Cryogenic Silicon Microstrip detector modules for LHC

dc.contributor
Universitat Politècnica de Catalunya. Departament de Física i Enginyeria Nuclear
dc.contributor.author
Perea Solano, Blanca
dc.date.accessioned
2011-04-12T15:19:19Z
dc.date.available
2004-09-14
dc.date.issued
2004-07-05
dc.date.submitted
2004-09-09
dc.identifier.isbn
8468889520
dc.identifier.uri
http://www.tdx.cat/TDX-0909104-082148
dc.identifier.uri
http://hdl.handle.net/10803/6604
dc.description.abstract
CERN is presently constructing the LHC, which will produce collisions of 7 TeV protons in 4 interaction points at a design luminosity of 1034 cm-2 s-1. The radiation dose resulting from the operation at high luminosity will cause a serious deterioration of the silicon tracker performance. The state-of-art silicon microstrip detectors can tolerate a fluence of about 3·1014 cm-2 of hadrons or charged leptons. This is insufficient for long-term operation in the central parts of the LHC trackers, in particular after the possible luminosity upgrade. By operating the detectors at cryogenic temperatures the radiation hardness can be improved by a factor 10. <br/>This work proposes a cryogenic microstrip detector module concept which has the features required for the upgraded LHC experiments at CERN. The module can hold an edgeless sensor, being a good candidate for improved luminosity and total cross-section measurements. The design of such a module is constrained by the requirements on radiation hardness and minimal mass. The choice of the component materials is guided by the properties of the silicon sensors, and the main criteria include best possible matching of the thermal dilatation, high thermal conductivity and appropriate elastic properties, in addition to the radiation resistance. <br/>A module design is proposed where, apart from the silicon sensor, both the support plate and the pitch adapter are processed on silicon. Future design options may also feature hybrids processed in silicon using thick-film techniques and cooling microchannels directly micromachined into the support plate. The best performance and highest degree of integration of the cooling is achieved with two-phase flow (high heat transfer coefficient) argon running through capillary pipes embedded in a CFC spacer close to the heat sources. A series of thermal tests have shown that silicon is an excellent heat spreader and its use as a structural material leads to a uniform temperature distribution in the sensor and support plate. The thermal resistance due to the glue layers dominates the thermal behaviour. <br/>The thermoelastic properties of the epoxies are key factors in the design. A series of samples were prepared to measure these properties of Araldite® 2011, Stycast® 1266 and Type L epoxies filled with fused quartz powder, as a function of temperature. Filling these epoxies reduces their thermal dilatation, nearly matching that of metals. This reduces the stress in the joints when cooling down. However, filling increases the Young modulus (E) of the epoxy so much, that the thermal stress increases with the filling factor. Furthermore, filling increases the viscosity and leads to thicker glue layers, which also increases the thermal stress in silicon. The idea of using filled epoxy was therefore abandoned. The E of unfilled epoxies at 77 K is between 4 and 8 times higher than that measured at 300 K. Thin layers of epoxy should be used to minimize the stress on the silicon substrate.<br/>Precision gluing jigs were designed and produced to assemble the prototype modules. The alignment with respect to the beam is done using a warm support plate, placed between the module and the vacuum chamber. The module is attached to this support structure through three thermally isolating precision support posts with dowels. The position of the module and its readout strips is thus accurately referred to the vacuum chamber, which itself can be aligned in the test beam line using optical targets.<br/>A first electrical prototype module was assembled using a 50 ?m pitch silicon microstrip sensor (32.5 cm2). Pitch adapter and support plate were processed on silicon. The CMS hybrid with APV25 readout chips was characterized at low temperature. First results were obtained down to 210 K, showing a decrease of the noise and the rise time and an increase of the pulse peak height with respect to the room temperature behaviour. <br/>A pair of edgeless silicon diode pad sensors was exposed to the X5 high-energy pion beam, in order to determine the edge sensitivity. A high-resistivity silicon p+-i-n+ planar diode detector (0.25 cm2) was diced through its front p+ implant to produce two halves of edgeless diode pad sensors. A large surface current on such an edge prevents the normal reverse biasing of this device but it can be sufficiently reduced by the use of a suitable cutting method, followed by edge treatment and by operating the sensor at low temperature. The gap width between the edgeless sensors, determined using the tracks measured by a reference telescope, was compared with metrology measurements. It was concluded that the depth of the dead layer is compatible with zero within the statistical accuracy of 8 µm and systematic accuracy of 6 µm.
cat
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
High energy Physics
dc.subject
Edgeless sensors
dc.subject
Epoxy
dc.subject
Silicon microstrip detector
dc.subject
Radiation hard
dc.subject
Thermoelastic design
dc.subject
Cryogenics
dc.subject.other
2205. Mecànica - 3312. Tecnologia de materials
dc.title
Cryogenic Silicon Microstrip detector modules for LHC
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
536
cat
dc.subject.udc
620
cat
dc.subject.udc
621
cat
dc.contributor.director
Ninikoski O, Tapio
dc.contributor.codirector
Calviño, F. (Francisco)
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
cat
dc.identifier.dl
B.46981-2004


Documents

01Bps01de17.pdf

28.98Kb PDF

02Bps02de17.pdf

25.32Kb PDF

03Bps03de17.pdf

17.59Kb PDF

04Bps04de17.pdf

55.92Kb PDF

05Bps06de17.pdf

195.6Kb PDF

06Bps06de17.pdf

2.425Mb PDF

07Bps07de17.pdf

509.7Kb PDF

08Bps08de17.pdf

1.151Mb PDF

09Bps09de17.pdf

1.365Mb PDF

10Bps10de17.pdf

1.201Mb PDF

11Bps11de17.pdf

29.58Kb PDF

12Bps12de17.pdf

14.06Kb PDF

13Bps13de17.pdf

28.09Kb PDF

14Bps14de17.pdf

30.98Kb PDF

15Bps15de17.pdf

25.99Kb PDF

16Bps16de17.pdf

15.09Kb PDF

17Bps17de17.pdf

26.85Kb PDF

This item appears in the following Collection(s)