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A B S T R A C T

We present three new stabilized finite element (FE) based Petrov–Galerkin methods
for the convection–diffusion–reaction (CDR), the Helmholtz and the Stokes problems,
respectively. The work embarks upon a priori analysis of some consistency recovery
procedures for some stabilization methods belonging to the Petrov–Galerkin frame-
work. It was found that the use of some standard practices (e. g.M-Matrices theory)
for the design of essentially non-oscillatory numerical methods is not appropriate
when consistency recovery methods are employed. Hence, with respect to convective
stabilization, such recovery methods are not preferred. Next, we present the design of
a high-resolution Petrov–Galerkin (HRPG) method for the CDR problem. The struc-
ture of the method in 1d is identical to the consistent approximate upwind (CAU)
Petrov–Galerkin method [68] except for the definitions of the stabilization parameters.
Such a structure may also be attained via the Finite Calculus (FIC) procedure [141] by
an appropriate definition of the characteristic length. The prefix high-resolution is used
here in the sense popularized by Harten, i. e.second order accuracy for smooth/regu-
lar regimes and good shock-capturing in non-regular regimes. The design procedure
in 1d embarks on the problem of circumventing the Gibbs phenomenon observed
in L2 projections. Next, we study the conditions on the stabilization parameters to
circumvent the global oscillations due to the convective term. A conjuncture of the
two results is made to deal with the problem at hand that is usually plagued by
Gibbs, global and dispersive oscillations in the numerical solution. A multi dimen-
sional extension of the HRPG method using multi-linear block finite elements is also
presented.

Next, we propose a higher-order compact scheme (involving two parameters) on
structured meshes for the Helmholtz equation. Making the parameters equal, we re-
cover the alpha-interpolation of the Galerkin finite element method (FEM) and the
classical central finite difference method. In 1d this scheme is identical to the alpha-
interpolation method [140] and in 2d choosing the value 0.5 for both the parame-
ters, we recover the generalized fourth-order compact Padé approximation [81, 168]
(therein using the parameter γ = 2). We follow [10] for the analysis of this scheme and
its performance on square meshes is compared with that of the quasi-stabilized FEM
[10]. Generic expressions for the parameters are given that guarantees a dispersion ac-
curacy of sixth-order should the parameters be distinct and fourth-order should they
be equal. In the later case, an expression for the parameter is given that minimizes the
maximum relative phase error in 2d. A Petrov–Galerkin formulation that yields the
aforesaid scheme on structured meshes is also presented. Convergence studies of the
error in the L2 norm, the H1 semi-norm and the l∞ Euclidean norm is done and the
pollution effect is found to be small.

Finally, we present a collection of stabilized FE methods derived via first-order and
second-order FIC procedures for the Stokes problem. It is shown that several well
known existing stabilized FE methods such as the penalty technique, the Galerkin
Least Square (GLS) method [93], the Pressure Gradient Projection (PGP) method
[35] and the orthogonal sub-scales (OSS) method [34] are recovered from the general
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residual-based FIC stabilized form. A new family of Pressure Laplacian Stabilization
(PLS) FE methods with consistent nonlinear forms of the stabilization parameters are
derived. The distinct feature of the family of PLS methods is that they are nonlin-
ear and residual-based, i. e.the stabilization terms depend on the discrete residuals
of the momentum and/or the incompressibility equations. The advantages and dis-
advantages of these stabilization techniques are discussed and several examples of
application are presented.

Keywords : Convection–diffusion–reaction problem, Helmholtz equation, Stokes
flow, Stabilized finite element methods, High-resolution Petrov–Galerkin method, lin-
ear interpolation of FEM and FDM stencils, Pressure Laplacian Stabilization, Disper-
sion analysis.

R E S U M E N

Presentamos tres nuevos métodos estabilizados de tipo Petrov–Galerkin basado en
elementos finitos (FE) para los problemas de convección–difusión–reacción (CDR), de
Helmholtz y de Stokes, respectivamente. El trabajo comienza con un análisis a priori
de un método de recuperación de la consistencia de algunos métodos de estabilización
que pertenecen al marco de Petrov–Galerkin. Hallamos que el uso de algunas de las
prácticas estándar (por ejemplo, la teoría de Matriz-M) para el diseño de métodos
numéricos esencialmente no oscilatorios no es apropiado cuando utilizamos los méto-
dos de recuperación de la consistencia. Por lo tanto, con respecto a la estabilización
de convección, no preferimos tales métodos de recuperación. A continuación, presen-
tamos el diseño de un método de Petrov–Galerkin de alta-resolución (HRPG) para
el problema CDR. La estructura del método en 1d es idéntico al método CAU [68]
excepto en la definición de los parámetros de estabilización. Esta estructura también
se puede obtener a través de la formulación del cálculo finito (FIC) [141] usando una
definición adecuada de la longitud característica. El prefijo de alta-resolución se uti-
liza aquí en el sentido popularizado por Harten, es decir, tener una solución con una
precisión de segundo orden en los regímenes suaves y ser esencialmente no oscila-
toria en los regímenes no regulares. El diseño en 1d se embarca en el problema de
eludir el fenómeno de Gibbs observado en las proyecciones de tipo L2. A continuación,
estudiamos las condiciones de los parámetros de estabilización para evitar las oscila-
ciones globales debido al término convectivo. Combinamos los dos resultados (una
conjetura) para tratar el problema CDR, cuya solución numérica sufre de oscilaciones
numéricas del tipo global, Gibbs y dispersiva. También presentamos una extensión
multidimensional del método HRPG utilizando los elementos finitos multi-lineales.

A continuación, proponemos un esquema compacto de orden superior (que incluye
dos parámetros) en mallas estructuradas para la ecuación de Helmholtz. Haciendo
igual ambos parámetros, se recupera la interpolación lineal del método de elementos
finitos (FEM) de tipo Galerkin y el clásico método de diferencias finitas centradas. En
1d este esquema es idéntico al método AIM [140] y en 2d eligiendo el valor de 0.5 para
ambos parámetros, se recupera el esquema compacto de cuarto orden de Padé gener-
alizada en [81, 168] (con el parámetro γ = 2). Seguimos [10] para el análisis de este
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esquema y comparamos su rendimiento en las mallas uniformes con el de FEM cuasi-
estabilizado (QSFEM) [10]. Presentamos expresiones genéricas de los parámetros que
garantiza una precisión dispersiva de sexto orden si ambos parámetros son distintos y
de cuarto orden en caso de ser iguales. En este último caso, presentamos la expresión
del parámetro que minimiza el error máximo de fase relativa en 2d. También pro-
ponemos una formulación de tipo Petrov–Galerkin que recupera los esquemas antes
mencionados en mallas estructuradas. Presentamos estudios de convergencia del er-
ror en la norma de tipo L2, la semi-norma de tipo H1 y la norma Euclidiana tipo l∞ y
mostramos que la pérdida de estabilidad del operador de Helmholtz (pollution effect)
es incluso pequeña para grandes números de onda.

Por último, presentamos una colección de métodos FE estabilizado para el prob-
lema de Stokes desarrollados a través del método FIC de primer orden y de segundo
orden. Mostramos que varios métodos FE de estabilización existentes y conocidos
como el método de penalización, el método de Galerkin de mínimos cuadrados (GLS)
[93], el método PGP (estabilizado a través de la proyección del gradiente de presión)
[35] y el método OSS (estabilizado a través de las sub-escalas ortogonales) [34] se re-
cuperan del marco general de FIC. Desarrollamos una nueva familia de métodos FE,
en adelante denominado como PLS (estabilizado a través del Laplaciano de presión)
con las formas no lineales y consistentes de los parámetros de estabilización. Una car-
acterística distintiva de la familia de los métodos PLS es que son no lineales y basados
en el residuo, es decir, los términos de estabilización dependerá de los residuos dis-
cretos del momento y/o las ecuaciones de incompresibilidad. Discutimos las ventajas
y desventajas de estas técnicas de estabilización y presentamos varios ejemplos de
aplicación.

Palabras clave : El problema de convección–difusión–reacción, La ecuación de
Helmholtz, El problema de Stokes, Métodos de elementos finitos estabilizado, El
método de Petrov–Galerkin con alta-resolución, Interpolación lineal de las esténciles
del MEF y del MDF, Cálculo finito, Análisis de dispersión numérica.
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Every morning in Africa, a gazelle wakes up.
It knows it must run faster than the fastest lion or it will be killed.

Every morning in Africa, a lion wakes up.
It knows it must outrun the slowest gazelle or it will starve to death.

It doesn’t matter whether you are a lion or a gazelle;
when the sun comes up, you’d better be running.

— Herbert Eugene Caen.
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Let auspicious thoughts come unto us from every direction.

— Rig Veda I:89.1.

I N T R O D U C T I O N

This thesis consists of three parts. The first part describes the work done on the
convection–diffusion–reaction problem, the second one deals with the Helmholtz
problem and the third one deals with the Stokes problem. In each part we propose
a new stabilized finite element based Petrov–Galerkin method for the corresponding
problem. The work presented in each part is independent from the rest of the parts
and hence can be read arbitrarily.

The motivation for the current work is in the quest to develop new numerical meth-
ods capable of providing stable and accurate solutions to the problems of fluid me-
chanics and their interaction with structures. The work presented here is the first
step towards this objective. This is done by the study of the convection–diffusion–
reaction, the Helmholtz and the Stokes problems. These problems are of vital impor-
tance as they are the simplest models related to transport processes, wave propagation
phenomenon and associated numerical difficulties that arise in fluid flow problems
and fluid-structure interaction. The convection–diffusion–reaction equation is an ideal
model problem to study the stabilization of singularly perturbed problems. Ten typi-
cal problems where the convection–diffusion phenomenon occurs is listed in [134]. For
instance, a common source is the linearization of Navier–Stokes equations with large
Reynolds number. The Helmholtz equation is an ideal model problem to study the
so-called pollution effect. It is also the simplest model problem concerning wave prop-
agation phenomenon, viz. acoustics, elastodynamics, fluid-structure interaction, elec-
trodynamics etc. [106]. A simple one-dimensional fluid-structure interaction problem
modeled using the Helmholtz equation was presented in [47, Section 5]. The Stokes
problem is the simplest model describing incompressible flow of a viscous fluid and
thus are ideal to study pressure stabilization, i. e.circumventing the div-stability condi-
tion (also known as the Ladyzhenskaya-Babuska-Brezzi condition) that the finite element
spaces should otherwise satisfy. We refer to [75, Chapter 2] for an exposition of the
same.

The point of departure was initially set to the analysis of an approach that has
been gaining momentum in the literature: consistency recovery procedures1 for lower-
order stabilized finite element methods. For residual-based stabilization methods, the
higher-order derivatives of the residual that appear in the stabilization terms vanish
when lower-order finite elements are used. Consistency recovery methods have been
advocated for these cases and have been shown to result in improved accuracy for
some problems [111, 148]. To be precise, the improved accuracy was reported for other
related unknowns of the problem (e. g.the pressure field) and not for the transported
unknown (e. g.the velocity field). The first chapter of this thesis discusses the gain/loss
by recovering the consistency of the discrete residual in the stabilization terms via the
form that includes the convective projection variable (as in the OSS method [34]) for

1 also know as residual correction methods

1
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the 1d convection-diffusion equation. The dispersion analysis of the semi-discrete and
fully-discrete problems was done and no gain in the dispersion accuracy is found by
including the convective projection variable. Further, the optimal expression of the
stabilization parameter on uniform meshes for the steady-state case and including
the convective projection variable revealed a strategical difficulty in the development
of discontinuity capturing methods. Hence, we do not prefer this consistency recovery
method in the stabilization of singularly perturbed problems.

In the second chapter we present the design of a high-resolution Petrov–Galerkin
(HRPG) method for the 1d convection–diffusion–reaction problem. The problem is
studied from a fresh point of view, including practical implications on the formula-
tion of the maximum principle, M-Matrices theory, monotonicity and total variation
diminishing (TVD) finite volume schemes. The prefix high-resolution is used here
in the sense popularized by Harten [82] in the finite-difference and finite-volume
community, i. e.second order accuracy for smooth/regular regimes and good shock-
capturing in non-regular regimes. The HRPG method is designed using the divide
and conquer strategy, i. e.the original problem is further divided into smaller model
problems where the different types of numerical artifacts that plague the original
problem are singled-out and the expressions for the stabilization parameters are de-
rived/updated to treat them effectively. Several 1d examples are presented that sup-
port the design objective—stabilization with high-resolution.

In the third chapter we present a multi dimensional extension of the HRPG method
using multi-linear block finite elements. In higher dimensions the solutions to the
convection–diffusion–reaction problem might additionally develop characteristic lay-
ers. These layers are a unique feature of multi dimensions and hence have no in-
stances in 1d. So we design a nondimensional element number that quantifies the
characteristic layers. By quantification we mean that it should serve a similar purpose
in the definition of the stabilization parameters as the element Peclet number does
for the exponential layers. Although the structure of HRPG method in 1d is identical
to the consistent approximate upwind Petrov–Galerkin method [68], in multi dimen-
sions the former method has a unique structure. The distinction is that in general the
upwinding is not streamline and the discontinuity-capturing is neither isotropic nor
purely crosswind. In this line, we present anisotropic element length vectors and using
them objective characteristic tensors associated with the HRPG method are defined.
Except for the modification to include the new dimensionless number that quanti-
fies the characteristic layers, the definition of the stabilization parameters calculated
along the element length vectors are a direct extension of their counterparts in 1d. The
strategy used to treat the artifacts about the characteristic layers is to treat them just
like the artifacts found across the parabolic layers in the reaction-dominant case. Sev-
eral 2d examples are presented that illustrate not only the advantages of the HRPG
method but also its limitations. Of course, the advantages outscore the limitations.

The second part of this thesis deals with the work on the Helmholtz problem.
Although this equation is related to some fluid-structure interaction problems, the
events that lead to the work presented here had a modest kickoff. Chronologically, the
work began just after the development of the HRPG method for the 1d convection–
diffusion–reaction problem. As the properties of the Helmholtz equation is shared
by the diffusion–production problem (obtained using a negative reaction co-efficient),
we were curious to investigate if the HRPG form be efficient to solve this case. As
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the HRPG form is nonlinear, one needs to choose a target solution to design the sta-
bilization parameters so as to recover this target solution. In 1d the simplest target
solution is the one that you get with the Galerkin FEM using a higher-order mass
matrix [70, 71, 110]. This scheme has a dispersion accuracy of fourth-order in 1d but
in higher dimensions it drops to second-order. Unfortunately all attempts to recover
this target solution within the HRPG form were in vain. Although this exercise bore
no fruit in favor of the HRPG method, we discovered alternate target solutions for the
Helmholtz equation that had higher-order dispersion accuracy in multi dimensions.

In the fourth chapter we present some observations and related dispersion anal-
ysis of a simple domain-based higher-order compact numerical scheme (involving
two parameters) for the Helmholtz equation. The stencil obtained by choosing the pa-
rameters as distinct was denoted therein as the ’nonstandard compact stencil’. Mak-
ing the parameters equal, the nonstandard compact stencil simplifies to the alpha-
interpolation of the equation stencils obtained by the Galerkin finite element method
(FEM) and classical central finite difference method (FDM). For the Helmholtz equa-
tion, generic expressions for the parameters were given that guarantees a dispersion
accuracy of sixth-order should the parameters be distinct and fourth-order should
they be equal. Convergence studies of the relative error in the L2 norm, the H1 semi-
norm and the l∞ Euclidean norm are done and the pollution effect is found to be
small.

In the fifth chapter we present a new Petrov–Galerkin method involving two param-
eters that yields on rectangular meshes the nonstandard compact stencil presented ear-
lier in the fifth chapter. This Petrov–Galerkin method provides the counterparts of the
later scheme on unstructured meshes and allows the treatment of natural boundary
conditions (Neumann or Robin) and the source terms in a straight-forward manner.
First, we present the test-functions that reproduce the mass matrix lumping technique
within a Petrov–Galerkin setting. Then, we show that the use of these test functions
in an appropriate variational setting reproduces the FDM stencil for the current prob-
lem on rectangular meshes. Next, we show that an appropriate combination of these
test-functions with the standard FEM shape functions will yield the nonstandard com-
pact stencil on rectangular meshes. Convergence studies of the relative error in the
L2 norm, the H1 semi-norm and the l∞ Euclidean norm show that the proposed
Petrov–Galerkin method inherits the higher-order dispersion accuracy observed for
the aforesaid numerical scheme.

The third and final part of this thesis deals with the work done on the Stokes prob-
lem. Here we present a collection of stabilized finite element (FE) methods derived
via first-order and second-order finite calculus (FIC) procedures. It is shown that sev-
eral well known existing stabilized FE methods such as the penalty technique, the
Galerkin Least Square (GLS) method, the Pressure Gradient Projection (PGP) method
and the orthogonal sub-scales (OSS) method are recovered from the general residual-
based FIC stabilized form. A new family of Pressure Laplacian Stabilization (PLS)
FE methods with consistent nonlinear forms of the stabilization parameters are de-
rived. The distinct feature of the family of PLS methods is that they are nonlinear and
residual-based, i. e.the stabilization terms depend on the discrete residuals of the mo-
mentum and/or the incompressibility equations. The advantages and disadvantages
of these stabilization techniques are discussed and several examples of application are
presented.





Part I

C O N V E C T I O N - D I F F U S I O N - R E A C T I O N P R O B L E M





Experience is what you get when you don’t get what you want.

— Dan Stanford.

1
A N A LY S I S O F A C O N S I S T E N C Y R E C O V E RY M E T H O D

1.1 introduction

In many transport processes arising in physical problems, convection essentially dom-
inates diffusion. The design of numerical methods for such problems that reflect their
almost hyperbolic nature and guarantee that the discrete solution satisfies the physical
conditions is a subject that has been widely studied. In particular for the convection-
diffusion problem the standard Galerkin finite element method leads to numerical
instabilities for the convection dominated case. Several stabilization methods, for in-
stance the Streamline-Upwind Petrov-Galerkin (SUPG), Galerkin Least Square (GLS),
Sub-Grid Scale (SGS), SGS with Orthogonal Sub-scales (OSS) etc., have been designed
to overcome this numerical instability. A thorough comparison of some of these meth-
ods from the point of view of their formulation and the motivations that lead to them
can be found in [32]. Also stabilization procedures based on Finite Calculus (FIC) have
been developed as a general purpose tool for improving the stability and accuracy of
the convection-diffusion problem [141, 143, 145, 147]. A residual correction method
based on FIC was presented in [148] and is shown to yield an equivalent formulation
to an OSS form [34] with very little manipulation.

For the convection diffusion problem using the SUPG or FIC methods, the higher
order term (here the diffusion term) that appears in the stabilization term vanish
when simplicial elements are used. In [148] it is shown that for the elasticity prob-
lem, the form that includes the projected gradient of pressure into the stabilization
terms (motivated by the OSS method) is essential to obtain accurate numerical results
which converge in a more monotone manner and are less sensitive to the value of
the stabilization parameter. In [111] a method was presented to globally reconstruct
a continuous approximation to the diffusive flux for linear finite elements using a L2

projection and shown, in some cases (when advection and diffusion are on a par), to
greatly improve accuracy. It is important to note that again this improved accuracy is
demonstrated for other related unknowns of the problem (like pressure) and not for
the transported unknown (say velocity). Also when convection dominates diffusion
there is little effect in the inclusion of the recovered diffusive flux. On the other hand,
consistency recovery following the OSS philosophy is independent from the diffusive
term. These observations are the motivation to investigate in detail the benefits of
including similar projections for the convection diffusion problem following the OSS
philosophy. In other words, we try to answer the question - what do we gain/loose
by recovering the consistency of the discrete residual in the stabilization terms for the
convection-dominated case via the introduction of OSS-type convective projection ?

The von Neumann analysis for the Galerkin and SUPG method is relatively well
known [72]. Relevant literature on the type of analysis presented here may be found

7



8 1 analysis of a consistency recovery method

in [26]. First, we present the von Neumann analysis for the 1d FIC method with re-
covered consistency (FIC_RC). This is achieved by including the convective projection
into the stabilization term (motivated by the OSS method). It is then shown that in
1d the FIC and FIC_RC methods are equivalent to the SUPG and OSS methods re-
spectively. Consequently the comparisons made between the former methods may be
carried over to the later methods. The transient analysis is done by examining the dis-
crete dispersion relation (DDR) of the stabilization methods. The explanation for the
occurrence of wiggles/oscillations in the transient evolution of the numerical solution
was explained by examining the dispersion relations of the continuous and discrete
problems in [183]. It has been found that beyond a certain wavenumber ξd the con-
tinuous and the discrete dispersion relations diverge [44, 183]. This wavenumber (ξd)
is referred to as the phase departure wave number in [44]. If the bandwidth of the ampli-
tude spectra of any given initial function has wavenumbers greater than ξd, the initial
function suffers a change of form (with wiggles/oscillations) in its transient evolution.
Examining the respective DDRs, we seek to find if the stabilization methods provide
any improvements in the solutions. A comparison of the DDR of the FIC_RC/OSS
method is done with the DDRs of the Galerkin and FIC/SUPG methods for three stan-
dard time integration schemes. Also, the range of wavenumbers to which the DDR
agrees with the continuous dispersion relation is shown to extend, should a consistent
“effective” mass matrix be preferred to a lumped one. Next, it is shown that unlike
the FIC/SUPG method, the FIC_RC/OSS method introduces a certain rearrangement
in the equation stencils at nodes on and adjacent to the domain boundary. Thus using
a uniform expression for the stabilization parameter (α) will lead to enhanced local-
ized oscillations at the boundary. For the 1d steady-state problem , we present a new
expression for α which is optimal for uniform grids and provides negligible damping
when used in the transient mode. Unfortunately for non-uniform grids, it leads to
weak node-to-node oscillations.

1.2 transient convection diffusion equation

1.2.1 Problem Statement

The statement of the multi-dimensional problem is as follows:

∂φ

∂t
+ u ·∇φ−∇ · (k∇φ) − f = 0 in Ω (1.1a)

φ(x, t = 0) = φo(x) in Ω (1.1b)

φ = φp on ΓD (1.1c)

k∇φ · n = qp on ΓN (1.1d)

where, u is the convection velocity, k is the diffusion, f is the source, φ(x, t) is the
transported variable, φo(x) is the initial solution, φp and qp are the prescribed values
of φ and the diffusive flux at the Dirichlet and Neumann boundaries respectively. The
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FIC formulation of this problem (neglecting the time stabilization terms [145]) is as
follows:

r−
1

2
h ·∇r = 0 in Ω (1.2a)

φ(x, t = 0) = φo(x) in Ω (1.2b)

φh = φp on ΓD (1.2c)

k∇φh · n +
1

2
(h · n)r = qp on ΓN (1.2d)

r :=
∂φ

∂t
+ u ·∇φ−∇ · (k∇φ) − f (1.2e)

Let
(
·, ·
)

and
(
·, ·
)
ΓN

denote the L2(Ω) and L2(ΓN) inner products respectively. The
variational form of the problem (1.1) can be expressed as follows: Find φ : [0, T ] 7→ V

such that ∀w ∈ V0 we have,

a
(
w,φ

)
= l
(
w
)

(1.3a)

a
(
w,φ

)
:=
(
w,
∂φ

∂t

)
+
(
w, u ·∇φ

)
+
(
∇w,k∇φ

)
(1.3b)

l
(
w
)
:=
(
w, f

)
+
(
w,qp

)
ΓN

(1.3c)

where V := {w : w ∈ H1(Ω) and w = φp on ΓD}, V0 := {w : w ∈ H1(Ω) and w =

0 on ΓD}. For the FIC equations the variational form can be expressed as follows: Find
φ : [0, T ] 7→ V such that ∀w ∈ V0 we have,

a
(
w,φ

)
+
1

2

(
∇ · (hw), r

)
= l
(
w
)

(1.4)

The calculation of the residual contribution in the stabilization term can be simpli-
fied if we introduce the projection of the convective term π via an auxiliary equation
defined as,

π = u ·∇φ− r (1.5)

We express the residual, r, that occurs in the stabilization term
(
∇ · (hw), r

)
as a

function of π. Thus π becomes an addendum to the set of unknowns to be found.
The integral equation system is now augmented forcing that the residual r expressed
in terms of π via Eq.(1.5) vanishes (in average) over the analysis domain. Problem
(1.4) after the addendum of the convective projection π is expressed as follows: Find
φ : [0, T ] 7→ V and π ∈ H1(Ω) such that ∀(w, z) ∈ (V0(Ω),H1(Ω)),

a
(
w,φ

)
+
1

2

(
∇ · (hw), u ·∇φ− π

)
= l
(
w
)

(1.6a)
(
z,π
)
=
(
z, u ·∇φ

)
(1.6b)

We remark that the projection of the convective term provides consistency to the
formulation, i. e.the system of equations (1.6) have the residual form which vanishes
for the exact solution. Henceforth we refer to the formulation given by the equation
(1.6) as the FIC formulation with recovered consistency (FIC_RC). The convective
projection is expected to capture the otherwise lost effect of higher order terms in
the residual when simplicial elements are used. The introduction of the convective
projection variable π was deduced from the OSS approach in [34].
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1.2.2 Dispersion Relation in 1d

Any equation that admits plane wave solutions of the form exp[i(ωt− ξx)], but with
the property that the speed of propagation of these waves is dependent on ξ, is gen-
erally referred to as a dispersive equation. Here ξ, ω are the angular wave-number and
the frequency, respectively. The equation that expresses ω as a function of ξ is known
as the dispersion relation. Generally the transient convection-diffusion equation is a dis-
persive equation. In the limit, when diffusion tends to zero and the equation morphs
into a pure convection problem, it tend to become non-dispersive [183]. In 1d and for
the sourceless case (f = 0), Eq.(1.1a) can be expressed as follows:

∂φ

∂t
+ u

∂φ

∂x
− k

∂2φ

∂x2
= 0 (1.7)

For a given discretization of size ` in space and an increment θ in time, we express
the Courant and Peclet numbers as C = uθ

` and γ = u`
2k . We write down the dispersion

relation (Eq. 1.8) for the continuous problem (Eq. 1.7) by propagating the plane wave
solution φ =exp[i(ωt − ξx)]. From Eq.(1.8) we obtain, taking the limit k → 0 or
γ→∞, the dispersion relation for the pure convection problem.

ω = uξ+ ikξ2 (1.8a)

ωθ = C(ξ`) + i
C

2γ
(ξ`)2 (1.8b)

Now let us consider the amplification of the solution from time step n to n+ 1 and
at some given spatial point. The amplification parameter β as defined in [44] is given by
Eq.(1.9). It can be clearly seen that β is stationary in time and uniform in space. The
amplification and phase shift per time step are given by the magnitude and argument
of Eq.(1.9), respectively. Thus for the pure convection problem we can see that the
amplification is unity, i. e.|β| = 1. The phase and group velocities are given by the Eqs.
(1.10a) and (1.10b) respectively [73].

β =
φn+1j

φnj
= exp [iωθ] = exp

[
−kθξ2

]
exp [iuθξ] = exp

[
−
C

2γ
(ξ`)2

]
exp [iC(ξ`)] (1.9)

Vp(ξ) =
ω(ξ)

ξ
(1.10a)

Vg(ξ) =
∂ω(ξ)

∂ξ
(1.10b)

1.3 fe discretization

1.3.1 Semi-Discrete Form

The semi-discrete (continuous in time, discrete in space) counterpart of the FIC method
(1.4) can be written as follows: Find φh : [0, T ] 7→ Vh such that ∀wh ∈ Vh0 we have,

a
(
wh,φh

)
+
∑
e

1

2

(
∇ · (hwh), rh

)
Ωe

= l
(
wh
)

(1.11)
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where Vh ⊂ V and Vh0 ⊂ V0. The stabilization term in Eq.(1.11) has been expressed
as a sum of the element contributions to allow for inter-element discontinuities in
the term ∇rh of Eq.(1.2), where rh := r(φh) is the residual of the FE approximation
of the infinitesimal governing equation and

(
·, ·
)
Ωe

denote the L2(Ωe) inner product.
Similarly the discrete counterpart of the FIC_RC method (1.6) can be written as: Find
φh : [0, T ] 7→ Vh and πh ∈ H1(Ω) such that ∀(wh, zh) ∈ (Vh0 (Ω),H1(Ω)),

a
(
wh,φh

)
+
∑
e

1

2

(
∇ · (hwh), u ·∇φh − πh

)
Ωe

= l
(
wh
)

(1.12a)

(
zh,πh

)
=
(
zh, u ·∇φh

)
(1.12b)

The variables in the Eqs.(1.11) and (1.12) interpolated by finite element shape func-
tions Na can be expressed as follows:

φh = Naφa,πh = Naπa,wh = Nawa, zh = Naza (1.13)

where a is the spatial node index. The discrete problems (1.11) and (1.12) can be
written in matrix notation via Eqs.(1.14) and (1.15), respectively, as follows:

[M + S2]Φ̇+ [C + D + S1+ S3]Φ = fg + fs (1.14)

MΦ̇+ [C + D + S1]Φ− S2Π = fg (1.15a)

MΠ− CΦ = 0 (1.15b)

where Φ := {φa} and Π := {πa} represent the vector of nodal unknowns. The
element contributions to the matrices and vectors in Eqs.(1.14) and (1.15) are given by

Ceab =
(
Na, u ·∇Nb

)
Ωe

, Deab =
(
∇Na,k∇Nb

)
Ωe

(1.16a)

Me
ab =

(
Na,Nb

)
Ωe

, S1eab =
1

2

(
∇ · (hNa), u ·∇Nb

)
Ωe

(1.16b)

S2eab =
1

2

(
∇ · (hNa),Nb

)
Ωe

, S3eab = −
1

2

(
∇ · (hNa),∇ · (k∇Nb)

)
Ωe

(1.16c)

fgea =
(
Na, f

)
Ωe

+
(
Na,qp

)
ΓN

, fsea =
1

2

(
∇ · (hNa), f

)
Ωe

(1.16d)

Note that Eq.(1.15b) correspond to the L2-projection of the term u ·∇φh onto the
space spanned by the shape functions. Whenever the later term admits discontinuities
the projection is non-monotone [34]. A monotone projection of the convective term
can be achieved if the mass matrix M that appears in Eq.(1.15b) is lumped. Also the
expression for Π will have local support only when M is lumped. This feature allows
us to study generic nodal equation stencils for the interior of the domain. Henceforth
we always consider the Eq.(1.15b) with M lumped. Eqs.(1.14) and (1.15) may be ex-
pressed in a general form as shown in Eq.(1.17). Table 1 defines the corresponding
matrices for the FIC and FIC_RC methods.

TΦ̇+ [C + D + S]Φ = f (1.17)
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FIC FIC_RC

T-lumped ML + S2 ML

T-consistent M + S2 M

S S1+ S3 S1− S2M−1
L C

f fg+fs fg

Table 1: Matrix definitions for FIC and FIC_RC methods

where matrix T is the ’effective’ mass matrix.
Note that for the direction of h being the same as that of the velocity u, i. e.h =

2τu and assuming τ constant within an element, the form of the stabilization term(
∇ · (hwh), rh

)
Ωe

in Eq.(1.11) is identical to that of the standard SUPG method. Thus
with this choice of h the FIC and FIC_RC methods are identical to the SUPG and
OSS (orthogonal sub-scales) methods respectively. The general direction of h intro-
duces naturally stabilization along the streamlines and also along the directions of
the gradient of the solution transverse to the velocity vector. The FIC formulation
therefore incorporates the best features of the SUPG and the shock-capturing meth-
ods. Applications of the FIC-FEM formulation to a wide range of convection-diffusion
problems with sharp gradients are presented in [154]. We remark that in 1d (assum-
ing h constant within an element) the FIC and the FIC_RC methods are identical to
the SUPG and OSS methods respectively. Thus the conclusions made between the FIC
and FIC_RC methods may be carried over to those between SUPG and OSS methods.

1.3.2 DDR in 1d

The DDR of the semi-discrete problem (semi-DDR) and when the temporal terms
are discretized using two class of time discretization schemes are investigated in this
section. The time discretization schemes considered are the trapezoidal scheme and the
second-order backward differencing formula (BDF2). The effects on the numerical disper-
sion due to the choice of the form of the effective mass matrix T (lumped or consistent)
in Eq.(1.17) are also studied. The flag lumped or consistent refers only to the matrix T
as defined in Table 1 for the FIC and FIC_RC methods. The DDRs are written by in-
serting a plane wave solution of the form φ = exp[i(ωt− ξx)] into the corresponding
equation stencils. Taking the limit γ→∞ we recover the DDR for the pure convection
problem.

1.3.2.1 Semi-DDR

We study the equation stencil for an interior node of the semi-discrete problem given
by Eq.(1.17) with f = 0 in 1d. For a compact representation of the stencils we introduce
the following definition,

(?) := (
u

2
)(φj+1 −φj−1) − (

k

`
+
uα

2
)(φj+1 − 2φj +φj−1) (1.18)
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FIC/SUPG method:

(
`

6
)
[
(
−3α

2
)φ̇j+1 + 6φ̇j + (

3α

2
)φ̇j−1

]
+ (?) = 0, T-lumped (1.19a)

(
`

6
)
[
(1−

3α

2
)φ̇j+1 + 4φ̇j + (1+

3α

2
)φ̇j−1

]
+ (?) = 0, T-consistent (1.19b)

FIC_RC/OSS method:

` φ̇j + (?) + (
uα

8
)(φj+2 − 2φj +φj−2) = 0, T-lumped

(1.20a)

(
`

6
)(φ̇j+1 + 4φ̇j + φ̇j−1) + (?) + (

uα

8
)(φj+2 − 2φj +φj−2) = 0, T-consistent

(1.20b)

Making α = 0 in Eqs. (1.19) and (1.20) we recover the standard Galerkin method.
The Semi-DDRs for all the methods and for the T-lumped, T-consistent cases can be
expressed in a generic and compact manner as follows:

ωh = −i
B

θA
(1.21)

where,

A :=



1

C
Galerkin, FIC_RC/OSS methods, T-lumped

2+ cos(ξ`)
3C

Galerkin, FIC_RC/OSS methods, T-consistent

1

C
+ i

α

2C
sin(ξ`) FIC/SUPG methods, T-lumped

2+ cos(ξ`)
3C

+ i
α

2C
sin(ξ`) FIC/SUPG methods, T-consistent

(1.22a)

B :=



i sin(ξ`) − 2 sin2(
ξ`

2
)

(
1

γ

)
Galerkin method

i sin(ξ`) − 2 sin2(
ξ`

2
)

(
1

γ
+α

)
FIC/SUPG methods

i sin(ξ`) − 2 sin2(
ξ`

2
)

(
1

γ
+α sin2(

ξ`

2
)

)
FIC_RC/OSS methods

(1.22b)

1.3.2.2 Trapezoidal Scheme

The structure of the equation stencil for an interior node with respect to the spatial
indices is the same as in the semi-discrete problem. Henceforth we express the fully
discrete system in the matrix notation only.

T · Φ
n+1 −Φn

θ
+ [C + D + S] ·Φn+σ = 0 (1.23a)

Φn+σ := σ Φn+1 + (1− σ) Φn (1.23b)
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Making σ = {0, 0.5, 1} we recover the forward Euler, Crank-Nicholson and backward Euler
schemes respectively. The DDR for the trapezoidal scheme can be expressed in terms
of A and B defined in Eq.(1.22) as follows,

exp [iωhθ] =
A+ (1− σ)B

A− σB
or equivalently, (1.24a)

tan
(
ωhθ

2

)
= −i

B

2A+ (1− 2σ)B
(1.24b)

1.3.2.3 BDF2 Scheme

The fully discrete system of equations after time discretization by the BDF2 scheme is
given by,

T · 3Φ
n+1 − 4Φn +Φn−1

2θ
+ [C + D + S] ·Φn+1 = O (1.25)

The DDR for the BDF2 scheme is a quadratic relation in exp[iωhθ]. The solution to
the quadratic equation gives two expressions for the DDR, which can be expressed as
follows:

exp [iωhθ] =
2A+

√
A2 + 2AB

3A− 2B
(1.26a)

exp [iωhθ] =
2A−

√
A2 + 2AB

3A− 2B
(1.26b)

We remark that the solution given by Eq.(1.26b) predicts negative values of <(ωh)
1

for positive wave-numbers. Thus, we consider the solution given by Eq.(1.26a) as the
only acceptable solution.

1.3.3 DDR Plots

The DDRs presented in the previous section represent the frequency as a function
of six independent variables, i. e.ωh := ωh(ξ, `, θ,C,γ,α). For a feasible graphical
representation of the DDRs we freeze some of them and normalize the frequency
and wavenumbers to retain maximum generality. In the DDR plots we consider only
the pure convection problem (k = 0). The stabilization parameter α = 1.0 is chosen.
This corresponds to the optimal value for the SUPG/FIC method in 1d and for a
uniform mesh. This choice is made for convenience and comparison of the effects
of the stabilization term introduced by the considered methods. Note that the DDRs
are periodic in ξ and the corresponding fundamental domain is ξ ∈ [−π/`,π/`]. The
Nyquist frequency in space is ξnq = π/` and in time is ωnq = π/θ. Thus in the DDR
plots we do not consider wavenumbers and frequencies beyond the Nyquist limits. It
can be shown with respect to the exact dispersion relation (Eq. 1.8) that this condition
corresponds to choosing C 6 1. We normalize the wavenumber ξ by the Nyquist
limit ξnq, i. e.ξ∗ = ξ/ξnq. The frequency ωh is normalized as ω∗h = ωh/(uξnq) =

ωhθ/(Cπ) = ωh`/(uπ). The DDRs are now expressed with respect to the normalized
wavenumber and frequency, i. e.ω∗h := ω∗h(ξ

∗,C). The plotting domain considered is
(ξ∗,C) = (0, 1)× (0, 1).

1 The real and imaginary parts of ωh are denoted as <(ωh) and =(ωh), respectively
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1.3.3.1 Semi-discrete case

For the semi-discrete problem the DDR no longer depends on θ. The frequency ω∗h
is now only a function of ξ∗, i. e.ω∗h := ω∗h(ξ

∗). The amplification at time tn = nθ

is given by exp[−=(ωh)tn] = exp[−=(ω∗h)π(utn/`)] = exp[−=(ω∗h)πCn]. This means
that should =(ω∗h) 6= 0 the amplification at any given time is independent of the time
step θ but dependent on the space discretization `. Thus we present 1d plots for the
following:

• Plot of <(ω∗h) vs ξ∗. The departure wavenumber ξ∗d is marked such that ∀ ξ∗ 6
ξ∗d we have |<(ω∗ −ω∗h)| 6 0.001 (Figure 1).

• Amplification plots using C = 0.1 and at times θ, 2θ, 100θ, 200θ, and 300θ sec
(Figure 2).

1.3.3.2 Fully discrete case

For the fully discrete case the time integration schemes considered are: the backward
Euler, Crank-Nicholson and BDF2. The frequency is now a function of both ξ∗ and C,
i. e.ω∗h := ω∗h(ξ

∗,C). The amplification at time tn = nθ is given by exp[−=(ω∗h)π(utn/`)];
the same as for the semi-discrete case except for the fact that ω∗h is now dependent
on C also. Contour plots are presented for the following,

• log10(|<(ω∗ −ω∗h)|) vs. (ξ∗,C). The contour of values {−5,−4,−3,−2,−1} are
shown (Figures 3, 5 and 7).

• log10(=(ω
∗
h)) vs. (ξ∗,C). The contour of values {−3,−2.5,−2,−1.5,−1,−0.5, 0}

are shown (Figures 4, 6 and 8).

Only the contour plots for the normalized group velocity, i. e.∂ω∗h/∂ξ
∗ vs (ξ∗,C),

for the Crank-Nicholson scheme have been presented (Figure 9). The original group
velocity can be recovered as follows: ∂ωh/∂ξ = u ∂ω∗h/∂ξ

∗.

1.3.4 Discussion

It can be seen from the DDR plots that every discrete model and also the semi-discrete
model of the continuous problem diverges from the exact dispersion relation beyond
a certain wave-number, here ξ∗d (Figures 1, 3, 5 and 7). For the semi-discrete case, ξ∗d
is marked in the plots and for the fully discrete case ξ∗d is a contour line given by the
value −3. ξ∗d is greater when we use a consistent mass matrix for the transient terms
in the formulation. Thus, one should expect better phase fidelity over a wider range
of wave numbers using a consistent mass matrix. The gain in the value of ξ∗d from
lumped T case to the consistent T case gradually decreases as the Courant number
C increases (except for a certain range of the Courant number C for the FIC/SUPG
method).

We now examine the differences in the DDR plots between the Galerkin method
and the DDR plots of the FIC/SUPG and FIC_RC/OSS methods. It is interesting that
the stabilization terms introduced by the FIC_RC/OSS method do not alter much the
location of the phase departure wave-number ξ∗d. On the other hand, the stabiliza-
tion terms introduced by the FIC/SUPG method contribute to the T matrix (Table 1).
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Figure 1: Plot of ω∗h vs ξ∗ for the semi-discrete problem. Frequencies ω∗ and ω∗h correspond
to the continuous and discretized problems respectively. α = 1.0 is used.
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Figure 2: Amplification plots of the semi-discrete problem for the FIC/SUPG and
FIC_RC/OSS methods. α = 1.0 and C = 0.1 are used. The amplification for the
Galerkin method is not shown here as it is equal to 1
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Figure 3: Contour plot of log10[<(|ω∗h−ω
∗|)] for the backward Euler scheme. α = 1.0 is used.
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Figure 4: Contour plot of log10[=(ω
∗
h)] for the backward Euler scheme. α = 1.0 is used.
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Figure 5: Contour plot of log10[<(|ω∗h −ω∗|)] for the Crank-Nicholson scheme. α = 1.0 is
used.
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Figure 6: Contour plot of log10[=(ω
∗
h)]for the Crank-Nicholson scheme. α = 1.0 is used. The

plots for the Galerkin method is not shown here as =(ω∗h) = 0
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Figure 7: Contour plot of log10[<(|ω∗h −ω∗|)] for the BDF2 scheme. α = 1.0 is used.
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Figure 8: Contour plot of log10[=(ω
∗
h)] for the BDF2 scheme. α = 1.0 is used.
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Figure 9: Real part of the normalized group velocity ∂ω∗h/∂ξ
∗ vs. ξ∗ for the Crank Nicholson

scheme; α = 1.0 is used.
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Although for higher Courant number C the effect on the location of ξ∗d is negligible,
significant alterations in ξ∗d are found for a lower C and a consistent T matrix (Figures
3, 5 and 7). When T is lumped, all the methods give similar patterns for ξ∗d indicating
that stabilization terms have no role to play in the improvement of the DDRs.

Next, we examine the effect of the variation in C on the <(ω∗h) vs ξ∗ relation for the
FIC and SUPG methods with consistent T matrix and the Crank Nicholson scheme.
Again, we choose ξ∗d using the criterion: ∀ ξ∗ 6 ξ∗d we have |<(ω∗ −ω∗h)| 6 0.001.
In Figure 5 this corresponds to the contour line for the value −3. It can been seen
in the semi-discrete case that <(ω∗h) > <(ω∗) for lower wavenumbers (Figure 1). In
addition, the error <(ω∗h −ω∗) first increases and later decreases. This behavior is
exhibited in the fully discrete case too. Thus, there will be multiple contours of the
same value in the log10(|ω

∗
h −ω∗|) vs (ξ∗,C) contour plots. In this case ξ∗d is the

smallest ξ∗ on the contours. For instance, choosing C = 0.4 for the FIC and SUPG
methods we find ξ∗d ≈ 0.35, where as for the Galerkin, FIC_RC and OSS methods we
find ξ∗d < 0.2 (Figure 5). Thus, there is a significant improvement in the DDR for the
FIC and SUPG methods for this value of C. It is interesting to note that for C 6 0.1
the variation of DDR with C is insignificant. Similar conclusion can be made for the
backward Euler and BDF2 schemes from their respective DDR plots.

It can be seen from the amplification plots (Figures 2, 4, 6 and 8) that for the same
value of α (here α = 1.0) and using a consistent T matrix, the damping associated
with the FIC/SUPG method is relatively less than that of the FIC_RC/OSS method,
though the gain is not significant for low wavenumbers. On the other hand, using
a lumped T matrix the difference in the amplification associated with FIC/SUPG
and FIC_RC/OSS methods is insignificant. It can also be seen that unlike the notable
differences in the location of ξ∗d, the differences in the amplification due to lumping
the T matrix is insignificant.

An important aspect is the effect of group velocity. This is more evident when the
transported function is periodic and resembles a sinusoid wave train. For such func-
tions, the Fourier transform is a narrow peak concentrated around the characteristic
angular wave number of the function. For such problems the effect of the group veloc-
ity is more significant than that of phase velocity. If the DDR predicts a deviation in
the group velocity then the wave train travels at that deviant velocity (Example 1.6.3).

1.4 stabilization parameters

In this section, the optimal expressions of the stabilization parameters for the FIC_RC
method in 1d and on a uniform mesh are proposed. We consider the steady-state form
of the discrete problem (1.17) for the sourceless case (f = 0). The equation stencil for
an interior node j is as follows:

(
u

2
)[φj+1 −φj−1] − (k+

uh

2
)[
φj+1 − 2φj +φj−1

`
] + (

uh

8
)[
φj+2 − 2φj +φj−2

`
] = 0

(1.27)

The analytical solution of the steady-state form of problem (1.17) in the 1d space
with only Dirichlet boundary conditions and source f = 0 is,

φ(x) = φpl + (φpr −φ
p
l )

[
exp[ux/k] − 1
exp[uL/k] − 1

]
(1.28)
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Figure 10: Optimal expression of α for the FIC_RC/OSS method. Plot of α vs. γ for the interior
nodes.

Figure 11: Node stencil for the 1d problem.

where L is the length of the 1d domain and φpl ,φpr are the prescribed values of φ at
the left and right ends of the domain respectively. We now express the characteristic
length in terms of the element size as h = α `. The optimal value of the stabilization
parameter α is found by substituting the analytical solution into the stencil given in
Eq.(1.27). This leads to the following expression of α for the interior nodes.

α =
−1

sinh2(γ)

[
coth(γ) −

1

γ

]
(1.29)

where, γ is the element Peclet number given by γ = u`
2k . The plot of the parameter α vs.

γ is shown in Figure 10.
It can be seen that α ≈ 0 for γ > 3. So for high Peclet numbers the formulation

suggests to use very small values of α. That is for large values of γ the formulation
breaks down into the standard Galerkin method without stabilization and one can
expect spurious oscillations in the numerical solution. The clues to reason out this
behavior can be found by examining the assembly of the linear system.

The 1d problem is discretized by linear elements and the final form of the finite
element assembly is examined. For simplicity, the nodes are numbered from left to
right as shown in Figure 11. For the interior nodes, the equation stencil is as given by
Eq.(1.27). For the left penultimate boundary node, here node 2 as per the numbering
scheme Figure 11, we find the following stencil:

(
u

2
)[φ3 −φ1] − (k+

uh

2
)[
φ3 − 2φ2 +φ1

`
] + (

uh

8
)[
φ4 − 3φ2 + 2φ1

`
] = 0 (1.30)
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Figure 12: Plot of optimal α (for the penultimate boundary nodes) vs. γ for the FIC_RC/OSS
method.

For the right penultimate boundary node, i.e the node n in Figure 11, we find the
following stencil:

(
u

2
)[φn+1 −φn−1] − (k+

uh

2
)[
φn+1 − 2φn +φn−1

`
]

+ (
uh

8
)[
2φn+1 − 3φn +φn−2

`
] = 0 (1.31)

Thus, we see that there is a rearrangement of the equation stencils for the nodes that
lie next to the boundary. The stencils for the boundary nodes also gets rearranged,
but we do not consider them here as the focus here is to deal problems with Dirichlet
boundary conditions. The deviation of the nodal equations for the penultimate nodes
from the interior nodes is responsible for the spurious oscillations. It has been shown
using a spectral analysis framework in [163, 164] that the asymmetry in the stencils
brings about anti-diffusion even when they are used with central difference schemes
and their effect is not localized, thus being responsible for spurious numerical oscil-
lations. A simpler explanation would be that the rearrangement of the stencils near
the boundary require different expressions for the stabilization parameter for those
nodes.

The optimal values of the stabilization parameters for these penultimate nodes on a
uniform mesh are as follows. Eqs.(1.32a) and (1.32b) correspond to the optimal values
for the nodes 2 and n respectively. Figure 12 illustrates the variation of α with respect
to γ.

α2 =
4

[2− e2γ]

[
coth(γ) −

1

γ

]
(1.32a)

αn =
4

[2− e−2γ]

[
coth(γ) −

1

γ

]
(1.32b)

An alternative to nodal stabilization parameters is to find optimal values of the sta-
bilization parameters for the elements adjacent to the boundary. For elements laying
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Figure 13: Plot of optimal α (for the elements adjacent to the boundary) vs. γ for the
FIC_RC/OSS method.

in the domain interior we use the value given by Eq.(1.29). Denoting the stabilization
parameters for elements 1, n and in the domain interior as α(1), α(n) and α respec-
tively, we find the following equation stencils.

Node 2:

(
u

2
)[φ3 −φ1] − (

k

`
)[φ3 − 2φ2 +φ1]

− (
u

2
)[αφ3 − (α(1) +α)φ2 +α

(1)φ1]

+ (
u

8
)[αφ4 + (α−α(1))φ3 − (α+ 2α(1))φ2 + (3α(1) −α)φ1] = 0 (1.33)

Node n:

(
u

2
)[φn+1 −φn−1] − (

k

`
)[φn+1 − 2φn +φn−1]

− (
u

2
)[α(n)φn+1 − (α(n) +α)φn +αφn−1]

+ (
u

8
)[(3α(n) −α)φn+1 − (α+ 2α(n))φn + (α−α(n))φn−1 +αφn−2] = 0

(1.34)

The optimal values for α(1) and α(n) are given by the Eqs.(1.35a) and (1.35b) re-
spectively. Figure 13 illustrates the variation of α with respect to γ.

α(1) =
4

[1− e2γ]

[
coth(γ) −

1

γ

]
(1.35a)

α(n) =
4

[1− e−2γ]

[
coth(γ) −

1

γ

]
(1.35b)

Remark: It is important to note that α is a signed parameter. For the domain interior,
α is negative for positive values of γ! As the optimal α on a uniform grid for the
FIC_RC/OSS method is close to zero everywhere within the domain interior (Figure
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10) we do not introduce any artificial (unnatural) damping anywhere within the do-
main. The effect of boundary shock layers can also be captured efficiently by the new
expressions of α at the boundary-adjacent elements. Thus, we see that in the tran-
sient mode the performance of the FIC_RC/OSS method using the proposed optimal
α with boundary correction is similar to the standard Galerkin method. The former
method also gives nodally exact solutions (on uniform grids) in the steady state mode
unlike the spurious global oscillations produced by the later method. Of course, all
these features are favorable addenda only if the bandwidth of the amplitude spectra
of the transported function lies within the range of the phase departure wave number.

1.5 discrete maximum principle

On further examination, the optimal expression (on uniform grids in 1d) of the sta-
bilization parameter for the FIC_RC/OSS method illustrates certain subtle features
related to the satisfaction of a discrete maximum principle (DMP). If the DMP holds
for any numerical method then the maximum component in the modulus of the so-
lution vector is bounded above by the maximum component in the modulus of the
boundary data. It is well known that a sufficient condition for the satisfaction of the
DMP is that the system matrix be an M-matrix or a matrix of ’positive type’. We refer
to [17, 40] for the definition of the latter matrices.

Note that for Peclet numbers greater than one, the system matrix (see Eq.(1.27))
associated with the FIC_RC/OSS method can never be cast into the form of an M-
matrix or a matrix of ’positive type’. However, using the proposed optimal expression
for α we get nodally exact solutions on a uniform mesh in 1d. It is remarkable that
in this case the system matrix is not even a monotone matrix whose definition can be
found in [17, 40]. Nevertheless, the FIC_RC/OSS system matrix obtained using the
optimal α verifies the necessary and sufficient condition given in [186] for the DMP
to hold. Unfortunately, this necessary and sufficient condition for a DMP to hold is
difficult to identify a priori and thus poising a strategical difficulty in the design of
discontinuity/shock capturing methods.

1.6 numerical examples

1.6.1 Example 1

In this example, we study the effect of the stabilization introduced by FIC/SUPG and
FIC_RC/OSS methods for transient problems. We study the pure convection prob-
lem primarily for two reasons. First, the problem becomes simple as the dispersion
effect of natural diffusion is sidelined, thus allowing us to study the effects of the
diffusion introduced by the stabilization methods. Next, the convection dominated
problem is the primary concern of stabilization methods. The domain of interest is
x ∈ [0, 10]. The problem data are k = 1× 10−30, u = 1.0, time increment θ = 0.01
and the 1d space is discretized by 100 linear elements with uniform mesh size. Thus,
` = 0.1. The Peclet number for this problem is γ = 5× 1028 (γ ≈ ∞). The Courant
number is C = 0.1. We have also chosen α = 1.0, the optimal value for SUPG in this
case, throughout the simulations. This choice is made just to study the effect of the
artificial diffusion introduced by the FIC_RC/OSS method within the interior of the
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domain using a non-optimal value for α. Recall that the optimal value of α for the
FIC_RC/OSS method in this case is ≈ 0, thus behaving just like the standard Galerkin
method in the domain interiors. The discretization in time is done by the following
schemes: Crank-Nicholson, backward Euler and BDF2 schemes.

Figure 14 shows the results obtained when a narrow Gaussian pulse centered at
x = 3.0 is taken as the initial solution. The equation for the initial solution is φo(x) =
exp[−8(x−3)2]. The numerical solution at time 3s is examined. The solutions obtained
using a lumped and consistent T matrix in the formulation are also examined. The
idea is to validate the conclusions that can be drawn from the DDR plots. The pulse
width of the Gaussian function is chosen as to guarantee that the bandwidth of the
amplitude spectra of this function is just less than ξconsistentd , the phase departure
wave-number using a consistent T matrix. As ξlumpedd 6 ξconsistentd , one should
expect incorrect superpositions of the wave trains due to their phase differences from
the former. This leads to a train of wiggles as seen in the numerical solution when T
is lumped (Figure 14).

It is interesting that the standard Galerkin method without any stabilization and by
using a consistent T matrix yields very accurate results. The other methods using a
consistent T create a slight bump at the foot of the Gaussian bell. This is because of the
damping associated with those methods for the significant wavenumbers (ξ∗ 6 ξ∗d).
We also notice that using a consistent T, the damping associated with the FIC/SUPG
method is less than that for the FIC_RC/OSS method. The differences are insignificant
for the T-lumped case.

1.6.2 Example 2

In this example, we illustrate the effect of the variation of the Courant number on
the DDR. The problem data are the same as in Example 1.6.1. Time integration is
performed by the Crank-Nicholson scheme. Two initial functions are considered : a
narrow Gaussian pulse centered at x = 3.0 as defined in Example 1.6.1 and a square
pulse function defined by φo(x) = 1.0 if x ∈ [2, 4] else φo(x) = 0.0. The spectra of the
square pulse is broad and the bandwidth extends beyond the ξd of all the methods
considered here. In other words, in the absence of damping this function will exhibit
numerical dispersion. In this example only the consistent T matrix is used.

First we note that for the higher Courant number (here C = 1.0) the Gaussian pulse
exhibit numerical dispersion even when a consistent T matrix is used (Figure 15).
As C is reduced to 0.4 and 0.1 we notice that the dispersion errors are minimized.
As discussed earlier in §1.3.4 the FIC/SUPG method with C = 0.4 should exhibit
a better performance over the FIC_RC/OSS method. Unfortunately the gain in the
DDR for the higher wavenumbers does not materialize in the simulated results. The
solutions for the FIC/SUPG and the FIC_RC/OSS methods are nearly the same for
both the initial solutions (Figure 15). This is because all those wavenumbers suffer
high damping. As =(ω∗h) does not vary with C (Figure 6), Figure 2 may be referred
for the amplification.
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Figure 14: Example 1: transport of a Gaussian pulse. Solutions at 3s for the Galerkin, FIC/-
SUPG and FIC_RC/OSS methods using lumped (on left) and consistent (on right)
T matrix are shown; Time discretization is done by the Crank-Nicholson, backward
Euler and BDF2 schemes. α = 1.0 is used.
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Figure 15: Example 2: transport of a Gaussian and square pulse. Solutions at 3s for the
Galerkin, FIC/SUPG and FIC_RC/OSS methods using a consistent T matrix and
for Courant number 0.1, 0.4 and 1.0; Time discretization performed by Crank-
Nicholson scheme. α = 1.0 is used.
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1.6.3 Example 3

In this example, we study the transport of a periodic sine wave with angular wave-
number ξo = 7.5. The problem data is the same as in Example 1.6.1. The corre-
sponding value of ξ∗ = 0.238. Time integration is performed by the Crank-Nicholson
scheme. The idea here is to study the effect of the group velocity in the numerical
simulation. The initial function and the boundary condition prescribed at the left
boundary are as follows:

f(x, 0) = sin(ξox) (1.36)

f(0, t) = sin(uξot) (1.37)

The DDR predicts a group velocity Vlumpedg ≈ 0.75 and Vconsistentg ≈ 1.0 for ξ∗ =
0.238 using a lumped and consistent T matrices, respectively (Figure 9). This property
is exhibited in the numerical solution where we find that the wave train moves at a
different speed from the one assigned. The results are accurate using a consistent T
matrix (Figure 16). The damping introduced by the stabilization methods are also in
agreement with the one predicted by the DDR of the problem. Using a consistent T
matrix the amplifications for the FIC/SUPG and the FIC_RC/OSS methods for α = 1.0
and the wavenumber ξo = 7.5 are ≈ 0.7 and 0.3, respectively, after 3s (Figure 2). The
corresponding values for the T-lumped case are ≈ 0.4 and 0.32. The numerical results
are in agreement with this prediction. We note that the numerical damping associated
with the FIC/SUPG method is less than that of the FIC_RC/OSS method for the same
value of α. An interesting result is that when the expressions (Eqs. 1.29,1.35) for α
are used for the FIC_RC/OSS method, no damping takes place as it behaves similar
to the Galerkin method in the interior domain. The numerical solution in this case
coincides with that shown for the Galerkin method.

1.6.4 Example 4

In this example, we explore the performance of the stabilization parameter α given
by Eqs. (1.29) and (1.35) for the steady state problem using the FIC_RC/OSS method.
The domain of interest is x ∈ [0.0, 1.0]. The problem data are k = 0.001, u = 1.0 and
f = 1.0. For the ease of notation and further reference we define the following:

αa =

[
coth(γ) −

1

γ

]

αb =



4

[1− e2γ]

[
coth(γ) −

1

γ

]
, element 1

4

[1− e−2γ]

[
coth(γ) −

1

γ

]
, element n

−1

sinh2(γ)

[
coth(γ) −

1

γ

]
, else

First, we study the solution on a uniform mesh consisting of 20 linear elements (` =
0.05). We consider the cases when f = 0 and f = 1.0. The numerical solutions of the
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Figure 16: Example 3: transport of a sinusoidal wave. Solutions at 1s and 3s for the Galerkin,
FIC/SUPG and FIC_RC/OSS methods using a lumped (on left) and consistent (on
right) T matrix; Time discretization done by the Crank-Nicholson scheme. α = 1.0
is used.
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Figure 17: Example 4: steady-state solutions on uniform and nonuniform grids for the FIC/-
SUPG and FIC_RC/OSS methods. αa := [coth(γ) − γ−1]. αb is evaluated via the
Eqs. (1.29) and (1.35)

FIC/SUPG method using the stabilization parameter as αa and of the FIC_RC/OSS
method using αa and αb are presented in Figure 17. We note that the new definition
for the stabilization parameter αb is optimal for the uniform mesh. The boundary
correction introduced in Eq.(1.35) also takes effect.

Next, we study the solution on a non-uniform grid consisting of 15 elements. The
node coordinates of the discrete 1d space are given by x = {0, 0.095, 0.191, 0.2866,
0.382, 0.477, 0.573, 0.656, 0.728, 0.789, 0.841, 0.885, 0.922, 0.953, 0.979, 1}. We note that
the solution of the FIC/SUPG method is superior to that obtained by the FIC_RC/OSS
method. The later method gives the sharp boundary oscillations using the parameter
αa (also appears on uniform grids). The solution of the FIC_RC/OSS method using
αb on the non-uniform grid is slightly corrupted with weak node-to-node spurious
oscillations.
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1.7 conclusions

A detailed transient analysis of a consistency recovery method (FIC_RC/OSS) with
respect to the Galerkin and FIC/SUPG methods has been done. The discrete disper-
sion relations for the above methods using the trapezoidal and BDF2 time integration
schemes are presented. The phase departure wavenumber (ξd) is greater when a con-
sistent matrix for the transient terms is used. ξd proportionally influences the range
of wavenumbers that have a group velocity close to the convection velocity. The DDR
plots predict that the gain in the value of ξd from the lumped T case to the consis-
tent T case gradually decreases with the Courant number C. An exception to this is
on a certain lower range of C for the FIC/SUPG method. Unfortunately, this gain is
seldom realized as those higher wavenumbers are damped away. The contour plots of
log[<(|ω∗h −ω∗|)] are very similar for the Galerkin, FIC/SUPG and the FIC_RC/OSS
methods except for the exception mentioned earlier. Neither is the change significant
with the choice of the time integration schemes considered. This suggests that the
role of the stabilization terms in the improvement of the DDR is insignificant and the
enhancement can be achieved only by virtue of the resolution in space and time. It
is shown that for the same value of the stabilization parameter α, the damping asso-
ciated with the FIC_RC/OSS method is slightly greater than that of the FIC/SUPG
method.

It is shown that, unlike the FIC/SUPG method, the FIC_RC/OSS method intro-
duces a certain rearrangement in the equation stencils at nodes on and adjacent to the
domain boundary. Thus using a uniform expression for α will lead to localized os-
cillations at the boundary. These oscillations are notable in the convection dominated
case. When diffusion is at par with convection, the solution has a smooth profile and
these local oscillations are insignificant even though they exist. A proposal for α that
gives optimal results for the steady-state 1d convection diffusion problem on uniform
grids is made for the FIC_RC/OSS method. An interesting result is that when the
new expressions for α are used for the FIC_RC/OSS method, no damping takes place
as α ≈ 0 in the domain interior. The numerical solution in the transient case coincides
with that for the Galerkin method and in the steady state, unlike the Galerkin method,
it is stable. Unfortunately, using this new expression for α, dispersion errors when-
ever present (for instance, the transport of a square pulse), cannot be controlled and
also the steady state solution has weak node-to-node oscillations on a non-uniform
grid. On the basis of these results, it appears that with respect to the stabilization of
convection, the numerical performance of the FIC/SUPG method is better as one can
control to some extent the dispersive errors and at the same time we can assure the
stability of the steady-state solution.

Finally, it can be verified that the FIC_RC/OSS system matrix obtained using the
optimal stabilization parameter (on uniform grids) is neither a monotone matrix nor a
matrix of positive type. Although, it verifies the necessary and sufficient condition for
a DMP to hold. Unfortunately, it is difficult to identify a priori the matrices that satisfy
this necessary and sufficient condition unlike the matrices of ’positive type’ that are
easy to recognize. This poses a strategical difficulty in the design of discontinuity
capturing methods. Due to these difficulties we currently do not prefer the consistency
recovery method in the stabilization of convection.
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2
A H I G H - R E S O L U T I O N P E T R O V– G A L E R K I N M E T H O D I N 1 D

2.1 introduction

A singularly perturbed convection–diffusion–reaction problem is an initial-boundary
value problem where the diffusion coefficient may take arbitrarily small values. The
solution of this problem may exhibit transient and/or exponential boundary layers.
In higher dimensions the solution may also exhibit characteristic boundary and/or
interior layers. It is well known that the numerical solution of this problem by the
Bubnov–Galerkin finite element method (FEM) is prone to exhibit global, Gibbs and
dispersive oscillations. The solution of the stationary problem by the above method ex-
hibits spurious global oscillations for the convection-dominated cases. The local Gibbs
oscillations are exhibited along the characteristic layers for the convection-dominated
cases. For the reaction-dominated cases Gibbs oscillations may be found near the
Dirichlet boundaries and in the regions where the distributed source term is nonreg-
ular. The solution of the transient problem may exhibit dispersive oscillations should
the initial solution and/or the distributed source term are nonregular.

In the context of variational formulations and weighted residual methods, con-
trol over the global instability has been achieved via the streamline-upwind Petrov–
Galerkin (SUPG) [22, 92], Taylor–Galerkin [53], characteristic Galerkin [55, 127], Galerkin
least squares (GLS) [95], bubble functions [12, 18, 19], variational multiscale (VMS)
[91, 97], characteristic-based split (CBS) [193] and finite calculus (FIC) based meth-
ods [141]. A thorough comparison of some of these methods can be found in [32].
Close connections between the VMS method and stabilization via bubble functions
was pointed out in [20]. It was shown that some of the above stabilized methods can
be recovered using the FIC equations via an appropriate definition of the stabilization
parameters [141, 146]. Nevertheless nonregular solutions continue to exhibit the Gibbs
and dispersive oscillations.

Several shock-capturing nonlinear Petrov–Galerkin methods were proposed to con-
trol the Gibbs oscillations observed across characteristic internal/boundary layers for
the convection-diffusion problem [23, 29, 46, 48–50, 68, 94, 116, 119, 132, 154]. A
thorough review, comparison and state of the art of these and several other shock-
capturing methods for the convection-diffusion equations, therein named as spurious
oscillations at layers diminishing methods, was done in [114]. Reactive terms were not
considered in the design of these methods and hence they fail to control the localized
oscillations in the presence of these terms. Exceptions to this are the consistent approx-
imate upwind (CAU) method [68], the methods presented in [23, 30] and those that
take the CAU method as the starting point [48–50]. Nevertheless the expressions for
the stabilization parameters therein were never optimized for reactive instability and
often the solutions are over-diffusive in these cases.

37
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In the quest to gain reactive stability several methods were built upon the exist-
ing frameworks of methods that control Global oscillations. Following the frame-
work of the SUPG method linear Petrov–Galerkin methods were proposed for the
convection–diffusion–reaction problem, viz. the DRD [180] and (SU+C)PG [100] meth-
ods. Based on the GLS method linear stabilized methods were proposed, viz. the
GGLS method [61] for the diffusion–reaction problem and GLSGLS method [80] for
the convection-diffusion-production problem. Within the framework of stabilization
via bubbles the USFEM method [62] for the diffusion–reaction problem, the improved
USFEM method [66] and the link cutting bubbles [21] for the convection–diffusion–
reaction problem were proposed. Based on the VMS method linear stabilized methods
were proposed for the convection–diffusion–reaction problem, viz. the ASGS method
[33], the methods presented in [84, 85] and the SGS-GSGS method [86]. Using the
FIC equations a nonlinear method based on a single stabilization parameter was
proposed for the convection–diffusion–reaction problem [152, 155]. This nonlinear
method, though initially formulated within the Petrov–Galerkin framework, subse-
quent modeling of a simplified form for the numerical nonlinear diffusion, deviated
the method from being residual-based (consistency property is violated). Nodally ex-
act Ritz discretizations of the 1d diffusion-absorption/production equations by varia-
tional FIC and modified equation methods using a single stabilization parameter were
presented in [59]. Generally the homogeneous steady convection–diffusion–reaction
problem in 1d has two fundamental solutions. Likewise, the characteristic equation as-
sociated with linear stabilized methods which result in compact stencils are quadratic
and hence have two solutions. Thus in principle using two stabilization parameters
(independent of the boundary conditions) linear stabilized methods which result in
compact stencils can be designed to be nodally exact in 1d. Following this line sev-
eral ‘two-parameter methods’ viz. (SU+C)PG, GLSGLS and SGS-GSGS methods were
designed to be nodally exact for the stationary problem in 1d.

Control over the dispersive oscillations for the transient convection-diffusion prob-
lem via linear Petrov–Galerkin methods were discussed in [99] and using space-time
finite elements in [189]. As for the linear methods, optimizing the expressions of the
stabilization parameters to attain monotonicity will lead to solutions that are at most
first-order accurate.

Out of the context of variational formulations and weighted residual methods, a
vast literature exists on the design of high-resolution methods. These methods are
characterized as algebraic flux correction/limiting methods and are usually developed
with in the framework of finite-difference (FDM) or finite-volume (FVM) models. We
refer to the books [89, 123, 124, 182] for a review of these methods and to the seminal
papers in this field [16, 82, 83, 185, 191]. The book [120] describes the state of the art in
the development of high-resolution schemes based on the Flux-Corrected Transport
(FCT) paradigm for unstructured meshes and their generalization to the FEM. Nev-
ertheless the use of these schemes were reported to be rather uncommon in spite of
their enormous potential. We refer to the introduction in [161] that discusses the pop-
ularity of methods based on variational formulations and weighted residuals. Thus,
as encouraged therein, the quest for the design of high-resolution methods based on
variational/weighted-residual formulations is active to date.

In this chapter we present the design of a FIC-based nonlinear high-resolution
Petrov–Galerkin (HRPG) method for the 1d convection–diffusion–reaction problem.



2.2 High-resolution Petrov–Galerkin method 39

The prefix ‘high-resolution’ is used here in the sense popularized by Harten, i. e.second
order accuracy for smooth/regular regimes and good shock-capturing in nonregu-
lar regimes. The goal is to design a numerical method within the context of the
FIC variational formulation and weighted residuals which is capable of reproduc-
ing high-resolution numerical solutions for both the stationary (efficient control of
global and Gibbs oscillations as seen in methods [21, 59, 80, 86, 100, 152, 155]) and
transient regimes (efficient control of dispersive oscillations as seen in algebraic flux
correction/limiting methods). In Section 2.2 we present the statement of the problem
and the HRPG method in higher-dimensions. The statement in higher-dimensions is
made only to distinguish the current method with the existing ones. The structure
of the method in 1d is identical to the CAU method except for the definitions of
the stabilization parameters. The method can be derived via the FIC approach [141]
with an adequate (nonlinear) definition of the characteristic length. Thus the results
presented here may be extended to these methods. In Section 2.4 we focus on the
Gibbs phenomenon that is observed in L2 projections. The design procedure embarks
by defining a model L2 projection problem and establishing the expression for the
stabilization parameter to circumvent the Gibbs phenomenon. The target solution for
the model problem is chosen to be the one obtained via the mass-lumping procedure.
We remark that this solution is used to evaluate the stabilization terms introduced by
the HRPG method and an expression for the stabilization parameter is defined that
depends only on the problem data. In Section 2.5 we extend the methodology to the
transient convection–diffusion–reaction problem. We split the design into four model
problems and derive the stabilization parameters accordingly. Finally we arrive at an
expression for the stabilization parameters depending only on the problem data and
representing asymptotically the prior expressions derived for the model problems.
We summarize the HRPG design in Section 2.5.6. In Section 2.5.7 several examples
are presented that support the design objectives i. e.stabilization with high-resolution.
Finally we arrive at some conclusions in Section 2.6.

2.2 high-resolution petrov–galerkin method

The statement of the multidimensional convection–diffusion–reaction problem is as
follows:

R(φ) :=
∂φ

∂t
+ u ·∇φ−∇ · (k∇φ) + sφ− f(x) = 0 in Ω (2.1a)

φ(x, t = 0) = φ0(x) in Ω (2.1b)

φ = φp on ΓD (2.1c)

(k∇φ) · n + gp = 0 on ΓN (2.1d)

where u is the convection velocity, k,s are the diffusion and reaction coefficient respec-
tively, f(x) is the source, φ0(x) is the initial solution, φp and gp are the prescribed
values of φ and the diffusive flux at the Dirichlet and Neumann boundaries respec-
tively and n is the normal to the boundary.

The variational statement of the problem (2.1) can be expressed as follows: Find
φ : [0, T ] 7→ V such that ∀w ∈ V0 we have,

(
w,R(φ)

)
Ω

+
(
w, (k∇φ) · n + gp

)
ΓN

= 0 (2.2)
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where, if H is the associated Hilbert space then V := {w : w ∈ H and w = φp on ΓD},
V0 := {w : w ∈ H and w = 0 on ΓD}, (·, ·)Ω and (·, ·)ΓN denote the L2(Ω) and L2(ΓN)
inner products respectively. The problem (2.1) may also be expressed in the weak
form as follows: Find φ : [0, T ] 7→ V such that ∀w ∈ V0 we have,

a(w,φ) = l(w) (2.3a)

a(w,φ) :=
(
w,
∂φ

∂t
+ u ·∇φ+ sφ

)
Ω

+
(
∇w,k∇φ

)
Ω

(2.3b)

l(w) :=
(
w, f(x)

)
Ω

−
(
w,gp

)
ΓN

(2.3c)

The statement of the Galerkin method applied to the weak form of the problem
(2.3) is: Find φh : [0, T ] 7→ Vh such that ∀wh ∈ Vh0 we have,

a(wh,φh) = l(wh) (2.4)

We follow [92] to describe a certain class of Petrov–Galerkin methods which account
for weights that are discontinuous across element boundaries. The perturbed weight-
ing function is written as w̃h = wh + ph, where ph is the perturbation that account
for the discontinuities. The statement of these class of Petrov–Galerkin methods is as
follows: Find φh : [0, T ] 7→ Vh such that ∀wh ∈ Vh0 we have,

a(wh,φh) +
∑
e

(
ph,R(φh)

)
Ωeh

= l(wh) (2.5)

The HRPG method whose design in 1d is presented in the subsequent sections, may
be defined as Eq.(2.5) along with the following definitions:

ph := [h + H · ûr] ·∇wh (2.6a)

ur :=
R(φh)

|∇φh|2
∇φh; ⇒ ûr :=

ur

|ur|
=

sgn[R(φh)]
|∇φh|

∇φh (2.6b)

where, h and H are frame-independent linear characteristic length tensors that are de-
fined based on the element geometry (see Section 3.3). We refer to the Table(2) for a
comparison of the HRPG method with the SUPG, FIC and some of the existing shock-
capturing methods. From Eqs.(2.6),(2.7) and Table(2) the HRPG method could be un-
derstood as the combination of upwinding plus a nonlinear discontinuity-capturing
operator. The distinction is that in general the upwinding provided by h is not stream-
line and the discontinuity-capturing provided by H · ûr is neither isotropic nor purely
crosswind. Of course defining h := τu and H := (β`)I or H := (β`)[I − û⊗ û] one
would recover (except for the definitions of the stabilization parameters) the CAU and
the CD methods respectively. We remark that one may arrive at the HRPG method
via the finite-calculus (FIC) equations wherein the characteristic length is defined as
hfic := h + H · ûr. From this point of view the HRPG method can be presented as
‘FIC-based’. More details are given in the next section.

Note that in 1d u‖ = u and hence the performance of the DC method [94] is similar
to that of the SUPG method. Also note that as the notion of crosswind directions does
not exist in 1d, the CD method [29] is identical to the SUPG method. On the other
hand the nonlinear shock-capturing terms introduced by the CAU method still exists
in 1d and thus in principle are able to control the Gibbs and dispersive oscillations.
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Method Perturbation (ph) Remarks

SUPG[92] τu ·∇wh

MH[132] Cei
Cei ∈ {−

1

3
,
2

3
},i = 1, 2, 3∑

Cei = 0

DC[94] τ1u ·∇wh + τ2u‖ ·∇wh u‖ :=
u · ∇φh
|∇φh|2

∇φh

CAU[68],
τ1u ·∇wh + τ2ur ·∇wh ur :=

R(φh)

|∇φh|2
∇φh

CCAU[50]

CD[29] τ1u ·∇wh +α2`∇wh · [I − û⊗ û] · ûr û :=
u
|u|

ûr :=
ur

|ur|
=

sgn[R(φh)]
|∇φh|

∇φh

SAUPG[48],
τ[λu + (1− λ)ur] ·∇wh λ is a smoothness measure.

Mod.CAU[29]

FIC[141] hfic ·∇wh here hfic is a characteristic
length vector which may be
defined in a linear or nonlin-
ear fashion.

HRPG [h + H · ûr] ·∇wh h,H are frame-independent
linear characteristic length
tensors based on the element
geometry (see Section 3.3).

Table 2: Perturbations associated with Petrov–Galerkin methods
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This feature does carry over to all the methods that have the shock-capturing term
similar to that in the CAU method viz. the methods presented in [23, 48–50]. Unfortu-
nately as pointed out in [114] and in Section 2.5.7.1 of this chapter, these methods are
often over diffusive. The structure of the HRPG method in 1d is identical to the CAU
method except for the definitions of the stabilization parameters. In the subsequent
sections we design the stabilization parameters of the HRPG method to overcome the
shortcomings of the earlier methods.

From Eqs.(2.5) and (2.6) the statement of the HRPG method in 1d can be expressed
as follows: Find φh : [0, T ] 7→ Vh such that ∀wh ∈ Vh0 we have,

a(wh,φh)+
∑
e

[(α`
2

dwh
dx

,R(φh)
)
Ωeh

+
(β`
2

|R(φh)|

|∇φh|
dwh
dx

,
dφh
dx

)
Ωeh

]
= l(wh) (2.7)

where α , β are stabilization parameters to be defined later.

2.3 derivation of the hrpg expression via the fic procedure

The governing equations in the finite calculus (FIC) approach are derived by express-
ing the balance equations in a domain of finite size and retaining higher order terms.
For the 1d convection–diffusion–reaction problem the FIC governing equations are
written as [141]

R(φ) −
h

2

∂R(φ)

∂x
= 0 in Ω (2.8a)

φ(x, t = 0) = φ0(x) in Ω (2.8b)

φ−φp = 0 on ΓD (2.8c)

k
∂φ

∂x
+ gp +

h

2
R(φ) = 0 on ΓN (2.8d)

where the characteristic length h is the dimension of the domain where balance of
fluxes is enforced and R(φ) is defined in Eq.(2.1a).

The variational statement of Eqs.(2.8) can be written as: Find φ : [0, T ] 7→ V such
that ∀w ∈ V0 we have,

(
w,R(φ) −

h

2

∂R(φ)

∂x

)
Ω

+
(
w,k

∂φ

∂x
+ gp +

h

2
R(φ)

)
ΓN

= 0 (2.9)

The corresponding weak form is: Find φ : [0, T ] 7→ V such that ∀w ∈ V0 we have,

(
w+

h

2

dw
dx

,R(φ)
)
Ω

+
(
w,k

∂φ

∂x
+ gp

)
ΓN

= 0 (2.10)

In the derivation of Eq.(2.10) we have neglected the change of h within the elements.
Clearly Eq.(2.10) can be seen as a Petrov–Galerkin form with the weighting function
defined as w̃ := w + h

2
dw
dx . The term depending on h in Eq.(2.10) is usually com-

puted in the element interiors only to avoid the discontinuities of the second deriva-
tives terms in R(φ) along the element boundaries. The discretized form of Eq.(2.10) is
therefore written as: Find φh : [0, T ] 7→ Vh such that ∀wh ∈ Vh0 we have,

a(wh,φh) +
∑
e

(h
2

dwh
dx

,R(φh)
)
Ωeh

= l(wh) (2.11)
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The characteristic length can be defined in a number of ways so as to provide an ‘op-
timal’ (stabilized) solution. In this work the following nonlinear expression is chosen
for h:

h := α`+β`
sgn[R(φh)]

|∇φh|
∇φh (2.12)

where ` is the element length and α,β are stabilization parameters. A discussion of
the alternatives for the definition of h in the FIC context can be found in [141, 152, 154,
155]. Substituting the expression of h into Eq.(2.11) gives the HRPG form of Eq.(2.7).

2.4 gibbs phenomenon in L2 projections

2.4.1 Introduction

Gibbs phenomenon is a spurious oscillation that occurs when using a truncated
Fourier series or other eigen function series at a simple discontinuity. It is character-
ized by an initial overshoot and then a pattern of undershoot-overshoot oscillations
that decrease in amplitude further from the discontinuity. In fact for any given func-
tion f and using the metric as the standard L2 norm, the partial sum of order N of the
Fourier series of f denoted as SNf is the best approximation of f in a subspace spanned
by trigonometric polynomials of order N. Thus SNf is the L2 projection of f in the con-
sidered subspace. This phenomenon is manifested due to the lack of completeness of
the approximation space. Similar oscillations appear in the problem of finding the best
approximation of a given discontinuous function in any subspace using the L2 norm
as the metric. On every discrete grid/mesh the maximum wavenumber that can be
represented is limited by the Nyquist limit. The Nyquist frequency on a uniform grid
with grid spacing ` is given by π/`. Thus the span of the finite element basis functions
associated with this mesh might be viewed as a truncated function series which might
be expanded by refining the mesh. Hence the projection of a discontinuous function
onto this finite element space exhibits the Gibbs phenomenon. As the amplitude spec-
trum of a discontinuous function decays only as fast as the harmonic series, which is
not absolutely convergent, it is impossible to circumvent these oscillations by mere
mesh refinement.

The variational statement of the L2 projection problem is as follows: Find φh ∈ Vh
such that ∀wh ∈ Vh0 we have,

(
wh,φh − f

)
Ωh

= 0 (2.13)

Where f is the given function which might admit discontinuities. If we denote the
solution of Eq.(2.13) as φh = P0hf, we have,

‖ P0hf− f ‖L2(Ωh)6‖ wh − f ‖L2(Ωh) (2.14)

In the following sections we consider the scaled L2 projection problem defined by
the residual R(φ) = sφ− f. In the context of the convection–diffusion–reaction prob-
lem, the problem data s physically represents the reaction coefficient. The variational
statement of the scaled L2 projection problem is as follows: Find φh ∈ Vh such that
∀wh ∈ Vh0 we have,

(
wh, sφh − f

)
Ωh

= 0 (2.15)
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Taking s = 1 we recover the L2 projection problem given by Eq.(2.13).

2.4.2 Galerkin Method

2.4.2.1 FE discretization

Discretization of the space by linear finite elements will lead to the approximation
φh = NaΦa and the Eq.(2.15) reduces into the following system of equations.

sM ·Φ = f (2.16)

Mab =
(
Na,Nb

)
Ωh

; fa =
(
Na, f

)
Ωh

(2.17)

It is well known that the Gibbs oscillations can be circumvented in the numerical
solution if the standard row-lumping technique is performed on the mass matrix
M. Unfortunately, this operation though effective for this specific problem, it cannot
be extended to other problems in general. The answer for not advocating this tech-
nique can be found in the Godunov’s theorem: ‘All linear monotone schemes are at
most first order accurate’. The only way to circumvent this problem is to design a
nonlinear method that would reproduce the same numerical solution as obtained by
mass-lumping.

2.4.2.2 Model Problem 1

The 1d domain is chosen to be of unit length and discretized by 4N linear elements
(N > 5). The function whose L2 projection is sought is defined as follows:

f(x) =

{
0 ∀ x ∈ [0, 0.25+ η1`]∪ [0.75− η2`, 1]
q else

(2.18)

Where ` = 1/(4N) is the element length and η1,η2 ∈ [0, 1] are parameters that de-
termine the location of the simple discontinuity in the function f. The solution of
Eq.(2.16) using a lumped mass matrix can be expressed as follows:

Φ = (
q

s
){0, · · · , 0,

(1− η1)
2

2
,
(2− η21)

2
, 1, · · · , 1,

(2− η22)

2
,
(1− η2)

2

2
, 0, · · · , 0} (2.19)

Figure (18a) illustrates the function f(x) using η1 = 0.5 , η2 = 0.3 and q = s =

1 alongside the numerical solution of the Eq.(2.16) using both the consistent and
lumped mass matrix. Figure (18b) illustrates the profile characteristics of the mono-
tone solution obtained via mass-lumping (Eq.2.19) with respect to the location of the
discontinuity.

2.4.2.3 Discrete Upwinding

Let the discrete system of equations be represented in the matrix form as follows:

A · x = b (2.20)

Discrete upwinding is an algebraic operation to convert the system matrix A into an
M-matrix [120]. Discrete upwinding is the least diffusive linear operation to produce
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Figure 18: (a) The design problem ; (b) Characteristics of the monotone solution (AGFE). AB-
HIJE illustrates the discontinuous regime of f(x)

an M-matrix. We denote the discrete upwinding operation on any given matrix A by
DU(A). The discrete upwinding operation is performed by adding to the matrix A a
discrete diffusion matrix D̃ as follows:

d̃ii = −
∑
j6=i

d̃ij; d̃ij = d̃ji = −max{0,aij,aji} (2.21)

DU(A) = Ã = A + D̃ (2.22)

It is interesting to note that the discrete upwinding operation on the mass matrix M
will result in the mass-lumping operation.

Me =
`

6

[
2 1

1 2

]
; D̃e =

`

6

[
1 −1

−1 1

]
(2.23)

DU(Me) = Me + D̃e =
`

6

[
3 0

0 3

]
= Me

L (2.24)

2.4.2.4 Total variation

The total variation of a function, say φ(x), in 1d is given by the following equation:

TV(φ) =

∫
x

|∇φ|dx (2.25)

Thus it can be seen that the total variation, as the name suggests, measures the total
hike or drop in the function profile as we traverse the 1d domain. It can also be
noticed that any spurious oscillation in the numerical approximation of φ would
cause the total variation to increase. Harten proved that a monotone scheme is total
variation non-increasing (TVD) and a TVD scheme is monotonicity preserving [82]. To
date various high-resolution schemes have been designed based on the TVD concept
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often using flux/slope limiters. If linear finite elements are used to approximate the
numerical solution φh the total variation may be calculated as follows:

TV(φh) =
∑
i

|Φi+1 −Φi| (2.26)

For the problem under consideration, the sufficient conditions given by Harten in
[82] for a numerical scheme to be TVD drops down to the condition for the system
matrix to be an M-matrix. Thus in the design of the high-resolution Petrov–Galerkin
method we use the total variation of the numerical solution as a posteriori verification
condition. The total variation of the given discontinuous function f(x) in the design
problem is TV(f) = 2.

2.4.3 HRPG design

In this section we design the stabilization parameters of the HRPG method given by
Eq.(2.7) and choosing α = 0. For the model problem described in Section 2.4.2.2 the
statement of the method is as follows: Find φh ∈ Vh such that ∀wh ∈ Vh0 we have,

(
wh,R(φh)

)
Ωh

+
∑
e

(β`
2

|R(φh)|

|∇φh|
dwh
dx

,
dφh
dx

)
Ωeh

= 0 (2.27)

Where, R(φh) := sφh − f is the residual and β is a stabilization parameter to be
defined later. If the domain is discretized by linear finite elements the Eq.(2.27) can be
expressed in the matrix form for each element as follows:

[
sMe + Se

]
·Φe = feg (2.28)

where the corresponding matrices are defined as,

Me =
(
Na,Nb

)
Ωeh

=
s`

6

[
2 1

1 2

]
(2.29)

Se = (
β`

2
)
( |R(φh)|
|∇φh|

dNa

dx
,

dNb

dx

)
Ωeh

=
k∗(φh)
`

[
1 −1

−1 1

]
(2.30)

feg =
(
Na, f

)
Ωeh

(2.31)

k∗(φh) =
β

2

( |R(φh)|
|∇φh|

, 1
)
Ωeh

(2.32)

fg = q` {0, · · · , 0,
(1− η1)

2

2
,
(2− η21)

2
, 1, · · · , 1,

(2− η22)

2
,
(1− η2)

2

2
, 0, · · · , 0} (2.33)

In order to design the parameter β we assume that the method converges to the
solution given by Eq.(2.19). This is a fair assumption as it can be seen in Eq.(2.27)
that the nonlinear Petrov–Galerkin term is symmetric subjected to the linearization
as shown in Eq.(2.30) and hence there exists a β such that the effect of this term is
equivalent to the discrete diffusion introduced by the discrete upwinding operation.
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Figure 19: The plot of g(η) for η ∈ [0, 1].

If η ∈ [0, 1] be a generic parameter to define the location of the simple discontinuity
within the element, we have then for the element containing the discontinuity,

( |R(φh)|
|∇φh|

, 1
)
Ωeh

= (
s`2

2
)
[1+ 2η− 6η2 + 8η3 − 4η4

1+ 2η− 2η2

]

= (
s`2

2
)
[1+ 2η(1− η)[1− 2η(1− η)]

[1+ 2η(1− η)]

]
(2.34)

For the element adjacent to the element containing the discontinuity we have,

( |R(φh)|
|∇φh|

, 1
)
Ωeh

= (
s`2

2
) (2.35)

Thus, the nonlinear term in Eq.(2.27) and for the converged solution given by
Eq.(2.19) can be expressed as follows:

( |R(φh)|
|∇φh|

, 1
)
Ωeh

=


(s`2/2) g(η) , for elements with shock

(s`2/2) , for elements adjacent to the shock

0 , else

(2.36)

where, the function g(η) is defined as,

g(η) :=
[1+ 2η(1− η)[1− 2η(1− η)]

[1+ 2η(1− η)]

]
(2.37)

∀ η ∈ [0, 1] , g(η) ∈ [(5/6), 1] (2.38)

Figure (19) illustrates the plot of the function g(η) vs η. To define the parameter
β we require that for the elements in the vicinity of the discontinuity the nonlinear
Petrov–Galerkin method reproduces the effect of discrete upwinding. The system ma-
trix for the element containing the discontinuity is as follows,

[
sMe + Se

]
= (

s`

6
)

[
2 1

1 2

]
+ (
βs`g(η)

4
)

[
1 −1

−1 1

]
(2.39)



48 2 a high-resolution petrov–galerkin method in 1d

To reproduce the effect of discrete upwinding the following relation should hold,

sMe + Se = DU(sMe) = sMe + D̃e (2.40)

⇒ (
βs`g(η)

4
)

[
1 −1

−1 1

]
=

s`

6

[
1 −1

−1 1

]
(2.41)

The expression for the parameter β may be expressed as follows:

βg(η) >
2

3
(2.42)

Remarks:

• The definition of β satisfying the equation βg(η) = 2
3 would exactly reproduce

the solution of Eq.(2.16) using the lumped mass matrix.

• From the design point-of-view the definition of β involving the function g(η)
would imply a priori knowledge of the solution. Hence we define β using the
extremum values of the function g(η).

Thus from Eq.(2.38) and Eq.(2.42) we have,

Type-I : min{g(η)} =
5

6
⇒ β >

4

5
(2.43)

Type-II : max{g(η)} = 1 ⇒ β >
2

3
(2.44)

With these definitions the design of the high-resolution Petrov–Galerkin (HRPG)
method for the scaled L2 projection problem is complete.

2.4.4 Examples

2.4.4.1 Example 1

We solve the problem described in Section 2.4.2.2 and using q = s = 1. The 1d domain
is discretized into 40 linear elements. The numerical results of the HRPG method
(Type I and II) are compared with the solutions obtained by the Galerkin method
using both consistent and lumped mass matrix. Figs.(20,21) illustrate the results of
HRPG Type I and Type II respectively for η1 = 0.5,η2 = 0.3. Figs.(22,23) illustrate the
same for η1 = 1,η2 = 0. Both Type I and Type II effectively circumvent the Gibbs phe-
nomenon. HRPG Type I method is clearly more diffusive, nevertheless monotonicity
is guaranteed. HRPG Type II is monotone to-the-eye. A quantitative analysis based on
the measured total variation is studied in Section 2.4.4.3.

2.4.4.2 Example 2

The analysis domain is the same as the problem described in Section 2.4.2.2 and using
s = 1. The 1d domain is discretized into 100 linear elements. The function whose L2

projection is sought is now defined as follows:

f(x) =

{
cos(4πx− 2π) ∀ x ∈ [0.25, 0.75]

0 else
(2.45)
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Figure 20: Example 1: HRPG Type I, (a) numerical solution for η1 = 0.5,η2 = 0.3 ; (b) corre-
sponding nonlinear convergence plot
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Figure 21: Example 1: HRPG Type II, (a) numerical solution for η1 = 0.5,η2 = 0.3 ; (b) corre-
sponding nonlinear convergence plot



50 2 a high-resolution petrov–galerkin method in 1d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

x

φ h
TYPE I: β = 4/5 ; η

1
 = 1.0, η

2
 = 0.0

Galerkin
Lumped Mass
HRPG

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
rr

or
Iteration

TYPE I: β = 4/5 ; η
1
 = 1.0, η

2
 = 0.0

(b)

Figure 22: Example 1: HRPG Type I, (a) numerical solution for η1 = 1.0,η2 = 0.0 ; (b) corre-
sponding nonlinear convergence plot
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Figure 23: Example 1: HRPG Type II, (a) numerical solution for η1 = 1.0,η2 = 0.0 ; (b) corre-
sponding nonlinear convergence plot
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Figure 24: Example 2: HRPG Type I, (a) numerical solution with both smooth and shock
regimes ; (b) corresponding nonlinear convergence plot

The above function has both smooth and shock regimes. Simple discontinuities are
present at x = 0.25 and x = 0.75 and in the rest of the domain the function is smooth.
This example studies the efficiency of the HRPG method for mixed regimes. Figures
(24,25) illustrate that the accuracy of the solution in the smooth regime is not compro-
mised while effectively circumventing the Gibbs phenomenon around the shocks.

2.4.4.3 Example 3

The problem considered in this example is the same as in Section 2.4.4.1. To reduce the
variability of the problem data, we have chosen η1 = η2. As it is mentioned earlier in
Section 2.4.2.4, the total variation (TV) of the numerical solution (φh) is a direct mea-
sure (though a posteriori) of the presence of spurious oscillations. HRPG Type I method
guarantees that the system matrix for the current problem is an M-matrix for all values
of η1 and η2. This is a sufficient condition to obtain a monotonicity-preserving solu-
tion. The system matrix using the HRPG Type II method is an M-matrix only when
η1,η2 = {0, 1}. Thus we study TV(φh) to have a quantitative measure of performance
for the Type I and Type II methods.

Figures (26,27) illustrate with respect to the Galerkin method the TV(φh) vs η plots
for the HRPG Type I and Type II methods respectively. It is remarkable that both
the methods measure TV(φh) = 2 which is the same as TV(f). A study of the error
TV(φh) − TV(f) suggests (as expected) that for the Type I method TV(φh) < TV(f)

and TV(φh) − TV(f) = O(1e-11). For the Type II method, TV(φh) > TV(f) and
TV(φh) − TV(f) = O(1e-5) which is an acceptable tolerance. In the light of these
results the method we currently prefer is HRPG Type II.
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Figure 25: Example 2: HRPG Type II, (a) numerical solution with both smooth and shock
regimes ; (b) corresponding nonlinear convergence plot
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Figure 26: Example 3: HRPG Type I, (a) TV(φh) plot ; (b) TV(φh)-TV(f) plot
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Figure 27: Example 3: HRPG Type II, (a) TV(φh) plot ; (b) TV(φh)-TV(f) plot

2.4.5 Summary

Residual : R(φh) := sφh − f

HRPG method :
(
wh,R(φh)

)
Ωh

+
∑
e

(β`
2

|R(φh)|

|∇φh|
dwh
dx

,
dφh
dx

)
Ωeh

= 0

Type I : β >
4

5
→M-matrix guaranteed

Type II : β >
2

3
→ Total variation limit

The Gibbs phenomenon that arises in L2 projections is studied for the Galerkin
method in 1d using linear finite elements. A nonlinear Petrov–Galerkin method (HRPG)
is formulated and the stabilization parameter is designed (Type I and Type II) so as
to circumvent the Gibbs phenomenon and thus leading to a high-resolution method.
The HRPG method is shown to perform well in the presence of both smooth and
shock regimes in the solution. HRPG Type II method is shown to be in the total varia-
tion limit with acceptable tolerance of O(1e-5) and thus is essentially non-oscillatory
(monotone to-the-eye). Hence it is currently the preferred choice for the extension of
the HRPG design to the model problems in the subsequent sections.

2.5 convection–diffusion–reaction problem

2.5.1 Galerkin method and discrete upwinding

Consider the convection–diffusion–reaction problem given by Eq.(2.1) in 1d and sub-
jected only to the Dirichlet boundary conditions. Discretization of the space by linear
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finite elements will lead to the approximation φh = NaΦa. For the Galerkin method
we arrive at the following system of equations.

MΦ̇+ [uC + kD + sM]Φ = f (2.46)

where the element contributions to the above matrices and vector are given by,

Me
ab =

(
Na,Nb

)
Ωh

=
`

6

[
2 1

1 2

]
, Ceab =

(
Na,∇(Nb)

)
Ωh

=
1

2

[
−1 1

−1 1

]

(2.47)

fea =
(
Na, f

)
Ωh

=
`

2

{
1

1

}
, Deab =

(
∇(Na),∇(Nb)

)
Ωh

=
1

l

[
1 −1

−1 1

]

(2.48)

The discrete upwinding process applied to the steady state of Eq.(2.46) will intro-
duce a numerical diffusion kdu as follows:

DU(uC + kD + sR) = [uC + kD + sR] + kduD (2.49)

kdu = max
{[

|u|`

2
+
s`2

6
− k

]
, 0
}

= k max
{[

|γ|+
ω

6
− 1
]

, 0
}

(2.50)

The form of this numerical diffusion (Eq.(2.50)) is identical to that found in [152] using
a FIC-based approach. The stabilization method presented in [152] introduces within
each element an additional nonlinear diffusion as follows:

kfic = k max
{[(

sgn[∇φh]
sgn[∆φh]

)
γ+

(
sgn[φh]

sgn[∆φh]

)
ω

6
− 1

]
, 0
}

(2.51)

Clearly the form of Eq.(2.50) is an upper bound of the value of kfic as defined in
Eq.(2.51).

2.5.2 Model problem 2

Consider the steady diffusion–reaction problem with a distributed source term given
by Eq.(2.18) and homogeneous Dirichlet boundary conditions:

R(φ) := −k∆(φ) + sφ− f(x) (2.52)

For the current problem we design the HRPG method with α = 0. In the limit as
k→ 0 the problem reduces to the scaled L2 projection problem considered in Section
2.4. The discrete upwinding operation on the Galerkin method, will introduce an
artificial diffusion equivalent to the following,

kdu = max
{[
s`2

6
− k

]
, 0
}

(2.53)

Note that ∀k 6 (s`2/6) the critical non-oscillatory solution obtained via the discrete
upwinding process is identical to the solution obtained with k = 0. Thus in order
to design the parameter β we can use the solution given by Eq.(2.19) to estimate the
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amount of nonlinear diffusion that would be introduced by the HRPG method. Thus,

k∗(φh) :=
β

2

( |R(φh)|
|∇φh|

, 1
)
Ωeh

= β
s`2

4
g(η) > max

{[
s`2

6
− k

]
, 0
}

(2.54)

We define a dimensionless element number ω := (s`2/k) and consider g(η) = 1

(Type-II). Thus,

β > max
{
2

3

[
1−

6

ω

]
, 0
}

(2.55)

We remark that β depends only on the problem data and for the current model
problem the nonlinear (residual-based) diffusion k∗(φh) implemented in the HRPG
method is nonzero and equals kdu only for the elements in the vicinity of the discon-
tinuity. In this way it differs from the form of Eq.(2.51) which for the current model
problem introduces a nonlinear diffusion kfic (Eq.(2.51) using γ = 0) for all elements.

2.5.3 Model problem 3

Consider the steady convection-diffusion problem,

R(φ) := u∇(φ) − k∆(φ) (2.56)

For the current problem we design the HRPG method with α = 0. The discrete up-
winding operation on the Galerkin method, will introduce an artificial diffusion equiv-
alent to the following,

kdu = max
{[

|u|`

2
− k

]
, 0
}

(2.57)

The parameter β may be designed as follows:

|R(φh)|

|∇(φh)|
=

|u∇(φh)|
|∇(φh)|

= |u| (2.58)

⇒ k∗(φh) :=
β

2

( |R(φh)|
|∇(φh)|

, 1
)
Ωeh

=
β

2
|u|` > max

{[
|u|`

2
− k

]
, 0
}

(2.59)

⇒ β > max
{[
1−

1

|γ|

]
, 0
}

(2.60)

Note that in contrast to the problem considered in Section 2.5.2 here we do not need
the solution to estimate the nonlinear diffusion introduced by the HRPG method. The
expression for β (Eq.2.60) is identical to the standard critical stabilization parameter
obtained for upwind techniques (see [195]).

2.5.4 Model problem 4

Consider the steady convection–diffusion–reaction problem:

R(φ) := u∇(φ) − k∆(φ) + sφ− f(x) (2.61)
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For the current problem we design the HRPG method again with α = 0. If linear finite
elements were used, the residual obeys the following relation:

|R(φh)| = |u∇(φh) + sφh − f| 6 |u∇(φh)|+ |sφh − f| (2.62)

⇒ |R(φh)|

|∇(φh)|
=

∣∣∣∣u+
sφh − f

∇(φh)

∣∣∣∣ 6 |u|+
|sφh − f|

|∇(φh)|
(2.63)

As it can be seen in Eq.(2.63), to estimate the nonlinear diffusion introduced by the
HRPG method we require the solution of the problem a priori. The simplest idea
would be to use the nodally exact solution. Unlike the solution used in Section 2.5.2,
the analytical solution of the current problem has a complex structure [152]. In order
to retain simplicity in the design of β we make a conjuncture of the results obtained
in Section 2.5.2 and Section 2.5.3. The conjuncture is made such that the designed
expression for β would approach asymptotically the expressions obtained in Section
2.5.2 and Section 2.5.3 as u→ 0 and s→ 0 respectively.

Assume that u � s and f(x) be defined as in Eq.(2.18). Thus we may approximate
the solution of the current problem to the one considered in Section 2.5.2. This assump-
tion allows us to use the solution defined by Eq.(2.19) to approximately estimate the
following expression:

( |sφh − f|

|∇(φh)|
, 1
)
Ωeh

≈ s`
2

2
g(η) (2.64)

As u� s we make another approximation using Eq.(2.63) as follows:

|R(φh)|

|∇(φh)|
≈ |u|+

|sφh − f|

|∇(φh)|
(2.65)

Using the two approximations (Eq.2.64, Eq.2.65) the parameter β may be designed as
follows:

k∗(φh) :=
β

2

( |R(φh)|
|∇(φh)|

, 1
)
Ωeh

≈ β
2

[
|u|`+

s`2

2
g(η)

]
> max

{[
|u|`

2
+
s`2

6
− k

]
, 0
}

(2.66)

β := max
{[
2

3

(
|σ|+ 3

|σ|+ 2

)
−

(
4

ω+ 4|γ|

)]
, 0
}
⇒


lim
u→0

β = max
{
2

3

[
1−

6

ω

]
, 0
}

lim
s→0

β = max
{[
1−

1

|γ|

]
, 0
}

(2.67)

where, γ := (u`/2k) , ω := (s`2/k) and σ := (ω/2γ) = (s`/u) are the element Peclect
number, a velocity independent dimensionless number and the Damköler number
respectively.
Remark : Eq.(2.66) does not mean that k∗(φh) = kdu for all elements and problem
data. We remind that under the assumption u� s and f(x) defined as in Eq.(2.18), the
solution to the current model problem is approximated as the one given by Eq.(2.19).
This suggests that, similar to the model problems in Section 2.4.2.2 and Section 2.5.2,
the nonlinear (residual-based) diffusion k∗(φh) equals kdu only for the elements in
the vicinity of the layers. In general, as β is independent of φh, the only information
known a priori is that k∗(φh) is proportional to the residual R(φh). The argument that
this expression for β i. e.Eq.(2.67), would perform well ∀u, s is a conjecture based on
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the fact that we recover asymptotically the expressions for β i. e.Eq.(2.55) and Eq.(2.60)
as u → 0 and s → 0 respectively. The efficiency of this expression for β is shown via
various numerical examples (see Section 2.5.7).

2.5.5 Model problem 5

Consider the transient convection–diffusion–reaction problem:

R(φ) := φ̇+ u∇(φ) − k∆(φ) + sφ− f(x) (2.68)

We now design the parameter β associated with the nonlinear perturbation term when
the linear perturbation terms exists (i. e.α 6= 0). The HRPG method after discretization
by linear finite elements will lead to the following system of equations.

[M]Φ̇+ [uC + kD + sM]Φ− fg (Galerkin terms)

+
α`

2

(
[Ct]Φ̇+ [uD + sCt]Φ− fs

)
(linear PG terms)

+
β

2

( |R(φh)|
|∇(φ)| , 1

)
Ωeh

[D]Φ = 0 (nonlinear PG terms) (2.69)

The above equation may be rearranged as follows

M{Φ̇+ sΦ}+C{uΦ}+Ct{
α`

2
Φ̇+

α`s

2
Φ}+(k+

α`u

2
+k∗(φh))DΦ = fg +

α`

2
fs (2.70)

where the expression for k∗(φh) is given by Eq.(2.32). We define for each element a
measure δ with the dimensions of the reaction coefficient.

δ := Φ̇�Φ ⇒ Φ̇ = δ�Φ (2.71)

where the vector operators � and � are understood to operate point-to-point divi-
sion and multiplication respectively. Thus in the design of the parameter β, we may
model δ as a non-linear reactive coefficient. For the fully discrete problem (after time
discretization)δ may be approximated to an element-wise positive constant for simpli-
fication. This idea had been pointed out earlier in [99]. Also note that the convection
matrix C is skew-symmetric. Hence the transposed matrix Ct introduces a negative
convection effect [30]. Following this line, for each element we define the effective
convection, diffusion and reaction coefficients as follows:

ũ := u−
α`s

2
−
α`δ

2
; k̃ := k+

α`u

2
; s̃ := s+ δ (2.72)

The effective coefficients ũ, k̃ and s̃ will be used to design the parameter β. The fol-
lowing effective element dimensionless numbers may be defined:

γ̃ :=
ũ`

2k̃
; ω̃ :=

s̃`2

k̃
; σ̃ :=

s̃`

ũ
=
ω̃

2γ̃
(2.73)

The parameter β is now defined as in Eq.(2.67) using these effective element numbers
as follows:

β := max
{[
2

3

(
|σ̃|+ 3

|σ̃|+ 2

)
−

(
4

ω̃+ 4|γ̃|

)]
, 0
}

(2.74)
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If the discretization in time is done using the implicit trapezoidal rule, we have

Φ̇ =
Φ̃−Φn

θ∆t
; Φn+1 =

1

θ
Φ̃+

θ− 1

θ
Φn (2.75)

where, ∆t is the time increment, n,n+ 1 denote the previous and current time steps
and θ ∈ [0, 1] is a parameter that defines the scheme. θ = {0, 0.5, 1} define the forward
Euler, implicit midpoint and the backward Euler methods. For the fully discrete sys-
tem and within each element we evaluate the parameter δ and the residual as follows:

δ ≈ 1

θ∆t

‖ φ̃h −φnh ‖e∞
‖ φ̃h ‖e∞ (2.76)

R(φ̃h) ≈
φ̃h −φnh
θ∆t

+ u∇(φ̃h) − k∆(φ̃h) + sφ̃h − f (2.77)

where ‖ · ‖e∞ is the L∞norm. Note that as steady state is reached δ → 0. Thus for the
steady state problem and using α = 0 we recover the definition of the parameter β as
given by Eq.(2.67).

It remains to define the parameter α that controls the fraction of linear perturbation
term in the HRPG method. For the 1d convection–diffusion–reaction problem, the
HRPG method using α = 0 does solve a plethora of examples to give high-resolution
stabilized results. Nevertheless for the transient problem the presence of the linear
perturbation terms improves the convergence of the nonlinear iterations. Numerical
experiments suggest α ∈ [0, 1/3] which means that the approximations/conjecture
used in the design strategy does not hold for larger fractions of the linear perturbation
term. The following expression for α was used in the examples to come.

α := λ sgn(u)max
{[
1−

1

|γ|

]
, 0
}

; λ :=
1

3(1+
√

|σ|)
(2.78)
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2.5.6 Summary

residual

R(φh) :=
∂φh
∂t

+ u∇(φh) − k∆(φh) + sφh − f(x)

the hrpg method

Find φh : [0, T ] 7→ Vh such that ∀wh ∈ Vh0 we have,

a(wh,φh)+
∑
e

(α`
2

dwh
dx

,R(φh)
)
Ωeh

+
(β`
2

|R(φh)|

|∇φh|
dwh
dx

,
dφh
dx

)
Ωeh

= l(wh)

PG weight→ wh +

[
α`

2
+
β`

2
sgn[R(φh)] sgn[∇(φh)]

]
dwh
dx

definitions

γ :=
u`

2k
; ω :=

s`2

k
; σ :=

s`

u

R(φ̃h) ≈
φ̃h −φnh
θ∆t

+ u∇(φ̃h) − k∆(φ̃h) + sφ̃h − f

φn+1n =
(1
θ

)
φ̃h +

(θ− 1
θ

)
φnh ; ∆t = tn+1 − tn ; θ ∈ (0, 1)

λ :=
1

3(1+
√

|σ|)
; δ ≈ 1

θ∆t

‖ φ̃h −φnh ‖∞
‖ φ̃h ‖∞

α := λ sgn(u)max
{[
1−

1

|γ|

]
, 0
}

ũ := u−
α`s

2
−
α`δ

2
; k̃ := k+

α`u

2
; s̃ := s+ |δ|

γ̃ :=
ũ`

2k̃
; ω̃ :=

s̃`2

k̃
; σ̃ :=

s̃`

ũ

β := max
{[
2

3

(
|σ̃|+ 3

|σ̃|+ 2

)
−

(
4

ω̃+ 4|γ̃|

)]
, 0
}

2.5.7 Examples

2.5.7.1 Example 1

We consider the convection–diffusion–reaction problem given by Eq.(2.1) in 1d. We
study the steady-state case with the following data : k = 1 and u, s 6= 0. The 1d

domain is taken as x ∈ [0, 1] and it is discretized with eight two-node linear elements.
The values of u and s are determined appropriately for different values of γ and ω.
The results of the HRPG method (using both λ = 0 and λ 6= 0) are compared with that
of the Galerkin, Galerkin with discrete upwinding (DU), SUPG, CAU, modified CAU
and the FIC based stabilization method presented in [152]. The error in the nonlinear
iterations was measured by the following norm:

‖ Φi+1 −Φi ‖e

‖ Φi+1 ‖e
(2.79)

where, ‖ · ‖e is the standard Euclidean vector norm. A tolerance of 1e-5 was chosen
as the termination criteria. A maximum of 30 iterations were allowed. Note that the
number of iterations required by the nonlinear methods for convergence is displayed
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next to the corresponding legends. The nonlinear iterations were initialized by the
solution obtained by the DU method.

Figures 28 - 33 illustrate the solution obtained for the sourceless case (f = 0) and for
(γ,ω) = {(1, 5), (1, 20), (1, 120), (2, 2), (10, 4), (10, 20)} respectively. The Dirichlet bound-
ary conditions φpL := φ(x = 0) = 8 and φpR := φ(x = 1) = 3 were employed. The DU
method is robust and provides stable solutions. Unfortunately the accuracy achieved
is at most first-order and hence the solutions are generally over-diffusive. The FIC
method presented in [152] provides more accurate solutions and remarkably the non-
linear iterations converge with just two iterations. Slight node-to-node oscillations
around the exact solutions are observed for the case γ = 10, ω = 4 viz. Figure 32a
and is duly discussed in [152]. As expected the SUPG method provides good solu-
tions to all except the reaction-dominated cases viz. Figures 29b,30b. The CAU and
modified CAU methods succeed in circumventing the instabilities for the reaction-
dominated cases but for these cases provide solutions that are more diffusive than
that of the DU method. The HRPG method provides good solutions for all the cases
considered. Note that for the reaction-dominated cases the solutions are less diffusive
than the DU, CAU and modified CAU methods. Also note that the solutions obtained
by taking λ = 0 is indistinguishable to that obtained by taking λ 6= 0. Nevertheless the
nonlinear iterations converge faster for the latter.

Figures 34,35 illustrate the solution obtained for the sourceless case (f = 0) with
(γ,ω) = (10, 200) and for Dirichlet boundary conditions (φpL,φpR) = {(0, 1), (1, 0)} re-
spectively. The FIC method of [152] provides nodally exact to-the-eye solutions and
the nonlinear iterations converge within 2 iterations. The solutions obtained by the
SUPG and CAU methods are indistinguishable and exhibit instabilities for the latter
boundary conditions viz. Figure 35b. The modified CAU method circumvents these in-
stabilities but instead provides solutions that are more diffusive than the DU method.
The HRPG method (both λ = 0 and otherwise) succeed to provide stable solutions
and are less diffusive than that obtained by the DU method. Figure 34 shows that the
HRPG method with λ = 0 converges in just one iteration while using λ 6= 0 seven
iterations were needed. This is a rare coincidence where the initial solution provided
by the DU method and the solution of the HRPG method with λ = 0 are closer than
the specified tolerance.

Figures 36,37 illustrate the solution obtained with (γ,ω) = (2, 0) and (f,φpL,φpR) =
{(0, 0, 1), (u, 0, 0)} respectively. As expected the SUPG method provides nodally exact
solutions for these cases. The DU, CAU and HRPG methods provide stable solutions
and are indistinguishable from each other. The modified CAU solution is very similar
to the solutions of the former methods. For the sourceless case (f = 0) the solutions
of the DU and FIC methods are indistinguishable. Unfortunately when f 6= 0 the
nonlinear iterations associated with the latter fail to converge. We believe that this
behavior is due to the increased nonlinearity associated with the definition of the
stabilization parameters (See [152]).

2.5.7.2 Example 2

We consider again the convection–diffusion–reaction problem given by Eq.(2.1) in 1d.
Now we study the transient pure-convection problem, i. e.k, s, f = 0. The Dirichlet
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Figure 28: Steady state: (γ,ω, f,φpL ,φpR) = (1, 5, 0, 8, 3). (a) Exact, Galerkin, FIC [152], HRPG
(λ = 0) and HRPG (λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU
solutions
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Figure 29: Steady state: (γ,ω, f,φpL ,φpR) = (1, 20, 0, 8, 3). (a) Exact, Galerkin, FIC [152], HRPG
(λ = 0) and HRPG (λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU
solutions
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Figure 30: Steady state: (γ,ω, f,φpL ,φpR) = (1, 120, 0, 8, 3). (a) Exact, Galerkin, FIC [152], HRPG
(λ = 0) and HRPG (λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU
solutions
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Figure 31: Steady state: (γ,ω, f,φpL ,φpR) = (2, 2, 0, 8, 3). (a) Exact, Galerkin, FIC [152], HRPG
(λ = 0) and HRPG (λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU
solutions
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Figure 32: Steady state: (γ,ω, f,φpL ,φpR) = (10, 4, 0, 8, 3). (a) Exact, Galerkin, FIC [152], HRPG
(λ = 0) and HRPG (λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU
solutions

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
−3

−2

−1

0

1

2

3

4

5

6

7

8

9

x

Φ

γ = 10, ω = 20
Analytical
Galerkin
FIC; 2 Iter.
HRPG(λ = 0); 20 Iter.
HRPG(λ ≠ 0); 9 Iter.

(a)

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
−3

−2

−1

0

1

2

3

4

5

6

7

8

9

x

Φ

γ = 10, ω = 20
Analytical
DU
SUPG
CAU; 5 Iter.
Mod.CAU; 9 Iter.

(b)

Figure 33: Steady state: (γ,ω, f,φpL ,φpR) = (10, 20, 0, 8, 3). (a) Exact, Galerkin, FIC [152], HRPG
(λ = 0) and HRPG (λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU
solutions
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Figure 34: Steady state: (γ,ω, f,φpL ,φpR) = (10, 200, 0, 0, 1). (a) Exact, Galerkin, FIC [152],
HRPG (λ = 0) and HRPG (λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and
Mod.CAU solutions
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Figure 35: Steady state: (γ,ω, f,φpL ,φpR) = (10, 200, 0, 1, 0). (a) Exact, Galerkin, FIC [152],
HRPG (λ = 0) and HRPG (λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and
Mod.CAU solutions



2.5 Convection–diffusion–reaction problem 65

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x

Φ

γ = 2, ω = 0
Analytical
Galerkin
FIC; 1 Iter.
HRPG(λ = 0); 1 Iter.
HRPG(λ ≠ 0); 1 Iter.

(a)

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x

Φ

γ = 2, ω = 0
Analytical
DU
SUPG
CAU; 1 Iter.
Mod.CAU; 1 Iter.

(b)

Figure 36: Steady state: (γ,ω, f,φpL ,φpR) = (2, 0, 0, 0, 1). (a) Exact, Galerkin, FIC [152], HRPG
(λ = 0) and HRPG (λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU
solutions
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Figure 37: Steady state: (γ,ω, f,φpL ,φpR) = (2, 0,u, 0, 0). (a) Exact, Galerkin, HRPG (λ = 0) and
HRPG (λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU solutions
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boundary condition φ(x = 0) = 0 is employed. The following initial condition was
used:

φ(x, t = 0) =

{
1 ∀ x ∈ [0.1, 0.2]∪ [0.3, 0.4]
0 else

(2.80)

The above initial condition models a double rectangular pulse with simple discontinu-
ities. The amplitude spectrum of this function decays only as fast as the harmonic series
and hence is rich in high wave numbers. It is a challenging problem for the validation
of any method for the control of dispersive oscillations and accuracy. The 1d domain
is taken as x ∈ [0, 1] and it is discretized with 200 two-node linear elements. The time
step was chosen as ∆t = 0.001s. This corresponds to a Courant number C = 0.2. The
error was measured using Eq.(2.79) and a tolerance of 1e-4 was used. For the HRPG
method with λ = 0 a tolerance of 1e-3 was used. The nonlinear iterations at every
time step were initialized by the solution obtained by the SUPG method.

Figures 38,39 illustrate the solution obtained with the SUPG, CAU, modified CAU
and HRPG methods. As expected the SUPG solution exhibits dispersive oscillations
viz. Figure 38a. Appreciable control over the dispersive oscillations is obtained in
the CAU method viz. Figure 38b. However slight crests and troughs do appear in
the solution that gradually die out in time. These crests and troughs are reduced
in the solution obtained by the modified CAU method at the cost of accuracy viz.
Figure 38c. Best results were obtained with the HRPG method with λ 6= 0 which
exhibits better control over the dispersive oscillations and maintains the symmetry
of the initial solution viz. Figure 39b-c. On the other hand the HRPG method with
λ = 0 is more diffusive than with λ 6= 0 and needs more iterations per time step for
convergence viz. Figure 39a.

2.6 conclusions

A high-resolution Petrov–Galerkin method is presented for the 1d convection–diffusion–
reaction problem. The prefix ‘high-resolution’ is used here in the sense popularized
by Harten, i. e.second order accuracy for smooth/regular regimes and good shock-
capturing in nonregular regimes. The HRPG method could be understood as the
combination of upwinding plus a nonlinear discontinuity-capturing operator. The
distinction is that in general (multidimensions) the upwinding provided by h is not
streamline and the discontinuity-capturing provided by H · ûr is neither isotropic nor
purely crosswind. The HRPG form can be considered as a particular class of the sta-
bilized governing equations obtained via a finite calculus (FIC) procedure. For the 1d

problem the HRPG method is similar to the CAU method with new definitions of the
stabilization parameters. The 1d examples presented demonstrate that the method
provides stabilized and essentially non-oscillatory i. e.monotone to-the-eye solutions
for a wide range of the physical parameters and boundary conditions. It is interesting
to note that the HRPG method without the linear upwinding term, i. e.using α = 0

does solve all the steady-state examples to give high-resolution stabilized results. Nev-
ertheless the presence of the linear perturbation terms improves the convergence of
the nonlinear iterations especially for the transient problem.
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Figure 38: Transient pure convection; u = 1m/s, ` = 0.005m, ∆t = 0.001s. (a) SUPG solution;
(b) CAU solution; (c) Mod.CAU solution
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Figure 39: Transient pure convection; u = 1m/s, ` = 0.005m, ∆t = 0.001s. (a) HRPG (λ = 0)
solution; (b) HRPG (λ 6= 0) solution; (c) HRPG (λ 6= 0) solution (evolution plot)



yad bhāvam tad bhavati.
(As is the feeling, so is the result).

— a Sanskrit saying.

3
M U LT I D I M E N S I O N A L E X T E N S I O N O F T H E H R P G M E T H O D

3.1 introduction

This chapter is a continuation of chapter §2 wherein a nonlinear high-resolution
Petrov–Galerkin (HRPG) method was presented for the convection–diffusion–reaction
problem in 1d. In this chapter we develop the extension to multi dimensions of the
HRPG method for the singularly perturbed convection–diffusion–reaction problem.

It is well known that the solution to the stationary convection–diffusion–reaction
problem may develop two types of layers: exponential and parabolic layers. The expo-
nential layers are usually found in the convection-dominant cases near the boundary
or close to the regions where the source term is non regular. Parabolic layers, which
are of larger width than exponential layers, are found in the reaction-dominant cases
near the boundary or close to the regions where the source term is non regular and
in the convection-dominated cases along the characteristics of the solution. The later
characteristic internal/boundary layers are usually found only in higher dimensions
and hence have no instances in 1d [175]. In other words we do not have a straight-
forward quantification of the characteristic layers in 1d. For this reason a direct exten-
sion of the definition of the stabilization parameters α,β derived for 1d will not be
efficient to resolve these layers.

The numerical artifacts that are formed across the parabolic layers are usually man-
ifested as the Gibbs phenomenon. Nevertheless there exists a subtle difference1 be-
tween the numerical artifacts formed across the characteristic layers and those formed
across the layers in the reaction-dominant cases. Consider a rectangular domain dis-
cretized by structured bilinear block finite elements. We use the following notation
(introduced in [136]) to represent a generic compact stencil corresponding to any in-
terior node (i,j) of the considered structured mesh.

{◦j+1, ◦j, ◦j−1}A{◦i−1, ◦i, ◦i+1}t = 0 (3.1)

where A represents the matrix of the stencil coefficients. For instance, if the standard
mass matrix obtained in the Galerkin FEM be assembled for a structured rectangular
mesh then we may express the corresponding stencil as follows:

Am :=
`2
6
{1, 4, 1}t

`1
6
{1, 4, 1} =

`1`2
36



1 4 1

4 16 4

1 4 1


 (3.2)

1 related to the cause and size of these numerical artifacts
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{◦j+1, ◦j, ◦j−1}Am{◦i−1, ◦i, ◦i+1}t := `1`2
36


Φi−1,j+1 + 4Φi,j+1 +Φi+1,j+1+

4Φi−1,j + 16Φi,j + 4Φi+1,j+

Φi−1,j−1 + 4Φi,j−1 +Φi+1,j−1

 (3.3)

The stencil coefficient matrix associated with the convective term in the Galerkin
FEM can be expressed as follows:

Ac :=
`2
6
{1, 4, 1}t

u1
2

{−1, 0, 1}+
u2
2
{1, 0,−1}t

`1
6
{1, 4, 1} (3.4)

Note that one may arrive at the terms in Eq.(3.2) and Eq.(3.4) via a 1d mass type av-
eraging of their respective counterparts in 1d, i. e.replacing (`1/6){1, 4, 1} with (`2/6)

{1, 4, 1}t (`1/6){1, 4, 1} and (u1/2){−1, 0, 1} with (`2/6){1, 4, 1}t(u1/2){−1, 0, 1} etc. Al-
though this 1d mass type averaging leads to a higher-order approximation for smooth
solution profiles, it unfortunately leads to the Gibbs phenomenon across layers. Un-
like in the reaction-dominant case where it is the numerical solution that undergoes
the 1d mass type averaging, in the convection-dominant case it is the derivatives of
the numerical solution that undergoes the same. Thus, the Gibbs phenomenon across
the characteristic layers in the later case is proportional to the variation in the deriva-
tives of the solution across the characteristic layers. Despite this subtle difference in
the Gibbs phenomenon associated with the characteristic layers in the convection-
dominated case, we choose to treat them by the same strategy that we use to treat the
numerical artifacts about the parabolic layers in the reaction-dominant case.

The outline of this chapter is as follows. In §3.2 we design a nondimensional ele-
ment number that quantifies the characteristic internal/boundary layers. Anisotropic
element length vectors li are introduced in §3.3 and using them objective characteris-
tic tensors h and H associated with the HRPG method are defined. The stabilization
parameters αi,βi used in the definition of h, H are defined in §3.4 by a direct exten-
sion of their respective expressions in 1d. The definitions of βi are updated to include
the new dimensionless number introduced in §3.2. In Box 1 we summarize the HRPG
method in multi dimensions. Several numerical examples are presented in §3.5 that
throws light on the performance of the proposed method. Finally we arrive at some
conclusions and outlook in §3.6

3.2 quantifying characteristic layers

In this section we design a nondimensional element number that quantifies the char-
acteristic internal/boundary layers. By quantification we mean that its should serve a
similar purpose as the element Peclet number γ for the exponential layers in convec-
tion dominant cases and the dimensionless number ω := 2γσ for the parabolic layers
in the reaction dominant cases.

Consider the following singularly perturbed (k� u) convection–diffusion problem
in 2d:

u
∂φ

∂x
− k

(
∂2φ

∂x2
+
∂2φ

∂y2

)
= 0 in Ω (3.5a)

φ = φp on Γ (3.5b)
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where, Ω is a rectangular domain ABCD as shown in Figure 40a, Γ is the domain
boundary and φp is the prescribed value of φ on Γ . The origin of the 2d axes is taken
as the midpoint of AD. Consider φp = 0 everywhere except on ADwhere it is defined
as follows:

φp(0,y) = f(y) := H(y+ a) − H(y− a),a > 0 (3.6a)

H(y) :=
1+ sgn(y)

2
=


0 y < 0

0.5 y = 0

1 y > 0

(3.6b)

The function f(y) is discontinuous at y = ±a and its shape can be described as a
rectangular pulse. A well known virtue of the solution φ(x,y) is that these disconti-
nuities are immediately smoothed out in the interior of the domain, thus leading to
parabolic layers along the characteristic lines of the problem [175]. In accordance with
singular perturbation theory and by the method of matched asymptotic expansions
[117], the leading term describing the characteristic layer is given by,

φ(x,y) ≈ 1
2

[
erf
(√

u

4kx
(y+ a)

)
− erf

(√
u

4kx
(y− a)

)]
(3.7)

where erf represents the error function and is defined as follows:

erf(x) :=
2√
π

∫x
0

e−z
2

dz (3.8)

The approximation given in Eq.(3.7) is uniformly valid to O(1) in a region away
from the exponential layers formed near the boundary BC [117]. Figure 40b illustrates
the solution given by Eq.(3.7) about a cross-section SS ′ (cf. Figure 40a) located at a
distance x from the boundary AD.

A B
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x S
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φ(x,y) on
boundary AD

(a)
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D

B

A

x

u

φ(x,y) on boundary AD

φ(x,y) at an interior
cross−section SS’

(b)

Figure 40: A singularly perturbed convection–diffusion problem. (a) The problem domain
ABCD and boundary conditions; (b) The solution about a cross-section SS ′ located
at a distance x from the boundary AD
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Consider now the heat equation posed on an infinite domain:

∂φ

∂t
− k

∂2φ

∂y2
= 0, in Ω := {(y, t) | y ∈ (−∞,∞), t ∈ [0,∞)} (3.9a)

φ(y, t = 0) = f(y) f(y) := [H(y+ a) − H(y− a)] ,a > 0 (3.9b)

Note that we have initialized the solution with a function f(y) that was used earlier
in Eq.(3.6a) to prescribe the Dirichlet boundary condition. The exact solution for the
problem (3.9) can be expressed as follows:

φ(y, t) =
1

2

[
erf
(
y+ a√
4kt

)
− erf

(
y− a√
4kt

)]
(3.10)

Clearly, replacing t with (x/u) in Eq.(3.10) we recover the leading term describing
the characteristic layers given by Eq.(3.7). Note that (x/u) is the time required to travel
a distance x along the characteristic lines. This resemblance is due to the fact that in
regions far-away from the domain boundaries the convective and diffusive effects do
not interact, i. e.convection just carries the diffusing solution along the characteristic
lines [172].

Next, we try to relate the solution of the heat equation with the solution of the
diffusion–reaction problem. The statement of the diffusion–reaction problem posed
on an infinite domain is:

−k
d2φ

dy2
+ sφ = sf(y) in Ω := {y | y ∈ (−∞,∞)} (3.11a)

φ(y) = 0 at y = ±∞ (3.11b)

The exact solution for the above problem can be expressed as follows:

φ(y) =
sgn(y+ a)

2

[
1− e−ξ|y+a|

]
−

sgn(y− a)
2

[
1− e−ξ|y−a|

]
(3.12)

where, ξ :=
√
s/k. Figures 41a and 41b illustrate the solution of the heat equa-

tion given by Eq.(3.10) and the solution of the diffusion–reaction problem given by
Eq.(3.12) respectively. Clearly these two solutions have distinct profiles. Nevertheless,
they share a common trait of possessing parabolic layers, i. e.the first-order deriva-
tives in the direction perpendicular to the layers have magnitude O(1/

√
k). We refer

to [175] for further details about parabolic and exponential layers.
Now we pose the following design problem: Relate s and t such that the parabolic

layers in the solution of the heat equation i. e.Eq.(3.10) and the solution of the diffusion–
reaction problem i. e.Eq.(3.12) have the same width.

In the following developments the width of the layer is taken as the distance within
which the value of φ varies from 1% to 99% of [max(f(y)) − min(f(y))]. We choose
f(y) = H(y) to simplify the algebra. For this choice of f(y) the solution of the heat
equation and the diffusion–reaction problem can be expressed as in Eq.(3.13) and
Eq.(3.14) respectively.

φ(y, t) =
1

2

[
1+ erf

(
y√
4kt

)]
(3.13)

φ(y) =
1

2

[
1+ sgn(y)

(
1+ eξ|y|

)]
(3.14)
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Figure 41: Parabolic layers in the solution of: (a) the heat equation given by Eq.(3.10) using
k = 0.01 and t = 0.1; (b) the diffusion–reaction problem given by Eq.(3.12) using
k = 0.01 and s = 10
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Figure 42: Matching the layers in the solution of the heat equation and the diffusion–reaction
problem. (a) plot domain: [−0.2, 0.2], k = 0.01, t = 0.1 and s := (

√
2/t) = 10

√
2; (b)

plot domain: [−0.2, 0], the two solutions always meet at a value equal to 0.01

Let y = −y∗ be the distance at which the solutions given by Eq.(3.13) and Eq.(3.14)
have a value equal to 1% of [max(H(y)) −min(H(y))], i. e.0.01. Due to the inherent
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symmetry of the problem, these solutions at y = y∗ will attain a value equal to 99%
of [max(H(y)) −min(H(y))], i. e.0.99. Thus we have,

1

2

[
1+ erf

(
−y∗√
4kt

)]
=

1

100
=
e−ξy

∗

2
(3.15)

Solving Eq.(3.15) we get the following equation relating s and t,

st =
1

4

[
ln(50)

erf−1(49/50)

]2
≈
√
2 ⇒ s ≈

√
2

t
(3.16)

The above relation between s and t guarantees that the parabolic layers that appear
in the solutions of the heat equation and the diffusion–production problem will have
the same width. In Figure 42 using Eq.(3.16) these solutions having the same layer
width are compared.

We now address the initial objective of quantifying the characteristic layers found
in the singularly perturbed convection–diffusion problem (3.5). Consider a fictitious
reaction coefficient sc and an associated dimensionless element number ωc defined
as below.

sc :=

√
2u

x
, ωc =

sc`
2

k
(3.17)

where ` is an appropriate element length measure. We have used the substitution
t = (x/u) in Eq.(3.16) to arrive at the expression for sc in Eq.(3.17). Recall that we
have used earlier the same substitution in the solution of the heat equation to recover
the leading term describing the characteristic layers in the solution of the convection–
diffusion problem. We may use this fictitious reaction coefficient sc to relate the char-
acteristic layers of the convection–diffusion problem to similar2 parabolic layers of the
1d diffusion–production problem. In this sense, the nondimensional element number
ωc quantifies the characteristic layers and could be used in the design of stabilization
parameters to control the numerical artifacts about these layers.

Note that the value of sc is a function of x, i. e.sc is inversely proportional to the
distance from the source of the discontinuity along the characteristic lines. In fact this
is how the characteristic layers in the solution of the convection–diffusion problem
behave, i. e.their width widens as we move away from the source of the discontinu-
ity along the characteristic lines. However from the design point-of-view, a variable
definition of sc and hence of ωc is inconvenient. This is due to the fact that the charac-
teristic lines could be arbitrary curves governed by the velocity field and hence finding
the distance x along these lines need not be straight-forward. Hence we redefine sc
and ωc using an appropriate element characteristic length `c.

sc :=

√
2u

`c
, ωc =

sc`
2

k
(3.18)

3.3 objective characteristic tensors

In this section we present the objective characteristic tensors h and H used in the
extension of the HRPG method to higher dimensions. In the developments to follow,

2 in the sense of matched layer widths
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only the multi-linear block finite elements are considered. Here objectivity is to be un-
derstood in the sense popular in tensor calculus, i. e.independence of the method on
the description of the reference frame and admissible node numbering permutations
of the mesh.

Consider the following definition for the element length vectors li :

li := J · l̃i ; Jij :=
∂xi
∂x̃j

; l̃1 := 2(1, 0) ; l̃2 := 2(0, 1) (3.19)

where J represents the Jacobian matrix of bijective mappings from the local to global
coordinate systems, xi and x̃i represent the global and local coordinates respectively
and l̃i are fixed vectors along the axes of the local frame. Figure 43 illustrates the
element length vectors li obtained at any arbitrary point P(x̃1, x̃2) within a 2d bilinear
block finite element. The expression for the vectors li in 2d and at this point P can be
simplified to the following:

l1 =
1− x̃2
2

E12 +
1+ x̃2
2

E43 ; l2 =
1− x̃1
2

E14 +
1+ x̃1
2

E23 (3.20)

where Eab is the edge vector pointing from node a to node b.

P

1 2

3

4

E12

E43

E23

E14
l1

l2

(a)

P

1

2

3

4

E12

E43

E23

E14

l1

l2

(b)

Figure 43: Anisotropic element length vectors li obtained at any arbitrary point P(x̃1, x̃2)
within a 2d bilinear block finite element. The sub-figures (a) and (b) illustrate li

obtained for two admissible global node numbering permutations

Let αi,βi be stabilization parameters calculated along the element length vectors
li and with the following properties: a) (u · li)αi > 0 ∀ i, b) βi > 0 ∀ i and c) only
scalars and free vectors3 are used in their respective definitions. The definition of these
parameters is delayed until §3.4. The characteristic tensors h and H are calculated as:
h := 0.5αili , H := 0.5(βi/|li|)[li ⊗ li]. Thus in 2d the characteristic tensors could be
expressed as follows:

h := α1l1 +α2l2 ; H :=
β1

|l1|
[l1 ⊗ l1] +

β2

|l2|
[l2 ⊗ l2] (3.21)

3 If one is interested only in the magnitude and direction of the vector and does not think of it as situated
at any particular location, then it is called a free vector
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Using h, H as defined above we calculate the perturbation ph associated with the
HRPG method as described earlier in Eq.(2.6), i. e.

ph := [h + H · ûr] ·∇wh (3.22)

ur :=
R(φh)

|∇φh|2
∇φh; ⇒ ûr :=

ur

|ur|
=

sgn[R(φh)]
|∇φh|

∇φh (3.23)

The definition of h and H given by Eq.(3.21) guarantees the objectivity of the HRPG
method. Reference frame independence can be verified by the fact that the tensors h
and H obey the same tensor transformation rules as any other free tensor associated
with the problem, e. g.the velocity vector u. Admissible node numbering permutations
only swap one element length vector with the other (possibly with a change of sign)
as shown in Figure 43b. Due to the properties of αi,βi and by their definition, the
characteristic tensors h and H are invariant with respect to these swaps in li.

Remark 1 : As noted in §2.2 the multidimensional HRPG method could be arrived
at from the FIC equations with an appropriate definition of the characteristic length
as hfic := h + H · ûr.

Remark 2: A figure similar to Figure 43a were presented earlier in [92] (cf. Fig. 3.2,
pp. 55), [22] (cf. Fig. 3.4, pp. 215) and [190] (cf. Figure 2, pp. 2205). Therein the element
length vectors li evaluated at the centroid of the element were used to define a scalar
element size measure. The distinction here is to use these li to arrive at objective
characteristic tensors h and H that treat effectively the anisotropy of the finite element.

3.4 stabilization parameters

Except for the modification to include the new dimensionless number introduced in
§3.2 that quantifies the characteristic layers, the definition of the stabilization parame-
ters αi,βi calculated along the element length vectors li are a direct extension of their
counterparts in 1d summarized in §2.5.6. Following this line, in multi dimensions and
along li we define the following nondimensional element numbers:

γi :=
u · li
2k

; ωi :=
s|li|2

k
; σi :=

s|li|2

u · li (3.24)

Following Eq.(3.18), the fictitious reaction coefficient ŝi and the associated dimen-
sionless number ω̂i along li are calculated as follows.

ŝi := max
j6=i

√
2
|u · lj|
|lj|2

; ω̂i :=
ŝi|li|2

k
(3.25)

Following Eq.(2.78) the stabilization parameters αi along li are calculated as follows.

αi := λi sgn(u · li)max
{[
1−

1

|γi|

]
, 0
}

; λi :=
1

3(1+
√

|σi|)
(3.26)

Assuming that the discretization in time is done using the implicit trapezoidal rule
and following Eq.(2.76) we calculate the nonlinear pseudo-reaction coefficient δ as
follows.

δ ≈ 1

θ∆t

‖ φ̃h −φnh ‖∞
‖ φ̃h ‖∞ (3.27)
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Following Eq.(2.72) we define the effective convection, diffusion and reaction coef-
ficients along li as follows.

ũi :=
u · li
|lj|

−
αi|li|s
2

−
α|li|δ
2

; k̃i := k+
αiu · li
2

; s̃ := s+ δ (3.28)

Likewise following Eq.(2.73), the effective element dimensionless numbers along li

can be calculated as,

γ̃i :=
|ũi||li|
2k̃i

; σ̃i :=
s̃|li|
|ũi|

; ω̃i :=
s̃|li|2

k̃i
(3.29)

Finally, following Eq.(2.74) the stabilization parameters βi along li are calculated
using the dimensionless numbers γ̃i, σ̃i, ω̃i and ω̂i as follows:

βi := max
{[
2

3

(
σ̃i + 3

σ̃i + 2

)
−

(
4

ω̃i + 4γ̃i

)]
,
[
2

3
−
4

ω̂i

]
, 0
}

(3.30)

The inclusion of the term (2/3) − (4/ω̂i) in the definition of βi is the only mod-
ification from a straight-forward extension to multi dimensions of the definition of
its counterpart in 1d. This expression follows from Eq.(2.55) and the justification is
based on the strategy we employ to treat the numerical artifacts about the character-
istic layers— to treat them just like the numerical artifacts about the parabolic layers
in the reaction-dominant case.

3.5 examples

In this section we present some examples in 2d for the convection–diffusion–reaction
problem defined by Eq.(2.1). The domain Ω is discretized by considering both struc-
tured and unstructured meshes made up of just the bilinear block finite elements.
The unstructured meshes are obtained by randomly perturbing the interior nodes of
structured meshes with coordinates (xi,yi) as follows [60, 128]:

x
′
i = xi + `1δrand() ; y

′
i = yi + `2δrand() (3.31)

where, (x
′
i,y

′
i) represent the corresponding coordinates of the unstructured mesh,

`1, `2 represent the mesh sizes of the structured mesh, δ is a mesh distortion parameter
and rand() is a function that returns random numbers uniformly distributed in the
interval [−1, 1]. Figure 44 illustrates two types of unstructured meshes obtained by this
procedure using a 20× 20 square mesh and the parameter δ = 0.2. In Figure 44a, δ =
0.2 was chosen for all the internal nodes of the mesh. Whereas for the nodes adjacent
to the boundary in the mesh shown in Figure 44b, the perturbation perpendicular to
the boundary was set to zero. The unstructured meshes obtained using the former
and later techniques are denoted as ‘Type I’ and ‘Type II’ respectively.

3.5.1 Steady-state examples

In this section we illustrate the performance of the HRPG method for the stationary
convection–diffusion–reaction problem. Unless otherwise specified, in all the exam-
ples the following data is considered. The domain Ω is [0, 1]× [0, 1]. Each example is
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residual

R(φh) :=
∂φh
∂t

+ u ·∇(φh) − k∆(φh) + sφh − f(x)

hrpg method

Find φh : [0, T ] 7→ Vh such that ∀wh ∈ Vh0 we have,

a(wh,φh)+
∑
e

(
h ·∇wh,R(φh)

)
Ωeh

+
( |R(φh)|
|∇φh|

H ·∇wh,∇φh
)
Ωeh

= l(wh)

HRPG weight→ wh +

[
h +

sgn[R(φh)]
|∇φh|

H ·∇φh
]
·∇wh

definitions

R(φ̃h) ≈
φ̃h −φnh
θ∆t

+ u ·∇(φ̃h) − k∆(φ̃h) + sφ̃h − f

φn+1n =
(1
θ

)
φ̃h +

(θ− 1
θ

)
φnh ; ∆t = tn+1 − tn ; θ ∈ (0, 1)

li := 2J · ẽi ; Jij :=
∂xi
∂x̃j

; ŝi := max
j6=i

√
2
|u · lj|
|lj|2

γi :=
u · li
2k

; σi :=
s|li|2

u · li ; ω̂i :=
ŝi|li|2

k

λi :=
1

3(1+
√
|σi|)

; δ ≈ 1

θ∆t

‖ φ̃h −φnh ‖∞
‖ φ̃h ‖∞

αi := λi sgn(u · li)max
{[
1−

1

|γi|

]
, 0
}

ũi :=
u · li
|li|

−
αi|li|s
2

−
α|li|δ
2

; k̃i := k+
αiu · li
2

; s̃ := s+ δ

γ̃i :=
|ũi||li|
2k̃i

; σ̃i :=
s̃|li|
|ũi|

; ω̃i :=
s̃|li|2

k̃i

βi := max
{[
2

3

(
σ̃i + 3

σ̃i + 2

)
−

(
4

ω̃i + 4γ̃i

)]
,
[
2

3
−
4

ω̂i

]
, 0
}

h :=
1

2
αili ; H :=

1

2

βi

|li|
[li ⊗ li]

Box 1: Summary of the HRPG method in multi dimensions and considering the implicit trape-
zoidal rule for time integration
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(a) (b)

Figure 44: Unstructured 20× 20 meshes made of bilinear block finite elements. (a) Type I: all
internal nodes of the mesh are perturbed using δ = 0.2. (b) Type II: the perturbation
perpendicular to the boundary was set to zero for the boundary-adjacent nodes of
the mesh. For the rest of the cases δ = 0.2 was chosen.

solved using four meshes, two of which are structured and the remaining two are un-
structured. The structured meshes consists of 20× 20 (uniform/square) and 40× 20
(rectangular) bilinear elements respectively. The unstructured meshes are obtained
from the considered uniform mesh via the two perturbation techniques described ear-
lier and illustrated in Figure 44. The obtained solutions are illustrated as surface plots
whose view is described as (θ◦,ψ◦), where θ◦ is the azimuthal angle with respect to
the negative y-axis and ψ◦ is the elevation angle from the x–y plane.

Example 1: This is a classical steady-state problem introduced in [22] where the
advection is skew to the mesh with downwind essential boundary conditions. The
problem data is: u = (5,−9), k = 10−8, s = 0 and f = 0. The boundary conditions
are: φ = 1 on (x = 0,y > 0.7) ∪ (x < 1,y = 1), φ = 0.5 at (x = 0,y = 0.7) and
φ = 0 on the rest of the boundary. This problem has exponential boundary layers
at the outflow boundary and an internal characteristic layer. Figure 45 illustrates the
solutions obtained by the HRPG method viewed at (20◦, 20◦).

Example 2: This problem was studied in [152] wherein a nonuniform rotational veloc-
ity field is employed in a rectangular domainΩ := [−1, 1]× [0, 1]. Structured meshes of
40× 20 (uniform/square) and 80× 20 (rectangular) bilinear elements are used. The un-
structured meshes are obtained from the uniform mesh via the two perturbation tech-
niques described earlier. The problem data is: u = 104(y[1− x2],−x[1−y2]), k = 10−4,
f = 0, s = 0. The boundary conditions are: φ = 1 on (x < −0.5,y = 0), φ = 0.5 at
(x = −0.5,y = 0), φ = 0 on (−0.5 < x 6 0,y = 0) ∪ (x = 1,y) and on the rest of the
boundary the Neumann condition n · ∇φ = 0 is imposed. The numerical solution of
the HRPG method viewed at (20◦, 20◦) is shown in Figure 46.

Example 3: This is a plain diffusion–reaction problem. The problem data is: u = (0, 0),
k = 10−8, f = 1, s = 1. The homogeneous boundary condition φ = 0 is imposed
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(a) (b)

(c) (d)

Figure 45: Example 1, advection skew to the mesh. The solution of the HRPG method viewed
at (20◦, 20◦) and using (a) a structured 20× 20 mesh, (b) a structured 40× 20 mesh,
(c) an unstructured (Type I) 20 × 20 mesh, (d) an unstructured (Type II) 20 × 20
mesh.

everywhere. The numerical solution of the HRPG method viewed at (−45◦, 20◦) is
shown in Figure 47.

Example 4: This is a multidimensional modification of the convection–diffusion–
reaction problem studied earlier in §2.5.7.1 and also in [137, 152]. The problem data
is: u = (0.01, 0), k = 10−4, s = 4.8 and f = 0. The boundary conditions are: φ = 1.0
on (x = 0,y) ∪ (x,y = 0), φ = (3/8) on the rest of the boundary. The value of the
element dimensionless numbers γ1, ω1 are 2.5 and 120 respectively. Recall that for
similar problem data in 1d (cf. §2.5.7.1 and [137, 152]) the upwind numerical artifacts
in the solution of Galerkin method were found to be enhanced in the solution of the
SUPG method. The numerical solution of the HRPG method viewed at (120◦, 20◦) is
shown in Figure 48.

Example 5: This is a uniform advection problem with a constant source term intro-
duced in [118]. The problem data is: u = (1, 0), k = 10−8, f = 1, s = 0. The homoge-
neous boundary condition φ = 0 is imposed everywhere. The exact solution develops
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(a) (b)

(c) (d)

Figure 46: Example 2, nonuniform rotational advection. The solution of the HRPG method
viewed at (20◦, 20◦) and using (a) a structured 40× 20mesh, (b) a structured 80× 20
mesh, (c) an unstructured (Type I) 40 × 20 mesh, (d) an unstructured (Type II)
40× 20 mesh.

exponential layers at the outlet boundary (x = 1,y) and characteristic boundary layers
at (x,y = 0) and (x,y = 1). The numerical solution of the HRPG method viewed at
(−45◦, 20◦) is shown in Figure 49.

Example 6: This is a non-uniform advection problem with a constant source term in-
troduced in [188]. The advection is caused by a unit angular velocity field. Structured
meshes of 64× 64 (uniform/square) and 128× 64 (rectangular) bilinear elements are
used. The unstructured meshes are obtained from the uniform mesh via the two per-
turbation techniques described earlier. The problem data is: u = (y,−x), k = 10−6,
f = 1, s = 0. The homogeneous boundary condition φ = 0 is imposed everywhere.
This problem has a complicated boundary layer. For instance close to the boundary
(x,y = 0) and with an increase in x, these layers gradually vary from being parabolic
to exponential while maintaining a constant profile height φ(x,y = 0) ≈ (π/2) (away
from the corners). Close to the boundary (x = 1,y) the solution profile is approxi-
mately φ(x = 1,y) ≈ (π/2)− 2 tan−1(y). The numerical solution of the HRPG method
viewed at (−200◦, 20◦) is shown in Figure 50.

Example 7: This is a uniform advection problem with a discontinuous source term
introduced in [132]. The problem data is: u = (1, 0), k = 10−8, f(x 6 0.5,y) = 1,
f(x > 0.5,y) = −1, s = 0. The homogeneous boundary condition φ = 0 is imposed
everywhere. Structured meshes of 30× 30 (uniform/square) and 60× 30 (rectangular)
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(a) (b)

(c) (d)

Figure 47: Example 3, a reaction–diffusion problem The solution of the HRPG method viewed
at (−45◦, 20◦) and using (a) a structured 20×20mesh, (b) a structured 40×20mesh,
(c) an unstructured (Type I) 20 × 20 mesh, (d) an unstructured (Type II) 20 × 20
mesh.

bilinear elements are used. The unstructured meshes are obtained from the uniform
mesh via the two perturbation techniques described earlier. The numerical solution
of the HRPG method viewed at (−10◦, 20◦) is shown in Figure 51.

3.5.2 Transient examples

Here we illustrate the performance of the HRPG method for the transient 2d pure
convection problem. Only uniform bilinear finite elements are used here. Both of
the examples presented here deal with the advection of solid bodies modeled with
appropriate density functions. These problems are frequently used as test cases for
advection algorithms demonstrating their treatment of dispersive oscillations and the
overall solution accuracy.

Example 8: This is a test case introduced in the ERCOFTAC document [24]. A circu-
lar scalar bubble is initially positioned at the bottom of a square domain in a fixed
constant velocity field directed at 45◦ toward the top right of the domain. The prob-
lem data is: u = (0.5, 0.5), k = 10−30, s = 0 and f = 0. The domain Ω := [0, 3]× [0, 3] is
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(a) (b)

(c) (d)

Figure 48: Example 4, a convection–diffusion–reaction problem with a dominant reaction term.
The solution of the HRPG method viewed at (120◦, 20◦) and using (a) a structured
20× 20 mesh, (b) a structured 40× 20 mesh, (c) an unstructured (Type I) 20× 20
mesh, (d) an unstructured (Type II) 20× 20 mesh.

discretized by a uniform mesh of 300× 300 bilinear elements. The time integration is
done using the implicit midpoint rule and is advanced at a time step of 0.005 seconds.
This corresponds to an element CFL number of 0.25. Define a radius R = 0.25, an arbi-
trary position vector r := (x,y) ∈ Ω and a specific position vector rc := (0.5, 0.5) ∈ Ω.
The initial solution can then be expressed as follows:

φ(r, t = 0) = H(R− |r − rc|) (3.32)

where H() is the Heaviside function defined earlier in Eq.(3.6b) and rc is the center
of the circular scalar bubble. The initial solution viewed at (40◦, 20◦) is shown in
Figure 52a (elevation plot) and Figure 52c (contour plot). The Dirichlet boundary
condition φ = 0 is imposed at the inlet boundaries. The numerical solution of the
HRPG method at time t ∈ {1, 2, 3, 4} seconds and viewed at (40◦, 20◦) is shown in
Figure 53 (elevation plots) and Figure 54 (contour plots).

Example 9: This is a standard benchmark problem introduced in [125] that simulates
the advection of a solid body subjected to a constant angular velocity field. The solid
body is modeled with a scalar density function that has three shapes, viz. a slotted
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(a) (b)

(c) (d)

Figure 49: Example 5, uniform advection with a constant source term. The solution of the
HRPG method viewed at (−45◦, 20◦) and using (a) a structured 20× 20 mesh, (b) a
structured 40× 20 mesh, (c) an unstructured (Type I) 20× 20 mesh, (d) an unstruc-
tured (Type II) 20× 20 mesh.

cylinder, a cone and a sinusoidal hump. The classical problem with just the slotted
cylinder revolving about the center of the domain was proposed by Zalesak in the
seminal paper [191] that extended the FCT method to multi dimensions. The problem
data is: u = (0.5−y, x− 0.5), k = 10−30, s = 0 and f = 0. The domainΩ := [0, 1]× [0, 1]
is discretized using 200× 200 uniform bilinear elements. The time integration is done
using the implicit midpoint rule and is advanced at a time step of 0.001 seconds. This
corresponds to a maximum element CFL number of 0.1. Define a radius R = 0.15, an
arbitrary position vector r := (x,y) ∈ Ω and a specific position vector ra := (xa,ya) ∈
Ω for some chosen point a. The initial solution can then be expressed as follows:

φ(r, t = 0) = H(R− |r − r1|)
[
1− H(0.025− |x− x1|)H(0.85− y)

]
+

1− min
{
|r − r2|
R

, 1
}
+
1

4

[
1+ cos

(
πmin

{
|r − r2|
R

, 1
})] (3.33)

where H() is the Heaviside function defined earlier in Eq.(3.6b), r1 = (0.5, 0.75),
r2 = (0.5, 0.25) and r3 = (0.25, 0.5) are the position vectors corresponding to the cen-
ter of the slotted cylinder, the cone and the sinusoidal hump respectively. The initial
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(a) (b)

(c) (d)

Figure 50: Example 6, non-uniform advection with a constant source term. The solution of
the HRPG method viewed at (−200◦, 20◦) and using (a) a structured 64× 64 mesh,
(b) a structured 128× 64 mesh, (c) an unstructured (Type I) 64× 64 mesh, (d) an
unstructured (Type II) 64× 64 mesh.

solution viewed at (−20◦, 20◦) is shown in Figure 52b (elevation plot) and Figure
52d (contour plot). The Dirichlet boundary condition φ = 0 is imposed at the in-
let boundaries. Under the considered velocity field the initial solution completes a
full revolution in 2π seconds. The numerical solution of the HRPG method at time
t = {(π/2),π, (3π/2), 2π} seconds and viewed at (−20◦, 20◦) is shown in Figure 55

(elevation plots) and Figure 56 (contour plots).

3.5.3 Discussion

The HRPG method proposed here can be understood as the combination of up-
winding plus a discontinuity-capturing operator. Also the discontinuity-capturing
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(a) (b)

(c) (d)

Figure 51: Example 7, uniform advection with a discontinuous source term. The solution of
the HRPG method viewed at (−10◦, 20◦) and using (a) a structured 30× 30 mesh,
(b) a structured 60× 30 mesh, (c) an unstructured (Type I) 30× 30 mesh, (d) an
unstructured (Type II) 30× 30 mesh.

term has the canonical form of the shock-capturing diffusion, i. e.it is proportional
to (|R(φh)|/|∇φh|). Nevertheless the finer structure of the HRPG method is distinct
from the existing shock-capturing Petrov–Galerkin methods in the literature (cf. Table
2 in chapter 2). The distinction is that the upwinding provided by the characteristic
tensor h is not streamline and the discontinuity capturing provided by the character-
istic tensor H is neither isotropic nor purely crosswind.

It is clearly seen from the steady-state examples presented in the previous section
that for structured meshes (both square and rectangular bilinear elements) the HRPG
method reproduces a crisp resolution of the layers in the numerical solution. The good
performance on rectangular elements (here considered with an aspect ratio of 2:1) is
due to the anisotropic treatment of the stabilization terms involving the characteristic
tensors h and H. The solutions obtained by the HRPG method for the transient 2d

advection examples advocate its good treatment of dispersive oscillations without
compromising the solution-accuracy (cf. Figures 53 and 55). Also the symmetry of the
initial data is well maintained (cf. Figures 54 and 56). Recall that the time integration
was performed by the implicit midpoint rule which is a symplectic time integrator
[76]. This choice was made to single-out the treatment of the geometrical symmetry
in the initial data by the HRPG method.

Clearly on unstructured meshes we do not attain the same layer resolution quality
as is obtained on the corresponding structured meshes. However the parabolic lay-
ers (characteristic and reactive layers) are captured satisfactorily. About the exponen-
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(a) (b)

(c) (d)

Figure 52: Initial data for the transient 2d advection examples. (a) Example 8, elevation plot
viewed at (40◦, 20◦), (b) Example 9, elevation plot viewed at (−20◦, 20◦), (c) Exam-
ple 8, contour plot, (d) Example 9, contour plot.

tial layers some overshoots and undershoots are observed using Type I unstructured
meshes. These unwanted localized artifacts are conspicuous in the solutions of exam-
ple 5 (Figure 49c) and example 6 (Figure 50c) suggesting that there is room for further
improvement of the method. Nevertheless using Type II unstructured meshes where
in the random perturbation of the mesh nodes perpendicular to the domain bound-
ary is set to zero, these unwanted artifacts about the exponential layers are greatly
reduced.

Figure 51 illustrates another shortcoming of the HRPG method that is conspicuous
even when structured meshes are used. On one half of the domain (here the source
term is positive) the obtained solutions have crisp layer resolutions, whereas in the
remaining half (here the source term is negative) the numerical solution appears to
be over-damped and even negative near the corners of the outlet boundary. This is
a shortcoming suffered by all the shock-capturing techniques designed within the
Petrov–Galekin framework (see Codina’s monograph [31]) that rely on the canoni-
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(a) (b)

(c) (d)

Figure 53: Example 8, transient pure convection skew to the mesh. The solution of the HRPG
method viewed at (40◦, 20◦) and at time (a) t = 1 s, (b) t = 2 s, (c) t = 3 s, (d) t = 4
s.

cal strategy of adding a positive shock-capturing diffusion. The following example
illustrates why the aforesaid strategy fails to address this shortcoming.

Example 10: Consider a unit domain Ω := [0, 1]× [0, 1] and the following problem
data: u = (1, 0), k = 10−8, s = 0 and f = −1. The Dirichlet boundary conditions
are: φ = 1 on (x = 0,y > 0) ∪ (x,y = 1) and φ = 0 on the rest of the boundary.
The domain Ω is discretized using a structured mesh of 20 × 20 (uniform/square)
bilinear elements. In the interior of the domain the exact solution has the profile of
a flat surface with a slope of −1. Along the boundaries (x,y = 0) and (x,y = 1) the
exact solution develops characteristic boundary layers and as a consequence within
the width of these characteristic layers and near the corners of the outlet boundary
(x = 1,y), exponential layers are formed. Hence the solution of the plain Galekin FEM
will be corrupted with global oscillations. The solutions obtained by the SUPG and
the HRPG method are shown in Figure 57.

Note that the undershoots and overshoots in the solution of the SUPG method is
identical across both characteristic layers (cf. Figures 57a and 57c). This is in agreement
with the reasoning made in §3.1 related to the numerical artifacts across characteristic
layers, i. e.unlike in the reaction-dominant case where it is the numerical solution
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(a) (b)

(c) (d)

Figure 54: Example 8, transient pure convection skew to the mesh. The contour plots of the
solution of the HRPG method at time (a) t = 1 s, (b) t = 2 s, (c) t = 3 s, (d) t = 4 s.

that undergoes the 1d mass type averaging, in the convection-dominant case it is
the derivatives of the numerical solution that undergoes the same. Thus, the Gibbs
phenomenon across the characteristic layers in the later case is proportional to the
variation in the derivatives of the solution across these layers. In other words for the
current problem it is the slope of φh and not the actual value of φh on the boundary
that determines the observed artifacts. It can be clearly seen in Figure 57c that any
method, that relies on the canonical strategy of adding a positive shock-capturing
diffusion, will not be able to recover (near the boundary (x,y = 0)) the nodally exact
interpolant from the initial SUPG solution. On the other hand, note that the artifacts
near the boundary (x,y = 1) has a profile similar to the one that would have been
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(a) (b)

(c) (d)

Figure 55: Example 9, rotation of solid bodies. The solution of the HRPG method viewed at
(−20◦, 20◦) and at time (a) t = (π/2) s i. e.after a quarter-revolution, (b) t = π s
i. e.after a half-revolution, (c) t = (3π/2) s, i. e.after three quarters of a revolution
(d) t = 2π s i. e.after a full-revolution.

observed for the L2 projection of the exact solution onto the finite element space. It is
for this reason that the aforesaid strategy succeeds in capturing these layers.

Obviously tailor-made solutions exist to treat this shortcoming. For instance, one
such trick that recovers crisp resolution of these layers for the HRPG method and for
the current problem (example 10) is to reverse the sign of the stabilization parameter
β (along the y-axis) for all elements containing the boundary section (x > 0.5,y = 0),
thus enforcing a negative shock-capturing diffusion for these elements. Unfortunately
it is difficult to generalize these tailor-made tricks to an arbitrary situation. An alter-
native would be to change the strategy to the one which directly treats the cause of
the Gibbs phenomenon for both the reactive and characteristic layers4—Design the
weights of a Petrov–Galerkin FEM such that the typical 1d mass type averaging in
the Galerkin FEM (cf. Eq.(3.4)) be lumped in the regions across the layers. Research
in this line is still under development and we delay its introduction to future works.

Remark: Fortunately, this idea which was born to treat this shortcoming in the
convection–diffusion–reaction problem, has opened door to a class of higher-order

4 this idea is a fruit of the discussions with Prof. Ramon Codina
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(a) (b)

(c) (d)

Figure 56: Example 9, rotation of solid bodies. The contour plots of the solution of the HRPG
method at time (a) t = (π/2) s i. e.after a quarter-revolution, (b) t = π s i. e.after a
half-revolution, (c) t = (3π/2) s, i. e.after three quarters of a revolution, (d) t = 2π s
i. e.after a full-revolution.

compact Petrov–Galerkin FEM effective for the Helmholtz problem. The design of
such a Petrov–Galerkin FEM and its applications to the Helmholtz equation is the
subject matter of chapter 5.

3.6 conclusions

We have developed a multi dimensional extension of the HRPG method presented
earlier in chapter 2 for the 1d convection–diffusion–reaction problem. As the charac-
teristic internal/boundary layers found in the convection-dominant case are a unique
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Figure 57: Example 10, uniform advection with a negative source term. The solution obtained
on a uniform 20× 20 mesh viewed at (45◦, 0◦) and using (a) the SUPG method,
(b) the HRPG method. (c) Comparison of the nodally exact interpolant at three
different cross sections with the numerical solution obtained by the SUPG and the
HRPG method.

feature of the solution in higher dimensions, they do not have any counterparts in
1d. Hence, a straight-forward extension of the stabilization parameters of the HRPG
method derived for the 1d case will not be efficient to resolve these parabolic layers.

The numerical artifacts that are formed across the parabolic layers are usually man-
ifested as the Gibbs phenomenon. The strategy we employ to treat the artifacts about
the characteristic layers is to treat them just like the artifacts found across the parabolic
layers in the reaction-dominant case. This is done by relating the characteristic lay-
ers in the convection–diffusion problem to the parabolic layers formed in a fictitious
diffusion–reaction problem. The fictitious reaction coefficient in the later problem is
designed such that the parabolic layers in both the problems have the same width.
Using this fictitious reaction coefficient, we present a nondimensional element num-
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ber that quantifies these characteristic layers. By quantification we mean that it should
serve a similar purpose in the definition of the stabilization parameters as the element
Peclet number does for the exponential layers.

Although the structure of HRPG method in 1d is identical to the consistent approx-
imate upwind Petrov–Galerkin method [68], in multi dimensions the former method
has a unique structure. The distinction is that in general the upwinding is not stream-
line and the discontinuity-capturing is neither isotropic nor purely crosswind. In this
line, we present anisotropic element length vectors li and using them objective char-
acteristic tensors associated with the HRPG method are defined. Only the multilin-
ear block finite elements are considered in this study. Except for the modification to
include the new dimensionless number that quantifies the characteristic layers, the
definition of the stabilization parameters αi,βi calculated along the element length
vectors li are a direct extension of their counterparts in 1d summarized earlier in
§2.5.6.

Finally, several steady-state and transient examples are presented that throws light
on the good performance of the proposed method.





Part II

H E L M H O LT Z P R O B L E M





Most of what we learn, we learn indirectly or by ’head-fake’.

— Randy Pausch.

4
A L P H A - I N T E R P O L AT I O N O F F E M A N D F D M

4.1 introduction

In this chapter we study the Helmholtz equation given by R(φ) := f(x)+∆φ+ξ2φ = 0

and subjected to Dirichlet boundary conditions. The solution φ to this equation is
oscillatory and ξ is the wave number (spatial frequency) of φ. If λm is an eigenvalue
of the operator −∆, then for ξ 6=

√
λm the problem has a unique solution. On the

contrary, i. e.for ξ =
√
λm the problem is indefinite. In this case if the equation and

the Dirichlet boundary conditions are homogeneous then we end up in a differential
eigenvalue problem. It follows that the solution is not unique and can be represented
as a scalar multiple of the eigenfunction corresponding to each eigenvalue. Let λhm
represent an eigenvalue of the problem after any appropriate discretization. Unlike
the set of eigenvalues {λm} which is infinite, the set {λhm} is finite and its dimension
is equal to that of the discrete space. Thus when the wave number ξ →

√
λhm the

discrete problem tends to be indefinite. This case is usually referred to as the case of
degeneracy and here the discrete problem is ill-conditioned.

As the current problem admits a variational principle, naturally, discretization meth-
ods based on variational formulations viz. the Galerkin and the Trefftz–Galerkin
type methods have been preferred to other methods. The Galerkin type methods are
domain-based wherein the integral statement involves only the weak form of the gov-
erning differential equation and the sub-space of test-functions are assumed to satisfy
a priori the kinematic compatibility and essential boundary conditions. The Trefftz–
Galerkin type methods are boundary-based and are formulated using the reciprocal
principle wherein the integral statement involves only the kinematic compatibility
and essential boundary conditions of the problem and the sub-space of test-functions
are assumed to satisfy a priori the governing differential equation [27, 41].

In the context of the Galerkin type methods, the finite element method (FEM) is a
powerful technique to systematically generate subspaces of test-functions (classically
piecewise polynomial spaces). Some of the earlier works on the use of FEM for the nu-
merical solution of the Helmholtz equation can be found in [5, 6, 9, 47, 107, 108, 130]
and the references cited therein. In [5, 107] error estimates were given for the asymp-
totic (ξ2` assumed sufficiently small) and pre-asymptotic (ξ` assumed sufficiently
small) cases respectively. It was shown that for the discrete problem the LBB1 constant
can be expressed as γh = min{|λhm − ξ2|/λhm} [47]. Thus for the continuous problem
(visualized as ` → 0) the LBB constant can be expressed as γ = min{|λm − ξ2|/λm}

which in an average sense implies that γ is inversely proportional to the wavenumber
ξ, i. e.γ ∝ ξ−1 [47, 107]. Thus for high wavenumbers and for the case of degeneracy
(ξ →

√
λhm) the LBB constant for the discrete problem tends to be small which in

1 Ladyzhenskaya-Babuska-Brezzi constant
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turn leads to a loss of stability. The loss of stability with respect to an increase in the
wavenumber ξ is called the pollution effect which is impossible to avoid completely
[9]. Nevertheless the pollution effect can be controlled unlike the loss of stability for
the case of degeneracy where it is out of control.

Several stabilization methods were developed to control the pollution effect of
the Galerkin FEM. The Galerkin least squares (GLS) method was extended to the
Helmholtz equation in [79, 181]. In [79] the extension of the Galerkin gradient least
squares (GGLS) method for the current problem was also studied. In order to re-
tain stability for problems that involve the physics of both the convection–diffusion–
reaction and Helmholtz equations the GLSGLS method was proposed [80]. Following
the framework of the Generalized Finite Element Methods (GFEM) which were first
introduced in [8] in a variational setting, the Quasi-Stabilized FEM (QSFEM) was
proposed in [10]. To be precise, within an algebraic setting a 9-node interior stencil
was designed such that the pollution effect is asymptotically minimal, thus leading to
minimal phase error for arbitrary wave direction in 2d. The partition of unity method
(PUM) was proposed in [7, 131] by which conforming subspaces of higher regularity
can be generated out of a set of local approximation spaces. These local approxima-
tion spaces could be designed to include a priori knowledge about the local behavior
of the solution. Recently, following the framework of PUM, a locally enriched FEM
was proposed in [121] wherein it was shown that the Bessel functions of the first kind
could be used to enrich the finite element space instead of the plane waves (as is
done in PUM). Another stabilization approach consists of enriching the classical fi-
nite element spaces by bubble functions. Following this line the residual-free bubbles
(RFB) method was extended to the Helmholtz equation in [67]. Another bubble-based
method is the nearly optimal Petrov–Galerkin method (NOPG) presented in [13]. A
comparison of the RFB and NOPG methods for the Helmholtz equation was done
in [78]. Recently another GFEM was proposed in [173] in which the classical FEM
is enriched by plane waves pasted into the finite element basis at each mesh ver-
tex by the PUM. Also, this method allows the use of Cartesian meshes which may
overlap the boundaries of the problem domain. This GFEM was further developed
in [174] wherein the effects of using alternative handbook functions and mesh types
is addressed. Based on the variational multiscale (VMS) method several stabilization
methods were proposed, viz. the sub-grid FEM [159], the two sub-grid scale (SGS)
models presented in [28], the residual-based FEM (RBFEM) [160] and more recently,
the algebraic subgrid FEM (ASGS) [74] and the SGS-GSGS method [86]. Following
the more general VMS method wherein the subscales are not modeled as bubbles, the
RBFEM method also includes the residuals on the inter-element boundaries while re-
taining the sparsity of the Galerkin method. As in the GLSGLS method, the SGS-GSGS
method attempts to stabilize the advection–diffusion–reaction/production problem
and is designed to be nodally exact in 1d. Within the framework of the discontinuous
Galerkin (DG) method, the discontinuous enrichment method (DEM) was proposed
[57, 58] wherein the classical finite element spaces are enriched (as in bubble-based
methods) via a set of local approximation spaces (as in the PUM-based methods).
In the DEM, the continuity of the enrichment across element boundaries is enforced
weakly by Lagrange multipliers (unlike the PUM-based methods) and it need not
vanish at the element boundaries (unlike the bubble-based methods). Another DG
method is presented in [3] wherein the continuity of the finite element spaces across
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the element edges is relaxed and weakly enforced via two penalty parameters cor-
responding to possible jumps of the solution field and its gradient. These penalty
parameters are designed to minimize the pollution error. Following the ideas of the
former DG method [3], another discontinuous FEM was proposed in [129] (therein
called as the DGB method). In the DGB method the classical finite element spaces
are enriched via bubbles that are allowed to be discontinuous across subgrid patches.
Following the DG method in [3] the continuity of the bubble spaces across interior
patch boundaries is enforced weakly via two penalty parameters corresponding to
possible jumps of the solution field and its gradient. Again, these penalty parameters
are designed to minimize the pollution error. Nodally exact Ritz discretization of the
1d diffusion-absorption/production equations via variational finite calculus (FIC) and
modified equation methods using a single stabilization parameter were presented in
[59]. The Galerkin projected residual (GPR) method for the Helmholtz equation was
presented in [51]. A survey of finite element methods for time-harmonic acoustics is
done in [77].

Due to the abstractness in the definition of the QSFEM, it is often labeled as a finite
difference method. Nevertheless, it provides solutions that are sixth-order accurate,
i. e.O

(
(ξ`)6

)
which is the best one can get on any compact stencil. Recently, a quasi-

optimal Petrov–Galerkin (QOPG) method using bilinear finite elements was proposed
in [128] that recovers the QSFEM stencil on square meshes. In the QOPG method the
Galerkin FEM weights are perturbed by a quadratic bubble function defined over
the macro-element. The parameters multiplying the bubble perturbations are found
by solving local optimization problems involving a functional of the local truncation
error. Later, following this line, a quasi-optimal finite difference method on generic
unstructured meshes was proposed in [60].

Within the framework of the finite difference methods, several fourth-order com-
pact schemes obtained through a generalization of the fourth-order Padé approxima-
tion were studied in [81, 168]. Following this line, two new FDMs were proposed in
[165] that achieves sixth and eight-order accuracy respectively using a five-point (and
hence non-compact) stencil in 1d. In [122] a new FDM with improved accuracy was
proposed by modifying the central difference scheme (i. e.the classical FDM) by replac-
ing the weight multiplying the central node with an optimal expression that used the
Bessel’s function of the first kind. The FLAME method was proposed in [184] that ex-
ploits the use of local approximating functions to define higher-order finite difference
schemes on a chosen stencil. In particular on a compact stencil a sixth-order accurate
scheme for the Helmholtz equation can be derived using the FLAME method. Sixth-
order accurate FD schemes on a compact stencil for the Helmholtz equation were pro-
posed in [135, 169, 176]. An alternate approach to derive FDMs is the global method
of differential quadrature (DQ) [15]. Following this line, a polynomial-based DQ and
a Fourier expansion-based DQ were derived for the Helmholtz equation in [166]. As
higher-order polynomial or sinusoidal interpolation functions are employed, these
methods reduce the restriction on the mesh resolution to the Nyquist limits, i. e.the
rule of thumb for these methods is to provide at least two elements per wavelength.

Some of the earlier works in the context of the Trefftz–Galerkin type methods could
be found in the seminal papers [87, 112, 162, 192]. A treatise on Trefftz type methods
can be found in [88, 113]. Specifically, the Trefftz type methods were used for the
Helmholtz equation in [25, 69, 126, 133, 170]. The case of degeneracy, i. e.ξ → λhm, is
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considered for the first time in [126] and the error asymptote of the solution by the
Trefftz method is given.

In this chapter we present some observations and related dispersion analysis of
a domain-based fourth-order compact scheme for the Helmholtz equation. In other
words, the phase error of the numerical solution and the local truncation error of
this scheme for plane wave solutions diminish at the rate O

(
(ξ`)4

)
. The focus is

on the approximation of the Helmholtz equation in the interior of the domain using
compact stencils. The scheme consists in taking the alpha-interpolation of the Galerkin
finite element method (FEM) and the classical finite difference method (FDM). This
scheme has its origins in an old idea which marks the point of departure: to replace
the consistent mass matrix M in the Galerkin FEM by a higher-order mass matrix
M0.5 := (M + ML)/2, where ML is the lumped mass matrix. This idea was proposed
independently for eigenvalue problems by Goudreau [70, 71] and Ishihara [110]. In
the later work the matrix M0.5 was denominated as the mixed-mass matrix and as
a concluding remark the generalized mixed mass (GMM) scheme was proposed as
an extension to the MM scheme where an α-interpolation of the mass matrices is
done, i. e.Mα := αM+ (1−α)ML. This GMM scheme was later baptized as the alpha-
interpolation method (AIM) [140] and was extended to the hollow waveguide analysis
in [109] and the Schrodinger equation in [139]. For the simple 1d case our scheme
mimics the AIM and in 2d making the choice α = 0.5 we recover the generalized
fourth-order compact Padé approximation [81, 168] (therein using the parameter γ =

2).
The chapter is organized as follows. In Section 4.2 we present the statement of the

Helmholtz equation viewed as a diffusion–production problem. This is done only to
facilitate future assimilation of ideas towards a generic method that would aim at sta-
bilizing problems that involve the physics of both the convection–diffusion–reaction
and Helmholtz equations. In Section 4.3 we present the analysis of the problem in
1d. The expressions for the numerical solution of our scheme and its relative phase
error are given considering a generic definition of the parameter α given as a series
expansion in terms of (ξ`). A numerical example is given that illustrates not only
the approximation properties of our scheme but also throws light on possible en-
counters with the zones of degeneracy. In Section 4.4 we present the 2d analysis of
a nonstandard compact stencil which results from a two-parameter scheme wherein
α-interpolations of the diffusion and production terms are done independently and
it can model several methods (including QSFEM). This nonstandard compact stencil
has an additional structure that reduces its abstractness and hence could be exploited
for the extension of this stencil to unstructured meshes (cf. Section 4.4.5). We follow
[10] for the analysis of this stencil and its performance on square meshes is compared
with that of the quasi-stabilized FEM (QSFEM) [10]. Just like in 1d, we try to express
the numerical solution of this stencil in 2d considering generic definitions of the pa-
rameters given as a series expansion in terms of (ξ`). Using this expression for the
numerical solution, the expressions for the relative phase and local truncation errors
are given. In particular for our scheme, i. e.the α-interpolation of the FEM and FDM
stencils an optimal expression for the parameter α is given. The dispersion plots in
2d and related discussion are done in Section 4.4.6. Some examples are presented
in Section 4.4.7 which illustrate the pollution effect through convergence studies in
the L2 norm, H1 semi-norm and the l∞ Euclidean norms. Finally in Section 4.5 we
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remark on the extension of our scheme to unstructured meshes and arrive at some
conclusions.

4.2 problem statement

The statement of the multidimensional Helmholtz equation subjected to Dirichlet
boundary conditions is as follows:

R(φ) := k∆φ+ sφ+ f(x) = 0 in Ω (4.1a)

φ = φp on ΓD (4.1b)

where k > 0, s > 0 are the diffusion and production coefficients respectively, f(x) is
the source and φp is the prescribed value of φ at the Dirichlet boundary. When s < 0
the Eq.(4.1) represents the diffusion-reaction problem that models the mass transfer
processes with first-order chemical reactions and wherein s represents the reaction
coefficient.

The variational statement of the problem (4.1) can be expressed as follows: Find
φ ∈ V such that ∀w ∈ V0 we have,

a(w,φ) = l(w) (4.2a)

a(w,φ) :=
∫
Ω

(k∇w ·∇φ− swφ) dΩ (4.2b)

l(w) :=

∫
Ω

wf(x) dΩ (4.2c)

where, V := {w : w ∈ H1(Ω) and w = φp on ΓD} and V0 := {w : w ∈ H1(Ω) and w =

0 on ΓD}. The statement of the Galerkin method applied to the weak form (4.2) of the
problem is: Find φh ∈ Vh such that ∀wh ∈ Vh0 we have,

a(wh,φh) = l(wh) (4.3)

where Vh ⊂ V is a subspace obtained via any appropriate discretization. Discretiza-
tion of the space by finite elements will lead to the approximation φh = NaΦa and
Eq.(4.3) reduces into the following system of equations.

[
kD − sM

]
Φ = f (4.4a)

Dab =

∫
Ω

∇Na ·∇Nb dΩ, Mab =

∫
Ω

NaNb dΩ, fa =

∫
Ω

Naf(x) dΩ

(4.4b)

4.3 analysis in 1d

4.3.1 Introduction

In this section we study the homogeneous Helmholtz equation in 1d subjected to
Dirichlet boundary conditions. The problem (4.1) in 1d can be written as:

k
d2φ
dx2

+ sφ = 0 in Ω (4.5a)

φ(x = 0) = Φl ; φ(x = L) = Φr on ΓD (4.5b)
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where L is the length of the 1d domain and Φl,Φr are the Dirichlet boundary data at
the left and right domain boundaries respectively. The solution to Eq.(4.5) when s > 0
is harmonic and is expressed as:

φ(x) =
Φl sin(ξoL− ξox) +Φr sin(ξox)

sin(ξoL)
(4.6)

where ξo :=
√
s/k is the angular wave number. We also list the eigenvalues of this

problem which can be expressed as λm := (mπ/L)2 ∀ m ∈ {1, 2, 3, . . .}. The element
contributions to the matrices given in Eq.(4.4) using 2-node linear finite elements are,

De =
1

`

[
1 −1

−1 1

]
; Me =

`

6

[
2 1

1 2

]
(4.7)

where ` is the corresponding element length. If the discretization is uniform the equa-
tion stencil for the problem (4.5a) corresponding to each interior node can be ex-
pressed as follows,

(
k

`

)
(−Φi−1 + 2Φi −Φi+1) −

(
s`

6

)
(Φi−1 + 4Φi +Φi+1) = 0 (4.8)

If the mass matrix M is lumped then the equation stencil corresponding to any interior
node can be written as follows.

(
k

`

)
(−Φi−1 + 2Φi −Φi+1) − s`Φi = 0 (4.9)

This is also the stencil we get using the classical finite difference method2 (FDM).

4.3.2 α-Interpolation of the Galerkin-FEM and the classical FDM

Define a free parameter α and consider the α-interpolation of the stencils obtained by
the Galerkin FEM and the classical FDM methods for the problem (4.5):

(1−α)

[(
k

`

)
(−Φi−1 + 2Φi −Φi+1) −

(
s`

6

)
(Φi−1 + 4Φi +Φi+1)

]

+α

[(
k

`

)
(−Φi−1 + 2Φi −Φi+1) − s`Φi

]
= 0

(4.10a)

⇒
(
k

`

)
(−Φi−1 + 2Φi −Φi+1) − (1−α)

(
s`

6

)
(Φi−1 + 4Φi +Φi+1)

−αs`Φi = 0

(4.10b)

⇒
(
k

`
−α

s`

6

)
(−Φi−1 + 2Φi −Φi+1) −

(
s`

6

)
(Φi−1 + 4Φi +Φi+1) = 0 (4.10c)

Remark: In 1d we can arrive at the above equations through an alternative argument:
Consider the Galerkin FEM method using the α-interpolated mass matrix Mα. The
later argument leads to the AIM. A particular case (taking α = 0.5) is the mixed-mass
(MM) scheme proposed by Ishihara applied to the Helmholtz equation [110]. The

2 by classical FDM we refer to the central difference scheme
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mixed-mass matrix (M0.5) was earlier referred to as the higher-order-mass matrix by
Goudreau [70]. In 1d a stencil equivalent to the MM scheme will be obtained using
the compact fourth-order Padé approximation to problem (4.5) [81, 168].

We can guess that a solution to Eq.(4.10) takes the form Φi := φ(xi) = exp(iξhxi).
Substituting this solution into Eq.(4.10) and defining λ := exp(iξh`) we get the char-
acteristic equation of the stencil:

λ2 − 2

(
6− (2+α)ω

6+ (1−α)ω

)
λ+ 1 = 0 (4.11)

where ω := (s`2/k) = (ξo`)
2 is a dimensionless element number. The solution to

Eq.(4.11) can be expressed as follows.

λ := eiξ
h` = fα±

√
(fα)2 − 1 = fα± i

√
1− (fα)2 ; fα :=

(
6− (2+α)ω

6+ (1−α)ω

)
(4.12)

Note that if |fα| 6 1 then the solution given by Eq.(4.12) is real (i. e.ξh ∈ R). This
solution can be expressed as a series expansion in terms of ω as follows:

ξh` = cos−1(fα) = cos−1
(
6− (2+α)ω

6+ (1−α)ω

)
=
√
ω

[
1−

(2α− 1

24

)
ω

+
(20α2 − 20α+ 9

1920

)
ω2 +

(280α3 − 420α2 + 378α− 103

193536

)
ω3 +O

(
ω4
)]

(4.13)

Should the expression for α be written as a generic series expansion in terms of ω
given by α =

∑∞
m=0 amω

m, then the solution ξh can be written as shown below.

ξh` =
√
ω

[
1+

(1− 2a0
24

)
ω+

(20a20 − 20a0 + 9
1920

+
a1
12

)
ω2

+
(280a30 − 420a20 + 378a0 − 103

193536
+

(2a0 − 1)a1
48

+
a1
12

)
ω3 +O

(
ω4
)]

(4.14)

where am are coefficients independent of ω. The relative phase error of the above
solution can be expressed as shown below.

ξh − ξo
ξo

=
ξh`−

√
ω√

ω
=

[(1− 2a0
24

)
ω+

(20a20 − 20a0 + 9
1920

+
a1
12

)
ω2 +O

(
ω3
)]

(4.15)

Note that for the choice a0 = 1/2, the relative phase error diminishes at the rate
of O

(
ω2
)

or equivalently O
(
(ξo`)

4
)
. Further, making the choice a1 = −1/40, the

relative phase error now diminishes at the rate of O
(
ω3
)

or equivalently O
(
(ξo`)

6
)
.

Fortunately in 1d it is possible to choose α such that the solution given by Eq.(4.12) be
nodally exact (i. e.ξh` = ξo` =

√
ω). The expression for α that reproduces this effect,

say αe, can be written as follows:

fαe = cos(ξo`) = cos(
√
ω) ⇒ αe =

6

ω
−

(
2+ cos(

√
ω)

1− cos(
√
ω)

)
(4.16)

The optimal parameter αe can be expressed as a series expansion in terms of ω
as shown in Eq.(4.17). Truncating the series up to the first n terms would yield a
scheme whose relative phase error diminishes at the rate of O

(
ωn+1

)
or equivalently

O
(
(ξo`)

2n+2
)
.

αe ≈
1

2
−
ω

40
−
ω2

1008
−

ω3

28800
−

ω4

887040
−

691ω5

19813248000
+O

(
ω6
)

(4.17)
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4.3.3 Dispersion plots in 1d

In this section we consider α ∈ {0, 1, 0.5,αe} and study their dispersion plots. The
subscripts c, l,m are flags used for the expressions obtained using α = {0, 1, 0.5}
respectively. These cases correspond for the stencils that arise using the consistent,
lumped and mixed (higher-order) mass matrices respectively. The subscript e is used
to flag the choice α = αe, the optimal expression for α, in order to attain nodally ex-
act numerical solutions in 1d. For the graphical representation of f(ω) and ξ(ω) we
normalize some of these fields as follows:

ω∗ :=
ω

π2
; ξ∗ :=

ξ

ξnq
=
ξ`

π
(4.18)

Restricting the domain to ω∗ ∈ [0, 1] guarantees that the Nyquist frequency3 of the
discretization ((ξnq)) is always greater than the frequency of the exact solution (ξo).
Thus for every wave length of the harmonic solution we ensure the presence of at
least two elements. The Nyquist-Shannon sampling theorem states that this minimum
resolution of the mesh is essential to allow a perfect reconstruction of the solution
using sinusoidal interpolation. However, using linear interpolation at least 4 elements
per wavelength (ξo` 6 (π/2) or ω∗ 6 (1/4)) are needed to capture the sinusoidal
profile. As a rule of thumb at least 8 to 10 elements per wavelength are recommended
for a decent representation of the solution using linear interpolation [79, 183]. The
latter resolution of the mesh is guaranteed by restricting the domain to ω∗ ∈ [0, 1/16].

Figures 58a and 58b illustrate the plot of f(ω∗) for ω∗ ∈ [0, 1] and ω∗ ∈ [0, 1/4]
respectively. As expected a higher-order convergence of fm → fe is observed as ω∗ →
0. Also for both the domains f(ω∗) 6 0 and in particular for the latter domain i. e.ω∗ ∈
[0, 1/4], we see that |f(ω∗)| < 1. Figures 58c and 58d illustrate the plot of ξ∗(ω∗) for
ω∗ ∈ [0, 1] and ω∗ ∈ [0, 1/4] respectively. Whenever |f(ω∗)| > 1, Eq.(4.12) suggests
that λ := exp(iξh`) ∈ R. This implies that ξh is a complex number (ξh ∈ C) with
the real part <(ξh) = (nπ/`),n ∈ {0, 1, 2, . . .} and the imaginary part =(ξ) 6= 0. As
the Nyquist frequency in space is ξnq = π/`, the real part is either <(ξh) = 0 for
f(ω∗) > 0 or <(ξh) = (π/`) for f(ω∗) < 0. Thus whenever |f(ω∗)| > 1 we find
<(ξh) = (π/`), i. e.<(ξh∗) = 1 (see Figure 58c). Also as =(ξ) 6= 0 the numerical
solutions will be subjected to amplification intrinsic to the discretization (the one
studied in the von Neumann analysis). Finally, whenever |f(ω∗)| 6 1, the solution
ξh is real (ξh ∈ R) and all the considered schemes are devoid of any amplification
intrinsic to the discretization. In Figure 58d we observe that for ω∗ ∈ [0, 1/16], the
graphs of ξ∗e and ξ∗m are indistinguishable.

4.3.4 Examples

We consider the problem defined in Eq.(4.5) with the following problem data: k =

1e-3, s = 1, L = 1, Φl = 3, Φr = 1. Thus the exact solution of the problem given
by Eq.(4.6) has an angular wave number ξo = 10

√
10. The discretization of the space

is done by linear finite elements and is uniform. We solve the problem using α ∈
{0, 1, 0.5} and the subscripts c, l,m are used to flag them respectively. Four meshes of

3 http://en.wikipedia.org/wiki/Nyquist_frequency. Here frequency is to be understood in the spatial
context, i. e.the wavenumber
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Figure 58: Plots of f(ω∗) and ξ∗(ω∗). (a) Domain: ω∗ ∈ [0, 1] ; (b) Domain: ω∗ ∈ [0, 1/4] ; (c)
Domain: ω∗ ∈ [0, 1] ; (d) Domain: ω∗ ∈ [0, 1/4]
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ξo

√
λm−2

√
λm−1

√
λm

√
λm+1

√
λh
m−2

√
λh
m−1

√
λh
m

ξh

Figure 59: A schematic diagram that illustrates the encounter of a zone of degeneracy on mesh
refinement (` → 0). As the value of

√
λhm crosses ξo on its path towards

√
λm, the

discrete LBB constant takes values arbitrarily close to zero.

different resolution viz. 41, 81, 162 and 323 elements are considered. These meshes
guarantee the presence of at least 8, 16, 32 and 64 elements per wavelength of the
harmonic solution respectively. All the meshes restrict the domain of ω∗ to [0,1/16].

Figure 60 illustrates the plots of the numerical solutions obtained using a consistent,
lumped and semi-lumped mass matrices denoted by Φch, Φlh and Φmh respectively,
against the exact solution of the problem denoted by Φa. In Figure 60a the solutions
Φch and Φlh are out-of-phase and as expected the phase accuracy improves on mesh
refinement (Figures 60b-d). We observe a remarkable error in the amplitude of these
solutions. Note that there is no intrinsic amplification for all the schemes and the
errors in the angular wave numbers ξ∗c, ξ∗l are small (Figure 58d). The amplitude of
the solution depends not only on the intrinsic amplification of the scheme but also
on the wave number ξ and on the applied Dirichlet boundary conditions. Thus we
may conclude that small errors in the wave number of the computed solution may
result in huge errors in their amplitude. An alternative explanation to this behavior
can be given via the following argument. First note that (

√
λ10 = 31.4159) < (ξo =

10
√
10 = 31.6227) < (

√
λ11 = 34.5575). It is possible that the discrete eigenvalue

√
λh10

for the initial course mesh/grid is greater than ξo and on further mesh refinement
it approaches

√
λ10 by crossing ξo. This explains the observation that the numerical

solution Φch on mesh refinement first explodes (as it enters the zone of degeneracy)
and then gradually converges to the exact solution. Figure 59 illustrates schematically4

the encounter of a zone of degeneracy on mesh refinement (`→ 0) while as the value
of
√
λhm crosses ξo on its path towards

√
λm. Nevertheless, the convergence of the

discrete wavenumber (ξh → ξo) need not be affected in this process. This argument
also suggest that this phenomenon could have been equally observed for the solutions
Φlh and Φmh should their corresponding discrete eigenvalues cross ξo.

On the other hand, the solution Φmh could represent approximately the profile of
the exact solution even on the coarsest mesh (see Figure 60a). Figures 60b-d show that
on further mesh refinements Φmh is indistinguishable from the analytical solution.

4 A similar figure was presented earlier in [47] (c.f. Figure 1, pp. 74)
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Figure 60: Numerical solution Φh using a mesh with at least: (a) 8 elements per wave length ;
(b) 16 elements per wave length ; (c) 32 elements per wave length ; (d) 64 elements
per wave length. In figures (c) and (d) the solution Φmh effectively coincides with
the exact solution and the solutions Φcm and Φlm bound the exact solution from
above and below respectively.
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4.4 analysis in 2d

4.4.1 Introduction

In multidimensions the general solution to the problem (4.1) considering a linear
source f(x) may be expressed as follows:

φ(x) =
f

s
+
∑
θ

Cθ exp(iξθ · x) (4.19a)

|ξθ| = ξo ⇒ ξθ := (ξθ1 , ξθ2) = (ξo cos(θ), ξo sin(θ)) (4.19b)

where, Cθ represents a generic constant independent of the spatial coordinates. Gener-
ally it is not possible to arrive at an expression for Cθ in the closed form. Nevertheless
this detail is not needed in the Fourier analysis of these problems. Eliminating θ from
Eq.(4.19b) we arrive at the characteristic equation of the continuous problem (4.1):

(ξθ1)
2 + (ξθ2)

2 = ξ2o (4.20)

4.4.2 Galerkin FEM using rectangular bilinear finite elements

The element contributions to the matrices given in Eq.(4.4) using 4-node rectangular
bilinear finite elements are,

De =
`2
6`1




2 −2 −1 1

−2 2 1 −1

−1 1 2 −2

1 −1 −2 2



+
`1
6`2




2 1 −1 −2

1 2 −2 −1

−1 −2 2 1

−2 −1 1 2




(4.21a)

Me =
`1`2
36




4 2 1 2

2 4 2 1

1 2 4 2

2 1 2 4




(4.21b)

where `1, `2 are the corresponding element lengths along the 2d axes. Restraining
the discretization to be uniform, we can arrive at an equation stencil for every interior
node of the mesh. We use the following notation (described earlier in §3.1) to represent
a generic compact stencil obtained for the (i, j) node on a rectangular grid.

{◦j+1, ◦j, ◦j−1}A{◦i−1, ◦i, ◦i+1}t = 0 (4.22)

where A represents the matrix of the stencil coefficients. We can guess that a solu-
tion to Eq.(4.22) takes the form Φi,j := φ(xi1, xj2) = exp[i(ξh1x

i
1 + ξ

h
2x
j
2)]. Substituting

this solution into Eq.(4.22) and defining λ1 := exp(iξh1 `1) and λ2 := exp(iξh2 `2) we get
the characteristic equation of the generic stencil(4.22):{

λ2, 1, λ−12
}

A
{
λ−11 , 1, λ1

}t
= 0 (4.23)
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The stencil for the Galerkin FEM method corresponding to any interior node (i, j)
can be written as Eq.(4.22) with the following definition of the stencil coefficient ma-
trix (A):

Afem :=
k`2
6`1

{1, 4, 1}t {−1, 2,−1}+
k`1
6`2

{−1, 2,−1}t {1, 4, 1}

−
s`1`2
36

{1, 4, 1}t {1, 4, 1}
(4.24)

The stencil for the classical FDM method corresponding to any interior node (i, j)
can be written as Eq.(4.22) with the following definition of A:

Afdm :=
k`2
6`1

{0, 6, 0}t {−1, 2,−1}+
k`1
6`2

{−1, 2,−1}t {0, 6, 0}

−
s`1`2
36

{0, 6, 0}t {0, 6, 0}
(4.25)

The characteristic equation associated with the stencil for the Galerkin FEM can be
written as Eq.(4.23) using the definition of A given by Eq.(4.24). Likewise the charac-
teristic equation associated with the stencil for the classical FDM can be written as
Eq.(4.23) using the definition of A given by Eq.(4.25).

4.4.3 A nonstandard compact stencil in 2d

Define two free parameters α1,α2 and consider the following definition of A:

Aα1,α2 := (1−α1)
k`2
6`1

{1, 4, 1}t {−1, 2,−1}+α1
k`2
6`1

{0, 6, 0}t {−1, 2,−1}

+ (1−α1)
k`1
6`2

{−1, 2,−1}t {1, 4, 1}+α1
k`1
6`2

{−1, 2,−1}t {0, 6, 0}

− (1−α2)
s`1`2
36

{1, 4, 1}t {1, 4, 1}−α2
s`1`2
36

{0, 6, 0}t {0, 6, 0}

(4.26)

Note that taking α1 = α2 = α we arrive at a stencil that is the α-interpolation of the
FEM and FDM stencils, i. e.Aα,α = (1−α)Afem+αAfdm. Likewise taking α1 = 0 and
α2 = α we arrive at a stencil that results from the Galerkin FEM method using an α-
interpolated mass matrix Mα := (1−α)M+αML. We remark that unlike in 1d where
both choices resulted in the same stencil, in 2d the obtained stencils are different.

Next we relate this nonstandard stencil with the compact fourth-order Padé ap-
proximation in 2d. A generalized version of the same was studied in [81, 168] and the
associated stencil coefficient matrix of the scheme Aγ can be expressed as follows:

Aγ := −k

[
{0, 1, 0}+

{1,−2, 1}
12

]t
{1,−2, 1}
`21

− k
{1,−2, 1}t

`22

[
{0, 1, 0}+

{1,−2, 1}
12

]

− s

[
{0, 1, 0}+

{1,−2, 1}
12

]t [
{0, 1, 0}+

{1,−2, 1}
12

]
− s(γ− 1)

{1,−2, 1}t

12

{1,−2, 1}
12

(4.27)

where γ is a free parameter. The standard compact fourth-order Padé scheme in 2d is
obtained by selecting γ = 1. Other alternatives viz. γ = 0 and γ = 2 were presented
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in [40](cf. Appendix, Table VI, p.542). After some algebraic rearrangement, matrix Aγ

given in Eq.(4.27) can be re-written equivalently as follows:

Aγ :=
k

2

[
{1, 4, 1}
6

+
{0, 6, 0}
6

]t
{−1, 2,−1}

`21
+
k

2

{−1, 2,−1}t

`22

[
{1, 4, 1}
6

+
{0, 6, 0}
6

]

−
s

2

[
{1, 4, 1}t

6

{1, 4, 1}
6

+
{0, 6, 0}t

6

{0, 6, 0}
6

]
− s(γ− 2)

{1,−2, 1}t

12

{1,−2, 1}
12

(4.28)

Note that by selecting γ = 2we obtain a stencil that is equivalent to the one obtained
by taking the average of the FEM and the FDM stencils. Thus,

A2 =
1

`1`2
A0.5,0.5 (4.29)

We now relate this nonstandard stencil for square meshes with the compact scheme
proposed by Vichnevetsky and Bowles [187] in order to reduce the anisotropy related
to the numerical dispersion. This scheme was studied in [183] and the conditions
for appropriate numerical isotropy were determined therein. Also, this scheme was
used to synthesize an equivalent transmission-line matrix (TLM) [115] model for the
Maxwell’s equations in [167]. The associated stencil coefficient matrix Avb can be
written as follows.

Avb :=
γk

`2




0 −1 0

−1 4 −1

0 −1 0


+

(1− γ)k

2`2




−1 0 −1

0 4 0

−1 0 −1


− s



0 0 0

0 1 0

0 0 0


 (4.30)

where γ is the associated interpolation parameter. Note that for γ = 1 we recover
the classical FDM (i. e.the second-order central difference scheme) and for γ = 0 we
get a similar scheme but with the stencil inclined at 45◦ and hence with the mesh
size

√
2`. Note that we recover the Galerkin FEM contribution of the term −k∆φ by

choosing γ = (1/3). Making the substitution γ = (1 + 2α)/3 in Eq.(4.30) and after
some algebraic rearrangement, matrix Avb can be re-written equivalently as follows:

Avb := k

[
(1−α)

6
{1, 4, 1}+

α

6
{0, 6, 0}

]t
{−1, 2,−1}

`2

+ k
{−1, 2,−1}t

`2

[
(1−α)

6
{1, 4, 1}+

α

6
{0, 6, 0}

]
− s

{0, 6, 0}t

6

{0, 6, 0}
6

(4.31)

This is precisely what we get using an α-interpolated (Galerkin FEM and classical
FDM) diffusion matrix in the classical FDM stencil. Thus, on square meshes we can
relate Avb with the nonstandard stencil as shown below.

Avb =
1

`2
Aα,1 (4.32)
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Using the definition of A given by Eq.(4.26), the characteristic equation associated to
the resulting stencil is given by Eq.(4.33) and on simplification we arrive at Eq.(4.34).{

λ2, 1, λ−12
}

Aα1,α2
{
λ−11 , 1, λ1

}t
= 0 (4.33)

⇒
(
[(1−α1)(λ

2
2 + 4λ2 + 1) + 6α1λ2](−1+ 2λ1 − λ

2
1)

6ω1

)

+

(
(−λ22 + 2λ2 − 1)[(1−α1)(1+ 4λ1 + λ

2
1) + 6α1λ1]

6ω2

)

−

(
[(1−α2)(λ

2
2 + 4λ2 + 1)(1+ 4λ1 + λ

2
1) + 36α2λ2λ1]

36

)
= 0

(4.34)

where ω1,ω2 are two dimensionless element numbers defined as follows:

ω1 :=
s`21
k

= (ξo`1)
2 ; ω2 :=

s`22
k

= (ξo`2)
2 (4.35)

Unlike in 1d, the characteristic equations of the stencils in 2d have infinite solutions
(fundamental frequencies (ξh1 , ξh2 )) for every (ω1,ω2) pair. For every choice of the
pair (ω1,ω2), these solutions will trace well-defined contours in the ξh1 − ξh2 plane.
The solutions to Eq.(4.34) are symmetric about the origin and the axes. This statement
can be easily verified due to the fact that by replacing the pair (λ1, λ2) with (λ±11 , λ±12 )

in Eq.(4.34) we end up in the same equation. Thus we may conclude that if (ξh1 , ξh2 )
is a solution to Eq.(4.34) then (±ξh1 ,±ξh2 ) are also solutions to the same. Obviously
this statement also extends to the characteristic equation of the continuous problem
(4.20) which additionally has a rotational symmetry (i. e.if (ξθ1 , ξθ2) is a solution then
(ξθ2 , ξθ1) is also a solution). These contour lines are circular for the continuous problem
and their radius equals to the chosen ξo value. Rotational symmetry for the solution
(ξh1 , ξh2 ) is attained should the element lengths be the same, i. e.`1 = `2 = `. In this
case the stencil coefficient matrix Aα1,α2 is symmetric and after scaling down by k it
can be expressed as follows:

Aα1,α2

k
=



A2 A1 A2

A1 A0 A1

A2 A1 A2




α1,α2

;

Aα1,α2
0 :=

8

3
−
4ω

9
+
4α1
3

−
5ωα2
9

Aα1,α2
1 := −

1

3
−
ω

9
−
2α1
3

+
ωα2
9

Aα1,α2
2 := −

1

3
−
ω

36
+
α1
3

+
ωα2
36

(4.36)

where, ω := (s`2/k) = (ξo`)
2.

Finally we relate this nonstandard stencil with methods that have a symmetric sten-
cil coefficient matrix Asym defined as:

Asym :=



A2 A1 A2

A1 A0 A1

A2 A1 A2


 (4.37)

Let g1 = (4A1/A0) and g2 = (4A2/A0) and if (g1 + g2 + 1) 6= 0 then we can obtain
Asym (possibly scaled by a factor) from Aα1,α2 by selecting α1 and α2 as follows:

α1 :=
4(g1 + g2 + 1) +ω(g1 − 4g2)

8(g1 + g2 + 1)
; α2 :=

12(g1 + g2 + 1) +ω(2− g1 − 4g2)

2ω(g1 + g2 + 1)
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(4.38)

For instance consider the QSFEM method [10] for which the expressions for g1 and
g2 can be written as shown below.

g1 :=
2(c1s1 − c2s2)

c2s2(c1 + s1) − c1s1(c2 + s2)
; g2 :=

(c2 + s2 − c1 − s1)

c2s2(c1 + s1) − c1s1(c2 + s2)

(4.39a)

c1 := cos
[√
ω cos

( π
16

)]
c2 := cos

[√
ω cos

(
3π

16

)]

s1 := cos
[√
ω sin

( π
16

)]
s2 := cos

[√
ω sin

(
3π

16

)] (4.39b)

4.4.4 Numerical solution, phase error and local truncation error

In this section we will deal only with the case when `1 = `2 = `. Here we present
the solution to Eq.(4.34) for a given α1,α2 expressed as a generic series expansion in
terms of ω as follows:

α1 :=

∞∑
m=0

amω
m ≈ a0 + a1ω+ a2ω

2 + a3ω
3 +O

(
ω4
)

(4.40a)

α2 :=

∞∑
m=0

bmω
m ≈ b0 + b1ω+ b2ω

2 + b3ω
3 +O

(
ω4
)

(4.40b)

where am,bm are coefficients independent of ω. Following [10] the solution ξh :=

(ξh1 , ξh2 ) can also be expressed as a series expansion in terms of ω:{
ξh1 `

ξh2 `

}
= R(am,bm,β,ω)

{
cos(β)

sin(β)

}
(4.41a)

R :=
√
ω

[
1+

∞∑
m=1

rm(ai,bi,β)ωm
]
≈
√
ω
[
1+ r1ω+ r2ω

2 + r3ω
3 +O

(
ω4
)]

(4.41b)

where, rm are coefficients independent of ω and will be determined later in this
section. Recall that the numerical solution in 1d given by Eq.(4.13) or Eq.(4.14) obeys
the above series expansion in terms of ω. Figure 61 illustrates schematically the con-
tour traced by the numerical solution Ph(ξh1 `, ξ

h
2 `) and compares it with the contour

of the exact solution P(ξβ1 `, ξ
β
2 `). In [10] the denomination ‘dist(β)’ was used for the

distance between Ph and P, i. e.dist(β) := R −
√
ω. Therein ‘dist(β)’ was used as a

measure of the approximation quality of the solution and from it error estimates were
derived that bound the solution from below. The relative phase error of the solution
along any direction β is given by,

‖ξh‖− ‖ξβ‖
‖ξβ‖

=
R−
√
ω√

ω
=

dist(β)√
ω

=

∞∑
m=1

rm ω
m ≈

[
r1ω+ r2ω

2 + r3ω
3 +O

(
ω4
)]

(4.42)
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β

Ph
P

O

P :=
√
ω(cosβ, sinβ)

Ph := R(β, ω)(cos β, sinβ)

R(β, ω) :=
√
ω

[
1 +

∞∑

m=1

rm(β)ωm

]

ξh1 ℓ

ξh2 ℓ

Figure 61: A schematic diagram of the contours traced by the numerical solution Ph(ξh1 `, ξ
h
2 `)

and the exact solution P(ξβ1 `, ξ
β
2 `).

Substituting Ph(ξh1 `, ξ
h
2 `) into the stencil corresponding to Aα1,α2 given in Eq.(4.36)

we get:

Aα1,α2
0 + 2Aα1,α2

1 [cos(R cosβ)+ cos(R sinβ)] + 4Aα1,α2
2 cos(R cosβ) cos(R sinβ) = 0

(4.43)

Using the definitions of α1,α2 and R given in Eq.(4.40) and Eq.(4.41b) respectively,
the left hand side (LHS) of Eq.(4.43) can be expanded as a series in terms of ω as
shown in Eq.(4.44a). The first four coefficients of this series can be expressed as shown
in Eq.(4.44b) and Eq.(4.44c) respectively.

LHS =

∞∑
m=0

Sm(ai,bj, rk,β)ωm (4.44a)

S0 = S1 = 0 ; S2 = 2r1 +

(
3+ 2a0 − 8b0

48

)
+

(
1− 2a0
48

)
cos(4β) (4.44b)

S3 = 2r2 + r
2
1 +

(
2a0 − 4b0 − 1

12

)
r1 +

(
24a1 − 96b1 − 2a0 + 8b0 − 5

576

)

+

[(
10a0 − 7− 120a1

2880

)
+

(
1− 2a0
12

)
r1

]
cos(4β)

(4.44c)

The local truncation error of the solution along any direction β is found by substi-
tuting the exact solution P(ξβ1 `, ξ

β
2 `) into the stencil corresponding to Aα1,α2 given in

Eq.(4.36). This is equivalent to substituting rk = 0 ∀ k in the expression for LHS given
in Eq.(4.44a). Thus using the result S0 = S1 = 0, the relative truncation error T along
any direction β is given by:

T :=
LHS|P
ω

=

∞∑
2

Sm(ai,bj, rk = 0,β)ωm−1 ≈
[
S2ω+ S3ω

2 + S4ω
3 +O

(
ω4
)]

(4.45)

We now present the expressions for the unknowns rk. Clearly all the coefficients Sm
should be zero for Eq.(4.43) to hold. We can solve for the unknowns rk by imposing
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the conditions Sm = 0 ∀ m. Thus the first two unknowns in Eq.(4.41b) viz. r1 and r2
can be expressed as follows:

r1 = −

(
3+ 2a0 − 8b0

96

)
−

(
1− 2a0
96

)
cos(4β) (4.46a)

r2 = −
r21
2

−

(
2a0 − 4b0 − 1

24

)
r1 −

(
24a1 − 96b1 − 2a0 + 8b0 − 5

1152

)

−

[(
10a0 − 7− 120a1

5760

)
+

(
1− 2a0
24

)
r1

]
cos(4β)

(4.46b)

Note that we obtain the condition r1 = 0 if and only if a0 and b0 satisfy the
condition a0 = b0 = (1/2). Further we obtain the condition r2 = 0 if and only if a1
and b1 satisfy the condition a1 = (−1/60) and b1 = (−1/40). For these choices of
a0,a1,b0 and b1 the first five coefficients in {Sm} can be simplified as follows:

S0 = S1 = 0 ; S2 = 2r1 ; S3 = 2r2 + r
2
1 −

r1
6

(4.47a)

S4 = 2r3 + 2r1r2 −
r2
6

−
r1
720

−
5r21
12

−

[
5

55296
−

(
a2 − 4b2
24

)
+

(
1+ 576a2
13824

)
cos(4β) +

cos(8β)
387072

] (4.47b)

Likewise, by imposing the condition S4 = 0 the unknown r3 in Eq.(4.41b) can be
simplified to the following:

r3 =

[
5

110592
−

(
a2 − 4b2
48

)
+

(
1+ 576a2
27648

)
cos(4β) +

cos(8β)
774144

]
(4.48)

Clearly it is impossible to obtain the condition r3 = 0 and this fact was pointed
out earlier in [10]. To conclude this section we summarize the salient results. The
parameters α1 and α2 that appear in Aα1,α2 can be chosen such that the numerical
solution be sixth-order accurate, i. e.O

(
(ξo`)

6
)

or equivalentlyO
(
ω3
)
. Recall that this

is the maximum order of accuracy that can be attained on any compact stencil [10].
All such α1 and α2 should obey the following series expansion in terms of ω.

α1 =
1

2
−
ω

60
+

∞∑
m=2

amω
m ; α2 =

1

2
−
ω

40
+

∞∑
m=2

bmω
m (4.49)

The relative phase and local truncation errors of these schemes can be expressed as
follows:

‖ξh‖− ‖ξβ‖
‖ξβ‖

= r3ω
3 +O

(
ω4
)

; T = −2r3ω
3 +O

(
ω4
)

(4.50)

where r3 is given in Eq.(4.48). As am,bm (m > 2) can be chosen arbitrarily, infinitely
many sixth-order schemes can be designed through Aα1,α2 . Of course some particular
choice of am,bm may yield a scheme with better features. For instance, am,bm may
be chosen such that the local truncation error T be zero along some chosen directions.
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4.4.5 α-Interpolation of the FEM and the FDM in 2d

In this section we consider the case α1 = α2 = α, that results in a scheme which is the
α-interpolation of the FEM and the FDM stencils. Here the coefficients am = bm ∀ m.
Recall that a necessary condition to obtain a sixth-order scheme is a1 = (−1/60) and
b1 = (−1/40). Thus an immediate consequence is that this α-interpolation scheme
can be at the best fourth-order accurate. Nevertheless, a compromise to the loss in
accuracy is that the condition α1 = α2 = α imposes an additional structure to the
scheme that may be exploited. For instance, this additional structure might throw
light on the extension of this scheme to unstructured meshes. Precisely, should it be
possible to design a Petrov–Galerkin method that would yield the FDM stencil on
a structured mesh, then this scheme can be extended to unstructured meshes in a
straight-forward manner. We show that indeed it is possible to design such a Petrov–
Galerkin method using just the lowest-order block finite elements in chapter 5 and
[138].

We now discuss the salient features of this scheme, i. e.the case α1 = α2 = α. It is
possible to choose α such that the local truncation error along any direction θ be zero.
Let this choice be denominated as αθ and it can be expressed as follows:

αθ :=
6(cθ + sθ + 2cθsθ − 4) +ω(2cθ + 2sθ + cθsθ + 4)

12(1− cθ − sθ + cθsθ) +ω(2cθ + 2sθ + cθsθ − 5)
;

cθ := cos(
√
ω cos(θ))

sθ := cos(
√
ω sin(θ))

(4.51)

Note that choosing θ = 0 we would recover the expression for α given in Eq.(4.16)
which results in solutions that are nodally exact in 1d. The expression for αθ can be
written as a series expansion in terms of ω as shown below:

αθ =

∞∑
m=0

amω
m ≈ 1

2
−

[
5+ cos(4θ)
3+ cos(4θ)

]
ω

60
−

[
35+ 28 cos(4θ) + cos(8θ)

3+ cos(4θ)

]
ω2

16128

+O
(
ω3
)

(4.52)

Recall that the choice a0 = (1/2) will make the coefficient r1 = 0 and hence us-
ing the expression for αθ we will always obtain fourth-order accurate solutions on
uniform meshes. The expression for the coefficient r2 given in Eq.(4.46b) can now be
simplified to the following.

r2 =
1

1440

[
cos(4θ) − cos(4β)
3+ cos(4θ)

]
(4.53)

The relative phase and local truncation errors of this scheme can be expressed as
follows:

‖ξh‖− ‖ξβ‖
‖ξβ‖

= r2ω
2 +O

(
ω3
)

; T = −2r2ω
2 +O

(
ω3
)

(4.54)

where r2 is given in Eq.(4.53). So far the direction θ, along which the local truncation
error is made zero, is arbitrary. We now try to optimize the solution error with re-
spect to θ. Ideally the function to optimize could be either the relative phase or local
truncation errors and the optimization problem can be posed as follows:

min
θ

max
β

|T| (or) min
θ

max
β

∣∣∣∣∣
‖ξh‖− ‖ξβ‖
‖ξβ‖

∣∣∣∣∣ (4.55)
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Unfortunately, this is a difficult problem to solve in the closed form as it is a nonlin-
ear function ofω and the location of the minimum might vary withω. We conjuncture
that in the pre-asymptotic range (i. e.ξo` � 1 or equivalently ω � 1) the location of
the minimum in the θ−β space is independent ofω. Thus, under this assumption the
minimization of the relative phase or local truncation errors is essentially equivalent
to the minimization of the coefficient of the lowest order term, i. e.here r2. Hence we
choose to optimize the coefficient r2 instead. The redefined problem and its solution
is given below.

min
θ

max
β

|r2| = min
θ

max
β

| cos(4θ) − cos(4β)|
1440(3+ cos(4θ))

= min
θ

1+ | cos(4θ)|
1440(3+ cos(4θ))

=
1

4320

(4.56a)

max
β

occurs at | cos(4β)| = 1 ⇒ β =
mπ

4
; m = {0, 1, 2, . . .}

min
θ

occurs at | cos(4θ)| = 0 ⇒ θ =
(2n+ 1)π

8
; n = {0, 1, 2, . . .}

(4.56b)

Thus, for a given θ the maximum error in the stencil will be found for some β ∈
{0, (π/4), (π/2)}. That maximum error along the direction β takes a minimum value
should the chosen direction (where the truncation error is made zero) be some θ ∈
{(π/8, 3π/8)}. Note that due to the inherent symmetries in the stencil the expressions
for α(π/8) and α(3π/8) are equivalent.

4.4.6 Dispersion plots in 2d

For a feasible graphical representation and comparison of the solutions to the char-
acteristic equations we plot the ξ1 − ξ2 contours for some values of (ω1,ω2) only.
Here and henceforth the superscripts {θ,h} are dropped in order to refer to the con-
tour plots of both the continuous and discrete problems simultaneously. In order to
retain generality to the plots the quantities ω1,ω2, ξθ1 , ξθ2 , ξh1 and ξh2 are normalized
as follows:

ω∗1 :=
ω1
π2

; ξθ∗1 :=
ξθ1
ξ
nq
1

=
ξθ1`1

π
; ξh∗1 :=

ξh1
ξ
nq
1

=
ξh1 `1

π
(4.57a)

ω∗2 :=
ω2
π2

; ξθ∗2 :=
ξθ2
ξ
nq
2

=
ξθ2`2

π
; ξh∗2 :=

ξh2
ξ
nq
2

=
ξh2 `2

π
(4.57b)

⇒ λ1 := e
iξh1 `1 = eiπξ

h∗
1 ; λ2 := e

iξh2 `2 = eiπξ
h∗
2 (4.57c)

where ξnq1 , ξnq2 are the Nyquist frequencies of the discretization along the 2d axes.
Using these normalized quantities the characteristic equations of the continuous and
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discrete problems given by Eq.(4.20) and Eq.(4.34) can be expressed as Eq.(4.58) and
Eq.(4.59) respectively.

(ξθ∗1 )2

ω∗1
+

(ξθ∗2 )2

ω∗2
= 1 (4.58)

(
[(1−α1)(λ

2
2 + 4λ2 + 1) + 6α1λ2](−1+ 2λ1 − λ

2
1)

6π2ω∗1

)

+

(
(−λ22 + 2λ2 − 1)[(1−α1)(1+ 4λ1 + λ

2
1) + 6α1λ1]

6π2ω∗2

)

−

(
[(1−α2)(λ

2
2 + 4λ2 + 1)(1+ 4λ1 + λ

2
1) + 36α2λ2λ1]

36

)
= 0

(4.59)

For every choice of the pair (ω∗1,ω∗2) the solution to Eq.(4.58) will trace elliptic
contours with the center at the origin in the ξ∗1 − ξ

∗
2 plane. Due to the inherent sym-

metry of the solutions the dispersion plots are presented just in the first quadrant.
Similar to 1d, we require that the Nyquist frequencies of the discretization in 2d are
always greater than the frequencies of the exact solution, i. e.min{ξnq1 , ξnq2 } > ξo.
Note that the following expressions are equivalent (≡): min{ξnq1 , ξnq2 } ≡ max{`1, `2} ≡
max{ω∗1,ω∗2}. Thus restricting the domain to max{ω∗1,ω∗2} ∈ [0, 1] guarantees this re-
quirement :

ω∗ := max{ω∗1,ω∗2} ∈ [0, 1]⇔ min{ξnq1 , ξnq2 } > ξo (4.60)

Likewise, a mesh resolution of at least 8 elements per wavelength is guaranteed by
restricting the domain to ω∗ ∈ [0, 1/16]. We study the following four cases concerned
with the choice of the (α1,α2) pair:

I: α1 = α2 = (1/2). This case corresponds to the equation stencil associated with
A0.5,0.5 := (Afem + Afdm)/2. Thus the discrete system obtained here is the av-
erage of the systems obtained from the Galerkin FEM and the classical FDM.
Recall that we can also obtain this stencil using the generalized Padé approxi-
mation in 2d and choosing the parameter γ = 2.

II: α1 = α2 = αθ and θ = 0. This case corresponds to the α-interpolation of the
Galerkin FEM and the classical FDM. The local truncation error is zero along
the direction θ = 0 whenever `1 = `2.

III: α1 = α2 = αθ and θ = (π/8). This case also corresponds to the α-interpolation
of the Galerkin FEM and the classical FDM. The local truncation error is zero
along the direction θ = (π/8) whenever `1 = `2. Recall that choosing θ = (π/8)

leads to an optimized expression for the coefficient r2.

IV: QSFEM, α1 6= α2 6= 0 and given by Eq.(4.38) and Eq.(4.39). This case corresponds
to the quasi-stabilized FEM presented in [10]. The local truncation error is zero
along the directions θ = (π/16) and θ = (3π/16) whenever `1 = `2.

Note that for cases I,II and III the relative phase and local truncation errors of
the numerical solution diminish at a fourth-order rate i.e O

(
(ξo`)

4
)

or equivalently
O
(
ω2
)
. For the case IV, i.e the QSFEM, these errors diminish at a sixth-order rate i.e

O
(
(ξo`)

6
)

or equivalently O
(
ω3
)
.



118 4 alpha-interpolation of fem and fdm

In Figures 62 and 63 we plot the solutions to the characteristic equations of the
continuous and discrete problems given by Eq.(4.58) and Eq.(4.59) respectively. The
contours of the continuous problem are drawn using the dashed line-style and the
corresponding contour value displayed in a single text-box. Labeled solid line-style is
used to display the contours of the discrete problem. Each figure is further divided
into four sub-figures viz. (a)-(d) which correspond to the considered four cases I–IV.
Within each sub-figure the contours plots of the continuous and discrete problems are
plotted and compared. In Figure 62 we plot the ξ∗1 − ξ

∗
2 contours keeping ω∗1 = ω∗2

i. e.`1 = `2. The plotting domain considered here is (ξ∗1, ξ∗2) = [0, 0.55]× [0, 0.55]. In
Figure 63 we plot the ξ∗1 − ξ

∗
2 contours keeping ω∗2 = 0.49ω∗1 i. e.`2 = 0.7`2. The

plotting domain considered here is again (ξ∗1, ξ∗2) = [0, 0.55] × [0, 0.55]. In both the
figures, contours are drawn for the values of ω∗ ∈ {(1/4), (1/9), (1/16), (1/25)}. These
values of ω∗ guarantee the presence of at least four, six, eight and ten elements per
wavelength respectively. Note that except for the contour value ω∗ = (1/4) in case
I, the rest of the contours of the numerical solution are indistinguishable from their
continuous counterparts. This is due to the fact that the relative local truncation error
is of the order of 1e-3 which is small with respect to the scale of the plotting domain.

In order to quantify better the relative local truncation errors of the solutions, we
compare them in Figure 64. This figure is further divided into four sub-figures viz.
(a)-(d) which correspond to the considered four values of ω∗ respectively, i. e.ω∗ ∈
{(1/4), (1/9), (1/16), (1/25)}. Within each sub-figure the relative local truncation errors
of the considered four cases viz. I–IV are plotted vs. the direction β. Now we can
clearly distinguish the errors related to the four cases. However in these figures the
error associated with the case IV, i. e.the QSFEM is indistinguishable from zero at this
scale. In Figure 65 the relative local truncation errors of the solutions are plotted in
the log-scale. The sub-figures are organized just like in Figure 64. Note that in figures
64 and 65 the relative local truncation errors converge monotonically with respect to
ω∗, i. e.the plots of the errors with respect to the direction β maintain their shape.
This supports the conjuncture made in Section 4.4.5 that in the pre-asymptotic range
the location of the mini-max error is independent of ω∗. Also we note that choosing
θ = (π/8) in the expression for αθ, the maximum error is less than the one choosing
θ = 0.

4.4.7 Examples

We consider the problem defined by Eq.(4.1) with the following problem data: k ∈
{1e-3, 1e-4}, s = 1, f = 0 and the domain Ω = [0, 1]× [0, 1]. The Dirichlet boundary
conditions are assigned such that the exact solution of Eq.(4.1) is φ(x) = sin(ξβ · x),
where β is the chosen direction of wave propagation, ξβ := ξo(cos(β), sin(β)) and
ξo :=

√
s/k. Thus for the chosen values of k, the wavenumber ξo takes the values in

{10
√
10, 100}. The following wave directions are considered: β ∈ {(π/9), (π/4)}. Seven

uniform meshes (`1 = `2) of different resolution are considered such that there are
at least four, six, eight, ten, twelve, fourteen and sixteen elements per wavelength
respectively. If the element length is chosen such that there are exactly n elements per
wavelength, then the value of ξ∗ = (2/n) and ω∗ = (2/n)2. As it can be seen all these
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Figure 62: ξ∗1 − ξ
∗
2 contours for ω∗ ∈ {(1/4), (1/9), (1/16), (1/25)} and ω∗1 = ω∗2. The dashed

and solid line-styles correspond to the solutions of the continuous and discrete
problems respectively. (a) Case I: α1 = α2 = 0.5 ; (b) Case II: α1 = α2 = αθ and
θ = 0 ; (c) Case III: α1 = α2 = αθ and θ = (π/8) ; (d) Case IV: QSFEM, α1 6= α2 6= 0
and given by Eq.(4.38) and Eq.(4.39)
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Figure 63: ξ∗1−ξ
∗
2 contours forω∗ ∈ {(1/4), (1/9), (1/16), (1/25)} andω∗2 = 0.49ω∗1. The dashed

and solid line-styles correspond to the solutions of the continuous and discrete
problems respectively. (a) Case I: α1 = α2 = 0.5 ; (b) Case II: α1 = α2 = αθ and
θ = 0 ; (c) Case III: α1 = α2 = αθ and θ = (π/8) ; (d) Case IV: QSFEM, α1 6= α2 6= 0
and given by Eq.(4.38) and Eq.(4.39)
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Figure 64: Relative local truncation error plots using `1 = `2. Comparisons are made for the
considered four cases viz. I–IV and for (a) ω∗ = (1/4) ; (b) ω∗ = (1/9) ; (c) ω∗ =

(1/16) ; (d) ω∗ = (1/25)
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Figure 65: Log-scaled relative local truncation error plots using `1 = `2. Comparisons are
made for the considered four cases viz. I–IV and for (a) ω∗ = (1/4) ; (b) ω∗ = (1/9)

; (c) ω∗ = (1/16) ; (d) ω∗ = (1/25)
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meshes restrict the domain of ω∗ to [0, 1/4]. For these considerations we study the
convergence of the relative error in the following error norms:

L2 norm
‖φ−φh‖0
‖φ‖0

:=
[
∫
Ω(φ−φh)

2 dΩ]1/2

[
∫
Ωφ

2 dΩ]1/2
(4.61a)

H1 semi-norm
‖φ−φh‖1
‖φ‖1

:=
[
∫
Ω |∇(φ−φh)|

2 dΩ]1/2

[
∫
Ω |∇φ|2 dΩ]1/2

(4.61b)

l∞ Euclidean norm
|Φe −Φh|∞

|Φe|∞ :=
maxi |Φie −Φih|

maxi |Φie|
(4.61c)

In the convergence studies done here, the numerical solutions corresponding to
the four cases viz. I–IV, are compared with the following solutions: the nodally exact
interpolant denoted by Ihφ and the best approximations with respect to the L2 norm
and the H1 semi-norm denoted by P0hφ and P1hφ respectively. The solutions Ihφ, P0hφ
and P1hφ can be found as shown in Eq.(4.62).

Ihφ := NaΦae (4.62a)∫
Ω

wh(φ− P0hφ) dΩ = 0 ∀ wh ∈ Vh0
⇒ ‖ φ− P0hφ ‖0 6 ‖ φ−φh ‖0 ∀ φh ∈ Vh

(4.62b)

∫
Ω

∇wh ·∇(φ− P1hφ) dΩ = 0 ∀ wh ∈ Vh0
⇒ ‖ φ− P1hφ ‖1 6 ‖ φ−φh ‖1 ∀ φh ∈ Vh

(4.62c)

As here the exact solution is sinusoidal, we have used a third-order Gauss quadra-
ture rule to evaluate the expressions in Eq.(4.61) and Eq.(4.62). Figures 66a and 66b
illustrate the convergence of the relative error considering the wavenumber ξo =

10
√
10 ≈ 31.62, the wave direction β = (π/9) and using the L2 norm and H1 semi-

norm respectively. Figures 66c and 66d illustrate the same but now considering the
wave direction β = (π/4). Clearly the errors in the L2 norm and H1 semi-norm corre-
sponding to all the cases are greater than that of the respective best approximations.
The error lines corresponding to the cases II–IV show a convergence trend indistin-
guishable from the error line of Ihφ. On coarse meshes the error line corresponding
to case I deviates significantly from the error line of Ihφ. Nevertheless, it quickly
recovers the convergence trend of the later on finer meshes.

Figures 67a and 67b illustrate the convergence of the relative error considering the
wavenumber ξo = 100, the wave direction β = (π/9) and using the L2-norm and
H1-seminorm respectively. Figures 67c and 67d illustrate the same but now consid-
ering the wave direction β = (π/4). Note that a higher value of ξo does introduce
the ‘pollution-effect’ in the error lines as they deviate more from the error line of Ihφ.
However the pollution effect is very small for cases II and III and is practically nil for
case IV (sixth-order dispersion accuracy).

Figure 68 illustrates the convergence of the relative error in the l∞ Euclidean norm.
As a nodally exact solution requires that the dispersion error be zero, one may ex-
pect that the order of convergence in the l∞ Euclidean norm be the same as that of
the corresponding dispersion error. In fact the same is observed for the solutions cor-
responding to all the cases. The error lines of cases I–III converge at a fourth-order
rate and that of case IV converges at a sixth-order rate. The error lines of the best
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approximations in the L2 norm (P0hφ) and the H1 semi-norm (P1hφ) converge at a
second-order rate. The relative error of P0hφ is always greater that that of P1hφ. The
pollution effect is now clearly visible for all the cases. Irrespective of the wave direc-
tion β, the error lines of all the cases shift higher with an increase in the wavenumber
ξo. Meanwhile, the location of the error lines of P0hφ and P1hφ are practically unaf-
fected by an increase in ξo (no pollution). As the magnitudes of the relative error in
the l∞ Euclidean norm for cases II–IV is small (with respect to relative error of Ihφ in
the the L2 norm and the H1 semi-norm) for both the values of ξo, the pollution effect
is hardly visible for these cases considering the relative error in the L2 norm and the
H1 semi-norm.

Remark: As discussed in Section 4.3.4 and pointed out earlier in [47], though the
discrete LBB constant in an average sense is inversely proportional to ξo, it has a
more complicated behavior that tends its value to zero should ξo approach the zones
of degeneracy (see Figure 59). Thus pollution effects may be found not only for higher
wavenumbers but also in those situations where the wavenumber ξo approaches the
zones of degeneracy. Of course, the higher the dispersion accuracy the closer will be
the discrete eigenvalues to their continuous counterparts and narrower will be the
zones of degeneracy. Also, if only the Dirichlet boundary conditions are prescribed
(as is the case here), spurious amplitude and/or phase modulations might occur to
satisfy them in spite of small dispersion errors [79]. For the presented scheme, we
have found vestiges of this behavior along the wave direction β = 0.

4.5 conclusions and outlook

A fourth-order compact scheme on structured meshes is presented for the Helmholtz
equation. The scheme consists in taking the α-interpolation of the Galerkin FEM and
the classical FDM. For the 2d analysis of this scheme a generic nonstandard compact
stencil involving two parameters α1,α2 is considered. In particular this nonstandard
compact stencil can model the aforementioned scheme (choosing α1 = α2 = α) and
also the QSFEM which has a dispersion accuracy of sixth-order. The expression for
the numerical solution of this nonstandard stencil is given considering generic ex-
pressions for α1,α2 written as a series expansion in terms of ω := (ξo`)

2. Using this
result, we provide the expressions for the phase and local truncation errors of this
nonstandard compact stencil. In particular for our scheme it is shown that these er-
rors diminish at the rate O

(
(ξo`)

4
)

or equivalently O
(
ω2
)
. An expression for the

parameter α is given that minimizes the relative phase error in the pre-asymptotic
range (ξo` small). Also, by this choice the local truncation error of the scheme along
the direction β = (π/8) is made zero. Convergence studies of the relative error in the
L2 norm, the H1 semi-norm and the l∞ Euclidean norm are done and the pollution
effect is found to be small. In particular, using the optimal expression for α the rela-
tive error of our scheme in the l∞ Euclidean norm (for the considered examples and
using at least ten elements per wavelength) is found to be around or less than one
percent.

The abstractness in the definition of the QSFEM hinders its extension to unstruc-
tured meshes. This is a common problem faced by all the sixth-order methods pro-
posed within the framework of the FDM. The recently proposed QOPG method ad-
dresses this issue and is able to attain a dispersion accuracy of the same order as
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Figure 66: Convergence of the relative error considering ξo = 10
√
10 and for mesh resolutions

that guarantee at least n elements per wavelength, where n ∈ {4, 6, 8, 10, 12, 14, 16}.
The considered norms and the wave directions are: (a) L2 norm, β = (π/9) ; (b) H1

semi-norm, β = (π/9) ; (c) L2 norm, β = (π/4) and (d) H1 semi-norm, β = (π/4)
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Figure 67: Convergence of the relative error considering ξo = 100 and for mesh resolutions
that guarantee at least n elements per wavelength, where n ∈ {4, 6, 8, 10, 12, 14, 16}.
The considered norms and the wave directions are: (a) L2 norm, β = (π/9) ; (b) H1

semi-norm, β = (π/9) ; (c) L2 norm, β = (π/4) and (d) H1 semi-norm, β = (π/4)
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Figure 68: Convergence of the relative error in the l∞ Euclidean norm using: (a) ξo = 10
√
10,

β = (π/9) ; (b) ξo = 100, β = (π/9) ; (c) ξo = 10
√
10, β = (π/4) ; (d) ξo = 100,

β = (π/4). The considered mesh resolutions guarantee at least n elements per
wavelength, where n ∈ {4, 6, 8, 10, 12, 14, 16}.
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the QSFEM on square meshes. Nevertheless it uses a quadratic bubble perturbation
function defined over a macro-element and the parameters multiplying these bubbles
are found by solving local optimization problems involving a functional of the local
truncation error. Alternate methods that achieve this objective were proposed earlier
within a variational setting and with similar implementation/computational cost, viz.
the RBFEM [160], the DGB method [129], the GPR method [51] etc. Can this path to
obtain the QSFEM be simplified? That is the outlook of this chapter.

Recall that the nonstandard compact stencil studied here has an additional structure
that reduces its abstractness. This additional structure throws light on the extension
of this stencil to unstructured meshes. In chapter 5 and [138] a new Petrov–Galerkin
method involving two parameters viz. α1,α2 is presented which yields this non-
standard compact stencil on rectangular meshes. Making the two parameters equal,
i. e.α1 = α2 = α, we recover the compact stencil obtained by the α-interpolation of the
Galerkin FEM and the classical central FDM. This Petrov–Galerkin method provides
the counterparts of these two schemes on unstructured meshes and allows the treat-
ment of natural boundary conditions (Neumann or Robin) and the source terms in
a straight-forward manner. This we believe would open door to design higher-order
Petrov–Galerkin methods which can be an alternative to the existing higher-order
methods for the Helmholtz equation.



In general, ideas and experience shall interact permanently.

— Lothar Collatz.

5
P E T R O V– G A L E R K I N F O R M U L AT I O N

5.1 introduction

This chapter is a continuation of chapter 4
1 wherein a simple domain-based higher-

order compact numerical scheme involving two parameters viz. α1,α2 was presented
for the Helmholtz equation. The stencil obtained by choosing the parameters as dis-
tinct, i. e.α1 6= α2 was denoted therein as the ‘nonstandard compact stencil’. Taking
α1 = α2 = α , the nonstandard compact stencil simplifies to the α-interpolation
of the equation stencils obtained by the Galerkin finite element method (FEM) and
classical central finite difference method (FDM). For the Helmholtz equation, generic
expressions for the parameters were given that guarantees a dispersion accuracy of
sixth-order should α1 6= α2 and fourth-order should α1 = α2. As the findings re-
ported therein and the corresponding analysis was done for compact stencils, the
contribution of the Galerkin FEM to the equation stencil corresponds to the choice
of the lowest order rectangular block finite elements. By blocks we mean Cartesian
product of intervals and by lowest order we refer to multilinear finite-element (FE)
interpolation on these blocks. In this chapter we extend this scheme to unstructured
meshes. We shall only consider the lowest order finite elements, i. e., linear FE inter-
polation on simplices and multilinear FE interpolation on blocks. The focus of this
chapter is twofold: a) to design a Petrov–Galerkin (PG) method that reproduces on
structured meshes the aforesaid numerical scheme and b) to study if this PG method
using lowest order FE on unstructured meshes inherits the higher-order dispersion
accuracy observed for the same on structured meshes.

Consider the multidimensional Helmholtz equation subjected to the following bound-
ary conditions:

Lφ := −∆φ− ξ2oφ = f(x) in Ω (5.1a)

φ = φp on ΓD (5.1b)

n ·∇φ−Mφ = q on ΓR (5.1c)

where ξo is the wavenumber, f(x) is the source term, φp is the prescribed value of φ on
the Dirichlet boundary ΓD. The operator M models either the Dirichlet-to-Neumann
(DtN) map should the boundary-value problem (BVP) be posed on a domain with an
exterior DtN boundary or the Neumann/Robin boundary conditions should the BVP
be posed on an interior domain. Consider the following case: an interior BVP with
only Dirichlet boundary conditions and f(x) = 0; discretization of Eq.(5.1) is done by
using either the Galerkin FEM or the FDM; a structured rectangular mesh/grid in 2d

and bilinear FE interpolations on them are used. For the considered case we use the

1 Henceforth all references to chapter 4 will be cited as [136] which is the published version of the same.
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following notation (described earlier in §3.1) to represent a generic compact stencil
corresponding to any interior node (i, j) of a structured mesh/grid.

{◦j+1, ◦j, ◦j−1}A{◦i−1, ◦i, ◦i+1}t = 0 (5.2)

where A represents the matrix of the stencil coefficients. The equation stencil for the
Galerkin FEM method corresponding to any interior node (i, j) can be written as
Eq.(5.2) with the following definition of the stencil coefficient matrix (A):

Afem :=
`2
6`1

{1, 4, 1}t {−1, 2,−1}+
`1
6`2

{−1, 2,−1}t {1, 4, 1}

−
ξ2o`1`2
36

{1, 4, 1}t {1, 4, 1}
(5.3)

The stencil for the classical FDM method corresponding to any interior node (i, j)
can be written as Eq.(5.2) with the following definition of A:

Afdm :=
`2
6`1

{0, 6, 0}t {−1, 2,−1}+
`1
6`2

{−1, 2,−1}t {0, 6, 0}

−
ξ2o`1`2
36

{0, 6, 0}t {0, 6, 0}
(5.4)

Naturally, the first step is to ascertain the feasibility of a PG method that reproduces
on structured meshes the equation stencil corresponding to the classical FDM. Note
that one may arrive at Eq.(5.4) from Eq.(5.3) by lumping the 1d mass type distribu-
tions within the equation stencil wherever they occur, i. e.replacing {1, 4, 1}t {−1, 2,−1}
by {0, 6, 0}t {−1, 2,−1}. Following this observation we may pose some questions which
will mark the turning points of the current exposition: a) Is it possible to reproduce
the mass matrix lumping technique within a PG setting ? b) Will the use of such test
functions/weights for the current problem reproduce the FDM stencil and further the
α-interpolation of the FEM and FDM stencils ? c) What is the possibility to recover
the nonstandard compact stencil? and d) Will a direct extension of these weights to
unstructured FEs result in a PG method that inherits the higher-order dispersion accu-
racy observed for the aforesaid numerical scheme ? These questions will be addressed
in the subsequent sections.

This chapter is organized as follows. In Section 5.2 we recover the effect of mass
lumping within a PG setting. The weights that incorporate this effect are also shown
to lump the 1d mass type distributions within the equation stencil as discussed
above. These weights are found to be discontinuous at the inter-element boundary
and integration-by-parts needs to be done for an integral form of Eq.(5.1a) involving
these weights. In Section 5.3 we present the variational setting needed to provide a
well defined weak form for the problem. In Section 5.4.2 considering lowest order
block FEs, we provide models for the weights on the inter-element boundaries that
would recover the nonstandard compact stencil on structured meshes. Some examples
are presented in Section 5.6 which illustrate the pollution effect through convergence
studies in the L2 norm, the H1 semi-norm and the l∞ Euclidean norms. Finally in
Section 5.7 we arrive at some conclusions.

5.2 mass lumping

Attempts to arrive at mass lumping procedures within a variational setting is not new.
‘Legal’ mass lumping emanating from residual-free bubbles had been presented in



5.2 Mass lumping 131

[64, 65]. In this section we try to recover the mass matrix lumping process via a PG
approach. In other words, the objective is to design the test functions Wa such that
the following equation holds:∫

Ω

WaNb dΩ = Mab
L (5.5)

where, ML is the lumped mass matrix. For the sake of simplicity, the weights are
designed to be piecewise polynomials of the same degree as that of the FE shape
functions. This choice allows us to express the test functions in terms of the FE shape
functions as:

Wa := WabNb (5.6)

where, W is a matrix of constant coefficients. Using Eq.(5.6), the solution to the prob-
lem given by Eq.(5.5) can be expressed as follows.∫
Ω

WaNb dΩ = Wac

∫
Ω

NcNb dΩ = WM ; WM = ML ⇒ W = MLM−1 (5.7)

The standard row lumping technique used to obtain ML from the consistent mass
matrix M can be expressed as follows.

Mab
L := δab

∑
c

Mac = δab
∑
c

∫
Ω

NaNc dΩ = δab
∫
Ω

Na dΩ (5.8)

The fact that the finite element (FE) shape functions {Na} being a partition of unity
is used to arrive at the last part of Eq.(5.8). If ML be obtained via the row lumping
technique, then the test functions defined by Eq.(5.6) also form a partition of unity.
This statement can be verified as follows:∑

a

Wa =
∑
a

WabNb =
∑
a

Mac
L M−cbNb =

∑
a

MacM−cbNb

=
∑
a

δabNb =
∑
a

Na = 1
(5.9a)

∑
a

Wa =
∑
a

Na = 1 (5.9b)

The process of defining test functions {Wa} via Eqs.(5.6) and (5.7) is generic up
to to the feasibility of a suitable lumping technique. Unfortunately, techniques other
than the row lumping procedure generally will not render these test functions as a
partition of unity. Thus, further developments in this line are restricted to those finite
elements where the row lumping procedure makes sense, i. e.linear FE interpolation
on simplices and multilinear FE interpolation on blocks. Thus for these FE discretiza-
tion of the solution, PG test functions can be designed that would result in the mass
lumping operation. Considering the fact that the test functions can model constants
(as they are a partition of unity) and the exposition is done within the framework of
PG methods, consistency and conservation properties are guaranteed.

The design problem for the test functions given by Eq.(5.5) may be posed either at
the global or local level. Posing the problem at the global level results in weights that
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Shape functions Na Test functions W̃a Remarks

1+ ξ̄aξ

2

1+ 3ξ̄aξ

2
1d linear FE. {ξ̄a} = {−1, 1}

(1+ ξ̄aξ
2

)(1+ η̄aη
2

) (1+ 3ξ̄aξ
2

)(1+ 3η̄aη
2

)
2d rectangular bilinear FE.
{ξ̄a} = {−1, 1, 1,−1)},
{η̄a} = {−1,−1, 1, 1)}

{(1− ξ− η), ξ,η} {(3− 4ξ− 4η), (4ξ− 1), (4η− 1)} 2d linear triangle FE.

Table 3: Test functions corresponding to some finite elements

are piecewise continuous (C0 functions) but with a non-local support. This observa-
tion is straightforward given the following facts: the matrix W is full and the shape
functions {Na} being piecewise continuous. Thus the sparse structure of the resulting
algebraic system is lost. Also the space spanned by these test functions will always
be non-zero on the domain boundary. This poses difficulty in providing a simple
and well-defined weak formulation for the problem subjected to Dirichlet boundary
conditions.

On the other hand, posing the problem at the local (element) level will result in
weights with a local support but with a loss in C0 continuity at the element edges.
Note that in this approach the global weights (assembled in a piecewise manner)
are no longer a linear combination of the global FE shape functions. Henceforth the
restriction of the test functions Wa to the element interiors and edges will be denoted
by W̃a and Ŵa respectively. We remark that in this approach the solution to Eq.(5.5)
posed at the element level will be used only to define W̃a. This is done for two
reasons, viz. a) to ensure that the test functions be a partition of unity on the element
edges and b) to be able to model Ŵa such that we recover the sparsity pattern of the
Galerkin FEM. The later condition also allows us to construct test function spaces that
vanish at the Dirichlet boundary.

In this work we have opted for the later approach, i. e.the design problem for the
weights is posed at the element level. The weights W̃a corresponding to three different
element types is listed in Table 3. Figure 69 illustrates the construction of the weights
corresponding to the 1d linear FE shape functions. Note the loss of C0 continuity at
the element edges in Fig.69b.

Consider the diffusion term
∫
K∇W̃a ·∇Nb dΩ for an element K of a rectangular

FE mesh in 2d. Using the test functions W̃a defined in Table 3 we get,∫
K

∇W̃a ·∇Nb dΩ =

∫
K

∂W̃a

∂x

∂Nb

∂x
dΩ+

∫
K

∂W̃a

∂y

∂Nb

∂y
dΩ (5.10a)

=
3`2
2`1




1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1



+
3`1
2`2




1 0 0 −1

0 1 −1 0

0 −1 1 0

−1 0 0 1




(5.10b)
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Figure 69: Test functions corresponding to the 1d linear FE that results in mass lumping. (a)
Comparison of the weights {Wa} within an element and with respect to the 1d FE
shape functions {Na}. (b) Illustration of the weight corresponding to an arbitrary
node i assembled element-wise. The open circles in these illustrations signify that
the weights have not yet been defined at these points.

The stencil coefficient matrix Ad corresponding to the assembly of the above element
matrices can be expressed as follows:

Ad =
3`2
`1

{0, 1, 0}t {−1, 2,−1}+
3`1
`2

{−1, 2,−1}t {0, 1, 0} (5.11)

Note that except for a scalar multiple (here ‘3’) the stencil coefficient matrix Ad is
the same as that corresponding to the diffusive term in Afdm. Ad differs here by a
scalar multiple because we have not yet considered the jumps in the values of the test
functions at the element edges. Nevertheless this example sheds light on the first two
questions raised in Section 5.1, i. e.using these weights the 1d mass type distributions
found in the equation stencils are lumped, thus opening way to design FEM based
PG methods that would yield the FDM stencil. Naturally, the next step is to ascertain
the feasibility of a model for Ŵa which when used together with W̃a within a well-
defined variational setting would end up in the classical FDM.

Recall that to arrive at the form
∫
K∇W̃a ·∇Nb dΩ integration by parts needs to

be done for an integral form of Eq.(5.1a) containing discontinuous test functions. This
is the distinction of the current work from existing stabilized FEM based PG meth-
ods that follows the theoretical framework originally proposed for the Streamline–
Upwind/Petrov–Galerkin (SUPG) method [92]. Thus the framework of Discontinuous–
Galerkin (DG) methods is most appropriate to provide a variational setting for the
current work. The distinction (apart from the trivial one2) of the current work with
the DG methods is illustrated via a schematic representation of the same in Fig. 70.
Fig. 70a illustrates a generic DG method. Recall that the weights on either side of an
element edge in a DG method are not only discontinuous but also independent. The
same applies to the trial solutions (φ) and in addition to this, models φ̂ for φ are
specified on the element edges. For conservative DG methods, φ̂ which is sometimes
named as the scalar numerical flux, is single valued on the element edges [4]. On the
other hand, Fig. 70b illustrates the current PG method. Note that the test functions

2 DG belongs to the class of Galerkin methods where the test functions and trial solutions belong to the
same function space
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Test function, w
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Trial solution, φ
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w̃
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φ
φ
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Figure 70: Comparison of the test function w and trial solution φ of a generic Discontinuous–
Galerkin (DG) method with those of the current Petrov–Galerkin (PG) method.
Schematic representations of w and φ for (a) a DG method and (b) the current
PG method. Note that unlike for the DG method, the w and φ for the current PG
method are not independent on either sides of the edge E.

(w) remain discontinuous but they are no longer independent. In addition to this, we
also specify single-valued models ŵ for w on the element edges. The trial solutions
for the current PG method are the standard FE solutions which are C0-continuous
and are not independent on either sides of the element edge. In the next section, fol-
lowing the framework of DG methods and the notations used therein [4], we present
the variational setting for the current PG method.

5.3 variational setting

In this section we present the variational setting for PG methods with discontinuous
test functions (C−1 functions) and standard finite-element trial solutions (C0 func-
tions) which can be schematically represented as in Fig. 70b. First, we recall some
standard notations which are used in the developments that follows. Let Th = {K} be
a regular family of elements K generating a partition of Ω and the summation over
all elements will be indicated by

∑
K. The piecewise integral

∑
K

∫
K will be denoted

by
∫
Th

. The collection of all element edges (including edges on the boundary) will
be written as Eh = {E}. The set of internal and boundary edges will be denoted by
Eoh = {Eo} and E∂h = {E∂} respectively. The piecewise integral

∑
E

∫
E will be written as∫

Eh
, using

∫
Eoh

and
∫
E∂h

when the edges are interior or on the boundary respectively.
The restriction of a function ϕ to K is denoted by ϕ|K.

Suppose now that the elements K1 and K2 share an element edge E, and let n1

and n2 be the normals to E exterior to K1 and K2 respectively. For an arbitrary scalar
function ϕ, possibly discontinuous across E, the jump and the average operators are
defined as follows.

[[ϕ]] := n1ϕ|∂K1∩E + n2ϕ|∂K2∩E (5.12a)

{ϕ} :=
1

2

(
ϕ|∂K1∩E +ϕ|∂K2∩E

)
(5.12b)
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whereas for an arbitrary vector function σ these operators are defined as follows.

[[σ]] := n1 ·σ|∂K1∩E + n2 ·σ|∂K2∩E (5.13a)

{σ} :=
1

2

(
σ|∂K1∩E +σ|∂K2∩E

)
(5.13b)

Note that {ϕ} and [[σ]] are scalar quantities while [[ϕ]] and {σ} are vectors per-
pendicular to the edge E. To deal with the sums of the form

∑
K

∫
∂Kϕ(n ·σ), we use

the average and jump operators defined in Eq.(5.12) and Eq.(5.13). A straightforward
computation leads to the following formula:∑

K

∫
∂K

ϕ(n ·σ) dΓ =

∫
Eoh

(
{ϕ}[[σ]] + [[ϕ]] · {σ}

)
dΓ +

∫
E∂h

ϕ(n ·σ) dΓ (5.14)

Consider an arbitrary element K with boundary ∂K and define two sub-domains
within it viz. Ko and Kε as shown in Fig 71a. The boundary that Kε shares with
Ko is denoted by ∂Ko. The external normals to ∂K and ∂Ko are denoted by n and
no+ respectively. The normal no− := −no+. The piecewise integral

∫
Ko

+
∫
Kε

will be
denoted by

∫
Kh

. The free parameter ε characterizes the width of the Kε sub-domain.
As shown in Fig. 71b we split the definition of the test function w over the sub-
domains as follows:

w|Ko := w̃ ; w|Kε := τ (5.15)

Likewise, we split the definition of w on the respective boundaries as follows:

w|∂Ko := w̃|∂Ko = τ|∂Ko ; w|∂K := ŵ (5.16)

Thus, as shown in Fig. 71b, letting ε→ 0 we arrive at a class of test functions which
were represented schematically in Fig. 70b. Following this line, the strategy to present
the weak form of the problem would be to first present it assuming ε to be finite and
then taking the limit ε→ 0.

Ko

Kε

n

∂K

no+

no−

∂Ko

(a)

w̃
τ

Ko Kε∂Ko ∂K

ŵ

ε
lim
ε→0

w̃

K ∂K

ŵ

(b)

Figure 71: Schematic diagrams of an arbitrary element K ∈ Th and a test function defined over
it. (a) The element K is further divided into two sub-domains Ko and Kε. (b) The
test function w is defined piecewise as follows: w̃ over Ko, τ over Kε, w̃|∂Ko = τ|∂Ko
and ŵ on ∂K. The free parameter ε characterizes the width of the Kε domain.
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We now proceed to present a well-defined weak formulation of the continuous
problem 5.1 wherein the test functions could possibly be discontinuous across Eh.
Multiplying Eq.(5.1a) by test functions3 w and integrating formally on K, we get∫

K

w(Lφ− f) dΩ = −

∫
K

w∆φ dΩ−

∫
K

w(ξ2oφ+ f) dΩ (5.17a)

= −

∫
Ko

w̃∆φ dΩ−

∫
Kε

τ∆φ dΩ−

∫
K

w(ξ2oφ+ f) dΩ (5.17b)

Integrating by parts the terms w̃∆φ and τ∆φ we get,∫
K

w(Lφ− f) dΩ =

∫
Ko

(∇w̃ ·∇φ) dΩ+

∫
Kε

(∇τ ·∇φ) dΩ−

∫
K

w(ξ2oφ+ f) dΩ

−

∫
∂Ko

w̃(no+ ·∇φ) dΓ −
∫
∂Ko

τ(no− ·∇φ) dΓ −
∫
∂K

ŵ(n ·∇φ) dΓ (5.18)

Using the formula given by Eq.(5.14) on the boundary ∂Ko we get,∫
K

w(Lφ− f) dΩ =

∫
Kh

(∇w ·∇φ) dΩ−

∫
K

w(ξ2oφ+ f)φ dΩ

−

∫
∂Ko

(
{w}[[∇φ]] + [[w]] · {∇φ}

)
dΓ −

∫
∂K

ŵ(n ·∇φ) dΓ (5.19)

The variational statement of the problem obtained by using the method of weighted
residuals is: Find φ ∈ U, such that ∀w ∈ V we have∫

Ω

w(Lφ− f) dΩ+

∫
ΓR

ŵ(n ·∇φ−Mφ− q) dΓ = 0 (5.20)

Using Eq.(5.19) and the following equivalent (≡) expressions:
∫
Ω ≡

∫
Th

:=
∑
K

∫
K

and
∫
E∂h
ŵ (?) dΓ ≡

∫
ΓR
ŵ (?) dΓ , the variational statement can be rewritten as follows:∫

Th

w(ξ2oφ+ f) dΩ+

∫
ΓR

ŵ(Mφ+ q) dΓ =
∑
K

∫
Kh

(∇w ·∇φ) dΩ

−
∑
K

∫
∂Ko

(
{w}[[∇φ]] + [[w]] · {∇φ}

)
dΓ −

∫
Eoh

(
{ŵ}[[∇φ]] + [[ŵ]] · {∇φ}

)
dΓ

(5.21)

We obtain the weak form of the continuous problem 5.1 by invoking the continu-
ity requirement [[∇φ|Eh ]] = 0 for the solution φ in Eq.(5.21). At this point we also
invoke the continuity requirements for the considered test functions w in Eq.(5.21),
i. e.[[w|∂Ko ]] = 0 and [[ŵ]] = 0. The weak form thus obtained is specific to this particular
choice of test functions.∫

Th

w(ξ2oφ+ f) dΩ+

∫
ΓR

ŵ(Mφ+ q) dΓ =
∑
K

∫
Kh

(∇w ·∇φ) dΩ (5.22)

After any appropriate discretization, the weak form of the discretized problem is
obtained by replacing the continuous unknowns by their discrete counterparts,∫

Th

wh(ξ
2
oφh + f) dΩ+

∫
ΓR

ŵh(Mφh + q) dΓ =
∑
K

∫
Kh

(∇wh ·∇φh) dΩ (5.23)

3 Whenever the solution φ is complex-valued, the complex-conjugate of w is used instead.
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In the above discrete weak form the continuity constraint [[∇φh|Eoh ]] = 0 is enforced
in a weak way. Consider the term ∇wh ·∇φh in Eq.(5.23) and re-integrating by parts
both the terms in the piecewise integral

∫
Kh

we get,

∫
Kh

(∇wh ·∇φh) dΩ =

∫
Ko

(∇w̃h ·∇φh) dΩ+

∫
Kε

(∇τh ·∇φh) dΩ (5.24a)

= −

∫
Ko

w̃h∆φh dΩ−

∫
Kε

τh∆φh dΩ+

∫
∂K

ŵh(n ·∇φh) dΓ (5.24b)

= −

∫
Kh

wh∆φh dΩ+

∫
∂K

ŵh(n ·∇φh) dΓ (5.24c)

To arrive at Eq.(5.24b) we have used the following results for the boundary ∂Ko:
[[wh|∂Ko ]] = 0 and [[∇φh|∂Ko ]] = 0. Using the result in Eq.(5.16) and re-integrating by
parts only the ∇τh ·∇φh term in the piecewise integral

∫
Kh

of Eq.(5.23) we get,∫
Kh

(∇wh ·∇φh) dΩ =

∫
Ko

(∇w̃h ·∇φh) dΩ−

∫
Kε

τh∆φh dΩ

−

∫
∂Ko

w̃h(no+ ·∇φh) dΓ +
∫
∂K

ŵh(n ·∇φh) dΓ
(5.25)

As the parameter ε→ 0 we see that no+ → n, no− → −n and ∂Ko → ∂K. Also note
that ∀ϕ ∈ L2(K),

∫
Ko
ϕ dΩ →

∫
Kϕ dΩ and

∫
Kε
ϕ dΩ → 0. Thus, taking the limit

ε→ 0, we have:

lim
ε→0

∫
Kh

(∇wh ·∇φh) dΩ =

∫
K

(∇w̃h ·∇φh) dΩ+ lim
ε→0

∫
Kε

(∇τh ·∇φh) dΩ

(5.26a)

= −

∫
K

w̃h∆φh dΩ+

∫
∂K

ŵh(n ·∇φh) dΓ (5.26b)

=

∫
K

(∇w̃h ·∇φh) dΩ+

∫
∂K

(ŵh − w̃h)(n ·∇φh) dΓ (5.26c)
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Thus in the limit ε→ 0, the discrete weak form given by Eq.(5.23) can be expressed
equivalently by the following forms:∫

Th

wh(ξ
2
oφh + f) dΩ+

∫
ΓR

ŵh(Mφh + q) dΓ =
∑
K

lim
ε→0

∫
Kh

(∇wh ·∇φh) dΩ

(5.27a)

=

∫
Th

(∇w̃h ·∇φh) dΩ+
∑
K

lim
ε→0

∫
Kε

(∇τh ·∇φh) dΩ (5.27b)

= −

∫
Th

w̃h∆φh dΩ+
∑
K

∫
∂K

ŵh(n ·∇φh) dΓ (5.27c)

= −

∫
Th

w̃h∆φh dΩ+

∫
Eoh

ŵh[[∇φh]] dΓ +
∫
ΓR

ŵh(n ·∇φh) dΓ (5.27d)

=

∫
Th

(∇w̃h ·∇φh) dΩ+
∑
K

∫
∂K

(ŵh − w̃h)(n ·∇φh) dΓ (5.27e)

=

∫
Th

(∇w̃h ·∇φh) dΩ−

∫
Eoh

(
{w̃h − ŵh}[[∇φh]] + [[w̃h]] · {∇φh}

)
dΓ

−

∫
E∂h

w̃h(n ·∇φh) dΓ +
∫
ΓR

ŵh(n ·∇φh) dΓ
(5.27f)

Note that in the limit ε → 0 the test functions wh develop sharp Dirac-type layers
at the element boundaries Eh. Hence the integral

∫
Kε

that appears in Eq.(5.27a) and
Eq.(5.27b) does not vanish as ε → 0. On the other hand, from Eq.(5.27c) we note that
the sparsity of the resulting discrete system depends on the employed model for ŵh.
Clearly, if the value of ŵh be designed to be zero on the boundary of a patch of
elements associated to any given node, then from Eq.(5.27c) we see that the resulting
discrete system will have a sparsity pattern equivalent to that of the Galerkin FEM.
Also note that on a generic block finite element, the w̃h∆φh term will not vanish and
needs to be evaluated. Nevertheless, using the weak form expressed as in Eq.(5.27e)
the extra labor just involves the evaluation of the element boundary integrals. This
can be easily incorporated within an ‘assemble-by-elements’ data structure.

5.4 block finite elements

5.4.1 1d linear FE

In this section we will provide models for the PG weights on the elements edges.
Consider the 1d linear FE and corresponding PG weights specification illustrated in
Fig. 69. In Fig. 69b, let Ŵi|i−1, Ŵi|i and Ŵi|i+1 be the models for the weight Wi on
the edges i− 1, i and i+ 1 respectively. For these weights Wi to be a partition of unity
also on the element edges the following relation should hold:

Ŵi|i−1 + Ŵ
i|i + Ŵ

i|i+1 = 1 (5.28)

There exists an infinity of solutions for Eq.(5.28) but only the choice {Ŵi|i−1, Ŵi|i,
Ŵi|i+1} = {0, 1, 0} will result in a discrete system that has the same sparsity structure
as that of the Galerkin FEM or the classical FDM. Also, the space spanned by these
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weights can be restricted to zero on the Dirichlet boundary without being trivially
zero inside the domain and thus, justifying their admittance in weak formulations.
Using the later definition the PG weights corresponding to the 1d linear FEs can be
represented as shown in Fig. 72

ξ−1 0 +1

−1

−0.5

0

0.5

1

1.5

2
W 1 W 2

(a)

ξi− 1 i i+ 1

−1

−0.5

0

0.5

1

1.5

2
W i

(b)

Figure 72: A model for the PG weights on the element edges corresponding to the 1d linear
FE. (a) Illustration of the weights {Wa} within an element. (b) The weight corre-
sponding to an arbitrary node i assembled element-wise. The filled circles in these
illustrations represent the chosen model for the weights on the element edges.

Discretization of the space by finite elements will lead to the approximation φh =

NaΦa and using the PG weights (shown in Fig. 72) in any of the weak forms pre-
sented in Eq.(5.27), the following equation stencil is obtained:

(1
`

)
(−Φi−1 + 2Φi −Φi+1) − ξ2o`Φ

i = 0 (5.29)

This is precisely the equation stencil obtained by using either the classical FDM or
the Galerkin FEM wherein the mass matrix is lumped. Define a free parameter α and
consider the following definition of the PG weights within an element:

Wa
α =


α
(1+ 3ξξ̄a

2

)
+ (1−α)

(1+ ξξ̄a
2

)
=
(1+ (1+ 2α)ξξ̄a

2

)
−1 < ξ < 1

(1+ ξξ̄a
2

)
ξ = ±1

(5.30)

In the above equation choosing α = 0 we will recover the weights Wa
0 as the stan-

dard 1d FE shape functions Na. Likewise, choosing α = 1, the obtained weights Wa
1

is the same as shown in Fig. 72. Using the PG weights defined by Eq.(5.30) in any of
the weak forms presented in Eq.(5.27), the following equation stencil is obtained:

(1−α)

[(
1

`

)
(−Φi−1 + 2Φi −Φi+1) −

(
ξ2o`

6

)
(Φi−1 + 4Φi +Φi+1)

]

+α

[(
1

`

)
(−Φi−1 + 2Φi −Φi+1) − ξ2o`Φ

i

]
= 0

(5.31)

⇒
(
1

`

)
(−Φi−1 + 2Φi −Φi+1) − (1−α)

(
ξ2o`

6

)
(Φi−1 + 4Φi +Φi+1)

−αξ2o`Φ
i = 0

(5.32)
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Equation (5.31) is precisely the α-interpolation of the stencils obtained by the Galerkin
FEM and the classical FDM methods in 1d. For the 1d case using linear FE and as
shown in Eq.(5.32), it is equivalent to the Galerkin FEM wherein an alpha-interpolated
mass matrix is used.

5.4.2 2d bilinear FE

Consider now the 2d bilinear rectangular FE and define the PG weights over these
blocks as the Cartesian product of its 1d counterparts defined earlier in Eq.(5.30).
Thus we get,

Wa
α =



(1+ (1+ 2α)ξξ̄a

2

)(1+ (1+ 2α)ηη̄a

2

)
(ξ,η) ∈ (−1, 1)× (−1, 1)

(1+ (1+ 2α)ξξ̄a

2

)(1+ ηη̄a
2

)
(ξ,η) ∈ (−1, 1)× {±1}

(1+ ξξ̄a
2

)(1+ (1+ 2α)ηη̄a

2

)
(ξ,η) ∈ {±1}× (−1, 1)

(1+ ξξ̄a
2

)(1+ ηη̄a
2

)
(ξ,η) ∈ {±1}× {±1}

(5.33)

Note that on the element edges whenever Na = 0, we have simultaneously Ŵa =

0. Likewise, on the edges whenever the expression for α is single-valued, we have
simultaneously a single-valued model for Ŵa. In this way it is possible to retain the
sparsity pattern of the Galerkin FEM. On a structured mesh in 2d and using the PG
weights defined by Eq.(5.33) in any of the weak forms presented in Eq.(5.27), the
stencil corresponding to any interior node (i, j) can be written as Eq.(5.2) with the
following definition of the stencil coefficient matrix (A):

Aα := (1−α)
`2
6`1

{1, 4, 1}t {−1, 2,−1}+α
`2
6`1

{0, 6, 0}t {−1, 2,−1}

+ (1−α)
`1
6`2

{−1, 2,−1}t {1, 4, 1}+α
`1
6`2

{−1, 2,−1}t {0, 6, 0}

− (1−α)
ξ2o`1`2
36

{1, 4, 1}t {1, 4, 1}−α
ξ2o`1`2
36

{0, 6, 0}t {0, 6, 0}

(5.34)

This is precisely the α-interpolation of the FEM and FDM stencils in 2d, i. e.Aα =

(1− α)Afem + αAfdm. Unlike in 1d where we had a unique way to model Ŵa so as
to retain the sparsity pattern of the Galerkin-FEM, in 2d many alternatives models
exits. However, all acceptable models for Ŵa have to be a partition of unity for every
element and be single-valued on the element edges. In the following we show one
of the many possible models for Ŵa and for an unstructured 2d bilinear block FE.
Let α1,α2 be two free parameters and consider the following definition for the PG
weights:

Wa
α1,α2 =



W̃a
α2

:= Wab
α2
Nb (ξ,η) ∈ (−1, 1)× (−1, 1)

(1+ (1+ 2α1)ξξ̄
a

2

)(1+ ηη̄a
2

)
(ξ,η) ∈ (−1, 1)× {±1}

(1+ ξξ̄a
2

)(1+ (1+ 2α1)ηη̄
a

2

)
(ξ,η) ∈ {±1}× (−1, 1)

(1+ ξξ̄a
2

)(1+ ηη̄a
2

)
(ξ,η) ∈ {±1}× {±1}

(5.35)
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where Wab
α2

:= (1− α2)δ
ab + α2Wab, δab is the Kronecker delta and Wab is the

matrix of constant coefficients given by Eq.(5.7). Note that Ŵa is designed to be a
partition of unity. Choosing a single valued expression for α1 on each element edge
implies a single-valued model for Ŵa on the same. Thus, should any length scale
appear within the expression for α1, then it should be proportional to the correspond-
ing edge length. On a structured mesh in 2d and using the PG weights defined by
Eq.(5.35) in any of the weak forms presented in Eq.(5.27), the stencil corresponding to
any interior node (i, j) can be written as Eq.(5.2) with the following definition of the
stencil coefficient matrix (A):

Aα1,α2 := (1−α1)
`2
6`1

{1, 4, 1}t {−1, 2,−1}+α1
`2
6`1

{0, 6, 0}t {−1, 2,−1}

+ (1−α1)
`1
6`2

{−1, 2,−1}t {1, 4, 1}+α1
`1
6`2

{−1, 2,−1}t {0, 6, 0}

− (1−α2)
ξ2o`1`2
36

{1, 4, 1}t {1, 4, 1}−α2
ξ2o`1`2
36

{0, 6, 0}t {0, 6, 0}

(5.36)

This is precisely the nonstandard compact stencil presented in [136]. Note that tak-
ing α1 = α2 = αwe recover the stencil given by Eq.(5.34), i. e.the α-interpolation of the
FEM and FDM stencils in 2d: Aα = (1− α)Afem + αAfdm. Choosing α1 = α2 = 0.5
we get a stencil that is the average of the FEM and FDM stencils in 2d and can be
shown to be equal [136] to the stencil obtained by the generalized fourth-order com-
pact Padé approximation [81, 168] (therein using the parameter γ = 2). Likewise
taking α1 = 0 and α2 = α we arrive at a stencil that results from the Galerkin FEM
method using an α-interpolated mass matrix Mα := (1−α)M +αML.

5.4.3 Stabilization Parameters

Considering square meshes/grids (i. e.`1 = `2) the parameters α1 and α2 that ap-
pear in Aα1,α2 can be chosen such that the numerical solution be sixth-order accurate,
i. e.O

(
(ξo`)

6
)

or equivalently O
(
ω3
)
. Recall that this is the maximum order of accu-

racy that can be attained on any compact stencil [10]. All such α1 and α2 should obey
the following series expansion in terms of ω [136].

α1 =
1

2
−
ω

60
+

∞∑
m=2

amω
m ; α2 =

1

2
−
ω

40
+

∞∑
m=2

bmω
m (5.37)

where am,bm are coefficients independent of ω. The relative phase P and local
truncation T errors of these schemes can be expressed as follows:

P = r3ω
3 +O

(
ω4
)

; T = −2r3ω
3 +O

(
ω4
)

(5.38)

r3 =

[
5

110592
−

(
a2 − 4b2
48

)
+

(
1+ 576a2
27648

)
cos(4β) +

cos(8β)
774144

]
(5.39)

As am,bm (m > 2) can be chosen arbitrarily, infinitely many sixth-order schemes
can be designed through Aα1,α2 . Of course some particular choice of am,bm may
yield a scheme with better features. For instance, am,bm may be chosen such that
the local truncation error T be zero along some chosen directions. Choosing α1 =

α2 = α, i. e.am = bm ∀m we recover the α-interpolation of the Galerkin FEM and
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FDM. Further details on the choice of the parameters to recover various stencils can
be found in [136].

As most of the expressions for α1,α2 optimized for square meshes need not be op-
timal for unstructured meshes, in the current work we consider only the simplest ex-
pressions that would guarantee fourth-order (Eq.(5.40a)) and sixth-order (Eq.(5.40b))
dispersion accuracy on square meshes. On unstructured meshes the expressions for
α1,α2 corresponding to these two choices can be written as follows:

α1 = α2 =
1

2
(5.40a)

α1 =
1

2
−
ω̂

60
; α2 =

1

2
−
ω̃

40
(5.40b)

where ω̂ := (ξồ)2 and ω̃ := (ξo˜̀)2. ̂̀ and ˜̀ represent the models used for the length
measures corresponding to the element edges and the interior. In the current study for
each element we have chosen ̂̀ equal to the edge length (will vary from edge to edge)
and ˜̀ equal to the maximum edge length. Note that using this model, α1 is always
single-valued on the edges. On square meshes using Eq.(5.40b) we recover α1,α2 as
given in Eq.(5.37) up to the first two terms which is sufficient to attain sixth-order
dispersion accuracy.

5.5 simplicial finite elements

Consider a rectangular domain discretized by structured simplicial FEs. Such dis-
cretization would typically yield stencils as shown in figure 73. The stencils with the
hypotenuse oriented along left and right are labeled using the markers o = l and
o = r respectively.

ℓ1

ℓ2

ℓ1

ℓ2

(a)

ℓ1

ℓ2

ℓ1

ℓ2

(b)

Figure 73: Stencils obtained by using a structured simplicial finite element mesh with the
hypotenuse oriented/tilted along (a) left, i. e.o = l and (b) right , i. e.o = r. ‘o’ is a
flag that indicates the stencil tilt.

The equation stencil for the Galerkin FEM corresponding to any interior node (i, j)
can be written as Eq.(5.2) with the following definition of stencil coefficient matrix:

Afem =
`2
`1



0 0 0

−1 2 −1

0 0 0


+

`1
`2



0 −1 0

0 2 0

0 −1 0


−

ξ2o`1`2
12



δol 1 δor

1 6 1

δor 1 δol


 (5.41)
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where δol and δor are Kronecker deltas and ‘o’ is a flag that indicates the stencil
tilt. Note that using simplicial FEs the contribution of the diffusion term in Eq.(5.41)
is identical to that obtained in the FDM stencil given by Eq.(5.4). Thus, the stencil
obtained via an α-interpolation of the Galerkin FEM and the FDM stencils will lead
to the following stencil coefficient matrix:

Aα =
`2
`1



0 0 0

−1 2 −1

0 0 0


+

`1
`2



0 −1 0

0 2 0

0 −1 0


−

ξ2o`1`2
12



(1−α)δol (1−α) (1−α)δor

(1−α) 6(1+α) (1−α)

(1−α)δor (1−α) (1−α)δol




(5.42)

We see that using simplicial FEs in 2d, the α-interpolation of Galerkin FEM and
FDM is equivalent to the alpha-interpolation method (AIM) [110, 140]. In the AIM,
the consistent mass matrix M that appears in the Galerkin FEM is replaced by the α-
interpolated mass matrix Mα := (1− α)M + αML. Consider the following definition
of the PG weights for simplicial FEs,

Wa
α =

{
W̃a
α := Wab

α Nb in the element interior

Ŵa := Na on the element edges
(5.43)

Using the above weights for simplicial FEs in any of the weak forms presented
in Eq.(5.27), we recover the AIM within a PG setting. In particular for structured
simplicial FE meshes we recover the stencil given in Eq.(5.42). We can guess that a
solution to any generic stencil takes the form Φi,j := φ(xi1, xj2) = exp[i(ξh1x

i
1 + ξ

h
2x
j
2)].

Substituting this solution into the stencil formed by Aα given in Eq.(5.42) and defining
λ1 := exp(iξh1 `1) and λ2 := exp(iξh2 `2) we get the characteristic equation as follows:

[2− λ1 − λ
−1
1 ]

ω1
+

[2− λ2 − λ
−1
2 ]

ω2
=

(1+α)

2
+

(1−α)

12

(
λ1 + λ

−1
1 + λ2 + λ

−1
2

)

+
(1−α)

12

(
δol[λ1λ

−1
2 + λ−11 λ2] + δor[λ1λ2 + λ

−1
1 λ−12 ]

)
(5.44)

where, ω1 := (ξo`1)
2 and ω2 := (ξo`2)

2. For the dispersion analysis of Aα given in
Eq.(5.42) we restrict to the case `1 = `2 = `. In this case, the stencil coefficient matrix
Aα simplifies to,

Aα =



δolA2 A1 δorA2

A1 A0 A1

δorA2 A1 δolA2


 ;

A0 := 4− (1+α)(ω/2)

A1 := −1− (1−α)(ω/12)

A2 := −(1−α)(ω/12)

(5.45)

where, ω := (ξo`)
2. The characteristic equation given in Eq.(5.44) now gets simpli-

fied to the following:

A0 + 2A1[cos(ξh1 `) + cos(ξh2 `)] + 2A2 cos(ξh1 `± ξh2 `) = 0 (5.46)

The ‘±’ that appears in the above equation corresponds to the cases o = r and o = l

respectively (see figure 73). The parameter α may be expressed as a generic series
expansion in terms of ω as follows:

α :=

∞∑
m=0

amω
m ≈ a0 + a1ω+ a2ω

2 + a3ω
3 +O

(
ω4
)

(5.47)
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where am,bm are coefficients independent of ω. Following the approach used in
[136] which was originally presented in [10], the relative phase (P) and local trunca-
tion (T) errors along any direction β can be written as,

P = r1ω+O
(
ω2
)

; T = −2r1ω+O
(
ω2
)

(5.48)

r1 :=
(a0 − 1)

24
[2± sin(2β)] +

[
3+ cos(4β)

96

]
(5.49)

Clearly it is impossible to obtain the condition r1 = 0 by a choice of the coeffi-
cient a0 that is independent of the angle β. Thus, unlike for structured bilinear block
FEs, unfortunately for structured simplicial FEs the pollution is essentially of the
same order as for those of the Galerkin FEM, the FDM and the GLS-FEM [79, 181].
Nevertheless, just like for the GLS-FEM, the coefficient a0 can be chosen so as to
arrive at a higher-order modification of the interior stencil of the Galerkin FEM. Sim-
ilar studies for eigenvalue problems using the AIM with simplicial FEs was done in
[109, 110, 139, 140].

Remark: Following the approach taken for bilinear block FEs, it is possible to provide
different models for the PG weights on the elements edges. This idea will be explored
in future works.

5.6 examples

In this section we present some examples in 2d for the problem defined by Eq.(5.1) and
considering the following problem data: the wavenumber ξo ∈ {50, 100}, the source
f = 0, the direction of wave propagation β = (π/9) and the domain Ω = [0, 1]× [0, 1].
The domain Ω is discretized by considering both structured and unstructured meshes
made up of just the bilinear block-FEs. The unstructured meshes are obtained by
randomly perturbing the interior nodes of structured meshes with coordinates (xi,yi)
as follows [60, 128]:

x
′
i = xi + `1δrand() ; y

′
i = yi + `2δrand() (5.50)

where, (x
′
i,y

′
i) represent the corresponding coordinates of the unstructured mesh, δ

is a mesh distortion parameter and rand() is a function that returns random numbers
uniformly distributed in the interval [−1, 1]. Figure 74 illustrates an instance of an
unstructured mesh obtained by this procedure using a 50× 50 square mesh and the
parameter δ = 0.2.

We consider the following four cases concerned with the choice of the stabilization
parameters α1,α2:

I: α1 = α2 = 0. This case corresponds to the Galerkin FEM.

II: α1 = α2 = 1. This case on rectangular meshes corresponds to the classical FDM.
We denote this case as FDM/PG as it is obtained within a Petrov–Galerkin
framework. FDM/PG is a straight-forward extension of the FDM to unstruc-
tured meshes.

III: α1 = α2 = (1/2). This case corresponds to a discrete system that is equivalent
to the average of the Galerkin FEM and the FDM/PG. On rectangular meshes
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Figure 74: Meshes made of bilinear block-FEs. (a) Structured mesh, δ = 0. (b) Unstructured
mesh, δ = 0.2.

we obtain the stencil associated with (Afem + Afdm)/2, which is equivalent to
the one obtained using the generalized Padé approximation in 2d [81, 168]. The
dispersion accuracy on square meshes is of fourth-order.

IV: α1 6= α2 6= 0 and given by Eq.(5.40b). On rectangular meshes this case yields the
nonstandard compact stencil presented in [136]. Recall that on square meshes
these expressions for the parameters α1,α2, guarantee sixth-order dispersion
accuracy.

For these considerations we study the convergence of the relative error in the fol-
lowing norms:

L2 norm
‖φ−φh‖0
‖φ‖0

:=
[
∫
Ω |φ−φh|

2 dΩ]1/2

[
∫
Ω |φ|2 dΩ]1/2

(5.51a)

H1 semi-norm
‖φ−φh‖1
‖φ‖1

:=
[
∫
Ω |∇(φ−φh)|

2 dΩ]1/2

[
∫
Ω |∇φ|2 dΩ]1/2

(5.51b)

l∞ Euclidean norm
|Φe −Φh|∞

|Φe|∞ :=
maxi |Φie −Φih|

maxi |Φie|
(5.51c)

whereΦe is the exact solution sampled at the nodes of the mesh. In the convergence
studies done here, the numerical solutions corresponding to the four cases viz. I-IV,
are compared with the following solutions: the nodally exact interpolant denoted by
Ihφ and the best approximations with respect to the L2 norm and the H1 semi-norm
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denoted by P0hφ and P1hφ respectively. The solutions Ihφ, P0hφ and P1hφ can be found
as shown in Eq.(5.52).

Ihφ := NaΦae (5.52a)∫
Ω

wh(φ− P0hφ) dΩ = 0 ∀ wh ∈ Vh0
⇒ ‖ φ− P0hφ ‖0 6 ‖ φ−φh ‖0 ∀ φh ∈ Vh

(5.52b)

∫
Ω

∇wh ·∇(φ− P1hφ) dΩ = 0 ∀ wh ∈ Vh0
⇒ ‖ φ− P1hφ ‖1 6 ‖ φ−φh ‖1 ∀ φh ∈ Vh

(5.52c)

As the exact solution φ is sinusoidal, we have used a third-order Gauss quadrature
rule to evaluate the expressions involving φ in Eq.(5.51) and Eq.(5.52).

5.6.1 Example 1: Dirichlet boundary conditions

In this example, only the Dirichlet boundary conditions are prescribed such that the
exact solution is φ(x) = sin(ξβ · x), where ξβ := ξo(cos(β), sin(β)). Structured meshes
with n×n square elements are considered with n given by the following expression.

n = ceil(50× 2m/8) ; m ∈ {0, 1, 2, . . . 28} (5.53)

where ceil(m) is a function that returns the nearest integer greater than or equal to
m. Unstructured meshes are obtained corresponding to each structured mesh using
the procedure described earlier. For these considerations we present the plots of the
relative error vs. the mesh-size.

Figure 75 illustrates the convergence of the relative error in the L2 norm. Clearly
the error lines of the considered solutions are bounded from below by the error line
of P0hφ (L2-BA) and show a tendency to become parallel to the error line of P0hφ as
`→ 0. Figures 75a and 75b show the L2 error considering ξo = 50 and for structured
(δ = 0) and unstructured (δ = 0.2) meshes respectively. As expected the error lines
corresponding to cases I and II differs substantially from those of Ihφ, P0hφ and P1hφ.
The error lines corresponding to cases III and IV are very close to that of Ihφ. As
the solution in case IV has sixth-order dispersion accuracy on square meshes it is
almost the same as Ihφ. On unstructured meshes the quality of the solution in case IV
deteriorates and is similar to that of case III. Figures 75c and 75d show the error lines
considering ξo = 100 and for the choices δ = 0 and δ = 0.2 respectively. As expected
all the error lines corresponding to cases I-IV deviate further from the error lines
of Ihφ, P0hφ and P1hφ (the pollution effect). On square meshes the solution of case IV
shows the least deviation and is practically identical to Ihφ (Figure 75c). The pollution
associated with the solution of case III is similar to that of cases I and II on coarse
meshes but it diminishes rapidly on further mesh refinement. Again, on unstructured
meshes the quality of the solution in case IV deteriorates showing an appreciable
deviation from the error lines of Ihφ, P0hφ and P1hφ and is similar to that of case III
(Figure 75d). A distinctive feature in these plots is the formation of spikes in the error
lines. Their presence is more evident for higher wavenumbers and on unstructured
meshes where the dispersion errors are relatively higher. As here we have prescribed
only the Dirichlet boundary conditions the numerical solutions might suffer spurious
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amplitude and/or phase modulations to satisfy them [79]. Encounters with zones of
degeneracy (wherein the solution might blow up) also contributes to huge errors in
the amplitude [47, 79, 136]. Fortunately, these spurious modulations reduce should
other choices for the boundary conditions be employed viz. an exterior problem with
DtN boundary conditions [79], an interior problem with Robin boundary conditions
[10].

Figure 76 illustrates the convergence of the relative error in the H1 semi-norm.
Clearly the error lines of the considered solutions are bounded from below by the
error line of P1hφ (H1-BA). Unlike the errors measured in the L2 norm, the errors
measured in the H1 semi-norm show a tendency to merge with the error line of
P1hφ. Figures 76a and 76b (ξo = 50) show that the error lines of case III and IV are
practically the same as of Ihφ, P0hφ and P1hφ. Figures 76c and 76d (ξo = 100) show
that the deviations of the error lines of cases III and IV from the error line of P1hφ
even though they exist, it is smaller than that observed using the L2 norm.

Figure 77 illustrates the convergence of the relative error in the l∞ Euclidean norm
which is a measure of nodal exactness. Figures 77a and 77c show that on structured
meshes (δ = 0) the error lines of case III and IV converge at a rate of fourth and sixth
order respectively. Figures 77b and 77d show that on unstructured meshes (δ = 0.2)
the higher order accuracy of case IV deteriorates and has a trend similar to that of case
III. Also, in an average sense both the cases III and IV have second-order convergence
rate similar to P0hφ and P1hφ. For the wavenumber ξo = 50 the errors found for the
cases III and IV are similar to that of P0hφ (Figure 77b).

5.6.2 Example 2: Robin boundary conditions

In this example, only the Robin boundary conditions are prescribed such that the
exact solution is φ(x) = exp(iξβ · x), where ξβ := ξo(cos(β), sin(β)). The operator M

that appears in Eq.(5.1c) is chosen as M := iξo. Thus, q(x) := i(n ·ξβ− ξo) exp(iξβ · x).
Structured meshes with n× n square elements are considered with n given by the
following expression.

n = ceil(
mξo

2π
) ; m ∈ {10, 10.5, 11, 11.5, . . . 25} (5.54)

Choosing n by the above expression guarantees the presence of at least m elements
per wavelength. Unstructured meshes are obtained corresponding to each structured
mesh using the procedure described earlier. For these considerations, we present the
plots of the relative error vs. ξ∗, where ξ∗ := (ξo`/π). The choice of ξ∗ as the abscissa
in the plots allows us to single out the pollution effect.

Figures 78, 79 and 80 illustrate the convergence of the relative error in the L2 norm,
the H1 semi-norm and the l∞ Euclidean norm respectively. Clearly, all the spurious
modulations that appeared in the error lines considering only the Dirichlet boundary
conditions (Figures 75, 76 and 77) diminish when the Robin boundary conditions
are prescribed. Also, in all the figures (78, 79 and 80) by freezing the value of δ and
increasing the value of ξo we observe the following trait. The location of the error lines
of Ihφ, P0hφ and P1hφ is practically unaffected by an increase in ξo (no pollution). As
expected the error lines of cases I and II not only are located high above the error lines
of Ihφ, P0hφ and P1hφ but also shift higher with an increase in ξo (pollution effect).
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Figure 75: Convergence of the relative error in the L2 norm using β = (π/9) and Dirichlet
boundary conditions. The wavenumber ξo and the mesh distortion parameter used
are: (a) ξo = 50, δ = 0 ; (b) ξo = 50, δ = 0.2 ; (c) ξo = 100, δ = 0 and (d) ξo = 100,
δ = 0.2.

On uniform meshes (δ = 0) the error lines of cases III and IV not only are located
close to the respective best approximations but also show negligible upward shift
with an increase in ξo (small pollution). Clearly, on uniform meshes the performance
of case IV is relatively better than that of case III (although the difference is small).
The pollution effect is more visible for these cases on unstructured meshes (δ = 0.2).
In the L2 norm the error lines of cases III and IV show an accuracy at par with Ihφ
and P1hφ (figures 78c and 78d). In the H1 semi-norm the error lines of cases III and IV
are practically the same as those corresponding to Ihφ, P0hφ and P1hφ (figures 79c and
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Figure 76: Convergence of the relative error in the H1 semi-norm using β = (π/9) and Dirich-
let boundary conditions. The wavenumber ξo and the mesh distortion parameter
used are: (a) ξo = 50, δ = 0 ; (b) ξo = 50, δ = 0.2 ; (c) ξo = 100, δ = 0 and (d)
ξo = 100, δ = 0.2.

79d). In the l∞ Euclidean norm the error lines of cases III and IV are close to the error
line of P0hφ (figures 80c and 80d). Further, in Figure 80 note that in an average sense
all the error lines have second-order convergence rate in the l∞ Euclidean norm. This
result is due to the error in the approximation of the Robin boundary condition. Thus,
unlike in Figure 77 wherein the error lines of cases III and IV showed fourth-order
and sixth-order convergence rates respectively, here it drops to second-order.
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Figure 77: Convergence of the relative error in the l∞ Euclidean norm using β = (π/9) and
Dirichlet boundary conditions. The wavenumber ξo and the mesh distortion pa-
rameter used are: (a) ξo = 50, δ = 0 ; (b) ξo = 50, δ = 0.2 ; (c) ξo = 100, δ = 0 and
(d) ξo = 100, δ = 0.2.

5.7 conclusions

A new Petrov–Galerkin (PG) method involving two parameters viz. α1,α2 is pre-
sented which yields the following schemes on rectangular meshes: a) a compact sten-
cil obtained by the α-interpolation of the Galerkin FEM and the classical central FDM,
should the two parameters be made equal, i. e.α1 = α2 = α and b) the nonstandard
compact stencil presented in [136] for the Helmholtz equation if the parameters are
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Figure 78: Convergence of the relative error in the L2 norm using β = (π/9) and Robin bound-
ary conditions. The wavenumber ξo and the mesh distortion parameter used are:
(a) ξo = 50, δ = 0 ; (b) ξo = 100, δ = 0 ; (c) ξo = 50, δ = 0.2 and (d) ξo = 100,
δ = 0.2.

distinct, i. e.α1 6= α2. On square meshes, these two schemes were shown to provide
solutions to the Helmholtz equation that have a dispersion accuracy of fourth and
sixth order respectively [136]. Thus, this Petrov–Galerkin method yields in a straight-
forward manner the counterparts of these two schemes on unstructured meshes.

The salient features of this new PG method include the following. The solution
space is discretized by standard C0-continuous finite elements. The test function-
s/weights are piecewise polynomials of the same degree as the FE shape functions
and are generally discontinuous at the inter-element boundaries. Models for the weights
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Figure 79: Convergence of the relative error in the H1 semi-norm using β = (π/9) and Robin
boundary conditions. The wavenumber ξo and the mesh distortion parameter used
are: (a) ξo = 50, δ = 0 ; (b) ξo = 100, δ = 0 ; (c) ξo = 50, δ = 0.2 and (d) ξo = 100,
δ = 0.2.

on the inter-element boundaries are provided such that the sparsity pattern is the
same as that for the Galerkin FEM. The parameters α1,α2 determine the shape of the
weights on the inter-element boundaries and the element interior respectively. The
choice α1 = α2 = 0 yield weights that are identical to the FE shape functions and
hence we recover the Galekin FEM. The weights are a partition of unity only in the
sense that they add up to unity. As the row lumping technique for the FEM mass
matrices is a critical step in the design of these weights (to fulfill the partition of unity
constraint), the current PG method is restricted only to those FEs where this tech-
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Figure 80: Convergence of the relative error in the l∞ Euclidean norm using β = (π/9) and
Robin boundary conditions. The wavenumber ξo and the mesh distortion parame-
ter used are: (a) ξo = 50, δ = 0 ; (b) ξo = 100, δ = 0 ; (c) ξo = 50, δ = 0.2 and (d)
ξo = 100, δ = 0.2.

nique makes sense, i. e.linear interpolation on simplices and multilinear interpolation
on blocks.

The α-interpolation of FEM and FDM on a rectangular domain discretized by struc-
tured simplicial FE mesh would yield a scheme identical to the alpha-interpolation
method (AIM) [110, 140] wherein the mass matrix that appears in the Galerkin FEM
is replaced by an α-interpolated mass matrix. In the current PG method we recover
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the AIM (even on unstructured simplicial meshes) by making the choice α1 = 0. Un-
fortunately in this case the dispersion accuracy drops to second-order.

Recall that on square meshes many existing higher-order compact schemes (includ-
ing the QSFEM [10]) can be recovered by an appropriate choice of the parameters
α1,α2 [136]. As most of the expressions for α1,α2 optimized for square meshes need
not be optimal for unstructured meshes in the presented examples we have con-
sidered only the simplest expressions that would guarantee fourth-order (choosing
α1 = α2 = (1/2)) and sixth-order (α1,α2 given by Eq.(5.40b)) dispersion accuracy
on square meshes. Convergence studies of the solution error corresponding to these
two choices are done to quantify the pollution effect and comparisons are made with
respect to the errors of the Galekin FEM, the nodally exact interpolant and the best
approximations in the L2 norm and the H1 semi-norm respectively. Both the Dirichlet
and Robin boundary conditions were considered in the examples. The wavenumbers
ξo = 50 and ξo = 100 were chosen to represent values in the mid-frequency and
high-frequency range respectively.

For the Dirichlet problem, the results on square meshes verify the higher-order dis-
persion accuracy and the low pollution effect. However on unstructured meshes the
dispersion accuracy of the current PG method drops down to second-order (verified
by the errors in the l∞ Euclidean norm). Also, the performance of both the choices for
the parameters α1,α2 is similar on unstructured grids. For the mid-frequency range,
i. e.ξo = 50 the errors in the l∞ Euclidean norm for both the parameter choices is close
to the error of the best approximation in the L2 norm. In the high-frequency range,
i. e.ξo = 100, the improvement with respect to the Galerkin FEM is significant. How-
ever, the solutions exhibit spurious modulations indicating that there is still room for
improvement.

For the Robin problem, these spurious modulations in the solutions cease to exist.
The pollution effect on square meshes is greatly reduced and on unstructured meshes
it is small. Also, the location of the error lines of the current PG method is in between
the error lines of pollution-free solutions, viz. the nodally-exact FE interpolant and
the best approximations in the L2 norm and the H1 semi-norm, thus indicating high
accuracy.

The additional cost of implementation of the current PG method is just the evalua-
tion of the element boundary integrals. All the algebraic evaluations are done at the
element level unlike the QOPG method [128] where it is done at the patch level. This
feature allows the current PG method to be easily incorporated within an ‘assemble-
by-elements’ data structure. The choice of the parameters α1 = α2 = (1/2) render the
current PG method independent of the problem and mesh data. In this sense and for
this choice, the current PG method could be labeled ‘parameter-free’.



Part III

S T O K E S P R O B L E M





O Lord, just as different rivers with distinct sources join the sea,
the different paths which people take through different tendencies,
various though they appear, crooked or straight, all lead to Thee!

— Hymn 7, Shiva Mahimnha Stotram.

6
P R E S S U R E L A P L A C I A N S TA B I L I Z AT I O N

6.1 introduction

Many stabilization procedures for solving incompressible problems in fluid mechan-
ics using the finite element method (FEM) have been proposed [1, 2, 11, 14, 22, 34–
39, 42, 43, 52, 54, 56, 63, 90, 93, 96, 98, 141, 142, 171, 177–179, 195]. Earlier proce-
dures were based on the so-called penalty approach. This method assumes a pseudo-
compressible behavior for the flow with a relationship between the volumetric strain
rate εv and the pressure p expressed as [54, 195]

εv =
1

α
p (6.1)

where α is a large number playing the role of an “artificial” bulk parameter for the
fluid. Clearly for α→∞ the full incompressibility condition εv → 0 is recovered. An-
other family of stabilized methods added to the standard incompressibility equation
(either in the strong form or in the variational expression) a Laplacian of pressure
term scaled by a stabilization coefficient depending on physical parameters and the
time step increment. Some of these stabilization methods are described in [54, 195]. A
similar stabilization procedure adds to the variational equation a local L2 polynomial
pressure projection multiplied by the inverse of the kinematic viscosity [52]. These
approaches are inconsistent since the stabilization term does not vanish for the exact
solution, which can lead to errors in the pressure distribution and in the conservation
of the total volume for some problems. An improved stabilization technique adds to
the incompressibility condition a term that is a function of the discretized momentum
equations, thus ensuring consistency. A popular procedure of this kind is the Galerkin
Least Square (GLS) method [56, 93]. In the GLS procedure the stabilized variational
expression for the incompressibility equation has the following form∫

Ω

qεvdΩ−

∫
Ω

τ(∇Tq)r̄mdΩ+ boundary terms = 0 (6.2)

where Ω is the analysis domain, q are test functions, ∇ is the gradient operator, τ
is a stabilization parameter and r̄m is a vector containing the discrete residuals of
the momentum equations written as rm = 0. The boundary terms in Eq.(6.2) are
added to ensure the consistency of the method [56]. The GLS method is an efficient
and accurate stabilization procedure for incompressible flows provided the boundary
terms are properly accounted for in Eq.(6.2).

Another residual-based stabilization technique is the so-called pressure-gradient pro-
jection (PGP) stabilization [35, 36]). In the PGP method, pressure gradients are pro-
jected onto a continuous field and the difference between the actual gradients and

157
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their own projections generates the stabilization terms. This is equivalent to replacing
the variational expression for the incompressibility equation by the following equa-
tion ∫

Ω

qεvdΩ−

∫
Ω

τ(∇Tq)(∇p+π) = 0 (6.3)

where π is a continuous function (termed the pressure-gradient projection vector)
obtained by projecting the pressure gradient ∇p on the velocity field, and τ is a
stabilization parameter.

The term (∇p + π) in Eq.(6.3) can be interpreted as a residual term if we write
the momentum equations as rm = ∇p+ π. The total number of discrete unknowns
is increased by the π field, which is discretized via pressure shape functions. For
completeness, the set of governing equations is extended with additional equations
requiring the vanishing of the sum (∇p+ π) in a weighted residual sense. This pro-
vides the equations for computing the π variables.

A variant of the PGP technique is the orthogonal sub-scales (OSS) method [11, 34, 39].
The variational expression for the incompressibility constraint is written in the OSS
method as∫

Ω

qεvdΩ−

∫
Ω

τ(∇Tq)(r̄m +π)dΩ = 0 (6.4)

where r̄m is the discrete residual of the momentum equations and π are additional
variables that are now interpreted as the projection of the momentum residuals into
the velocity space (without boundary conditions). The term r̄m + π represents an en-
hanced approximation to the exact momentum residuals rm. Consistency is preserved
by enforcing that the sum r̄m+π vanishes in a weighted residual sense. This also pro-
vides the closure equations for computing the π variables.

PGP and OSS stabilization methods are useful for homogeneous flows lacking free-
surfaces but encounter difficulties to satisfy incompressibility for fluids with hetero-
geneous (and discontinuous) physical properties [45, 103, 104] and, in some cases,
for free-surface flows when pressure segregation techniques are used for solving the
Navier-Stokes equations. Furthermore, PGP and OSS methods increase the number
of problem variables (u,p and π) as well as the connectivity (bandwidth) of the stabi-
lization matrices to be solved.

The stabilization parameter τ in the GLS, PGP and OSS methods is typically chosen
as a function of the viscosity and the mesh size [1, 2, 11, 14, 22, 34–39, 42, 43, 52, 54,
56, 63, 90, 93, 96, 98, 141, 142, 171, 177–179, 195]. However, the optimal definition of
the stabilization parameter is still a challenge in these methods.

A pressure Laplacian stabilization (PLS) method was introduced in [158], that adds
two stabilization terms to the variational form of the incompressibility equation: (1) a
pressure Laplacian, and (2) a boundary integral. Both terms are multiplied by resid-
ual dependent stabilization parameters which emerge naturally from the formulation.
Consistency is preserved since the stabilization parameters vanish for the exact so-
lution. The Laplace matrix and the boundary matrix are computed at element level.
Because pressure gradient continuity is not enforced, as it happens, for instance, in
standard PGP methods, the treatment of heterogeneous multi-fluid problems, such as
mixing, is facilitated.
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The aim of this chapter is to show that many of the stabilized methods described
in the previous lines, and some new ones, can be derived starting from the modified
mass balance equation obtained via first and second order finite calculus (FIC) pro-
cedures. The FIC technique is based on writing the balance equations in mechanics
in a domain of finite size and retaining higher order terms in the Taylor series expan-
sions used for expressing the derivative field in the vicinity of a fixed point in the
domain. The resulting modified balance equation contains the traditional terms of
infinitesimal theory plus additional terms that depend on the dimensions of the bal-
ance domain and the derivatives of the infinitesimal balance equations [141]. Clearly,
as the dimensions of the balance domain tend to zero the classical balance laws of me-
chanics are recovered. The interest of the additional terms in the FIC expressions is
that they naturally lead to the stabilized numerical schemes (such as stabilized FEM)
in fluid and solid mechanics without the need of introducing additional assumptions
[101, 102, 105, 141–144, 148–151, 153, 156, 157]. The FIC approach therefore is pre-
sented here as a parent procedure for deriving a family of old and new residual-based
stabilized methods for the analysis of Stokes flows.

An apparent drawback of some of the residual-based stabilized methods presented
in this chapter is that the resulting stabilized equation is nonlinear (due to the resid-
ual dependence of the stabilization parameters) and this requires using an iterative
solution scheme. Preliminary results obtained for simple Stokes flow problems solved
with the PLS and PGP methods show that the convergence of the PLS solution is typi-
cally found in 2-3 iterations [158]. Also, the nonlinearity can be easily handled within
a time integration scheme in transient problems, or in practical problems where other
non-linearities might appear due to the presence of convective terms in the momen-
tum equations or non-linear material behavior. In the last part of this chapter, the
performance of the PLS method is compared with that of the GLS, PLS and OSS tech-
niques for some relatively simple but illustrative examples of application to Stokes
flow problems.

6.2 governing equations

The equations for an incompressible Stokes flow are expressed in the usual manner
as:

Momentum

ρ
Dvi
Dt

−
∂σij

∂xj
− bi = 0 on Ω (6.5)

Mass balance (incompressibility)

εv :=
∂vi
∂xi

= 0 on Ω , i = 1, 2, 3 (6.6)

In Eqs.(6.5) and (6.6), Ω is the analysis domain with a boundary Γ , vi is the velocity
along the ith coordinate direction, ρ is the density, σij are the Cauchy stresses, bi are
the body forces (typically bi = ρgi where gi is the component of the gravity along
the ith direction). In our work we assume that DviDt = ∂vi

∂t , i. e.convective derivative
terms are neglected, as it is usual in Stokes flows and Lagrangian descriptions of
incompressible continua [101, 102, 105, 149, 150, 157, 194].
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The problem is completed with the boundary conditions for velocities and tractions,
i. e.

vi − v
p
i = 0 on Γu (6.7a)

σijnj − t
p
i = 0 on Γt (6.7b)

where vpi denote the prescribed velocities on the Dirichlet boundary Γu and tpi are
the traction forces acting on the Neumann boundary Γt, with the normal vector n =

[n1,n2,n3]T (for 3d problems). The total boundary is Γ := Γu ∪ Γt.
In Eqs.(6.5)–(6.7) and in the following, summation convention for repeated indices

in products and derivatives is used unless otherwise specified.
Following standard practice, Cauchy stresses are split into deviatoric and pressure

components as

σij = sij + pδij (6.8)

where sij are deviatoric stresses, p = σii/3 is the pressure (assumed here to be positive
if the mean normal stress is tensile) and δij is the Kronecker delta.

We will also assume the constitutive equations of an isotropic Newtonian viscous
fluid for which deviatoric stresses are related to deformation rates εij by

sij = 2µ

(
εij −

1

3
εvδij

)
(6.9a)

where µ is the fluid viscosity and

εij =
1

2

(
∂vi
∂xj

+
∂vj

∂xi

)
, εv := εii (6.9b)

6.3 integral form of the momentum equations

The weighted residual form of Eqs.(6.5) and (6.7) is

∫
Ω

wi

[
ρ
∂vi
∂t

−
∂σij

∂xj
− bi

]
dΩ+

∫
Γt

wi(σijnj − t
p
i )dΓ = 0 (6.10)

where wi are components of an appropriate test function.
Integrating by parts the term involving σij in Eq.(6.10) and substituting Eq.(6.8)

into the expression for σij gives an integral expression of the momentum equations
as ∫

Ω

[
wiρ

∂vi
∂t

+
∂wi
∂xj

sij +
∂wi
∂xi

p

]
dΩ−

∫
Ω

wibidΩ−

∫
Γt

wit
p
i dΓ = 0 (6.11)

Eq.(6.11) is the starting point for the finite element discretization of the momentum
equations.

6.4 stabilized form of the incompressibility equation using finite

calculus

Here we present the finite calculus (FIC) technique and two stabilized forms for the
mass balance equation using first and second order FIC techniques.
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6.4.1 Finite calculus

The finite calculus technique is based on writing the balance equations of mechanics in
a domain of finite size and retaining higher order terms in the Taylor series expansion
used for expressing the integrand (i. e.the classical balance equation in infinitesimal
theory) in the vicinity of a fixed point in the domain. The resulting modified balance
equation contains the traditional terms of infinitesimal theory plus additional terms
that depend on the dimensions of the balance domain and the derivatives of the
infinitesimal balance equations [141–143].

First we recall some standard identities/results which will be used to arrive at the
FIC modified balance equation. Consider an arbitrary finite-size balance domain Ωb
used to express the balance of fluxes/mass about an arbitrary point P (see Figure 81a).
The centroid G of the domain Ωb is found as,

xG :=

∫
Ωb

x dΩ∫
Ωb

dΩ
⇒
∫
Ωb

(x − xG) dΩ = 0 (6.12)

The moment of inertia of the domain Ωb is expressed as,

I :=
∫
Ωb

[(x · x)δ− (x⊗ x)] dΩ =

∫
Ωb

(
|x|2δij − xixj

)
dΩ (6.13)

Clearly, I is real, symmetric and has a full rank. The spectral theorem for tensors
guarantee the existence of principle axes for I. By orienting the reference frame along
the principle axes, the products of inertia become zero, i. e.Iij = 0 ∀i 6= j. In other
words, the tensor I is diagonalized in this configuration.

P

Ωb

(a)

P

G

Ωb

ℓ

(b)

P = G, ℓ = 0

Ωb

(c)

Figure 81: (a) An arbitrary finite-size balance domain Ωb used in FIC to express the balance
of fluxes/mass about an arbitrary point P. (b) The centroid G and the principle
axes of Ωb are now shown. The distance vector from P to G is represented by `. (c)
The balance domain Ωb is translated such that P = G and is rotated about P such
that its principle axes are aligned with the reference axes. In this configuration the
products of inertia of Ωb are zero.

The balance laws of mechanics in the domain Ωb can be expressed as follows,∫
Ωb

R(x) dΩ = 0 (6.14)
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where R(x) = 0 is the classical balance equation in infinitesimal theory. Using the
multidimensional Taylor series expansion, the residual R(x) can be expressed with
respect to the point P as follows,

R(x) = R(xP) + x̃ ·∇R(xP) + 1
2

x̃ ·HR(xP) · x̃ + h.o.t (6.15a)

x̃ := x − xP (6.15b)

where H(·) and h.o.t represent the Hessian operator and the higher-order terms re-
spectively. Substituting Eq.(6.15a) in Eq.(6.14) we have,∫

Ωb

[
R(xP) + x̃ ·∇R(xP) + 1

2
x̃ ·HR(xP) · x̃ + h.o.t

]
dΩ = 0 (6.16a)

⇒ R(xP)
∫
Ωb

dΩ+∇R(xP) ·
∫
Ωb

x̃ dΩ+ HR(xP) :
∫
Ωb

1

2
(x̃⊗ x̃) dΩ+ h.o.t = 0

(6.16b)

Using Eq.(6.12) in Eq.(6.16b) we get,

R(xP) + ` ·∇R(xP) + L : HR(xP) + h.o.t = 0 (6.17a)

` := (xG − xP) ; L :=

∫
Ωb

(x̃⊗ x̃) dΩ

2
∫
Ωb

dΩ
(6.17b)

Now as this point P can be arbitrarily chosen, the FIC-modified balance equation
can be written after dropping out the higher-order terms (h.o.t) as follows:

R(x) + ` ·∇R(x) + L : HR(x) = 0 (6.18)

As the finite balance-domain Ωb may be arbitrarily chosen for a given point, gener-
ally ` and L may vary arbitrarily from one point to the other. However we may choose
to fix the shape of Ωb for all the points that belong to a particular sub-domain of the
problem. For instance consider a partition of the problem domain into finite elements.
Then for each element K we may fix some shape for Ωb and hence obtain a constant
value for ` and L within K. We may also choose a fixed shape of Ωb for the entire
problem domain and thus obtaining a constant ` and L everywhere. Henceforth we
will only consider the choice of Ωb to be fixed for any given element K but may vary
from one element to the other.

Remark: Choosing the shape for Ωb and the location of the sampling point P within
Ωb defines the FIC model and the associated FIC-modified balance equation.

Choosing Ωb such that its centroid G coincides with P, we obtain ` := xG − xP = 0

(see Figure 81b). In this FIC model, the first order terms in the FIC-modified residual
vanishes. So we have,

R(x) + L : HR(x) = 0 (6.19)

Note that the matrix L defined earlier in Eq.(6.17b) has full rank and it can be diag-
onalized by orienting Ωb such that its principle axes are aligned with the coordinate
axes (see Figure 81c). This is directly related to the fact that the off-diagonal elements
of L and moment of inertia I of Ωb have the same expressions (except for a change of
sign).
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6.4.2 First order FIC form of the incompressibility equation

The first order FIC form for the incompressibility equation (R(x) := εv) is found by
retaining only the first order derivatives in the FIC-modified balance equation given
by Eq.(6.18). To fix ideas we choose the balance domain Ωb to be rectangular and the
sampling point P situated at either the top-right or bottom-left corner. The resulting
expression is

εv ±
1

2
hT∇εv = 0 (6.20)

For 2d problems h = [h1,h2]T where h1,h2 are the dimension of the rectangular
domain Ωb. The sign in Eq.(6.20) is positive or negative depending on whether the
sampling point P is the bottom-left or the top-right corner node of Ωb respectively.
The sign in Eq.(6.20) is irrelevant in practice. The original derivation of Eq.(6.20) from
a different point-of-view can be found in [141].

6.4.3 Higher order FIC form of the incompressibility equation

The higher order FIC incompressibility equation is found by using the FIC model that
gives the FIC-modified balance equation given by Eq.(6.19). As discussed earlier one
can arrive at this form by choosing the balance domain Ωb such that its centroid G
coincides with the sampling point P (see Figure 81). Again, to fix ideas we choose a
rectangular balance domain Ωb and the sampling point P situated at its center. For
this choice we have,

` = 0 , L =
1

24

[
h21 0

0 h22

]
(6.21)

Thus for 2d problems the higher order FIC incompressibility equation is written as,

εv +
h21
24

∂2εv

∂x21
+
h22
24

∂2εv

∂x22
= 0 (6.22)

The original derivation of Eq.(6.22) from a different point-of-view is shown in [158].
Clearly for the infinitesimal case h1 = h2 = 0, the standard incompressibility equation
(εv = 0) is recovered for both Eqs.(6.20) and (6.22).

Eqs.(6.20) and (6.22) can be interpreted as non-local mass balance equations incor-
porating the size of the domain used to enforce the mass balance condition and space
derivatives of the volumetric strain rate. The FIC mass balance equations can be ex-
tended to account for temporal stabilization terms. These terms, however, are disre-
garded here as they have not been found to be relevant for the problems investigated
so far.
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6.5 on the proportionality between the pressure and the volumet-
ric strain rate

Let us assume a relationship between the pressure and the volumetric strain rate
typical for “compressible” and “quasi-incompressible” fluids, as

1

K
p = εv (6.23)

where K is the bulk modulus. Clearly for a fully incompressible fluid K = ∞ and
εv = 0. For finite, although very large, values of K the following expression is readily
deduced from Eq.(6.23)

1

K
∇p = ∇εv (6.24)

where ∇ is the gradient operator. For 2d problems, ∇ =
[
∂
∂x1

, ∂
∂x2

]T
.

Eq.(6.24) shows that pressure and volumetric strain rate gradients are co-directional
for any K 6= 0. We will assume that this property also holds for the full incompressible
case (at least for values of K comfortably representable on the computer without
overflow). From Eqs.(6.23) and (6.24) we deduce

∇εv
|∇εv|

=
∇p
|∇p|

,
1

εv

∂εv

∂xi
=
1

p

∂p

∂xi
(6.25a)

and hence

∂εv

∂xi
=
εv

p

∂p

∂xi
=

|∇εv|
|∇p|

∂p

∂xi
(6.25b)

6.6 a penalty-type stabilized formulation

The first order FIC mass balance equation (6.20) is written as (taking the negative sign)

εv =
hj

2

∂εv

∂xj
(6.26)

Using Eq.(6.25b), the FIC term in the r.h.s. of Eq.(6.26) can be expressed as follows

εv =

(
hj

2

εv

p2
∂p

∂xj

)
p =

1

α
p (6.27)

where

α =
2p2

hjεv

(
∂p

∂xj

)−1

(6.28)

is a pressure stabilization parameter [54, 194, 195].
Eq.(6.27) is equivalent to the so-called penalty formulation (see Eq.(6.1)) for which

the pressure-volumetric strain rate relationship is expressed as p = αεv where α a
penalty parameter that plays the role of a large “artificial” bulk modulus.
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Clearly, α→∞ for values of εv → 0. However, the full incompressibility condition
(εv = 0) at element level is obtained on rare occasions only. Hence, the form for α of
Eq.(6.28) provides a consistent (residual-based) definition for the penalty stabilization
parameter. Nevertheless, upper and lower cut-off values for the values for α should
be imposed to prevent volumetric locking when εv or ∂p

∂xi
are equal to zero or the

vanishing of α in zones where p is zero [54, 194, 195].
The weighed residual form of Eq.(6.27) is∫

Ω

q(εv −
1

α
p)dΩ = 0 (6.29)

where q are adequate test functions.

6.7 galerkin-least squares (gls) formulation

The starting point is now the higher order FIC incompressibility equation (6.22). The
weighted residual form of this equation is∫

Ω

q

(
εv +

h2i
24

∂2εv

∂x2i

)
dΩ = 0 (6.30)

Integration by parts of the second term in Eq.(6.30) gives (for 2d problems)

∫
Ω

qεvdΩ−

∫
Ω

(
2∑
i=1

h2i
24

∂q

∂xi

∂εv

∂xi

)
dΩ+

∫
Γ

q

24

(
2∑
i=1

nih
2
i

∂εv

∂xi

)
dΓ = 0 (6.31)

where ni are the components of the unit normal vector to the boundary Γ .
In the derivation of Eq.(6.31), space derivatives of the characteristic lengths h1 and

h2 have been neglected. This is correct if we assume that the value of the characteristic
lengths is fixed at each point in space. In any case, this assumption does not invalidate
the derivation, as long as the discretized formulation converges to correct velocity
and pressure fields satisfying the momentum and incompressibility equations in a
weighted residual sense and up to the desired order of accuracy.

The term ∂εv
∂xi

in Eq.(6.31) is expressed as follows. The momentum equations (6.5)
can be written using Eqs.(6.8) and (6.9a)

ρ
∂vi
∂t

−
∂

∂xj

(
2µεij

)
+
2

3
µ
∂εv

∂xi
−
∂p

∂xi
− bi = 0 (6.32)

From Eq.(6.32) we deduce (neglecting space variations of the viscosity)

∂εv

∂xi
=
3

2µ
rmi

and ∇εv =
3

2µ
rm (6.33)

where

rmi
:= −ρ

∂vi
∂t

+
∂

∂xj

(
2µεij

)
+
∂p

∂xi
+ bi (6.34a)

is the form of the momentum residuals used in the subsequent derivations. Note that
rmi

= 0 for the exact incompressible solution.
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For 2d problems

rm = [rm1
, rm2

]T (6.34b)

Substituting ∂εv/∂xi from Eq.(6.33) into (6.31) gives∫
Ω

qεvdΩ−

∫
Ω

(
2∑
i=1

τi
∂q

∂xi
rmi

)
dΩ+

∫
Γ

q

(
2∑
i=1

τinirmi

)
dΓ = 0 (6.35)

with

τi =
h2i
16µ

(6.36)

The form of Eq.(6.35) is equivalent to that obtained in the Galerkin Least Square
(GLS) formulation [93] with the boundary integral modification presented in [56].
The expression for the stabilization τi of Eq.(6.36) is similar to that typically found in
the stabilization literature for Stokes flows [54, 56, 93, 195].

Expansion of the residual term within the second integral yields the standard Lapla-
cian of pressure plus additional terms, i. e.

∫
Ω

qεvdΩ−

∫
Ω

(
2∑
i=1

τi
∂q

∂xi

∂p

∂xi

)
dΩ

−

∫
Ω

2∑
i=1

(
τi
∂q

∂xi

[
− ρ

∂vi
∂t

+
∂

∂xj
(2µεij) + bi

])
dΩ

+

∫
Γ

q

(
2∑
i=1

τini

[
− ρ

∂vi
∂t

+
∂p

∂xj
+

∂

∂xi
(2µεij) + bi

])
dΓ = 0 (6.37)

Clearly for linear FE approximations the viscous terms vanish in Eq.(6.37).
We note that the FIC approach presented here introduces the GLS-type stabilization

terms just in the incompressibility equation. This is a difference with the standard
GLS method which also introduces stabilization terms in the momentum equations
[93]. These terms provide symmetry of the global system of equations and are useful
for analysis of Navier-Stokes flows. However, they are typically unnecessary for the
analysis of Stokes flows. An exception is some transient problems when small time
steps are used [90].

6.8 pressure laplacian stabilization (pls) method

6.8.1 Variational form of the mass balance equation in the PLS method

Using the relationships in Eq.(6.25b) we can write the second integral in Eq.(6.31) as∫
Ω

(
2∑
i=1

h2i
24

∂q

∂xi

∂εv

∂xi

)
dΩ =

∫
Ω

(
2∑
i=1

h2i
∂q

∂xi

∂p

∂xi

)
|∇εv|
24|∇p|dΩ

=

∫
Ω

(
2∑
i=1

τi
∂q

∂xi

∂p

∂xi

)
dΩ (6.38)
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with the stabilization parameters given by

τi =
h2i |∇εv|
24|∇p| , i = 1, 2 (for 2d problems) (6.39)

Substituting Eqs.(6.38) into (6.31) we write the stabilized mass balance equation as∫
Ω

qεvdΩ−

∫
Ω

(∇Tq)Dv∇pdΩ+

∫
Γ

qgdΓ = 0 (6.40)

For 2d problems

Dv =

[
τ1 0

0 τ2

]
and g =

2∑
i=1

h2i
24
ni
∂εv

∂xi
(6.41)

where Dv is a matrix of stabilization parameters.

6.8.2 Computation of the stabilization parameters in the PLS method

From Eq.(6.33) we deduce (neglecting space variations of the viscosity)

2

3
µ|∇εv| = |rm| (6.42)

From the first order FIC mass balance equation (6.20) (with the negative sign) we
deduce

1

2
hξ|∇εv| = εv (6.43)

where hξ is the projection of h along the gradient of εv, i. e.

hξ =
hi

|∇εv|
∂εv

∂xi
=

hT∇εv
|∇εv|

(6.44)

Eqs.(6.42) and (6.43) are consistently modified as follows

2

3
µ|v||∇εv| = |v||rm| (6.45)

1

2
phξ|∇εv| = pεv (6.46)

In Eq.(6.45) v is the velocity vector.
The r.h.s. of Eqs.(6.45) and (6.46) represents the power of the residual forces in the

momentum equations and of the volumetric strain rate, respectively. Note that the
product phξ in Eq.(6.46) is always positive, as pεv > 0 (see Eq.(6.23)). Positiveness of
pεv pointwise is however ensured in the computation by taking the modulus of this
product in the subsequent expressions.

From Eqs.(6.45) and (6.46) we deduce

|∇εv| =
|pεv|+ |v||rm|
1
2 |phξ|+

2
3µ|v|

(6.47)
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Substituting Eq.(6.47) into (6.39) gives the expression for the stabilization parame-
ters as

τi =
h2i (|pεv|+ |v||rm|)

(12|phξ|+ 16µ|v|)|∇p|
(6.48)

The expression for τi in Eq.(6.48) will vanish for values of vi and p satisfying ex-
actly the incompressibility equation (εv = 0) and the momentum equations (rm = 0).
Clearly for the discrete problem, the stabilization parameters depend on the numer-
ical errors in the approximation for εv and rm. In practice, it is advisable to choose
a cut-off value for the lower and upper bounds for τi avoiding very small or too
large values of the stabilization parameter (for instance in zones where ∇p is small).
In the examples shown in this chapter we have chosen the following limiting band:
10−8 6 τi 6 105.

remark 1 . Using just Eq.(6.42) for defining |∇εv| and substituting this into Eq.(6.39)
gives

τi =
h2i |rm|

16µ|∇p|
(6.49)

In absence of body forces and assuming steady state conditions and a linear FE
approximation, then |rm| = |∇p| and

τi =
h2i
16µ

(6.50)

which coincides with Eq.(6.36) deduced for the GLS method. The dimension of
τi is s×m

3

kg . The expression for τi in Eq.(6.50) is typically found in the stabilized
FEM literature for Stokes flow [1, 2, 14, 36, 54, 90, 141, 142, 177, 195].

remark 2 . Other residual-based expressions for the stabilization parameters τi in
the PLS method can be found. For instance, two alternative expressions for τi
are

τi =
h2i
|∇p|

(
ρ|v|+ ρ|hξ|

2∆t

)
|εv|+ |rm|

(
12ρ|hξv|+ 6ρ

h2ξ
∆t + 16µ

) (6.51a)

and

τi = h
2
i


 ρ|hξv|+ µ

24ρ|hξv|| pεv |+ 16µ
2 |∇p|

|rm|


 (6.51b)

The derivation of above expressions can be found in [158].

6.8.3 PLS boundary stabilization term

From the relationships in Eq.(6.25b) we express the boundary term g of Eq.(6.41) as

g =

2∑
i=1

h2i
24
ni
∂εv

∂xi
=

2∑
i=1

h2i
24
ni

|∇εv|
|∇p|

∂p

∂xi
=

2∑
i=1

τini
∂p

∂xi
(6.52)
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The boundary integral in Eq.(6.40) can therefore be expressed in terms of the pres-
sure gradient components using Eq.(6.52) as

∫
Γ

q

(
2∑
i=1

τini
∂p

∂xi

)
dΓ (6.53)

where all the terms within the integral are computed at the boundary Γ .

remark 3 . For hi = hj = h then τi = τ. In this case, the boundary integral (6.40)
can be expressed as∫

Γ

qτ
∂p

∂n
dΓ (6.54)

where ∂p
∂n = ni

∂p
∂xi

is the gradient of the pressure along the direction normal to
the boundary.

We note that all the expressions for τi given in the previous equations are “solution
dependent”. The nonlinear definition of the stabilization parameters can be useful for
overcoming the limitations of the standard definitions of τi. A recent evidence of the
usefulness of solution-dependent stabilization parameters can be found in [90].

6.9 pressure-gradient projection (pgp) formulation

An alternative stabilized formulation can be derived from the higher order FIC equa-
tions by introducing the so-called pressure-gradient projection variables. The resulting
stabilized mass balance equations can be derived is a number of ways [35, 36, 54,
142, 195]. Here we show how a PGP (for pressure-gradient projection) method can be
readily obtained following the higher order FIC approach.

From the momentum equations it can be found

h2i
24

∂εv

∂xi
= τirmi

(6.55)

where rmi
is defined in Eq.(6.34a). An expression for the stabilization parameter τi is

[35, 36, 54, 142, 195]

τi =
h2i
24

[
ρl2

4∆t
+
2µ

3

]−1
(6.56)

and l is a typical grid distance. The expression for τi of Eq.(6.56) can be obtained as a
particular case of Eq.(6.51a).

For relatively fine grids the numerical solution is insensitive to the values of hi :=
αil [148]. In [158] we found that good results are obtained for the range of values of
hi such that

√
2 6 αi 6

√
6, where l is a typical grid distance.

For the steady state problems solved in this work the form of τi of Eq.(6.36) is used
with αi = α =

√
6.

Note that the stabilization parameters in the PGP method are constant for each
element. This is an important difference versus the PLS and penalty formulations



170 6 pressure laplacian stabilization

of previous sections, where a nonlinear (and consistent) form for the stabilization
parameters is used.

In the standard PGP method the momentum residuals rmi
are split as rmi

:= ∂p
∂xi

+

πi where πi are the so-called pressure-gradient projection variables [35, 36]. In our
work we use a slight different approach and split the momentum equations as

rmi
:=

∂p

∂xi
+
1

τi
πi (6.57)

where

πi = τi

(
−ρ
∂vi
∂t

+
∂sij

∂xj
+ bi

)
(6.58)

is the ith pressure-gradient projection weighted by the ith stabilization parameter. The
πi’s are now taken as additional variables which are discretized with the standard
FEM in the same manner as for the pressure.

The split of Eq.(6.57) ensures that the term 1
τi
πi is discontinuous between adjacent

elements after discretization. This is essential for accurately capturing high discontin-
uous pressure gradient jumps typical of fluids with heterogeneous physical proper-
ties (either the viscosity or the pressure) [45, 104, 105]. In this manner the term 1

τi
πi

can match the discrete pressure gradient term ∂p
∂xi

which is naturally discontinuous
between elements for a linear approximation of the pressure.

Substituting Eq.(6.55) into the second and third integral of Eq.(6.31) and using (6.57)
gives (for 2d problems)∫

Ω

qεvdΩ−

∫
Ω

2∑
i=1

∂q

∂xi

(
τi
∂p

∂xi
+ πi

)
dΩ+

∫
Γ

q

2∑
i=1

ni

(
τi
∂p

∂xi
+ πi

)
dΓ = 0 (6.59)

The boundary integral in Eq.(6.59) is typically neglected in PGP formulations and
will be disregarded from here onward.

The following additional equations are introduced for computing the pressure gra-
dient projection variables πi∫

Ω

2∑
i=1

w̄i

(
∂p

∂xi
+
1

τi
πi

)
dΩ = 0 (6.60)

where w̄i = q is usually taken.
Recall that the term ∂p

∂xi
+ 1
τi
πi (no sum in i) is an alternative expression for the

momentum residual equation (see Eq.(6.57)). This term is enforced to vanish in an
average sense via Eq.(6.60).

6.10 orthogonal sub-scales (oss) formulation

The OSS method can be readily derived by writing the momentum residuals as

rmi
= (r̄mi

+ πi) (6.61)

where r̄mi
are the discrete residuals of the momentum equations and πi are additional

variables that are now interpreted as the projection of the discrete momentum residu-
als into the velocity space (without boundary conditions) [11, 34, 39].
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The variational form for the incompressibility equations is obtained by substituting
Eq.(6.61) into (6.35). This gives (neglecting the boundary terms)

∫
Ω

qεvdΩ−

∫
Ω

2∑
i=1

∂q

∂xi
τi(r̄mi

+ πi)dΩ = 0 (6.62)

The πi variables are computed by the following additional equations

∫
Ω

2∑
i=1

w̄iτi(r̄mi
+ πi)dΩ = 0 (6.63)

with w̄i = q. Eq.(6.63) enforces the consistency of the method in an average sense.
The stabilization parameters τi are computed as in the PGP method of previous

section.

remark 4 . . For linear FE interpolations the term r̄mi
is simply

r̄mi
= −ρ

∂v̄i
∂t

+
∂p̄

∂xi
+ bi (6.64)

where v̄i and p̄ are the approximate FE values for the velocities and the pressure.

6.11 pls+π method

The PLS method presented in §6.8 can be substantially enhanced if the momentum
residuals appearing in the expression for the stabilization parameters τi are computed
using Eq.(6.61). The resulting expression for τi is

τi =
h2i (|pεv|+ |v||r̄m +π|)

(12|phξ|+ 16µ|v|) |∇p|
(6.65)

This π variables are computed via Eq.(6.63) following the discretization procedure
described in the next section.

The expression for τi of Eq.(6.65) increases the efficiency and accuracy of the PLS
method (see Example 6.15.5).

6.12 finite element discretization

6.12.1 Discretized equations

The domain Ω is discretized with a mesh of triangles or quadrilaterals (for 2d) and
tetrahedra or hexahedra (for 3d).

For the penalty, GLS and PLS formulations, the velocities and the pressure are
interpolated over each element using the same approximation as (for 3d problems)

v =


v1

v2

v3

 =

n∑
j=1

Njv̄j , p =

n∑
j=1

Njp̄j (6.66)
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For the PGP and OSS formulations the πi variables are also interpolated using the
shape functions Ni as

π =


π1

π2

π3

 =

n∑
j=1

Njπ̄j (6.67)

In the above equations Nj = NjI3, Nj is the standard shape function for node j,
I3 is the 3× 3 unit matrix, n is the number of nodes in the element (i. e.n = 3/4 for
linear triangles/tetrahedra) and v̄j, p̄j and π̄j are the values of the velocity vector,
the pressure and the π variables vector at node j, respectively. Indeed, any other FE
approximation for v, p and π can be used.

Substituting the approximations (6.66) and (6.67) into the weak form of the mo-
mentum equations (Eq.(6.10)) and in the adequate variational expression for the in-
compressibility equation, gives the following global system of equations (for all the
methods considered in this chapter)

M̄ ˙̄a + Hā = f (6.68)

where ˙̄a = d
dt ā and the different matrices and vectors for the different stabilized FE

methods are

Penalty, GLS, PLS methods

ā =

{
v̄

p̄

}
, M̄ =

[
M 0

M̂ 0

]
, H =

[
K Q

(QT + R) S

]
, f =

{
fv
fp

}
(6.69a)

where

Penalty method : S = P, R = M̂ = 0, fp = 0

GLS method : S = −L + B

PLS method : S = −L + B, R = M̂ = 0, fp = 0

(6.69b)

PGP method

ā =


v̄

p̄

π̄

 , M̄ =




M 0 0

0 0 0

0 0 0


 , H =




K Q 0

QT −L −C

0 −CT −T


 , f =


fv
0

0

 (6.70)

OSS method

ā and H as in Eq.(6.70)

M̄ =




M 0 0

Mp 0 0

Mπ 0 0


 , f =


fv
fp
fπ

 with fπ =


fπ1
fπ2
fπ3

 (6.71)

The matrices and vectors in Eqs.(6.69)–(6.71) are formed by assembling the element
contributions given in Box 1 for 3d problems.
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Me
ij =

∫
Ωe
ρNiNjdΩ, Keij =

∫
Ωe

GTi DGjdΩ, Qeij =
∫
Ωe

GTi mNjdΩ

with

Gi = ĜNi with Ĝ =




∂

∂x1
0 0

∂

∂x2

∂

∂x3
0

0
∂

∂x2
0

∂

∂x1
0

∂

∂x3

0 0
∂

∂x3
0

∂

∂x1

∂

∂x2




T

m =
{
1 1 1 0 0 0

}
, D = µ

[
2I3 0

0 I3

]

Peij =

∫
Ω

1

α
NiNjdΩ, Leij =

∫
Ωe
τk
∂Ni
∂xk

∂Nj

∂xk
dΩ, Beij =

∫
Γ

3∑
k=1

(
τknkNi

∂Nj

∂xk

)
dΓ

M̂e
ij =

∫
Ωe

mTGiρ[τ]NjdΩ−

∫
Γe
Niρτ

T
nNjdΓ

(Me
π)ij = −

∫
Ωe
ρNTi [τ]NjdΩ

Me
p as M̂e neglecting the boundary term.

Reij = −

∫
Ωe

(∇TNi)[τ]ĜT (DGj)dΩ+

∫
Γe
Niτ

T
nĜT (DGj))dΓ

τ = [τ1, τ2, τ3]T , [τ] =



τ1 0 0

0 τ2 0

0 0 τ3


 , τn = [τ]n

PGP : Ceij =
∫
Ωe

mTGiNjdΩ, Teij =
∫
Ωe

Ni[τ]−1NjdΩ

OSS : Ceij =
∫
Ωe

mTGi[τ]NjdΩ, Teij =
∫
Ωe

Ni[τ]NjdΩ

fevi =
∫
Ωe
NibdΩ+

∫
Γet

NitpdΓ , i, j = 1, 2, 3

fepi =

∫
Ωe




3∑
j=1

τj
∂Ni
∂xj

bj


dΩ−

∫
Γe
Ni




3∑
j=1

τjnjbj


dΓ , (fπj)i = −

∫
Ω

NiτjbdΩ

f̄pi as fpi neglecting the boundary term.
I3 : 3× 3 unit matrix , b = [b1,b2,b3]T , tp = [tp1 , tp2 , tp3 ]

T

Γet : boundary of element e coincident with the external Neumann boundary

Box 2: Element expressions for the matrices and vectors in Eqs.(6.69)–(6.71) for 3d problems.
The expression for τi changes for the different stabilized methods
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remark 5 . For linear triangles, matrices M, P and T are computed with a three point
Gauss quadrature. The rest of the matrices and vectors in Box 1 are computed
with just a one-point quadrature. A higher order quadrature might be required
in some cases for integrating more accurately the nonlinear terms involving the
stabilization parameters τi.

remark 6 . The contribution of the stabilization terms to the stiffness matrix K which
are typical in the standard GLS formulation are not taken into account in this
work. These terms are irrelevant for the analysis of the steady-state Stokes prob-
lems presented in this chapter.

6.12.2 Solution schemes for penalty, GLS, PLS methods

For penalty, GLS, PLS and combined methods, a monolithic transient solution of
Eq.(6.68) can be found using the following iterative scheme

j+1ān+1 =
[
jH̄n+1

]−1
(

f +
1

∆t
M̄an

)
(6.72a)

with

H̄ = H +
1

∆t
M̄ (6.72b)

In Eq.(6.72a) (·)n and (·)n+1 denote values at times t and t+∆t, respectively while
the upper left index j denotes the iteration number; i. e.j(·)n+1 denotes values at time
t+∆t and the jth iteration.

For the steady state problems solved in this work we have found the velocity and
pressure variables simultaneously by inverting the system

Hā = f (6.73)

Clearly, for the PLS method the solution of Eq.(6.73) must be found iteratively, as
the stabilization parameters are a function of the velocity and the pressure. A simple
direct iteration scheme gives

j+1ā = [jH]−1f (6.74)

6.12.3 Solution scheme for PGP and OSS methods

The solution of Eqs.(6.68) for the PGP and OSS methods is typically performed via an
iterative staggered scheme.

The π̄ nodal variables can be eliminated from Eqs.(6.68) as follows

PGP method : π̄ = −T−1CT p̄ (6.75a)

OSS method : π̄ = −T−1
(
Mπ ˙̄v + CT p̄ − fπ

)
(6.75b)
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Substituting π̄ from Eqs.(6.75) into the second row of Eqs.(6.68) yields the following
system of two equations for v̄ and p̄

PGP method :
M ˙̄v + Kv̄ + Qp̄ = fv
QT v̄ − (L − L̂)p̄ = 0

(6.76a)

OSS method :
M ˙̄v + Kv̄ + Qp̄ = fv
(M̄p − CT−1Mπ) ˙̄v + QT v̄ − (L − L̂)p̄ = f̄p − T−1fπ

(6.76b)

In Eqs.(6.76) L̂ = CT−1CT is the discrete pressure Laplace matrix. This matrix has a
wider bandwidth than the Laplace pressure matrix L in Eqs.(6.69b). The difference
between L and L̂ provides the necessary stabilization for the accurate solution of
Eqs.(6.76).

For the steady state case the solution for the velocity and pressure is found simul-
taneously by Eq.(6.73) with

H =

[
K Q

QT (L̂ − L)

]
, a =

{
v̄

p̄

}
, f =

{
fv
f̂p

}
(6.77)

where f̂p = 0 for the PGP method and f̂p = f̄p − T−1fπ for the OSS method.

remark 7 . The elimination of the π variables via Eq.(6.75) can be simplified by using
a diagonal form of matrix T obtained as Td = diag(T). This, however, does not
affect the bandwidth of matrix L̂.

remark 8 . The matrix multiplying ˙̄v in the second part of Eq.(6.76b) vanishes for
the case of constant density.

6.13 definition of the characteristic lengths

In §6.4.3 we had chosen a rectangular balance domain with the sampling point located
at its centroid to arrive at the higher order FIC-modified incompressibility equation.
Clearly, the expression for the tensor L obtained with this choice is anisotropic. In this
case, we have to associate the definition of the balance domain to a procedure that
guarantees the objectivity of the resulting FIC-based method.

Unlike for the convection–diffusion–reaction problem where an anisotropic defini-
tion of the characteristic length tensors was shown to provide better solutions (see
Chapter 3), preliminary numerical experiments with the Stokes problem suggest oth-
erwise. That is, no gain is obtained with respect to the quality of the solution (both
v and p) by defining L in an anisotropic manner. It is for this reason that we have
chosen a constant value for hi defined (for 2d problems) as

hi = h
e with he = [ηAe]1/2 (6.78)

whereAe is the element area, η = 1 for multilinear elements and η = 2 for simplicial
elements. This corresonds to the choice of a circular FIC balance domian with the
sampling point located at its centroid and with radius h/

√
6. So we have,

` = 0 , L =
1

24

[
h2 0

0 h2

]
(6.79)
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6.14 some comments on the different stabilization methods

6.14.1 Penalty method

For the penalty method the system matrix H is symmetrical. Matrix M becomes ill-
conditioned for very large values of the penalty parameter α. A cut-off for α when
the solution approaches the incompressibility limit is therefore mandatory to avoid
the volumetric locking problem [54, 195].

6.14.2 GLS method

For the GLS method presented here matrices M̂, R and B are non symmetrical. Sym-
metry of matrices M̄ and H can be simply found by shifting the non symmetrical
terms to the r.h.s. of Eqs.(6.68). This introduces a nonlinearity in the solution scheme.

6.14.3 PLS method

For the PLS method the boundary stabilization matrix B is non-symmetrical. Symme-
try of the system matrix H can be recovered by shifting the boundary terms to the
r.h.s. of Eq.(6.68). This gives

H =

[
K Q

QT −L

]
, f =

{
fv
qp

}
(6.80a)

For 3d problems

qepi =

∫
Γe
Ni




3∑
j=1

τjnj
∂p

∂xj


dΓ (6.80b)

The boundary force vector qp is computed at each iteration as part of the iterative
solution process. Preliminary experiences in applying this method show that this does
not increase the total number of iterations.

6.14.4 PGP and OSS method

All matrices in the PGP method are symmetrical. For the OSS method matrix M̄ is not
symmetrical. Symmetry of matrix M̄ can be found by shifting the non symmetrical
terms (involving time derivatives of the velocities) to the r.h.s. of Eq.(6.68).

6.14.5 Comparison between the different stabilization methods

1. In the PGP and OSS methods the stabilization parameter is typically taken as
constant (at least for homogeneous meshes and constant viscous fluids). In the
PLS method, however, the stabilization parameter τi varies as a function of the
volumetric strain rate and the residual of the momentum equations.
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2. In the PGP and OSS methods the amount of stabilization is variable in space.
This variation is introduced by the difference between the Laplace pressure ma-
trix L and the discrete pressure Laplace matrix L̂. In the PLS method (and also in
the penalty method presented here) the amount of stabilization is also variable
in space, but the variation is introduced by the consistent stabilization parame-
ters.

3. The consistency in the GLS methods is guaranteed by introducing the discrete
residual of the momentum equations in the stabilized mass balance equation.
Consistency in the PGP and OSS methods is enforced by introducing additional
equations representing the vanishing of the momentum residuals in an average
sense. In the PLS method the consistency is guaranteed by the expression of the
stabilization parameters which also vanish for the exact solution (i. e.for εv = 0

and rmi
= 0).

4. The PLS method is nonlinear due to the dependence of the stabilization param-
eters with the volumetric strain rate, the pressure, the pressure gradient and the
residual of the momentum equations. The PGP and OSS methods are non linear
due to the definition of the πi variables which are a function of the pressure
field. The GLS method can be considered as a linear method.

5. All methods, except the penalty method, introduce a boundary stabilization
term. Accounting for this term is relevant in the GLS and PLS methods when
lower order finite elements are used. On the contrary, consistency recovery tech-
niques as proposed in [111] are required. Unlike for the GLS method, it is ob-
served that this dependence on such consistency recovery techniques is weak for
the PLS method. In other words, the adverse effect of excluding the boundary
stabilization term is found to be small for the PLS method (see Examples 6.15.3
and 6.15.4).

6. In PGP and OSS methods the boundary stabilization term is usually neglected.
This simplification is acceptable on external boundaries, but cannot be neglected
at internal interfaces with a jump in the physical properties.

7. PGP and OSS methods typically yield identical results for problems when the
force term bi belongs to the space of finite element functions and linear (or
bilinear) elements are used [35].

6.15 examples of application

We present a number of examples of simple steady-state Stokes flow problems. The
aim is to validate and compare the accuracy and efficiency of some of the methods
presented in this chapter. The methods compared are:

• PLS method of §6.8 using the expression for τi of Eq.(6.48). The effect of includ-
ing or not the boundary integral (BI) terms of Eq.(6.40) has been studied.

• PLS+π method of §6.11. This method was used just in the manufactured flow
problem (Example 6.15.5).
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• GLS method of §6.7, including and excluding the boundary integral (BI) terms
of Eq.(6.37).

• OSS method of §6.10 with consistent and diagonal forms of matrix T.

The problems solved are the following:

i) Hydrostatic flow problem for a single fluid in a square domain.

ii) Two-fluid hydrostatic problem in a square domain.

iii) Poiseuille flow in a trapezoidal domain.

iv) Lid driven cavity flow problem.

v) Manufactured flow problem in a trapezoidal domain.

For all problems the nodal velocities and pressures have been found simultaneously
under steady-state conditions by solving Eq.(6.73). For the GLS and the OSS methods the
solution is found in a single step. For the PLS method the direct iteration scheme of
Eq.(6.74) is used. The first PLS (and PLS+π) solution is found in all cases using a
constant value of τi = τ = 10−5. This roughly corresponds to the value of τi for the
GLS and OSS methods given by Eq.(6.36).

The convergence of the nonlinear iterations for the PLS method is measured in the
Euclidean vector norm for velocities and pressure measured as

‖jφ̄− j−1φ̄‖l2
‖jφ̄‖l2

6 ε with φk =


v̄1k

v̄2k

p̄k

 and ‖φ̄‖l2 =
[∑
a

(φ̄
a
)2

]1/2

In our work we have chosen ε = 10−4 for examples i)–iv) and ε = 10−3 for example
v). A comparison of the PLS and PGP methods for problems i, ii and iv is reported in
[158].

6.15.1 Hydrostatic flow problem for a single fluid in a square domain

We solve for the pressure distribution in a square container filled with water. The
body forces are b1 = b2 = ρg with values of the density and gravity constant equal
to ρ = 1000 Kg/m3 and g = −10 m/s2, respectively. The viscosity is µ = 10−3

Ns/m2. The normal velocity has been prescribed to zero at the bottom line and the
two vertical walls. The nodes on the top surface are allowed to move freely. The
solution for this simple problem is v = 0 an hydrostatic distribution of the pressure
which is independent of the fluid viscosity. The problem is solved with a 2× 10× 10
mesh of 3-node triangles.

Figure 82a shows the pressure distribution obtained by all methods. A converged
solution which approximates practically the exact hydrostatic distribution is found
with the PLS method in just two iterations.
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Figure 82: (a) Hydrostatic flow problem for a single fluid in square domain. (b) Two-fluid
hydrostatic problem in square domain. Pressure distribution for both problems
obtained with PLS (with and without BI), GLS (with and without BI) and OSS
(using T and Td). Results for all methods coincide.
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PLS : Nonlinear Convergence

Figure 83: Two-fluid hydrostatic problem. Convergence of the PLS method (with and without
BI).

6.15.2 Two-fluid hydrostatic problem in a square domain

The same square container of the previous example is considered assuming that the
upper half is filled with a liquid of density ρ = 10−3 Kg/m3. The viscosity is the same
for both fluids with µ = 10−3 Ns/m−2. The body forces, the boundary conditions and
the mesh are the same as for the previous example. The exact analytical solution is
v = 0 in the whole container and a linear distribution of the pressure ranging from
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p = 0 at the top (x2 = 1.0 m) to p = 10−2 Pa at x2 = 0.5 m; and again a linear
distribution of the pressure from p = 10−2 Pa at x2 = 0.5 m to p = 5000 Pa at x2 = 0.

Results for the pressure distribution are shown in Figure 82b. Numerical results for
all methods studied coincide.

The converged solution for the PLS method is obtained in three iterations. The con-
vergence history is shown in Figure 83.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

Figure 84: Trapezoidal discretized by a symmetrical mesh of 2× 10× 10 3-node triangles.

6.15.3 Poiseuille flow in a trapezoidal domain

A trapezoidal domain Ω is considered with corner nodes given by: (0,0),(6,0),(4,2) and
(2,2). The domain is discretized with a mesh of 2× 10× 10 3-node triangles (Figure
84). A parabolic profile for the horizontal velocity is prescribed at both the inlet and
outlet lines.

Figure 85a shows the pressure distribution obtained with PLS method (with and
without BI), the GLS method (with BI) and the OSS method (using T and Td). Results
for all these methods coincide. Figure 85b shows the GLS results not including the BI
term. Note the inaccuracies in the pressure distribution near the edge.

The same trend is observed for the results of the distribution of the v1 velocity
shown in Figure 86. Note the slight increase in accuracy obtained in the PLS method
by including the BI term.

The convergence of the PLS solution with and without taking into account the
BI terms is shown in Figure 87. The convergence improves when the BI terms are
included (3 iterations versus 5 iterations).

6.15.4 Lid driven cavity problem

The flow in a driven square cavity of 1× 1 m2 is studied.
The horizontal velocity on the top surface nodes has been prescribed to vp1 (x1, 1) = 1

m/s. The vertical velocity has also been prescribed to zero at all nodes on the top
surface with the exception of the central node with coordinates (0.5,1) which is left
free to move in the vertical direction. The normal velocity at the bottom line and the
two vertical walls has been prescribed to zero. The physical properties are ρ = 10−10

Kg/m3, g = 0 N/m2, µ = 1 Ns/m2.
It can be easily verified that, for the material properties chosen, the value of the

stabilization parameter τi for the PLS method is approximately constant over the
whole analysis domain and equal to

τi = τ '
h2i
16µ

=
10−2

16
= 6.25× 10−3m

3s

Kg
(6.81)
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Figure 85: Poiseuille flow in a trapezoidal domain. (a) Pressure distribution obtained with
PLS (with and without BI), GLS (with BI) and OSS (using T and Td). (b) Pressure
distribution obtained with GLS without BI

Figure 88 shows the pressure distributions in the cavity for all the methods studied
using a 2× 20× 20 mesh of 3-node triangles. An analysis of the results of Figure 88

shows that (a) the PLS method captures better the singularity of the pressure values
at the top corner nodes, (b) the effect of the BI terms is irrelevant for the PLS method
but has a positive influence in the GLS method in terms of a better capture of the
pressure singularity, (c) the diagonal form of matrix T introduce a slight diffusion in
the OSS results. The pressure contour lines for the considered methods is shown in
Figure 89.

Figure 90 shows the convergence of the PLS results. The convergence curve is prac-
tically the same accounting or not for the BI terms. Convergence is slower in this case
due to the pressure singularity at the top corners.

6.15.5 Manufactured flow problem in a trapezoidal domain

The trapezoidal domain of Figure 84 is discretized by a series of symmetrical mesh
consisting of 2×n×n 3-node triangular elements and using n ∈ {10, 12, 14, 16, 18, 20,
24, 32, 36, 40}. The following relative error norms are used to study the convergence
rates of the considered methods

ehvH1 =
‖v − v̄‖1
‖v‖1

=

√∫
Ω∇(v − v̄) : ∇(v − v̄) dΩ
√∫

Ω∇v : ∇v dΩ
(6.82a)

ehpL2 =
‖p− p̄‖0
‖p‖0

=

√∫
Ω(p− p̄)2 dΩ
√∫

Ω p
2 dΩ

(6.82b)
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(d) GLS (with BI) and OSS (with T and Td)

Figure 86: Poiseuille flow in a trapezoidal domain. Results for the velocity v1 (denoted ux in
the figure obtained with (a) PLS (without BI), (b) GLS (without BI), (c) PLS (with
BI), (d) GLS (with BI) and OSS (with T and Td)

where, (v̄, p̄) is the finite element approximation of the exact solution (v,p). The
numerical solutions corresponding to the GLS, PLS, PLS+π and OSS methods, are
compared with the following solutions: the nodally exact interpolant denoted by
(Ihv, Ihp) and the best approximation (BA) with respect to the L2 norm (for pres-
sure) and the H1 semi-norm (for velocity) denoted by P0hp and P1hv respectively. The
solutions Ihv, Ihp, P0hp and P1hv can be found as shown in Eq.(6.83).
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Figure 87: Poiseuille flow in a trapezoidal domain. Convergence of the PLS solution. (a) With-
out BI term. (b) With BI terms

Ihv := Nava; Ihp := Napa (6.83a)∫
Ω

qh(p− P0hp) dΩ = 0 ∀ qh ∈ Qh

⇒ ‖ p− P0hp ‖0 6 ‖ p− p̄ ‖0 ∀ p̄ ∈ Qh
(6.83b)

∫
Ω

∇vh : ∇(v − P1hv) dΩ = 0 ∀ vh ∈ Vh

⇒ ‖ v − P1hv ‖1 6 ‖ v − v̄ ‖1 ∀ v̄ ∈ Vh
(6.83c)

where, (va,pa) represent the nodal values of the exact solution (v,p), Qh ⊂ L2(Ω)

and Vh ⊂ H10(Ω). In the current example Qh and Vh are the solution spaces spanned
by the 3-node triangle shape functions.

Consider a manufactured flow problem in which choosing the force term f =

(f1, f2), with f1 = µ(6x− 17), f2 = 0, we have the exact solution to the Stokes problem
as v = (v1, v2), with v1 = y(2 − y)/2, v2 = 0 and p = µ(3x2 − 18x+ 1). Note that
changing the magnitude of µ, any inf-sup stable Galerkin-FEM will give numerical
solutions that would scale proportional to the exact solution. Thus, for this manufac-
tured problem, the relative errors eh

vH1
and eh

pL2
will be independent of µ.

The eh
vH1

and eh
pL2

convergence rates for the GLS, PLS, PLS+π and OSS methods
using µ = 1 are shown in Figure 91.

Figure 91a illustrates the eh
vH1

error lines for the considered methods. The error line
of the GLS method is slightly shifted above the error lines of Ihv (label: ‘Interpolant’)
and P1hv (label: ‘H1-BA’). The error line of the OSS method shows a slight deviation
from those of Ihv and P1hv, but it quickly merges with the later error lines on mesh
refinement. The error line of the PLS method shows an improvement over the GLS
method on coarse meshes but this advantage is lost on finer meshes wherein the two
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error lines merge. The error line of the PLS+π method practically coincides with the
error lines of Ihv and P1hv.

Figure 91b illustrates the eh
pL2

error lines for the considered methods. The error line
of the GLS method not only shows the greatest deviation from the error lines of Ihp
(label: ‘Interpolant’) and P0hp (label: ‘L2-BA’) but also a sub-optimal convergence rate.
The OSS method on the other hand show a convergence rate similar to that of Ihp
and P0hp and the improvement over the GLS method is clear. The PLS and PLS+π
methods show convergence rates similar to that of the GLS and the OSS methods
respectively. Nevertheless, the error lines of the former two methods are located closer
to the error lines of Ihp and P0hp showing improved accuracy in the considered norms.
The increase in accuracy is particularly relevant for the PLS+π method as clearly seen
in Figure 91b.

The PLS results for each of the meshes studied were obtained in some 10 iterations
whereas typically 7 iterations were needed to obtain each of the PLS+π solutions.

6.16 conclusions

We have presented a family of stabilized finite element (FE) methods derived via
first and second order the finite calculus (FIC) procedures. We have shown that sev-
eral well known existing stabilized FE methods such as the penalty technique, the
Galerkin Least Square (GLS) method, the Pressure Gradient Projection (PGP) method
and the Orthogonal Sub-Scales (OSS) method are recovered from the general residual-
based FIC stabilized form. New stabilized FE methods such as the Pressure Laplacian
Stabilization (PLS) and the PLS+π method with consistent nonlinear forms of the sta-
bilization parameters have been derived. The distinct feature of the PLS and PLS+π
methods is that the stabilization terms depend on the discrete residuals of the mo-
mentum and the incompressibility equations.

The numerical results obtained for the Stokes problems solved in this work show
that the PLS method and, in particular, the PLS+π method provide accurate solutions
that improve in several cases the results of the traditional GLS and OSS methods. Re-
sults presented in [158] indicate that the PLS methods has also a superior performance
than the PGP method for some problems.

The prize to be paid for this increase in accuracy is the higher computational cost
associated to the nonlinear solution which is intrinsic to the PLS method. The poten-
tial and advantages of the PLS method will be clearer for transient problems solved
via staggered schemes or for nonlinear flow problems which invariably require an
iterative scheme.
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(b) PLS (with BI)
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(c) GLS (without BI)
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(d) GLS (with BI)
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Figure 88: Pressure elevation plots for the lid driven cavity problem.
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(a) PLS (without BI)
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(b) PLS (with BI)
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(c) GLS (without BI)
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(e) OSS (with Td)
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Figure 89: Pressure contour plots for the lid driven cavity problem.
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Figure 90: Lid driven cavity problem. Convergence of PLS results. Convergence curve with or
without BI terms are similar
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I have fought the good fight, I have finished the race, I have kept the faith.

— 2 Timothy 4:7.

C O N C L U S I O N S

In this thesis, we have proposed the following new stabilized finite element (FE) based
Petrov–Galerkin (PG) methods:

1. A high-resolution Petrov–Galerkin (HRPG) method for the singularly perturbed
convection–diffusion–reaction (CDR) problem. The prefix high-resolution is used
here in the sense popularized by Harten [82]—second-order accuracy for smooth
regimes and good shock-capturing in non-regular regimes.

2. A PG method that reproduces on structured meshes the alpha-interpolation of
the Galerkin finite element method (FEM) and the classical central finite dif-
ference method (FDM). Particularly for the Helmholtz problem, this method is
capable of providing numerical solutions with a higher-order dispersion accu-
racy.

3. A FIC-based pressure Laplacian stabilization (PLS) method for the Stokes prob-
lem.

In the following, we describe the salient features of the work presented in the re-
spective chapters. We refer to the individual chapter conclusions, viz. §1.7, §2.6, §3.6,
§4.5, §5.7 and §6.16 for a more detailed summary of the same.

Chapter 1: To fix ideas prior to the development of the HRPG method, we have done
a detailed analysis of a consistency recovery method for the 1d convection–diffusion
equation stabilized using the SUPG [22, 92] or the FIC [141] method. The residual
correction is done by including a convective projection variable into the stabilization
term (motivated by the OSS [34] method). No gain in the dispersion accuracy is found
by this procedure. For the steady-state case, the optimal expression of the stabilization
parameter on uniform meshes is derived. An ad hoc extension of this stabilization
parameter to non-uniform meshes failed to preclude the occurrence of weak node-
to-node oscillations. Further, the discrete system obtained on uniform meshes using
this optimal parameter is neither a matrix of positive-type nor a monotone matrix.
Nevertheless, it verifies the necessary and sufficient condition given in [186] for a
discrete maximum principle to hold. Unfortunately, all the conditions on the discrete
system, except for it being a matrix of positive-type, are difficult to identify a priori.
This poses a strategical difficulty in the design of shock-capturing methods and hence,
this consistency recovery procedure is not preferred in the development of the HRPG
method.

Chapter 2: The weak form associated with the HRPG method consists of the stan-
dard Galerkin terms, a linear upwinding term and a nonlinear shock-capturing term.
The structure of the HRPG method in 1d (except for the definition of the stabilization
parameters) is identical to that of the consistent approximate upwind (CAU) Petrov–
Galerkin method [68]. The distinction is that in multi-dimensions the upwinding is

189
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not streamline and the shock-capturing term is neither isotropic nor purely crosswind.
Dropping the linear upwinding term, the expression in 1d of the stabilization param-
eter β multiplying the shock-capturing term is found by relating it with the diffusion
introduced by the discrete-upwinding operation [120] on the Galerkin terms. It was
pointed out earlier by Idelsohn et al. [99] that the transient term can be modeled as
an instantaneous reaction term. Further, it was pointed out earlier by Codina [30] that
the linear upwinding term can be interpreted as to contribute additional convection
(negative upwind direction) and diffusion (rank one tensor) effects. Using these ideas
the effective convection, diffusion and reaction coefficients (for the transient problem
and using the linear upwinding term) are calculated. Thus, for the transient case
and/or including the linear upwinding term, it is these effective coefficients that are
used in the expression for β derived earlier. For the steady-state case, β depends only
on the problem data, whereas for the transient case a nonlinear dependence exists
which guarantees the independence of the steady-state solution on the time step used.
Several 1d examples are presented that illustrate the good treatment of the global,
Gibbs and dispersive oscillations that otherwise plague the numerical solution of the
singularly perturbed CDR problem.

Chapter 3: A multi-dimensional extension of the HRPG method using multi-linear
block FEs is presented. First, we design a nondimensional element number that quan-
tifies the characteristic layers which are found only in higher dimensions. This is done
by matching the width of the characteristic layers to the width of the parabolic lay-
ers found for a fictitious 1d reaction–diffusion problem. The nondimensional element
number is then defined using this fictitious reaction coefficient, the diffusion coeffi-
cient and an appropriate element size. Next, we introduce anisotropic element length
vectors li and the stabilization parameters αi,βi calculated along these li. Except for
the modification to include the new dimensionless number that quantifies the charac-
teristic layers, the definition of αi,βi are a direct extension of their counterparts in 1d.
Using αi,βi and li, objective characteristic tensors associated with the HRPG method
are defined. The numerical artifacts across the characteristic layers are manifested as
the Gibbs phenomenon. Hence, we treat them just like the artifacts formed across the
parabolic layers in the reaction-dominant case. Several 2d examples are presented that
support the design objective—stabilization with high-resolution.

Chapter 4: We present a simple domain-based higher-order compact scheme involv-
ing two parameters α1,α2 on structured meshes for the Helmholtz equation. Making
the parameters equal, we obtain the linear interpolation of the stencils obtained using
the Galerkin FEM and the classical FDM. The stencil obtained by taking the parame-
ters as distinct is denoted as the ‘nonstandard compact stencil’. In this case, the dif-
fusion and production terms obtained from the Galerkin FEM and the classical FDM
stencils are interpolated distinctly. Generic expressions for the parameters are given
that guarantee a dispersion accuracy of sixth-order should the parameters be distinct
and fourth-order should they be equal. In the later case, an expression for the param-
eter is given that minimizes the maximum relative phase error of the scheme. Many
existing higher-order compact schemes proposed within an algebraic setting can be
recovered from the current scheme, viz. the alpha-interpolation method [110, 140]
(α1 = 0, α2 = α), the Vichnevetsky and Bowles scheme [187] (α1 = α, α2 = 1), the
fourth-order generalized Padé approximation studied in [81, 168] (α1 = α2 = 0.5) and
the sixth-order quasi-stabilized FEM [10]. Recall that it is impossible to circumvent the
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pollution effect associated with the Helmholtz equation (hence one can only propose
quasi-stabilized methods) and that the maximum dispersion accuracy attainable on
compact meshes is of sixth-order [10]. We remark that the proposed nonstandard com-
pact stencil has an additional structure that reduces its abstractness. This additional
structure (alternate point-of-view) is the key to develop PG methods which naturally
extend these schemes to unstructured meshes.

Chapter 5: The basic idea is to design test functions whose inner product with the
standard FE shape functions result in the lumped mass matrix. These test functions
are designed to have the following features: a) to be piecewise polynomials of the
same degree as the FE shape functions, b) to be a partition of unity (only in the sense
that they add up to unity) and c) to have a compact support. The last condition allows
us to construct test function spaces that vanish at the Dirichlet boundaries and thus,
advocating its admittance into weak formulations. However, this condition makes
these test functions discontinuous at the element boundaries. As the row lumping
technique is a critical step in the design of these test functions (to fulfill the partition of
unity constraint), the current work is restricted only to those FEs where this technique
makes sense—simplicial FEs and multi-linear block FEs. We show that using these test
functions with an appropriate single-valued model on the element boundaries, it is
possible to recover the classical FDM stencil of the Helmholtz equation on structured
meshes. The linear interpolation on the element boundaries (specified by α1) and the
element interiors (specified by α2) of these test functions with the standard FE shape
functions, will result in a new class of test functions. These new test functions define
the proposed PG method involving two parameters α1,α2 that yields the nonstandard
compact stencil of the Helmholtz equation on structured meshes. Making α1 = α2 we
recover the linear interpolation of the Galerkin FEM and the classical FDM stencils
on structured meshes. The proposed PG method provides the counterparts of these
two schemes on unstructured meshes and allows the treatment of natural boundary
conditions (Neumann or Robin) and the source terms in a straight-forward manner.
The additional cost of implementation of the proposed PG method is just the evalua-
tion of the element boundary integrals. All the algebraic evaluations are done at the
element level unlike the QOPG method [128] where it is done at the patch level. This
feature allows the proposed PG method to be easily incorporated within an ‘assemble-
by-elements’ data structure. The choice of the parameters α1 = α2 = (1/2) render the
proposed PG method independent of the problem and mesh data. In this sense and
for this choice, the proposed PG method could be labeled ‘parameter-free’.

Chapter 6: New stabilized FE methods such as the pressure Laplacian stabilization
(PLS) method and the PLS+π method with consistent nonlinear forms of the stabi-
lization parameters are derived for the Stokes problem using the finite calculus (FIC)
procedures. The distinct feature of these methods is that the stabilization terms de-
pend on the discrete residuals of the momentum and the incompressibility equations.
The PLS and PLS+π methods also introduce a boundary stabilization term. A similar
boundary integral modification for the GLS method was proposed in [56]. Therein, it
was shown that accounting for this term is relevant when lower-order FEs are used.
On the contrary, residual correction techniques as proposed in [111] are required. Un-
like for the GLS method, the adverse effect of excluding the boundary stabilization
term is found to be small for the PLS method. We believe this is due to the nonlinear
fine-tuning of the stabilization terms in the PLS method. The performance of the PLS
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method is enhanced by adding to the momentum residual that appears in the stabi-
lization terms its fine-scale projected counterpart (motivated by the OSS method) and
thus, resulting in the PLS+π method. The numerical results obtained for the Stokes
problems solved in this work show that the PLS method and, in particular, the PLS+π
method provide accurate solutions that improve in several cases the results of the tra-
ditional GLS and OSS methods. The prize to be paid for this increase in accuracy is
the higher computational cost associated to the nonlinear solution which is intrinsic
to the PLS method. The potential and advantages of the PLS method will be clearer
for transient problems solved via staggered schemes or for nonlinear flow problems
which invariably require an iterative scheme.

outlook

In the following we list some aspects that are not addressed in this thesis which
naturally constitute the future lines of work.

1. Simplicial FEs are not considered in the multi-dimensional extension of the
HRPG method for the CDR problem. The primary obstacle in this line is to
identify anisotropic element length vectors and the subsequent definition of the
characteristic tensors that not only guarantee the objectivity of the method but
also yield numerical solutions with a crisp layer resolution. The current pro-
posal when applied to simplicial FEs violates the objectivity with respect to the
admissible node numbering permutations.

2. For the new PG method proposed for the Helmholtz problem, it will be interest-
ing to study the dispersion accuracy of stencils made up of a symmetric patch
of simplicial elements. For instance, patches that have a honeycomb structure
might yield stencils with higher-order dispersion accuracy. Following the ap-
proach taken for bilinear block FEs, it is possible to provide different models for
the PG weights on the element boundaries. The benefits if any of this idea will
be explored in future works. Finally, the application of the new PG method to
engineering problems involving time-harmonic wave propagation phenomenon
will also be explored.

3. For the convection–diffusion problem, the semi-discrete dispersion plots corre-
sponding to the FIC/SUPG method (see Figure 1) reveals a possible gain in the
dispersion accuracy by using an alpha-interpolated mass matrix in the transient
terms. This is unlike what is observed for the Galerkin and the FIC_RC/OSS
methods, where the best dispersion accuracy was obtained using the consistent
mass matrix. Such an alpha-interpolated mass matrix can be attained in a vari-
ationally consistent manner using the PG formulation presented in chapter 5.
Further studies will be done for the CDR problem exploring the benefits of us-
ing the test functions presented in chapter 5 to treat the unsolved issues related
to the HRPG method—Gibbs phenomenon of the solution derivatives.

4. Study the Navier-Stokes equations wherein the momentum equation and the in-
compressibility constraint are stabilized using the HRPG and the PLS methods,
respectively. Clearly, these two methods fall under the umbrella of FIC-based
methods, of course with more elaborate stabilization terms.
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