochondrial bioenergetic function, a phenomenon first 

described by Otto Warburg in 1920s. 

 

It is noteworthy that antioxidant treatment of siAIF cells cannot restore normal 

proliferation in these cells. This can be interpreted in two ways. One possibility is that 

the biochemical changes siAIF cells undergo are deeper and more complicated than we 

expected, and thus cannot be overcome by elimination of the generated ROS or that 

the antioxidant treatment was not adequate, in terms of concentration and duration to 

restore the normal cellular metabolism and thus the proliferation rate. 

 

Another observation that merits consideration in a metabolic context is the fact that 

siAIF cells present higher levels of the GAPDH transcript in comparison to their control 

counterparts. As GAPDH is a classic glycolytic enzyme this finding is in line with the 

results discussed in the previous paragraph. However, GAPDH has also been shown to 
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have other cellular functions [for review, see Chuang D.M. et al., 2005]. Thus, it has 

been suggested that GAPDH acts as an intracellular messenger mediating apoptotic cell 

death, being this a part of a novel cellular death cascade. In addition, it has been 

proposed as a novel sensor of NO stress. Clinically, GAPDH regulation seems to be 

important for several  pathological conditions such as diabetes and neurodegenerative 

disorders. Intriguingly, very recently Dongwon Baek and colleagues showed that 

GAPDH can suppress ROS generation in Arabidopsis thaliana and yeast models [Baek 

D. et al., 2008]. Also, it is worth mentioning that GAPDH activity needs the presence of 

NAD+ and the concentration ratio of NAD+/NADH can regulate its activity. If cytosolic 

NADH concentration is increased due to deficiencies in the mitochondrial OxPhos  

process, GAPDH activity can be diminished. We could speculate that a similar situation 

may be present in our cellular model where AIF has been depleted. Again, it would be 

essential to determine the relative NAD+/NADH concentration ratio in our cellular 

model, in the whole cell and the mitochondria specifically, in order to test this 

hypothesis. What are the consequences, other than promoting glycolysis, of the 

increase of GAPDH expression in siAIF cells is not known and needs additional 

investigation.  

 

Aiming to further study the consequences of AIF silencing at the mitochondrial level, 

we found that Trx2 levels were significantly decreased in our siAIF cells without 

affecting the redox state of the Trx2 protein. The fact that silencing of AIF and Trx2 

reduction in our model are truly related was confirmed by performing transient 

silencing experiments, which had the same outcome. The thioredoxins and related 

enzymes (such as thioredoxin reductases) are ubiquitous redox proteins whose tissue 

distribution, genetics and reaction mechanism have been widely studied. However, 

little is known about the mitochondrial isoforms of these proteins. Of note, there is 

now mounting evidence that Trx1 and Trx2 are quite different in terms of activity and 

regulation. Namely, Trx1 and Trx2 display quite different aa sequence in the protein 

interaction domain, conferring them different specificity and also Trx2 seems to be 

more resistant to oxidation, as suggested by the lack of a few structural (non-catalytic) 

Cys residues, which are present in other mammalian thioredoxins [Spyrou G. et al., 

1997]. Intriguingly, unlike Trx1, Trx2 is highly expressed in heart and skeletal muscle 

[Spyrou G. et al., 1997], suggesting a specific protective and/or regulatory role of Trx2 

in these metabolically active tissues. Also, Trx2 is highly expressed in the neurons of 

several brain regions, particularly in those with a prominent free radical production and 
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thus may provide important neuronal defense against ROS and redox-related damage. 

In this direction, it is tempting to speculate that Trx2 may play a role in 

neurodegenerative diseases such as PD.  

 

The mitochondrial Trx system seems to be essential for mammalian embryonic 

development as the disruption of Trx2 gene in the mouse results in massive apoptosis 

during early embryogenesis and embryonic lethality [Nonn L. et al., 2003]. However, 

overexpression of Trx2 or TrxR2, or both, does not necessarily improve cell survival or 

resistance to ROS-promoting factors [Patenaude A. et al., 2004], indicating that 

unidentified factors control their ROS-protecting role in the mitochondria. Remarkably, 

Trx2 has been suggested to interact with  the mitochondrial respiratory chain 

complexes regulating ∆ψm, which accounts for its role as an anti-apoptotic 

mitochondrial protein. All of the above points to the suggestion that the mitochondrial 

function of Trx2 obviously goes beyond its specific function as a mitochondrial-ROS 

defence player.  

 

The similarity between AIF as an oxidoreductase enzyme and the thioredoxin system, 

consisting of Trx, TrxR and NADPH, as a powerful protein-disulfide antioxidant, has 

already been suggested in the literature [van Empel V.P.M. et al., 2005].  

 

Taking into consideration that AIF depletion in our model leads to a clear reduction in 

Trx2 expression, we speculated that these proteins may be in a rather direct contact. 

However, our attempts to establish a possible link between AIF and Trx2, using co-

immunoprecipitation and proteomic approach did not succeed. Yet, we believe that in 

order to discard any direct correlation between AIF and Trx2 in our hands, the 

techniques we employed should be improved. Furthermore, additional studies with 

different approaches in this respect are needed as the lack of evidence is not 

necessarily evidence of the lack. 
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CONCLUSIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“It is never too late to be what you might have been” 
 

George Eliot (1819-1880)
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1. We have designed efficient siRNA cassettes which abolished the expression of 

the AIF gene in a cellular model. 

 

2. Stable siAIF KD cell lines have been successfully generated in a human 

hepatoma cell line, Hep3B.  

 

3. Characterization of these cell lines revealed that: 

 

• Silencing of AIF in a cellular model leads to a significant increase in ROS 

levels and these ROS are of mitochondrial origin. 

 

• The increase of ROS in siAIF cells is relevant as two redox-sensitive 

transcription factors, HIF-1 and Nrf2, are up-regulated. 

 

• Silencing of AIF is accompanied by Complex I deficiency resulting in 

compromised oxygen consumption. The defect in mitochondrial 

respiration can be recovered with antioxidant treatments but the same 

treatments cannot restore normal Complex I protein expression. 

 

• siAIF cells display a higher glycolytic capacity and lower proliferation rate 

presumably comprising adaptive metabolic mechanisms. 

 

• AIF silencing is followed by a significant decrease in Trx2 expression  

levels. 

 
 

4. The results obtained in this work suggest that AIF holds an integral 

mitochondrial function, as a redox modifier and a chaperone like-molecule, 

involved in maintenance of the redox balance in the mitochondrion and 

necessary for Complex I assembly. 
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VII. FUTURE PERSPECTIVES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“Science is always wrong, it never solves a problem without creating ten more”  
 

George Bernard Shaw (1856-1950) 
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The concept of oxidative stress is currently suffering from excessive popularity, caused, 

in most cases, by scientists who try to “sell” the idea that oxidative stress is involved in 

almost all pathological conditions and/or try to “sell” antioxidant molecules as life 

prolongers or healing molecules for many diseases. On the other hand, studying the 

differences between oxidative stress conditions and redox regulation/signaling is also 

an interesting challenge. The fact that AIF is involved in the mitochondrial ROS 

metabolism makes it a very promising target for future investigations both in 

physiological (redox signaling) and pathological (oxidative stress) conditions. 

 

Future studies should also focus on AIF-interacting molecules in the mitochondria, 

specifically binding proteins which could reveal more details about the true 

mitochondrial role of AIF.  

 

Moreover, it would be of a particular interest to establish models for AIF involvement in 

neurodegenerative disorders and possibly other mitochondria-associated diseases.  
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IX. RESUMEN  

 

INTRODUCCIÓN 

 

La Muerte Celular Programada (MCP) es un proceso natural, genéticamente regulado y 

altamente organizado, que forma parte del desarrollo y del control de la homeostasis 

en tejidos de organismos pluricelulares. Existen observaciones ocasionales al respecto 

desde mediados del siglo XIX, pero ha sido el análisis genético, realizado inicialmente 

en el nematodo Caenorhabditis elegans, el que ha permitido demostrar la existencia de 

programas genéticos de regulación de la muerte celular. La célula expresa los 

componentes moleculares que le van a permitir "suicidarse", dependiendo de un 

balance de señales procedentes de la misma célula (endógenas) y del medio ambiente 

celular (exógenas). 

 

La caracterización del complejo mecanismo de la MCP está cambiando profundamente 

la comprensión de numerosas patologías humanas. Muchas enfermedades 

neurodegenerativas, el cáncer, diferentes tipos de esclerosis, los infartos cerebrales o 

las relacionadas con el envejecimiento, además de enfermedades autoinmunes e 

infecciones virales, están asociadas de alguna forma a la MCP. Algunos autores 

proponen que la mayoría de las enfermedades podrían tener un componente de 

pérdida del control de la MCP, lo que contribuiría a la patología. Es fácil, pues, 

entender que el estudio y la comprensión de los mecanismos moleculares de la muerte 

celular estén entre las prioridades de numerosos grupos de investigación en el ámbito 

de la biomedicina y la industria farmacéutica. 

 

La apoptosis es una forma de MCP que se caracteriza por cambios morfológicos y 

bioquímicos en la célula, precisos y regulados, tales como: hinchamiento de la 

membrana celular, activación de las caspasas, reorganización del citoesqueleto, 

condensación y fragmentación de la cromatina y exposición de marcadores en la 

membrana celular, que actúan como señalizadores para la fagocitosis. Aunque durante 

mucho tiempo se consideraba que la mitocondria no formaba parte del proceso 

apoptótico, hoy en día está ampliamente reconocido que dicho orgánulo participa 

activamente en el suicidio celular. Entre los cambios que sufre la mitocondria en el 

proceso apoptótico se incluyen: la interrupción de la fosforilación oxidativa, la 

alteración en el potencial de membrana mitocondrial (∆ψm) y el equilibrio redox, la 
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permeabilización de la membrana mitocondrial y la liberación de proteínas 

proapoptóticas como algunas procaspasas, el cyt c, EndoG, Smac/Diablo y el Factor 

Inductor de Apoptosis (AIF, “Apoptosis-Inducing Factor”), este último objeto 

del presente estudio.  

 

AIF fue descubierto en el año 1996 y posteriormente clonado en el 1999, por el grupo 

de Guido Kroemer (Centre Nacional de la Recherche Scientifique, Francia). Se trata de 

una flavoproteína ancestral, filogenéticamente bien conservada, presente tanto en el 

reino de Eucariota, como en Bacteria y Archaea. El AIF humano consta de 613 

aminoácidos y muestra alta homología con el ortólogo de otras especies (92% con el 

AIF murino al nivel de toda la proteína y 95% al nivel del dominio C-terminal).  

 

AIF se expresa durante todos los estadíos embrionarios y también en prácticamente 

todos los tejidos adultos. La proteína se sintetiza como un precursor de 67 kDa, 

organizado en tres dominios: la región N-terminal, residuos 1-100, que contiene una 

Señal para la Localización Mitocondrial (SLM), la región central de 27 aminoacidos 

(“spacer”) y el dominio C-terminal que posee dos Señales para la Localización Nuclear 

(SLN). Una vez el precursor de AIF se encuentra en la mitocondria, el dominio N-

terminal que lleva la SLM es recortado por parte de las proteasas mitocondriales. A 

continuación, se incorpora el grupo prostético FAD y de esta manera se obtiene la 

forma madura de AIF con un peso molecular de 57 kDa. Dentro de la mitocondria, AIF 

se localiza en el espacio intermembrana, posiblemente unido a la membrana interna, y 

forma parte de las proteínas denominadas poco abundantes (menos del 0,1% del total 

de las proteínas mitocondriales).  

 

La conservación de los sitios de unión de NAD y FAD en AIF sugiere una actividad 

oxidoreductasa que además se ha comprobado in vitro. Como característica estructural 

importante de AIF destaca la presencia de una larga inserción en el dominio C-terminal 

que no presenta homología con otras proteínas. La delección de esta parte de AIF 

anula su actividad proapoptótica, de ahí que se crea que este dominio posee un papel 

fundamental en la muerte celular. También se ha descrito que el dominio C-terminal 

posee sitios de unión con chaperonas, con ADN y ARN; además hay evidencias de la 

presencia de un motivo PEST, involucrado en procesos de degradación proteica y 

característico de proteínas de rápida metabolización. Además, AIF posee 3 residuos de 

cisteina en su secuencia, aparentemente no involucrados en puentes disulfuro. 
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Distintos estímulos proapoptóticos provocan la translocación de AIF desde su 

localización fisiológica, en el espacio intermembrana, al citosol primero y 

posteriormente al núcleo, donde AIF induce la denominada “apoptosis nuclear”, que se 

manifiesta como condensación de la cromatina y fragmentación de la misma en 

fragmentos de alto peso molecular, 50 kb. Aunque AIF no tiene actividad intrínseca de 

nucleasa, su carga neta positiva sugiere unión al ADN. La micro-inyección de AIF 

recombinante en células in vitro o la adición de AIF a núcleos aislados produce 

fenotipos apoptóticos como: condensación de la cromatina, disminución de ∆ψm y 

otros. Es importante resaltar que ninguno de estos efectos se puede inhibir con 

inhibidores de caspasas, lo que indica que AIF es un efector apoptótico que actúa 

independientemente de las caspasas. 

 

Conviene añadir que AIF tiene un papel fundamental en el desarrollo embrionario 

temprano, ya que los embriones de ratón que carecen de AIF por completo (“Knock 

Out”) no son viables.  

 

En células no apoptóticas, como ya se ha expuesto, AIF se encuentra en el espacio 

intermembrana de la mitocondria, donde su función fisiológica se desconoce. Ensayos 

in vitro han mostrado que AIF posee actividad oxidoreductasa, aceptando electrones 

de NADH. Sin embargo, su actividad como NADH oxidasa in vivo no se ha estudiado, 

por lo que se desconoce el receptor al cual AIF le pasa electrones. También es 

importante añadir que la región redox-activa de AIF no es imprescindible para su 

función apoptótica.  

 

Teniendo en cuenta el hecho de que AIF es una oxidoreductasa, en los últimos años se 

han llevado a cabo estudios que han tratado de esclarecer el papel de AIF como 

proteína participante en el equilibrio redox de la célula. En 2002, Jeffrey A. Klein y 

colaboradores publicaron un trabajo en la revista Nature, en el cual estudiaron 

detalladamente el mutante murino Arlequín (Hq) que exhibe un fenotipo caracterizado 

por degeneración progresiva de las neuronas del cerebelo y de la retina con el 

envejecimiento. Merece la pena mencionar también que muchas enfermedades 

neurodegenerativas humanas (Parkinson, Alzheimer, etc.) presentan un fenotipo 

similar. El mutante Arlequín posee una mutación en el gen de Aif que da a lugar a una 

disminución de los niveles de la proteína AIF de hasta un 80% en algunos órganos 

como el cerebro. Curiosamente, las células granuladas de este ratón, cultivadas in 
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vitro, muestran mayor susceptibilidad a la apoptosis inducida por peróxido en 

comparación con las mismas células parentales. La reintroducción de AIF en estas 

células hace que se recupere la resistencia a peróxido de hidrógeno. Con esta 

observación los autores dieron a conocer un nuevo papel de AIF, en la retirada o 

captación (“scavenger”) de las Especies Reactivas de Oxígeno (EROs). No obstante, in 

vitro, AIF no sólo no se comporta como “scavenger” de las EROs, sino que las produce 

catalizando la transferencia de electrones de NADH a oxígeno molecular y generando 

radical superóxido, aunque esta situación no se podría extrapolar para las condiciones 

in vivo dado que se desconocen el donador y el aceptor de electrones. 

 

También existen evidencias que le otorgan a AIF un papel protector de la integridad 

mitocondrial. Así, algunos trabajos defienden la participación de AIF en la cadena de 

transporte electrónico (CTE) en la mitocondria. Más en detalle, varias publicaciones en 

los últimos años han demostrado que AIF participa en el mantenimiento de la 

integridad del Complejo I de la CTE ya que la ausencia de AIF en varios modelos 

celulares está relacionada con deficiencias en este complejo, aunque el mecanismo de 

esta acción está por estudiar todavía. En este sentido, conviene añadir que muchas 

enfermedades mitocondriales se caracterizan con diferentes defectos a nivel del 

Complejo I, con consecuencias graves sobre el proceso de fosforilación oxidativa y el 

metabolismo de los EROs mitocondriales. 

 

En resumen, el hecho de que AIF posea, aparte de su papel proapoptótico, otro papel 

participando en el equilibrio redox de la mitocondria, está claramente aceptado. Esto 

ha abierto nuevos horizontes en el entendimiento de los mecanismos de vida/muerte 

en los sistemas biológicos y ha convertido los estudios sobre AIF en un campo 

fascinante.  

 

La intrigante “doble vida” de AIF aún tiene muchas incógnitas que tendrán que ser 

resueltas en futuros trabajos. Algunas de las preguntas que quedan por contestar para 

esclarecer la paradoja del comportamiento de “Dr. Jekyll and Mr.Hide” de AIF son las 

siguientes:   

 

¿Cuál es el verdadero papel fisiológico de AIF?  

¿Participa AIF en la captación y la retirada de las EROs o por el contrario, es un 

productor de las mismas? 
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OBJETIVO 

 

El objetivo de este trabajo ha sido estudiar el papel fisiológico del AIF en la 

mitocondria, mediante el empleo de células genéticamente modificadas para perder la 

expresión del mismo.  

 

METODOLOGÍA 

 

Como modelo de trabajo se han usado células Hep3B (línea celular de hepatoma 

humano), empleando no obstante, en algunos estudios, la línea celular HeLa 

(carcinoma del cérvix de útero humano) o las líneas AIF-KO y el control CRE-AIF de 

células madre de ratón. 

 

Para silenciar AIF, se ha usado la metodología de ARN de interferencia (ARNi), 

generando 3 cassettes de ARNi, dirigidas a tres regiones distintas del mRNA del AIF. 

Hicimos, primero, un estudio piloto para observar la expresión génica de las tres 

“splicing variants” de AIF en diferentes tejidos y poder ver si los cassettes (ARNi), 

diseñados los podían silenciar a los tres. En un primer lugar, los cassettes de ARNi se 

usaron para silenciar AIF de forma temporal, mediante transfección transitoria. Las 

células transfectadas de forma transitoria se usaron para comprobar la eficacia de los 

cassettes de interferencia y también para analizar los niveles de las EROs. Aparte de 

las células Hep3B, de esta manera hemos transfectado también la línea celular HeLa 

para analizar los niveles de las EROs. Una vez comprobada la eficacia de los cassettes 

de interferencia siAIF1, siAIF2 y siAIF3 en transfección transitoria, procedimos a la 

generación de las líneas de Hep3B con AIF silenciado de forma estable. Estas líneas 

son útiles porque ofrecen un silenciamiento duradero y constante a diferencia de las 

líneas donde AIF se ha silenciado de forma transitoria. Para la obtención de líneas 

estables de Hep3B, las células se cotransfectaron con el vector que contiene el 

cassette de interferencia y con otro plásmido, el pcDNA3.0, que expresa el marcador 

de resistencia a neomicina. Transfectando estos dos vectores en un alto ratio (5:1 o 

10:1), uno puede seleccionar las células doble-transfectadas mediante su crecimiento 

en medio que contiene neomicina.  

 

La misma técnica de ARNi se empleó también para silenciar TRX2, de forma transitoria, 

empleando dos cassettes de ARNi, Trx2-A y Trx2-B. 
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Para caracterizar las células carecientes de AIF utilizamos diferentes técnicas de 

biología molecular y bioquímica. Los niveles de las EROs se cuantificaron mediante una 

técnica de espectrofotometría utilizando “Amplex red kit” y también se usó la 

miscroscopía confocal. Esta última técnica también se empleó para determinar el 

potencial de membrana mitocondrial. La concentración de glutation reducido (GSH) se 

midió mediante fluorimetría y microscopia confocal. Los niveles de ATP se 

determinaron con un ensayo de bioluminiscencia, mientras que las concentraciones de 

lactato y glucosa en el medio se midieron mediante espectrometría. La expresión de 

muchas proteínas incluyendo AIF, los factores de transcripción HIF-1α, NF-κB y Nrf2, 

la survivina, Trx1 y Trx2, las subunidades de 39 y 20 kDa del Complejo I, la subunidad 

B del Complejo II y las subunidades 1 y 2 del Complejo IV de la CTE, se cuantificó 

mediante Western blot. También se realizaron PCRs genómicas y RT-PCRs 

semicuantitativas (para analizar la expresión génica de la Aldolasa A, GLUT1, AIF, 

GAPDH, KEAP1, NQO1 y las enzimas relacionadas con el estatus redox, SOD1, SOD2 y 

Catalasa), además de  las RT-PCRs cuantitativas en tiempo real (para SOD1 y SOD2). 

La actividad transcripcional de HIF1 se analizó mediante “gene reporter assay”, usando 

como “reporter gen” la luciferasa. Técnicas de biología molecular habituales se usaron 

para analizar la expresión génica de  las tres “splicing variants” de AIF en diferentes 

tejidos y también para sobreexpresar tanto las proteínas Trx1 y Trx2 como generar 

Trx2 mutante, Trx2∆ (Trx2 con una delección en el N-terminal que elimina la secuencia 

SLM e impide que la proteína sea translocada a la mitocondria) y marcar estas 

proteínas con el epítopo Flag. La distribución de las Trx2 sobreexpresada en las células 

transfectadas se monitorizó utilizando técnicas de inmunofluorescencia y microscopía 

confocal. La posible  relación entre AIF y Trx2  la abordamos con técnicas de 

coinmunoprecipitación y proteómica. El consumo de oxígeno en células intactas y 

células permeabilizadas con digitonina se realizó usando el electrodo de oxígeno, tipo 

Clark. La proliferación celular se determinó mediante el contaje de células en 

suspensión, con hemacitómetro, o usando el ensayo espectrofotométrico con MTT. 

 

RESULTADOS Y DISCUSIÓN 

 

Como se ha expuesto previamente, hoy en día existe mucha polémica respecto al 

papel que juega AIF en la generación/retirada de las EROs. Teniendo en cuenta dicha 

controversia en los trabajos existentes en la bibliografía, consideramos prioritaria la 

evaluación del estatus redox en las células carecientes de AIF. Para ello, silenciamos 
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AIF de forma transitoria en las células Hep3B y HeLa y detectamos los niveles de H2O2 

usando el “Amplex red kit”. En ambos casos se ha visto que los niveles de las EROs 

están aumentados significativamente, comprobando así que el aumento de las EROs 

no es específico para la línea celular Hep3B, sino que está ligado a la pérdida de AIF. 

Una vez visto que las células que poseen AIF silenciado muestran niveles aumentados 

de las EROs, lo siguiente era analizar de dónde proviene esta producción de EROs. Con 

el fin de corroborar si la generación de las EROs proviene de la mitocondria hicimos 

uso de células que carecen de mitocondrias funcionales, las denominadas células rhoº. 

Para obtener este fenotipo tratamos las células Hep3B con bromuro de etidio durante 

periodos largos, a dosis suficientes para anular la transcripción del ADN mitocondrial y 

no perjudicar el ADN nuclear. Ya que muchas de las subunidades de los complejos de 

la cadena de transporte electrónico en la mitocondria son codificadas por genes 

mitocondriales, una de las características de las células rhoº es la casi completa 

inhibición de la respiración celular. Una vez confirmada la presencia del fenotipo rhoº, 

procedimos a analizar los niveles de las EROs usando el “Amplex red kit”. 

Transfectamos de forma transitoria las células Hep3B-rhoº, con el fin de silenciar AIF y 

cuantificamos los niveles de las EROs en estas células, comparándolos con las células 

rhoº de transfección control. Tal y como se esperaba, el silenciamiento de AIF en las 

células rhoº no conlleva un incremento de las EROs, sugiriendo que para la producción 

de EROs en nuestro modelo de AIF silenciado se precisa mitocondria funcional. Sin 

embargo, con este abordaje experimental no pudimos asegurar que las EROs 

aumentadas provienen de la CTE. Aunque las evidencias bibliográficas apuntan a la 

CTE como la principal fuente de EROs en la mitocondria, también existen algunos 

indicios de la presencia de otras enzimas generadoras de EROs, de las cuales algunas 

forman parte del ciclo de Krebs. La relación entre estas enzimas y AIF no se ha 

estudiado todavía. Tampoco sabemos si en nuestro modelo de AIF silenciado las 

actividades de estas enzimas se ven alteradas. La producción de EROs a nivel de la 

algunas enzimas del ciclo de Krebs puede estar relacionada con el ratio NADH/NAD+, 

así que esto sería un punto añadido para futuros estudios del modelo celular de AIF 

silenciado. 

 

Tras observar que el silenciamiento de AIF de forma transitoria produce un aumento 

significativo de las EROs, procedimos a su silenciamiento continuado, mediante 

transfección estable. De esta forma y seleccionando los clones resistentes a neomicina, 

obtuvimos 46 líneas de siAIF, 16 del cassette siAIF1, 14 del siAIF2 y 16 del siAIF3. A 
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continuación, realizamos análisis de Western blot y RT-PCRs para cuantificar los niveles 

de AIF y seleccionamos dos líneas, una de cada cassette, que presentaban mayor 

silenciamiento. Estas líneas, denominadas AIF-1-10 y AIF-2-4, son las líneas que se 

mantuvieron en cultivo durante periodos largos y se emplearon para la caracterización 

fenotípica mediante distintos ensayos de bioquímica y biología molecular. Como 

control, además de usar las células Hep3B de fenotipo salvaje, usamos la línea pU6-2, 

obtenida mediante transfección con el plásmido vacío. 

 

A continuación, cuantificamos los niveles de las EROs intracelulares en las líneas siAIF 

mediante microscopía confocal. Usando distintos fluorocromos (HE y DCFH-DA), 

detectamos que tanto los niveles del superóxido como los de agua oxigenada y radical 

peroxilo, están aumentados respecto a la línea control, pU6-2. Curiosamente, 

detectamos también una reducción significativa en el potencial de la membrana 

mitocondrial, mientras que no había cambios en los niveles de glutation reducido.  

 

La siguiente pregunta que nos hicimos era si este incremento de las EROs en nuestro 

modelo es relevante, desde el punto de vista fisiológico.  Existen muchas evidencias de 

la conexión entre los niveles de las EROs y la cadena de transporte electrónico en la 

mitocondria tanto en condiciones fisiológicas como en patológicas. Sin embargo, 

revisando la bibliografía, no es fácil establecer las conexiones directas ya que parece 

que los efectos de las EROs sobre la CTE y viceversa forman una complicada red de 

causas y consecuencias. La CTE mitocondrial es el principal productor de EROs en la 

célula y sus defectos a menudo suponen un importante aumento de la generación de 

las EROs. Por otro lado, las EROs dañan la CTE provocando una disminución de la 

respiración mitocondrial. En vista de que las células siAIF muestran incrementados los 

niveles de las EROs, hemos considerado importante medir la respiración celular. 

Midiendo el consumo de oxígeno basal, observamos una inhibición significativa (de 

35% aproximadamente) en las líneas siAIF, comparadas con las líneas control.  

 

Por otra parte, quisimos ver si el defecto en la respiración celular se puede revertir 

usando antioxidantes. Para ello, empleamos dos antioxidantes, N-Acetil-Cisteína (NAC) 

y Mitoquinona (MitoQ). NAC es un antioxidante general que tiene distintos efectos en 

la célula, mientras que MitoQ es un antioxidante mitocondria-selectivo dado que por su 

alta carga positiva se acumula específicamente en la mitocondria. Después de haber 

tratado las células siAIF y las células control con los antioxidantes, medimos el 
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consumo de oxígeno y observamos que efectivamente el fenotipo de inhibición de la 

respiración mitocondrial en las líneas carecientes de AIF se puede revertir. Este efecto 

se ha podido comprobar tanto en el tratamiento con NAC como con MitoQ, no obstante 

ninguno de los dos tratamientos altera la respiración en la línea celular control. El 

consumo de oxígeno en células siAIF también se pudo recuperar sobreexpresando la 

proteína mitocondrial Trx2 que tiene papel protector en el metabolismo redox.  

 

Obtenidos estos resultados, a continuación quisimos analizar la respiración de células 

permeabilizadas. Para permeabilizar las células se usa el detergente digitonina cuya 

alta afinidad para el colesterol permite permeabilizar sólo la membrana celular, 

mientras la membrana mitocondrial permanece intacta. La respiración basal de una 

célula permeabilizada es muy baja, ya que depende de los sustratos que se añaden de 

forma exógena. Con este procedimiento y usando la técnica de polarografía se puede 

detectar el consumo de oxígeno dependiente de cada complejo de CTE por separado. 

En condiciones normales, el Complejo I es el limitante de la CTE. También se conoce 

que este complejo es muy susceptible a alteraciones provocados por las EROs, 

curiosamente siendo él mismo el principal generador de superóxido en la CTE. Hay que 

añadir que en la literatura ya existen indicios que correlacionan el AIF con este 

complejo. Conociendo todo esto, decidimos analizar la respiración dependiente del 

Complejo I, empleando dos sustratos de este complejo, malato y glutamato, y su 

inhibidor específico, la rotenona. Observamos que en las líneas siAIF, la respiración 

dependiente de Complejo I se muestra significativamente inhibida, comparándola con 

la línea control, pU6-2. Sin embargo, la respiración dependiente del Complejo II, 

añadiendo succinato como sustrato, no se ve inhibida. Curiosamente, tras el 

pretratamiento de las células siAIF con MitoQ, la respiración dependiente del Complejo 

I está  recuperada por completo. Concluyendo, se puede decir que el silenciamiento de 

AIF conlleva una disminución en la respiración mitocondrial que proviene del Complejo 

I y depende de los niveles de las EROs, puesto que se puede recuperar con 

pretratamiento antioxidativo.  

 

Vista la implicación del Complejo I en el defecto de la OxPhos, procedimos a analizar la 

expresión de este macrocomplejo mediante WB. Estos estudios revelaron que la 

expresión de las subunidades de 39 y 20 kDa está significativamente reducida en las 

células siAIF y no se puede restaurar mediante tratamientos con los antioxidantes NAC 

y MitoQ, ni sobreexpresando las dos formas de tioredoxina, la citosólica, Trx1 o la 



Nadezda Apostolova                                 Doctoral Thesis: “Mitochondrial role of AIF: OxPhos and ROS”  
 

191  

mitocondrial, Trx2. Por lo tanto, de qué forma está implicado el incremento de las 

EROs en la integridad del Complejo I se desconoce y requiere estudios adicionales. Es 

posible que el AIF posea un papel de chaperona, cuya presencia estabiliza el Complejo 

I. De otra manera, la falta de AIF puede resultar en un aumento de las EROs que 

dañan/inactivan otra(s) proteína(s) involucrada(s) en el mantenimiento  del Complejo 

I. Cabe destacar también que la expresión de los otros complejos de la CTE en nuestro 

modelo de siAIF, analizada por WB, no se ve afectada, lo que apunta a un fenómeno 

exclusivo del Complejo I. 

 

Para profundizar en los estudios sobre las consecuencias fisiológicas del incremento de 

las EROs, quisimos analizar algunos factores de transcripción, sensibles a los cambios 

redox, como Nrf2, HIF-1α y NF-κB. Mientras los niveles de expresión de NF-κB no se 

veían afectados por el silenciamiento de AIF, en el caso en HIF-1α y Nrf2 observamos 

una clara regulación a la alta. Es más, comprobamos también que el tratamiento de las 

células control con H2O2 exógena provoca un incremento en los niveles de HIF-1α y 

Nrf2. El papel directo de las EROs en la estabilización de HIF-1α en las células siAIF se 

pudo verificar mediante el tratamiento de las células con antioxidantes. La 

estabilización de HIF-1α en las líneas carecientes de AIF se puede revertir tras un 

tratamiento antioxidante, con NAC o MitoQ, o sobreexpresando Trx1 y Trx2. Además, 

la adición de H2O2 en las células control, provocó un aumento en los niveles de 

expresión de AIF, a nivel post-transcripcional. Todos estos resultados ponen de 

manifiesto el papel de AIF en el metabolismo redox celular.   

  

A continuación procedimos a analizar la expresión de algunos genes diana de estos 

factores de transcripción y otros genes implicados en el mantenimiento del estatus 

redox celular. Mientras que en la expresión génica de la Aldolasa A, el transportador de 

Glucosa, Glut1, las enzimas redox, NQO1, Catalasa y SOD1, no hubo alteraciones 

visibles, sí detectamos una pequeña disminución en la expresión de SOD2 que no 

resultó ser estadísticamente significativa. 

 

En vista de los resultados obtenidos de disminución en la fosfolorilación oxidativa, 

quisimos estudiar las consecuencias metabólicas de este fenómeno. Para ello 

analizamos varios parámetros que definen la capacidad de glucólisis de las células y el 

estado bioenergético de las mismas. Estos ensayos revelaron que los niveles de ATP en 

las células siAIF no eran diferentes de los niveles detectados en las líneas celulares 
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control; sin embargo, sí que se pudo detectar una mayor acumulación de lactato y un 

mayor consumo de glucosa. Además, las células siAIF muestran una tasa de 

proliferación basal inferior a la tasa detectada en las líneas control y tienen dificultad 

para proliferar en medio de cultivo que carece de glucosa y lleva galactosa en su lugar. 

También una de las enzimas principales en la ruta glucolítica, GAPDH, mostró una 

mayor expresión en comparación con la misma en las células control. Todo esto indica 

que el metabolismo glucolítico en las células siAIF está modulado a la alta. Es posible 

que esto junto con la disminución de la proliferación celular y por lo tanto también 

disminución de la demanda energética basal, sea un mecanismo de adaptación frente 

a la deficiencia en la respiración mitocondrial. Sin embargo, cabe mencionar que la 

enzima GAPDH posee otras funciones además de su papel en la glucólisis. Se ha visto 

que esta enzima esta involucrada en la regulación de procesos apoptóticos que puede 

ser de interés para futuros estudios. 

 

Para profundizar en los estudios sobre el papel fisiológico de AIF, analizamos la 

expresión de las tioredoxinas, proteínas involucradas en el mantenimiento del equilibrio 

redox en la célula.  Mientras que la expresión de la forma citosólica, Trx1, no se ve 

afectada, las células siAIF muestran una disminución significativa en la expresión de la 

tioredoxina mitocondrial, Trx2. Es importante mencionar que la Trx2 además de tener 

un papel antioxidativo en la mitocondria, parece poseer otras funciones. Por ejemplo, 

se ha visto que la Trx2 está implicada en la regulación de procesos apoptóticos en la 

mitocondria. Para analizar la posible relación entre el AIF y la tioredoxina, realizamos 

estudios de coinmunoprecipitación y un estudio preliminar de proteómica. Ninguno de 

estos ensayos pudo mostrar que entre el AIF y la Trx2 existe una relación directa 

aunque ambas técnicas en nuestras manos requieren ser mejoradas.  

 

Obtenidos todos estos resultados, la hipótesis sobre el papel de AIF en nuestro modelo 

celular sería la siguiente: AIF está involucrado en el equilibrio redox de la mitocondria, 

ya que su silenciamiento provoca un aumento en los niveles de las EROs 

mitocondriales. Este aumento es relevante y tiene varias consecuencias bioquímicas, 

como la estabilización de algunos factores de transcripción, además de tener impacto 

sobre la CTE en la mitocondria. AIF está implicado en el mantenimiento de la 

integridad y/o la biogénesis del Complejo I. Cual es la fuente de las EROs 

incrementadas  en la mitocondria y de qué manera están éstas implicadas en el 

defecto del Complejo I se desconoce y requiere de una investigación más exhaustiva. 
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CONCLUSIONES 

 

1. Hemos diseñado cassettes de interferencia por RNA, eficaces en la inhibición de 

la expresión génica de AIF en un modelo celular. 

 

2. Se ha logrado el establecimiento de líneas AIF KD estables usando células de 

Hep3B, línea celular de hepatoma humano. 

 

3. La caracterización de estas líneas  mostró que: 

 

• El silenciamiento de AIF en nuestro modelo celular conlleva a un 

incremento significativo en las EROs y éstas son de origen mitocondrial. 

 

• El incremento de las EROs es relevante puesto que dos factores de 

transcripción, sensibles al estatus redox, HIF-1 y Nrf2, se muestran 

activados. 

 

• El silenciamiento de AIF  viene acompañado por una deficiencia en el 

Complejo I de la CTE, que resulta en una disminución en el consumo de 

oxígeno mitocondrial. Este defecto en la respiración mitocondrial puede 

ser revertido mediante tratamiento con antioxidantes, no siendo el caso 

cuando los mismos tratamientos se emplean para normalizar la expresión 

proteica de las subunidades del  Complejo I. 

 

• Las células siAIF muestran una mayor capacidad glucolítica y una 

disminución en la tasa de proliferación celular, posiblemente como parte 

de un mecanismo metabólico de adaptación.  

 

• El silenciamiento de AIF viene acompañado por una disminución 

significativa en la  expresión proteica de Trx2.  

 

4. Los resultados obtenidos en esta Tesis Doctoral sugieren que AIF posee una 

función mitocondrial integradora, siendo involucrado en el mantenimiento del 

equilibrio redox celular y como chaperona molecular, participando en la 

biogénesis y el ensamblaje del Complejo I de la CTE en la mitocondria. 
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