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Abstract

Multimodal visualization aims at fusing different data sets so that the resulting combi-
nation provides more information and understanding to the user. Medical imaging and
3D volumetric visualization are a standard routine for patient diagnosis and treatment
due to current medical imaging devices are able to acquire information of any organ
of the body. Since the information obtained from different image modalities is com-
plementary, multimodal visualization plays an important role in medical diagnosis and
treatment, because it makes findings possible that might be missed when each modal-
ity is considered separately.

Multimodal visualization requires two main processes. First, a registration process that
aligns input data sets in a common space, and second, a fusion process that mixes the
values represented in the same spatial position in order to obtain the rendered im-
age. Despite the advantages of multimodal visualization, its application in real medical
context is still lacking due to the complexity of the technique and the degree of user
interaction that is required. To overcome these limitations, we will focus this thesis on
the automation of the fusion step and the main involved processes: the information
fusion and the transfer function design.

The automation of data fusion and transfer function definition processes will enhance
multimodal visualization techniques, however, there are no systematic methods able to
ensure that the obtained rendering is good enough. In fact, the quality evaluation of a
rendering in itself is a complex problem since it depends on the subjective judgement
of the user. In this thesis, we will study this problem in the context of monomodal visu-
alizations. We will propose an objective quality metric which can be used to assess and
optimize different visualization processes such as transfer function design, viewpoint
selection and light positioning.

Information-theoretic measures, such as entropy and mutual information, have been
applied to solve multiple problems in fields of image processing and computer graph-
ics. Therefore, we will utilize information theory tools in order to tackle all described
problems.





Resum

La visualització multimodal es basa en la fusió de diferents models on la seva combi-
nació proporcioni més informació i comprensió per a l’usuari. La imatge mèdica i la
visualització volumètrica tridimensional és un procés bàsic pel diagnòstic i tractament
de pacients ja que els escàners actuals són capaços d’obtenir informació molt útil de
qualsevol òrgan del cos. Degut a que la informació obtinguda de diferents modalitats
d’imatge és complementària, la visualització multimodal juga un paper important en
el diagnòstic i tractament mèdic perquè permet detectar elements que podrien passar
desapercebuts si s’analitzessin les modalitats per separat.

La visualització multimodal consta de dos passos. Primerament, el procés de regis-
tre permet alinear els models d’entrada en un espai comú, i seguidament, el procés de
fusió mescla els valors representats en la mateixa posició espacial per tal d’obtenir la
imatge final. Malgrat els avantatges de la visualització multimodal, la seva aplicabilitat
en el món mèdic és poc rellevant degut a la complexitat de les tècniques i del grau
d’interacció que es requereix per part de l’usuari. Per intentar pal·liar aquestes limitaci-
ons, en aquesta tesi ens centrarem en l’automatització de procés de fusió basat en dos
passos: la fusió d’informació i la definició d’una funció de transferència.

L’automatització de fusió d’informació i de la definició d’una funció de transferència
permetrà millorar les tècniques de visualització multimodal. No obstant això, no hi ha
mètodes capaços d’assegurar que la visualització obtinguda és bona. De fet, l’avaluació
de la qualitat d’una visualització és una tasca complicada ja que depèn molt de l’usu-
ari. En aquesta tesi, estudiarem aquest problema en el context de visualització mono
modal. Proposarem una mètrica de qualitat objectiva que podrà ser utilitzada per a
l’assistència i optimització de diferents processos de la visualització com el disseny de
funcions de transferència, selecció d’un punt de vista o el posicionament de llums.

Les mesures de teoria de la informació, com l’entropia o la informació mútua, han
servit per solucionar múltiples problemes en el camp de processament d’imatge i in-
formàtica gràfica. En aquesta tesi utilitzarem eines de teoria de la informació per tal
d’afrontar els problemes descrits.





Resumen

La visualización multimodal se basa en la fusión de diferentes modelos donde la com-
binación obtenida proporcione más información y comprensión para el usuario. La
imagen médica y la visualización volumétrica tridimensional es un proceso básico para
el diagnóstico y tratamiento de pacientes ya que los escáneres actuales son capaces de
obtener información muy útil de cualquier órgano del cuerpo. Debido a que la informa-
ción obtenida de distintas modalidades de imagen es complementaria, la visualización
multimodal juega un papel importante en el diagnóstico y tratamiento médico porque
permite detectar elementos que podrían pasar desapercibidos si se analizaran las mo-
dalidades per separado.

La visualización multimodal está compuesta de dos pasos. Primeramente, un proceso
de registro permite alinear los modelos de entrada en un espacio común, y seguida-
mente, un proceso de fusión mescla los valores representados en la misma posición
espacial para obtener la imagen final. A pesar de las ventajas de la visualización multi-
modal, su aplicabilidad en el ámbito médico es poco relevante debido a la complejidad
de las técnicas y del grado de interacción requerido por parte del usuario. Para intentar
paliar estas limitaciones, en esta tesis no centraremos en la automatización del proceso
de fusión que está basado en dos procesos: la fusión de información y la definición de
una función de transferencia.

La automatización de fusión de información y de la definición de una función de trans-
ferencia va a permitir mejorar las técnicas de visualización multimodal. No obstante,
no hay métodos capaces de asegurar que la visualización obtenida es buena. En reali-
dad, la evaluación de la calidad de una visualización es una tarea compleja ya que
depende mucho del usuario. En esta tesis, estudiaremos este problema en el contex-
to de visualización mono modal. Propondremos una métrica de calidad objetiva que
podrá ser utilizada para la asistencia y la optimización de varios procesos de la visua-
lización tales como el diseño de funciones de transferencia, selección de un punto de
vista o el posicionamiento de luces.

Las medidas de teoría de la información, como la entropía o la información mutua,
han permitido solucionar múltiples problemas en el campo de procesamiento de ima-
gen y informática gráfica. A fin de llevar a cabo los problemas descritos usaremos
herramientas de teoría de la información.





CHAPTER 1

Introduction

At the end of 1895 W. C. Röntgen discovered the X-Rays while he was experimenting
with cathode rays [Röntgen 1896] starting the imaging technology for medical diag-
nostic era. Since then, there have been impressive technological advances and discov-
eries on medical imaging that are commonly used nowadays, such as x-ray tubes, nu-
clear medicine imaging (NMI), computer tomography (CT), magnetic resonance imag-
ing (MRI), ultrasound (US), or positron emission tomography (PET). The benefits of
these techniques are unquestionable. They are able to provide and represent informa-
tion of the human body structure, function and pathology. These images have become
a key tool for medical diagnosis, planning, treatment and surgery, as well as for other
scientific areas such as biology, geology or chemistry, to name a few.

Focusing on medical context, medical imaging and 3D volumetric visualization
have become a standard routine for patient diagnosis and treatment. Even thought
physicians are used to explore data sets using 2D slices, 3D visualization methods are
a valuable resource for tissue examination, tumors orientation, pathology follow-up,
and surgery assistance and simulation. The effectiveness of these methods depends on
different factors such as the selected viewpoint, the defined transfer function or the il-
lumination model. In other cases, the visualization of a single model is not enough and
monomodal visualization has to be substituted by multimodal visualizations to better
interpret the acquired images. All these topics have been widely studied in the scientific
visualization community but their automation is still an open problem. In the context
of this thesis, we aim to study how to automate multimodal visualization and also how
to evaluate the quality of a monomodal visualization.

Given the heterogeneity and complexity of patterns of most diseases, it happened to
be very powerful having different medical image modalities able to represent comple-
mentary information. New multimodal visualization methods that automatically com-
bine the most relevant information from different imaging modalities would make find-
ings possible that are missed when each modality is considered separately. For instance,
CT detects dense structures, such as bone, giving the general shape of objects but few
details on the non-contrasted tissues, while MRI images are used to depict the mor-
phology of soft tissues being rich in detail. Simultaneous visualization of CT and MRI
will allow physicians to see dense structures from CT and soft tissues from MRI. Tak-
ing a real example, a tumor originated in cerebral parenchyma or soft tissues, might
extend locally to the surrounding tissues such as bone; the detection of this invasion
would change the staging of the disease and consequently affect the therapeutic man-
agement and prognosis of the patient. Regarding CT and PET, the former provides high
quality spatial context information, whereas the latter shows metabolic activity pat-
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(a) Histological (b) CT (c) T1-MRI (d) PET

Figure 1.1: An illustration of (a) an histological head axial slice and three different
image modalities: (b) CT, (c) T1-MRI, and (d) PET.

terns. The response to therapy of most tumors and inflammatory diseases is usually
measured with different, complementary imaging techniques, and this can be substan-
tially improved by using multimodality imaging that combines metabolic information
from PET and anatomic information from CT. To better illustrate these examples, in
Figure 1.1 we present different images of an axial slice of the head. From the left to the
right, the first one is a histological image, where tissues and brain structures are repre-
sented in different colors. The second image is a CT, where the white area corresponds
to the skull. The third image is a T1-MRI where soft tissues are perfectly delineated.
In this case, the more water a tissue contains the higher intensity it is associated with.
And, the last image is a PET where high intensity describes metabolic activity. As it can
be seen, the combination of all these images will provide much more useful informa-
tion to the physician. Therefore, multimodal visualization had become an outstanding
line of research in the visualization field.

Multimodal visualization requires two main steps. First, a registration process that
aligns the input data sets in a common space, and second, a fusion process that mixes
the intensity values represented in the same spatial position in order to obtain the
rendered image. While registration has been extensively studied and many different
algorithms have been proposed, image fusion is still challenging, due to the lack of a
goal standard which makes the fused image difficult to interpret. For instance, physi-
cians like to refer to Hounsfield unit scale in CT data sets but this normalized scale
can not be used in a multimodal visualization. Image fusion process is the one we will
focus on this thesis.

The fusion process reduces data of input images into a single visual representation.
To carry out this process the following problems need to be solved:

• The registration process aligns all input data sets in a common voxel model and
for each voxel maintains the values of the input data sets. Thus, it maintains more
than a single value. To generate a rendering we can consider that each voxel will
be represented in a single pixel. Therefore, the first problem arises. We have to
reduce the information of spatial-aligned input data sets into a single value (i.e.
an intensity value per voxel). Different strategies have been proposed to tackle
this process. The simplest methods, instead of fusing information, alternately
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display the input data in a checkerboard mode. Others apply a color channel-
based fusion that assigns the input images to different color channels, and then
performs the rendering, or combine segmented data from one of the data sets
with color coding techniques that represent the data of the other model. These
techniques have been proven to be useful in clinical environments, although, in
most of the cases, the task of mentally reconstructing the relationship between
structures and modalities is left to the observer. Therefore, new techniques to
solve this problem are required.

• Once input data sets have been reduced to a single model, a transfer function
needs to be defined in order to render it. A transfer function allows us to assign
the graphical attributes (color and opacity) to input intensity values in order to
determine which structures of each volume will be visible and how these will
be rendered. The definition of this transfer function is a complex task, since it is
not easy to understand the relationship between the structures of the input data
sets, nor determine which of them have to be visualized and how. Generally, to
tackle this problem, advanced transfer function editing tools are proposed and
main decisions are relegated to the user who modifies the parameters until the
desired rendering effects are reached. A main drawback of this edition process is
the high degree of user interaction which may introduce errors and also makes
the reproducibility of the method difficult. Therefore, more advanced methods
able to overcome these limitations need to be developed.

The automation of data fusion and transfer function definition processes will en-
hance multimodal visualization techniques, however there are no methods able to en-
sure that the obtained rendering is good enough. Evaluating the quality of a rendering
is an extremely complex problem, especially when dealing with multimodal data. It
is crucial to take into account that the quality of a visualization depends on the user
interests and the more data sets visualized together the more difficult is the evaluation.
Due to the importance of this problem and conscious of its complexity, we aim to study
it in the context of monomodal visualization.

Information-theoretic measures, such as entropy and mutual information, have
been applied to solve multiple problems in fields of image processing and computer
graphics. The purpose of this thesis is to utilize information theory tools to tackle the
described problems.

1.1 Objectives

The main goals of this thesis are the automation of multimodal visualization and the
evaluation of the quality of a visualization. To reach these goals, we aim to:

1. Automate the information fusion process required in the multimodal visualiza-
tion techniques.

The fusion process is challenging since it comprises the reduction of the data
contained in the registered voxels into a single voxel. The most critical aspect is
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not only finding the proper fusion scheme, but also a useful visualization which
should facilitate the establishment of visual correspondences between input mod-
els while keeping the characteristics of different sources. Ideally, the overall pro-
cess should be done automatically.

We aim to propose a new approach for multimodal visualization that auto-
matically fuses data on the basis of extracting the most relevant information
of the input data sets.

2. Automate the transfer function definition required in the multimodal visualiza-
tion process.

Input data sets have their corresponding transfer functions which are compre-
hensible for the user. The fused model visualization demands the definition of
a new transfer function also comprehensible to the user. This definition requires
knowledge about the relationship between structures and which are the most im-
portant. Ideally, transfer function definition should be automatic to reduce errors
and improve user performance.

We want to develop a new approach to automate the transfer function de-
sign for multimodal data sets.

3. Define a method to evaluate the quality of a monomodal visualization.

Direct volume rendering (DVR) has become a very powerful tool to explore vol-
ume data. A crucial point in DVR is to produce images that reveal the maximum
information about the volume data set. In this context, the investigation of qual-
ity metrics that evaluate how well the visualization represents the underlying
data is especially of great interest. Image quality assessment is a well-known
problem in computer vision and different metrics have been proposed in this
field. These can be classified into subjective, when assessment is based on a hu-
man observer, and objective, when no human observer is needed. In the visual-
ization field, the definition of objective metrics is especially complicated since the
quality of a visualization depends on different factors (user interest, application
requirements, or input data features).

We aim to achieve a new information-theoretic framework that provides an
objective metric to evaluate the quality of a visualization.
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1.2 Thesis Structure

The thesis is organized in six chapters. Following this introduction, in Chapter 2 an
overview of related work to information theory and multimodal visualization is pre-
sented. In Chapter 3, we propose a new framework for multimodal visualization which
automatically selects the most informative features of each input data set. In Chap-
ter 4, a new method which automates the definition of multimodal transfer functions
is presented. In Chapter 5, we propose an objective metric to evaluate the quality of
a visualization based on information-theoretic tools. These approaches are presented
with the same format as they were published. Finally, in Chapter 6, we discuss our
conclusions and future work.





CHAPTER 2

State of the Art

This chapter is a brief overview of the most important aspects related to this thesis.
First, section 2.1 explains the basic concepts on information theory. Section 2.2 shortly
reviews the main applications of information theory to computer graphics and visu-
alization. Finally, section 2.3 provides an overview of multimodal visualization and
the main proposed methods. For a more specific overview, it is suggested to read the
dedicated sections of the three papers presented in chapters 3, 4, and 5, respectively.

2.1 Information Theory Tools

In 1948, Claude Shannon published a paper entitled “A mathematical theory of com-
munication” [Shannon 1948], which marks the beginning of information theory. In
this paper, Shannon defined measures such as entropy and mutual information1, and
introduced the fundamental laws of data compression and transmission. Information
theory deals with the transmission, storage, and processing of information and is used
in fields such as physics, computer science, mathematics, statistics, economics, biology,
linguistics, neurology, learning, image processing, and computer graphics.

In information theory, information is simply the outcome of a selection among a
finite number of possibilities and an information source is modeled as a random vari-
able or a random process. The classical measure of information, Shannon entropy,
expresses the information content or the uncertainty of a single random variable. It is
also a measure of the dispersion or diversity of a probability distribution of observed
events. For two random variables, their mutual information is a measure of the de-
pendence between them. Mutual information plays an important role in the study of a
communication channel, a system in which the output depends probabilistically on its
input [Cover 1991, Verdú 1998, Yeung 2008].

This section presents Shannon’s information measures (entropy, conditional en-
tropy, and mutual information) and their most basic properties. Good references of
information theory are the books by Cover and Thomas [Cover 1991], and Yeung [Ye-
ung 2008].

2.1.1 Entropy

Let X be a discrete random variable with alphabet X and probability distribution
{p(x)}, where p(x) = Pr[X = x] and x 2 X . In this thesis, {p(x)} will be also de-

1In Shannon’s paper, the mutual information is called rate of transmission.
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noted by p(X ) or simply p. This notation will be extended to two or more random
variables.

The entropy H(X ) of a discrete random variable X is defined by

H(X ) = �
X

x2X
p(x) log p(x), (2.1)

where the summation is over the corresponding alphabet and the convention 0 log 0=
0 is taken.

In this thesis, logarithms are taken in base of 2 and, as a consequence, entropy is ex-
pressed in bits. The convention 0 log0= 0 is justified by continuity since x log x ! 0 as
x ! 0. The term � log p(x) represents the information content (or uncertainty) asso-
ciated with the result x . Thus, the entropy gives us the average amount of information
(or uncertainty) of a random variable. Note that the entropy depends only on the prob-
abilities. We can use interchangeably the notation H(X ) or H(p) for the entropy, where
p stands for the probability distribution p(X ).

Some relevant properties [Shannon 1948] of the entropy are:

• 0 H(X ) log |X |.

– H(X ) = 0 if and only if all the probabilities except one are zero, this one
having the unit value, i.e., when we are certain of the outcome.

– H(X ) = log |X | when all the probabilities are equal, i.e., we have maximum
uncertainty.

• If the probabilities are equalized, entropy increases.

The binary entropy (Fig. 2.1) of a random variable X with alphabet {x1, x2} and
probability distribution {p, 1� p} is given by

H(X ) = �p log p� (1� p) log(1� p). (2.2)

Note that the maximum entropy is H(X ) = 1 bit when p = 1
2 .

The definition of entropy is now extended to a pair of random variables. The joint
entropy H(X , Y ) of a pair of discrete random variables X and Y with a joint probability
distribution p(X , Y ) = {p(x , y)} is defined by

H(X , Y ) = �
X

x2X

X

y2Y
p(x , y) log p(x , y), (2.3)

where p(x , y) = Pr[X = x , Y = y] is the joint probability of x and y .

The conditional entropy H(Y |X ) of a random variable Y given a random variable
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Figure 2.1: Plot of binary entropy.

X is defined as the expected value of the entropies of the conditional distributions:

H(Y |X ) =
X

x2X
p(x)H(Y |X = x) =

X

x2X
p(x)

0
@�
X

y2Y
p(y|x) log p(y |x)

1
A

= �
X

x2X

X

y2Y
p(x , y) log p(y|x), (2.4)

where p(y |x) = Pr[Y = y |X = x] is the conditional probability of y given x .
The Bayes theorem relates marginal probabilities p(x) and p(y), conditional prob-

abilities p(y |x) and p(x |y), and joint probabilities p(x , y):

p(x , y) = p(x)p(y |x) = p(y)p(x |y). (2.5)

If X and Y are independent, then p(x , y) = p(x)p(y). Marginal probabilities can be
obtained from p(x , y) by summation: p(x) =

P
y2Y p(x , y) and p(y) =

P
x2X p(x , y).

The conditional entropy can be thought of in terms of a communication or infor-
mation channel X ! Y whose output Y depends probabilistically on its input X . This
information channel is characterized by a transition probability matrix which deter-
mines the conditional distribution of the output given the input [Cover 1991]. Hence,
H(Y |X ) corresponds to the uncertainty in the channel output from the sender’s point of
view, and vice versa for H(X |Y ). Note that in general H(Y |X ) 6= H(X |Y ). In this thesis,
the conditional probability distribution of Y given x will be denoted by p(Y |x) and the
transition probability matrix (i.e., the matrix whose rows are given by p(Y |x)) will be
denoted by p(Y |X ).

The following properties hold:

• H(X , Y ) = H(X ) + H(Y |X ) = H(Y ) + H(X |Y ).

• H(X , Y ) H(X ) +H(Y ).

• H(X )� H(X |Y )� 0.
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• If X and Y are independent, then H(Y |X ) = H(Y ) since p(y|x) = p(y) and,
consequently, H(X , Y ) = H(X ) + H(Y ) (i.e., entropy is additive for independent
random variables).

2.1.2 Kullback-Leibler divergence and mutual information

We now introduce two new measures, Kullback-Leibler divergence and mutual infor-
mation, which quantify the distance between two probability distributions and the
shared information between two random variables, respectively.

The relative entropy or Kullback-Leibler divergence [Kullback 1951] DKL(pkq) be-
tween two probability distributions p and q, that are defined over the alphabet X , is
defined by

DKL(pkq) =
X

x2X
p(x) log

p(x)
q(x)

. (2.6)

The conventions that 0 log 0
0 = 0 and a log a

0 =1 if a > 0 are adopted. The Kullback-
Leibler divergence satisfies the information inequality

DKL(pkq)� 0, (2.7)

with equality if and only if p = q. The Kullback-Leibler divergence is also called infor-
mation divergence [Csiszár 2004] or informational divergence [Yeung 2008], and it is
not strictly a metric2 since it is not symmetric and does not satisfy the triangle inequal-
ity. The Kullback-Leibler divergence is “a measure of the inefficiency of assuming that
the distribution is q when the true distribution is p” [Cover 1991].

The mutual information I(X ; Y ) between two random variables X and Y is defined
by

I(X ; Y ) = H(X )� H(X |Y ) = H(Y )� H(Y |X )

=
X

x2X

X

y2Y
p(x , y) log

p(x , y)
p(x)p(y)

=
X

x2X
p(x)
X

y2Y
p(y |x) log

p(y|x)
p(y)

. (2.8)

Mutual information represents the amount of information that one random variable,
the input of the channel, contains about a second random variable, the output of the
channel, and vice versa. That is, mutual information expresses how much the knowl-
edge of Y decreases the uncertainty of X , and vice versa. I(X ; Y ) is a measure of the
shared information or dependence between X and Y . Thus, if X and Y are independent,
then I(X ; Y ) = 0. Note that the mutual information can be expressed as the relative
entropy between the joint distribution and the product of marginal distributions:

I(X ; Y ) = DKL(p(X , Y )kp(X )p(Y )). (2.9)

2A metric between x and y is defined as a function d(x , y) that fulfills the following properties: (1)
non-negativity: d(x , y) � 0, (2) identity: d(x , y) = 0 if and only if x = y , (3) symmetry: d(x , y) =
d(y, x), and (4) triangle inequality: d(x , y) + d(y, z)� d(x , z).
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Mutual information I(X ; Y ) fulfills the following properties:

• I(X ; Y )� 0 with equality if and only if X and Y are independent

• I(X ; Y ) = I(Y ; X )

• I(X ; Y ) = H(X ) + H(Y )� H(X , Y )

• I(X ; Y )min{H(X ), H(Y )}

• I(X ; X ) = H(X )

The relationship between Shannon’s information measures can be expressed by a
Venn diagram, as shown in Fig. 2.23. The correspondence between Shannon’s informa-
tion measures and set theory is discussed in [Yeung 2008].

H(X|Y)! I(X;Y)! H(Y|X)!

H(X)!

H(X,Y)!

H(Y)!

Figure 2.2: The information diagram represents the relationship between Shannon’s
information measures. Observe that I(X ; Y ) and H(X , Y ) are represented, respectively,
by the intersection and the union of the information in X (represented by H(X )) with
the information in Y (represented by H(Y )). H(X |Y ) is represented by the difference
between the information in X and the information in Y , and vice versa for H(Y |X ).

2.2 Information-theoretic Applications in Computer Graph-
ics and Visualization

Two excellent surveys of the application of information theory to computer graphics are
by Chen and Jänicke [Chen 2010], and by Wang and Shen [Wang 2011]. A summary
of information theory tools for computer graphics is presented in [Sbert 2009].

In computer graphics, the most basic information-theoretic measures have been
used in scene complexity [Feixas 1999], global illumination [Rigau 2003], light po-
sitioning [Gumhold 2002], and viewpoint selection for polygonal scenes [Vázquez
2001, Sbert 2005, Feixas 2009]. In the latter field, entropy [Vázquez 2001], Kullback-
Leibler distance [Sbert 2005], and mutual information [Feixas 2009] have been ap-
plied to quantify the quality of a viewpoint. From an information channel between the

3The information diagram does not include the universal set as in a usual Venn diagram.



12 Chapter 2. State of the Art

set of viewpoints and the polygons of an object, all these measures can be presented in
a unified framework, enabling to compute other aspects such as the similarity of two
viewpoints, both the stability and the saliency of a viewpoint, and both the information
and the saliency associated with a polygon [Feixas 2009, González 2008].

Information theory has also been applied to different areas in scientific visualiza-
tion, such as view selection, flow visualization, time-varying volume visualization, mul-
timodal visualization, and transfer function design. Next, we refer some applications
to these areas. In view selection, Bordoloi et al. [Bordoloi 2005] and Takahashi et
al. [Takahashi 2005] introduced the entropy to evaluate the quality of a viewpoint, and
Viola et al. [Viola 2006] proposed the mutual information of the information channel
between a set of viewpoints and a set of objects to calculate the representativeness of
a viewpoint. In flow visualization, Xu et al. [Xu 2010] used entropy to measure the
information content in the local regions across a vector field and conditional entropy
to evaluate the effectiveness of streamlines to represent the input vector field, and Lee
et al. [Lee 2011] used entropy for viewpoint selection and view-dependent streamline
placement. In time-varying volume visualization, Ji and Shen [Ji 2006] applied entropy
to dynamic view selection, and Wang et al. [Wang 2008] introduced the conditional
entropy to quantify the information a data block contains with respect to other blocks
in the time sequence.

To guide transfer function design, Ruiz et al. [Ruiz 2011] used the notion of vis-
ibility histogram introduced by Correa and Ma [Correa 2009], which represents the
contribution of each sample in the final resulting image, as a main parameter to be con-
sidered for the transfer function specification. They proposed an information-theoretic
framework for automatic transfer function design that, based on a user-defined target
distribution, obtains the opacity transfer function whose visibility distribution mini-
mizes the informational divergence to the target.

Finally, different works have used mutual information for multimodal visualiza-
tion [Haidacher 2008, Bruckner 2010, Haidacher 2011]. A detailed description is given
in the following section.

2.3 Multimodal Visualization

The main goal of multimodal visualization is to provide in a single image the most
important features of different input data sets [Cai 1999, Wilson 2002]. To reach this
goal, a fusion process that combines the input data is required. For each position, this
process can consider single or multiple properties. In the first case, the property can
be selected by a user-defined criterion, as proposed by Burns et al. [Burns 2007] and
Brecheisen et al. [Brecheisen 2008]. In the second case, the fusion can occur at differ-
ent levels of the volume rendering pipeline [Cai 1999, Ferre 2004]. Cai and Sakas [Cai
1999] defined three levels (Figure 2.3):

• The image-level intermixing renders the input data sets independently and then
merges these images. This is the simplest way for the fusion of two modalities,
but it has the disadvantage that the results do not provide the exact depth cueing
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among the two volumes. Therefore, this fusion technique is typically applied
on single slices of the volume. Several techniques have been developed for this
purpose, such as alternating pixel display or linked cursor [Schad 1987, Stokking
1994].

• The accumulation-level intermixing fuses the values when sample values are cal-
culated in each volume along a ray and their visual contributions are mixed. This
is a way to intermix the different opacities and intensities coming from different
volumes obtaining a correct depth of cueing information. However, the rendering
pipeline needs to be modified and the rendering speed could be slower since at
each step the opacity and intensity for each individual volume have to be calcu-
lated.

• The illumination-level intermixing assigns optical properties to a combination of
values from the different modalities. A case study for the rendering of multi-
variate data, where multiple values are present at each sample point, was done
by Kniss et al. [Kniss 2002]. In this work, the idea of multidimensional trans-
fer functions to assign optical properties to a combination of values was used.
Akiba and Ma [Akiba 2007] used parallel coordinates for the visualization of
time-varying multivariate volume data. This approach requires multidimensional
transfer functions capable of balancing the visual contributions from the input
data sets.
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Figure 2.3: Rendering pipelines of (a) Image model level intermixing, (b) Accumulation
level intermixing and (c) Illumination level intermixing.

In this thesis, we will consider the accumulation-level intermixing in order to pro-
pose a multimodal method where the result is the combination of the most informative
voxels from two volume data sets.

2.3.1 Multimodal Transfer Functions

Although multidimensional transfer functions are commonly used for volume visual-
ization, their definition is not trivial. The concept of 2D transfer function, where the
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second dimension is given by the gradient magnitude, was introduced by Levoy [Levoy
1988].

Kindlmann and Durkin [Kindlmann 1998] used the first and second derivatives
along the gradient direction to calculate a boundary emphasis to be included in the
opacity transfer function. Kniss et al. [Kniss 2002] suggested widget-based interface
for the interactive generation of multidimensional transfer functions for both scalar
and multivariate data. Kniss et al. [Kniss 2003] also proposed an extension of prein-
tegrated volume rendering for multidimensional transfer functions, which was limited
to transfer functions specified by Gaussian primitives. Kindlmann et al. [Kindlmann
2003] investigated the role of curvature and proposed the curvature-based transfer
functions which enhance the expressive and informative power of direct volume ren-
dering by selecting different components of curvature information to serve as domain
variables in multidimensional transfer functions. Lum and Ma [Lum 2004] presented a
multidimensional transfer function method for enhancing surfaces by defining a light-
ing transfer function that takes into account the distribution of values along a material
boundary and gives the opportunity to interactively select different material bound-
aries. Tory et al. [Tory 2005] proposed the use of an interface based on parallel coor-
dinates to explicitly represent the visualization parameter space of a transfer function.
Maciejewski et al. [Maciejewski 2009] proposed the addition of non-parametric clus-
tering within the transfer function feature space in order to extract patterns and guide
transfer function generation. A special class of multidimensional transfer functions,
called distance-based, consider distance as a second data dimension [Kanda 2002].
Roettger et al. [Roettger 2005] introduced spatialized transfer functions, a special
variant of local transfer functions where connected components are identified and
the positional information is mapped to color. In this way, different objects with the
same values can be isolated. Lundström et al. [Lundström 2006] introduced local his-
tograms to detect and identify materials with similar intensities. Šereda el al. [Šereda
2006] proposed an extension of the local histograms capable of detecting the materials
that form the boundaries of the objects. Haidacher et al. [Haidacher 2008] introduced
the decomposition of mutual information for transfer function design in multimodal
volume visualization. They proposed a new 2D space for manually defining transfer
functions. Bruckner and Möller [Bruckner 2010] introduced isosurface similarity maps
to present structural information of a volume data set by depicting similarities between
individual isosurfaces quantified by mutual information. This maps are used to guide
the transfer function design and the visualization parameter specification. Based on
the mutual information as a measure of the isosurface similarity between different
modalities, Haidacher et al. [Haidacher 2011] defined a similarity space that provides
a concise overview of the differences between modalities, and also serves as the basis
for an improved selection of features.



CHAPTER 3

Multimodal Data Fusion Based on
Mutual Information

Our first objective is the automation of the information fusion process required in mul-
timodal visualization techniques. In this chapter we propose a new approach for mul-
timodal visualization that automatically fuses data on the basis of extracting the most
relevant information of the input data sets. The proposed approach has been published
in the following paper.
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Abstract 

Multimodal visualization aims at fusing different data sets so that the resulting combination provides 
more information and understanding to the user. To achieve this aim, we propose a new 
information-theoretic approach that automatically selects the most informative voxels from two 
volume data sets. Our fusion criteria are based on the information channel created between the two 
input data sets that permit us to quantify the information associated with each intensity value. This 
specific information is obtained from three different ways of decomposing the mutual information 
of the channel. In addition, an assessment criterion based on the information content of the fused 
data set can be used to analyze and modify the initial selection of the voxels by weighting the 
contribution of each data set to the final result. The proposed approach has been integrated in a 
general framework that allows for the exploration of volumetric data models and the interactive 
change of some parameters of the fused data set. The proposed approach has been evaluated on 
different medical data sets with very promising results. 
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CHAPTER 4

Information Theory-Based
Automatic Multimodal Transfer

Function Design

The second objective of this thesis is the automation of the transfer function definition
required in multimodal visualization techniques. In this chapter we introduce a new
approach to automate the transfer function design for multimodal data sets. The pro-
posed approach has been published in the following paper.
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Information Theory-Based Automatic Multimodal
Transfer Function Design

Roger Bramon, Marc Ruiz, Anton Bardera, Imma Boada, Miquel Feixas, and Mateu Sbert

Abstract—In this paper, we present a new framework for mul-
timodal volume visualization that combines several information-
theoretic strategies to define both colors and opacities of the
multimodal transfer function. To the best of our knowledge, this
is the first fully automatic scheme to visualize multimodal data.
To define the fused color, we set an information channel between
two registered input data sets and, afterwards, we compute the
informativeness associated with the respective intensity bins. This
informativeness is used to weight the color contribution from
both initial 1D transfer functions. To obtain the opacity, we
apply an optimization process that minimizes the informational
divergence between the visibility distribution captured by a set
of viewpoints and a target distribution proposed by the user.
This distribution is defined either from the data set features,
from manually set importances, or from both. Other problems
related to the multimodal visualization, such as the computation
of the fused gradient and the histogram binning, have also been
solved using new information-theoretic strategies. The quality
and performance of our approach is evaluated on different data
sets.

Index Terms—Multimodal visualization, Multimodal fusion,
Transfer function design, Information theory, Kullback-Leibler
distance.

I. INTRODUCTION
Multimodal visualization aims at combining the most rel-

evant information from different volumetric data sets into a
single one that provides as much information as possible [1].
This technique is of great interest, especially in a medical
context where complementary information from different med-
ical devices, such as computed tomography and magnetic
resonance, can be combined in a single model to enhance
diagnosis and treatment.
Multimodal visualization techniques require two main pro-

cesses. The first one is the information fusion which reduces
the information of spatial-aligned input data sets into a single
value. To carry out this fusion different methods have been
proposed [1], [2]. The second process is the transfer function
definition that assigns graphical attributes (color and opacity)
to the fused model to determine which structures of each
volume will be visible and how these will be rendered. The
definition of this transfer function is a complex task since
it is not always easy to understand the relationship between
the structures of the input models nor determine which of

Manuscript received June 19, 2012. This work has been funded in part
by grants from the Spanish Government (Nr. TIN2010-21089-C03-01) and
from the Catalan Government (Nr. 2009-SGR-643). This work has also been
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Roger Bramon, Marc Ruiz, Anton Bardera, Imma Boada, Miquel
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them have to be visualized and how. Generally, to tackle this
problem, advanced transfer function editing tools are proposed
and main decisions are relegated to the user who modifies the
parameters until the desired rendering effects are reached. A
main drawback of this edition process is the high degree of
user interaction which may introduce errors and also makes
the reproducibility of the method difficult. To overcome these
limitations, the automation of both the fusion and the transfer
function design is needed.
In this paper, we present a new approach to automate both

the information fusion process and the transfer function design
for multimodal data sets. This approach combines several
information-theoretic strategies to define colors and opacities.
These strategies are based on the information maps introduced
by Bramon et at. [3] to represent the informativeness associ-
ated with the intensity values of the input data sets. To compute
these maps, we establish an information channel between two
registered input data sets and calculate the informativeness
using two different information measures, that correspond to
two different decompositions of the mutual information of the
channel.
In order to obtain the fused color, we weight the original 1D

transfer functions according to the informativeness associated
to each intensity. This fusion is analyzed using different color
spaces and color fusion strategies. While in Bramon et al. [3]
the information maps were only used to select the most
informative color from two input data sets, in this paper they
are used to weight the fusion of the colors. Then, to define the
opacity function, we have extended the approach presented by
Ruiz et al. [4] to deal with multimodal information. Similar to
this previous work, we propose an optimization procedure that
minimizes the informational divergence between the visibility
distribution (i.e., the normalized visibility histogram) captured
by a set of viewpoints and a target distribution proposed by the
user. The target distribution represents an importance-based
description of what the user expects to be visualized. It is
important to emphasize that, in this stage, the extension to
multimodality forces us to introduce two preliminary steps: a
binning strategy to reduce the number of bins of the data sets
and a new gradient fusion method to obtain a single value for
the gradient magnitude associated with each voxel.
The main contribution of our approach is the definition

of a general framework for the automatic transfer function
definition in multimodal visualization. It is general in the
sense that it is not limited to specific image modalities nor
to particular anatomical regions, and, thus, it can be applied
to any type of multimodal image pair. This feature is very
valuable in real medical environments. As far as we know, this
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is the first attempt to define an automated pipeline that finds
an optimal transfer function for two multimodal data sets.
This paper is organized as follows. In Section II, we

review related work on multimodal visualization and some
applications of information theory to visualization. In Section
III, we describe the information maps computation. In Section
IV, we overview the proposed approach. In Sections V and VI,
we explain in detail the main processes of our proposal: color
fusion and opacity computation, respectively. In Sections VII
and VIII, we show the experimental results and discuss the
strengths of our method. Finally, in Section IX, we present
our conclusions and future work.

II. RELATED WORK

In this section, we present previous work on multimodal
volume rendering and review some information-theoretic ap-
plications in visualization.

A. Multimodal Volume Rendering
The main goal of multimodal visualization is to provide in

a single image the most important features of different input
data sets [1], [2]. To reach this goal, a fusion process that
combines the input data is required. For each position, this
process can consider single or multiple properties. In the first
case, the property can be selected by a user-defined criterion,
as proposed by Burns et al. [5] and Brecheisen et al. [6],
or by an automatic method, such the one introduced by [3].
In the second case, the fusion can occur at different levels
of the volume rendering pipeline [1], [7]. Cai and Sakas [1]
defined three levels: image level intermixing, when two images
are merged; accumulation level intermixing, when sample
values are calculated in each volume along a ray and their
visual contributions are mixed; and illumination model level
intermixing, which consists in opacity and intensity calculation
at each sampling point directly from a multi-volume illumina-
tion model. This approach requires multidimensional transfer
functions capable of balancing the visual contributions from
the input data sets.
Although multidimensional transfer functions are com-

monly used for volume visualization, their definition is not
trivial. The concept of 2D transfer function, where the second
dimension is given by the gradient magnitude, was introduced
by Levoy [8]. More general multi-dimensional transfer func-
tions were suggested by Kindlmann and Durkin [9], and Kniss
et al. [10]. Kniss et al. [11] also proposed an extension of
preintegrated volume rendering for multidimensional transfer
functions, which was limited to transfer functions specified
by Gaussian primitives. Tory et al. [12] proposed the use
of an interface based on parallel coordinates to explicitly
represent the visualization parameter space of a transfer func-
tion. Haidacher et al. [13] introduced the decomposition of
mutual information for transfer function design in multimodal
volume visualization. They proposed a new 2D space for
manually defining transfer functions. Bruckner and Möller [14]
introduced isosurface similarity maps to present structural
information of a volume data set by depicting similarities

between individual isosurfaces quantified by mutual informa-
tion. The maps are used to guide the transfer function design
and the visualization parameter specification. Based on the
mutual information as a measure of the isosurface similarity
between different modalities, Haidacher et al. [15] defined
a similarity space that provides a concise overview of the
differences between modalities, and also serves as the basis
for an improved selection of features.
To guide the transfer function design, different authors have

proposed to use the data set visibility. Correa and Ma [16]
introduced the notion of visibility histogram, which represents
the contribution of each sample in the final resulting image,
as an interactive aid to generate effective transfer functions.
Correa and Ma [17] also generalized the notion of visibility
histogram along a number of dimensions and proposed a
semiautomated method that progressively explores the transfer
function space towards the goal of maximizing the visibility
of important structures. Ruiz et al. [4] also used the visibility
as a main parameter to be considered for the transfer function
specification. They proposed an information-theoretic frame-
work for automatic transfer function design that, based on
a user-defined target distribution, obtains the opacity transfer
function whose visibility distribution minimizes the informa-
tional divergence to the target. Our purpose is now to extend
this approach to multimodal volume visualization aiming to
automate as much as possible the multimodal transfer function
design. In this extension, the information maps proposed by
Bramon et al. [3] play a fundamental role to define the fusion
strategy.

B. Information Theory in Visualization
In 1948, Claude E. Shannon published a paper entitled “A

mathematical theory of communication” [18] that marks the
beginning of information theory. In this paper, he introduced
the concepts of entropy and mutual information that have
been used in many fields, such as physics, computer science,
neurology, image processing, and computer graphics. The
application of information theory to computer graphics and
scientific visualization has been reviewed by Sbert et al. [19],
Chen and Jänicke [20], and Wang and Shen [21].
Information theory has been applied to different areas in sci-

entific visualization, such as view selection, flow visualization,
time-varying volume visualization, multimodal visualization,
and transfer function design. Next, we refer some applications
to these areas. In view selection, Bordoloi et al. [22] and
Takahashi et al. [23] introduced the entropy to evaluate the
quality of a viewpoint, and Viola et al. [24] proposed the
mutual information of the information channel between a set of
viewpoints and a set of objects to calculate the representative-
ness of a viewpoint. In flow visualization, Xu et al. [25] used
entropy to measure the information content in the local regions
across a vector field and conditional entropy to evaluate the
effectiveness of streamlines to represent the input vector field,
and Lee et al. [26] used entropy for viewpoint selection and
view-dependent streamline placement. In time-varying volume
visualization, Ji and Shen [27] applied entropy to dynamic
view selection, and Wang et al. [28] introduced the conditional
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entropy to quantify the information a data block contains with
respect to other blocks in the time sequence. Finally, different
works mentioned in Section II-A have used mutual information
for multimodal visualization [13], [14], [15], [3] and applied
the informational divergence for transfer function design [4].

III. INFORMATION MAPS

Since the concept of information map, introduced by Bra-
mon et al. [3], constitutes the kernel of our approach, in this
section we briefly review it.
The relationship between two multimodal data sets can be

represented by a communication channel X ! Y between the
random variables X (input) and Y (output), which represent,
respectively, the set of intensity bins X of the data set X
and the set of intensity bins Y of the data set Y. The three
basic components of this channel are the input distribution
p(X) = {p(x)}=

n

n(x)
N

o

, where n(x) is the number of voxels
corresponding to bin x and N is the total number of voxels, the
conditional probability matrix p(Y |X) = {p(y|x)}=

n

n(x,y)
n(x)

o

,
where n(x,y) is the number of voxels with intensity x such
that the corresponding voxel in the data set Y has intensity
y, and the output distribution p(Y ) = {p(y)}=

n

n(y)
N

o

, where
n(y) is the number of voxels corresponding to bin y.
From this channel, the mutual information I(X ;Y ) between

the two data sets is defined by

I(X ;Y ) = H(Y )�H(Y |X), (1)

where H(Y ) and H(Y |X) are, respectively, the entropy of Y and
the conditional entropy of Y when X is known [29]. Mutual
information provides us the amount of information that is
transferred or shared between X and Y .
To quantify the specific information associated with each

intensity value, I(X ;Y ) can be decomposed as

I(X ;Y ) = ∑
x2X

p(x)I(x;Y ), (2)

where I(x;Y ) is the specific information of x. Thus, I(X ;Y ) can
be seen as a weighted average over individual contributions
from particular intensities. Three specific information mea-
sures, called surprise (I1), predictability (I2) and entanglement
(I3), were previously introduced in the field of neural systems
to investigate the information associated with stimuli and
responses (see [30], [31]). Bramon et al. [3] introduced these
measures in the field of multimodal fusion and concluded
that the best performance was achieved by a procedure that
combines the measures predictability and entanglement. Tak-
ing this fact into account, we focus our attention on these
two measures, that will be used in this paper to produce the
information maps of each data set.
From Equation 1 and 2, the specific information I2 [30],

called also predictability in [3], is defined by

I2(x;Y ) = H(Y )�H(Y |x)
= � ∑

y2Y

p(y) log p(y)+ ∑
y2Y

p(y|x) log p(y|x),

(3)

(a) Input CT (b) I2 map (c) I3 map

(d) Input MR (e) I2 map (f) I3 map
Fig. 1. From left to right, the original CT and MR head data sets and their
corresponding I2 and I3 information maps.

where H(Y |x) expresses the entropy of Y when the output x is
known. The specific information I2(x;Y ) expresses the change
in uncertainty about Y when x is observed. Note that I2(x;Y )
can take negative values. This means that certain observations
x do increase our uncertainty about the state of the variable
Y . Intensity values x with high I2(x;Y ) greatly reduce the
uncertainty in Y and, thus, they are very significant in the
relationship between X and Y .
Butts [31] introduced the stimulus specific information

I3, also obtained from the decomposition of I(X ;Y ). This
measure, called entanglement in [3], is defined by

I3(x;Y ) = ∑
y2Y

p(y|x)I2(y;X). (4)

A large value of I3(x;Y ) means that the intensity values of Y
associated with x are very informative in the sense of I2(y;X).
That is, the most informative input values x are those that are
related to the most informative outputs y. Note that I3(x;Y )
can also take negative values.
Thus, for each data set, we can obtain two information

maps given by the specific information measures I2 and I3,
respectively. To avoid negative values in the information maps,
the value range of each map has been shifted so that its
minimum value is equal to 0. These information maps will
enable us to fuse the initial gradients of both data sets into a
single value, and the colors of both transfer functions into a
single color. Figure 1 shows the I2 and I3 information maps for
the CT and MR head data sets. These maps have been colored
using a thermal scale, where warm colors (red) correspond to
high values of the evaluated measure and cool colors (blue)
to low ones.

IV. OVERVIEW
In Bramon et al. [3], given two input data sets, the in-

formation maps were proposed to select for each voxel the
most informative source data set that has to be visualized. In
that case, there were no fusion at the voxel level since only
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Fig. 2. Main processes of the proposed multimodal visualization approach.

the information of one of the input data sets is visualized,
discarding the other one. On the other hand, we propose now
to apply the information maps to fuse the input data sets and
to create a multimodal visualization where both inputs are
represented at each voxel.
The objective of our approach is the automation of the

multimodal transfer function design. Given two registered
volume data sets, X and Y, their pre-defined 1D transfer
functions, TFX and TFY , and their information maps, our
approach is composed of two main steps (see Figure 2):
1) Color fusion. This process weights the contribution of
the colors provided by the initial 1D transfer functions
to obtain the final fused color function. The combination
of colors is guided by the information maps.

2) Opacity computation. This step computes the final
opacity function using an iterative strategy that mini-
mizes the informational divergence (or Kullback-Leiber
distance) between the visibility distribution captured by
a set of viewpoints and a target distribution proposed by
the user to obtain the color opacity function.

A more detailed description of these steps is given in the
next sections.

V. COLOR FUSION

To obtain the final fused color, the contribution of the colors
provided by the initial 1D transfer functions is guided by the
I2 and I3 information maps of the input data sets. The study
carried out by Bramon et al. [3] showed the good performance
of an asymmetric fusion strategy based on I2(x;Y ) and I3(x;Y ).
In this approach, for each pair of matched voxels with inten-
sities x and y, the graphical attributes of x were selected when
I2(x;Y )> I3(x;Y ), and the ones of y when I2(x;Y ) I3(x;Y ).
In our method, this approach is extended to fuse the gradient
values. Thus, given a reference data set X, the gradients of
the voxels of X and Y are respectively weighted by I2(x;Y )
and I3(x;Y ) from the previously computed information maps.
As we have mentioned in Section III, the values of I2 and I3
have been shifted to avoid negative values.
At each voxel, the fused data set takes a color c that is a

combination of colors cX(x) and cY (y) coming from the initial

transfer functions. The fused color c is defined by

c(x,y) =
I2(x;Y )cX (x)+ I3(x;Y )cY (y)

I2(x;Y )+ I3(x;Y )
, (5)

where, as stated in Section III, I2(x;Y ) measures the pre-
dictability of the intensity value x over the variable Y , and
I3(x;Y ) gathers the predictability of the intensity values of
Y associated with intensity x. Note that the proposed color
fusion strategy will generate new colors and this may lead
to misinterpretation when viewing the final color transfer
function. This limitation is inherent to any color fusion tech-
nique. We have studied different color fusion techniques. First,
Equation 5 has been applied using RGB and CIELab color
spaces. CIELab (abbreviation for the CIE 1976) color space
is perceptually uniform and has been designed to approximate
human vision. Second, we have also studied the hue-preserving
color blending strategy proposed by Chuang et al. [32] in HSL
color space. They proposed a perception-guided compositing
operator for color blending, denoted by �, which maintains the
same rules for achromatic compositing as standard operators,
but it modifies the computation of the chromatic channels in
order to preserve the hue of the input colors. This strategy
requires to slightly modify Equation 5 replacing the traditional
component-wise addition by the new operator:

c(x,y) =
I2(x;Y )cX (x)� I3(x;Y )cY (y)

I2(x;Y )+ I3(x;Y )
. (6)

Figure 3 presents, in the first row, the original MR-T1 and
MR-T2 data sets and, in the second row, from left to right,
the results obtained using the RGB and CIELab spaces, and
the hue-preserving color blending strategy. Observe that the
results using RGB and CIELab color spaces are very similar,
although a more natural hue transition and a more uniform
color distribution are obtained using CIELAB color space. On
the other hand, note that the hue-preserving color blending
strategy tends to produce gray values that can be hard to be
interpreted as Chuang et al. described in [32]. From these
results, we consider that the CIELab color space is the best
option because it enables to identify the origin of the colors
better than using the hue-preserving color blending strategy.
From Equation 5, observe that if I2(x;Y ) > I3(x;Y ) then x

is more informative than y and, thus, has to have a greater
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(a) MR-T1 (b) MR-T2

(c) RGB (d) CIELab (e) Hue-preserving
Fig. 3. Multimodal visualization of (a) MR-T1 and (b) MR-T2 in (c)
RGB and (d) CIELab color spaces, and (e) the hue-preserving color blending
strategy.

contribution to the final result, while I2(x;Y ) < I3(x;Y ) indi-
cates that the values y corresponding to x are more informative
than x and must have a greater contribution. Remember that
I3(x;Y ) has a low value when the values y corresponding to x
are uninformative in the sense of I2. Note the asymmetric role
of X and Y since both measures I2 and I3 are taken from X.
This means that, prior to the fusion, we have to select the
reference data set. From the experiments carried out in Bramon
et al. [3], it can be seen that the best results are achieved when
the reference data set corresponds to the one whose structures
of interest are more contrasted.
To quantify the contrast of a data set, for each voxel, the

variance of the intensities on a small window centered in the
voxel is computed. This value can be seen as a measure of
local non-uniformity. Thus, the mean of the local variance for
all the voxels can be used as an inverse measure of contrast.
The lower the mean local variance the higher the contrast.
For normalization purposes, we compute this measure on the
segmented volumes, since in this case both data sets take
values in the same intensity range. In our framework, the most
contrasted image is taken as the reference image by default,
but the user can easily modify this automatic selection.

VI. OPACITY COMPUTATION
To calculate the opacity values of the multimodal transfer

function, we present a method that is based on the transfer
function design technique for single data sets introduced by
Ruiz et al. [4]. In this approach, opacities are obtained by an
optimization procedure that minimizes the informational di-
vergence between the average projected visibility distribution
from all viewpoints and a target distribution which expresses
an importance-based description of what the user expects to
be visualized. The main modifications to extend this approach
to multimodal visualization are due to the fact that we have
to consider pairs of intensity values at each voxel instead of

single values. In addition to the mathematical reformulation
of the method, two new steps will be required to solve the
high-dimensionality associated to the problem: the binning of
the intensities and the gradient fusion.

A. Multimodal Opacity Optimization
The main steps of this process are represented in the opacity

computation module of Figure 2. This process begins with a
default multimodal transfer function, obtained from a weighted
average of the opacity values from the 1D input transfer
functions TFX and TFY . Similar to the color fusion (see
Equation 5), the weights are given by the I2 and I3 information
maps. This new 2D multimodal transfer function is used to
compute the visibility distribution for a set of viewpoints.
Then, the informational divergence or Kullback-Leibler dis-
tance [29] between the obtained visibility distribution and
the target distribution is evaluated. The target distribution
represents an importance-based description of what the user
expects to be visualized, i.e., the probability of each bin
in the final visualization. From the informational divergence
value, the optimizer, based on the steepest gradient descent
algorithm, assesses a new transfer function in the direction of
the divergence gradient. The process is repeated until the value
of the informational divergence is below a given threshold or
a given number of iterations has been performed.
The computation of the informational divergence is carried

out in the framework on an information channel V ! B
between random variables V and B that are respectively
defined over the alphabets V (set of viewpoints) and B (set
of bins), where each bin corresponds to the set of voxels that
have the same pair (x,y) of intensity values or the same triplet
(x,y,g) of intensities and gradient. It is assumed here that all
the volume data sets are centered in a sphere of viewpoints
and the camera is looking at the center of this sphere. The
main elements of the channel V ! B are the conditional prob-
abilities p(b|v), given by the normalized projected visibility of
intensity bin b over a viewpoint v, the input probability p(v),
given by the normalized projected visibility of the data set
over a viewpoint v, and the output probability p(b), given by
p(b) = ∑v2V p(v)p(b|v) that expresses the average projected
visibility of intensity bin b from all viewpoints. For more
details, see [4].
In this paper, three different target distributions have been

used:
• Occurrence of the intensities: the target distribution ob-
tained from the occurrence of each intensity bin b is
defined as

q(b) =
occur(b)

∑i2B occur(i)
, (7)

where occur(b) stands for the occurrence of bin b. This
approach requires that each intensity bin, i.e., each pair of
intensities (x,y), is visualized according to its probability
in the volume data set. Note that the original resolution
of the intensities can not be used (as it was in the
original paper of Ruiz et al.) due to the high number of
different pair combinations. Thus, a binning strategy has
to be applied. In our framework, we used an information
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bottleneck-based approach, which is described in more
detail in Section VI-B.

• Gradient magnitude: the previous target distribution is
extended by using the 3D transfer function generated by
the intensity pair and the gradient. Using this extension,
the target distribution obtained from the gradient values
weighted by the occurrence distribution is defined by

q(b) =
grad(b)occur(b)

∑i2B(grad(i)occur(i))
, (8)

where grad(b) stands for the gradient component g of
the bin b. Note that B represents now the joint variable
(x,y,g). In this case, the voxels with a high gradient (i.e.,
those that are borders of anatomical structures) can be
highlighted. Note that each input data set has a different
gradient magnitude and a fusion scheme is needed also
in this case. We propose to fuse them based on the
information maps. Section VI-C describes this technique
in more detail.

• Importance function: the previous target distributions can
be weighted by an importance function imp(b) defined
by the user. For instance, weighting the second one by
importance, we obtain the following target distribution:

q(b) =
imp(b)grad(b)occur(b)

∑i2B(imp(i)grad(i)occur(i))
. (9)

In this way, a priori knowledge of the data, such as the
intensity range of the relevant structures, is combined
with statistical features of the data.

The informational divergence or Kullback-Leibler dis-
tance [29] measures the distance between the visibility dis-
tribution and a target distribution q(B). From this measure,
two different approaches can be defined depending on how
the visibility is estimated:

• Global informational divergence (GID), which is defined
as

DKL(p(B),q(B)) = ∑
b2B

p(b) log
p(b)
q(b)

, (10)

where p(b) is the average projected visibility of intensity
bin b from all viewpoints, and thus p(B) represents the
mean visibility of each intensity bin considering all the
viewpoints.

• Viewpoint informational divergence (VID), which only
considers the current viewpoint v. Thus, Equation 10
becomes

DKL(p(B|v),q(B)) = ∑
b2B

p(b|v) log p(b|v)
q(b)

, (11)

where p(B|v) represents the visibility of each intensity
bin considering only the current viewpoint. Note that
this measure is view-dependent and will have to be
recomputed each time the viewpoint changes.

Ruiz et al. [4] proposed to add an opacity constraint term
to the information divergence to ensure a high degree of
opacity of the final transfer function. In our framework this
term has not been added since the method does not lead to
very transparent results without this term. Thus, our objective

(i.a) CT, 16 bins (i.b) CT, 32 bins

(ii.a) MR, 16 bins (ii.b) MR, 32 bins
Fig. 4. CT and MR head data sets of Figure 1(a) and 1(d) are shown after
applying the binning step with (a) 16 bins and (b) 32 bins.

is to minimize the informational divergence by modifying
the opacities of the multimodal transfer function. This opti-
mization procedure is performed using the steepest gradient
descent method and using an estimation of the gradient of the
informational divergence to speed up the process. For more
details see [4].

B. Binning Algorithm
Given the information channel between two registered data

sets presented in Section III, the number of bins of each data
set is reduced by applying the one-sided clustering algorithm
introduced by Bardera et al. [33]. On the one hand, the
necessity of this process is due to the computational difficulty
of dealing with the high number of bins that result from the
combination of two input data sets. On the other hand, the
one-sided clustering algorithm, designed for multimodal image
segmentation, allows us to obtain a more accurate result than
a regular binning approach.
This binning algorithm, based on the agglomerative in-

formation bottleneck method [34], is a greedy hierarchical
clustering algorithm that merges the histogram bins of one
data set by minimizing the loss of mutual information between
both data sets. The main idea behind the algorithm is that the
final segments of one data set correspond to the structures
that are most relevant from the perspective of the other data
set, called control data set. For more details, see [33]. Figure 4
shows, for the original CT and MR head data sets of Figure 1,
the results obtained after applying the binning process with 32
and 16 bins. Observe how the main structures of the original
images have been preserved.

C. Gradient Computation
In volume rendering, the gradient is needed to obtain the

normals for the shading calculation. In addition, the gradient
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(a) CT (b) MR (c) Fused
Fig. 5. From left to right, the representation of the gradient magnitudes of
the input CT and MR head data sets, and the fused data set.

magnitudes can be used to define the transfer function. In the
multimodal visualization scenarios, each data set contributes
with a gradient value and, therefore, a strategy to fuse these
multiple values in a single one is required.
To obtain the fused gradient, we use the fusion strategy

proposed in Section V for color fusion. Thus, the fused
gradient magnitude g in voxel (i, j,k) is defined by

g(i, j,k) =
I2(x;Y )gX(i, j,k)+ I3(x;Y )gY (i, j,k)

I2(x;Y )+ I3(x;Y )
, (12)

where gX(i, j,k) and gY (i, j,k) stand for the gradient magni-
tudes in the voxel (i, j,k) of data sets X and Y , respectively.
The fused gradient direction is also computed in a similar way.
For the computation of gX and gY , the 4D linear regression

algorithm proposed by Neumann et al. [35] has been applied
to the original data sets (before the binning step). With this
method we obtain a more accurate gradient approximation
than using the standard finite difference method [35]. Figure
5 shows the gradient magnitude for the input CT and MR
head data sets, and the fused gradient. Note that the fused
gradient preserves the main structures of the input models
without disruptive discontinuities.
Observe that the gradient associated with the intensity

value x of the reference data set contributes more when its
predictability is greater than the predictability of the intensity
values y associated with x, and vice versa. As we discussed
in Section V, due to the asymmetric role of X and Y, prior to
the fusion we have to select the reference data set.

VII. RESULTS
In this section, we present a set of experiments that have

been carried out to evaluate the proposed approach. We have
considered two testing data sets, the first composed of medical
data and the second of industrial data.

A. Medical Applications
For the medical experiments, we have used CT, MR, and

PET data sets from the Osirix database [36] and we have
analyzed both the CT-MR and the CT-PET fusions. In the
CT-MR fusion, CT detects dense structures, such as bones,
giving the general shape of objects but few details on the soft
tissues, while MR images are used to depict the morphology of
soft tissues being rich in detail. Generally, in CT-MR fusion,
physicians want to see the dense structures from CT and the
soft tissues from MR. In the CT-PET fusion, PET provides

information of metabolism activity patterns while CT provides
high quality spatial context information. Generally, in the CT-
PET fusion, physicians want to see the functional active areas
from PET, and bone and other anatomical structures from CT.
The proposed approach has been integrated in a multimodal

visualization platform. Its user interface, developed using
Qt [37], integrates two lateral viewers to present the input data
sets and a central viewer with the multimodal visualization.
The user interacts with the main viewer and all the actions are
reproduced to the other ones. We use GPU-based ray casting to
render the input models and CPU-based ray casting to render
the fused data set based on VTK [38]. Note that multimodal
transfer functions have, in general, three input variables: the
intensities of both input data sets and the gradient magnitude
and, for each triplet, a color and an opacity scalar value have
to be shown. The visualization of this information is not a
simple task and physicians, who are not very used to deal
with this kind of information, could have some difficulties to
correctly interpret them. To overcome this limitation, in our
experiments we always provide to the users the multimodal
visualization together with the original input data sets.
In our experiments, we have used by default the global

informational divergence (GID), a stopping threshold value of
the informational divergence measure equal to 0.001, and 6
uniformly distributed viewpoints. The first experiment eval-
uates the CT-MR fusion using a CT (512⇥512⇥174) and
MR (176⇥224⇥244) head data sets. In a preprocessing step,
these data sets have been registered and the MR-head has
been resampled to the CT resolution using linear interpolation
(see Figures 6(a)). To apply the proposed approach, the CT
data set has been considered as the reference data set, since
it is more contrasted than MR data set. Different number of
intensity and gradient bins have been used in order to evaluate
the effect of the binning process. Figures 6(b-c) show the
obtained results using both the target distributions given by
occurrence and occurrence weighted by gradient, respectively.
To better illustrate the results, a cutting plane at the level of
the damaged area has been set. With respect to the target
distributions, note that when only occurrences are taken into
account (Figure 6(b)) no insight of the lesion is visible. On
the contrary, when gradient is considered (see Figure 6(c)), the
method assigns a lower opacity around the damaged area and
this is perfectly delineated. This effect is due to the contrast
injected to the patient, in order to enhance the lesion detection.
Therefore, for data sets with highly contrasted structures,
the proposed approach will achieve better results using the
occurrences weighted by gradient as the target distribution.
Figure 6(d) has been obtained using occurrences weighted by
gradient and assigning importance 1 to the lesion and 0.5 to
the rest for the MR, and 1 to the bone and 0.2 to the rest
for the CT. In this way, the importance of each pair of the
fused data set is obtained by multiplying the importances of
each single data set. As it can be seen, the bone and the
lesion are notably highlighted in the final rendering. Finally,
we can evaluate the effect of the binning process by comparing
Figures 6(i.b-i.d) and Figures 6(ii.b-ii.d). We observe that the
different number of bins only slightly affects the final colors
of the transfer function. Thus, although the binning process
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(i.a) Input CT (i.b) occur (i.c) occur ⇤ grad (i.d) occur ⇤ grad ⇤ imp
16⇥16 16⇥16⇥32 16⇥16⇥32

(ii.a) Input MR (ii.b) occur (ii.c) occur ⇤ grad (ii.d) occur ⇤ grad⇤ imp
32⇥32 32⇥32⇥8 32⇥32⇥8

Fig. 6. Multimodal visualization of (i.a) CT and (ii.a) MR data sets using different target distributions: (b) occurrence, (c) occurrence weighted by gradient,
and (d) occurrence weighted by gradient and importance. Results (i.b-d) are obtained using 16 non-uniform intensity clusters for each data set and 32 uniform
bins for the gradient magnitude, and (ii.b-d) using 32 non-uniform intensity clusters for each data set and 8 uniform bins for the gradient magnitude.

(a) CT-MR fusion (b) MR-CT fusion
Fig. 7. Comparison of multimodal visualizations of CT and MR head data
sets of Figure 6(a) using occurrence weighted by gradient and considering (a)
CT and (b) MR as the reference model, respectively.

implies a loss of information, it has no relevant impact to
the final result. Using the same pair of data sets, we have
also evaluated the difference of using either CT or MR as the
reference data set. As we can see in Figure 7, the results are
very similar and, thus, the selection of the reference model
does not substantially affect the quality of the final rendering.
The next experiment evaluates the CT-PET fusion con-

sidering the PET as the reference data set since the PET
is more contrasted than the CT. The original data sets (see
Figures 8(a-b)) are correctly registered and have a resolution
of (168⇥168⇥344). In this experiment we use 64 non-uniform
intensity clusters for each data set. To obtain the fusion we
use the target distribution given by the occurrence, assigning
importance 0.7 to the bone of the CT and 0.1 to the rest,
and 0.8 to the high activity area of the PET and 0.1 to the
rest. The result is shown in Figure 8(c). As it was expected,
the integration of the anatomical context from CT makes the
interpretation of PET information easier.

The third experiment also evaluates a CT-PET fusion.
These data sets are registered and have a resolution of
(512⇥512⇥267). As in the previous case, PET is considered
as the reference for the computation of the information maps,
and we use 32 non-uniform intensity clusters for each data set
and 8 uniform bins for the gradient magnitude. Figure 9 shows
the multimodal visualization using the target distribution of
occurrences weighted by gradient and assigning importance
0.7 to the CT bone and 0.1 to the rest. Note how the
assignation of importance and the application of the gradient
improve considerably the skeleton visualization.

B. User Evaluation
To evaluate the proposed approach in a medical context,

we have presented the obtained results to a group of experts
from the Hospital Josep Trueta of Girona. The validation
of multimodal visualization is a difficult task due to the
lack of ground truth data. Moreover, observer’s evaluation
can be influenced by the diagnostic situation, the observer’s
experience, training, and preference. Therefore, our evaluation
have been based on the capability of the expert to obtain
information from the testing images that could be relevant for
the diagnosis.
In a first evaluation, we have presented the CT-MR fused

data sets obtained with our approach (Figure 6) and also with
the classical weighted average visualization, and checkerboard
visualization (alternatively visualizing one voxel of each input
model) manually modulating the opacities to generate compa-
rable results to our approach. All experts agreed that the most
valued image is the Figure 6-ii.c since perfectly delineates the
right intra-cerebral mass providing a visualization similar to
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(a) CT (b) PET (c) CT-PET fusion
Fig. 8. Multimodal visualization of (a) CT and (b) PET data using occurrence
weighted by importance considering the (c) PET as the reference model.

the one obtained with a parietal craniotomy. Moreover, this
result was not reproducible with the classical visualization.
Figure 6-ii.d has been less valued since loses details of the
pathologic mass although it better represents the bone structure
and vascular details. Figure 6-ii.a has been directly discarded
since it does not provide relevant information for the diagnosis.
In a second experiment, they have analyzed the CT-PET

fused data (Figure 8) obtained with our approach and the stan-
dard methods previously described. Experts have considered
that the active areas of the PET are better represented with
the proposed approach than with the standard methods, since
these areas have a higher image contrast.
As a conclusion, experts have pointed out the quality of our

images and have considered them especially useful for surgical
and radiotherapy planning, and for treatment monitoring.

C. Industrial Applications
To show the wide applicability of our method, this has

also been tested with an industrial data set. In the industrial
area, the dual energy CT (DECT), which performs a high
and low energetic measurement simultaneously, has become
a novel technique for dimensional measurement of industrial
components. The high energy scan is almost free of artifacts
but suffers from reduced precision and noise, and the low
energy scan has high precision but is affected by severe arti-
facts [39]. The purpose of fusion is to combine the advantages
of both models in a single one. Figures 10(a-b) show the
low and high energy scans of a 400 V power connector with
a resolution of (256⇥256⇥895). The transfer functions used
in these visualizations have been obtained with the method
proposed by Ruiz et al. [4]. Figures 10(c-d) illustrate the
corresponding I2 and I3 information maps of both scans. As it
was expected, the low energy information maps present severe
artifacts while the high energy ones are free of artifacts but
suffer from noise. Since the presence of artifacts makes the
fusion more difficult, we take the high energy scan as the
reference data set. Figure 11 shows the multimodal fusion of
DECT data set using the target of occurrence weighted by
gradient with both the VID (i.e., only one view is considered)
and the GID (6 and 20 views are considered) measures. In

Fig. 9. Two different views of a multimodal visualization of CT-PET
fusion using as a target distribution the occurrence weighted by gradient and
importance.

(a) (c)

(b) (d)
Fig. 10. Visualizations of the (a) low energy and (b) high energy CT scans
of a power connector and (c-d) their corresponding I2, I3 information maps.

these experiments we use 16 non-uniform intensity clusters for
each data set and 32 uniform bins for the gradient magnitude.
When the GID measure is used (see Figures 11(c-d) and (e-
f)), a unique transfer function is obtained, while with the
VID measure (see Figure 11(a-b)) a new transfer function is
defined for each viewpoint. Note how the transfer functions
are clearly dependent on the selected viewpoints. In the case of
one viewpoint, all structures are visible from each viewpoint,
while considering more viewpoints, occlusions do not allow
us to perceive all structures from a single viewpoint. We can
also observe that the difference using 6 or 20 viewpoints is
minimal and, hence, the use of 6 viewpoints is a good trade-
off between quality and speed for the global informational
divergence.
Table I collects the computation time in seconds for each

step of the proposed approach and different data sets. From
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(a) (c) (e)

(b) (d) (f)
Fig. 11. Multimodal visualization of a dual energy CT scan of a power
connector with the target of occurrence weighted by gradient considering (a-
b) one view, (c-d) 6 views and (e-f) 20 views.

left to right, columns report evaluated data sets with different
configurations and target distributions, data preparation steps
(information maps, binning, and gradient), color computation,
and opacity computation. In this last column, we considered
two different distances to stop the process (d < 0.01 and
d < 0.001) and, for each configuration, we collect the compu-
tation time in seconds and the number of iterations required
by the opacity process. The performance of our method only
benefits from the GPU in the implementation of the visibility
computation. Note that in most cases the results converge in
less than 50 iterations. All the experiments were carried out on
a PC equipped with an Intel Core 2 Quad Q9550 CPU, 4GB
of RAM, and a NVIDIA GeForce GTX 280 graphics card.

VIII. DISCUSSION
As we have mentioned in Section II, some approaches have

been proposed to assist in multimodal transfer function design.
Some previous works [13], [14], [15] present a simplification
of the multimodal transfer function space to facilitate the
manual definition, even though this is still required. Some
other approaches have been proposed for automatic transfer
function design. These approaches, that only consider one
input data set, deal with the problem of minimizing a cost
function while optimizing the opacity values in the transfer
function definition. For instance, Correa et al. [17] and Ruiz et
al. [4] propose to minimize, respectively, an energy function
and the informational divergence between a given visibility
function and the visibility obtained with the transfer function.
In our framework, we define a general pipeline to solve

the problems related to the multimodal visualization. First,
the informativeness of the intensity values of both input
data sets is used to obtain a fused gradient function, that
is required to compute the illumination and to define the

transfer function. Second, a non-regular histogram binning
strategy is proposed to reduce the number of entries of the
joint histogram required for the optimization of the transfer
function opacities. Third, the informativeness values together
with the original colors of both 1D transfer functions are used
to generate the color assignment in the multimodal transfer
function definition. And fourth, the opacities of the multimodal
transfer function are automatically computed from a target
distribution by minimizing the informational divergence.
The theoretical fundamentals used in this paper are based

on information theory. This theory is used to relate different
random variables by defining an information channel between
them. Note that, while the information maps and the binning
algorithm are obtained from the information channel created
between the two input data sets, the informational divergence
is computed in the context of an information channel between
a set of viewpoints and the bins of the multimodal data set.
In our approach, the problems related to the multimodal vi-

sualization are solved by defining a few number of parameters.
First, for the binning process, the final number of bins has to
be fixed. As it has been shown in Figure 6, the final results are
not very sensitive to this parameter and, in our experiments,
we have used a default value of 32 bins. Second, the reference
image has to be chosen. From our tests, we have observed
that the best results are achieved when the most contrasted
image is considered as the reference one. For instance, in the
visualization of a CT-PET image pair, the best performance is
obtained when the PET image is taken as the reference one
instead of the CT image. Finally, in the optimization process, a
target distribution have to be defined. The choice of the target
distribution requires that the user decides which features have
to be enhanced.
Focusing on real medical applications, a current limitation

of our approach, which is inherent to any color fusion strategy,
is the color interpretation of the multimodal visualization.
Since new colors are generated, the physician could have
difficulties to interpret them. To tackle this problem we can
simultaneously visualize the original input data sets with their
transfer functions and emphasize the explored area in the fused
model to the original data sets.

IX. CONCLUSIONS

We have introduced a novel pipeline to automate the infor-
mation fusion and the transfer function design required in mul-
timodal visualization. The proposed approach, that combines
several information-theoretic strategies to define colors and
opacities, is basically composed of the following processes.
First, the information maps between two input registered data
sets are computed. Second, the fused color is computed from
the combination of the original colors using the information
maps. Finally, the opacity values are generated by minimizing
the informational divergence between the visibility distribution
and a target distribution proposed by the user. Before this
optimization process, a binning step has been applied to reduce
the number of bins of the input data sets and both gradients
from the input data sets have been fused to a single gradient
value. As future work, we will study the generalization of
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Data set Data preparation Color computation Opacity computation (sec.,it)
binsX⇥binsY⇥gradient (target) Information maps Binning Gradient d < 0.01 d < 0.001
CT-MR 1.27 10.32 10.40 0.01 - -
32⇥32⇥1 (1) (44.67, 26) (48.97, 28)
32⇥32⇥8 (2) (110.53, 30) (173.49, 47)
CT-PET 0.83 4.34 17.74 0.02 - -
64⇥64⇥1 (3) (134.79, 34) (458.45, 101)
Prostatix 0.87 5.82 15.02 0.01 - -
32⇥32⇥8 (4) (88.13, 36) (128.96, 53)
DECT 1.98 18.41 14.35 0.01 - -
16⇥16⇥32 (2) 1 viewpoint (15.98, 22) (30.93, 40)
16⇥16⇥32 (2) 6 viewpoints (96.61, 29) (158.60, 48)
16⇥16⇥32 (2) 20 viewpoints (316.29, 31) (507.32, 50)

TABLE I
TIME COST IN SECONDS REQUIRED FOR THE MAIN STEPS OF THE FUSION PROCESS. TARGET DISTRIBUTIONS ARE: (1) OCCURRENCE, (2) OCCURRENCE

WEIGHTED BY GRADIENT, (3) OCCURRENCE WEIGHTED BY IMPORTANCE, AND (4) OCCURRENCE WEIGHTED BY GRADIENT AND IMPORTANCE.

this approach to the visualization of more than two data
sets. This extension requires a detailed analysis of the mutual
information decomposition for more than two variables. We
will also investigate the improvement of the color fusion
strategy in order to facilitate the interpretation of the color
in a multimodal visualization.
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multimodal surface similarity,” TVCG, vol. 17, no. 12, pp. 1969–1978,
2011.

[16] C. D. Correa and K.-L. Ma, “Visibility-driven transfer functions,” in
PacificVis, 2009, pp. 177–184.

[17] ——, “Visibility histograms and visibility-driven transfer functions,”
TVCG, vol. 17, pp. 192–204, 2011.

[18] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, pp. 379–423, 623–656, 1948.

[19] M. Sbert, M. Feixas, J. Rigau, I. Viola, and M. Chover, Information
Theory Tools for Computer Graphics. Morgan & Claypool Publishers,
2009.

[20] M. Chen and H. Jänicke, “An information-theoretic framework for
visualization,” TVCG, vol. 16, pp. 1206–1215, 2010.

[21] C. Wang and H.-W. Shen, “Information theory in scientific visualiza-
tion,” Entropy, vol. 13, no. 1, pp. 254–273, 2011.

[22] U. Bordoloi and H.-W. Shen, “View selection for volume rendering,” in
Visualization, 2005. VIS 05. IEEE, 2005, pp. 487–494.

[23] S. Takahashi, I. Fujishiro, Y. Takeshima, and T. Nishita, “A feature-
driven approach to locating optimal viewpoints for volume visualiza-
tion,” in Visualization, 2005. VIS 05. IEEE, 2005, pp. 495–502.

[24] I. Viola, M. Feixas, M. Sbert, and M. E. Gröller, “Importance-driven
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CHAPTER 5

An Information-Theoretic
Observation Channel for Volume

Visualization

Our third objective is the definition of a method to evaluate the quality of a monomodal
visualization. In this chapter, we present an objective metric to evaluate the quality of
a visualization by quantifying the information transfer between the source data set and
the rendered image. The proposed approach has been published in the following paper.
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Abstract 

Different quality metrics have been proposed in the literature to evaluate how well a visualization 
represents the underlying data. In this paper, we present a new information-theoretic framework 
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CHAPTER 6

Conclusions

Multimodal visualization has become a potentially useful tool in medical applications
since it makes findings possible that could be missed when medical image modalities
are considered separately. However, its application in real medical context is still lack-
ing due to the complexity of the techniques. Most of current multimodal visualization
methods require a high degree of user interaction which makes the reproducibility of
the techniques difficult. Moreover, the majority of proposed methods are not able to
reconstruct the relationship between structures letting these tasks to the user who has
to do it mentally. In this context, the development of new techniques that reduce the
complexity of current fusion strategies allowing to assist and enhance visual image in-
terpretation in a timely and automated manner is fundamental for acceptance in real
clinical environments.

The main goal of this thesis has been the development of new strategies capable to
overcome some of the limitations of current multimodal visualization methods.

In the context of this thesis, we have also focused on the definition of a method
that evaluates the quality of a monomodal visualization. A crucial point in DVR is to
produce images that reveal the maximum information. In this context, the investigation
of quality metrics that evaluate how well the visualization represents the underlying
data is especially of great interest.

To reach our objectives, we have used information theory tools as the basis of our
proposals. Below, we explain in more detail our contributions and the publications
derived from them.

6.1 Contributions

In order to improve current multimodal visualization techniques we considered the
two following objectives:

• The automation of the information fusion process required in the multimodal
visualization techniques. The fusion process is challenging since it comprises the
reduction of the data contained in the registered voxels into a single voxel. The
most critical aspect is not only finding the proper fusion scheme, but also a useful
visualization which should facilitate the establishment of visual correspondences
between input models while keeping the characteristics of different sources. Ide-
ally, the overall process should be done automatically.

To handle this problem, we have proposed a new approach for multimodal visual-
ization that automatically fuses data on the basis of extracting the most relevant
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information of the input data sets. The main advantage of the proposed approach
is the automation of the process which reduces possible human errors and also
allows reproducibility.

This work, titled Multimodal Data Fusion Based on Mutual Information, has been
published in IEEE Transactions on Visualization and Computer Graphics.

• The automation of the transfer function definition required in the multimodal
visualization process. In a multimodal visualization the input data sets have their
corresponding transfer functions which are comprehensible for the user, and the
fused model visualization demands the definition of a new transfer function also
comprehensible for the user. This definition requires knowledge about the rela-
tionship between structures and which are the most important. Ideally, transfer
function definition should be automatic to reduce errors and improve user per-
formance.

To tackle this problem, we have also suggested a new framework for multimodal
volume visualization that combines several information-theoretic strategies to
define both colors and opacities of the multimodal transfer function. To the best
of our knowledge, this is the first automatic scheme to visualize multimodal data
which minimizes the difficult task of multidimensional transfer function defini-
tion.

This work, titled Information Theory-Based Automatic Multimodal Transfer Func-
tion Design, has been published in IEEE Journal of Biomedical and Health Infor-
matics.

It is important to remark that both multimodal approaches –the fusion process and
the transfer function definition strategy– have been evaluated on different medical data
sets and the obtained results have been analyzed by a group of physicians. They sug-
gested that this method of integrating data is potentially useful for planning radiother-
apy, treatment monitoring, and incorporating these data into neuronavigation systems
for planning brain surgery, because it can improve differentiation between bone and
cerebral tissue and even between morphological and functional data.

The last objective of this thesis was the definition of a method to evaluate the qual-
ity of a monomodal visualization. Image quality assessment is a well-known problem
in computer vision and different metrics have been proposed in this field. These can
be classified into subjective, when assessment is based on a human observer, and ob-
jective, when no human observer is needed. In the visualization field, the definition of
objective metrics is especially complicated since the quality of a visualization depends
on different factors (user interest, application requirements, or input data features).

To reach this goal, we have presented a new information-theoretic framework that
provides an objective metric to evaluate how well a visualization presents the under-
lying data. Our approach is based on the definition of an observation channel whose
input and output are given by the intensity values of the volumetric data set and the
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pixel colors, respectively. From this channel, the mutual information, a measure of in-
formation transfer or correlation between the input and the output, is used as a metric
to evaluate the visualization quality. Based on the experiments carried out, the pro-
posed approach has a significant degree of correlation with general human perception
and it is potentially useful to assess and optimize different visualization processes such
as transfer function design, viewpoint selection and light positioning.

This work, titled An Information-Theoretic Observation Channel for Volume Visual-
ization, has been published in Computer Graphics Forum (EuroVis 2013).

6.2 Future work

Although the objectives of the thesis have been satisfied, we consider that the work can
be extended in different ways.

In the context of multimodal visualization, we will study the generalization of both
fusion and transfer function design approaches to the visualization of more than two
data sets. This extension requires a detailed analysis of the mutual information decom-
position for more than two variables. Moreover, one of the limitations of a multimodal
visualization is the difficulty of knowing the origin of the data, since a multimodal
transfer function produces a mixture of colors. Thus, we also want to study how to
facilitate the interpretation of the color in a multimodal visualization. Afterwards, we
plan to test and validate these new methods in a large cohort of patients to determine
its clinical effectiveness.

In terms of the observation channel, we believe that this channel paves the way
for a new set of applications in the areas of object exploration and multimodal trans-
fer function design. We will study how to extend this channel to be able to evaluate
the quality of a multimodal visualization. Moreover, we will explore new global opti-
mization algorithms other than the genetic algorithm used in the proposed approach
in order to improve the computation time. We will also study how to extend the op-
timization method to optimize the colors as well. In addition, a more detailed human
perception study could be designed to better understand the human evaluation and
how the channel can capture it. We will also analyze the possibility of taking into ac-
count some a priori knowledge on the input data and considering spatial information.
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