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Summary 

 

 Sustainability of irrigated agriculture is a growing concern in the Baix Llobregat 

area. Although irrigated land accounts for a substantial proportion of food supply to the 

local market, it has been, and still is increasingly degraded by poor agricultural 

management. This dissertation focuses on ways to evaluate furrow irrigation and to 

assess soil water content and soil salinity (temporally and spatially) under usual 

farmers’ management practices. This dissertation meets these goals through an 

extensive study of relevant literature and the implementation of practical research. The 

latter was carried out with a case study on representative fields of the area. Empirical 

and stochastic models were applied to evaluate furrow irrigation as well as to monitor 

water flow and solute transport in the root zone. An empirical model was used to 

evaluate infiltration in furrow irrigation in two fields irrigated with water of different 

qualities. Performance indicators for each field were calculated. The volumetric water 

content of the study area was measured in situ for a horticultural crop during its growing 

vegetative stage, using capacitance soil moisture sensors at five depths within the root 

zone. Time series analysis techniques were applied to evaluate soil water content in the 

root zone in order to predict soil water content at the depth of interest by measuring one 

shallow depth, and a methodology was suggested to determine the next irrigation time 

and its effect on soil water content at the depth of interest.  

 

Hilhorst (2000) presented a theoretical model describing a linear relationship 

between soil bulk electrical conductivity (σb), and soil dielectric constant (εb) in moist 

soils, to estimate pore water electrical conductivity (σp). With linear relationship, 

Hilhorst (2000) found that measurements of σp can be made in a wide range of soil types 

without soil-specific calibrations. When applying the linear relationship εb – σb to the 

field data in our study, we observed that the residuals of the estimated linear 

relationship displayed extremely strong positive autocorrelations. We improved this 

linear relationship by adding a stochastic component to it. After estimating σp, two 

studies have been performed: a) prediction of soil salinity at shallow depth and in the 

upper soil profile (0.60 m depth) by measuring soil water content and soil temperature 

at shallow depth; b) comparison between the fields of the study area to evaluate the 
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effects of irrigation frequency according to the farmer’s usual management practice on 

soil salinity behaviour, depending on soil depth and position (furrow or ridge). 

 

A volume balance model was used to evaluate the furrow irrigation system in the 

study area. Field data were collected to evaluate the advance-recession time for stream 

flow along the furrow, field infiltration and soil moisture distribution after irrigation. A 

sensitivity analysis was made on the response of the model to changes in specific 

parameters.  

 

The time series consisted of hourly measurements of soil water content and was 

transformed to a stationary situation. Subsequently, the transformed data were used to 

conduct analyses in the time domain in order to obtain parameters for a seasonal 

autoregressive integrated moving average (ARIMA) model. In the case of variable 

interval irrigation, predicting the soil water content time series cannot be properly 

explained by the ARIMA model and its underlying normality assumption. By 

completing the ARIMA model with intervention analysis and outlier detection, the 

prediction of soil water content with variable interval irrigation could be made. The 

transfer function models were then used to predict water contents at depths of interest 

(0.20, 0.35, 0.50 and 0.60 m) as well as the average water content (WAVG) in the top soil 

profile by measuring water content at 0.10 m depth.  

 

We rearranged the Hilhorst (2000) model to a stochastic model called time- varying 

Dynamic Linear Model (DLM) to obtain an accurate offset εσb=0 of the relationship 

between εb and σb. When DLM is completely specified, i.e., there are no unknown 

parameters in its definitions, we can use the well known Kalman filtering and 

smoothing algorithms to obtain means and variances of the conditional distributions of 

the unobservable system state (εσb=0 and σp).   

 

Studying the cross-correlaiton function between soil salinity, soil water content and 

soil temperatue and using a (multiple input-one output) transfer function model, we 

were able to predict soil salinity at 0.10 m depth and in the top 0.60 m of the soil profile 

by measuring soil water content and soil temperature at 0.10 m depth.  
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This research produced a number of key findings: first, evaluating furrow irrigation 

confirmed that 30-43 % of the applied water would have been saved in the study fields 

if irrigation was stopped as soon as soil water deficit was fully recharge taking the 

amount of water needed for salt leaching into account, and that the application 

efficiency (AE) would increase from 52% to 84% and from 41% to 68% (Field 1 and 

Field 2, respectively). Second, the predictions of soil water content using ARIMA 

models were logical, and the next irrigation time and its effect on soil water content at 

the depth of interest were correctly estimated. Third, considering the linear relationship 

εb – σb, by transforming the Hilhorst (2000) model, which is based on the deterministic 

linear relationship εb-σb, into a time- varying Dynamic Linear Model (DLM) enabled us 

to validate this relationship under field conditions. An offset εσb=0 value was derived 

that would ensure the accurate prediction of σp from measurements of σb. It was shown 

that the offset εσb=0 varied for each depth in the same soil profile. A reason for this 

might be changes in soil temperature along the soil profile. The σp was then calculated 

for each depth in the root zone. Fourth, by using a (multiple input–single output) 

transfer function model, the results showed that soil water content and soil temperature 

had a significant impact on soil salinity. Moreover, soil salinity was predicted as a 

function of soil water and soil temperature, was correctly estimated. Finally, applying 

the analysis of variance (ANOVA), the results showed that the irrigation frequency, 

according to the farmer’s usual management practice, had statistically significant effects 

on soil salinity behaviour, depending on soil depth and position (furrow, ridge). 

Moreover, it was shown that at the end of the crop’s cycle the farmers left the field with 

less soil salinity, for each depth, than at the beginning of the crop’s agricultural cycle.  
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Resumen 

 

La sostenibilidad de la agricultura de regadío es una preocupación creciente en la 

zona del Baix Llobregat. A pesar de que las tierra irrigadas abastecen  de alimentos en 

una proporción sustancial al mercado local, estas tierras han sido y siguen siendo 

degradadas por una gestión agrícola no adecuada.   Esta tesis doctoral tiene como 

objetivo evaluar el riego por surcos realizado conforme a las prácticas de gestión 

habitual de los agricultores de la zona, del contenido de agua y de la salinidad del suelo 

(de forma temporal y espacial) en dos campos ubicados cultivados con lechuga y 

alcachofa y regados con aguas de diferente calidad. Se aplicaron modelos empíricos y 

estocásticos para evaluar la irrigación por surco, así como para monitorear el flujo de 

agua y el transporte de solutos en la zona radicular del cultivo. Se utilizó un modelo 

empírico para evaluar la infiltración en el riego por surcos en los dos campos regados y 

para calcular los indicadores de calidad de riego. El contenido volumétrico de agua de la 

zona estudiada se midió in situ con sensores de capacitancia de humedad a cinco 

profundidades dentro de la zona radicular del cultivo durante su ciclo productivo 

vegetativo. Las técnicas de análisis de series temporales  se aplicaron para predecir el 

contenido de agua del suelo a profundidades determinadas teniendo en cuenta el 

contenido de agua en la capa superficial. Ello permitió predicer el momento más 

adecuado para el próximo riego. 

 

Para estimar la conductividad eléctrica del agua capilar (σp) se utilizó el modelo 

propuesto por Hilhorst (2000), el cual describe una relación lineal en suelos húmedos 

entre la conductividad eléctrica aparente del suelo (σb) y la constante dieléctrica del 

mismo (εb).  Mediante el uso de esta relación lineal, Hilhorst (2000) encontró a través de 

sus experimentos de laboratorio que las mediciones de σp se pueden hacer en una amplia 

gama de tipos de suelo sin calibraciones específicas. Al aplicar la relación lineal εb – σb 

a los datos de campo de nuestro estudio se observó que los residuales estimados de la 

relación lineal mostraban una fuerte autocorrelación positiva. Se ha  mejorado esta 

relación lineal mediante la inclusión de un componente estocástico. Después de estimar 

σp se realizaron dos estudios: a) la estimación de la salinidad a 0,10 m de profundidad, 

así como el contenido medio de la salinidad del suelo en la parte superior del perfil 

(profudnidad 0,60 m) midiendo el contenido de agua y la temperatura del mismo a 0,10 

m de profundidad;  b)  la estimación de σp permitió comparar los datos de los campos 
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estudiados y mostrar el efecto de la frecuencia de riego sobre la salinidad del suelo, en 

función de la profundidad del mismo y la posición (surco o caballón). 

 

Para evaluar el sistema de riego por surco en el área de estudio se utilizó el modelo 

de balances en volumen. Los datos de campo fueron recogidos para evaluar el tiempo de 

avance-recesión para el flujo de la corriente de agua a lo largo de la longitud del surco, 

la infiltración y la distribución de la humedad del suelo después de riego. El análisis de 

sensibilidad se realizó sobre la respuesta del modelo a los cambios en los parámetros 

específicos. 

 

La serie de tiempo consistió en mediciones horarias del contenido de agua del suelo 

y se transformó a una situación estacionaria. Posteriormente, los datos transformados se 

utilizaron para realizar los análisis temporales con el fin de obtener los parámetros de un 

modelo estacional autorregresivo integrado de media móvil (ARIMA). 

 

En el caso de riegos a intervalo variable, predecir las series temporales del contenido 

de agua del suelo no es adecuadamente explicada por el modelo ARIMA y su supuesto 

de normalidad subyacente. Al completar el modelo ARIMA con análisis de intervención 

y detección de los atípicos, se puede hacer la predicción del contenido de agua del suelo 

para riegos de intervalo variable. Se utilizaron posteriormente modelos de función de 

transferencia para predecir el contenido de agua a las profundidades de interés (0,20, 

0,35, 0,50 y 0,60 m), así como el contenido medio de agua (WAVG) en la parte superior 

del perfil del suelo midiendo el contenido de agua a 0,10 m de profundidad. 

 

Para obtener una intercepción εσb=0 exacta de la relación lineal entre εb y σb se ha 

transformado el modelo de  Hilhorst (2000) a un modelo estocástico llamado Modelo 

Dinámico Lineal variable en el tiempo (DLM). Cuando el DLM se especifica 

completamente, es decir, que no hay parámetros desconocidos en sus definiciones, 

entonces se pueden usar los conocidos algoritmos de filtrado y suavizado de Kalman 

para obtener medias y varianzas de las distribuciones condicionales del estado no 

observable (εσb=0  y σp). 

 

El uso del modelo de función de la transferencia permitió predecir la salinidad del 

suelo a 0,10 m, así como el contenido medio de la salinidad del mismo en la parte 
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superior del perfil del suelo midiendo el contenido de agua y la temperatura del suelo a 

0,10 m de profundidad.  

 

Los resultados obtenidos fueron: a) la evaluación del riego por surco confirmó que se 

podría haber utilizado un 30-43% menos de agua en los suelos estudiados, teniendo en 

cuenta la recarga completa de agua del suelo y el agua necesaria para la lixiviación de 

las sales. De este modo, la eficiencia de aplicación (AE) aumentaría del 52% al 84% y 

del 41% al 68% en los campos de estudio (Campo 1 y Campo 2, respectivamente); b) 

las predicciones del contenido de agua del suelo mediante modelos ARIMA eran 

lógicas, y el tiempo del próximo riego y su efecto sobre el contenido de agua del suelo a 

la profundidad de interés se había calculadoó correctamente; c) teniendo en cuenta la 

relación lineal εb – σb, la reorganización del modelo de Hilhorst (2000), desde una 

relación lineal determinista εb-σb,  a un Modelo Dinámico Lineal (DLM ) variable en el 

tiempo permitió validar esta relación en condiciones de campo y obtener un valor εσb = 0 

que garantice la predicción exacta de σp a partir de mediciones de σb. Se demostró que 

la εσb = 0 varía para cada profundidad en un mismo perfil del suelo, posiblemente debido 

a los cambios de temperatura a lo largo del perfil.  

 

Mediante el uso del modelo de la función de transferencia, los resultados mostraron 

que el contenido de agua y temperatura del suelo tenian un impacto significativo en la 

salinidad del suelo, y que la predicción de la salinidad del suelo como una función de la 

humedad y temperatura del mismo se había estimado correctamente. Finalmente, al 

aplicar el análisis de la varianza (ANOVA),  los valores de σp calculados a distintas 

profundidades permitieron demostrar que la frecuencia de riego, practicada 

normalmente por el agricultor, tenía efectos estadísticamente significativos sobre la 

salinidad del suelo dependiendo de la profundidad y posición (surco o caballón). Sin 

embargo, la gestión del riego no afectó a la salinidad del suelo durante el ciclo 

productivo del del cultivo. 

                                                                                                                                                                      



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction  

 



 

 
 



1. Introduction  
 

 
 

1. Introduction  

Table of contents  

 

1 Introduction ............................................................................................................... 1 

1.1 Genearal context ................................................................................................ 1 

1.2 Description of the study area ............................................................................. 2 

1.2.1 Environmental problems face the area ....................................................... 3 

1.2.2 Procedures to face environmental problems in the Delta area ................... 4 

1.3 General Outlines ................................................................................................ 6 

1.3.1 Background ................................................................................................. 6 

1.3.2 Structure ..................................................................................................... 7 

1.3.3 Research problem and objective ................................................................. 8 

1.4 References: ......................................................................................................... 9 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 



1. Introduction  
 

1 
 

1. Introduction  

1.1 Genearal context 
 

Irrigated agriculture and efficient irrigation techniques are fundamental for crop 

production and world food security. The poor agricultural management in irrigated land 

(such as water-logging resulting from over-irrigation) leads to land degradation due to 

salinization and contaminated groundwater (Ghassemi et al., 1995). The sustainability 

irrigated agriculture requires increasing the irrigation efficiency to conserve water and 

maintain the root zone in good conditions for plant growth, this mean keeping the soil 

water content at its field capacity and the soil salinity at adequate level for plant growth. 

Moreover, increasing the irrigation efficiency alleviates groundwater pollution 

associated with irrigated agriculture. Because of increasing water needs in industrial, 

agricultural and human activities and the limitation of water resources, reusing of saline 

drainage water and treated wastewater for irrigation have been increased (Rhoades et 

al., 1997). With less leaching and drainage discharge and greater use of saline water for 

irrigation, soil salinity may increase in some areas. Thus, to achieve adequate level of 

soil salinity at root zone and to reach the efficient irrigation, functional methodology is 

required for the timely evaluation of soil salinity and soil water content in irrigated 

areas.  

 

Our study area is located near a coastal zone. For decades, some of its parts started 

facing emerging of soil salinization and noted pollution in its some aquifers because of 

some typical reasons of costal area problems (such as excessive exploitation of aquifers, 

sea water intrusion, and high infiltration by irrigation). Therefore, it is important to start 

with giving detailed description of water resources and how the responsible water 

authority in the area manage and distribute it to meet industrial, human and irrigation 

needs. After that, a general outlines for our research will be described related to the 

water resources and environmental situation in the Llobregat Delta from the agricultural 

point of view, focusing on the most common irrigation techniques that farmers usually 

use in this area, which accounts one of the most agricultural operation could affect on 

the sustainability of irrigated agriculture. In the end a general objective of the research 

will be presented.  
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1.2 Description of the study area  
 

Site: the study area is located in the Parc Agrari del Baix LLobregt (delta of the 

Llobregat river), in the south of Barcelona, Spain. It covers about 100 square kilometers 

and forms a valuable natural habitat. Its wetlands are of international importance for 

wildlife and form a significant wintering ground for many migratory birds, its classified 

as "Special Protected Areas" (SPA) in accordance with the purpose of the EU Bird 

Protection Directive  (according to Article 4 of the Council Directive 79/409/EEC). The 

delta aquifer is one of the most important freshwater resources for Barcelona region, 

with a groundwater capacity of 100 Mm3 yr-1, used by numerous industries, agriculture 

and the cities. The fertile delta farmland supports intensive agriculture making it an 

important agricultural productive supplying the local market. Three representative fields 

of the area were chosen for our study (Fig. 1.1). Sites were selected as representative of 

the soils, water quality (electrical conductivity, EC: 1 dS m-1 in Field 1 and 2 dS  m-1 in 

Fields 2 and 3), irrigation design, area and agricultural management practices of the 

region.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1. The study area in the Llobregat Delta site (sites of representative Fields 1, 2 
and 3). 
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1.2.1 Environmental problems face the area 
 

 Since 1960s, the delta´s land has been exposed to constant pressure from 
Barcelona´s urban and industrial expansion. The most factors affect on the water 
resources and environmental sustainability are: 

1. Using delta area to develop Catalonia´s infrastructure: most of logistics and 

transports services was built in this area (railways, port, airport and motorway 

network). Less than 5% of the original wetlands in the area now remain after 

the recent port extension (FAO, 2010). 

2. Salinization of the aquifer due to seawater intrusion as a result of the 

overexploitation of the underground water, rendering 30% unusable of deltaic 

aquifer (FAO, 2010). 

3. By the end of the 1980s, the Llobregat River was considered one of the most 

polluted in Western Europe due to: 

a. Potash-mining activities in the upstream Manresa (one of the main 

Llobregat River tributaries). 

b. Sewage treatment plants and industrial effluents (estimated at 137 hm3 

yr -1 or 4.3 m3 s-1 as average ) 

c. The river in its lower part receives large inputs from industrial and 

human activities (paper mills, tannery and textile industries), this lower 

part of river flows through one of the most densely populated areas of 

the Mediterranean region (Metropolitan area of Barcelona, over 3 

million people). 

d. Aquifer extractions are also affected by the water quality of Llobregat 

River (Catalan Water Agency, 2008). 

4. Intrinsic variability of the Mediterranean climate, especially in precipitation. 

Drought makes the flow from the Llobregat River insufficient to meet 

industrial, agricultural and human needs.  
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1.2.2 Procedures to face environmental problems in the Delta 
area 

 

  The most important practices that the public responsible authorities were adapted to 

manage environmental problems are: 

1. The infrastructure: it prevents excessive pollution of the river by intercepting 

specific effluents, such as the channels that receiving treated urban wastewater 

from Rubí and those collecting brines from the salt-mine sites (Fig. 1.2). Apart 

from that, there are two major channels which are located on two sides: 

a. On the right side of the river, Canal de la Dreta provides water extracted 

from the middle course of the river to horticulture.  

b. On the left side of the river, Canal de la Infanta, was also built for 

irrigation purposes, but now its main role is diverting treated wastewater 

from industries and towns away from the river, hence improving the 

latter´s water quality.  

2. Wastewater treatment plants: public responsible authority built a lot of 

wastewater plants in the area, there are two main wastewater treatment plants 

(WWTPs): El Prat de Llobregat and Sant Feliu de Llobregat, both with tertiary 

treatment. For Prat de Llobregat WWTP, the concept is to pump effluent 

upstream to a regulatory pond from which water will flow into the Canal de la 

Dreta. Currently, freshwater with an average conductivity of 1.5 dS m-1 from the 

Llobregat River is conveyed via this channel to irrigate farm lands. The use of 

effluent in irrigation would need the desalination of the WWTP effluent by EDR 

(electrodyalisis reversal) unit and facilities to pump it to the Canal de la Dreta 

and a storage pond. The average salinity of the irrigation water would be 

reduced from 2.9 to 1.2 dS m-1 (Sabater et al., 2012). Effluent from the Sant 

Feliu de Llobregat WWTP is fully treated to tertiary levels and accessible to be 

used in irrigated agriculture. The effluent volume around 19 Mm3 yr-1 can be 

transferred to the Canal de la Infanta to be used for irrigation purposes. The 

effluent is usually mixed with well water in order to reach an acceptable water 

quality for irrigation purposes (its average electrical conductivity is around 2.3 

dS m-1).  
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Moreover, an important part of the reclaimed flow of El Prat de Llobregat 

WWTP will also be used to create a hydraulic barrier to seawater intrusion in the 

Llobregat lower delta aquifer (Sabater et al., 2012). 

3. Three large dams were built in upstream sections of the Cardener and Llobregat 

River to ensure water supply during low flow periods. 

4. When the flow of the Llobregat River is insufficient to face the demand for 

indusial, human and agricultural needs, additional water has to be conveyed 

from the Ter River to the Llobregat watershed. Aquifer extractions are also 

affected by water quality of the Llobregat River. If water quality is poor, the 

surface water has to be mixed with more groundwater in order to be treated for 

domestic use (Sabater et al., 2012). 

Fig. 1.2. Deflection channels in the lower Llobregat River course (adapted from FAO, 
2010) 
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1.3 General Outlines  

1.3.1 Background  
 

For decades, numerous studies have been carried out in this area. In 1926, Antonia 

Burés Borrás the owner of a textile mill, which was located next to the Cardener, found 

that the metallic turbines of her factory were corroding. She realized that the 

concentration of salts was very high in the Cardener River upstream due to the mining 

industry´s wastes.  Burés then initiated legal proceeding against the mining company in 

order to stop their pollution of the Cardener’s waters. The Spanish Government began 

to study this issue seriously by doing two investigations on the effluent flowing out of 

Súria. Later, a lot of debates related to the affect of the salts flowing into the river from 

mines to the Llobregat aquifer carried out by the Commission for the Study of the 

Salinity of the Waters of the the Llobregat River (CESALL). In 1930, the CESALL 

released their conclusions and recommendation which was one of them is the salinity 

effluents should be limited to 250 mg L-1 in Palleja (CESALL, 1932). The study of 

Vilaró (1966) realized in the Llobregat River was the first research in Spain investigated 

in details the surface and underground water together. At the end of the 70’s, when 

salinization problems became increasingly worrying, hydrochemistry works improved 

the knowledge of the aquifer systems and the mechanisms that caused seawater 

intrusion in the main aquifer of the Llobregat delta (Custodio et al., 1976; Custodio, 

1981; Muñoz and Prat, 1991; Manzano et al., 1992; Bayó et al., 1977; Doménech et al., 

1983; Iríbar et al., 1991). An interesting study was done by Llamas (1969) about 

recharge the groundwater in the Llobregat Delta. He found the infiltration due to 

irrigation and rainwater falling directly on the area or in the watersheds of the small 

streams running directly into the delta formed about 45% per year of the total natural 

recharge of water in the Llobregat delta groundwater. Guimerá and Candela (1991) 

discovered in their study, which was carried out in the coastal detrial Maresme aquifer 

located north of Barcelona, that there is an increase of up to 40% of seawater presence 

in the aquifer from 1989 to 1991. Soler et al. (2002) used the characteristics of the 

isotopes as geochemical tools to study the water pollution problems in the Llobregat 

River.  

Many studies investigated in the practices of the Managed Artificial Recharge 

(MAR) to mitigate the negative effect of existing infrastructures in the influential area 
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of Llobregat River (roads, railroads, airport, etc) on the total amount of natural aquifer 

recharge that can be normally attributed to the area (Abarca et al., 2006; Gámez, 2007; 

Gasith and Resh, 1999; Luna et al., 2009; Prat and Rieradevall, 2006; Vázquez-Suñe et 

al., 2006). 

The previous studies discussed the water resources and environmental problems in 

Llobregat River and Llobregat Delta from the hydrological, geological and geochemical 

point of view. 

 

1.3.2 Structure  

 

 Our work will deal with the water resources and environmental situation in the 

Llobregat Delta from the agricultural point of view. In other words, within the complex 

situation that the Llobregat Delta area has, this research will evaluate the agricultural 

operations that the farmers are practicing and study its effect on the soil salinity, 

groundwater, and hence on the sustainability of irrigated area. Given limited time and 

resources for conducting the study, it will focus on the irrigation system adapted by the 

major farmers in the area and study its effect on the soil water content and soil salinity 

within the root zone.  

 

Sustainable management of groundwater quality in agricultural areas requires 

efficiently irrigate the crops. This means keeping the soil water content at its field 

capacity, the soil salinity at adequate level for plant growth and minimizing percolation. 

In that case the fertilizers will settle in the root zone and away from groundwater. 

Furrow irrigation system is the most common method that adopted by farmer in the 

study area to irrigate their crops. We will evaluate the furrow irrigation system in the 

two representative fields of the area (one of them is irrigated by the water coming from 

the Canal de la Dreta and the other from the Canal de la Infanta). The research has been 

organized into five chapters: 

Chapter one contains background and description of the study area, environmental 

problems face the area and the procedures that the public authority responsible has been 

adopted to mitigate it, studies have been done to deal with that problems and the 

objective of the study.     



1. Introduction  
 

8 
 

Chapter two will evaluate the furrow irrigation system that the farmers adopted it to 

irrigate their crops by using mathematical methods to calculate the performance 

indicators of the irrigation and using simulation to improve the irrigation efficiency.  

Chapter three will include stochastic models to assess the irrigation management 

that the farmers apply it in their fields. We will conclude this chapter with tools that can 

help the farmers in scheduling irrigation (determining the next irrigation time).  

Chapter four is related to the field soil salinity; advanced mathematical processes 

will be realized to develop the Hilhorst (2000) linear model to derive an accurate offset 

in order to convert the bulk electrical conductivity (b) to pore water electrical 

conductivity (p). After that, the relationship between the soil water content and soil 

temperature at the shallower depths with the soil salinity at deeper depths will be 

studied with the objective to predict the soil salinity at deeper depth by measuring soil 

moisture and soil temperature at shallow depth in order to help the farmers in keeping 

the root zone at adequate salinity level for plant growth.  

Finally, the conclusions, that arising from this research, will be presented in the last 

chapter along with the implications of this research and the recommendations for future 

work. 

 

1.3.3 Research problem and objective 

 

 In brief, the research objective could be divided into two parts: a) developing an 

integrated decision support for furrow irrigation used in the area study and; b) modeling 

the behavior of soil water content and soil salinity in the root zone to improve 

scheduling irrigation and maintain the sustainability of irrigated area.  

 

Five specific objectives have been designed to solve the research problem:  

 

1. Evaluating the furrow irrigation method used in the area study: determine the 

infiltration function and applied it in a simulation model to evaluate the 

performance and determine optimal design or management practices.  

2. Improving the scheduling irrigation: determine the next irrigation time and its 

effect on the soil water at depth of interest, this objective will be achieved by 1) 
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studying the autocorrelation and partial correlation function for soil water 

content measured at a shallower depth as well as the cross-correlation function 

between soil water content at a shallower depth and various greater depths, 

including average soil water content (WAVG) in the top 0.60 m of soil profile;  2)  

develop models for predicting the soil water content at various greater depths 

and water storage in the soil profile from a single shallower depth; and 3) 

examine the effectiveness of the irrigation event in the soil water profile. 

3. Deriving an offset value for the linear relationship between soil dielectic 

constant (εb) and bulk electrical conductivity (σb) that would ensure the accurate 

prediction of electrical conductivity of pore water (p) from measurements of 

soil bulk electrical conductivity (b). 

4. Developing models for predicting the soil salinity at various greater depths by 

measuring soil water content and soil temperature at shallow depth, this will be 

achieved by: a) studying the autocorrelation and partial correlation function for 

soil water content and temperature measured at a shallower depth; b) studying 

the cross-correlation function between soil water content and temperature at a 

shallower depth and various greater depths for soil salinity, including average 

soil salinity in the top 0.60 m profile. 

5. Studying the evolution of soil salinity during the crop vegetative stage in the 

study area and examine the effect of irrigation frequency and depth on the soil 

salinity.  
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“Model-making, the imaginative and logical steps which precede the 
experiment, may be judged the most valuable part of scientific method 
because skill and insight in these matters are rare. Without them we do 
not know what experiment to do. But it is the experiment which provides 
the raw material for scientific theory. Scientific theory cannot be built 
directly from the conclusions of conceptual models.”  

 

HERBERT GEORGE ANDREWARTHA 
 

Introduction to the Study of Animal Population (1961), 181. 
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Abstract  
 

The efficiency of the application of furrow irrigation for lettuce and artichoke 

production was studied in the Llobregat Delta area. Average irrigation efficiencies in 

the study area were found to vary between 31 and 52 %. Differences in efficiency were 

found to be directly related to farm design and specific management practices. 

Application efficiency was found to increase with decreasing cut-off time. 30 % and 43 

% of the applied water would have been saved in Field 1 and Field 2 respectively, if 

irrigation stopped as soon as soil water deficit was fully compensated taking into 

account the amount of water needed for salt leaching. More water was used for fields 

irrigated by poor water quality to ensure salt leaching. These results indicate that 

significant improvements in irrigation efficiency could be achieved through the 

adoption of design and management practices that are appropriate to meet the farms’ 

environmental and management constraints. 

 

 Keywords: Furrow; Irrigation; Farm design; Efficiency. 

 

1. Introduction  

 

Furrow irrigation relies on gravity to distribute water to farm fields. Following the 

direction of gravitational fore, the water flows across the fields from one end to the 

other, and infiltrates into the soil as it flows. The purpose of furrow irrigation 

techniques is to supply water in the right quantity, at the right time and in an even layer, 

to achieve a uniform crop stand and minimize water losses. The success of the 

techniques depends on proper design and operation of furrow irrigation systems at field 

level, which help farmers to achieve good crop yields, use precious water resources 

more efficiently, and limit water- logging, salinization and pollution of resources. 

 

Field dimensions, field slope, flow rate, cut-off time, soil-infiltration characteristics, 

and flow resistance are the variables used in the mathematical models describing the 

entire process of surface irrigation and developed by engineers to improve irrigation 

efficiencies. Interactions between the variables determine advance time, recession time, 

infiltrated depths and corresponding irrigation efficiencies and uniformities. 
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Four major categories of mathematical models have been developed to evaluate 

surface irrigation: fully hydrodynamic, zero-inertia, kinematic wave and volume 

balance models. A fully hydrodynamic model is the most complex and the most 

accurate. It is based on the complete Saint-Venant equations for conservation of mass 

and momentum. A zero-inertia model is a slightly simplified version of the complete 

Saint-Venant equations that leaves out the acceleration or inertia terms in the 

momentum equation. A kinematic wave model uses further simplifications and uniform 

flow assumptions. The simplest model, which involves the largest number of 

assumptions, is a volume balance model. It is based on the analytical or numerical 

solution of temporally and spatially-lumped mass conservation, commonly referred to 

as the “volume balance approach” (Jurriens et al., 2001). This approach has become 

more refined over time, both conceptually and numerically. 

 

The volume balance model has been widely used for design and field evaluation 

procedures and has been validated with field and laboratory data (Elliott and Walker, 

1982; Walker and Skogerboe, 1987; Guardo, 1988). It is applied primarily to the 

advance phase of any irrigation condition (i.e., border and furrow). Guardo et al. (2000) 

determined the advance-infiltration phase in level basin irrigation system by zero-inertia 

and volume balance models.  They found that the volume balance model provides 

satisfactory predictions of the advance-infiltration phase, although it is less complex and 

less mathematically demanding than the zero-inertia model.  

 

We used the volume balance model to evaluate the efficiency of the furrow irrigation 

system in the study area, futher details about its operations and methodology will be 

presented in the material and method section.  

 

The main objective of this research is assessing field irrigation performance in terms 

of application efficiency, storage efficiency, deep percolation and distribution 

uniformity, as well as assessing the impact of improved management options for a 

furrow irrigation system, based on surface irrigation simulations, the Monserrat (1988) 

EVSUP model and the WinSRFR model (Bautista et al., 2009). While the specific goals 

include: 
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1. Assessing the current field irrigation performance for selected irrigation events 

on different fields. 

2. Developing management options to improve (i.e. optimize) the irrigation 

efficiency for the selected fields. 

 

2. Materials and Methods  

 

With the help of technicians from the Parc Agrari del Baix Llobregat, two  lettuce 

and artichoke fields established on silty loam soil were selected for irrigatin trails (Fig. 

1.1), one located in the Canal de la Dreta (Field 1, lettuce and artichoke crops) and the 

other in the Canal de la Infanta (Field 2, lettuce crop). Sites were selected as 

representative of the soils, water quality (electrical conductivity, EC: 1 dS m-1 in field 1 

and 2 dS-1 m in field 2), irrigation design, area and management practices of the region. 

Irrigations were scheduled according to the farmer’s normal management practice.  

 

Irrigation water was applied from the upper part of the furrow and passed through a 

long throated flume device; the lower part of each furrow was closed at the end. Five 

neighboring furrows for in Field 1 and eight neighboring furrows for in Field 2 were 

selected for monitoring at each site. Analysis were conducted using the Monserrat 

(1988) EVASUP model to calculate the parameters of infiltration function. Moreover, to 

identify the optimum of application efficiency, analysis to examine the effect of changes 

in cut-off time and inflow were conducted using the surface irrigation model WinSRFR 

(Bautista et al., 2009). In each case, input parameters required for model operation were 

obtained from the measured field irrigations. Field slope, length and geometry furrow 

were measured at each site. A long throated flume device was used to measure flow 

rate. The water lost as tailwater is zero since the lower end of each furrow was closed.  

Stakes were placed at 5 meter intervals along the furrow length to measure water 

advance time, recession time and depth of flow. Capacitance soil moisture sensors 

(5TE, Decagon Devices, Inc., Pullman, WA) were installed in each field, with readings 

taken immediately prior to irrigation and two days after the irrigation was completed to 

measure the plant available soil water replaced by  irrigation (root zone soil water 

deficit). These measurements were used to determine an average soil water deficit for 

each site, which was used in the subsequent determination of application irrigation 

efficiency.  
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In our case, we assumed that the total infiltrated volume was equal to that of the 

water applied because there was no loss by tailwater. Below we will present the way to 

calculate the performance indicators. 

 

2.1 Evaluating furrow irrigation system 

 

Various parameters and variables are involved in the surface irrigation process, and 

they can be categorized according to whether they are field parameters, decision 

variables, or evaluation variables. Field parameters are situational data (i.e. data that 

describe the field situation), so the irrigation designer or farmer cannot assign them 

another value. Decision variables are those parameters or variables that an irrigation 

designer can adapt to find the best irrigation performance for given or selected field 

parameters. Evaluation variables are basically indexes for determining the irrigation 

performance.   

 

2.1.1 Field parameters 

 

Field parameters include the infiltration characteristics, the surface roughness or flow 

resistance, the field slope and the required irrigation depth. 

 

a) Soil infiltration characteristics 

 

Infiltration is the fundamental variable in irrigation, since it has the strongest 

influence on the movement of water over the soil. It is also the most difficult one to 

measure. 

 

The infiltration function is empirically determined to yield the relationship between 

the infiltrated water and the opportunity time (the time during which the water contact 

the soil). The power type- Kostiakov function is the most widely accepted to describte 

the infiltration characteristics: 

aKTZ   

where: 
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K, a : are empirical parameters.  

Z    : is the infiltrated water m3/m. 

T     : is the intake opportunity time, min. 

There is another derived function suggested by Wallender et al. (1985): 

Z = KTa + CT + D 

When D = 0 a Kostiakov – Lewis dominated equation is obtained, and when C = 0 a 

function suggested by the S.C.S is obtained.  

 

The volume balance method was used to determine the infiltration, based on the 

volume of water entering the field (Q.t) being equal to the volume of surface water 

(Vsur) plus the volume of infiltrated water (Vinf). 

 

Q.t = Vsur + Vinv 

 

Q: is the flow, m3/min/furrow or unit width. 

t: is the moments when the water reaches the points where water height is 

measured(min). 

Vsur , Vinf  are the volume of surface and infiltration water (m3). 

 

There are different methods to calculate infiltration using this equation (Elliot and 

Eisenhawer, 1983; Smerdon et al., 1988; Burt et al., 1982). In our study we follwed the 

method adapted by Monserrat (1988) EVASUP model1 to measure infiltration. This 

method has some assumptions: 

 The type of infiltration function is aKTZ  ; 

 The infiltration function is the same across the field; 

 The advance front is uniform;  

 The surface volume is estimated by two or three measurements of the water height 

during the flow of water along the furrow. 

 

                                                            
1 For more information about the EVASUP model see (Curso de Tecnología del Riego (4rt. : 1990 : 
E.T.S.E.A. Agrònoms, Lleida) 
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This type of infiltration has two unknown parameters K and a, that means, we need 

two equations: generally they are calculated when water reaches at the middle and the 

end of the furrow. At these two points, the applied volume of water and the surface 

volume of water can be known, thus, mathematically the infiltrated volume could be 

expressed as follows: 

For t= t1 

ܳ. ଵݐ െ ௦ܸ௨௥ଵ ൌ න ଵݐሺܭ
௫భ

଴
െ  ݔ௫ሻ௔݀ݐ

For t= t2                 

ܳ. ଶݐ െ ௦ܸ௨௥ଶ ൌ න ଶݐሺܭ
௫మ

଴
െ  ݔ௫ሻ௔݀ݐ

where: 

Q: is the flow, m3/min/furrow or unit width. 

t1, t2: are the moments when the water reaches the points where water height is 

measured (min). 

Vsur1, Vsur2:  are the volumes of surface water at moment t1, t2, (m3). 

tx: is the time of advance at distance x, (m).   

K, a : are parameters of the Kostiakov function. 

K and a were determined using the equations of Monserrat (1988) model. 

 

In our study, two-point approximations for expressing the mass balance of water in 

the field during the advance phase were selected. For example, furrow length in Field 1 

was 50 m, so when the advancing front of water reaches at 20 m during the irrigation 

event, the water heights at 5 m and 15 m were measured. Then, when the advancing 

front of water reached at 45 m, the water heights at 5, 15 and 40 m were measured. Fig. 

2.1 explains the locations of these points. 
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Fig. 2.1. Water advance at two moments 
 

 

Supposing that the height of water from the beginning of the furrow to the 5 m 

before the advance front is stabled, we could get the volume water surface as following: 
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where σy is the surface shape factor generally equal to 0.8, which is the ratio between 

the average cross-sectional flow area and that at the head of the field. For the infiltrated 

volume that factor called subsurface shape factor, is the ratio between the average 

infiltrated cross-sectional area (infiltrated depth time width), and the infiltrated cross-

sectional area (depth times width) at the head of the field.  

 

b) Flow resistance 

 

Flow resistance or roughness (n) is a basic input parameter in simulations of surface 

irrigation. It has a direct effect on flow velocity and, consequently, on advance time, 

infiltration pattern and total irrigation performance. The higher the flow resistance the 

longer the advance time; the longer the advance time, the higher heterogeneous 

infiltrated-depth distribution. 

 

It is difficult to determine the roughness of the field, and generally a hydraulic form 

is used to measure it. The Manning equation is the most used one to calculate 
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roughness. This equation is valid when normal flow is reached, that is when water 

height is constant, which first occurs at the beginning of the field. Hydraulic roughness 

calculates as follows: 

 

 ܳ ൌ ଴.଺଻ܵ଴ܴ ܣ
଴.ହ /݊ 

 

where: 

Q : is the water flow,  in m3sec-1 

n : is the hydraulic roughness. 

S0: is the field slope. 

R: is the hydraulic radius, in m. 

A: is the cross-sectional area of the flow, in m2. 

 

c) Required depth   

 

The required maximum depth can be determined from the total soil-moisture holding 

capacity, i.e., the total available moisture between field capacity and wilting point 

(TAM). Stress conditions in the root zone are defined by the Ready Available Moisture 

(RAM); it is a fraction of TAM. The Soil Moisture Deficit (SMD) is a measure of soil 

moisture between field capacity ሺߠ௙௖ሻ and existing moisture content (ߠ௜ሻ, multiplied by 

the rooting depth (RD) :  

 

ܦܯܵ ൌ ൫ߠ௙௖ െ  ܦܴ ௜൯ߠ

                                                                       

A similar term expressing the moisture that is allotted for depletion between 

irrigations is the Management Allowed Deficit (MAD). This is the value of (SMD) when 

irrigation should be scheduled and represents the depth of water the irrigation system 

should supply. Later this will be referred to as Zreq, indicating the 'required depth' of 

infiltration. In this case, the leaching fraction should be added to the soil moisture 

deficit to calculate the required depth. The leaching fraction (LF) is the fraction of 

supplied water that passes through the entire rooting depth and percolates below, and 

calculated as follows: 
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The total water applied through the irrigation system during each irrigation event (Di) 

is the crop water requirement (SMD) plus a drainage depth (Dd) due to the leaching 

requirement:  

 
Zreq = SMD + Dd = SMD / (1-LF) 
LF = Dd / Zreq = ECi / (5ECe - ECi) 

 

LF   : leaching fraction (dimensionless) 

Dd    : depth of water drained (mm) 

Zreq  : depth of water applied through irrigation (mm) 

ECi   : electrical conductivity of irrigation water (dSm-1) 

ECe : electrical conductivity of soil saturated extract salinity level affecting the crop at 

the root zone (dS m-1). 

 

d) Soil moisture depletion prior to irrigation:  

 

There are numerous techniques to evaluate soil moisture such as gravimetric 

samples, the neutron probe and the touch-and-feel method. In our study, capacitance 

soil moisture sensors (5TE, Decagon Devices, Inc., Pullman, WA) were installed to 

hourly measure soil moisture at five depths within the root zone (0.10, 0.20, 0.35, 0.50 

and 0.60 m). Depending on root depth, we took readings prior to irrigation and, 

knowing the field capacity, we calculated soil moisture depletion taking the leaching 

fraction (as described above) into account. 

 

e) Field slope 

 

Field slope and length were measured by survey before the first irrigation.   

 

f) Furrow spacing 

 

Furrow spacing (W), the distance from center to center of two adjacent furrows, is a 

field dimension used primarily to convert volumes to depths (D = Q / [LW]), where L is 

the field length and Q is the water flow rate, and it is also an input that assists in the 

modeling of the infiltration process. 
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g) Furrow geometry 

 

Measuring the cross-sectional geometry is very important for furrow evaluation. In 

our study we used a profilometer which provides data to plot furrow depth as a function 

of the lateral distance, and these data can then be used to obtain the geometric 

relationship between depths and areas. Simple power functions can be used to relate the 

cross-section area and the wetted perimeter with depth:  

 

2
1

 YA   

where: 

A: is the cross-sectional area (m2). 

Y: is the depth of the furrow. 

σ1, σ2: are empirical parameters determined by the adjusted data. 

 

By using a computer program, we numerically integrated the data to develop 

geometric relationship between the area and the depth. 

 

2.1.2 Decision variables 

 

Decision variables are those parameters or variables that a design engineer can 

manipulate to find the best irrigation performance for given or selected field parameters. 

The decision variables in surface irrigation are normally the field dimensions (length 

and width), the flow rate and the cut-off time. 

 

a) Field dimensions  

 

For furrows, there is only one field dimension: the furrow length. Furrow spacing is 

important only in the context of field parameters.  
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b) Flow rate 

 

This variable is fundamental for the evaluation and it should be measured at the point 

where water enters the field. In our study, the flow was measured by using a long 

throated flume device (Fig. 2.2).  

 

Q = 0.0004581 (h + 4.56)2.0023 

 

where Q is the volume flow rate, in Ls-1, h is the water head, in mm, when it enters the 

long throated flume. 

 

c) The advance and recession of water across the field surface  

 

This requires determining points (stakes) along the furrow. In order to determine the 

intake opportunity time, it is necessary to record the advance and recession data at each 

point.  

 

d) Cutoff time 

 

Cut-off time (Tco) is the amount of time that elapses since irrigation starts until it is 

cut off. 

 

e) Cutback ratio and tailwater reuse ratio 

 

In our fields the furrows were closed, so there was no cutback ratio.  

 

 
Fig. 2.2. Throated flume device, a) installation and b) measuring the inflow rate 
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2.1.3 Performances measurements 

 

Many performances measurements have been suggested; we applied the traditional 

ones which are based on volume –balance principles. They are 1) Application 

Efficiency; 2) Storage Efficiency; 3) Application Uniformity; 4) Deep Percolation; and 

5) Tailwater Ratio. We did not calculate Tailwater Ratio because in our study fields, the 

outlets were closed and we assumed that all the water entering the field did infiltrate.  

   

 

 

a) Application Efficiency (AE) 

 

It relates to the amount of water stored in the root zone to meet the crop water needs 

in relation to the water applied to the field: 

 

ܧܣ ൌ
݁݊݋ݖ ݐ݋݋ݎ ݄݁ݐ ݋ݐ ݀݁݀݀ܽ ݎ݁ݐܽݓ ݂݋ ݁݉ݑ݈݋ݒ
݈݂݀݁݅ ݄݁ݐ ݋ݐ ݈݀݁݅݌݌ܽ ݎ݁ݐܽݓ ݂݋ ݁݉ݑ݈݋ݒ

 

 
Fig. 2.3 shows the distribution of applied water along the field length stemming. The 

differences in intake opportunity time produce applied depths that are non-uniformly 
distributed with a characteristic shape skewed toward the inlet end of the field. 

 
 
 

  
Fig. 2.3. Distribution of applied water along a surface irrigated field, also showing the 
depth required to refill the root zone. 
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b) Storage Efficiency (SE) 

 

It relates to the volume of water stored in the root zone (defined by Zreq) to meet the 

crop water needs in relation to the total storage capacity of the root zone (Fig. 2.3).  

 

ܧܵ ൌ
݁݃ܽݎ݋ݐݏ ݁݊݋ݖ ݐ݋݋ݎ ݋ݐ ݀݁݀݀ܽ ݎ݁ݐܽݓ ݂݋ ݁݉ݑ݈݋ݒ

݁݉ݑ݈݋ݒ ݁݃ܽݎ݋ݐݏ ݁ݎݑݐ݅݋݉ ݈݅݋ݏ ݈ܽ݅ݐ݊݁ݐ݋݌
 

 

c) Application Uniformity (DU) 

 

It is defined as the average infiltrated depth in the lowest quarter of the field, divided 

by the average infiltrated depth in the field (Merriam and Keller, 1978).  

 

d) Deep Percolation (DP) 

 

It relates to the water lost through drainage beyond the root zone:  

 

ܲܦ ൌ
݊݋݅ݐ݈ܽ݋ܿݎ݁݌ ݌݁݁݀ ݂݋ ݁݉ݑ݈݋ݒ

 ݈݂݀݁݅  ݄݁ݐ ݋ݐ ݈݀݁݅݌݌ܽ ݎ݁ݐܽݓ ݂݋ ݉݁ݑ݈݋ݒ
 

 

We used two models to evaluate furrow irrigation: Monserrat (1988) EVASUP 

model to get the parameters of Kostiakov (k and a) and to present the performance 

indicator, and WinSRFR model for simulation and to optimize the infiltration 

parameters. The WinSRFR model is an integrated hydraulic analysis application for 

surface irrigation systems that combines a simulation engine with tools for irrigation 

system evaluation, design, and operational analysis. WinSRFR is the successor of the 

irrigation modeling software developed over the past 20 years by the USDA 

Agricultural Research Service (Bautista et al., 2009). 
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3. Results and discussion  
 

We evaluated the furrow irrigation system in two fields. Two tests for irrigation were 

done in Field 1 (one for a lettuce crop on April 2010-IR1- and another for an artichoke 

crop on May 2011-IR11), and one test was done in Field 2 (for a lettuce crop on April 

2010-IR2). Tables 2.1, 2.2 and 2.3 show the inputs and outputs of the Monserrat (1988) 

EVASUP model to calculate the performance indicators. Zreq were estimated from field 

measurements of soil water contents before irrigation. The observed soil moisture 

deficits, SMD (mm), were assumed as the best estimates of Zreq. Moreover, the amount 

of water required to leach the salts was added to Zreq. For all irrigation events, the root 

zone depths for lettuce and artichoke crop were assumed to equal 0.20 and 0.35 m, 

respectively, based on phenological estimations of the development of lettuce and 

artichoke root mass. Tables 2.1 to 2.4 show the way to calculate Zreq. To measure the 

cross- sectional geometry we used a profilometer, which provides data to plot furrow 

depth as a function of the lateral distance; these data can then be used to get geometric 

relationships between depths and areas. With a computer program we numerically 

integrated the data to develop geometric relationships between the areas and the depths 

(Fig. 2.4). 

 

Table 2.1. Threshold and zero yield salinity levels for four salinity rating 
Salinity rating  Threshold salinity 

dS m-1 
Zero yield level  

dS m-1 
Sensitive  
Moderately sensitive 
Moderately tolerant 
Tolerant 

1.3 
3.0 
6.0 
10.0 

8.0 
16.0 
24.0 
32.0 

Adopted from Ayers and Westcot, 1985 

 

 

Table 2.2. Crops in four salinity rating groups  
Sensitive Moderately sensitive Moderately tolerant Tolerant 
Lettuce  Artichoke  

Adopted from Ayers and Westoct, 1985 
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Table 2. 3. Data to calculate Zreq (IR1: Field 1, lettuce. IR11: Field 1, artichoke. IR2: 
Field 2, artichoke) 

  Field 
capacity 

௙௖ (mߠ
3 m-3) 

Soil water 
content before  

irrigationߠ௜ 
(m3 m-3) 

Rooting 
depth  
 ܦܴ

(mm) 

Electrical 
conductivity 
of irrigation 

water  (dS m-1)Field  Crop 

IR1 Lettuce 0.35 0.25 200 1 
IR11 Artichoke 0.35 0.24 350 1 
IR2 Lettuce 0.30 0.24 200 2 

 

 

 

 

Table 2. 4 Calculation of the depth of water required through irrigation Di 

IR1: Field 1,  
lettuce 

 
SMD = (0.35-0.25) 200 = 0.020 m 
 
LF = Dd / Zreq = ECi / (5ECe - ECi) = 1 / (5 x 1.3-1) = 0.18 
 
Zreq=SMD / (1-LF) = 0.020 / (1-0.18) = 0.024  m 
 

IR11: Field 1,  
artichoke 

 
SMD = (0.35-0.24) 350 = 0.0385 m 
 
LF = Dd/Zreq = ECi / (5ECe - ECi) = 1 / (5 x 6-1) = 0.034 
 
Zreq= SMD / (1-LF) =  0.0385 / (1-0.034)  =  0.039 m 
 

IR2: Field 2,  
lettuce 

 
SMD = (0.30-0.24) 200 = 0.012 m 
 
LF = Dd / Zreq = EC  i / (5ECe - ECi)  =  2 / (5 x 1.3-2) = 0.44 
 
Zreq= SMD / (1-LF) = 0.012 / (1-0.44)  =  0.021 m 
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Fig. 2.4. Relationship between the area and the depths at three points in the furrow (for 
Field 1, IR1) 
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 In the actual condition of irrigation in Field 1, the application efficiency was 52.45% 

for IR1 and 32% for IR11. Tables 2.5, 2.6 and 2.7 present the low values of final mass 

balance error (MBE) which is the difference between measured and predicted 

infiltration volume relative functions and reflects the validation of the estimated 

infiltration function.  

 

The application efficiency under IR2 actual conditions was 38.12%. Tables 2.8 and 

2.11 show scenarios simulated by the WinSRFR model for the lettuce crops in the two 

fields. In table 2.8, optimized discharge in IR1 was evaluated in scenario 2, with a cut-

off time of 12.3 min obtained without changing discharge compared to the actual 

conditions. In table 2.9 optimized discharge in IR2 was evaluated in scenario 3, with a 

cut-off time of 10.3 min obtained without changing discharge compared to the actual 

conditions. For Field 1, Fig. 2.5 shows the actual status of IR1, and Fig. 2.6 shows its 

simulation. For Field 2, Fig.  2.7 shows the actual status of IR2, and Fig. 2.8 shows its 

simulation. 

 

 

Fig. 2.5. Over irrigation status as applied under actual farm conditions (IR1) 
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Fig. 2.6. Full irrigation status as applied with optimized cut-off time  
by the WinSRFR model (scenarios 2-IR1) 

      

         Fig. 2.7. Over irrigation status as applied under actual  farml conditions (IR2) 

 

Fig. 2.8. Full irrigation status as applied with  optimized cut-off time 
 by the WinSRFR model (scenarios 3-IR2) 
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Table 2.5. Inputs and output of Monserrat (1988) EVASUP model for  calculation of 
performance indicators (first field, lettuce crop- IR1)  
          Input data  
 Distance between stakes = 5.000 m 
T1 time at instant 1 6.50 min  
T2 time at instant 2 15.00 min 
Q  inflow rate  0.001290 m3/seg/unit width 
Surface shape factor  0.770 
Subsurface shape factor  0.800 
 
                    Advance Time  
X (m) 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00   
T 
(min) 

1.50 3.50 5.00 6.50 8.50 9.00 11.00 13.00 15.00 17.00   

  
Parametors for  Monsserat (1988) EVASUP model 

     T =    6.50 min     advance time when water front reach 20 m stake  
            X =    0  m H = 0.080 m  
            X =  15.00 m H = 0.060 m 
     T =   15.00 min    advance time when water front reach 45 m stake 
 Parameters of Relationship between the 

area and the depth at three points in the 

furrow (  2
1

 YA ,Fig. 2.4) 
            X = 0    m H = 0.110 m 1 = 0.900 2 = 1.470 
            X =   15.00 m H = 0.070 m 1  = 2.8748 2  = 2.0624 
            X =   40.00 m H = 0.020 m 1  = 0.7596 2  = 1.470 

Output 
 
Balance for the two instants 
 
     T =    6.50 min 
          VOL. Applied  0.503  m3/unit width 
          VOL. Superficial  0.286   m3/unit width 
          VOL. Infiltrated  TEO. 0.217  m3/unit width 
          ERROR BAL. VOL. (%) 0.0758 
     T =   15.00 min 
          VOL. Applied  1.161  m3/unit width                                                    
          VOL. Superficial  0.563  m3/unit width 
          VOL. Infiltrated TEO. 0.598  m3/unit width 
          ERROR BAL. VOL. (%) .0000 
       K 0.0037951 m3/m.l./unit width /segA 
 90.04 cm3 /cm/unit width /minA 
 213.60 cm3 /cm/unit width /HA 
       A 0.211 
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Continued Table  2.5 
                    Input data for calculating performance indicators  
 
          Inflow rate  0.00129  m3/seg/unit width 
          Application time  20.00 min 
          Required infiltrated volume 0.0161 m3/m.l./unit width (the depth 

times the furrow spacing) 
          Distance between furrows  0.75 m 
          Infiltration parameters  : 
             K 0.00379/m.l./UA/S**A 
             A  0.211 
             C 0.00  m3/m.l./UA/S 
             D  0.00  m3/m.l./UA 
  
 X(m) T. advance (min)     T. recession (min)      

.0 0.0 165  
5.0 1.50 220  
0.0 3.50 270  
5.0 5 280  
0.0 6.50 330  
5.0 8.50 300  
30.0 9 360  
5.0 11 290  
40.0 13 295  
45.0 15 280  
0.0 17 250  

  
Output  
                    Runoff flow =0 (No Cutback) 
 
                    Performance indicators (%) 
 
 Application Uniformity =  97.64 
                                                                                                                              
  m3/ unit 

depth 
m3/unit 

width /m.l. 
 Application Efficiency 52.05 % V. Applied   1.548 0.031 
     
 Deep Percolation 47.92 % V. Percolated  0.742 0.016 
 Runoff 0.00 %    
Storage Efficiency 100.00 % V. Runoff  0.000 0.000 
Volum balnace error  5.20 % V. Infiltrated 1.467 0.031 
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Table 2.6. Inputs and outputs of Monserrat (1988) EVASUP model for calculation of 
performance indicators (first  field, artichoke crop-IR11) 
          Input data  
 
Distance between stakes   5.00 m 
T1 time at instant 1 12.00 min 
T2 time at instant 2 17.50 min 
 Q inflow rate 0.002230  m3/seg/unit width 
Surface shape factor  0.77 
Subsurface shape factor  0.80 
 
                   Time advance  
 
 X (m) 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00   
 T 
(min) 

4.00 7.50 9.50 12.00 15.00 17.50 19.50 22.00 25.00 29.50   

  
Parametors for  Monsserat (1988)  EVASUP model 

     T =   12.00 min advance time when water front reach 20 m stake 
            X =    0  m H = 0.089 m 
            X =  15.00 m H = 0.036 m 
     T =   17.50 min    advance time when water front reach 30 m stake 
 Parameters of Relationship between the area 

and the depth at three points in the furrow  

( 2
1

 YA ,  Fig2. 4.) 
           X =     0 m H = 0.089 m 1 = 1.110 2 = 1.800 
           X =   15.00 m H = 0.030 m 1 = 0.690 2 = 1.400 
           X =   25.00 m H = 0.020 m 1 = 0.620 2 = 1.800 

         Output 
                    Balance for the two instants 
     T =   12.00 min 
          VOL. Applied  1.60  m3/unit width 
          VOL. Superficial  0.18  m3/unit width 
          VOL. Infiltrated TEO. 1.40  m3/unit width 
          ERROR BAL. VOL. (%) 1.2138 
     T =   17.50  
          VOL. Applied 2.34  m3/unit width 
          VOL. Superficial  0.19  m3/unit width 
          VOL. Infiltrated TEO. 2.14  m3/unit width 

ERROR BAL. VOL. (%) .0000 
  
  Empirical constants for Kostiakov function     
       K 0.0736203   m3/m.l./unit width /segA 
       A 0.001 
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Continued Table 2.6 
                    Input data for calculating performance indicators   
 
          Inflow rate  0.00223   m3/seg/unit width 
          Application time  30.00 min 
        Required infiltrated volume 0.0320M3/m.l./unit width (the depth 

times the furrow spacing 
          Distance between furrows  1.20 m 
          Infiltration parameters  : 
          K 0.07362030  m3/m.l./ unit width /sA   
          A 0.001 
          C  0.00000000000  m3/m.l./ unit width /s 
          D 0.00000000  m3/m.l./ unit width 
       
X(m)    T. advance (min) T. recession (min)     
 0.0 0.0 160.0  
5.0 4.0 219.0  
10.0 7.5 270.0  
15.0 9.5 278.0  
20.0 12.0 332.0  
25.0 15.0 285.0  
30.0 17.5 357.0  
35.0 19.5 262.0  
40.0 22.0 256.0  
45.0 25.0 281.0  
50.0 29.5 343.0  
  
Runoff flow =0 (No Cutback) 
 output 
                    Performance indicators (%) 
 
 Application Uniformity =  99.99 
                                                                                                                       
  m3/unit 

depth 
m3/unit width 

/m.l. 
 Application Efficiency 31.39 % V. Applied   4.014 0.080 
     
 Deep Percolation 68.61 % V. Percolated 2.754 0.055 
Runoff 0.00 %    
 Storage Efficiency   V. Runoff  0.000 0.000 
volume balance error  3 % V. Infiltrated 3.888 0.080 
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Table 2.7.  Inputs and outputs of Monserrat (1988) EVASUP model for calculation of  
performance indicators  (first  field, artichoke crop-IR11) 
          Input data  
 
Distance between stakes   5.00 m 
T1 time at instant 1 12.00 min 
T2 time at instant 2 17.50 min 
Q inflow rate 0.00223  m3/seg/unit width 
Surface shape factor  0.770 
Subsurface shape factor  0.800 
 
                    Time advance  
 
 X (m.) 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00   
 T (min) 4.00 7.50 9.50 12.00 15.00 17.50 19.50 22.00 25.00 29.50   
Parameters for the  Monsserat (1988)  EVASUP model 

     T =   12.00 min advance time when water front reaches the  20 m stake 
            X =    0  m H = 0.089 m 
            X =  15.00 m H = 0.036 m 
     T =   17.50 min.    advance time when water front reaches the 30 m stake 
 Parameters of Relationship between the area 

and the depth at three points in the furrow  

( 2
1

 YA , Fig. 2.4.) 
X = 0  m H = 0.089 m 1 = 1.110 2 = 1.800 

X =   15.00 m H = 0.030 m 1 = 0.690 2 = 1.400 
X =   25.00 m H = 0.020 m 1 = 0.620 2 = 1.800 

         output 
                    Balance for the two instants 
 
     T =   12.00 min 
          VOL. Applied  1.60  m3/unit width 
          VOL. Superficial  0.18  m3/unit width 
          VOL. Infiltrated TEO. 1.40  m3/unit width 
          ERROR BAL. VOL. (%) 1.2138 
     T =   17.50 min 
          VOL. Applied 2.34  m3/unit width 
          VOL. Superficial  0.19  m3/unit width 
          VOL. Infiltrated TEO. 2.14  m3/unit width 
          ERROR BAL. VOL. (%) .0000 
  
  Empirical constants for the Kostiakov function     
       K 0.0736203  m3/m.l./unit width /segA 
 739.22 cm3/cm/unit width /minA 
 742.26 cm3/cm/unit width /hA 
       A 0.251 
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Continued Table.2.7 
                    Input data for calculating performance indicators   
 
          Inflow rate  0.00120  m3/seg/unit width 
          Application time  18.00 min 
          Required infiltrated volume 0.0165 m3/m.l./unit width (the depth times 

the furrow spacing 
          Distance between furrows   0.90 m 
          Infiltration parameters  : 
               K 0.0048  m3/m.l./ unit width /sA 
               A  0.251 
               C  0.00  m3/m.l./ unit width /s 
               D 0.00  m3/m.l./ unit width 
 
 
      
X(m)     

T. advance 
(min) 

T. recession (min)  

 0.0 0.0 120.0  
5.0 4.0 133.0  
10.0 6.0 150.0  
15.0 8.0 160.0  
20.0 12.0 161.0  
25.0 14.5 162.0  
30.0 17.0 163.0  
  
                    Runoff flow =0 (No Cutback) 
  
         Output            
                    Performance indicators (%) 
 
Application Uniformity =  98.56 
                                                                   
  m3/unit 

depth 
m3/unit 
width /m.l.

 Application Efficiency 38.12 % V. Applied 1.296 0.043 
     
Deep Percolation 61.87 % V. Percolated 0.756 0.025 
Runoff 0.00 %    
   V. Runoff 0.000 0.000 
Storage Efficiency 100.00 %    
 Volume balance error  1.4 % V. Infiltrated 1.277 0.043 
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Table 2.9. Results from  Field 2 (lettuce crop- IR2)  using the WinSRFR model 
(performance measures) 
 Qin 

(L/s) 
tco 

(min) 
Applied 

water (L) 
DU (%) AE (%) DP (%) 

Actual conditions 1.2 18 1296 98.56 38.12 58.33 
Scenario 1 1.2 15 1080 97 44 57 
Scenario 2 1.2 12 864 93 56 45 
Scenario 3 
(optimal cut-off 
time) 

1.2 10.3 741,6 80 68 32 

Scenario 4 0.98 18 1058,4 96 45 56 
Scenario 5 0.9 18 972 88 46.67 51 
Scenario 6 0.75 18 810 81 59 41 

Scenario 7 
0.70 18 756 Water front no reach to lower 

end 
 

 

Farmers in the Llobregat Delta area generally maintain irrigation after water has 

reached the end of the furrows to ensure that soil water at the root zone is fully 

recharged. However, farmers generally do not know the period of time required to 

compensate soil water deficit. Irrigation controllers or timers are not widely used, and 

the irrigation is often maintained until it is convenient to manually switch it off. Thus, 

under commercial conditions, a significant component of the applied irrigation water 

may be lost as an excessive deep percolation (Tables 2.8 and 2.9). For the specific 

irrigation example presented in Table 2.8 and Fig. 6 (Field 1, IR1), 30% of the applied 

water would have been saved if irrigation had been stopped as soon as the soil water 

deficit was fully compensated. For Field 2 (IR2), 43% of the applied water would have 

Table 2.8.  Results from  Field 1 (lettuce crop- IR1) using the  WinSRFR model 
(performances measures) 
 Qin 

(L/s) 
tco 

(min) 
Applied 

water (L)
DU (%) AE (%) DP (%) 

actual conditions 1.29 20 1548 97.64 52.05 61.87 
Scenario 1 1.29 15 1161 0.90 65 35 
Scenario 2 (optimal 
cut- off time) 

1,29 14 1083.6 85 84 16 

Scenario 3 
1.29 11 

851.4 
Water front no reach to lower 
end 

Scenario 4 0.95 20 1140 0.96 66 34 
Scenario 5 0.90 20 1140 0.94 69 31 

Scenario 6 
0.80 20 

960 
Water front no reach to lower 
end 
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been saved if irrigation had been stopped as soon as soil water deficit was fully 

compensated, as presented in table 2.9 and Fig 2.8. Moreover, the area of the individual 

furrow in Field 1 (IR1) was 50 m2 and the water supplied under actual conditions was 

1548 L (table 2.8), while the individual area in Field 2 (IR2) was 27 m2 and the supplied 

water was 1295 L (table 2.9). Hence, Field 2, IR2, used almost the same amount of 

water as Field 1, IR1, with half of its area. This may have been expected since water for 

irrigation had an electrical conductivity of 2 dS·m-1 in Field 2 and 1 dSm-1 in Field 1, 

and the farmer in Field 2 applied more water to leach the salts from the root zone. 

Moreover, by applying the winSRFR and EVASUP models we have obtained the same 

performance measures.   

 

 

4. Conclusion 

 

The application efficiency of furrow irrigation for lettuce and artichoke production 

was studied in the Llobregat Delta. Average irrigation efficiencies in this area were 

found to vary between 31 and 52%.  

 

30% and 43% of the applied water would have been saved in Field 1 and Field 2 

respectively, if irrigation was stopped as soon as the soil water deficit was fully 

compensated, taking into account the amount of water needed for salt leaching  

 

More water was applied in Field 2 than in Field 1 due to poor water quality. 

Differences in efficiency were found to be directly related to farm design and specific 

management practices. Application efficiency was found to increase with decreasing 

cut-off time. These results indicate that significant improvements in irrigation efficiency 

could be achieved through the adoption of design and management practices that are 

appropriate to the farm’s environmental and management constraints. 
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Abstract  

 

Understanding the field soil water regime is fundamental in scheduling irrigation as 

well as for monitoring water flow and solute transport. This study was carried out on 

variable interval irrigation and used time series analysis techniques to predict the soil 

water content at the interested depth by measuring one single depth in order to precisely 

determine the next irrigation time and its effect on soil water content at the interested 

depth. Volumetric water content of silty loam soil in Barcelona was measured in situ 

with capacitance soil moisture sensors at five depths within the root zone for a 

horticultural crop during its life cycle in 2010. The time series consisted of hourly 

measurements of soil water content and was transformed to a stationary situation. 

Subsequently, the transformed data were used to conduct analyses in the time domain in 

order to obtain the parameters of a seasonal autoregressive integrated moving average 

(ARIMA) model. In the case of variable interval irrigation, predicting the soil water 

content time series cannot be properly explained by the ARIMA model and its 

underlying normality assumption. By completing the ARIMA model with intervention 

analysis and outlier detection, the prediction of soil water content in variable interval 

irrigation can be made. The transfer function models were then used to predict water 

contents at depths of interest (0.20, 0.35, 0.50 and 0.60 m depths) as well as the average 

water content WAVG in the top 0.60 m soil profile by measuring water content at 0.10 m 

depth. As a result, the predictions were logical. Also, the next irrigation time and its 

effect on soil water content at the depth of interest were correctly estimated. To confirm 

results of the models, the experiment was repeated in 2011, and the predicted and 

observed values agree reasonably well.  

 

Keywords: Soil volumetric water content; Autoregressive integrated moving average 

(ARIMA); Outlier detection; Transfer function model. 
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1. Introduction  

 

Surface soil water is the water that is in the upper 0.10 m of soil, whereas root zone 

soil water is the water that is available to plants, which is generally considered to be in 

the upper 2 m of soil (Wang et al. 2009). Soil water has been studied in many soil 

science fields due to its great influences in the most of soil components as well as in the 

atmospheric conditions. Soil water in the top 2 m soil profile is considered the key 

variable in numerous environmental studies (Walker, 1999), including microbial, 

geological, meteorology, hydrology, agriculture and climate change (Topp et al., 1980; 

Jackson et al., 1999; Fast and McCorcle, 1991; Engman, 1992; Entekhabi et al., 1993; 

Betts et al., 1994; Saha, 1995). 

 

Due to the development of new techniques for examining the structure and metabolic 

activities of microbial communities, many microbial studies showed that the changes in 

temperature and soil water content conditions along topographic gradient have been 

linked to changes in microbial community composition (Morris and Boerner, 1999; 

Carletti et al., 2009) or microbial metabolic diversity (Rogers and Tate, 2001). Soil 

microbial basal respiration was highly correlated with mean annual precipitation when 

comparing 24 sites along a precipitation transect in semi-arid and arid southern Africa 

(Wichern and Joergensen, 2009). In native Austrian forests, Hackl et al. (2005) found 

that microbial community structure was most closely correlated with soil water 

availability in azonal forests (which exhibit extreme site conditions). Chen et al. (2007) 

showed in a greenhouse pot experiment that total plant biomass of white clover and 

ryegrass increased with increasing soil moisture contents.  

In irrigation studies understanding the field soil water regime is fundamental in 

scheduling irrigation. King et al. (2001) developed a device to aid in irrigation 

scheduling by visually indicating current soil water status relative to an upper and lower 

set point, two study fields, one with and one without soil water status indicators, 

Collectively, farm managers applied 7% (2.9 cm) less water to fields with the soil water 

status indicators than comparison fields. Average water application was significantly 

less (P=0.04) for fields with soil water status indicators.  
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In geological studies, soil water content plays a key role on the aggregate stability 

and determines the relationship between the variation in soil stability and soil physical 

properties (bulk density, texture, organic carbon, pore sizes distribution and saturated 

hydraulic conductivity), stable aggregates reduce detachment by raindrop and transport 

by overland flow and, also, reduce the formation of surface crusts and seals. In arid and 

semi-arid area where the soil water content at the onset of rain may be temporally and 

spatially variable so the antecedent soil water content in the field plays a key role in the 

rainfall-runoff relationship and soil loss (Puigdefabregas et al., 1992; Lopez-Bermudez 

et al., 1991). Martinez-Mena (1998) studied the effect of three soil water contents (close 

to saturation, field capacity and air-dry) on the aggregate stability for soils from arid and 

semi-arid area of southeast Spain, he found that the aggregate stability for wetter 

conditions was higher than for the air-dry conditions for 85% of the samples tested.  

In hydrological and climate change studies, large-scale soil moisture dynamics and 

its verification are essential to improve the predictive capability of coupled hydrologic-

meteorological models (Jackson et al. 1999). 

Therefore, from what is mentioned above, it is important to accurately monitor and 

estimate spatial and temporal variations of soil moisture. 

 

1.1. Measuring soil water content  

 

Soil water content can be determined by direct or indirect methods. Direct method is 

referred to as the gravimetric methods, it is usually requires oven drying of a known 

volume of soil at 105 ºC and determining the weight loss (Walker et al. 2004). Indirect 

methods measure some physical or chemical properties of a soil which is correlated to 

the soil water content (Arguedas-Rodriquez, 2009), these properties include dielectric 

constant (relative permittivity), electrical conductivity, heat capacity, hydrogen content 

and magnetic susceptibility. These techniques include time domain reflectometry 

(TDR), frequency domain reflectometry (FDR), time domain transmission (TDT), 

amplitude domain refelectomerty (ADR), phase transmission and ground penetrating 

radar (GPR). They also include capacitance sensors, radar scatterometry or active 

microwave, passive microwave, electromagnetic induction (EMI), neutron 
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thermalization, nuclear magnetic resonance, and gamma ray attention (Dane and Topp, 

2002). 

Direct method is not appropriate for understanding of the spatial and temporal 

behavior of soil moisture. Due to the heterogeneity of soil type, land use and 

topography, soil moisture may change considerably in space and time. Among indirect 

methods, we choose for our study capacitance sensors, which are relatively cheap, 

rugged and portable. 

Moreover, it is not sufficient to know simply the amount of water in the soil, because 

depending on conditions, given amount of water might be held so tightly by the force 

fields of a soil that it is essentially immobile. The energy states characterises the effects 

of forces exerted on a soil water by its surroundings and hence express the water`s 

availability. 

 

1.2. Soil water flow   

 

The traditional approach to modelling soil water flow is based on deterministic 

models using Richards’ equation (Bresler and Dagan, 1981, 1983a, 1983b; Butters and 

Jury, 1989; Dagan and Bresler, 1983; Destouni and Cvetkovic, 1991; Schulin et al., 

1987; Shani et al., 2007; Wagenet and Hutson, 1989; Wildenschild and Jensen, 1999). 

Many studies have indicated that the average moisture profile in a heterogeneous field 

could not be correctly predicted by the classical differential equations using effective 

soil properties (Alessi et al., 1992; Wu et al., 1996). 

 

Due to soil profile heterogeneity, some experimenters have found it more desirable to 

use stochastic models rather than constant values in describing the future evolution of 

soil water, assuming that water transport has random variables (Comegna et al,. 2010; 

El-Kadi, 1987; Freeze, 1975; Greenholtz et al., 1988; Indelman et al., 1998; Makkawi, 

2004; Sarangi et al., 2006). 

A stochastic process amounts to a sequence of random variables known as a time 

series. The time series method has been applied in several agricultural and hydrologic 

studies. Gupta and Chauhan (1986) and Marino et al. (1993) used time series modeling 
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approaches, respectively, to study the stochastic nature of weekly irrigation that paddy 

crops required in India, and to forecast the monthly grass reference crop 

evapotranspiration (ET0) values. A series of papers by Raghuwanshi and Wallender 

(1996, 1997, 1998, 1999) began by developing a seasonal irrigation model, then applied 

autocorrelation and partial autocorrelation to the standardized ET0, and finally built up 

the autoregressive moving average ARMA (1,1) model. The same model was used to 

predict both irrigation schedules and optimum furrow irrigation designs (inflow rate and 

cut-off time). 

Many researchers found that soil water content is highly correlated to different 

depths and they developed models to evaluate irrigation water management and to 

demonstrate the use of irrigation scheduling tools (Jones et al., 2003; Panda et al., 

2004). Wu et al. (1997) used squared coherency, cross-amplitude and cross-correlation 

analysis to study the relationship between water content that was measured hourly at 

various depths of the soil profile (0.25, 0.50, 0.75 and 1 m) over 55 days. They later 

developed models that could predict water content at deeper depths from water content 

at a superficial depth. Zou et al. (2010) worked on silt loam soil profile data, collected 

monthly from 2001 to 2006, to compare two mathematical models: the back 

propagation neural network (BPNN) model and the autoregressive integrated moving 

average (ARIMA) model. The objective was to predict both the average water content 

in the top 1 meter profile from water content measured at 0.60 m depth, and the average 

salt content measured at various depths of the soil profile (0.10, 0.20 and 0.45 m). 

Previous models assumed that the spacing between irrigation events is fixed; 

therefore, ARIMA models can be applied for predicting soil water content because 

ARIMA models save the behaviour of past observations in order to make the prediction. 

For example, if the farmer irrigates the field every ten days, the identified ARIMA 

model on the field data set for soil water content would expect an increase in the soil 

water content on the tenth day after the previous irrigation event. In the case of variable 

interval irrigation, ARIMA models do not have the ability to make an effective 

prediction if the farmer in the above example should decide to reduce the spacing 

between irrigation events to 9 days. In that case, the previous identified ARIMA model 

could not thoroughly predict the future behaviour of the soil; it would give an increase 

in soil water content after ten days and not after nine days. To allow ARIMA models to 
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work on variable interval irrigation systems and be able to detect new outliers, it is 

necessary to complement the ARIMA model with intervention analysis models and 

outlier detection (Wei, 1989).  

Our study was carried out on variable interval irrigation and used time series analysis 

techniques with two objectives: to predict the soil water content of an interested depth 

by measuring one single depth, and to evaluate the effect of an irrigation event on the 

soil water content. An important distinction is made between outliers and intervention 

variables in the time series of soil water content. In case there is a priori information 

about a special event that may have caused abnormal observations (the irrigation event, 

in our case), the effect of the irrigation event should be captured through intervention 

analysis. An outlier, on the other hand, represents anomalies in the observations for 

which there is no a priori information on the date of its occurrence or on the dynamic 

pattern of its effect (i.e. precipitation event). We enabled the ARIMA model to be 

applied on variable interval irrigation and to examine the effectiveness of the irrigation 

event. This could be achieved by:  

1) Detecting the outliers and removing them; thus, soil water forecasts will undergo a 

downward trend because no effect from irrigation events (outlier) will appear,  

2) Evaluating the effect of the intervention (irrigation event) and including it in the 

model; thus, the soil water forecasts increase at the moment of irrigation, and this 

increase depends on the weight of the irrigation coefficient. The benefit of this 

complementary analysis comes from the probability of a well-realized irrigation 

schedule that is of a short duration (one day or within hours); i.e., the next irrigation 

event will be determined when the prediction for soil water content is below the field 

capacity. 

There are two advantages to including the time series outlier and intervention 

analysis in the ARIMA model for describing soil water fluctuations:  

First, by using intervention analysis, the input series will be in the form of a simple 

pulse or step indicator function to indicate the presence or absence of the irrigation 

event. So the effectiveness of the irrigation event can be included in the ARIMA model 

in order to improve the efficiency of irrigation scheduling. The main purpose of outlier 



3. Soil water. Time series outlier and intervention analysis:    irrigation management influences 
on soil water content in silty loam soil   

 
 

56 
 

correction is to modify the data in such a way that the normality hypothesis of the 

ARIMA model can be accepted.  

The second advantage is that, by including outlier analysis in the ARIMA model, we 

reduce the residual variance of the model, which then becomes more precise. 

The objective of this study was to evaluate soil water content in the field regime by 

using time series analysis techniques. The specific objectives were:  

1) To study the autocorrelation and partial correlation function for soil water content 

measured at a shallower depth as well as the cross-correlation function between soil 

water content at a shallower depth and various greater depths, including average soil 

water content WAVG in the top 0.60 m profile; 

 2) To develop models for predicting the soil water content at various greater depths 

and water storage in the soil profile from a single shallower depth; and  

3) To use outlier and intervention analysis to examine the effectiveness of the 

irrigation event in the soil water profile. 

 

2. Materials and methods  

 

2.1. Experiment 

 

The experiment was carried out for 55 days, starting on 23 April 2010 in the 

Agricultural Park of Baix Llobregat, 5 km south of Barcelona, Spain. A field was 

planted with lettuce (Lactuca sativa) and irrigated by a furrow system; the experimental 

area was 275 m2 (55 m x 5 m); four irrigation events were applied; each irrigation dose 

was almost 26 L m-2; and the application time ranged between 20-26 minutes. The site 

had fairly uniform, silty loam with a bulk density ranging between 1.4 and 1.5 g cm-3 to 

a depth of 0.75 m and the water table was 4 m below the soil surface. In the test furrow, 

the water content distribution of the soil profile was measured with capacitance soil 

moisture sensors (5TE, Decagon Devices, Inc., Pullman, WA). The installation depths 

were at 0.10, 0.20, 0.35, 0.50 and 0.60 m from the soil surface (Fig 3.1). The study 

focused on the root zone. A total of 1318 observations were used to estimate the 

models, of which 659 observations were used to validate its forecast. To confirm the 

results of the models, the experiment was repeated in 2011 with 1199 observations. The 
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same transfer function models obtained from the 2010 set of data were applied in the 

2011 one to predict the soil water content at deeper depths from a single shallower 

depth. 

. 

Fig.3.1. Chart shows sensors distribution in the top 0.60 m soil profile  
 

 

2.2. Capacitance sensor 

 

Capacitance senor used electromagnetic (EM) techniques for soil water content 

estimation (Blonquist et al., 2005). The capacitance technique determines the dielectric 

permittivity of a medium by measuring the charge time of a capacitor which uses that 

medium as a dielectric. Capacitance techniques introduced into agriculture by smith 

Rose (1933; cited by Dane and Topp, 2002). One of the first workers to use a high 

frequency capacitance technique for soil water content determination was Thomas 

(1966). 5TE probe model (Decagon Devices, Inc., Pullman, WA) was used in this study, 

it is an electromagnetic sensor which measures the dielectric permittivity of soil and 

related it with the soil water content by an empirical relationship, since EM signal 

properties strongly depend on volumetric water content that stems from the high 

permittivity of water (εw = 80) compared to mineral soil solids (εs = 2-9), and air (a = 1). 

The equivalent circuit diagram of the 5TE probe is illustrated in Fig. 3.2. The 5TE 

sensor circuitry measures the dielectric permittivity of the material surrounding a thin, 

fiberglass enclosed probe. The circuit board includes an electronic oscillator that 

generates a repetitive square waveform with a characteristic frequency (70 MHz). The 

total sensor capacitance is then made up of the capacitance of medium C and the 

capacitance Cs due to stray electric fields (Kelleners et al., 2004). Soil permittivity is 
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determined by measuring the relationship between the time, t, it takes to charge a 

capacitor from a starting voltage (Vi), to a voltage (V) with an applied voltage (Vf) of 

capacitor which uses the soil as a dielectric. If the resistance R, Vf and Vi are held 

constant, then the charge time of the capacitor, t, is related to the capacitance according 

to:  

                         
















fi

if

vv

vvv
RCt ln                                                 (1) 

 

 

 

 

 

 

 

 
Fig. 3.2. Equivalent circuit diagram of a capacitance senor where R is a resistor, C is the 
capacitance of the medium, Cs is the stray capacitance, G is the energy loss due to 
relaxation and ionic conductivity and Vinp and Vout are the supply and senor reading 
voltage, respectively (From Bogena et al., 2007). 
 
 
The capacitance is a function of the dielectric permittivity (ε) of the medium and a 

geometrical factor g, it can be calculated by: 

                                                 gC                                                                (2) 

The factor 
S

A
g     

where A is the area of the plates and S is the separation between the plates. By assuming 

that the charge time of the capacitor is a linear function of the dielectric permittivity of 

the surrounding medium, ε can be calculated as follows:  
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A graphic representation from a capacitance senor reading is shown in Fig. 3.3 

(Bogena et al., 2007), where it can be seen how the water content alters the time of the 

pulse length T with fixed supply voltage Vt. Thus, high water content will result in a 

longer pulse length time, because the sensor output is directly related to the average 

voltage over the period of change in pulse length time (Bogena et al., 2007). 

 

 

 

 

 
 
Fig. 3.3. The charge and discharge curves of two capacitance with either high or low 
permittivity, using a repetitive square pulse with a pulse length t (after Bogena et al., 
2007).  
 
 
 

2.3. Calibrating 

 

In the laboratory, the sensors were immersed in soil columns to calibrate the soil 

water content. The volumetric soil water content determined from the soil columns 

  Applied voltage 

Charge/discharge curve (low permittivity/low water content, 1) 

Charge/discharge curve (high permittivity/high water content, 2) 
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samples was regressed against the sensors probe readings. Regression equations 

transforming the sensors probe reading to volumetric water content were developed. 

These equations were used for calibration all the the measurements of soil water content 

used in this study. 

 

2.4. Model identification and forecast 
 

Stochastic models are mathematical models for describing systems which evolve 

over time according to probabilistic laws; it can be categorized according to the two 

criteria of time and state space. Table 3.1 shows a method for classification stochastic 

models. Our study deals with stochastic models that model continuous observations 

(soil water content values) measured at discrete points in time (hourly), they are usually 

referred to as time series models. The application of time series models to actual data is 

popularly referred to as time series analysis (Hipel et al., 1994). 

 

Table 3.1. Classification of stochastic models 

 

 STATE SPACE 

 Discrete Continuous 

 

Discrete 
Markov 
Chains 

Time Series 
Models 

 

TIME 

 
Continuous 

Point 
Processes 

Stochastic 
Differential 
Equations  

 

 

The time series analysis of soil water content was made in four steps. The first one 

involved applying the Box-Jenkins method (Box et al., 1994) in order to identify an 

appropriate univariate model for time series of soil water at 0.10 m depth. This study 

used the seasonal autoregressive integrated moving average (ARIMA) (p, d, q) × (P, D, 

Q)S model, where p, q are the order of the regular autoregressive and moving average 



3. Soil water. Time series outlier and intervention analysis:    irrigation management influences 
on soil water content in silty loam soil   

 
 

61 
 

factors, and P, Q are the seasonal autoregressive and moving average factors, 

respectively; d and D are the order of differencing for the regular and seasonal part, 

respectively; sub-index S denotes the seasonal period (24 hours in this study). 

 

The second step was evaluating the effects of irrigation time by including it in the 

model as intervention analysis and searching for the presence of outliers in the 

univariate series. The third was identifying the appropriate transfer function approach 

by modelling the linear system, using the soil water content time series at 0.10 m depth 

as input, while the output was the soil water content time series at various depths (0.20, 

0.35, 0.50, 0.60 m and WAVG).The final step was applying the transfer function models 

obtained from the 2010 data set for predicting the soil water content to the 2011 data set 

at various greater depths in the soil profile. 

 

2.4.1 Univariate Time Series Analysis 

 

Univariate seasonal (ARIMA) (p, d, q) × (P, D, Q)S modelling techniques were used 

to show the patterns of soil water content data at 0.10 m depth. The four steps of Box-

Jenkins modelling approach for identifying and fitting ARIMA models were used: 

model identification, model parameter estimation, diagnostic checking, and forecasting. 

Fig 3.4 displays the overall procedures for Box-Jenkins modelling approach. 

 

a) Identification 

 

 Applying the exploratory analysis -time series plots- sample autocorrelation function 

(ACF) and partial autocorrelation function (PACF) - on the time series data under 

consideration helps to reveal the essential mathematical features of the data. Plotting the 

data enables to capture the identification information by perusal of a graph includes: 

1. Autocorrelation: shows the linear dependence existing among the observations. 

2. Seasonality: series quite commonly display seasonal behaviour where a certain 

basic pattern tends to be repeated at regular seasonal intervals. 

3.  Nonstationarity: Most series time of nature resources are nonstationarity. 

Stationarily is analogous to the concept of isothermal within the field of physics. 

For example, in order to be able to derive soil physical laws that are 
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deterministic, it is often assumed that the soil water is isothermal, so that energy 

changes associated with temperature changes do not have to be taken into 

account. Likewise, in stochastic modelling, the statistical properties of a process 

are invariant with the time (variance and mean are constant) if the process is 

stationary. 

4. Need for transformation: Box-Cox transformation (Box and Cox 1964) keep the 

series time stationary and it is achieved by several steps: 

a. Get the variance constant  

b. Get the mean constant  

5. The nonstationarity is removed from the series using a technique called 

differencing. After differencing the data, the fitted model called ARIMA model. 

Subsequently, appropriate AR and MA parameters contained in the ARIMA 

models are estimated for resulting stationary series formed by differencing the 

original nonstationary series. 

6. Known or unknown intervention: The effects of a known intervention can often 

be detected by an examination of the plot of the time series and observe when 

the general trend of the observations has changed. 

 

When the time series become stationary, sample autocorrelation function (ACF) and 

partial autocorrelation function (PACF) were used to identify time series models 

(Pankratz, 1983; Hoff, 1983). ACF measures the relation between Xt and Xt+k, where k 

is the time lag, and PACF was used to take into account the dependence on the 

intermediate elements (those within the lag) (Wei, 1989). If the sample ACF of the 

differenced series still does not damp out quickly, the series should be differenced 

again. The data should be differenced just enough times to remove the homogeneous 

nonstationarity which in turn will cause the sample ACF to die off rather quickly. When 

differencing is required, usually it is not greater than 2 for nonstationary series which 

arise in practice. According to the sample ACF and PACF, how many AR and MA 

terms will be determined. 

In brief, Identification has two steps prior to deciding upon the form of the ARMA 

model:  
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1. Transformation using the Box-Cox transformation in order to alleviate 

problems with nonnormality and/or changing variance. Additionally, the 

differencing may be required for removing nonstationarity. 

2. Select one or more appropriate ARIMA models depend on ACF and PACF. 

 

b) Estimation 

 

For an identified ARIMA model, the following parameters must be estimated using 

the available data: a) mean of the series; b) AR parameters; c) MA parameters; d) 

innovation series; and e) variance of the innovations.  

 

In our study we used method of maximum likelihood for estimating the parameters 

of ARIMA models. Significance of parameters was determined by constructing the 

Wald test statistic. Automatic selection criterion such as the Akaike information 

criterion can be employed for choosing the best overall model when more than one 

model is calibrated. 

 

c) Validation 

 

The residuals sequences for AR, MA, ARMA and ARIMA models are assumed to be 

independently distributed in the theoretical definition of these models. This implies that 

the estimated innovations or residuals are uncorrelated or white. 

 

For checking that the residuals are white the recommended procedure is to plot the 

RACF (residual autocorrelation function) along the 95% confidence limits. And for 

ascertaining whether or not the residuals are uncorrelated. The suggested procedure is to 

use the Ljung-Box statistic test. Moreover, if the residuals are correlated this implies 

that the model is inadequate and a more appropriate model can be found by repeating 

the earlier stages of model construction.  
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Fig. 3. 4. Overall procedures for Box -Jenkins modelling approach 
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d) Forecasting 

 

Once the appropriate model has been found, it can be integrated (trend introduced 

into the model) and future forecasts can be found. Confidence intervals can also be 

computed for each of the observation forecasts. 

 

One useful criterion to obtain the most accurate forecasts is to use what is called 

minimum mean square error. 

 

Forecasting can be used as an approach for model discrimination. A variety of time 

series models can be fitted to the first portion of one or more time series and then used 

to forecast the remaining observations. By comparing the accuracy of the forecasts from 

the models, one can determine which set of models forecasts the best.  

 

In the autoregressive (AR) process, the present values of time series depend on the 

preceding value plus a random shock. The AR model for a centred time series with 

order p is defined as: 

tptpttt aXXXX    ...2211  

                            or tt
p

p aXBBB  )...1( 2
21                               (4) 

where j  is the jth AR parameter, ta is the Gaussian white-noise error, and B is the 

backshift operator where ptt
p XXB  . For the moving average (MA) model, errors are 

the average of this period’s random error and the previous random error. MA time series 

of order q is defined as 

qtqtttt aaaaX    ..2211  , or 

                             t
q

qt aBBBX )..1( 2
21                                (5) 

where q is the qth MA parameter. 
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A stationary time series is required for identifying AR and MA models, which 

implies that the variance and mean values are constant while some transformation is 

necessary before identifying the model.  

No trends in mean were identified by taking successive differences of the data on the 

regular and seasonal components. The number of differences needed to attain the 

stationary time series was denoted by d and D. No trend in variance is normally 

achieved by applying a logarithmic transformation (Soebiyanto et al., 2010; Quinn, 

1985; Vandaele 1983). 

For any time series, tX , the ARIMA (p, d, q)×(P, D,Q)S of tX  is 

                        t
s

Qqt
Dsds

P aBΘBXBBBΦB )()()1()1)(()(p         (6) 

where )(Bp  and )(Bq are the regular autoregressive and moving average factors, and 

)( s
P BΦ  and )( s

Q BΘ are the seasonal autoregressive and moving average factors, 

respectively. 

Autocorrelation function (ACF) and partial autocorrelation function (PACF) were 

used to identify time series models (McCleary and Hay, 1980; Pankratz, 1983; Hoff, 

1983). ACF measures the relation between tX  and KtX  , where K is the time lag, and 

PACF was used to take into account dependence on the intermediate elements (those 

within the lag) (Box et al., 1994; McDowall et al., 1980; Wei, 1989). 

In this study, the maximum likelihood method was used to estimate the model 

parameters. The significance of parameters was determined by constructing the Wald 

test statistic.  

Diagnostic checking tests were used to check if the residuals showed any 

autocorrelation at any lags. The assumptions would be satisfied if the ACF and PACF of 

residuals at all lags were non-significant.  
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2.4.2. Intervention analysis and outlier detection  

 

Outliers in the soil water content data at a depth of 0.10 m were removed using the 

Grubbs’ test for detecting outliers (Grubbs, 1969). 

                                    

                                         
SD

VM
Z

// 
                                              (7) 

 

where Z is the test statistic, M is the mean of the values, V is the value being tested, and 

SD is the standard deviation of the values. In total 1318 observations of soil water 

content were available. Based upon an outlier probability level of 5%, the outlier test 

statistic was set at 4 (Grubbs, 1969). Soil water content values which yielded test 

statistics larger than or equal to 4 were removed from the data set. To assess the impact 

of precipitation and other observed irregularities in the times series of water content, 

two types of outliers were considered: additive outlier (AO) and temporary change (TC). 

At the same time, level shift (LS) was used as an intervention analysis to assess the 

impact of the irrigation event on the time series of soil water content. AO is a pulse that 

affects the time series at one period only. TC is an event that decays exponentially 

according to a pre-specified dampening factor. LS is an event that permanently affects 

the subsequent level of a series (Chen and Liu, 1993) (Fig. 3.5).  

Let Zt denote the underlying time series process which is free of the impact of 

outliers and is prior to the irrigation event, and let Xt denote the observed time series. 

We assume that Zt follows the seasonal ARIMA (p, d, q) (P, D, Q)S model 

t
s

Qqt
Dsds

Pp aBΘBXBBBΦB )()()1()1)(()(   , based on these assumptions, the 

appropriate model for assessing the impact of the control is: 
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where r  represents the permanent change in the mean level after the intervention 

(irrigation event), )(LS
Tr

S is referred to as a step indicator at irrigation time Tr  , where  

                         






r

rLS
T Tt

Tt
S

r 1

0)(

                                                     (9) 

 

i   represents the transitory change in the mean level after the  unusual observations 

(such as precipitation), )(TC
Ti

P  and )( AO
T j

P  are referred to as a pulse indicator at unusual 

observation time iT  and jT  respectively , where 

and                            
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j 1

0
)(                                                         (11) 

 is the dampening factor that takes a default value of 0.7 (Chen and Liu, 1993). 

 

 

Fig. 3.5. Plot illustration of the effect of additive outlier, temporary change outlier with 
 = 0.7, and level shift outlier on later periods. 
 



3. Soil water. Time series outlier and intervention analysis:    irrigation management influences 
on soil water content in silty loam soil   

 
 

69 
 

2.4.3 Transfer function approach 

 

Observations and predictions of one time series (input Xt) may be used to estimate 

the outcome of another time series (outputGt) by modelling the linear system with a 

relatively small number of parameters. The model takes the form 

                         

                
tbtt aX

BC

BA
G  )(

)(
                                         (12) 

 

where )(BA  and C(B) are a polynomial of the s and r orders, respectively 

)...()( 2
210

s
s BABABAABA   

)...1()( 2
21

r
r BCBCBCBC   

where A0,A1,A2,…,As and C1,C2,…,Cr are the parameters of the model, b is the latent 

parameter, B is the backshift operator, and ta  is a disturbance (noise). 

)(/)( BCBA  is called the transfer function of the system. The procedure for building 

a transfer function model involves three steps: a) identification, b) estimation and c) 

model checking. By using a univariate model for input Xt  with white noise residuals, 

the same filter can be applied to the output series Gt (pre-whitening). Cross-correlation 

of the two residuals allows us to identify the transfer function form. 

In this study, the transfer function approach was applied by choosing the soil water 

observations at 0.10 m as a primary series (Xt), while the output series (Gt) was chosen 

from the soil water content time series at various depths (0.20, 0.35, 0.50, 0.60 m and 

WAVG). WAVG represents the average soil volumetric water content in the top 0.60 m 

profile, calculated from the formula that Wu et al. (1997)2 used to estimate total water 

storage. 
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where D is depth downward (m), and θi is volumetric water content at depth Di 
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R software version 2.13.0 (R Development Core Team, 2010) was used to execute all 

model identifications and subsequent predictions of soil water content at various depths 

(Cryer and Chan, 2008; Shumway and Stoffer, 2006). 

 

3. Results and discussion  

 

Fig.3.6 shows soil water content by sensor probe regressed against soil water content 

by gravimetric method.  

 

 
Fig.3.6. Soil water content by sensor probe regressed against soil water content by 

gravimetric method. 

 

Fig. 3.7 shows the soil water content at five depths versus time. Fluctuation of soil 

water content at deeper layers corresponds to the changing of water content at upper 

layers; this fluctuation dampens as the layer becomes deeper. This could be used to 

identify a model to explain the water content behaviour of one depth, which in turn is 

used to predict the behaviour of water content at another depth (Wu et al., 1997). 

Irrigation events that were applied at 4.29, 27.20, 32.04 and 46.33 days, and 

precipitation occurring at 9.33, 20.50 and 52.54 days had significant effects on soil 

water content fluctuations. Fig. 3.8 shows the soil water content at 0.10 m depth and its 

response to each irrigation event and rainfall; capturing these two events well and 
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including them in models for soil moisture fluctuations will provide reasonable 

predictions for soil water content. Later, we developed ARIMA models and completed 

them by including the irrigation event as an intervention analysis and the precipitation 

as outlier detections. 

 

 

 
Fig. 3.7. Soil water content at five depths versus time ,and the average water content of 
the top 0.60 m soil profile WAVG; * indicates the irrigation time,^ indicates the 
precipitation time.  
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Fig.3.8. Soil water content at 0.10 m depth, W is a step indicator caused by the 
irrigation event. 

 

3.1. Univariate modeling of the soil water content time series at 0.10 m 

depth. 

 

The ACF of the original time series of water content at 0.10 m depth converges very 

slowly, indicating that the time series is non-stationary (Fig. 3.10 A). To obtain a 

stationary time series, the original series were differentiated (first order-difference and 

seasonal first order difference). No trend in variance is observed in this series, so there 

is no need to apply a logarithmic transformation. 

The ACF and PACF of differentiated time series indicated that the series was 

approximately AR (2) for the regular component and MA (1) for the seasonal 

component, because the ACF (Fig. 3.10B) and PACF (Fig. 3.10C) showed that only the 

correlation at the first two lags of ACF and the 24th lag of PACF were significant. 
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Fig. 3.9. Time series of soil water content at 0.10 m depth (m3 m-3) for the first 4 days at 
0.10 m depth. 

 

The ARIMA (p, d, q) (P, D, Q)S model of time series of water content at 0.10 m 

depth was ARIMA (2, 1, 0) (0, 1, 1)24. The model in usual notation is given by: 

  

          t24t aBΘXBBBB )1()1)(1)(1( 24242
21                           (13) 

where ta  is an independent, identically distributed white noise term with zero mean and 

variance = 2.8.10-7, 1  = 0.3841, and 2 = -0.17 are AR parameters. The 24Θ  = 0.99 

parameter of the seasonal MA part indicates that the model is almost non-invertible. 

Therefore, it is inadequate and needs to be improved in structure. An exploratory 

method, which is well-established in other fields, is a seasonal-trend decomposition 

based on locally-weighted regression (loess), widely known as “STL” (Cleveland et al., 

1990; Hafen et al., 2009).  
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Fig. 3.10. (A) Autocorrelation function (ACF) of the original data, (B) autocorrelation 
function, and (C) partial autocorrelation function (PACF) of the transformed time series 
of water content at 0.10 m. The ACF of the original data indicates that the series is not 
stationary. The dotted line is 2 x standard errors. 
 

The STL method is straightforward to use; it allows for flexibility in specifying the 

amount of variation in the trend and seasonal components of time-series; and it 

produces robust estimates that are not distorted by transient outliers (Cleveland et al., 

1990). Fig. 3.11 shows that the large outliers of the remainder (random) are backed to 

the irrigation event. Since the timing of the irrigation event is previously known, the 

model could be completed with intervention analysis (irrigation event) and outlier 

detection (model 10), making it invertible and in order to reduce its residual variance 

(Wei, 1989). 
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Fig. 3.11. Decomposition plot of the soil water content at 0.10 m depth affected with 
intervention variable (irrigation event in our case) and irregular variables (such as 
precipitation) over 55 days, STL method. This plot assists evaluation of the trend, 
seasonality and remainder (random) against the raw data. The graph (observed) 
represents the hourly time series of water content affected with irrigation and irregular 
events like precipitation. The graph (trend) is the fitted trend. The graph (seasonal) is 
the seasonal pattern per 24 hours. The graph (random) represents the remainder after the 
trend and the seasonal pattern have been fitted to the time-series values. The sum of the 
trend, the seasonal pattern and the random equals exactly the time-series. IRR is the 
time of irrigation event, and PRE is the precipitation time. The large peaks of the 
remainder correspond to the irrigation time which has to take into account when 
building up ARIMA model on the series. 
 
 

3.2. Outlier and intervention analysis on the ARIMA model for time series 
of water content at 0.10 m depth: the effectiveness of the irrigation 
event on soil water content. 

 

Intervention analysis and automatic outlier detection were applied on the previous 

ARIMA (2, 1, 0) (0, 1, 1)24 model to improve it and to assess the effect of irrigation 

events on the soil water at 0.10 m depth. Applying the Grubb's test (Eq. 7) detected 28 

outliers (Table 3.2) for time series of soil water content at 0.10 m depth.  
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Table 3.2  Outlier detection and parameter estimation for time series of water content at 
0.10 m 

observation 
time (hour) 

type         observation 
time (hour)

type        

103 TC -0.0137 494 TC 0.0249 
104 TC 0.0323 495 TC 0.0047 
105 TC 0.0053 653 TC -0.0267 
128 TC -0.0076 654 TC 0.0578 
151 AO 0.0044 769 TC -0.0136 
175 AO 0.0038 770 TC 0.0310 
224 TC -0.0056 1110 TC -0.0043 
225 TC -0.0046 1111 AO -0.0037 
226 TC -0.0045 1112 TC 0.0291 
227 TC -0.0048 1113 TC 0.0313 
228 TC -0.0059 1114 TC 0.0123 
229 AO -0.0074 1261 TC 0.0087 
231 TC 0.0139 1262 TC 0.0199 
492 AO -0.0051 1263 TC 0.0053 

 

 

Including the outlier detection and intervention analysis, the observed value of time 

series of soil water content at 0.10 m can be described according to Eq. (8) as 

t
AO

T
j

j
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T
i

i
tttt
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ji

 
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20.27

)(
29.4 )(         (14) 

where Xt is the observed time series, Zt is the time series free of outliers, and r = 0.087 

represents the permanent change in the mean level after the irrigation event, which 

characterizes the effectiveness of the irrigation event on the soil water content. In this 

study, the flow rate and cut-off time for the four applied irrigations were almost equal. 

Therefore, we used one average coefficient for ߱௥to estimate the weight of the peak 

caused by four irrigation events. The part )( )(
33.46

)(
04.32

)(
20.27

)(
29.4

tttt SSSS   represents the 

step indicator at four irrigation times rT  (4.29, 27.20, 32.04, and 46.33 days). The part 

)(
5

1

)(
23

1
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j
j
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   represents the effects of 28 outliers which were detected. 

By applying the Box-Jenkins approach to the time series of water content 
tt

Z

obtained from Eq. (14), the ARIMA (1, 1, 2) (0, 1, 2)24 model was determined. The 

model, in usual notation, is given by: 
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t482421t aBΘBΘBθBθZBBB )1()1()1()1()1( 4824224
1        (15) 

The model (15) is free of outliers, it is invertible, and the ACF and PACF of 

residuals at all lags are non-significant. Table 3.3 shows the comparison between the 

two models (13 and 15) in terms of statistical parameters.  

 
Table 3.3. Comparison of the two models for the soil water observations at 0.10 m 
depth in terms of statistical parameters (one based on observed data Xt and the 
second based on outlier-free data Zt) 
Model  1  2  

1  2  24Θ  48Θ  2  

Model based on 
observed data 

tX  (13) 

 

0.38 -0.17   0.99  2.7.10-5 

Model based on 
Outlier free data 

tZ  (15) 
0.87  -0.51 0.09 0.76 -0.13 5.48.10-7 

 

 

3.3. Transfer function approach 

 

The cross-correlation between the pre-whitened primary time series (0.10 m depth), 

and the target soil water content time series at various depths (0.20, 0.35, 0.50, 0.60 m 

and WAVG), showed that the primary series affects the target series, but the target series 

cannot in turn have a bearing upon the primary series. Fig. 3.12 proofs that the present 

value of soil water content at 0.10 m has a significant effect on the present values of soil 

water content at various depths (0.20, 0.35, 0.50, 0.60 m and WAVG). Models for 

predicting the soil water content at individual depths and WAVG from the soil water 

content at 0.10 m depth were identified (Table 3.4). The coefficients of tX  in the 

equations of Table 3.3 show that the present value of soil water content at 0.10 m has an 

effect of 61, 40, 25 and 19%, respectively, on the present values of soil water content at 

0.20, 0.35, 0.50 and 0.60 m and its effect on the present value of WAVG is 55%. 
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Fig. 3.12. Cross-correlation function for soil water content hourly time series at 0.10 
and 0.20, 0.10 and 0.35, 0.10 and 0.50, 0.10 and 0.60 m, 0.10 m and average soil water 
profile, respectively. Dashed lines indicate 95% confident limits. 
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Table 3. 4. Time series transfer function model for the various depths and average soil 
water content of the top 0.60 m profile. 
Xt at 0.10 and Yt at 0.60 m: 
 

)7.021.014.01(

)15.019.0(
32 BBB

aXB
Y tt

t 


           

                                                                                           )108.2,0(~ 7Na t
 

Xt at 0.10 and Yt at 0.50 m: 

)16.003.026.016.01(

)04.025.0(
432 BBBB

aXB
Y tt

t 


        

                                                                                          )108.8,0(~ 7Na t
 

Xt at 0.10 and Yt at 0.35 m: 

)11.0045.067.0053.00225.0227.01)(1)(1(

)1()039.00085.004.04.0(
6543224

2432

BBBBBBBB

aBXBBB
Y tt

t 


  

                                                                                          )108.1,0(~ 6Na t
 

Xt at 0.10 and Yt at 0.20 m: 

)068.008.017.028.01)(1)(1(

)1(61.0
43224

24

BBBBBB

aBX
Y tt

t 


  

                                                                                          )10062.2,0(~ 6Na t
 

Xt at 0.10 and Yt as the average of the top 0.60 m soil profile: 

)16.023.059.01)(1)(1(

)1)(28.01(55.0
3224

24

BBBBB

aBBX
Y tt

t 


  

                                                                                          )10684.4,0(~ 7Na t
 

 

 

3.4. Forecasting  

 

Fig. 3.13 shows the model calibration and prediction for 0.20, 0.35 and 0.60 m soil 

depths. The first 659 observations of each time series were used for model 

identification. The calibrated model represented the values before these 659 

observations very well for each depth. The predicted and observed values after the 659 

observation agreed reasonably. The relative difference between predicted and observed 

values was sometimes large; it increased as the distance of separation between the 

primary and target increased. The absolute difference between the prediction and 

measurement never exceeded 0.03 m3 m-3.  
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The model of forecasting the average water content WAVG (Fig. 3.14) behaved similar 

as the individual models for soil depths. The absolute difference between prediction and 

measurement never exceeded 0.025 m3 m-3. Measured versus predicted average water 

content are shown in the Fig. 3.15. Many data points were very close to the 1:1 line. 

Overall, the models represented the dynamics of field soil water fluctuation very well. 

 

In the case of variable interval irrigation, we were able to determine the time of the 

next irrigation and its effect on soil water content by predicting the time series of soil 

water ܼ௧ without outliers (model 11), and then by adding the irrigation effect ω୰ to the 

prediction when the soil water content dropped below the field capacity. In Fig. 3.16 

 

 

 

Fig. 3.13. Measured and predicted water content versus time at 0.20, 0.35, and 0. 60 m 
depths. Prediction was based on the identified transfer function models for each depth. 
The curve before the vertical dashed line refers to model calibration and after the 
vertical dashed line to model prediction. 
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there is an example of two prediction days. The observed values of soil water content 

covered 55 days, and the prediction is for the 56th and 57th day. It includes the effect of 

the next irrigation if the farmer chooses to irrigate on the 56.5th day. 

 

 

Fig. 3.14. Measured and predicted average water content WAVG versus time in the top 
0.60 m profile. Prediction was based on the indentified transfer function models for 
WAVG. The curve before the vertical dashed line is model calibration and that after the 
vertical dashed line is model prediction.  
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Fig. 3.15. Measured versus predicted average water content in the top 0.60 m soil 
profile. 
 
 

 

Fig. 3.16. Prediction models for average soil water content WAVG. Prediction was 
based on the indentified transfer function models for WAVG. We have observed data 
for 55 days, the model predicts the 56th and 57th day taking into account the effect of 
next irrigation if the farmer choose to irrigate on 56.5th day (*is the irrigation time at 
56.5th day). 
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To confirm the results of the models, the experiment was repeated in 2011. The field 

was planted with artichokes and 1199 observations were made starting on 23 April 2011 

(Fig. 3.17). The same transfer function models obtained from the 2010 data set were 

applied to the 2011 data set to predict the soil water content at deeper depths from one 

single shallower depth. Fig. 3.18 shows the time series of soil water content at 0.20 m 

depth and the average water content in the top 0.60 m soil profile WAVG for the 2010 data 

set (1318 observations) and the 2011 data set (1199 observations). The transfer function 

model obtained from the 2010 data set was applied to the 2517 total observations 

(1318+1199) for each time series. The calibrated model represented the values very well 

up to 1318 observations (2010 data set) for each series. The predicted and observed 

values after the 1318 observations agreed reasonably (which is represented by the 2011 

data set). The absolute difference between the prediction and measurement for the time 

series of soil water content at 0.2 m depth and WAVG never exceeded 0.01 and 0.005 m3 

m-3, respectively. 

 

 

Fig. 3.17. Soil water content at five depths versus time, and the average water content of 
the top 0.60 m soil profile WAVG (1199 observations starting on 23 April 2011). 
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Fig. 3.18. Measured and predicted water content versus time at 0.20 m depth and 
average water content WAVG. Prediction was based on the identified transfer function 
2010 data set of models for each one. The curve before the vertical dashed line refers to 
model calibration and after the vertical dashed line to model prediction (2011 data set). 
 
 
 

4. Conclusions  

 

The time series of soil water content at the root zone for a lettuce field (silty loam 

soil) was studied at five depths 0.10, 0.20, 0.35, 0.50 and 0.60 m; each one was 

transformed to a stationary situation; then, ARIMA models were constructed to study 

each time series and make predictions. In the case of variable interval irrigation, 

predictions of irrigation effects on the soil water content could not be properly 

explained by the ARIMA model and its underlying normality assumption. To avoid this 

obstacle and let the ARIMA model work in variable interval irrigation, we used 

intervention analysis (irrigation events) and outlier detection for unusual observations in 
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order to complete the model. The transfer function models were then used to predict 

water contents at depths of interest (0.20, 0.35, 0.50 and 0.60 m) and the average water 

content in the top 0.60 m soil profile WAVG from the measured water content at 0.10 m 

depth. The predictions were rational. The next irrigation and how much the soil water 

content would rise after the irrigation event were correctly estimated. 

 

Since the irrigation dose for four irrigation events in this study were almost the same, 

we used one average mean level r  = 0.087 to depict the effectiveness of an irrigation 

moment on the time series of soil water content. In the case of variable irrigation doses, 

we suggest studying the effect of each irrigation event and include their effects 

separately in the model.  
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Abstract 

 

Using the linear relationship between soil dielectric constant (εb) and the bulk electrical 

conductivity (σb) under laboratory conditions, Hilhorst (2000) model was able to 

convert σb to pore water electrical conductivity (σp). In the present study, the application 

of the linear relationship εb - σb to data obtained from field capacitance sensors, resulted 

in strong positive autocorrelations between the residuals of that regression. By including 

a stochastic component to the linear model , rearranging it to a Time-varying Dynamic 

Linear Model (DLM), and using Kalman filtering and smoothing, we were able to 

derive an accurate offset of the relationship εb - σb and to estimate the evolution of σp 
over time. It was shown that the offset varies for each depth in the same soil profile. A 

reason for this might be the changes in soil temperature along the soil profile. Once σp 
was estimated for each depth in the study fields, using a (multiple input-one output) 

transfer function model, we could predict soil salinity at the 0.10 m depth and in the top 

0.60 m of the soil profile by measuring soil water content and soil temperature at the 

0.10 m depth. Moreover, the effects of the usual irrigation frequency on soil salinity 

behaviour were evaluated. As a result, the offset and σp were precisely estimated for 

each depth, and predictions of soil salinity by measuring soil water and soil temperature 

were logical. Also, the next irrigation time and its effect on soil salinity at the depth of 

interest were correctly estimated. Finally, it was found that for each depth, farmers left 

the field with less soil salinity than at the beginning of the crop’s vegetative stage. The 

study showed that the quality of irrigation water had a significant effect on soil salinity 

at the root zone in the study fields. 

 

Key words: Capacitance sensor; Soil dielectric; Time-varying Linear Dynamic 

Model (LDM); Kalman filtering; Offset; Soil salinity; Transfer function model. 
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1. Introduction  

 

A saline soil is defined as the accumulation of water-soluble salts in the soil profile 

to a level that impacts on agricultural production, water quality, environmental health, 

and economic welfare (Regasamy, 2006). Chloride, sulphate and bicarbonate salts of 

sodium, calcium and magnesium contribute in varying degrees to soil and water 

salinity. Salinity affects 7% of the world’s land area, which amounts to 930 million ha 

(Szabolcs, 1994; based on FAO 1989 data). The area is increasing; a global study of 

land use over 45 years found that 6% had become saline (Ghassemi et al. 1995). This 

amounts to 77 million ha. 

 

Salinization is an important process in land degradation and nutrient deficiency. 

Munns (2002) showed that if excessive amounts of salt enter the plant, salt will 

eventually rise to toxic levels in the older transpiring leaves, causing premature 

senescence, and reduce the photosynthetic leaf area of the plant to a level that cannot 

sustain growth. Maas and Hoffman (1977) demonstrated that salinity induces nutritional 

imbalances or deficiencies causing decreased growth and plant injury for which osmotic 

effects alone cannot account. Thiruchelvam and Pathmarajah (1999), who studied the 

salinity problems in Sri Lanka’s Mahaweli River System “H” Irrigation Project, showed 

that salinity can lead to the following agricultural problems if left uncorrected: a) 

reduced crop intensity; b) decreased profitability and; c) land scarcity.  Among a lot of 

studies are investigated in the links between dryland salinity and climate change, John 

(2005) has conducted a detailed analysis of the interaction between climate change and 

dryland salinity in the eastern wheat belt of Western Australia. She concluded that 

climate change may reduce farm profitability in that region by 50 per cent or more 

compared to historical climate, and that the reduced profitability of farms would 

probably would affect the capacity of farmers to adopt some practices that have been 

recommended to farmers to prevent land degradation through dryland salinization. 

Ghassemi et al. (1995) concluded in their study that extensive areas of irrigated land 

have been and are increasingly becoming degraded by salinization and water-logging 

resulting from over –irrigation and other forms of poor agricultural management. Thus, 

a practical methodology is needed for timely and spatially assessment of soil salinity in 

irrigated fields, for evaluating the appropriateness of related management practices.  
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1.1. Measuring salinity  

 

Salinity is most commonly measured with an electrical conductivity (EC) meter that 

estimates the concentration of soluble salts in a soil slurry or water solution by how well 

an electrical current passes through the medium. The ability of a solution to conduct 

electricity increases with increasing salt content; therefore, a high EC value corresponds 

to high amounts of soluble salts, and vice versa. A soil is considered saline if the 

electrical conductivity of its saturation extract (ECe) is above 4 dS m-1 25ºC (US 

Salinity Laboratory Staff, 1954). However, the threshold value above which deleterious 

effects occur can vary depending on several factors including plant type, soil water 

regime and climatic condition (Maas, 1986). 

 

Determining the electrical conductivity of the pore water of soil (σp) requires 

extraction of the pore water from the soil by suction, or to use saturated paste 

conductivity measurement, and both conventional methods are labour- intensive. And it 

is not certain that all ions are collected in the extract sample (Hilhorst, 2000). 

Additionally, in their study, Rhoades et al (1997) criticized two concepts that have been 

used by US Salinity Laboratory Staff (U.S. Salinity Laboratory Staff, 1954) to evaluate 

the appropriateness of irrigation and drainage systems and practices with respect to 

salinity control. These concepts are leaching requirement (Lr), which refers to the 

quantity of irrigation water required for transporting salts through the soil profile to 

maintain a favourable salt balance in the root zone for plant development, and salt-

balance-index (SBI), defined as the relation between the quantity of dissolved salts 

carried to an area in the irrigation water and the quantity of dissolved salts removed by 

the drainage water. These two conventional procedures are criticized because they do 

not provide sufficiently detailed spatial information to adequately characterize salinity 

conditions and to determine its natural or management-related causes. SBI fails because 

it provides no information about the soil salinity level existing within any specific field 

of the project. Many other studies on soil salinity assessment concluded that it is 

important to assess soil salinity temporally and spatially for correctly evaluating its 

evolution and for reasonably predicting its values (Hajrasuliha et al., 1980; Mahmut et 

al., 2003; Rhoades et al., 1997; Shouse et al., 2010; Xiaoming et al., 2012). 
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A new way to evaluate the conductivity of σp temporally and spatially is to translate 

the electrical conductivity of the bulk soil (σb) to σp using methods, models and 

estimates. To measure σb, new devices have been developed, such as time-domain 

reflectometry (TDR) and frequency-domain refectomerty. 

Temperature and water content have a significant effect on accurate σb  

determination, requiring that sensors have a temperature compensation capability for 

precise measurement (Scoggins and van Iersel, 2006). Electrical conductivity sensors 

therefore need to simultaneously measure three variables: water content, temperature 

and σb to provide a precise real-time measurement of σb. 

However, we need to go one step further and calculate a soil specific offset value.to 

provide an accurate estimate of σp This offset eliminates the contribution of surface 

electrical conductivity σs and permittivity of dry soil (ε´σb=0) in the final estimation of 

σp, as described by the Rhoades (1976, 1989) and Hilhorst (2000) models. Such models 

estimate the σp by utilizing different physical parameters read directly by the sensor or 

estimated separately during laboratory experimentation. In the next section, a brief 

description of Rhoades et al. (1989) model and further details of the Hilhorst (2000) 

model are presented. The senores were used in this study applied the Hilhorst (2000) 

model to get σp by measuring σb. 

 

1.2. Models to convert σb to σp  

 

1.2.1. Rhoades et al. (1989) model 

 

By dividing the mixed soil water system into three separate current-flow pathways, 

Rhoades et al. (1989) were able to build up a model explaining the expected electrical 

conductivity of the system. These pathways are demonstrated in Fig. 4.1 and they are as 

follows: 

1. A solid–liquid interphase, the conductance pathway passing through 

alternating layers of soil particles and soil solution. 

2. A liquid phase, the conductance pathway passing through continuous soil 

solution. 
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3. A solid phase, the conductance pathway passing through or along the surface 

of soil particles in direct and continuous contact. 

 

Fig. 4.1. Three conductance pathways for the b measurements. Modified from Rhoades 
et al. (1989).  
 

The model was proposed by Rhoades et al. (1989) intended to assess soil salinity as 

bulk electrical conductivity: 

 

          
wcwsw

swswss

swswss
b 




 )(
)()(

)( 2














                         (1)
 

Where: 

Өs is the volumetric soil water content in the continuous liquid pathway, 

Өws is the volumetric soil water content in the series-coupled pathway, 

σws is the specific electrical conductivity of the series-coupled water phase, 

σs is the electrical conductivity of the surface conductance soil phase, and 
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Өw = Өws + Өwc where Өwc is the volumetric soil content in the continuous liquid 

pathway. 

σwc is the specific electrical conductivity of the continuous water phase. 

Equation 1 can be solved for σp with the assumption that σws   σwc and it can be re-

arranged as a quadratic equation, and solved for its positive root as: 

              A

ACBB
p 2

42 
                                                    (2) 

where :                     )])([( wswsA   
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                            ][ bswsC   

Rhoades et al. (1989) state the necessity for an offset value or estimation of the 

surface electrical conductivity σs in order to estimate pore water electrical conductivity 

σp. This offset value σs is calculated by plotting the σb versus the solution electrical 

conductivity σw. 

 
1.2.2. Hilhorst (2000) model  

 

The σb of the soil depends on both the σp and water content (θ) (Persson, 2002). Thus, 

the pcan only be predicted if θ is constant, or if the relationship between p, b, and θ 

is determined. Several different models of σp – σb – θ relationship have been developed 

(Rhoades et al., 1976; Mualem and Friedman, 1991; Malicki and Walczak, 1999). 

Malicki et al. (1994) discovered a high degree linear correlation between dielectric 

constant (εb) and σb values by using time domain reflectometry for most of soil types. 

Hilhorst (2000) took advantage of this relationship and enabled to convert σb to σp by 

using a theoretical model describing a liner relationship between σb and εb.  
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1.2.3. The Linear σp – σb - θ Model 

 

 The σp can be determined according to Hilhorst (2000) from the equation (see the 

details about this equation in the Materials and methods section): 

     

                       ௣ ൌ
೛ כ್

್ି ್సబ
                                     (3) 

                                                                        
where σp 

is the pore water electrical conductivity (dS m-1); εp is the real portion of the 

dielectric permittivity of the soil pore water (unitless); σb is the bulk electrical 

conductivity, (dS m-1); εb is the real portion of the dielectric permittivity of the bulk soil 

(unitless); εσb=0 is the real portion of the dielectric permittivity of the soil when bulk 

electrical conductivity is 0 (unitless). However, εσb=0 appears as an offset of the linear 

relationship between εb and σb. Hilhorst (2000) found that the εσb=0 depends on the soil 

type and varied between of 1.9 and 7.6 in the soils used in his study, he recommended 

4.1 as a generic offset. 

Many studies applied Hilhorst (2000) model in their experiments to convert σb into σp. 

Persson (2002) applied it in time domain-reflectometry (TDR) measurements, 

laboratory experiments using soil columns with different θ and σp. By rearranging Eq. 3, 

the slope can be calculated theoretically; εb = εp / σp * σb + εσb=0 i.e. slope = εp / σp. The 

value of the offset εσb=0 was obtained as a fitting parameter when the slope was fixed, 

assuming that εp equals the dielectric constant of free water at the specific temperature. 

He concluded his work by using different offset (within the range of 3.67 to 6.38) 

according to the soil type. Moreover, the manufacture of capacitance soil moisture 

senores 5TE (Decagon Devices, Inc., Pullman, WA) also uses Hilhorst (2000) model to 

convert σb into σp 
and they recommended to use offset = 6 for all agricultural soils, 

Arquedas-Rodriguez (2009) used 5TE sensors in his study and found that offset = 6 did 

not represent very good the linear relationship between εb and σb. The WET sensor 

(Delta- T Device Ltd, Cambridge, UK), is a frequency domain dielectric sensor and is 

designed to use the standard offset = 4.1 of Hilhorst (2000) model, Bouksila et a.l 

(2008) worked with a saline gypsiferous soil and found that the accuracy of the WET 

sensor to predict the σp was very poor using the standard value of εσb=0 = 4.1. Compute 
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σp from σb is very important, but still not very well worked out (G. Campbell, Decagon 

Devices, personal communication, 2010). 

 

1.3. Soil salinity movement models 

 

Fickian-based convection-dispersion equation for predicting solute transport between 

the land surface and groundwater table will continue to provide convenient tools for 

analyzing specific experiments on solute movement, these deterministic models still 

have success for extrapolating information for a limited number of field studies to 

different soils, crop and climate conditions, as well as to different tillage and water 

management schemes (Van Genuchten, 1991). For one-dimensional vertical transfer the 

convection-dispersion equation could describe the solute movement in the unsaturated 

zone as: 



















)(
)()(

qc
z

c
D

zt

c

t

s
                                            (4)                                

Where θ is the volumetric water content, t is time, z is distance from the soil surface 

downward, s is the solute concentration associated with the solid phase of the soil, c is 

the solute concentration of the fluid phase,  is the soil bulk density, D is the solute 

dispersion coefficient, and   is the sink for solutes.  

Legal questions have arisen in the literature about the worth of equation 4 for 

describing solute transport in structured soils characterized by large continuous voids, 

such as natural interaggregate pores, interpedal voids, earthworm and gopher holes. The 

progress of solutes in such soils can be largely different from that in fairly 

homogeneous materials (Beven and Germann, 1982; White, 1985). The fact that most 

soils are heterogeneous raises significant questions about how to simulate the 

heterogeneous field-scale transport process (Van Genuchten, 1991).   

Due to soil profile heterogeneity, some experimenters have found it more desirable to 

use stochastic models rather than constant values in describing the future evolution of 

soil solutes, where the parameters of stochastic transport models are treated as random 

variables with discrete values assigned according to a given probability distribution. 

During the last decade, there has been a significant increase in stochastic models for 

agronomic applications, such as artificial neural networks (ANNs) (Huang et al., 2010), 
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including crop development modeling (Zhang et al., 2009; Fortin et al., 2010) and crop 

yield prediction (Park et al., 2005; Green et al., 2007; Khazaei et al., 2008). Zou et al. 

(2010) worked on silt loam soil profile data, collected monthly from 2001 to 2006, to 

compare two mathematical models: the back propagation neural network (BPNN) 

model and the autoregressive integrated moving average (ARIMA) model. The 

objective was to predict both the average water content in the top 1 meter profile from 

water content measured at 0.60 m depth, and the average salt content measured at 

various depths of the soil profile (0.10, 0.20 and 0.45 m). Sarangi et al. (2006) used 

artificial neural networks (ANNs) in modeling the root zone soil salinity and the salinity 

of drainage effluent from subsurface drained rice fields in the coastal clay soils of 

Andhra Pradesh, India. They observed that, the use of time lag procedure in feeding the 

input values to the ANNs resulted in better ANNs than the conceptual SALTMOD 

model for prediction of salinity of the drainage effluent. 

Previous studies predicted soil salinity by assuming that historical values of soil 

water content and temperature do not change, maybe because data on soil water and 

temperature were not available simultaneously when data of soil salinity was collected 

(i. e., Zou et al. (2010) predicted soil water content and soil salinity in two separated 

models because they had data of soil water content and soil salinity from different 

moments). Soil water content has a significant effect on soil salinity at the root zone 

(Ben-Gal et al., 2008). In the case of variable irrigation system, predicting the soil 

salinity time series cannot be properly explained by the ARIMA model and its 

underlying normality assumption, for the same reasons that were explained in the 

chapter 2. Therefore, modelling soil salinity in oreder to predict its values for near 

future, shoud take into accoutnt the changes in irrigation patters. On the other hand, 

many studies found that calibration measurements of electromagnetic EM induction for 

prediction of σb is affected by soil texture, water content, and soil temperature  

(McKenzie et al., 1989; Slavich and Petterson, 1990). Sarangi et al. (2006) found that 

predicting of soil salinity is correlated to the state of soil water content and temperature. 

Our study was carried out on variable interval irrigation and used capacitance soil 

sensors that measure σb, soil temperature and θ
 
simultaneously, which enabled us to 

properly build up models capable to predict soil salinity taking the situation of θ and 

soil temperature into account.  



4. Soil salinity  
 

106 
   

The objectives of this chapter are: 

1. To derive an offset value that would ensure the accurate prediction of σp from 

measurements of σb  that we are obtained from our field experiments; 

2. To study the autocorrelation and partial correlation function for θ
 

and soil 

temperature measured at shallow depth as well as the cross-correlation function 

between θ
 
and soil temperature at shallow depth and various greater depths of soil 

salinity, including average soil salinity in the top 0.60 m profile; 

3.  To develop models for predicting the soil salinity at various greater depths by 

measuring θ
 
and soil temperature from a single shallow depth;  

4. To use outlier and intervention analysis to examine the effectiveness of the 

irrigation event in the soil salinity profile; and 

5. To monitor the evolution of soil salinity during the crop vegetative stage in the 

study area and examine the effect of irrigation frequency and depth (either the 

beneath the furrow or beneath the ridge) on the soil salinity.  

 

2. Materials and methods  

 

2.1. Experiment 

 

Data from Field 1, Field 2 and Field 3 experimental sites were used in this study (see 

the introduction chapter for its locations), soil characterization for the three fields was 

defined. The design of capacitance sensor installation was described in chapter 3. To 

achieve the objective 5 of this chapter, we add three more sensors beneath the ridge 

(Fig. 4.2).  
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Fig.  4.2. Chart shows sensors distribution in the top 0.60 m soil profile 
 

2.1.1. Capacitance sensor 

 

In this study a capacitance soil sensors (5TE Decagon Devices, Inc., Pullman, WA) 

were used, they are a commercial capacitive sensors that simultaneously estimate , 

temperature and b  and use the Hilhorst (2000) model to convert b to P .  

 

2.2. Deriving Hilhorst (2000) model 

 

The theory behind capacitance soil sensors readings are based on independently 

measuring both components of the composite permittivity of a material. When an 

electric field passes through a material (such as soil) some of the energy in the field is 

transmitted, some is reflected, some is stored and finally some is absorbed and 

converted into heat. The extent to which each of these occurs within a particular 

material is determined by its dielectric properties. These are quantified by a parameter 

called the relative electrical permittivity (ε) of a material which characterises its 

response to the polarising effect of an applied electric field. The relative permittivity of 

a dielectric material is defined as: 

 

                                          
'''  j                                                      (5) 

where 1j  is an imaginary number. '  and " are the real and imaginary parts of 

dielectric permittivity; the real part of ε′ represents the stored energy, known as the 

dielectric constant and provides a surrogate measure of soil water content. The 
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imaginary part (ε′′), accounts for the total energy absorption or energy loss. The energy 

losses include dielectric loss ( "
d ) and loss by ionic conduction:  
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where f is the effective frequency (Hz) of the applied electric field, 0 is the 

permittivity for free space ( 0 =8.854*10-12 F m-1), i  is the specific ionic conductivity 

of the material.  

For extracted pore water, the imaginary part of the complex permittivity of the pore 

water is "
p . In soil science it is not customary to use "

p . It is more practical to use the 

conductivity of the pore water, P , (Hilhorst, 2000)  which can be defined as: 
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where 
ip represents the ionic conductivity of the extracted pore water. The relaxation 

frequency of water is 17GHz at 20ºC (Kaatze and Uhlendorf, 1981). The operation 

frequency for most dielectric or conductivity sensors is <1 GHz (our sensors is 70 

MHz). At frequencies which are low with respect to the relaxation frequency of water, 

"
p  is negligible and Eq. 7 can be reduced to:

   

                               ipP                                                            (8)                                              

The complex permittivity of the pore water (εp) is equal to that of pure water. The 

real part of the complex permittivity of the water is ´
p = 80.3 at 20ºC with temperature 

coefficient of about -0.37ºC-1 (Kaatze and Uhlendorf, 1981). By analogy with Eq. 5 the 

approximation of 
p  can be written: 

                          f
j p

pp .2
´




                                                     (9)                                            

The complex permittivity of the bulk soil ( b ) is proportional to both 
p and a 

function of  , )(g . This )(g   function includes soil type and frequency dependency. 



4. Soil salinity  
 

109 
   

For dry soil, there is no water to facilitate ionic conduction; that is, the conductivity 

of the bulk soil 0b .  We can write b as: 

                                           (10) 

 

where 00 b  is the permittivity of dry soil; 
0b appears as offset to b . Also 

0b

is the extrapolated intercept with y axis from a linear part of the ´
b vs. b . With this 

and Eq 8 substituted in Eq 10 b  can be written as:  
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f

jg p
pb b

                                (11)                                          

The working principle of the capacitance sensors (5TE, Decagon Devices, Inc., 

Pullman, WA) is based on considering that a dielectric material acts as a lossy medium 

between its two screws (such as soil between the probe parallel prongs), so that the 

electromagnetic wave impedance, Z (Ω), across the soil may be expressed as:  

                                   kjY b0                                                (12) 

where Y is the reciprocal of the impedance Z, ω = 2πf is the angular frequency (rad s−1), 

ε is the soil permittivity, and k (m) is a geometric factor determined by the distance 

between the prongs and the area in contact with the soil, such that contact problems 

between the soil and the sensor´s screws will be reflected in this factor. A lossy 

capacitor can be represented by a capacitance, C, connected in parallel to an electrical 

resistance with a conductance, G. C  represent the energy storage and is related to ´
b , G 

represent the energy loss and is related to b  (Regalado et al., 2007). Y may be written 

in terms of C and G as:  

                          Y = G + j C                                (13)    

From Eq 9 and 10, and with 4 to 11 Hilhorst (2000) was able to build up the 

relationship between P  from measurements of, b , 
p  and b  as follows: 

                                (14)  
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2.3. Kalman Filter 

 

The purpose of the Kalman Filter is to provide an estimate of the unobservable state 

vector based on model information and measurement information, balancing out the 

errors of both. It is a sequential algorithm for minimising the state error variance. 

 

Our study used the Hilhorst (2000) model to present results from the application of 

the Kalman filter statistical estimation technique to continuous soil state (p and εσb=0) 

determination, from capacitance soil sensor determinations. A Kalman filter soil state 

model is used to merge available soil physics data with data from capacitance sensors 

(εb). The model makes continuous estimates of soil status and weights εb observations 

according to input and model-propagated error covariances, in order to obtain suitable 

σp and εσb=0 for the study area. 

The state-space model has three parts, σp 
and εσb=0 states, εb observations, and a 

Kalman filter that updates the state by assimilating observations into the dynamic soil 

state estimate. The dynamic model propagates the soil profile status estimate forward in 

time under time-varying atmospheric boundary conditions. When observations of εb are 

available, the Kalman filter uses the propagated state estimate and a record of the 

propagation steps to adjust the state, in proportion to the difference between the 

observed and the predicted value. The ratio of proportionality (the Kalman gain) is 

calculated from a propagated model state error covariance matrix and an estimate of εb 
measurement error. Together, these models produce continuous estimates of p and εσb=0 

states and their error covariances. 

 

2.4. Time-varying Dynamic linear Model  

 

The Dynamic Linear Model (DLM) is presented as a special case of a general state 

space model, being linear and Gaussian. For dynamic linear models, estimation and 

forecasting can be recursively obtained by the well-known Kalman filter. Estimating 

unknown parameters in a DLM requires numerical techniques, but the Kalman filter can 

be used in this case as a building block for evaluating the likelihood function or for 

simulating the unobservable states.  
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The R (R Development Core Team 2012) package dlm (Petris, 2010) provides an 

integrated environment for Bayesian inference using DLM, and the package includes 

functions for Kalman filtering and smoothing, as well as maximum likelihood 

estimation.  

 

2.5. Model identification  

 

A time-varying DLM can be modelled as 

 

                                                           

 

 

here ݕ௧ is an m- dimensional vector, representing the observation at time t; in our study 

it represents b  observations. ݔ௧ is an m.m-dimensional matrix of covariates. While ߙ௧ 

and ߚ௧are unobservable m-dimensional vectors presenting the state of the system at time 

t, in our study they represent εσb=0 and p, respectively. ݒ௧ , ݓఈ,௧ and ݓఉ,௧ are the 

Gaussian white-noise errors. The only parameters of the model are the observations and 

evolution variances ௧ܸ, ݓఈ,௧ and ݓఉ,௧. These are usually estimated from available data 

using maximum likelihood or Bayesian techniques.  

 

2.5.1. Seasonality 

 

When the model has a seasonal component, it is usual to include a Dynamic Linear 

Model (DLM) to describe this component. In the state –space expression, the seasonal 

component may have a stochastic error that allows changes for the seasonal pattern over 

time.  

 

So Eq. 15 may have a seasonal component (St) and may be written as: 

 

௧ݕ                                          ൌ ௧ߙ ൅ ௧ߚ௧ݔ ൅ ܵ௧൅ݒ௧                                   (17) 

௧ݕ ൌ ௧ߙ ൅ ௧ߚ௧ݔ ൅ ௧ݒ ௧Observation equationݒ െࣨሺ0, ௧ܸሻ             (15) 

௧ߙ ൌ ௧ିଵߙ ൅ ఈ,௧ݓ
௧ߚ ൌ ௧ିଵߚ ൅ ఉ,௧ݓ

 State equation  

௧,ࣸݓ െࣨሺ0,ݓఈ,௧ሻ     (16) 

ఉ,௧ݓ െࣨሺ0,ݓఉ,௧ሻ  
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2.5.2. A transfer function model: influences of soil water, soil temperature and 
irrigation management on soil salinity in loamy sand soil. 

 

We used techniques of time series analysis according to the methodology described 

in chapter 3 to accomplish this objective,   but here we developed the transfer function 

model to include two inputs (soil water content and soil temperature), in order to obtain 

the output ( soil salinity). In brief, time series analysis of soil salinity was made in three 

steps.  

 

The first one involved applying the Box-Jenkins method (Box et al., 1994) in order 

to identify an appropriate univariate model for the time series of soil salinity , soil water 

and soil temperature at 0.10 m depth. This study used the seasonal autoregressive 

integrated moving average (ARIMA) (p, d, q) × (P, D, Q)S model, where p, q are the 

orders of the regular autoregressive and moving average factors, and P, Q are the 

seasonal autoregressive and moving average factors, respectively; d and D are the 

orders of differencing for the regular and seasonal parts, respectively; sub-index S 

denotes the seasonal period (24 hours in this study). 

 

The second step was evaluating the effects of irrigation time by including it in the 

soil salinity, soil water content and soil temperature models as intervention analysis and 

searching for the presence of outliers in the univariate series.  

 

The third step was identifying the appropriate transfer function approach by 

modelling the linear system, using the soil water content and soil temperature time 

series at 0.10 m depth as inputs, while the outputs were the soil salinity time series at 

0.10 m depth and the average soil salinity in the top 0.60 m of the soil profile. 

 

The first and second steps were explained in details in chapter 3 (Materials and 

Methods); the third step consists of a transfer function (multiple input-single output). 

 

Observations and predictions of two time series (input X1t and X2t) may be used to 

estimate the outcome of another time series (output Gt) by modelling the linear system 

with a relatively small number of parameters. The model takes the form: 
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where )(BA  and C(B) are polynomials of the s and r orders, respectively:       
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where A0,A1,A2,…,As and C1,C2,…,Cr are the parameters of the model, b is the latent 

parameter, B is the backshift operator, and ta  is a disturbance (noise). 

 

)(/)( BCBA  is called the transfer function of the system. The procedure for building a 

transfer function model involves three steps: a) identification, b) estimation and c) 

model checking. By using a univariate model for input input X1t and X2t  with white 

noise residuals, the same filter can be applied to the output series Gt  (pre-whitening). 

Cross-correlation of the two residuals allows us to identify the transfer function form. 

 

In this study, the transfer function approach was applied by choosing the soil water 

and soil temperature observations at 0.10 m as primary series (X1t and X2t), while the 

output series (Gt) was chosen from the observations of soil salinity time series at 0.10 m 

depth and the average soil salinity in the top 0.60 m of the soil profile. Average soil 

salinity in the top 0.60 m of the soil profile was calculated with the formula that Wu et 

al. (1997)3. 
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where D is depth downward (m), and θi is volumetric water content at depth Di 
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2.6. Data analysis and statistics: Effects of irrigation management applied on 

soil salinity 

 

We will attain this objective by analysing the effect of irrigation frequency applied in 

the study area (Field 1: lettuce; Field 2: lettuce; Field 3: artichoke) on soil salinity, the 

null hypothesis is that: irrigation frequency according to the farmer’s normal 

management practice does not affect soil salinity behavior, depending on soil depth and 

position (beneath the furrow or beneath the ridge). The alternative hypothesis is that: 

irrigation frequency according to the farmer’s normal management practice affect soil 

salinity behavior, depending on soil depth and position (beneath the furrow or beneath 

the ridge). 

 

For this analysis we collected 30 measurements of soil salinity after three days for 

each irrigation event. All data were subjected to analysis of variance (ANOVA) 

procedures using R (R Development Core Team 2012). Appropriate standard errors of 

the means (S.E.) were calculated. Tukey’s studentized range test (HSD) was applied to 

separate measured parameters of soil salinity exposed to irrigation frequency for each 

depth.  

 

3. Results and discussion  

3.1. Soil characterization  
 

Table 4.1 shows the soil characterization of the three study fields beneath the furrow 

and ridge at various depths. It shows that the soil particles for clay, silt and sand have 

little variations in the root zone. The organic matter in study fields is representatative of 

the area. 
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Table 4.1.  Soil characterization for Field 1, Field 2 and Field 3 
Position Furrow Ridge 
Depth 0.10 m 0.35 m 0.65m 0.15 m 0.80 m 

Field 
Field 

1 
Field 
2&3 

Field 
1 

Field 
2&3 

Field 
1 

Field 
2&3 

Field 
1 

Field 
2&3 

Field 
1 

Field 
2&3 

Clay 
(<0.002 mm 
diameter) % 

16.6 35.29 13.12 39.23 22.3 37.23 17.71 32.48 21.55 37.43 

Silt 
(0.05 a 0.002 
mm diametre) % 

54.89 52.16 55.25 49.34 61.16 51.24 56.34 53.52 59.64 50.92 

Sand 
(2 a 0.05 mm 
diameter) % 

28.51 12.55 31.63 11.42 16.54 11.52 25.96 14 18.81 11.64 

USDA Textural 
Name 

silty 
loam 

silty 
clay 
loam 

silty 
loam 

silty 
clay 
loam 

silty 
loam 

silty 
clay 
loam 

silty 
loam 

silty 
clay 
loam 

silty 
loam 

silty 
clay 
loam 

Organic matter  
% 

2.38 3.38 1.28 1.6 1.31 0.98 3.97 3.31 1.45 0.91 

 

 

3.2. Time-varying Linear Dynamic Model (LDM) 

 

In the beginning, the offset value was derived using the method of Persson (2002), 

by rearranging the Hilhorst (2000) model as follows: 

 

                                   (18) 

  

By using hourly field measurements of εb and σb (1318 observations for each one, 

Field 1). Table 4.2 shows the relationship εb-σb. The offset of this relationship is 4.97 

and the slope is 1/σp= 0.33, so σp=5 d S m-1 is the average for the all the observations. 

By applying Durbin–Watson test to see if there is an autocorrelation between the 

residuals of that regression, Table 4.3 shows that there is an extremely strong and 

positive autocorrelation, which indicates that the result of that regression is not valid. 

Moreover, the linear model does not take the evolution of the unobservable variable 

over time into account. For this reason, it is reasonable to think that σp evolves with a 

stochastic component.  

 

 

0*/ 
bbppb 
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Table 4.2. linear regression εb - σb  
 Estimate Std. Error t value Pr(>|t|)     
(offset ) 4.978923 0.088208 56.45 <2e-16 *** 
1/ σp 0.354256 0.002546 139.15 <2e-16 *** 

Significant: *P < 0.05, **P < 0.01, ***P < 0.001. 
 

Table 4.3. Durbin–Watson test to the linear regression εb - σb 
lag Autocorrelation D-W Statistic p-value 
1 0.9524539 0.09079999 0 

 

 

The known parameters for the Hilhorst (2000) model are b, b and p; they are 

simultaneously and hourly measured by capacitance sensors; while b could be directly 

obtained from the data logger, b and p 
were calculated as follows: 

50
raw

b


   

)20(37.03.80  soilp T  

where raw  represents  the raw soil water content counts, and Tsoil is the soil temperature 

measured by the sensor directly. 

Fig. 4.3 shows the evolution of soil dielectric constant b, water dielectric constant p 

and soil bulk electrical conductivity b; it also shows that the irrigation events have a 

significant effect on b and b.  

Equation 18 can be modified to the time-varying DLM into observation and 

unobservable (state) models as follows: 

The observation equation (from Eq. 17): 

 

ሺ࢈ࢿሻ࢚ ൌ ሺ
0b ሻ࢚ ൅ ሺ

bp  * ሻ࢚ሺ
૚

p
ሻ࢚ ൅ ࢚࢙ ൅ ௧ݒ               ࢚࢜ െࣨሺ0,  ௩ଶሻ        (19)ߪ
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The state equation (from Eq. 16): 

      

ە
ۖ
۔

ۖ
ۓ ሺ

0b ሻ࢚ ൌ ሺ
0b ሻି࢚૚                                                    

ሺ ૚

p
ሻ࢚ ൌ ሺ ૚

p
ሻି࢚૚ ൅ ௧ݓ            ௧ݓ െࣨሺ0, ሺߪ௪ሻ௧ଶሻ         

࢚࢙  ൅ ૚ି࢚࢙ ൅ ૛ି࢚࢙ ……൅ ૛૜ି࢚࢙ ൌ ૙                             

                           (20) 

 
st is the seasonal component (every 24 hours). ߪ௩ଶ, q and K are the parameters of the 

model. In equation 19, we added a stochastic component to the Hilhorst (2000) model 

(the Gaussian white-noise error and the seasonality component (order= 24 hours)). In 

equation 20, we considered that the offset and the seasonal pattern are constant and that 

the slope 1/σp changes over time. 

 As we see in chapter 2, the irrigation events have significant effect on the behaviour 

of soil water content and should be captured as outliers to improve the model. Fig. 4.3 

shows that irrigation events have also a significant effect on the behaviour of εb. We 

increase the state variance ሺσ୵ሻ୲ଶ by a constant factor (k>1) to capture the time of 

irrigation event as an outlier where: 

 

ሺߪ௪ሻ௧ଶ ൜
ݐ ݂݅           ݍ ് 103, 654, 770, 1112                             
ݐ ݂݅        ݍܭ ൌ 103, 654, 770, ܭ               1112 ൐ 1                  

where 103, 654, 770 and 1112 hours are the irrigation moments from the time of 

planting. This change in the model gives better estimates of the irrigation time effects 

on the state values. Once we estimate the parameters, we apply the Kalman filter to get 

the offset 
0b  and the slope  

૚

p
 .  
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Fig.  4.3. Known variables for the Hilhorst model εb (σb, εb, and εp); IR1, IR2, IR3 and 
IR4 are the times of the irrigation events. Field 1, Lettuce.  
 

3.3. DLM validation  
 

Fig. 4.4 shows the observed and predicted time series of soil dielectric constant εb at 

0.10 m depth (Field 1, lettuce, furrow). The predicted and observed values agreed 

reasonably after 1318 observations. The mean absolute error of variance forecasts 

between prediction and measurement for the time series never exceeded 0.02 (Fig. 4.5). 

  

Fig. 4.6 shows the values of electrical conductivity of soil pore water (σp) and offset 

εσb=0 by applying the time –varying DLM to the data from Field 1 at 0.10 m depth 

(lettuce crop). At this depth, the offset is 3.8 and σp 
was varying over time; the figure 

shows a clear decrease in σp 
at the time of irrigation, which may have been expected 

since irrigation leaches the salts downward.  
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Fig.  4.4. Observed and predicted data of soil dielectric constant at 0.20 m depth (Field 
1, furrow, lettuce).  

 

 
Fig. 4.5. Measured versus predicted soil dielectric constant.  
 

3.4. Field estimation of εσb=0 and σp 
 

 

By applying the time –varying LDM to the observed data at the various depths (field 

conditions), we were able to estimate the constant value of εσb=0  and the evolution of 
 
σp 

over time (within the range of 3.8 to 8.5). Fig. 4.7 shows the values of σp 
and εσb=0 for 

0.20 m and 0.60 m depths, respectively. The questions now were, what causes the 
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differences between the offset values of different depths, and are they statistically 

significant? To investigate these questions, many studies found that calibration 

measurements of electromagnetic EM induction for prediction of σb 
are affected by soil 

texture, water content, and soil temperature (McKenzie et al., 1989; Slavich and 

Petterson, 1990). Yuanshi et al. (2003) showed that εb changes when soil compaction 

and temperature vary. 

 

Fig. 4.6. Estimation of the unobservable data (εσb=0 and σp) by applying the Time-
varying DLM to data from Field 1 (lettuce, furrow, 0.10 m depth). 

 

In this study, the value of the εσb=0   was derived from the εb observations, and since 

temperature affects εb, we can consider the null hypothesis which stated that: the soil 

temperature has no effect on the εσb=0   value. The alternative hypothesis stated that: the 

soil temperature has an effect on the εσb=0 value.  

For this analysis we took 30 measurements of soil temperature three days after one 

irrigation event. All data were subjected to analysis of variance (ANOVA) procedures 

using R (R Development Core Team 2012). Table 4.4 shows that the univariate 

ANOVA produced statistically significant results, so the soil temperature had an effect 

on the values of offset and this could be the reason for the difference found in offset 

values at different depths. 
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Fig. 4.7. Estimation of the unobservable data (εσb=0 and σp) by applying the Time-
varying DLM to data from Field 1 (lettuce, furrow, 0.20 m and 0.60 m depth). 
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Malicki et al. (1994) and Malicki and Walczak (1999) included sand content in % by 

weights in their empirical σb - σp - εσb=0  model. Table 4.1 shows that there is a different 

sand content (%) at each depth in Field 1, but this study could not conclude that the 

sand content has an effect on the value of εσb=0 because more data would be required to 

statistically confirm this effect.  

 

 

 

Due to the fact that most soils are heterogeneous, this could support the need to adapt 

an offset for each depth. 

 

3.5. Influences of soil water, soil temperature and irrigation management on 
soil salinity in loamy sand soil. 

 

Fig. 4.8 shows the variation of soil water content, soil temperature, and soil salinity 

content at 0.10 m depths with time. Irrigation events that were applied on days 4.29, 

27.20, 32.04 and 46.33, and precipitation occurring on days 9.33, 20.50 and 52.54 had 

significant effects on soil salinity fluctuations; soil salinity decreased with each 

irrigation event and rainfall. Fig. 4.8 also shows that the soil temperature increased at 

the moment of irrigation due to the fact that the temperature of water irrigation is higher 

than the soil temperature before irrigation. 

 

Table  4.4. Effect of  the mean soil temperature ( ºC ) on the offset  at various depths  
 Depth 
Main factors 0.10 m 020 m 0.35 m 0.50 m 0.60 m 
Mean soil 
temperature 
ºC 

     

18.14 3.8     
16.25     5.8 
16.94    7.1  
18.04  7.8    
17.36   8.2   
significance * * * * * 

Significant: *P < 0.05, **P < 0.01, ***P < 0.001. 
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Fig. 4.8. Variation of soil water content, soil temperature and soil salinity at 0.10 m 
depth with time IR1, IR2, IR3 and  IR4 are the irrigation events applied on days 4.29, 
27.20, 32.04 and 46.33. Pre1, Pre2, and Pre3 are the precipitation event on days 9.33, 
20.50 and 52.54. 
 
 

The opposite occurred with precipitation: Fig 4.8 shows that soil temperature 

decreased at precipitation times; acknowledgement of these fluctuations will help in 

modelling soil salinity as a function of soil water content and soil temperature, as we 

will explain below. Later, we developed the ARIMA model for the soil salinity time 

series at 0.10 m depth and completed it by including the irrigation event as an 

intervention analysis and the precipitation as outlier detections. 

 

3.5.1. Univariate modelling of soil salinity time series at 0.10 m depth. 
 

Fig.  4.9 shows the time series of soil salinity at 0.10 m depth for the first four days 

of planting. The time series displays a strong seasonality every 24 hours.  
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Fig. 4.9 Time series of soil salinity at 0.10 m depth (m3m-3) for the first 4 days of 
planting at 0.10 m depth. 
 

 

The ACF of the original time series of soil salinity at 0.10 m depth converges very 

slowly, indicating that the time series is non-stationary (Fig. 4.10A). To obtain a 

stationary time series, the original series were differentiated (first order-difference and 

seasonal first order difference). No trend in variance is observed in this series, so there 

is no need to apply a logarithmic transformation. 

 

The ACF and PACF of differentiated time series indicated that the series was 

approximately AR (3) for the regular component, and MA (1) for the seasonal 

component, because the ACF (Fig. 4.10 B) showed that only the correlation at the first 

three and at the 24th lags of ACF were significant. 
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Fig. 4.10. (A) Autocorrelation function (ACF) of the original data, (B) autocorrelation 
function, and (C) partial autocorrelation function (PACF) of the transformed time series 
of soil salinity at 0.10 m depth. The ACF of the original data indicates that the series is 
not stationary. The dashed line represents 2 x standard errors. 
 

 

The ARIMA (p, d, q) (P, D, Q)S model of time series of soil salinity at 0.10 m depth 

was ARIMA (3, 1, 0) (1, 0, 0)24. In usual notation the model is given by: 

             t24t aBXBBBBB )1()1)(1)(1( 24243
33

2
21                            (20) 

where ta  is an independent, identically distributed white noise term with zero mean and 

variance = 2.8.10-7, 1  = 0.2088,  2 = -0.0468 , and 3 = -0.0883 are AR parameters. 

The 24  = 0.99 parameter of the seasonal AR. We checked the serial correlation in the 

residuals of a fitted model (20) to verify if model (20) closely represented the observed 

time series of soil salinity. By using the Ljung –Box statistic test of model residuals, Fig 

4.11 shows that model residuals are correlated and that the model is not valid.  
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Fig. 4.11. The Ljung-Box statistic of the model ARIMA (2,1,0)(1,0,0) residuals. 
 

 Therefore, it is inadequate and needs to be improved in structure. An exploratory 

method, which is well-established in other fields, is a seasonal-trend decomposition 

based on locally-weighted regression (loess), widely known as “STL” (Cleveland et al., 

1990; Hafen et al., 2009). The STL method is straightforward to use; it allows for 

flexibility in specifying the amount of variation in the trend and seasonal components of 

time-series; and it produces robust estimates that are not distorted by transient outliers 

(Cleveland et al., 1990). Fig. 4.12 shows that the large outliers of the remainder 

(random) are backed to the irrigation event. Since the timing of the irrigation event is 

previously known, the model could be completed with intervention analysis (irrigation 

event) and outlier detection (model 20), making it invertible and thus reducing its 

residual variance (Wei, 1989). 
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Fig. 4. 12 Decomposition plot of soil salinity at 0.10 m depth affected by the 
intervention variable (irrigation event in our case) and irregular variables (such as 
precipitation) over 55 days, STL method. This plot assists evaluation of the trend, 
seasonality and remainder (random) against the raw data. The graph (observed) 
represents the hourly time series of soil salinity affected by irrigation and irregular 
events like precipitation. The graph (trend) is the fitted trend. The graph (seasonal) is 
the seasonal pattern per 24 hours. The graph (random) represents the remainder after the 
trend and the seasonal pattern have been fitted to the time-series values. The sum of the 
trend, the seasonal pattern and the random equals exactly the time-series. IR is the time 
of irrigation event, and Pre is the precipitation time. The large peaks of the remainder 
correspond to the irrigation time which must be taken into account when building up 
ARIMA model on the series. 
 

3.5.2. Outlier and intervention analysis in the ARIMA model for time series of 
soil salinity at 0.10 m depth: the effectiveness of the irrigation event on 
soil salinity. 

 

Intervention analysis and automatic outlier detection were applied to the previous 

ARIMA (3, 1, 0) (1, 0, 0)24 model to improve it and to assess the effect of irrigation 

events on soil salinity at 0.10 m depth (for more information about intervention analysis 

and outlier detection see Materials and Methods, chapter 3). With Grubb's test (Eq. 7, 
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chapter 3) 15 outliers were detected (Table 4.5) for the time series of soil water content 

at 0.10 m depth.  

 

Table  4.5.  Outlier Detection and parameter estimation for time 
series of soil salinity at 0.10 m
Observation time (hour)  type 

103  AO  0.18505831  7.968661 
106  TC  0.12443606  4.554197 
153  AO  0.09745569  4.564459 
494  TC ‐0.17091216  6.035187 
653  AO  0.29954989  12.203030 
654  AO ‐0.11073225  5.145772 
770  TC ‐0.23075883  7.883772 
919  TC ‐0.11041299  4.181763 
962  TC ‐0.10900883  4.183170 
1001  TC ‐0.11738130  4.326400 
1029  TC ‐0.10927677  4.165889 
1089  TC  0.11360351  4.215289 
1112  TC ‐0.28581633  9.320497 
1113  TC ‐0.14613830  5.213316 
1262  TC ‐0.20726519  7.219790 

 

 

Including the outlier detection and intervention analysis, the observed value of time 

series of soil water content at 0.10 m depth can be described according to Eq. 8 (chapter 

3) as: 

      
t
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T

j
j
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T

i
i

tttt
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ji
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             (21) 

Xt is the observed time series, Zt is the time series free of outliers, and r  =-0.7592 

represents the permanent change in the mean level after the irrigation event, which 

characterizes the effectiveness of the irrigation event on the soil salinity. In this study, 

the flow rate and cut-off time for the four applied irrigations were almost equal. 

Therefore, we used an average coefficient for ߱௥ to estimate the weight of the peak 

caused by four irrigation events. The part )( )(
33.46

)(
04.32

)(
20.27

)(
29.4

tttt SSSS   represents the 

step indicator at four irrigation times rT  (days 4.29, 27.20, 32.04, and 46.33). The part 

)(
5

1

)(
23

1

AO
T

j
j
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i
i ji

PP 


   represents the effects of the 15 detected outliers. 
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By applying the Box-Jenkins approach to the time series of soil salinity 
tt

Z obtained 

from Eq. (21), the ARIMA (3, 1, 0) (0, 1, 1)24 model was determined. The model, in 

usual notation, is given by: 

 

                       t24t aBΘZBBBBB )1()1()1()1( 24243
3

2
21                  (22) 

 

The model (22) is free of outliers, it is invertible, and the ACF and PACF of 

residuals at all lags are non-significant. Fig. 4.13 shows that the model (22) residuals are 

non -significant. Table 4.6 shows the comparison between the two models (20 and 22) 

in terms of statistical parameters. 

 

 

Fig. 4.13. The Ljung-Box statistics of the model ARIMA (3,1,0) (0,1,1) residuals 
 

 
 

Table 4.6. Comparison of the two models for soil salinity at 0.10 m depth in terms 
of statistical parameters (one based on observed data tX  and the second based on 

outlier-free data tZ ) 

Model 1  2 3 24  
2  

Model based on 
observed data tX  

(20) 
 

-0.0114 -0.0684 

 

 1.377.10-4 

Model based on 
Outlier free data tZ  

(22) 

-0.0467 -0.0108 
 

0.0273 
 

-0.9226 7.431.10-5 
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After modelling σp, the next step is to model the soil waer and soil temperatue time 

series at 0.10 m depth. Following the same steps to model σp, table 4.7 shows the 

ARIMA soil water and soil temperatue models. While the effect of irrigation event on 

soil water  and soil temperatue time series at 0.10 was  0.0843 and  0.2882 respectively. 

 

Table 4.7. models of soil water content (θ) and soil temperature (t)  at 0.10 m  

Model 1  2  3  Θ1 24  
2  

Soil water -0.0361 -0.0192    1.056.10-5 
Soil temperature 1.5510 -0.6414 0.0273 -0.877 -0.882 1.833.10-5 
 

 

3.5.3. Transfer function approach 
 

The cross-correlation between the pre-whitened primary time series of soil water 

content and soil temperature at 0.10 m depth, and the target soil salinity time series at 

0.10 m depth and average soil salinity in the top 0.60 m soil profile, showed that the 

primary series affects the target series, but the target series cannot in turn have a bearing 

upon the primary series. Fig. 4.12 proofs that the present value of soil water and content 

and soil temperature at 0.10 m has a significant effect on the present value of soil 

salinity at 0.10 m depth and average soil salinity in the top 0.60 m of the soil profile. 

 

Models for predicting soil salinity from the soil water content and soil temperature at 

0.10 m depths were identified (Table 4.8). The coefficients of Xt  in the equations of 

Table 4.8 show that the present values of soil water content and soil temperature at 0.10 

m have effects of -7.82, -0.050 on salinity at 0.10 m dpeth, respectively. Also, the 

present values of soil water content and soil temperature at 0.10 m have effects of -1.68, 

-0.004 on the present value of average soil salinity in the top 0.60 m soil profile,  

respectively. 
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3.5.4. Forecasting  
 

Fig. 4.13 shows the model calibration and prediction for average soil salinity in the 

top of 0.60 m depth of soil profile and soil salinity at 0.10 m depth. The first 659 

observations of each time series were used for model identification. The calibrated 

model represented the values before these 659 observations very well for each depth. 

The predicted and observed values after the 659 observation agreed reasonably. The 

relative difference between predicted and observed values was sometimes large. The 

absolute difference between the prediction and measurement never exceeded 0.27dSm-1. 

 

 

 

Fig. 4.12. Cross-correlation function for soil water content and soil temperature hourly 
time series at 0.10 m  and soil salinity at 0.10 m depth , soil water content and soil 
temperature 0.10 and soil salinity in the top 0.60 m of soil  profile, respectively. Dashed 
lines indicate 95% confident limits. 
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Table 4.8. Time series transfer function model for soil salinity at 0.10 m depth and in 
the top of 0.60 m of the soil profile. 
Soil water content X1,t, soil temperature X2,t at 0.10 m and  soil salinity Yt at 0.10 m: 

)0.05020.12660.15971)(680.01)(1(

,)0.0153 -0.0508(,)0.72340.2606-1.4053-7.8242(
3224

21
32

BBBBB

aXBXBBB
Y ttt

t 


    

        
                                                                                           )108.489.6,0(~ 5Na t

 

 
Soil water content X1,t, soil temperature X2,t at 0.10 m and  average soil salinity Yt  

      
)0.17540.02090.06271)(0.03581)(1(

,)0.0111- 0.004(,)0.07170.49750.0548-1.6855- (
3224

21
32

BBBB

aXXBBB
Y ttt

t 



 

 
                                                                                          )102.684,0(~ 5Na t

 

 
 

Using the transfer function model presented in table 4.8, Fig. 4.14 shows an example 

of prediction of soil salinity (at 0.10 m and in the top 0.60 m soil profile) for two days, 

as a function of soil water content and soil temperature at 0.10 m. The observed values 

of soil salinity correspond to 55 days, and the prediction is for the 56th and 57th day. It 

includes the effect of the next irrigation if the farmer chooses to irrigate on the 56.5th 

day. 
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Fig. 4.13. Measured and predicted soil salinity versus time at 0.10 m depth and in the 
top 0.60 m of soil profile. Prediction was based on the identified transfer function 
models for each one. The curve before the vertical dashed line refers to model 
calibration and after the vertical dashed line to model prediction. 
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Fig. 4. 14. Prediction models for soil salinity at 0.10 m depth and average soil salinity in 
the top 0.60 m of soil profile. Prediction was based on the indentified transfer function. 
We have observed data for 55 days, the model predicts the 56th and 57th day taking into 
account the effect of next irrigation if the farmer choose to irrigate on 56.5th day (* is 
the irrigation time at 56.5th day). 
 

 

3.6. Effects of irrigation management applied on soil salinity 

 

Fig 4.15 and Fig 4.16 show how irrigation quickly reduces the salinity in the crop 

root zone ( the top 0.60 m soil profile responds fast to irrigation envents). Table 4.9 and 

4.10 presents the primary statistical results associated with the repeated measurement 

analysis of the soil salinity data (Field 1, lettuce, and Field 3, artichoke). The univariate 

ANOVA models with the position, depth and irrigation frequency for Field 1 (lettuce) 

and Field 3 (artichoke) had statistically significant resutls. There is an interaction 

between those factors. Fig. 4.17 and Fig. 4.18 show how the average soil salinity 

changed with irrigation frequency at different depths (beneath the furrow and the ridge 

in the case of Field 1, Fig 4.17). Based on the multivariate tests in tables 4.8 and 4.9, the 

patterns shown in Fig. 4.17 and Fig. 4.18 can be considered statistically distinct.  
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Table  4.9. Effect of irrigation frequency , and position (furrow, ridge) on  mean of 
soil salinity ( dS m-1 ) at various depth Field 1, Lettuce.  
 Depth 
Main 
factors 

0.10 m 0.20 m 0.35 m 0.50 m 0.60 m 

Irrigation 
(IR) 

Furrow Ridge Furrow Furrow Ridge Furrow Furrow  Ridge

Irrig1 2.84 1.82 4.7 3.90 4.74 3.33 4.07 5.40 
Irrig2 2.68 2.00 4.90 3.40 4.13 3.16 3.55 5.16 
Irrig3 2.78 1.78 4.80 3.50 3.9 3.09 3.31 5.14 
Irrig4 2.70 1.40 5.20 3.38 3.80 3.01 3.48 NA 
significance * * * * * * * * 
      
 Depth 
 0.10 m 0.20  

m 
0.35 m 0.50 m 0.60 m 

Position 
(POS) 

     

Ridge 1.76  4.16  5.23 
Furrow 2.75 4.90 3.54 3.10 3.60 
Significance ***  ***  *** 
 Depth 
 0.10 m 020 m 0.35 m 0.50 m 0.60 m 
Interaction      
IR X POS  *** *** *** *** *** 

Significant *P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure 4.15. Effects of irrigation events on the salinity at various depths within the root 
zone of lettuce crop, Field 1 (4 irrigation events for 55 days, under the furrow). 

 

Figure  4.16 .Effects of irrigation events in the salinity at various depth within the root 
zone of artichoke crop,  Field 3. (14 irrigation events for 200 days, under the furrow). 
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In field 2, lettuce, the univariate ANOVA models with the position, depth and 

irrigation frequency had also statistically significant results. Fig.  4.19 shows that the 

the average soil salinity changed with irrigation frequency across the depths beneath the 

furrow. Table 4.11 indicates that the comparison between Field 1 and Field 2 in terms of 

the mean of soil salinity for each depth is statistically significant results and Fig 4.20 

shows that the irrigation water quality may be the main reason for these differences. 

Field 2 was irrigated from the Canal de la Infanta (water quality about 2 dS m-1) while 

Field 1 was irrigated from the Canal de la Dreta (water quality about 1 dS m-1). Soil 

salinity in Field 3 (in the root zone) was lower than in Field 2 because the farmer in 

Field 3 uses more irrigation events and also mix the water which came from  Canal de la 

Infanta with water extracted from his well.  

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

Table 4.10.  Effect of irrigation frequency  and depth on  mean of soil  
salinity ( dS m-1 ) , Field 3, artichoke,  
 Depth  
Main factors 0.10m 0.20m 0.35m 0.60m 
Irrigation (IR)     
irrig1 3.27 3.21 3.06 3.24 
irrig2 3.57 3.99 1.93 3.25 
irrig3 3.97 3.93 3.08 3.52 
irrig4 3.66 3.25 3.57 3.91 
irrig5 4.25 4.78 4.54 3.47 
irrig6 2.30 3.54 3.91 4.01 
irrig7 3.99 4.07 4.39 4.22 
irrig8 1.91 1.87 1.25 1.39 
irrig9 1.5 1.36 0.41 1.28 
irrig10 1.66 1.86 1.61 1.35 
irrig11 1.07 0.62 6.79 6.75 
irrig12 4.27 5.29 5.40 3.55 
irrig13 1.18 3.10 3.97 3.89 
irrig14 3.68 3.23 2.74 1.99 
significance *** *** *** *** 
     
Interaction      
IR*Depth *** 

significant; *P < 0.05, **P < 0.01, ***P < 0.001 
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Figure 4.17.  Average soil salinity interaction plot for irrigation frequency as related to 
depth, IR: irrigation event (1, 2, 3 and 4), a) beneath the ridge and b) beneath the 
furrow, Filed 1, lettuce 
 
 

Table 4.11. Effect of water quality and depth on the mean of soil salinity (dS m-1), Field 1 
and 2, lettuce. 
 Field 
Main factor  Field 1 (water quality 1dS m-1) Field 2  (water quality 2ds m-1) 
Depth    
0.10 m 3.092257 3.406583 
0.20 m 5.187310 6.953250 
0.35 m 3.141300 5.370667 
0.50 m 3.123313 8.796500 
0.60 m 3.612595 8.928667 
Significance *** *** 
Interaction    
Field *Depth  *** 
significant; *P < 0.05, **P < 0.01, ***P < 0.001 
 

 

 



 

 
 

 

Fig. 4.18. Average soil salinity interaction plot for irrigation frequency as related to depth, IR: irrigation event (1, 2,.., 14), Field 3, artichoke. 

1
3
9
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Fig. 4.19. Average soil salinity interaction plot for irrigation frequency as related to 
depth, beneath the furrow, Filed 2, lettuce. 
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Fig. 4.20.  Average soil salinity interaction plot for Field 1 and 2 as related to depth 
(beneath the furrow, lettuce crop), the affect of water quality in the soil profile at 
various depths is the main reason for this difference. 

 

 

In General, in this study, the mean soil salinity significantly changed with depth and 

irrigation frequency, and we can see that at the end of crop’s vegetative stage the 

farmers left the field with less soil salinity, for each depth, than at the beginning of 

crop’s vegetative stage (Fig 4.17, Fig 4.18 and Fig. 4.19).  

 

4. Conclusions  

 

Several models have been studied to assess the σp from εb -σb relationship (Rhoades 

et al., 1976; Muallem and Friedman, 1991; Malicki and Walczak, 1999). Lately, 

Hilhorst (2000) presented a theoretical model describing a linear relationship between 

σb and εb in moist soil. By using this linear relationship, Hilhorst (2000) found that 

measurements of the σp can be made in a wide range of soil types without soil-specific 

calibrations. In this present study, applying the εb - σb linear relationship on the field 

condition data gotten from capacitance sensors, the autocorrelation between the 
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residuals of that regression were extremely strong positive. By including a stochastic 

component to the linear model and rearranged it to a Time- varying Dynamic Linear 

Model (DLM) and using kalman filtering and smoothing, we are enabled to derive an 

accurate offset of the relationship εb - σb and estimate the evolution of σp over time. It 

was shown that the offset varies for each depth in the same soil profile.  A reason for 

this might be to the changes in soil temperature through soil profile. Once σp was 

estimated, by using transfer function model, prediction of soil salinity by measuring soil 

water conentent and soil temperatre were logical. Also, the next irrigation time and its 

effect on soil salinity at the depth of interest were correctly estimated. 

 

Irrigation frequency according to the farmer’s normal management practice had 

statistically significant effects on soil salinity behavior, depending on soil depth and 

position. For each depth, farmers left the field with less soil salinity than at the 

beginning of the crop’s vegetative stage. Moreover, irrigation water quality had a 

significant effect on soil salinity at the root zone in the three fields.  
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Conclusion  
 

This dissertation has evaluated furrow irrigation in the Parc Agrari del Baix de 

Llobregat area, according to the farmer’s normal management practice. Soil water 

content and soil salinity were assessed temporally and spatially using capacitance 

sensors for evaluating the appropriateness of related management practices. 

 

The purpose of the current study was the determination of the performance indicators 

of the furrow irrigation system and the study of the evolution of soil water content and 

soil salinity in the root zone. Such study allows us to determine the tools that could 

maintain and improve the agricultural sustainability of the study area. The more 

significant findings that emerge from this study are: 

 

 The adaptation of the ARIMA model to the variable interval irrigation system 

for predicting soil moisture. In the case of variable interval irrigation, predicting 

the soil water content time series cannot be properly explained by the ARIMA 

model and its underlying normality assumption. In this research we completed 

the ARIMA model with intervention analysis and outlier detection to predict the 

soil water content in variable interval irrigation. 

 The obtained ARIMA model was capable to determine precisely the next 

irrigation time.  

 The effect of irrigation event on soil moisture was estimated reasonably.  

 The soil moisture at greater depths was forecasted well from one single shallow 

depth by using transfer function model. The relative difference between 

predicted and observed values was sometimes large; it increased as the distance 

of separation between the primary and target increased. The absolute difference 

between the prediction and measurement never exceeded 0.03 m3 m-3. 

 We built an advanced process to study the relationship between soil dielectric 

constant (εb) and bulk electrical conductivity (σb) by including a stochastic 

component to the linear relationship between them. The current study enables us 

to derive an accurate offset form this relationship to estimate pore electrical 

conductivity (σp) by using Time-varying Dynamic Linear Model (DLM). It was 

shown that the offset, εσb=0, varies for each depth in the same soil profile. A 

reason for this might be to the changes in soil temperature through soil profile. 
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 The soil salinity at the shallow depth and in the top 0.60 m of the soil profile 

was predicted well from measuring soil water content and soil temperature at the 

shallow depth by using (mulitpe input-single output) transfer function model. 

 We show that the cutoff time (tco) plays a significant role in evaluating furrow 

irrigation system to save irrigation water in the study area. 40 % and 43% of the 

applied water would have been saved in the Field 1 and Field 2 respectively, if 

the irrigation was stopped as soon as the soil water deficit was fully recharged 

taking into account the amount of water needed for salt leaching. 

 Irrigation frequency according to the farmer’s normal management practice had 

statistically significant effects on soil salinity behavior, depending on soil depth 

and position. For each depth, farmers left the field with less soil salinity than at 

the beginning of the crop’s vegetative cycle. Moreover, irrigation water quality 

had a significant effect on soil salinity at the root zone in the three studied fields. 

 

Taken together, these results we can draw out the following suggestions: 

 

 From field conditions data, the study discovered that the offset of the linear 

relationship between soil dielectric constant and bulk electrical conductivity was 

varied in the same soil profile and was related to soil temperature.  However, we 

recommend additional measurements in different soil types to validate this 

model. 

 The study used the ARIMA model and completed it with intervention analysis 

and outlier detection for the data of Field 1, lettuce crop, the irrigation dose for 

four irrigation events were almost the same, we used one average mean level to 

depict the effectiveness of an irrigation moment on the time series of soil water 

content. In the case of variable irrigation doses, the study suggests studying the 

effect of each irrigation event and includes their effects separately in the model.  

 Programming the ARIMA model and connect it to a device designed to aid in 

irrigation scheduling by visually indicating current soil water statues and 

determine the next time irrigation, so these types of low-cost sensors could 

expand to be used by normal framer users. 
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Dissertation Highlights 

The research enables the ARIMA model to be 
applied on variable interval irrigation for 
predicting soil moisture and soil salinity. 

The obtained ARIMA model was capable to 
determine precisely the next irrigation time.  

The effect of irrigation event on soil moisture 
was estimated reasonably.  

The soil moisture at greater depths was 
forecasted well from one single shallow depth. 

The research showed an advanced progress to 
study the relationship between soil dielectric 
constant and soil bulk electrical conductivity and 
derive an accurate offset to convert bulk EC to 
pore water EC. 

The soil salinity at greater depth was predicted 
well form measuring soil moisture and soil 
temperature at shallow depth. 

30% and 43% of the applied water would have 
been saved in two fields of study area, if 
irrigation stopped as soon as soil water deficit 
was fully recharged taking into account the 
amount of water needed for salt leaching. 

In the study area, farmers left the field with less 
soil salinity than at the beginning of the crop’s 
vegetative cycle. Moreover, irrigation water 
quality had a significant effect on soil salinity at 
the root zone in the three studied fields.  

 


