Electrically conductive nanocomposites for additive manufacturing

Author

Khan, Imran

Director

Kamma Lorger, Christina

Robert Mitchell, Geoffrey

Tutor

González Silveira, Marta

Date of defense

2020-10-15

ISBN

9788449096037

Pages

244 p.



Doctorate programs

Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència de Materials

Abstract

La tesi se centra en l’ús de nanocomposites conductors elèctricament en la fabricació d’additius. En aquest escenari, dos tipus de nanocomposites estan preparats per utilitzar-los com a matèria primera per a la impressió de nanocomposites conductors elèctricament amb dos tipus diferents de matrius; (1) un polímer termoplàstic i (2) una resina termoestable. Els nanotubs de carboni es van utilitzar com a partícules conductores elèctriques de nanoestructura. Aquestes nanoestructures formen xarxes complexes en una matriu de polímer de manera que el material de la matriu es transforma d’un material aïllant en un material conductor elèctricament. La policaprolactona és un polímer semicristal·lí i es considera material matricial adequat entre la classe de polímers termoplàstics, ja que ofereix unes excel·lents característiques reològiques, de flux i elàstiques. Les cadenes es van imprimir mitjançant una extrusora bio i es va mesurar la conductivitat elèctrica en aquestes cadenes amb l’efecte de la deformació uniaxial. La microstructura canvia sota l’efecte de la deformació uniaxial, provocant una alteració de l’orientació de nanotubs de carboni a la matriu de policaprolactona. Com a conseqüència de la reordenació de nanotubs, les vies conductores es desorganitzen o s’organitzen que poden augmentar o disminuir la conductivitat elèctrica en els nanocomposites. Les radiacions del sincrotró s’utilitzen per sondar aquests canvis en la microestructura. Es van preparar diferents composicions mitjançant nanotubs de carboni i es van estudiar les mostres impreses en termes de conductivitat elèctrica i microestructura mitjançant radiacions de sincrotró. A partir de l’anàlisi, es proposa un model que pugui predir la conductivitat elèctrica sota l’efecte de la deformació uniaxial. En termes de polímers termoestables, s’introdueix un sistema senzill per a la impressió de nanocomposites basats en polímers termoset. En un dels capítols es proporciona un detall complet del sistema d’impressió i de la tinta nanocomposita. Es va preparar tinta de nanocomposites basada en epoxi per contenir nanotubs de carboni com a partícules de farciment amb una petita porció de polímer termoplàstic, policaprolactona. Les mostres impreses estan subjectes al biaix extern que indiquen que són conductores elèctricament. Es van preparar diferents composicions utilitzant resina glicidil bisfenol-A epoxi, trietilenetetramina, policaprolactona, nanotubs de carboni i es destaquen els problemes per obtenir una qualitat d’impressió adequada. Les mostres impreses es van estudiar en termes de conductivitat elèctrica estudiant la conductivitat elèctrica de corrent altern i directe. El sistema material s’explora quant al nivell de reticulació, l’estructura i la morfologia i el comportament tèrmic. Es presenta un model per als nanocomposites mitjançant dades d’impedància obtingudes mitjançant l’espectroscòpia dielèctrica de banda ampla. La impressora s’utilitzarà en un futur per imprimir dispositius funcionals a petita escala, inclosos dispositius d’emmagatzematge d’energia, p. bateries d’estat sòlid, supercondensadors i plaques d’elèctrodes per a aquest tipus de dispositius.


La fabricación aditiva (AM) es un proceso de fabricación de capas sucesivas de material para construir un objeto sólido tridimensional a partir de un modelo digital, a diferencia de las metodologías de fabricación sustractiva. AM ofrece la libertad de diseñar e innovar un producto para que se puedan obtener y revisar piezas complejas si es necesario, en un tiempo reducido en comparación con las tecnologías de fabricación tradicionales. En términos de su utilización total y generalizada, la tecnología tiene aplicaciones limitadas. Por motivos similares, la nanotecnología se considera la fuerza impulsora detrás de una nueva revolución industrial. Tiene la capacidad de incorporar funcionalidades específicas, que se producen debido a la escala nanométrica, a las partes deseadas para dispositivos funcionales como electrodos para dispositivos de almacenamiento de energía. La tesis se centra en el uso de nanocompuestos conductores de electricidad en la fabricación aditiva. En este escenario, dos tipos de nanocompuestos están preparados para usar como materia prima para la impresión de nanocompuestos conductores de electricidad que emplean dos tipos diferentes de material matricial; (1) un polímero termoplástico y (2) una resina termoestable. Los nanotubos de carbono se usaron como partículas de nanoestructura eléctricamente conductoras. Estas nanoestructuras forman redes complejas en una matriz polimérica de manera que el material de la matriz se transforma de un material aislante en un material eléctricamente conductor. La policaprolactona es un polímero semicristalino y se considera un material matriz adecuado entre la clase de polímeros termoplásticos, ya que ofrece excelentes características reológicas, de flujo y elásticas. Los hilos se imprimieron usando una extrusora biológica y se midió la conductividad eléctrica en estos hilos bajo el efecto de la deformación uniaxial. La microestructura cambia bajo el efecto de una deformación uniaxial que conduce a alterar la orientación de los nanotubos de carbono en la matriz de policaprolactona. Como consecuencia de la realineación de los nanotubos, las vías conductoras interrumpen u organizan, lo que puede aumentar o disminuir la conductividad eléctrica en los nanocompuestos. Las radiaciones de sincrotrón se utilizan para sondear tales cambios en la microestructura. Se prepararon diferentes composiciones usando nanotubos de carbono y las muestras impresas se estudiaron en términos de conductividad eléctrica y microestructura usando radiaciones sincrotrónicas. Basado en el análisis, se propone un modelo que puede predecir la conductividad eléctrica bajo el efecto de la deformación uniaxial. En términos de polímeros termoestables, se introduce un sistema simple para la impresión de nanocompuestos termoestables a base de polímeros. El detalle completo del sistema de impresión y la tinta de nanocompuestos se proporciona en uno de los capítulos. La tinta de nanocompuesto a base de epoxi se preparó para contener nanotubos de carbono como partículas de relleno con una pequeña porción de polímero termoplástico, policaprolactona. Las muestras impresas están sujetas al sesgo externo que indica que son eléctricamente conductoras. Se prepararon diferentes composiciones usando resina epoxi de glicidil bisfenol-A, trietilentetramina, policaprolactona, nanotubos de carbono y se resaltan los problemas para adquirir la calidad de impresión adecuada. Las muestras impresas se estudiaron en términos de conductividad eléctrica, estudiando la conductividad eléctrica de corriente alterna y continua. El sistema de materiales se explora en términos del nivel de reticulación, estructura y morfología y comportamiento térmico. Se presenta un modelo para los nanocompuestos utilizando datos de impedancia obtenidos mediante espectroscopía dieléctrica de banda ancha. La impresora se utilizará en el futuro para imprimir dispositivos funcionales a pequeña escala, incluidos dispositivos de almacenamiento de energía.


Additive manufacturing is a process of making successive layers of material to build a three-dimensional solid object from a digital model, as opposed to subtractive manufacturing methodologies. This technology offers the freedom to design and innovation of a product so that complex parts can be obtained and revise if needed, within a small time as compared to traditional manufacturing technologies. In terms of its full utilization and widespread, the technology has limited applications. On similar grounds, nanotechnology is considered as the driving force behind a new industrial revolution. It has the ability to incorporate specific functionalities, occur due to the nanometric scale, to desired parts that offer freedom to design functional devices like electrodes for energy storage devices. The thesis is focusing on the use of electrically conductive nanocomposites into additive manufacturing. In this scenario, two types of nanocomposites are prepared to use as raw material for printing of electrically conductive nanocomposites employing two different types of matrix material; (1) a thermoplastic polymer and (2) a thermoset resin. Carbon nanotubes were used as electrically conductive nanostructure particles. These nanostructures form complex networks into a polymer matrix such that the matrix material transforms from an insulative material into an electrically conductive material. Polycaprolactone is a semicrystalline polymer and it is considered suitable matrix material amongst the class of thermoplastic polymers as it offers excellent rheological, flow and the elastic characteristics. Strands were printed using a bio extruder and electrical conductivity was measured in these strands under the effect of uniaxial deformation. The microstructure changes under the effect of uniaxial deformation leading to alter the orientation of carbon nanotubes in the polycaprolactone matrix. As a consequence of realignment of nanotubes, conductive pathways either disrupt or organize which can increase or decrease an electrical conductivity in the nanocomposites. Synchrotron radiations are used to probe such changes in the microstructure. Two different compositions were prepared using carbon nanotubes and the printed samples are studied in terms of electrical conductivity and microstructure using synchrotron radiations. Based on the analysis, a model is proposed that can predict the orientation of carbon nanotubes under the effect of uniaxial deformation. In terms of thermoset polymers, a simple system is introduced for the printing of thermoset polymer (epoxy) based nanocomposites. Complete detail of the printing system is provided in one of the chapters. Epoxy-based nanocomposite ink was prepared to contain carbon nanotubes as filler particles with a small portion of thermoplastic polymer, polycaprolactone. The printed samples are subject to the external bias which indicate that these are electrically conductive. A complete methodology was provided for the preparation of nanocomposite ink. Different compositions were prepared using glycidyl bisphenol-A epoxy resin, triethylenetetramine, polycaprolactone, carbon nanotubes and issues are highlighted to acquire appropriate print quality. The printed samples were studied in terms of electrical conductivity studying alternating and direct current electrical conductivity. The material system is explored in terms of the level of crosslinking, structure and morphology and thermal behaviour. A model is presented for the nanocomposites using impedance data obtained through broadband dielectric spectroscopy. The printer will be used in future to print small scale functional devices including energy storage devices e.g. solid-state batteries, supercapacitors and electrode plates for such kind of devices.

Keywords

Fabricació additiva; Fabricación aditiva; Additive manufacturing; Nanocomposites; Nanocompuestos; Conductivitat elèctrica; Conductividad eléctrica; Electrical conductivity

Subjects

620 - Materials testing. Commercial materials. Power stations. Economics of energy

Knowledge Area

Ciències Experimentals

Documents

inkh1de1.pdf

10.14Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)