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Summary

Summary

Sustainability of irrigated agriculture is a growing concern in the Baix Llobregat
area. Although irrigated land accounts for a substantial proportion of food supply to the
local market, it has been, and still is increasingly degraded by poor agricultural
management. This dissertation focuses on ways to evaluate furrow irrigation and to
assess soil water content and soil salinity (temporally and spatially) under usual
farmers’ management practices. This dissertation meets these goals through an
extensive study of relevant literature and the implementation of practical research. The
latter was carried out with a case study on representative fields of the area. Empirical
and stochastic models were applied to evaluate furrow irrigation as well as to monitor
water flow and solute transport in the root zone. An empirical model was used to
evaluate infiltration in furrow irrigation in two fields irrigated with water of different
qualities. Performance indicators for each field were calculated. The volumetric water
content of the study area was measured in situ for a horticultural crop during its growing
vegetative stage, using capacitance soil moisture sensors at five depths within the root
zone. Time series analysis techniques were applied to evaluate soil water content in the
root zone in order to predict soil water content at the depth of interest by measuring one
shallow depth, and a methodology was suggested to determine the next irrigation time

and its effect on soil water content at the depth of interest.

Hilhorst (2000) presented a theoretical model describing a linear relationship
between soil bulk electrical conductivity (o), and soil dielectric constant (g5) in moist
soils, to estimate pore water electrical conductivity (o,). With linear relationship,
Hilhorst (2000) found that measurements of 6, can be made in a wide range of soil types
without soil-specific calibrations. When applying the linear relationship &, — o5 to the
field data in our study, we observed that the residuals of the estimated linear
relationship displayed extremely strong positive autocorrelations. We improved this
linear relationship by adding a stochastic component to it. After estimating o,, two
studies have been performed: a) prediction of soil salinity at shallow depth and in the
upper soil profile (0.60 m depth) by measuring soil water content and soil temperature

at shallow depth; b) comparison between the fields of the study area to evaluate the
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Summary

effects of irrigation frequency according to the farmer’s usual management practice on

soil salinity behaviour, depending on soil depth and position (furrow or ridge).

A volume balance model was used to evaluate the furrow irrigation system in the
study area. Field data were collected to evaluate the advance-recession time for stream
flow along the furrow, field infiltration and soil moisture distribution after irrigation. A
sensitivity analysis was made on the response of the model to changes in specific

parameters.

The time series consisted of hourly measurements of soil water content and was
transformed to a stationary situation. Subsequently, the transformed data were used to
conduct analyses in the time domain in order to obtain parameters for a seasonal
autoregressive integrated moving average (ARIMA) model. In the case of variable
interval irrigation, predicting the soil water content time series cannot be properly
explained by the ARIMA model and its underlying normality assumption. By
completing the ARIMA model with intervention analysis and outlier detection, the
prediction of soil water content with variable interval irrigation could be made. The
transfer function models were then used to predict water contents at depths of interest
(0.20, 0.35, 0.50 and 0.60 m) as well as the average water content (W) in the top soil

profile by measuring water content at 0.10 m depth.

We rearranged the Hilhorst (2000) model to a stochastic model called time- varying
Dynamic Linear Model (DLM) to obtain an accurate offset ¢,,-9 of the relationship
between ¢, and g,. When DLM is completely specified, i.e., there are no unknown
parameters in its definitions, we can use the well known Kalman filtering and
smoothing algorithms to obtain means and variances of the conditional distributions of

the unobservable system state (e,-9 and a),).

Studying the cross-correlaiton function between soil salinity, soil water content and
soil temperatue and using a (multiple input-one output) transfer function model, we
were able to predict soil salinity at 0.10 m depth and in the top 0.60 m of the soil profile

by measuring soil water content and soil temperature at 0.10 m depth.
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Summary

This research produced a number of key findings: first, evaluating furrow irrigation
confirmed that 30-43 % of the applied water would have been saved in the study fields
if irrigation was stopped as soon as soil water deficit was fully recharge taking the
amount of water needed for salt leaching into account, and that the application
efficiency (AE) would increase from 52% to 84% and from 41% to 68% (Field 1 and
Field 2, respectively). Second, the predictions of soil water content using ARIMA
models were logical, and the next irrigation time and its effect on soil water content at
the depth of interest were correctly estimated. Third, considering the linear relationship
&y — 0p, by transforming the Hilhorst (2000) model, which is based on the deterministic
linear relationship €,-05, into a time- varying Dynamic Linear Model (DLM) enabled us
to validate this relationship under field conditions. An offset ¢,,-9 value was derived
that would ensure the accurate prediction of ¢, from measurements of 0. It was shown
that the offset &,,—9 varied for each depth in the same soil profile. A reason for this
might be changes in soil temperature along the soil profile. The o, was then calculated
for each depth in the root zone. Fourth, by using a (multiple input-single output)
transfer function model, the results showed that soil water content and soil temperature
had a significant impact on soil salinity. Moreover, soil salinity was predicted as a
function of soil water and soil temperature, was correctly estimated. Finally, applying
the analysis of variance (ANOVA), the results showed that the irrigation frequency,
according to the farmer’s usual management practice, had statistically significant effects
on soil salinity behaviour, depending on soil depth and position (furrow, ridge).
Moreover, it was shown that at the end of the crop’s cycle the farmers left the field with

less soil salinity, for each depth, than at the beginning of the crop’s agricultural cycle.
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Resumen

Resumen

La sostenibilidad de la agricultura de regadio es una preocupacion creciente en la
zona del Baix Llobregat. A pesar de que las tierra irrigadas abastecen de alimentos en
una proporcion sustancial al mercado local, estas tierras han sido y siguen siendo
degradadas por una gestion agricola no adecuada. Esta tesis doctoral tiene como
objetivo evaluar el riego por surcos realizado conforme a las practicas de gestion
habitual de los agricultores de la zona, del contenido de agua y de la salinidad del suelo
(de forma temporal y espacial) en dos campos ubicados cultivados con lechuga y
alcachofa y regados con aguas de diferente calidad. Se aplicaron modelos empiricos y
estocasticos para evaluar la irrigacion por surco, asi como para monitorear el flujo de
agua y el transporte de solutos en la zona radicular del cultivo. Se utiliz6 un modelo
empirico para evaluar la infiltracion en el riego por surcos en los dos campos regados y
para calcular los indicadores de calidad de riego. El contenido volumétrico de agua de la
zona estudiada se midi6 in situ con sensores de capacitancia de humedad a cinco
profundidades dentro de la zona radicular del cultivo durante su ciclo productivo
vegetativo. Las técnicas de andlisis de series temporales se aplicaron para predecir el
contenido de agua del suelo a profundidades determinadas teniendo en cuenta el
contenido de agua en la capa superficial. Ello permiti6 predicer el momento mas

adecuado para el préximo riego.

Para estimar la conductividad eléctrica del agua capilar (g,) se utiliz6 el modelo
propuesto por Hilhorst (2000), el cual describe una relacion lineal en suelos hiimedos
entre la conductividad eléctrica aparente del suelo (o3) y la constante dieléctrica del
mismo (&,). Mediante el uso de esta relacion lineal, Hilhorst (2000) encontro a través de
sus experimentos de laboratorio que las mediciones de o, se pueden hacer en una amplia
gama de tipos de suelo sin calibraciones especificas. Al aplicar la relacion lineal ¢, — oy,
a los datos de campo de nuestro estudio se observo que los residuales estimados de la
relacion lineal mostraban una fuerte autocorrelacion positiva. Se ha mejorado esta
relacion lineal mediante la inclusion de un componente estocastico. Después de estimar
o, se realizaron dos estudios: a) la estimacion de la salinidad a 0,10 m de profundidad,
asi como el contenido medio de la salinidad del suelo en la parte superior del perfil
(profudnidad 0,60 m) midiendo el contenido de agua y la temperatura del mismo a 0,10

m de profundidad; b) la estimacion de o, permiti6 comparar los datos de los campos
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estudiados y mostrar el efecto de la frecuencia de riego sobre la salinidad del suelo, en

funcion de la profundidad del mismo y la posicion (surco o caballon).

Para evaluar el sistema de riego por surco en el area de estudio se utiliz6 el modelo
de balances en volumen. Los datos de campo fueron recogidos para evaluar el tiempo de
avance-recesion para el flujo de la corriente de agua a lo largo de la longitud del surco,
la infiltracion y la distribucion de la humedad del suelo después de riego. El andlisis de
sensibilidad se realizo sobre la respuesta del modelo a los cambios en los parametros

especificos.

La serie de tiempo consistié en mediciones horarias del contenido de agua del suelo
y se transformo a una situacion estacionaria. Posteriormente, los datos transformados se
utilizaron para realizar los analisis temporales con el fin de obtener los parametros de un

modelo estacional autorregresivo integrado de media movil (ARIMA).

En el caso de riegos a intervalo variable, predecir las series temporales del contenido
de agua del suelo no es adecuadamente explicada por el modelo ARIMA y su supuesto
de normalidad subyacente. Al completar el modelo ARIMA con andlisis de intervencion
y deteccion de los atipicos, se puede hacer la prediccion del contenido de agua del suelo
para riegos de intervalo variable. Se utilizaron posteriormente modelos de funcion de
transferencia para predecir el contenido de agua a las profundidades de interés (0,20,
0,35, 0,50 y 0,60 m), asi como el contenido medio de agua (W) en la parte superior

del perfil del suelo midiendo el contenido de agua a 0,10 m de profundidad.

Para obtener una intercepcion &,,-9 exacta de la relacion lineal entre ¢, y o5 se ha
transformado el modelo de Hilhorst (2000) a un modelo estocastico llamado Modelo
Dindmico Lineal variable en el tiempo (DLM). Cuando el DLM se especifica
completamente, es decir, que no hay pardmetros desconocidos en sus definiciones,
entonces se pueden usar los conocidos algoritmos de filtrado y suavizado de Kalman
para obtener medias y varianzas de las distribuciones condicionales del estado no

observable (g5-0 Y 7).

El uso del modelo de funcidn de la transferencia permitié predecir la salinidad del

suelo a 0,10 m, asi como el contenido medio de la salinidad del mismo en la parte

XXii



Resumen

superior del perfil del suelo midiendo el contenido de agua y la temperatura del suelo a

0,10 m de profundidad.

Los resultados obtenidos fueron: a) la evaluacion del riego por surco confirmé que se
podria haber utilizado un 30-43% menos de agua en los suelos estudiados, teniendo en
cuenta la recarga completa de agua del suelo y el agua necesaria para la lixiviacion de
las sales. De este modo, la eficiencia de aplicacion (AE) aumentaria del 52% al 84% y
del 41% al 68% en los campos de estudio (Campo 1 y Campo 2, respectivamente); b)
las predicciones del contenido de agua del suelo mediante modelos ARIMA eran
logicas, y el tiempo del proximo riego y su efecto sobre el contenido de agua del suelo a
la profundidad de interés se habia calculado6 correctamente; c) teniendo en cuenta la
relacion lineal ¢, — g5 la reorganizacion del modelo de Hilhorst (2000), desde una
relacion lineal determinista €,-05, a un Modelo Dinamico Lineal (DLM ) variable en el
tiempo permitio validar esta relacion en condiciones de campo y obtener un valor &, - ¢
que garantice la prediccion exacta de 6, a partir de mediciones de oy,. Se demostré que
la &, = ¢ varia para cada profundidad en un mismo perfil del suelo, posiblemente debido

a los cambios de temperatura a lo largo del perfil.

Mediante el uso del modelo de la funcion de transferencia, los resultados mostraron
que el contenido de agua y temperatura del suelo tenian un impacto significativo en la
salinidad del suelo, y que la prediccion de la salinidad del suelo como una funcion de la
humedad y temperatura del mismo se habia estimado correctamente. Finalmente, al
aplicar el analisis de la varianza (ANOVA), los valores de o0, calculados a distintas
profundidades permitieron demostrar que la frecuencia de riego, practicada
normalmente por el agricultor, tenia efectos estadisticamente significativos sobre la
salinidad del suelo dependiendo de la profundidad y posicion (surco o caballon). Sin
embargo, la gestion del riego no afecté a la salinidad del suelo durante el ciclo

productivo del del cultivo.
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1. Introduction

1.1 Genearal context

Irrigated agriculture and efficient irrigation techniques are fundamental for crop
production and world food security. The poor agricultural management in irrigated land
(such as water-logging resulting from over-irrigation) leads to land degradation due to
salinization and contaminated groundwater (Ghassemi et al., 1995). The sustainability
irrigated agriculture requires increasing the irrigation efficiency to conserve water and
maintain the root zone in good conditions for plant growth, this mean keeping the soil
water content at its field capacity and the soil salinity at adequate level for plant growth.
Moreover, increasing the irrigation efficiency alleviates groundwater pollution
associated with irrigated agriculture. Because of increasing water needs in industrial,
agricultural and human activities and the limitation of water resources, reusing of saline
drainage water and treated wastewater for irrigation have been increased (Rhoades et
al., 1997). With less leaching and drainage discharge and greater use of saline water for
irrigation, soil salinity may increase in some areas. Thus, to achieve adequate level of
soil salinity at root zone and to reach the efficient irrigation, functional methodology is
required for the timely evaluation of soil salinity and soil water content in irrigated

arcas.

Our study area is located near a coastal zone. For decades, some of its parts started
facing emerging of soil salinization and noted pollution in its some aquifers because of
some typical reasons of costal area problems (such as excessive exploitation of aquifers,
sea water intrusion, and high infiltration by irrigation). Therefore, it is important to start
with giving detailed description of water resources and how the responsible water
authority in the area manage and distribute it to meet industrial, human and irrigation
needs. After that, a general outlines for our research will be described related to the
water resources and environmental situation in the Llobregat Delta from the agricultural
point of view, focusing on the most common irrigation techniques that farmers usually
use in this area, which accounts one of the most agricultural operation could affect on
the sustainability of irrigated agriculture. In the end a general objective of the research

will be presented.
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1.2 Description of the study area

Site: the study area is located in the Parc Agrari del Baix LLobregt (delta of the
Llobregat river), in the south of Barcelona, Spain. It covers about 100 square kilometers
and forms a valuable natural habitat. Its wetlands are of international importance for
wildlife and form a significant wintering ground for many migratory birds, its classified
as "Special Protected Areas" (SPA) in accordance with the purpose of the EU Bird
Protection Directive (according to Article 4 of the Council Directive 79/409/EEC). The
delta aquifer is one of the most important freshwater resources for Barcelona region,
with a groundwater capacity of 100 Mm® yr™', used by numerous industries, agriculture
and the cities. The fertile delta farmland supports intensive agriculture making it an
important agricultural productive supplying the local market. Three representative fields
of the area were chosen for our study (Fig. 1.1). Sites were selected as representative of
the soils, water quality (electrical conductivity, EC: 1 dS m™ in Field 1 and 2 dS m™ in
Fields 2 and 3), irrigation design, area and agricultural management practices of the

region.

Fig. 1.1. The study area in the Llobregat Delta site (sites of representative Fields 1, 2
and 3).
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1.2.1 Environmental problems face the area

Since 1960s, the delta’s land has been exposed to constant pressure from
Barcelona’s urban and industrial expansion. The most factors affect on the water
resources and environmental sustainability are:

1. Using delta area to develop Catalonia’s infrastructure: most of logistics and
transports services was built in this area (railways, port, airport and motorway
network). Less than 5% of the original wetlands in the area now remain after
the recent port extension (FAO, 2010).

2. Salinization of the aquifer due to seawater intrusion as a result of the
overexploitation of the underground water, rendering 30% unusable of deltaic
aquifer (FAO, 2010).

3. By the end of the 1980s, the Llobregat River was considered one of the most
polluted in Western Europe due to:

a. Potash-mining activities in the upstream Manresa (one of the main
Llobregat River tributaries).

b. Sewage treatment plants and industrial effluents (estimated at 137 hm’
yr T or4.3m’ s as average )

c. The river in its lower part receives large inputs from industrial and
human activities (paper mills, tannery and textile industries), this lower
part of river flows through one of the most densely populated areas of
the Mediterranean region (Metropolitan area of Barcelona, over 3
million people).

d. Aquifer extractions are also affected by the water quality of Llobregat
River (Catalan Water Agency, 2008).

4. Intrinsic variability of the Mediterranean climate, especially in precipitation.
Drought makes the flow from the Llobregat River insufficient to meet

industrial, agricultural and human needs.
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1.2.2 Procedures to face environmental problems in the Delta

area

The most important practices that the public responsible authorities were adapted to

manage environmental problems are:

1.

The infrastructure: it prevents excessive pollution of the river by intercepting
specific effluents, such as the channels that receiving treated urban wastewater
from Rubi and those collecting brines from the salt-mine sites (Fig. 1.2). Apart
from that, there are two major channels which are located on two sides:

a. On the right side of the river, Canal de la Dreta provides water extracted
from the middle course of the river to horticulture.

b. On the left side of the river, Canal de la Infanta, was also built for
irrigation purposes, but now its main role is diverting treated wastewater
from industries and towns away from the river, hence improving the
latter’s water quality.

Wastewater treatment plants: public responsible authority built a lot of
wastewater plants in the area, there are two main wastewater treatment plants
(WWTPs): El Prat de Llobregat and Sant Feliu de Llobregat, both with tertiary
treatment. For Prat de Llobregat WWTP, the concept is to pump effluent
upstream to a regulatory pond from which water will flow into the Canal de la
Dreta. Currently, freshwater with an average conductivity of 1.5 dS m™ from the
Llobregat River is conveyed via this channel to irrigate farm lands. The use of
effluent in irrigation would need the desalination of the WWTP effluent by EDR
(electrodyalisis reversal) unit and facilities to pump it to the Canal de la Dreta
and a storage pond. The average salinity of the irrigation water would be
reduced from 2.9 to 1.2 dS m™ (Sabater et al., 2012). Effluent from the Sant
Feliu de Llobregat WWTP is fully treated to tertiary levels and accessible to be
used in irrigated agriculture. The effluent volume around 19 Mm?® yr' can be
transferred to the Canal de la Infanta to be used for irrigation purposes. The
effluent is usually mixed with well water in order to reach an acceptable water
quality for irrigation purposes (its average electrical conductivity is around 2.3

ds m™).
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Moreover, an important part of the reclaimed flow of E/ Prat de Llobregat
WWTP will also be used to create a hydraulic barrier to seawater intrusion in the
Llobregat lower delta aquifer (Sabater et al., 2012).

3. Three large dams were built in upstream sections of the Cardener and Llobregat
River to ensure water supply during low flow periods.

4. When the flow of the Llobregat River is insufficient to face the demand for
indusial, human and agricultural needs, additional water has to be conveyed
from the Ter River to the Llobregat watershed. Aquifer extractions are also
affected by water quality of the Llobregat River. If water quality is poor, the
surface water has to be mixed with more groundwater in order to be treated for

domestic use (Sabater et al., 2012).
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1.3 General Outlines

1.3.1 Background

For decades, numerous studies have been carried out in this area. In 1926, Antonia
Burés Borras the owner of a textile mill, which was located next to the Cardener, found
that the metallic turbines of her factory were corroding. She realized that the
concentration of salts was very high in the Cardener River upstream due to the mining
industry’s wastes. Burés then initiated legal proceeding against the mining company in
order to stop their pollution of the Cardener’s waters. The Spanish Government began
to study this issue seriously by doing two investigations on the effluent flowing out of
Suria. Later, a lot of debates related to the affect of the salts flowing into the river from
mines to the Llobregat aquifer carried out by the Commission for the Study of the
Salinity of the Waters of the the Llobregat River (CESALL). In 1930, the CESALL
released their conclusions and recommendation which was one of them is the salinity
effluents should be limited to 250 mg L™ in Palleja (CESALL, 1932). The study of
Vilar6 (1966) realized in the Llobregat River was the first research in Spain investigated
in details the surface and underground water together. At the end of the 70’s, when
salinization problems became increasingly worrying, hydrochemistry works improved
the knowledge of the aquifer systems and the mechanisms that caused seawater
intrusion in the main aquifer of the Llobregat delta (Custodio et al., 1976; Custodio,
1981; Mufioz and Prat, 1991; Manzano et al., 1992; Bay¢ et al., 1977; Doménech et al.,
1983; Iribar et al., 1991). An interesting study was done by Llamas (1969) about
recharge the groundwater in the Llobregat Delta. He found the infiltration due to
irrigation and rainwater falling directly on the area or in the watersheds of the small
streams running directly into the delta formed about 45% per year of the total natural
recharge of water in the Llobregat delta groundwater. Guimera and Candela (1991)
discovered in their study, which was carried out in the coastal detrial Maresme aquifer
located north of Barcelona, that there is an increase of up to 40% of seawater presence
in the aquifer from 1989 to 1991. Soler et al. (2002) used the characteristics of the
isotopes as geochemical tools to study the water pollution problems in the Llobregat

River.

Many studies investigated in the practices of the Managed Artificial Recharge

(MAR) to mitigate the negative effect of existing infrastructures in the influential area

6
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of Llobregat River (roads, railroads, airport, etc) on the total amount of natural aquifer
recharge that can be normally attributed to the area (Abarca et al., 2006; Gamez, 2007;
Gasith and Resh, 1999; Luna et al., 2009; Prat and Rieradevall, 2006; Vazquez-Suiie et
al., 2006).

The previous studies discussed the water resources and environmental problems in
Llobregat River and Llobregat Delta from the hydrological, geological and geochemical

point of view.

1.3.2 Structure

Our work will deal with the water resources and environmental situation in the
Llobregat Delta from the agricultural point of view. In other words, within the complex
situation that the Llobregat Delta area has, this research will evaluate the agricultural
operations that the farmers are practicing and study its effect on the soil salinity,
groundwater, and hence on the sustainability of irrigated area. Given limited time and
resources for conducting the study, it will focus on the irrigation system adapted by the
major farmers in the area and study its effect on the soil water content and soil salinity

within the root zone.

Sustainable management of groundwater quality in agricultural areas requires
efficiently irrigate the crops. This means keeping the soil water content at its field
capacity, the soil salinity at adequate level for plant growth and minimizing percolation.
In that case the fertilizers will settle in the root zone and away from groundwater.
Furrow irrigation system is the most common method that adopted by farmer in the
study area to irrigate their crops. We will evaluate the furrow irrigation system in the
two representative fields of the area (one of them is irrigated by the water coming from
the Canal de la Dreta and the other from the Canal de la Infanta). The research has been

organized into five chapters:

Chapter one contains background and description of the study area, environmental
problems face the area and the procedures that the public authority responsible has been
adopted to mitigate it, studies have been done to deal with that problems and the

objective of the study.
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Chapter two will evaluate the furrow irrigation system that the farmers adopted it to
irrigate their crops by using mathematical methods to calculate the performance

indicators of the irrigation and using simulation to improve the irrigation efficiency.

Chapter three will include stochastic models to assess the irrigation management
that the farmers apply it in their fields. We will conclude this chapter with tools that can

help the farmers in scheduling irrigation (determining the next irrigation time).

Chapter four is related to the field soil salinity; advanced mathematical processes
will be realized to develop the Hilhorst (2000) linear model to derive an accurate offset
in order to convert the bulk electrical conductivity (o,) to pore water electrical
conductivity (op). After that, the relationship between the soil water content and soil
temperature at the shallower depths with the soil salinity at deeper depths will be
studied with the objective to predict the soil salinity at deeper depth by measuring soil
moisture and soil temperature at shallow depth in order to help the farmers in keeping

the root zone at adequate salinity level for plant growth.

Finally, the conclusions, that arising from this research, will be presented in the last
chapter along with the implications of this research and the recommendations for future

work.

1.3.3 Research problem and objective

In brief, the research objective could be divided into two parts: a) developing an
integrated decision support for furrow irrigation used in the area study and; b) modeling
the behavior of soil water content and soil salinity in the root zone to improve

scheduling irrigation and maintain the sustainability of irrigated area.

Five specific objectives have been designed to solve the research problem:

1. Evaluating the furrow irrigation method used in the area study: determine the
infiltration function and applied it in a simulation model to evaluate the
performance and determine optimal design or management practices.

2. Improving the scheduling irrigation: determine the next irrigation time and its

effect on the soil water at depth of interest, this objective will be achieved by 1)
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studying the autocorrelation and partial correlation function for soil water
content measured at a shallower depth as well as the cross-correlation function
between soil water content at a shallower depth and various greater depths,
including average soil water content (Wy4y¢) in the top 0.60 m of soil profile; 2)
develop models for predicting the soil water content at various greater depths
and water storage in the soil profile from a single shallower depth; and 3)
examine the effectiveness of the irrigation event in the soil water profile.

3. Deriving an offset value for the linear relationship between soil dielectic
constant (&) and bulk electrical conductivity (o) that would ensure the accurate
prediction of electrical conductivity of pore water (o) from measurements of
soil bulk electrical conductivity (o).

4. Developing models for predicting the soil salinity at various greater depths by
measuring soil water content and soil temperature at shallow depth, this will be
achieved by: a) studying the autocorrelation and partial correlation function for
soil water content and temperature measured at a shallower depth; b) studying
the cross-correlation function between soil water content and temperature at a
shallower depth and various greater depths for soil salinity, including average
soil salinity in the top 0.60 m profile.

5. Studying the evolution of soil salinity during the crop vegetative stage in the
study area and examine the effect of irrigation frequency and depth on the soil

salinity.
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“Model-making, the imaginative and logical steps which precede the
experiment, may be judged the most valuable part of scientific method
because skill and insight in these matters are rare. Without them we do
not know what experiment to do. But it is the experiment which provides
the raw material for scientific theory. Scientific theory cannot be built
directly from the conclusions of conceptual models.”

HERBERT GEORGE ANDREWARTHA

Introduction to the Study of Animal Population (1961), 181.
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Abstract

The efficiency of the application of furrow irrigation for lettuce and artichoke
production was studied in the Llobregat Delta area. Average irrigation efficiencies in
the study area were found to vary between 31 and 52 %. Differences in efficiency were
found to be directly related to farm design and specific management practices.
Application efficiency was found to increase with decreasing cut-off time. 30 % and 43
% of the applied water would have been saved in Field 1 and Field 2 respectively, if
irrigation stopped as soon as soil water deficit was fully compensated taking into
account the amount of water needed for salt leaching. More water was used for fields
irrigated by poor water quality to ensure salt leaching. These results indicate that
significant improvements in irrigation efficiency could be achieved through the
adoption of design and management practices that are appropriate to meet the farms’

environmental and management constraints.

Keywords: Furrow; Irrigation; Farm design; Efficiency.

1. Introduction

Furrow irrigation relies on gravity to distribute water to farm fields. Following the
direction of gravitational fore, the water flows across the fields from one end to the
other, and infiltrates into the soil as it flows. The purpose of furrow irrigation
techniques is to supply water in the right quantity, at the right time and in an even layer,
to achieve a uniform crop stand and minimize water losses. The success of the
techniques depends on proper design and operation of furrow irrigation systems at field
level, which help farmers to achieve good crop yields, use precious water resources

more efficiently, and limit water- logging, salinization and pollution of resources.

Field dimensions, field slope, flow rate, cut-off time, soil-infiltration characteristics,
and flow resistance are the variables used in the mathematical models describing the
entire process of surface irrigation and developed by engineers to improve irrigation
efficiencies. Interactions between the variables determine advance time, recession time,

infiltrated depths and corresponding irrigation efficiencies and uniformities.

17



2. Soil water: Evaluation of furrow irrigation performance

Four major categories of mathematical models have been developed to evaluate
surface irrigation: fully hydrodynamic, zero-inertia, kinematic wave and volume
balance models. A fully hydrodynamic model is the most complex and the most
accurate. It is based on the complete Saint-Venant equations for conservation of mass
and momentum. A zero-inertia model is a slightly simplified version of the complete
Saint-Venant equations that leaves out the acceleration or inertia terms in the
momentum equation. A kinematic wave model uses further simplifications and uniform
flow assumptions. The simplest model, which involves the largest number of
assumptions, is a volume balance model. It is based on the analytical or numerical
solution of temporally and spatially-lumped mass conservation, commonly referred to
as the “volume balance approach” (Jurriens et al., 2001). This approach has become

more refined over time, both conceptually and numerically.

The volume balance model has been widely used for design and field evaluation
procedures and has been validated with field and laboratory data (Elliott and Walker,
1982; Walker and Skogerboe, 1987; Guardo, 1988). It is applied primarily to the
advance phase of any irrigation condition (i.e., border and furrow). Guardo et al. (2000)
determined the advance-infiltration phase in level basin irrigation system by zero-inertia
and volume balance models. They found that the volume balance model provides
satisfactory predictions of the advance-infiltration phase, although it is less complex and

less mathematically demanding than the zero-inertia model.

We used the volume balance model to evaluate the efficiency of the furrow irrigation
system in the study area, futher details about its operations and methodology will be

presented in the material and method section.

The main objective of this research is assessing field irrigation performance in terms
of application efficiency, storage efficiency, deep percolation and distribution
uniformity, as well as assessing the impact of improved management options for a
furrow irrigation system, based on surface irrigation simulations, the Monserrat (1988)
EVSUP model and the WinSRFR model (Bautista et al., 2009). While the specific goals

include:
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2. Soil water: Evaluation of furrow irrigation performance

1. Assessing the current field irrigation performance for selected irrigation events
on different fields.
2. Developing management options to improve (i.e. optimize) the irrigation

efficiency for the selected fields.

2. Materials and Methods

With the help of technicians from the Parc Agrari del Baix Llobregat, two lettuce
and artichoke fields established on silty loam soil were selected for irrigatin trails (Fig.
1.1), one located in the Canal de la Dreta (Field 1, lettuce and artichoke crops) and the
other in the Canal de la Infanta (Field 2, lettuce crop). Sites were selected as
representative of the soils, water quality (electrical conductivity, EC: 1 dS m™ in field 1
and 2 dS™' m in field 2), irrigation design, area and management practices of the region.

Irrigations were scheduled according to the farmer’s normal management practice.

Irrigation water was applied from the upper part of the furrow and passed through a
long throated flume device; the lower part of each furrow was closed at the end. Five
neighboring furrows for in Field 1 and eight neighboring furrows for in Field 2 were
selected for monitoring at each site. Analysis were conducted using the Monserrat
(1988) EVASUP model to calculate the parameters of infiltration function. Moreover, to
identify the optimum of application efficiency, analysis to examine the effect of changes
in cut-off time and inflow were conducted using the surface irrigation model WinSRFR
(Bautista et al., 2009). In each case, input parameters required for model operation were
obtained from the measured field irrigations. Field slope, length and geometry furrow
were measured at each site. A long throated flume device was used to measure flow
rate. The water lost as tailwater is zero since the lower end of each furrow was closed.
Stakes were placed at 5 meter intervals along the furrow length to measure water
advance time, recession time and depth of flow. Capacitance soil moisture sensors
(5TE, Decagon Devices, Inc., Pullman, WA) were installed in each field, with readings
taken immediately prior to irrigation and two days after the irrigation was completed to
measure the plant available soil water replaced by irrigation (root zone soil water
deficit). These measurements were used to determine an average soil water deficit for
each site, which was used in the subsequent determination of application irrigation
efficiency.
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2. Soil water: Evaluation of furrow irrigation performance

In our case, we assumed that the total infiltrated volume was equal to that of the
water applied because there was no loss by tailwater. Below we will present the way to

calculate the performance indicators.

2.1 Evaluating furrow irrigation system

Various parameters and variables are involved in the surface irrigation process, and
they can be categorized according to whether they are field parameters, decision
variables, or evaluation variables. Field parameters are situational data (i.e. data that
describe the field situation), so the irrigation designer or farmer cannot assign them
another value. Decision variables are those parameters or variables that an irrigation
designer can adapt to find the best irrigation performance for given or selected field
parameters. Evaluation variables are basically indexes for determining the irrigation

performance.

2.1.1 Field parameters

Field parameters include the infiltration characteristics, the surface roughness or flow

resistance, the field slope and the required irrigation depth.

a) Soil infiltration characteristics

Infiltration is the fundamental variable in irrigation, since it has the strongest
influence on the movement of water over the soil. It is also the most difficult one to

measure.

The infiltration function is empirically determined to yield the relationship between
the infiltrated water and the opportunity time (the time during which the water contact
the soil). The power type- Kostiakov function is the most widely accepted to describte

the infiltration characteristics:
Z=KT*

where:
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2. Soil water: Evaluation of furrow irrigation performance

K, a : are empirical parameters.
Z :is the infiltrated water m’/m.
T :is the intake opportunity time, min.

There is another derived function suggested by Wallender et al. (1985):
Z=KT'+CT+D

When D = 0 a Kostiakov — Lewis dominated equation is obtained, and when C = 0 a

function suggested by the S.C.S is obtained.

The volume balance method was used to determine the infiltration, based on the
volume of water entering the field (Q.7) being equal to the volume of surface water

(Vsur) plus the volume of infiltrated water (V).
Q~t = Vsur + Vinv

0O: is the flow, m*/min/furrow or unit width.
t. is the moments when the water reaches the points where water height is
measured(min).

Viur, Vins are the volume of surface and infiltration water (m3).

There are different methods to calculate infiltration using this equation (Elliot and
Eisenhawer, 1983; Smerdon et al., 1988; Burt et al., 1982). In our study we follwed the
method adapted by Monserrat (1988) EVASUP model' to measure infiltration. This
method has some assumptions:

— The type of infiltration function is Z = KT“;

— The infiltration function is the same across the field;

— The advance front is uniform;

— The surface volume is estimated by two or three measurements of the water height

during the flow of water along the furrow.

! For more information about the EVASUP model see (Curso de Tecnologia del Riego (4rt.: 1990 :
E.T.S.E.A. Agronoms, Lleida)
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2. Soil water: Evaluation of furrow irrigation performance

This type of infiltration has two unknown parameters K and a, that means, we need
two equations: generally they are calculated when water reaches at the middle and the
end of the furrow. At these two points, the applied volume of water and the surface
volume of water can be known, thus, mathematically the infiltrated volume could be

expressed as follows:

Fort=1;
X1
Q.ty = Vour1 = f K(t; — tx)adx
0
Fort=1,
X2
Q.t; = Vsurz = f K(t; — tx)adx
0
where:

O: is the flow, m*/min/furrow or unit width.

t;, t: are the moments when the water reaches the points where water height is
measured (min).

Veurs, Vawrz: are the volumes of surface water at moment ¢1, £2, (m”).

ty: is the time of advance at distance x, (m).

K, a : are parameters of the Kostiakov function.

K and a were determined using the equations of Monserrat (1988) model.

In our study, two-point approximations for expressing the mass balance of water in
the field during the advance phase were selected. For example, furrow length in Field 1
was 50 m, so when the advancing front of water reaches at 20 m during the irrigation
event, the water heights at 5 m and 15 m were measured. Then, when the advancing
front of water reached at 45 m, the water heights at 5, 15 and 40 m were measured. Fig.

2.1 explains the locations of these points.
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2. Soil water: Evaluation of furrow irrigation performance

Fig. 2.1. Water advance at two moments

Supposing that the height of water from the beginning of the furrow to the 5 m

before the advance front is stabled, we could get the volume water surface as following:

L Uetla)y Ot

(L, ~L)+0,.Y,.5

where o, is the surface shape factor generally equal to 0.8, which is the ratio between
the average cross-sectional flow area and that at the head of the field. For the infiltrated
volume that factor called subsurface shape factor, is the ratio between the average
infiltrated cross-sectional area (infiltrated depth time width), and the infiltrated cross-

sectional area (depth times width) at the head of the field.

b) Flow resistance

Flow resistance or roughness (n) is a basic input parameter in simulations of surface
irrigation. It has a direct effect on flow velocity and, consequently, on advance time,
infiltration pattern and total irrigation performance. The higher the flow resistance the
longer the advance time; the longer the advance time, the higher heterogeneous

infiltrated-depth distribution.

It is difficult to determine the roughness of the field, and generally a hydraulic form

is used to measure it. The Manning equation is the most used one to calculate
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2. Soil water: Evaluation of furrow irrigation performance

roughness. This equation is valid when normal flow is reached, that is when water
height is constant, which first occurs at the beginning of the field. Hydraulic roughness

calculates as follows:
Q =A R0.6758.5 /Tl

where:

Q : is the water flow, in m’sec”
n : is the hydraulic roughness.
So: 1s the field slope.

R: is the hydraulic radius, in m.

A: 1s the cross-sectional area of the flow, in m’.
¢) Required depth

The required maximum depth can be determined from the total soil-moisture holding
capacity, i.e., the total available moisture between field capacity and wilting point
(TAM). Stress conditions in the root zone are defined by the Ready Available Moisture
(RAM); it is a fraction of TAM. The Soil Moisture Deficit (SMD) is a measure of soil
moisture between field capacity (6y.) and existing moisture content (6;), multiplied by

the rooting depth (RD) :
SMD = (6;. — 6;) RD

A similar term expressing the moisture that is allotted for depletion between
irrigations is the Management Allowed Deficit (MAD). This is the value of (SMD) when
irrigation should be scheduled and represents the depth of water the irrigation system
should supply. Later this will be referred to as Z.q, indicating the 'required depth' of
infiltration. In this case, the leaching fraction should be added to the soil moisture
deficit to calculate the required depth. The leaching fraction (LF) is the fraction of
supplied water that passes through the entire rooting depth and percolates below, and

calculated as follows:
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2. Soil water: Evaluation of furrow irrigation performance

The total water applied through the irrigation system during each irrigation event (D))
is the crop water requirement (SMD) plus a drainage depth (D,) due to the leaching

requirement:

Zyeq=SMD + Dy= SMD / (1-LF)
LF = Dy/ Zyey= ECi/ (SEC,- EC)

LF : leaching fraction (dimensionless)

D, : depth of water drained (mm)

Zeq  depth of water applied through irrigation (mm)

EC; : electrical conductivity of irrigation water (dSm™")

EC, : electrical conductivity of soil saturated extract salinity level affecting the crop at

the root zone (dS m™).

d) Soil moisture depletion prior to irrigation:

There are numerous techniques to evaluate soil moisture such as gravimetric
samples, the neutron probe and the touch-and-feel method. In our study, capacitance
soil moisture sensors (5TE, Decagon Devices, Inc., Pullman, WA) were installed to
hourly measure soil moisture at five depths within the root zone (0.10, 0.20, 0.35, 0.50
and 0.60 m). Depending on root depth, we took readings prior to irrigation and,
knowing the field capacity, we calculated soil moisture depletion taking the leaching

fraction (as described above) into account.

e) Field slope

Field slope and length were measured by survey before the first irrigation.

f) Furrow spacing

Furrow spacing (W), the distance from center to center of two adjacent furrows, is a
field dimension used primarily to convert volumes to depths (D = Q / [LW]), where L is

the field length and Q is the water flow rate, and it is also an input that assists in the

modeling of the infiltration process.
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2. Soil water: Evaluation of furrow irrigation performance

g) Furrow geometry

Measuring the cross-sectional geometry is very important for furrow evaluation. In
our study we used a profilometer which provides data to plot furrow depth as a function
of the lateral distance, and these data can then be used to obtain the geometric
relationship between depths and areas. Simple power functions can be used to relate the

cross-section area and the wetted perimeter with depth:

A=0Y"

where:
A: is the cross-sectional area (m?).
Y: is the depth of the furrow.

o}, 0;: are empirical parameters determined by the adjusted data.

By using a computer program, we numerically integrated the data to develop

geometric relationship between the area and the depth.

2.1.2 Decision variables

Decision variables are those parameters or variables that a design engineer can
manipulate to find the best irrigation performance for given or selected field parameters.
The decision variables in surface irrigation are normally the field dimensions (length

and width), the flow rate and the cut-off time.

a) Field dimensions

For furrows, there is only one field dimension: the furrow length. Furrow spacing is

important only in the context of field parameters.
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2. Soil water: Evaluation of furrow irrigation performance

b) Flow rate

This variable is fundamental for the evaluation and it should be measured at the point
where water enters the field. In our study, the flow was measured by using a long
throated flume device (Fig. 2.2).

0 =0.0004581 (h + 4_5@2.0023

where Q is the volume flow rate, in Ls'l, h is the water head, in mm, when it enters the

long throated flume.

¢) The advance and recession of water across the field surface

This requires determining points (stakes) along the furrow. In order to determine the
intake opportunity time, it is necessary to record the advance and recession data at each
point.

d) Cutoff time

Cut-off time (Tco) is the amount of time that elapses since irrigation starts until it is

cut off.

e) Cutback ratio and tailwater reuse ratio

In our fields the furrows were closed, so there was no cutback ratio.

Fig. 2.2. Throated ﬂumedevice; a) intallation and b) measuring the inflow rate
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2. Soil water: Evaluation of furrow irrigation performance

2.1.3 Performances measurements

Many performances measurements have been suggested; we applied the traditional
ones which are based on volume —balance principles. They are 1) Application
Efficiency; 2) Storage Efficiency; 3) Application Uniformity; 4) Deep Percolation; and
5) Tailwater Ratio. We did not calculate Tailwater Ratio because in our study fields, the

outlets were closed and we assumed that all the water entering the field did infiltrate.

a) Application Efficiency (4E)

It relates to the amount of water stored in the root zone to meet the crop water needs

in relation to the water applied to the field:

volume of water added to the root zone
AE = . .
volume of water applied to the field

Fig. 2.3 shows the distribution of applied water along the field length stemming. The
differences in intake opportunity time produce applied depths that are non-uniformly
distributed with a characteristic shape skewed toward the inlet end of the field.

Intlow, Qg Runoft
0 05L _ _ . L,”
i

Reguireddose, Zreq g A |

I |

xalnflltratlnn Profile |

L
Infiltrated Depth, Z —~

LOSSES

Fig. 2.3. Distribution of applied water along a surface irrigated field, also showing the
depth required to refill the root zone.
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2. Soil water: Evaluation of furrow irrigation performance

b) Storage Efficiency (SE)

It relates to the volume of water stored in the root zone (defined by Z,..,) to meet the

crop water needs in relation to the total storage capacity of the root zone (Fig. 2.3).

volume of water added to root zone storage

potential soil moiture storage volume

¢) Application Uniformity (DU)

It is defined as the average infiltrated depth in the lowest quarter of the field, divided
by the average infiltrated depth in the field (Merriam and Keller, 1978).

d) Deep Percolation (DP)

It relates to the water lost through drainage beyond the root zone:

volume of deep percolation

~ voluem of water applied to the field

We used two models to evaluate furrow irrigation: Monserrat (1988) EVASUP
model to get the parameters of Kostiakov (k and a) and to present the performance
indicator, and WinSRFR model for simulation and to optimize the infiltration
parameters. The WinSRFR model is an integrated hydraulic analysis application for
surface irrigation systems that combines a simulation engine with tools for irrigation
system evaluation, design, and operational analysis. WinSRFR is the successor of the
irrigation modeling software developed over the past 20 years by the USDA
Agricultural Research Service (Bautista et al., 2009).
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3. Results and discussion

We evaluated the furrow irrigation system in two fields. Two tests for irrigation were
done in Field 1 (one for a lettuce crop on April 2010-/R/- and another for an artichoke
crop on May 2011-/R11), and one test was done in Field 2 (for a lettuce crop on April
2010-/R2). Tables 2.1, 2.2 and 2.3 show the inputs and outputs of the Monserrat (1988)
EVASUP model to calculate the performance indicators. Z., were estimated from field
measurements of soil water contents before irrigation. The observed soil moisture
deficits, SMD (mm), were assumed as the best estimates of Z,.,. Moreover, the amount
of water required to leach the salts was added to Z,.,. For all irrigation events, the root
zone depths for lettuce and artichoke crop were assumed to equal 0.20 and 0.35 m,
respectively, based on phenological estimations of the development of lettuce and
artichoke root mass. Tables 2.1 to 2.4 show the way to calculate Z,.,. To measure the
cross- sectional geometry we used a profilometer, which provides data to plot furrow
depth as a function of the lateral distance; these data can then be used to get geometric
relationships between depths and areas. With a computer program we numerically
integrated the data to develop geometric relationships between the areas and the depths

(Fig. 2.4).

Table 2.1. Threshold and zero yield salinity levels for four salinity rating

Salinity rating Threshold salinity Zero yield level
dSm’ dSm’
Sensitive 1.3 8.0
Moderately sensitive 3.0 16.0
Moderately tolerant 6.0 24.0
Tolerant 10.0 32.0

Adopted from Ayers and Westcot, 1985

Table 2.2. Crops in four salinity rating groups
Sensitive Moderately sensitive =~ Moderately tolerant Tolerant
Lettuce Artichoke

Adopted from Ayers and Westoct, 1985
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2. Soil water: Evaluation of furrow irrigation performance

Table 2. 3. Data to calculate Z..q (/R/: Field 1, lettuce. /R/1: Field 1, artichoke. /R2:
Field 2, artichoke)

Field Soil water Rooting Electrical
capacity  content before depth conductivity
Or (m’ m™) irrigationt); RD of irrigation
Field Crop (m” m™) (mm)  water (dSm’)
IR1 Lettuce 0.35 0.25 200 1
IRI11 Artichoke 0.35 0.24 350 1
IR2 Lettuce 0.30 0.24 200 2

Table 2. 4 Calculation of the depth of water required through irrigation Di

SMD = (0.35-0.25) 200 = 0.020 m

IR1: Field 1,

lettuce LF=Dq/ Zyq=ECi/(SECe - ECi)=1/(5x 1.3-1)=0.18

Zyeg=SMD | (1-LF) = 0.020 / (1-0.18) = 0.024 m

SMD = (0.35-0.24) 350 = 0.0385 m

RIEFld L,y 7 ECi) (SECe - ECi)=1/(5 x 6-1) = 0.034

artichoke
Zyeq=SMD / (1-LF) = 0.0385/(1-0.034) = 0.039m
SMD = (0.30-0.24) 200 =0.012 m
IR2: Field 2, _ _ . N _
lettuce LF=Dy/ Zeq=EC i/ (5ECe-ECi) = 2/(5x1.3-2)=0.44

Zye= SMD / (1-LF) = 0.012 / (1-0.44) = 0.021 m
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2. Soil water: Evaluation of furrow irrigation performance

Relationship Area & Depth at point 1

0.025
Y =0.9739x14932
0.02 R?=0.9999
0.015
‘é‘
3 001
0.005
0
0 0.02 0.04 0.06 0.08 0.1
Depth (m)
Relationship Area & Depth at point 2
0.018
0.016 y=2.8748x2 050
0.014 R*=1
— 0.012
E n.010
$ 0.008
< 0.006
0.004
0.002
0.000
0.00 0.02 0.04 0.06 0.08 0.10
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Relationship Area & Depth at point 3
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y = 0.7596x14278
0.02 RZ=1
i
= 0.015
5
= 0.01
0.005
0
0 0.02 0.04 0.06 0.08 0.1
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Fig. 2.4. Relationship between the area and the depths at three points in the furrow (for

Field 1, IR1)

32



2. Soil water: Evaluation of furrow irrigation performance

In the actual condition of irrigation in Field 1, the application efficiency was 52.45%
for IR1 and 32% for IR11. Tables 2.5, 2.6 and 2.7 present the low values of final mass
balance error (MBE) which is the difference between measured and predicted
infiltration volume relative functions and reflects the validation of the estimated

infiltration function.

The application efficiency under /R2 actual conditions was 38.12%. Tables 2.8 and
2.11 show scenarios simulated by the WinSRFR model for the lettuce crops in the two
fields. In table 2.8, optimized discharge in /R/ was evaluated in scenario 2, with a cut-
off time of 12.3 min obtained without changing discharge compared to the actual
conditions. In table 2.9 optimized discharge in /R2 was evaluated in scenario 3, with a
cut-off time of 10.3 min obtained without changing discharge compared to the actual
conditions. For Field 1, Fig. 2.5 shows the actual status of /R/, and Fig. 2.6 shows its
simulation. For Field 2, Fig. 2.7 shows the actual status of /R2, and Fig. 2.8 shows its

Infiltration (mm)

simulation.
Infiltrated depths
0 10 20 a0 40 B0
D L L L L : L L L L : L L L i : L L L i : L L i L D
104 410
ar Required Depth T
- -+ 30
{
A 540
0 10 20 30 40 50
Distance [m)

Fig. 2.5. Over irrigation status as applied under actual farm conditions (/R/)
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ance

Infiltrated depths
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Fig. 2.6. Full irrigation status as applied with optimized cut-off time
by the WinSRFR model (scenarios 2-IR1)
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Fig. 2.7. Over irrigation status as applied under actual farml conditions (IR2)
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Fig. 2.8. Full irrigation status as applied with optimized cut-off time
by the WinSRFR model (scenarios 3-/R?2)
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Table 2.5. Inputs and output of Monserrat (1988) EVASUP model for calculation of
performance indicators (first field, lettuce crop- IR1)

Input data
Distance between stakes = 5.000 m
T1 time at instant 1 6.50 min
T2 time at instant 2 15.00 min
Q inflow rate 0.001290 m’/seg/unit width
Surface shape factor 0.770
Subsurface shape factor 0.800

Advance Time

X (m) |5.00]10.00 | 15.00 | 20.00 | 25.00 | 30.00 | 35.00 | 40.00 | 45.00 | 50.00

T 1.50 | 3.50 |5.00 [6.50 |850 |9.00 |[11.00] 13.00 | 15.00 |17.00
(min)

Parametors for Monsserat (1988) EVASUP model

T= 6.50min advance time when water front reach 20 m stake

X= 0m H=0.080 m

X=15.00m H=0.060 m

T= 15.00 min advance time when water front reach 45 m stake

Parameters of Relationship between the
area and the depth at three points in the

furrow ( A=0,Y" Fig. 2.4)

X=0 m H=0.110m o,=0.900 o,=1.470

X= 15.00m H=0.070 m o, =2.8748 o, =2.0624

X = 40.00m H=0.020 m o, =0.7596 o, =1.470
Output

Balance for the two instants

T= 6.50min
VOL. Applied 0.503 m’/unit width
VOL. Superficial 0.286 m’/unit width

VOL. Infiltrated TEO. 0.217 m’/unit width

ERROR BAL. VOL. (%) |0.0758

T= 15.00 min
VOL. Applied 1.161 m’/unit width
VOL. Superficial 0.563 m’/unit width
VOL. Infiltrated TEO. 0.598 m’/unit width

ERROR BAL. VOL. (%) |.0000

K 0.0037951 m*/m.L/unit width /seg”

90.04 cm’ /cm/unit width /min®

213.60 cm® /cm/unit width /H?

A 0.211
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Continued Table 2.5

Input data for calculating performance indicators

Inflow rate 0.00129 m’/seg/unit width
Application time 20.00 min
Required infiltrated volume 0.0161 m’/m.1./unit width (the depth
times the furrow spacing)
Distance between furrows 0.75m
Infiltration parameters :
K 10.00379/m.1./UA/S**A
A | 0.211
C [0.00 m’/m.1/UA/S
D | 0.00 m’/m.L/UA
X(m) | T. advance (min) T. recession (min)
.0 0.0 165
5.0 1.50 220
0.0 3.50 270
5.0 5 280
0.0 6.50 330
5.0 8.50 300
30.0 9 360
5.0 11 290
40.0 13 295
45.0 15 280
0.0 17 250
Output

Runoff flow =0 (No Cutback)

Performance indicators (%)

Application Uniformity = 97.64

m’/ unit m’/unit
depth width /m.1.
Application Efficiency 52.05 % V. Applied 1.548 0.031
Deep Percolation 47.92 % V. Percolated 0.742 0.016
Runoff 0.00 %
Storage Efficiency 100.00 % | V. Runoff 0.000 0.000
Volum balnace error 5.20 % V. Infiltrated 1.467 0.031
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Table 2.6. Inputs and outputs of Monserrat (1988) EVASUP model for calculation of
performance indicators (first field, artichoke crop-/R11)

Input data
Distance between stakes 5.00 m
T1 time at instant 1 12.00 min
T2 time at instant 2 17.50 min
Q inflow rate 0.002230 m’/seg/unit width
Surface shape factor 0.77
Subsurface shape factor 0.80

Time advance

X (m) |5.00[10.00[15.00

20.00 | 25.00 | 30.00 | 35.00 | 40.00 | 45.00 | 50.00

T 4.00 | 7.50 | 9.50
(min)

12.00 | 15.00 | 17.50 | 19.50 | 22.00 | 25.00 | 29.50

Parametors for Monsserat (1988) EVASUP model

T = 12.00 min advance time when water front reach 20 m stake

X= 0m H=0.089 m

X=15.00m H=0.036 m

T= 17.50 min advance time when water front reach 30 m stake

Parameters of Relationship between the area
and the depth at three points in the furrow

(A=0,Y", Fig2. 4.

X= Om H=0.089 m o,=1.110 o,=1.800

X= 15.00m H=0.030 m o,=0.690 o,=1.400

X = 25.00m H=0.020 m o,=0.620 o,=1.800
Output

Balance for the two instants

T= 12.00 min

VOL. Applied

1.60 m’/unit width

VOL. Superficial

0.18 m’/unit width

VOL. Infiltrated TEO.

1.40 m’/unit width

ERROR BAL. VOL. (%)

1.2138

T= 17.50

VOL. Applied

2.34 m’/unit width

VOL. Superficial

0.19 m’/unit width

VOL. Infiltrated TEO.

2.14 m’/unit width

ERROR BAL. VOL. (%)

.0000

Empirical constants for Kostiakov function

K ]0.0736203 m’/m.L/unit width /seg”

A 0.001

37



2. Soil water: Evaluation of furrow irrigation performance

Continued Table 2.6

Input data for calculating performance indicators

Inflow rate 0.00223 m’/seg/unit width
Application time 30.00 min
Required infiltrated volume 0.0320M3/m.1./unit width (the depth
times the furrow spacing
Distance between furrows 1.20 m

Infiltration parameters :

K [ 0.07362030 m*/m.1./ unit width /s"

A ]0.001

C | 0.00000000000 m’/m.L./ unit width /s

D | 0.00000000 m’/m.l./ unit width
X(m) | T. advance (min) T. recession (min)
0.0 0.0 160.0
5.0 4.0 219.0
10.0 75 270.0
15.0 9.5 278.0
20.0 12.0 332.0
25.0 15.0 285.0
30.0 17.5 357.0
35.0 19.5 262.0
40.0 22.0 256.0
45.0 25.0 281.0
50.0 29.5 343.0

Runoff flow =0 (No Cutback)

output

Performance indicators (%)

Application Uniformity = 99.99

m’/unit | m’/unit width
depth /m.1.
Application Efficiency 31.39% | V. Applied 4.014 0.080
Deep Percolation 68.61 % | V. Percolated 2.754 0.055
Runoff 0.00 %
Storage Efficiency V. Runoff 0.000 0.000
volume balance error 3% V. Infiltrated 3.888 0.080

38



2. Soil water: Evaluation of furrow irrigation performance

Table 2.7. Inputs and outputs of Monserrat (1988) EVASUP model for calculation of
performance indicators (first field, artichoke crop-/R11)

Input data
Distance between stakes 5.00 m
T1 time at instant 1 12.00 min
T2 time at instant 2 17.50 min

Q inflow rate

0.00223 m’/seg/unit width

Surface shape factor 0.770
Subsurface shape factor 0.800
Time advance
X(m) |5.00)10.00 |15.00]|20.00|25.00 | 30.00 | 35.00 | 40.00 | 45.00 | 50.00
T (min) | 4,00 | 7.50 9.50 | 12.00 | 15.00 | 17.50 | 19.50 | 22.00 | 25.00 | 29.50

Parameters for the Monsserat (1988) EVASUP model

T = 12.00 min advance time when water front reaches the 20 m stake

X= 0m H=0.089 m
X=1500m |H=0.036m
T= 17.50 min. advance time when water front reaches the 30 m stake
Parameters of Relationship between the area
and the depth at three points in the furrow
(A=0 Y Fig. 2.4)
X=0 m H=0.089 m o,=1.110 o,=1.800
X= 15.00 m H=0.030 m o,=0.690 o,=1.400
X = 25.00m H=0.020 m c,=0.620 o,=1.800
output
Balance for the two instants
T= 12.00 min
VOL. Applied 1.60 m’/unit width
VOL. Superficial 0.18 m’/unit width
VOL. Infiltrated TEO. 1.40 m’/unit width
ERROR BAL. VOL. (%) | 1.2138
T= 17.50 min

VOL. Applied

2.34 m’/unit width

VOL. Superficial

0.19 m’/unit width

VOL. Infiltrated TEO.

2.14 m’/unit width

ERROR BAL. VOL. (%)

.0000

Empirical constants for the Kostiakov function

K ]0.0736203 m’/m.L/unit width /seg”

739.22 cm’/cm/unit width /min”

742.26 cm’/cm/unit width /h*

A 0.251
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Continued Table.2.7

Input data for calculating performance indicators

Inflow rate 0.00120 m’/seg/unit width

Application time 18.00 min

Required infiltrated volume 0.0165 m3/m.1./unit width (the depth times
the furrow spacing

Distance between furrows 0.90 m

Infiltration parameters :

K |0.0048 m’/m.l./ unit width /s*

A | 0251

C | 0.00 m’/m.L/ unit width /s

D |0.00 m’/m.l/ unit width

T. advance T. recession (min)
X(m) (min)
0.0 0.0 120.0
5.0 4.0 133.0
10.0 6.0 150.0
15.0 8.0 160.0
20.0 12.0 161.0
25.0 14.5 162.0
30.0 17.0 163.0
Runoff flow =0 (No Cutback)
Output

Performance indicators (%)

Application Uniformity = 98.56

m’/unit | m’/unit

depth width /m.1.
Application Efficiency 38.12% | V. Applied 1.296 0.043
Deep Percolation 61.87 % | V. Percolated 0.756 0.025
Runoff 0.00 %

V. Runoff 0.000 0.000

Storage Efficiency 100.00 %
Volume balance error 1.4 % V. Infiltrated 1.277 0.043
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Table 2.8. Results from Field 1 (lettuce crop- IR1) using the WinSRFR model
(performances measures)

Qin tco Applied
(L/s) | (min) | water (L) | DU () | AE (%) | DP (%)

actual conditions 1.29 20 1548 97.64 52.05 61.87

Scenario 1 1.29 15 1161 0.90 65 35

Scenario 2 (optimal

. 1,29 14 1083.6 85 84 16
cut- off time)
Scenario 3 1.29 11 Water front no reach to lower
8514 | end
Scenario 4 0.95 20 1140 0.96 66 34
Scenario 5 0.90 20 1140 0.94 69 31
. 0.80 20 Water front no reach to lower
Scenario 6
960 end

Table 2.9. Results from Field 2 (lettuce crop- IR2) wusing the WinSRFR model
(performance measures)

in tco Applied
(I?/s) (min) war‘zgr (L) DU (%) | AE (%) DP (%)
Actual conditions 1.2 18 1296 98.56 38.12 58.33
Scenario 1 1.2 15 1080 97 44 57
Scenario 2 1.2 12 864 93 56 45
Scenario 3
(optimal cut-off 1.2 10.3 741,6 80 68 32
time)
Scenario 4 0.98 18 1058.4 96 45 56
Scenario 5 0.9 18 972 88 46.67 51
Scenario 6 0.75 18 810 81 59 41
. 0.70 18 756 Water front no reach to lower
Scenario 7 end

Farmers in the Llobregat Delta area generally maintain irrigation after water has
reached the end of the furrows to ensure that soil water at the root zone is fully
recharged. However, farmers generally do not know the period of time required to
compensate soil water deficit. Irrigation controllers or timers are not widely used, and
the irrigation is often maintained until it is convenient to manually switch it off. Thus,
under commercial conditions, a significant component of the applied irrigation water
may be lost as an excessive deep percolation (Tables 2.8 and 2.9). For the specific
irrigation example presented in Table 2.8 and Fig. 6 (Field 1, IR1), 30% of the applied
water would have been saved if irrigation had been stopped as soon as the soil water

deficit was fully compensated. For Field 2 (/R2), 43% of the applied water would have
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been saved if irrigation had been stopped as soon as soil water deficit was fully
compensated, as presented in table 2.9 and Fig 2.8. Moreover, the area of the individual
furrow in Field 1 (IR]) was 50 m” and the water supplied under actual conditions was
1548 L (table 2.8), while the individual area in Field 2 (JR2) was 27 m” and the supplied
water was 1295 L (table 2.9). Hence, Field 2, /R2, used almost the same amount of
water as Field 1, IR1, with half of its area. This may have been expected since water for
irrigation had an electrical conductivity of 2 dS'm™ in Field 2 and 1 dSm™ in Field 1,
and the farmer in Field 2 applied more water to leach the salts from the root zone.
Moreover, by applying the winSRFR and EVASUP models we have obtained the same

performance measurcs.

4. Conclusion

The application efficiency of furrow irrigation for lettuce and artichoke production
was studied in the Llobregat Delta. Average irrigation efficiencies in this area were

found to vary between 31 and 52%.

30% and 43% of the applied water would have been saved in Field 1 and Field 2
respectively, if irrigation was stopped as soon as the soil water deficit was fully

compensated, taking into account the amount of water needed for salt leaching

More water was applied in Field 2 than in Field 1 due to poor water quality.
Differences in efficiency were found to be directly related to farm design and specific
management practices. Application efficiency was found to increase with decreasing
cut-off time. These results indicate that significant improvements in irrigation efficiency
could be achieved through the adoption of design and management practices that are

appropriate to the farm’s environmental and management constraints.
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Abstract

Understanding the field soil water regime is fundamental in scheduling irrigation as
well as for monitoring water flow and solute transport. This study was carried out on
variable interval irrigation and used time series analysis techniques to predict the soil
water content at the interested depth by measuring one single depth in order to precisely
determine the next irrigation time and its effect on soil water content at the interested
depth. Volumetric water content of silty loam soil in Barcelona was measured in situ
with capacitance soil moisture sensors at five depths within the root zone for a
horticultural crop during its life cycle in 2010. The time series consisted of hourly
measurements of soil water content and was transformed to a stationary situation.
Subsequently, the transformed data were used to conduct analyses in the time domain in
order to obtain the parameters of a seasonal autoregressive integrated moving average
(ARIMA) model. In the case of variable interval irrigation, predicting the soil water
content time series cannot be properly explained by the ARIMA model and its
underlying normality assumption. By completing the ARIMA model with intervention
analysis and outlier detection, the prediction of soil water content in variable interval
irrigation can be made. The transfer function models were then used to predict water
contents at depths of interest (0.20, 0.35, 0.50 and 0.60 m depths) as well as the average
water content Wy in the top 0.60 m soil profile by measuring water content at 0.10 m
depth. As a result, the predictions were logical. Also, the next irrigation time and its
effect on soil water content at the depth of interest were correctly estimated. To confirm
results of the models, the experiment was repeated in 2011, and the predicted and

observed values agree reasonably well.

Keywords: Soil volumetric water content; Autoregressive integrated moving average

(ARIMA); Outlier detection; Transfer function model.
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1. Introduction

Surface soil water is the water that is in the upper 0.10 m of soil, whereas root zone
soil water is the water that is available to plants, which is generally considered to be in
the upper 2 m of soil (Wang et al. 2009). Soil water has been studied in many soil
science fields due to its great influences in the most of soil components as well as in the
atmospheric conditions. Soil water in the top 2 m soil profile is considered the key
variable in numerous environmental studies (Walker, 1999), including microbial,
geological, meteorology, hydrology, agriculture and climate change (Topp et al., 1980;
Jackson et al., 1999; Fast and McCorcle, 1991; Engman, 1992; Entekhabi et al., 1993;
Betts et al., 1994; Saha, 1995).

Due to the development of new techniques for examining the structure and metabolic
activities of microbial communities, many microbial studies showed that the changes in
temperature and soil water content conditions along topographic gradient have been
linked to changes in microbial community composition (Morris and Boerner, 1999;
Carletti et al., 2009) or microbial metabolic diversity (Rogers and Tate, 2001). Soil
microbial basal respiration was highly correlated with mean annual precipitation when
comparing 24 sites along a precipitation transect in semi-arid and arid southern Africa
(Wichern and Joergensen, 2009). In native Austrian forests, Hackl et al. (2005) found
that microbial community structure was most closely correlated with soil water
availability in azonal forests (which exhibit extreme site conditions). Chen et al. (2007)
showed in a greenhouse pot experiment that total plant biomass of white clover and

ryegrass increased with increasing soil moisture contents.

In irrigation studies understanding the field soil water regime is fundamental in
scheduling irrigation. King et al. (2001) developed a device to aid in irrigation
scheduling by visually indicating current soil water status relative to an upper and lower
set point, two study fields, one with and one without soil water status indicators,
Collectively, farm managers applied 7% (2.9 cm) less water to fields with the soil water
status indicators than comparison fields. Average water application was significantly

less (P=0.04) for fields with soil water status indicators.
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In geological studies, soil water content plays a key role on the aggregate stability
and determines the relationship between the variation in soil stability and soil physical
properties (bulk density, texture, organic carbon, pore sizes distribution and saturated
hydraulic conductivity), stable aggregates reduce detachment by raindrop and transport
by overland flow and, also, reduce the formation of surface crusts and seals. In arid and
semi-arid area where the soil water content at the onset of rain may be temporally and
spatially variable so the antecedent soil water content in the field plays a key role in the
rainfall-runoff relationship and soil loss (Puigdefabregas et al., 1992; Lopez-Bermudez
et al., 1991). Martinez-Mena (1998) studied the effect of three soil water contents (close
to saturation, field capacity and air-dry) on the aggregate stability for soils from arid and
semi-arid area of southeast Spain, he found that the aggregate stability for wetter

conditions was higher than for the air-dry conditions for 85% of the samples tested.

In hydrological and climate change studies, large-scale soil moisture dynamics and
its verification are essential to improve the predictive capability of coupled hydrologic-

meteorological models (Jackson et al. 1999).

Therefore, from what is mentioned above, it is important to accurately monitor and

estimate spatial and temporal variations of soil moisture.

1.1. Measuring soil water content

Soil water content can be determined by direct or indirect methods. Direct method is
referred to as the gravimetric methods, it is usually requires oven drying of a known
volume of soil at 105 °C and determining the weight loss (Walker et al. 2004). Indirect
methods measure some physical or chemical properties of a soil which is correlated to
the soil water content (Arguedas-Rodriquez, 2009), these properties include dielectric
constant (relative permittivity), electrical conductivity, heat capacity, hydrogen content
and magnetic susceptibility. These techniques include time domain reflectometry
(TDR), frequency domain reflectometry (FDR), time domain transmission (TDT),
amplitude domain refelectomerty (ADR), phase transmission and ground penetrating
radar (GPR). They also include capacitance sensors, radar scatterometry or active

microwave, passive microwave, electromagnetic induction (EMI), neutron
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thermalization, nuclear magnetic resonance, and gamma ray attention (Dane and Topp,

2002).

Direct method is not appropriate for understanding of the spatial and temporal
behavior of soil moisture. Due to the heterogeneity of soil type, land use and
topography, soil moisture may change considerably in space and time. Among indirect
methods, we choose for our study capacitance sensors, which are relatively cheap,

rugged and portable.

Moreover, it is not sufficient to know simply the amount of water in the soil, because
depending on conditions, given amount of water might be held so tightly by the force
fields of a soil that it is essentially immobile. The energy states characterises the effects
of forces exerted on a soil water by its surroundings and hence express the water's

availability.

1.2. Soil water flow

The traditional approach to modelling soil water flow is based on deterministic
models using Richards’ equation (Bresler and Dagan, 1981, 1983a, 1983b; Butters and
Jury, 1989; Dagan and Bresler, 1983; Destouni and Cvetkovic, 1991; Schulin et al.,
1987; Shani et al., 2007; Wagenet and Hutson, 1989; Wildenschild and Jensen, 1999).
Many studies have indicated that the average moisture profile in a heterogeneous field
could not be correctly predicted by the classical differential equations using effective

soil properties (Alessi et al., 1992; Wu et al., 1996).

Due to soil profile heterogeneity, some experimenters have found it more desirable to
use stochastic models rather than constant values in describing the future evolution of
soil water, assuming that water transport has random variables (Comegna et al,. 2010;
El-Kadi, 1987; Freeze, 1975; Greenholtz et al., 1988; Indelman et al., 1998; Makkawi,
2004; Sarangi et al., 20006).

A stochastic process amounts to a sequence of random variables known as a time
series. The time series method has been applied in several agricultural and hydrologic

studies. Gupta and Chauhan (1986) and Marino et al. (1993) used time series modeling
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approaches, respectively, to study the stochastic nature of weekly irrigation that paddy
crops required in India, and to forecast the monthly grass reference -crop
evapotranspiration (ET,) values. A series of papers by Raghuwanshi and Wallender
(1996, 1997, 1998, 1999) began by developing a seasonal irrigation model, then applied
autocorrelation and partial autocorrelation to the standardized ETy, and finally built up
the autoregressive moving average ARMA (1,1) model. The same model was used to
predict both irrigation schedules and optimum furrow irrigation designs (inflow rate and

cut-off time).

Many researchers found that soil water content is highly correlated to different
depths and they developed models to evaluate irrigation water management and to
demonstrate the use of irrigation scheduling tools (Jones et al., 2003; Panda et al.,
2004). Wu et al. (1997) used squared coherency, cross-amplitude and cross-correlation
analysis to study the relationship between water content that was measured hourly at
various depths of the soil profile (0.25, 0.50, 0.75 and 1 m) over 55 days. They later
developed models that could predict water content at deeper depths from water content
at a superficial depth. Zou et al. (2010) worked on silt loam soil profile data, collected
monthly from 2001 to 2006, to compare two mathematical models: the back
propagation neural network (BPNN) model and the autoregressive integrated moving
average (ARIMA) model. The objective was to predict both the average water content
in the top 1 meter profile from water content measured at 0.60 m depth, and the average

salt content measured at various depths of the soil profile (0.10, 0.20 and 0.45 m).

Previous models assumed that the spacing between irrigation events is fixed;
therefore, ARIMA models can be applied for predicting soil water content because
ARIMA models save the behaviour of past observations in order to make the prediction.
For example, if the farmer irrigates the field every ten days, the identified ARIMA
model on the field data set for soil water content would expect an increase in the soil
water content on the tenth day after the previous irrigation event. In the case of variable
interval irrigation, ARIMA models do not have the ability to make an effective
prediction if the farmer in the above example should decide to reduce the spacing
between irrigation events to 9 days. In that case, the previous identified ARIMA model
could not thoroughly predict the future behaviour of the soil; it would give an increase

in soil water content after ten days and not after nine days. To allow ARIMA models to
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work on variable interval irrigation systems and be able to detect new outliers, it is
necessary to complement the ARIMA model with intervention analysis models and

outlier detection (Wei, 1989).

Our study was carried out on variable interval irrigation and used time series analysis
techniques with two objectives: to predict the soil water content of an interested depth
by measuring one single depth, and to evaluate the effect of an irrigation event on the
soil water content. An important distinction is made between outliers and intervention
variables in the time series of soil water content. In case there is a priori information
about a special event that may have caused abnormal observations (the irrigation event,
in our case), the effect of the irrigation event should be captured through intervention
analysis. An outlier, on the other hand, represents anomalies in the observations for
which there is no a priori information on the date of its occurrence or on the dynamic
pattern of its effect (i.e. precipitation event). We enabled the ARIMA model to be
applied on variable interval irrigation and to examine the effectiveness of the irrigation

event. This could be achieved by:

1) Detecting the outliers and removing them; thus, soil water forecasts will undergo a

downward trend because no effect from irrigation events (outlier) will appear,

2) Evaluating the effect of the intervention (irrigation event) and including it in the
model; thus, the soil water forecasts increase at the moment of irrigation, and this
increase depends on the weight of the irrigation coefficient. The benefit of this
complementary analysis comes from the probability of a well-realized irrigation
schedule that is of a short duration (one day or within hours); i.e., the next irrigation
event will be determined when the prediction for soil water content is below the field

capacity.

There are two advantages to including the time series outlier and intervention

analysis in the ARIMA model for describing soil water fluctuations:

First, by using intervention analysis, the input series will be in the form of a simple
pulse or step indicator function to indicate the presence or absence of the irrigation
event. So the effectiveness of the irrigation event can be included in the ARIMA model

in order to improve the efficiency of irrigation scheduling. The main purpose of outlier
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correction is to modify the data in such a way that the normality hypothesis of the

ARIMA model can be accepted.

The second advantage is that, by including outlier analysis in the ARIMA model, we
reduce the residual variance of the model, which then becomes more precise.

The objective of this study was to evaluate soil water content in the field regime by
using time series analysis techniques. The specific objectives were:

1) To study the autocorrelation and partial correlation function for soil water content
measured at a shallower depth as well as the cross-correlation function between soil
water content at a shallower depth and various greater depths, including average soil
water content Wy in the top 0.60 m profile;

2) To develop models for predicting the soil water content at various greater depths
and water storage in the soil profile from a single shallower depth; and

3) To use outlier and intervention analysis to examine the effectiveness of the

irrigation event in the soil water profile.

2. Materials and methods

2.1. Experiment

The experiment was carried out for 55 days, starting on 23 April 2010 in the
Agricultural Park of Baix Llobregat, 5 km south of Barcelona, Spain. A field was
planted with lettuce (Lactuca sativa) and irrigated by a furrow system; the experimental
area was 275 m” (55 m x 5 m); four irrigation events were applied; each irrigation dose
was almost 26 L m™; and the application time ranged between 20-26 minutes. The site
had fairly uniform, silty loam with a bulk density ranging between 1.4 and 1.5 g cm™ to
a depth of 0.75 m and the water table was 4 m below the soil surface. In the test furrow,
the water content distribution of the soil profile was measured with capacitance soil
moisture sensors (STE, Decagon Devices, Inc., Pullman, WA). The installation depths
were at 0.10, 0.20, 0.35, 0.50 and 0.60 m from the soil surface (Fig 3.1). The study
focused on the root zone. A total of 1318 observations were used to estimate the
models, of which 659 observations were used to validate its forecast. To confirm the

results of the models, the experiment was repeated in 2011 with 1199 observations. The
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same transfer function models obtained from the 2010 set of data were applied in the
2011 one to predict the soil water content at deeper depths from a single shallower

depth.
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Fig.3.1. Chart shows sensors distribution in the top 0.60 m soil profile

2.2.  Capacitance sensor

Capacitance senor used electromagnetic (EM) techniques for soil water content
estimation (Blonquist et al., 2005). The capacitance technique determines the dielectric
permittivity of a medium by measuring the charge time of a capacitor which uses that
medium as a dielectric. Capacitance techniques introduced into agriculture by smith
Rose (1933; cited by Dane and Topp, 2002). One of the first workers to use a high
frequency capacitance technique for soil water content determination was Thomas
(1966). STE probe model (Decagon Devices, Inc., Pullman, WA) was used in this study,
it is an electromagnetic sensor which measures the dielectric permittivity of soil and
related it with the soil water content by an empirical relationship, since EM signal
properties strongly depend on volumetric water content that stems from the high
permittivity of water (g,,= 80) compared to mineral soil solids (¢;,= 2-9), and air (g, = 1).
The equivalent circuit diagram of the STE probe is illustrated in Fig. 3.2. The STE
sensor circuitry measures the dielectric permittivity of the material surrounding a thin,
fiberglass enclosed probe. The circuit board includes an electronic oscillator that
generates a repetitive square waveform with a characteristic frequency (70 MHz). The
total sensor capacitance is then made up of the capacitance of medium C and the

capacitance Cs due to stray electric fields (Kelleners et al., 2004). Soil permittivity is
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determined by measuring the relationship between the time, ¢, it takes to charge a
capacitor from a starting voltage (V7), to a voltage (V) with an applied voltage (Vf) of
capacitor which uses the soil as a dielectric. If the resistance R, Vf and Vi are held

constant, then the charge time of the capacitor, ¢, is related to the capacitance according

to:

V=V, +v,
t=—RCln| ——— (1)

\Z —Vf

1

Electronic EMS- wvalue

oscillator converter

T Hw R g

CS C G : 1.-"01.11

@

Circuit board Electrodes and medium Sensor reading

Fig. 3.2. Equivalent circuit diagram of a capacitance senor where R is a resistor, C is the
capacitance of the medium, Cs is the stray capacitance, G is the energy loss due to
relaxation and ionic conductivity and Vinp and Vout are the supply and senor reading
voltage, respectively (From Bogena et al., 2007).

The capacitance is a function of the dielectric permittivity (¢) of the medium and a

geometrical factor g, it can be calculated by:
C=ge (2)
A
The factor g = —
S
where 4 is the area of the plates and S is the separation between the plates. By assuming

that the charge time of the capacitor is a linear function of the dielectric permittivity of

the surrounding medium, ¢ can be calculated as follows:
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V—v,+V,
l:l Rgh{#J (3)
g v, Vv,

A graphic representation from a capacitance senor reading is shown in Fig. 3.3
(Bogena et al., 2007), where it can be seen how the water content alters the time of the
pulse length AT with fixed supply voltage V,. Thus, high water content will result in a
longer pulse length time, because the sensor output is directly related to the average

voltage over the period of change in pulse length time (Bogena et al., 2007).
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Charge/discharge curve (low permittivity/low water content, 1)

Charge/discharge curve (high permittivity/high water content, 2)

Fig. 3.3. The charge and discharge curves of two capacitance with either high or low
permittivity, using a repetitive square pulse with a pulse length At (after Bogena et al.,

2007).

2.3. Calibrating

In the laboratory, the sensors were immersed in soil columns to calibrate the soil

water content. The volumetric soil water content determined from the soil columns
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samples was regressed against the sensors probe readings. Regression equations
transforming the sensors probe reading to volumetric water content were developed.
These equations were used for calibration all the the measurements of soil water content

used in this study.

2.4. Model identification and forecast

Stochastic models are mathematical models for describing systems which evolve
over time according to probabilistic laws; it can be categorized according to the two
criteria of time and state space. Table 3.1 shows a method for classification stochastic
models. Our study deals with stochastic models that model continuous observations
(soil water content values) measured at discrete points in time (hourly), they are usually
referred to as time series models. The application of time series models to actual data is

popularly referred to as time series analysis (Hipel et al., 1994).

Table 3.1. Classification of stochastic models

STATE SPACE
Discrete Continuous
Discrete Markov Time Series
Chains Models

TIME

Stochastic
Continuous Differential

Equations

The time series analysis of soil water content was made in four steps. The first one
involved applying the Box-Jenkins method (Box et al., 1994) in order to identify an
appropriate univariate model for time series of soil water at 0.10 m depth. This study
used the seasonal autoregressive integrated moving average (ARIMA) (p, d, q) % (P, D,

Q)s model, where p, g are the order of the regular autoregressive and moving average
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factors, and P, Q are the seasonal autoregressive and moving average factors,
respectively; d and D are the order of differencing for the regular and seasonal part,

respectively; sub-index S denotes the seasonal period (24 hours in this study).

The second step was evaluating the effects of irrigation time by including it in the
model as intervention analysis and searching for the presence of outliers in the
univariate series. The third was identifying the appropriate transfer function approach
by modelling the linear system, using the soil water content time series at 0.10 m depth
as input, while the output was the soil water content time series at various depths (0.20,
0.35, 0.50, 0.60 m and W,4y¢).The final step was applying the transfer function models
obtained from the 2010 data set for predicting the soil water content to the 2011 data set

at various greater depths in the soil profile.

2.4.1 Univariate Time Series Analysis

Univariate seasonal (ARIMA) (p, d, q) * (P, D, Q)s modelling techniques were used
to show the patterns of soil water content data at 0.10 m depth. The four steps of Box-
Jenkins modelling approach for identifying and fitting ARIMA models were used:
model identification, model parameter estimation, diagnostic checking, and forecasting.

Fig 3.4 displays the overall procedures for Box-Jenkins modelling approach.

a) Identification

Applying the exploratory analysis -time series plots- sample autocorrelation function
(ACF) and partial autocorrelation function (PACF) - on the time series data under
consideration helps to reveal the essential mathematical features of the data. Plotting the
data enables to capture the identification information by perusal of a graph includes:

1. Autocorrelation: shows the linear dependence existing among the observations.

2. Seasonality: series quite commonly display seasonal behaviour where a certain
basic pattern tends to be repeated at regular seasonal intervals.

3. Nonstationarity: Most series time of nature resources are nonstationarity.

Stationarily is analogous to the concept of isothermal within the field of physics.

For example, in order to be able to derive soil physical laws that are
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deterministic, it is often assumed that the soil water is isothermal, so that energy
changes associated with temperature changes do not have to be taken into
account. Likewise, in stochastic modelling, the statistical properties of a process
are invariant with the time (variance and mean are constant) if the process is
stationary.
4. Need for transformation: Box-Cox transformation (Box and Cox 1964) keep the
series time stationary and it is achieved by several steps:
a. Get the variance constant
b. Get the mean constant
5. The nonstationarity is removed from the series using a technique called
differencing. After differencing the data, the fitted model called ARIMA model.
Subsequently, appropriate AR and MA parameters contained in the ARIMA
models are estimated for resulting stationary series formed by differencing the
original nonstationary series.
6. Known or unknown intervention: The effects of a known intervention can often
be detected by an examination of the plot of the time series and observe when

the general trend of the observations has changed.

When the time series become stationary, sample autocorrelation function (ACF) and
partial autocorrelation function (PACF) were used to identify time series models
(Pankratz, 1983; Hoff, 1983). ACF measures the relation between X; and X, where k
is the time lag, and PACF was used to take into account the dependence on the
intermediate elements (those within the lag) (Wei, 1989). If the sample ACF of the
differenced series still does not damp out quickly, the series should be differenced
again. The data should be differenced just enough times to remove the homogeneous
nonstationarity which in turn will cause the sample ACF to die off rather quickly. When
differencing is required, usually it is not greater than 2 for nonstationary series which
arise in practice. According to the sample ACF and PACF, how many AR and MA

terms will be determined.

In brief, Identification has two steps prior to deciding upon the form of the ARMA

model:
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1. Transformation using the Box-Cox transformation in order to alleviate
problems with nonnormality and/or changing variance. Additionally, the
differencing may be required for removing nonstationarity.

2. Select one or more appropriate ARIMA models depend on ACF and PACF.

b) Estimation

For an identified ARIMA model, the following parameters must be estimated using
the available data: a) mean of the series; b) AR parameters; ¢) MA parameters; d)

innovation series; and e) variance of the innovations.

In our study we used method of maximum likelihood for estimating the parameters
of ARIMA models. Significance of parameters was determined by constructing the
Wald test statistic. Automatic selection criterion such as the Akaike information
criterion can be employed for choosing the best overall model when more than one

model is calibrated.

¢) Validation

The residuals sequences for AR, MA, ARMA and ARIMA models are assumed to be
independently distributed in the theoretical definition of these models. This implies that

the estimated innovations or residuals are uncorrelated or white.

For checking that the residuals are white the recommended procedure is to plot the
RACEF (residual autocorrelation function) along the 95% confidence limits. And for
ascertaining whether or not the residuals are uncorrelated. The suggested procedure is to
use the Ljung-Box statistic test. Moreover, if the residuals are correlated this implies
that the model is inadequate and a more appropriate model can be found by repeating

the earlier stages of model construction.
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Fig. 3. 4. Overall procedures for Box -Jenkins modelling approach
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d) Forecasting

Once the appropriate model has been found, it can be integrated (trend introduced
into the model) and future forecasts can be found. Confidence intervals can also be

computed for each of the observation forecasts.

One useful criterion to obtain the most accurate forecasts is to use what is called

minimum mean square error.

Forecasting can be used as an approach for model discrimination. A variety of time
series models can be fitted to the first portion of one or more time series and then used
to forecast the remaining observations. By comparing the accuracy of the forecasts from

the models, one can determine which set of models forecasts the best.

In the autoregressive (AR) process, the present values of time series depend on the
preceding value plus a random shock. The AR model for a centred time series with
order p is defined as:

X, =¢0X,  +0,X, , +...+¢pXt7p +a,
or 1-¢B—-¢,B>—...—¢,B")X, =aq, 4)

where ¢, is the jth AR parameter, a,is the Gaussian white-noise error, and B is the
backshift operator where B” X, = X, . For the moving average (MA) model, errors are

the average of this period’s random error and the previous random error. MA time series

of order ¢ is defined as

X,=a,+6a,,+6a, ,+.+60a, , ,or

X, =(1+6B+6,B* +..+6,B")a, (35)

- th
where 6 is the ¢© MA parameter.
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A stationary time series is required for identifying AR and MA models, which
implies that the variance and mean values are constant while some transformation is

necessary before identifying the model.

No trends in mean were identified by taking successive differences of the data on the
regular and seasonal components. The number of differences needed to attain the
stationary time series was denoted by d and D. No trend in variance is normally
achieved by applying a logarithmic transformation (Soebiyanto et al., 2010; Quinn,

1985; Vandaele 1983).

For any time series, X,, the ARIMA (p, d, ¢) <(P, D,Q)s of X, is
#,(B)®,(B*)(1-B)'(1-B")" X, =0,(B)Oy(B")a,  (6)

where ¢,(B) and 6, (B)are the regular autoregressive and moving average factors, and

®,(B’) and O,(B’)are the seasonal autoregressive and moving average factors,

respectively.

Autocorrelation function (ACF) and partial autocorrelation function (PACF) were

used to identify time series models (McCleary and Hay, 1980; Pankratz, 1983; Hoff,
1983). ACF measures the relation between X, and X, , where K is the time lag, and

PACF was used to take into account dependence on the intermediate elements (those

within the lag) (Box et al., 1994; McDowall et al., 1980; Wei, 1989).

In this study, the maximum likelihood method was used to estimate the model
parameters. The significance of parameters was determined by constructing the Wald

test statistic.

Diagnostic checking tests were used to check if the residuals showed any
autocorrelation at any lags. The assumptions would be satisfied if the ACF and PACF of

residuals at all lags were non-significant.
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2.4.2. Intervention analysis and outlier detection

Outliers in the soil water content data at a depth of 0.10 m were removed using the

Grubbs’ test for detecting outliers (Grubbs, 1969).

M-V
SD

Z (7)

where Z is the test statistic, M is the mean of the values, V is the value being tested, and
SD 1is the standard deviation of the values. In total 1318 observations of soil water
content were available. Based upon an outlier probability level of 5%, the outlier test
statistic was set at 4 (Grubbs, 1969). Soil water content values which yielded test
statistics larger than or equal to 4 were removed from the data set. To assess the impact
of precipitation and other observed irregularities in the times series of water content,
two types of outliers were considered: additive outlier (40) and temporary change (7C).
At the same time, level shift (LS) was used as an intervention analysis to assess the
impact of the irrigation event on the time series of soil water content. AO is a pulse that
affects the time series at one period only. 7C is an event that decays exponentially
according to a pre-specified dampening factor. LS is an event that permanently affects

the subsequent level of a series (Chen and Liu, 1993) (Fig. 3.5).

Let Z, denote the underlying time series process which is free of the impact of
outliers and is prior to the irrigation event, and let X; denote the observed time series.

We assume that Z; follows the seasonal ARIMA (p, d, ¢q) (P, D, Q)s model
$,(B)D,(B)(1-B)' (1-B*)" X, =0,(B)O,(B*)a,, based on these assumptions, the

appropriate model for assessing the impact of the control is:
n, n; n;
— (LS) (TC) (40)
X =205 +> 0P +Y o +2Z,
r=l i1 Jj=1

0,(B) 0,(B%) .
4,(B)®,(B*)(1-B)' (1-B)"

n, n; 7
“Y 0,58+ 0P+ Y 0, PO+ (8)
i=1 j=1

r=1
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where o, represents the permanent change in the mean level after the intervention
(irrigation event), S{** is referred to as a step indicator at irrigation time 7, , where

Sus) 0 <T,
©o\1 t2T,

)

o, represents the transitory change in the mean level after the unusual observations

1

(such as precipitation), P\ and P/“?) are referred to as a pulse indicator at unusual
i j

1

observation time 7; and 7, respectively , where

0 t<T,
PTfTC) 1 T (10)
and (1-6B) l
0 =T,
PT(/AO){l o TJ (11)
J

o is the dampening factor that takes a default value of 0.7 (Chen and Liu, 1993).

— Temporary Change Outlier
A cditive Outlier
= = | =vel Shift Cullier

Effect

Time

Fig. 3.5. Plot illustration of the effect of additive outlier, temporary change outlier with
8 = (.7, and level shift outlier on later periods.
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2.4.3 Transfer function approach

Observations and predictions of one time series (input X;) may be used to estimate
the outcome of another time series (outputG;) by modelling the linear system with a

relatively small number of parameters. The model takes the form

G _A®)

= c@ +a, (12)

where A(B) and C(B) are a polynomial of the s and r orders, respectively
A(B)=(A,— AB—A4,B*> —..— A B")

C(B)=(1-C,B-C,B*~...—C.B")

where Ap,A;,4z,...,4s and C;,C,,...,C, are the parameters of the model, b is the latent

parameter, B is the backshift operator, and @, is a disturbance (noise).

A(B)/C(B) is called the transfer function of the system. The procedure for building

a transfer function model involves three steps: a) identification, b) estimation and c)
model checking. By using a univariate model for input X; with white noise residuals,
the same filter can be applied to the output series G, (pre-whitening). Cross-correlation

of the two residuals allows us to identify the transfer function form.

In this study, the transfer function approach was applied by choosing the soil water
observations at 0.10 m as a primary series (X;), while the output series (G;) was chosen
from the soil water content time series at various depths (0.20, 0.35, 0.50, 0.60 m and
Wavs). Waye represents the average soil volumetric water content in the top 0.60 m
profile, calculated from the formula that Wu et al. (1997)* used to estimate total water

storage.

2 1 =1 1
W= 30,000+ S0, D00+ 12, 2,0, (D, D)
i1

where D is depth downward (m), and 6; is volumetric water content at depth D;
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R software version 2.13.0 (R Development Core Team, 2010) was used to execute all
model identifications and subsequent predictions of soil water content at various depths

(Cryer and Chan, 2008; Shumway and Stoffer, 2006).

3. Results and discussion

Fig.3.6 shows soil water content by sensor probe regressed against soil water content

by gravimetric method.
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Fig.3.6. Soil water content by sensor probe regressed against soil water content by

gravimetric method.

Fig. 3.7 shows the soil water content at five depths versus time. Fluctuation of soil
water content at deeper layers corresponds to the changing of water content at upper
layers; this fluctuation dampens as the layer becomes deeper. This could be used to
identify a model to explain the water content behaviour of one depth, which in turn is
used to predict the behaviour of water content at another depth (Wu et al., 1997).
Irrigation events that were applied at 4.29, 27.20, 32.04 and 46.33 days, and
precipitation occurring at 9.33, 20.50 and 52.54 days had significant effects on soil
water content fluctuations. Fig. 3.8 shows the soil water content at 0.10 m depth and its
response to each irrigation event and rainfall; capturing these two events well and
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including them in models for soil moisture fluctuations will provide reasonable
predictions for soil water content. Later, we developed ARIMA models and completed

them by including the irrigation event as an intervention analysis and the precipitation

as outlier detections.
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Fig. 3.7. Soil water content at five depths versus time ,and the average water content of
the top 0.60 m soil profile WAVG; * indicates the irrigation time,” indicates the
precipitation time.
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Fig.3.8. Soil water content at 0.10 m depth, W is a step indicator caused by the
irrigation event.

3.1. Univariate modeling of the soil water content time series at 0.10 m

depth.

The ACF of the original time series of water content at 0.10 m depth converges very
slowly, indicating that the time series is non-stationary (Fig. 3.10 A). To obtain a
stationary time series, the original series were differentiated (first order-difference and
seasonal first order difference). No trend in variance is observed in this series, so there

is no need to apply a logarithmic transformation.

The ACF and PACF of differentiated time series indicated that the series was
approximately AR (2) for the regular component and MA (1) for the seasonal
component, because the ACF (Fig. 3.10B) and PACF (Fig. 3.10C) showed that only the
correlation at the first two lags of ACF and the 24™ lag of PACF were significant.
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Fig. 3.9. Time series of soil water content at 0.10 m depth (m® m™) for the first 4 days at
0.10 m depth.

The ARIMA (p, d, q) (P, D, Q)s model of time series of water content at 0.10 m
depth was ARIMA (2, 1, 0) (0, 1, 1)24. The model in usual notation is given by:

(- 4B~ ¢,B°)(1-B)1- B*)X, =(1+6,,8*)q, (13)

where a, is an independent, identically distributed white noise term with zero mean and

variance = 2.8.107, ¢ = 0.3841, and @,= -0.17 are AR parameters. The ©,, = 0.99

parameter of the seasonal MA part indicates that the model is almost non-invertible.
Therefore, it is inadequate and needs to be improved in structure. An exploratory
method, which is well-established in other fields, is a seasonal-trend decomposition

based on locally-weighted regression (loess), widely known as “STL” (Cleveland et al.,

1990; Hafen et al., 2009).
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Fig. 3.10. (A) Autocorrelation function (ACF) of the original data, (B) autocorrelation
function, and (C) partial autocorrelation function (PACF) of the transformed time series
of water content at 0.10 m. The ACF of the original data indicates that the series is not
stationary. The dotted line is 2 x standard errors.

The STL method is straightforward to use; it allows for flexibility in specifying the
amount of variation in the trend and seasonal components of time-series; and it
produces robust estimates that are not distorted by transient outliers (Cleveland et al.,
1990). Fig. 3.11 shows that the large outliers of the remainder (random) are backed to
the irrigation event. Since the timing of the irrigation event is previously known, the
model could be completed with intervention analysis (irrigation event) and outlier
detection (model 10), making it invertible and in order to reduce its residual variance

(Wei, 1989).

74



3. Soil water. Time series outlier and intervention analysis:  irrigation management influences
on soil water content in silty loam soil

]
o |
@D
= 84
g
O
o &

=

-t

I,'V'_!_

=
- = _
|
Lk} —
= :_.e!_

=

[

i,'\.!_

= 3

=
J— [==
i = _|
o
D —
w 3
m 9
L=
o

-

=

2 4

EN
=
5 =]
c =7
[an] —
| -

-

=

=

time({days)

Fig. 3.11. Decomposition plot of the soil water content at 0.10 m depth affected with
intervention variable (irrigation event in our case) and irregular variables (such as
precipitation) over 55 days, STL method. This plot assists evaluation of the trend,
seasonality and remainder (random) against the raw data. The graph (observed)
represents the hourly time series of water content affected with irrigation and irregular
events like precipitation. The graph (trend) is the fitted trend. The graph (seasonal) is
the seasonal pattern per 24 hours. The graph (random) represents the remainder after the
trend and the seasonal pattern have been fitted to the time-series values. The sum of the
trend, the seasonal pattern and the random equals exactly the time-series. IRR is the
time of irrigation event, and PRE is the precipitation time. The large peaks of the
remainder correspond to the irrigation time which has to take into account when
building up ARIMA model on the series.

3.2. Outlier and intervention analysis on the ARIMA model for time series
of water content at 0.10 m depth: the effectiveness of the irrigation
event on soil water content.

Intervention analysis and automatic outlier detection were applied on the previous
ARIMA (2, 1, 0) (0, 1, 1)24 model to improve it and to assess the effect of irrigation
events on the soil water at 0.10 m depth. Applying the Grubb's test (Eq. 7) detected 28

outliers (Table 3.2) for time series of soil water content at 0.10 m depth.
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Table 3.2 Outlier detection and parameter estimation for time series of water content at
0.10 m

observation ¢ observation ¢

time (hour) ype time (hour) ype @
103 TC -0.0137 494 TC 0.0249
104 TC 0.0323 495 TC 0.0047
105 TC 0.0053 653 TC -0.0267
128 TC -0.0076 654 TC 0.0578
151 AO 0.0044 769 TC -0.0136
175 AO 0.0038 770 TC 0.0310
224 TC -0.0056 1110 TC -0.0043
225 TC -0.0046 1111 AO -0.0037
226 TC -0.0045 1112 TC 0.0291
227 TC -0.0048 1113 TC 0.0313
228 TC -0.0059 1114 TC 0.0123
229 AO -0.0074 1261 TC 0.0087
231 TC 0.0139 1262 TC 0.0199
492 AO -0.0051 1263 TC 0.0053

Including the outlier detection and intervention analysis, the observed value of time

series of soil water content at 0.10 m can be described according to Eq. (8) as

23 5
_ (1) (1) (1) (1) (TC) (40)
X, =0,(S;5 + 83720 + S324 +S46433)+za)iPTi +za)jprj +Z, (14)
i=1 Jj=1
where JX; is the observed time series, Z;is the time series free of outliers, and w, = 0.087

represents the permanent change in the mean level after the irrigation event, which
characterizes the effectiveness of the irrigation event on the soil water content. In this
study, the flow rate and cut-off time for the four applied irrigations were almost equal.

Therefore, we used one average coefficient for w,to estimate the weight of the peak
caused by four irrigation events. The part (Si2, +S%,, +S\, +S.) represents the

step indicator at four irrigation times 7, (4.29, 27.20, 32.04, and 46.33 days). The part

23 5
> 0P +> o, P represents the effects of 28 outliers which were detected.
i1 =1

By applying the Box-Jenkins approach to the time series of water content Z,

obtained from Eq. (14), the ARIMA (1, 1, 2) (0, 1, 2),4 model was determined. The

model, in usual notation, is given by:
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(1-¢B)1-B)1-B*)Z,=(1+0,B+6,B*)(1+6,,B* +0,,B%)a, (15)

The model (15) is free of outliers, it is invertible, and the ACF and PACF of
residuals at all lags are non-significant. Table 3.3 shows the comparison between the

two models (13 and 15) in terms of statistical parameters.

Table 3.3. Comparison of the two models for the soil water observations at 0.10 m
depth in terms of statistical parameters (one based on observed data X; and the
second based on outlier-free data Z))

Model ¢1 ¢2 01 92 @24 @48 o ’

Model based on
observed data

5
X, (13) 038 -0.17 0.99 2.7.10
Model based on

Outlier free data () 87 051 0.09 076 -0.13 5.48.107
Z, (15)

3.3. Transfer function approach

The cross-correlation between the pre-whitened primary time series (0.10 m depth),
and the target soil water content time series at various depths (0.20, 0.35, 0.50, 0.60 m
and W,yc), showed that the primary series affects the target series, but the target series
cannot in turn have a bearing upon the primary series. Fig. 3.12 proofs that the present
value of soil water content at 0.10 m has a significant effect on the present values of soil
water content at various depths (0.20, 0.35, 0.50, 0.60 m and W,ys). Models for

predicting the soil water content at individual depths and W,y from the soil water
content at 0.10 m depth were identified (Table 3.4). The coefficients of X, in the

equations of Table 3.3 show that the present value of soil water content at 0.10 m has an
effect of 61, 40, 25 and 19%, respectively, on the present values of soil water content at

0.20, 0.35, 0.50 and 0.60 m and its effect on the present value of W,y is 55%.
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Fig. 3.12. Cross-correlation function for soil water content hourly time series at 0.10
and 0.20, 0.10 and 0.35, 0.10 and 0.50, 0.10 and 0.60 m, 0.10 m and average soil water
profile, respectively. Dashed lines indicate 95% confident limits.
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Table 3. 4. Time series transfer function model for the various depths and average soil
water content of the top 0.60 m profile.

X;at 0.10 and Y; at 0.60 m:

_ (0.19+0.15B)X, +a,
" (1-0.14B-0.21B* -0.7B%)

a, ~N(0,2.81077)
X;at 0.10 and Y at 0.50 m:
(0.25+0.04B) X, +aq,

Y, = 2 3 4
(1-0.16B—-0.26B- —0.03B° +0.16B™)

a, ~N(0,881077)
X;at 0.10 and Y at 0.35 m:
v - (0.4 +0.04B +0.00858% +0.039B°) X, + (1- B*)a,
" (1-B)1-B*)(1-0.227B-0.0225B% —0.053B> +0.67B* —0.045B° +0.11B°)
a, ~N(0,1.810°°%)

X;at 0.10 and Y at 0.20 m:
y - 0.61X, +(1—B*)aq,
" (1-B)(1-B*)1-0.28B+0.17B> —0.08B° + 0.068B")
a, ~ N(0,2.062 10 )
X at 0.10 and Y, as the average of the top 0.60 m soil profile:
. 0.55X, +(1-0.28B)(1- B**)a,
. (1-B)1-B**)1-0.59B+0.23B*> —0.16B"%)

a, ~ N(0,4.684 1077)

3.4. Forecasting

Fig. 3.13 shows the model calibration and prediction for 0.20, 0.35 and 0.60 m soil
depths. The first 659 observations of each time series were used for model
identification. The calibrated model represented the values before these 659
observations very well for each depth. The predicted and observed values after the 659
observation agreed reasonably. The relative difference between predicted and observed
values was sometimes large; it increased as the distance of separation between the
primary and target increased. The absolute difference between the prediction and

measurement never exceeded 0.03 m®> m™.
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Fig. 3.13. Measured and predicted water content versus time at 0.20, 0.35, and 0. 60 m
depths. Prediction was based on the identified transfer function models for each depth.
The curve before the vertical dashed line refers to model calibration and after the
vertical dashed line to model prediction.

The model of forecasting the average water content W,y (Fig. 3.14) behaved similar
as the individual models for soil depths. The absolute difference between prediction and
measurement never exceeded 0.025 m® m™. Measured versus predicted average water
content are shown in the Fig. 3.15. Many data points were very close to the 1:1 line.

Overall, the models represented the dynamics of field soil water fluctuation very well.

In the case of variable interval irrigation, we were able to determine the time of the
next irrigation and its effect on soil water content by predicting the time series of soil
water Z, without outliers (model 11), and then by adding the irrigation effect ®, to the
prediction when the soil water content dropped below the field capacity. In Fig. 3.16
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there is an example of two prediction days. The observed values of soil water content
covered 55 days, and the prediction is for the 56™ and 57™ day. It includes the effect of

the next irrigation if the farmer chooses to irrigate on the 56.5™ day.

o :
“D“. - 0-0.60 m average water content
w
{‘"j_ —
o
o |
E
e B
- O
T
n
c
S
o (]
m
=
{‘T_’-J_ _ = Model prediction
O = Model calibrated
= = Measured data
o
™ :
o [ | [ [ [ [
0 10 20 30 40 20
Time (days)

Fig. 3.14. Measured and predicted average water content WAVG versus time in the top
0.60 m profile. Prediction was based on the indentified transfer function models for
WAVG. The curve before the vertical dashed line is model calibration and that after the
vertical dashed line is model prediction.
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Fig. 3.15. Measured versus predicted average water content in the top 0.60 m soil
profile.
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Fig. 3.16. Prediction models for average soil water content WAVG. Prediction was
based on the indentified transfer function models for WAVG. We have observed data
for 55 days, the model predicts the 56th and 57th day taking into account the effect of
next irrigation if the farmer choose to irrigate on 56.5th day (*is the irrigation time at
56.5th day).
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To confirm the results of the models, the experiment was repeated in 2011. The field
was planted with artichokes and 1199 observations were made starting on 23 April 2011
(Fig. 3.17). The same transfer function models obtained from the 2010 data set were
applied to the 2011 data set to predict the soil water content at deeper depths from one
single shallower depth. Fig. 3.18 shows the time series of soil water content at 0.20 m
depth and the average water content in the top 0.60 m soil profile W,y for the 2010 data
set (1318 observations) and the 2011 data set (1199 observations). The transfer function
model obtained from the 2010 data set was applied to the 2517 total observations
(1318+1199) for each time series. The calibrated model represented the values very well
up to 1318 observations (2010 data set) for each series. The predicted and observed
values after the 1318 observations agreed reasonably (which is represented by the 2011
data set). The absolute difference between the prediction and measurement for the time
series of soil water content at 0.2 m depth and W,y never exceeded 0.01 and 0.005 m’

m”, respectively.
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Fig. 3.17. Soil water content at five depths versus time, and the average water content of
the top 0.60 m soil profile WAVG (1199 observations starting on 23 April 2011).
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Fig. 3.18. Measured and predicted water content versus time at 0.20 m depth and
average water content WAVG. Prediction was based on the identified transfer function
2010 data set of models for each one. The curve before the vertical dashed line refers to
model calibration and after the vertical dashed line to model prediction (2011 data set).

4. Conclusions

The time series of soil water content at the root zone for a lettuce field (silty loam
soil) was studied at five depths 0.10, 0.20, 0.35, 0.50 and 0.60 m; each one was
transformed to a stationary situation; then, ARIMA models were constructed to study
each time series and make predictions. In the case of variable interval irrigation,
predictions of irrigation effects on the soil water content could not be properly
explained by the ARIMA model and its underlying normality assumption. To avoid this
obstacle and let the ARIMA model work in variable interval irrigation, we used

intervention analysis (irrigation events) and outlier detection for unusual observations in
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order to complete the model. The transfer function models were then used to predict
water contents at depths of interest (0.20, 0.35, 0.50 and 0.60 m) and the average water
content in the top 0.60 m soil profile W,y from the measured water content at 0.10 m
depth. The predictions were rational. The next irrigation and how much the soil water

content would rise after the irrigation event were correctly estimated.

Since the irrigation dose for four irrigation events in this study were almost the same,

we used one average mean level @. = 0.087 to depict the effectiveness of an irrigation
moment on the time series of soil water content. In the case of variable irrigation doses,
we suggest studying the effect of each irrigation event and include their effects

separately in the model.
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Abstract

Using the linear relationship between soil dielectric constant (¢5) and the bulk electrical
conductivity (o) under laboratory conditions, Hilhorst (2000) model was able to
convert oy to pore water electrical conductivity (o,). In the present study, the application
of the linear relationship &, - 6, to data obtained from field capacitance sensors, resulted
in strong positive autocorrelations between the residuals of that regression. By including
a stochastic component to the linear model , rearranging it to a Time-varying Dynamic
Linear Model (DLM), and using Kalman filtering and smoothing, we were able to
derive an accurate offset of the relationship ¢, - 05 and to estimate the evolution of g,
over time. It was shown that the offset varies for each depth in the same soil profile. A
reason for this might be the changes in soil temperature along the soil profile. Once g,
was estimated for each depth in the study fields, using a (multiple input-one output)
transfer function model, we could predict soil salinity at the 0.10 m depth and in the top
0.60 m of the soil profile by measuring soil water content and soil temperature at the
0.10 m depth. Moreover, the effects of the usual irrigation frequency on soil salinity
behaviour were evaluated. As a result, the offset and o, were precisely estimated for
each depth, and predictions of soil salinity by measuring soil water and soil temperature
were logical. Also, the next irrigation time and its effect on soil salinity at the depth of
interest were correctly estimated. Finally, it was found that for each depth, farmers left
the field with less soil salinity than at the beginning of the crop’s vegetative stage. The
study showed that the quality of irrigation water had a significant effect on soil salinity

at the root zone in the study fields.

Key words: Capacitance sensor; Soil dielectric; Time-varying Linear Dynamic

Model (LDM); Kalman filtering; Offset; Soil salinity; Transfer function model.
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1. Introduction

A saline soil is defined as the accumulation of water-soluble salts in the soil profile
to a level that impacts on agricultural production, water quality, environmental health,
and economic welfare (Regasamy, 2006). Chloride, sulphate and bicarbonate salts of
sodium, calcium and magnesium contribute in varying degrees to soil and water
salinity. Salinity affects 7% of the world’s land area, which amounts to 930 million ha
(Szabolcs, 1994; based on FAO 1989 data). The area is increasing; a global study of
land use over 45 years found that 6% had become saline (Ghassemi et al. 1995). This

amounts to 77 million ha.

Salinization is an important process in land degradation and nutrient deficiency.
Munns (2002) showed that if excessive amounts of salt enter the plant, salt will
eventually rise to toxic levels in the older transpiring leaves, causing premature
senescence, and reduce the photosynthetic leaf area of the plant to a level that cannot
sustain growth. Maas and Hoffman (1977) demonstrated that salinity induces nutritional
imbalances or deficiencies causing decreased growth and plant injury for which osmotic
effects alone cannot account. Thiruchelvam and Pathmarajah (1999), who studied the
salinity problems in Sri Lanka’s Mahaweli River System “H” Irrigation Project, showed
that salinity can lead to the following agricultural problems if left uncorrected: a)
reduced crop intensity; b) decreased profitability and; ¢) land scarcity. Among a lot of
studies are investigated in the links between dryland salinity and climate change, John
(2005) has conducted a detailed analysis of the interaction between climate change and
dryland salinity in the eastern wheat belt of Western Australia. She concluded that
climate change may reduce farm profitability in that region by 50 per cent or more
compared to historical climate, and that the reduced profitability of farms would
probably would affect the capacity of farmers to adopt some practices that have been
recommended to farmers to prevent land degradation through dryland salinization.
Ghassemi et al. (1995) concluded in their study that extensive areas of irrigated land
have been and are increasingly becoming degraded by salinization and water-logging
resulting from over —irrigation and other forms of poor agricultural management. Thus,
a practical methodology is needed for timely and spatially assessment of soil salinity in

irrigated fields, for evaluating the appropriateness of related management practices.
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1.1. Measuring salinity

Salinity is most commonly measured with an electrical conductivity (EC) meter that
estimates the concentration of soluble salts in a soil slurry or water solution by how well
an electrical current passes through the medium. The ability of a solution to conduct
electricity increases with increasing salt content; therefore, a high EC value corresponds
to high amounts of soluble salts, and vice versa. A soil is considered saline if the
electrical conductivity of its saturation extract (EC.) is above 4 dS m' 25°C (US
Salinity Laboratory Staff, 1954). However, the threshold value above which deleterious
effects occur can vary depending on several factors including plant type, soil water

regime and climatic condition (Maas, 1986).

Determining the electrical conductivity of the pore water of soil (,) requires
extraction of the pore water from the soil by suction, or to use saturated paste
conductivity measurement, and both conventional methods are labour- intensive. And it
is not certain that all ions are collected in the extract sample (Hilhorst, 2000).
Additionally, in their study, Rhoades et al (1997) criticized two concepts that have been
used by US Salinity Laboratory Staff (U.S. Salinity Laboratory Staff, 1954) to evaluate
the appropriateness of irrigation and drainage systems and practices with respect to
salinity control. These concepts are leaching requirement (L,), which refers to the
quantity of irrigation water required for transporting salts through the soil profile to
maintain a favourable salt balance in the root zone for plant development, and salt-
balance-index (SBI), defined as the relation between the quantity of dissolved salts
carried to an area in the irrigation water and the quantity of dissolved salts removed by
the drainage water. These two conventional procedures are criticized because they do
not provide sufficiently detailed spatial information to adequately characterize salinity
conditions and to determine its natural or management-related causes. SBI fails because
it provides no information about the soil salinity level existing within any specific field
of the project. Many other studies on soil salinity assessment concluded that it is
important to assess soil salinity temporally and spatially for correctly evaluating its
evolution and for reasonably predicting its values (Hajrasuliha et al., 1980; Mahmut et

al., 2003; Rhoades et al., 1997; Shouse et al., 2010; Xiaoming et al., 2012).
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A new way to evaluate the conductivity of ¢, temporally and spatially is to translate
the electrical conductivity of the bulk soil (65) to o0, using methods, models and
estimates. To measure o5, new devices have been developed, such as time-domain

reflectometry (TDR) and frequency-domain refectomerty.

Temperature and water content have a significant effect on accurate oy
determination, requiring that sensors have a temperature compensation capability for
precise measurement (Scoggins and van lersel, 2006). Electrical conductivity sensors
therefore need to simultaneously measure three variables: water content, temperature

and o, to provide a precise real-time measurement of a;.

However, we need to go one step further and calculate a soil specific offset value.to
provide an accurate estimate of o, This offset eliminates the contribution of surface
electrical conductivity o; and permittivity of dry soil (¢ ,-9) in the final estimation of
o, as described by the Rhoades (1976, 1989) and Hilhorst (2000) models. Such models
estimate the o, by utilizing different physical parameters read directly by the sensor or
estimated separately during laboratory experimentation. In the next section, a brief
description of Rhoades et al. (1989) model and further details of the Hilhorst (2000)
model are presented. The senores were used in this study applied the Hilhorst (2000)

model to get o, by measuring op.

1.2. Models to convert o, to o,

1.2.1. Rhoades et al. (1989) model

By dividing the mixed soil water system into three separate current-flow pathways,
Rhoades et al. (1989) were able to build up a model explaining the expected electrical
conductivity of the system. These pathways are demonstrated in Fig. 4.1 and they are as

follows:

1. A solid-liquid interphase, the conductance pathway passing through
alternating layers of soil particles and soil solution.
2. A liquid phase, the conductance pathway passing through continuous soil

solution.
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3. A solid phase, the conductance pathway passing through or along the surface

of soil particles in direct and continuous contact.

Pathways of Electrical Conductance
Soil Cross Section

Liquid Air

Fig. 4.1. Three conductance pathways for the o, measurements. Modified from Rhoades
et al. (1989).

The model was proposed by Rhoades et al. (1989) intended to assess soil salinity as

bulk electrical conductivity:

(Hs + gws )2 0,05
o, =
(05 )O-ws + (ews )O-s

} + (ew - QWS )O-WC
6]

Where:
O, is the volumetric soil water content in the continuous liquid pathway,
O, 1s the volumetric soil water content in the series-coupled pathway,

ows 18 the specific electrical conductivity of the series-coupled water phase,

os 1s the electrical conductivity of the surface conductance soil phase, and
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6, = O6,; + 6, where O,, is the volumetric soil content in the continuous liquid

pathway.
owe 18 the specific electrical conductivity of the continuous water phase.

Equation 1 can be solved for g, with the assumption that ¢,,, ® o, and it can be re-

arranged as a quadratic equation, and solved for its positive root as:

o - —B++B*-44C

b 24

2)

where : A=[6,)@,0,,)]

B=[0,+6,)(c,)+(0,-6,)*,0,)-(0,0,)]

C = _[ews so-b]

Rhoades et al. (1989) state the necessity for an offset value or estimation of the
surface electrical conductivity o, in order to estimate pore water electrical conductivity
o,. This offset value oy is calculated by plotting the o5, versus the solution electrical

conductivity o,

1.2.2. Hilhorst (2000) model

The oy, of the soil depends on both the ¢, and water content (6) (Persson, 2002). Thus,
the opcan only be predicted if § is constant, or if the relationship between o, o, and 6
is determined. Several different models of g, — g; — 0 relationship have been developed
(Rhoades et al., 1976; Mualem and Friedman, 1991; Malicki and Walczak, 1999).
Malicki et al. (1994) discovered a high degree linear correlation between dielectric
constant (g,) and g, values by using time domain reflectometry for most of soil types.
Hilhorst (2000) took advantage of this relationship and enabled to convert g, to o, by

using a theoretical model describing a liner relationship between o, and ¢.
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1.2.3. The Linear ¢, — 65 - 0 Model

The o0, can be determined according to Hilhorst (2000) from the equation (see the

details about this equation in the Materials and methods section):

Oy = ————— 3
i 3)

o
I
o

where o, is the pore water electrical conductivity (dS m’); &y 1s the real portion of the
dielectric permittivity of the soil pore water (unitless); o, is the bulk electrical
conductivity, (dS m™); &, is the real portion of the dielectric permittivity of the bulk soil
(unitless); €9 is the real portion of the dielectric permittivity of the soil when bulk
electrical conductivity is 0 (unitless). However, ¢,,-9 appears as an offset of the linear
relationship between ¢, and o;. Hilhorst (2000) found that the &,,-9 depends on the soil
type and varied between of 1.9 and 7.6 in the soils used in his study, he recommended

4.1 as a generic offset.

Many studies applied Hilhorst (2000) model in their experiments to convert g5 into o,.
Persson (2002) applied it in time domain-reflectometry (TDR) measurements,
laboratory experiments using soil columns with different 6 and o,,. By rearranging Eq. 3,

the slope can be calculated theoretically; e, = &, / 6, * 05 + €mp= 1.€. slope = &, 0,,. The

value of the offset &,,-9 was obtained as a fitting parameter when the slope was fixed,
assuming that ¢, equals the dielectric constant of free water at the specific temperature.
He concluded his work by using different offset (within the range of 3.67 to 6.38)
according to the soil type. Moreover, the manufacture of capacitance soil moisture
senores STE (Decagon Devices, Inc., Pullman, WA) also uses Hilhorst (2000) model to
convert o, into o, and they recommended to use offset = 6 for all agricultural soils,
Arquedas-Rodriguez (2009) used STE sensors in his study and found that offset = 6 did
not represent very good the linear relationship between ¢, and o,. The WET sensor
(Delta- T Device Ltd, Cambridge, UK), is a frequency domain dielectric sensor and is
designed to use the standard offset = 4.1 of Hilhorst (2000) model, Bouksila et a.l
(2008) worked with a saline gypsiferous soil and found that the accuracy of the WET

sensor to predict the o, was very poor using the standard value of ¢,,-9 = 4.1. Compute
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o, from oy is very important, but still not very well worked out (G. Campbell, Decagon

Devices, personal communication, 2010).
1.3.  Soil salinity movement models

Fickian-based convection-dispersion equation for predicting solute transport between
the land surface and groundwater table will continue to provide convenient tools for
analyzing specific experiments on solute movement, these deterministic models still
have success for extrapolating information for a limited number of field studies to
different soils, crop and climate conditions, as well as to different tillage and water
management schemes (Van Genuchten, 1991). For one-dimensional vertical transfer the
convection-dispersion equation could describe the solute movement in the unsaturated
zone as:

ops)  le) _ 0 dc
a Ta Pyt @

Where @ is the volumetric water content, ¢ is time, z is distance from the soil surface
downward, s is the solute concentration associated with the solid phase of the soil, ¢ is

the solute concentration of the fluid phase, p is the soil bulk density, D is the solute

dispersion coefficient, and ¢ is the sink for solutes.

Legal questions have arisen in the literature about the worth of equation 4 for
describing solute transport in structured soils characterized by large continuous voids,
such as natural interaggregate pores, interpedal voids, earthworm and gopher holes. The
progress of solutes in such soils can be largely different from that in fairly
homogeneous materials (Beven and Germann, 1982; White, 1985). The fact that most
soils are heterogeneous raises significant questions about how to simulate the

heterogeneous field-scale transport process (Van Genuchten, 1991).

Due to soil profile heterogeneity, some experimenters have found it more desirable to
use stochastic models rather than constant values in describing the future evolution of
soil solutes, where the parameters of stochastic transport models are treated as random

variables with discrete values assigned according to a given probability distribution.

During the last decade, there has been a significant increase in stochastic models for

agronomic applications, such as artificial neural networks (ANNSs) (Huang et al., 2010),
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including crop development modeling (Zhang et al., 2009; Fortin et al., 2010) and crop
yield prediction (Park et al., 2005; Green et al., 2007; Khazaei et al., 2008). Zou et al.
(2010) worked on silt loam soil profile data, collected monthly from 2001 to 2006, to
compare two mathematical models: the back propagation neural network (BPNN)
model and the autoregressive integrated moving average (ARIMA) model. The
objective was to predict both the average water content in the top 1 meter profile from
water content measured at 0.60 m depth, and the average salt content measured at
various depths of the soil profile (0.10, 0.20 and 0.45 m). Sarangi et al. (2006) used
artificial neural networks (ANNs) in modeling the root zone soil salinity and the salinity
of drainage effluent from subsurface drained rice fields in the coastal clay soils of
Andhra Pradesh, India. They observed that, the use of time lag procedure in feeding the
input values to the ANNs resulted in better ANNs than the conceptual SALTMOD

model for prediction of salinity of the drainage effluent.

Previous studies predicted soil salinity by assuming that historical values of soil
water content and temperature do not change, maybe because data on soil water and
temperature were not available simultaneously when data of soil salinity was collected
(i. e., Zou et al. (2010) predicted soil water content and soil salinity in two separated
models because they had data of soil water content and soil salinity from different
moments). Soil water content has a significant effect on soil salinity at the root zone
(Ben-Gal et al., 2008). In the case of variable irrigation system, predicting the soil
salinity time series cannot be properly explained by the ARIMA model and its
underlying normality assumption, for the same reasons that were explained in the
chapter 2. Therefore, modelling soil salinity in oreder to predict its values for near
future, shoud take into accoutnt the changes in irrigation patters. On the other hand,
many studies found that calibration measurements of electromagnetic EM induction for
prediction of o, is affected by soil texture, water content, and soil temperature
(McKenzie et al., 1989; Slavich and Petterson, 1990). Sarangi et al. (2006) found that

predicting of soil salinity is correlated to the state of soil water content and temperature.

Our study was carried out on variable interval irrigation and used capacitance soil
sensors that measure o, soil temperature and 6 simultaneously, which enabled us to
properly build up models capable to predict soil salinity taking the situation of 6 and

soil temperature into account.
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The objectives of this chapter are:

1. To derive an offset value that would ensure the accurate prediction of o, from
measurements of g, that we are obtained from our field experiments;

2. To study the autocorrelation and partial correlation function for € and soil
temperature measured at shallow depth as well as the cross-correlation function
between 6 and soil temperature at shallow depth and various greater depths of soil
salinity, including average soil salinity in the top 0.60 m profile;

3. To develop models for predicting the soil salinity at various greater depths by
measuring 6 and soil temperature from a single shallow depth;

4. To use outlier and intervention analysis to examine the effectiveness of the
irrigation event in the soil salinity profile; and

5. To monitor the evolution of soil salinity during the crop vegetative stage in the
study area and examine the effect of irrigation frequency and depth (either the

beneath the furrow or beneath the ridge) on the soil salinity.

2. Materials and methods

2.1. Experiment

Data from Field 1, Field 2 and Field 3 experimental sites were used in this study (see
the introduction chapter for its locations), soil characterization for the three fields was
defined. The design of capacitance sensor installation was described in chapter 3. To
achieve the objective 5 of this chapter, we add three more sensors beneath the ridge

(Fig. 4.2).
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Fig. 4.2. Chart shows sensors distribution in the top 0.60 m soil profile

2.1.1. Capacitance sensor

In this study a capacitance soil sensors (STE Decagon Devices, Inc., Pullman, WA)

were used, they are a commercial capacitive sensors that simultaneously estimateg |

temperature and 0, and use the Hilhorst (2000) model to converto, to o ,,.

2.2.  Deriving Hilhorst (2000) model

The theory behind capacitance soil sensors readings are based on independently
measuring both components of the composite permittivity of a material. When an
electric field passes through a material (such as soil) some of the energy in the field is
transmitted, some is reflected, some is stored and finally some is absorbed and
converted into heat. The extent to which each of these occurs within a particular
material is determined by its dielectric properties. These are quantified by a parameter
called the relative electrical permittivity (¢) of a material which characterises its
response to the polarising effect of an applied electric field. The relative permittivity of

a dielectric material is defined as:

E=¢& —jg" (5)

where j = /~1 is an imaginary number. & and¢’ are the real and imaginary parts of

dielectric permittivity; the real part of & represents the stored energy, known as the
dielectric constant and provides a surrogate measure of soil water content. The
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imaginary part (&'), accounts for the total energy absorption or energy loss. The energy

losses include dielectric loss (¢, ) and loss by ionic conduction:

" " O'l,
E =g, +(27zf€0] (6)

where [ is the effective frequency (Hz) of the applied electric field, &,is the

permittivity for free space (£,=8.854*10">F m™), o, is the specific ionic conductivity

1

of the material.

For extracted pore water, the imaginary part of the complex permittivity of the pore

water is gp In soil science it is not customary to use gp It is more practical to use the

conductivity of the pore water, o, , (Hilhorst, 2000) which can be defined as:

. . O
o, =2r.fe\¢, =271, [gdp +ﬁ] (7)

where o represents the ionic conductivity of the extracted pore water. The relaxation

frequency of water is 17GHz at 20°C (Kaatze and Uhlendorf, 1981). The operation
frequency for most dielectric or conductivity sensors is <I GHz (our sensors is 70

MHz). At frequencies which are low with respect to the relaxation frequency of water,

g; is negligible and Eq. 7 can be reduced to:
S ()

The complex permittivity of the pore water (¢,) is equal to that of pure water. The
real part of the complex permittivity of the water is g; = 80.3 at 20°C with temperature

coefficient of about -0.37°C”" (Kaatze and Uhlendorf, 1981). By analogy with Eq. 5 the

approximation of ¢ = can be written:

..o,
e I ©)

The complex permittivity of the bulk soil (&,) is proportional to both o and a

function of @, g(#). This g(#) function includes soil type and frequency dependency.
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For dry soil, there is no water to facilitate ionic conduction; that is, the conductivity

of the bulk soil o, ®0. We can write &, as:

£y = &5z +€,8(0) (10)

where ¢ =0 is the permittivity of dry soil; ¢ _ appears as offset to &,. Also ¢, _

=0 0
is the extrapolated intercept with y axis from a linear part of the ¢, vs. 0,. With this

and Eq 8 substituted in Eq 10 &, can be written as:

, , O
£y =&, +€,,g(6’)—jz7yfg 2(0) (11)
0

The working principle of the capacitance sensors (5TE, Decagon Devices, Inc.,
Pullman, WA) is based on considering that a dielectric material acts as a lossy medium
between its two screws (such as soil between the probe parallel prongs), so that the

electromagnetic wave impedance, Z (), across the soil may be expressed as:
Y = jws,e,k (12)

where Y is the reciprocal of the impedance Z, » = 2xf is the angular frequency (rad s '),
¢ is the soil permittivity, and k (m) is a geometric factor determined by the distance
between the prongs and the area in contact with the soil, such that contact problems
between the soil and the sensor’s screws will be reflected in this factor. A lossy
capacitor can be represented by a capacitance, C, connected in parallel to an electrical
resistance with a conductance, G. C represent the energy storage and is related tog, , G

represent the energy loss and is related to 0, (Regalado et al., 2007). ¥ may be written

in terms of C and G as:
Y=G+ joC (13)
From Eq 9 and 10, and with 4 to 11 Hilhorst (2000) was able to build up the

relationship between o, from measurements of, 0, - and &, as follows:

*
€, 70y (14)
gb - gab:O

Up:
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2.3. Kalman Filter

The purpose of the Kalman Filter is to provide an estimate of the unobservable state
vector based on model information and measurement information, balancing out the

errors of both. It is a sequential algorithm for minimising the state error variance.

Our study used the Hilhorst (2000) model to present results from the application of
the Kalman filter statistical estimation technique to continuous soil state (o, and &,4-9)
determination, from capacitance soil sensor determinations. A Kalman filter soil state
model is used to merge available soil physics data with data from capacitance sensors
(e»). The model makes continuous estimates of soil status and weights &, observations
according to input and model-propagated error covariances, in order to obtain suitable

0, and 459 for the study area.

The state-space model has three parts, 0, and &,,—¢ states, €, observations, and a
Kalman filter that updates the state by assimilating observations into the dynamic soil
state estimate. The dynamic model propagates the soil profile status estimate forward in
time under time-varying atmospheric boundary conditions. When observations of ¢, are
available, the Kalman filter uses the propagated state estimate and a record of the
propagation steps to adjust the state, in proportion to the difference between the
observed and the predicted value. The ratio of proportionality (the Kalman gain) is
calculated from a propagated model state error covariance matrix and an estimate of ¢
measurement error. Together, these models produce continuous estimates of o, and €49

states and their error covariances.

2.4. Time-varying Dynamic linear Model

The Dynamic Linear Model (DLM) is presented as a special case of a general state
space model, being linear and Gaussian. For dynamic linear models, estimation and
forecasting can be recursively obtained by the well-known Kalman filter. Estimating
unknown parameters in a DLM requires numerical techniques, but the Kalman filter can
be used in this case as a building block for evaluating the likelihood function or for

simulating the unobservable states.
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The R (R Development Core Team 2012) package dlm (Petris, 2010) provides an
integrated environment for Bayesian inference using DLM, and the package includes
functions for Kalman filtering and smoothing, as well as maximum likelihood

estimation.

2.5. Model identification

A time-varying DLM can be modelled as

Observation equation > Ve = + X + vy vy —N(0,V;) (15)

Wat — N (O, Wa,t) (16)

Qe = A1+ Wq e
Bt = Be—1 + wg,

State equation >

Wﬁ,t - N(O, Wﬁ,t)

here y; is an m- dimensional vector, representing the observation at time t; in our study
it represents &, observations. x; is an m.m-dimensional matrix of covariates. While a,
and fare unobservable m-dimensional vectors presenting the state of the system at time
t, in our study they represent e»-9 and o, respectively. v, ,w,, and wg, are the
Gaussian white-noise errors. The only parameters of the model are the observations and
evolution variancesV;, w,; and wg ;. These are usually estimated from available data

using maximum likelihood or Bayesian techniques.

2.5.1. Seasonality

When the model has a seasonal component, it is usual to include a Dynamic Linear
Model (DLM) to describe this component. In the state —space expression, the seasonal
component may have a stochastic error that allows changes for the seasonal pattern over
time.

So Eq. 15 may have a seasonal component (S;) and may be written as:

Ve = + X + S+, (17)
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2.5.2. A transfer function model: influences of soil water, soil temperature and
irrigation management on soil salinity in loamy sand soil.

We used techniques of time series analysis according to the methodology described
in chapter 3 to accomplish this objective, but here we developed the transfer function
model to include two inputs (soil water content and soil temperature), in order to obtain
the output ( soil salinity). In brief, time series analysis of soil salinity was made in three

steps.

The first one involved applying the Box-Jenkins method (Box et al., 1994) in order
to identify an appropriate univariate model for the time series of soil salinity , soil water
and soil temperature at 0.10 m depth. This study used the seasonal autoregressive
integrated moving average (ARIMA) (p, d, q) * (P, D, Q)s model, where p, g are the
orders of the regular autoregressive and moving average factors, and P, Q are the
seasonal autoregressive and moving average factors, respectively; d and D are the
orders of differencing for the regular and seasonal parts, respectively; sub-index S

denotes the seasonal period (24 hours in this study).

The second step was evaluating the effects of irrigation time by including it in the
soil salinity, soil water content and soil temperature models as intervention analysis and

searching for the presence of outliers in the univariate series.

The third step was identifying the appropriate transfer function approach by
modelling the linear system, using the soil water content and soil temperature time
series at 0.10 m depth as inputs, while the outputs were the soil salinity time series at

0.10 m depth and the average soil salinity in the top 0.60 m of the soil profile.

The first and second steps were explained in details in chapter 3 (Materials and

Methods); the third step consists of a transfer function (multiple input-single output).
Observations and predictions of two time series (input X;, and X,) may be used to

estimate the outcome of another time series (output G,) by modelling the linear system

with a relatively small number of parameters. The model takes the form:
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_A(B) L A(B)
BRCNC: ) B o V) R

where A(B) and C(B) are polynomials of the s and r orders, respectively:

A(B)= (A4, - AB—A,B* —...— A.B*)

C(B)=(1-C,B-C,B*~...—C,B")

where Ap,A;,4z,...,4s and C;,C,,...,C, are the parameters of the model, b is the latent

parameter, B is the backshift operator, and @, is a disturbance (noise).

A(B)/C(B) is called the transfer function of the system. The procedure for building a

transfer function model involves three steps: a) identification, b) estimation and c)
model checking. By using a univariate model for input input X;;, and X5, with white
noise residuals, the same filter can be applied to the output series G; (pre-whitening).

Cross-correlation of the two residuals allows us to identify the transfer function form.

In this study, the transfer function approach was applied by choosing the soil water
and soil temperature observations at 0.10 m as primary series (X;, and X>), while the
output series (G,) was chosen from the observations of soil salinity time series at 0.10 m
depth and the average soil salinity in the top 0.60 m of the soil profile. Average soil
salinity in the top 0.60 m of the soil profile was calculated with the formula that Wu et
al. (1997)°.

3 1 = 1
WAVG = E(Dl _DO)HI +ZE(D;'+1 _Di—l)ei +E(Zn _Zn—l)en /(Dn _Do)

i=1
where D is depth downward (m), and 6; is volumetric water content at depth D;
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2.6. Data analysis and statistics: Effects of irrigation management applied on

soil salinity

We will attain this objective by analysing the effect of irrigation frequency applied in
the study area (Field 1: lettuce; Field 2: lettuce; Field 3: artichoke) on soil salinity, the
null hypothesis is that: irrigation frequency according to the farmer’s normal
management practice does not affect soil salinity behavior, depending on soil depth and
position (beneath the furrow or beneath the ridge). The alternative hypothesis is that:
irrigation frequency according to the farmer’s normal management practice affect soil
salinity behavior, depending on soil depth and position (beneath the furrow or beneath

the ridge).

For this analysis we collected 30 measurements of soil salinity after three days for
each irrigation event. All data were subjected to analysis of variance (ANOVA)
procedures using R (R Development Core Team 2012). Appropriate standard errors of
the means (S.E.) were calculated. Tukey’s studentized range test (HSD) was applied to
separate measured parameters of soil salinity exposed to irrigation frequency for each

depth.

3. Results and discussion

3.1. Soil characterization

Table 4.1 shows the soil characterization of the three study fields beneath the furrow
and ridge at various depths. It shows that the soil particles for clay, silt and sand have
little variations in the root zone. The organic matter in study fields is representatative of

the area.
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Table 4.1. Soil characterization for Field 1, Field 2 and Field 3

Position Furrow Ridge
Depth 0.10 m 0.35m 0.65m 0.15m 0.80 m
Field Field Field Field Field Field Field | Field Field Field Field
1 2&3 1 2&3 1 2&3 1 2&3 1 2&3
Clay
(<0.002 mm 16.6 3529 13.12 3923 223 3723 | 17.71 3248 21.55 3743
diameter) %
Silt
(0.05 2 0.002 5489 52.16 5525 4934 61.16 51.24 | 56.34 53.52 59.64 50.92
mm diametre) %
Sand
(220.05 mm 28.51 12.55 31.63 1142 16.54 11.52 | 25.96 14 18.81 11.64
diameter) %
USDA Textural silty silty silty silty silty silty silty silty silty silty
Name 1 clay 1 clay 1 clay 1 clay 1 clay
oam oam oam oam oam
loam loam loam loam loam
Orga“i,ima“er 238 338 128 1.6 131 098 | 397 331 145 0091

3.2. Time-varying Linear Dynamic Model (LDM)
In the beginning, the offset value was derived using the method of Persson (2002),

by rearranging the Hilhorst (2000) model as follows:

(18)

— *
e, =¢,l0,%0,+¢&,

By using hourly field measurements of ¢, and o, (1318 observations for each one,
Field 1). Table 4.2 shows the relationship &;-05. The offset of this relationship is 4.97
and the slope is 1/g,= 0.33, s0 6,5 d S m™' is the average for the all the observations.
By applying Durbin—Watson test to see if there is an autocorrelation between the
residuals of that regression, Table 4.3 shows that there is an extremely strong and
positive autocorrelation, which indicates that the result of that regression is not valid.
Moreover, the linear model does not take the evolution of the unobservable variable
over time into account. For this reason, it is reasonable to think that o, evolves with a

stochastic component.

115



4. Soil salinity

Table 4.2. linear regression & - Gy,

Estimate Std. Error t value Pr(>|t)
(offset ) 4.978923 0.088208 56.45 <2e-16 ***
1/ o 0.354256 0.002546 139.15 <2e-16 ***

Significant: *P < 0.05, **P <0.01, ***P <(.001.

Table 4.3. Durbin—Watson test to the linear regression &, - Gy,

lag Autocorrelation D-W Statistic p-value
1 0.9524539 0.09079999 0

The known parameters for the Hilhorst (2000) model are &, o, and &,; they are
simultaneously and hourly measured by capacitance sensors; while o} could be directly
obtained from the data logger, &, and &, were calculated as follows:

&

£ = raw
" 50

&, =80.3-037(T

soil

- 20)

where ¢, represents the raw soil water content counts, and 7, is the soil temperature

measured by the sensor directly.

Fig. 4.3 shows the evolution of soil dielectric constant &,, water dielectric constant &,
and soil bulk electrical conductivity op; it also shows that the irrigation events have a

significant effect on o; and &.

Equation 18 can be modified to the time-varying DLM into observation and

unobservable (state) models as follows:

The observation equation (from Eq. 17):

1
(&p)e = (gghzo)t + (8,, * Ub)t(a_)t + 5+ v vy — N(0,0,%) (19)
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The state equation (from Eq. 16):

( (5%:0)t = (Sabzo)t—l
= twe  we =N (0,0 (20)

S; + Si—1 + St—2 cor e + St_23 = 0

st is the seasonal component (every 24 hours). 0,2, q and K are the parameters of the
model. In equation 19, we added a stochastic component to the Hilhorst (2000) model
(the Gaussian white-noise error and the seasonality component (order= 24 hours)). In
equation 20, we considered that the offset and the seasonal pattern are constant and that
the slope 1/0, changes over time.

As we see in chapter 2, the irrigation events have significant effect on the behaviour
of soil water content and should be captured as outliers to improve the model. Fig. 4.3
shows that irrigation events have also a significant effect on the behaviour of &, We
increase the state variance (o,,)? by a constant factor (k>1) to capture the time of

irrigation event as an outlier where:

, {q if t #103,654,770,1112
OwWilkq  ift =103, 654,770,1112 K>1

where 103, 654, 770 and 1112 hours are the irrigation moments from the time of
planting. This change in the model gives better estimates of the irrigation time effects

on the state values. Once we estimate the parameters, we apply the Kalman filter to get

the offset o and the slope L.
b (o)

P
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Fig. 4.3. Known variables for the Hilhorst model ¢, (a5, b, and ep); IR1, IR2, IR3 and
IR4 are the times of the irrigation events. Field 1, Lettuce.

3.3. DLM validation

Fig. 4.4 shows the observed and predicted time series of soil dielectric constant ¢, at
0.10 m depth (Field 1, lettuce, furrow). The predicted and observed values agreed
reasonably after 1318 observations. The mean absolute error of variance forecasts

between prediction and measurement for the time series never exceeded 0.02 (Fig. 4.5).

Fig. 4.6 shows the values of electrical conductivity of soil pore water (0,) and offset
&s=0 by applying the time —varying DLM to the data from Field 1 at 0.10 m depth
(lettuce crop). At this depth, the offset is 3.8 and o, was varying over time; the figure
shows a clear decrease in o, at the time of irrigation, which may have been expected

since irrigation leaches the salts downward.
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Fig. 4.4. Observed and predicted data of soil dielectric constant at 0.20 m depth (Field
1, furrow, lettuce).
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Fig. 4.5. Measured versus predicted soil dielectric constant.

3.4. Field estimation of £,;-9 and o,

By applying the time —varying LDM to the observed data at the various depths (field
conditions), we were able to estimate the constant value of ¢,,-9 and the evolution of o,
over time (within the range of 3.8 to 8.5). Fig. 4.7 shows the values of g, and &,—9 for

0.20 m and 0.60 m depths, respectively. The questions now were, what causes the
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differences between the offset values of different depths, and are they statistically
significant? To investigate these questions, many studies found that calibration
measurements of electromagnetic EM induction for prediction of g, are affected by soil
texture, water content, and soil temperature (McKenzie et al., 1989; Slavich and
Petterson, 1990). Yuanshi et al. (2003) showed that ¢, changes when soil compaction

and temperature vary.

g ]
. 0.10m
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[} =T
= ) T
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Fig. 4.6. Estimation of the unobservable data (¢,-9 and o,) by applying the Time-
varying DLM to data from Field 1 (lettuce, furrow, 0.10 m depth).

In this study, the value of the ¢,-9 was derived from the ¢, observations, and since
temperature affects g,, we can consider the null hypothesis which stated that: the soil
temperature has no effect on the ¢,,-9 value. The alternative hypothesis stated that: the

soil temperature has an effect on the ¢,,- value.

For this analysis we took 30 measurements of soil temperature three days after one
irrigation event. All data were subjected to analysis of variance (ANOVA) procedures
using R (R Development Core Team 2012). Table 4.4 shows that the univariate
ANOVA produced statistically significant results, so the soil temperature had an effect
on the values of offset and this could be the reason for the difference found in offset

values at different depths.
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Fig. 4.7. Estimation of the unobservable data (¢,-9 and o,) by applying the Time-
varying DLM to data from Field 1 (lettuce, furrow, 0.20 m and 0.60 m depth).
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Malicki et al. (1994) and Malicki and Walczak (1999) included sand content in % by
weights in their empirical o3 - 0, - €5,=9 model. Table 4.1 shows that there is a different
sand content (%) at each depth in Field 1, but this study could not conclude that the
sand content has an effect on the value of &9 because more data would be required to

statistically confirm this effect.

Table 4.4. Effect of the mean soil temperature ( °C ) on the offset at various depths

Depth
Main factors 0.10 m 020 m 0.35m 0.50 m 0.60 m

Mean soil
temperature
°C

18.14 3.8

16.25 5.8

16.94 7.1

18.04 7.8

17.36 8.2

significance * * * * *
Significant: *P < (.05, **P < (.01, ***P <0.001.

Due to the fact that most soils are heterogeneous, this could support the need to adapt

an offset for each depth.

3.5. Influences of soil water, soil temperature and irrigation management on
soil salinity in loamy sand soil.

Fig. 4.8 shows the variation of soil water content, soil temperature, and soil salinity
content at 0.10 m depths with time. Irrigation events that were applied on days 4.29,
27.20, 32.04 and 46.33, and precipitation occurring on days 9.33, 20.50 and 52.54 had
significant effects on soil salinity fluctuations; soil salinity decreased with each
irrigation event and rainfall. Fig. 4.8 also shows that the soil temperature increased at
the moment of irrigation due to the fact that the temperature of water irrigation is higher

than the soil temperature before irrigation.
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Fig. 4.8. Variation of soil water content, soil temperature and soil salinity at 0.10 m
depth with time IR1, IR2, IR3 and IR4 are the irrigation events applied on days 4.29,
27.20, 32.04 and 46.33. Prel, Pre2, and Pre3 are the precipitation event on days 9.33,
20.50 and 52.54.

The opposite occurred with precipitation: Fig 4.8 shows that soil temperature
decreased at precipitation times; acknowledgement of these fluctuations will help in
modelling soil salinity as a function of soil water content and soil temperature, as we
will explain below. Later, we developed the ARIMA model for the soil salinity time
series at 0.10 m depth and completed it by including the irrigation event as an

intervention analysis and the precipitation as outlier detections.

3.5.1. Univariate modelling of soil salinity time series at 0.10 m depth.

Fig. 4.9 shows the time series of soil salinity at 0.10 m depth for the first four days

of planting. The time series displays a strong seasonality every 24 hours.
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Fig. 4.9 Time series of soil salinity at 0.10 m depth (m’m™) for the first 4 days of
planting at 0.10 m depth.

The ACF of the original time series of soil salinity at 0.10 m depth converges very
slowly, indicating that the time series is non-stationary (Fig. 4.10A). To obtain a
stationary time series, the original series were differentiated (first order-difference and
seasonal first order difference). No trend in variance is observed in this series, so there

is no need to apply a logarithmic transformation.

The ACF and PACF of differentiated time series indicated that the series was
approximately AR (3) for the regular component, and MA (1) for the seasonal
component, because the ACF (Fig. 4.10 B) showed that only the correlation at the first
three and at the 24" lags of ACF were significant.
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Fig. 4.10. (A) Autocorrelation function (ACF) of the original data, (B) autocorrelation
function, and (C) partial autocorrelation function (PACF) of the transformed time series
of soil salinity at 0.10 m depth. The ACF of the original data indicates that the series is
not stationary. The dashed line represents 2 x standard errors.

The ARIMA (p, d, q) (P, D, Q)s model of time series of soil salinity at 0.10 m depth
was ARIMA (3, 1, 0) (1, 0, 0)24. In usual notation the model is given by:

(1-¢B—¢,B> —¢,B,’)(1- B)(1-B*) X, =(1+0,,B)a, (20)

where a, is an independent, identically distributed white noise term with zero mean and

variance = 2.8.107, ¢, =0.2088, @, =-0.0468 , and @,=-0.0883 are AR parameters.

The 6,, = 0.99 parameter of the seasonal AR. We checked the serial correlation in the

residuals of a fitted model (20) to verify if model (20) closely represented the observed
time series of soil salinity. By using the Ljung —Box statistic test of model residuals, Fig

4.11 shows that model residuals are correlated and that the model is not valid.

125



4. Soil salinity

p values for Ljunyg-Box statistic

ns
1

p value
04
1
[=]

a0 20 40 &0 g0 100 120

Fig. 4.11. The Ljung-Box statistic of the model ARIMA (2,1,0)(1,0,0) residuals.

Therefore, it is inadequate and needs to be improved in structure. An exploratory
method, which is well-established in other fields, is a seasonal-trend decomposition
based on locally-weighted regression (loess), widely known as “STL” (Cleveland et al.,
1990; Hafen et al., 2009). The STL method is straightforward to use; it allows for
flexibility in specifying the amount of variation in the trend and seasonal components of
time-series; and it produces robust estimates that are not distorted by transient outliers
(Cleveland et al., 1990). Fig. 4.12 shows that the large outliers of the remainder
(random) are backed to the irrigation event. Since the timing of the irrigation event is
previously known, the model could be completed with intervention analysis (irrigation
event) and outlier detection (model 20), making it invertible and thus reducing its

residual variance (Wei, 1989).
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Fig. 4. 12 Decomposition plot of soil salinity at 0.10 m depth affected by the
intervention variable (irrigation event in our case) and irregular variables (such as
precipitation) over 55 days, STL method. This plot assists evaluation of the trend,
seasonality and remainder (random) against the raw data. The graph (observed)
represents the hourly time series of soil salinity affected by irrigation and irregular
events like precipitation. The graph (trend) is the fitted trend. The graph (seasonal) is
the seasonal pattern per 24 hours. The graph (random) represents the remainder after the
trend and the seasonal pattern have been fitted to the time-series values. The sum of the
trend, the seasonal pattern and the random equals exactly the time-series. IR is the time
of irrigation event, and Pre is the precipitation time. The large peaks of the remainder
correspond to the irrigation time which must be taken into account when building up
ARIMA model on the series.

3.5.2. Outlier and intervention analysis in the ARIMA model for time series of
soil salinity at 0.10 m depth: the effectiveness of the irrigation event on
soil salinity.

Intervention analysis and automatic outlier detection were applied to the previous
ARIMA (3, 1, 0) (1, 0, 0)4 model to improve it and to assess the effect of irrigation
events on soil salinity at 0.10 m depth (for more information about intervention analysis

and outlier detection see Materials and Methods, chapter 3). With Grubb's test (Eq. 7,
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chapter 3) 15 outliers were detected (Table 4.5) for the time series of soil water content

at 0.10 m depth.

Table 4.5. Outlier Detection and parameter estimation for time
series of soil salinity at 0.10 m

Observation time (hour) type w
103 AO 0.18505831 7.968661
106 TC 0.12443606 4.554197
153 AO 0.09745569 4.564459
494 TC-0.17091216 6.035187
653 AO 0.29954989 12.203030
654 A0 -0.11073225 5.145772
770 TC-0.23075883 7.883772
919 TC-0.11041299 4.181763
962 TC-0.10900883 4.183170
1001 TC-0.11738130 4.326400
1029 TC-0.10927677 4.165889
1089 TC 0.11360351 4.215289
1112 TC-0.28581633 9.320497
1113 TC-0.14613830 5.213316
1262 TC-0.20726519 7.219790

Including the outlier detection and intervention analysis, the observed value of time
series of soil water content at 0.10 m depth can be described according to Eq. 8 (chapter
3) as:

23 5
X, =0,(50% + 850 + S5 + Siess) + D o, P+ a)jPT(IAO) +Z,
=1 7= (21)
Xt is the observed time series, Zt is the time series free of outliers, and @, =-0.7592
represents the permanent change in the mean level after the irrigation event, which
characterizes the effectiveness of the irrigation event on the soil salinity. In this study,
the flow rate and cut-off time for the four applied irrigations were almost equal.

Therefore, we used an average coefficient for w, to estimate the weight of the peak
caused by four irrigation events. The part (S\2, +S%,, +S\, +S..) represents the

step indicator at four irrigation times 7, (days 4.29, 27.20, 32.04, and 46.33). The part

23 5
> 0P +> o P represents the effects of the 15 detected outliers.

i=1 Jj=1
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By applying the Box-Jenkins approach to the time series of soil salinity Z, obtained

from Eq. (21), the ARIMA (3, 1, 0) (0, 1, 1),4 model was determined. The model, in

usual notation, is given by:

(1-$B~¢,B” -$,8°)(1-B)(1-B*)Z, =(1+6,,B")a, (22)

The model (22) is free of outliers, it is invertible, and the ACF and PACF of

residuals at all lags are non-significant. Fig. 4.13 shows that the model (22) residuals are

non -significant. Table 4.6 shows the comparison between the two models (20 and 22)

in terms of statistical parameters.
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. 4.13. The Ljung-Box statistics of the model ARIMA (3,1,0) (0,1,1) residuals

Table 4.6. Comparison of the two models for soil salinity at 0.10 m depth in terms
of statistical parameters (one based on observed data X, and the second based on

outlier-free data Z,)

Model P, P, ¢3 024 o’
Model based on
observed data X, 0114 0.0684 1.377.10*
(20)
Model based on

Outlier free data Z,  -0.0467 -0.0108 0.0273  -0.9226 7.431.107

(22)
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After modelling op, the next step is to model the soil waer and soil temperatue time
series at 0.10 m depth. Following the same steps to model op, table 4.7 shows the
ARIMA soil water and soil temperatue models. While the effect of irrigation event on

soil water and soil temperatue time series at 0.10 was 0.0843 and 0.2882 respectively.

Table 4.7. models of soil water content (/) and soil temperature () at 0.10 m

Model &, 4, o, 01 6, o’

Soil water -0.0361 -0.0192 1.056.10”
Soil temperature ~ 1.5510  -0.6414  0.0273  -0.877 -0.882 1.833.107

3.5.3. Transfer function approach

The cross-correlation between the pre-whitened primary time series of soil water
content and soil temperature at 0.10 m depth, and the target soil salinity time series at
0.10 m depth and average soil salinity in the top 0.60 m soil profile, showed that the
primary series affects the target series, but the target series cannot in turn have a bearing
upon the primary series. Fig. 4.12 proofs that the present value of soil water and content
and soil temperature at 0.10 m has a significant effect on the present value of soil

salinity at 0.10 m depth and average soil salinity in the top 0.60 m of the soil profile.

Models for predicting soil salinity from the soil water content and soil temperature at
0.10 m depths were identified (Table 4.8). The coefficients of X; in the equations of
Table 4.8 show that the present values of soil water content and soil temperature at 0.10
m have effects of -7.82, -0.050 on salinity at 0.10 m dpeth, respectively. Also, the
present values of soil water content and soil temperature at 0.10 m have effects of -1.68,
-0.004 on the present value of average soil salinity in the top 0.60 m soil profile,

respectively.
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3.5.4. Forecasting

Fig. 4.13 shows the model calibration and prediction for average soil salinity in the
top of 0.60 m depth of soil profile and soil salinity at 0.10 m depth. The first 659
observations of each time series were used for model identification. The calibrated
model represented the values before these 659 observations very well for each depth.
The predicted and observed values after the 659 observation agreed reasonably. The
relative difference between predicted and observed values was sometimes large. The

absolute difference between the prediction and measurement never exceeded 0.27dSm’.
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Fig. 4.12. Cross-correlation function for soil water content and soil temperature hourly
time series at 0.10 m and soil salinity at 0.10 m depth , soil water content and soil
temperature 0.10 and soil salinity in the top 0.60 m of soil profile, respectively. Dashed
lines indicate 95% confident limits.
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Table 4.8. Time series transfer function model for soil salinity at 0.10 m depth and in
the top of 0.60 m of the soil profile.

Soil water content X4, soil temperature X5, at 0.10 m and soil salinity Y at 0.10 m:
Y = (-7.8242+1.4053B-0.2606B> + 0.723458° )X,,,+(-0.0508+0.0153B).X,,, +a,

’ (1- B)(1+0.680B>)(1+0.1597B +0.1266B> + 0.0502B°)

a, ~ N(0,6.489 .8 10 )

Soil water content X, soil temperature X,,; at 0.10 m and average soil salinity Y;
_ (-1.6855-0.0548B + 0.4975B* + 0.0717B%) X,,,+(0.004 - 0.0111).X,,,+a,
! (1-B)(1-0.0358B*)(1-0.0627 +0.0209B> — 0.1754B%)

a, ~ N(0,2.684 10 )

Using the transfer function model presented in table 4.8, Fig. 4.14 shows an example
of prediction of soil salinity (at 0.10 m and in the top 0.60 m soil profile) for two days,
as a function of soil water content and soil temperature at 0.10 m. The observed values
of soil salinity correspond to 55 days, and the prediction is for the 56" and 57™ day. It
includes the effect of the next irrigation if the farmer chooses to irrigate on the 56.5™

day.
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Fig. 4.13. Measured and predicted soil salinity versus time at 0.10 m depth and in the
top 0.60 m of soil profile. Prediction was based on the identified transfer function
models for each one. The curve before the vertical dashed line refers to model
calibration and after the vertical dashed line to model prediction.
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Fig. 4. 14. Prediction models for soil salinity at 0.10 m depth and average soil salinity in
the top 0.60 m of soil profile. Prediction was based on the indentified transfer function.
We have observed data for 55 days, the model predicts the 56th and 57th day taking into
account the effect of next irrigation if the farmer choose to irrigate on 56.5th day (* is
the irrigation time at 56.5th day).

3.6. Effects of irrigation management applied on soil salinity

Fig 4.15 and Fig 4.16 show how irrigation quickly reduces the salinity in the crop
root zone ( the top 0.60 m soil profile responds fast to irrigation envents). Table 4.9 and
4.10 presents the primary statistical results associated with the repeated measurement
analysis of the soil salinity data (Field 1, lettuce, and Field 3, artichoke). The univariate
ANOVA models with the position, depth and irrigation frequency for Field 1 (lettuce)
and Field 3 (artichoke) had statistically significant resutls. There is an interaction
between those factors. Fig. 4.17 and Fig. 4.18 show how the average soil salinity
changed with irrigation frequency at different depths (beneath the furrow and the ridge
in the case of Field 1, Fig 4.17). Based on the multivariate tests in tables 4.8 and 4.9, the
patterns shown in Fig. 4.17 and Fig. 4.18 can be considered statistically distinct.
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Table 4.9. Effect of irrigation frequency , and position (furrow, ridge) on mean of
soil salinity (dS m™ ) at various depth Field 1, Lettuce.

Depth
Main 0.10 m 0.20 m 0.35m 0.50 m 0.60 m
factors
Irrigation Furrow Ridge Furrow Furrow Ridge Furrow Furrow Ridge
(IR)
Irrigl 2.84 1.82 4.7 3.90 4.74 3.33 4.07 5.40
Irrig2 2.68 2.00 4.90 3.40 4.13 3.16 3.55 5.16
Irrig3 2.78 1.78 4.80 3.50 3.9 3.09 3.31 5.14
Irrigd 2.70 1.40 5.20 3.38 3.80 3.01 3.48 NA
significance * * * * * * * *
Depth
0.10m 0.20 0.35m 0.50 m 0.60 m
m
Position
(POYS)
Ridge 1.76 4.16 5.23
Furrow 2.75 4.90 3.54 3.10 3.60
Significance oAk ook ook
Depth
0.10 m 020 m 0.35m 0.50 m 0.60 m
Interaction

Significant *P < 0.05, **P <0.01, ***P < 0.001.
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In field 2, lettuce, the univariate ANOVA models with the position, depth and
irrigation frequency had also statistically significant results. Fig. 4.19 shows that the
the average soil salinity changed with irrigation frequency across the depths beneath the
furrow. Table 4.11 indicates that the comparison between Field 1 and Field 2 in terms of
the mean of soil salinity for each depth is statistically significant results and Fig 4.20
shows that the irrigation water quality may be the main reason for these differences.
Field 2 was irrigated from the Canal de la Infanta (water quality about 2 dS m™) while
Field 1 was irrigated from the Canal de la Dreta (water quality about 1 dS m™). Soil
salinity in Field 3 (in the root zone) was lower than in Field 2 because the farmer in
Field 3 uses more irrigation events and also mix the water which came from Canal de la

Infanta with water extracted from his well.

Table 4.10. Effect of irrigation frequency and depth on mean of soil
salinity (dS m™ ), Field 3, artichoke,

Depth
Main factors 0.10m 0.20m 0.35m 0.60m
Irrigation (IR)
irrigl 3.27 3.21 3.06 3.24
irrig2 3.57 3.99 1.93 3.25
irrig3 3.97 3.93 3.08 3.52
irrigd 3.66 3.25 3.57 3.91
irrig5 4.25 4.78 4.54 3.47
irrigb 2.30 3.54 3.91 4.01
irrig7 3.99 4.07 4.39 422
irrig8 1.91 1.87 1.25 1.39
irrig9 1.5 1.36 0.41 1.28
irrigl0 1.66 1.86 1.61 1.35
irrigl 1 1.07 0.62 6.79 6.75
irrigl2 4.27 5.29 5.40 3.55
irrigl3 1.18 3.10 3.97 3.89
irrigl4 3.68 3.23 2.74 1.99
Signiﬁcance ksksk kksk keksk keksk
Interaction
IR*Depth otk

significant; *P < 0.05, **P <0.01, ***P <(.001
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Figure 4.17. Average soil salinity interaction plot for irrigation frequency as related to
depth, IR: irrigation event (1, 2, 3 and 4), a) beneath the ridge and b) beneath the
furrow, Filed 1, lettuce

Table 4.11. Effect of water quality and depth on the mean of soil salinity (dS m™), Field 1
and 2, lettuce.

Field
Main factor Field 1 (water quality 1dS m™) Field 2 (water quality 2ds m™)
Depth
0.10 m 3.092257 3.406583
0.20 m 5.187310 6.953250
0.35m 3.141300 5.370667
0.50 m 3.123313 8.796500
0.60 m 3.612595 8.928667
Significance ok ok
Interaction
Field *Depth koxk

significant; *P <0.05, **P <0.01, ***P <0.001
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Fig. 4.20. Average soil salinity interaction plot for Field 1 and 2 as related to depth
(beneath the furrow, lettuce crop), the affect of water quality in the soil profile at
various depths is the main reason for this difference.

In General, in this study, the mean soil salinity significantly changed with depth and
irrigation frequency, and we can see that at the end of crop’s vegetative stage the
farmers left the field with less soil salinity, for each depth, than at the beginning of
crop’s vegetative stage (Fig 4.17, Fig 4.18 and Fig. 4.19).

4. Conclusions

Several models have been studied to assess the o, from ¢, -g;, relationship (Rhoades
et al., 1976; Muallem and Friedman, 1991; Malicki and Walczak, 1999). Lately,
Hilhorst (2000) presented a theoretical model describing a linear relationship between
op and g, in moist soil. By using this linear relationship, Hilhorst (2000) found that
measurements of the ¢, can be made in a wide range of soil types without soil-specific
calibrations. In this present study, applying the ¢, - o5 linear relationship on the field

condition data gotten from capacitance sensors, the autocorrelation between the
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residuals of that regression were extremely strong positive. By including a stochastic
component to the linear model and rearranged it to a Time- varying Dynamic Linear
Model (DLM) and using kalman filtering and smoothing, we are enabled to derive an
accurate offset of the relationship €, - 0, and estimate the evolution of g, over time. It
was shown that the offset varies for each depth in the same soil profile. A reason for
this might be to the changes in soil temperature through soil profile. Once o, was
estimated, by using transfer function model, prediction of soil salinity by measuring soil
water conentent and soil temperatre were logical. Also, the next irrigation time and its

effect on soil salinity at the depth of interest were correctly estimated.

Irrigation frequency according to the farmer’s normal management practice had
statistically significant effects on soil salinity behavior, depending on soil depth and
position. For each depth, farmers left the field with less soil salinity than at the
beginning of the crop’s vegetative stage. Moreover, irrigation water quality had a

significant effect on soil salinity at the root zone in the three fields.
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5. Conclusions

Conclusion

This dissertation has evaluated furrow irrigation in the Parc Agrari del Baix de
Llobregat area, according to the farmer’s normal management practice. Soil water
content and soil salinity were assessed temporally and spatially using capacitance

sensors for evaluating the appropriateness of related management practices.

The purpose of the current study was the determination of the performance indicators
of the furrow irrigation system and the study of the evolution of soil water content and
soil salinity in the root zone. Such study allows us to determine the tools that could
maintain and improve the agricultural sustainability of the study area. The more

significant findings that emerge from this study are:

e The adaptation of the ARIMA model to the variable interval irrigation system
for predicting soil moisture. In the case of variable interval irrigation, predicting
the soil water content time series cannot be properly explained by the ARIMA
model and its underlying normality assumption. In this research we completed
the ARIMA model with intervention analysis and outlier detection to predict the
soil water content in variable interval irrigation.

e The obtained ARIMA model was capable to determine precisely the next
irrigation time.

e The effect of irrigation event on soil moisture was estimated reasonably.

e The soil moisture at greater depths was forecasted well from one single shallow
depth by using transfer function model. The relative difference between
predicted and observed values was sometimes large; it increased as the distance
of separation between the primary and target increased. The absolute difference
between the prediction and measurement never exceeded 0.03 m* m™.

e We built an advanced process to study the relationship between soil dielectric
constant (g,) and bulk electrical conductivity (o5,) by including a stochastic
component to the linear relationship between them. The current study enables us
to derive an accurate offset form this relationship to estimate pore electrical
conductivity (o,) by using Time-varying Dynamic Linear Model (DLM). It was
shown that the offset, 5,-0, varies for each depth in the same soil profile. A

reason for this might be to the changes in soil temperature through soil profile.
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e The soil salinity at the shallow depth and in the top 0.60 m of the soil profile
was predicted well from measuring soil water content and soil temperature at the
shallow depth by using (mulitpe input-single output) transfer function model.

e We show that the cutoff time (t.,) plays a significant role in evaluating furrow
irrigation system to save irrigation water in the study area. 40 % and 43% of the
applied water would have been saved in the Field 1 and Field 2 respectively, if
the irrigation was stopped as soon as the soil water deficit was fully recharged
taking into account the amount of water needed for salt leaching.

e Irrigation frequency according to the farmer’s normal management practice had
statistically significant effects on soil salinity behavior, depending on soil depth
and position. For each depth, farmers left the field with less soil salinity than at
the beginning of the crop’s vegetative cycle. Moreover, irrigation water quality

had a significant effect on soil salinity at the root zone in the three studied fields.

Taken together, these results we can draw out the following suggestions:

e From field conditions data, the study discovered that the offset of the linear
relationship between soil dielectric constant and bulk electrical conductivity was
varied in the same soil profile and was related to soil temperature. However, we
recommend additional measurements in different soil types to validate this
model.

e The study used the ARIMA model and completed it with intervention analysis
and outlier detection for the data of Field 1, lettuce crop, the irrigation dose for
four irrigation events were almost the same, we used one average mean level to
depict the effectiveness of an irrigation moment on the time series of soil water
content. In the case of variable irrigation doses, the study suggests studying the
effect of each irrigation event and includes their effects separately in the model.

e Programming the ARIMA model and connect it to a device designed to aid in
irrigation scheduling by visually indicating current soil water statues and
determine the next time irrigation, so these types of low-cost sensors could

expand to be used by normal framer users.
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Dissertation Highlights

The research enables the ARIMA model to be
applied on variable interval irrigation for
predicting soil moisture and soil salinity.

The obtained ARIMA model was capable to
determine precisely the next irrigation time.

The effect of irrigation event on soil moisture
was estimated reasonably.

The soil moisture at greater depths was
forecasted well from one single shallow depth.

The research showed an advanced progress to
study the relationship between soil dielectric
constant and soil bulk electrical conductivity and
derive an accurate offset to convert bulk EC to
pore water EC.

The soil salinity at greater depth was predicted
well form measuring soil moisture and soil
temperature at shallow depth.

30% and 43% of the applied water would have
been saved in two fields of study area, if
irrigation stopped as soon as soil water deficit
was fully recharged taking into account the
amount of water needed for salt leaching.

In the study area, farmers left the field with less
soil salinity than at the beginning of the crop’s
vegetative cycle. Moreover, irrigation water
quality had a significant effect on soil salinity at
the root zone in the three studied fields.
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