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Abstract

In the Control Engineering field, the so-called Robust Identification techniques deal
with the problem of obtaining not only a nominal model of the plant, but also an
estimate of the uncertainty associated to the nominal model. Such model of uncertainty
is typically characterized as a region in the parameter space or as an uncertainty band
around the frequency response of the nominal model.

Uncertainty models have been widely used in the design of robust controllers and,
recently, their use in model-based fault detection procedures is increasing. In this later
case, consistency between new measurements and the uncertainty region is checked.
When an inconsistency is found, the existence of a fault is decided.

There exist two main approaches to the modeling of model uncertainty: the
deterministic/worst case methods and the stochastic/probabilistic methods. At present,
there are a number of different methods, e.g., model error modeling, set-membership
identification and non-stationary stochastic embedding. In this dissertation we
summarize the main procedures and illustrate their results by means of several examples
of the literature.

As contribution we propose a Bayesian methodology to solve the robust identification
problem. The approach is highly unifying since many robust identification techniques
can be interpreted as particular cases of the Bayesian framework. Also, the
methodology can deal with non-linear structures such as the ones derived from the use
of observers. The obtained Bayesian uncertainty models are used to detect faults in a
quadruple-tank process and in a three-bladed wind turbine.

'
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CHAPTER 1

Introduction

This thesis presents a Bayesian approach to the robust identification problem. In the
present chapter we summarize the main features of this problem and its applications.

1.1 Motivation

1.1.1 Model uncertainty

This thesis deals with the problem of modeling model uncertainty. All models are
uncertain since they are “only” models, that is, partial representations of reality.

Causes of uncertainty: The causes of the model uncertainty are twofold: practical
and theoretical. The practical issues include the quality of measurement instruments,
the effect of operating points, aging, tolerance of components, and so on. The
theoretical causes include the lack of knowledge, the difficulty of modeling and the
model simplification. The latter is very common in the Control Engineering field since,
even if we can produce a good and detailed model of the plant behavior, we always
prefer to use simplified versions in order to get controllers of low complexity. This
way, all the “undesirable” characteristics (as high frequency poles, smooth
nonlinearities, and so on) are treated as uncertainty of the former nominal model.

Characterization of model uncertainty: An uncertain model can be represented by
means of a model set. Given a physical plant, we can obtain several models of its
dynamical behavior. The model set contains all these models. In particular, it includes

15



16 Introduction

the nominal model that is to be used in the controller design. But it can include much
more complicated models containing the dynamics that have been neglected in the
nominal model. And, in the hypothetical case that a “true”, perfect model exists, this
model has to be included in the model set as well.

Fig. 1.1. Model set

Types of uncertainty models: There exist two main approaches to analytically
describe the model set. We can speak of parametric (structured) uncertainty and
dynamic (unstructured) uncertainty.

In the parametric case we assume that the model structure is correct and that the only
source of error is in the values of the parameters, €. g.,

)

» Amin <as amax}

G = {G(s): G(s) = 2+as+1

This type of uncertainty leads to uncertainty regions in the parameter space.

By contrast, in the dynamic case we assume that the nominal model G, (s) is not able to
completely describe the plant dynamics and hence a (dynamical) model error term has
to be included.

If the error model is added to the nominal model, we obtain an additive (absolute)
description of the uncertainty,

G=1{G(s): G(s) = Go(s) + Ag(s)} 2)

And if the error term is multiplying the nominal model, we speak of multiplicative
(relative) uncertainty,

G=1G(s): G(s) = Go(s)[1 + A ()]} €)
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The dynamic uncertainty leads to uncertainty regions in the frequency domain
(uncertainty bands around the Bode plots, or frequency-to-frequency uncertainty regions
on the Nyquist and Nichols planes).

Application of uncertainty models: Uncertainty models have been widely used in the
design of robust controllers but, recently, their use in model-based fault detection
techniques is increasing. Let us summarize the main features of these two application
fields.

1.1.2 Application to robust control

Robust control techniques: A robust controller is a controller that provides stability
and performance to all the models that are inside the model set, and not only to the
nominal model. Actually, the “robustness” property refers to robustness in front to the
model uncertainties.

In the last decades, most works on robust control theory have placed the emphasis on
the controller synthesis procedures, and as a result of these efforts current algorithms are
quite efficient and reliable (Skogestad and Postlethwaite, 1996), (Sdnchez Pefia and
Sznaier, 1998), (Zhou with Doyle, 1998), (Houpis, et al., 2006), (Chiang et al., 2007).

Robust control techniques consist of two stages: The formulation stage, which includes
the selection of the control system specifications and the plant modeling (nominal
model with uncertainty bounds); and the solution stage, which is the controller synthesis
procedure/algorithm.

Importance of the formulation stage: It turns out that the formulation stage is more
critical than the solution stage. In fact, even the best synthesis algorithm may fail, or
lead to a useless design, for hard design trade-offs or for plants that are not well
characterized.

An example of this is the so-called “spill-over effect” which consists in the degradation
of the controller performance due to the excitation of unmodeled dynamics. This is a
phenomenon typical of lightly damped flexible structures which are distributed
parameters systems and thus have infinite dimensional analytic models (Balas, 1982).
In these applications, it is very important to derive not only a good, reduced order
nominal model but also good uncertainty bands.

Not so dramatic, a much more common situation is that too pessimistic quantifications
of model uncertainty yield to designs where the control system performance is penalized
in order to attain a large robustness degree that is actually not necessary.

Finally, the appropriate uncertainty characterization is also an important issue in the
formulation stage since it allows establishing high performance yet realistic
specifications on the basis of the design trade-offs and performance limits (Seron,
Braslavsky, and Goodwin, 1997).
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Robust identification problem: The problem of obtaining uncertainty models is
known as the “robust identification problem”. This is a short version of the original
name “robust control-oriented identification”, which indicates that this research field
was initiated for use in the robust control techniques (H,, and ¢;). Several seminal
works are (Helmicki, Jacobson, and Nett,1991), (Milanese and Vicino, 1991) and (Gu
and Khargonekar, 1992).

1.1.3 Application to fault detection

Fault detection: In Control Engineering, a fault is an undesirable deviation from the
normal operation of at least one system property or parameter. The consequence of a
fault is the degradation of the system performance and in some cases it may be
catastrophic for the system or human operators. The purpose of the two fields known as
Fault Detection and Isolation (FDI) and Fault Diagnosis is to detect, isolate and identify
the faults affecting the system.

Model-free and model-based approaches: FDI can be accomplished by a model-free
approach or by a model-based approach. The model-free approach includes techniques
such as the introduction of sensor redundancy, the use of special sensors, and the
application of spectrum and statistical analysis tools (Zanardelli ez al., 2007), (Tharrault
et al., 2009).

On the other hand, the model-based approach relies on the concept of analytical
redundancy, i.e., the consistency between the measurements of the physical system and
the information contained in a model is checked. The resulting differences are called
the residuals. A fault is detected/decided when a residual is greater than a given
threshold or when an estimated parameter abnormally deviates.

Uncertainty and false alarms: To avoid false alarms, the model-based fault detection
system must be robust, i.e., it must be sensitive only to faults, even in the presence of
model uncertainty. However, since a model is only an approximate representation of
reality, residuals may be nonzero even in the absence of faults. These modeling errors
should not be detected as faults. To solve this problem active and passive methods have
been developed.

Active and passive methods: Active methods aim to generate residuals that are
insensitive to uncertainty but not to faults. Main methods include the use of unknown
input observers, eigenstructure assignment and structured parity equations. See the
books of (Chen and Patton, 1999), (Blanke et al., 2003) and (Ding, 2008) for a survey.

Passive methods use robust identification techniques to describe the fault-free uncertain
system. The uncertainty is characterized by bounded regions, in the parameter space or
in the state space, that are consistent with the measurements. When a new measurement
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is inconsistent with the uncertainty set, a fault is decided. The major drawback of this
approach is that the fault will be not detected if it enters inside the bounded region, thus
the importance to derive tight uncertainty regions.

Passive robust model based methods: The passive robust model-based approach has
received a lot of attention in the last years. Main methods include the use of the
bounding approach in the parity space (Ploix and Adrot, 2006), the development of new
set-membership techniques (Blesa, 2011a), and the use of diagnostic interval observers
(Puig et al., 2008), (Raissi et al., 2010). Some of these methods can deal with nonlinear
systems, e.g., on the basis of subpaving algorithms or multimodel approaches (Letellier
et al., 2011). Most passive methods use deterministic regions, but recently probabilistic
credible regions are receiving attention; see e.g. (Jaulin, 2010).

1.1.4 Main approaches to robust identification

Deterministic/worst case methods and stochastic/probabilistic methods constitute the
main solutions to the robust identification problem. Current research in both
approaches is mainly focused in improving the performance of the identification
algorithms and in obtaining tighter uncertainty bands. Chapter 2 explains in detail the
deterministic and stochastic approaches, but here we list the main techniques.

Stochastic methods: Stochastic methods, such as the non-stationary stochastic
embedding (NSSE) (Goodwin et al., 2002) and the stochastic versions of the model
error modeling (MEM) approach such as the ones based in prediction error methods
(PEM) (Reinelt ez al., 2002), enjoy a low computational load compared to deterministic
methods. However, they make little use of possible prior information about the system
to be modeled. As a result, the obtained nominal model can be too biased and the
associated uncertainty bands may result too pessimistic.

Deterministic methods: By contrast, deterministic methods such as the worst case
system identification in 7, (Chen and Gu, 2000) and other methods based on the set-
membership identification (SMI) paradigm (Milanese and Taragna, 2005) are
computationally intensive but they do consider explicitly any possible prior information
about the plant and measurement noise by means the definition of the so-called feasible
model set (FMS).

1.1.5 Shortcomings of current robust identification methods

Apart from the controversy between the defenders of the deterministic viewpoint and
the defenders of the stochastic viewpoint, we have no knowledge about the existence of
a conclusive work in favor of an approach or particular method over the others.

Also, since robust identification embraces a wide variety of methods and techniques, it
is difficult to point out common drawbacks. Moreover many times the identification
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procedure is tailored to the particular application. There exist very few works
comparing the performance of the different methods and the resulting robust
controllers. A relevant one is (Reinelt, Garulli, and Ljung, 2002), where suboptimal
SMI, PEM-based MEM, and NSSE methods are compared. The author’s conclusion is
that all three methods present very similar performance and results. Other related works
are (Esmaeilsabzali et al., 2006), (Herrero, 2006), and (Raafat et al., 2009).

In this dissertation, after a study of the existing robust identification literature we have
identified the following weak points:

Computational load: In general, deterministic methods are computationally intensive
compared to stochastic approaches. This is justified by the necessity of considering all
possible plant perturbations and it is especially unavoidable when nonlinear structures
are considered. However, in many practical cases the trade-off between the
computational burden and the final uncertainty region obtained is somehow deceiving.
A comparison of the computational cost of several worst case H,, identification
algorithms can be found in (Milanese and Taragna, 2005).

Size of uncertainty regions: It is clear that the uncertainty bands must be kept small
while retaining all relevant plant perturbations. The problem is that the size of the
uncertainty regions is very sensitive t0 the assumptions taken during the modeling
procedure. In general, stochastic methods yield smaller bands, which size depends on
the chosen probability level (Goodwin, Braslavsky, and Seron, 2002).

In SMI approaches uncertainty regions can be tightened by means the introduction of
prior knowledge about the plant and noise. In fact, SMI approaches make a more
efficient use of prior knowledge than MEM methods, which usually limit their use to the
selection of the nominal model order.

Reliability of prior knowledge: However, in order to be useful, prior knowledge must
be reliable, since the size of the uncertainty regions is very sensitive to it. For instance,
a pessimistic choice of the noise bound & may produce too much large uncertainty
regions. This particular sensitivity problem is considered in (Ninness and Goodwin,
1995). Another example is the selection of the basis functions that are mostly used to
define the model structure. Poles of such bases are usually selected after a spectral
analysis of the data. If the plant presents resonant modes, the selection of (the number
and value) of basis poles is easy. However the selection is not so clear if the modes are
real. Methods for pole selection do exist, see e.g. the average modeling error (AME),
but they are computationally intensive since they imply computing several models and
analyze which one presents better performance (see (Reinelt, Garulli, and Ljung,
2002)).

Unfortunately, current methods do not allow knowing if the prior assumptions used are
erroneous or not. It has to be said that prior knowledge “checking” is implicitly
included in the FMS unfalsification stage, but only grossly erroneous prior assumptions
can be detected.
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Control purposes: Another criticism to current methods is related to the control
purposes. We feel that many times the obtained models are not as oriented to robust
control as they could be. In fact, no information regarding the final control system is
considered in the modeling procedure. Most of times, the only requirement is that the
nominal model must be of restricted complexity to produce low order robust controllers.
It has to be said though that closed loop identification schemes (Van den Hof and
Schrama, 1995) and integrated identification-control strategies (Cooley and Lee, 1998)
exist to overcome this problem.

To our knowledge, none of SMI and MEM existing methods considers the cost of
“wrong modeling” when selecting a nominal model nor when obtaining the uncertainty
bounds. It is known that an educated selection of the nominal model leads to smaller
uncertainty bounds (see e.g. (Skogestad and Postlethwaite, 1996)), therefore it would
probably lead to better robust high-performance designs. Since it is clear that in
practice many frequencies are more critical than others, it seems reasonable to impose
some kind of model penalty at least at such frequencies.

An interesting example of the consequences of a “blind” uncertainty modeling can be
found in (Onatski and Williams, 2002). Also, some critical papers have appeared
(Douma and Van den Hof, 2005), which evidence that the usual models for robust
control are much more models for a posteriori robustness analysis (once the control
system is designed) than for robust controllers design.

1.1.6 The Bayesian viewpoint

The Bayesian solution: To overcome the shortcomings discussed in the previous
section, in this thesis we propose a Bayesian methodology for solving the robust
identification problem. We think that the Bayesian framework is adequate for the
following reasons.

e From a general viewpoint, Bayesian Confirmation Theory' is concerned
precisely to model building, with strong relations to concepts such as
induction/deduction, statistical inference, meaning of probability, and validity of
scientific theories.

e From a particular (robust identification) viewpoint, it allows the formal
description of the prior information (or lack of it —prior ignorance), it allows the
efficient combination of prior information about the model with experimental
information in order to obtain a posterior distribution of how likely the different
models are, and it allows the selection of a nominal model on the basis of some
minimum risk criteria.

! Bayesian Science Theory is known as Bayesian Confirmation Theory and it concerns the validation of
scientific theories from a Bayesian viewpoint. In the science context, the subject is how to assign
probabilities to theories or hypotheses h in the light of the evidence e. Bayes formula tells us how to
modify the probability of one hypothesis Pr(h) in order to attain a new and revised probability on the

light of any specified evidence Pr(h|e), Pr(hle) = Pr(h) P;S':)l).
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To enforce our viewpoint, note that modeling model uncertainty for robust control
and/or fault detection is only one particular application of the general problem of
uncertainty modeling that arises in any scientific or technical discipline. So, it seems
reasonable use the tools that are already developed for other areas, in particular,
statistical tools. Quoting (Berger, 2000), who is a convinced Bayesian:

“Statistics is about measuring uncertainty, and over 50 years of efforts to prove otherwise
have convincingly demonstrated that the only coherent language in which to discuss
uncertainty is the Bayesian language”

Works regarding Bayesian uncertainty modeling: Recently, there has been a
renewed interest for the Bayesian point of view in system identification (Ninness and
Henriksen, 2010), (Schon et al., 2011). The topic is not new since early works in
system identification already considered the Bayesian parameter estimation (Eykhoff,
1974) and model classification (Peterka, 1981). The Bayesian ideas, although
appealing, have largely not been implemented due to the difficulty of computing the
integrals involved in the posterior distributions. Recent advances in simulation
techniques such as Monte Carlo Markov chains (MCMC) have overcome this situation
(Robert and Casella, 1999), (Chen, Shao, and Ibrahim, 2000), (Bolstad, 2010).

If fact, we are surprised of the little number of works relating Bayesian modeling with
Robust Control, even more when the terminology used in robust identification (a priori
information, a posteriori information) directly points out to the Bayesian terminology.
This is not the case in the field of Fault Detection and Diagnosis where some recent
Bayesian references are (Lee, 2008), (Pernestal, 2009), and (Dearden, 2010).

To finish this section, we list some of the Bayesian works in other Engineering areas.
For an overview of the activity in the field of Bayesian analysis, see (Berger, 2000) and
the references therein. In (Hoeting et al, 1999) it can be found a survey about Bayesian
Model Averaging (BMA), which is a technique to reduce the uncertainty inherent in the
model selection process. In the field of structures engineering we can refer to the use of
Bayesian conjugate distributions (lgusa et a/, 2002), model updating (Papadimitriou,
Beck, and Katafygiotis, 2001), and model identifiability, (Katafygiotis and Beck, 1998).
In the field of reliability analysis, hierchical uncertainty models are used in (Utkin,
2003), risk analysis is treated in (Apeland ez al., 2002), and a discussion about evidence
vs. Bayes can be found in (Soundappan et al., 2004). In Econometrics, Bayes factors
are used in (Cairns, 2000), and an application of the Bayesian estimation is presented in
(Onatski and Williams, 2002). Finally, in the Ecology field we can refer to the
uncertainty analysis of (Borsuk et al., 2004), the insight about Monte Carlo methods in
(Qian et al., 2003), and the use of the Bayesian state space modeling for hydrology in
(Cornford, 2004).

1.2 Objectives and scope

In this thesis we propose a Bayesian methodology to solve the robust identification
problem. The particular objectives are the following:
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Bayesian Credible Model Set: Characterization of a stochastic Bayesian Credible
Model Set B inspired in the Feasible Model Set (FMS) of deterministic methods.
Instead of some norm of the residuals, B will be expressed in terms of the posterior
probability distributions of the model G conditioned to the measurement data y, p(G|y).
The robust identification problem will be formulated in terms of B. It will be shown the
relationship between B and the existing deterministic and stochastic methods, and the
results will be compared by means of several examples.

Case of parametric uncertainty: Characterization of B when the support for the
probability distributions is the parameter space. The Bayes’ rule will be used to derive
analytical expressions for the model posterior distribution in the case of linear
regression models and Gaussian probability distributions (for both the parameters and
the measurement noise). For high order models and arbitrary non-conjugate probability
distributions, simulation methods based on Markov Chain Monte Carlo (MCMC)
integration will be used.

Computation of the Highest Posterior Density (HPD) credible regions that constitute the
uncertainty description in the Bayesian framework. These credible regions will be
compared to the ones obtained by means of classical confidence regions. For the
Gaussian case, exact credible regions will be derived, assuming that the noise variance
is known and is unknown. For the case where the number of parameters increases
and/or the distributions are non-Gaussian, the credible regions will be obtained by
means MCMC techniques.

Case of dynamic uncertainty: Definition of B for frequency domain data. In this case
the support for the probability distributions will be the complex plane. Since several
sources of uncertainty may be present (i.e. uncertainty in the structure and parameters)
hierarchical priors and sets of competing models will be used.

Mixture prior distributions in the Nyquist plane will be derived for the case of linear
models expressed by means a set of basis functions and Gaussian distributions. Bayes’s
rule and the law of total probability will be used to compute the mixture posterior
distributions frequency to frequency. Finally, HPD credible regions in the Nyquist
plane will be obtained.

Application to fault detection: The iterative computation of the likelihood function
assuming uniform noise will be used to detect faults in a quadruple-tank process.
Multiple Input Single Output (MISO) case, MISO case with observer and Multiple
Input Multiple Output (MIMO) case will be considered and compared to set-
membership techniques.

For the case of a three-bladed wind turbine, deterministic uncertainty regions will be
obtained, and sensor and actuator faults will be detected assuming both uniform noise
and Gaussian noise.
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1.3 Outline

The outline of this dissertation is as follows.

Chapter 2 summarizes the state of the art of robust identification. In particular,
conventional system identification, stochastic methods and deterministic methods are
presented. Several examples of the literature are provided in order to compare these
techniques to the Bayesian technique explained in Chapter 3.

Chapter 3 is focused on the proposed Bayesian methodology to solve the robust
identification problem. The Bayesian Credible Model Set B is defined and
characterized. The construction of B in the parametric case and in the frequency
domain is illustrated. It is explained how to obtain the credible regions that constitute
the uncertainty regions, and several interesting features, such as the iterative
computation of the regions or the effect of the prior distributions, are illustrated.

Chapter 4 illustrates the application of the credible regions to the fault detection
problem. Two case studies are considered: a quadruple tank process and a three-bladed
wind turbine. In the first application, MISO case, MISO case with observer and MIMO
case are considered and compared to set-membership techniques. In the second
application, deterministic uncertainty regions are obtained and used for fault detection
assuming uniform noise and Gaussian noise.

Finally, Chapter 5 draws the conclusions of this work and point out several lines for
future research.

Additionally to the previous chapters, several appendices are provided to introduce
complementary material:

In Appendix A, we summarize some concepts of the Optimal Estimation Theory that
are used in this thesis. The point estimation problem and the set estimation problem are
presented. The maximum likelihood estimation technique is treated in detail, and a
comparison between the main point estimators is presented.

Appendix B is focused to the study of the orthonormal basis functions that are used in
system identification. Laguerre, Kautz, and generalized functions are presented for
linear systems, and bases for the Wiener and Hammerstein models are presented for the
case of nonlinear systems.

Appendix C summarizes the simulation techniques known as Markov Chain Monte
Carlo (MCMC). In particular, the Metropolis Hastings algorithm, the Gibbs sampler,
and the reversible jump algorithm are explained.

Finally, Appendix D contains many definitions of the Bayesian decision theory, and
presents the fundamentals of the Bayesian modeling, including the concept of subjective
priors.



CHAPTER 2

State of the Art of Robust Identification

The present chapter summarizes the main current methods for the identification of
model uncertainty. As a preliminary result, in Section 2.1, classical system
identification is presented. Specific Robust Identification methods, stochastic and
deterministic, are treated in Sections 2.1 and 2.2 respectively.

2.1 Classical system identification

The so-called Prediction Error Methods (PEM) constitute the classical solution to the
problem of system identification (Eykhoff, 1974), (Goodwin and Payne, 1977),
(So6derstrom and Stoica, 1989), (Schoukens and Pintelon, 1991), (Ljung, 1999a).

In this section we illustrate how this approach obtains a nominal model and
characterizes the uncertainty around it by means of the computation of the confidence
regions. For simplicity, we focus on the Output Error (OE) linear model case and
quadratic cost function.

2.1.1 Nominal model

The experiment: Let us assume that we have collected N input/output measurement
data obtained by applying an excitation sequence {u, }N=2 to an unknown system G,
and collecting the response samples {y,}¥-2 corrupted by additive measurement noise

{vnInzo,

25
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Yn = Gtrue(CI)un +v, , n=0,..,N-1 4)

where g is the forward shift operator, qu, = u,,;. We assume that {v,}¥=3 is a
sequence of i.i.d. (independent identically distributed) noise with variance ¢ and that it
is independent to the excitation {u, }N-2. To simplify the notation, we define y =

(yo, ---:)’N—l)T: u= (uo, ...,uN_l)T, and V= (Uo, ...,vN_l)T.

Cost function: The objective is to get an estimate G of G, from the experimental
data {u,, y,}N=&. The simplest approach is to compute a model G(q, ®) parameterized
by means of a d~dimension parameter vector @, which fits the experimental data by
minimizing the Euclidean norm of the prediction error, &, =y, — G(q, O)u,,. If we
define such a cost function,

N-1
1 5 ©)
=y D, ¢
n=0

the optimal estimate, 8,, which will be selected as the nominal model, is the Least
Squares Estimate (LSE):

0y = arg min Vy (6)

This solution is a particular case of the Maximum Likelihood Estimation (MLE). See
Appendix A for details.

Model structure: The computation of 8, depends on the selected structure for the
model. The simplest case is when the parameter vector @ parameterizes G(q,0)
linearly, G(q, ®)u,, = @10, where the row vector ¢, is the regression vector.

In AR (Auto Regressive) models, the parameter vector @ contains the coefficients of
both the model numerator and denominator polynomials, B(q) and A(q) respectively,
and the regression vectors @2 are built using the previous samples of the input and
output, for instance, @f = (u,,_; U, —Vn—» — Yn—1). See Appendix B.

Another common linear structure is

a-1

6(9,0)= ) 0,B() (7)
k=0

where B, (q) are fixed functions. These functions contain any prior information that we
already have about the system to be identified and that we do not want to estimate from
the measurement data (for instance, the poles position). In the Robust Identification
field, (7) is the most used structure and B, (q) are often selected as the orthonormal
basis functions of some series expansion (trigonometric, Laguerre, Kautz, generalized).
See Appendix B.
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If we use the basis functions B, (q), the regression vectors ¢} are deterministic and
given by

(pz;Z (Bo(@upn - Ba_1(qQ)u,) ®

The (noiseless) n-th sample of the model output is then

% ©)
G(q,0)up = Bo(@un - Bd—l(Q)un)< 5 >=<p?{9
041
and the all Asamples of the model output are
Bo(@uo -+ Ba-1(@uo 6o 01 6o (10)
G(q,0)u = : : < : >= : ( : )=<I>9
Bo(@un—1 - Ba_1(@Quy—1]| \Oa-1 @y-1/) \Oa-1

where matrix @ is addressed as design matrix. The experiment (4) in matrix notation is
then expressed asy = @0 + v.

Estimation of the nominal parameter vector: In the linear case, the solution presents
a closed expression that can be easily obtained. Since the cost function Vy =

%Zﬁ;&[yn — @1 0]? is quadratic in @, we can obtain its minimum value by cancelling
its derivative with respect to 0:

o—dv
—de N

O

1% .
= N 2(—@y) [yn - (Pne]

On

T
Remark: To obtain the expression above, the result d‘;—ge = @,, has been used.

The last equation can be expressed as

N-1 N-1
Pnyn = Z (pn(pZL’éN
n=0 n=0

where, by isolating the parameter vector, we have

N-1 1N-—1
§N = Z <Pn<P£ 2 PnYn (@8]
n=0 n=0

In matrix notation, the resulting nominal parameter vector that characterizes the nominal
model 1S
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0y =Ry'®"y ., Ry=oT® (12)

where Ry, is called the precision matrix and ®T = (@9 .. @n_1).

2.1.2 Uncertainty characterization

Mean and variance of the estimation error: To characterize the uncertainty around
the nominal model, it is worth noting that this approach assumes that the true system
can be totally described by a d-dimension parameter vector 0..,.. Therefore, the
identification error 8y = 8y — 0,,,,. depends only on the measurement noise and the
data length. To determine the quality of the estimate one can obtain the mean value and
covariance matrix of this error.

The response of the true plant is v, = @504, +v,, n=0,..,N — 1. Substituting
this value y,, in Equation (11) we have

N-1 -1/ N-1 N-1
éN = Z (Pn(PrTl Z (Pn¢£etrue + Z PnUn
n=0 n=0 n=0
and thus
N-1 “1N-1
§N = §N — Orye = Z (pn(prTl Z L2
n=0 n=0

In matrix notation, the parametric error is 8y = Ry'®Tv.

Since the measurement noise and the excitation are independent, the sequences {v,}N=3
and {¢,,}N=¢ are independent too. Moreover {¢@,}N=2 is a deterministic sequence if the
structure (7) is selected. Hence, the expected value of the error 8y is E[0y] =
Ry ®TE[v], where E[v] is the mean value of the measurement noise. If E[v]=0 (which
is the usual case), the estimate 8 is unbiased, E[8y] = 0,y

On the other hand, the covariance matrix of the error 8y, Py = E [(ﬁN — E[0y]) (0N —
E[ﬁN])T], is
Py = E[0,0}] = Ry ®TE[wT]®(Ry!) = 02R}.

Note that Py depends on the value of the measurement error variance, a2, which is
unknown, but it can be estimated from the experimental data. Lemma II.1 in (Ljung,
1999a, p554) establishes that an unbiased estimate for 2 is the following:

N-1

- 1 = 12

Gy = N—d Z[Yn - (leeN] (13)
n=
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Probability distribution of the estimation error: Even though the probability
distribution of the measurements is not normal, the usual case is that the probability
distribution of @, tends to be normal as the number of samples N tends to infinity. This
is a consequence of the application of the Central Limit Theorem to the sum of random
variables {y,}~NZ3 that constitutes the estimate, see (Ljung, 1999a, p556).

Thus, if we assume that a 0., exists, the probability distribution of the parametric
error is normal t00, 8y — 0,,,,~N(0,Py). For the i-th component we have 8, (i) —
04700 ()~N(0,Py(i,1)). The standard normal distribution is obtained by making

ﬁN (l) - etrue (l)

Py (1)

Then, by direct application of the definition of the y? probability distribution, we can
write (8 (i) — etme(i))TP,;l(ﬁN(i) — 046 (1)) ~x? (1) for one component.

~N'(0,1)

Remark: If a random variable Xis distributed as '(0,1), the random variable Y = X2 is
distributed as y?(1). (Casella and Berger, 2002, p53).

Finally, for the d components of the parameter vector the result is
(§N - etrue)Pﬁl(e\N - etrue)~ XZ (d)
where y2(d) denotes the y? distribution with d degrees of freedom.

The last expression allows defining the confidence regions for the estimate. The
probability that

(ﬁN - etrue)Plgl(’e\N - etrue) =« (14)

is x2(d), being « the probability level of the distribution y?(d). The resulting regions
are ellipsoids in the R% space, their shape is determined by Py and their size by the
probability level «. For the normal distribution case, i.e. {v,}Z3 are normal
distributed, the confidence regions are exact, otherwise they are only valid
asymptotically, for N — oo.

Example 2.1. PEM uncertainty regions in the parameter space

Let us illustrate the computation of the uncertainty regions in the parameter space.
Consider the plant in (Ninness and Goodwin, 1995),

e—ZS
Gerue(s) = (s+1)(10s+1)"

We collect N = 2000 input/output samples obtained by exciting the plant with a square
signal of frequency 0.02Hz and d.c. (direct current) level of 0.2V. The measurement
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noise is uncorrelated to the excitation and it is a Gaussian process with zero mean and
variance 0.005. The sampling time is T; = 1s.

The nominal model, of order 2, is a model based in discrete Laguerre functions

B = (Z5) ()7 e<1, i=12

where the pole is located at ¢ = exp(—0.2Ty), corresponding to the continuous time
pole at 0.2rad/s. The optimal parameter vector which minimizes the squared prediction
erroris ® = (0.1060 0.1673)7 and thus the resulting nominal transfer function is:

—0.018q+0.046
Go(Q) = elBl(q) + HZBZ (CI) = q2—1.637q+0.671'

Fig. 2.1 shows the nominal parameter vector and the confidence ellipses around it for
the 0.5, 0.8 and 0.9 probability levels.

Confidence regions
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Fig. 2.1. Confidence regions in the parameter space

Confidence regions of the model frequency response: The uncertainty region in (14)
is expressed in the parameter space. If we want robust control oriented models, we need
to translate the confidence region to the frequency domain. Let us illustrate the
procedure for the model structure in (7), G(q,0) = X423 6, B, (q).

For each frequency point w;, if we define B(e/®1) = (By(e/®)) .. Bg_,(e/®)), we

can write the frequency response of the true system as G.(e/“%) = B(e/%1)0rye.
The variance of the estimated frequency response is:

E [|G(ej“’i,§,v) - Gtrue(ef‘“i)|2] = B(e/)PyB*(e/¥1) 5)
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where the symbol * means conjugate transpose.

Remark: To prove (15) note that the variance is E [(BﬁN — B0, )(BOy — Betrue)T] =
BE [(ﬁN - etrue)(ﬁN - etrue)T] B".

In order to obtain the equivalent of (14) in the Nyquist plane, we will use the following
lemma of (Wahlberg and Ljung, 1992):

Lemma 2.1. Letx€e R4 £>0€ R*™4 and x"2"!x < 1. Then, for w = Ax € R",
n < d, where A € R™ is full rank, the following result is satisfied: w” (AZAT) lw <
1. [ |

In our case, £ = Py, and

Re (G(ejwi, 61\]) - Gtrue (ejwi)) Re (B(ejwi)) o)
o . = . (GN - etrue)
Im (G(ejwl, 91\/) - Gtrue (e]wl)) Im (B(e]wl)) X

w A

Therefore, the ellipses in the Nyquist plane are defined as:
wl(APyAT)"lw > «a (16)

where the a-level corresponds to the y? distribution with 2 degrees of freedom, x2(2).

Example 2.2. PEM uncertainty regions in the Nyquist plane.

Consider again the Example 2.1 (Ninness and Goodwin, 1995). Now we have obtained
the 90% confidence ellipses for the frequency response of the nominal model. Fig. 2.2
shows in the Nyquist plane the results for a Laguerre model of order 2 and for a
Laguerre model of order 8 along with the true system frequency response.

True plant and nominal model (Laguerre) of order 2 True plant and nominal model (Laguerre) of order 8

0.1

true
nominal 1 of
I confidence region (90%)

true
nominal f
I confidence region (90%)

. . . . . . . . . . . . . .
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 12 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 12
Real Real

(a) (b)

Fig. 2.2. True system and nominal model frequency responses. 90% confidence regions for the cases (a)
order 2 and (b) order 8
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In the example above we can see two facts. If the nominal model order is too low, the
resulting frequency response is so erroneous (biased) than the confidence ellipses are
nonsense. On the other hand, if we increase the model order, the model frequency
response approaches the true one, but the size of the uncertainty region (variance)
increases. These two effects are a consequence of the so-called bias/variance trade-off
explained below.

2.1.3 Bias/variance trade-off

When estimating plant models from a finite set of experimental data, the estimation
error can be decomposed in two error terms: the variance error and the bias error.

Variance error: The variance error is due (1) to the measurement noise corrupting the
experimental data and (2) to the finite length & of the sample. In a general case, it is
uncorrelated to the excitation signal (if the identification is performed in open loop) and
it decreases as the number of samples A increases. The variance error affects uniquely
to the model parameter values. If we assume that a model presents only variance error,
we are assuming that the model structure is capable of completely describe the plant
dynamics. This is what classical PEM assume and, therefore, the confidence regions in
Fig. 2.2 are only characterizing the variance error.

In the case of open loop identification and quadratic cost function, the variance error
satisfies limy_,q limN_,oo%Var[GO] = z"—iwwg. This expression is usually substituted by
the following approximate result (Ljung, 1999a):

d o, (w) a7

where d is the model order, N is the number of experimental data samples used in the
estimation, G, is the estimated nominal model and @, and &, are respectively the
spectral power densities of the measurement noise vand excitation signal w.

Bias error: On the other hand, the bias error characterizes the under-modeling. This is
due (1) to the lack of knowledge about the process to be modeled and (2) to the need of
using simple models (linear, time invariant, reduced order) for the control design. The
bias error can be interpreted as a model too, and its response magnitude and phase vary
with frequency. Unlike the variance error, the bias error does strongly depend on the
nominal model and the excitation signal used in the identification experiment (thus, the
need to adequately design the experiment).

In a first stage, the bias error can be reduced by increasing the model order. If the
model structure is richer, the model will be able to better describe the process to be
modeled. Nevertheless, increasing the model order also increases the variance error. In
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other words, one reaches a point where the SNR (signal to noise ratio) of the data is not
large enough to accurately estimate the parameters of a high order model.

This result is known as the bias/variance trade-off and it is a classical result in the field
of system identification, see for instance, (Ljung, 1999a), (Ninness and Goodwin,
1995), (Hakvoort and VVan den Hof, 1997), (Ninness and Hjalmarsson, 2003a), (Ninness
and Hjamarsson, 2003b).

The conclusion is that there exists an optimal model order such as it balances the bias
error decrease with the variance error increase and it corresponds to the smaller
estimation error. If the data sequence is too short and noisy, the optimal order will be
too low (see Example 2.3). As a consequence, the model will be so biased that the
confidence intervals corresponding to the variance error will not include the estimation
error (this is what happened in the first model in Example 2.2).

Example 2.3. Bias/variance trade-off

Consider again the plant and experiment of Example 2.1 and Example 2.2 (Ninness and
Goodwin, 1995). We have obtained the bias and variance errors for different Laguerre
models with orders varying between 1 and 12. To quantify the error we have used the
Euclidean norm between the true system and the nominal model. For the bias error we
have not considered the measurement noise and for the variance error we have
computed the average error for 20 different noise realizations. Results are shown in Fig.
2.3.

Bias error and variance error (N=100) Bias error and variance error (N=1000)

Total error
Bias error
—e— Variance error

Total error
Bias error
—=— Variance error

I
I
I
I
- -
I
I
I
I
-

Iagl,
Iagl,

Model order Model order

(@ (b)
Fig. 2.3. Bias/variance trade-off. Selection of the order that minimizes the total estimation error

Fig. 2.3 illustrates the effect of model order 4 in the variance error increase and bias
error decrease, but it also shows the effect of the data length ~. For a given number of
samples N, a large d decreases the bias error but increases the variance error, thus
increasing the total error. In Fig. 2.3(a), where the data length is short (/= 100) the
variance error increases faster than in Fig. 2.3(b), where the data length is larger (V=
1000). Thus, a small data length implies a larger total error and a smaller “optimal”
order. [ |
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2.2 Stochastic descriptions for model uncertainty

2.2.1 Model Error Modeling (MEM)

In the previous section, we have seen that the classical solution, although very used in
system identification, is not suitable for robust identification. The major drawback is
that the PE approach does not consider that residuals are due to both the measurement
noise (variance error) and the model structure (bias error). Model Error Modeling
(MEM) methods overcome this shortcoming.

Remark: Here we present a stochastic version of MEM methods. However, the MEM
concept is also valid in a deterministic framework.

a. Approach

The name MEM (Model Error Modeling) refers to a number of methods that aim to
obtain a model G, of the error between the nominal model G, = G(q,8y) and the true
system G.,.. Hence, the experiment of Equation (4) can be expressed as:

Yo =G6(q,0y)uy + Ge(Qup+v, , n=1,..,N (18)

Here, it is assumed that the component G.(q)u,, in (18) cannot be well described as a
realisation of a stationary stochastic process and that it is too much significant to be
neglected. In fact, the “size” of the error model G, is not negligible in most practical
situations, especially those in which the order of the nominal model G, must be small (a
typical requirement of robust control design techniques).

The uncertainty region for G, is then computed on the basis of G, and its confidence
regions. This line of work was initiated by (Ljung, 1997) and some remarkable
references are (Garulli and Reinelt, 2000) and (Reinelt ez al., 2002).

b. Identification of the model error

Once the nominal model G, = G(q,8y) has been identified, it is possible to evaluate
the size of the unmodeled dynamics by means the residual analysis. The residuals are
computed as &, =y, — G(q,0y)u,, and the error model G, can be interpreted as a
dynamic system where the input is {u, }N=2 and the output is {&, }Z3.

The error model G.(gq) can be identified by any system identification method, for
instance by classical identification methods.
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An important issue is the selection of the error model structure. It must be flexible
enough to reveal bias errors in the nominal model and to detect the frequency regions
where the uncertainty is significant, but at the same time its confidence regions must
remain small. There exist several choices, e.g., (Ljung, 1999b) uses FIR (Finite Impulse
Response) models while (Milanese, 1998) proposes the use of non-parametric models.
If the order of the error model is high enough, the remaining error will be basically a
variance error and the confidence regions could be computed from the covariance
matrix of the parameters.

c. Uncertainty bands

Once the error model structure has been selected and G, has been identified, upper and
lower error bounds G, ,,, (w), G, ;,(w) for the confidence regions of G, (w) are derived.
There exist several ways to combine the bounds G, ,,,(w), G, 1,(w) With Gy(w) and
G, (w) to obtain the uncertainty band around G,(w). Next example illustrates this point.

Example 2.4. MEM uncertainty regions

We consider the plant and experiments of (Reinelt ez al., 2002). The nominal model is a
continuous time fourth order Laguerre-type with the pole located at p = —0.2895 (for
the datasets 1 and 2) and at p = —0.5737 (for the datasets 3 and 4). Fig. 2.4(a) shows
the frequency response magnitude of the nominal model and the linear part of the true
model for dataset 1.

B@, @
F@@ ™ Dbp@ "
where the polynomial orders are n, =20, n. = 10, ng = 10 and n, = 20. The
polynomial coefficients are computed by means the pem Matlab™ function. Fig. 2.4(b)
shows the magnitude of the error model frequency response along with the upper and
lower error bounds |G, ., (w)|, |Ge 1o(w)|. These bounds are obtained by respectively
adding and subtracting 30 to the error model magnitude, where ¢ is the standard
deviation of the model error magnitude.

The error model is chosen as an Output Error model of the form ¢, =

dataset 1 Error model and confidence bands
30 100 T T
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Fig. 2.4. (a) Nominal model and linear part of the true model, (b) error model and confidence region
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A direct way to construct the nominal model uncertainty band is to add frequency to
frequency the error model to the nominal model, and then simply add and subtract the
30 confidence regions of the error model. Fig. 2.5(a) shows the resulting non-
symmetric region. This solution, although useful for model validation purposes, may
lead to the situation where the nominal model is outside its uncertainty band.

An alternative is to construct a symmetric band around the nominal that includes the
non-symmetric one. This is shown in Fig. 2.5(b) for the dataset 1.

30

Nonsymmetric uncertainty band Symmetric uncertainty band

[Junc. band
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[Junc. band
G ]
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Fig. 2.5. Uncertainty bands around the nominal model: (a) nonsymmetric, (b) symmetric

2.2.2 Non Stationary Stochastic Embedding (NSSE)

a. Approach

The Non-Stationary Stochastic Embedding (NSSE) method (Goodwin, Braslavsky, and
Seron, 2002) can be interpreted as a particular case of MEM, where the error model
G, = Gy — Gyye 1S described as a random variable, in particular, as a realization of a
non-stationary stochastic process whose variance grows with frequency.

The simplest selection for such a process is a random walk (also called Brownian
motion) in the frequency domain, that is, a zero mean process {A(w)} of independent,
infinitely divisible Gaussian increments,

Mw) = fow de(s) with E[de(s)de(s)] = o2ds 19)

The NSSE method takes a multiplicative description for the uncertainty and thus the
frequency response of the true system can be expressed as:




State of the Art of Robust Identification 37

G (w) = G&(w,0) + GF(w,0)1% (w) 20)
G (w) = Gi(w,0) + GL(w, 0 (w)

where the superscripts R and /refer to the real part and imaginary part respectively, and
{A%(w)} and {1/ (w)} are two independent processes with parameter ¢2. In practical
situations, the parameter vector of the error model @ can be selected equal to the
parameter vector of the nominal model @.

If we linearly parameterize the nominal model as in (7), i.e., by means of the functions
By (q), the system frequency response can be expressed as

6" (w) = Bf (0)0 + BR (0)0AF (w) Q1)
G' (w) = B/ (w)0 + B! ()01 (w)

where BF () = (Bf (), ..., Bf (@) ) and B! (0) = (Bi(®), ..., B4 (w)).

As in classical system identification, the uncertainty is described in the Nyquist plane
frequency to frequency by ellipses centered at the nominal model and with size and
shape determined by the covariance matrix X.(w,) = E[G,(w,)G.(w,)T], where
G.(w,) is the resulting total modeling error at frequency w,,
G.(w,) = (GR(w,) Gl(w,))T. The difference with classical system identification is
that the covariance matrix characterizes both the measurement noise (variance error)
and the under-modeling (bias error).

b. Identification of the nominal model

Since the method operates in the frequency domain, the first step is to obtain a point
wise estimate G of the true frequency response. This is then used to compute the
nominal model, i.e. to obtain an estimate for @.

Excitation signal: In order to obtain a frequency to frequency estimate of the true
system frequency response, the excitation must be a multi-sinusoid

m
U, = Z A;cos(wnTg + ¢;) (22)
=1

consisting of m sinusoids of frequencies {w;, ..., @y}, Not necessarily uniform spaced.
This way, the steady state response samples are given by

m m
Y = Y(T) = D Ag* @) cos(@unTs + 1) = Y Ag! () sin(wynTs + ) +
=1 =1

and the terms gR(w;) and g'(w;) can be obtained by correlation methods (they are the
coefficients of the trigonometric series):
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N
2
§" @) = 55 > YT cos(@inT; + @)
n=1

N
2
g'(@) = == > y(T sin(w,nT, + )
=1

True frequency response point estimation: The matrix expression for the point wise
estimate of the true system frequency response is then G = (®T®) 1dTy, where
G = (GR(wy) §'(wy) .. GR(wm) §'(wy))T,y is the vector containing the time
domain steady state response samples and the design matrix @ is

Ajcos(w1Ts + @) —Assin(wTs+ @) - —Apsin(w,T;+¢,)
@ — Arcos(w12Ts + @) —Agsin(w2Ts + @) -+ —Apsin(w,,2T; + @)
lAlcos(a)lNTs +¢,) —Asin(wNTg+ @) - —Aysin(w,NT; + (pm)J

The expression of ®@T® is simplified if the frequencies are selected such that the m
sinusoids are orthogonal in any interval of length NT,. In this case, ®7® is a diagonal

matrix, ®Td = = diag(42, 42, ..., A%, A%,).

Nominal model estimation: The parameters of the nominal model can be estimated
from G in a least squares sense, 8 =QG where Q= (B"B)"'B” and

B= (BR (@), B! (@), ..., BR (w,,), B! (wm))T.

c. Quantification of the total modeling error

The resulting total modeling error at any frequency ,, is G.(w,) = B(w,)0 — G(w,,),
where G,(w,) = (G5 (w,)  Gi(wp))", B(wy) = (B (w,) B'(w,))", and G(w,) =
(Ggﬂue (wn) GtIrue (wn))T '

And the covariance matrix 2,(w,) = E[G,(w,)G,(w,)T] presents two terms, one due
to the measurement noise and the other due to the random process that characterizes the
under-modeling,

Zo(wn) = Ky (@)o7 + Ke(wp)o? 23)

where

Kv(wn) = B(wn)QAQTBT(wn)
Ke(wn) = B@n)QRQ"B (,) + (diag(Bwn8)) @, — P(w,) — ¥ (@,)
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Wy Wq w1

— w w —

and A= (®Td)1 0 =diagB0)| | ;' .’ 2| ®12%2 | diag(B9),
w1 W2 W

diag(B(w;)8)w,

diag(B(wy—1)8)wy—y

e diag(B 0) and we assume that is
diag(B(wy)0)w, iag(B(wn)0) @n

q’(a)n) =B (a)n) Q

diag(B(wm)8)wy,
such that wy_; < w, < wy, Where w,_; and w; are two consecutive frequencies of the
excitation signal.

Finally, Equation (23) needs the variance values o2 and 2. These can be estimated
from the experimental data. Firstly, in the frequency domain, an unbiased estimate for
the measurement noise variance ¢;2 can be computed as (Goodwin and Payne, 1977)

1 T .
52 = - - 24
6 =5 (y— ®G) (y— ®G) 249

And secondly in (Goodwin, Braslavsky, and Seron, 2002) an unbiased estimate for the
under-modeling random walk variance o2 is derived,

., (G-B8) (G-BB)  trace[(1— B(B"B)'BMA] _, (25)
% = trace[( — B(B"B)-'BT)Q] _ trace[(I — B(BTB)-B)Q] ””

Example 2.5. NSSE uncertainty regions

Fig. 2.6 illustrates the results for the first example of (Goodwin, Braslavsky, and Seron,
2002). Fig. 2.6(a) shows the true system frequency response and its least squares point
estimation for the frequencies of the excitation signal.
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Fig. 2.6. NSSE. (a) Point estimate of the true frequency response, (b) Nominal model and uncertainty
band
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Fig. 2.6(b) shows the identified nominal system along with the uncertainty ellipses

computed by (23). The two functions used to parameterize the nominal model are

1 1 . . .
B;(s) = 05siD? and B,(s) = Ger D the resulting optimal parameter vector is
0 =(0.7798 2.3715)7, and the unbiased estimates for the measurement noise and
random walk are, respectively, 62 = 0.9807 and 62 = 0.0647.

d. Case of resonant systems

In the case of plants with lightly damped modes at high frequencies, the method may be
too conservative at low frequencies. For this reason, in the case of resonant systems, an
integrated random walk can be used

ww) = [}’ A(s)ds with  Efu(wu(wn)] = of (2 - %) o? for w, < w, @26)

Equations (23) to (25) are still valid but with the factors Q and ¥(w,,) slightly modified.
See (Goodwin, Braslavsky, and Seron, 2002) for details.

Example 2.6. NSSE uncertainty regions for the case of resonant poles

Fig. 2.7 illustrates the results for the second example in (Goodwin, Braslavsky, and
Seron, 2002). The plant presents resonant poles at —0.5 + j05. Fig. 2.7(a) shows the
uncertainty band obtained using the simple random walk of (19) while the uncertainty
band in Fig. 2.7(b) has been obtained by using the integrated random walk of (26).
Clearly, the conservativeness degree in the second case is lower.

Random Walk Integrated Random Walk
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Imag axis
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Fig. 2.7. NSSE. (a) Random walk vs. (b) integrated random walk for the case of resonant poles
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2.3 Worst case Robust Identification methods

In the stochastic methods of Section 2.1, the obtained uncertainty regions are
probabilistic since the measurement noise v, is modeled as a stochastic process,
characterized by means a probability distribution.

In the deterministic formulations, v,, is assumed to be unknown but bounded (UBB),
that is, it satisfies hard constraints, e.g. |v,| < 6,, n =0, ..., N — 1, where the bounds
&, are known. The deterministic noise description leads to hard bounded uncertainty
regions. For this reason, they are also known as bounding approaches (Milanese et al.,
1996).

2.3.1 Set-membership viewpoint on system identification

Deterministic methods rely on the Set-membership Identification (SMI) concept. This
approach consists of characterizing the model family where both the nominal model and
the hypothetical “true model” are assumed to belong. The size of such model set gives
us a quantitative idea of the uncertainty around the nominal model. And the bound of
the model set is a hard-type bound. See e.g. the book of (Milanese et al., 1996) and the
references therein.

Originally, set-membership formulation takes many ideas and terminology from the
Information-Based Complexity (IBC) (Traub et al., 1988). IBC is a branch of
theoretical computing science which considers solving problems based on partial and
corrupted information, hence the connection with the robust identification problem. A
brief summary about IBC can be found in (Chen and Gu, 2000; App. A).

a. Feasible Parameter Set

In the parameter space, the model family is characterized by the so-called Feasible
Parameter Set (FPS). To illustrate the construction of the FPS in the linear case
consider again the output error model of previous sections

Yo =0G6(q,0u, +v, ,|lv<é, ,n=0..,N-1 27)

Under the premise that the system G can be truthfully represented by the output error
model (27), the vector 0 has to be consistent with measurement data, that is, it must
satisfy the inequalities

v, —G(q,0)u,| <6, ,n=0,..,N—1 (28)

This is equivalent to say that any feasible parameter vector @ belongs to the feasible
parameter set, 8 € FPS,
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N-1

Fps = [)(0: Iy — G(q, Ounl < 5,) 29)

n=0

To estimate the parameter vector 0, and further quantify the estimation error, it suffices

to characterize the FPS. To see that this FPS defines a region in the parameter space,
consider that the model G (g, 8) is a map from R< to RY,

G(q,0): R* — RN

(30)
0 — [yotdy ... Yn-1x06y_1]

then the FPS can be viewed as a pre-image of the map G(q, 0).

When the selected model structure satisfies the linear regression, G(g, 0)u,, = ¢, the
FPS is a convex polytope. The procedure for finding the exact FPS is quite simplified
since |y, — @10| < &, defines the region between the two parallel lines in the
parameter space, orthogonal to ¢, and separated 26,, y, — @50 =+6,. The
intersection of the strips defined by all A pairs of parallel lines form a polytope in the
parameter space and can be obtained exactly by recursive methods (Mo and Norton,

1990). For general nonlinear models one must use Monte Carlo techniques (Ninness
and Goodwin, 1995).

0,

6,

Fig. 2.8. Membership set as a convex polytope (linear regression model)

Example 2.7. Feasible Parameter Set

Fig. 2.9 shows the FPS regions obtained for several values of § ranging from 0.2 to 0.8
for the same plant and experiment of (Ninness and Goodwin, 1995). The least squares
nominal model is the one obtained in the Example 2.1, 8,z = (0.1060 0.1673)7.
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Since this is a simulation example, we know that ||v||, = 0.2477 and that the total
(bias plus variance) error bound is |ly — ®0,s¢||, = 0.2783. Another bound for this
error can also be obtained by the triangle inequality

“y - (peLSE”oo < ||Ynoiseless - q)eLSE”oo + ”V”oo

which leads to the result ||y — ®0,z|l, < 0.0998 + 0.2477 = 0.3475. In summary, a
tightened selection for § is 0.3 so we know that § > 0.4 is too pessimistic and § = 0.2
is too optimistic.

Note in Fig. 2.9 that for values § > 0.4 the regions present the same form and their size
depends on the & value. Larger § values lead to larger uncertainty regions. Moreover
all the regions include the optimal value 0, and their centroids are near it.

On the other hand, the too much optimistic selection § = 0.2 leads to a small region but
it does not include the optimal parameter vector 0,5;. If we had to select a nominal
model from the & = 0.2 region, a direct solution would be to take its centroid 6, =
(0.1194 0.1742)T. But if we evaluate the total error for this latter model, we find
thatitis |ly — ®0.||, = 0.3117 > 0.2, thus the region is not valid.

FPS for § = (0.20.30.4 0.50.6 0.7 0.8)

0.35

0.3

0.25

0.2

0.1

0.05

Fig. 2.9. Feasible parameter set for several values of & (blue points indicate the centroid of each region)

In summary, the selection of the § value is critical. For too optimistic selections of §
(small values), the FPS regions may be constructed far from the “true” parameter value
and thus it will be erroneous. For pessimistic selections of & (large values) FPSs would
be large and they will contain models that will never occur. This fact increases the
conservativeness of the control design and hence it may penalize the control system
performance. And in the fault detection framework, it may lead to the lack of detection
of faults if they occur inside these large uncertainty regions.

[
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b. Overbounding techniques

Most times the FPS shape is too complicated to work with. Also its complexity grows
exponentially with the number of data . This is a problem especially when we want to
translate the uncertainty in the parameter space to uncertainty in the frequency domain
since the straightforward solution consists of mapping the FPS onto the complex plane
for each frequency of interest. This computation may be a prohibitive task depending
on the FPS complexity.

Hence, it is usual to look for set approximations or overbounding regions of a simpler
shape (Mbarek et al., 2003), such as ellipsoids (Fogel and Huang, 1982), orthotopes
(Meassaoud and Favier, 1994), parallelotopes (Chisci et al., 1998), or limited
complexity polytopes (Maraoui and Messaoud, 2001).

Example 2.8. Fogel Huang overbounding regions

The Fogel-Huang algorithm is an iterative method that finds the smallest overbounding
ellipsoid around an arbitrary-shaped uncertainty region.

To derive the ellipsoid region, the algorithm uses the fact that any 6 consistent with the
linear-in-the-parameters model and the disturbance assumption |v,| < &,, will satisfy
the condition

MZ

N-1
p.
6—"(yn — @10)* < an , Vpp, >0
n n=0

1
0

S
Il

which corresponds to an ellipsoidal region.

It is clear that some of the 0 that satisfy the above condition will be out the FPS defined
as in (29). To minimize this phenomenon, (Fogel and Huang, 1992) proposed an
appropriate, recursive selection of the positive definite weightings p,,.

Fogel-Huang recursive method, iteration: 10

Fig. 2.10. Fogel-Huang algorithm

Fig. 2.10(a) shows the iterative overbounding process for the same plant and experiment
of Example 2.7 (Ninness and Goodwin, 1995). The FPS to be overbounded is the one
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corresponding to the case 6 = 0.6. Fig. 2.10(b) shows the final ellipse obtained at the

35" iteration. The FPS is effectively inside this final ellipsoid.
[

c. Nominal model selection

In the worst case setting, feasible region bounds are hard bounds, that is, every
parameter outside such a region is not consistent with actual data and should be
discarded. Moreover, all models inside the hard-bounded feasible region are equally
probable to occur. In this context a practical selection for the nominal model is the
center of the FPS,

Projection estimate: Define the worst-case ¢, error as e(8) = supgesps||® — §||p.

Then, the central optimal estimate is given by 8, = argming e[8]. However, for the

case @ € R%, d > 1, it cannot be guaranteed that the estimate is consistent with the FPS
(Akcay, Hjalmarsson, and Ljung, 1996).

A suboptimal choice is obtained by minimizing the worst-case prediction error

05, = argmin sup |&,(0)| (1)
9 n=1n

This corresponds to a prediction error method in the #,, norm, or equivalently, to
finding the minimum & for which the resulting FPS is nonempty. This estimate is
usually addressed as Projection Estimate in the set-membership literature (Milanese and
Vicino, 1991) or Chebyshev Estimate in a statistical context (Akcay, Hjalmarsson, and
Ljung, 1996), and it does enjoy the useful property of being always feasible, that is,
05, € FPS.

Restricted projection estimate: The optimization problem proposed in (31) is a too
complicated min-max problem to deal with. Fortunately, if the noise is £,-norm
bounded, the FPS will form a polytope in R¢ and it is possible to use an approximation
known as the Restricted Projection Estimate (Garulli, Vicino, and Zappa, 2000), which
involves estimating the suboptimal parameter vector, with limited computational effort,
by linear programming

R (32)
0" =arg einﬂ{d
€

d
y— z B;6;u
im1

This approximation enjoys some nice properties. It does not depend on the actual value
of the noise bound §. And it also equals the maximum likelihood estimate when
assuming that the innovations e present symmetric, uniform distribution, with unknown
bound.

[oe)
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Linear programming solution: The restricted projection estimate (32) can be solved
by linear programming. The aim is to find @ such that c in |y — ®8| < ¢ is minimal.
An alternative expression is —c <y — ®0 < c. And this, in turn, is equivalent to the
following two equations, 0 — c <y, —®0 — ¢ < —y. In matrix notation,

® -17/0 y
[—CD -1 (c) = (—Y)
where 1 is a column vector of 1’s.
The problem can be solved either in time and frequency domain, provided the particular
definition of & and y (see previous sections). In both cases, we can use the Matlab
function x=linprog(f,A,b) which solves the following optimization problem

min, fTx subjectto Ax<b

Thus we can solve our problem by defining f7 = (04xg 1) where 0444 is a d

component row vector of 0’s, x = (g) A= [_qu :ﬂ and b = (_yy)

Example 2.9. Nominal model by restricted projection estimate

The restricted projection estimate has been computed for the plant of (Goodwin et al.,
2002) and the obtained nominal model is shown in Fig. 2.11. The results are compared
to the true plant and to the model obtained by least squares estimation. Also, results for
time domain data (Fig. 2.11(a)) and frequency domain data (Fig. 2.11(b)) are compared.

Time domain identification Frequency domain identification

True plant True plant

Magnitude (dB)
Magnitude (dB)

(@) (b)
Fig. 2.11. Restricted projection estimate, for (a) time domain data and (b) frequency domain data
|

2.3.2 Worst case system identification in 7.
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a. Feasible Model Set

The Feasible Model Set (FMS) can be viewed as an extension of the FPS and it is more
general since it contains models, not only parameter values. The name FMS is not
standard, in particular it is addressed as “feasible systems set” (Milanese and Taragna,
2005), as “unfalsified systems set” (Hjalmarsson, 2005), and even as “consistency set”
(Mazzaro, Parrilo, and Sanchez Pefia, 2004).

To construct the FMS one has to consider both a priori information and a posteriori
information. The a priori information consists of the assumptions on the system
dynamics (model class G) and the assumptions on the measurement noise (noise class
). Model class and noise class are combined to build the so-called Candidate Model
Set (CMS). The a posteriori information consists of the measurement data {y,,, u, } =&
obtained by means one experiment over the system. The combination of the CMS and
the measurements leads to the FMS,

FMS={G€G: |y,—G(q0u,|eN, n=0,..,N—1} (33)

Let us illustrate the construction of the FMS. For instance, a typical assumption on G is
that the system is “exponentially stable”, that is, the impulse response satisfies the
following restriction: |g,| < Kp™, n=0,1,2,.., with K > 0 and p > 1. The model
class can be expressed as G = {G € H(D): |gnl < Kp™, K>0, p>1,Vvn =0},
where H.,(D) is the space of all functions F analytic in the open unit disk D =
{z € C: |z| < 1} and bounded in the H, norm ||F || = sup,ep|F(2)| < oo.

Remark: In robust identification it is usual to define the z-transform in terms of z* (instead
of z%¥). Therefore causal stable systems G(z) are analytic inside the unit circle. This is
useful because there exist many identification and interpolation techniques on functions
analytic in the unit disk. Some authors call it the A-transform (Chen and Gu, 2000).

Regarding the disturbance class %; additive measurement noise is usually assumed to be
bounded in magnitude, ie., |v,|<é , n=0,..,N—1. Thus, NV ={veE
RY: |lv|lo < 6}. Here we have considered #.,-bounded noise but other bounding
criteria can be used. Of course, much more complex choices for G and v are possible.
The combination of G and o with the actual measurements y = (vg, ..., Yn-1)",
u = (ug, ..., uy_1)" leadsto FMS = {G € G: |ly — G(q,0)ul|,, <6 }.

b. Formulation of the Robust Identification problem in

Robust Identification first appeared to be used in Robust Control techniques, especially
in H,, synthesis methods. See a survey in (Chen an Gu, 2000). In this context, the
formulation of the robust identification problem in #,, is the following:

Given:

(1) The plant a priori information in the form of a set G such that G4, € G € Ho,

(if) the noise a priori information via a constant § > 0 such that v € ' (6) < ¢, and
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(iii) the experimental a posteriori information obtained via the experiment operator
Nn: Heo X oo ¥ € defined by [ny(Geyer V), n=0..N — 1, where N is the
number of samples.

Find:

An identification algorithm Ay such that it maps the a priori information and the a
posteriori information data to an identified nominal model, Gy = ANy (Girue, V)], and
that the worst case identification error

e(AN' 61 g) = S&‘ég ”Gtrue - AN [nN (Gtrue: U)] ”oo (34)
VEN(5)

converges in the sense that limy-w e(4y, 6,G) = 0.
6—-0

In addition, derive explicit bounds on e(Ay, 6, G). O

The original formulation has been extended by many authors in order to include time
domain data, frequency domain data and mixed time domain/frequency domain data,
and in order to produce models with a parametric part and a nonparametric part. See
(Mazzaro, Parrilo, and Sanchez Pefia, 2004) for a benchmark example with these
extensions.

c. Types of algorithms

The problem formulation of the previous section leads to different types of
identification algorithms. An identification algorithm is just a rule that delivers a
nominal model on the basis of the available information (FMS) and particular
specifications for the nominal model (structure, order...). We speak of conditional
algorithms when restrictions on the nominal model are posed. Also, an identification
algorithm is said to be /inear if it is a linear function of the a posteriori data, otherwise
it is said to be non-linear. 1t is said to be untuned if it does not depend on a priori
information about the plant and the measurement noise; otherwise it is said to be tuned.

Linear algorithms: Linear algorithms operate linearly on experimental data. They are
simple and require low computational effort.

However their usefulness in robust identification is limited. Untuned linear algorithms
are developed using polynomial approximation techniques, and are shown to be
divergent in the worst-case. Tuned linear algorithms, on the other hand, are convergent
but not robustly convergent, and are constructed based on least squares optimization.
But this diverges on the worst-case.
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Two stage nonlinear algorithms: Non-linear algorithms have been developed to
overcome the robust convergence limitations of linear algorithms. In the case of
frequency domain measurements, a basic technique consists of two steps:

1) Find a trigonometric polynomial 7 (i.e. a polynomial in zand 1/2z) that models
the data closely.

2) Given 7, find the rational function in the disc algebra F that minimizes ||T —
F|| over the unit circle. This second stage involves solving the Nehari’s
problem. See (Chen and Gu, 2000) for details.

Two stage non-linear algorithms present better properties than linear algorithms.
However, they produce approximate models of excessive order and there is no
guarantee for the identified model to belong to FMS.

Interpolatory algorithms: Interpolatory algorithms always yield nominal models
belonging to FMS, see e.g. (Milanese and Taragna, 2002) and (Parrilo et al., 1999). In
general, a two-step procedure is carried out:

1) Validation of the FMS.

2) ldentification of a model belonging to FMS by means of nonlinear interpolation
techniques.

(Parrilo et al., 1999) propose an interpolatory algorithm with direct application to #,
robust control design since the resulting model is presented in terms of a Linear
Fractional Transformation (LFT) parameterized by a free function Q. Thus, this method
is very close to the H,, robust control issues.

For another example of interpolatory algorithm, consider the nearly optimal algorithm
of (Milanese and Taragna, 2002). The algorithm relies on the value set approximation
(the value set is defined as the mapping of the FMS to the Nyquist plane). The
procedure is as follows:

For any frequency, the first step is to compute the inner and outer approximations
VI4 (w) and VOZ (w) of the value set V(w) and to compute their centers. Then, on the
basis of the value sets centers, a nearly optimal (usually FIR) model G, of order d is
obtained.

The identification error is minimized in two steps: (1) For given n < d, compute a
reduced model G (@) by Hankel norm approximation methods, and (2) using GZ (0) as
starting point, perform the nonlinear optimization 8°Pt = argming e(G,,(0)) in order to
obtain the model that minimizes the identification error.

Finally, the order is selected by evaluating the optimality level of G, (0°P!) and
choosing the order n by trading off between model set complexity and achievable
optimality level. The final identified model set is given by G,(0°P!) = {G(08°Pt) +
A ANl < e(G(8°P1))}.
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Example 2.10. Value set computation

Fig. 2.12 shows the key step of the procedure described above which consists of the
value set approximation. Results are given for the same example of (Milanese and
Taragna, 2002). Fig. 2.12(a) gives the detail for the value set corresponding to the point
wy, = km /1024, k =5, while Fig. 2.12(b) shows the true frequency response along
with the value sets for k = 208, 224,240. All polytopes have been computed with 16
vertices and assuming model order 130.

Value set (inner and outer polytopes) for wk:kn/lo40, k=5

True plant and value sets for w,=kn/1040, k=208,224,240

0.3

Real
Real

01f &

-0.3t

. . . . . . .
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Imag

Fig. 2.12. Set value approximation in the nearly optimal algorithm: (a) Value set for k=5, (b) Value sets
for k=208, 224, 240 and true frequency response

This method is intensive computationally since the computation of each polytope
involves as much optimization steps (via the Matlab® 1inprog function) as number of
vertices.

[

2.4 Summary and conclusion

We have summarized the main features of classical system identification and robust
identification. The major drawback of classical system identification is that it only
characterizes properly the model uncertainty due to the variance error. Robust
identification methods, both stochastic and deterministic, overcome this problem by
explicitly assuming that the model uncertainty is due to the variance error (measurement
noise and data length) and to the bias error (under-modeling). Stochastic methods use a
probabilistic description of the errors and thus lead to probabilistic uncertainty regions.
Deterministic methods rely on the concept of unknown but bounded errors and thus lead
to hard bounded uncertainty regions.




CHAPTER 3

Bayesian Approach to Robust Identification

In this chapter, we define and characterize the Bayesian Credible Model Set (BCMS).
The BCMS serves as a basis for the formulation of the Bayesian Robust Identification
problem. The construction of the BCMS in the parametric case and in the frequency
domain is illustrated. It is explained how to obtain the credible regions that constitute
the uncertainty modeling in the Bayesian framework, and connections to the existing
deterministic and stochastic robust identification methods are shown.

3.1 Bayesian Credible Model Set

One of the key ideas of the present thesis is to define a probabilistic model set
containing all candidate models (a priori information) consistent with measurement
data (a posteriori information). We call such a set the Bayesian Credible Model Set
(BCMS) and we define it in terms of model posterior probability distributions.

3.1.1 Definition and main features

Definition 3.1. The Bayesian Credible Model Set (BCMS) is the set
B={G€G: p(Gly) =c(a)} (35)
that contains all the models G belonging to a model space G whose posterior probability

distribution conditioned to measurement data, p(G|y), is higher than a given critical
value c(a) where 100(1 — a)% is the desired credibility level. O

51
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About the term “credible”: The set B is inspired in the Feasible Model Set (FMS) of
deterministic methods (see Chapter 2). “Feasible” is a term from the information based
complexity theory, which is the origin of worst case set-membership identification
methods. Since the underlying theory in the present approach is the Bayesian
estimation theory, we rather use the term “credible”.

Prior and posterior distributions: As in the FMS, the set B combines a priori
information with a posteriori information. In the FMS the a priori information is
contained in the candidate model set (CMS) which consists of a noise class and a model
class. In the set B, these two classes are defined by means the prior probability
distributions of the noise p, (v) and of the model p(G).

The measurement data y, i.e. the a posteriori information, is introduced into the credible
set by means the likelihood function of the observations y conditioned to the model G,
p(y|G). Given the model G, this likelihood presents the same probability distribution as

the noise, i.e., p(y|G) = p,(¥|G).

The posterior distribution p(Gly) of the model G conditioned to the observations y is
obtained by the application of the Bayes’ rule,

py.6) __ pyl&)p6) (36)
r(y) [pyl&)p(G)dG

p(Gly) =

where p(G) is the model prior distribution, p(y,G) is the joint distribution of model and
measurements, and the factor p(y) is just a normalizing constant.

Finally, we have

p(Gly) < p,(y|G) - p(G) 37

where the prior distribution p(G) contains the information about the plant before the
data is obtained while the posterior distribution p(G|y) contains the information about
the plant updated by the measurements y.

Time domain and frequency domain data: Equation (35) is expressed in terms of
time domain data y = (y,, ..., yy—1) T, but it can accommodate frequency domain data
G = (G(wq), ..., G(wy)) T and mixed time domain/frequency domain data as well.

Stochastic nature: The set B is a stochastic characterization of the model set which is
consistent with the measurements at hand. The set B can be viewed as an extension of
the probabilistic likelihood-based regions of classical system identification (see Chapter
2) but it goes a step ahead in the sense that it allows the entry of prior knowledge. The
appropriate choice of the prior p(G) may reduce the bias error and thus yield smaller
uncertainty regions.
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Consistency tests: The Bayesian viewpoint allows updating/correcting the prior
beliefs. A grossly erroneous p(G) may be detected once the data is collected because,
in such a situation, the resulting likelihood of the observations is far from p(G). Also
posterior distributions yielding disjoint credible regions may provide useful information
about the consistency between the model and the measurements. This feature is useful
in model (in)validation or fault detection procedures where one has to make a decision
on the basis of the consistency between model distributions and likelihood of the
observations.

Iteration: The possibility of iteration is another advantage of this approach. The
posterior distribution obtained by an experiment p(G|y) can be used as the prior
distribution for a new experiment. In SMI, it is well known that making more
experiments may reduce the size of the FMS. The Bayesian approach implements this
process in a formal way.

Principle of stable estimation: The principle of stable estimation Or precise
measurement (Edwards, Lindman, and Savage, 1963), (Peterka, 1981), states that, in the
case of large or medium length of observation data set (say for & of order of several tens
or more), if the data do contain information about the unknown system, and if the
likelihood function is well peaked, then even a rather drastic modification of the prior
distribution does not significantly change the posterior distribution. Moreover (Berger,
1985) shows that in situations of stable estimation, the posterior can be approximated by
a normal distribution.

However, it has to be said that the principle of stable estimation is not a generally valid
principle. It applies only when data really carry the information about the parameters
which are to be estimated. It does not apply in the cases of redundant, non-identifiable
or weakly identifiable parameters.

The practical implication of the principle of stable estimation is that one does not need
to worry too much about the choice of the prior distribution and that any prior
distribution which is flat relatively to the likelihood function is good enough.

Next example (Eykhoff, 1974) illustrates how the Bayesian estimate effectively
converges to the unknown true value when the principle of stable estimation applies.

Example 3.1. Bayesian point estimation of a single parameter

Consider that we want to obtain an estimate 8 for a single parameter # which
“unknown” true value is 8 = 5. Suppose that we perform N = 10 measurements of the
parameter. We can express the generation of these measurement data by means the
following linear regression model,

Yo =0u,+v, , n=1,.. N
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where the excitation u is taken as u,, = 1, Vn. Regarding the measurement noise v, we
assume that its probability distribution is standard normal, v~N'(0,1) and statistically
independent of 8. We also assume that it is stationary, that is, that the distribution
p,(v) does not change with time.

Note that, for a fixed value of the parameter 8, the likelihood of the observation y,
p(y|8), presents the same probability distribution than the measurement noise, since

p(y10) =p,(y — 0u) = p,(y — 6).

Before making any measurement, we can make a guess about the parameter value. For
example, we think the value can be 2. But we are not too much convinced about this, so
we recognise a standard deviation of, say, 4. The more uncertain we are the greater will
be the assumed deviation. So, let us suppose that our prior knowledge about the
parameter is normal distributed as ~'(2, 42).

Fig. 3.1(a) shows the joint prior distribution pg, (8, v) = pe(8)p,(v), Where py(8) is
the parameter subjective prior distribution.

joint prior p(6,v) joint prior p (6,) and first measurement

P 10 . , .
(it py (6

v=0
— wy@etu) 4

E L L L L L L L
v -10 10 -10 -8 -6 -4 -2 0 2 4 6 8 10

(@) (b)
Fig. 3.1. (a) Prior joint distribution of noise and parameter, (b) contour plot and first measurement

Suppose now that the first measurement gives the value y; = 5.8810. The posterior
distribution obtained by means Bayes’ rule (36) can be viewed as a “cut” through the
prior joint distribution given by the line v; = y; — 6u = 5.8810 — 6. Note that the line
corresponding to the parameter prior distribution pg(8) was v = 0 (see Fig. 3.1(b)).

Fig. 3.2(a) shows how this single measurement has improved a lot both our knowledge
and certainty feeling about the unknown parameter.

Finally, suppose that we now use this posterior distribution as prior distribution before
taking the second measurement and repeat the procedure for the N measurements. Fig.
3.2(b) shows the improvement as long as new measurements have entered to the model.
At each iteration of Bayes’ rule, the last posterior distribution obtained served as the
new prior distribution.
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Prior and posterior after 1 measurement Posterior distributions for n=1,...,N
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Fig. 3.2. (a) Prior and posterior distribution after the first measurement, (b) posterior distributions for all
the measurements

3.1.2 Particular cases of the BCMS

Equation (35) shows a general case for the B. Different classes of B can be defined if
we select different supports for the probability distributions. Here we will consider that
the support can be the parameter space ©, the complex plane, or the model spaces ¢,
and H,.

a. BCMS defined in the parameter space

If the support for the model class is the parameter space @, we define the Bayesian
Credible Parameter Set (BFPS) as

Bg ={0 € 0: p(0ly) = c(a)} (38)
This set is useful when the structure of the model is fixed and the only uncertainty is in
the parameters value. Note that this is the case considered in conventional system

identification and set-membership methods which assume the existence of a 0, such
that Girye = G(Otrye)-

b. BCMS defined in the frequency domain

The set B can be defined in terms of the model frequency response. In this case the
support is the complex plane. The Bayesian Credible Frequency Response Region
(BCFR) is defined as

B, ={G(jw) € C: p(G(w)ly) = c(a)} (39)
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This case is interesting because we can define a credible region at each frequency (for
all frequencies contained in the excitation signal) in the same way than MEM, NSSE
and deterministic interpolatory algorithms do. We define such a Bayesian Credible
Value Set (BCVS) as

By, ={G(jw;)) € C: p(G(jw)ly) =c(a), i=1,..,m} (40)

In the robust control application, this latter set is interesting for various reasons. The
frequency dependent uncertainty bands W (w) needed by robust control techniques can
be obtained by combining the credible regions defined in (40). Another advantage of
this set is that, at each frequency, the support for the probability distributions is the
Nyquist or Nichols plane so the probability distributions are two-dimensional. This fact
facilitates the computations and also provides a visual, intuitive representation of the
model uncertainty.

c. BCMS defined in the spaces £; and 3,

Strong connections to robust control can be obtained if the following two credible sets
are defined. The Bayesian Credible ¢, Set is defined as

By, = {h € £1: p(hly) = c(a)} (41)
while the Bayesian Credible #,, Set is defined as
By, ={H € Ho: p(Hy) = c(a)} (42)

In the case of B, we can consider prior distributions on the impulse response h which
satisfy the usual prior knowledge conditions, |h,| < Kp™, n=0,..,N—1, K >0,
p <1

In the case of By, prior distributions on the frequency response G would satisfy
|G|l = sup,eplG(2)| < K, where D is the open unitdisk D = {z € C: |z| < 1}.

Both sets in spaces #; and H, could be dealt by using tools of the Bayesian
nonparametric statistics, which also allows working with infinite dimensional spaces
(Robert, 2001).

3.1.3 Bayesian robust identification problem. Methodology

The definition of the Bayesian Credible Model Set allows us dealing with the Bayesian
Robust Identification problem in an analogous way than deterministic methods. The
whole modelling procedure is described below. Next sections illustrate the
development and results of the proposed methodology.
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The experiment: In the next sections, we assume that we have collected N
input/output measurement data obtained by applying an excitation sequence {u,}N=3 to
an unknown system G, and collecting the response samples {y, }N=3 corrupted by

additive measurement noise {v,}N=3,

Yn = Grrue(@Qup + vy, , n=0,..,N-1 (43)

where q is the forward shift operator, qu,, = u,,,. To simplify the notation, we define
y = (yo, ---::VN—l)T: u= (uo, ...,uN_l)T, and vV = (vo, ...,UN_l)T.

Prior information or assumptions: If we have any prior information about the plant
Girue @nd measurement noise v, it will be used to select the prior distributions for the
model p(G) and measurement noise p,, (v).

If we do not have any prior information, we must take assumptions, more or less
educated, about the plant and noise.

A typical choice in stochastic methods is to assume that the noise {v, }N=2 is a sequence
of stationary i.i.d. (independent identically distributed) white normal noise with zero

mean and variance ¢;2 and that it is independent to the excitation {u,,}5=;.

A typical assumption about the plant is that it is BIBO (Bounded Input Bounded Output)
stable with parameters belonging to a certain region of the parameter space.

Assign (subjective) prior probability distributions to the model and noise: Select
p(G) and p, (v) on the basis of the prior information and/or assumptions. In the case of
p(G), the support can be the parameter space, the complex plane, or a model space (¢4,
H.). Moreover, when there are several sources of uncertainty (structure, order...)
mixture and hierarchical distributions can be used.

In a typical Bayesian framework, these distributions are subjective, thus indicating the
degree of confidence of the engineer on her previous information about the system.
Note that prior distributions can also be interpreted as an indicator of the ignorance
degree.

Compute the likelihood function: That is, compute the sample distribution p, (y|G)
corresponding to the likelihood of observations y for the assumed model G, on the basis
of the previously defined prior p,(v). This can be done numerically, for a grid of
values for G.

Compute the posterior distribution: Apply the Bayes’ rule to the likelihood function
P, (y|G) and to the prior distribution p(G) in order to obtain the posterior distribution of
the model p(G|y). This can be done analytically, numerically o by means MCMC
(Markov Chain Monte Carlo) methods.
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Obtain the credible regions: Select a probability level 100(1 — a)% and compute the
corresponding threshold ¢ = c(a) that establishes the size of the Bayesian credible
model set B ={G € G: p(Gly) = c(«)}. Obtain the resulting highest posterior density
(HPD) regions. These will constitute the uncertainty regions in this framework.

Identify the nominal model: Identify a nominal model on the basis of the posterior
model distribution. Several criteria can be used in order to infer models from the
posterior. One straightforward possibility is to select the maximum a posteriori (MAP)
estimate. Another possibility is to define a penalty function and perform minimum risk
(MR) estimation. This second choice is useful in order to penalise model complexity,
improve the system robustness (by penalty functions derived from robustness theorems)
or to take into account the effect of wrong modelling at critical frequencies.

3.2 Construction of the BCMS in the parametric case

In the parametric case, the model is characterized by means a parameter vector 8. To
characterize the parametric uncertainty, we will obtain the Bayesian Credible Parameter
Set (BFPS),

Be ={0 €0: p(0)y) =c(a)}

Note that the BFPS does not impose any restriction about the linearity of the model. It
is also valid for nonlinear models, for instance, for the Wiener and Hammerstein models
presented in Appendix B. However, in this section let us illustrate the procedure for the
simplest case, namely the linear regression model case with Gaussian noise.

3.2.1 Likelihood of the observations

Measurement data, i.e. a posteriori information, is entered to the Bayesian credible
model set (BCMS) by means of the sample distribution or likelihood function p(y|G, v)
of the observations y conditioned to the measurement noise v and the plant model G.

Linear regression model with Gaussian noise: Let us assume that we have gathered
N samples of time domain data y, corrupted by additive Gaussian measurement noise v
with variance A = ¢2. The linear regression model is parameterized by means of the
vector 8, y = ®0 + v, where the design matrix @ is the one defined in Chapter 2.

The likelihood of the observations jointly conditioned to noise and model (parameter
vector) coincides in form with the probability distribution of the measurement noise.
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p(y[0, )~ py(y — ®6[1) (44)
For the case of Gaussian noise, we have (y|0, 1)~N (®6, AD), i.e.,

10, = = exp( — = (y - 6)7(y — ®0) )
PR A=y P\ " 22 Y y

Once obtained p(y|0,4) subsequent unconditional likelihoods can be obtained by
marginalization (law of total probability), that is,

p(ylA) = f p(y18, )p(8]2)de

) = j PIDPA)dA
and

p(yl0) = f p(y10, Dp(1]0)dA

p(8|)p(D)

where p(4|0) can be obtained from p(41|0) = o)

Recursive computation of the likelihood: The likelihood function can be numerically
obtained for a grid of candidate parameter vectors 0; by assuming that the error samples
e, = Y, — ¥, Where 9, = @1 0;, are i.i.d. (independent identically distributed)

N-1
pv(yleir A) = 1_[ pv(yn - ynlei'l) (46)
n=0

The expression above is useful for the implementation on-line, where new
measurements go entering to the model and modifying the likelihood function and
posterior model distribution.

Model sets from the likelihood: Actually, the likelihood function is enough to define a
model set (Hjalmarsson, 2005). A first model set can be defined by using the
expression obtained in Chapter 2:

G, = {6: (By — O)P1(By — 0) < x2(d)}

where d is the model order, Py = ARy! is the covariance matrix, and Ry = ®T® is
the precision matrix.

Another model set can be defined by using the negative log-likelihood function (see
Appendix A),
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1
L(8ly,A) = —logp(y|6,4) = ct + ﬁ(y — ®0)"(y — 90)

The resulting set is:

1
G, ={0: (v - @0)(y - @8) < Z(W)}

3.2.2 Computation of the posterior distribution

Model sets G, and G, are the ones used in classical system identification techniques. In
the Bayesian approach these model sets are tuned by means of prior probability
distributions containing the prior knowledge about the system. The result is the
posterior distribution of the model, p(0]y), which allows the characterization of the
model uncertainty by means the set B = {0 € ©: p(0|y) = c(a)}.

Let us illustrate the computation of the posterior distribution for the case of Gaussian
prior distributions and Gaussian noise.

Gaussian prior on the parameters: Consider again time domain data and linear
regression model. We assume that the prior distribution of the parameter vector is:

(6)~ V'(8,, AR5 ") 47

where we can select arbitrary values for the prior parameter vector 8, and for the prior
precision matrix R, . If the noise variance is not known we can substitute A by E[4].

Likelihood function: Assuming zero mean Gaussian measurement noise with
unknown variance A, the likelihood function is

(v|0, )~ (@0, E[1]])

If the noise variance is known we can substitute E[A] by A.

Posterior distribution: The resulting posterior distribution is obtained by applying the
Bayes’ rule. The result is:

(Bly, )~ N (O(¥), P(y)) (48)

with 8(y) = (R, + Ry) 1 (®@"y + R;0,) and P(y) = E[A|y](R, + Ry)™Y, where
Ry = ®Td. Again, if the noise variance were known we can substitute E[A]y] by A.
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Proof:

The application of the Bayes’ rule implies the product p(0|y, 1) «< p(y|0,4) - p(0),
where

1 1
p(yl6,4) = Wexp <—ﬁ (y—®0)(y - 4’9))

1
p(®) = exp (‘ﬁ (0—00)"Ry(6 - 90))

(2m)4/2| ARG |
One the one hand we have:
(y—®0) ' (y—®0) =y'y—y"®0 - 0"®"y + 87R, 0
(0 —0,)"Ry(0—0,) =0"R,0 —8TR,0, — 07R, 6 + R0,
The sum is:
(y — ®0)"(y — ®6) + (6 — 6,)"R,(6 — 6,)
= 0T(Ry, + Ry)0-0T (R0, + ®"y) — (8]R, + y"®)0 + yy
+ 0'R,0,
Defining 8y = (Ry + Ry) " 1(R,0, + ®Ty), we have
(y — ®0)"(y — ®6) + (6 —0,)"R,(0 — 6,) L
= 0"(Ry + Ry)0—0"(R; + Ry)0y — 05 (R, + Ry)0 +yTy
+ 0'R,0,
Now, note that
0L (R, + Ry)By =yTy + 0]R,0,

since

0L (R, + Ry)Oy = (BERO + YT¢)§N = (GERO + YT‘D)(RO +Ry) (R0, + @Ty)

Finally

(y — 0)7(y — @8) + (8 — 0,) Ry (6 — 8y) = (8 — 8y)' (R, + Ry)(0 — By)

1 _ _
p(8ly, 1) « exp (—ﬁ (8—0y) (R +Ry)(0 — eN)>

Note the influence of the prior distribution: if the prior precision matrix R, were zero
(that is, infinite prior covariance P, = ARg?, i.e., no prior knowledge at all), the results
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coincide with the ones of the maximum likelihood estimate (least squares estimate) of
the classical system identification presented in Chapter 2.

(6ly, )~ V (Ry' @"y, E[A]ly]Ry") (49)

Also, in a general case, if the number of samples N is small the prior precision R,
matrix will dominate in the posterior precision matrix, (R, + Ry). As the number of
samples N increases, the experimental precision matrix Ry will dominate in the
posterior precision matrix.

Finally, the posterior distribution p(0|y, A) is the joint distribution of all the parameters
0;, i =1..d. If we want to compute the marginal distribution of a particular parameter
6;, we need to solve the following integral,

PO,y A) = fp(9|y,A)d91,...,dHi_l,dOiH,...,de (50)

3.2.3 Credible regions in the parameter space

a. Highest Posterior Density (HPD) regions

Once we have defined the posterior distribution p(0]y, 1), we need to select a critical
value c(a) to bound the Bayesian Credible Model Set and thus define the uncertainty
(credible) region. This region will contain all the values of @ such that p(0]y) = c(a)
where 100(1 — @)% is the desired credibility level.

Selection of the credibility level: If the desired credibility level is 95% (a = 0.05), the
“cut” value ¢ corresponds to the region in the support of the posterior p(8|y) for which
the probability content is the 95% of the total, i.e., the integral value of p(8]y) in such
credible region is the 95% of the integral value of p(8]y) in the whole parameter space.

The threshold ¢ must be selected such that there is a small probability that the “true”
model may be falsified but not so small that B could contain models with extremely low
probability to occur.

HPD region vs. classical confidence region: Fig. 3.3 illustrates the difference between
the classical computation of confidence regions and HPD regions. In general, the HPD
region is not symmetric about a Bayes point estimator and it is not invariant under
transformations, unless the transformation is linear (Box and Tiao, 1973).
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90% HDP and classical confidence regions
2.5 T

15+

p(oly)

0.5+

classical

15

Fig. 3.3. HPD credible interval vs. classical confidence interval (for a posterior given by a Gamma
distribution of shape parameter 14 and scale parameter 0.05)

The construction and interpretation of Bayesian credible sets is more straightforward
than that of classical confidence sets. But as (Casella and Berger, 2002) point out,
nothing comes free. The ease of construction comes because Bayesian models require
more assumptions than classical models (definition of prior distributions, for instance).

HPD is optimal in the sense that it gives the smallest region for a given credible
probability. In general, HPD regions are smaller than classical confidence regions. And
it may happen that a HPD credible set consists of several disjoint intervals. This is a
useful situation in model validation and fault detection procedures, since disjoint
regions indicate inconsistency, €.g., situations where the prior model says one thing and
the data another.

Computation of the HPD region in the normal case: One approximation to the
computation of HPD credible sets is to consider that the posterior is approximately
normal. This assumption is reasonable for large sample sizes and even for small
number of samples if the likelihood is normal and the stable estimation principle
applies.

For the scalar case, if the posterior p(6|y) can be approximated by N (A(y), o3 (y)),
then the approximate 100(1 — a)% HPD credible interval is

c=|o@)-za-05 ¥ . 0 +2a-05 ) &1

where z« is the (1 — a/2)-fractile of the standard normal distribution " (0,1).
2

For the multivariate case, the posterior density N (0(y),P(y)) is large when (9 -

ﬁ(y)) Tp(y)~?! (9 — ﬁ(y)) is small. Furthermore, this quadratic form has a chi-square

distribution with d degrees of freedom, so the 100(1 — @)% HPD credible interval for
0 is the ellipsoid:
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c={e: (0-8)"P» (0 -8W) < (D)} (52)

where y2(d) is the (1 — a)-fractile of the chi-square distribution with d degrees of
freedom.

Example 3.2. Credible regions when the noise variance is known

Consider again the plant and experiment of the Example 2.1 (Ninness and Goodwin,
1995). Here, we have used the first N = 500 samples of the experiment and we assume
that the noise variance is A = 0.005.

Firstly, we arbitrarily select a prior distribution for the parameters given by
N(0,,ARy) with 85 = (0.105 0.17)" and Ry = 1000 X I,,,. The 3D plot and
80% contour plot (blue line) are shown in Fig. 3.4.

Secondly, we compute the likelihood function for the first N = 500 samples assuming
normal noise with zero mean and variance 4, i.e., (y|0,1)~N (®6,AI). The 3D plot
and 80% contour plot (green line) are shown in Fig. 3.4.

Finally, we compute the posterior distribution for the parameters by combining the prior
distribution with the likelihood distribution by means the Bayes’ rule. The result is
again a Gaussian distribution ' (8(y), P(y)) and its 3D plot and 80% contour plot (red
line) are shown in Fig. 3.4.

Prior distribution for the parameters Likelihood function Prior distribution, likelihood function and posterior distribution
0.175 T T T T T T T

T T
Prior (80%)
Likelihood (80%) |1
Posterior (80%)

0.1741

0.1731

0.1721-

0.1711

& 047F
0.169-
0.1681
0.1671
0.1661
0'16%).1 0.101 0.102 0.103 0.104 0.105 0.106 0.1‘07 0.108 0.109 0.11
01
(@) (b)
Fig. 3.4. Prior distribution, likelihood function and posterior distribution, (a) 3D plots (b) 80% contour
plots

The maximum a posteriori (MAP) value for the parameter vector is O(y) =
(0.1055 0.1690)" and the associated posterior covariance matrix is

0.1319 —-0.0447

— 10-5
P(y) =10 ><[—0.0447 0.1335
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Next figure compares the Bayesian estimate and its credible region to the least squares
estimate and its confidence region. In this example, the Bayesian uncertainty region is
effectively smaller than the confidence region. Finally, to obtain the 80% credible
region in Fig. 3.5 we have used the result (52), while in the Fig. 3.4 the same region was
obtained numerically (by “brute force”).

Credible region and confidence region
0.173

O Oyap
0.172¢ 80% HPD ||
0,
0.171} LSE
80% conf
0.17} 1
0.169 1 1
N
[e=}
0.168} 1
0.167} 1
0.166 - 1
0.165 1
0164 L L L L L L
0.103 0104 0105 0.106  0.107 0108  0.109 0.11

6

Fig. 3.5. Point estimates (maximum a posteriori and least squares) and 80% uncertainty regions (credible
HPD region and confidence region)

Estimation of variance: If the noise variance A is not a known value (it is not fixed),
information about it coming from the measurement data is used. In Chapter 2, unbiased
estimates for A coming from time domain data and frequency domain data were
presented.

An alternative is to take the variance A as stochastic with a particular probability
distribution. The usual case is to consider that A follows an inverse Wishart distribution
A~W~1(o,m) (Box and Tiao, 1973), (Hjalmarsson and Gustafsson, 1995).

Remark: The Wishart distribution is a generalization of the chi-square distribution to the
multivariate case and it is often used as the distribution for the sample covariance matrix for
multivariate normal random data. The inverse Wishart distribution, which is based in the
Wishart distribution, is then used as the conjugate prior for the covariance matrix of a
multivariate normal distribution.

The probability density function (PDF) of the inverse Wishart distribution is

Q) = o2-e
P z%m(%)-am%z

m
2

Rfa
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202

and it has mean E[2] = —— and variance Var[2] = Ty

With this selection, the conditional prior distribution for the parameter vector is the
following hierarchical distribution:

(8|~ V' (8, E[AIRGY) , A~W ™ (a,m)
and the unconditional prior distribution for the parameter vector will be no longer

Gaussian, it will be a multivariate generalisation of the Student’s ¢ distribution with m
degrees of freedom

9~ t(eo, O-Ral, m): T(eo, 130 ,m)

which is given by the following PDF,

d _ _d+m
F( _;m) <1 + Gl GO)TP()_l(e - 90)) 2

m m
r(z)
where d is the dimension of the parameter vector. This PDF has mean E[0] = 6, and

covariance Cov[0] =$Fo =$R51 = E[A]Rg. The value of m is taken as
m = N — d where N is the length of the data set.

p(8) = (mm)~/2|Py| 1/

Assuming Gaussian noise, the application of the Bayes’ rule leads to the following
posterior distribution for the noise variance (Hjalmarsson and Gustafsson, 1995),

Aly~W=(Vy(Oy), N + m)

~ —~ T —~ ~ \2 ~
(Ro + Ry)1(®@Ty + Ry0,). The posterior expected value for the noise variance is
Vn (@
E[Aly] = 1200

T N+m-2'

Finally, the posterior distribution for the parameter vector is given by
8y~ T (Oy, Vy(By)(Ro + Ry) L, N +m)

with posterior mean E[B]y] = 8, and posterior covariance Cov[0|y]=E[A|y](R, +
Ry) L. Under mild conditions, this distribution tends asymptotically to be normal.

Example 3.3. Credible regions when the noise variance is unknown using a
hierarchical prior.
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Consider again the plant and the first N = 500 samples of the experiment of the
Example 3.2.

In the first place, we have extracted from data a noise realization by comparing the
measured plant output with an estimated one (derived from a second order d = 2
Laguerre least squares model). This sequence fits an inverse Wishart distribution with
parameter o = 2.749 and m = N — d degrees of freedom. The mean value for the prior
noise variance is E[A] = 0.0055 and the variance value for the prior noise variance is
Var[A] = 1.2-107* The mean value for the noise variance a posteriori obtained by
application of the Bayes’ rule to the N = 500 samples and considering Gaussian noise
has been E[A|y] = 0.0061.

Fig. 3.6 shows the unconditional Student t prior and posterior distributions obtained for
the parameters. Since they are very close to the normal distribution, the results are very
similar to the ones obtained in the previous example.

Unconditional Student t prior distribution Unconditional posterior Student t distribution

- |

/

A VWX \

I','o‘““‘\‘ W
LN

o478 %&&tﬁsﬁ?&

s

() (b)

Fig. 3.6. Unconditional Student t distributions for the parameters: (a) Prior distribution (b) Posterior
distribution

The maximum a posteriori (MAP) value for the parameter vector is 6(y) =
(0.1055 0.1690)7 and the associated posterior covariance matrix is

0.1614 —0.0548

— -5
P(y) =107 %] 10548  0.1633

Fig. 3.6(a) shows the 70%, 80% and 90% posterior credible regions obtained from the
unconditional Student t posterior distribution of the parameters. And, finally, Fig.
3.6(a) shows the marginal posterior distributions p(6,|y) and p(6,|y) obtained by
direct numerical integration of the unconditional posterior Student t distribution.
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Credible posterior regions from the Student t distribtion Student t posterior marginal distributions
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(a) (b)
Fig. 3.7. (a) Credible posterior regions (70%, 80%, 90%) (b) Marginal posterior distributions

b. MCMC implementation

In the previous section the computation of probability distributions and credible regions
was easy. In the cases where the number of parameters is moderately high and/or
distributions are not standard, the demand for computationally resources increases
significantly. In such cases, one must use simulation strategies such as the Markov
Chain Monte Carlo (MCMC) simulation. The idea of MCMC is to construct an ergodic
Markov chain with invariant distribution equal to the desired posterior. This approach
is also interesting because error bounds on estimates are derived from the sampled
distribution and thus they do not rely on assumptions of large data records. See
Appendix C for a throughout explanation.

Example 3.4. Credible regions obtained by MCMC simulations

Consider again the posterior distribution for the parameters of the Example 3.2,
N(®@(y),P(y)), where the mean value is 8(y) = (0.1055 0.1690)7 and the
covariance matrix is

.5 _[01319 —0.0447
PO =107"%| 00447 01335

Exact credible regions were obtained in the Example 3.2. Here we approximate the
credible region by means the use of the slice sampler, which is a version of the Gibbs
sampler.

After a burn-in stage, the computation of the histogram of the Markov chain associated
at each parameter coincides with the target marginal distributions. Fig. 3.8(a) shows the
results for a chain of 15000 samples.
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Posterior marginal distributions obtained by MCMC Credible region obtained by MCMC
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(a) (b)
Fig. 3.8. (a) Histograms for the posterior marginals (b) Credible posterior region

The credible region in the parameter space can be obtained by combining the Markov
chains (see Fig. 3.8(b)). Note that the region obtained after the burn-in period is
effectively the same of the Example 3.2.

[ |

3.2.4 Relationship to robust identification deterministic methods

Many deterministic methods presented in the Chapter 2 can be viewed as particular
cases of the Bayesian framework. In this section, we illustrate how the Feasible
Parameter Set (FPS) regions of Chapter 2 can be obtained by means the Bayesian
method by simply assuming that the noise is uniform-distributed.

As in the deterministic case the first step is to decide which the value of the bound § is.
In the FPS case this value is used to obtain the different strips corresponding to the
measurements. The intersection of all the strips produces the FPS region.

In the Bayesian methodology, the bound & can be used to define the prior noise
distribution.  In this section we assume that the noise is uniform distributed
v~U(=6,8). This distribution is used to compute the likelihood function p, (y|8) by
taking the parameter space as support. Since the distribution p,(v) is uniform, the
resulting likelihood function will be nonzero and flat in the region where models
(parameters) are consistent with measurements and it will be zero outside this region.

Example 3.5. Relationship between FPS and parametric BCMS

Consider again the plant and experiment of (Ninness and Goodwin, 1995). Even though
we know that the measurement noise corrupting the data is Gaussian distributed, we
chose to model it by means a uniform distribution v~U (-4, §) with § = 0.6.
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The support values, i.e., the tentative values for the uncertain parameters 6; and 6,,
have been selected around the LSE Laguerre model obtained in (Ninness and Goodwin,
1995).

Fig. 3.9(a) shows the resulting normalized likelihood function (LF). In Fig. 3.9(b) the
contour of this LF is compared to the FPS region obtained for § = 0.6 in Chapter 2
(Example 2.7). The two regions effectively coincide.

Likelihood function (uniform noise) and FPS for 5=6

= LF contour
FPS

Likelihood function

(a) (b)
Fig. 3.9. (a) (Normalized) likelihood function, (b) Likelihood function contour and FPS

3.2.5 Other features of the Bayesian approach

a. FPS with inner probability

In the previous example, all models at the top of the likelihood function, i.e. inside the
FPS region, are equally probable to occur. This fact does not facilitate the selection a
unique optimal parameter vector.

The Bayesian methodology can go one step beyond from the FPS since it allows
assigning a probability to each model by the definition of a prior distribution on the
parameters and subsequent computation of the posterior distribution.

Example 3.6. FPS with inner probability

Consider again the plant and experiment of the Example 3.5. Now we assign a prior
distribution to the parameters given by 0~N(0,,Ry!) with 8, = (0.1 0.1)7 and
R, =100 x I, (see Fig. 3.10(a)). The combination of this prior distribution to the
uniform likelihood function of the Example 3.5 gives the posterior distribution of the
parameters shown in Fig. 3.10(b).
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Fig. 3.10. (a) Prior distribution of the parameters, (b) Posterior distribution of the parameters

Fig. 3.11(a) shows the contour plot of the posterior distribution with the 80% credible
region shadowed. And Fig. 3.11(b) shows the posterior marginal distributions obtained
by numerical integration. The maximum a posteriori parameter vector is 0(y) =
(0.1062 0.1667)T. This value could be considered as the nominal model.

Posterior distribution for the parameters
80% credible
= posterior contour 6F
0.3r H

0.25F

Marginal posterior distributions for the parameters
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e1
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(a) (b)
Fig. 3.11. (a) Contour of the posterior distribution, (b) Marginal posterior distributions

b. Iterative computation

Another feature that is very interesting for on line fault detection purposes is that the
computation of the likelihood function can be performed iteratively, sample to sample,
by using the recursive expression of equation (46). See next example.

Example 3.7. Iterative computation of the uncertainty region.

Consider again the plant and experiment of the Example 3.5. Now we assume § = 0.4
and a parameter grid of 80 x 80. With the first 10 samples of the data record we have
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obtained the region shown in Fig. 3.12(a)
updated as new measurements are used.
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Fig. 3.12. (a) Initial uncertainty region (N=10 samples), and uncertainty regions obtained for the samples

(b) 12, (c) 15, (d) 17, (e) 28, and (f) 30.
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c. Disjoint credible regions

Unlike confidence regions, credible regions can be disjoint. This can be the case when
we use mixture distributions to model the system. See next example.

Example 3.8. Disjoint credible regions

Consider again the plant and experiment of Example 3.2. The prior distribution of the
system parameters is assumed to be a mixture of two Gaussian distributions. In the first

one, the mean value is 981) = (0.102 0.169)" and the precision matrix is Rgl) =
2000 - I,,,. And in the second one, the mean value is eg” =(0.11 0.167)7 and the

precision matrix is Rgz) = 2000 - I,4,. The resulting 50% disjoint credible region is
shown in Fig. 3.13(a).

The likelihood function is computed from N=500 samples assuming that the noise is
Gaussian-distributed with zero mean and variance 0.005.

The resulting posterior distribution is shown in Fig. 3.13(b). The 50% posterior
credible region is closer to the likelihood function but is still disjoint. However, one of

the two peaks is taller. The maximum a posteriori value 80" = (0.0947 0.1717)7
indicates that egU was closer to the measurement data (likelihood function) than 982).

50% credible regions Posterior distribution

0.172 0.172

Likelihood functit it
0171l ikelihood function | | oanil C=> contour |
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0.166 1 0.166 -
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Fig. 3.13. (a) Prior distribution and likelihood function, (b) Posterior distribution

3.3 Construction of the BCMS in the frequency domain

In this section we will obtain uncertainty bands in the frequency domain. In particular
we illustrate the computation of the Bayesian Credible Value Set (BCVYS),

By, ={6(jw;) € C: p(G(w)ly) = c(a), i=1,..,m}
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Frequency domain data: The Bayesian Credible Value Set can also be specified in
terms of frequency domain data

By = {G(w) € C: p(GGw)|G) = c(a), i=1,..,m} (53)

where G = (§R(w;) §'(wy) .. GR(wn) §'(wy))T is the vector containing the
estimates of the true frequency response at selected frequencies wg, ..., w,,. See
Chapter 2.

3.3.1 Finite set of competing models

Let us assume that we are uncertain not only about the model parameters but also about
the model structure. A simple approach to cope with the uncertainty in the model
structure is to consider a finite set of competing models {M,, ..., Mk}, which constitute
the candidate models. These models can be of different orders (if we are uncertain
about the order), of different basis functions (if we are uncertain about the
parameterization), and so on.

Remark: Note that this approach is also valid for the case of parametric uncertainty. In
such a case, the set of competing model contains only one model with uncertain parameters.

We can assume that, a priori, all models are equally probable, with pmf (probability
mass function) p(M,) =1/K, k=1,..,K, or we may assign a prior belief or
preference to each model.

Moreover, considering each of the models M;, we can include the uncertainty in its
parameters. In a general case, the joint uncertainty (model structure, model parameters,
measurement noise v) can be expressed by means the use of hierarchical models of the
type (0,|M,,v) where 0, is the vector of parameters of model M,. The hierarchy is, for
instance, @My, A~ N(0,AR™Y) and (M,)~U, where A is the measurement noise
variance, 0 is the mean value for the parameter vector and R is the precision matrix.

3.3.2 Credible regions in the frequency domain

a. Prior distributions in the Nyquist plane

For simplicity, let us assume Gaussian distributions. The prior distribution of the
parameter vector conditioned to the model structure and noise variance is

0| My, A~ N'(0,, ARy (54)
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To translate this parametric uncertainty to uncertainty in the frequency response, we can
proceed as in the Chapter 2 and define, for each frequency point w;,

Re (B(ej“’i))
Im (B(ej“’i))

where B(e/®1) = (By(e/?t) ... B,_,(e/*)) contains the frequency response of the
basis functions B;(q) that parameterize the model

r(ejwi) =

d-1
M,=G(q0)=) OBi(q)Hk,i
i=

In the FIR case, these basis functions are simply B;(q) = q~*.

Now, the prior distribution for the frequency response of model M, at frequency w; is:
G(e79:,0,)|My, A~ V(T (e/91)8y, AT (/1) Ry T (/1)) (55)

where the superscript * means conjugate transpose.

For a fixed model M,, the expression (55) defines a two dimension Gaussian bell at

each frequency point w; in the Nyquist plane. The resulting credible regions at each

frequency are ellipses that altogether define an uncertainty band for the frequency

response of model M.

Since we wish to obtain a unique credible region characterizing the total uncertainty (for

all the models M, i.e., structure plus parameters uncertainty) we can apply the law of
total probability,

K
p(G(e/®,8,)|1) = zk=1p(6(ejwi, 0,) 1My, 1) p(My) (56)

At each frequency point w; the result is a mixture distribution and the credible region is
no longer an ellipse.

Example 3.9. Prior credible regions on the Nyquist plane for a set of competing
models

Consider that the unknown plant is ZOH {Wl(sﬂ)

experiment, we can obtain an uncertainty band in the Nyquist plane by simply
translating to prior distributions our prior knowledge about the plant and measurement
noise.

} with T, = 1s. Before performing any

Regarding the model structure, the model set under consideration consists of four FIR-
type competing models of orders 2 to 5. Each model M, has associated a prior
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probability of p(M,) = 1/4, that is, we assume that the four structures are a priori
equally probable.

Regarding the model parameters, we assume that vectors 0, are normally distributed, with
mean 8, = 0.2 X 1, and precision matrix Ry = I;.4, being dthe model order, d = 2, ...,5.

And finally, regarding the measurement noise, we assume that the variance is 4 = 0.01.

Fig. 3.14 shows the prior distributions for the four models at frequency w =
1.1654rad/s.

Prior distribution of M PﬂormsnmuﬂonofMZatm=11654de
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Fig. 3.14. Prior distributions of the four competing models at 1.1654rad/s

The combination of the four prior distributions by means the application of (56) gives
the mixture distribution at frequency w = 1.1654rad/s shown in Fig. 3.15(a). The
80% credible region in the Nyquist plane is obtained by cutting this distribution at the
level ¢ = 7.0607, such that the integral above is the 80% of the total integral of the
mixture distribution (see Fig. 3.15(b)).
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Fig. 3.15. (a) Mixture prior at 1.1654rad/s, (b) Cut to obtain the 80% credible region

Finally, Fig. 3.16(a) shows the prior 80% credible region at 1.1654rad/s and Fig. 3.16(b)
shows the prior 80% credible region at several frequencies.
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Fig. 3.16. (a) Prior 80% credible region at 1.1654rad/s, (b) Prior 80% credible region at
frequencies 0.2, 0.5, 1 and 3 rad/s

b. Posterior distributions in the Nyquist plane

The posterior probability of the model M, can be obtained by means the application of
the Bayes’ rule and the law of total probability as follows:

The joint posterior distribution of the model M, and parameters 0, is

p(yIMy, ) - p(My, 8;) (57)

p(My, Oxly) =
Jo P(YIMy, 8,) - D(My,0,) - A6,

Since the joint prior distribution can be factorized as p(My, 0,) = p(0,|My) - p(My,), we
have
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p(yIMy, 0x) - p(My, 0y) (58)
K, (Jy p(YIM;,8)) - p(8;1M,) - d8;) - p(M;)

p(My, 0, ly) =

where we can define p(y|M;) Efe p(yIM;,0;) - p(0;|M;) -dO; as the integrated
likelihood of model M;. Equation (58) is then expressed as

p(yIMy, 0y) - p(My, 8;)
T ipIM) - p(M))

p(My, Oxly) =
The posterior probability of model M, is given by

(fo PYIML,00) - p(BicIMy) - 48y, ) - p(My)
T ipyIM) - p(My)

p(Myly) =

which can be expressed in a more compact form as:

__p(yIM) - p(My) 59
PIMlY) = S Gty - pot) e

The expression above gives us the updated probability for each model M,, of the model
set once we have gathered the experimental data. This is the solution to the problem
known as “model classification” which is a classical problem in the field of Bayesian
modelling (Peterka, 1981).

Finally, we use these model probabilities to obtain the mixture posterior distribution at
each frequency,

p(G(e/®,8,)Iy) = Zkzlp((;(e]wi’ 0,) 1M, 1, y) p(Mly) (60)

where the posterior distribution for each model M;, and frequency w; is, in the Gaussian
case,

G(e/“%, 8,(9) 1My, A~ N (T(/*1)8,(3), T (/) P ()T (/1)) (61)

Example 3.10. Posterior credible regions on the Nyquist plane for a set of
competing models

Let us continue with the Example 3.9. Now we excite the plant with N = 1000
samples of a PRBS (Pseudo Random Binary Signal) and collect the response samples.
For each model we compute the integrated likelihood p(y|M;) and apply (59) to obtain
the new model probabilities.

After the experiment, the new model probabilities are:
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P(M,ly) = 0.3737 , P(M,|y) = 0.2540 , P(Msly) = 0.2341 , P(M,|y) = 0.1381
which indicates that a low order model is more probable to have generated the data.

By means the law of total probability (60), these probabilities have been used to obtain
the mixture distributions at each frequency, assuming that the individual (per model)
distributions are Gaussian. Fig. 3.17 shows the resulting posterior 80% credible
regions, (a) at a single frequency, and (b) for a set of frequencies.
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Fig. 3.17. (a) Posterior 80% credible region at 1.1654rad/s, (b) Posterior 80% credible region at
frequencies 0.2, 0.5, 1 and 3 rad/s

3.3.3 Relationship to robust identification stochastic methods

The MEM-OE approach of Chapter 2 can be also viewed as a particular case of the
Bayesian approach. In the MEM framework, it is assumed that the measurements
explicitly depend on a nominal model G(q,ﬁN) and a model error G,(q) accounting for
the undermodelling

Yo =G6(q,00)uy + Ge(Qup+v, , n=1,..,N

This model error G.(q) can be interpreted as a black box model where the input are the
excitation samples u,, and the output are the residuals e, = v,, — G(q, Oy)u,, and it can
be obtained by means the same techniques used for nominal models, for instance, using
Output Models and Least Squares Estimation. In this case, the uncertainty (confidence)
regions are obtained assuming Gaussian noise.

Hence, similar results are obtained by the Bayesian methodology if we assume Gaussian
noise and flat parameters prior (i.e., the only assumption about the model is the structure
but no prior value is assigned to the parameters).

Now the likelihood of observations is substituted by the likelihood of residuals. If we
assume that the noise is distributed as p,, (v), then the likelihood function is
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p(slGe) = py (& — G.ul|G,)

Therefore if we model the noise as Gaussian and compute the likelihood function of the
observations, the different “cuts” of this function will lead to the stochastic uncertainty
regions, either on the parameter space or in the Nyquist plane.

Example 3.11. Relationship with MEM-PEM and BCMS

Consider the first dataset of the (Reinelt ez al., 2002). In the present example, we have
modeled the model error by means a FIR model of order 30 and have assumed Gaussian
noise of zero mean and variance estimated from the residuals by the expression (10)
given in Chapter 2, E[A] = 0.0844. Ellipses in the Nyquist plane have been obtained
by cutting the resulting likelihood function at each frequency to obtain a confidence
level of 95%. Fig. 3.18(a) shows the model error with its associated uncertainty band.
For the sake of comparison it is show the OE-type model error obtained in (Reinelt ez
al., 2002).
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Fig. 3.18. (a) Model error and associated uncertainty band, (b) Final symmetric uncertainty band around
the nominal model

Final uncertainty bands for the nominal model are then computed by combining the
nominal model and the uncertainty regions of the error model, as explained in Chapter
2. Fig. 3.18(b) shows the final symmetric uncertainty band.

[ |

In the Chapter 2, we also presented the NSSE method which is the other main stochastic
solution to the robust identification problem. The NSSE approach has little relation to
the Bayesian one since in NSSE the uncertainty is quantified by means a non-stationary
stochastic process. However, the Bayesian approach can obtain uncertainty bands
similar to the NSSE ones. See next example.

Example 3.12. NSSE example solved with competing models.
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In this example, we consider again the plant and experiment of Example 2.5. The
model uncertainty is quantified by using a set of three competing models. The models
considered are the ones suggested in (Goodwn, Braslavsky, and Seron, 2002) but,
instead to take these models separately we use them together to quantify the uncertainty.
The three competing models are parameterized by the following functions:

3

First model: m

Bi(s) =

1 1
Bi(s) = Gasrz + B2 = Gy

Second model:

Third model:
1 1 1 1

Bi(5) = Gasre  B20) =gy Bs(S) = oo+ Be(S) = oo

The prior distribution of the parameters of each model is assumed to be Gaussian
N (8, ARyY) with 1 = 1. The mean value and precision matrix for each model is
selected as: 0" =1, R\” =10, 87 = (05 2.5)7, RY =10 1,,,, and 8{Y =
(0.5 1.5 0.5 1T, Rff) =10 -I4x4. The selected mean values are near the least
squares estimates obtained from frequency data. We assign the same prior probability

to each model, i.e., 1/3. Prior distributions for the second and third model are shown in
Fig. 3.19.
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Fig. 3.19. (a) Joint prior distribution for the parameters of Model 2, (b) Marginal prior distributions for
the parameters of Model 3

Once collected the data and computed the integrated likelihoods, the posterior
probabilities for each model are py, = 0.2091, p,, = 0.2098, and py; = 0.5812.
Posterior distributions in the Nyquist plane are combined with these probabilities to
obtain the mixture posterior distributions of Fig. 3.20(a).

The final 80% posterior credible regions are shown in Fig. 3.20(b). The uncertainty
band is tighter than the one obtained in Example 2.5 in which only Model 2 was
considered and the uncertainty ellipses were obtained by assuming that the model error
could be modeled by means a non-stationary stochastic process. Note also that the
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credible regions at each frequency in general are not ellipses since they are obtained
from mixture distributions.

Mixture posterior
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Fig. 3.20. (a) Mixture posterior distribution, (b) Final uncertainty band
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3.3.4 Other features of the Bayesian approach

a. Effect of the prior distribution in the uncertainty size

One of the advantages of the Bayesian approach is that it is possible to reduce the
uncertainty bands obtained from the likelihood function by means the adequate
selection of the model prior distribution p(G).

In the Gaussian case, this reduction can be attained by simply increasing the value of the
prior precision matrix, Ry. Next example illustrates this effect.

Example 3.13. Effect of the prior distribution in the variance error reduction

Consider the plant and experiment of the Example 2.5 (Goodwin, Braslavsky, and
Seron, 2002). Regarding the prior information, we assume that the noise is zero mean
Gaussian with variance 4 = 1. And we assume that the nominal model is a second

. . 1 1
order model parameterized by the functions B; = 5511 and B, = Gor?

The prior distribution for the parameter vector 0 is assumed to be Gaussian with mean
value 8, = (0.77 2.37)7T, which is the least squares estimate obtained from frequency
domain data. A selection of the prior precision matrix of R, = 100 - I, leads to a
spikier Gaussian bell than a selection of R, = I, therefore it leads to smaller prior
and posterior uncertainty ellipses. See Fig. 3.21.
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Fig. 3.21. Posterior 80% credible regions for (a) Ry = I,xz, (0) Rg = 10 - I,,5, (€) Ry = 100 - Iy,

Note also that the ellipses are around the nominal model. In fact these ellipses are
quantifying only the variance error and not the bias error since we have considered only
one model, i.e., we are considering only parametric uncertainty. However, this example
shows how the bias/variance trade-off presented in Chapter 2 can be overcome if we use

the Bayesian approach to tighten the variance error.
[

b. Resonant systems

Unlike the NSSE method, the Bayesian procedure does not distinguish plants with real
poles from plants with resonant poles. It deals in the same way with all types of plants.

Example 3.14. Resonant plant and Markov Chain Monte Carlo (MCMC)
implementation

Consider the resonant plant and experiment of the Example 2.6. The functions that

parameterize the nominal model are B;(s) =r;1, B, (s) =m, B;(s) =
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1 1 1 1
D B,(s) = 055" B:(s) = 05si)? and Bg(s) = D Hence the model

has 6 parameters to be identified.

The prior distribution for the parameter vector 0 is assumed to be Gaussian with mean
value 0y = (—13.17 49.38 —1.09 —33.11 — 11.06 12.39)7, which is the least
squares estimate obtained from frequency domain data, and prior precision matrix of
Ry =10 - Iy

Even though the distribution is Gaussian, the high number of parameters (6) makes
necessary the use of simulation techniques such as the Markov Chain Monte Carlo
simulations presented in a previous section. Fig. 3.22(a) shows the Markov chains
(2000 samples) obtained for each one of the prior parameters and Fig. 3.22(b) shows the
resulting prior marginal distributions.
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Fig. 3.22. (a) Markov chains, (b) Simulated prior marginal distributions
Next figure shows the final 80% posterior credible regions. For this selection of the

precision matrix the resulting uncertainty bands are tighter than the ones obtained by the
NSSE method using both the random walk and the integrated random walk.
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Fig. 3.23. Posterior 80% credible regions for R, = 10 - I,
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3.4 Application of the Bayesian Decision Theory

It turns out that the Bayesian framework is highly unifying since it can consider many
different aspects that constitute the robust identification problem. In the present section,
we explore the connections between the robust identification problem and the Bayesian
Decision Theory.

Three problems can be considered: the selection of the nominal model, the model
(in)validation, and the optimal design of experiments.

3.4.1 Selection of a nominal model

When the application is the design of robust controllers, we need to select a nominal
model G, from the credible model set. There exist several choices:

One possibility is to select the model corresponding to the maximum value of the
posterior distribution p(Gly).

G(y) = argmaxp(Gly)
This is the maximum a posteriori (MAP) estimate.
Another possibility is to find the nominal model that minimises the Bayesian risk.
G(y) = argmin L(G(y), G)
This is the minimum risk estimate (MR).
Still, a third possibility is to select the nominal model that minimises the maximal loss,
G(y) = arg min max L(G(y), 6)

This is a minimax (MML) approach.

a. Maximum a posteriori (MAP) nominal models

The optimal MAP nominal model is the one that maximises the posterior probability of
the model conditioned on the observations p(G|y). MAP estimation is sometimes
called unconditional maximum likelihood (ML) estimation; and ML estimation is
sometimes called conditional ML estimation.
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Maximum a posteriori models do not require the definition of a loss function
L(G¢rye, G) quantifying the cost of selecting the value G for the nominal if the true
model is G.-.. Instead, it is supposed that the estimate G is in the neighbourhood of
G e, @nd hence a hypothetical loss function would be small.

The MAP nominal model can be estimated in the parameter space (case of parametric
uncertainty) or in the Nyquist plane (case of dynamic uncertainty). For the case of
credible regions in the Nyquist plane, it is possible to obtain the MAP estimate for each
one of the set value distributions. Since the resulting nominal order will be equal to the
number of value sets (number of exciting frequencies) one can apply Hankel norm
model reduction techniques to produce a restricted complexity nominal model. This
approach is widely used in deterministic methods, see for instance the works of
(Milanese and Taragna, 2002) and (Malan ez al., 2001).

Example 3.15. MAP nominal model

Consider the example of (Ninness and Henriksen, 2010). The data generating process
(true plant) is y, = %un + v, n=1..N, so the true parameter vector is 07 =

(6,,6,) = (0.2,—0.8).

The experiment consists of only N = 20 samples of the excitation signal {u,}N=3,
where u,, = sin(n). The measurement noise sequence {v, }N=2 is i.i.d. uniform with
zero mean and variance E[v?2] = 0.01.

Regarding the model prior information, since the plant is stable we know that the
parameter in the denominator is such that |6,| < 1, so we assume that the marginal
distribution pg, (6) is uniform between -1 and 1. And, since the gain is positive, we
assume that the parameter in the numerator is 8; > 0, and so we take the marginal
distribution pg, (6,) uniform between 0 and 1. As 6, and 8, are independent, we can
construct the joint distribution by simply taking pg(0) = pg, (61) pe,(6,). See Fig.
3.24(a).

And regarding the prior noise information, even though we know that the noise is
uniform, it is more convenient to assume it is Gaussian since, this way, the likelihood
function (and the posterior model distribution) will present a unique maximum value.
In this example we have assumed zero mean Gaussian noise with standard deviation
0.5.

The maximum value of the joint model posterior distribution corresponds to the model
(81,8,) = (0.1975,—0.8051). This is the MAP estimate. See Fig. 3.24(b). The
precision of the estimate depends on the grid used as a support for the probability
distributions. In this example, we have used a linear grid of 80 values between -1.2 and
1.2 for both parameters.
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Fig. 3.24. (a) Joint model prior distribution, (b) Marginal model posterior distributions

b. Minimum risk (MR) nominal models

Minimum risk estimate is especially interesting since it allows introducing, in the
modelling process, possible (quantitative) knowledge about the cost of a wrong
estimate.

This cost may be identification-oriented or control-oriented. In the first case the aim is
to minimise the identification error while in the second case the robust control relevancy

can be evidenced by defining cost functions in terms of the robustness theorems, i.e.,
the stability robustness and the performance robustness specifications.

Selection of loss functions: The selection of suitable loss functions is important since
each one produce a different estimate. For instance, if the quadratic loss

L(8(»),8) = k(8(y) —0)° (62)

is selected then the minimum risk estimator is the posterior mean, and if the absolute
value loss

L(6(y),8) = k|8(y) — 0| (63)

is selected, then the minimum risk estimator is the posterior median.

Example 3.16. MR nominal model

Consider again the plant and experiment of Example 3.15. Here we have obtained the
model posterior probability distributions by means a 2000 points MCMC simulation.
See Fig. 3.25.
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Fig. 3.25. (a) Markov chains, (b) Marginal model posterior distributions

The MR estimate for the quadratic loss defined in (62) with k=1 is the mean value
(81,0,) = (0.3249,—0.5670) while the MR estimate for the absolute loss defined in
(63) with k=1 is the median (8, ,) = (0.2853,—0.6657).

[

c. Case of the Bayesian Credible Model Set defined in a model space

In the case the probability distributions are defined on the model space, suitable
measures for model distance must be used in order to define a loss function. For
instance, weighted £, norms on the transfer function space are commonly used to
measure distance between operators, therefore they can be used as loss functions. These
measures have the advantage that they are directly related to the identification error.
Also, by the application of Fatou’s Lemma (McVinnish, 2006) they can be related to the
central estimate of the model set in set-membership techniques. Other norms may
better reflect the ultimate objective of robust control design. It is the case of the infinity
norm and v-gap metric, see e.g. (Hildebrand and Gevers, 2003) and (Hjalmarsson,
2005).

Dealing with this kind of loss functions is similar than dealing with the standard
parametric ones, since one can use MCMC simulations in order to obtain samples of the
posterior loss. The reversible jump MCMC algorithm (see Appendix C) can generate a
sample of operators {G;}!, that can be used in the calculation of the posterior expected
loss by using sample averages

1 M
7 0, (61 Go)
=1

The posterior expected loss can then be minimised by standard numerical optimisation
techniques. For other forms of loss and nominal models with non-linear parameters, the
posterior expected loss can be minimised numerically, for example with the Nelder-
Mead simplex algorithm (McVinish et al., 2006).
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3.4.2 Optimal experiment design

Experiment design is an important issue in robust identification since nominal models
and uncertainty regions are obtained from measurement input/output data.

The objective of optimal experiment design is to determine the less costly identification
experiment that delivers sufficient and meaningful information about the system
dynamics for the design of a robust controller or for a fault detection procedure. The
following is a motivating example.

Example 3.17. Selection of the excitation signal

Consider again the plant of Example 3.15. Fig. 3.26 shows the resulting Feasible
Parameter Set (FPS) regions assuming uniform noise of variance 0.01. In both cases the
measurement data length is N=20 but, in Fig. 3.26(a) the excitation is a period of a
square signal and in Fig. 3.26(b) the excitation is a period of a sinusoid.
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Fig. 3.26. (a) Square signal excitation, (b) sinusoid excitation

As expected, since the square signal is richer than the sinusoid, the size of the FPS is

smaller in the first case, i.e., the uncertainty region is smaller.
[

In robust identification, the experiment must be designed to reduce the uncertainty
region. This way, the resulting controllers will not be over-conservative and, in the
fault detection procedures, we will reduce the risk of undetected faults.

The Bayesian framework allows considering the problem of the experiment design from
a decision theoretic point of view. Let us point out some important concepts.
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a. Utility function

A good way to design an experiment is to specify a utility function U reflecting the
purpose of the experiment. Thus, one can regard the experiment design as a decision
problem and can take the design that maximizes the expected utility.

The utility function depends on the decision d, the unknown parameters to be identified
0, the experiment 7, and the measurement datay, U = U(d, 0,1,y).

In the Bayesian framework, the expected utility for the best decision d is given by:

um) = fRN (rgilgg fRdU (d,0,n,y)p(8ly, n)p(yln)dﬁ) dy (64)

where p(:) denotes the probability density function. The Bayesian solution is provided
by the n* that maximises the expected utility

umn™) = max um) (65)

Informative experiment: In order to design informative experiments, it is reasonable
to take as utility function the expected gain in Shannon information given by such an
experiment.

Choosing a design that maximizes the expected gain in Shannon information is
equivalent to choose a design that maximizes the expected Kullback-Leibler distance
between the posterior and the prior distributions:

r(®ly,n) 66
fl 0N p(y, 0|n)d0dy (66)

since the prior distribution p(8) is not a function of 7, the 7 that maximizes the
expected gain in Shannon information is the one that maximizes:

UGn) = f In[p(8ly, M1 - p(y, 8[n)dBdy 67)

b. Alphabetical optimality criteria

Different design criteria define the so-called Bayes A, C, D, E and G optimality. For a
through explanation, see (Chaloner and Verdinelli, 1995).

Bayes D-optimality arises when we want to perform model discrimination and
parameter estimation. For the case of linear regression models where the output is
corrupted by additive i.i.d. Gaussian noise with known variance A, the expected utility
(design criterion function) is
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U = —gln(ZH) — g + %lnIA(RN + Ry)| (68)

where Ry and R, are the precision matrices defined in Chapter 3. Therefore, to
maximize U(n) is equivalent to maximize |[A(Ry + Ry)|.

A characteristic of optimal Bayesian designs is the dependence on the sample size N,
since Ry = ®T®. If N is large enough, there is no differences between a Bayesian
design (where the prior knowledge on the parameters variance is introduced through
R,) and its corresponding non Bayesian one, since, in this case (Ry + Ry) = Ry. That
is for large data records, the data dominates while for short data records the prior
dominates, as we have seen previously in many examples.

3.4.3 Model validation

a. Bayesian hypothesis test

Model (in)validation can be viewed as a hypothesis testing problem. Suppose that we
want to infer if a given model G belongs to the credible model set B or not. In a
hypothesis testing problem, this is equivalent to define the two hypotheses “G belongs to
the model set” and “G does not belong to the model set” and reject one and accept the
other.

In the Bayesian framework the inference is based on the posterior model distribution,
p(Gly). This distribution is used to calculate which one of the corresponding null
hypothesis H, and alternative hypothesis H, is true. Consider, for instance, the
parametric case. These posterior probabilities are given as

Pr(H, is true|y) = Pr(0 € B|y)
and
Pr(H, is true|y) = Pr(0 € B|y)

These probabilities are not meaningful in a classical viewpoint, since it considers 0 to
be a fixed number. Consequently, a hypothesis is either true of false, and the
probabilities are 1 or 0. No intermediate values are possible. If 0 € B,
Pr(H, is true|ly) = 1 and Pr(H; is true|y) = 0 for all values of y. If 8 € B¢, these
values are reversed.

In a Bayesian formulation of a hypothesis testing problem, these probabilities depend on
the sample y and can give useful information about the veracity of H, and H,. The
implementation of the Bayesian hypothesis test is performed by mean the use of the so-
called Bayes factors.

b. Bayes factors



92 Bayesian Approach to Robust Identification

The Bayesian choice allows entering a prior guess about if the model at hand belongs or
not to the model set. That is, we can assign to hypothesis H, and H; a prior probability.
Selecting Pr(H, ) = Pr(H, ) = 0.5 indicates an unprejudiced starting point. To derive
the Bayes factors, we apply Bayes’ theorem to obtain

Pr(y|Hy )Pr(H, )
Pr(y|H, )Pr(Hy ) + Pr(y|H, )Pr(Hy) '

Pr(H |y) = k=01

so that

Pr(H, |y) _ Pr(y|H, ) ) Pr(H, )
Pr(H, ly) Pr(y|H;) Pr(H;)

Pr(y|Hg)
Pr(y|Hy )

where the factor By; =

is called the Bayes factor. Thus, in words, we have,

posterior odds = Bayes factor x prior odds

In the simplest case, when the two hypotheses are single distributions with no free
parameters, B, is the likelihood ratio (see Appendix A).

The application of the Bayes factor can be interpreted in terms of the so-called Occam’s
window (Hoeting et al., 1999). The Occam’s window corresponds to the values of
Bayes factor between O, and Oy. Usual selections are 0O;=1/20, Oy=1 and 0,;=1/20,
Oy=20.

Suppose that we want to validate the model G,. The null hypothesis H, is “G, belongs
to the model set” and the alternative hypothesis H; is “G, does not belong to model set”.
If there is evidence for H, then H; is rejected, but rejecting H, requires strong evidence
for the H,. If the evidence is inconclusive (falling in Occam’s window) neither
hypothesis is rejected.

3.5 Summary and conclusion

We have proposed a methodology to formulate and solve the robust identification
problem in a probabilistic —Bayesian- framework. The methodology relies in the
definition of a Bayesian credible model set to support both a priori information and a
posteriori information. The BCMS is inspired in the FMS of SMI deterministic
methods. Definitions for the BCMS in the parameter space and frequency domain have
been derived.

The model uncertainty is described by means of credible regions. Credible regions are
easier to compute than classical confidence regions and they enjoy some desirable
properties compared to confidence regions. Credible regions may lead to smaller
uncertainty regions (provided the adequate selection of the prior distributions), they can
combine hard bounds with soft bounds, they can be computed iteratively (as new
measurements are available), and they can be disjoint.
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In the case of parametric uncertainty, the exact results for the case of linear regression
models and Gaussian distributions have been presented. If the distributions are not
Gaussian or the number of parameters increases, simulation techniques such as Markov
Chain Monte Carlo techniques must be used to compute the posterior marginal
distributions and the credible regions. Compared to the existing robust identification
deterministic methods, it has been shown that the Feasible Parameter Set (FPS) can be
obtained by means our methodology if the uniform distribution is used to model the
measurement noise.

In the case of uncertainty regions in the frequency domain, we have illustrated the use
of frequency domain data in the BCMS. In order to describe the bias error we have
considered sets of competing models which lead to mixture (thus, non-ellipsoidal)
credible regions in the Nyquist plane. The law of total probability is used to derive the
credible regions and to compute the posterior probability for each model in the set of
competing models. Exact posterior credible regions are presented for the case of linear
regression models and Gaussian probability distributions. Compared to the existing
methods, the same probabilistic regions of conventional system identification and
Model Error Modeling can be obtained if no model prior distribution is used (i.e., by
using only the likelihood function). In all the cases, the uncertainty regions can be
tightened provided the adequate selection of the model prior distribution. In particular,
it is illustrated how the variance error is reduced by selecting larger values for the prior
precision matrix. Compared to the Non Stochastic Stationary Embedding, smaller
uncertainty regions have been obtained and with no need to modify the methodology for
the case of resonant systems.

Finally, three related problems have been presented and discussed under the viewpoint
of the Bayesian Decision theory: the selection of the nominal model, the model
(in)validation, and the optimal design of experiments.






CHAPTER 4

Application to Fault Detection

This chapter presents some results to illustrate the application of the Bayesian
identification approach to fault detection. Two case studies are considered: a quadruple
tank process and a three-bladed wind turbine.

4.1 Fault detection based on feasible parameter regions

Since in this chapter we are going to perform the fault detection on the basis of feasible
parameter regions, in this section we present the background of this approach.

4.1.1 Background

Model parameterization: Let us assume that the system can be expressed by the
following model

y(k) = F(k,0) +e(k) , k=1,..,N (69)

where the function F(n, ®) = y(k,0) can be linear or nonlinear and it can contain any
function of the inputs u(k) and outputs y(k), 8 € @, is the d dimension parameter
vector which belongs to a set @,, defined by the a priori bounds for the parameter
values. And, finally, e(k) is the additive error bounded by a constant |e(k)| < §.

95
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Feasible parameter set (FPS): According to (Milanese et al., 1996) the parameter
estimation problem consists of determining the parameter set that contains all the
models consistent with the set of N input/output data. As explained in Chapter 2, the
resulting feasible parameter set is defined as

FPS={0€0,| y(k) =5 <Fk0) <yk)+65, k=1,..,N} (70)

In the fault detection field, in order to avoid dealing with the exact description of the
FPS, existing algorithms usually approximate the FPS by using inner/outer simpler
shapes such as boxes, parallelotopes, ellipsoids or zonotopes (Vicino and Zappa, 1996),
(Reppa and Tzes, 2011), and (Alamo, Bravo and Camacho, 2005). The approximated
set is called Approximated Feasible Parameter Set (AFPS).

There exist inner and outer approximations. Inner approximations find the parameter
set of maximum volume such that all the parameters of the AFPS are inside the FPS.
Hence, for the k-th measurement we have AFPS, < FPS,. On the other hand, outer
approximation algorithms find the parameter set of minimum volume that guarantees
that the FPS is inside the AFPS, FPS;, € AFPS,,.

Recursive algorithms allow computing inner and outer approximations as follows

A FPS,.1 € A, FPS, NS,
AoutFPSk+1 = AoutFPSk n Sk

where S is the region in the parameter space that contains all the parameters consistent
with the measurement k and the function F(k, 0),

Sk ={0 eR?| —5<y(k)—F(k,0) <5} (71)

Linear case: In the linear case, F(k,0) can be expressed as a linear regression,
F(k,0) = @(k)TO, where the regression vector (k)T can contain any function of
inputs u(k) and outputs y(k). Here the set S, is a strip and the FPS is a polytope that
can be described in the H-polytope form (Blesa, Puig, and Saludes, 2013) as

FPS = {0 € R? | A < 6b} (72)

with A= (-7, @), ..,.—e(N)",@N)")" and b= (-y(1)+6y(1)+
§,.c,—y(N)+6,y(N) +6)T.

Nonlinear case: Unfortunately, for the nonlinear case the optimization problem is
nonconvex and obtaining a suitable solution is computationally hard. In (Milanese et
al., 1996) a minimum outer box is determined by means of a set of optimization
problems. Alternatively, in (Jaulin et al., 2010) the FPS is approximated by using
subpavings and the SIVIA (Set Inversion Via Interval Analysis) algorithm that is based
on refining the initial a priori set ©, by iteratively bisecting it.
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Fault detection: Once the FPS has been estimated from non-faulty data, the fault
detection test consists in checking the consistency of new measurements with the
former FPS. The consistency is checked by means of the intersection of S; (set of
parameters consistent with data at instant k) with the FPS. A fault will be indicated if
this intersection leads to an empty set

S, N FPS = @ (73)

In the linear case, the fault detection test (73) can be solved easily, but in the nonlinear
case, inner or outer approximations of this intersection must be used and missed alarms
(in outer approximations) and false alarms (in inner approximations) may appear. For
this reason, outer approximations are used rather than inner approximations for fault
detection purposes (Blesa, Puig, and Saludes, 2011b).

4.1.2 Bayesian approach

Feasible parameter set estimation: As explained in Chapter 3, the same FPS region of
the set-membership approach (70) can be obtained within our Bayesian methodology.
Since the region defined in (70) describes parametric-type uncertainty, the Bayesian
credible model set reduces to its parametric version,

B ={0 €0: p(Oly) =c(a)} (74)

where the process model is characterized by means of the parameter vector 6, and the
model posterior probability is p(8]y) « p.(y|0) - p(0). Now we have to decide which is
the model prior probability distribution, p(0). In the Bayesian framework this
probability is a subjective probability. Here it is assumed that we have no information
about which the value of the “true” parameter vector 6 will be and consequently we take
a flat p(6). This way the model posterior distribution is directly proportional to the
likelihood function of the observations, p(8]y) « p.(y|0).

The likelihood of the observations coincides in form with the noise probability
distribution, i.e., p.(y|0,0) = p(y — §|0), where o is a parameter that characterizes the
noise and hence the error term.

Since we want to obtain a hard-bounded uncertainty/credible region, we select o to be
the additive error bound of the set-membership technique presented in the previous
section and thus we assume that the additive error is uniform distributed, e~U(—6, §).
Since p,(e) is uniform, the resulting likelihood function is constant and nonzero in the
region where models (parameters) are consistent with measurements and it is zero
outside this region.

The likelihood function can be numerically obtained for a grid of candidate parameter
vectors 0; by assuming that the error samples e(k) = y(k) — y(k), where y(k) =
F(k,©,), are i.i.d. (independent identically distributed)



98 Application to Fault Detection

N
pe10,0) = | [per) — 3018, 0) 79)
k=1

It is noteworthy that there is no difference in the computation of the likelihood function
either in the nonlinear or linear case.

Fault detection: Once we have calibrated the model (i.e, obtained the likelihood
function p.(y|0;, o) for all the points 0; in the parameter grid) the fault detection test
can be carried out, for every new measurement y(k), by computing the new likelihood
function p.(y (k) — y(k)|0;, o) and verifying if there is at least one parameter vector 6;
for which both p,(y|8;,0) and p.(v(k) — y(k)|8;, o) are nonzero. If this parameter (or
set of parameters) exists we conclude that the new measurement is consistent with the
feasible parameter set. The consistency can be checked by simply multiplying both
likelihood functions for each parameter 0; in the grid. If the product is equal to zero for
all the parameters in the grid,

pe(¥10;,0) - p.(y(k) —y(k)|0;,0) =0 Vi (76)

we decide that a fault has taken place since the new measurement is not consistent with
the feasible parameter region.

Of course, the ability to detect “small” faults depends on the grid density. A denser grid
will be able to detect smaller deviations of the parameter vector. This implies a more
computationally intense calibration stage. However, the fault detection stage is not so
intensive computationally since it can consider one sample at once. This feature also
allows the on-line implementation of the method.

Let us illustrate the performance of this methodology by means of two case studies.

4.2 Case Study I: Quadruple tank process

4.2.1 Physical model

Fig. 4.1 shows the quadruple tank-process proposed as a benchmark problem by
(Johansson, 2000). The process inputs are the voltages to the pumps v, and v,. The
process outputs are the tank levels hy, h,, h; and h,.
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h hy

Tank 1 Tank 2

Pump 1
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Pump 2
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Fig. 4.1. The quadruple-tank process

The equations that describe the dynamical behavior of the system are obtained by means

of the mass balances and the Bernouilli’s law:

%=—Z—1 2gh1+j—j Zgh3+y;:1
%=—Z—z 2gh2+z—z 2gh4+yjll:2
%=—Z—z 2gh; +—(1 _A];Z)kzvz
%:_Z_i 2gh4+(1 _A];1)k1 )

U

Uy

(77)

where A; is the cross-section of tank i, a; is the cross-section of the outlet hole of tank i,
and k v, and k,v, are the corresponding flows of pumps 1 and 2. The parameters
v1, V2 € (0,1) are determined from how the valves are set prior to the experiment. The

gravity acceleration is denoted as g.

The initial conditions are h,(0) = 12.4cm, h,(0) = 12.7c¢m, h3(0) = 1.8cm, h,(0) =

1.4cm, v,(0) = 3V and v,(0) = 3V.

The operation range is assumed to be h, € [2, 11]cmand h; € [1, 15] cm.

Table 4.1 shows the values of the plant parameters.
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Ay, A; | 28cm®
A, A, | 32cm®
ay,a; | 0.071cm’
a,,a, | 0.057cm’
Y1 0.7
12 0.6
k, |3.33cm’/Vs
k, |3.35cm’/Vs
g | 98lcm/s®

Table 4.1. Parameter values

4.2.2 MISO case

Firstly we consider the MISO (Multi Input Single Output) case. In this case, the plant
output is the level of tank 1, h;, while the inputs are the level of tank 3, h5, and the first
pump voltage, v;. The uncertain parameters will be a, and a;.

The fault detection procedure consists of two steps. In the first step, calibration, a fault-
free scenario is used to generate the data needed to determine the uncertainty region for
the parameters a; and a;. In the second step, fault detection, data containing faults are
generated and the former uncertainty region is used to detect them.

a. Calibration in a fault-free scenario

A set of N=140 measurements has been obtained in a fault-free scenario (see Fig. 4.2).
These data will be used to calibrate the model, i.e., to obtain the uncertainty region for
a, and a; in the parameter space.

Lewels h1 and h3

1 1
0 20 40 60 80 100 120 140
Time (s)
Pump woltage v

0.5

Volts

0 | | | |
0 20 40 60 80 100 120 140

Time (s)

Fig. 4.2. Fault-free scenario data
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Discrete-time linear regression model: The nominal model will be a discrete-time
linearized version of the first equation in (77). To discretize we use the Euler method
with sampling time T, = 1s.

PR NCES) (78)
1~ Ts

Thus,

K
hy(k) = hy(k — 1) — 2 [2gh (k= 1) + 2 [2ghstk = D) + 2%y (k — 1) + e(k)
Ay Ay Ay

where e(k) is the additive error (it includes sensor and discretization error) and it is
assumed to be bounded by a constant [e(k)| < §, § = 0.05cm.

The process output, expressed in the linear regression form, is
y(k) = hy(k) = @" (k) - 8 + e(k) (79)

where @7 (k) = (ha(k =1) =20k =1) ;~2ghs(k=1) Lvi(k-1))

is the regression vectorand @ = (1 a; @ V¥1)T is the parameter vector.

Uncertainty region obtained by strips intersection: In this case, the Feasible
Parameter Set (FPS) is obtained by intersecting all A strips defined by the pairs of
parallel lines separated 28, y(k) — @T(k) - @ = +5. See Fig. 4.3.

Feasible Parameter Set (strips intersection)
0.08 7 T

0.075}-

0.07+

0.065 ! !
0.065 0.07 0.075 0.08

Fig. 4.3. FPS obtained by strips intersection (the red little circles indicate the final polytope vertices)
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Uncertainty region obtained as the likelihood function contour: In this case the FPS
region is obtained as the contour of the likelihood function assuming that the noise is
uniform distributed as U(—4,5). Fig. 4.4 shows the result for a 60 x 60 parameters
grid.

Feasible Parameter Set

0.08 T T
<> LF contour
strips intersection
O polytope vertices
0.075-
o™
©

0.07

0.065 . L
0.065 0.07 0.075 0.08

1

Fig. 4.4. FPS obtained as the likelihood contour

This FPS region coincides with the one obtained by intersecting the strips. Thus, in the
linear case, the computation of the likelihood function does constitute an alternative to
the strips intersection technique of the set-membership approach.

b. Fault detection stage

Generation of the faulty behavior: In order to show the fault detection behavior,
different fault scenarios have been created by introducing faults when the system is
under the operation point shown in Fig. 4.5.
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Lewels hl and h3

1
1000 1200 1400 1600 1800

Time (s)
Pump 1 (vl)

1 1
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0.5+

Volts

1
1800 2000

0 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600

Time (s)

Fig. 4.5. Nonfaulty scenario

In particular, a fault has been introduced at sample 1201 consisting of an additive
constant of value 0.035 acting over the parameter a,.

Lewel at tank 1

T
fault
no fault

10

cm

l L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (s)

Fig. 4.6. Faulty scenario

Fault detection by means of the set-membership technique: In this technique, each
new measurement is used to obtain a new strip in the parameter space and analyze its
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consistence to the FPS. No fault is decided when the strip intersects or contains the FPS
(see Fig. 4.7(a)), otherwise we decide a fault has taken place (see Fig. 4.7(b)).

Sample: k=1200 Sample: k=1201 --> FAULT!
0.095 T T 0.08 T T

0.001 1 007k /

0.06}-
0.0751 1 0.051
& 007F 4 & 0.04[

0.055

0.045 1 . 0 . .
0.065 0.07 0.075 0.08 0.065 0.07 0.075 0.08

(@) (b)
Fig. 4.7. (a) No fault detected, (b) Fault detected

Fault detection by means of the likelihood function: In the uniform case, the
uncertainty region obtained in the fault-free scenario corresponds to the values in the
parameter space grid where the likelihood function is nonzero. In the fault detection
stage, we can use this region to test if new samples of the system are consistent with it
or not.

When a new measurement enters, we compute the likelihood that every pair (a,, as) in
the grid has generated it. If the new likelihood covers (totally or partially) the fault-free
likelihood function, we conclude that data are consistent with the model and thus we
decide that no fault has taken place (see Fig. 4.8).

Sample: k=1195

0.065 0.065

Fig. 4.8. No fault detected (measurement k% is consistent with the uncertainty model). Remark: the
likelihood functions z-values have been scaled for comparison purposes at 5 and 10 respectively.
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In the case that a fault has taken place, the two likelihoods will be disjoint and thus their
product will be zero for all the grid values. In such a case, we will decide that we have
a fault (see Fig. 4.9).

Sample: k=1201 --> FAULT!
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1
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Fig. 4.9. Fault detected (measurement % is not consistent with the uncertainty model). Remark: the
likelihood functions z-values have been scaled at 5 and 10 respectively.

This procedure has been tested, for a 60 x 60 parameters grid, with the same data than
the set-membership case and it successfully has detected the fault at sample 1201. The
elapsed time per sample is similar to the set-membership case. Note that, again, the
results coincide with the set-membership case. Both methods are equivalent in the
linear case (since the contour of the measurements likelihood coincides with the set-
membership strips).

Minimum fault detected: Both procedures detect additive faults in parameter a, equal
or greater than 0.0053cm. If the fault magnitude is 0.0052cm or smaller, since many
few values of the uncertainty set are consistent with the data, the fault is not detected
(the deviation of the behavior is considered due to the model uncertainty and not a
fault).
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Sample: k=1201
0.085

0.08
0.075}

0.07} /
0.065\-

& 0.06f

0.0551

0.0451

0.04

L L
0.065 0.07 0.075 0.08

a

Fig. 4.10. Fault not detected in the set-membership technique

Sample: k=1201 Sample: k=1201
0.077 T T T T
0.076
0.0751
0.0741
0.0731
<
& 0.0721
0.0711
0.071
0.069-
0.068
0.067 . . . . . . . . .
a 0.065  0.065 0.067 0.068 0.069 0.07 0.071 0.072 0.073 0.074 0.075 0.076 0.077
3 a
1 2
(@ (b)

Fig. 4.11. Fault not detected in the likelihood function technique. (a) free-fault likelihood and likelihood
at sample £, (b) contour plot of the likelihood updated by sample 4.

4.2.3 MISO case with observer

The use of diagnostic interval observers is reported in (Puig et al., 2008), (Raissi et al.,
2010). Observers improve the ability of detecting output faults but lead to structures
nonlinear in the parameters. Set-membership techniques cannot deal in a simple
manner with this type of systems, but the likelihood approach presented in this
dissertation does.

Next figure shows the observer configuration for the MISO plant considered. It consists
of a model of the plant with an additive correction term depending on the error between

the measured output h, (n) and the predicted output 2, (n). L is the observer gain.
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vy (k) + e(k)
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lant +
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Fig. 4.12. MISO plant with output observer

The general expression is

~ ~ a ~ a
hy(k) = hy(k —1) — = /Zghl(k —1) +-—>/2ghs(k — 1)
Ay A

Y1kq

Ay

a. Calibration in a fault-free scenario

(80)

vy(k = 1) + e(k) + L (hy(k — 1) = Ay (k = 1))

Uncertainty regions for several values of Z have been obtained. Fig. 4.13 shows the case

for L = 0.5.
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Feasible Parameter Set. L=0.5

0.08 ‘ ‘
= > LF contour
strips intersection
O polytope \ertices
0.075 |
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0.07+ B

0.065 ‘ ‘
0.065 0.07 0.075 0.08
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Fig. 4.13. Uncertainty region for the MISO case with output observer. L = 0.5

For small values of the observer gain, the uncertainty region is small (see Fig. 4.14). For
the case L = 0, the system is equivalent to an Output Error (OE) model,

N N a - a k
hy(k) = Ry(k— 1) =2 |2gh,(k — 1) + 2 [2ghs(k — 1) + 21
2, 2, A

vy(k—1)+e(k) (81)

1

and the observer output tracks the nonfaulty behavior.

Feasible Parameter Set. L=0 Feasible Parameter Set. L=0.1

T 0.08 T
S>> LF contour = LF contour
strips intersection strips intersection
O polytope \ertices O polytope vertices

0.0

0.075- 0.0751

0.071 0.07f

065

L L 0.065 L L
0.065 0.07 0.075 0.08 0.065 0.07 0.075 0.08

(@ (b)
Fig. 4.14. Uncertainty region for the MISO case with output observer. L = 0,0.1

For large values of the observer gain, the uncertainty region tends to the FPS region of
the previous section (see Fig. 4.15). For the case L = 1, the system is equivalent to an
Auto Regresive with eXogenous input (ARX) model,
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Ra) = = [2gh,(k— 1) + 2 J2ghate =1 + 0 (k- 1)
Aq A4 Aq (82)
+e(k)+h(k—1)
Feasible Parameter Set. L=0.9 Feasible Parameter Set. L=1
0.08 T 0.08 T T
=> LF contour = LF contour
strips intersection strips intersection
o polope \ertices O polytope vertices

0.075+ 0.0751

L L 0.065 L L
0.065 0.07 0.075 0.08 0.065 0.07 0.075 0.08

(a) (b)
Fig. 4.15. Uncertainty region for the MISO case with output observer. L = 0.9, 1

b. Fault detection stage

As in the previous section, the likelihood approach and the obtained uncertainty regions
for a 60 x 60 parameters grid have been used to detect faults induced by changes in the
parameter a;. At the sample 1201, a value of 0.035 is added to this parameter. The
observer is applied to the plant at sample 1050. The fault detection procedure has been
implemented on-line and the fault has been detected at the correct sample in all the
cases (0 < L <1).

Lewel at tank 1. Fault detected at sample k=2000, (L=0.5) Level at tank 1 (detail). Fault detected at sample k=1201, (L=0.5)
10 . - . . . . . . . 9.9 - . - . - \/ T
9r 9.88 - B
9.86 B
9.84 ‘ B
9.82 - ‘ B
£ £ 98 ‘ B
S S
9.78 - h\j ‘ -
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I
2 fault 9.74 fault
no fault no fault
ir estimated output (a;,a,)=(0.071,0.071) 1 972 estimated output (a,,a,)=(0.071,0.071) | |
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Fig. 4. 16. Fault detection for the case L = 0.5. (a) The observer output for the case (a;,a3) =
(0.071,0.071). (b) Detail of the faulty, nonfaulty and observer behavior.

Regarding the minimum detectable fault, the observer L = 0.1 can detect faults as small
as 0.0011 (but with a delay of 63 samples), and the observers L = 0.5 and L = 0.9 can
detect faults as small as 0.0035 and 0.0030 respectively (but with a delay of 528
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samples, this latter is due to the fact that they detect the fault thanks to the change of the

pump voltage)

Finally, Fig. 4.17 shows the smallest faults that the system can detect and the number of
samples elapsed until the fault is detected. The good behavior of small values of L is
explained here because we are using an ideal model (i.e., the data have been generated
by this model). If the model was not exact, the behavior would not be so good for small

observer gains.

No. of samples

No. of samples before the fault is detected (L=0.1,0.5,0.9)

¢ L=0.1
w  L=0.5
L=0.9

Fault magnitude X 10-3

Fig. 4.17. Number of samples before the fault is detected

4.2.4 MIMO case

Now we consider the MIMO (Multi Input Multi Output) case. A set of 21000
measurement data have been obtained for the whole system. Fig. 4.18 shows the steady
state final 1400 samples for each tank level. The first N = 500 samples of this record
will be used for calibration purposes.

The system in (77) can be viewed as two independent MIMO systems. In the first one,
the inputs are v; and v,, and the outputs are h; and h;. The uncertain parameters are,

again, a, and a;.

dh a a k

_1=__1 Zghl +_3 Zgh3+)/1 1171

dt A Aq Aq 83)
% _ _ a3 e 4 (1 —=y2)k,
dt a4, V°I9ns 4, 2
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In the second one, the inputs are v, and v,, and the outputs are h, and h,. The
uncertain parameters are a, and a,.

dh a a k

_2:__2 zghz +_4 Zgh4+y2 21.72

dt A, A, A, (84)
%=_ﬁ 5ah +(1—V1)k1v
TV 4,
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Fig. 4.18. Measurement data for the MIMO case

The identified error bounds are §; = 0.1134, §, = 0.1098, §; = 0.1036, and 6, =
0.1024.

c. Set-membership approach

Firstly, we obtain the uncertainty region for the parameters a, and a by considering the
constraint h, (see Fig. 4.19(a)) and then the uncertainty region for the parameters a,
and a5 by considering the constraint h5 (see Fig. 4.19(b)).
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Parameters (a,, a,), constraint hy Parameters (a,, ay), constraint hy
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ay a

(a) (b)
Fig. 4.19. MIMO case. Uncertainty region for a, and a5 considering constraints (a) h, and (b) h

The combination of the previous regions leads to the uncertainty region shown in Fig.
4.20(a). Fig. 4.20(b) shows the resulting region for the parameters a, and a, and
constraints h, and h,.

Parameters (a,, a,), constraints (hy, hy) Parameters (a,, a,), constraints (h,, h,)

01 . . . . . . . . . . . . . . . . , ,
0.06 0.062 0.064 0.066 0.068 0.07 0.072 0.074 0.076 0.078 0.08 0.05 0.052 0.054 0.056 0.058 0.06 0.062 0.064 0.066 0.068 0.07

2 2

(@) )

Fig. 4.20. MIMO case: (a) Final uncertainty region for a; and a; (b) Final uncertainty region for a,
and a,

d. Likelihood approach

The same region shown in Fig. 4.20(a) can be obtained by computing the likelihood to
obtain the measurements h,, hs for each pair of parameters a;, as,

N-1

p(hy, hslay, az) = p1(hy — ﬁ1|a1, az)ps(hs — ’Al3|a1: as) (85)

n=0

taking a 30 x 30 parameters grid, and considering uniform probability distributions for
the residuals, (hy — hy|ay, az)~U(=81,68;) and (hs — hs|ay, az)~U(=85,683). Fig.
4.21 shows the results for N = 500 and a grid of 30 x 30 values for a,, a; between
0.06 and 0.08.
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Fig. 4.21. MIMO case, parameters a,, a;. (&) normalized likelihood function, (b) likelihood function
contour plot.

Similar results are obtained for each pair of parameters a,, a,, by computing the
likelihood to obtain the measurements h,, h, (see Fig. 4.22).

FPS for (az,a
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Fig. 4.22. MIMO case, parameters a,, a,. (a) normalized likelihood function, (b) likelihood function
contour plot.

4.3 Case Study Il: Wind turbine

In this section we consider the generic three-bladed horizontal variable speed wind
turbine with a full converter coupling that was proposed by (Odgaard, Stoustrup, and
Kinnaert, 2009) as a fault detection benchmark. Recently, a second benchmark based
on the same plant has been proposed by (Odgaard and Johnson, 2012). We will focus
on three faults of this second challenge, one for each blade, in order to illustrate the
application of the methodology developed in this dissertation.
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4.3.1 Physical model

A Simulink-based model of the wind turbine is available at (kk-electronic, 2012). It
corresponds to a 5SMW turbine with a hub height of 89.6m, rotor radius of 63m, rated
rotor speed of 12.1rpm, and maximum pitch rate limited to 8deg/s. See (Odgaard and
Johnson, 2012) for more details.

The wind turbine dynamics are implemented by means of a FAST (Fatigue,
Aerodynamics, Structures, and Turbulence) code. FAST is an aeroelastic wind turbine
simulator designed by the U.S. National Renewable Energy Laboratory’s (NREL)
National Wind Technology Center.

Sensor models, actuator models and faults are implemented in Simulink, making no
changes in the underlying FAST code.

Actuator model: The benchmark presents several actuators: for the pitch, for the
torque, and for the yaw systems. Here we will focus on the hydraulic pitch actuator
model. This is a piston servo system which can be modeled as a closed loop transfer
function between the pitch angle § and its reference £,. A good approximation is a
second order transfer function

B(s) wy, (86)
Br(s) T s2 4 2{wy,Ss + w2

H(s) =

where ¢ is the damping factor and w,, is the natural frequency. In a fault-free scenario
we consider that the all three systems are equal and their nominal values are { = 0.6
and w, = 11.11rad/s. In addition, the pitch angle is restricted to be within g €
[—2°,90°] and the pitch rate is restricted to 8 € [—8°/s,8°/s].

Sensor model: The pitch angles g;, i = 1,2,3 are provided by FAST. In order to
simulate the measurement noise and the effect of the electrical noise, signals from Band
Limited White Noise blocks with a noise power of 1.5- 1073 are added to the pitch
angles generated by FAST.

Discrete model: The nominal model in (86) can be discretized by means of several

methods. If we choose the forward approximation of the derivative g ~ w

which is equivalent to substitute s = “Lin (86)), the resulting transfer function is
T.
N

w2T?
H(z) = == (87)
72 4+ [-2 4+ 2w, Tz + [1 — 2{w, T + w2TE]
where T, is the sampling time. The backward approximation (8 ~ w
z-1 1-z71 ’
S = = ),
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wATE
H(z) = nls (88)
[1+ 20w, Ty + w2T2] + [-2 — 2{w,Ts]z"t + z—2
and bilinear transform (Tustin transform, s = Tig)
H(z) = wiliz® + 205152 + 0pTy (89)

Z2[4 + 40w, Ts + w2TZ] + z[—8 + 2wiT2] + [4 — 4w, Ts + w3TZ]
may be used instead.

The sampling time is chosen as 80 samples per second, i.e., T, = % = 0.0125s.

It is important to note that, in all the three discrete models, the relationship between the
two model parameters ¢ and w,, is nonlinear. Therefore, linear system identification
techniques such as the strips set-membership technique considered in the previous case
study cannot be used.

Next sections show how the uncertainty region identification and fault detection can be
successfully performed by means of the Bayesian methodology developed in this
dissertation.

4.3.2 First blade. Sensor fault

Fault description: The fault considered here is the Fault #4 of the benchmark. It
consists of Blade 1 having a stuck pitch angle sensor, which holds a constant value of 1
deg. Fault #4 is active from 185s to 210s (i.e., from samples 14800 to 16800).

The requirement is that this fault must be detected in less than ten samples, that is, the
detection time must be T, < 10T.

a. Calibration in a fault-free scenario

The Simulink model provided by the benchmark has been used to generate a record of
N = 50.000 samples in a fault-free scenario.

Error bound: The fault-free samples have been compared to the nominal model
response to the same reference signal in order to obtain an estimate of the error bound.
Since the model implemented is Simulink is the nominal model (86), the resulting error
is only due to the measurement noise and to the discretization method. The maximum
values obtained for |e| have been 1.4048 for the forward approximation, 1.4184 for the
Tustin approximation, and 1.4551 for the backward approximation. Note that, although
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the Tustin transform is the method that best approximates the analogic behavior, the
error bound is greater than the one obtained by the forward approximation. We
conclude that the effect of the measurement noise is much more important than the
discretization error. Hence, the discretization method is not a relevant issue here and we
will use the forward approximation from now on.

Uncertainty region: The feasible parameter set has been obtained for a parameters
grid of 40 x 40 as the contour of the likelihood function of the nonfaulty measurements
assuming uniform measurement noise, U(—35,5). We have selected § = 1.1 - max|e|,
which in the case of the forward approximation is § = 1.5452. Fig. 4.23 shows the
resulting uncertainty region for (a) N=200 samples and (b) N=50.000 samples. The
computation time (in a general purpose laptop) has been 9.14s and 29.21s, respectively.

Blade 1: 5=1.5452, N0:40. N=200 Blade 1: §=1.5452, N0:40. N=50000

0.9+

0.8+

0.7+

0.6+

s 050

0.4

0.3+

0.2+ 4 0.2+

0.1+ 4 0.1r

L L L L L L L L L L L L L L L L L L L L
3 4 5 6 7 8 9 10 11 12 13 14 3 4 5 6 7 8 9 10 11 12 13 14

(@) (b)

Fig. 4.23. Blade 1. Likelihood function contour plot for (a) N=200 samples and (b) N=50.000 samples.
The black cross is the nominal model.

b. Fault detection

The uncertainty region obtained with N=50.000 samples has been used to check the
existence of faults. A new record of measurements has been generated but now the data
contain the Fault #4. For each new measurement, we compute the likelihood function
assuming uniform distributed noise in a 40 x 40 grid and compare it to the likelihood
function of Fig. 4.23(b). In the case that the two likelihood functions present some
parameters of the grid in common, we say that the data are consistent with the model
and consequently we decide that there is no fault. This is the case shown in Fig. 4.24,
where the measurement likelihood covers all the parameters of the uncertainty region.
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(b)

Fig. 4.24. Blade 1. Normalized likelihood function corresponding to the uncertainty model and
likelihood function corresponding to the sample k (no fault case): (a) 3D plot, (b) contour plot.

When the fault occurs, the likelihood function of the faulty measurement is far from the
uncertainty region, therefore the product is zero for all the parameter grid values and the
fault is decided. See next figure.

k=14802 --> FAULT!
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Fig. 4.25. Blade 1. Normalized likelihood function corresponding to the uncertainty model and
likelihood function corresponding to the sample k (fault detected): (a) 3D plot, (b) contour plot.

The fault is detected at the 14.802" sample, 2 samples after the fault has been activated.
Hence, the requirement of the benchmark (less that 10 samples) is satisfied.

4.3.3 Second blade. Actuator fault

Fault description: The fault considered here is the Fault #7 of the benchmark. It
consists of an abrupt change of the hydraulic power. This pressure drop is modeled by
changing the parameters in (86) to w,, =5.73 and ¢, = 0.45. Also, this fault is
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introduced linearly from 350s to 370s, is full active from 370s to 390s, and it linearly
outfaces from 390s to 410s. In short, the fault is active from sample 28.000 to sample
32.800. Next figure shows the reference signal, the measured system output and the
response of the nominal model when the fault is active. Note that it is not visually clear
that the system presents a faulty behavior. This is an indirect hint that this fault is going
to be difficult to detect.
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Fig. 4.26. Fault #7 acting on the second blade

The requirement is that this fault must be detected in less than eight samples, that is, the
detection time must be T, < 8T.

a. Calibration in a fault-free scenario

Again, the Simulink model provided by the benchmark has been used to generate a
record of N = 50.000 samples in a fault-free scenario.

Error bound: We have proceed as in the Blade 1 and now the maximum values
obtained for |e| have been 1.6163 for the forward approximation, 1.6149 for the Tustin
approximation, and 1.6125 for the backward approximation. Since they are very
similar, we will use the forward differences discrete model again, as in Blade 1.

Uncertainty region: The feasible parameter set has been obtained following the same
procedure as for the Blade 1. Here we have selected § = 1.1 - max|e|, which in the
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case of the forward approximation gives 6 = 1778. Fig. 4.27 shows the resulting
uncertainty region for (a) N=200 samples and (b) N=50.000 samples, respectively.

Blade i §=1778, N,=40, N=200 Blade 2:  §=1.778, N, =40, N=50000
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Fig. 4.27. Blade 2. Likelihood function contour plot for (a) N=200 samples and (b) N=50.000 samples.
The blue little circle corresponds to the perturbed model associated to Fault #7.

Although the two blades have the same nominal model and the reference signal is the
same, the resulting uncertainty regions differ since the measurement noise realization is
different. Also, note that since the N=200 region contain the perturbed model, it would
be useless to detect the associated fault.

b. Fault detection

The uncertainty region obtained for N=50.000 samples is the one that will be used to
perform the fault detection. A new record of measurements has been generated but now
the data contain the Fault #7.

Assuming uniform noise: For each new measurement, we compute the likelihood
function in a 40 x 40 grid, assuming that the noise is uniform distributed as U(—4, 9),
and we compare it to the likelihood function of Fig. 4.27(b).

In this case, due to the measurement noise characteristics, the new likelihood functions
always cover the likelihood function corresponding to the uncertainty region. When
this occurs, no fault can be detected, i.e., the method says that the measurements are
always consistent with the uncertainty model. See Fig. 4.28.
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Fig. 4.28. Blade 2. No fault can be detected if we assume uniform noise

This problem can be overcome if another probability distribution for the noise is used.
See next section:

Assuming Gaussian noise: Now we assume that the measurement noise is Gaussian
distributed V' (u, 5?) with mean u = 0 and standard deviation o = §/3 (in order to
include the 99% of the values of the noise realization, which are associated to the
interval [-30, 30]).

Now, the product of the likelihood function associated to the uncertainty region and the
likelihood function of each new measurement will be nonzero even if a fault occurs.
Therefore, to decide if the fault has taken place we must define a threshold value such
that if the product of the two likelihoods is under this threshold the fault is decided.
This value may be associated to a certain probability level. The selection of this value
will determine the number of samples until the fault is detected (if it is too low, the
number of samples before the detection will be greater) and it will affect to the
generation of false alarms (if it is too high) as well. Here we have tuned the threshold
value to 0.6. Another alternative is to define a threshold in terms of the volume of the
resulting product.

Fig. 4.29 shows the case of no fault detected whereas Fig. 4.30 shows the case of fault
detected. Finally, Fig. 4.31 shows the likelihood product for the case of no fault and
fault, respectively.
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(a) (b)

Fig. 4.29. Blade 2. Normalized uniform likelihood function corresponding to the uncertainty model and
Gauusian likelihood function for the sample k (no fault detected): (a) 3D plot, (b) contour plot.
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Fig. 4.30. Blade 2. Normalized uniform likelihood function corresponding to the uncertainty model and
Gaussian likelihood function for the sample k (fault detected): (a) 3D plot, (b) contour plot.
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Fig. 4.31. Blade 2. Product of the normalized uniform likelihood function corresponding to the
uncertainty model and the Gaussian likelihood function corresponding to the sample: (a) no fault
detected, (b) fault detected.
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In this example, the fault has been detected 4 samples after the activation of the fault.
Since the benchmark requirement was T, < 8T;, we have satisfied the problem
specifications.

4.3.4 Third blade. Actuator fault

Fault description: The fault considered here is the Fault #8 of the benchmark. It
consists of a slow increase of the air content that can be modeled by changing the
parameters in (86) to w,,; = 3.42 and {3 = 0.9. This fault is introduced linearly from
440s to 441s, is full active from 441s to 464s, and it linearly outfaces from 464s to 465s.
In short, the fault is active from sample 35.200 to sample 37.200. Next figure shows the
reference signal, the measured system output and the response of the nominal model
when the fault is active. Note that now it is visually clear that the system presents a
faulty behavior.
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Fig. 4.32. Fault #8 acting on the third blade

The requirement is that this fault must be detected in less than 100 samples, that is, the
detection time must be T, < 100T.

a. Calibration in a fault-free scenario

Again, the Simulink model provided by the benchmark has been used to generate a
record of N = 50.000 samples in a fault-free scenario.
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Error bound: We have proceed as in Blade 1 and Blade 2 and now the maximum
values obtained for |e| have been 1.5255 for the forward approximation, 1.5011 for the
Tustin approximation, and 1.4795 for the backward approximation. Since they are very
similar, we will use the forward differences discrete model, as in the other two blades.

Uncertainty region: The feasible parameter set has been obtained for a parameters
grid of 40 x 40 and a bound of § = 16781. Fig. 4.33 shows the resulting uncertainty
region for (a) N=200 samples and (b) N=50.000 samples, respectively.

Blade 3: 5=1.6781, N9:4O' N=50000
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Fig. 4.33. Blade 3. Likelihood function contour plot for (a) N=200 samples and (b) N=50.000 samples.
The blue little circle corresponds to the perturbed model associated to Fault #8.

b. Fault detection

The N=50.000 samples uncertainty region will be used to perform the fault detection.
A new record of measurements has been generated but now the data contain the Fault
#8.

Assuming uniform noise: For each new measurement, we compute the likelihood
function in a 40 x 40 grid, assuming that the noise is uniform distributed as U(—6, §),
and we compare it to the likelihood function of Fig. 4.33(b).

In this example the fault is detected 62 samples after its activation (see Fig. 4.34);
therefore the benchmark requirements are satisfied. However, better results are
obtained if Gaussian noise is assumed.
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Fig. 4.34. Blade 3. Normalized likelihood function corresponding to the uncertainty model and
likelihood function corresponding to the sample k (fault detected): (a) 3D plot, (b) contour plot.

Assuming Gaussian noise: Now we perform the fault detection assuming that the
measurement noise is Gaussian distributed N (u, 0%) with mean u = 0 and standard
deviation ¢ = §/3. The threshold value has been selected to 0.6.

Fig. 4.35 shows the case of no fault detected and Fig. 4.36 shows the case of fault
detected. Finally, Fig. 4.37 shows the likelihood product for the case of no fault and

fault, respectively.

In this case, the fault is detected 9 samples after the fault is activated.
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Fig. 4.35. Blade 3. Normalized uniform likelihood function corresponding to the uncertainty model and
Gaussian likelihood function for the sample k (no fault detected): (a) 3D plot, (b) contour plot.
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Fig. 4.36. Blade 3. Normalized uniform likelihood function corresponding to the uncertainty model and
Gaussian likelihood function for the sample k (fault detected): (a) 3D plot, (b) contour plot.
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Fig. 4.37. Blade 3. Product of the normalized uniform likelihood function corresponding to the
uncertainty model and the Gaussian likelihood function corresponding to the sample: (a) no fault
detected, (b) fault detected.

c. Other extensions

Probabilistic uncertainty region: From the previous results, we see that the
uncertainty regions obtained assuming uniform distributed noise highly depend of the
particular noise realization. Even though the underlying model and the reference signal
were the same in the three blades, the resulting feasible parameter set regions were quite
different.

More alike uncertainty regions for the three blades can be obtained if we assume that
the measurement noise is Gaussian distributed. In this case, the regions will be not hard
bounded regions no more, but their shape and size will be similar for the three blades.
See Fig. 4.38.



126 Application to Fault Detection
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Fig. 4.38. Probabilistic uncertainty regions for (a) blade 2 and (b) blade 3.

Introduction of prior knowledge: The regions shown in Fig. 4.38 are posterior
probability regions since they have been obtained by assuming that the noise is
Gaussian distributed N (u, 0?) with mean u = 0 and standard deviation ¢ = /3, and
assuming that the model parameters are also Gaussian distributed with mean 0, =
(11.11 0.6)T and covariance matrix P, = 100 - I,,,. To obtain the regions of Fig.
4.38 we have perform the product of the (Gaussian) likelihood function of the
measurements with the (Gaussian) prior distribution of the parameters. This way the
nominal model is nearer the center of the uncertainty region than in the case of uniform
distributed noise.

Fault detection: The regions of Fig. 4.38 have been used to perform the fault detection
stage and the faults have been detected in 2, 4 and 9 samples after the activation for
each blade respectively. This results coincide with the better results obtained in the
previous sections. Note however that the number of samples before the detection
depends on the selected threshold upon the product between the uncertainty region and
the sample likelihood.

In the Blade 3 case, for a threshold value of 0.4, the fault is detected after 9 samples (see
Fig. 4.39) whereas if the threshold is 0.3, the detection is fulfilled in 13 samples.
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Fig. 4.39. Blade 3. Fault detection assuming Gaussian noise and Gaussian model parameters (a) no fault
detected and (b) fault detected.

In the Blade 2 case, for a threshold value of 0.6, the fault is detected after 4 samples (see
Fig. 4.40). If the threshold is 0.4, the detection is attained in 16 samples.
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Fig. 4.40. Blade 2. Fault detection assuming Gaussian noise and Gaussian model parameters (a) no fault
detected and (b) fault detected.

4.4 Summary and conclusion

In this chapter, we have illustrated the behavior of the Bayesian methodology to the
uncertainty modeling oriented to fault detection.

For the quadruple tank process we have obtained the Feasible Parameter Regions (FPS)
for the MISO case, the MISO case with observer and the MIMO case, and we have
implemented the on-line fault detection algorithm. The FPSs have been obtained by
applying the strips set-membership technique explained in Chapter 2 and by computing
the parameters likelihood function assuming uniform distributed noise. The likelihood
approach is more intensive computationally than the strips technique but it can deal with
structures nonlinear in the parameters such as the plant with output observer. In the
linear case, either MISO or MIMO, the FPSs obtained by both methods coincide, thus
leading to the same behavior in the fault detection stage.

For the wind turbine system we have obtained three discrete models nonlinear in the
parameters. Since the relationship between the model parameters is nonlinear, the linear
strips set-membership technique cannot be applied. Instead we have used the
methodology developed in this dissertation. Firstly we have obtained the uncertainty
regions by assuming both uniform noise and Gaussian noise. In the uniform case the
uncertainty regions are hard bounded and their shape and size depend on the particular
noise realization. This dependence can be minimized if we assume Gaussian distributed
measurement noise but, in this latter case, the regions are probabilistic. In the Bayesian
framework the uncertainty regions (uniform or Gaussian) can be optionally tuned by
means of the introduction of a prior distribution upon the model parameters. This may
be interesting when we have some kind of prior knowledge about the model to be
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identified, since this way we assign a higher probability where we know the “true”
model is. Secondly, the obtained uncertainty regions have been used in the fault
detection stage. Different types of faults have been generated in the blades’ pitch angle
sensors and actuators. In the fault detection algorithm we have considered uniform and
Gaussian distributions for computing the entering samples likelihood functions. In the
Blade 2 case, the combination of the hard bounded uncertainty region and uniform
distributed sample likelihood has failed to detect faults due to the high dependence to
the noise realization of the uniform uncertainty region. This problem can be overcome
by simply assuming Gaussian noise in the sample likelihood function and assigning a
threshold to the resulting likelihood functions product. Actually, the product of the
probabilistic uncertainty regions with the entering samples likelihood functions has
successfully detected the faults in all the cases, widely satisfying the requirements of the
benchmark problem.



CHAPTER 5

Conclusion and Future Research

In this chapter we summarize and discuss the main contributions of the present
dissertation and we point out some lines for future research.

5.1 Robust identification problem

In this thesis, we have proposed a Bayesian methodology to formulate and solve the
robust identification problem that takes elements of both stochastic and deterministic
robust identification methods. Although parts of the problem have already been solved
with Bayesian methods (Sjoberg et al., 1995), (Andrieu et al., 2001) (Andrieu et al.,
2010), the novelty here is the definition of the so-called Bayesian Credible Model Set
and the aim of establishing a framework in which all the parts of the problem can be
solved within a Bayesian viewpoint.

Bayesian Credible Model Set: The key point is the definition of a Bayesian Credible
Model Set (BCMS). This model set is inspired in the Feasible Model Set (FMS) of
deterministic methods but it is of stochastic nature and it is obtained by combining (by
means the Bayes’ rule) the a priori information about the system and noise (prior
probability distributions) with the a posteriori information coming from the
measurement data (likelihood function). The BCMS contains all models whose
posterior probability distribution conditioned to measurement data is higher than a given
threshold.

The BCMS can characterize different types of models. Descriptions in the parameter
space and in the frequency domain have been presented. Also, by means of the use of
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hierarchical distributions and/or sets of competing models, the method can deal with
models where several sources of uncertainty are present (i.e., in the structure and in the
parameters). In the simplest case (linear regression models with Gaussian noise and
parameters) exact expressions can be derived. For moderately high order models and
arbitrary non-conjugate probability distributions, simulation methods based on Markov
chain Monte Carlo (MCMC) integration are used instead.

As lines for future research we can include here the extension of the BCMS to the case
where the support is a model space, e.g. the spaces ¢, and H,,. Since these spaces are
closely related to the Robust Control theory, it is expected that a robust identification
directly performed over these spaces may lead to better robust control-oriented models.

Credible regions: The model uncertainty is described by means Highest Posterior
Density (HPD) credible regions. Credible regions are easier to compute than classical
confidence regions and they enjoy some desirable properties compared to confidence
regions. Credible regions may lead to smaller uncertainty regions (provided the
adequate selection of the prior distributions), they can combine hard bounds with soft
bounds, they can be disjoint, and they can be computed iteratively as new measurements
are available (thus they can be updated on-line and therefore they are useful in fault
detection procedures).

Applications of the Bayesian Decision Theory: In this dissertation we have pointed
out several applications of the Bayesian Decision Theory, including the selection of a
nominal model, the model (in)validation and the optimal design of the experiments.

These issues are strong candidates to future research, especially in the field of fault
detection where deciding if a fault has taken place or not can be viewed as a (Bayesian,
of course) hypothesis testing problem.

5.2 Interest of the Bayesian viewpoint

At this point we would like to emphasize why the Bayesian viewpoint can constitute a
serious alternative to the existing robust identification methods. Actually, the Bayesian
viewpoint is especially appealing for several reasons:

1.  Smaller probabilistic uncertainty regions can be obtained if prior assumptions
about plant and noise are formally entered into the modeling procedure by
means the Bayes’ rule.

2. In absence of objective a priori information, subjective prior assumptions can
be formally entered on the model. Also, Bayesian inference gives tools to
modify “erroneous” prior assumptions as new observations enter to the model
(Box and Tiao, 1973), (Robert, 2001). However, it has to be said that the
selection of subjective priors is, perhaps, the most important issue in the
Bayesian methods. Since the computation of the posterior distributions is
systematic, the selection of the prior distributions arises as a critical problem.
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Although there exist very interesting literature concerning the meaning and
selection of subjective priors (Jeffrey, 2004), in the present work we have
found that uniform and Gaussian distributions have been sufficient for the
considered examples.

3. The model description in terms of probability distributions is a very general
and flexible one. As we have seen, we can combine in a same model the
uncertainty about the model order d and the uncertainty about the parameter
vector @ by means the use of hierarchical priors of the form p(0|d)p(d).
Moreover, no linearity assumptions are needed. This fact allows the
methodology to deal, in the same manner, with structures linear in the
parameters and nonlinear in the parameters.

4. Regarding the robust control application, an educated selection of the nominal
model on the basis of a control-oriented penalty function during the modeling
procedure is expected to produce uncertainty models more oriented to robust
control.

5.  Regarding the fault detection application, the computation of the likelihood
functions and the posterior probability distributions can be performed
recursively and therefore it can be implemented on-line.

5.3 Comparison to existing methods

Several connections with the existing robust identification methods have been found.
On the one hand, some of them can be viewed as particular cases of the Bayesian
methodology:

Particular cases: In the case where flat non-informative model priors are used, i.e., if
only the likelihood function of the measurements is used, the results of the Bayesian
methodology coincide with some of the existing methods. In particular, the Feasible
Parameter Set (FPS) of set-membership deterministic methods can be obtained by
computing the likelihood function of every set of parameters assuming uniform noise.
And the same Model Error Modeling (MEM) uncertainty regions based on conventional
system identification can be obtained by assuming Gaussian noise in the likelihood
function computation.

On the other hand, the application of the Bayesian ideas can improve the performance
of the existing methods:

Bayesian advantages: The suitable selection of the model prior distribution presents
some advantages compared to conventional system identification methods and robust
identification methods. For instance, in the frequency domain case, increasing the value
of the prior precision matrix, R, leads to small credible regions in general. This way,
the bias/variance trade off of conventional methods can be overcome, i.e., one can take
a high order model to reduce the bias error and afterwards select a spiky prior
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distribution to compensate the expected increase of the size of the uncertainty region
(variance error). Also, compared to the Non Stationary Stochastic Embedding method
(NSSE), the Bayesian methodology is the same for the case of real poles than for the
case of resonant poles and, again, smaller uncertainty regions may obtained by the
adequate selection of the prior distributions.

In summary, we conclude that the Bayesian framework allows a unified treatment of the
robust identification problem and additionally presents interesting properties compared
to single current methods.

5.4 Application to fault detection

Finally, we present some concluding remarks regarding the fault detection application.

In the linear in the parameters case, the computation of FPS regions by means of the
likelihood function has served as a basis for a fault detection procedure of a quadruple
tank process. The results have been compared to the ones obtained by the strips
intersection set-membership technique explained in Chapter 2. The likelihood approach
is slightly more intensive computationally than the strip technique but it can deal with
non-linear structures such as the plant with output observer. In the linear case, either
MISO or MIMO, the FPSs obtained by both methods coincide, thus leading to the same
behavior in the fault detection stage. Also, both strips technique and likelihood
technique can be implemented on-line for fault detection purposes, being the
computation time similar in both cases.

For the nonlinear in the parameters case, the developed methodology has been
successfully tested in the uncertainty modeling and fault detection of a three-bladed
wind turbine. In this case study, assuming uniform measurement noise in order to
obtain hard bounded uncertainty regions has shown to be a wrong strategy for the fault
detection of one of the blades. This bad result has been easily overcome by simply
making the assumption of Gaussian noise. Even though in most examples we have
assumed flat prior model distribution and uniform noise (in order to make easier the
comparison to set-membership techniques), it has to be stressed that the Bayesian
approach is a probabilistic approach, and that this stochastic nature is an advantage
rather than the reverse. In a general case, the adequate selection of the model prior
probability distributions may lead to probabilistic uncertainty regions that are tighter
than the ones obtained by conventional system identification methods and, as we have
seen, this will improve the fault detection based on them.

Future research in this field may consist in developing guidelines for the subjective
priors selection and the study of the main features of the probabilistic (Bayesian) fault
detection.



APPENDIX A

Optimal Estimation Theory

Classical system identification methods and stochastic robust identification methods
deal with the identification of G(q, ®) from experimental data as a standard estimation
problem. In this Appendix, we summarize some concepts of Optimal Estimation
Theory that are used in this thesis. For more details see the classical textbooks of
(Lehman and Casella, 1998) and (Casella and Berger, 2002).

A.l Estimation problems

In Estimation Theory, three main problems are posed, namely, (1) the point estimation
problem, (2) the interval estimation or set estimation problem, and (3) the hypothesis
testing problem.

System identification relates to all three. To obtain a nominal parameter vector 6 one
has to solve a point estimation problem. To obtain a confidence region for 6 one has to
solve a set estimation problem (interval estimation problem if 6 is real valued). And the
problem of validating a model 0, in the sense of determining if it is inside a particular
confidence region, can be viewed as a hypothesis testing problem. The fault detection
problem can be interpreted as a hypothesis testing problem as well.

Hypothesis testing and set estimation ask the same question, but from a slightly
different perspective. Both procedures look for consistency between observations and
model. The hypothesis test fixes the parameter vector @ and asks what observation
values y (the acceptance region) are consistent with that fixed value. The confidence set
fixes the observed values y and asks what parameter values 0 (the confidence interval)
make this observation value most plausible.
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A.1.2 Point estimation

Estimator: An estimator © of 0 is a function from the observation space to the
parameter space. For real valued observations and parameters we have 8: RV — R?.
Since a point estimator is any function of an observation, any szatistic can be a point
estimator. But, in general, only sufficient statistics are considered as estimators,
(Lehmann and Casella, 1998), (Box and Tiao, 1973). Intuitively, a sufficient statistic is
a function of the data that summarizes all the available sample information concerning
the parameters of the distribution. For instance, for the case of a normal distribution
N(u,0?), a sufficient statistic for the mean and variance (u,02) is (m, s?), where

_1gn __1 N
m= ;Ziﬂxi and s? = Eziﬂ(xi —m).

An estimator © is characterised by its probability density function (pdf), usually
computed from a A-point observation, p(8|N), its expected (mean) value E[8)], its bias

E[6] — 0, and its variance-covariance matrix C = Cov[0] = E [(ﬁ — E[6])(0 -

Ef6])']

Estimator properties: A list of estimator properties can be found in (Schoukens and
Pintelon, 1991). A good estimator should use a// the information contained in the
measurements and should exhibit unbiasedness (accuracy), consistency, sufficiency,
efficiency (precision), and robustness. Some of these properties may be satisfied only
asymptotically, for AN tending to infinity. Let us summarize the main estimator
properties.

The estimator © of 0 is said to be unbiased if and only if its expectation equals to 0,
irrespective of sample size, that is, E[@] = 8. This implies that there are no systematic
errors (bias). Nevertheless, the absolute unbiasedness is a very restrictive condition so,
in many times, only asymptotic unbiasedness is required, that is, limy_., E[0y] = 6,
being B the estimate from N measurements.

For a sample of size /V, the estimator @ is said to be consistent when it converges in
probability to @ as Mtends to infinity, limy_,,, Pr[|8y — 8] > &] =0, v§ > 0. A more
compact notation is p limy_. 0y = 0. Consistency is convergence in probability and
the case of probability one, i.e., not asymptotic, would be the strong consistency case.
Although it is common to heuristically describe consistency as unbiasedness in large
samples (asymptotic unbiasedness), they are not equivalent. An unbiased estimator will
always be consistent but the opposite is not necessarily true.

The estimator ® of @ is said to be efficient if it possesses small (minimum) variance.
The variations on ® due to measurement noise can be described by means of the

covariance matrix, C = E [(6 —E[6])(8 - E[ﬁ])T|E[§]]. The diagonal of C contains
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the variance of individual parameters on @ whereas the off-diagonal elements contain
the covariance between the different parameters on ©.

If the estimator is unbiased, C has a lower bound; if the estimator is biased it is trivial to
generate C = 0. Also, an estimator 0, is relatively efficient if, for some other estimator
0,, we have C; < C,.

Finally an estimator is said to be robust if (some of) its properties are still valid when
the assumptions made in its construction (such as the noise distribution) are no longer
applicable.

There exist several methods for finding estimators. Some possibilities are the method
of moments, maximum likelihood estimators, Bayesian estimators, and invariant
estimators. All these methods are detailed in (Casella and Berger, 1990). Among all,
the method of maximum likelihood is by far the most popular technique for deriving
estimators.

A.1.3 Hypothesis testing

A hypothesis is a statement about a parameter or parameter vector (Casella and Berger,
2002). The goal of a hypothesis test is to decide, based on the observation, which of
two complementary hypotheses is true. The two complementary hypotheses in a
hypothesis testing problem are called the null hypothesis and the alternative hypothesis.
They are usually denoted by H, and H,, respectively.

In a hypothesis testing problem, after performing the experiment, we must decide either
“to accept H, as true” or “to reject H, as false” and thus decide H; is true. The subset
of the sample space for which H, will be rejected is called the rejection region or
critical region. The complement of the rejection region is called the acceptance region.
Note that “rejecting H,” and “accepting H,” are not synonymous. Similarly, a
distinction can be made with “accepting H,” and “not rejecting H,”.

A hypothesis test of Hy:0 € 0, versus H;:0 € ©g might make one of two types of
errors. These are summarized in Table A.l. If 8 € ©, but the hypothesis test
incorrectly decides to reject H, then the test has made a Type | Error. On the other
hand, if @ € ©§ but the test decide to accept H,, a Type Il Error has been made.

Decision
% Accept Hy Reject H,
S Hy Correct Type |
g decision error
< H Type Il Correct
> error decision
|_

Table A.1. Hypothesis testing. Type | and Type Il errors
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There exist several methods of finding test procedures. See for instance invariant tests,
union-intersection tests, intersection-union tests in (Casella and Berger, 2002). In
system identification the most used is the likelihood ratio test. 1t is a very general
method, almost always applicable, and it is also optimal in some cases.

Likelihood ratio test: The likelihood ratio test statistic for testing H,: ® € ©, versus
H,:0 € O is

sup L(8]y) (90)

A = Supicely)
Q]

where [(B]y) is the likelihood function. A likelihood ratio test is any test that has a
rejection region of the form {y: A(y) < c}, where c is any number satisfying 0 < ¢ < 1.

The numerator of A(y) is the maximum probability of the observed output sequence, the
maximum being computed over parameters in the null hypothesis. The denominator is
the maximum probability of the observed sample over all possible parameters. The
ratio of these two maxima is small if there are parameter points in the alternative
hypothesis for which the observed sample is much more likely than for any parameter
point in the null hypothesis. In this situation, the criterion says that H, should be
rejected and H; should be accepted as true.

The following theorem states an important asymptotic property of the likelihood ratio
test.

Theorem A.1. (Casella and Berger, 2002). Let the system output be distributed as
p(y|0). Under some regularity conditions on the model p(y|0), if 8 € ©, then the
distribution of the statistic —2logA(y) converges to a chi squared yZ distribution as the
sample size N — oo. The number of degrees of freedom d of the limiting distribution is
the difference between the number of free parameters specified by 8 € 0, and the
number of free parameters specified by 8 € ©. O

Remark: The “regularity conditions” needed for the model are general conditions that are
satisfied for many reasonable distributions (but not all). These conditions are mainly
concerned with the existence and behavior of the derivatives (with respect to the parameter)
of the likelihood function, and the support of the distribution (it cannot depend on the
parameter).

A.1.4 Set estimation. Interval estimation

In the point estimation problem, the inference is a guess of a single value as the value of
0. The inference in a set estimation problem is the statement that “6@ € C” where C c ©
and C = C(y) is a set determined by the value of the data observed.
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An interval estimate oOf a real-valued parameter 6 is any pair of functions L(y) and
U(y) of the observation. If y is observed, the inference L(y) < 8 < U(y) is made. The
random interval [L(y), U(y)] is called an interval estimator. It is important to stress
that the interval is the random quantity, not the parameter. The coverage probability
(that is, the probability that the random interval covers the true parameter) is a statement
on terms of y, not 6. However, the coverage probability can be a variable function of 6.

Set estimators, together with a measure of confidence (usually a confidence coefficient)
are known as confidence sets. A confidence set with confidence coefficient equal to
some value, say 1- «, is simply called a (1-«)-confidence set. Usual values for « are
0.01, 0.05,and 0.1.

In (Casella and Berger, 2002), several methods for finding interval estimators are
presented: inverting a test statistic, pivotal quantities, guaranteeing an interval, invariant
intervals. The test inversion presented in the next example is very general and relates
confidence sets with hypothesis tests.

Example A.1. Relationship between confidence set and acceptance region

This example illustrates how to construct a 1 — a confidence set for @, C(y), by
inverting an acceptance region, A(0) (Casella and Berger, 2002).

Let {y,,}Z3 be i.i.d. V' (u, a2) and consider testing Hy: u = uo Versus Hy: p # Uo.

A reasonable acceptance region for the hypothesis test, i.e. the set in the sample space
for which H, is accepted, is given by

Za/ZO' _ Za/ZO'
A(uo) = 1os s Yn—1): Ho — N Sy<sp+ N

where z,, is the a/2-quantile of the standard distribution "(0,1). This means that H,

Za/zo'

is accepted for sample points with |y — uo| < —=— and that the rejection region is the

VN
_ Zg/20
set {()’0: e Y1)t |V — uol > \/% }

Since the test has size a, this means that Pr(H, is rejected|u = py) = a or, stated in
another way, Pr(H, is accepted|u = uy) =1 —a. Combining this with the above
characterisation of the acceptance region, we can write

_ Z/ZO' _ Z/ZO'
Pr(y— T/N S <y+ f/ﬁ Iﬂ=uo)=1—a

Since this probability statement is true for every p,, the statement

Z o Z o
D2 <y <y + L2 )=1—a

Pr(y - < N
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is also true. The interval [37 — Zf/%a , V+ %} obtained by inverting the acceptance

region of the level a test, is a (1 — a)-confidence interval, i.e., the set in the parameter
space with plausible values for u, and can be expressed as

_ Za/ZU _ Za/za
Cly) =C(yo,-rYn-1) =ju: y — N Susy+ N

These sets are connected to each other by the tautology y € A(u,) © uy € C(y).

The quality of set estimators is related to the probability of covering false values. The
probability of false coverage indirectly measures the size of a confidence set.
Intuitively, smaller sets cover fewer values and, hence, are less likely to cover false
values. The probability of coverage of ((y), that is, the probability of true coverage, is
the function of 0 given by Pr[@ € C(y)]. The probability of false coverage is the
function of 6 and 0’ defined by the probability of covering 6’ when 0 is the true
parameter. A (1-«)-confidence set that minimizes the probability of false coverage over
a class of 1—«a confidence sets is called a uniformly most accurate confidence set.

A.2 Maximum Likelihood Estimation

In this section we consider the system identification problem from a Maximum
Likelihood Estimation (MLE) viewpoint and present the classical system identification
as a particular case of the MLE.

In classical system identification, it is usual practice to model the system by means a
parameter vector 0,

Yn = G(q,0)uy, + H(q,0)vy, €2y

where q is the forward shift operator, qu,, = u,,;, G and H are rational transfer
functions in this operator, {y, }N=¢ and {u, }=¢ are respectively the observed output
and input samples, and {v,,}¥Z3 is a i.i.d. (independent identically distributed) stochastic
process with zero mean and finite variance.

Remark: More general system structures can be modeled if we use state-space
descriptions.

In this context, the goal of system identification is to obtain an estimate @ of @ given the
measurements {y,}¥=3 and {u,}NZ!. In particular, classical system identification
solves this problem by means the minimization of a cost function ¥, depending on the
prediction error €,(0) = y,, — Ynn-1(0).
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Inin-1(0) is the one-step ahead predictor of y,, based on the model parameterised by 6
and the past observations, Y,,_; = {y,, ..., ¥n—1}, and it can be expressed as

Drino1(8) 2 Eglyn|¥p_y] = f PnlYo1, ©)p(8)d0 ©92)

where Eg[.] is the statistical expectation operator with respect to a pdf (probability
density function) dependent on 6.

To compute 9,,-1(0), the steady state Wiener filter may be used

Pnin-1(0) = H™'(q,0)G(q,0)u, + [1 — H ' (q,0)]y,, 93)

provided that H(q, ®) is monic. To obtain (93) one simply has to substitute v,, = y,, —
5}n|n—1(e) in (91)

A.2.1 Likelihood Function

From an estimation theory viewpoint, since the system output samples {y,}¥=¢ (y in
matrix notation) can be considered a realization of a stochastic process, the system
output can be described by means the conditional distribution p(y|0) which is called the
sample distribution.

Consider for instance the linear regression model y = ®0 +v. If we assume i.i.d.
additive Gaussian noise v~N (0, c2I), the samples of the system output will be
distributed as y~ (@0, 621).

The conditional distribution p(y|0) is interpreted as the likelihood that the system
modeled by 0 has generated the observed process y. In this work, the likelihood
function (LF) will be denoted [(B]y).

Remark: Although the mathematical expression is [(0]y) = p(y|0), a likelihood function
is not a probability density function (pdf) since it is not defined axiomatically. Sometimes,
in order to get likelihood functions that integrate to one, it is used the standardized

likelihood, I(8]y) = ¢ - p(y|@), where ¢ = p(y) = E¢[p(y|0)] = [ p(y|0)p(0)d0 is the
normalizing constant.

Computation of the likelihood function: The computation of the likelihood function
can be performed by means the application of the Bayes’ rule, p(A4, B) = p(B|A)p(4).

[Bly) = p(y|0) = p(¥o.-Yn-110) = p(YNn-11Y0-- YN-2,0)P (V0. - YNn-2,0)

where p(¥o.-Yn-2,0) = p(Yn-21Yo--Yn-3,0)D(¥o--Yn-3,0) and so on. We proceed
iteratively until p(vo, y1,0) = p(v1]y0,0)0(y0, 0). Thus, we have
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N-1
1©1Y) = pv0,0) | [pOnlYa-1,0) o4
n=1
where Y,, = {yg, ..., ¥ }.
The key point is that
PWnlYn-1,0) = p:(yn — yn|n—1(9)) = pe(&n) 95)

where €,, = €,(0) are the residual errors and p.(.) is their associated pdf. Moreover,
p:(€,) = p, (v,) Where v, is the measurement noise.

Remark: Classical Prediction Error Methods (PEM) consider that there is no error in the
model structure, therefore the error in the parameter vector estimate and the prediction
errors (residuals) are only due to the measurement noise.

As we are considering i.i.d. noise, the joint distribution of the sequence is

N-1
@ =] | _potw 0

Finally, the result is that we can compute the likelihood function using the prediction
errors and the measurement noise pdf.

N-1
11y = | _ poten o7

A.2.2 Maximum Likelihood Point Estimation

The likelihood function has played a fundamental role in the last decades since most
parameter estimation techniques rely in the maximum likelihood (ML) paradigm. The

estimate @ = 8(y) is a maximum likelihood estimator (MLE) if, fixed y, the likelihood
function (B]y) attains its maximum (Schoukens and Pintelon, 1991). A list of MLEs
can be found in (Gustaffson and Hjalmarsson, 1995) and see (Ljung, 1999a) for a
general treatment of the topic.

a. Differentiation

If the likelihood function is differentiable in 8;, possible candidates for the MLE are the
values 0 that solve

o - (98)
a—ell(9|Y) =0 ,i=1.d
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These solutions are only possible candidates for the MLE since the first derivative being
zero is only a necessary condition for a maximum, not a sufficient condition.
Furthermore, the zeros of the first derivative only locate extreme points in the interior of
the domain of a function. If the extrema occur on the boundary the first derivative may
not be zero. Thus, the boundary must be checked separately for extrema. Points at
which the first derivative is zero may be local or global minima, local or global maxima,
or inflection points.

There are two inherent drawbacks associated with the general problem of finding the
maximum of a function: the first is that of actually finding the global maximum and
verifying that, indeed, a global maximum has been found; the second problem is that the
MLE may be very sensitive numerically and sometimes a slightly different sample will
produce a vastly different MLE.

Another way to find an MLE is to abandon differentiation and proceed with a direct
maximization. This method is sometimes numerically hard to implement.

b. Log-Likelihood Function

In most cases, especially when differentiation is to be used, it is easier to work with the
natural logarithm of [(0]y),

L(8ly) = log 1(8]y) 99)

known as the log-likelihood function.

The log-likelihood function allows solving the MLE problem as a minimization one:

8y = arg min[—L(8]y)] (100)

C. Fisher Information Matrix

If the log-likelihood function L(@]y) is differentiable twice, one can define the Fisher
Information Matrix as:

R I

This matrix measures the amount of information present in the measurements y, in
relation to the parameters 6.

d. Cramér-Rao Bound
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The inverse of the Fisher matrix, F;! = CR, is known as the Cramér-Rao bound. This
is a lower bound for the covariance matrix C of an estimator. It can be shown that it is
impossible to have an unbiased estimator with C smaller than the Cramér-Rao bound.
In fact, any estimator that reaches Cramér-Rao bound is a MLE.

The existence of this bound is independent of the estimator type: it only needs the
measurement noise probability distribution and the exact parameter vector 0, to be
calculated.

Another feature of CR is that, given the same amount of information, the introduction of
extra parameters in the model increases the Cramér-Rao bound, that is, it makes larger

the uncertainty on the estimates. So, if the order increases, the variance decreases but
the bias increases.

A.2.3 Properties of Maximum Likelihood Estimators

a. Properties of MLE

In general, the MLE

. 1 (102)
0, £ arg rr}aaxl\llgrc}oﬁE[L(my)]

IS a good point estimator, possessing some nice properties (Ninness, 2009). If
measurement noise is i.i.d. and the log-likelihood function L(O]y) is differentiable
twice, it can be shown that MLE is unique, asymptotically unbiased

lim E[0,] =0,

N-oo
strongly consistent,
limy_e Oy =0, w.p.1 (with probability one) (103)

and asymptotically efficient, i.e. its covariance matrix C approaches the Cramér-Rao
bound as N increases,

1 92 1 (104)

1=~ lim ————E[L
€ =52 1, Fgrge v EILOW)]

where g2 = E[€? |.

Moreover, the estimates @, present invariance properties and are asymptotically normal
distributed,
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VN(By —8,) > NV(0,P) as N - co (105)

Finally, these results can still hold even if p.(-) is not equal to the underlying true one,
but instead it merely satisfies some mild regularity conditions.

b. Limitations of MLE

Firstly, results (62), (104) and (105) are asymptotic in data length N. But, in practice,
one usually assumes that they hold approximately for N finite.

Secondly, these methods assume that the whole dynamics of the system can be
explained by means a parameter vector 8,. And therefore the only error of the model is
in the parameters values. So these methods are not suitable for describing the model
uncertainty in the way robust control needs.

Thirdly, these results are valid only for the parameter vector estimate 8. Sometimes
we need to estimate not the parameters but a function of them such as the system
frequency response. In these cases one has to form a first order Taylor expansion of the
function of interest about 0,, and then use (105) to obtain the estimate of the function
together with error bounds. The result will be accurate if |8y — @, || is small, and this
depends on the data length N being large.

A.2.4 Maximum Likelihood Estimators and System Identification

a. Relationship to classical system identification

Classical system identification can be viewed as a particular case of MLE. In these
methods the general solution to the problem of the parameter vector identification is:

0y 2 arg min Allim Vy (0) (106)
where V) is a cost function depending on the prediction error €,,(8) = y, — 9, n-1(6),

N
1 (107)
V(®) =3 > £(£,(6))
n=1

The function £(-) is an arbitrary positive mapping and it is usually chosen as #(x) =
x"x = ||x]|>. The measurement noise is assumed i.i.d. zero mean Gaussian and thus
prediction errors are also assumed &, ~N (1, 62) with i, = 0 and independent,
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D = — exp<_w)
¢ V2mo, 202

Since
€2(0)
207

logp,(€,(8)) = —logVv2m — logo, —

we have £(€,(8)) = £2(8) = —202[logp.(€,(8)) + logV2m + logo, |
On the other hand, the log-likelihood function can be expressed as

logl(B]y) = log [In=3 p»(en) = XN=31og p, (&) = Xn=g logp.(€,(8))

Thus, we can write (107) as

N
o2
Vn(0) = N £ Z[logps(sn(e)) + logm + logas]
n=1

2
o
N < [logl(9|y) + N(logv2m + 1oga£)]

In other words, minimizing Vy(0) is equivalent to minimize —logl(0]y) and this is
equivalent to maximize [(0]y). Thus classical system identification methods are a
particular case of ML estimation.

b. Computational implementation of the LSE

Regarding the computational implementation of equations
By = (@"®) "7y,

if we define F= ®T® =% N3 @,¢%, normal equations are expressed as FOy =
1 _ .
~Zn=0 @nYn (Ljung, 1999a).

Computation of 8, avoids construction of matrix F since this may be ill-conditioned.
Instead, a so-called “square root algorithm” is used and a matrix M is constructed with
the property MM” = F. There exist different possibilities for the construction of M.
QR factorizations have been used in the simulation examples of this thesis.

The QR factorization of a matrix A € R™*" is defined as A = QR, Q € R™*™ and
R € R™ ™ where Q is orthonormal, QQ” = IQ, and R is upper triangular.
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Time domain: Forr the time domain case, y = ®0 + v, the problem is solved by
R, R,
choosing [® y]=QR and R=| Oixq R3 , Where [® y] is
Onv—da-1)xa Ow-d-1)x1
N x (d +1),R; isad x d triangular matrix, R, isd x 1, R is scalar.

The LS criterion function Py is not affected by the orthonormal transformation Q
applied to the vector y — @0, V, = |y — ®0|? = |Q7 (y — ®0)|?. Therefore,

= s -oor <[oro (D) -[oar(-2) - R
R, — R,0\|’

= R,
Ov-2)x1

Finally,

Vy = IRz —R;8|? + |R;|?
That is, Vwvis minimized for R;0,5 = R,, giving minVy = |R;|2.

Frequency domain: For the frequency domain case the procedure is analogous. We
only have to express the system frequency response in matrix notation, G =T0 + w,
and choose [ G] = QR.

Let us define Gand T.

The system frequency response can be expressed as
a-1
G(e/om) = Z 0B (e’“m) + w,,, m=0,1,..,M—1
k=0

where G(ef‘*’m) is the system frequency response “measured” at frequency w,,. In fact,
frequency response is not directly measured but estimated from time domain input-
output data. The estimate is usually optimal in a least squares sense. Therefore the
error term w,,, is due to both measurement noise corrupting original time domain data
and frequency response estimation error.

Assuming that the model is parameterized in terms of basis functions, the model
frequency response at frequency w,, can be expressed in terms of the frequency
response of the basis functions as

6o

(Bo(e/m) ... Bd—l(ej“”"))( >=B(wm)9

a1
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For convenience we separate real part and imaginary part of the model frequency
response,
Re B(wy,) B* (wm)
(1mB)) @ = (1)
Im B(w,;) Bl (w,,)

Thus, “output vector” G corresponding to the frequency domain measures is a real-
valued vector of length 2x M,
GT = (Re G(e/®1) Im G(e/®1)

. Re G(e/®M) Im G(e/®m))

and regression matrix I is a 2 Mx d matrix,

BR(w,,) Re B,(e/®1) Re B;_,(e/®1)
B! (w,,) Im B, (e/*1) Im B;_4(e’“1)
I' = : = : :
\BR(CUM) Re B, (e/®m) Re B;_4(e/®m)
B’ (wy) Im B, (e/®m) Im B,_,(e/®M)

In matrix notation, G = T'0 + w.

Computing frequency domain data G from time domain measurements is a first step in
many robust identification techniques such as the non-stationary stochastic embedding.

A.3 Summary of point estimators

Table A.2 summarizes the main point estimators and it is based in the (Eykhoff, 1974)
classification of the most used point estimators depending on the (pdf) information
required about the measurement noise v, the plant to be identified 0,,,,., and the cost of
wrong modeling €(0,0,,,.). Note that we assume that the plant can be modelled by
0,0 SO the system identification problem is reduced to obtain a good estimate @, for

etrue '

Least Squares | Weighted Least | Maximum Maximum a Minimum Risk (MR)
(LS) Squares (WLS) Likelihood Posteriori
(ML) (MAP)
A priori info
aboutv | none E[v], E[w] | p(v) p(v) p(v)
about © none none none p(0) p(0)
about cost | none none none none C(0,0,,.)
Assumptions
about v v~N(0,I) | v~V (7, 0'13]) none none none
about @ | p(0) x ct p(0) o< ct p(0@) o< ct | none none
about cost | n.c.) n.c n.c n.c €(0,0,,,,)?
Objective | ming|[e]3 @ [ mingllell3® | max1(8ly) | maxp(8ly) | minEyeiy)[C(, Ocruc)]

(1) n.c.: not considered, (2) cost can be either known or assumed, (3) they are equivalent to ML

Table A.2. Summary of point estimators. Prior knowledge vs. arbitrary assumptions
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The Least Squares Estimate (LSE) is the one that needs less information. In fact no
prior information is required about measurement noise, plant, or cost. Instead, LSE
arbitrarily assumes that noise v is i.i.d. Gaussian with mean E[v] = 0 and covariance
matrix E[vv’] = 1. The optimal 8 is the one that minimises the squared prediction
error, where the prediction error is € = y — @80 in the linear regression case.

On the other hand, the Bayesian Minimum Risk (MR) Estimate is the one that makes
more use of prior information. It is necessary to specify the distribution of noise p(v),
the distribution of the parameter vector p(0) and the cost C(0, 0,,..) to be minimised.

A.4 Example

This example is based on the example of (Ninness, 2009) and (Ninness and Henriksen,
2010).

A.4.1 Experiment

The data generating process (true plant) is y, = %un +v,, n=1..N, so the true

parameter vector is 07 = (6,,0,) = (0.2,—0.8). The experiment consists of only
N = 20 samples of the excitation signal {u,,}5=¢,

u—{l’ n <10
n 0, n>0

The measurement noise sequence {v, }N=2 is i.i.d. uniform with zero mean and variance

0? = E[v?] = 0.01. In the uniform distribution U(a, b) the mean value is given by
b+ (b—a)?

Ta, so to have zero mean we need that a = —b. And the variance o2 is given by >

so to have variance equal to 0.01 we need b = %\/1202 = 0.1732 (Casella and Berger,
2002, p99). Next figure show the system output:

System output

T T T T T T T T T
true
0.9- —= noisy samples []

0.8

0.7
0.6
0.5¢
0.4

0.3

0.2

0 g
0 2 4 6 8 10 12 14 16 18 20
Time

Fig. A.1. Experiment
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A.4.2 Maximum Likelihood Point Estimation

The prior information is:
About noise: We know the noise pdf. It is i.i.d uniform with zero mean and
variance 0.01.
About plant: We do not know the parameter vector pdf. Therefore, we assume it
is constant.
About cost: We do not know which is the cost of selecting 8y # 0, but we do
not care about it.

The optimal solution is the one that maximizes the likelihood function, 8y =
arg maxg L(O]y).

Result: Next figures show the likelihood function and the true parameter vector:

@LF

-0.65 O true

Likelihood function

L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
el

(@) (b)
Fig. A.2. MLE: Likelihood function

Comments:

The true parameter vector is effectively at the top of the likelihood function, but we
cannot “isolate” it due to the form of the uniform distribution. So, this optimization
problem presents no unique solution.

A.4.3 Least Squares Point Estimation

The prior information is:
About noise: We do not know the noise pdf. Therefore, we assume it is i.i.d
normal with zero mean and unit variance.
About plant: We do not know the parameter vector pdf. Therefore, we assume it
IS constant.
About cost: We do not know which is the cost of selecting 8y # 0, but we do
not care about it.
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In short, no prior information is required.

The optimal solution is the one that minimizes the square of the prediction errors,
But in this example we are going to find the solution by

8 = arg ming||€]|3.

maximizing the likelihood function obtained with the assumption of normal noise,

0, = arg maxg [(0]y).

Results: Next figures show the likelihood function and the true parameter vector:

0.8

0.6

0.4

Likelihood function

0.2

/1

]
/

!

il
]

-0.7

0.4
0.3

Fig. A.3. LSE: Likelihood function

And the following ones the log-likelihood function and the true parameter vector:

LogLikelihood

-0.6

LSE

-0.7+

-0.751

~ 0.8

-0.85

-0.9+

-0.95-

=D logLF

O true

f
0.1

Fig. A.4. LSE: Log-likelihood function

I
0.15

I L
0.2 0.3 0.35

0,

(b)

0.25

0.4

The LS estimate obtained numerically is 87 = (0.1898,—0.8169). This result can be
improved by taking denser parameter vectors.

A.4.4 Weighted Least Squares Point Estimation (Markov Point

Estimation)
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The prior information is:
About noise: We do not know the noise pdf but we know its mean u and variance
o?. Therefore, we assume it is i.i.d normal NV (i, oI).
About plant: We do not know the parameter vector pdf. Therefore, we assume it
IS constant.
About cost: We do not know which is the cost of selecting 8y # 0, but we do
not care about it.
In short, only information about the noise mean and variance is required.

The optimal solution is again the one that minimizes the mean square of the prediction
errors, 8, = arg ming||€||3. And, again, in this example we are going to find the
solution by maximizing the likelihood function obtained with the assumption of normal
noise, 8y = arg maxg [(0]y).

Results: Next figures show the likelihood function and the true parameter vector:

WLSE
T

T T T T T T T
CEDLF
0.721 O true[|

Likelihood function

< 3 0.9 L L L L L L L L L
09 01 01 012 014 016 018 02 022 024 026 028
6.

1

(@) (b)
Fig. A.5. WLSE: Likelihood function

And the following ones the log-likelihood function and the true parameter vector:

WLSE

-0.7

T T
= logLF
-0.721 O true [

-0.741

-0.781
/

-0.8

0,

-0.821

LogLikelihood

-0.84-

-0.86 /
-0.88F e

- =

-0.9 . . . . . . . L
01 012 014 016 018 02 022 024 026 0.28
0
1

(@ (b)
Fig. A.6. WLSE: Log-likelihood function
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The WLS estimate obtained numerically is 87,,¢ = (0.2017,—0.7983). If we had
taken the same values for the parameter vector than in the LS case, the result would be
equal to the LS.

Compared to the LS, here the likelihood function is spikier. In other words, the
uncertainty around the estimate is smaller. This is sensible, since now we have
introduced more prior information.

Comments:
Here we have forced the likelihood function be equal to

l B 1 e'R1g
(yl®) = WeXp B —

where R = E[vvT]. This choice implies that we are consciously neglecting some prior
knowledge about the noise. We know the noise is uniform but we prefer to forget this
fact and assume that the noise is Gaussian. This way, the likelihood function presents
one maximum value.

About the name WLSE. If the weighting matrix R is the covariance of the noise,
R = E[vvT], one speak of “Markov estimator” or “best linear unbiased estimator
(BLUE)”. If R is an arbitrary positive definite matrix, then one speaks of “weighted
least squares estimator”.

To optimize the likelihood [(y|0) is the same to optimise the log-likelihood

Tp—-1
logl(y|@) = ct —SRZ—S. Therefore, the cost function to minimise is a quadratic one,
Jwis = €'R™1e. This explains the name “weighted least squares”.

A.4.5 Bayesian estimation

In the Bayesian approach, the Bayes’ rule provides a way to combine the prior
knowledge (about the system and the measurement noise) with the observations of the
system,

_p(y18)p(6) (108)
r(y)

where p(0]y) is the posterior distribution of the parameter vector 0, p(y|0) = [(0]y) is
the likelihood function, p(0) is the prior distribution of the parameter vector 0, and
p(y) is a normalising constant p(y),

p(0]y)

p(y) = f p(y18) p(8)do (109)

Note that in the Bayesian approach the parameter vector 0 is viewed as a random
variable. The prior knowledge about the system is contained in p(@), the prior
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knowledge about the measurement noise v is contained in the type of pdf p.(-) used to
construct the likelihood function, and the posterior knowledge due to the observations y
is contained in the likelihood function p(y|0).

In this context, the Bayesian maximum a posteriori (MAP) estimate is:

0y =arg gnaXp(BIy) (110)

The posterior distribution p(0|y) is the joint distribution of all the parameters 6;, i =
1..d. If we want to compute the marginal distribution of a particular parameter 6;, we
need to solve the following integral,

111
p(6:ly) = j (1Y) dbs,..., d0;s, dBpar, ..., dOy (111)

This integral can be solved numerically only in the simplest cases. As the number of
parameters increases one can evaluate it by using Markov Chain Monte Carlo (MCMC)
techniques, such as the Metropolis-Hastings sampler. The idea is to construct an
ergodic Markov chain with invariant distribution equal to the desired posterior. See
Appendix C.

This approach is also interesting because error bounds on estimates are derived from the
sampled posterior and thus they do not rely on assumptions of AV being large.

A.4.6 Maximum a Posteriori Bayesian Estimation

The prior information is:

About noise: We know the noise pdf p,,(v). It is i.i.d. uniform with zero mean
and variance 0.01.

About plant: We know the parameter vector pdf pg(0). In our case, since the
plant is stable we know that the parameter in the denominator is
such that |6,] < 1, so we assume that the marginal distribution
Do, (02) is uniform between -1 and 1. And, since the gain is
positive, we assume that the parameter on the numerator is 8; > 0,
and so we take the marginal distribution pg, (6;) uniform between
0 and 1. As 6, and 6, are independent, we can construct the joint
distribution by simply making pe(0) = pg, (61) pe,(62).

About cost: We do not know which is the cost of select 8y # 0,,,, but we do not
care about it.
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The optimal solution is again the one that maximizes the joint posterior distribution of
the parameters, 8 = arg maxg p(0]y).

Results: Next figures show the prior knowledge, namely, the noise pdf p,(v) and the
parameter vector prior pdf pg(0):

Joint prior distribution for the parameter vector

Prior distribution for noise

/

0 L L L L L L 2
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 (]2 - -2 0

(a) (b)
Fig. A.7. Prior distributions

Now, we show the likelihood function p(y|0®) and the resulting parameter vector
posterior distribution p(0]y):

Joint posterior distribution for the parameter vector

Likelihood function

(a) (b)
Fig. A.8. Likelihood function and posterior distribution

Finally, next figures show the contour plot of the joint posterior distribution p(0|y) and
the marginal posterior distributions pe, (64|y) and pg, (6,|y). These have been obtained
by a trapezoidal approximation of the marginalisation integral.
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Joint posterior distribution for the parameter vector Marginal posterior distribution for 91
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Fig. A.9. Joint posterior distribution and marginal posteriors distributions

The direct maximization of p(0]y) does not give a unique value due to the uniform
distribution.

Using a normal distribution as prior noise distribution:

To circumvent this problem we can take a normal distribution for the noise p, (v) (even
though we know it is uniform).  This way, the posterior will exhibit a unique
maximum.

Next figures show the posterior contour and marginal distributions for the case of
v ~N(0,1). The parameter vector that maximises the posterior is 0k ,p =
(0.1975,—0.8051), and the one that maximizes each of the marginal separately is
0%, ,» = (0.3494,—0.2886).

Joint posterior distribution for the parameter vector

A &= posterior o8 Marginal posterior distribution for 0y
O true '
0.81 B 0.6
0.6} B S oal
2, 0.
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S OF / 7 6,
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oa / / 0.4
. ’/ 0.3
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1 L~ 01t
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Fig. A.10. Posterior contour and posterior marginal distributions for variance 1

And finally next figures show the posterior contour and marginal distributions for the
case of v ~ I'(0,0.01). The parameter vector that maximizes the posterior is 8% ,p =
(0.1975,—0.8051), and the one that maximises each of the marginal separately is the
same, 8%, ,, = (0.1975,—0.8051).
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Joint posterior distribution for the parameter vector
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Fig. A.11. Posterior contour and posterior marginal distributions for variance 0.01

Computation of the posterior marginal densities via the Metropolis-Hasting algorithm:

Another way to compute the posterior marginal distributions pg, (8:]y) and pe, (6]y) is
to estimate them by a Markov Chain Monte Carlo (MCMC) sampler. In this example
we have implemented the Metropolis-Hastings algorithm with a standard deviation of
0.2 for the random walk process. The underlying distribution for the measurement
noise is p, ~ N'(0,0.25).

Next figures show the Markov chains and the obtained posterior marginal for both
parameters:

Markov chain for 0, Posterior distribution for 0,

1 T T T T T T T T ) ) ) - .
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' 05y \ 2t
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Fig. A.12. Markov chains and posterior marginal distributions






APPENDIX B

Orthonormal Bases in System Ildentification

In the robust identification field it is common practice to use nominal models with fixed
denominator. This avoids pole estimation (which is sensitive to measurement noise),
separates the nominal model (B F; G) estimation from the noise model (C D; H)
estimation (thus, eliminating this source of bias), and allows introducing prior
knowledge regarding the plant modes. Basis functions from Laguerre and Kautz
expansion series as well as generalized orthonormal bases (GOB) are the most used in
the identification of linear models. Polynomials, radial basis functions and wavelets can
be used in the nonlinear case.

B.1 Introduction

B.1.1 General input/output models

When selecting the (nominal) model structure, one has to compromise between
parsimony (simplicity) and enough flexibility (to contain the structure that best fits the
true system). A common choice is to consider a discrete time description of the system:

Yo =G6(Qu, +H(Q)v, , n=0.,N-1 (112)

where g is the shift operator, g~ u; = u,_,, the dynamic model G(g) and the noise
model H(q) are rational functions in g, and {y,}¥23, {u N3, {v, }NZ¢ are the output,
input, and noise sequences respectively.

157
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A general input-output model structure is

B(q) C (q) (113)

A(Qyn :%un kT D( )

where k is the number of time delays and the polynomials are defined as in (Ljung,
1995):  A(@) =1+a;q ' +--+a,q™, B(q) =by+bq ' +-+b,q",
Cl@=1+cq ++cpq™, D(@=1+diq' ++dy,qg™yF(@=1+
fia Tttt g

a. Main structures for linear models

From the general structure (113), different sub-structures are derived. Next table lists
the most important parameterizations.

Structure Polynomials Input/output model
FIR Finite Impulse Response B Yo = B(@Qu,_ + v,
ARX Auto-Regressive with A,B A(Q) Y, = B(Qup_i + v,
eXogenous input
ARMAX | Auto-Regressive Moving A B, C AQyn = B(Qup_r + C(q)v,
Average with eXogenous
input
AR-ARX | Auto-Regressive - Auto- AB,D
Regressive with eXogenous A@Yn = B(@un-k + 55 D( )
input
OE Output Error B, F B(q)
n = mun—k + vy
BJ Box Jenkins B,C,D,F B(q) Lo\ C(Q)
T F@ " b "

Table B.1. Common structures for linear models

Regarding the notation, an OE model with 4 £parameters, 3 h-parameters, and 2 delays
is denoted as an OE(3,4,2)-model. The numbers are presented in “alphabetical order”.
This is the same convention as in the System Identification Toolbox for MATLAB
(Ljung, 1995).

Three main identification problems are related to the model structure (113) (Verhaegen

and Verdult, 2007). The most general is the one used in Prediction Error Methods
(PEM), where the objective is to obtain the one-step prediction ¥, 1

Vo1 =aV, +bu, +1(y, —9,), n=0,..,N—1 (114)

This is a difficult problem to solve since it involves non-linear optimization but it can be
simplified by means the appropriate selection of parameter [.
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The selection of [ = 0 leads to the simulation problem, where the output error model is
used,

V1 =ay, +bu,, n=0,.,N—-1 (115)

and again it must be solved by nonlinear optimization techniques.

The selection of [ = a leads to the predictor problem,
V41 =ay, +bu,, n=0,.,N—-1 (116)

which can be solved by linear least square optimization.

b. ARX and FIR models

In standard system identification ARX and FIR models are extensively used
(Tjarnstrom, 2002). They can be parameterized by means a row regression vector ¢, as
G(q,0)u, = @10 and thus easily identified by least squares techniques. For the second
order case, the parameterization is

b, (117)
Yn = <P£9 = (un—l Un —Yn-2 — Yn—l) , n=0,.,N—-1

These models are fast and easy to estimate, no local minima exist, and they are capable
of approximating any linear system arbitrarily well, provided that the model order is
high enough (this property is useful for model validation purposes). These models are
also a useful modelling tool, i.e., one can estimate a high order model and then reduce it
to an appropriate order by using some model reduction technique, e.g. based on Hankel
norm approximation (see the nearly optimal algorithm in Chapter 3).

Example B.1. ARX and FIR models for the Landau benchmark

Let us illustrate the performance of FIR and ARX models by means of a benchmark
example. Data correspond to the measurements of an active suspension system (Landau
benchmark example (Landau et al., 2003)) and are available from the website of the
Laboratoire d’Automatique (EPFL) in Lausanne.

Consider the first experiment (data_priml.mat) over the primary path of the active
suspension system. The PRBS (pseudo random binary signal) input « consists of N =
8000 samples of a 10-bit shift register with a clock frequency f, = 400Hz .

Fig. B.1(a) shows the spectral analysis between the input and output sequences (we
have used the MATLAB function psd, with 1024 points for the FFT, a 512-Hanning
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window and 256-overlap). For these data, Landau has proposed an OE(8,12,0)-model
(primary_model .mat). This model is also shown in Fig. B.1(a).

For the same measurement data, Fig. B.1(b) shows a FIR model of order 50 computed
by means the gob function developed for this thesis. And Fig. B.1(c) and Fig. B.1(d)
show an ARX model of order 50 and an AR-ARX model of order 13, respectively.
These latter models have been computed with the arx and pem functions of the System
Identification Toolbox.

Primary path (1st experiment): Spectral analysis and OE model 20
30 T T T T T T T T

T T T
D |
ata I\
\ — FIR(50,0;
20 Landau Model OE(8,12,0) 10+ | ¢ )
|
N

Primary path (1st experiment): Spectral analysis and FIR model
T T T T T T

Magnitude (dB)
Magnitude (dB)

-50

-40
0

. . . . . . . . . I I I I . . . . .
20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Frequency (Hz) Frecuency (Hz)
(a) (b)
30 Primary path (Lst experiment): Spectral analysis and ARX model Primary path (1st experiment): Spectral analysis and AR-ARX model
T T T T T T T T T 0 . . ; - ; ! ‘

- 3 T T
20l ARX(50,50,0) 20l AR-ARX(13,13,13,0) |

Magnitude (dB)
Magnitude (dB)

50 . 1 I 1 I I I I I 50 . . . . . . I
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Frecuency (Hz)

. .
160 180 200
Frecuency (Hz)

(© (@)

Fig. B.1. Landau benchmark. Spectral analysis of measurement data and (a) OE(8,12,0) model, (b)
FIR(50,0) model, (c) ARX(50,50,0) model, and (d) AR-ARX(13,13,13,0) model

High order FIR and ARX models can approximate very well the shape of any frequency
response. However, note that this includes the behaviour near the Nyquist frequency
which may present an important degree of aliasing, depending to the experiment design.
[

B.1.2 Models for robust identification

Models in Table B.1 (except for the FIR case) are rational models, that is, one has to
estimate both the numerator coefficients (B(q), C(q)) and the denominator coefficients
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(A(q), F(q), D(q)). However, in the robust identification field it is preferred to work
with fixed pole structures. This is so because rational models present several drawbacks
that make them inappropriate for uncertain systems modeling. The main drawbacks are
listed below. For a throughout discussion see (Gustafsson and Makilad, 1994).

a. Drawbacks of rational models

Pole sensitivity: In uncertain systems, rational models pole estimation may present too
much sensitivity to noise. As (Gustafsson and Makil&, 1994) point out, identification
using a general ARMAX model structure “cannot be guaranteed to result in a stable
model even if the system is stable”. On the other hand, fixed-pole models are
guaranteed to produce stable models since the poles location is decided by us.

Numerical issues: Moreover, on the contrary to rational models, the estimation
procedure in fixed-pole models is well-conditioned and thus robust against
measurement data produced by systems outside the identification set (Gustafsson and
Makila, 2001), (Gustafsson and Makild, 1996).

Bias due to the noise model: In rational models, the model parameters generally do
not appear linearly, and so estimation of them involves the numerical solution of a
nonlinear optimization problem. This difficulty can be overcome by recasting the
problem in a linear regression form, but in this case the parameters to be estimated
affect both the dynamic model G(gq) and the noise model H(g) (Ninness and
Gustafsson, 1997). This can cause estimates of them to be biased (Wahlberg and Ljung,
1986). In the fixed pole structure, the parameter vector 8 = (68p ... 64-1)7
parameterizes only the model for the dynamics, and so @ is not biased by the noise
model H(q) estimate.

Variance estimate: (Ninness and Gustafsson, 1997) In rational models it is difficult to
evaluate the variance of the estimated model except in an asymptotic sense, for N — oo,
In the fixed pole structure, since @ appears linearly, its least squares estimate ® can be
found in closed form and is linear in y, so that if u,, is not noise corrupted, then finite
data variances for @ can be obtained.

b. Fixed pole models

Thus, in most robust identification problems, the poles in ARX or OE models (e.g. the
A(q) and F(q) roots) are not estimated but instead their number and value are a priori
fixed given the approximate knowledge we have about the system time constants
(Ninness and Gustafsson, 1997).

The system is then expressed by means an structure linear in the parameters

d-1
Yo = 0,B; (q)) U, + vy (118)
2
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where d is the model order, {6;}%-} are the real-valued parameters to be estimated,
{u,JN=3 is the observed input, {y,}N=4 is the observed output, and {B;(q)}?=; is a set
of transfer functions rational in the forward shift operator g. Usually the noise sequence
{v 3Nz} is assumed to be a zero mean i.i.d. (independent identically distributed)
Gaussian random sequence (with identity covariance).

c. Choice of poles

The quality of the estimate depends on the selection of the poles in the {B;(q)}&
functions. The simplest pole choice is to consider FIR-type models in which all poles
are located at the origin, i.e. B;(q) = q~%. As it has been shown in the Example B.1, the
FIR model is a general model for any stable system but the order d may need to be very
large to provide an accurate approximation to the underlying dynamics that have
generated the observed data. For example, if the true dynamics have a slow pole, then
the model order 4 will need to be very large for the model structure (118) to provide an
accurate approximation to the true dynamics.

To overcome this problem, an alternative strategy is to instead take B;(q) = # where
the poles {&;}% are chosen according to a priori knowledge of the dominant modes of
the system. For instance, if we know that the system presents a slow pole, we may
choose at least one of the {£;}% near 1. If the poles are well selected the model order
can be relatively small, otherwise the estimate could be poor (Ninness and Gustafsson,
1997). Some authors give some guidelines for the pole selection, see e.g. (Gustafsson
and Makild, 2001), where fast and slow dynamics are combined to model the behaviour
of a distillation column.

Although the selection of the {B;(q)}¢=, functions is free, the usual practice is to use
functions that constitute an orthonormal basis for some expansion series.

d. Interest of orthonormal basis functions

Let H,(T") be the Hardy space of functions that are square integrable on the unit circle
T, and analytic outside the unit disk (roughly speaking, #,(7") is the space of all stable,
causal, discrete-time transfer functions). The orthogonality condition in the #, (7")
space is the following

1 (T o
(B B) = 5 f B(e/)Br(@®)dw = by (119)
-7

where &y, is the Kronecker delta, 6;;, = 1,l = kand 6, = 0,1 # k.

Note that the functions that parameterize FIR models, B;(q) = q~% form an
orthonormal basis in the unit circle 7. Thus the FIR structure can be interpreted as the
Taylor (trigonometric) expansion of the ARX structure being the 6; parameters the real
coefficients of the series. Below, B(q~1) is the polynomial in the structure (113).
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B(q™") = 00Bo(@™") + -+ 64Bq_1(q" ")
(120)
=byg+biq~t + o+ bg_1q7 @V

This fact suggested the use of orthonormal basis functions {B;(q)}¢; from more
sophisticated expansion series, such as Laguerre or Kautz series (Wahlberg, 1991),
(Wahlberg, 1994). This way the parameters {6;}% to be estimated in (118) can be
viewed as the real-valued expansion coefficients of the series. And the resulting model
sets are spanned by fixed pole orthonormal bases.

Several authors have studied the properties of orthonormal model structures. See for
instance (Ninness, Hjalmarsson, and Gustafsson, 1999) and (Gustafsson and Makilé,
2001). These structures are interesting because they improve the numerical condition in
the coefficients estimation and provide parameterizations that allow decreased variance
error while still minimising bias error. They can be used to quantify the asymptotic
variability of the estimates as well. Moreover, an orthonormal structure is, under a
linear parameter space transform, equivalent to any other equivalently flexible
orthonormal structure with the same fixed poles. For a throughout analysis see (Gomez,
1998).

B.2 Main orthonormal bases for robust identification

Laguerre models (in discrete time) were the first proposal to model systems with real
poles (Wahlberg, 1991). Later on, for the resonant systems case, Kautz models were
proposed (Wahlberg, 1994). Finally, both models were combined in the so called
Generalized Orthonormal Basis (GOB) (Heurbeger, Van den Hof, and Bosgra, 1995),
(Ninness and Gustafsson, 1997). Continuous time versions appeared in (Akcay and
Ninness, 1999).

B.2.1 Laguerre models

a. Discrete time

Estimation using these models was studied in detail in (Wahlberg, 1991).

The functions that form the basis in the Laguerre model are the discrete Laguerre
polynomials of order ;,

[{_&2 _ i
Bi(q.€)=%(%) , 1él<1, i=01,..,d-1 (121)

where Ty is the sampling time, dis the system order (dimension of the parameter vector
0) and ¢ the Laguerre parameter, which is selected from the prior knowledge about the

system or it is adjusted during the identification procedure. With ¢ selected, the model
(118) is a fixed-pole ARX model with multiple poles at ¢.
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The state-space description of these functions is A € R, b € R, Ce€ R™,
d € R>*1;

S 0 0 1
a ¢ 0 0] / (=) \ (122)
(=§a a ¢ j = \ (- 5)2 )
: 0
O .. (Da a ¢ (—f)l !
C=.aTs X Iy d=0;
wherea = 1 — &2,
b. Continuous time
In the continuous time, the functions that form the Laguerre model are:
_ 28697

And the state-space description of the ith function is A € R, b € R, C € R,
d € R,

¢ 01xci-1) ]
/2y /€ 0 = 0 J7E
A=|[2 28 ¢ ‘ b= 0 ) (124)
: : (i-1)x1
2 28 .. 25 E
1 01x(i-1)
C= & & : d=0;

e

[. o w0

Example B.2. Laguerre models

We have implemented continuous time and discrete time Laguerre basis functions in a
MATLAB function called gob.m. To check this code, we have used the experiments in
(Reinelt, Garulli, and Ljung, 2002). For the first experiment, the results are shown in
Fig. B.2.

The continuous time model is of order 4 and its pole is located at —0.2895 (¢ =
—0.2895). The estimate parameter vector obtained via LSE optimization is 8, =
(—8.6912, —0.6584, 1.0617, 0.1939)7.
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The discrete time model is of 4" order as well and its pole is & = exp(—0.2895 - Ty)
where: T, = 0.04s. The estimate parameter vector obtained via LSE optimization is
0, = (7.4928, 0.6298, 1.0792, —0.2091)7.

Continuous time Laguerre model, order 4 and pole -0.2895
Discrete time Laguerre model, order 4 and pole exp(-0.2895 T,) 20 8 ;

Linear plant
Estimated model | |

Magnitude (dB)
Magnitude (dB)

Phase (deg)
Phase (deg)

90k I I B — S
10? 10" 10° 10' 10° 10° 10" 10” 10" 10° 10°
Frequency (rad/sec) Frequency (rad/sec)

Fig. B.2. Discrete time and continuous time 4" order Laguerre models for the (Reinelt ez al., 2002) plant
[ |

c. Properties

Assuming that B is the space of transfer functions that are discrete time, linear, causal,
invariant in g, and BIBO (Bounded Input Bounded Output), the discrete time Laguerre
functions B;(q) € B form an orthonormal basis in €, (space of square sumable
sequences). Moreover, functions (121) are dense in B, i.e., the closure of the linear
span of {B;(q)}{Z, is B (see Theorem 3 in (Gustafsson and Makil&, 1993)).

Finally, note that this type of model considers only one pole, ¢, and the multiplicity of
this pole is the model order d.

B.2.2 Kautz models

a. Discrete time

If the system presents resonant poles, the so-called two-parameter Kautz model or just
Kautz model can be used

VA —b(A —c?) (—cq? +b(c—1)q+1 N . (125)
q2+b(c—1)q—c< q2+b(c—1)q—c> , todd
Bi(q) = i
V1—bZ-(q-b) (—cq2 +b(c—1)q + 1)7  even
q*+b(c—1)qg—c\ ¢*+b(c—1)qg—c ]’
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where |b| <1, |c| < 1,i=1,2,..,d. Foran example of the application of Kautz basis
functions to a flexible structure, see (Baldelli, Mazzaro, and Sanchez Pefia, 2001).

Regarding the construction of the functions that form the basis in the Kautz expansion
series, it is convenient to use a balanced minimal realization of the inner function
—cqg? —

Zq *heDatl 1 the present work the realization that we have implemented is the one

q2+b(c-1)q-c
of (Heurberger et al., 1995):

LT ()

cJ1-b>  —bc V1-c?
c=({A-cA-b?) -bJ1-¢2) d=-c

A= (126)

Example B.3. Kautz models

Let us illustrate the behavior of the Kautz models with the (Wahlberg, 1994) plant. The

supposed unknown plant is ZOH {ﬁ} with a samplig time of T; = 0.5s. The

time domain experiment consists of exciting the plant with N = 1024 samples of a
pseudorandom binary signal and collecting the corresponding output samples.

Fig. B.3 shows the frequency response of the discretized plant along with the responses
of a 10" order Laguerre model with the pole located at 0.84 and a 2™ order Kautz model
with parameters b = 0.87 and ¢ = —0.9. The Kautz model obtained is:

0.43589(q — 0.87) 0.21492
+ 1.0727
(q? — 1.653q + 0.9) (q? —1.653q + 0.9)

GKautz(Q) = 0.1389
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Fig. B.3. Discrete time 10" order Laguerre model and 2™ order Kauth model for the plant of (Wahlberg,
1994)
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b. Continuous time

The expression of the two-parameter Kautz basis functions for the continuous-time case
is (Wahlberg, 1991):

s24+bs+c\s2+bs+c 127)

V2bc s2—bs+c\" ]
Lsz+bs+c s2+bs+c , Leven

V2c s (st—bs+c\ !
( > , iodd

Bi(s) =

whereb >0,¢>0,i=1,2,..,d.

B.2.3 Generalized Orthonormal Basis (GOB)

A criticism to Laguerre and Kautz models from the previous sections is that they consist
of only one pole (or one conjugate pair of poles) and the designer must increase the
multiplicity in order to get better fit to data. For this reason, several authors such as
(Heurberger, Van den Hof, and Bosgra, 1995) and (Ninness and Gustafsson, 1997)
proposed a generalized model capable of combining different poles, complex conjugate
or real, fast or slow, multiple or not, in a same structure. The result was the so-called
Generalised Orthonormal Basis (GOB) and it accounts for FIR, Laguerre, and Kautz
basis functions in a unified formulation.

a. Discrete time

Fort the case of real poles or poles in the origin, the functions of the generalized basis

are.
V11§ 1/1-&
Bi(q) = <—€> 1_[ ( fkq) (128)

a5 )X 2I\q—4&

where the poles {&,,¢;, ...,¢4_1 } ED, D = {z € C: |z| < 1}, can be different.

Note that if all poles are in the origin (¢, = 0, Vk) then (128) is reduced to a FIR model
structure, whereas the selection &, =& € R, |£] <1 corresponds to the Laguerre
model.

The way (128) is defined does not allow to include complex poles, since then the
coefficients should be complex, and consequently, the impulse response would be
complex too, and thus it would be not useful to describe physical systems.
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The solution is to use (128) to obtain the basis B;(q) corresponding to the complex pole
&; and the basis B;,(q) corresponding to the conjugate complex pole &;,; = &,. These
functions are replaced in the model by a linear combination of them designed to
maintain the orthonormality and make that the model impulse response be real,

Bj = aB; + BBi14
Biyy = a'Bi+ B'Biy (129)

The relation between the coefficients is (Ninness and Gustafsson, 1997), (Gomez,
1998):

(g:) - (& — a)l\/m [—i?l _11] [—Hl —111] [% 511] (g) (130)

— i £, —u? i 2 -
where y = ETSILZ If we choose @ = —f8 = —V(l”f_l)_(;'m the result are the Kautz basis

functions.

Example B.4. GOB model
Consider again the Landau benchmark of Example B.1. Fig. B.4 shows a GOB model

containing different complex and real poles. The poles position is directly the ones of
the OE(8,12,0) model.

Generalized orthonormal basis model
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data
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GOB model ||
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Fig. B.4. GOB modelo for the Landau bechmark

b. Continuous time
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The generalization of the functions that constitute the basis is analogous to the discrete
case,

B,(s) = V2Re(€) ri-1 (S—ﬁ) (131)

S+fl' k=0 S+fk

where the poles {&,,¢;, ...,¢4-1 } € LHP, LHP = {s € C: Re(s) < 0}, can be different.
If we take all poles to be real and equal, &, = ¢ € R, (131) corresponds to the Laguerre
model, and if we take complex conjugate multiple poles, &, = & € C, then (131)
corresponds to the two-parameter Kautz model.

In the continuos case, the functions that constitute the basis are orthonormal in #,(C,.)
with respect to the inner product

BBy =— [ B (ja))B(]a))da)z{l’ fo=1
et T o)k ! 0, k=+l

c. Properties

The generalized orthonormal bases, in the discrete time case and in the continuous time
case, are complete if their poles satisfy certain conditions.

Since the orthonormal parameterizations are used to approximate functions, let us
determine what a good approximation is in the context of systems theory. Assume an
element f(s) of a normed linear space of functions (X, ||.||x). To obtain an arbitrary
good approximation of f(s) consists of obtaining an element g(s) € span{B;(s)}¢&
such as ||f — gllx < € for an arbitrary € > 0 and for a d value sufficiently large. If the
approximation is possible for any &> 0 arbitrarily small, then one says that

span{B;(s)};sc is complete in X.

B.3 Bases for block-oriented nonlinear models

Nonlinear systems can be parameterized by means basis functions as well. One of the
most frequently studied classes of nonlinear models are the so-called block-oriented
nonlinear models, which consist of the interconnection of linear time invariant (LTI)
systems and static nonlinearities. See (Gomez and Baeyens, 2004).

Within this class, three of the more common model structures are shown in Fig. B.5.
The Hammerstein model consists of the cascade connection of a static (memoryless)
nonlinearity followed by a LTI system. In the Wiener model the order of the linear and
the nonlinear blocks in the cascade connection is reversed. And the feedback block-
oriented (FBO) model consists of a static nonlinearity in the feedback path around a LTI
system.
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Fig. B.5. Block-oriented nonlinear models: (a) Hammerstein model, (b) Wiener model, (c) Feedback
block-oriented model

To illustrate the procedure consider for instance the Hammerstein model.

= 6N+ = (Y 5B@) (Y agit) + v

The identification problem is to estimate the unknown parameter matrices a; €
R™™i=1,...,r and b; € R™", [ = 0,...,p — 1 characterizing the nonlinear and the
linear parts, respectively, from an A-point data set {u,, y,,}—, of observed input—output
measurements.

To solve the problem we start by defining the input-output relation y = ®%0 + v,
Where y = (y1’ ...,yN)T, vV = (Ul, ...,UN)T,(DN = (¢1, ey ¢N)’ and

T
0= (boal, vy boar, vy bp_lal, ey bp_lar)

T
d)n = (BO (q)g{(un)! Ty BO (Q)QZ(un)' b Bp—l(q)g':lr (un): b Bp—l(q)gzj(un))
Then the solution algorithm is the following:
Step 1: Compute the least squares estimate 8 = (®y D) 1dyy.

From ©, construct the matrix
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T1,T

alby afbl - ajby_4
T3, T T3,T T1,T

@ _ azbo azbl asz_l
ab — . .
T1LT T1LT T1T

arbo arbl cee arbp_l

such that @ = blockvec(0,,).

Step 2: Compute the economy-size Singular Value Decomposition (SVD) of @, as
04 = U, Z, VI =3"  o,u;v], and the partition of this decomposition as @, =

%, 07[Vf
LA e [

Step 3: Compute the estimates of the parameter matrices 4 = U; and b =V, X,
respectively.

See (Gomez and Baeyens, 2004) for details.






APPENDIX C

Markov Chain Monte Carlo

In Bayesian statistical inference and decision theory the integration operation plays a
fundamental role. For example, in computing the posterior p(0|y) via the Bayes’ rule,
p(0ly) = ¢ 1p(y|@)p(0), the constant of proportionality is given by ¢ = p(y) =
[ p(y|@)p(08)dO. In a multivariate case, marginal posterior distributions are computed
as p(0;ly) = [ p(8]y)de_; where 0_; = (04, ...,0;_1, 041, . 04)T. And we might be
interested in the minimization of average losses, ® = argming [ L(0,0,)p(8|y)d®, and
the computation of summary inferences in the form of posterior expectations,

E[g(®)]y] = [ g(8)p(Bly)de.

In many practical situations, due to a complex and maybe non-standard model structure,
posterior probability distributions are not available in a closed form. Moreover
optimization and integration of posterior distributions become more difficult as the
dimension of the distribution increases. To overcome these drawbacks, simulation
techniques such as Monte Carlo Markov chains (MCMC) are used.

The general methodology is reviewed in (Robert and Casella, 1999) and (Bergman,
1999). Other references are (Gelfand et al., 1992), (Tanner, 1996), (Gilks et al., 1996).
Application examples are provided in (Girard and Parent, 2004) and (Bergman, 1999),

and (Berger and Rios Insua, 1998) present advanced tools for the application of
Bayesian methods to models beyond the field of linear regression.

C.1 Monte Carlo integration

Monte Carlo methods for numerical integration consider problems of the form

173
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[ = f £(0)7(0)d0 (132)

where (@) is a positive function (@) = 0 that integrates to unity, [7(8)d0 = 1.
This assumption on the factor 7(0) leads to a natural interpretation of (@) as a
probability density function. In the Bayesian context, the density of interest is usually
the posterior density of the parameters given the observed data, i.e., 7(0) = p(0]y).

The Monte Carlo methods rely on the assumption that it is possible to draw a large
number N of samples {0, }_, distributed according the probability density m(8). The
Monte Carlo estimate of the integral (132) is then formed by taking the average over the
set of samples

N
R 1 1
Iy== > f(0) (59
n=1

where NVis assumed to be large, N > 1.

If the samples in the set {@,,}N_, are independent, I, is an unbiased estimate of 7and
will almost surely converge to /, Pr[lim,\Hoo Iy = I] = 1, by the Strong Law of Large
Numbers. ~ Moreover, if the variance of f(0), o2 = [(f(0) —1)?n(0)d6 =
[ f(8)?m(8)de — I?, is finite, the error converges in distribution to a zero mean
normal distribution, limy_VN(Iy —I) ~N'(0,02), by the Central Limit Theorem.
These two convergence results are asymptotic, for N — co. In practical situations, we
usually assume that a large but finite N will lead to a small error.

C.1.1 Comparison to standard numerical integration

The Monte Carlo methods are brute force algorithms but they present two main
advantages compared to straightforward numerical integration. Firstly, when applied to
high dimensional spaces, standard numerical integration methods generally fail due to
their excessive demands for computational resources. Secondly, the error & = [y — I of
the Monte Carlo estimate is of the order ¢ = 0 (N~'/2), independently of the parameter
dimension, d.

Standard numerical integration methods generally approximate the integral by a sum
over a regular grid on the support set of the integrand. The Monte Carlo methods obtain
an adaptive grid since they assume that it is possible to generate N samples from a
density given as a factor of the integrand. This, in a sense, is the way these methods
solve the curse of dimensionality and is the core difference between straightforward
numerical integration and Monte Carlo integration methods.

C.1.2 Optimization
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Considering Bayesian maximum a posteriori estimators, the sought estimate is the
location of the maximum peak of the posterior p(0|y), i.e., the mode of the density and,
sometimes, what is wanted is the location of the maximum peak of some of the
marginal distributions. In any case, the optimization method requires that the function
to maximize can be evaluated, at least up to a normalizing factor.

In the cases where this is not possible we will use the Monte Carlo estimate of the
density, i.e., the histogram of the Monte Carlo samples. This will yield a discretization
of the parameter space and thus require even higher values of N for reliable results.

Minimum risk estimators are obtained in an analogous way. In this case, the Monte
Carlo simulation (133) gives the value of the average loss, that is f(0;) = L(0;,0,).
The minimization of this loss can then be performed by means standard numerical
techniques.

C.2 Sampling methods

The Monte Carlo framework for numerical integration and optimization relays on the
assumption that N > 1 samples from a generic density (@) can be easily obtained.
Methods that get samples from (@) are known as sampling methods. The function
7 (0) is called the target distribution.

For standard distributions (such as uniform, Gaussian, Gamma, Student ¢, etc.) several
perfect random sampling algorithms exist.

In the case that more general and higher dimensional distributions, for instance the ones
generated by combinations and mixtures of basic distributions (Robert, 2001), it is not
possible to directly generate samples of 7(0). However, when there is a known upper
bound on the density function values, and it is possible to evaluate (0) everywhere up
to a normalising constant, it is still possible to generate samples of ().

Rejection sampling and importance sampling presented next are useful when the
dimension of the state space is less than 10. In high dimensional problems, the
approximate shape of the posterior is unknown and many problems arise (slow
convergence, low acceptance).

C.2.1 Rejection sampling

The rejection sampling procedure is the simplest method. Let q(0) be a proposal
distribution from which samples are easily generated and assume that there exists a
known constant M > 1 such that w(8) < Mq(0) for every 8 € R<.

The procedure is to draw a candidate sample 8’ from g (0) and accept it with probability
1/M. If @' is rejected, the procedure continues to draw samples from q(0) until an
accepted sample is obtained.
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Algorithm C.1. Rejection sampling
Step 1. Sample 0'~q(0) and u~U(0,1).

m(0’)

Step 2. If u < IYPICG)

0’ is accepted, otherwise go to Step 1.
O

The finally accepted candidate will be an exact draw from the target distribution, w(0).
See (Bergman, 1999) for a proof in the scalar case.

C.2.2 Importance sampling

The procedure known as importance sampling also deals with a proposal distribution
q(0) which is easy to generate samples from. However, the only general assumption on
the importance function q(0) is that its support set covers the support of 7(0) i.e., that
m(8) > 0= q(8) >0 for all 8 € R%. Under this assumption, any integral on the
form (132) can be rewritten

n®)

I = f £(8)m(8)d = f O

q(0)de

A Monte Carlo estimate is computed by generating N > 1 independent samples from
q(0), and forming the weighted sum,

N
1
fir = NZf(Bn)W(ﬂn) (139

(0p)

where w(0,,) = 20

are the importance weights.

Algorithm C.2. Sampling Importance Resampling

Step 1. Generate M independent samples {0,,}*_; with common distribution q(8).

7(0;5)

Step 2. Compute the weight w,,, = w(0,,) 20

for each®,,.

Step 3. Normalize the weights w,,, = y~w,,,, wherey = ¥ _ w,,,.

Step 4. Resample with replacement & times from the discrete set {0,,}_, where
Pr[resampling 6,,] = wy,.
O
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The success of applying either the rejection sampling or importance sampling methods
relies on determining good proposal distributions and importance functions,
respectively. A badly chosen proposal distribution yields a low acceptance rate in the
rejection sampling algorithm. Likewise, choosing the wrong importance function yields
a large variance of the importance weights with only some samples contributing to the
sum (134), and thus a slow convergence of the estimate.

C.3 Markov chain Monte Carlo

An alternative to classical methods are the Markov chain Monte Carlo (MCMC)
techniques which generate samples from desired distributions by embedding them as
limiting distributions of Markov chains (Andrieu et al., 2001).

The MCMC algorithms are iterative procedures that deliver a sequence of random
samples by simulating a Markov chain designed to have a limit distribution given by the
density m(0). By discarding an initial burn in phase of the Markov chain, ergodic
averages of the chain realization can be used to estimate integrals with respect to (0).
Another advantage of using MCMC is that credible intervals for any quantity of interest
can be formed. See the survey article (Tierney, 1994) for the theoretical foundations of
Markov chain Monte Carlo methods.

C.3.1 Markov chain

A Markov chain is a sequence of random variables {0,};--, such that
Pr[0, € A|0,,...,0,_1] = Pr[0, € A]0,_;], VA c R?
The transition kernel of the Markov chain is the conditional density function
K(6;-1,0,) =p(0:]0;_,)
A time-homogenous Markov chain is one where the transition kernel is explicitly
independent of the time index & In the case of Markov chains over discrete state

spaces, the transition kernel is a discrete transition probability matrix. The p-step
transition kernel is given by

Ky (et—p' et) = p(0:10;-p)

The initial distribution of the Markov chain is p(0,) and may, in the general case, be a
Dirac delta measure indicating that the initial state of the Markov chain is deterministic.

C.3.2 Properties of the Markov chain
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€. Invariance

The idea behind Markov chain Monte Carlo methods is to construct a transition kernel
such that the limiting, or stationary, distribution of the output of the Markov chain is the
desired probability density function (0).

In order to fulfill this requirement, a condition of invariance must hold between the
transition kernel K, (0,_4, 8;) of the Markov chain and the target distribution 7(@).

Definition C.1. Invariance. The probability density function 7(@) is said to be
invariant (or stationary) with respect to the transition kernel K'if

n(8) = [K(8,_1,0,)m(0,_,)d6,_;, VO c R%.
O

The density m(0) being invariant with respect to the Markov chain implies that if
0,.~m(.) for some ¢, the output of the chain will remain marginally distributed according
to w(.) for all future time instants. A sufficient condition to ensure m-invariance is to
assure that the Markov chain is m-reversible.

f. Reversibility

Definition C.2. Reversibility. A transition kernel A is m-reversible if it satisfies

K(8,y)n(6) = K(y, 0)m(y). -

The reversibility condition says that the probability of the Markov chain moving from a
region A to a region B is equal to the probability of moving from Bto A. This holds
whenever the state is in the stationary regime, i.e., under the assumption that it is
distributed according to (@) before the move takes place. Most MCMC algorithms are
m-reversible by construction, and therefore m(@) is an invariant distribution of the
Markov chain.

g. Irreducibility

Irreducibility defines the regions of the state space which the chain can move around in,
but never leave.

Definition C.3. Irreducibility. A Markov chain is g-irreducible if for any A c R, if

J, o(y)dy >0, then exists some p € Zy such that [, K,(8,y)dy >0, for any
0 c R%,
O
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A sufficient condition for a kernel K'to be ¢-irreducible is that for some p > 1, the
kernel K,(0,y) can be factorized by ¢(y), i.e., that there exists a positive function
f(8,y) > 0 such that K,,(8,y) = f(8,y)@(y). If achain is irreducible with respect to
some density ¢ and has invariant density m, then the chain is « -irreducible. This leads
to the existence of a Strong Law of Large Numbers for Markov chain Monte Carlo
methods.

C.3.3 MCMC algorithms

There are many ways of categorizing MCMC methods, but the simplest one is to
classify them in one of two groups (Andrieu et al., 2001):

1. The first is used in estimation problems where the unknowns are typically
parameters @ of a model, which is assumed to have generated the observed data
y. Examples are the Metropolis-Hastings sampler and the Gibbs sampler.

2. The second is employed in more general scenarios where the unknowns are not
only model parameters, but models as well. MCMC methods for the second
group allow for generation of samples from probability distributions defined on
unions of disjoint spaces of different dimensions. Sampling from such
distributions is a nontrivial task. The most representative is the Reversible Jump
MCMC.

C.3.4 Metropolis-Hastings algorithm

Most algorithms for Markov chain Monte Carlo estimation are based on the algorithm
of Hastings (Hastings, 1970), which is a generalization of the algorithm of Metropolis et
al. (Metropolis et al., 1953).

The Metropolis-Hastings algorithm resembles the previously described sampling
methods that a proposal distribution g(.) is used to generate the samples. However, the
output of the algorithm is a Markov chain so the proposal density may depend on the
current state of the chain.

Let O denote the current state of the chain in an iteration of the Metropolis-Hastings
algorithm. A candidate sample z is drawn from the proposal q(z|0) and accepted with
a probability given by

,ﬂ(Z)q(GIZ)> (135)
m(8)q(z|0)

If the candidate is accepted the chain moves to the new position, while a rejection of the
candidate leaves the chain at the current position in the state space. An interpretation of
(135) is that all candidates that yield an increase of = (and is not too unlikely to return
from) are accepted.

a(0,z) = min (1
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Algorithm C.3. Metropolis-Hastings Sampler

Step 1. Initialize by setting t = 0 and choosing 0, randomly or deterministically.
Step 2. Sample z~q(z|0).

Step 3. Sample u~U(0,1).

Step 4. Compute the acceptance probability a (0, z).

Step 5. If u < a(0,,z) accept the move and set 0,,, = z. Otherwise set 0,,, = 0,.

Step 6. Increase tand return to Step 2.
O

One very important feature of the Metropolis-Hastings algorithm is that the distributions
m(0) only need to be known up to a normalizing constant. The normalizing factor of
7(0), [ m(8)de, cancels in the expression for the acceptance probability (135) which
thus can be evaluated even if it is unknown.

A simplistic way to choose the proposal is to have it fixed, and independent of the
current state of the chain. The independence sampler (Tierney, 1994) with a proposal
distribution q(z|0) = q(z) yields an acceptance probability (135) of

7(0)

— min (1,2 _m®
a(0,z) = min (1’w(e)) where w(0) = 2®

In the original algorithm of Metropolis (Metropolis er al, 1953), symmetric proposals
were considered, i.e., proposal distributions such that q(z|0) = q(0]|z). The acceptance
probability then simplifies to

w®)

a(0,z) = min <1, 7(0)

Example C.1. Effect of different proposal distributions

The efficiency of the Metropolis-Hastings algorithm depends on the choice of the
proposal distribution. Let us illustrate this effect by an example drawn from (Bergman,
1999).

The pdf to be sampled is a Gaussian mixture consisting of a sum of two Gaussian pdfs,
the first with u; = —6, o; = 1, and the second with u, = 3, 0, = 2.5.
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Mixture pdf to be sampled

Fig. C.1. Gaussian mixture to be sampled

The chain is deterministically initialized between the modes of 7 (0),

Mty —6+3

=1.
0o > > 5

and the proposal q(z|0) yields a random walk, i.e., the proposal point is chosen as an
independent zero mean addition to the current state of the chain.

Zt = gt + xt ) xtNN(O, O—J?)

Different behavior is obtained depending on the average size of the steps proposed
by q(z]|0). With too small steps (g, = 0.2), the chain gets stuck around a local mode of
the target distribution. See next figure.

Markov chain, Gy =0-2 Target distribution and sample histogram, “rw=0'2

. . . . . 0 . . .
0 100 200 300 400 500 600 -10 -8 -6 -4
step

Fig. C.2. Case o, = 0.2. Only one mode is explored

And with too large steps (o, = 20), the proposal will often end up in the tails of 7 (0)
and thus frequently be rejected by the Metropolis-Hastings algorithm.
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Markov chain, G’W:ZO Target distribution and sample histogram, grw=20
10

b & A N o v » o ®

-10
0

. . . . .
100 200 300 400 500 600
step

Fig. C.3. Case g, = 20. Many candidates are rejected

The two previous cases are often referred to as slowly mixing chains, while next figure
shows a choice of proposal (g, = 2) yielding a good mixing of the chain.

Markov chain, Srw =2 Target distribution and sample histogram, G =2
12

10+

. . . . .
0 100 200 300 400 500 600
step

Fig. C.4. Case g, = 2. Both modes are visited (the acceptance probability is high)

C.3.5 Gibbs sampling

In the Metropolis-Hastings algorithm, an alternative way to propose a new candidate
vector z is to update scalar or low dimensional subcomponents of 0, in a blocking
scheme. This is often referred to as single-component, or one-at-a-time Metropolis-
Hastings and it can be a particularly efficient approach in high dimensional problems
where it is often hard to choose good proposal distributions.

In single-component Metropolis-Hastings, each component of 0 is updated according to
a Metropolis-Hastings step where the invariant distribution is the full conditional
distribution of that component. The full conditional distribution for the element 7 of the
parameter vector is

_ m(0)
m(0;0_;) = m
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where 0_; is the vector consisting of all elements of 8 except for element number ;,
9—|i = (611 ey 91'—1' 9i+1' ed)T
A unique proposal g;(z;|0;,0_;) can be used for each entry 7 The algorithm cycles

through the entries of ® sampling from each proposal and accepts the candidate entry z;
with probability

. m(z;|0-:)q;(0;]z;,0_;)
a(0_;,0;,,z;) = min (1, ) (136)
v 7(0;]0_;)q;(z;|0-;6,)
The newly accepted or rejected entry is then inserted into © and the next candidate
component is sampled from the proposal distribution of that entry.

The Gibbs sampling algorithm is the most commonly applied MCMC algorithm. The
Gibbs sampling algorithm can be seen as a blocking Metropolis-Hastings procedure
where proposal samples are drawn directly from the full conditional distributions.
Inserting

q:(z;10_;) = m(z;]0_;)

into (136) yields an acceptance probability of one. Hence, all candidates are accepted
and no acceptance probability has to be evaluated.

Algorithm C.4. Gibbs Sampler
Step 1. Initialize by setting t = 0 and choose 8(®) randomly or deterministically.

Step 2. Cycle through the entries of 8 and sample from the full conditionals,

0" ~m(0,,0%)
0" ~m(0,,8%)

0 ~m(84,0%)

Step 3. Output 8, increase rand return to Step 2.
O

Algorithm C.4 is the deterministic version of the Gibbs sampler. Alternatively, one can
cycle through the entries of 0 in a random fashion. Moreover, other partitions of @ can
be used, e.g., one can choose to sample highly correlated entries as one block.
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C.3.6 Reversible jump MCMC algorithm

Reversible jump MCMC (Green, 1995) provides a general framework for the case in
which the dimension of the parameter space can vary between iterations of the Markov
chain. It is the case when we need to calculate posterior probabilities of hierarchical
models and when other methods are infeasible because of the large number of possible
models (Dellaportas and Forster, 1999). It is also the case when sieve priors are used in
which the number of parameters to be sampled depends on another parameter
(McVinnish et al., 2006). Recent references about the topic are (Green and Hastie,
2009) and (Fan and Sisson, 2010).

In the Bayesian modelling context, suppose that for the observed data y we have a
countable collection of candidate models M = {M;, M,, ...} indexed by a parameter k.
Each model M, has a d,-dimensional vector of unknown parameters, 0,. Thus, the
target distribution is the joint posterior distribution given the observed data p(k, 8, |y).

Reversible jump MCMC can be viewed as an extension of the Metropolis-Hastings
algorithm onto more general state spaces.

Algorithm C.5. Reversible Jump Sampler
Step 1: Initialize kand 0, at iteration t = 0.
Step 2: For iteration t > 1 perform

Step 2.1: Within-model move: With a fixed model % update the parameters 0,
according to any MCMC updating scheme.

Step 2.2: Between-models move: Simultaneously update model indicator & and the
parameters 0, according a reversible proposal/acceptance mechanism.

Step 3: Increment iteration t =t + 1. If t < N, go to Step 2.
O

Step 2.1 can be achieved by a simple random walk Metropolis-Hastings proposal. And
one possibility for the Step 2.2 is that the algorithm randomly proposes one of the
following move types:

Move 1: Birth move: Move from kto &+1. The “birth” is made by proposing a 0,4
from N (0,0%), where o2 is chosen so that the acceptance probability is 1 when
0;., = 0 is proposed.

Move 2: Death move: Move from kto 4-1.

The birth-death moves are based on the zero order centered proposals as defined in
(Brooks et al., 2003).
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The convergence of the resulting Markov chain to its stationary distribution can be
assisted by using appropriate starting values, that is by starting the chain in an area of
significant probability. In (McVinnish et al., 2006), these starting values are obtained
using least squares estimates of the impulse response sequence given a moderate value
of K.

By the Law of Large Numbers for Markov chains this estimate will converge almost
surely to the correct value as the number of samples from the posterior goes to infinity.






APPENDIX D

Bayesian Decision Theory

Many aspects of the system identification, model validation, experiments design and
fault detection can be interpreted from a (Bayesian) decision theory viewpoint. In the
present appendix, we present the fundamentals of Bayesian modeling and summarize
several main concepts of the Bayesian decision theory.

D.1 Fundamentals of Bayesian modelling

In this section we summarize the main concepts of Bayesian statistical analysis and
modeling. For more details, the reader is referred to the textbooks (Box and Tiao,
1973), (Berger, 1985) and (Robert, 2001). Early works dealing with the Bayesian
approach to classical system identification are (Eykhoff, 1974) and (Perterka, 1981).
Also, a survey of Bayesian analysis and its applications can be found in (Berger, 2000).
Finally, for recent works in this area, see (Ninness and Henriksen, 2010) and (Schén et
al., 2011).

D.1.1 Bayes Theorem

Bayes’ Theorem was firstly published in 1763 (Bayes, 1763a), (Bayes, 1763b), after
Thomas Bayes’ death.

Theorem D.1. Bayes Theorem (1763)

If A and E are events such that Pr(E) # 0, then Pr(A|E) and Pr(E|A) are related by

187
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Pr(E|A) Pr(4) _ Pr(E|A) Pr(4)

- (137)
Pr(E|A)Pr(A) + Pr(E|A¢) Pr(A°) Pr(E)

Pr(A|E) =

where A€ stands for the complementary event of A in the sense that Pr(4) + Pr(A4°¢) =
1. In particular,

Pr(A|E) _ Pr(E|A)

- (138)
Pr(BI[E)  Pr(E|B)

when Pr(B) = Pr(4).
O

One interesting feature of the Bayes’ Theorem is that (137) constitutes an actualization
principle since it describes the updating of the likelihood of 4 from Pr(A4) to Pr(A|E)
once E has been observed. Also equation (138) expresses the fundamental fact that, for
two equal probable causes A and B, the ratio of their probabilities given a particular
effect E is the same as the ratio of the probabilities of the effect E given the two causes.

Nowadays, to prove Theorem D.1 is trivial thanks to modern axiomatic probability
theory. However, by the time it was formulated it represented a major conceptual step
in the history of Statistics, being the first inversion of probabilities. Actually, at the end
of the XVIII Century, Statistics was often called Inverse Probability due to this
interpretation® (Robert, 2001).

The meaning of inversion here is the following: In probabilistic modeling, one
characterizes (in a probabilistic way) the behavior of the future observations y
conditional on model parameters 0. By contrast, in a statistical analysis the objective is
to retrieve the causes (make an inference about 8) from the effects (the observations y).

The definition of the likelihood function is an obvious example of the inverting nature
of Statistics since, formally, it is just the sample density rewritten in the proper order,

L(Bly) = p(y]0) (139)

Bayes proved a continuous version of Theorem D.1 and went further considering that
the uncertainty on the parameters @ of a model could be described through a probability
distribution  on 0, (0), called prior distribution. The inference is then based on the
distribution of @ conditional on y, n(0|y), called posterior distribution and defined by

2 There exist many classical books about Philosophy of Science which include very interesting historical
examples related to Bayes’ ideas. See, e.g. (Earman, 1992), (Horwich, 1982), (Rosenkrantz, 1977),
(Howson and Urbach, 1989).
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n(9|y)=p(y’9)= p(y|9)m(8) (140)
P [, p(yl®)m(8)aO

where p(y, 0) = p(y|0)m(0) is the joint probability of the observation and parameters.
Note that the posterior 7(0|y) is actually proportional to the likelihood (the distribution
of y conditioned upon 0), multiplied by the prior distribution of 0,

n(8ly) < 1(B]y) - () (141)

Let us illustrate the updating of prior beliefs by means the following example (Box and
Tiao, 1973):

Example D.1. Bayes’ rule: How to model the knowledge gained from experience

Two physicists, Mr. A and Mr. B, are concerned with estimating some physical constant
8, previously known only approximately.

Prior distributions: Physicist A, being very familiar with this area of study, can make a
moderately good guess of what the answer will be, and his prior opinion about 6 can be
approximately represented by a normal distribution centered at 900, with a standard
deviation of 20, that is §~" (900, 202),

1 1,6 —900\?
pA(9)=mzoeXp[—§< >0 )l

By contrast, Mr. B has had little previous experience in this area, and his rather vague
prior beliefs are represented by the normal distribution 8~ (800,802). That is, he
centers his prior at 800 and is considerably less certain about 6 than A (his standard
deviation is 80),

1 1,6 — 800\
p3(9)=m806><p[—5( 30 )l

Fig. D.1(a) shows the prior distributions p,(6) and pg(8).

Likelihood function:  Suppose now that an unbiased method of experimental
measurement is available. Any observation y made by this method follows a Normal
distribution where the mean value is the real value of 8 and the standard deviation is 40.
Hence, the standardized likelihood function can be represented by a normal curve
centered at y with standard deviation 40. Let us suppose that the result of the single
observation is y = 850, then the likelihood function is shown in Fig. D.1(b).
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Posterior distributions: Now we apply the Bayes’ theorem to show how each man’s
opinion regarding 6 is modified by the information coming from that piece of data.
Since the prior distributions and the likelihood function are Gaussian, the posterior
distributions will be Gaussian as well®.

The combination of a prior ' (6,, 52) and a standardized likelihood function ' (y, 62)
leads to a posterior N'(8, %) where the parameters are given by

1 1
where w, = s and w, = g
The posterior mean 8 is a weighted average of the prior mean 8, and the observation y,
the weights being proportional to w, and w; which are, respectively, the reciprocal of
the variance of the prior distribution of 8 and that of the observation y.

Physicist A’s posterior opinion now is represented by the normal distribution p,(6|y)
with mean 890 and standard deviation 17.9, while that for B is represented by the
normal distribution pgz(6|y) with mean 840 and standard deviation 35.78. These
posterior distributions are shown in Fig. D.1(c).

\\\\\\\\\\\\\\\\\

/ N

600 650 700 750 800 850 900 950 1000 1050 1100 600 650 700 750 800 850 900 950 1000 1050 1100 600 650 700 750 800 850 900 950 1000 1050 11
0 0

(a) (b)

Fig. D.1. (a) Prior distributions, (b) likelihood function and (c) posterior distributions

After this single observation, we see that the ideas of A and B about 6, as represented
by the posterior distributions, are much closer than before, although they still differ
considerably. We see that A, relatively speaking, did not learn much from the
experiment, while B learned a great deal. The reason is that to A, the uncertainty in the
measurement, as reflected by o = 40, was larger than the uncertainty in his prior
(0p4 = 20). On the other hand, the uncertainty in the measurement was considerably
smaller than that in B’s prior (o, 5 = 80). For A, the prior has a stronger influence on
the posterior distribution than has the likelihood, while for B the likelihood has a
stronger influence than the prior.

% In Bayesian probability theory, prior and posterior distributions are called conjugate distributions if they
belong to the same family. In particular, the Gaussian family is conjugate to itself (or self-conjugate)
with respect to a Gaussian likelihood function: if the likelihood function is Gaussian, choosing a
Gaussian prior over the mean will ensure that the posterior distribution is also Gaussian.
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Now suppose that 99 further independent measurements are made and that the sample

mean y = %02}22 y; of the entire 100 observations is 870. Fig. D.2(a) shows the new

likelihood function and Fig. D.2(b) shows the new posterior distributions. After 100
observations, A and B would be in almost complete agreement. This is because the
information coming from the data almost completely overrides prior differences.

Likelihood function after 100 measurements Posterior distributions after 100 measurements
r r r y y y 0.06 T T T T T T T T

0.06

0.05} i 0.05
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Fig. D.2. (a) Likelihood function and (b) posterior distributions after 100 measurements

This example shows how the contribution of the prior in the posterior computation
depends on its sharpness or flatness in relation to the sharpness or flatness of the
likelihood with it has to be combined.

After a single observation, the priors were very influential in deciding the posterior
distributions, since the likelihood was not sharply peaked relative to either of them. For
this reason the posterior distributions were so much different.

But after 100 observations, the priors were dominated by the likelihood (both the priors
were rather flat compared with the likelihood function), and for this reason the
posteriors are so much closer.

[ |

D.1.2 Consistency and efficiency

There exist several results concerning the consistency and the efficiency of Bayesian
inference (Robert, 2001). In a general context, Bayes estimators are asymptotically
consistent, that is, they almost surely converge to the true value of the parameter when
the number of observations N goes to infinity. This is the case with estimators @ that
minimize the posterior loss associated with the loss function L(6,8) = |6 — 8", a =

1, under weak constraints on the prior distribution p(0) and the sampling density
r(y(0).

The consistency can also be defined in terms of the Hellinger distance (Barron et al.,
1999). The Hellinger distance between two probability distributions p; and p, is
defined as
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d(py,p2) = f (p1(8)Y/2 — p,(8)1/2)d6 (142)

A general condition for consistency of a posterior distribution is that in the Hellinger
neighborhood of the true distribution, the posterior probability tends to the true almost
surely when the sample size N goes to infinity. The basic assumption needed on the
prior distribution p(@) is that it gives positive mass to every Kullback-Leibler
neighborhood of the true distribution. The Kullback-Leibler pseudo-distance is

0 143
apup) = | m%p@, 6)d6 dy (143

Sufficient conditions for convergence of the posterior distribution around the true
system (and not only for Gaussisan noise) can be found in (Ghosal and van der Vaart,
2007).

Finally, regarding the asymptotic efficiency of some Bayes estimates, the posterior
distribution converges towards the true value at the rate N ~1/2,

D.1.3 Selection of the prior distributions

The novelty of Bayesian inference compared to classical system identification methods
is that expressing prior knowledge about the model by means a probability distribution
puts in the same conceptual level stochastic measurement noise and model.

In the Bayesian view, any quantity the true value of which is not known is a random
variable. Therefore not only experimental data are realizations of a random process,
models are considered as random entities as well. Any unknown or uncertain constant
(like model parameters) is a random variable.

a. Subjective priors

In order to apply the Bayes’ rule and hence make posterior inferences about the model,
prior distributions on the model and measurement noise must be defined before any
experiment has been carried out. The purpose of them is to reflect the prior knowledge
about the plant and noise. Sometimes there is no prior knowledge for sure and it must
be substituted by arbitrary assumptions, more or less educated, or personal beliefs.
Hence the term subjective appears.

The choice of the subjective prior is the main issue in the Bayesian paradigm and a great
amount of works deal with this topic. See, for instance (Jeffrey, 2004). The selection
of the prior is a critical point since, once selected, the posterior is computed in a
systematic way and the inferences almost too.
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However, it is not easy to specify numerically and uniquely one’s own state of mind in
terms of prior probability distribution, especially in multivariate problems. Also, the
selection will be always arbitrary. Many candidates for prior distributions have been
proposed. See a survey in (Robert, 2001, Ch.3). And general guidelines to their choice
are given by (Berger, 1985), (Box and Tiao, 1973) and (Robert, 2001).

b. Types of priors

Conjugate distributions: Conjugate distributions are used when the prior information
about the model is too vague or unreliable. However, they are not necessarily non-
informative. They are defined as follows (Robert, 2001):

Definition D. 1. A family F of probability distributions on ® is said to be conjugate (or
closed under sampling) for a likelihood function p(y|0) if, for every prior belonging to
F, the posterior distribution also belongs to F. O

Conjugate prior distributions are usually associated with exponential sampling
distributions. Many common distributions (such as the Normal, Poisson, Gamma,
Binomial, Beta) are exponential distributions. For instance, the Normal distribution is
conjugate with respect to Normal likelihood, the Gamma distribution is conjugate with
respect to Normal, Gamma and Poisson likelihoods, etc.

Improper distributions: Improper priors have distributions which integrate to infinity
and arise when the support of the distribution is unbounded and a uniform distribution is
used. There are several examples of paradoxes arising when improper priors are used.
Their use is motivated by the fact that in many cases the posterior distribution is still
proper.

Non-informative distributions: If we are ignorant about the process and noise we can
model this state of knowledge by means of an uninformative prior, relatively flat
compared to the information coming from the data, i.e. compared to the likelihood
function. This type of prior is chosen also in situations where we want that the data
“speak from themselves” without any prejudice introduced by the prior.

Non-informative prior distributions are purely subjective distributions. However, a
completely unprejudiced prior is very difficult to obtain. In fact, it is impossible
“knowing nothing” about a model and it is impossible to describe the state of “absolute
ignorance” by means a model. Next example from (Hjalmarsson and Gustafsson, 1995)
illustrates this point.

Example D.2. Non-informative uniform prior

Consider the case where the random variable X is known to have the range [—5,5]. It
might appear as if a uniform distribution on this interval is non-informative. The
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knowledge that X € [—5,5] is exactly the same as the knowledge that X2 € [0,25].
Hence a non-informative prior is that X2 is uniformly distributed on [0,25]. But these
two priors are completely different,

P, = Pr(X? < 12.5|X2~1(0,25)) = Pr(X < 0]X~U(-5,5)) = 0.5

V125
P, = Pr(X* < 12.5|X~U(-55)) = —— = 0.7071 # P,

This example illustrates the fact that any attempt to translate very imprecise knowledge

of the type “X € [—5,5]” into a probabilistic prior will always introduces a prejudice.
[ |

The expression “non-informative” (as well as the concept of information in general)
always has only a relative meaning and all what can be done is to suggest a reasonable
mathematical model of the situation when “little is known a priori”.

Many authors have proposed non-informative priors. The most representative are the
Jeffrey’s prior, maximum entropy priors, and reference priors. In (Kass and
Wasserman, 1996) methods for selecting non-informative priors are reviewed.

Example D.3. Reference prior

Noise and model prior distributions can be combined in several ways. For instance,
consider the case of normal sampling distribution and non-informative priors with 6 and
In A approximately independent and locally uniform so that a non-informative reference
prior is

p(@)p(A) < 171

where A is the noise variance. If the noise variance A is not known, information about it
coming from the sample can be used.

Remark: In the Bayesian viewpoint the independence is defined rather in terms of conditional
probabilities, that is “a” is independent of “4” if the knowledge of the true value of “5” does not bring any
information about “a” and therefore p(a|b)=p(a). Obviously, this leads to the traditional (parametric,
Fisherian) definition of independence, p(a,b)=p(a)p(b).

The resulting posterior is the multivariate z distribution (Box and Tiao, 1973).

v+d T&ll/2 . o—d =~ N2 1 I
o _F( > )-|<l> DM s ) (6—-08y) @"®(0—0y)
p( I)’)— 1 ) a/2 ° + ‘U-Sz
r(z)-r(z)-v

wherev =N —d and s? = %(y — ®0)7(y — ©0).

Regions in the parameter space for the two dimension case corresponding to the 75%,
90% and 95% levels of this distribution are shown in Fig. D.3(a) as well as the marginal
distributions (see Fig. D.3(b)).
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Fig. D.3. (a) Posterior credible regions for a reference prior, (b) marginal posteriors

Hierarchical priors: Several simultaneous sources of uncertainty (model order, noise
variance, ...) can be modeled by means mixture and hierarchical priors. Let us define
and illustrate these concepts.

While, in general, a random variable can have only one distribution, it is often easier to
model a situation by thinking in terms of a hierarchy. The advantage of the hierarchy is
that complicated processes may be modeled by a sequence of relatively simple models
placed in a hierarchy. For example, the non-central chi squared distribution with p
degrees of freedom and non-centrality parameter A presents a pdf given by

[S) p
Zrk=1,-x/2  pko-24

X
pEiLp) = ) -

k=0

This is a mixture distribution, made up of central chi squared densities and Poisson
distributions.  The hierarchy is X|K~x;,,x and K~Poisson(Z). Analogously, by
combining normal and gamma models, the final result is a shifted ¢ distribution. In
(Igusa et al, 2002) such hierarchical models are used in order to differentiate between
random and epistemic uncertainties within the structural engineering context.

Dealing with the hierarchy is no more difficult than dealing with conditional and
marginal distributions. A useful result is E[X] = E[E[X|K]]. In the previous example,
E[X|K] = p + 2K, so the global mean is E[X] = p + 2A4.

Example D.4. Hierarchical prior for the measurement noise

Most times we deal with normal distributed measurement noise of unknown variance.
One possibility is to estimate the noise variance from the experimental data, as (Ljung,
1999a) and (Goodwin et al., 2002) do. Another possibility is to assume a probability
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distribution for the noise variance itself. Hence, the disturbance class is described by
means a hierarchy. For instance,

V={veRN: v~N(0,1), ~W1(m,s)}

where W™1(m, s) stands for the inverse Wishart distribution, which has the pdf

M E ) R

and it has mean E[1] = é and variance Var[A] = e y——

Remark: In Bayesian statistics the inverse Wishart distribution is widely used since it is the conjugate
prior for the covariance matrix of a multivariate normal distribution.

The Wishart distribution W (X, v) is a generalization of the univariate chi-square distribution y2(v) to the
multivariate case. The chi-squared is obtained by squaring a random variable distributed as standard
normal while the Wishart distribution is obtained analogously from multivariate normal random vectors.
The Wishart distribution is often used as a model for the distribution of the sample covariance matrix for
multivariate normal random data, after scaling by the sample size.

The inverse Wishart distribution W~1(Z,v), which is based in the Wishart distribution, is used as the
conjugate prior for the covariance matrix of a multivariate normal distribution.
|

Nonparametric priors: When the support of the prior model distribution is a high
dimensional or infinite dimensional space, such as the spaces ¢; and H,, one must use
nonparametric priors. They are typically constructed so than the posterior distribution
possesses some desirable asymptotic properties such as strong consistency.

For the case the number of parameters (samples of the impulse response h) is finite but
grows to infinity with the number of observations N, (McVinnish et al., 2006) propose
the use of the kernel estimation, where a density is approximated by a mixture

N
1 ZK(h—hi>
No o

i=1

where K is a density function and o can be estimated by many methods, including
wavelet bases and Dirichlet distributions (Robert, 2001).

Nonparametric priors are also used when the set of possible models M;, contain models

of varying dimensions. In this case sieve priors are useful. A sieve prior is a mixture
prior on F of the form

p= Z§=1 a;p; Wwhere a; =0, Z§=1 a =1
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and each p; is a prior defined on F but supported on F;. This is, for instance, the case

K
Zpik (M |6ix)
=1

where p(- |6;;) is a parameterized density, the sum of the weights p;;, sum up to 1, and
the number of components & is unknown. This situation is usual in hidden Markov
models and other dynamic models, as well as neural networks. The numerical
simulation of this kind of models relies on computational tools as the reversible jump
Markov Chain Monte Carlo.

D.2 Decision problems

There exist strong connections between statistical inference and decision theory. Often,
they are not distinguished clearly enough from each other. Statistical inference is only a
part of the decision making. Statistical inference provides probability distributions
conditional on data as a rational basis for decisions. Then, decision theory adds the
utility (or risk), calculates expectations, and performs maximization (or minimization).
Decision theory also defines formally all parts of the inference problem and the decision
making process including desired optimality criteria. These criteria are then used to
compare alternative decision procedures. See (Casella and Berger, 2002) and (Robert,
2001) for more insight.

One has to solve a decision problem,

¢ when one has a reason to choose some single value from the set of possible
values of an uncertain quantity. This is the case of the nominal model
identification.

+ when one has to accept as true a single hypothesis from the set of mutually
exclusive hypotheses none of which is known to be certainly true. This is the
case of model validation and fault detection.

¢ when one has to design the data collection procedure. This is the design of
experiments.

The specific characteristic of Bayesian Decision Theory is that one must start by
determining three factors:

1. The distribution family for the observations p(y|0),
2. The prior distribution for the parameters p(0),
3. The loss associated with the decisions L(0, &) where § is the decision.

Note that different choices of prior distributions can result in different decisions. This
fact is viewed as a drawback by non-Bayesian practitioners. However, for Bayesians,



198 Bayesian Decision Theory

making explicit the dependence of the decision on the choice of what is believed to be
true is an advantage of Bayesian analysis rather than the reverse. Another feature of
Bayesian decision problems is that it is often not true that the prior is dominated by the
likelihood.

D.2.1 Actions and decisions

To formulate the statistical inference problem as a decision problem and we need some
definitions and notation. For simplicity we consider the parametric case. Suppose we
perform an experiment and, as a result, we end up with some measured input/output
data. Output data y are random variables belonging to a sample space, say Y.

We are interested in finding simple linear time invariant models fitting as best as
possible the given data. The models will be characterized by a parameter vector 0
belonging to a certain parameter space 0.

Action space: Once the data is observed a decision regarding 0 is to be made. The set
of all allowable decisions is the action space A. The action space determines if the
problem is a point estimation problem, a set estimation problem, or a hypothesis testing
problem:

¢ When identifying a nominal model, we are performing a point estimation of
the parameter vector 0. Actions are guesses at the value of 8. Hence the
allowable action space is directly the parameter space, A = 0.

¢ When obtaining an uncertainty region, we are performing a set estimation
(interval estimation in the scalar case). In this case actions are intervals or
subsets in ©, that is, the action space A is formed by all subsets in ©.

¢ When validating a model, we are performing a hypothesis testing where the
null hypothesis H, is the membership of a particular model in the interval
estimated at the previous point. Action space is then composed by two
elements, A = {a,, a,}, where a, is the action of accepting H, and a, is the
action of rejecting H,.

Decision rule: A decision rule ¢ is a function from Y to A that specifies, for each
y € Y, what action a € A will be taken if y is observed. Thus, in a hypothesis testing
setup the decision &y)=ao will be taken for each y that is in the acceptance region of the
test. All the allowable 6 form the decision space D and the selection of a particular 6
will be decided regarding optimality properties in some sense.

In Bayesian decision analysis, it is supposed that a choice has to be made from a set of
available actions (ay,...,a,), where the payoff or utility of a given action depends on a
state of nature @ which is unknown. The decision maker’s knowledge of 0 is
represented by a posterior distribution which combines prior knowledge of 8 with the
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information provided by an experiment, and he is the supposed to choose that action
which maximizes the expected payoff over the posterior distribution.

D.2.2 Conditional Bayes principle

The decision a, a € A, may be correct, incorrect but not too wrong, or grossly
incorrect. A way to quantify the correctness is the loss function, L(8, a), which will be
greater as « become more incorrect.

Loss function: Suppose that the true model is G;,.. The identification of a nominal
model can be viewed as a decision on the basis of data §(y). The 10SS L(G¢yye, 6(y)) iS
usually a function of the estimation error, e.g.,

L(Gtrue' G) = ”Gtrue - G”g (144)

where || is some suitable norm in the system space.

Risk function: The risk or conditional risk R (G, G) associated to an estimator G is
defined as the average loss with respect to data y, that is,

R(Goruor ) = Ey [L(Goruer 6)] = f LGerer O)P(YIG)dy (145)
Y

The conditional risk R is preferred to the loss L since it accounts for the likelihood of
observations y. In other words, we will not be especially concerned with large values of
L if the likelihood of occurrence of y is small.

Bayesian risk: The Bayesian risk R(G:,., G) is defined as the average risk with
respect to the prior p(G)

:R(Gtrue' G) = EG [R(Gtruef G)] = f R(Gtruel G)p(G)dG (146)
g
Substituting (145) in (146) , we have
R(Geruer &) = FolRGorier 1 = [ | 1Gorues O IGIP(@)dy dG
g Y

Now, since p(y|G)p(G) = p(Gly)p(y), we can split the previous integration into two
parts,
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:R(Gtrue; G) = Eg [R(Gtrue' G)] = f

( f L(Gerue, G)p(6|y>dc> p(y)dy
Y g

Since both L(G:,, G) and p(G|y) are positive, the inner integral is positive for any y.
Furthermore, since p(y) also is positive, the value of G that minimizes the risk is the
value that minimizes the inner integral,

¢ = argmin f L(Goruer O)P(GIy)dG (147)
4

This is the optimal choice for §(y). A necessary condition for such a minimum is
= J, L(Gerue: O)p(Gly)dG| = 0. (Eykhoff, 1974)
9G G G=G

Conditional Bayes Principle: Bayesian decision theory attempts to minimize the
Bayes risk. The conditional Bayes principle states that an action should be chosen
which minimizes the Bayesian expected loss (Berger, 1985). The Bayes rule with
respect to a prior p(G) is the decision rule §(y) that minimizes R among all possible
o’s.

R(p(6),8) = inf R(p(6), 8) (148)

Typically one may find a unique Bayes rule, but there may be no one or many. Bayes
rules can be found by the application of some useful theorems (see (Casella and Berger,
2002)).

Finally, note the role of the prior distribution on the definition of the Bayesian risk R:
From a subjective point of view, this prior reflects the beliefs of the experimenter about
the value of © prior to data collection. From a decision theoretic point of view,
subjective prior p(0) is just a weight function:

¢ selecting 6 such as p(0) is large, the experimenter would like to have
particularly small risk;

+ selecting 6 such as p(0) is small, the experimenter is not concerned about the
risk.
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