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GLOBAL INTRODUCTION 

 

In the past century, biomedical sciences have been traditionally immersed in a 

conceptual reductionism primarily focused on the study of individual 

molecules. Decades of research into cellular, molecular and structural biology 

have significantly increased our understanding of the individual proteins taking 

part in biological processes. However, biological systems are complex in nature, 

and the knowledge of the components reveals relatively little about their 

function and organization. As proteins rarely act alone, the traditional approach 

is unable to predict the behavior of an intact organism and how it coordinately 

changes in response to a particular stimulus, such as the onset of a disease.  

Pharmacological sciences have followed a similar course, with traditional 

approaches centered on the study, at the molecular level, of the target-

compound pair. Many promising drug candidates have resoundingly failed the 

last clinical phases because the action mechanisms of the pathways they target 

are still unknown (Pammolli et al., 2011). These effects have been accentuated 

during the last decade, when the pharmaceutical research has focused on ever 

more complex diseases that are poorly understood, such as cancer. 

Breast cancer (BC) and colorectal cancer (CRC) are a perfect example of a very 

complex disease that, despite many years of research, is far from being well 

understood. BC is the most diagnosed cancer in women worldwide and 

remains the second leading cause of cancer deaths in western countries (Ferlay 

et al., 2013). Distinct biological features and clinical behaviors turn cancer into 

a very heterogeneous disease (Weigelt and Reis-Filho, 2009) and, although 

significant advances in the fight against breast and colorectal cancers have been 

achieved during the last decades, the current understanding of their biology is 

still limited.  

Studies of gene expression pattern, mutational status, DNA copy number 

variation, and other protein changes occurring in breast carcinomas have been 
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performed using both tumor samples and cell lines (Barretina et al., 2012; Ellis 

et al., 2012; Garnett et al., 2012; Perou et al., 2000). These studies have 

enormously increased the knowledge of the players involved in breast cancer 

progression. However, cancer heterogeneity rarely originates from 

abnormalities in single genes, but rather reflects the disruption of whole 

complex intra- and intercellular processes (Barabasi et al., 2011). Therefore, the 

scientific community is rapidly moving to systems approaches, where global 

properties are considered. 

A comprehensive way to describe cancer heterogeneity is the use of network 

studies. Network biology is a network-based discipline that studies the 

interactions among molecules, and its focus is on protein-protein interaction 

(PPI) networks. PPI network-based approaches allow taking proteins back to 

their context, considering a much broader perspective of their environment 

without losing the molecular details.  

But the availability of the complete map of protein interactions that can occur 

in a living organism (interactome) is crucial to conduct PPI network analyses. 

This means that most efforts to unveil the molecular bases of disease 

pathologies should involve an initial interaction discovery step. For this reason, 

systematic identification of interactions for a given disease is critical, and high-

throughput approaches are being undertaken to enlarge the interactomes (Giot 

et al., 2003; Hauser et al., 2014; Rajagopala et al., 2014; Rual et al., 2005; 

Simonis et al., 2009; Stelzl et al., 2005; Uetz et al., 2000). Among many 

strategies that are up to this task, yeast two-hybrid is one of the most 

successfully large-scale applied technologies (Fields and Song, 1989). 

Among the multiple potential biological and clinical applications of systematic 

studies based on PPI networks, we are interested in the prediction of protein 

function (Sharan et al., 2007; Vazquez et al., 2003). There are two types of 

approaches to infer protein function via a network of interactions: direct 

annotation schemes, which infer the function of a protein based on its 

connections within the network, and module-assisted schemes (Sharan et al., 

2007). A module-assisted method, as used in this project, first identifies 

modules of related proteins and, then, annotates each module based on the 

known functions of its members.  
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Another area where the analysis of networks can help is in cancer therapy. As 

research in this field advances, it becomes more and more obvious that the 

quest for a ‘magic bullet’ that will defeat all forms of cancers, as antibiotic do 

against bacterial infections, will never exist. To be effective, novel strategies 

should avoid the reductionist approach that implicitly assumes that destruction 

of cancer cells can be achieved by just interfering with a single protein. 

Different studies and clinical observations have shown that cellular systems are 

redundant and robust (Kitano, 2004), and cancer cells can find ways to escape a 

single point blockade. Certainly, treatment failure induced by drug resistance 

remains a major challenge in most advanced solid cancers, such as breast 

cancer (Raguz and Yague, 2008).  

Taken together, network and systems biology disciplines could revolutionize 

the study of complex diseases, such as breast and colorectal cancers. If 

successful, these approaches could significantly help in the development of 

novel therapeutics for these complex diseases.  

This thesis is a multidisciplinary work involving several approaches and relating 

different research fields, and we have divided the content in two main chapters 

for a more comprehensive reading. Firstly, we introduce, present and discuss 

the results obtained regarding the molecular characterization of breast and 

colorectal cancers interactomes. The following chapter covers the project 

related to the identification and validation of novel breast cancer drug targets 

and drug combinations. Finally, we explain the general discussion and 

conclusions and we present the materials and methods. 
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1. Introduction I 
 

 

1.1 Global Cancer Burden 

Cancer is a term used for diseases characterized by uncontrolled cell growth. 

Since 1965, the World Health Organization has studied the global burden of 

cancer. During this time, the pattern of cancer incidence has shifted from 

occurring predominantly in western nations to becoming a global disease. It 

was estimated that in 2012 there were 14.1 million new cancer cases diagnosed, 

8.2 million cancer-related deaths and 32.6 million people living with cancer 

(within five years of diagnosis) (Ferlay et al., 2013). This makes invasive cancer 

the leading cause of death in the developed world and the second leading cause 

of death in the developing world. 

Cancer causes tumors that can expand locally invading nearby parts of the body 

and may also spread to more distant parts and disseminate systemically. While 

normal cells are controlled by regulatory signals, cancer cells have the ability to 

proliferate uncontrolled, invade surrounding tissue and metastasize to distant 

organs. Cancer commonly starts with mutations in the DNA which can be 

caused by radiation, chemicals, viruses as well as errors during DNA 

replication. Hanahan and Weinberg suggested that the complexity of cancer 

can be reduced to a manifestation of six essential physiologic changes that 

collectively dictate malignant grow: self-sufficiency in growth signals, 

insensitivity to antigrowth signals, evasion of apoptosis, limitless replicative 

potential, sustained angiogenesis, and tissue invasion and metastasis (Hanahan 

and Weinberg, 2000). Conceptual progress in the last decade has added two 

new hallmarks to the list: evading immune destruction, and reprogramming of 

energy metabolism, in addition to two enabling characteristics: genome 

instability and tumor promoting inflammation (Hanahan and Weinberg, 2011) 

(Figure 1). 
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Cancer itself is not a single disease, but a collection of diseases that arise in 

various tissues throughout the body. There are more than 100 different types 

of cancer and most of them are named after the organ or cell type in which 

they start. Moreover, the severity of a cancer as well as its treatment options 

varies significantly depending in the tissue of origin. In fact, even within the 

same cancer type, sub-groups of tumors can be defined which are characterized 

by unique clinical manifestations (see Section 1.1.1). 

 

 

 

Figure 1. The hallmarks of cancer 

Acquired functional capabilities necessary for tumor growth and progression. 

Adapted from Hanahan and Weinberg, 2011. 
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1.1.1 Breast Cancer 

Breast cancer is a type of cancer originating from breast tissue. The most 

common breast cancers are developed from epithelial cells in the ducts (70-

80%) and lobules (10%), known as invasive ductal carcinoma (IDC), and 

invasive lobular carcinoma (ILC), respectively. Less commonly, breast cancer 

can begin in the stromal tissues, which include the fatty and fibrous connective 

tissues of the breast. One of the greatest challenges faced by clinicians and 

researchers is that breast cancer is not a single entity, but rather a 

heterogeneous group of several subtypes displaying distinct differences in 

biological and clinical behavior (Polyak, 2011). 

 

 

Figure 2. Female cancers incidence and mortality. 

Estimated incidence and mortality of female cancers worldwide (2012). Breast cancer 

is the most frequent cancer among women worldwide (1.67 million new cases 

diagnosed in 2012, 25% of all cancers) and it is the most frequent cause of cancer 

death in women worldwide (521,817 deaths, 14.7% of total). Data source: 

GLOBOCAN 2012 (Ferlay et al., 2013).  
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Despite significant improvements in survival over the past 25 years, breast 

cancer remains as the leading cause of cancer death in women. It is the second 

most common cancer in the world and, by far, the most frequent cancer among 

women with an estimated 1.67 million new cancer cases diagnosed in 2012 

worldwide (25% of all cancers) (Figure 2).  

Initiation and Progression 

Breast cancer evolves via sequential progression through defined pathological 

and clinical stages that are characterized by the acquisition or loss of cellular 

functions, and altered tissue organization (Polyak, 2007). This process is 

initiated due to transforming (genetic and epigenetic) events in a single cell 

within the mammary gland. Subsequent tumor progression is driven by the 

accumulation of additional genetic changes combined with clonal expansion 

and selection. Over time, cancer cells can invade healthy breast tissue nearby 

and spread into the underarm lymph nodes, and then they have a pathway into 

other parts of the body.  

 

The biology of this tumor progression from in situ to a metastatic stage is 

illustrated in Figure 3. Normal breast ducts are composed of the basement 

membrane and a layer of luminal epithelial and myoepithelial cells. In situ 

 

Figure 3. Model of breast tumor progression. 

Schematic view cancer progression from normal to metastatic carcinoma 

progression. From Polyak, 2007. 
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carcinomas are characterized by a multilayered epithelium, due to proliferation 

of transformed luminal epithelial cells and degradation of the basal membrane. 

Invasive carcinomas develop due to the loss of myoepithelial cells and the basal 

membrane, allowing the invasion of tumor cells in surrounding tissues. In situ 

carcinoma associated myoepithelial cells together with various stromal cells 

degrade the basement membrane, resulting in early stage invasion of tumor 

cells. Late-stage invasion and metastatic processes are driven by the 

accumulation of further genetic and epigenetic aberrations combined with 

clonal expansion and selection of the most adapted cells (Polyak, 2007). 

Apart from the biological changes, breast cancer is commonly separated into 

different clinical stages which refer to how far the cancer cells have spread 

beyond the original tumor (Table 1). This staging system provides a strategy for 

grouping patients with respect to prognosis, as well as therapeutic decisions are 

formulated in part according to staging categories. 

 

 

 

Table 1. Stages of breast cancer. 
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Subclassification 

The clinical outcome of breast cancer patients is to a large extent driven by the 

biology of their tumors. There are three receptors; estrogen receptor (ER), 

progesterone receptor (PR) and epidermal growth factor receptor 2 (ERBB2 or 

HER2) that have for long guided breast cancer classification. Based on the 

receptor status, breast cancer subtypes can be defined as i) endocrine receptor 

(estrogen or progesterone receptor) positive, ii) HER2 positive, iii) triple 

negative (not positive for estrogen and progesterone receptors and HER2), and 

iv) triple positive (positive for estrogen receptors, progesterone receptors and 

HER2). 

This classification has been refined by cytokeratin (CK) protein expression 

patterns. About 70% of primary breast cancers express at least one of the 

luminal CK proteins (CK7/8/18/19), whereas almost 30% also express at least 

one of the basal CKs (CK5/6/14). Two minor subtypes express only basal 

CKs or are negative for both luminal and basal markers, each representing less 

than 1% of tumors (Abd El-Rehim et al., 2004) 

Furthermore, Perou and colleagues used a 4-protein signature that defined four 

groups of breast cancers: HER2-overexpressing (HER2+), luminal (HER2- 

and ER+), basal-like (HER2/ER- and CK5+ and/or EGFR+) and the 

negative group that lacks expression of all four proteins (Nielsen et al., 2004). 

In addition to the classifications outlined above, gene expression profiling has 

defined five major molecular subtypes of breast cancer: luminal A, luminal B, 

HER2+/ER-, basal-like and normal breast-like (Perou et al., 2000). Luminal 

tumors are the most common, express ER and have usually a relatively good 

prognosis. Luminal B cancers differ from the luminal A by having a poorer 

clinical outcome, being less responsive to the ER antagonist Tamoxifen and 

having a stronger proliferative signature. The HER2+ subtype does not express 

hormone receptors and often displays positive lymph nodes at diagnosis. Basal-

like tumors have the worst prognosis as they show very low or abolished ER 

and HER2 expression, while express high proliferation genes (Brenton et al., 

2005). Some studies have questioned the existence of the normal-like subtype 

based on observations that these samples are often associated with low tumor 

cell percentage (<50%). Consequently, when a tumor sample falls into this 
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group it does so mostly likely because that sample is predominant composed of 

normal breast tissue and not tumor tissue. (Prat and Perou, 2011).  

The intrinsic subtypes of breast cancer have clinical relevance, as well as the 

gene expression signatures that had been defined based on clinical outcome of 

breast cancer patients (van 't Veer et al., 2002) (Figure 4). Although these 

intrinsic subtypes, for the most part, overlap with immunohistochemically 

defined subtypes (being ER expression a major classifier, including the luminal 

A and luminal B subtypes for ER-positive, whereas HER2+, basal-like and 

normal-like subtypes for ER-negative), they allow for a more precise and 

clinically meaningful subcategorization of breast tumors. 

 

 

 

Figure 4. BC subtypes frequency and overall survival. 

A) Frequency of breast cancer subtypes. Percentage of Luminal (non-HER2+), 
HER2+ and Basal-like tumors. B) Overall Survival (OS). 5 year and 10 year OS rates 
of HER2+, Luminal and Basal subtypes at stage I, II, III or IV. Source: Polyak and 
Metzger Filho, 2012. 
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1.1.2 Colorectal Cancer 

Colorectal cancer (CRC) is a cancer from uncontrolled cell growth in the colon 

or rectum (parts of the large intestine), or in the appendix. Genetic analysis 

have showns that essentially colon and rectal tumors are genetically the same 

cancer (Kucherlapati and Wheeler, 2012). 

CRC is globally the fourth leading cause of cancer mortality with about 25% of 

cancers occurring in Europe. In 2012, colorectal cancer accounted for 1.36 

million new cases and 694,000 deaths worldwide (Ferlay et al., 2013). The 

incidence of colorectal cancer is higher in developed countries and, in Spain, it 

is the most common tumor with approximately 32,240 new cases and 14,799 

deaths per year (Ferlay et al., 2013). The disease is rarely diagnosed before an 

age of 40 and almost non-existent under age 30 (Ferlay et al., 2013).  

 

Figure 5. A step-wise model of colorectal tumorigenesis. 

This model aligns observed clinicopathological changes with genetic abnormalities in 
the progression of colorectal cancer (CRC). From Rajagopalan et al., 2003. 

http://www.medhelp.org/posts/Digestive-Disorders---Gastroenterology/Colon-Cancer/show/885191
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 The normal mucosa of the colon is a highly dynamic system: there is a large 

amount of proliferating cells which migrate during the differentiation process 

to the intestinal surface, undergo apoptosis, and are shed into the lumen. In 

this way, the intestinal epithelium is renewed every five to six days, and this 

high rate of proliferation in the cells could promote malignant transformation 

once regulatory mechanisms for cell homeostasis are bypassed. Moreover, the 

cells of the mucosa are subjected to high toxic and mechanical stress that could 

affect the cells in their genetic stability. Likely etiologic factors include fecal 

mutagens, red meat intake, bile acids, altered vitamin and mineral intake and 

fecal pH (Williams et al., 2011).  

Classification of CRC has traditionally been based on histopathological 

features, and molecular studies have allowed a significant appreciation of the 

heterogeneous nature of CRC (Kucherlapati and Wheeler, 2012). The essential 

etiologic element of colorectal cancer can be observed in genetic changes of the 

epithelial cells in the colonic mucosa. Vogelstein et al. correlated the 

morphologic changes from normal colonic mucosa and adenomatous polyps to 

cancer with the accumulation of genetic aberrations (Fearon and Vogelstein, 

1990). Whereby, subsequent mutations or inactivation of APC, KRAS, and p53 

characterize the progression from aberrant crypts to early and late adenomas 

and to carcinomas (Rajagopalan et al., 2003; Walther et al., 2009) (Figure 5).  

Furthermore, there has been a significant advance in identifying the specific 

driver genes and pathways important in the initiation and progression of CRC, 

as well as the constellation of somatic alterations that are present in sporadic 

CRCs, which include the WNT, RAS-MAPK, PI3K, TGF-b, P53 and DNA 

mismatch-repair pathways (Fearon, 2011). Large-scale sequencing and 

expression analyses have identified numerous genes recurrently mutated or 

whose expression is dysregulated in colorectal tumors (Sjoblom et al., 2006; 

Wood et al., 2007). However, the role of these altered genes in CRC disease is 

not clear. Further mechanistic insights into these relationships may enable a 

deeper understanding of the pathophysiology of CRC and may advance the 

identification of novel therapeutic targets. 
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1.1.3 Advances and Challenges of Cancer Research 

The scientific community is making a huge effort to find a cure for cancer and 

to eradicate it as a major cause of death (Ferlay et al., 2013). Despite significant 

progress in the treatment of certain forms cancer types (Ellis et al., 2012), it 

remains as a global disease. For this reason, cancer research has been 

intensified with the aim to improve the understanding of its biology and the 

development of more effective cancer treatments. 

All cancers arise as a result of somatically acquired DNA mutations of tumor 

cells. That does not mean, however, that all the somatic abnormalities present 

in a cancer genome have been involved in development of the cancer (Stratton 

et al., 2009). A driver mutation is causally involved in oncogenesis, and it has 

provided growth advantage on the cancer cell. In turn, a passenger mutation 

does not have functional consequences; therefore it has not conferred clonal 

growth advantage and has not contributed to cancer development. An 

important challenge of cancer research consists of efficiently recognizing the 

guilty drivers present in the large datasets of genes altered in cancer. 

Major advances in cancer research resulted from the novel next-generation 

sequencing technologies (Bentley et al., 2008; Campbell et al., 2008). Over the 

last decade, massively parallel sequencing of cancer genomes has largely been 

performed, using either frozen tissue samples or immortalized cancer cell lines 

(Greenman et al., 2007; Wood et al., 2007). This means that a large fraction of 

genes altered in cancer could be identified at base-pair resolution. A leading 

force in this endeavor is The Cancer Genome Atlas (TCGA) research network, 

which aims to explore the entire spectrum of genomic variations involved in 

human cancer (http://cancergenome.nih.gov/). Similar to TCGA, the 

International Cancer Genome Consortium (ICGC), another initiative of 

research projects, attempts to generate comprehensive catalogues of genomic 

abnormalities in tumors from 50 cancer subtypes (https://www.icgc.org/). 

Another methodological advance, DNA microarray technology, initiated an 

explosion of gene expression analyses (transcriptomics). More than 100 

published studies have analyzed gene expression signatures for most major 

cancer types and subtypes. This has led to the identification of specific gene 

expression patterns that correlate with various characteristics of tumors 

http://cancergenome.nih.gov/
https://www.icgc.org/
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including tumor grade or differentiation state, metastatic potential, and patient 

survival (Perou et al., 2000; Rhodes et al., 2004). 

Apart from DNA/mRNA expression profiles, protein expression profiles have 

been also used to shed light on changes on the proteomic level. The Human 

Protein Atlas project, for example, performs an antibody-based approach to 

generate protein expression profiles for a large number of human tissues, 

cancers and cell lines (http://www.proteinatlas.org/) (Uhlen et al., 2005). This 

method allows a comparison of protein expression data of normal and disease 

tissues. 

When focusing on the development of novel cancer drugs, recent advances in 

RNA interference (RNAi) technologies have made it possible to systematically 

search for genes whose loss of function yields cell lethality. These advances 

have been crucial to carry out high-throughput screening in cancer cells, 

providing novel targets for the next generation of anticancer agents (Luo et al., 

2009; Neumann et al., 2006). 

In summary, most current follow-up initiatives are directed to study the 

complexity of cancer, however the identification of the genomic, 

transcriptomic and proteomic changes associated with each cancer type often 

does not lead to clinically prosecutable therapeutic strategies. Thus, the 

knowledge of all the individual genes somehow altered in a given cancer type 

seems to be not enough. Cancer is a complex disease and, to unravel its 

underlying mechanisms, systems biology has to be implemented in addition to 

single gene studies. Systems biology paradigm permits study cancer as a 

network of associated disease genes (see Section 1.3). Hence, the construction 

and utilization of genome- and proteome-wide interaction networks can 

improve the success in cancer research. A pivotal role in this new system 

biological strategy is the study of protein-protein interaction networks, as 

protein interactions have long been known to be crucial in oncogenesis (Arkin, 

2005). With the generation of comprehensive interaction maps, where also 

global properties are considered, we can advance in the study and prediction of 

cancer-associated processes. Although considerable challenges are still to 

overcome, interactomics evolve as a cornerstone in the systems biology of 

cancer.   

http://www.proteinatlas.org/
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1.2 Genomic Instability 

Genome or genomic instability refers to a high frequency of mutations or 

alterations in the genome of a cellular lineage. These mutations can include 

changes in nucleic acid sequences, chromosomal rearrangements or aneuploidy. 

As we discuss in Section 1.2.2, genomic instability is a major driving force for 

tumorigenesis (Shen, 2012). 

One source of genomic instability is endogenous (metabolically-caused), as 

cellular metabolism generates many chemical products that can react with the 

DNA molecules altering their structure and function. Moreover, DNA is 

exposed to exogenous threats ranging from radiation to genotoxic chemical 

species, whose damage adds up to the endogenous. Since damaged DNA is 

normally prevented from being replicated and transcribed, a number of 

mechanisms have evolved to repair the lesions while preventing the cell from 

progressing through the cell cycle. Therefore, another source of genome 

instability may be epigenetic or mutational reductions in expression of DNA 

repair genes.  

Most of these repair processes are carried out in a multi-step fashion by 

enzymatic complexes encompassing elements that i) recognize the damage and 

recruit the repair proteins, ii) reverse the lesion and iii) prevent the cell to 

progress in the cell cycle with unrepaired damages. Some repair mechanisms 

are very lesion-specific, while others are partially redundant and can resolve a 

broader range of damage types. 
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1.2.1 DNA Repair Mechanisms 

In general DNA repair can be divided into pathways that repair damage of one 

of the DNA strands (mismatches, subtle base modifications, bulky adducts, 

single-stranded breaks or gaps) or damage that affects both DNA strands 

(crosslinks, double-stranded breaks). 

Repair of Single-Strand Breaks 

Several DNA repair pathways exist for repair of different types of single-strand 

breaks (SSBs) such as DNA adducts and mismatched bases. These pathways 

use the intact complementary DNA strand for error-free repair.  

 

Figure 6. Major pathways in SSBs repair. 

A) Schematic representation of the basic steps followed during base excision 

repair (BER). B) Main sequence of events and enzymatic activities implicated 

in nucleotide excision repair (NER). From Mladenov and Iliakis, 2011. 
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The base excision repair (BER) pathway takes care of non-bulky base 

modifications in the DNA such as oxidative modifications, methylation, or 

alkylation. Furthermore, BER repairs SSBs in the DNA, caused by ionizing 

radiation or by platinum agents. In brief, DNA glycosylases specific for 

different types of DNA damage cleave the DNA around the damaged base and 

remove the damaged base from the helix but not from the sugar phosphate 

backbone. Subsequently, polymerase β fills the single nucleotide gap using the 

complementary DNA strand as a template and the nick is sealed by the 

XRCC1-ligase3 complex (Parsons and Dianov, 2013) (Figure 6).  

In contrast to BER, nucleotide excision repair (NER) pathway is responsible 

for clearing helix-distorting lesions from the DNA, such as those induced by 

ultraviolet radiation or chemotherapeutics causing bulky intra-strand DNA 

adducts. Using a broad range of proteins, the NER pathway i) unwinds ~30 

base pairs of DNA around the damage site through helicases, ii) cleaves the 

DNA using endonucleases, and iii) fills the resulting gap using the 

complementary DNA strand as a template (Figure 6) (Cleaver et al., 2009).  

The DNA mismatch repair (MMR) is a system that specifically recognizes and 

repairs erroneous mis-incorporated bases and insertion/deletion loops that can 

occur during DNA replication. In short, hMSH proteins form heterodimers 

which recognize the mismatched bases and recruit a protein complex that 

facilitate excision of the mismatched DNA by an exonuclease. Then 

polymerase δ and PCNA resynthesize the DNA and the remaining nick in the 

DNA is sealed by ligase 1 (Jiricny, 2006). 

Repair of DNA Double-Strand Breaks 

Double-strand breaks (DSBs) are mostly induced by free radicals, ionizing 

radiation, chemotherapeutics forming DNA inter-strand crosslinks (ICLs) and 

the conversion of SSBs into DSBs by replication fork collapse during DNA 

replication (Hoeijmakers, 2001). Unlike in SSBs, in the presence of a DNA 

double-strand break (DSB), repair systems no longer can depend on the 

complementary strand for correct repair.  

The presence of a DSB is sensed by the MRN complex of 

MRE11/RAD50/NBS, which localizes to both DNA ends and subsequently 

recruits ATM, which is responsible for checkpoint activation and cell cycle 
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arrest through TP53. ATM also phosphorylates histone H2AX (γH2AX) 

resulting in chromatin remodeling around the break and recruitment of DNA 

damage response factors such as BRCA1 (Hartlerode and Scully, 2009). 

Depending on the phase of the cell cycle, DSBs are repaired either by NHEJ, 

which takes place in G0-G1 phase, or by HRR, which takes place in the S or 

G2 phase (Figure 7).  

Non-homologous end joining (NHEJ) is an error-prone mechanism for 

ligation of DNA DSBs. In brief, after phosphorylation of γH2AX, a 

heterodimer of KU70/KU80 binds to both DNA ends and recruits the DNA-

dependent protein kinase catalytic subunit (DNA-PKcs). The DNA-PKcs 

proteins interact on either end of the DSB, forming a bridge between both 

DNA ends (Hartlerode and Scully, 2009). The MRN complex has been 

suggested to play an additional role in NHEJ, probably in stabilizing the two 

DNA ends (Dinkelmann et al., 2009). Lastly, the break needs to be sealed by 

ligating the DNA ends back together; the complex of XRCC4/Ligase 4 is 

responsible for this step (Figure 7). Indeed, since NHEJ fuses DNA ends 

without taking into account the missing DNA or a template, this pathway is 

error-prone. 

In contrast to NHEJ, DNA DSB repair by homologous recombination is 

error-free, since the homology of the sister chromatid is used for repair. To 

search for this homology, a long 3′end DNA overhang needs to be created. For 

this, the MRN complex is needed again, which interacts with CtIP, EXO1 and 

the BLM helicase (Hartlerode and Scully, 2009). The created single-stranded 

DNA ends are subsequently coated with RPA; however, to start the search for 

sequence homology, RPA needs to be replaced by RAD51. This process is 

directly mediated by BRCA2 and to facilitate this replacement, a complex of 

BRCA1/BARD1 needs to be present. The exact interaction remains unknown, 

but it is thought that PALB2 may connect BRCA2 and BRCA1/BARD1. 

RAD51 subsequently invades the sister chromatid, resulting in partial 

displacement of the non-complementary strand (D-loop) (Sy et al., 2009). After 

alignment of the invading DNA strand with the homologous DNA duplex, the 

chromatin remodeling functions of RAD54 operate to facilitate DNA synthesis 

and branch migration. It results in formation of Holliday junctions, enabling 

DNA synthesis using the sister chromatid as a template. Lastly, the DNA 
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structures formed by the D-loop or Holliday junction are resolved by 

resolvases such as BLM, and GEN1 (Hartlerode and Scully, 2009) (Figure 7). 

 

  

 

Figure 7. Major pathways in DSBs repair. 

A) Repair of DSBs by non-homologous end joining (NHEJ). Major enzymatic 
activities involved in the repair of DSBs by the simple joining of the free DNA ends 
are depicted. B) Homologous recombination repair (HRR) of DSBs. Main steps 
involved in HRR are illustrated. From Mladenov and Iliakis, 2011. 

A B 
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1.2.2 Genomic Instability and Cancer 

Genome instability is central to carcinogenesis. The link between genomic 

instability and cancer is well established, since many inherited defects in DNA 

repair genes lead to genomic instability and predispose to malignancies, such as 

breast cancer. This illustrates the importance of DNA repair pathways for 

maintaining genomic integrity and preventing cancer (Hoeijmakers, 2001). 

Given the redundancy in pathways that prevent overreplication or induce DNA 

repair, it is unlikely that affecting single pathways create so much genomic 

instability to cause cell death. Instead, inactivation of these single pathways may 

simply increase the mutation burden without provoking cell death. The 

resulting heterogeneity in the genes of daughter cells allows the appearance of 

cells with growth or survival advantages, i.e., the driving force for cancer 

development.  

A similar genetic heterogeneity underlies the resistance mechanisms of cancers 

to many types of therapy. In fact, in many cancers the loss of function in one 

DNA repair pathway is often partially compensated by the remaining ones. 

These repair mechanisms are occasionally up-regulated providing the cancer 

cells with means to better resist genotoxic damages, including those received 

for therapeutic purposes. 

Thus, a major objective should be to exploit known anomalies of repair and 

replication control in cancers to determine which redundant repair pathways 

should be therapeutically inhibited to produce ‘synthetic lethality’ in the cancer 

cells (Bouwman and Jonkers, 2012). This will convert the mutation-generating 

machinery in the cancer into an ‘Achilles heel’ by pushing the malignant cells 

selectively into extensive genomic instability and cell death (Abbas et al., 2013).  
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1.2.3 Hereditary Breast Cancer and Genomic Instability 

The risk of breast cancer is determined by both genetic and lifestyle factors. 

Lifestyle factors are mainly related to events affecting hormonal status (for 

example parity and breast-feeding history, age of menarche and of menopause, 

use of oral contraceptives) and to environmental agents (ionizing radiation, fat-

rich diet, alcohol consumption and so on) (Dumitrescu and Cotarla, 2005). 

While the variation in breast cancer incidence among populations can be largely 

explained in terms of these exogenous factors, there is a substantial variation 

between individuals that is genetically determined.  

Approximately 5-10% of the breast cancers are caused by mutations in cancer 

predisposition genes, such as BRCA1 and BRCA2 (Turnbull and Rahman, 

2008). Mutations in these two genes increase the relative risk of breast cancer 

by 10- to 20-fold, and account for approximately 80-90% of the familial breast 

cancer cases (Chen and Parmigiani, 2007). They are tumor suppressor genes 

that, when mutated, lead to the inability to regulate cell death and hence, to 

uncontrolled cell growth, resulting in cancer. BRCA1 derived breast cancers are 

more frequently triple negative (basal type), while patients with BRCA2 

mutations often develop tumors that are ER and PR positive (luminal 

phenotype). 

Mutations in other breast cancer predisposition genes are known for years, but 

their impact for breast cancer development remains to be elucidated. These 

include high penetrance but low frequency mutations, such as TP53 (Li-

Fraumeni), PTEN (Cowden), and STK11 (Peutz-Jeghers). Other genetic 

mutations have recently been identified and are characterized as high frequency 

but less penetrance mutations, such as CHEK2, ATM, BRIP1, and PALB2 

mutations (Byrnes et al., 2008). Specific genetic alterations that have been 

identified for many of the established hereditary breast cancer syndromes are 

shown in Table 2 (Thompson and Easton, 2004; Turnbull and Rahman, 2008). 

Most of these genes encode proteins involved in DNA damage response, 

directly linking cancer development to deficiencies in maintaining the integrity 

of the genetic information. Loss or malfunctioning of genome caretakers leads 

to an increased probability of acquiring new mutations and, therefore, to gain 

even more of the hallmarks of cancer previously mentioned in Section 1.1 and 
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illustrated in Figure 1. Furthermore, genomic aberrations have also been 

showed to correlate with clinical features and therefore proposed as a possible 

prognostic marker (Chin et al., 2006).  

 

Penetrance Gene / Locus Relative Risk of 

Breast Cancer 

Population 

Carrier 

Frequency 

High 

penetrance 

BRCA1 >10 1 in 860 

BRCA2 >10 1 in 740 

TP53 >10 1 in 5,000 

Uncertain 

penetrance 

PTEN 2-10 1 in 250,000 

STK11 2-10 1 in 25,000-

280,000 

CDH1 2-10 Rare 

Intermediate 

penetrance 

ATM 2-3 1 in 125 

CHEK2 2-3 1 in 90 

BRIP1 2-3 1 in 250 

PALB2 2-4 1 in 500 

Low 

penetrance 

10q26, 16q12, 

2q35, 8q24, 5p12 

1.08-1.26 24-50% 

11p15, 5q11 1.07-1.13 28-30% 

2q33 1.13 0.87% 

Table 2. Breast cancer predisposition factors. 

 

Given the exceptional relevance of DNA repair in breast cancer, we propose 

that the discovery of novel proteins related to this cellular process should be a 

priority. This novel DNA repair genes could have powerful applications either 

in the study of hereditary BC or in the discovery of novel clinically relevant 

drug targets.  
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1.3 Systems and Network Biology 

Systems biology is an emerging approach that analyzes the relationships among 

the elements of a system with the objective of understanding its properties. A 

system may include for example just a few protein molecules, a more complex 

molecular machine or a cell or group of cells executing a particular function. 

Thus, systems-wide analysis can be applied to all biological levels; molecules, 

cells, organs, organisms or even populations and ecosystems. In each case, it is 

necessary to describe all elements of a system, define the relationships among 

these elements and characterize the flow of information that links these 

elements to an emergent biological process (Kitano, 2002).  

Systems analysis can be applied to cells. The cell is functioning thanks to 

complex interactions of several types of biomolecules such as DNA, RNA and 

poteins. Albeit the function of a single gene might present a molecular 

description of a cellular phenotype, it is often not sufficient to explain the 

particular processes. In consequence, many fundamental biological questions 

remain unanswered as traditional approaches cannot capture the full repertoire 

of biochemical activities within cells (Jaeger and Aloy, 2012). However, recent 

advances in biological data collection and bioinformatic techniques had 

promoted that shift from gene-centric approaches for phenotypic 

characterization to more systematic approaches (Guney et al., 2012).  

Thanks to the integration of various data sources, we can better understand 

how organisms function with the cooperation of groups of biomolecules that 

constitute biological systems such as genetic (genomics), epigenetic 

(epigenomics), metabolic (metabolomics) and PPI (interactomics) systems. All 

these complex biological systems may be represented and analyzed as 

computable networks and, consequently, the past decade witnessed a brand 

new perspective named network biology.  

Network biology is the study of these biological networks, which capture a 

variety of molecular interactions and thus provide an excellent opportunity to 

consider physiological characteristics of individual molecules within their 

cellular context (Barabasi and Oltvai, 2004). As diseases derive from alterations 

in the cellular processes, network biology plays a key role in unveiling disease 

mechanisms. Indeed, network-based approaches have been used to analyze 
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biological systems such as gene regulatory networks (Davidson et al., 2002), 

metabolic networks (Jeong et al., 2000), signal transduction networks 

(Sambrano et al., 2002), gene co-expression networks (Stuart et al., 2003) and 

protein interaction networks (Jeong et al., 2001).  

1.3.1 Protein-Protein Interactions 

Decades of research have produced a remarkable amount of knowledge about 

the function and molecular properties of individual proteins. In fact, proteins 

are vital macromolecules, at both cellular and systemic levels, but they rarely act 

alone. They interact with each other in a highly specific manner, thus protein-

protein interactions (PPIs) play a key role in many cellular processes. 

The first step needed is to define correctly what PPIs are. Commonly they are 

understood as physical contacts between two or more proteins that occur in a 

cell or in a living organism in vivo. But the issue of whether two proteins share 

a ‘‘functional contact’’ differs from the question of whether the same two 

proteins interact directly with each other. For example, any protein in the 

ribosome or in the basal transcriptional apparatus shares a functional contact 

with the other proteins in the complex, but not all the proteins in the particular 

complex interact. Therefore, the other types of functional links between 

biomolecular entities (genes, proteins, metabolites, etc.) should not be confused 

with physical protein interactions. The physical contacts considered as PPIs 

should be specific, excluding interactions that a protein experiences when it is 

being made, folded, or degraded. Therefore, the definition of PPI has to 

consider (De Las Rivas and Fontanillo, 2010): (1) the interaction interface 

should be the result of specific selected biomolecular events/forces, and (2) the 

interaction interface should be non-generic (i.e., evolved for a specific purpose 

distinct from totally generic functions). It is also important to define the 

biological context of PPIs. Not all possible interactions will occur in any cell at 

any time. Instead, interactions depend on cell type, cell cycle, environmental 

conditions, protein modifications, presence of cofactors, and presence of other 

binding partners. 

As it was said before, PPIs are involved in most cellular processes. Therefore, 

identifying and characterizing PPIs and their networks is essential for 

understanding the mechanisms of biological processes on a molecular level. 
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The complete map of protein interactions that can occur in a living organism is 

called the interactome. Interactome mapping has become one of the main 

scopes of current biological research, similar to the way ‘‘genome’’ projects 

were a driving force of molecular biology 20 years ago (De Las Rivas and 

Fontanillo, 2010). 

Different experimental techniques have been developed to detect PPIs in order 

to unravel the global picture of protein interactions in a cell (Shoemaker and 

Panchenko, 2007). For instance, PPIs have been identified for a long time 

using low-throughput biophysical methods such as NMR or crystallography. 

However, more recently, much effort was directed towards the development of 

high-throughput interaction detection methods, which provided sufficiently 

automatized possibilities to unveil PPIs on a proteome-wide scale. The two 

most prominent high-throughput techniques include tandem affinity 

purification (TAP) tagging (Rigaut et al., 1999) and yeast two-hybrid screen 

(Y2H) (Fields and Song, 1989), with the latter one being used in our project. 

1.3.2 The Yeast Two-Hybrid Approach 

The yeast two-hybrid screen (Y2H) is a simple and rapid method for finding 

the interactipartners of a target protein; it identifies proteins that interact as a 

binary complex with the target protein. Y2H is based on the fact that many 

eukaryotic transcription factors (TF) have at least two distinct domains, a 

DNA-binding domain (DBD) that directs binding to a promoter DNA 

sequence and an activation domain (AD) that activates transcription. Protein-

protein interactions can be identified by splitting this protein into two parts; the 

DBD is fused to the bait protein, whereas the AD is attached to the prey 

protein. When bait and prey proteins interact in the cell, the DBD and AD of 

the TF are brought together, resulting in an in vivo reconstitution of the TF, 

which then can activate the transcription of specific reporter genes (Figure 8) 

(Fields and Song, 1989).  

The screen can use several reporter genes, whose activation is easily detected, 

such as URA3, HIS3 or lacZ. URA3, for example, encodes orotidine-5'-

phosphate decarboxylase, an enzyme required for the biosynthesis of uracil. 

Therefore, activation of URA3 reporter gene is observed only when the two 

dimerization domains interact and position the AD in the correct site upstream 
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of the reporter gene. This URA3 activation allows cells to grow in the selective 

media lacking uracil (URA3+ phenotype).  

The Y2H method has been widely used to uncover a large number of 

interactions (Koegl and Uetz, 2008). The advantage of Y2H, compared to 

other techniques, is that it can be used to detect transient PPIs in vivo and in 

large-scale fashion. However, it has been also widely criticized, mainly because 

it tends to identify a high proportion of false positives: protein hits that are 

unlikely to interact with each other in vivo. Among possible reasons for false 

positive interactions in yeast may be a high expression level of bait and prey 

and their localization in a compartment which does not correspond to their 

natural cellular environment, or proteins that are known to be ‘sticky’ or that 

are not correctly folded can show unspecific interactions (Bruckner et al., 

2009). On the other hand, false negatives in Y2H refer to PPIs which cannot 

be detected due to limitations of the screening method. For instance, fusion of 

the AD or DBD domains to the target proteins can alter their interaction 

interface, resulting in false negative interactions (Aloy and Russell, 2002).  

 

Figure 8. The Yeast Two-Hybrid screen. 

A DNA-binding domain that binds to an Upstream 
Activation Site (UAS) is fused to a bait protein and the 
prey protein is fused to a transcriptional activation 
domain. In this way, interaction of bait to prey leads to 
transcription of the reporter gene. 
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It could be also good to say here, that the Y2H technique and results have been 

improved and are not so prone to false-positive anymore compared to its 

beginnings. 

Two Y2H screening approaches can be distinguished: the matrix, which is 

pairwise array-based, and the library approach, where one can search for 

pairwise interactions between a defined protein of interest (bait) and their 

interaction partners (preys) present in cDNA libraries. Hence, as preys are not 

separated on an array but pooled in libraries, it is largely covering a 

transcriptome and reducing the rate of false negatives. However, the rate of 

false positives is increased. In addition, interaction partners have to be 

identified by colony PCR analysis and sequencing, making library screens more 

expensive and time consuming.  

Despite these limitations, the Y2H system have been improved (Koegl and 

Uetz, 2008) and it remains a powerful tool for large-scale screening in 

interactomics. Therefore, Y2H has been applied to several sets of proteins 

from different organisms, including E. Coli (Rajagopala et al., 2009), yeast 

(Uetz et al., 2000), worm (Simonis et al., 2009), fly (Giot et al., 2003) and 

human (Rual et al., 2005; Stelzl et al., 2005). 

1.3.3 Protein-Protein Interaction (PPI) Networks 

The protein interaction networks allow complex and dynamic responses to 

diverse cellular events and environmental stimuli. The collective understanding 

of the structure and nature of protein interaction networks is amongst the best 

appreciated of biological networks. In the last 15 years, large-scale interaction 

screens using different experimental techniques have reported thousands of 

new interactions (Hauser et al., 2014; Rajagopala et al., 2014; Rual et al., 2005; 

Simonis et al., 2009; Stelzl et al., 2005) which have been deposited in various 

databases such as BIND (Isserlin et al., 2011), BioGRID (Chatr-Aryamontri et 

al., 2012), DIP (Salwinski et al., 2004), HPRD (Keshava Prasad et al., 2009), 

IntAct (Kerrien et al., 2012), MINT (Licata et al., 2012), MIPS (Mewes et al., 

2011). The International Molecular Exchange (IMEx) consortium (Orchard et 

al., 2012) is an international collaboration to share literature-curation efforts 

and to provide nonredundant sets of protein interactions within a single search 

interface (http://www.imexconsortium.org/).  

http://www.imexconsortium.org/
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Protein interaction networks can be represented as a graph, where the nodes 

are proteins and the edges represent physical interactions between proteins. 

The distance between two proteins of the network is defined as the minimum 

number of edges that one has to follow in order to connect the two proteins. 

The PPI network for a given protein can be built at different depths, which 

represents the number of interacting steps that can be taken from the source 

protein to the outermost protein of the network. Furthermore, in a protein 

interaction network, we refer to proteins with high connectivity (i.e. with many 

interaction partners) as ‘hubs’. In conclusion, representing protein interactions 

in a network has fundamental advantages over the traditional approach of 

storing interaction data in the form of simple lists (Russell and Aloy, 2008). 

 

Figure 9. The model of a scale-free network. 

Representation of a scale-free network, a network whose degree 

distribution follows a power law. Hubs are depicted as blue. 

 

Interestingly, interactome networks appear to have a power law degree 

distribution: most proteins interact with few partners, whereas a few proteins 

(‘hubs’) interact with many partners (Yook et al., 2004). Networks following a 

power law degree distribution are called ‘scale-free’, due to the absence of a 

typical node in the network (i.e. no node has a degree that is characteristic for 

all the other nodes in the network) (Figure 9). Other important global 

properties observed in PPI networks include the ‘small-world effect’ (i.e. any 

two nodes are connected with a path of a few edges only) and a high level of 

‘modularity’ (i.e. interacting proteins tend to be in complexes or act in the same 
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functional process) (Barabasi and Oltvai, 2004; Spirin and Mirny, 2003). 

Though groups of genes in a cell are organized to minimize the effects of 

perturbations, biological systems are prone to be disrupted by certain types of 

rare but specialized perturbations leveraging the fragility of the system, for 

example, seizing hub proteins in PPI networks can predominantly break up the 

network (Albert et al., 2000). 

Application of PPI Networks 

Apart from being a useful representation of interaction data, systematic studies 

of PPI networks can be applied to objectives such as: the prediction of protein 

function (Sharan et al., 2007; Vazquez et al., 2003), the identification of 

functionally coherent modules (Dittrich et al., 2008), the estimation of 

interactions reliability (Bader et al., 2004), the identification of domain-domain 

interactions (Guimaraes et al., 2006), the prediction of protein interactions 

(Lehner and Fraser, 2004), the study of the relationships between network 

structure and function (Yook et al., 2004), the detection of proteins involved in 

disease pathways (Rhodes et al., 2005), the study of pharmacological drug-

target relationships (Pujol et al., 2010), and the comparison between model 

organisms and humans (Gandhi et al., 2006).  

Aside from the evident relevance of network analysis at different levels of 

study, we focused on two particular applications: the identification of 

functional modules sharing common cellular function, and the outcome of PPI 

network studies to predict the function of proteins. Network-based approaches 

for elucidating protein function can be classified in direct methods, which 

propagate functional information through the network, and module-assisted 

networks, which infer functional modules within the network and use those for 

the annotation task (Sharan et al., 2007). The common principle of all direct 

methods for functional annotation is that proteins that lie closer to one another 

in the PPI network are more likely to have similar function. On the other hand, 

module-assisted methods try to identify coherent groups of genes (in terms of 

network topology or data from experiments) and then assign functions to all 

the genes in each group.  
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1.3.4 PPI Networks and Disease 

Nowadays, it is evident that complex disease phenotypes rarely originate from 

abnormalities in single genes but rather reflect the disruption of the complex 

intra- and intercellular processes that interact in a network (Barabasi et al., 

2011). In particular, the full molecular complexity of common human diseases, 

such as cardiovascular diseases, diabetes, cancer, or neurological disorder, do 

not obey the standard Mendelian patterns of inheritance, and can only be 

anticipated by the study of the processes that interact in a complex network. 

This interconnectivity implies that the impact of a specific genetic abnormality 

can spread along the links of the network and alter the activity of gene 

products that otherwise carry no defects. Therefore, an understanding of a 

gene's network context is essential in determining the phenotypic impact, and 

elucidating the underlying mechanisms is crucial for understanding the onset of 

diseases and for the development of disease-specific diagnostic and therapeutic 

approaches (Jaeger and Aloy, 2012).  

Disease network properties have been studied from a global perspective, 

highlighting a strong association between protein network connectivity and 

disease. For instance, recent studies demonstrated that proteins encoded by 

disease genes tend to interact with each other compared to the rest of the 

proteins (Gandhi et al., 2006) and disease genes whose mutations are somatic 

(i.e. most cancer types) are more likely to encode for protein hubs (Goh et al., 

2007). Based on these findings, a series of network-based tools have been 

developed to predict potential disease genes (similar to function prediction). 

These tools exploit the guilt-by-association principle assuming that direct 

interactors of a disease protein are likely to be involved in similar disease 

phenotypes (Oti et al., 2006). On the other hand, the module-based methods 

associate genes to a disease using disease modules and the topology of the PPI 

network (Navlakha and Kingsford, 2010). In conclusion methods that use 

global topology of the network have been demonstrated to outperform 

methods that only take the local or no topology information into account 

(Navlakha and Kingsford, 2010), and network-based approaches to human 

disease have multiple potential biological and clinical applications. 
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2. Objectives I 
 

 

 

The main objectives of this part of the thesis can be summarized as follows: 

 To explore the mechanisms underlying disease-related genes. We aim 

to discover and characterize novel interactions between causative and 

associated genes to breast and colorectal cancers. 

 To expand BC and CRC interactomes using a Y2H library approach in 

order to identify new genes related to each disease. 

 Focusing on breast cancer, we aim to integrate our novel interaction 

data into the data currently available in the literature and apply a 

module-assisted network approach to predict protein function. The 

main goal here is to discover the function of proteins whose role in the 

disease is unknown. 
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3. Results and Discussion I 
 

 

 

3.1 Expansion of Breast Cancer Interactome 

3.1.1 Selection of breast cancer causative and associated genes 

Our main goal in this part of the project is to decipher the mechanisms 

underlying disease related genes, and an important factor when performing 

interaction discovery strategies is the selection of the optimal genes. For this 

reason we first compiled a comprehensive list of 59 driver genes based on their 

relevance in breast cancer (BC). Among those, three genes of vital importance 

for breast cancer tumor development are estrogen receptor, progesterone 

receptor and ERBB2 (=HER2). We also considered 20 genes that cause genetic 

predisposition to breast cancer, either with high penetrance (BRCA1, BRCA2 

and TP53), intermediate penetrance (e.g. CHK2, ATM, BRIP1, PALB, etc) or 

low penetrance (e.g. PTEN, STK11, RAD50, etc). Additionally, we included 36 

other genes that are described into the literature as causative cancer genes 

and/or are key genes of relevant cancer pathways (e.g. XRCC3, PHB, RAF1, 

HRAS, etc). A complete list of the selected driver genes is given in Appendix 1. 

On the other hand, the list of susceptibility genes somehow related to BC is 

endless, but the role of these genes in the development of the disease is barely 

understood. We mined the literature for genes associated to the disease and 

genes presenting relevant transcriptomics/genomics aberrations in breast 

cancer patients. This set comprised 186 candidate genes that we selected based 

on (1) their altered expression in breast cancer, (2) their loss of heterozygosity 

(LOH) or mutagenicity, and (3) their involvement in metastasis or related 

pathological processes. 
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To maximize the chance of detecting novel relationships and mechanisms, 

while minimizing already reported interactions, we applied the shortest-path 

length metric (Materials and Methods) and we filtered out those candidates 

present in the human interactome that were separated by at least three 

interactions from the nearest driver. Thus, we discarded 96 genes whose 

distance to the nearest driver in the network was one (direct interactor) or two 

(with one intermediate protein), since a molecular link could already be 

established for these genes. This ensures us that all of the interactions found 

had never been identified before. As in many cases Y2H screens with trans- 

membrane domains are dominated by false positives we pruned another 32 

genes with known/predicted transmembrane regions (10) from the remaining 

90 candidates. Finally, we also excluded genes with unavailable ORFs (22), 

ending up with 58 candidates. A complete list of the selected associated genes 

and their features is given in Appendix 2. 

3.1.2 Identification of novel BC-related genes through interaction 

discovery experiments 

It has been reported that causative and susceptibility genes in complex diseases, 

including human cancers, tend to be highly interconnected (Oti and Brunner, 

2007). We first checked the interconnectivity between these 59 driver genes to 

verify whether this observation is also true for BC. To this end, we again 

computed the minimal distance (i.e. the shortest path length) between a pair of 

drivers in the frame of the charted human interactome. We observed that the 

shortest path between driver genes is 2.8 meaning that, on average, we need 

less than three links (i.e. two intermediate proteins) to physically connect any 

two gene products within this set. To assess the statistical significance of this 

figure, we compared this result to a reference distribution consisting of 

randomly picked sets of 59 proteins in the human interaction space (RND, 

average shortest path = 4.4). The average distance among BC-related genes was 

significantly shorter than that of the reference distributions (P-valueRND ~ 0), 

indicating that BC driver genes are indeed more tightly connected than one 

would expect by chance. We thus sought to exploit the high interconnectivity  

observed  among  BC  drivers  in  order to reveal novel direct   
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Figure 10. Flow strategy of BC interactome characterization studies. 

We followed four major steps to expand and analyze the interactome associated to 
breast cancer (BC): (1) Identification of causative and associated BC genes. (2) 
Characterization of interactome network by Y2H screen. (3) Generation of the BC-
associated protein interaction network (BC-PIN). (4) Functional module analysis. 
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relationships between drivers and the set of associated genes selected, which 

would provide a molecular rationale for the changes observed. The complete 

flow strategy of BC interactome characterization studies is represented in 

Figure 10. 

For this reason, we performed systematic matrix-based Y2H screens to identify 

and characterize novel interactions between driver (causative) and candidate 

(associated) breast cancer genes. We converted 49 drivers into bait and 54 

candidates into prey plasmids, respectively (Materials and Methods), since we 

had to exclude from the analysis 10 drivers and four candidates due to 

incorrect cloning. We had problems basically when cloning into the pENTR-

D-TOPO vector, as after several attempts the sequencing was showing 

incorrect or absent cloning. This complication was more common with the 

bigger genes, and some of them such as BRCA1, BRCA2 drivers and 

KIAA0100 candidate were excluded. In addition, five baits (E2F1, MAPK14, 

NCOA3, PGR and TP53) were discarded as they showed self-activation in 

Y2H screens, which indicates that they can activate transcription in the absence 

of any two-hybrid-interacting partner protein. In order to increment the 

confidence of our results, each interaction was tested in duplicate and we 

measured the activation of three different reporter genes: HIS, URA3 and 

LACZ (see Materials and Methods for further details). Overall, we examined 

2,376 pair-wise protein interactions by Y2H and identified 728 non-redundant 

interactions, which were subsequently scored based on their ability to activate 

at least two reporter genes or being observed in biological replica screens. We 

finally selected 491 interactions, which we defined as our matrix-based Y2H 

high-confidence core (HC) interaction set (Appendix 3), and which represent 

the first molecular links reported between these 54 associated genes and well 

understood BC causative pathways. 

In order to expand the initial number of interactions, we carried out an 

alternative identification of novel BC-related genes by Y2H library assays. We 

selected 11 genes: ER, ERBB2 and those genes involved in early onset breast 

cancer that were correctly cloned into bait vector and that were not a self- 

activator bait (genes highlighted in Appendix 1). These 11 baits were screened 

in five independent replicates against a human cDNA library. We identified 312 

interactions, from which 118 contained the downstream gene in frame with the  
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prey activation domain. These interactions were re-tested by matrix Y2H 

experiments to validate their interaction specificity, ending up with 108 new 

HC interactions for the 11 baits assayed (Appendix 4). Notably, 76 of the 99 

newly identified proteins had never been linked to breast cancer before, 

according to Intogen database (Gundem et al., 2010). Nevertheless, these genes 

are significantly co-expressed in human tissues with their BC driver interaction 

 

Figure 11. Gene co-expression analysis of Y2H library screen interactions. 

Similar to GSEA (Subramanian et al., 2005), the running sum is the result of the 
weighted counting of gene pairs of interest through a ranked list involving all 
possible pairings of drivers/causing genes against a comprehensive gene catalogue. 
In the upper panel, the running sum is measured as a normalized enrichment score 
(NES). The weighting is done according to correlation values obtained from 
COXPRESdb (Obayashi et al., 2013) (second and third panels). In the bottom 
panel, gene pairs corresponding to our interactions are highlighted. 
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partners (P-value = 0.024; see Materials and Methods and Figure 11), and 

significantly overrepresented in tumor somatic mutations (P-value < 0.016), 

strengthening their potential relevance in BC and validating our strategy. 

Based on the outcome derived from both Y2H screens, we generated a 

definitive HC protein-protein interaction network comprising 599 non-

redundant interactions, involving 44 drivers and 150 candidates (Figure 12). 

 

 

Figure 12. High-confidence interaction network. 

Diagram showing the 599 novel interactions reported from 
our Y2H screen. Drivers are depicted in purple, candidates in 
green and library-interacting preys are highlighted in yellow. 
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Strikingly, we only identified one common interaction to both matrix and 

library screens (ATM-WHSC1L1). Furthermore, we also detected an 

interaction between two drivers in the Y2H library assays (STK11-TSG101). 

Of note, only one interaction, ESR1-ATAD2, has been reported previously 

(Zou et al., 2007), indicating that almost all of our HC interactions are novel, as 

expected. The low overlap between different networks is a well-known effect, 

and it is mainly attributed to the limited sampling of the interactome space 

(Venkatesan et al., 2009).  

 

Figure 13. Functional coherence of interaction network 

(A) Conceptual framework to exploit networks for the 
understanding of biological processes. We relate independent 
biological annotations through PPIs. In this scheme functions are 
depicted by different colors. (B) The biological function coherence 
of every driver with its interactors is color-graded, from an overall 
trend to significant coherence (bottom panel). 

A 

B 
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To evaluate whether the discovered interactions could really provide 

mechanistic details about the relationships between driver and candidate genes, 

we assessed the functional coherence of our HC interaction network by 

checking if each driver and its interacting candidates are generally involved in 

similar biological processes, as assigned by Gene Ontology terms. Very 

interestingly, the network shows a high degree of biological process coherence 

(pairwise semantic similarity mean value = 0.347, P-value < 0.0001) (see 

Materials and Methods). The same analysis with driver direct interactors from 

canonical pathways also shows a high coherence (pairwise semantic similarity 

mean value = 0.627, P-value < 0.0001), as expected. These findings indicate 

that our network-based approach is indeed a robust inference tool to gain 

insight into the underlying mechanisms of those proteins with previously 

unknown roles in BC, as well as for a better understanding of the regulation 

and interrelationship between different proteins of complex biological systems 

(Figure 13).  

All the protein interactions reported here have been submitted through MINT 

(Ceol et al., 2010) to the International Molecular Exchange (IMEx) Consortium 

(http://www.imexconsortium.org) and assigned the identifier IM-21668. 

3.1.3 Interactome network associated to BC 

To contextualize the 599 novel BC-related interactions between the 194 

proteins that our study has revealed, we integrated them with the human 

interaction data currently available in the literature to build a comprehensive 

interactome associated with BC. We retrieved from the databases all the 

proteins identified as direct interactors of the group of drivers considered in 

our study and merged them with our HC set of interactions. Additionally, we 

further extended this initial network to the next level (i.e. we included all the 

direct interactors to the initial set and the interconnections among them), 

obtaining a network of 11,226 interactions among 2,019 proteins, designated as 

BC-protein interaction network (BC-PIN).  

We next studied the structure of the BC-PIN to detect the presence of 

potential functional modules, defined as groups of proteins that are densely 

interconnected and that are functionally homogenous (i.e. functional 
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annotation shared by the maximum number of module proteins). To identify 

these modules, we used the MCL algorithm (Enright et al., 2002), since it has 

proved to be more robust and tolerant to noise than other modules detection 

methods (Vlasblom and Wodak, 2009). With this procedure, we identified 178 

modules in the BC-PIN, of which 146 showed a high degree of functional 

homogeneity, roughly containing 64% of the proteins in the network. 

Additionally, we found that 62 of them were significantly enriched for one or 

more GO biological process annotation. If we look for the positioning of the 

drivers and their interactors in our HC set in the BC-PIN, we find that they 

have been grouped into 84 distinct modules (72% and 58%, respectively), 67 of 

which are homogenous for, at least, one GO annotation. When we reanalyzed 

these functional modules excluding our 599 HC interactions, we observed that 

the number of modules falls from 178 to 112, and the number of 

homogeneous and enriched groups also decreases from 55 to 26 modules, 

respectively. This supports the idea that our study charts some unexplored 

areas of the BC-associated interactome and significantly increases the 

coherence of known modules with more connections. All the BC-PIN 

modularity data is reported in Appendix 5. 

Eventually, we exploited the modular structure of the BC-PIN to extract 

relevant sub-networks representing the most frequent homogeneous functions 

in the interactome. We merged the modules with similar functions (Materials 

and Methods) to build sub-networks, each of them containing all the modules 

that share a biological function, and then we added the directly interacting 

candidates and those linking at least two modules from our HC set. The 

resulting four main sub-networks, which are represented in Figure 14, are 

related to signal transduction (7 modules, 157 proteins and 221 interactions), 

DNA damage repair (4 modules, 87 proteins and 167 interactions), protein 

phosphorylation (4 modules, 99 proteins and 114 interactions) and apoptosis (2 

modules, 69 proteins and 109 interactions). 
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Figure 14. BC-PIN subnetworks 

Diagrams showing the four relevant sub-networks based on the most frequent 
homogeneous functions in the BC-PIN. The clusters were merged by similar 
functions to build sub-networks, each of them containing all the modules that 
share a biological function. The resulting four main sub-networks are related to 
signal transduction (7 clusters), DNA damage repair (4 clusters), protein 
phosphorylation (4 clusters) and apoptosis (2 clusters). 
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3.2 Expansion of Colorectal Cancer Interactome 

3.2.1 Selection of CRC causative and associated genes 

As we mentioned in Section 1.3.4, it has been described that, in complex 

diseases, causative and susceptibility genes tend to be highly interconnected. 

Thus, we performed a similar approach as described for BC interactome 

charting (see Section 3.1) but directed to CRC interactome. We again 

performed a systematic Y2H screening to reveal novel direct relationships 

between CRC causative genes, namely drivers, and a set of CRC associated 

genes, namely candidates. We propose that, by discovering interactions 

between drivers and candidate genes, we can help unraveling the role of the 

latter in the CRC phenotype and provide mechanistic details for such 

relationships. 

The selection of CRC driver genes was conducted similarly to the BC driver 

genes’ selection. We compiled a list of 45 driver genes. Eleven of these drivers 

were manually selected for being well-established and characterized genes in 

CRC development (Markowitz and Bertagnolli, 2009) and/or they are key 

genes in the main signaling pathways involved in colorectal cancer syndromes 

(Sancho et al., 2004). In addition, we included 24 genes whose defects can 

strongly contribute to an inherited predisposition to CRC, according to 

OMIMs database (McKusick, 2007). Mutations in one single gene out of those 

24, result in a marked predisposition to colorectal cancer in any of the two 

distinct syndromes: familial adenomatous polyposis (FAP) and hereditary 

nonpolyposis colorectal cancer (HNPCC). Finally, by examining COSMIC’s 

database (Bamford et al., 2004; Forbes et al., 2010), we selected another 10 

drivers, which are genes whose somatic alterations are known to be crucial in 

sporadic CRCs. A complete list of the selected driver genes is given in 

Appendix 6. 

There are hundreds of CRC associated genes: genes that have been related 

CRC by several assays such as expression arrays or gene linkage analyses and 

genome-wide association studies, but whose role in the disease is barely 

understood. To reduce the number of candidate genes and maximize the 

biological relevance of the discovered interactions, we selected 45 susceptibility 
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genes for the interaction discovery experiments. The main difference among 

BC and CRC interactome characterization studies that we performed resides in 

the criteria applied to select the associated genes tested by Y2H. In the case of 

CRC, we employed the following criteria: (1) First we prioritized genes with 

coordinated expression changes with CRC drivers across a compendium of 

normal tissues and cell types. We estimated co-expression in terms of 

correlation coefficients computed using an Expectation-Maximization EM 

algorithm (Dempster et al., 1977). Besides, in all the cases, we forced a co-

expression in the colon and rectum related tissues to obtain the most relevant 

correlation for CRC (see Materials and Methods). This procedure identified 17 

candidate genes that did significantly co-express with the known CRC-causative 

genes. (2) Besides, we considered genes within chromosomal loci identified by 

gene linkage analyses and genome-wide association studies as related to CRC. 

In particular, we included the region 9q22.32-31.1, which contains a 

susceptibility locus (CRCS9) involved in the development of known hereditary 

colorectal cancer syndromes, familial adenomatous polyposis (FAP) and 

hereditary non-polyposis colorectal cancer (HNPCC) (Kemp et al., 2006; 

Skoglund et al., 2006; Wiesner et al., 2003). It is known that these loci are 

linked to CRC, but the specific genes responsible for this linkage remain to be 

discovered. Accordingly, we selected 28 additional genes from this locus 

potentially implicated in CRC disease mechanisms. Eventually, we obtained a 

final list containing 45 CRC susceptibility genes, which is given in Appendix 7.  

3.2.2 Identification of novel CRC-related genes through 

interaction discovery experiments 

We then performed systematic matrix-based yeast two-hybrid (Y2H) screens to 

identify novel interactions between driver and susceptibility CRC genes. We 

converted 45 drivers into bait and 45 associated genes into prey plasmids, 

respectively (see Materials and Methods). From those, three baits were 

discarded as they showed self-activation in Y2H screens in presence of empty 

prey clones (BUB1B, CTNNB1 and TP53). Overall, we examined a matrix of 

1,890 protein pairs by Y2H and identified 1,029 non-redundant interactions, 

which were also subsequently scored based on their ability to activate at least 

two reporter genes or on being observed in the two biological replica screens. 
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We finally selected 595 interactions, which we defined as our matrix-based 

Y2H high-confidence core (HC) interaction set (Appendix 8), and it represents 

the first molecular links reported between these 45 susceptibility genes and 

well-understood CRC driver genes and pathways. 

As previously performed for BC interactome, we also carried out an alternative 

identification of novel CRC-related genes by Y2H library assays. As baits, we 

selected six genes based on gene expression profiles from normal mucosa, 

colorectal adenoma and adenocarcinoma (Sabates-Bellver et al., 2007). In 

particular, we focused our study on the driver genes AXIN2, DLC1 and 

PDGFRL, which are highly up-regulated in CRC compared to adenoma 

(benign tumor) or normal mucosa, and the candidates C9orf30, SFRP4 and 

SFRP2, up-regulated in colorectal tumors compared to both normal mucosa 

and benign tumors. Hence, these alterations suggested that these might be 

specific genes for CRC tumorigenesis. After converting these genes into bait 

plasmids, we screened them against a human cDNA library through yeast two-

hybrid (Y2H) library assays. We carried out 30 Y2H screens against an adult 

brain cDNA prey library (5 independent replicates for each of the six baits), 

which yielded 105 interactions between the six baits and 74 distinct cDNA 

clones or preys. DNA sequence verification and a systematic BLAST search 

showed that 33 of the isolated potential interactors (i.e. preys) contained the 

downstream gene in frame with GAL4 activation domain, while the remaining 

clones showed out-of-frame sequences or sequences from non-coding regions, 

which were discarded. These 33 potential interactors were re-tested by matrix 

Y2H experiments to validate their interaction specificity. We could validate 27 

of them, involving 20 novel proteins, which we then considered as high-

confidence interactions and further included in the CRC interactome 

(Appendix 9). Most of the identified preys interacted with a single bait, and 

only PFKM, RANGAP1 and TMEM129 interacted with two or more baits. 

Based on the outcome derived from both Y2H screens, we generated a 

definitive HC protein-protein interaction network comprising 622 non-

redundant interactions, involving 42 of the selected CRC driver genes (Figure 

15). Interestingly, we did not identify common protein-protein interactions in 

both matrix and library screens, which reveals the advantage of performing 

pair-wise and pool screens in parallel. It is worth mentioning that only six 
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interactions have been reported since we started the study (Mosca et al., 2013), 

which indicates that almost all of our HC interactions are novel, as expected. 

The low overlap between different networks is a well-known effect, and it is 

mainly attributed to the limited sampling of the interactome space (Venkatesan 

et al., 2009). In our case, this is particularly pronounced since we chose some of 

our candidate genes to maximize the number of novel interactions added to the 

CRC associated network and of which little 

 

Figure 15. CRC interaction network. 

Visual representation of the relationships between CRC drivers and HC interactors 
discovered. Drivers are depicted as yellow (literature curated), orange (COSMIC 
database) and red (OMIM database) nodes, whereas CRC associated genes are 
depicted as purple (co-expression correlation), blue (CRCS9 loci) and green (library 
interactors) nodes. The size of each node is proportional to its number of 
interactions. 
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interaction information was known (i.e. genes in the susceptibility region 

CRCS9 with no direct proof of their implication in CRC).  

To evaluate whether the discovered interactions could really provide 

mechanistic details about the relationships between driver and candidate genes, 

we assessed the functional coherence of our HC interaction network. As 

previously described for BC interactions (see Section 3.1.2), we checked if each 

driver and its interacting candidates are related to similar biological processes, 

as assigned by Gene Ontology terms. Interestingly, the network shows a high 

degree of biological process coherence (pairwise semantic similarity mean value 

= 0.321, P-value < 0.0001) (Figure 16). The same analysis with driver direct 

interactors from canonical pathways also shows a high coherence (pairwise 

semantic similarity mean value = 0.610, P-value < 0.0001), as expected. These 

findings indicate that our network-based strategy is useful to gain insight into 

the underlying mechanisms of those proteins with previously unknown roles in 

CRC, as well as to have a better understanding of the regulation and 

interrelationship between different proteins of complex biological systems  

 

Figure 16. Functional coherence of CRC interaction network. 

The biological function coherence of every CRC driver with its 
interactors is color-graded, from a global tendency to significant 
coherence. 
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3.3 Identification of novel BC-genes associated with the 

DNA Damage Response 

3.3.1 DNA damage repair sub-network 

The DNA damage repair emerged as one of the most interesting interaction 

sub-networks (Section 3.1.3; Figure 17). Deficiencies in DNA damage 

signalling are both known to play causative roles in BC and are actively 

exploited for therapeutic protocols in cancer treatment (Lord and Ashworth, 

2012). We thus decided to focus on this sub-network to estimate the precision 

of our interaction set and illustrate the power of our approach to generate 

novel mechanistic hypothesis. 

The clusters within the DNA damage repair sub-network contain six driver 

genes related to DNA repair, four candidates from our matrix-based HC set, 

and two HC library-preys (Figure 17). In particular, the largest cluster contains 

25 proteins, with three drivers (ATM, NBS1/NBN and RAD50) that are 

related to the DNA damage response through MRE11-RAD50-NBS1 (MRN) 

complex sensing of DNA breaks and activation of the ATM kinase (Stracker 

and Petrini, 2011). Two more clusters involving RAD51 (containing five 

proteins) and XRCC3 (containing four proteins), are also related to DNA 

repair by homologous recombination (HRR), one of the two major double-

strand break repair pathways (Liu et al., 2007). Finally, the PARP1 cluster (14 

proteins) is involved in base excision repair (BER) and is a potential 

chemotherapeutic target in HRR deficient tumors, such as those lacking 

BRCA1 or BRCA2 (Rouleau et al., 2010).  

Although it is well-documented that different interaction discovery techniques 

are able to identify interactions of different nature (i.e. binary/multimeric, 

transient/dedicated, etc) (Venkatesan et al., 2009), we sought to validate some 

of our interactions derived from Y2H screens with alternative strategies. To 

this end, we selected a random subset of the HC interactions containing DNA 

damage repair-related genes to validate them in mammalian cells by using 

complementary techniques, expecting that the results obtained would be 

representative of the entire HC interaction set (Figure 18A). We first tested 14 

interactions by co-IP binding experiments in HEK293 cells (see Materials and  
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Methods), and could confirm 11 of them, corresponding to a 79% of validation 

rate (Figure 18B). We also studied the subcellular distribution pattern of several 

DNA damage repair-related genes by their overexpression in U2OS cells and 

subsequent observation under a confocal microscope. We tested nine 

interacting pairs and we observed that four of them shared predominantly 

 

Figure 17. DNA repair-related sub-network. 

Interactions between DNA damage drivers and HC interactors. Drivers are depicted 
as rhombus and HC interactors as circular nodes. The four homologous functional 
clusters are differently colored. Genes with altered expression in BC tissues 
(OncomineTM database) are highlighted in red (up-regulated) and blue (down-
regulated) and those genes containing common domains with DNA repair proteins, 
in purple. 
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nuclear location (CHK2-FAM84B, RAD51-FAM84B, RAD51-NAT2 and 

RAD51-WHSC1L1) (Figure 18C). Taken together, these results strongly 

support our Y2H HC interaction set. 

 

Figure 18. Validation of Y2H interactions by downstream binding assays. 

(A) Schematic diagram showing the experimental outline to assess the DNA damage 
and repair subnetwork coherence. (B) Interactions examined by co-IPs. Fourteen HC 
interactions involving four drivers of the subnetwork were tested. Eleven of them were 
confirmed (79% validation rate). Input: cell lysate, loading control. IP: 
immunoprecipitated protein. IB: immunoblotted protein. Ctl: Empty vectors, negative 
controls. NIgG: non-immune rabbit or mouse immunoglobulins, used to monitor non-
specific IPs. (C) In vivo co-localization of interacting partners by immunofluorescence 
microscopy. RAD51-WHSC1L1, RAD51-FAM84B, RAD51-NAT2 and CHK2-
FAM84B share nuclear co-localization in U2OS cells. Merged images show co-
localized regions in yellow. 
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To further investigate the relationships of genes present in our sub-network to 

DNA damage repair, we focused on 15 candidate genes that were either 

present in DNA repair functional clusters or linking two or more DNA repair 

modules (Figure 17). Interestingly, five of these genes (BCAS3, MTA3, RNF20, 

SNAI1 and WHSC1L1) share common domains with many DNA damage 

response enzymes (Table 3), but only RNF20 has been described as a 

modulator of the DNA damage response (Nakamura et al., 2011). 

Furthermore, seven of the remaining genes are up to ten-fold either down-

regulated (ITIH5, OSGIN1 and SERPINB5) or overexpressed (C5orf13, 

FAM84B, IL24 and TFF1) in BC compared to normal breast tissue (Rhodes et 

al., 2007), but a potential relationship with DNA damage response has never 

been established. 

 Table 3. Functional domain annotations of selected candidate genes. 

We checked if any of the candidates had at least one Pfam-A or SMART 
domain found in any gene of the two reference gene sets containing DNA 
repair genes. The domains highlighted in red are found in genes belonging to 
the DNA repair set, whereas the ones highlighted in blue are present in 
genes of the DNA damage response set. 

Gene symbol SMART domains Pfam-A domains 

BAP1 - Peptidase_C12 

BCAS3 WD40 WD40 

C5orf13 - Alveol-reg_P311 

FAM84B - NC 

IL24 - - 

ITIH5 VWA; VIT VWA; ITI_HC_C; VIT 

MT-ND4 - 
Oxidored_q1; 

Oxidored_q5_N 

MTA3 
SANT; ZnF_GATA; 

BAH 
BAH; GATA; ELM2 

NAT2 - Acetyltransf_2 

OSGIN1 - Pyr_redox_2 

RNF20 RING zf-C3HC4 

SERPINB5 Serpin Serpin 

SNAI1 ZnF_C2H2 zf-C2H2 

TFF1 PD Trefoil 

WHSC1L1 
SET; AWS; PHD; 
PWWP; PostSET 

PWWP; SET 
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3.3.2 Initial functional validation of the BC-genes associated to 

DNA damage response 

As a first approach to study whether our candidate genes are indeed related to 

the DNA damage response, we carried out clonogenic survival assays to assess 

the sensitivity to radiation after overexpression of our genes of interest (see 

Materials and Methods). We successfully overexpressed 11 genes by cDNA 

plasmid transfection in HEK293T cells (BAP1, BCAS3, FAM84B, IL24, 

MTA3, NAT2, OSGIN1, RNF20, SERPINB5, SNAI1 and WHSC1L1), while 

we had to discard four genes after unsuccessful cloning and transfecting 

attempts (ITIH5, C5orf13, MT-ND4 and TFF1).  

To establish the reference lines of cell survival upon ionizing radiation (IR) 

treatment, we used as a negative control cells transfected with the empty 

vehicle vector and, as a positive control, cells overexpressing RAD51, a well-

established protein involved in HRR and cell proliferation (Li et al., 2000). Of 

our candidate genes, three of them showed a significant increase in cell survival 

upon irradiation (P-value < 0.01), as we observed by the radiation survival 

curve (Figure 19A). SERPINB5 (P-value = 6.00x10-5) and RNF20 (P-value = 

7.86x10-4) showed increased cell survival and growth particularly at high IR 

doses (2-3 fold higher survival as compared to control at six Gy irradiation 

dose) whereas SNAI1 (P-value = 6.03x10-3) showed a continuously increased 

colony formation at two, four and six Greys (Gy), in agreement with previous 

findings of increased cell resistance to DNA damage-induced apoptosis after 

aberrant expression (Kajita et al., 2004) (Figure 20; Table 4). Conversely, we 

observed no change in survival after irradiation in cells overexpressing 

FAM84B, IL24, WHSC1L1, MTA3, BCAS3, NAT2, BAP1 or OSGIN1.  

Similarly, we performed clonogenic survival assays after silencing the 

expression of our genes of interest using siRNA. HEK293T cells were 

transiently transfected with siRNA against the target genes, followed by 

ionizing radiation treatment (see Materials and Methods). From the initial list of 

15 genes, we successfully depleted the expression of seven genes, namely 

RNF20, WHSC1L1, SERPINB5, BCAS3, MTA3, IL24 and FAM84B. 

Luciferase-targeted siRNA was used as a negative control and all the results 

were normalized to non-treated cells. 
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Figure 19. Functional assays. 

Clonogenic cell survival assays after (A) overexpression or (B) silencing of 
selected candidate genes potentially involved in DNA damage in U2OS 
irradiated cells. Six genes (RNF20, SERPINB5, SNAIL1, FAM84B, MTA3, 
IL24) show modulation of cell growth after DNA damage. Foci formation 
assays after induced DNA damage show co-localization of (C) RNF20 and (D) 
SNAIL1 with γH2AX, indicating they are recruited at the DNA DSBs. γH2AX 
foci formation was detected by using a rabbit monoclonal anti-γH2AX 
antibody. Alexa Fluor 488-labeled goat anti-rabbit IgG (green) and Alexa Fluor 
568-labeled goat anti-mouse IgG (red) secondary antibodies were used. Scale 
bars represent one μm. Data are represented as mean ± SD. 
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After irradiation with a dose of two-six Gy, four out of the seven genes 

(RNF20, MTA3, IL24 and FAM84B) showed higher radiation sensitivity, 

exhibited by diminished colony proliferation relative to the negative control 

siRNA (Figure 19B). Although we clearly observed a significant impact on cell 

growth and survival in the four cases, MTA3 and RNF20 showed the most 

dramatic effects, decreasing colony proliferation by 70-75% (P-value = 

3.00x10-6 and 2.18x10-5, respectively), whereas IL24 (P-value = 2.14x10-4) and 

FAM84B (P-value = 4.53x10-4) depletion only decreased survival to 25-30% 

relative to the control (Figure 21; Table 4B).  

Consistent with previous data linking it to double strand break repair, RNF20 

displayed coherent IR survival patterns between overexpression and silencing 

assays (Moyal et al., 2011). Conversely, depletion of SERPINB5 did not show a 

significant decrease in cell survival, while it increased radioprotection when 

overexpressed. It is worth mentioning that SERPINB5, commonly known as 

MASPIN, also displays an heterogeneous behavior in clinical samples, being 

highly underexpressed in all BC types, and overexpressed in other cancer types 

such as colorectal, lung or pancreas (Rhodes et al., 2007). 

The depletion of the MTA3 gene also induced an enhanced radiosensitivity 

relative to control in HEK cells, in consensus with its role as a transcriptional 

repressor of SNAI1, a major regulator of the epithelial to mesenchymal 

transition (EMT) that is critical for invasive growth of breast cancers (Fujita et 

al., 2003). 

Intriguingly, IL24 and FAM84B enhanced cell radiosensitivity when inhibited 

but did not show a significant effect when overexpressed (P-value < 0.01). 

Since IL24 has been shown to cause antiproliferative and cytotoxic effects in a 

variety of tumor cells, but not in non-transformed cells (Su et al., 2003; Yacoub 

et al., 2003), our findings suggest that they might be indeed under tight 

regulation to contribute to terminal cell differentiation, leading to higher 

sensitivity when expression is downregulated. 
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Figure 20. Statistical analysis of clonogenic assays (overexpression). 

Plot diagrams of normalized colony counts of each gene when overexpressed. 

Normalized counts are depicted as black spots; trend line and P-value are also 

shown. 
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Figure 21. Statistical analysis of clonogenic assays (silencing). 

Plot diagrams of normalized colony counts of each gene when silenced. 

Normalized counts are depicted as black spots; trend line and P-value are also 

shown. 
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Table 4. Values from the statistical analysis of clonogenic assays. 

Trend-test analysis results based on the collected colony counts after different IR 
dose (in duplicates). Summary tables showing the gene overexpression (A) and 
silencing (B) statistical P-values at different irradiation doses (Gy). Significant 
values are highlighted in bold. Dashed line delimits the significant threshold at P-
value <0.01. 

  

(A) Gene 0 Gy 2 Gy 4 Gy 6 Gy 
Trend    P-

values 

SERPINB5 0,0048 0,0068 0,0601 0,0015 0,000060 

RAD51 0,9110 0,0405 0,0841 0,0043 0,000371 

RNF20 0,0075 0,0160 0,0867 0,0017 0,000786 

SNAIL1 0,3448 0,0029 0,1006 0,1070 0,006025 

FAM84B 0,0872 0,0188 0,5091 0,2377 0,015879 

IL24 0,0008 0,0082 0,0280 0,1905 0,041229 

NAT2 0,0449 0,1801 0,0608 0,3582 0,170109 

WHSC1L1 0,0274 0,3686 0,2974 0,8208 0,334886 

OSGIN1 0,6333 0,0340 0,4689 0,7420 0,352353 

MTA3 0,0181 0,0260 0,9659 NA 0,487002 

BAP1 0,3547 0,0300 0,8253 0,9860 0,779590 

BCAS3 0,4218 0,7292 0,9900 0,9768 0,864994 

(B) Gene 0 Gy 2 Gy 4 Gy 6 Gy 
Trend     

P-Values 

MTA3 0,76823 0,56859 0,06406 0,01759 0,0000030 

RNF20 0,04095 0,45338 0,00079 0,00528 0,0000218 

IL24 0,40330 0,00002 0,01687 0,10477 0,0002139 

FAM84B 0,47364 0,02618 0,00689 0,08373 0,0004532 

WHSC1L1 0,55113 0,59006 0,75767 0,71010 0,0690363 

SERPINB5 0,04653 0,00012 0,52076 0,90460 0,3603025 

SNAIL1 0,58053 0,44852 0,54748 0,35846 0,4833310 

BCAS3 0,00645 0,01811 0,83090 0,91834 0,9064926 



3 Results and Discussion I 

62 

To complement the clonogenic assays after irradiation, we also assessed the 

localization of our candidate gene products to DNA double-strand breaks 

(DSBs), the predominant cytotoxic lesion caused by radiation (Hoeijmakers, 

2009; Reinhardt and Schumacher, 2012). Within seconds after the generation 

of DSBs, subnuclear foci known as IR-induced foci (IRIF) are assembled at the 

break sites. These IRIF arise from chromatin remodeling and orchestrated 

recruitment of various DNA damage response (DDR) proteins, which are 

important for mediating the signaling and repair of the damaged DNA, as well 

as cell cycle checkpoint activation or apoptosis. Phosphorylation of the histone 

variant H2AX at Ser139 (γH2AX) is among the earliest signaling modifications 

(Breitkreutz et al., 2008). For this reason, we determined whether the 15 

candidate genes potentially involved in DNA damage response localized to 

IRIF (see Materials and Methods) following 10Gy of IR. U2OS cells 

overexpressing the candidate genes were analyzed for IRIF formation and 

colocalization with γ-H2AX 1h and 6h post-irradiation (Bonner et al., 2008). 

Both RNF20 and SNAI1 re-localize into IRIF upon the induction of DNA 

damage by IR (Figure 19C-D), providing further support that the recruitment 

of these proteins to IRIF may be indicative of a role DSB repair or signaling.  

3.3.3 Unveiling additional roles of RNF20 in DNA repair  

The E3 ubiquitin ligase RNF20 has been found to be hypermethylated in BC 

(Shema et al., 2008), and our findings point towards a potential role in DNA 

repair. In the BC-PIN, it is included in a cluster homogeneous for DNA 

recombination and DNA repair (Figure 17), containing also the XRCC3 and 

RAD51C proteins. In addition, it contains domains that are common in DNA 

repair proteins (Table 3). Furthermore, we found that RNF20 promotes 

radioresistance when overexpressed and cell death when silenced after 

irradiation (Figure 19A-B). And finally, we detected foci formation and co-

localization with yH2AX, demonstrating RNF20 recruitment to DSB sites 

(Figure 19C).  

Our observations are consistent with recent studies that have demonstrated an 

additional role of RNF20 beyond its previously implicated functions in 

transcription. Following DSB recognition by the MRN complex, activated 

ATM phosphorylates both RNF20-RNF40, which transiently remain at the 
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DSB sites to allow chromatin decompaction and recruitment of additional 

repair proteins (Shiloh et al., 2011). RNF20-40 mediated histone H2B 

monoubiquitination promotes RAD51-dependent HRR (Nakamura et al., 

2011). Independently of RAD51, the RAD51 paralog, XRCC3, accumulates at 

DSBs and facilitates the formation of RAD51 nucleoprotein filaments (Forget 

et al., 2004). Since XRCC3 interacts with RNF20 based on our BC-PIN, we 

propose that RNF20 may play additional roles in regulating HRR. This may 

include promoting the binding of XRCC3-RAD51 to mediate HRR or XRCC3 

may itself be a substrate of RNF20/40 (Figure 22). Monoubiquitination of 

XRCC3 could promote its interactions with RAD51 or stabilize its complex 

formation with its binding partner RAD51C. Public mass spectrometry data 

supports this possibility as ubiquitination of XRCC3 in its RAD51-like domain 

has been reported (www.phosphosite.org). 

Another interesting RNF20 interaction derived from the BC-PIN is with the 

CHK2 kinase. Like ATM, CHK2 is activated by DNA DSBs and plays a 

central role in DNA damage signal transduction (Stracker et al., 2009). 

Activated CHK2 phosphorylates a number of distinct downstream effectors 

(BRCA1, p53, E2F1, Cdc25A and Cdc25C), which result in the activation of 

cell-cycle arrest, DNA repair, senescence or apoptosis (Antoni et al., 2007). 

Notably, ATM and CHK2 phosphorylate a number of common substrates, 

including p53, where it is clear that both phosphorylation events contribute to 

its full activation (Chao et al., 2006). Therefore, the association of RNF20 with 

CHK2 could indicate that full RNF20 activation also depends on its 

phosphorylation by CHK2 (Figure 22). Another intriguing possibility is that 

RNF20 couples the RAD51C/XRCC3 dependent activation of CHK2 by 

facilitating protein-protein interactions or formation of macromolecular 

complexes (Badie et al., 2009). Collectively, our findings suggest additional 

roles for RNF20 in DNA damage signaling and give insights into its possible 

mechanism of action at DNA damage sites. 

 

http://www.phosphosite.org/
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Figure 22. Model for a novel role of RNF20 in DNA repair. 

RNF20 can promote RAD51-mediated HRR. Upon DNA damage, 
the MRN complex first activates ATM, which in turn activates the 
RNF20-RNF40 dimer (black arrows). Based on our two novel 
RNF20 interactions with XRCC3 and CHK2 (red arrows), we 
hypothesize that RNF20 may foster DNA repair mechanisms by 
favoring the XRCC3 binding to RAD51 to subsequently facilitate 
the formation of RAD51 nucleoprotein filaments that mediate 
HRR. Furthermore, the association of RNF20 with CHK2 could 
also act as a relay mechanism for the ATM-CHK2 signaling, 
ensuring the DNA damage repair. 

 

3.3.4 FAM84B is involved in control of DNA repair mechanisms 

The Breast cancer membrane protein 101 (FAM84B) was originally identified 

in EGF receptor positive cell lines. It has no functionally characterized 

homologues, representing a completely unique BC membrane protein. 

Although it was initially annotated as a membrane protein, cellular location 

studies have demonstrated widespread intracellular localizations and it appears 

in the plasma membrane at high levels, particularly in areas of cell-cell contacts 

(Adam et al., 2003). Furthermore, RT-PCR and immunohistochemical analysis 

of FAM84B expression have showed very low expression levels in multiple 

normal tissues. In contrast, high levels of mRNA and protein expression have 
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been detected in breast carcinoma cells relative to normal breast tissue, with 

more than 2-fold upregulated mRNA levels (Rhodes et al., 2007). It has been 

speculated to play a role in breast tumor development by blocking the tumor 

suppressor function of α1-catenin (Adam et al., 2003).  

Interestingly, we found two interactions involving the FAM84B protein with 

the DNA DSB repair proteins CHK2 and RAD51, which were validated by co-

IP and co-localized in the nucleus (Figure 19B-C). We also analyzed the co-

expression of these genes in several tissues (see Materials and Methods), where 

they showed a high correlation (r2 = 0.72 for CHK2-FAM84B; r2 = 0.89 for 

RAD51-FAM84B). In addition, we found that depletion of FAM84B by siRNA 

in human cells significantly increased cell sensitivity to ionizing radiation 

(Figure 19B), providing evidence that FAM84B is indeed related to the DNA 

damage response. 

Based on these observations, and since FAM84B is not predicted to be a 

phosphorylation substrate of CHK2 (according to prediction algorithms 

NetworKIN (Linding et al., 2007) and KinasePhos 2.0 (Wong et al., 2007), we 

speculate that FAM84B might affect CHK2 kinase signaling through physical 

interactions. Furthermore, FAM84B may stimulate DNA repair through of its 

association with RAD51. Notably, we were only able to detect the FAM84B-

RAD51 interaction by co-IP of endogenously expressed proteins after cell 

irradiation, indicating that this interaction exclusively occurs upon DNA 

damage (Figure 23A). We did not detect the recruitment of FAM84B at DNA 

damage sites, meaning that the interaction with RAD51 may not be occurring 

at DSBs. In fact, numerous studies have shown the presence of cytoplasmic 

RAD51 in normal proliferative cells (Davies et al., 2001), suggesting that the 

nuclear levels of RAD51 are regulated by coordinated changes in its subcellular 

distribution, mainly by an intricate interplay between transcriptional regulation 

and protein turnover during the cell cycle (Gildemeister et al., 2009). We 

thereby investigated the subcellular distribution of RAD51 and FAM84B 

proteins before and after IR exposure. To this end, cells were lysed and the 

mitochondrial, cytosolic and nuclear fractions were separated and analyzed for 

the presence of FAM84B and RAD51, respectively. Interestingly, we observed 

a 1.48-fold increase in cytosolic FAM84B expression upon radiation (Figure 

23B-D). 
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Figure 23. Upregulation of cytosolic FAM84B upon IR. 

(A) FAM84B-RAD51 interaction examined by co-IP experiments upon IR-cell 
damage. FAM84B was immunoprecipited and RAD51 immunoblotted using specific 
primary antibodies. (B) Analysis of FAM84B expression in HEK293T cytosolic 
fractions 1h and 6h post-irradiation. (C) Conversely, RAD51 expression revealed no 
changes. The Western blots are representative of triplicate experiments. (D) Based 
on them, cytosolic FAM84B showed an overall 1.2- and 1.5-fold increase at one and 
six hours following damage, respectively. Furthermore, applying a linear expression 
model (expression ~ Beta • TimePoint + Gamma), we observed a positive trend 
with a P-value = 0.02. No trend was observed in RAD51 expression. 

 

Conversely, the cytosolic distribution of RAD51 was not affected after DNA 

damage (Figure 23C-D), showing that IR generates an accumulation of 

FAM84B in the cytosol while RAD51 levels are unaltered, consistent with 

previous findings that RAD51 expression is not affected by DNA damage 

(Chen et al., 1997). The interaction of FAM84B with RAD51 could prevent the 

formation of RAD51 filaments in the cytoplasm, which could otherwise 

compromise their nuclear entry (Gildemeister et al., 2009). This association 

would thus be a mechanism to maintain the available pool of RAD51 to 

ultimately boost HRR. Our survival assays provide further support to these 

presumptions, since downregulated expression of FAM84B induces cell 

radiosensitivity, indicating a diminished DNA damage response. 
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Considering these possibilities, our findings suggest that up-regulation of 

FAM84B in breast cells could promote early tumorigenesis by altering DNA 

repair mechanisms via RAD51 stabilization. In addition, FAM84B might also 

have an impact in tumor progression by perturbing DNA-damage response 

signals associated with the CHK2 kinase pathway. Thereby, inhibition of 

FAM84B might prove efficacious as a therapeutic target when used in 

combination with DNA-damaging chemotherapeutic drugs or, alternatively, in 

radiotherapy as an adjuvant treatment to enhance tumor radiosensitivity. 

Notwithstanding, considerable work needs to be done to fully elucidate the 

relevance of FAM84B in DNA damage repair and its clinical efficacy against 

breast cancer. 
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4. Introduction II 
 

 

 

4.1 The Drug Discovery Process 

Drug discovery is a time consuming and expensive process. Estimates of time 

of currently bringing a new drug to market is between 10-17 years and cost on 

average $1.8 billion (Paul et al., 2010). In addition, development of a new drug 

is a risky process, as about nine out of ten candidate molecules fail to complete 

the course before they are accepted as drugs (Shah and Federoff, 2009). 

The drug discovery process is schematically presented in Figure 24, and it 

involves several steps. Previously, there must be an investigation of the 

biochemical, cellular and pathophysiological mechanisms behind a certain 

disease. The first step in the development process is the identification and 

validation of a molecular candidate drug target. A target is a broad term which 

can be applied to different biological entities such as proteins, genes and RNA. 

A good target needs to be efficacious, safe, meet clinical and commercial needs 

and, above all, ‘druggable’. 

Target validation is a crucial step in the drug development process. Most drugs 

act by inhibiting of the action of a particular target protein, but the only way to 

be completely certain that a protein is relevant in a given disease is to test the 

idea in humans. Obviously such clinical trials cannot be used for initial drug 

development, which means that a potential target must undergo a validation 

process: its role in disease must be clearly defined (Smith, 2003). Validation 

techniques range from in vitro tools through the use of whole animal models 

and, while each approach is valid, confidence in the observed outcome is 

increased by a multi-validation approach. 

As soon as a target has been validated to have a potential impact for a special 

disease, the search for compounds that interact with the target starts. During 

the hit identification and lead discovery phase the compound screening assays
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 are developed. A ‘hit’ molecule can be defined as a compound which has the 

desired activity in a compound screen and whose activity is confirmed upon 

retesting (Hughes et al., 2011). The medicinal chemistry part, screening, hit to 

lead and lead optimization, aims to identify and optimize compounds towards a 

potential drug.  

 

 

Once a compound that fulfills all of these requirements has been identified, it 

will begin the process of drug development prior to clinical trials. In the 

preclinical phase, both in vitro and in vivo tests are performed to determine 

drug safety, dosing and toxicity before it goes to human testing. After animal 

testing, the molecule is tested on human volunteers (clinical phase I/II/III) 

and, if the drug shows a beneficial effect in relevant patient groups without 

major side effects, the drug can then get the final approval and be a marketed 

medicine. 

4.2 Breast Cancer Current Therapy 

Different types of treatment are available for patients with breast cancer 

(Figure 25), depending on tumor and patient characteristics. After diagnosis, 

most breast cancers are primarily treated with surgery to remove the tumor 

alone (lumpectomy) or the entire breast (masectomy). Surgery is followed by 

 

Figure 24. The drug discovery process. 

The different phases of modern drug discovery and development. 



4.2 Breast Cancer Current Therapy 

73 

radiotherapy, a treatment that uses high-energy radiation to kill cancer cells or 

to prevent them from growing further.  

After surgery and/or radiotherapy, breast cancer treatment is usually continued 

by chemotherapy and/or targeted therapy, depending on subtype and 

progression of the disease. Chemotherapy is a systemic treatment that uses 

cytotoxic drugs to kill or stop growing of cancer cells, and that can be either 

used before (neoadjuvant) or after (adjuvant) surgery (primary treatment). 

Chemotherapeutic agents act by killing indiscriminately cells that divide rapidly; 

thus, impairing cancer cells but also against healthy cells of bone narrow, hair 

follicles or digestive tract, resulting in characteristic and strong side effects 

(immunosuppression, inflammation of the digestive tract and alopecia). 

As breast epithelial cells proliferate under hormonal control, breast cancer ER 

positive tumors are often treated by adjuvant hormonal therapy (with 

Tamoxifen or an aromatase inhibitor). Tamoxifen is an antagonist of ER in 

breast tissue, and is a general regime often given to premenopausal women 

(Baum et al., 1983). On the other hand, aromatase inhibitors decrease the 

body's estrogen by blocking the aromatase enzyme from turning androgen into 

estrogen, and they are the first-line therapy for postmenopausal women 

(Howell et al., 2005). 

Finally, targeted therapy refers to a new generation of cancer treatment that 

uses drugs designed to interfere with a specific molecular target or process that 

is believed to have a critical role in tumor growth or progression. This 

approach contrasts with traditional chemotherapy as it does not act by simply 

interfering with all rapidly dividing cells. For this reason, targeted therapies are 

expected to be more specific than current treatments and less harmful to 

normal cells (Sawyers, 2004). There are two types of drugs used for targeted 

therapy: antibody drugs and small-molecule drugs. These compounds are 

directed at grow factor receptors (HER1, HER2, HER3, IGFR), intracellular 

signaling pathways (Pi3K, AKT, mTOR, ERK), angiogenesis as well as DNA 

repair factors (Higgins and Baselga, 2011). Trastuzumab, for example, is a 

monoclonal antibody that blocks the effects of the growth factor protein 

HER2, therefore about one-fourth of patients (HER2+ subtype) of breast 

cancer may be treated with trastuzumab combined with chemotherapy (Vogel 

et al., 2002). 



 

 

 
Figure 25. Main treatments for breast cancer.  

Schema showing the most common strategies recommended by NCCN Guidelines™ to treat different stages of breast cancer. 
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4.3 Treatment Failure due to Drug Resistance 

The progress accomplished in the discovery of novel anti-cancer agents has 

significantly improved the response rates in cancer while reducing side effects 

to some extends. However, it did not yet result in cure of the majority of 

patients, specifically, with metastatic disease. Besides, a major issue in the 

management of, for instance, breast cancer is the treatment failure due to drug 

resistance (Tsang and Finn, 2012).  

Resistance to anticancer drugs may result from two main groups of factors. 

The first group includes host pharmacological and physiological factors such as 

drug absorption, metabolism and excretion, inadequate access of the drug to 

the tumor or inadequate infusion rate delivery (Garattini, 2007). The second 

group includes specific genetic or epigenetic alterations in the cancer cells. On 

this level, we can distinguish among primary (pre-existent) or acquired (induced 

by drugs) cell drug resistance (Osborne and Schiff, 2011). 

While host factors are extremely important in clinical practice, we concentrate 

our interest in cancer cells resistance, which is fundamental in drug 

development. We can distinguish two types of resistance: primary and acquired 

resistance. On the one hand, primary resistance may be induced by mutations 

in the pharmacological target(s) and a lack of target dependency. On the other 

hand, patients with initial response to the treatment will eventually lose clinical 

benefits and relapse within one year due to acquired resistance (Vogel et al., 

2002). Several models leading to acquired resistance have been described: loss 

of target expression due to continuous therapy, activating mutations 

downstream of the target, modifications of proteins crucial for target 

regulation, activation of additional mechanisms to promote cell proliferation as 

well as compensatory mechanisms that bypass the function of the protein 

which is targeted. These molecular mechanisms are known to compensate for 

therapeutic effects thus reducing their efficacies or leading eventually to 

resistance (Tsang and Finn, 2012).  

In particular, signaling through alternative proteins and pathways has received 

considerable attention; several studies have demonstrated that cancer cells are 

able to adapt signaling pathway circuits upon chronic treatment by establishing 

alternative signaling routes through crosstalk (Bernards, 2012; Osborne et al., 
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2005; Yamaguchi et al., 2013a). When considering for instance hormone 

therapy about 30% of the tumors show resistance towards tamoxifen treatment 

either due to primary or secondary resistance. Cross-talk between ER and 

growth factors signaling pathways, mainly the receptor tyrosine kinase 

(RTK)/PI3K/AKT/mTOR axis, is thought to be a mechanism contributing to 

endocrine resistance (Miller, 2013). Furthermore, this crosstalk is bidirectional 

as both estrogen and tamoxifen are able to induce HER2 phosphorylation in 

cells with endogenous HER2 overexpression, thereby contributing to 

trastuzumab resistance (Shou et al., 2004).  

In conclusion, each cancer cell has a different genetic pattern resulting from the 

‘mutator’ phenotype of most cancers (see Section 1.2.2) and, as a result, every 

cancer expresses a different array of drug-resistance genes (Gottesman, 2002). 

This heterogeneity of potential resistance mechanisms could explain why well-

designed drugs developed against well-validated cancer targets nevertheless fail 

to deliver sustained benefit in the clinic. Therefore, treatment strategies should 

not be based only on the main aberrations with pathogenic importance, but 

also on the extensive heterogeneity present in a given tumor. Furthermore, 

multi-targeted therapies are needed to address resistance problem, either by 

using a single agent that modulate several targets (multi-targeted drugs) or by 

combining several agents (combinational therapy). 
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4.4 Combinational Therapy 

Most multi-targeted therapies are developed as a mixture of agents and 

combinational therapy is one of the most promising strategies to prevent or 

delay drug resistance in cancer. As we discussed in the previous section, a key 

aspect in improving cancer treatment is not only to inhibit primary oncogenic 

signaling pathways, but at the same time to prevent the occurrence of 

resistance mechanisms. Hence, second-generation agents can be used to 

prevent the cause of these resistance mechanisms. 

A combination is pharmacodynamically synergistic, additive or antagonistic if 

its effect is greater than, equal to, or less than the summed effects of the 

partner drugs (Chou, 2006). Accumulated empirical clinical experience, 

supported by animal models, showed that cytotoxic drugs are most effective 

when given in combination to achieve additive or synergistic effects (DeVita et 

al., 1975). More recently, drug discovery efforts have focused on combining 

different targeted agents, alone or with chemotherapy. Most new targeted drugs 

have modest efficacy with responses that are not long-lasting, thus, targeted 

drugs might benefit from being combined with cytotoxic agents. For example, 

the combination of HER2 monoclonal antibodies with paclitaxel (Slamon et al., 

2001) or anti-estrogen agents with tyrosine kinase or signal transduction 

inhibitors (Fedele et al., 2012), have demonstrated a significant improvement in 

progression free survival compared to single therapy alone. Another advantage 

of targeted drug combinations is that they may also overcome the side effects 

associated with high doses of single drugs. Optimal combinational therapies 

could increase cancer cell killing while minimize overlapping toxicity, allowing 

reduced dosage of each compound (Ramaswamy, 2007).  

Although combinatorial therapies are becoming the standard care in (breast) 

cancer treatment, the majority of drug combinations in use or in clinical trials 

has been discovered by clinical experience and has not been designed as such in 

first place. This implies that the molecular mechanisms underlying these 

combinations are often not elucidated, which makes it difficult to propose new 

combinations. Thus, identifying novel combinations with improved therapeutic 

effect remains a challenging task given the exhaustive number of possible 

combinations.   



4 Introduction II 

 

4.5 Network Biology and Cancer Therapy 

An area where network biology is particularly helpful is cancer diagnosis and 

treatment. As discussed in Section 1.1, cancer results from a combination of 

multiple molecular events, thus the gene-centric drug discovery paradigm is 

shifting towards a network/pathway-centric approach. Despite several success 

stories, the adopted reductionism approach also had striking consequences. For 

instance, many promising drug candidates failed during the last, and most 

expensive, clinical phases because the action mechanisms of the pathways they 

target remain largely unknown (van der Greef and McBurney, 2005). 

The recent development of several high-throughput technologies has provided 

biologists with an extensive list of genes involved in each cancer type and 

subtype (see Section 1.1.1 for BC). However, it does not seem enough to 

produce effective therapeutic strategies. Thus, the emerging challenge over the 

next decade is to assemble these components into functional networks and 

then to use these networks to understand how cancer is driven. Once we are 

able to understand how networks are deregulated in cancer cells, then we will 

able to predict how these networks might respond to drugs. 

One of the major issues associated with identifying effective new drugs is the 

discovery of a relevant drug target (Hood and Perlmutter, 2004). However, a 

detailed interaction map of a given pathology may suggest potential points for 

therapeutic intervention (i.e. drug targets). Given the robustness of biological 

systems, the selection process of new putative drug targets should also consider 

their position in the network, preferring those nodes which are essential in the 

network traffic, and which are able to avoid back-up circuits that might 

neutralize a desired drug effect. Topological analyses of disease-associated 

networks and more sophisticated models deliver key information related to the 

pathways that are activated upon drug treatment in different cell types, 

providing therefore a very valuable guidance in the identification of potential 

points of intervention (Lee et al., 2012; Yeh et al., 2012). 

Another major issue in cancer treatment is cancer resistance and, as previously 

discussed, the use of drug combinations to prevent or delay tumor resistance is 

a well-established principle of cancer therapy. A large number of molecular 

targeted anticancer drugs are being studied today, and it is crucial to establish 
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strategies to choose from the almost limitless possibilities and to focus on 

prioritizing the most promising combinations. Again, protein interaction 

networks are a perfect framework to study potential drugs that can be 

prescribed in combination to achieve synergistic effects. Hundreds of drug 

combinations have been reported, and the detailed analysis of some of them 

indicate that synergistic drug combinations either target the same or different 

proteins from the same or related pathways as well as from cross-talking routes 

(Figure 26) (Jia et al., 2009). Network analysis provides an understanding of 

disease-related pathways that is required to reveal the system response to a drug 

combination at the level of the cell or tissue. 

 

 



 

 

 

Figure 26. Strategies for optimizing combinations 

(A) Maximizing the inhibition of a target such as a growth factor receptor by inhibiting both receptor-ligand binding and tyrosine kinase 
activity. (B) Maximizing the inhibition of a pathway by blocking a series of signaling components within the pathway. (C) Inhibition of 
parallel pathways by blocking two growth factor receptors or inhibiting downstream components in parallel pathways. (D) Inhibition of a 
target and the feedback loop that result in resistance. From Dancey and Chen, 2006. 
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5. Objectives II 
 

 

 

The main objectives of this chapter of the thesis are: 

 To identify novel putative drug targets for breast cancer using network 

topology properties and to perform an in vitro assessment of the effect 

from inhibiting these targets in BC. 

 To validate in vitro a set of combinations which involve novel putative 

drug targets with current breast cancer treatment drugs, and that have 

been predicted based on a pathway crosstalk inhibition measure. 

 To predict and validate novel combinations involving two current 

breast cancer treatment drugs using the same approach. 
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6. Results and Discussion II 
 

 

6.1 A network biology approach towards novel BC drug 

targets identification 

Conventional cytotoxic chemotherapeutic drugs, including microtubule 

modulators, DNA interactive agents and anti-metabolites, block tumor cells by 

impairing processes or molecules necessary for replication. Target-oriented 

drugs, on the other hand, inhibit cancer growth by interfering with molecules 

explicitly implicated in tumor growth and progression, such as proteins 

involved in cell invasion, metastasis, apoptosis and tumor-induced 

angiogenesis. In this work, I initially validated a set of novel therapeutic targets 

that were identified by applying a network biology approach.  

Several studies indicate that the analysis of local and global network 

characteristics of known targets is a promising tool for assessing a protein’s 

drug status (Emig et al.; Zhu et al., 2009). The cellular context of therapeutic 

and candidate targets in terms of their underlying pathways and networks was 

considered in the approach. The main idea of our strategy was to exploit drug 

targets of breast cancer agents whose functional annotation reflect frequently 

perturbed mechanisms that need to be modulated effectively. 

Starting from previously compiled list of 59 breast cancer driver genes (see 

Section 3.1.1), we first generated a breast cancer specific interaction network by 

integrating gene products which interact directly or indirectly with these 

proteins. We then identified proteins of the network that are targeted by 

current breast cancer therapeutics, and we compiled an exhaustive set of 

candidate proteins which are involved in similar biological processes and 

pathways as these current breast cancer drug targets. We determined the 

functional similarity between a protein and a breast cancer drug, according to 

its targets, by employing a combined similarity measure using pathway and GO 

annotations (biological process). Hence, 210 proteins with statistically 
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significant functional similarity to at least one breast cancer drug (P-value < 

0.0015) were considered as candidate targets. Next, we ranked the identified 

candidate targets according to their topological network similarity to breast 

cancer targets to distinguish candidates resembling not only the functional but 

also the topological characteristics of breast cancer targets. The complete 

workflow of the drug target identification strategy is shown in Figure 27. 

The 210 putative drug targets were further analyzed to extract the most 

promising targets for tackling breast cancer efficiently. Firstly, we excluded nine 

of the research targets, e.g., MAP3K4, ERBB3, DNMTB3 and NRG1 because 

they are currently under investigation for breast cancer treatment. We also 

examined whether, based in literature evidence, these targets might be 

implicated in the development or progression of breast cancer, and we 

excluded the proteins without clear functional evidence and a low likelihood of 

being essential in breast cancer. We generated a final list of 100 putative 

promising novel BC targets. This part was done by Dr. Samira Jaeger in the lab 

and will be described in Materials and Methods chapter.  

 
Figure 27. Overview on the workflow of the network biology approach for 

identifying novel breast cancer therapeutic targets. 

Our method comprises three main steps: (1) generation of a breast cancer specific 
interaction network, (2) identification of candidate proteins involved in similar 
biological processes and pathways as current breast cancer targets, and (3) 
prioritization of the candidate targets based on their topological network 
similarity to breast cancer drug targets. 
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6.2 In vitro assessment of target inhibition 

The fundamental aim of our target identification strategy is the validation of 

predicted candidates and combinations, i.e., demonstrating the effect of 

modulating protein activities individually and in combination through 

experiments. In order to avoid problems related to the combination of 

siRNA/shRNA transfection and drug treatment on cell lines, we decided to 

focus on the targets with an associated chemical modulator. After considering 

the availability of these chemical modulators the final list of candidate targets 

was reduced from 100 to 54. 

NCI 60 validation 

Before performing a traditional experimental validation, we checked whether 

our candidate targets have been assessed in one human cell line panel. 

Resources, such as the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 

2012), the NCI60 (Shoemaker, 2006) or other publicly available large-scale cell 

line collections (Garnett et al., 2012; Greshock et al., 2010; Neve et al., 2006), 

are commonly used to profile cancer cell lines for various genetic abnormalities 

and gene expression changes at the DNA, RNA and chromosomal level as well 

as for testing their sensitivity towards approved/experimental drugs and other 

chemical molecules. We selected the NCI60 repository as one of the most 

comprehensive sources of compound activity profiles in human cancer cell 

lines. The NCI60 database contains currently 49,282 publicly available 

compound activity profiles for 59 human cancer cell lines (including 7 BC cell 

lines).  

Our objective was to evaluate the effect observed in the chemicals known to 

modulate our 54 novel putative targets in the human BC cell lines. To this end, 

we first mapped these ligands to NCI compounds based on their CAS 

numbers, if available, or by computing chemical similarity using their 2D 

structures (see Materials and Methods). Considering NCI compounds with 

identical CAS numbers or with a chemical similarity of 1.0, we mapped 109 

ligands to 102 NCI compounds covering 33 candidate targets. Next, we 

analyzed the activity profiles of these NCI compounds, by obtaining three 

parameters: (1) GI50: 50% inhibition of the cell growth (2) TGI: total growth 

inhibition, and (3) LC50: 50% of the cancer cells killing.  
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In order to assess the significance of the candidate target activities obtained we 

compared them with activities measured for current approved and 

experimental breast cancer drugs (NCIBCdrugs), for the complete set of NCI 

compounds (NCIBackground) and for a set of NCI compounds derived from 

proteins randomly selected from the breast cancer network (BCNetwork).  

In Figure 28, we show the comparison of the activity data among the four 

different data sets. From this analysis, we can conclude that compounds 

mapped to ligands which inhibit predicted candidate targets (1) yielded 

significantly better responses in BC cell lines than random molecules from 

NCI60, (2) induced significantly better responses in most conditions than 

ligands targeting randomly selected proteins from the BC network (as expected 

this difference is less pronounced as detected for the NCI background), and (3) 

showed similar responses as observed for approved and experimental breast 

cancer drugs. These results emphasize the potential relevance of the predicted 

candidate drug targets with respect to inhibit cell growth and to kill breast 

cancer cells. 

 

Figure 28. NCI60 screening results 

Comparison of the cytostatic/cytotoxic activities derived for 
candidate targets, breast cancer drugs, the NCI as 
background and randomly selected proteins from the breast 
cancer specific network. 
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MTT validation 

Finally, we experimentally tested by MTT assays (see Materials and Methods) a 

selected set of candidate drug targets. The objective was to assess whether the 

selected candidate targets do have an impact on cell growth in breast cancer. 

We exploited four different types of information for candidate targets 

prioritization; (1) literature evidence, (2) the number of driver pathways that are 

predicted to be affected after inhibiting each target (driver pathway coverage), 

(3) topological similarity to known breast cancer targets (by means of their 

rank) and (4) activity profiles retrieved from the NCI60 cell line.  

Next, we selected the best associated compounds to inhibit each target. As our 

work is target-centered, we carefully selected chemical compounds with high 

specificity and binding affinity. Table 5 shows the final list of eight candidate 

targets selected for experimental validation as well as each associated 

compound used. 

 Table 5. Candidate drug targets selected for experimental validation. 

Each target was tested in six different cell lines (Table 6). We chose four 

different breast cancer cell lines that represent the major subtypes of breast 

cancer (hormone receptor positive, HER2 overexpressed, triple positive and 

triple negative breast cancers). In addition to the receptor status, these cell lines 

Target Compound CAS Number 

IL1R1 Anakinra (Kineret) 143090-92-0 

MAP2K2 (MEK2) SL 327 305350-87-2 

MAP3K7 (TAK1) 5Z-7-Oxozeaenol 66018-38-0 

MAPK7 (ERK5) XMD8-92 1234480-50-2 

PIK3CB TGX-221 663619-89-4 

PPP2R5A Norcantharidin 29745-04-8 

PTPN6 (SHP-1) Sodium stibogluconate 16037-91-5 

RAP1A GGTI-298 1217457-86-7 
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harbor different genetic aberrations that are specific for the main breast cancer 

subtypes. We also wanted to evaluate whether our targets could be also relevant 

to study another type of cancer, to this end we performed the assay using an 

osteosarcoma cell line (U2OS). Finally, we tested a non-tumorigenic cell line 

(MCF-10A) that served us as a negative control.  

 

Cell line Features 
Histology 
Subtype 

  Subtype 
ER / 
PR 

HER2 
(ERBB2) 

Other Mutations   

MCF-7 Luminal + 0 CDKN2A / PIK3CA 
Metastatic 

adenocarcinoma 

SK-BR-3 Luminal 0 + TP53 
Metastatic 

adenocarcinoma 

BT474 Luminal + + PIK3CA / TP53 Ductal carcinoma 

MDA-MB-
231 

Basal 0 0 
BRAF/ CDKN2A / 
KRAS / NF2 / TP53  

Metastatic 
adenocarcinoma 

U2OS 
Osteo-

sarcoma 
IGF1R and 

IGF2R expressed 
- Tibia sarcoma 

MCF-10A 
Non-tumorigenic epithelial 

cell line 
- Mammary gland 

Table 6. Features of cell lines used in candidate target validation. 
 

Given the data from the MTT assays we model the respective dose-response 

curves using sigmoidal fitting to from which we determined the half-maximal 

inhibitory concentration (IC50) for each target and cell line (see Materials and 

Methods). Here, the IC50 represents the drug concentration causing 50% 

inhibition of the cell population compared to non-treated cells.  

Note that the obtained ICX (where X represents the percentage inhibitory 

effect) values are always associated with a standard error. In cases in which the 

determined ICX lies outside of the tested range of drug concentrations, we 
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exploit this standard error to decide whether we consider this ICX to be valid. 

As not all drugs were effective, we were unable to determine all IC50 values 

with an error lower than 0.15. Table 7 shows these IC50 whether they can be 

determined as well as the maximum inhibition (ICMAX) that can be reached by 

using this single target. In summary, the results we obtained for each target 

ordered from lower to higher effect were:  

- IL1R1 and PTPN6 inhibition did not lead to cell growth inhibition in 

none of the cell lines. 

- MAP2K2 inhibition yielded an 80% reduction of cell growth but only in 

MCF-10A control cell line and with a very high dose (76.5 µM). Besides, 

we reached IC40 = 40.4 µM in triple-negative (MDA-MB-231) and we 

observed a low effect (IC20) in other two BC cell lines (MCF-7 and 

BT474). 

- PPP2R5A inhibition had no effect in MCF-7 and SK-BR-3 cell lines, 

while it reached IC50 and IC60/70/80 as maximum cell growth inhibition in 

four out of six cell lines, but the drug doses required for this effect are 

extremely high. The most remarkable effect was detected in the 

osteosarcoma cell line (U20S), which showed much lower IC50 (36 µM) 

and IC60 (64.7 µM) doses. 

- PIK3CB inhibition yielded around 40-60% inhibition in all cell lines. 

Take to account that for this target we observed a higher experimental 

variability, especially in MCF-7, BT474, U2OS and MCF-10A (ICX 

values are shown with the * character in Table 7).  

- MAPK7 inhibition yielded an IC50 and IC80 in all cell lines except for 

BT474 (triple positive). The strongest effect was observed in hormone 

positive cell line (MCF-7), with IC50 and IC80 values of 6.0 and 28.5 µM, 

respectively. 

- RAP1A inhibition yielded an effect in all cancer cell lines but no effect 

was measured in MCF-10A control cells. In BT474 cells the maximum 

inhibition was 40%, but in the remaining four cell lines these inhibition 

was much stronger, with IC50 values ranging from 10.4 to 18 µM, and 

reaching IC80 in all four cases. 

- MAP3K7 was the only target whose inhibition was able to consistently 

reduce cell growth by 50% and 80% in all the cell lines. 
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Therefore we can distinguish three groups of genes: three genes that had zero 

or negligible effect (IL1R1, PTPN6 and MAP2K2), two more genes with an 

intermediate effect (PPP2R5A and PIK3CB) and three genes whose effect was 

extremely high in general (MAPK7, RAP1A and MAP3K7).  

We centered our attention in the last three targets. In the three cases MCF-7 

was the most sensitive cell line (with lower IC50 and or IC80), but only 

MAP3K7 inhibition was able to reach IC50 in BT474. MAPK7 is a member of 

the MAP kinase family that acts as an integration point for multiple 

biochemical signals, and it is involved in cellular processes such as 

proliferation, differentiation and cell survival (Kato et al., 1998). RAP1A 

belongs to the family of Ras-related proteinsand plays an important role in 

adhesion and migration of lymphocytes (Beraud-Dufour et al., 2007). And 

MAP3K7 kinase mediates the signaling transduction induced by TGF beta and 

morphogenetic protein (BMP), and controls a variety of cell functions 

including transcription regulation and apoptosis (Wang et al., 2001). 

Furthermore, we found that two of these targets have been already tested in 

cancer, however, our approach studies specifically the role of these targets in 

each subtype of breast cancer.. Yang et al., 2010 demonstrated that MAPK7 

inhibition blocked tumor cell proliferation in vitro and significantly inhibited 

tumor growth in vivo by 95% using a murine lung cancer model. RAP1A has 

been also recently tested in lung cancer cell lines: Du et al., 2012 demonstrated 

RAP1A targeting sensitizes NCI-H1155 cells to paclitaxel. Conversely, 

MAP3K7 has never been tested in a proliferation assay of cancer cells. 

When analyzing the different behaviour among the cell lines we noticed that 

the triple positive BT474 was the most resistent cell line to the compounds 

tested, as only MAP3K7 inhibition was able to reach IC50 using a low 

compound dose. Similarly, only the three best compounds (MAPK7, RAP1A 

and MAP3K7 inhibitors) were able to reach IC50 in the hormone positive 

MCF-7. On the other side, the triple negative MDA-MB-231 and the control 

MCF-10A cell lines were very sensitive in general to the targets inhibition, 

although the relevance of the results obtained in MCF-10A cell line are 

controversial (see section 6.4). 



 

 

Target 

MCF-7 
(ER/PR+) 

SK-BR-3 
(HER2+) 

BT474 
(Triple +) 

MDA-MB-231 
(Triple -) 

U2OS 
(Osteosarcoma) 

MCF-10A 
(non-tumorigenic) 

IC50 ICMAX IC50 ICMAX IC50 ICMAX IC50 ICMAX IC50 ICMAX IC50 ICMAX 

IL1R1                         

MAP2K2   IC20 = 4.82       IC20 = 27.03   IC40 = 40.37     21.70 IC80 = 76.48 

MAP3K7 2.88 IC80 = 9.46 7.00 IC80 = 20.42 6.70 IC80 = 20.48 2.14 IC80 = 14.53 4.53 IC80 = 10.54 5.22 IC80 = 10.91 

MAPK7 6.02 IC80 = 28.46 24.1 IC60 = 35.09     15.68 IC80 = 42.18 23.90 IC60 = 35.27 12.24 IC80 = 26.42 

PIK3CB   IC40 = 13.62* 36.30 IC60 = 51.98 35.62* 
 

24.09 
 

  IC40 = 34.41* 44.26* 
 

PPP2R5A         95.8 IC60 = 110.45 91.17 IC70 = 110.55 35.98 IC80 = 64.70 58.54 IC80 = 119.96 

PTPN6                         

RAP1A 10.4 IC80 = 15.49 18 IC80 = 30.60   IC40 = 21.53 17.60 IC80 = 21.20 15.25 IC80 = 18.61   
 

Table 7. Summary of effects obtained in the candidate target validation. 

If determined, IC50 values are shown. The maximal inhibitory effects are also reported, and they are depicted as grey when the 
maximum effect was lower than 50%. Units = µM.  
* PIK3CB inhibitory assays showed an important experimental variability in MCF-7, BT474, U2OS and MCF-10A cell lines. 
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6.3 A network biology approach to predict novel drug-

drug and target-drug combinations 

There is growing evidence that crosstalk between alternative signaling 

pathways, is one of the mechanisms for resistance to therapy in cancer 

(Osborne et al., 2005; Yamaguchi et al., 2013b). Combinatorial therapies which 

target distinct adaptive signaling mechanisms simultaneously are evolving as 

key strategies for improving the management of breast cancer with respect to 

resistance. Given the role of alternative signaling, i.e., pathway crosstalk, in 

drug resistance and therapy failure, we proposed a strategy for inferring target-

drug and drug-drug combinations tackling particularly this problem. For this 

reason, Dr Samira Jaeger developed a computational approach for inferring 

drug combinations regarding drug resistance by taking functional redundancy 

and pathway crosstalk into account. Our strategy was based on a crosstalk 

inhibition measure, which is able to quantify the amount of pathway crosstalk 

that can be prevented by inhibiting two (sets of) targets in combination. My job 

was to experimentally validate a subset of 10 drug-drug combinations (DC01-

DC10) and 13 novel target-drug combinations (TDC01-TDC13) predicted as 

potentially synergistic and/or with a significant crosstalk inhibition. 

Drug-drug combinations 

We first collected a list of 64 agents that were either approved (U.S. National 

Cancer Institute, NCI) or experimentally studied (Therapeutic Target Database, 

TTD (Zhu et al., 2012) for breast cancer treatment. We generated all possible 

pair-wise combinations from these 64 agents and studied which of them are 

either in use or tested in clinical trials. Of the 2,016 combinations, 166 are 

documented by the ClinicalTrial.gov, the U.S. Food and Drug Administration 

(FDA) orange book, the NCI or the Drug Combination Database (DCDB) 

(Liu et al., 2010), and thus are considered to be efficient combinations. The 

remaining combinations constituted a set of random combinations. Given the 

two sets, we computed the pathway crosstalk inhibition between the involved 

drugs as described in Materials and Methods, and we observed that 

combinations in use have a significantly higher impact on pathway crosstalk 

than random combinations, with a Crosstalk Inhibition (CIC) average of 0.34 
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compared to 0.25 (P-value = 8.96x10-6). This implies that the proposed 

crosstalk inhibition measure provides a valuable tool for identifying drug 

combinations. 

We exploited the potential pathway crosstalk inhibition for drug combinations 

from the random set. Figure 29 shows the crosstalk inhibition among all pairs 

of breast cancer drugs including the ones currently used (specifically 

highlighted). Overall, we predicted 384 novel drug combinations exceeding the 

crosstalk  inhibition  threshold  of  0.34.  In  addition,  35  combinations,  from  

 

Figure 29. Crosstalk inhibition computed between BC drugs. 

Crosstalk inhibition determined between breast cancer therapeutics, both 
approved and experimental. Drug combinations in use are indicated with a 
black star symbol (). 
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which 29 did not reach the inhibition threshold, showed a synergistic/additive 

behavior in the crosstalk inhibition, that is, the combinatorial inhibition being 

larger than the sum of the inhibition determined each single drug: CIC ≥ CID1 

+ CID2. Including these potentially synergistic combinations, the predicted set 

of drug-drug combinations comprised 413 novel drug combinations. 

Target-drug combinations 

In a similar manner as described for the drug-drug combinations, we simulated 

the impact of inhibiting novel candidate targets previously predicted in Section 

6.1 in combination with breast cancer drugs. We again exploited the potential 

pathway crosstalk inhibition for drug combinations, and two outcomes were 

desirable: (1) Increased efficacy of the drug due to the inhibition of oncogenic 

pathways at different points, and (2) prevention of alternative signaling routes 

that might confer to drug resistance. Figure 30 shows the crosstalk inhibition 

determined for candidates in combination with the set of breast cancer drugs. 

Overall, 74 candidates were potentially beneficial for diminishing pathway 

crosstalk with at least one of the breast cancer drugs. In total, 2,367 

combinations had an impact on pathway crosstalk, and 1,108 of these 

combinations exceed the CIC threshold of drug combinations in use (0.34).  

As we were interested in candidates with high individual or complementary 

contribution to the crosstalk inhibition, we sought for candidates with a high 

benefit of the candidate target (BCT). For example, a BCT ≥ 1.5 corresponds 

to a 1.5-fold increase of the overall inhibition by additionally inhibiting the 

candidate target. This applies for 421 combinations of which 137 have a 

crosstalk inhibition > 0.34, and thus present promising target-drug 

combinations. 

  

 

 

 



 

 

 

Figure 30. CIC of target-drug combinations. 

Crosstalk inhibition determined between novel candidate drug targets and the breast cancer drugs, involving 74 candidates and 44 breast 
cancer drugs from 10 different drug classes. Dotted fields indicate target-drug combinations in which the candidate target increases the 
crosstalk inhibition by 50% or more (BCT ≥ 1.5). For candidates in grey no chemical modulator is known. 
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6.4 Validation of novel combinations 

Starting from 169 drug-drug combinations having a CIC higher than the 

average observed in random combinations (0.25), we filtered out the most 

promising ones taking into account the computed CIC and the prediction or 

not of an additive/synergistic effect. We also intended to maximize de 

variability of drug classes involved in the combinations. On the other hand, 

target-drug combinations were filtered based on the CIC and the benefit of the 

candidate target (BCT). Thus, 10 drug-drug and 13 target-drug combinations 

were selected for experimental validation (see Tables 8 and 9).  

 

Id 
Drug1 
(class) 

Drug2 
(class) 

CIC A/S 

DC01 
Cabozantinib 

(VEGFR inhibitor)  
Erlotinib 

(EGFR inhibitor) 
0.60 

 

DC02 
Cabozantinib 

(VEGFR inhibitor) 
Raloxifene 

(SERM) 
0.88 

 

DC03 
Olaparib 

(PARP1 inhibitor) 
Tanespimycin 

(HSP90 inhibitor) 
0.80 

 

DC04 
Olaparib 

(PARP1 inhibitor) 
Dinaciclib 

(CDK inhibitor) 
0.50 

 

DC05 
Olaparib 

(PARP1 inhibitor) 
Palbociclib 

(CDK inhibitor) 
0.34 

DC06 
Cabozantinib 

(VEGFR inhibitor) 
Palbociclib 

(CDK inhibitor) 
0.57 



DC07 
Paclitaxel 

(Microtubule modulator) 
Tanespimycin 

(HSP90 inhibitor)  
1.00 



DC08 
Paclitaxel 

(Microtubule modulator) 
Midostaurin 

(VEGFR inhibitor) 
0.37 



DC09 
Cabozantinib 

(VEGFR inhibitor) 
Trastuzumab 

(HER2 inhibitor) 
0.43 



DC10 
Figitumumab 

(IGF1R inhibitor) 
Raloxifene 

(SERM) 
0.72 

Table 8. Drug-drug combinations selected for experimental validation. 

For each combination, the drug classes are specified, as well as the crosstalk 
inhibition (CIC) and a potential additive/synergistic effect (A/S).  
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Id 
Target  

(Modulator) 
Drug  

(class) 
CIC BCT 

TDC01 
PTPN6 

(Sodium stibogluconate) 
Olaparib 

(PARP1 inhibitor) 
0.52 1.9 

TDC02 
PTPN6 

(Sodium stibogluconate) 
Palbociclib 

(CDK inhibitor) 
0.30 4.7 

TDC03 
MAP3K7 

(5Z-7-Oxozeaenol) 
Olaparib 

(PARP1 inhibitor) 
0.39 1.8 

TDC04 
MAP3K7 

(5Z-7-Oxozeaenol) 
Tanespimycin 

(HSP90 inhibitor) 
0.59 1.5 

TDC05 
MAP2K2 
(SL 327) 

Motesanib 
(VEGFR inhibitor) 

0.57 1.2 

TDC06 
PIK3CB 

(TGX-221) 
Motesanib 

(VEGFR inhibitor) 
0.56 1.1 

TDC07 
PIK3CB 

(TGX-221) 
Palbociclib 

(CDK inhibitor) 
0.20 5.5 

TDC08 
PIK3CB 

(TGX-221) 
Tanespimycin 

(HSP90 inhibitor) 
0.53 1.6 

TDC09 
MAPK7 

(XMD8-92) 
Paclitaxel 

(Microtubule modulator) 
0.37 1.6 

TDC10 
IL1R1 

(Anakinra [Kineret®]) 
Paclitaxel 

(Microtubule modulator) 
0.30 2.1 

TDC11 
PPP2R5A 

(Norcantharidin) 
Olaparib 

(PARP1 inhibitor) 
0.60 - 

TDC12 
PTPN6 

(Sodium stibogluconate) 
Cediranib 

(VEGFR inhibitor) 
0.60 1.2 

TDC13 
RAP1A  

(GGTI-298) 
Palbociclib 

(CDK inhibitor) 
0.17 3.4 

Table 9. Target-drug combinations selected for experimental validation. 

In addition to the candidate target modulator and the drug class, the crosstalk 
inhibition (CIC) and benefit of the candidate (BCT) are shown. 

 

Similarly to previously described for single target validation (see Section 6.1), 

each one of the 23 combinations was tested in six different cell lines (4 cells 

lines representing main breast cancer subtypes, an osteosarcoma cell line and a 

non-tumorigenic cell line) which meant a total number of 138 experiments. 

Given the data for the 138 combinations we applied sigmoidal fitting to model 

the respective dose-response curves from which we determined the half-

maximal inhibitory concentration (IC50). We then measured the drug 
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combination index (DCI) (Chou and Talalay, 1984)that provides a quantitative 

measure of the extent of the drug interaction. The DCI score for a drug 

combination is calculated as follows: 

 

CD1 and CD2 represent the concentration of drug one and drug two used in 

combination to achieve an effect X while ICX,D1 and ICX,D2 indicate the 

concentration of the single agents which are required to induce the same effect 

X (Figure 31). In general, DCI scores for:  

 DCI < 1 indicates synergism  

 DCI = 1 indicates additive effects  

 DCI > 1 indicates antagonism  

 

Figure 31. DCI calculation using Chou and Talalay method. 

The DCI score measures the fractional shift between the combination doses 
(CD1,X and CD2,X) and the single-agent inhibitory concentration (ICX,1 and 
ICX,2) for a given level of inhibition X. 



 

 

 

Figure 32. Drug-drug and target-drug combination results. 

All DCI50 values computed from the experimental validation are shown. DCI50 of zero represents drug combinations in which the single 
agents do not reach the required IC50 while the combination does. Blank cells indicate combinations for which no DCI50 could be 
determined. Green represent synergism, yellow/orange cells represent an additive effect, while antagonistic combinations are red. 
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Figure 33. Color Key and Density Plot 

Representation of the color scale based the DCI50 

values on used in Figure 32. Density line shows a clear 

preponderance of synergistice/additive combinations.  

 

 

Figure 34. DCI50 indixes determined for the different drug combinations 
across the cell lines. 

The green area indicates combinations that are considered to be strongly to slightly 
synergistic while combinations in the orange area are of additive nature. 

 

In the Figures 32-35 we represent several different views of the results 

obtained from the 138 experiments carried out. Firstly, the DCI50 values 

computed in each cell line for each drug-drug and target-drug combinations are 

shown in Figure 32. In 33 combinations DCI50 was not determined, either 

because the IC50 could not be reached (20 combinations), or the induced 

response was far below the IC50 (one combination, DC08 in MCF-7) or no 
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dose-response curve could be modeled (12 combinations). We observed that a 

large number of the predicted combinations was actually moderately to highly 

synergistic in one or more cell lines. Considering DCI50 of the remaining 

individual experiments (one combination in one cell line) whose calculation 

was possible, the assays resulted in a higher porportion af synergistic results in 

comparisson to the antagonistic combinations. (Figures 32-33). The detailed 

percentages obtained are:  

- 44 % of drug combinations are synergistic (DCI50 ≤ 0.85) 

- 39 % are of additive nature (0.85 < DCI50 ≤ 1.2) 

- 17 % are antagonistic (DCI50 > 1.2)  

Apart from the general response results, the fact that we are testing 

combinations involving different drug classes in several BC subtypes allows 

multiple analyses. For example, we observed that, as expected, Raloxifene (an 

ER modulator) was more effective in MCF-7 (hormone receptor positive cell 

line) in both DC02 and DC10 combinations. Remarkably, the results obtained 

in DC02 highlighted VEGFR inhibitor Cabozantinib as a promising drug in 

combination with Raloxifene to treat ER+ breast cancer (DCI=0.376). 

Another interesting example is DC09, where we combined: 

① Trastuzumab: a monoclonal antibody that interferes with the HER2 

receptor and it is used to treat HER2-positive breast cancer (Hudis, 

2007). 

② Cabozantinib: a small molecule inhibitor of VEGFR2 that was approved 

by the U.S. FDA in November 2012 for the treatment of medullary 

thyroid cancer and it is currently undergoing clinical trials for the 

treatment several cancers, including breast cancer (Smith et al., 2013). 

The experiment performed indicated that this combination is highly synergistic 

in the HER2+ cell line (SK-BR-3, DCI=0) and in the triple positive cell line 

(BT474, DCI=0.366), and it is also synergistic in MCF-7 (DCI=0.661). 

Conversely, the combination of these two drugs showed an antagonistic effect 

in the triple negative BC cell line (MDA-MB-231, DCI=1.359) and in U2OS 

(DCI=3.399), as expected (Figure 32).  
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Figure 34 presents a combination specific overview, representing the 

distribution of DCI50 in the distinct cell lines in which we were able to 

determine it. We observed that some combinations, such as TDC09, were 

generally antagonistic, while others, such as TDC07 or TDC08, were 

predominantly additive or synergistic. In other cases as DC02 or DC09 there 

was a huge variability in the response of each cell line to this combinatory 

treatment, but a remarkable behavior was observed in specific BC cell lines. 

Since the observed synergistic or antagonistic effects are likely to depend on 

the chosen dose or response level X, we determined the DCI for a number of 

IC values to be able to draw more meaningful conclusions from the DCI 

analysis. To this end, we computed the DCI score for response levels X = [20, 

30, 40, 50, 60, 70, 80] which correspond to IC20 to IC80. An example of the 

distribution of the DCI with respect to the different inhibition levels is shown 

in Figure 35 for combination DC04, and the full results of this analysis are 

shown in Appendix 10. In general, we observed that for some cell 

lines/combinations the DCI does vary largely depending on the inhibition level 

while for others there is less variance. For this reason, we also created a table to 

represent the average and median DCI values (including SD±) for each drug 

combination  in  each  of  the  cell  lines  (Table 10).  This  table shows that, for  

 

Figure 35. Distribution of DCI20-DCI80 of drug-drug combination DC04. 

The color and size of the nodes represents DCI with respect to different response 
level X = (20, 30, 40, 50, 60, 70, 80) determined for combination DC04. 



 

 

 

Table 10. Overview of DCI values. 

Average and median DCI values (including SD±) for each drug combination in each of the cell lines. Synergism (DCI ≤ 0.85), additive effect 

(0.85 < DCI50 ≤ 1.2) or antagonism (DCI50 > 1.2) are indicated. 
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instance, the average and median DCI for DC01 in U2OS is 0.87 and 0.86, 

respectively, with a standard deviation of 0.02 indicating slight synergism 

between the two drugs independently from the inhibition level X. In turn, we 

detected a high standard deviation in the DCI average of DC04 in MCF-7 

(0.93±0.71). In that case we can observe a correlation between the DCI and the 

inhibition level X (Figure 35): for smaller inhibition levels, such as IC20 - IC60, 

the combination exhibits a synergistic or additive effect while for IC70 - IC80 

results in very strong antagonism.  

In Figure 36 we represent the distribution of DCIs per cell line. Although there 

are no big differences in the response among the cell lines, we can obsevre that 

MCF-7 and SK-BR-3 are slighty more sensitive to the drug combinations 

tested while BT474 is more resitant to the compounds used in combination. 

When analyzing the results it is important to discuss the behavior of the MCF-

10A cell line. Our initial objective was to use this cell line as a control to 

measure the toxicity of the drugs in non-tumorigenic cells. However, when 

considering the outcomes of combinations and single candidate targets we 

cannot observe a difference between cell growth inhibition within cancer cells 

and MCF-10A. Although in many combinations we see the expected non-

response of MCF-10A to drugs, there are a number of cases in which the 

 

Figure 36. DCI distribution in each cell line. 

The green area indicates combinations that are considered to be strongly to slightly 

synergistic while combinations in the orange area are of additive nature. 
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MCF-10A cells are actually more sensitive to a drug or a drug combination 

with respect one or more breast cancer cell lines (for example in DC05, 

TDC02, TDC07, …). For instance, Erlotinib and Cabozantinib, one being 

approved and the other one an experimental drug for breast cancer, inhibit cell 

growth in MCF-10A to a larger extent than actually in the five cancer cell lines. 

Similar observations have been made in other experimental studies where 

proliferation of MCF-10A cells was significantly suppressed by an anticancer 

drug (Hsieh et al., 2005). On the other hand, many other studies, such as the 

NCI60, which perform drug sensitivity assays in panel of cell lines don’t use 

any control cell lines. Thus, we should be cautious when analyzing results from 

this cell line. 

Effect of novel targets in combination 

Irrespective of the inhibitory effects of single targets (see Section 6.2), we also 

assessed whether the candidate targets are involved in synergistic/antagonistic 

drug combinations. Table 11 shows that seven out of eight targets tested 

(PTPN6, MAP3K7, PIK3CB, MAPK7, IL1R1, PPP2R5A and RAP1A) 

showed synergism in at least one combination in any cancer cell line, while 

combinations involving MAP2K2 candidate targets where antagonistic. 

Interestingly, for some of the candidates without inhibitory effect observed 

that in combination they exhibit additive effects. For instance, a combination 

involving PTPN6 (TDC02 in U2OS) exhibited a synergistic behavior. 

Furthermore, we obtained data from only one combination involving IL1R1 

(which did not lead to cell growth inhibition in none of the cell lines) we had 

only data from one combination (TDC10) in one cell line MCF-7). However, 

the combination showed a strong and consistent synergistic effect in this cell 

line.  

Regarding to the contribution of MAP3K7 in combination with Olaparib 

(TDC03), we observed consistent synergistic or nearly additive effects across all 

the cell lines. Hence, MAP3K7 is a very promising target. On the one hand, it 

is itself an effective target, since IC50 can be reached in all the cell lines as well. 

On the other hand we observed that it is also a beneficial combinatorial target,  
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i.e., its combination with another breast cancer drugs, such as Olaparib, is 

synergistic (inhibition level of 50%). 

Therefore, as we discuss later on, we can conclude that the proposed network 

biology approach is a robust strategy to identify novel breast cancer drug 

targets which are effective either alone or in combination with breast cancer 

drugs, as well as to identify novel promising drug combinations. 

 

 

 

Table 11. Effects of novel BC targets in combination with BC drugs. 

DCI50 scores for target-drug interaction only considering a cell growth 
inhibition of 50%. Blank cells indicate combinations where no IC50 could have 
been determined. 
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General Discussion 
 

 

Proteins are essential in living organisms, as they participate in virtually every 

process within cells. Besides, the function of a protein is essentially performed 

due to its interaction with other proteins, indicating that protein-protein 

interactions (PPIs) play a key role in many cellular processes. Thus, the study of 

PPIs is becoming increasingly important in our effort to understand human 

diseases, such as cancer. Furthermore, if we are able to take a higher-level 

perspective and investigate the global network of PPIs we will improve the 

quality and the coverage of the research. Therefore, the identification and 

characterization of PPIs and their networks are essential to understand the 

mechanisms of biological processes.  

The work presented in this thesis uses promising network-level applications 

such as identifying new disease genes; identifying disease-related sub-networks; 

and identifying new genes related to a specific cellular process (i.e. DNA 

repair). Moreover, we apply a network-based analysis in a more focused 

pharmacological area, i.e., target drug discovery and drug combinations 

prediction.  

Enlargement of BC and CRC interactomes 

Cancer is an extremely complex disease and innumerable proteins are involved 

in its development. Large genomic, proteomic and transcriptomic assays that 

have been and are being performed have contributed to the identification of 

many of these players. In most types of cancer, such as BC or CRC, the main 

pathogenic pathways that are related to their progression are being unveiled 

and studied. Nonetheless, there is still a long way to go in cancer research: on 

the one hand there are many unknown BC and CRC causing genes that remain 

to be discovered; on the other hand, we are unaware of the relevance, the role 

and the mechanisms associated to the carcinogenesis effect in most BC and
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 CRC associated genes. We hypothesize that an appropriate approach to solve 

and fill these gaps is to study protein-protein interactions, particularly using a 

network-based approach.  

First of all we performed systematic matrix-based Y2H screens to identify 

novel interactions between genes that cause breast or colorectal cancers and 

genes associated to these cancers but whose role in the disease is unknown. 

The selection of drivers or causing cancer genes was similar in both studies: we 

chose well-established and characterized genes in BC and CRC development. 

However, some differences among the BC and CRC approaches need to be 

discussed. We followed two different strategies to select the associated genes, 

even though the objective in both studies was to place the candidate genes in 

the interactome. In the first approach (BC), the prioritization of the genes was 

carried out based on the network level. Our goal here was to opt for those 

genes whose network distance to the causative genes was higher. We discarded 

genes that were either interacting or that had one intermediate interactor to a 

causative gene. This way, we maximized to 100% the chance of detecting novel 

interactions and excluded the possibility to detect already reported interactions. 

On the other hand, in the second Y2H matrix screening (CRC) we picked 

genes whose expression was coordinated with CRC drivers across a 

compendium of normal tissues and cell types. Furthermore, we included the 

genes located in the 9q22.32-31.1 region, which contains a susceptibility locus 

(CRCS9) involved in the development of known hereditary colorectal cancer 

syndromes. Our aim once more was to detect genes in this region that interact 

with CRC drivers. These differences in final candidate genes selections do not 

affect the biological relevance of the new interaction data reported, as 

discussed later on. However, they are reflected in the percentage of interactions 

detected: although we were testing a higher number of interactions in the BC 

study (2,376 BC vs 1890 CRC), the approach used for candidate selection lead 

to less positive interactions (728 vs 1029) (see Table 12). 

Secondly, we performed library-based Y2H screens to identify novel proteins 

that may relate to the development of BC and CRC. Again, we followed two 

different strategies to select the genes tested in the assay. In the BC library 

screening, we chose two of the three most relevant genes in BC therapeutic 

classification  and  prognosis: ER  and  ERBB2 (PGR was  excluded because it 
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Approach 
Interactions 

tested 
Positive 

interactions 
HC positive 
interactions 

BC 2376 728 (31%) 491 (21%) 

CRC 1890 1029 (54%) 595 (31%) 

Table 12. Percentage of positive and high-confidence (HC) positive 
interactions in the two Y2H screenings performed. 

 

showed self-activation activity in Y2H). We also picked nine genes that showed 

genetic predisposition to breast cancer. We came across 108 interactions 

(validated by pair-wise Y2H) among these 11 baits and 99 preys from the 

cDNA pool library. In using the Intogen database (Gundem et al., 2010), we 

verified that 76 of the 99 identified proteins had never been linked to breast 

cancer before. After analyzing these newly identified genes, we found that they 

are co-expressed in human tissues with their BC driver interaction partners, 

which validates the strategy followed. Furthermore, they are significantly 

overrepresented in tumor somatic mutations and, as the majority of the baits 

used for the library screen were genes whose mutations are associated to BC 

development, this feature confirms our hypothesis and strengthens their 

potential relevance in breast cancer.  

So as to enlarge the CRC interactome, we selected six genes as baits based on 

gene expression profiles from normal mucosa, colorectal adenoma (benign 

tumor) and adenocarcinoma (Sabates-Bellver et al., 2007). In particular, we 

focused our study on the AXIN2, DLC1, PDGFRL, C9orf30, SFRP4 and 

SFRP2 genes, highly up-regulated in colorectal tumors compared to both 

normal mucosa and benign tumors. We detected and validated 27 novel 

interactions, involving the six baits tested and 20 novel proteins. Accordingly, 

these 20 proteins assemble a set of potential novel genes that could be relevant 

in CRC development, and should be taken into consideration in future 

colorectal cancer studies.  

After merging the HC interactions from the Y2H matrix and library screens, 

we obtained two datasets of 599 and 622 novel interactions, which define our 

contribution to the enlargement of BC and CRC interactomes, respectively. 

Interestingly, two different analyses strengthen the quality of the data obtained. 
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First of all, we experimentally validated a random subset of HC interactions 

from the BC dataset using complementary techniques, and we obtained a 79% 

of validation via co-IP binding experiments in mammalian cells. These results 

strongly support the confidence of our Y2H interaction set. Secondly, we 

computationally evaluated whether the discovered interactions could really 

provide mechanistic details about the relationships between driver and 

candidate genes. We checked to see if each driver and its interacting candidates 

were generally involved in similar biological processes, in a procedure that we 

termed as ‘functional coherence’ of our HC interaction networks. The high 

coherence observed in the driver direct interactors from canonical pathways 

(similarity = 0.627, P-value < 0.0001), served as a positive control of the 

approach. Interestingly, both BC and CRC networks showed a high degree of 

biological process coherence (BC similarity = 0.347, CRC similarity = 0.321, P-

value < 0.0001 in both networks). This high functional coherence motivates 

the future analyses using our novel Y2H interaction data. Furthermore, it 

indicates that our network-based approach is indeed a robust inference tool to 

gain insight into the underlying mechanisms of those proteins with previously 

unknown roles in BC, and it also offers a better understanding of the regulation 

between different proteins of complex biological systems.  

BC interactome clustering 

We next focused our attention on the data reported in the breast cancer 

interactome screening. In order to assess the relevance of these novel 

interactions in depth, it is necessary to study them in their biological context. 

Thus, we integrated them into the currently available human interaction data to 

build a comprehensive interactome associated with BC. We first merged our 

HC set of interactions with all the known interactors from the initial causing 

genes set, and we then extended this initial network to the next level, obtaining 

in this way a network of 11,226 interactions among 2,019 proteins, designated 

as BC-PIN.  

It has been observed that proteins involved in the same cellular processes often 

interact with one another (von Mering et al., 2002), and several studies have 

shown that clustering an interactome is a powerful approach to identify 

functional modules (Wang et al., 2010). Therefore, we investigated the BC-PIN 
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structure to detect the presence of potential functional modules and we 

identified 178 modules in the BC-PIN, 146 of which showed a high degree of 

functional homogeneity, and 62 of them showed a significant enrichment of 

one or more GO biological process annotations. When we reanalyzed these 

functional modules excluding our 599 HC interactions, we observed a lower 

number of modules, as well as considerable less homogeneous and enriched 

groups. This result supports the idea that our study brings to light some 

unexplored areas of the BC-associated interactome, and significantly increases 

the understanding of known modules with more connections, which bolsters 

our results. In spite of only studying the modules of DNA repair to validate 

our data, we suggest that all the BC-PIN modularity data obtained (reported in 

Appendix 5) should give valuable information about the process in which the 

candidate genes are involved. Apart from the mentioned DNA repair function, 

we are also able to associate some of our candidate genes to a variety of 

processes such as apoptosis, signal transduction, transcription regulation, 

mRNA processing, protein folding, or ion transport, among others.  

To sum up, the advantage of creating the BC-PIN network is that we are 

capable of interpreting and measuring the relevance of our novel interactions 

by taking into account their context and their weight in the global breast cancer 

interactome. Thus, we can conclude that based on the clustering analysis: (1) 

the contribution of our novel interaction data to BC interactome is remarkable, 

and (2) we are predicting specific cellular processes in which associated BC 

genes are involved.  

Assessment of protein function predicted by interactome 

clustering 

We merged all the modules that were homogeneous for DNA repair function 

to build a resulting DNA repair sub-network. To further investigate the 

relationships of genes present in our sub-network to DNA damage repair, we 

focused on 15 candidate genes that were either present in DNA repair modules 

or linking two or more of them. Interestingly, only one (RNF20) of these genes 

has been already described as a modulator of the DNA damage response, but a 

potential relationship with this process has never been established for the 14 

remaining genes. Our main goal in this part of the project was to test if these 
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genes are indeed associated to the response to DNA damage. For this reason, 

we overexpressed and/or inhibited our genes of interest and we performed 

clonogenic survival and foci formation assays after cell irradiation. Overall, we 

detected a possible association of six genes (RNF20, SERPINB5, SNAIL1, 

FAM84B, MTA3 and IL24) to DNA damage response. 

It is far from obvious that we can’t expect all the predictions to be correct as 

we assigned the function(s) enriched in the cluster to all proteins with unknown 

functions. These results indicate that, although more experiments need to be  

 

Figure 37. From interactome characterization to protein function prediction. 

Starting from a selection of causative and associated BC genes, we followed three 
steps: (1) Systematic interaction discovery (2) Contextualization in the BC 
interactome, and (3) hypothesis generation and initial validation. 
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performed to prove that those 15 genes play a pivotal role in DNA repair or in 

cell response to DNA damage, our module-assisted method is a reliable 

approach for protein function prediction.  

We studied more deeply two genes that showed consistent positive results in 

the experiments performed: RNF20 and FAM84B. Regarding RNF20, recent 

studies have already demonstrated a role in recruitment of repair proteins upon 

ATM phosphorylation. Yet, we propose an additional role based on two novel 

interactions with XRCC3 and CHK2 reported in our Y2H screenings. We 

hypothesize that RNF20 may foster DNA repair mechanisms by favoring the 

XRCC3 binding to RAD51 to subsequently facilitate the formation of RAD51 

nucleoprotein filaments that mediate HR repair. Furthermore, the association 

of RNF20 with CHK2 could also act as a linking mechanism for the ATM-

CHK2 signaling, ensuring the DNA damage repair. For FAM84B, a protein 

whose function is unknown, our findings suggested that up-regulation of 

FAM84B in breast cells could promote early tumorigenesis by altering DNA 

repair mechanisms via RAD51 stabilization (Figure 37). Notwithstanding, 

considerable work needs to be achieved to fully elucidate the relevance of 

FAM84B in DNA damage repair. 

In conclusion, the prediction of protein function via interactome clustering 

cannot be a substitute of a lab experiment, yet it provides a reliable reference of 

the cell function for these candidate proteins with unknown function.  

A network biology approach to predict novel BC drug 

targets and drug combinations 

In the second study we took into account functional redundancy and pathway 

crosstalk to predict novel drug targets and drug combinations for breast cancer.  

Starting from list of 59 breast cancer driver genes compiled in the first study, 

we generated a breast cancer specific interaction network and then we 

identified proteins of the network that are targeted by current breast cancer 

therapeutics. The next step was to select the candidate proteins which are 

involved in similar biological processes as these current BC drug targets (210 

candidate targets), and we finally ranked the identified candidate targets 
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according to their topological network similarity to BC targets. Our goal was to 

distinguish candidates resembling not only the functional but also the 

topological characteristics of breast cancer targets. After considering also 

literature evidence and the availability of chemical modulators we generated a 

final list of 54 putative promising novel BC targets. 

Before performing traditional experimental validation, we analyzed the activity 

profiles of those chemical modulators associated with our 54 candidates that 

have been tested the NCI-60 cell line panel. Strikingly, the inhibition of 

putative novel drug candidate targets showed an increased activity against 

breast cancer cells lines, in comparison either to a random set of NCI 

compounds and also to a random set of proteins from the BC network. 

Furthermore, the activity data of the predicted targets was similar to the activity 

of the approved and experimental breast cancer drugs. Thus, the evaluation of 

the NCI60 activity profiles emphasizes the potential functional relevance of the 

candidate drug targets with respect to inhibit cell growth and to kill breast 

cancer cells. 

We experimentally tested by MTT assays a selected set of eight candidate drug 

targets. Note that we carried out the assay in four different BC cell lines that 

were representing the main BC subtypes, in an osteosarcoma cell line and in a 

non-tumorigenic cell line. Two predicted targets did not show any effect 

(IL1R1 and PTPN6), and MAP2K2 inhibition affected mainly the non-

tumorigenic cell line. Concerning PPP2R5A target, although we reached almost 

IC80 in four cell lines, the doses required were extremely high, and the most 

relevant effect was observed in the osteosarcoma cell line. Interestingly, the 

inhibition of four targets led to a relevant inhibition of several BC cell lines. 

While PIK3CB inhibition was able to affect 50-60% cell survival at most, the 

effect of the drugs targeting MAP3K7, MAPK7 and RAP1A was much higher 

(80%). MAP3K7 modulation, for example, consistently reduced cell growth by 

80% in all the cell lines (including the normal breast cell line, MCF-10A). 

RAP1A, on the contrary was able to highly affect all cancer cells but it had no 

effect in MCF-10A. In conclusion, the inhibition of four out of the eight 

targets tested yielded a clear and consistent effect in the survival of breast 
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cancer cells, while other two were slightly inhibiting the grow of some subtypes 

of BC cells. 

Next, we wanted to evaluate the applicability of the crosstalk inhibition metric 

for inferring novel breast cancer drug combinations. For this reason, we 

developed a computational approach for inferring pairs of current BC drugs 

combinations regarding drug resistance by taking functional redundancy and 

pathway crosstalk into account. Overall, we predicted 413 novel combinations 

that either exceeded the crosstalk inhibition threshold or showed a 

synergistic/additive behavior.  

The next step of our strategy was to combine the two previous approaches: 

novel target identification and novel drug combination prediction. Thus, we 

exploited the potential pathway crosstalk inhibition (in a similar manner as 

described for drug-drug combinations) to simulate the impact of inhibiting 

novel candidate targets previously predicted in combination with breast cancer 

drugs. Overall, 1,108 combinations exceed the CIC threshold of drug 

combinations in use (0.34) and 74 candidates were potentially beneficial for 

diminishing pathway crosstalk with at least one of the breast cancer drugs.  

We carried out MTT assays to test a selected subset of 10 drug-drug 

combinations (DC01-DC10) and 13 novel target-drug combinations (TDC01-

TDC13) predicted as potentially synergistic and/or with a significant crosstalk 

inhibition. A complete and systematic analysis of results from the tested 

combinations was performed. We assessed the DCI50 of each combination, and 

we further studied their behavior across the six cell lines used. The experiments 

indicate that considering DCI50 44% of drug combinations interact in a 

synergistic manner with each other, 39% are additive and 17% are antagonistic. 

Apart from this global analysis, several examples previously discussed (see 

Section 6.4) indicate that our MTT experiments are providing relevant 

information about promising drug combinations in specific BC subtypes. We 

also computed DCI values for response levels from 20% to 80%, and all this 

relevant (which is available in Appendix 10) represents a complete view of the 

interaction behavior of the compounds tested in combination. 
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The last analysis of the MTT results was to assess the additive/synergistic 

effect of the novel targets in combination, irrespectively of the inhibitory 

effects of these single targets. Note that seven out of eight targets showed 

synergism in at least one combination. These results strongly validate the 

strategy followed to predict putative BC targets as only MAP2K2 target was 

not showing a significant effect neither alone nor in combination. 

To sum up, the contribution of the second chapter of this thesis is: (1) the 

identification of novel breast cancer drug targets from the interactome 

providing promising individual or combinatorial inhibition with breast cancer 

agents. (2) The development of a method to quantify crosstalk between 

pathways and determining potential inhibition of this crosstalk by combined 

inhibition. (3) The experimental validation of a selected set of combinations 

predicted by this method demonstrating, on the one hand, the effect of 

combined inhibition on tumorigenic processes and on the other hand, the 

applicability of our network biology approach for cancer treatment. In 

conclusion, this network biology approach is a robust strategy that can be 

applied to other cancer types and diseases. 
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In the first part of this work, we show how a combination of interaction 

discovery experiments and the computational analyses of diverse biological 

data can provide further evidence for potential causative/susceptibility genes 

related to breast and colorectal cancers, suggesting novel hypotheses as to their 

molecular functions. We provide insights into the disruption of DNA damage 

response and repair mechanisms as a result of BC-related interaction re-wiring, 

albeit further studies have to be carried out to obtain a deeper mechanistic 

understanding.  

Next, we proposed and experimentally validated a network biology approach to 

identify novel breast cancer drug targets which are effective either alone or in 

combination with breast cancer drugs. Another computational approach for 

inferring drug combinations regarding drug resistance by taking functional 

redundancy and pathway crosstalk into account was also developed and 

validated.  

In conclusion, network-based strategies offer a global perspective to explore 

the molecular mechanisms underlying complex disease beyond individual genes 

and proteins. Therefore, the strategies presented in this thesis can be easily 

applied to other cancer types and diseases as well as for studying more specific 

biological questions related to breast cancer. 
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I conducted all the experimental methods described in this chapter. The 

computational methods, on the contrary, were performed by Dr Andreas 

Zanzoni, Dr Samira Jaeger and Miquel Duran, from my lab. 

 

 

7. Experimental Methods 
 

 

7.1 Subcloning of human cDNAs into Y2H plasmids (BC 

study) 

61 clones from the human ORFeome v1.1 (Lamesch et al., 2007), 25 from Life 

Technologies Ultimate™ ORF Clones (Liang et al., 2004) and six from the 

Human ORFeome Collaboration Clone were obtained as a Gateway® cloning 

adapted plasmids and sequence verified. The 11 cDNA clones from human 

verified full length cDNA repository (ImaGenes) were amplified by PCR with 

primers containing additional nucleotides (CACC). These cDNAs were cloned 

into pENTR™⁄D-TOPO® vector (pENTR Directional TOPO cloning kit; 

Life Technologies) and sequenced.  

All 103 ORFs were individually transferred into Y2H destination vectors by 

Gateway© recombinational cloning (ProQuest System, Life Technologies). 

Driver genes were cloned into pDEST32 to generate bait plasmids and 

associated genes were cloned into pDEST22 to obtain prey plasmids. 

7.2 Subcloning of human cDNAs into Y2H plasmids 

(CRC study) 

55 clones from the human ORFeome v1.1 (Lamesch et al., 2007), 27 from Life 

Technologies Ultimate™ ORF Clones (Liang et al., 2004) and 5 from the 

Human ORFeome Collaboration Clone were obtained as a Gateway® cloning 

adapted plasmids and sequence verified. Three cDNA clones from human 

verified full length cDNA repository (ImaGenes) were amplified by PCR with 

primers containing additional nucleotides (CACC). These cDNAs were cloned 

http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen
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into a pENTR™⁄D-TOPO® vector (pENTR Directional TOPO cloning kit; 

Life Technologies) and sequenced. 

All 90 ORFs were individually transferred into Y2H destination vectors by 

Gateway© recombinational cloning (ProQuest System, Life Technologies). 

Driver genes were cloned into pDEST32 to generate bait plasmids and 

associated genes were cloned into pDEST22 to obtain prey plasmids.  

7.3 Polymerase Chain Reaction (PCR) 

PCR amplification of cDNA clones from Imagenes was accomplished with 

primers specific for each gene containing additional nucleotides (CACC). 

Primers were designed with Clone Manager (Sci-Ed) and VectorNTI (Life 

Technologies) softwares A 50 µL reaction, containing 1x PCR Buffer, 0.3 mM 

of each dNTP , 1 mM MgSO4, 0.4 µM forward and reverse primers, 100 ng of 

template DNA, 1U of DNA polymerase, and autoclaved water to reach final 

volume, was prepared and amplified in an Mastercycler ep Gradient 

(Eppendorf) using the following cycling parameters for touchdown PCR: initial 

denaturation at 95°C for 2 min; 30 cycles of denaturation at 95°C for 30 

seconds, annealing for 40 seconds and extension at 72°C (temperature of 

annealing and extension time were different in each reaction based on primers 

and genes amplified); final extension at 72°C for 7 min.  

7.4 TOPO® Cloning 

TOPO® TA Cloning (Life Technologies) was permormed to create Gateway® 

adapted Entry Clones. We set up the following reactions using the reagents in 

the order shown: 4 ul of fresh PCR product, 1 ul of salt solution and 1 ul of 

TOPO® Vector. The reaction was mixed gently, incubated for 5 minutes at 

room temperature and transformed in competent E. coli cells (see below). 

7.5 Gateway® Cloning 

This reaction was used to transfer our genes from a Gateway® entry clone to 

destination vector. The following components were added to a 1.5 ml tube at 

room temperature and mixed: 150 ng of entry clone (1-5ul), 150 ng destination 

vector, TE buffer, pH 8.0 to 8 µl. Then 2 µl of LR Clonase ™II enzyme mix 

were added to the reaction and mixed well by vortexing briefly twice. This 
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reaction was incubated at 25°C for 1 hour. We added 1 µl of Proteinase K, 

vortexed briefly, and we incubated it at 37°C for 10 minutes to terminate the 

reaction. The reaction was finally transformed in competent E. coli cells (see 

below). 

7.6 Transformation in bacteria cells 

DH5α competent cells were aliquoted in 25 μl of cell mix for each 

transformation into 1.5 ml microcentrifuge tubes on wet ice. 10-50 ng of DNA 

(or 5 ul from Gateway Cloning reaction) were then added to each reaction tube 

by mixing gently and incubated on ice for 20-30 minutes. After incubation, 

cells were heat-shocked for 45 seconds at 42ºC without shaking. Tubes were 

immediately transferred to ice for two more minutes and 250 μl of pre-warmed 

medium (LB or S.O.C Medium) were added to each transformation mix, and 

cells are then incubated shaking at 37ºC for one hour. Cells were then spinned 

and all the supernatant but 40 μl was removed. Pelleted cells were resuspended 

and plated on pre-warmed selective LB plates. We used the appropriate 

selection marker for the LB plates suited to each destination vector (typically 

100 µg/ml ampicillin). 

7.7 Y2H co-transformation screens 

Bait and prey plasmids were pair-wise co-transformed into MaV203 yeast strain 

in 96-well arrays. (1) Preculture: we re-plated yeast strain from an YPD-agar 

plate onto a new fresh YPDagar plate and we incubated it for a few days O/N 

at 30ºC. We scraped some colonies from the fresh plated YPD-agar plate and 

inoculate them into 50ul YPD. We vortexed until it was well resupended and it 

was inoculated into 3ml YPD + glucose and incubated O/N at 30ºC shaking at 

250rpm. (2) Culture: we inoculated some of the preculture in an Erlenmeyer 

flask with 28ml YPD + glucose, so that the O.D 600 wass ~ 0.1. We then 

incubated the culture at 30ºC for aprox. 4h, shaking at 250rpm, until the 

O.D600 was ~ 0.6. (3) Transformation: We put a 96w microtiter PCR plate on 

ice and 5ul (or the equivalent to 1ug) of plasmid DNA (either bait or prey) was 

addead into each well of the PCR plate. We then added 1.5 ul of carrier DNA 

into each well and sealed the plate with an adhesive film. We prepared MIX1 (1 

mL 1M LiAcO, 0.5 mL TE 10X, 5 mL 2 M Sorbitol and sterile water up to 10 
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mL) and MIX2 (1.5 mL 1M LiAcO, 1.5 mL TE 10X, 10 mL PEG3350 60% 

and sterile water up to 15 mL) and kept them shaking until use. The yeast 

culture was centrifuged at 2000 rpm for 5’, discarded the supernatant and we 

added 10mL of TE 1X and resuspended the pellet. We centrifuged it at 

2000rpm for 5’, discarded the supernatant, then we added 1100ul of MIX1 into 

the cell pellet and vortexed it very carefully. It was incubated at RT for 10’ and 

we dispense 11ul of the yeast suspension into each well of the PCR plate. We 

added 58ul of MIX2 into each well, sealed and vortexed it and we incubated at 

30ºC for 30’. We added 8ul of DMSO into each well, sealed it and we incubate 

the PCR plate at 42ºC for 7’ using the PCR Cycler machine (heat shock step). 

Finally, with a 96 pin replicator, we took ~10ul of the cell prep from each well 

and stamped it onto a fresh SD2-agar OmniTray. The plate was incubated 

upside down at 30ºC for 3-4 days until colonies appeared. 

Co-transformed plasmids were plated onto selective SD2 (lacking Leu and Trp 

amino acids) agar media and incubated for 48 hours at 30ºC to detect colony 

growth. Co-transformant arrays were then replica plated onto different 

selective media for interaction screening. To assay the activation of the HIS3 

reporter gene, SD3 (lacking Leu,Trp,His) agar plates were supplemented with 

12 to 100 mM of 3-aminotriazole (3AT, Sigma-Aldrich), being 50 mM 3AT the 

optimal concentration for positive HIS3 activation colonies. Similarly, we 

assayed the activation of the URA3 reporter gene by plating onto SD3 (lacking 

Leu,Trp,Uracil). Double reporter HIS3/URA3 activation was evaluated by SD4 

(lacking Leu,Trp,His, Uracil) agar plates supplemented with 20 mM of 3AT and 

LacZ reporter gene was tested by the β-galactosidase assay on a nylon 

membrane placed onto a SD2 agar plate. 

7.8 Y2H library screens  

Y2H library screens were performed using an adult human brain cDNA prey 

library (ProQuest, Life Technologies). The overlapping transcriptome ratio 

between brain and breast is 0.93, according to the TissueInfo database 

(Skrabanek and Campagne, 2001). Yeast cells expressing individual baits were 

transformed with the cDNA library using the LiAc/SS carrier DNA/PEG 

method (Gietz and Schiestl, 2007) and were screened onto selective agar media 

for reporter gene activation. We checked HIS3 and URA3 reporter gene 



7 Experimental Methods 

129 

activation by 7 day incubation of transformed cells at 30ºC in selective agar 

media (HIS- and/or URA-). We picked up positive growing colonies and 

cultured them in prey selective liquid medium (lacking Trp). In each screen, 

approximately 5×105 auxotrophic transformants were tested on selective 

plates, obtaining 20-40 positive colonies in average. The prey plasmid DNA 

was extracted from the cultures and the bacterial transformation of each 

plasmid was carried out in order to enable DNA sequencing and subsequent 

gene identification by BLAST search. The preys identified by the library were 

tested with their respective baits for activation of reporter gene expression in 

co-transformation assays, in a similar procedure as explained above. 

7.9 In vitro co-immunoprecipitation (co-IP) assays 

For expression of FLAG and Myc-tagged fusions, cDNA fragments (identical 

to those in the Y2H assays) were subcloned into SF-TAP or pDEST-Myc 

vectors, respectively, using the Gateway® system (Life Technologies) and 

transfected into HEK293T cells. cDNA plasmids were transfected using 

Lipofectamine 2000® (Life Technologies) or polyethylenimine (PEI) 

(Polysciences). Two days after transfection, cells were harvested and lysed with 

lysis buffer [0.5% TX-100, 150mM NaCl, 1mM EDTA, 1mM MgCl2, 50mM 

Tris-HCl (pH 7.7) and complete protease inhibitor cocktail (Roche)].  

Whole cell lysates were cleared by centrifugation for 20 minutes at 16,000 x g at 

4ºC and then precleared by adding Dynabeads® Protein G (Life Technologies). 

After 30 minutes of rotation at 4ºC, we removed the beads by centrifugation at 

16,000 x g at 4°C for 10 minutes and 1ug of the appropriate antibody was 

added to the lysate. After incubation for 1 hour at 4ºC on a rotating plate, 10 ul 

of Dynabeads® Protein G were added and incubated under rotation at 4ºC 

overnight. After washing three times with lysis buffer and using DynaMagTM® 

(Life Technologies), bound proteins were analysed by SDS-PAGE and 

immunoblotting with the corresponding antibody. The antibodies used were 

mouse anti-Myc monoclonal antibody (mAb) and rabbit anti-FLAG polyclonal 

antibody. For co-IP of endogenous proteins, the same protocol was followed 

using primary antibodies: rabbit anti-FAM84B polyclonal antibody and rabbit 

anti-RAD51 polyclonal antibody. 
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7.10 Double immunofluorescence and confocal 

microscopy 

U2OS cells were harvested at 24 h post-transfection (with Myc or FLAG-

tagged proteins), fixed with 4% paraformaldehyde in phosphate buffered saline 

(PBS) and permeabilized in 0.1% Triton X-100 in PBS. Cells were blocked with 

1% BSA in PBS and reacted with the proper antibodies. The antibodies used 

were a rabbit anti-FLAG antibody (1:200 in PBS-BSA) and Alexa Fluor 488-

labeled goat anti-rabbit IgG (Life Technologies), and a mouse anti-Myc 

monoclonal antibody (1:200 in PBS-BSA) and Alexa Fluor 568-labeled goat 

anti-mouse IgG antibody (Life Technologies). To stain the nuclei, Hoescht was 

added to the cells and incubated for another 5 min and they were subsequently 

mounted on slides using ProLong® Gold antifade reagent (Life Technologies, 

cat. P36930). Samples were observed using a Leica TCS SP2 confocal 

microscope. 

7.11 RNA interference-mediated gene silencing 

Cells were seeded and exposed to 100 nM of either specific or scrambled 

control small interfering (si)RNA, using Lipofectamine® RNAiMAX 

transfection reagent (Life Technologies) for 24-48 h. siRNA sequences were 

designed according to MitoCheck database (http://www.mitocheck.org/). 

Specific silencing was monitored with β-actin as a loading control probe using 

anti-β-actin (Abcam, cat. ab20272). siRNAs were purchased from Life 

Technologies  

7.12 Clonogenic survival assays 

Cells were plated in 60-mm Petri dish and transfected with Myc-tagged 

proteins or with siRNAs against the targets of interest (as described above). 

After 24-48h, cells were plated onto 60-mm dishes at different densities in 

duplicate, and were exposed to various IR doses at 1.62 Gy/min rate. After 14 

days of incubation at 37ºC, the cultures were fixed and stained with Crystal 

Violet Solution (Sigma-Aldrich). Colony-forming efficiency was calculated as 

the average of triplicate experiments by counting the number of colonies 

containing more than 50 cells. 
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7.13 Foci formation assay 

105 U2OS cells were seeded into 6-well plates containing a glass coverslip in 

each well and were transfected with Myc-tagged proteins. Cells were irradiated 

with 1 Gy X-rays. After treatment, cells were fixed in 4% PFA, washed with 

PBS, permeabilized in 0.1% Triton-X 100 in PBS and blocked with 1% BSA in 

PBS 30 min. Samples were then incubated with rabbit monoclonal anti-γH2AX 

(Millipore, cat. 05-636) and mouse anti-Myc monoclonal antibodies (Life 

Technologies, cat.13-2500) for 2 h. Subsequently, they were incubated for 1 h 

with Alexa Fluor 488-labeled goat anti-rabbit IgG (Life Technologies) and 

Alexa Fluor 568-labeled goat anti-mouse IgG antibodies (Life Technologies). 

Nuclei were stained with DAPI. Coverslips were then removed from the plate 

and mounted onto a glass slide using ProLong® Gold antifade reagent (Life 

Technologies, cat. P36930). Samples were observed with a Leica TCS SP2 

confocal microscope. 

7.14 Subcellular fractionation 

After removing the medium, cells were rinsed with PBS and detached, pelleted 

by centrifugation in 15-ml tubes, transferred to 1.5-ml tubes, and washed with 

PBS. Cell pellets were suspended in buffer E [20 mM HEPES-KOH (pH 7.8), 

5 mM potassium acetate, 0.3 mM MgCl2, 0.5 mM dithiothreitol and protease 

inhibitors]. After 10 min on ice, samples were homogenized using a douncer 

and centrifuged at 1500 x g for 5 min. Supernatants were transferred to fresh 

tubes and centrifuged at 16.000 x g for 45 min and the supernatant (cytosolic 

fraction) and pellet (organelles fraction) were stored on ice. Pellets from the 

first centrifugation were resuspended in buffer N [20 mM HEPES-KOH (pH 

7.8), 5 mM potassium acetate, 0.3 mM MgCl2, 0.5 Mm dithiothreitol, 540 mM 

NaCl, 10% glycerol and protease inhibitors], after which nuclear and chromatin 

bound proteins were extracted by end-over-end rotation at 4ºC for 90 min. 

Samples were centrifuged for 15 min at 16,000 x g, and supernatants (nuclear 

fraction) were transferred to fresh tubes. Pellets were washed with buffer N 

and centrifuged briefly, and the supernatant was removed. Protein 

concentrations were determined, and samples were prepared for Western Blot 
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analysis. Mitochondrial cellular fraction was verified by anti-VDAC loading 

control probe, nuclear fraction by anti-DNMT1 and cytosolic fraction by anti-

β-actin. 

7.15 MTT assays 

Prior to the experiments, the optimal cell density was assessed to ensure 

exponential growth of cells at days 3, 5 or 6 in 96-well microculture plates in 

conditions of low serum culture used for the experiments. To be more specific, 

the number of cells seeded per well were 2,500 MCF-7, 5,000 SK-BR-3, 5,000 

BT474, 4,000 MDA-MB-231, 2,500 U2OS and 3,000 MCF-10A for 3-day 

experiments, and 1,000 MCF-7, 2,500 SK-BR-3, 2,500 BT474, 1,500 MDA-

MB-231, 1,000 U2OS and 1,000 MCF-10A for 5 or 6-day experiments. Cells 

were seeded in 96-well plates at these densities in 100 μL per well and cultured 

overnight, after which the corresponding drug was added at 4 different doses 

and incubated at 37º C in a humidified atmosphere with 5% CO2 for specified 

exposure intervals (3, 5 or 6 days) (Table 13). At that time, 20 μL of MTT 

(Sigma; 5 mg/mL of PBS) was added to each well, and the plates were 

incubated for 3 h at 37°C. Then, the supernatant was aspirated; 100 μL of 

DMSO was added into each well; and absorbance was measured at 570 nm.  

In cases of combined treatment, both drugs were added simultaneously and 

cells were exposed continuously to the drugs. All experiments were performed 

in triplicates (single knon BC drugs) or quadruplicates (novel targets and novel 

combinations) and confirmed in at least three independent experiments, SDs 

were obtained. Results are expressed as percentage of cell survival, calculated as 

the absorbance of treated well/absorbance of untreated control × 100. Table 

13 shows the details of each compound tested in the MTT assays (name, 

supplier and CAS number) as well as the experimental conditions used (solvent, 

stock solution prepared, the four different doses used for testing and the 

incubation time in which each drug was tested). 

 



 

 

 
Name Supplier CAS number Solvent 

Stock Solution 
(mM) 

Doses Tested 
Incubation 
time (days) 

D01 
Cabozantinib 

(XL-184) 
Selleckchem 849217-68-1 DMSO 20 5 / 7,5 / 10 / 15 μM 3, 5 

D02 
Dinaciclib 

(SCH727965) 
Selleckchem 779353-01-4 DMSO 1 0,5 / 5 / 10 / 50 nM 3 

D03 Erlotinib Selleckhem 183321-74-6 DMSO 5 0,5 / 1 / 7,5 / 15 μM 3 

D04 
NVP-AEW541 

(~Figitumumab) 
Selleckchem 475489-16-8 DMSO 20 5 / 7,5 / 10 / 15 μM 3 

D05 
Trastuzumab 
(Herceptin) 

Farmacia 180288-69-1 water 20 mg/ml 5 / 10 / 20 / 40 μg/mL 3 

D06 
Paclitaxel 
(Taxol) 

Selleckchem 33069-62-4 DMSO 20 0,1 / 1 / 7,5 / 15 μM 3 

D07 
Midostaurin 

(PKC412) 
Tocris 120685-11-2 DMSO 10 0,1 / 0,5 / 1 /10 μM 3 

D08 
Olaparib 

(AZD2281) 
Selleckchem 763113-22-0 DMSO 20 0,01 / 0,1 / 1 / 5 μM 3, 5, 6 

D09 
PD-0332991 

(Palbociclib) 
Selleckchem 571190-30-2 water 4 0,01 / 0,1 / 0,5 / 5 μM 3, 5, 6 

D10 Raloxifene Selleckchem 84449-90-1 DMSO 20 0,1 / 1 / 10 / 20 μM 3 

D11 
Tanespimycin 

(17-AAG) 
Selleckchem 75747-14-7 DMSO 2 0,2 / 2 / 20 / 200 nM 3 

D12 
Cediranib 
(AZD2171) 

Selleckchem 288383-20-0 DMSO 20 0,1 / 1 /10 / 30 μM 6 

http://www.selleckchem.com/products/XL184.html
http://www.selleckchem.com/products/dinaciclib-sch727965.html
http://www.selleckchem.com/products/Erlotinib-Hydrochloride.html
http://www.selleckchem.com/products/NVP-AEW541.html?gclid=CIzYk_yAm7cCFSbHtAod7BgARg
http://www.selleckchem.com/products/Paclitaxel%28Taxol%29.html
http://www.tocris.com/dispprod.php?ItemId=5458#.UZzC7UqPbms
http://www.selleckchem.com/products/AZD2281%28Olaparib%29.html
http://www.selleckchem.com/products/PD-0332991.html
http://www.selleckchem.com/products/Evista.html
http://www.selleckchem.com/products/17-AAG%28Geldanamycin%29.html
http://www.selleckchem.com/products/Cediranib.html


 

 

D13 
Motesanib 
(AMG-706) 

Selleckchem 453562-69-1 water 20 0,01 / 0,1 / 1 / 10 μM 3 

D14 
Anakinra 
(Kineret) 

Sobi - water 9 0,1 / 1 / 5 / 10 μM 3 

D15 SL 327 Selleckchem 305350-87-2 DMSO 10 0,1 / 1 / 10 / 20 μM 3 

D16 5Z-7-Oxozeaenol Tocris 66018-38-0 DMSO 10 0,01 / 0,1 / 1 / 10 μM 3 

D17 XMD8-92 Tocris 1234480-50-2 DMSO 20 0,1 / 1 / 7,5 / 15 μM 3 

D18 TGX-221 Selleckchem 663619-89-4 DMSO 20 0,1 / 1 / 5 / 20 μM 3 

D19 Norcantharidin Sigma 29745-04-8 DMSO 100 0,1 / 1 / 10 / 100 μM 3 

D20 
Sodium 

stibogluconate 
Millipore 16037-91-5 water 2.2 1 / 10 / 50 / 100 μM 6 

D21 GGTI-298 Sigma 1217457-86-7 DMSO 20 0,1 / 1 / 5 / 20 μM 6 

Table 13. Experimental deConditions used to test drugs by MTT assay. 

 

 

http://www.selleckchem.com/products/Motesanib-Diphosphate.html
http://www.selleckchem.com/products/TGX-221.html
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8. Computational Methods 
 

 

 

8.1 Connectivity assessment 

We built a human interactome fetching the most recent available data (June 

2010) from the BioGRID, DIP, IntAct and MINT databases (Aranda et al., 

2010; Breitkreutz et al., 2008; Ceol et al., 2010; Salwinski et al., 2004). We 

selected experimentally verified direct interactions and added those interactions 

described as binary according to the associated detection methods (Rual et al., 

2005). We further extended the interactome including the HPRD dataset 

(Prasad et al., 2009) obtaining a human binary interactome consisting of 9709 

interactions between 35707 proteins. We then evaluated the interconnectivity 

of breast cancer related genes in terms of average shortest path length. To 

assess the statistical significance of the connectivity measure, we defined a 

reference distribution of 10’000 instances of size equal to 59 (the number of 

breast cancer related genes) consisting of randomly picked proteins from the 

human binary interactome. We compared the breast cancer genes average 

shortest path length and the random set average shortest path length using the 

Mann-Whitney U-test. 

8.2 Gene coexpression analysis 

In order to assess the degree of coexpression between the novel interactions 

discovered after cDNA library screening, we downloaded human coexpression 

data from COXPRESdb v4 (Obayashi et al., 2013). Using full coexpression 

profiles of driver genes as a background, we performed a significance test 

analogous to gene set enrichment analysis (GSEA) (Subramanian et al., 2005), 
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where gene pairs were rank-ordered according to their coexpression 

correlation, and the overall high rank of pairs corresponding to our 

experimental interactions was tested. The R-Bioconductor phenoTest v.1.7 

package was used for the computations. 

8.3 Correlation in gene expression profiles 

We used microarray data from (Su et al., 2004), a compendium of gene 

expression profiles from 73 normal tissue and cell types. As input, we used this 

compendium of gene expression profiles, a list of known disease-related genes 

(OMIM, COSMIC and literature based driver/causing genes) and a list of 

candidate disease genes. We then applied a mixture model in order to obtain 

correlation coefficients that were robust to the presence of noise and we fit the 

model using the Expectation-Maximization (EM) algorithm (Dempster et al., 

1977). The procedure computes gene expression correlation coefficient among 

disease genes and also between known and candidate disease genes. We defined 

that known disease gene and a candidate disease gene as co-expressed if their 

EM correlation coefficient was more than 2 and the probability of noise less 

than 2. 

8.4 Functional coherence of the HC interaction network 

Functional similarity between pairs of proteins was obtained using best-match 

average of G-SESAME semantic similarities among annotated GO biological 

processes (Du et al., 2009) [UniProt annotation file (April 30, 2013), including 

electronically inferred terms, GO ontology file (May 6, 2013), with ‘cross-

products’ and ‘has part’ relationships removed]. For each driver and its 

corresponding interactors, we defined functional coherence as the average of 

pairwise functional similarities. The significance of this coherence was assessed 

after assigning for 10’000 times an equal number of randomly picked proteins 

from the human binary interactome. Analogously, we calculated a global 

functional coherence degree by simply averaging the functional similarities of 
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our experimental interactions. To supply compelling evidence that functional 

coherence around driver/causing genes can indeed infer mechanistic insights, 

we conducted the same analysis with driver direct interactors that are annotated 

in Reactome pathways (May 6, 2013; (Matthews et al., 2009). 

8.5 Gene Ontology annotation 

We used the human GO annotation extracted from the Entrez gene2go file 

(NCBI, June 2010) and assessed the statistical significance of GO term 

enrichment using the Fisher’s exact test. We adjusted the P-values for multiple 

testing applying the Bonferroni correction.  

8.6 Identification of functional modules within the BC-

PIN 

We applied the MCL algorithm (Enright et al., 2002) to identify cluster 

representing putative functional modules. Since the granularity of the clustering 

depends the inflation coefficient I, we ran MCL on the BC-PIN exploring a 

wide range of I (from 0.1 to 10.0 by steps of 0.1). We chose the value of I that 

maximized the number of functionally homogenous clusters, i.e. modules, 

containing at least 3 proteins. We evaluated the functional relatedness of 

modules in terms of GO homogeneity GH (Goh et al., 2007), defined as the 

maximum fraction of proteins in the same module that have the same GO 

terms from the biological process branch. For the GH computation, we 

required the 50% of the proteins to be present in the module to be annotated 

with at least one GO term. We then assessed the statistical significance of each 

homogeneous module comparing its GH to the mean GH of a reference 

distribution obtained by computing the GH for 10’000 random generated sets 

of the same size of the module. We picked proteins for the randomization 

from the human binary interactome. 
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8.7 Merging of functional modules based on their 

semantic similarity 

We evaluated the relatedness between the GO annotations of functionally 

homogeneous modules, we computed the semantic similarity among all 

annotation pairs with the GoSemSim package in R (Yu et al., 2010) using the 

Wang similarity measure that proved to be more robust that other methods 

(Wang et al., 2007). In order to select the functions to be grouped together, we 

assessed the statistical significance of the similarity of each pair comparing its 

Wang measure to the one of a reference distribution of 10’000 random 

generated pairs of GO annotations. We kept those annotation pairs having a 

Bonferroni adjusted P-value < 0.05. 

8.8 Assignment of functional domains to the interacting 

candidates 

We defined two reference datasets, both downloaded/generated in December 

2010: 1) DNA repair genes: 162 genes from the updated list of Wood et al 

2005 (Wood et al., 2005) and 2) DNA damage response genes: 392 genes 

annotated with the Gene Ontology (Consortium, 2010a) annotation ‘response 

to DNA damage stimulus’ (GO:0006974) in UniprotKB (Consortium, 2010b). 

Fifteen genes were selected for further investigation in the context of DNA 

repair/damage response. For each reference gene set, we fetched Pfam-A (Finn 

et al., 2010) and SMART (Letunic et al., 2009) domain assignment from the 

respective websites. We then checked if any of the candidate had at least one 

Pfam-A or SMART domain found in any gene of the two reference gene sets. 

For 7 genes, we found at least one domain present in at least one gene associate 

in DNA repair and in DNA damage response. The majority of the domains are 

involved in DNA-binding (RING, zf-C3HC4, ZnF_C2H2, PHD) and in 

mediating protein interactions (PWWP, WD40). 
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8.9 Statistical analysis 

We initially looked for differences in clone counts at increasing irradiation 

doses for each gene compared to controls. For this purpose, we fitted a linear 

model to the logarithm of counts adjusted by date of experiment. To detect 

either increasing or decreasing trends across doses, we normalized counts 

first subtracting the initial number of clone counts vs. dose for each gene. 

Next, we subtracted the counts of the non-radiated experiments. A linear 

model was then fitted to the normalized log-counts in order to find statistically 

significant differences between control and gene counts across doses. 

8.10 Drug target identification strategy 

Our method for identifying novel drug targets is composed of three steps. 

First, we generated a breast cancer specific interaction network around genes 

involved in breast cancer-relevant processes. Starting from the gene products 

of the 59 driver/causing genes we grew a network by integrating all proteins 

that interact either directly or indirectly with any of the drivers in the human 

interaction network.  

Using this protein network we then identified those proteins which occupy the 

same functional space, i.e., similar biological processes and pathways, as known 

therapeutic breast cancer targets. To this end, we computed the functional 

similarity between candidates and breast cancer drugs, by means of their 

targets, using their pathway and GO annotations. The similarity between two 

sets of pathways was determined by employing Jaccard similarity. Functional 

GO similarity between two proteins was calculated using a semantic similarity 

measure proposed by (Couto et al., 2007). Both pathway and GO similarity for 

biological process were then combined using the arithmetic mean. To identify 

proteins with significant functional similarity, we compared the determined 

similarities against a background distribution of pairwise similarities between 

breast cancer drugs and proteins from the breast cancer network. We 

considered all proteins with statistical significant functional similarity (P-value 

< 0.0015) as candidate drug targets.  
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In the last step, we prioritized candidate drug targets according to their 

topological similarity to approved breast cancer drug targets within the 

interaction network. For this purpose, we first examined different topological 

features that are thought to be important for successful drug targets (Zhang 

and Huan, 2010; Zhu et al., 2009), namely degree, cluster coefficient, 

betweenness centrality, 1N index and topological network similarity (Erten et 

al., 2011). In addition, we also considered a protein’s relationships to breast 

cancer drivers and approved drug targets with respect to average and shortest 

distance as well as its participation in important cancer driver pathways. To 

analyze which features are essential for distinguishing drug targets from non 

drug targets, we compared these ten features among five different protein 

groups, namely (1) approved and (2) experimental breast cancer drug targets, 

(3) other (non breast cancer) drug targets, (4) driver proteins and (5) remaining 

proteins. Based on this analysis we excluded cluster coefficient and topological 

network similarity as no significant differences could be detected for these 

features. We determined the remaining eight features for each approved and 

candidate drug target. Next, we ranked each candidate according to its distance 

to the median of a feature determined for approved targets. This resulted in 

eight rankings which then were fused to yield an overall rank for each 

candidate target. For combining the individual rankings we tested three 

strategies, (i) average and (ii) median rank across all ranking as well as(iii) rank 

order statistics (Aerts et al., 2006), which have been evaluated in a cross-

validation setting for approved, experimental, non-breast cancer drug targets 

and randomly picked proteins. For each of those proteins, we determined 

topological properties and distance to the approved targets to assess its rank 

among all proteins of the network. Finally, we chose the average ranking 

strategy to rank the candidate drug targets since breast cancer drug targets, 

approved and experimental, are found at significantly lower ranks than non-

drug targets.  
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8.11 Prediction of target-drug and drug-drug 

combinations 

We developed a crosstalk inhibition measure to determine the amount of 

crosstalk signaling that can be prevented between pathways by inhibiting 

specific proteins simultaneously. The concept of pathway crosstalk refers to 

shared protein interactions between distinct pathways. Since these interactions 

might also influence the downstream signaling within a pathway, the concept 

also comprises proteins and interactions downstream of the respective 

crosstalking interactions, in other words, the extended crosstalk.  

Given two pathways, we first determined the potential crosstalk between them 

by extracting interactions, both directly or indirectly, involved in the crosstalk, 

and representing them as a directed network. Using this crosstalk 

representation, we then applied a topology-based measure, namely network 

efficiency (Csermely et al., 2005) to determine the signaling, that is, the flow of 

information, within the network. Network efficiency (NE) is defined as the 

sum of the inverse length of the shortest path between all network elements 

and can be computed as follows: 

 

with N representing the number of network elements and d denoting the 

shortest distance between two elements i, j. The network efficiency ranges 

between 0 and 1, where 1 indicates that all proteins communicate directly with 

each other, i.e., a fully connected network. 

Using the network efficiency determined for crosstalking pathways, as 

described above, we simulated the inhibition of specific protein target(s) and 

measured the amount of signaling that persists when removing affected 

proteins and interactions (NEX). We determined the relative reduction of 

network efficiency, i.e., the crosstalk inhibition, as follows: 
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Since proteins are commonly annotated with more than one pathway, we 

computed the average CI across all pairs of crosstalking pathways when 

assessing the simultaneous inhibition of two (sets of) proteins. 

To finally predict combinations, we simulated the impact of combining (1) 

candidate drug targets and (2) primary drug targets with breast cancer drugs 

having at least one protein target. When considering combinations involving 

novel candidate targets we were particularly interested in candidates with a high 

individual or complementary contribution to the crosstalk reduction. 

Therefore, we defined the benefit of a candidate to the crosstalk inhibition as 

follows: 

 

CIPT and CIC indicate the crosstalk inhibition determined when inhibiting the 

primary breast cancer target alone (PT) or in combination with a candidate 

target (C). 
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1. Introducción 
Las ciencias biomédicas han estado tradicionalmente inmersas en un 

reduccionismo conceptual, centrándose principalmente en el estudio detallado 

de genes y proteínas individuales. Décadas de investigación en biología celular, 

molecular y estructural han aumentado considerablemente nuestra 

comprensión acerca de las proteínas individuales que participan en los procesos 

biológicos. Sin embargo, los sistemas biológicos son complejos por naturaleza, 

y el estudio individualizado de sus componentes revela relativamente poco 

acerca de su función y organización. Como las proteínas rara vez actúan solas, 

el enfoque tradicional es incapaz de predecir el comportamiento de un 

organismo intacto y la forma en que éste cambia de forma coordinada en 

respuesta a un estímulo particular, como la aparición de una enfermedad. 

Las ciencias farmacológicas han seguido un curso similar, con enfoques 

tradicionales centrados en el estudio, a nivel molecular, de la dupla fármaco-

diana terapéutica. Muchos fármacos con grandes expectativas han fracasado 

rotundamente las últimas fases clínicas porque los mecanismos de acción de las 

vías a las que se dirigen son todavía desconocidos (Pammolli et al., 2011). Estos 

efectos se han acentuado en la última década, cuando la investigación 

farmacéutica se ha centrado en enfermedades cada vez más complejas y menos 

conocidas, como el cáncer. 

El cáncer de mama y el cáncer colorrectal son un perfecto ejemplo de 

enfermedad compleja que, a pesar de muchos años de investigación, está lejos 

de ser bien comprendida. Varios trabajos realizados estudiando los patrones de 

expresión génica, las mutaciones, el número de copias de ADN, y otras 

modificaciones proteicas que ocurren en los carcinomas de mama han 

incrementado enormemente el conocimiento de los actores involucrados en la 

progresión de dicha enfermedad (Barretina et al., 2012; Ellis et al., 2012; 

Garnett et al., 2012; Perou et al., 2000). Sin embargo, la heterogeneidad del 

cáncer rara vez se debe a anomalías en genes individuales, sino más bien refleja 

la interrupción de complejos procesos intra e intercelulares (Barabasi et al., 

2011). Por tanto, la comunidad científica se está desplazando hacia enfoques de 

sistemas, en los cuales se examinan las propiedades globales. 
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Un modo útil de describir y analizar la heterogeneidad del cáncer es el uso de la 

biología de sistemas. La biología de redes, concretamente, es una disciplina 

basada en redes que estudia las interacciones entre moléculas, y su atención se 

centra en las redes de interacciones entre proteínas. Enfoques basados en 

dichas redes permiten situar les proteínas de vuelta a su contexto, teniendo en 

cuenta una perspectiva mucho más amplia de su entorno sin perder los detalles 

moleculares. Sin embargo, la disponibilidad de un mapa completo de las 

interacciones proteicas que pueden producirse en un organismo (interactoma) 

es crucial para llevar a cabo análisis de redes. Esto implica que la mayoría de los 

trabajos para dar a conocer las bases moleculares de las patologías deben incluir 

un paso inicial de descubrimiento de interacciones. Por esta razón, la 

identificación sistemática de las interacciones implicadas en una determinada 

enfermedad es crítica, y prueba de ellos son trabajos publicados en la última 

década centrados en la detección de interacciones proteicas (Hauser et al., 2014; 

Rajagopala et al., 2014; Rual et al., 2005; Simonis et al., 2009; Stelzl et al., 2005). 

Entre las muchas técnicas disponibles para efectuar dicha tarea, la técnica del 

doble híbrido en levadura es una de las tecnologías más aplicadas con éxito a 

gran escala (Fields and Song, 1989). 

Entre las múltiples potenciales aplicaciones biológicas y clínicas de los estudios 

basados en redes de interacciones proteicas podemos destacar los estudios 

sobre el tratamiento del cáncer. A medida que la investigación en este campo 

avanza, se hace más y más evidente que la búsqueda de una ‘bala mágica’ que 

derrotará a todas las formas de cáncer, de igual modo que hacen los 

antibióticos frente a las infecciones bacterianas, nunca tendrá éxito. Para 

mejorar nuestra eficacia en este campo, nuevas estrategias deberían evitar el 

enfoque reduccionista que supone implícitamente que la destrucción de las 

células cancerosas se puede lograr por sólo interferir con una única proteína. 

Diferentes estudios y observaciones clínicas han demostrado que los sistemas 

celulares son redundantes y robustos (Kitano, 2004), y las células cancerosas (o 

sus poblaciones) pueden encontrar la manera de escapar de un único punto de 

bloqueo. Sin duda, el fracaso de los tratamientos debido a la resistencia a los 

medicamentos sigue siendo un reto importante en la mayoría de los cánceres 

sólidos avanzados, como el cáncer de mama (Raguz and Yague, 2008). En su 

conjunto, las disciplinas basadas en redes y la biología de sistemas pueden 
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revolucionar el estudio de enfermedades complejas, como el cáncer de mama y 

colorrectal. Estos enfoques podrían ayudar significativamente en el desarrollo 

de nuevas y más efectivas terapias. 

Esta tesis es un trabajo multidisciplinario que involucra varios enfoques por lo 

que, para facilitar su comprensión, he dividido el contenido en dos capítulos 

principales. En primer lugar, se presentan y discuten los resultados obtenidos 

en cuanto a la caracterización molecular de los cánceres de mama y de colon. 

El siguiente capítulo trata los estudios relacionados con la identificación y 

validación inicial de nuevas dianas terapéuticas para el cáncer de mama, así 

como de nuevas combinaciones de fármacos.  
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2. Objetivos 
 

Capítulo I: Caracterización molecular de los cánceres de mama y colon. 

1. Exploración de los mecanismos que subyacen a los genes relacionados con 

dichas enfermedades. El principal objetivo es descubrir y caracterizar 

nuevas interacciones entre genes causantes y genes asociados a los 

cánceres de mama y colorrectal. 

2. Expansión de los interactomas de los dos cánceres estudiados con el fin de 

identificar nuevos genes relacionados con cada enfermedad. 

3. Centrándonos en el cáncer de mama, nuestro objetivo es integrar los 

nuevos datos de interacción obtenidos con los datos actualmente 

disponibles en la literatura. A continuación aplicar una estrategia basada en 

biología de redes con el propósito de descubrir la función de las proteínas 

cuyo papel en la enfermedad permanece desconocido. 

 

Capítulo II: Identificación y validación inicial de nuevas dianas 

farmacológicas y nuevas combinaciones de fármacos para el 

tratamiento de cáncer de mama. 

1. Identificar nuevas potenciales dianas farmacológicas para el cáncer de 

mama basándonos en las propiedades topológicas de la red y realizar una 

evaluación inicial in vitro del efecto de la inhibición de dichas dianas. 

2. Validar in vitro una serie de combinaciones entre potenciales dianas 

terapéuticas y fármacos ya aprobados para el tratamiento del cáncer de 

mama. Estas combinaciones han sido pronosticadas en base a una medida 

del solapamiento de la inhibición entre diferentes rutas de señalización. 

3. Predecir y validar nuevas combinaciones entre medicamentos ya 

aprobados para el tratamiento del cáncer de mama utilizando la misma 

estrategia que anteriormente. 
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3. Resultados y discusión 

Capítulo I: Caracterización molecular de los cánceres de 

mama y colon. 

Expansión de los interactomas del cáncer de mama y colorrectal. 

En primer lugar usamos el sistema de doble híbrido de alto rendimiento en 

levadura para identificar nuevas interacciones entre los genes que causan los 

cánceres de mama o colorrectal y los genes asociados a estos tipos de cáncer 

pero cuyo papel en la enfermedad es desconocido 

La selección de los genes causantes de cáncer fue similar en ambos estudios: 

elegimos genes bien establecidos y caracterizados en el desarrollo del cáncer de 

mama y del cáncer de colon. Sin embargo, a pesar de que el objetivo en ambos 

estudios es situar los genes asociados en el interactoma de cada tipo de cáncer, 

en cada caso seguimos una estrategia diferente para seleccionar dichos genes 

asociados. En el primer estudio (cáncer de mama), la priorización se realizó en 

base a su nivel en la red de interacciones proteicas. En este caso nuestro 

objetivo fue optar por aquellos genes cuya distancia en la red era mayor, y por 

tanto descartamos los genes cercanos a un gen causante. De esta manera, 

maximizamos la probabilidad de detectar nuevas interacciones. Por otro lado, 

en el segundo estudio (cáncer de colon) elegimos genes cuya expresión en 

tejidos y líneas celulares se coordina con los genes causantes de dicho cáncer 

CRC. Además, se incluyeron los genes localizados en la región 9q22.32-31.1, 

que contiene un locus de susceptibilidad (CRCS9) que participa en el desarrollo 

de síndromes de cáncer colorrectal hereditario. Nuestro objetivo era una vez 

más detectar los genes en esta región que interactúan con los genes causantes 

del cáncer. Estas diferencias en la selección de los genes candidatos no afectan 

la relevancia biológica de los datos de interacción obtenidos, como se discute 

más adelante. Cada interacción fue testada por duplicado y se midió la 

activación de tres genes indicadores diferentes (HIS, URA3 y LACZ). Con el 

fin de disminuir el número de falsos positivos y para mejorar la fiabilidad de los 

resultados, seleccionamos las interacciones detectadas que fueron capaces de 

activar al menos dos genes indicadores o de activar ambas réplicas biológicas. 

Estas interacciones altamente fiables son las que fueron posteriormente 
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utilizadas para los estudios de biología de redes, de modo que se reduce el 

número de posibles artefactos de nuestros ensayos. En resumen, identificamos: 

 491 interacciones entre los productos de 49 genes causantes y 54 genes 

asociados al cáncer de mama.  

 595 interacciones entre los productos de 45 genes causante y 45 genes 

asociados al cáncer colorrectal. 

En segundo lugar, realizamos la técnica de doble híbrido en levadura usando 

una librería de cDNAs con el objetivo de identificar nuevas proteínas que 

puedan estar relacionados con el desarrollo de los dos cánceres estudiados. Una 

vez más, seguimos dos estrategias diferentes para seleccionar los genes testados 

como anzuelos en el ensayo. En el caso del cáncer de mama elegimos los dos 

más relevantes en este cáncer (ER y HER2) y nueve genes cuyas mutaciones 

están asociadas a su predisposición genética. En este experimento detectamos 

108 interacciones altamente fiables (siguiendo el criterio anteriormente 

descrito) entre estos 11 genes y 99 presas de la biblioteca de cDNA. A 

continuación verificamos que 76 de las 99 proteínas identificadas no han sido 

previamente relacionadas con el cáncer de mama (Gundem et al., 2010), pero 

en cambio sí que observamos que se encuentran co-expresadas con sus 

interactores en tejidos humanos, lo cual valida la estrategia seguida. En cambio, 

en el case del cáncer colorrectal se seleccionaron seis genes como anzuelos en 

base a perfiles de expresión génica de los tejidos normal, tumor benigno y 

adenocarcinoma (Sabates-Bellver et al., 2007). En particular, seleccionamos  

seis genes altamente expresados en los tumores colorrectales en comparación 

tanto con la mucosa normal como con los tumores benignos. Detectamos y 

validamos 27 nuevas interacciones, entre los seis cebos probados y 20 nuevas 

proteínas. Por consiguiente, estas 20 proteínas podrían ser relevantes en el 

desarrollo de CRC, y creemos que deben tomarse en consideración en futuros 

estudios sobre el cáncer colorrectal. 

El siguiente paso fue la fusión de las interacciones obtenidas en los dos tipos de 

ensayos de doble híbrido efectuados, y obtuvimos dos conjuntos de 599 y 622 

nuevas interacciones que definen nuestra contribución a la ampliación de los 

interactomas de cáncer de mama y de colon, respectivamente. A continuación 

llevamos a cabo dos análisis distintos para analizar e intentar fortalecer la 

calidad de los datos obtenidos. En primer lugar, validamos experimentalmente 
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un subconjunto aleatorio de interacciones utilizando técnicas complementarias, 

obteniendo un 79% de validación mediante co-immunoprecipitación, 

resultados que apoyan firmemente la confianza de nuestras interacciones. En 

segundo lugar, se evaluó computacionalmente si las interacciones descubiertas 

podrían realmente dar detalles mecanísticos sobre las relaciones entre los genes 

causantes de cada cáncer estudiado y los candidatos. Con dicho fin, verificamos 

si los genes causantes y sus interactores detectados participaban en procesos 

biológicos similares, en un procedimiento que hemos denominado como 

‘coherencia funcional’ de nuestras redes de interacción. La alta coherencia 

observada ambos cánceres estudiados indica que nuestra estrategia basada en la 

biología de redes es de hecho una herramienta de inferencia robusta que 

permite conocer mejor los mecanismos subyacentes de esas proteínas con 

funciones hasta ahora desconocidas. De igual, también indica que dicha 

estrategia ofrece una mejor comprensión de la regulación entre diferentes 

proteínas presentes en los complejos sistemas biológicos. 

Análisis del interactoma asociado al cáncer de mama 

Los siguientes estudios fueron realizados centrándonos únicamente en el 

cáncer de mama. Con el fin de evaluar en profundidad la repercusión de estas 

nuevas interacciones identificadas, es necesario estudiarlas en su contexto 

biológico. Por lo tanto, integramos nuestro conjunto de 599 nuevas 

interacciones con los datos de interacción humana disponibles en la actualidad, 

obteniendo de esta manera una red de 11.226 interacciones entre 2.019 

proteínas, designada como BC-PIN. A continuación analizamos la estructura 

de BC-PIN para detectar la presencia de módulos funcionales (grupos de 

proteínas densamente interconectadas y funcionalmente homogéneas). Usando 

el algoritmo de agrupamiento MCL (Enright et al., 2002) identificamos 178 

módulos en el BC-PIN, 146 de los cuales mostraron un alto grado de 

homogeneidad funcional. Al volver a analizar estos módulos funcionales 

excluyendo nuestras 599 interacciones de HC, observamos un menor número 

de módulos, así como considerablemente menos módulos homogéneos. Este 

resultado apoya la idea de que nuestro estudio saca a relucir algunas áreas 

inexploradas del interactoma asociado al cáncer de mama. Posteriormente 

agrupamos los módulos con las mismas funciones celulares homogéneas, 

creando así subredes dentro de BC-PIN. Además de a la función de reparación 
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de ADN (procedimiento descrito a continuación), también fuimos capaces de 

asociar algunos de nuestros genes candidatos a una variedad de procesos tales 

como la apoptosis, la transducción de señales, la regulación de la transcripción, 

el procesamiento del ARN mensajero, el plegamiento de proteínas, o el 

transporte de iones, entre otros. 

En resumen, la creación y posterior estudio de la red BC-PIN nos permite 

interpretar y medir la relevancia de nuestras nuevas interacciones, teniendo en 

cuenta su contexto y su peso en el interactoma del cáncer de mama.  

Identificación de nuevos genes relacionados con la reparación del ADN 

A continuación fusionamos todos los módulos homogéneos para la función de 

reparación del ADN y así construir una subred relacionada con dicha función. 

Esta subred contiene cuatro módulos, 87 proteínas y 167 interacciones. 

Posteriormente nos centramos en 15 genes asociados al cáncer de mama y 

provenientes de los ensayos previos de interactómica. Curiosamente, sólo uno 

(RNF20) de estos genes había sido previamente descrito como un modulador 

de la respuesta al daño de ADN, pero en cambio los 14 genes restantes nunca 

habían sido relacionados con este proceso. Nuestro principal objetivo en esta 

parte del proyecto fue la de comprobar si estos genes están realmente asociados 

con la respuesta al daño del ADN. Por consiguiente, sobreexpresamos y/o 

inhibimos estos genes y realizamos dos ensayos diferentes (el ensayo 

clonogénico y ensayos de formación de focos después de irradiación). En 

general, pudimos detectas una posible asociación de seis genes (RNF20, 

SERPINB5, SNAIL1, FAM84B, MTA3 e IL24) a la respuesta al daño del 

ADN. Estos resultados indican que, aunque se requieren más experimentos 

para demostrar que dichos genes juegan un papel fundamental en la reparación 

del ADN, el método basado en el análisis mediante módulos de la red es una 

estrategia fiable para la predicción nuevas funciones proteicas. 

Por último, estudiamos en mayor profundidad dos genes que muestran 

consistentemente resultados positivos en los experimentos realizados: RNF20 y 

FAM84B. En cuanto a RNF20, estudios recientes han demostrado un papel en 

el reclutamiento de las proteínas de reparación sobre la fosforilación de ATM. 

Sin embargo, proponemos un papel adicional en base a dos nuevas 

interacciones con XRCC3 y CHK2 reportadas en nuestros ensayos de doble 
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híbrido en levadura. Por lo que a FAM84B se refiere, una proteína cuya 

función es desconocida, nuestros hallazgos sugieren que la sobreexpresión de 

FAM84B observada en células de mama podría promover la tumorigénesis 

temprana mediante la alteración de los mecanismos de reparación del ADN a 

través de la estabilización de RAD51.  

 

Capítulo II: Identificación y validación inicial de nuevas 

dianas farmacológicas y nuevas combinaciones de 

fármacos para el tratamiento de cáncer de mama. 

 

En el segundo estudio se tuvo en cuenta la redundancia y el solapamiento de 

vías o rutas de señalización para predecir nuevas dianas de fármacos y nuevas 

combinaciones de fármacos para el cáncer de mama. 

Identificación de nuevas dianas terapéuticas 

Partiendo de la lista de 59 genes descritos como causantes del cáncer de mama 

recopilados en el primer capítulo de la tesis, se generó una red de interacciones 

proteicas específica del cáncer de mama. Posteriormente se identificaron las 

proteínas de la red que son dianas terapéuticas de medicamentos usados 

actualmente contra el cáncer de mama. El siguiente paso fue seleccionar las 

proteínas candidatas a ser nuevas dianas terapéuticas: seleccionamos las 

proteínas implicadas en procesos biológicos similares a las dianas ya conocidas 

(210 candidatos iniciales), y a continuación clasificamos estos candidatos según 

su similitud topológica a dichas dianas terapéuticas. Nuestro objetivo en este 

estudio es distinguir los candidatos que se asemejan no sólo funcionalmente, 

sino también topológicamente a las dianas terapéuticas ya explotadas. 

Finalmente, acabamos con una lista definitiva de 54 nuevas posibles dianas 

terapéuticas. 

Antes de realizar una validación experimental tradicional, se analizaron los 

perfiles de actividad de los moduladores químicos asociados con nuestros 54 

candidatos y que habían sido previamente testados en el panel de la líneas 

celulares NCI60 (Shoemaker, 2006). Sorprendentemente, al inhibir los nuevos 

candidatos propuestos se observó una mayor actividad contra líneas celulares 
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del cáncer de mama en comparación, ya sea a un grupo aleatorio de todos los 

compuestos del NCI60, y también a un conjunto aleatorio de proteínas de la 

red asociada a dicho cáncer. Por otra parte, la actividad de las dianas predichas 

fue similar a la actividad de los fármacos contra el cáncer de mama ya 

aprobados. Por tanto, la evaluación de los perfiles de actividad NCI60 enfatiza 

la posible relevancia de las dianas de fármacos predichas.  

A continuación, testamos experimentalmente mediante ensayos de MTT un 

grupo de ocho candidatos a diana. El experimento se realizó en cuatro líneas 

celulares que representan los principales subtipos de cáncer de mama, junto 

con una línea celular de osteosarcoma y en una línea de células no 

tumorigénicas. En resumen, observamos que dos candidatos a diana no 

muestran ningún efecto (IL1R1 y PTPN6), y la inhibición de MAP2K2 afectó 

principalmente a la línea de células no tumorigénicas. En cuanto a la diana 

PPP2R5A, aunque se llegó a alcanzar el 80% de muerte celular (IC80) en cuatro 

líneas celulares, las dosis requeridas son sumamente altas, y el efecto más 

relevante se observó en la línea celular de osteosarcoma. Resultó interesante 

observar como la inhibición de las cuatro dianas restantes condujo a una 

importante inhibición del crecimiento de varias líneas celulares de cáncer de 

mama: mientras que la inhibición de PIK3CB fue capaz de afectar la 

supervivencia celular al 50-60% a lo sumo, el efecto de los fármacos dirigidos a 

MAP3K7, MAPK7 y RAP1A fue mucho mayor (80%). El bloqueo de 

MAP3K7, por ejemplo, redujo consistentemente el crecimiento celular al 80% 

en todas las líneas celulares (incluyendo la línea celular MCF-10A, no 

tumorigenica). RAP1A, por el contrario, fue capaz de afectar altamente todas 

las células cancerosas, pero no tuvo ningún efecto en las células MCF-10A. En 

conclusión, la inhibición de cuatro de los ocho objetivos testados produjo una 

disminución clara y consistente de la supervivencia de las células del cáncer de 

mama, mientras que otros dos inhibieron ligeramente el crecimiento de algunos 

subtipos celulares. 

Identificación de nuevas combinaciones de fármacos 

A continuación, quisimos evaluar si el cálculo de la inhibición de la 

comunicación y/o solapamiento entre distintas rutas de señalización puede ser 

útil para inferir nuevas combinaciones de fármacos para el tratamiento del 
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cáncer de mama. Por esta razón, desarrollamos una estrategia computacional 

para inferir pares de combinaciones de fármacos aprobados basándonos en la 

redundancia funcional y la interferencia entre vías de estos fármacos. De este 

modo, obtuvimos 413 nuevas combinaciones que, o bien superan el umbral de 

inhibición establecido para las combinaciones actualmente en uso o bien 

muestran un posible comportamiento sinérgico/aditivo. El siguiente paso de 

nuestra estrategia fue combinar los dos enfoques anteriores: identificación de 

dianas terapéuticas y predicción de nuevas combinaciones. Por lo tanto, 

explotado el mismo concepto anteriormente descrito simulamos el impacto de 

inhibir nuevos candidatos diana en combinación con fármacos en uso para 

tratar el cáncer de mama.  

Posteriormente realizamos de nuevo ensayos de MTT para probar un grupo 10 

combinaciones fármaco-fármaco y 13 combinaciones nueva diana-fármaco. Se 

realizó un análisis completo y sistemático de los resultados obtenidos y se 

evaluó, de cada combinación, los valores DCI50 obtenidos en las seis líneas 

celulares utilizadas. Los experimentos indican que, considerando sólo DCI50 el 

44% de las combinaciones de fármacos interactúan de una manera sinérgica 

entre sí, el 39% son aditivos y tan solo un 17% son antagónicos. También se 

computaron los valores de DCI desde el 20% al 80% de respuesta, con el 

objetivo de mostrar una visión completa del comportamiento de la interacción 

de los compuestos ensayados en combinación. Todos los detalles de los 

resultados obtenidos se muestran en el Apéndice 10 de la tesis.  

El último análisis de los resultados de MTT fue evaluar el efecto 

aditivo/sinérgico de las nuevas dianas en combinación, independientemente de 

los efectos inhibidores individualmente. Interesantemente, siete de los ocho 

candidatos diana mostraron sinergismo en al menos una combinación. Estos 

resultados validan fuertemente la estrategia seguida para predecir dichas dianas. 

En resumen, los resultados de este capítulo de la tesis demuestran que la 

estrategia basada en biología de redes es robusta y se puede aplicar a otros tipos 

de cáncer y enfermedades. 
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4. Conclusiones 
 

En la primera sección de este trabajo, se muestra cómo una combinación de 

experimentos de descubrimiento de interacciones y su posterior análisis 

computacional basado en biología de redes proporciona nuevas evidencias de 

los posibles roles de los genes causantes y de susceptibilidad relacionados con 

los cánceres de mama y colorrectal, sugiriendo nuevas hipótesis en cuanto a sus 

funciones moleculares.  

A continuación, hemos propuesto y validado experimentalmente una estrategia 

de biología de redes para identificar nuevas dianas terapéuticas eficaces, ya sea 

individualmente o en combinación con medicamentos ya aprobados contra el 

cáncer de mama. Asimismo, también ha sido desarrollado y evaluado otro 

enfoque computacional para inferir combinaciones de fármacos teniendo en 

cuenta la redundancia funcional y la interferencia en la comunicación entre 

distintas vías de señalización. 

En conclusión, las estrategias presentadas en esta tesis ofrecen una perspectiva 

global para explorar los mecanismos moleculares que subyacen en 

enfermedades complejas, más allá del estudio de genes individuales. Por lo 

tanto, dichas estrategias pueden ser aplicadas fácilmente a otros tipos de cáncer 

y otras enfermedades complejas, así como para el estudio de cuestiones 

biológicas más específicas relacionadas con el cáncer de mama. 
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Appendix 1. List of BC causative genes (drivers) and their features 
Genes that have been also examined by Y2H library screens are highlighted in orange. Genes depicted in grey were incorrectly cloned. 

Symbol Gene name UniProt 
Molecular 

weight  
Additional information 

AKT1 
v-akt murine thymoma viral 

oncogene homolog 1 
P31749 

55686 Da 
480 AA 

AKT regulates cell proliferation in breast cancer 
cells 

APC adenomatous polyposis coli P25054 
311,646Da 
2843 AA 

genetic variation increases breast cancer 

AR androgen receptor P10275 
98989 Da 
919 AA 

mutation in the gene in breast cancer patients 

ATM ataxia telangiectasia mutated Q13315 
350644 Da 
3056 AA 

mutation in the gene associated with breast 
cancer patients 

AURKA aurora kinase A O14965 
45809 Da 
403 AA 

overexpressed in human breast cancer cell lines 

BAG4 BCL2-associated athanogene 4 O95429 
49594 Da 
457 AA 

breast cancer oncogene 

BARD1 
BRCA1 associated RING domain 

1 
Q99728 

86648 Da 
777 AA 

mutation in the gene, evidence of involvement 
of susceptibility to breast cancer 

BCAR3 
breast cancer anti-estrogen 

resistance 3 
O75815 

92566 Da 
825 AA 

gene that shows antiestrogen resistance in breast 
cancer cells 

BRCA1 breast cancer 1, early onset P38398 
207721 Da 
1863 AA 

mutation in the gene, predisposition to breast 
cancer 

BRCA2 breast cancer 2, early onset P51587 
384225 Da 
3418 AA 

mutation in the gene, predisposition to breast 
cancer 

BRIP1 
BRCA1 interacting protein C-

terminal helicase 1 
Q9BX63 

140878 Da 
1249 AA 

mutation involve in early-onset breast cancer 

BRMS1 
breast cancer metastasis 

suppressor 1 
Q9HCU9 

28461 Da 
246 AA 

breast carcinoma, metastasis suppressor 

CASP8 caspase 8, apoptosis-related Q14790 55391 Da associated in breast cancer 
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cysteine peptidase 479 AA 

CCND1 cyclin D1 P24385 
33729 Da 
295 AA 

overexpression 

CDH1 
cadherin 1, type 1, E-cadherin 

(epithelial) 
P12830 

97456 Da 
882 AA 

mutations of the gene in breast cancer 

CDKN2A 
cyclin-dependent kinase inhibitor 

2A 
P42771 

16533 Da 
156 AA  

CDKN2C 
cyclin-dependent kinase inhibitor 

2C 
P42773 

18,127Da 
168 AA 

mutation in the gene 

CHEK2 
CHK2 checkpoint homolog (S. 

pombe) 
O96017 

60915 Da 
543 AA 

mutation found in breast cancer 

E2F1 E2F transcription factor 1 Q01094 
46920 Da 
437 AA 

tumor suppressor gene 

ERBB2 
v-erb-b2 erythroblastic leukemia 

viral oncogene homolog 2 
P04626 

137910 Da 
1255 AA 

overexpressed 

ESR1 estrogen receptor 1 P03372 
66216 Da 
595 AA 

amplification and overexpression in breast 
cancer cells 

ESR2 estrogen receptor 2 (ER beta) Q92731 
59216 Da 
530 AA 

expressed (T) 

FBXW7 
F-box and WD repeat domain 

containing 7 
Q969H0 

79663 Da 
707 AA  

FGFR2 
fibroblast growth factor receptor 

2 
P21802 

92025 Da 
821 AA 

associated with familial breast cancer 

FGFR4 
fibroblast growth factor receptor 

4 
P22455 

87,954Da 
802 AA 

mutation in the gene implicated in cancer 
progression and tumor cell motility 

HMMR 
hyaluronan-mediated motility 

receptor 
O75330 

84100 Da 
724 AA 

association in breast tumorigenesis between 
BRCA1 and HMMR with AURKA 

HRAS 
v-Ha-ras Harvey rat sarcoma viral 

oncogene homolog 
P01112 

21,298Da 
189 AA 

polymorphism 

IGF1R 
insulin-like growth factor 1 

receptor 
P08069 

154793 Da 
1367 AA 

substantial changes of the gene in breast 
tumorigenesis 
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KRAS GTPase KRas P01116 
21656 Da 
189 AA 

mutations found in the gene 

LSP1 lymphocyte-specific protein 1 P33241 
37,192Da 
339 AA 

associated with familial breast cancer 

MAP3K1 
mitogen-activated protein kinase 

kinase kinase 1 
Q13233 

164470 Da 
1512 AA 

associated with familial breast cancer 

MAPK14 
mitogen-activated protein kinase 

14 
Q16539 

41293 Da 
360 AA 

mediates cell cycle progression in breast cancer 

NBN nibrin O60934 
84959 Da 
754 AA 

mutation 

NCOA3 nuclear receptor coactivator 3 Q9Y6Q9 
155293 Da 
1424 AA 

overexpressed (T) 

NOTCH2 
Neurogenic locus notch homolog 

protein 2 
Q04721 

265405 Da 
2471 AA 

tumor suppressive in breast cancer 

PALB2 partner and localizer of BRCA2 Q86YC2 
131523 Da 
1186 AA 

mutation 

PARP1 poly (ADP-ribose) polymerase 1 P09874 
113,084Da, 
1014 AA 

mutations 

PAX2 paired box 2 Q02962 
44734 Da 
416 AA 

expressed (T) 

PGR progesterone receptor P06401 
98981 Da 
933 AA 

Cell movement and invasion 

PHB prohibitin P35232 
29804 Da 
272 AA 

mutations 

PIK3CA 
phosphoinositide-3-kinase, 
catalytic, alpha polypeptide 

P42336 
124284 Da 
1068 AA 

mutation 

PPM1D 
protein phosphatase, 

Mg2+/Mn2+ dependent, 1D 
O15297 

66675 Da 
605 AA 

Amplify (CL) 

PTEN phosphatase and tensin homolog P60484 
47166 Da 
403 AA 

familial breast cancer 

PTPN1 
protein tyrosine phosphatase, 

non-receptor type 1 
P18031 

49967 Da  
435 AA 

overexpression of PTP1B in mammary gland led 
to spontaneous breast cancer development 
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PTPRJ 
protein tyrosine phosphatase, 

receptor type, J 
Q12913 

145941 Da 
1337 AA 

frequent deletions, loss of heterozygosity, and 
missense mutations 

RAD50 RAD50 homolog Q92878 
153892 Da 
1312 AA 

mutations 

RAD51 RAD51 homolog Q06609 
36966 Da 
339 AA 

mutations 

RAD54L RAD54-like Q92698 
84352 Da 
747 AA 

LOH 

RAF1 
v-raf-1 murine leukemia viral 

oncogene homolog 1 
P04049 

73052 Da 
648 AA 

overexpressed 

RB1CC1 RB1-inducible coiled-coil 1 Q8TDY2 
183091 Da 
1594 AA 

(20%) primary breast cancers examined 
contained mutations in RB1CC1 

SMAD4 SMAD family member 4 Q13485 
60439 Da 
552 AA 

homozygous deletion 

STK11 serine/threonine kinase 11 Q15831 
48636 Da 
433 AA 

loss of expresion 

TGFB1 
transforming growth factor, beta 

1 
P01137 

44341 Da 
390 AA 

can promote the formation of lung metastases 

TGFBR1 
transforming growth factor, beta 

receptor 1 
P36897 

55960 Da 
530 AA 

enhances the migration and invasion 

TGFBR3 
transforming growth factor, beta 

receptor III 
Q03167 

93428 Da 
850 AA 

loss of expresion 

TP53 tumor protein p53 P04637 
43712 Da 
393 AA 

polymorphic variants 

TSG101 tumor susceptibility gene 101 Q99816 
43944 Da 
390 AA 

mutated 

WT1 Wilms tumor 1 P19544 
49188 Da 
449 AA 

strongly expressed in primary carcinomas 

XRCC3 
X-ray repair complementing 

defective repair 3 
O43542 

37850 Da 
346 AA 

mutations 
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Appendix 2. List of BC candidate genes and their features 

Network level of each gene is indicated (only ‘third_level’ and ‘not_present’ genes were selected).  

Grey = not correctly cloned into prey plasmid. T= tumor tissue, CL= cell lines 

Symbol Gene name UniProt 
Molecular 

weight 
Network 

level 
Additional information 

AGR3 anterior gradient homolog 3 Q8TD06 
19171 Da 
166 AA 

not present expressed in breast cancer tissues 

ANGPTL4 angiopoietin-like 4 Q9BY76 
45,214Da 
406 AA 

not present Genes that mediate BC metastasis to lung 

ATAD2 
ATPase family, AAA domain 

containing 2 
Q6PL18 

158554 Da 
1390 AA 

not present 
gene upregulated in BC cells overexpressing 

ACTR or treated with estrogen 

BAP1 BRCA1 associated protein-1 Q92560 
80362 Da 
729 AA 

not present 
BAP1 enhances BRCA1-mediated inhibition 

of breast cancer cell growth 

BCAS3 
breast carcinoma amplified 

sequence 3 
Q9H6U6 

101237 Da 
928 AA 

not present 
amplification and overexpression in breast 

cancer cells 

BEX1 brain expressed, X-linked 1 Q9HBH7 
14,860Da 
125 AA 

not present 
overexpressed in human breast cancer cell 

lines 

BEX2 brain expressed X-linked 2 Q9BXY8 
15321 Da 
128 AA 

third level 
overexpressed in human breast cancer cell 

lines 

BLID 
BH3-like motif-containing cell 

death inducer 
Q8IZY5 

12045 Da 
108 AA 

not present Amplify from a breast cancer cell line 

C3orf35 
(APRG1) 

chromosome 3 open reading 
frame 35 

Q8IVJ8 
18525 Da 
170 AA 

not present reduced (T) 

CASC3 cancer susceptibility candidate 3 O15234 
76278Da 
703 AA 

third level overexpressed in breast carcinoma cell line 

CASZ1 castor zinc finger 1 Q86V15 
190148 Da 
1759 AA 

not present 
present in the perinuclear regions of cancer 

cells 
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CCL5 chemokine (C-C motif) ligand 5 P13501 
9,990 
91 AA 

third level secreted in breast cancer (T) 

CDH13 cadherin 13, H-cadherin (heart) P55290 
78287 Da 
713 AA 

not present downregulated (T) 

CST6 cystatin E/M Q15828 
16511 Da 
149 AA 

not present downregulated (T) 

CTCFL 
CCCTC-binding factor (zinc 

finger protein)-like 
Q8NI51 

75717 Da 
663 AA 

not present expressed (T) 

CXCL1 
chemokine (C-X-C motif) ligand 

1 
P09341 

11,301Da 
107 AA 

third level metastasis to the lungs 

CYP17A1 
cytochrome P450, family 17, 
subfamily A, polypeptide 1 

P05093 
57371 Da 
508 AA 

third level mutation in breast cancer 

DIRAS3 
DIRAS family, GTP-binding 

RAS-like 3 
O95661 

25,861Da 
229 AA 

not present downregulated (T) 

DKK3 dickkopf homolog 3 Q9UBP4 
38291 Da 
350 AA 

third level downregulated (T) 

EPSTI1 
epithelial stromal interaction 1 

(breast) 
Q96J88 

36793 Da 
318 AA 

not present upregulated (T) 

ERRFI1 
ERBB receptor feedback 

inhibitor 1 
Q9UJM3 

50560 Da 
462 AA 

not present downregulated (T) 

FAM84B 
family with sequence similarity 

84, member B 
Q96KN1 

34474 Da 
310 AA 

not present upregulated (T) 

GLCE glucuronic acid epimerase O94923 
70,115Da 
617 AA 

not present 
lower GLCE mRNA and protein in most BC 
tumor tissue and surrounding nontumor tissue 

GREB1 
growth regulation by estrogen in 

breast cancer 1 
Q4ZG55 

216467 Da 
1949 AA 

not present overexpressed in ER+ (T) 

HOXC6 homeobox C6 P09630 
26915 Da 
235 AA 

not present downregulated (CL) 

IL13RA2 interleukin 13 receptor, alpha 2 Q14627 
44,176Da 
380 AA 

third level 
Gene that mediate breast cancer metastasis to 

lung 

IL24 interleukin 24 Q13007 
23825 Da 
206 AA 

not present induces apoptosis in human breast cancer cells 
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ITIH5 
inter-alpha (globulin) inhibitor 

H5 
Q86UX2 

104576 Da 
942 AA 

not present metastasize lung 

KIAA0100 KIAA0100 Q14667 
253700 Da 
2235 AA 

not present overexpressed (T) 

KLK5 kallikrein-related peptidase 5 Q9Y337 
32020 Da 
293 AA 

third level upregulated (T) 

KLK6 kallikrein-related peptidase 6 Q92876 
26856 Da 
244 AA 

third level 
overexpressed (but not in the corresponding 
metastatic cell lines from the same patient) 

KLK7 kallikrein-related peptidase 7 P49862 
27525 Da 
253 AA 

not present upregulation 

KLK9 kallikrein-related peptidase 9 Q9UKQ9 
27513 Da 
250 AA 

not present 
KLK9 gene is regulated by steroid hormones 

in a human breast cancer cell line 

LYPD3 
LY6/PLAUR domain containing 

3 
O95274 

35971 Da 
346 AA 

not present overexpressed (T) 

MRC2 mannose receptor, C type 2 Q9UBG0 
166655 Da 
1479 AA 

not present high levels in breast cancer (T) 

MTA3 
metastasis associated 1 family, 

member 3 
Q9BTC8 

67,504Da 
594 AA 

not present 
regulates an invasive growth pathway in breast 

cancer 

NAT2 N-acetyltransferase 2 P11245 
33542 Da 
290 AA 

not present associated 

OSGIN1 
oxidative stress induced growth 

inhibitor 1 
Q9UJX0 

60,820Da 
560 AA 

not present 
inhibits growth and migration of breast cancer 

cells 

PDLIM2 PDZ and LIM domain 2 Q96JY6 
37459 Da 
352 AA 

not present overexpressed (T) 

PRDM14 PR domain containing 14 Q9GZV8 
64062 Da 
571 AA 

not present overexpression (T) 

PSMC3IP PSMC3 interacting protein Q9P2W1 
24906 Da 
217 AA 

not present high expression (T) 

RASL10B RAS-like, family 10, member B Q96S79 
23,229Da 
203 AA 

not present downregulated (CL) 

RHOBTB2 
Rho-related BTB domain 

containing 2 
Q9BYZ6 

82626 Da 
727 AA 

not present homozygously deleted 
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RNF20 ring finger protein 20 Q5VTR2 
113662 Da 

975 AA 
not present hypermethylated (downregulated) 

S100A14 
S100 calcium binding protein 

A14 
Q9HCY8 

11662 Da 
104 AA 

not present overexpressed (T) 

SCGB2A2 
secretoglobin, family 2A, 

member 2 
Q13296 

10499 Da 
93 AA 

not present overexpressed (T) 

SCGB3A1 
secretoglobin, family 3A, 

member 1 
Q96QR1 

10100 Da 
104 AA 

not present loss of expression (CL) 

SERPINB5 
serpin peptidase inhibitor, clade 

B (ovalbumin), member 5 
P36952 

42138 Da 
375 AA 

not present tumos suppresin 

SNAI1 snail homolog 1 O95863 
29083 Da 
264 AA 

third level downregulated (T) 

ST14 suppression of tumorigenicity 14 Q9Y5Y6 
94770 Da 
855 AA 

not present LOH 

TFF1 trefoil factor 1 P04155 
9150 Da 
84 AA 

third level 
detected in approximately 50% of human 

breast tumors 

THRSP thyroid hormone responsive Q92748 
16561 Da 
146 AA 

not present overexpressed (T) 

TRIM25 tripartite motif-containing 25 Q14258 
70989 Da 
630 AA 

third level expressed in ER+ (T) 

TSP50 protease, serine, 50 Q9UI38 
43088 Da 
385 AA 

not present up-regulated (T) 

VPS45 
vacuolar protein sorting 45 

homolog 
Q9NRW7 

65077 Da 
570 AA 

third level not expressed 

WHSC1L1 
Wolf-Hirschhorn syndrome 

candidate 1-like 1 
Q9BZ95 

161613 Da 
1437 AA 

not present amplified 

WIF1 WNT inhibitory factor 1 Q9Y5W5 
41528 Da 
379 AA 

not present 
breast tumor cell lines display absent or low 

levels of WIF1 expression 

ZNF217 zinc finger protein 217 O75362 
115272 Da 
1048 AA 

not present overexpressed (CL) 
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Appendix 3. List of interactions associated to BC detected by yeast 

two-hybrid matrix screens 
Interacting pairs are reported as gene symbols taken from HGNC (http://www.genenames.org). The confidence level (high or low) is 

reported.

HIGH CONFIDENCE 

 
Bait Prey 

1 AKT1 AGR3 
2 AKT1 CASC3 
3 AKT1 EPSTI1 
4 AKT1 IL13RA2 
5 AKT1 IL24 
6 AKT1 MRC2 
7 AKT1 MTA3 
8 AKT1 OSGIN1 
9 AKT1 RASL10B 
10 AKT1 S100A14 
11 AKT1 SERPINB5 
12 AKT1 ST14 
13 AKT1 TFF1 
14 AKT1 THRSP 
15 AKT1 WHSC1L1 
16 APC AGR3 
17 APC CASC3 

18 APC CCL5 
19 APC CYP17A1 
20 APC DIRAS3 
21 APC DKK3 
22 APC HOXC6 
23 APC IL24 
24 APC NAT2 
25 APC PDLIM2 
26 APC ST14 
27 APC TFF1 
28 APC TRIM25 
29 ATM BCAS3 
30 ATM ERRFI1 
31 ATM IL24 
32 ATM MTA3 
33 ATM NAT2 
34 ATM OSGIN1 
35 ATM TFF1 
36 ATM WHSC1L1 
37 AURKA ANGPTL4 
38 AURKA BEX2 
39 AURKA BLID 

40 AURKA CDH13 
41 AURKA DKK3 
42 AURKA EPSTI1 
43 AURKA ERRFI1 
44 AURKA KLK5 
45 AURKA LYPD3 
46 AURKA MTA3 
47 AURKA NAT2 
48 AURKA PDLIM2 
49 AURKA PSMC3IP 
50 AURKA S100A14 
51 AURKA SCGB3A1 
52 AURKA THRSP 
53 AURKA WIF1 
54 BAG4 BEX1 
55 BAG4 IL24 
56 BAG4 LYPD3 
57 BAG4 BCAS3 
58 BAG4 NAT2 
59 BAG4 ATAD2 
60 BAG4 BAP1 
61 BAG4 KLK5 

62 BAG4 RNF20 
63 BAG4 SCGB3A1 
64 BAG4 THRSP 
65 BAG4 CASZ1 
66 BAG4 CCL5 
67 BAG4 DIRAS3 
68 BAG4 EPSTI1 
69 BAG4 FAM84B 
70 BAG4 GLCE 
71 BAG4 IL13RA2 
72 BAG4 KLK9 
73 BAG4 PDLIM2 
74 BAG4 ERRFI1 
75 BAG4 KLK7 
76 BAG4 MTA3 
77 BAG4 PRDM14 
78 BAG4 RASL10B 
79 BAG4 ITIH5 
80 BAG4 MRC2 
81 BAG4 RHOBTB2 
82 BCAR3 AGR3 
83 BCAR3 ATAD2 
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84 BCAR3 BAP1 
85 BCAR3 BEX1 
86 BCAR3 BEX2 
87 BCAR3 CASZ1 
88 BCAR3 CCL5 
89 BCAR3 CST6 
90 BCAR3 DKK3 
91 BCAR3 EPSTI1 
92 BCAR3 ERRFI1 
93 BCAR3 GLCE 
94 BCAR3 GREB1 
95 BCAR3 HOXC6 
96 BCAR3 MTA3 
97 BCAR3 OSGIN1 
98 BCAR3 PDLIM2 
99 BCAR3 PRDM14 
100 BCAR3 PSMC3IP 
101 BCAR3 SERPINB5 
102 BCAR3 THRSP 
103 BCAR3 VPS45 
104 BCAR3 WHSC1L1 
105 BRMS1 ANGPTL4 
106 BRMS1 BEX2 
107 BRMS1 DIRAS3 
108 BRMS1 IL13RA2 
109 BRMS1 KLK9 
110 BRMS1 LYPD3 
111 BRMS1 MRC2 
112 BRMS1 PSMC3IP 

113 BRMS1 SNAI1 
114 BRMS1 THRSP 
115 CASP8 AGR3 
116 CASP8 ANGPTL4 
117 CASP8 ATAD2 
118 CASP8 BAP1 
119 CASP8 BEX1 
120 CASP8 BLID 
121 CASP8 CASC3 
122 CASP8 CDH13 
123 CASP8 EPSTI1 
124 CASP8 ERRFI1 
125 CASP8 GLCE 
126 CASP8 GREB1 
127 CASP8 IL13RA2 
128 CASP8 IL24 
129 CASP8 KLK5 
130 CASP8 KLK9 
131 CASP8 LYPD3 
132 CASP8 PRDM14 
133 CASP8 PSMC3IP 
134 CASP8 S100A14 
135 CASP8 SCGB2A2 
136 CASP8 SERPINB5 
137 CASP8 ST14 
138 CASP8 TSP50 
139 CASP8 VPS45 
140 CASP8 WHSC1L1 
141 CCND1 BCAS3 

142 CCND1 CDH13 
143 CCND1 KLK7 
144 CCND1 KLK9 
145 CDH1 BEX1 
146 CDH1 BLID 
147 CDH1 CCL5 
148 CDH1 CYP17A1 
149 CDH1 DKK3 
150 CDH1 EPSTI1 
151 CDH1 MTA3 
152 CDH1 NAT2 
153 CDH1 PSMC3IP 
154 CDH1 THRSP 
155 CDKN2A ANGPTL4 
156 CDKN2A CASC3 
157 CDKN2A NAT2 
158 CDKN2A WHSC1L1 
159 CDKN2C ANGPTL4 
160 CDKN2C GREB1 
161 CDKN2C MTA3 
162 CDKN2C NAT2 
163 CDKN2C SCGB2A2 
164 CDKN2C ST14 
165 CHEK2 BEX1 
166 CHEK2 CCL5 
167 CHEK2 CDH13 
168 CHEK2 CYP17A1 
169 CHEK2 DIRAS3 
170 CHEK2 FAM84B 

171 CHEK2 HOXC6 
172 CHEK2 IL24 
173 CHEK2 ITIH5 
174 CHEK2 KLK7 
175 CHEK2 KLK9 
176 CHEK2 LYPD3 
177 CHEK2 PRDM14 
178 CHEK2 PSMC3IP 
179 CHEK2 RHOBTB2 
180 CHEK2 RNF20 
181 CHEK2 ST14 
182 CHEK2 WHSC1L1 
183 ERBB2 CYP17A1 
184 ERBB2 ERRFI1 
185 ERBB2 GLCE 
186 ERBB2 IL13RA2 
187 ERBB2 KLK5 
188 ERBB2 LYPD3 
189 ERBB2 NAT2 
190 ERBB2 PRDM14 
191 ERBB2 PSMC3IP 
192 ERBB2 RHOBTB2 
193 ERBB2 THRSP 
194 ESR1 ANGPTL4 
195 ESR1 ATAD2 
196 ESR1 BAP1 
197 ESR1 CXCL1 
198 ESR1 EPSTI1 
199 ESR1 GLCE 
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200 ESR1 KLK5 
201 ESR1 KLK9 
202 ESR1 PSMC3IP 
203 ESR1 SERPINB5 
204 ESR1 WHSC1L1 
205 ESR2 AGR3 
206 ESR2 CASC3 
207 ESR2 CASZ1 
208 ESR2 DKK3 
209 ESR2 FAM84B 
210 ESR2 IL13RA2 
211 ESR2 IL24 
212 ESR2 ITIH5 
213 ESR2 KLK9 
214 ESR2 MRC2 
215 ESR2 TFF1 
216 ESR2 TSP50 
217 FBXW7 ANGPTL4 
218 FBXW7 BCAS3 
219 FBXW7 BEX1 
220 FBXW7 IL24 
221 FBXW7 SCGB3A1 
222 FBXW7 TRIM25 
223 FGFR2 BEX1 
224 FGFR2 BEX2 
225 FGFR2 ERRFI1 
226 FGFR2 GLCE 
227 FGFR2 HOXC6 
228 FGFR2 MTA3 

229 FGFR2 PDLIM2 
230 FGFR2 RASL10B 
231 FGFR2 RHOBTB2 
232 FGFR2 S100A14 
233 FGFR2 TFF1 
234 FGFR4 ANGPTL4 
235 FGFR4 BLID 
236 FGFR4 CASC3 
237 FGFR4 DIRAS3 
238 FGFR4 EPSTI1 
239 FGFR4 ERRFI1 
240 FGFR4 FAM84B 
241 FGFR4 GLCE 
242 FGFR4 MTA3 
243 FGFR4 OSGIN1 
244 FGFR4 PDLIM2 
245 FGFR4 PSMC3IP 
246 FGFR4 RASL10B 
247 FGFR4 RNF20 
248 FGFR4 SCGB3A1 
249 FGFR4 THRSP 
250 FGFR4 WHSC1L1 
251 FGFR4 WIF1 
252 HMMR CDH13 
253 HMMR GREB1 
254 HMMR IL24 
255 HMMR ITIH5 
256 HMMR NAT2 
257 HMMR THRSP 

258 HRAS BLID 
259 HRAS CXCL1 
260 HRAS GREB1 
261 HRAS IL24 
262 HRAS TSP50 
263 IGF1R BAP1 
264 IGF1R CYP17A1 
265 IGF1R HOXC6 
266 IGF1R IL13RA2 
267 IGF1R KLK5 
268 IGF1R LYPD3 
269 IGF1R MTA3 
270 IGF1R NAT2 
271 IGF1R THRSP 
272 IGF1R TRIM25 
273 IGF1R VPS45 
274 KRAS BCAS3 
275 KRAS CCL5 
276 KRAS DIRAS3 
277 KRAS IL24 
278 KRAS OSGIN1 
279 KRAS SERPINB5 
280 KRAS THRSP 
281 LSP1 GREB1 
282 LSP1 IL24 
283 LSP1 KLK6 
284 LSP1 LYPD3 
285 LSP1 SCGB2A2 
286 LSP1 SNAI1 

287 LSP1 THRSP 
288 NBN BAP1 
289 NBN CASC3 
290 NBN NAT2 
291 NBN SNAI1 
292 NOTCH2 CST6 
293 NOTCH2 EPSTI1 
294 NOTCH2 FAM84B 
295 NOTCH2 IL13RA2 
296 NOTCH2 IL24 
297 NOTCH2 ITIH5 
298 NOTCH2 KLK5 
299 NOTCH2 MTA3 
300 NOTCH2 PSMC3IP 
301 NOTCH2 ST14 
302 PALB2 BCAS3 
303 PALB2 CASZ1 
304 PALB2 CCL5 
305 PALB2 CST6 
306 PALB2 DIRAS3 
307 PALB2 ERRFI1 
308 PALB2 FAM84B 
309 PALB2 GREB1 
310 PALB2 IL13RA2 
311 PALB2 IL24 
312 PALB2 KLK6 
313 PALB2 LYPD3 
314 PALB2 MRC2 
315 PALB2 NAT2 
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316 PALB2 PRDM14 
317 PALB2 RHOBTB2 
318 PALB2 SERPINB5 
319 PALB2 SNAI1 
320 PALB2 THRSP 
321 PARP1 BLID 
322 PARP1 IL24 
323 PARP1 MTA3 
324 PARP1 RASL10B 
325 PARP1 THRSP 
326 PAX2 BEX1 
327 PAX2 BLID 
328 PAX2 GLCE 
329 PAX2 IL13RA2 
330 PAX2 KLK6 
331 PAX2 KLK9 
332 PAX2 MRC2 
333 PAX2 PRDM14 
334 PAX2 RASL10B 
335 PAX2 SNAI1 
336 PAX2 TRIM25 
337 PAX2 VPS45 
338 PAX2 WHSC1L1 
339 PHB BCAS3 
340 PHB CASC3 
341 PHB CCL5 
342 PHB ST14 
343 PIK3CA BEX1 
344 PIK3CA BEX2 

345 PIK3CA IL13RA2 
346 PIK3CA IL24 
347 PIK3CA PSMC3IP 
348 PIK3CA THRSP 
349 PPM1D BEX2 
350 PPM1D CASZ1 
351 PPM1D DIRAS3 
352 PPM1D DKK3 
353 PPM1D EPSTI1 
354 PPM1D ERRFI1 
355 PPM1D GLCE 
356 PPM1D ITIH5 
357 PPM1D LYPD3 
358 PPM1D MRC2 
359 PPM1D NAT2 
360 PPM1D OSGIN1 
361 PPM1D RHOBTB2 
362 PPM1D WHSC1L1 
363 PTEN BEX1 
364 PTEN CXCL1 
365 PTEN IL24 
366 PTEN OSGIN1 
367 PTPN1 AGR3 
368 PTPN1 BCAS3 
369 PTPN1 CASC3 
370 PTPN1 CASZ1 
371 PTPN1 CCL5 
372 PTPN1 CDH13 
373 PTPN1 DIRAS3 

374 PTPN1 FAM84B 
375 PTPN1 KLK7 
376 PTPN1 MRC2 
377 PTPN1 RHOBTB2 
378 PTPN1 SNAI1 
379 PTPN1 THRSP 
380 PTPN1 VPS45 
381 PTPRJ BAP1 
382 PTPRJ CASC3 
383 PTPRJ CYP17A1 
384 PTPRJ EPSTI1 
385 PTPRJ HOXC6 
386 PTPRJ KLK7 
387 PTPRJ KLK9 
388 PTPRJ LYPD3 
389 PTPRJ PRDM14 
390 PTPRJ TRIM25 
391 RAD51 CDH13 
392 RAD51 CST6 
393 RAD51 FAM84B 
394 RAD51 IL24 
395 RAD51 ITIH5 
396 RAD51 NAT2 
397 RAD51 ST14 
398 RAD51 TFF1 
399 RAD51 WHSC1L1 
400 RAF1 CASZ1 
401 RAF1 MRC2 
402 RAF1 PDLIM2 

403 RB1CC1 BAP1 
404 RB1CC1 BLID 
405 RB1CC1 EPSTI1 
406 RB1CC1 ERRFI1 
407 RB1CC1 GLCE 
408 RB1CC1 GREB1 
409 RB1CC1 IL13RA2 
410 RB1CC1 IL24 
411 RB1CC1 ITIH5 
412 RB1CC1 LYPD3 
413 RB1CC1 MRC2 
414 RB1CC1 PSMC3IP 
415 RB1CC1 RNF20 
416 RB1CC1 THRSP 
417 RB1CC1 VPS45 
418 RB1CC1 WHSC1L1 
419 RB1CC1 WIF1 
420 SMAD4 BCAS3 
421 SMAD4 BEX1 
422 SMAD4 DKK3 
423 SMAD4 FAM84B 
424 SMAD4 GREB1 
425 SMAD4 IL24 
426 SMAD4 LYPD3 
427 SMAD4 S100A14 
428 SMAD4 SERPINB5 
429 SMAD4 THRSP 
430 STK11 BCAS3 
431 STK11 CYP17A1 
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432 STK11 KLK7 
433 STK11 LYPD3 
434 STK11 NAT2 
435 STK11 RHOBTB2 
436 STK11 S100A14 
437 STK11 SERPINB5 
438 STK11 ST14 
439 STK11 THRSP 
440 STK11 TRIM25 
441 STK11 TSP50 
442 TGFB1 AGR3 
443 TGFB1 ANGPTL4 
444 TGFB1 BCAS3 
445 TGFB1 BLID 
446 TGFB1 CCL5 
447 TGFB1 CST6 
448 TGFB1 DIRAS3 
449 TGFB1 GREB1 
450 TGFB1 HOXC6 
451 TGFB1 KLK5 
452 TGFB1 KLK7 
453 TGFB1 KLK9 
454 TGFB1 MTA3 
455 TGFB1 PDLIM2 
456 TGFB1 PSMC3IP 
457 TGFB1 SCGB3A1 
458 TGFB1 SNAI1 
459 TGFB1 ST14 
460 TGFB1 THRSP 

461 TGFB1 TSP50 
462 TGFB1 WHSC1L1 
463 TSG101 BCAS3 
464 TSG101 KLK5 
465 TSG101 KLK6 
466 TSG101 MTA3 
467 TSG101 RASL10B 
468 TSG101 SCGB3A1 
469 TSG101 TFF1 
470 TSG101 TSP50 
471 WT1 CASZ1 
472 WT1 CCL5 
473 WT1 DIRAS3 
474 WT1 KLK7 
475 WT1 NAT2 
476 WT1 THRSP 
477 XRCC3 BAP1 
478 XRCC3 BCAS3 
479 XRCC3 CXCL1 
480 XRCC3 FAM84B 
481 XRCC3 GREB1 
482 XRCC3 ITIH5 
483 XRCC3 MRC2 
484 XRCC3 OSGIN1 
485 XRCC3 PSMC3IP 
486 XRCC3 RNF20 
487 XRCC3 SCGB3A1 
488 XRCC3 SERPINB5 
489 XRCC3 SNAI1 

490 XRCC3 TFF1 
491 XRCC3 TRIM25 

LOW 
CONFIDENCE 

 Bait Prey 

492 AKT1 BAP1 
493 AKT1 CCL5 
494 AKT1 TRIM25 
495 APC FAM84B 
496 APC GLCE 
497 APC PRDM14 
498 APC TSP50 
499 ATM BEX2 
500 ATM CASZ1 
501 ATM CXCL1 
502 ATM LYPD3 
503 ATM PRDM14 
504 ATM RNF20 
505 ATM THRSP 
506 ATM TRIM25 
507 AURKA ATAD2 
508 AURKA GLCE 
509 AURKA KLK9 
510 AURKA TSP50 
511 BAG4 BEX2 
512 BAG4 CDH13 
513 BAG4 CST6 

514 BAG4 CXCL1 
515 BAG4 DKK3 
516 BAG4 KLK6 
517 BAG4 PSMC3IP 
518 BAG4 S100A14 
519 BAG4 ST14 
520 BAG4 TSP50 
521 BAG4 WIF1 
522 BCAR3 CXCL1 
523 BCAR3 DIRAS3 
524 BCAR3 KLK6 
525 BCAR3 MRC2 
526 BCAR3 NAT2 
527 BCAR3 SNAI1 
528 BRMS1 ATAD2 
529 BRMS1 ITIH5 
530 BRMS1 PDLIM2 
531 BRMS1 ST14 
532 BRMS1 TSP50 
533 BRMS1 VPS45 
534 CASP8 CASZ1 
535 CASP8 MRC2 
536 CASP8 RHOBTB2 
537 CASP8 TFF1 
538 CCND1 CASZ1 
539 CCND1 TFF1 
540 CDH1 FAM84B 
541 CDH1 KLK6 
542 CDKN2A BCAS3 
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543 CDKN2A KLK9 
544 CDKN2A MTA3 
545 CDKN2A VPS45 
546 CDKN2C CASZ1 
547 CDKN2C EPSTI1 
548 CDKN2C MRC2 
549 CHEK2 BAP1 
550 CHEK2 BEX2 
551 CHEK2 CST6 
552 CHEK2 EPSTI1 
553 CHEK2 NAT2 
554 CHEK2 TSP50 
555 ERBB2 CASZ1 
556 ERBB2 MRC2 
557 ERBB2 SERPINB5 
558 ESR1 CYP17A1 
559 ESR1 NAT2 
560 ESR1 THRSP 
561 ESR1 TSP50 
562 ESR1 VPS45 
563 ESR1 WIF1 
564 ESR2 CXCL1 
565 ESR2 SNAI1 
566 ESR2 THRSP 
567 ESR2 WHSC1L1 
568 FBXW7 CASZ1 
569 FBXW7 DIRAS3 
570 FBXW7 NAT2 
571 FGFR2 ANGPTL4 

572 FGFR2 BAP1 
573 FGFR2 CCL5 
574 FGFR2 KLK5 
575 FGFR2 KLK6 
576 FGFR2 KLK9 
577 FGFR2 SNAI1 
578 FGFR4 AGR3 
579 FGFR4 BEX2 
580 FGFR4 CXCL1 
581 FGFR4 KLK5 
582 FGFR4 PRDM14 
583 FGFR4 S100A14 
584 FGFR4 ST14 
585 FGFR4 TRIM25 
586 HMMR ANGPTL4 
587 HMMR BCAS3 
588 HMMR KLK5 
589 HMMR MRC2 
590 HMMR RASL10B 
591 HMMR SNAI1 
592 HRAS DKK3 
593 HRAS NAT2 
594 HRAS VPS45 
595 IGF1R BCAS3 
596 IGF1R BLID 
597 IGF1R CASC3 
598 IGF1R CXCL1 
599 IGF1R DIRAS3 
600 IGF1R ERRFI1 

601 IGF1R GLCE 
602 IGF1R MRC2 
603 IGF1R PDLIM2 
604 IGF1R RASL10B 
605 IGF1R S100A14 
606 IGF1R SCGB3A1 
607 KRAS CASZ1 
608 KRAS MRC2 
609 KRAS SCGB2A2 
610 KRAS TRIM25 
611 KRAS WHSC1L1 
612 LSP1 BLID 
613 LSP1 CCL5 
614 LSP1 VPS45 
615 NBN BCAS3 
616 NBN BEX2 
617 NBN HOXC6 
618 NBN KLK6 
619 NBN PRDM14 
620 NBN RASL10B 
621 NBN TRIM25 
622 NOTCH2 BCAS3 
623 NOTCH2 CASZ1 
624 NOTCH2 CYP17A1 
625 NOTCH2 DKK3 
626 NOTCH2 GREB1 
627 NOTCH2 LYPD3 
628 NOTCH2 PDLIM2 
629 NOTCH2 RHOBTB2 

630 NOTCH2 SNAI1 
631 NOTCH2 THRSP 
632 PALB2 BAP1 
633 PALB2 BEX1 
634 PALB2 ITIH5 
635 PALB2 TRIM25 
636 PALB2 WHSC1L1 
637 PARP1 AGR3 
638 PARP1 CDH13 
639 PARP1 DKK3 
640 PARP1 FAM84B 
641 PARP1 ITIH5 
642 PARP1 KLK7 
643 PARP1 NAT2 
644 PARP1 PRDM14 
645 PARP1 S100A14 
646 PARP1 ST14 
647 PARP1 TFF1 
648 PARP1 TSP50 
649 PAX2 KLK7 
650 PAX2 NAT2 
651 PAX2 THRSP 
652 PHB DKK3 
653 PHB RHOBTB2 
654 PHB SCGB3A1 
655 PIK3CA BCAS3 
656 PIK3CA FAM84B 
657 PIK3CA ITIH5 
658 PPM1D BEX1 
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659 PPM1D KLK6 
660 PPM1D PSMC3IP 
661 PPM1D SERPINB5 
662 PPM1D VPS45 
663 PTEN SERPINB5 
664 PTPN1 GREB1 
665 PTPN1 PSMC3IP 
666 PTPN1 TRIM25 
667 PTPRJ BCAS3 
668 PTPRJ IL13RA2 
669 PTPRJ NAT2 
670 PTPRJ SCGB3A1 
671 RAD51 BCAS3 
672 RAF1 EPSTI1 
673 RAF1 SERPINB5 
674 RAF1 THRSP 
675 RAF1 VPS45 
676 RB1CC1 AGR3 
677 RB1CC1 ANGPTL4 
678 RB1CC1 BEX1 
679 RB1CC1 DKK3 
680 RB1CC1 NAT2 
681 RB1CC1 RASL10B 
682 RB1CC1 RHOBTB2 
683 RB1CC1 S100A14 
684 RB1CC1 TSP50 
685 SMAD4 CXCL1 
686 SMAD4 DIRAS3 
687 SMAD4 KLK7 

688 SMAD4 NAT2 
689 STK11 ANGPTL4 
690 STK11 BEX1 
691 STK11 CASZ1 
692 STK11 CST6 
693 STK11 DKK3 
694 STK11 ITIH5 
695 STK11 MRC2 
696 STK11 MTA3 
697 STK11 SCGB2A2 
698 STK11 TFF1 
699 TGFB1 BEX1 
700 TGFB1 CDH13 
701 TGFB1 CYP17A1 
702 TGFB1 EPSTI1 
703 TGFB1 GLCE 
704 TGFB1 NAT2 
705 TGFB1 RASL10B 
706 TGFB1 RHOBTB2 
707 TGFB1 S100A14 
708 TGFB1 SERPINB5 
709 TSG101 ATAD2 
710 TSG101 CASZ1 
711 TSG101 DIRAS3 
712 TSG101 SERPINB5 
713 TSG101 THRSP 
714 WT1 BLID 
715 WT1 FAM84B 
716 WT1 KLK9 

717 WT1 LYPD3 
718 WT1 MRC2 
719 WT1 MTA3 
720 WT1 SCGB2A2 
721 WT1 WHSC1L1 
722 XRCC3 AGR3 
723 XRCC3 BLID 
724 XRCC3 DIRAS3 
725 XRCC3 DKK3 
726 XRCC3 KLK6 
727 XRCC3 PDLIM2 
728 XRCC3 ST14 
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two-hybrid library screens 
Interacting pairs are reported as gene symbols taken from HGNC (http://www.genenames.org). 

 

Bait 

symbol 

Prey 

symbol 
Prey gene name 

Blast link 

(Gene ID) 

Prey 

Uniprot 

42 CHEK2 SLC25A6 

Homo sapiens solute carrier family 25 (mitochondrial carrier;  

adenine nucleotide translocator), member 6 (SLC25A6), nuclear  

gene encoding mitochondrial protein 

NM_001636.2 P12236 

1 AKT1 ACAT2 ACAT2 acetyl-Coenzyme A acetyltransferase 2 39 O75908 

46 ERBB2 ANXA6 ANXA6 annexin A6 309 P08133 

87 STK11 ARG2 ARG2 arginase, type II 384 P78540 

30 CASP8 ATP1A3 ATP1A3 ATPase, Na+/K+ transporting, alpha 3 polypeptide 478 P13637 

59 ERBB2 ATP6AP1 ATP6AP1 ATPase, H+ transporting, lysosomal accessory protein 1 537 ATP6AP1 

47 ERBB2 BAI1 BAI1 brain-specific angiogenesis inhibitor 1 575 O94812 

88 STK11 CALM2 CALM2 calmodulin 2 (phosphorylase kinase, delta) 805 P62158 

62 ESR1 CFL1 CFL1 cofilin 1 (non-muscle) 1072 P23528 

89 STK11 CFL2 CFL2 cofilin 2 (muscle) 1073 Q9Y281 

48 ERBB2 CLCN6 CLCN6 chloride channel 6 1185 P51797 

90 STK11 CRY2 CRY2 cryptochrome 2 (photolyase-like) 1408 Q49AN0 

75 RAD51 CSNK2B CSNK2B casein kinase 2, beta polypeptide 1460 P67870 

63 ESR1 CSRP1 CSRP1 cysteine and glycine-rich protein 1 1465 P21291 

91 STK11 CTSB CTSB cathepsin B 1508 P07858 
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93 STK11 EEF1A2 EEF1A2 eukaryotic translation elongation factor 1 alpha 2 1917 Q05639 

39 CHEK2 ENO1 ENO1 enolase 1, (alpha) 2023 P06733 

5 AKT1 ENO2 ENO2 enolase 2 (gamma, neuronal) 2026 P09104 

6 AKT1 FASN FASN fatty acid synthase 2194 P49327 

23 ATM FECH FECH ferrochelatase (protoporphyria) 2235 P22830 

7 AKT1 GFAP GFAP glial fibrillary acidic protein 2670 P14136 

40 CHEK2 GNAS GNAS GNAS complex locus 2778 P63092 

8 AKT1 GRIN2A GRIN2A glutamate receptor, ionotropic, N-methyl D-aspartate 2A 2903 Q12879 

50 ERBB2 HDLBP HDLBP high density lipoprotein binding protein 3069 Q00341 

41 CHEK2 HMGN1 HMGN1 high-mobility group nucleosome binding domain 1 3150 P05114 

27 ATM NR4A1 NR4A1 nuclear receptor subfamily 4, group A, member 1 3164 P22736 

43 CHEK2 PRMT2 PRMT2 protein arginine methyltransferase 2 3275 P55345 

24 ATM HSPA8 HSPA8 heat shock 70kDa protein 8 3312 P11142 

76 RAD51 HSP90AA1 HSP90AA1 heat shock protein 90kDa alpha, class A member 1 3320 P07900 

51 ERBB2 IARS IARS isoleucyl-tRNA synthetase 3376 P41252 

44 CHEK2 STMN1 STMN1 stathmin 1 3925 P16949 

66 KRAS MOCS2 MOCS2 molybdenum cofactor synthesis 2 4338 O96033 

98 STK11 MOCS2 MOCS2 molybdenum cofactor synthesis 2 4338 O96033 

67 KRAS MT-CO3 MT-CO3 mitochondrially encoded cytochrome c oxidase III 4514 P00414 

68 KRAS MT-CYB MT-CYB mitochondrially encoded cytochrome b 4519 P00156 

97 STK11 MT-ND2 MT-ND2 NADH-ubiquinone oxidoreductase chain 2 4536 P03891 

26 ATM MT-ND4 MT-ND4 mitochondrially encoded NADH dehydrogenase 4 4538 P03905 

37 CASP8 YBX1 YBX1 Y box binding protein 1 4904 P67809 

9 AKT1 PDHB PDHB pyruvate dehydrogenase (lipoamide) beta 5162 P11177 
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11 AKT1 PLP1 PLP1 proteolipid protein 1 5354 P60201 

55 ERBB2 POLD2 
POLD2 polymerase (DNA directed), delta 2, regulatory subunit 

50kDa 
5425 P49005 

12 AKT1 PRKCB PRKCB protein kinase C, beta 5579 P05771 

56 ERBB2 PSAP PSAP prosaposin 5660 P07602 

13 AKT1 PSMC5 PSMC5 proteasome (prosome, macropain) 26S subunit, ATPase, 5 5705 P62195 

14 AKT1 PTGDS PTGDS prostaglandin D2 synthase 21kDa (brain) 5730 P41222 

15 AKT1 PTPN3 PTPN3 protein tyrosine phosphatase, non-receptor type 3 5774 P26045 

34 CASP8 QDPR QDPR quinoid dihydropteridine reductase 5860 P09417 

69 KRAS QDPR QDPR quinoid dihydropteridine reductase 5860 P09417 

16 AKT1 SNCB SNCB synuclein, beta 6620 Q16143 

35 CASP8 SOX2 SOX2 SRY (sex determining region Y)-box 2 6657 P48431 

84 RB1CC1 SYN1 SYN1 synapsin I 6853 P17600 

108 STK11 VPS72 VPS72 vacuolar protein sorting 72 homolog (S. cerevisiae) 6944 Q15906 

104 STK11 THOP1 THOP1 thimet oligopeptidase 1 7064 P52888 

45 CHEK2 TLR3 TLR3 toll-like receptor 3 7098 O15455 

105 STK11 TSG101 TSG101 tumor susceptibility gene 101 7251 Q99816 

19 AKT1 UCHL1 
UCHL1 ubiquitin carboxyl-terminal esterase L1 (ubiquitin 

thiolesterase) 
7345 P09936 

36 CASP8 UMPS UMPS uridine monophosphate synthetase 7372 P11172 

73 PIK3CA UMPS UMPS uridine monophosphate synthetase 7372 P11172 

80 RAD51 UMPS UMPS uridine monophosphate synthetase 7372 P11172 

85 RB1CC1 UMPS UMPS uridine monophosphate synthetase 7372 P11172 

71 KRAS UQCRC1 UQCRC1 ubiquinol-cytochrome c reductase core protein I 7384 P31930 

32 CASP8 CNBP CNBP CCHC-type zinc finger, nucleic acid binding protein 7555 P62633 
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106 STK11 TUBA1A TUBA1A tubulin, alpha 1a 7846 Q71U36 

57 ERBB2 STK24 STK24 serine/threonine kinase 24 (STE20 homolog, yeast) 8428 Q9Y6E0 

103 STK11 STK24 STK24 serine/threonine kinase 24 (STE20 homolog, yeast) 8428 Q9Y6E0 

83 RB1CC1 MADD MADD MAP-kinase activating death domain 8567 Q8WXG6 

70 KRAS TNFSF13 TNFSF13 tumor necrosis factor (ligand) superfamily, member 13 8741 O75888 

72 PIK3CA TNFSF13 TNFSF13 tumor necrosis factor (ligand) superfamily, member 13 8741 O75888 

81 RAD51 USP10 USP10 ubiquitin specific peptidase 10 9100 Q14694 

22 ATM C5orf13 C5orf13 chromosome 5 open reading frame 13 (PRO1873) 9315 Q16612 

10 AKT1 PICK1 PICK1 protein interacting with PRKCA 1 9463 Q9NRD5 

96 STK11 GNPDA1 GNPDA1 glucosamine-6-phosphate deaminase 1 10007 P46926 

31 CASP8 BCL2L10 BCL2L10 BCL2-like 10 (apoptosis facilitator) 10017 Q9HD36 

65 ESR1 UBE4B UBE4B ubiquitination factor E4B (UFD2 homolog, yeast) 10277 O95155 

107 STK11 TUBB4 TUBB4 tubulin, beta 4 10382 P04350 

102 STK11 SEPT9 SEPT9 septin 9 10801 Q9UHD8 

3 AKT1 CCNI CCNI cyclin I 10983 Q14094 

79 RAD51 SIRT2 SIRT2 sirtuin (silent mating type information regulation 2 homolog) 22933 Q8IXJ6 

95 STK11 FAIM2 FAIM2 Fas apoptotic inhibitory molecule 2 23017 Q9BWQ8 

4 AKT1 CLASP2 CLASP2 cytoplasmic linker associated protein 2 23122 O75122 

77 RAD51 MAPK8IP3 MAPK8IP3 mitogen-activated protein kinase 8 interacting protein 3 23162 Q9UPT6 

101 STK11 PLD3 PLD3 phospholipase D family, member 3 23646 Q8IV08 

52 ERBB2 MTCH1 MTCH1 mitochondrial carrier homolog 1 (C. elegans) 23787 Q8IW90 

18 AKT1 SULT4A1 SULT4A1 sulfotransferase family 4A, member 1 25830 Q9BR01 

74 RAD51 COBRA1 COBRA1 cofactor of BRCA1 25920 Q8WX92 

33 CASP8 HBP1 HBP1 HMG-box transcription factor 1 26959 O60381 
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64 ESR1 HBP1 HBP1 HMG-box transcription factor 1 26959 O60381 

82 RB1CC1 HBP1 HBP1 HMG-box transcription factor 1 26959 O60381 

94 STK11 ERLEC1 ERLEC1 endoplasmic reticulum lectin 1 27248 Q96DZ1 

78 RAD51 PCSK1N PCSK1N proprotein convertase subtilisin/kexin type 1 inhibitor 27344 Q9UHG2 

20 AKT1 ZNF691 ZNF691 zinc finger protein 691 51058 Q5VV52 

86 STK11 ADIPOR1 ADIPOR1 adiponectin receptor 1 51094 Q96A54 

61 ERBB2 UTP18 UTP18 UTP18, small subunit (SSU) processome component 51096 Q9Y5J1 

49 ERBB2 GMPR2 GMPR2 guanosine monophosphate reductase 2 51292 Q9P2T1 

21 ATM ACTL6B ACTL6B actin-like 6B 51412 O94805 

2 AKT1 GET4 C7orf20 chromosome 7 open reading frame 20 51608 Q7L5D6 

28 ATM WHSC1L1 WHSC1L1 Wolf-Hirschhorn syndrome candidate 1-like 1 54904 Q9BZ95 

25 ATM MAP1S MAP1S microtubule-associated protein 1S 55201 Q66K74 

29 ATM ZNF821 ZNF821 zinc finger protein 821 55565 O75541 

99 STK11 PDXP PDXP pyridoxal (pyridoxine, vitamin B6) phosphatase 57026 Q96GD0 

17 AKT1 SRR SRR serine racemase 63826 Q9GZT4 

54 ERBB2 PHF23 PHF23 PHD finger protein 23 79142 Q9BUL5 

100 STK11 PHF23 PHF23 PHD finger protein 23 79142 Q9BUL5 

38 CHEK2 BAALC BAALC brain and acute leukemia, cytoplasmic 79870 Q8WXS3 

53 ERBB2 MUCL1 MUCL1 mucin-like 1 118430 Q96DR8 

58 ERBB2 TCEAL2 TCEAL2 transcription elongation factor A (SII)-like 2 140597 Q9H3H9 

60 ERBB2 TTC9B TTC9B tetratricopeptide repeat domain 9B 148014 Q8N6N2 

92 STK11 D2HGDH D2HGDH D-2-hydroxyglutarate dehydrogenase 728294 Q8N465 
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Appendix 5. Functional modules detection in the BC-PIN 

Homogeneous and/or enriched modules which include genes from our Y2H experiments are showed. For each module the 

following information is reported: a unique identifier (id); the number of proteins in the module (size); the driver(s) present 

in the module; the HC candidate(s) present in the module; functionally homogeneous modules (H); modules enriched for at 

least one GO biological process annotation (E); name of the enriched GO term(s). 

id size Drivers HC interactors H E Enriched Term(s) 

2 39 ERBB2 
MUCL1, CLCN6, 
GMPR2, UTP18, 

TTC9B 
y y signal transduction 

6 27 AKT1 
SRR, ACAT2, 

SULT4A1 
y y protein amino acid phosphorylation 

8 25 
ATM, NBN, 

RAD50 
C5orf13, MT-ND4 y y DNA repair 

9 19 
BCAR3, 
CASP8 

CNBP, ATAD2 y y regulation of apoptosis 

33 10 KRAS 
MT-CYB, MOCS2, 

MT-CO3 
y y Ras protein signal transduction 

57 6 CHEK2 GNAS y y signal transduction 

71 5 FGFR2 
RASL10B, 
PDLIM2 

y n fibroblast growth factor receptor signaling pathway 

93 4 XRCC3 
SERPINB5, 

RNF20 
y n DNA recombination;DNA repair 

95 4 PTEN ATP6AP1 y n cell death;angiogenesis;aging;cell migration 
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166 3 FGFR4 WIF1 y n 
positive regulation of cell proliferation;fibroblast growth factor receptor signaling 

pathway 

0 87 ESR2, ESR1 
 

y y regulation of transcription, DNA-dependent;regulation of transcription 

1 79 TP53 
 

y y regulation of transcription 

3 30 BRCA1 
 

y y RNA splicing 

4 30 SMAD4 
 

y y regulation of transcription, DNA-dependent 

5 29 
 

CALM1 y y ion transport 

7 25 TSG101 
 

y y protein transport 

10 17 TGFB1 
 

y y cell adhesion 

11 17 
 

HSPA8 y y protein targeting to mitochondrion 

12 17 RAF1 
 

y y intracellular signaling cascade;Ras protein signal transduction 

13 17 MAPK14 
 

y y protein amino acid dephosphorylation 

14 15 
 

HSP90AA1 y y protein folding 

15 15 HRAS 
 

y y signal transduction 

16 15 
 

TUBB4 y y regulation of transcription 

17 15 E2F1 
 

y y regulation of transcription, DNA-dependent 

18 14 PARP1 
 

y y DNA repair 

19 14 CDH1 
 

y y 

positive regulation of ubiquitin-protein ligase activity during mitotic cell 
cycle;negative regulation of ubiquitin-protein ligase activity during mitotic cell 

cycle;anaphase-promoting complex-dependent proteasomal ubiquitin-dependent 
protein catabolic process 

20 13 AR 
 

y y regulation of transcription, DNA-dependent 

25 11 
 

PRKCB y y intracellular signaling cascade;protein amino acid phosphorylation 

26 11 
 

CCL5 y n G-protein coupled receptor protein signaling pathway 

28 11 
 

CFL2 y y protein folding 

30 10 
 

PSMC5 y n 
positive regulation of ubiquitin-protein ligase activity involved in mitotic cell 

cycle;negative regulation of ubiquitin-protein ligase activity involved in mitotic cell 
cycle;anaphase-promoting complex-dependent proteasomal ubiquitin-dependent 
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protein catabolic process 

32 10 TGFBR1 
 

y y protein amino acid phosphorylation 

35 9 
 

MTA3 y y regulation of transcription 

36 9 MAP3K1 
 

y y signal transduction 

41 7 
 

PICK1 y y regulation of transcription 

42 7 
 

CFL1 y y protein amino acid phosphorylation 

48 7 BRMS1 
 

y y 
negative regulation of transcription, DNA-dependent;transcription from RNA 

polymerase II promoter 

51 6 
 

SEPT9 y n cell cycle 

54 6 
 

BAI1 y y 
cell adhesion;G-protein coupled receptor protein signaling pathway;signal 

transduction;axonogenesis 

56 6 
 

GNPDA1, FASN, 
VPS72 

y y regulation of transcription 

61 5 
 

USP10 y y ion transport;response to stimulus;sodium ion transport 

62 5 
 

CYP17A1 y y electron transport chain;oxidation reduction;transport 

64 5 IGF1R 
 

y y 
positive regulation of cell proliferation;positive regulation of cell 

migration;carbohydrate metabolic process;anti-apoptosis;aging;protein amino acid 
autophosphorylation 

65 5 
 

UQCRC1 y n electron transport chain;transport 

67 5 RAD51 
 

y n 
reciprocal meiotic recombination;double-strand break repair via homologous 

recombination 

73 4 APC 
 

y y intracellular signaling cascade 

76 4 
 

PDHB y n pyruvate metabolic process;glycolysis 

80 4 
 

CXCL1 y n 
G-protein coupled receptor protein signaling pathway;signal 

transduction;inflammatory response;chemotaxis 

82 4 
 

TUBA1A y y synaptic transmission 

84 4 
 

PLP1 y y synaptic transmission 

90 4 AURKA 
 

y n cell cycle 
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94 4 
 

BAALC y n cell differentiation 

97 4 
 

POLD2 y n nucleotide-excision repair, DNA gap filling;DNA replication 

98 4 BRCA2 
 

y n regulation of transcription, DNA-dependent 

99 4 
 

CASC3 y n 
mRNA transport;transport;nuclear-transcribed mRNA catabolic process, nonsense-

mediated decay;RNA splicing;mRNA processing 

103 4 
 

YBX1 y n RNA splicing;mRNA processing 

104 4 
 

COBRA1 y y negative regulation of transcription;regulation of transcription 

105 4 
 

CRY2 y n circadian rhythm 

109 4 
 

CSRP1 y n 

negative regulation of cellular component movement;carbohydrate metabolic 
process;regulation of apoptosis;focal adhesion assembly;cellular response to insulin 

stimulus;fructose metabolic process;fructose 6-phosphate metabolic 
process;gluconeogenesis 

110 4 TGFBR3 
 

y n BMP signaling pathway 

111 4 
 

SOX2 y y 
regulation of transcription, DNA-dependent;positive regulation of transcription from 

RNA polymerase II promoter 

113 4 
 

PTGDS y n G-protein coupled receptor protein signaling pathway;signal transduction 

116 3 
 

MAPK8IP3 y n 
regulation of JNK cascade;protein amino acid phosphorylation;activation of JUN 

kinase activity 

120 3 
 

SLC25A6 y n apoptosis 

125 3 PAX2 
 

y n visual perception 

128 3 PGR 
 

y n progesterone receptor signaling pathway;regulation of transcription, DNA-dependent 

136 3 CDKN2A 
 

y n DNA replication;cell cycle 

138 3 
 

SNCB y y response to drug;signal transduction 

146 3 
 

PCSK1N y n proteolysis;peptide hormone processing 

148 3 
 

HMGN1 y n regulation of transcription, DNA-dependent;protein amino acid phosphorylation 

153 3 BRIP1 
 

y n DNA damage response, signal transduction resulting in induction of apoptosis 

155 3 
 

MAP1S y n mitochondrion transport along microtubule 

157 3 PTPN1 
 

y n signal transduction 
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158 3 
 

SNAI1 y y multicellular organismal development 

159 3 
 

STK24 y n protein amino acid phosphorylation 

162 3 
 

ZNF691 y n 

embryonic organ morphogenesis;endocrine pancreas development;glucose 
homeostasis;multicellular organismal development;insulin secretion;vesicle transport 
along microtubule;positive regulation of neuron differentiation;regulation of insulin 

secretion;synaptic transmission;negative regulation of 
apoptosis;neurogenesis;cerebellum development;nitric oxide mediated signal 
transduction;anterior/posterior pattern formation;cell fate commitment;brain 

development;nervous system development;response to drug;response to glucose 
stimulus;regulation of transcription, DNA-dependent;positive regulation of 

transcription from RNA polymerase II promoter;hindbrain development;camera-type 
eye development 

167 3 
 

PHF23 y n 

L-serine catabolic process;protein homotetramerization;glycine metabolic 
process;one-carbon metabolic process;protein tetramerization;purine base 

biosynthetic process;glycine biosynthetic process from serine;proteolysis;folic acid 
metabolic process 

172 3 
 

NR4A1 y n signal transduction 
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Appendix 6. List of CRC causative genes (drivers) and their features 
Genes that have been also examined by Y2H library screens are highlighted in orange. 

Symbol Gene name UniProt 
Expression pattern in 

CRC tissue  

APC Adenomatous polyposis coli protein P25054 moderate down 

AURKA Serine/threonine-protein kinase 6 O14965 up 

AXIN2 Axin-2 Q9Y2T1 no  

BAX Apoptosis regulator BAX, cytoplasmic isoform beta Q07814 moderate up 

BCL10 B-cell lymphoma/leukemia 10 O95999 down 

BMPR1A Bone morphogenetic protein receptor type IA precursor P36894 up 

BRAF B-Raf proto-oncogene serine/threonine-protein kinase P15056 moderate down 

BUB1 Mitotic checkpoint serine/threonine-protein kinase BUB1 O43683 up 

BUB1B Mitotic checkpoint serine/threonine-protein kinase BUB1 beta O60566 up 

CCND1 G1/S-specific cyclin-D1 P24385 up 

CDH1 Epithelial-cadherin precursor P12830 moderate down 

CDKN2A Cyclin-dependent kinase inhibitor 2A, isoform 4 Q8N726 n/a 

CTNNA1 Catenin alpha-1 P35221 moderate down 

CTNNB1 Catenin beta-1 P35222 up 

DCC Netrin receptor DCC precursor P43146 n/a 

DLC1 Rho GTPase-activating protein 7 Q96QB1 up 

EGFR Epidermal growth factor receptor precursor P00533 down 

ERBB2 Receptor tyrosine-protein kinase erbB-2 precursor P04626 moderate down 

FBXW7 F-box/WD repeat protein 7 Q969H0 moderate up 

FLCN Folliculin Q8NFG4 moderate down 
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KRAS GTPase KRas precursor P01116 down 

MAP2K4 Dual specificity mitogen-activated protein kinase kinase 4 P45985 moderate down 

MCC  Colorectal mutant cancer protein P23508 n/a 

MLH1 DNA mismatch repair protein Mlh1 P40692 no  

MLH3 DNA mismatch repair protein Mlh3 Q9UHC1 no  

MSH2 DNA mismatch repair protein Msh2 P43246 up 

MSH6 DNA mismatch repair protein MSH6 P52701 up 

MUTYH A/G-specific adenine DNA glycosylase Q9UIF7 no  

NRAS GTPase NRas precursor P01111 moderate down 

ODC1 Ornithine decarboxylase P11926 up 

PDGFRL Platelet-derived growth factor receptor-like protein precursor Q15198 up 

PIK3CA PIP2 3-kinase catalytic subunit alpha isoform P42336 moderate down 

PMS2 PMS1 protein homolog 2 P54278 no  

PTEN PIP3 3-phosphatase and dual- specificity protein phosphatase P60484 down 

PTPN12 Tyrosine-protein phosphatase non-receptor type 12 Q05209 up 

PTPRJ Receptor-type tyrosine-protein phosphatase eta precursor Q12913 n/a 

RAD54B DNA repair and recombination protein RAD54B Q9Y620 up 

RB1 Retinoblastoma-associated protein P06400 up 

SMAD2 Mothers against decapentaplegic homolog 2 Q15796 moderate down 

SMAD4 Mothers against decapentaplegic homolog 4 Q13485 moderate down 

SRC Proto-oncogene tyrosine-protein kinase Src P12931 n/a 

STK11 Serine/threonine-protein kinase 11 Q15831 moderate down 

TGFBR2 TGF-beta receptor type-2 precursor P37173 no  

TLR2 Toll-like receptor 2 precursor O60603 up 

TP53 Cellular tumor antigen p53 P04637 no  
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Appendix 7. List of CRC candidate genes and their features 
Genes that have been also examined by Y2H library screens are highlighted in orange. 

Symbol Gene name UniProt Expression pattern in CRC tissue 

AKT1 RAC-alpha serine/threonine-protein kinase P31749 up 

ALDOB Fructose-bisphosphate aldolase B P05062 no 

ANP32B Acidic leucine-rich nuclear phosphoprotein 32 family member B Q92688 up 

BAAT Bile acid CoA:amino acid N-acyltransferase Q14032 n/a 

C9orf156 Nef-associated protein 1 Q9BU70 moderate down 

C9orf3 Aminopeptidase O Q8N6M6 moderate down 

C9orf30 Uncharacterized protein C9orf30 Q96H12 up 

C9orf97 Uncharacterized protein C9orf97 Q5T7W7 moderate down 

CDC14B Dual specificity protein phosphatase CDC14B O60729 moderate down 

CDK8 Cell division protein kinase 8 P49336 up 

CORO2A Coronin-2A Q92828 down 

CTSL2 Cathepsin L2 precursor O60911 moderate up 

CYLC2 Cylicin-2 Q14093 n/a 

DVL1 Segment polarity protein dishevelled homolog DVL-1 O14640 up 

FANCC Fanconi anemia group C protein Q00597 n/a 

FBP1 Fructose-1,6-bisphosphatase 1 P09467 no 

FBP2 Fructose-1,6-bisphosphatase isozyme 2 O00757 moderate up 

FRAT2 GSK-3-binding protein FRAT2 O75474 down 

GALNT12 Polypeptide N-acetylgalactosaminyltransferase 12 Q8IXK2 down 

HEMGN Hemogen Q9BXL5 n/a 
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HRAS GTPase HRas precursor P01112 up 

HSD17B3 Estradiol 17-beta-dehydrogenase 3 P37058 n/a 

IGFBP3 Insulin-like growth factor-binding protein 3 precursor P17936 up 

KIAA1529 Protein KIAA1529 Fragment Q68DP5 n/a 

LEF1 Lymphoid enhancer-binding factor 1 Q9UJU2 up 

MAP2K1 Dual specificity mitogen-activated protein kinase kinase 1 Q02750 up 

MAPK3 Mitogen-activated protein kinase 3 Q16644 down 

NANS Sialic acid synthase Q9NR45 down 

PPP2CB Ser/thr-protein phosphatase 2A catalytic subunit beta isoform P62714 down 

PPP3R2 Calcineurin subunit B isoform 2 Q96LZ3 n/a 

RASA1 Ras GTPase-activating protein 1 P20936 down 

SEC61B Protein transport protein Sec61 subunit beta P60468 up 

SFRP2 Secreted frizzled-related protein 2 precursor Q96HF1 up 

SFRP4 Secreted frizzled-related protein 4 precursor Q6FHJ7 up 

SHC1 SHC-transforming protein 1 P29353 up 

SMAD1 Mothers against decapentaplegic homolog 1 Q15797 down 

STX17 Syntaxin-17 P56962 moderate down 

TBC1D2 TBC1 domain family member 2 Q9BYX2 no 

TDRD7 Tudor domain-containing protein 7 Q8NHU6 moderate down 

TGFB1 Transforming growth factor beta-1 precursor P01137 up 

TMEFF1 Tomoregulin-1 precursor Q8IYR6 up 

TMOD1 Tropomodulin-1 P28289 n/a 

XPA DNA-repair protein complementing XP-A cells P23025 moderate down 

ZNF189 Zinc finger protein 189 O75820 moderate up 

ZNF510 Zinc finger protein 510 Q9Y2H8 moderate dow 
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Appendix 8. List of interactions associated to CRC detected by Y2H 

matrix screens 

Interacting pairs are reported as gene symbols taken from HGNC. The confidence level (high or low) is reported.

HIGH CONFIDENCE 

 
Bait Prey 

1 APC ANP32B 
2 APC BAAT 
3 APC C9orf97 
4 APC CTSL2 
5 APC FANCC 
6 APC FBP1 
7 APC MAP2K1 
8 APC NANS 
9 APC PPP3R2 
10 APC RASA1 
11 APC SMAD1 
12 APC TGFB1 
13 APC TMEFF1 
14 APC TMOD1 
15 APC ZNF510 
16 AURKA AKT1 
17 AURKA ANP32B 
18 AURKA BAAT 

19 AURKA C9orf156 
20 AURKA C9orf97 
21 AURKA CDK8 
22 AURKA CORO2A 
23 AURKA CYLC2 
24 AURKA FBP2 
25 AURKA HEMGN 
26 AURKA IGFBP3 
27 AURKA LEF1 
28 AURKA MAP2K1 
29 AURKA MAPK3 
30 AURKA NANS 
31 AURKA PPP2CB 
32 AURKA PPP3R2 
33 AURKA RASA1 
34 AURKA SEC61B 
35 AURKA SFRP4 
36 AURKA STX17 
37 AURKA TBC1D2 
38 AURKA TGFB1 
39 AURKA XPA 
40 AURKA ZNF189 

41 AURKA ZNF510 
42 AXIN2 FBP1 
43 AXIN2 FBP2 
44 AXIN2 HEMGN 
45 AXIN2 SMAD1 
46 AXIN2 TGFB1 
47 AXIN2 ZNF189 
48 BAX ANP32B 
49 BAX LEF1 
50 BAX MAP2K1 
51 BCL10 AKT1 
52 BCL10 ANP32B 
53 BCL10 BAAT 
54 BCL10 C9orf156 
55 BCL10 CDC14B 
56 BCL10 FBP1 
57 BCL10 HEMGN 
58 BCL10 KIAA1529 
59 BCL10 NANS 
60 BCL10 RASA1 
61 BCL10 TGFB1 
62 BMPR1A ALDOB 

63 BMPR1A C9orf156 
64 BMPR1A C9orf3 
65 BMPR1A C9orf30 
66 BMPR1A CDK8 
67 BMPR1A CTSL2 
68 BMPR1A FANCC 
69 BMPR1A FBP1 
70 BMPR1A FBP2 
71 BMPR1A GALNT12 
72 BMPR1A HRAS 
73 BMPR1A IGFBP3 
74 BMPR1A MAP2K1 
75 BMPR1A RASA1 
76 BMPR1A SEC61B 
77 BMPR1A SFRP2 
78 BMPR1A SFRP4 
79 BMPR1A SMAD1 
80 BMPR1A TGFB1 
81 BMPR1A XPA 
82 BMPR1A ZNF189 
83 BRAF CTSL2 
84 BRAF FBP1 
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85 BRAF HSD17B3 
86 BRAF MAPK3 
87 BRAF ZNF189 
88 BRAF ZNF510 
89 BUB1 AKT1 
90 BUB1 ALDOB 
91 BUB1 ANP32B 
92 BUB1 BAAT 
93 BUB1 C9orf156 
94 BUB1 C9orf3 
95 BUB1 C9orf30 
96 BUB1 C9orf97 
97 BUB1 CDC14B 
98 BUB1 CDK8 
99 BUB1 CORO2A 
100 BUB1 CTSL2 
101 BUB1 CYLC2 
102 BUB1 DVL1 
103 BUB1 FANCC 
104 BUB1 FBP1 
105 BUB1 FBP2 
106 BUB1 FRAT2 
107 BUB1 GALNT12 
108 BUB1 HEMGN 
109 BUB1 HRAS 
110 BUB1 HSD17B3 
111 BUB1 IGFBP3 
112 BUB1 KIAA1529 
113 BUB1 LEF1 
114 BUB1 MAP2K1 

115 BUB1 MAPK3 
116 BUB1 NANS 
117 BUB1 PPP2CB 
118 BUB1 PPP3R2 
119 BUB1 RASA1 
120 BUB1 SEC61B 
121 BUB1 SFRP2 
122 BUB1 SFRP4 
123 BUB1 SHC1 
124 BUB1 SMAD1 
125 BUB1 STX17 
126 BUB1 TBC1D2 
127 BUB1 TDRD7 
128 BUB1 TGFB1 
129 BUB1 TMEFF1 
130 BUB1 TMOD1 
131 BUB1 XPA 
132 BUB1 ZNF189 
133 BUB1 ZNF510 
134 CCND1 C9orf156 
135 CCND1 C9orf97 
136 CCND1 CDC14B 
137 CCND1 CDK8 
138 CCND1 FANCC 
139 CCND1 IGFBP3 
140 CCND1 PPP3R2 
141 CCND1 SMAD1 
142 CCND1 TBC1D2 
143 CCND1 TDRD7 
144 CCND1 ZNF510 

145 CDH1 AKT1 
146 CDH1 C9orf3 
147 CDH1 C9orf30 
148 CDH1 CDK8 
149 CDH1 GALNT12 
150 CDH1 HEMGN 
151 CDH1 HRAS 
152 CDH1 HSD17B3 
153 CDH1 MAP2K1 
154 CDH1 MAPK3 
155 CDH1 NANS 
156 CDH1 SFRP2 
157 CDH1 STX17 
158 CDH1 TMOD1 
159 CDH1 ZNF510 
160 CDKN2A ALDOB 
161 CDKN2A BAAT 
162 CDKN2A C9orf3 
163 CDKN2A CDC14B 
164 CDKN2A CTSL2 
165 CDKN2A CYLC2 
166 CDKN2A FRAT2 
167 CDKN2A GALNT12 
168 CDKN2A HRAS 
169 CDKN2A KIAA1529 
170 CDKN2A MAP2K1 
171 CDKN2A MAPK3 
172 CDKN2A RASA1 
173 CDKN2A SEC61B 
174 CDKN2A SFRP4 

175 CDKN2A TGFB1 
176 CDKN2A TMEFF1 
177 CDKN2A TMOD1 
178 CTNNA1 AKT1 
179 CTNNA1 ALDOB 
180 CTNNA1 BAAT 
181 CTNNA1 CTSL2 
182 CTNNA1 FBP1 
183 CTNNA1 FBP2 
184 CTNNA1 FRAT2 
185 CTNNA1 HRAS 
186 CTNNA1 HSD17B3 
187 CTNNA1 KIAA1529 
188 CTNNA1 MAP2K1 
189 CTNNA1 NANS 
190 CTNNA1 SFRP2 
191 CTNNA1 SFRP4 
192 CTNNA1 SMAD1 
193 CTNNA1 STX17 
194 CTNNA1 TDRD7 
195 CTNNA1 ZNF189 
196 CTNNA1 ZNF510 
197 DCC ALDOB 
198 DCC ANP32B 
199 DCC C9orf156 
200 DCC C9orf97 
201 DCC CORO2A 
202 DCC CTSL2 
203 DCC FBP1 
204 DCC HEMGN 
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205 DCC MAPK3 
206 DCC RASA1 
207 DCC SFRP2 
208 DCC TBC1D2 
209 DCC TDRD7 
210 DCC TMOD1 
211 DLC1 BAAT 
212 DLC1 C9orf156 
213 DLC1 C9orf3 
214 DLC1 CDC14B 
215 DLC1 CORO2A 
216 DLC1 CTSL2 
217 DLC1 FANCC 
218 DLC1 FBP2 
219 DLC1 HEMGN 
220 DLC1 HSD17B3 
221 DLC1 KIAA1529 
222 DLC1 MAPK3 
223 DLC1 PPP3R2 
224 DLC1 RASA1 
225 DLC1 SFRP4 
226 DLC1 SMAD1 
227 DLC1 STX17 
228 DLC1 TDRD7 
229 DLC1 TGFB1 
230 DLC1 TMEFF1 
231 DLC1 TMOD1 
232 DLC1 XPA 
233 DLC1 ZNF189 
234 DLC1 ZNF510 

235 EGFR C9orf156 
236 EGFR C9orf3 
237 EGFR C9orf97 
238 EGFR CYLC2 
239 EGFR FANCC 
240 EGFR FRAT2 
241 EGFR HEMGN 
242 EGFR MAPK3 
243 EGFR NANS 
244 EGFR PPP2CB 
245 EGFR STX17 
246 EGFR TGFB1 
247 EGFR ZNF510 
248 ERBB2 BAAT 
249 ERBB2 C9orf156 
250 ERBB2 CDK8 
251 ERBB2 CYLC2 
252 ERBB2 FBP1 
253 ERBB2 FRAT2 
254 ERBB2 HSD17B3 
255 ERBB2 KIAA1529 
256 ERBB2 MAP2K1 
257 ERBB2 RASA1 
258 ERBB2 SFRP4 
259 ERBB2 SMAD1 
260 ERBB2 TGFB1 
261 ERBB2 ZNF189 
262 FBXW7 AKT1 
263 FBXW7 ANP32B 
264 FBXW7 DVL1 

265 FBXW7 FANCC 
266 FBXW7 FBP1 
267 FBXW7 FBP2 
268 FBXW7 GALNT12 
269 FBXW7 HEMGN 
270 FBXW7 HRAS 
271 FBXW7 IGFBP3 
272 FBXW7 MAP2K1 
273 FBXW7 MAPK3 
274 FBXW7 NANS 
275 FBXW7 PPP3R2 
276 FBXW7 SEC61B 
277 FBXW7 SHC1 
278 FBXW7 SMAD1 
279 FBXW7 TGFB1 
280 FBXW7 TMOD1 
281 FBXW7 XPA 
282 FBXW7 ZNF510 
283 FLCN ALDOB 
284 FLCN C9orf97 
285 FLCN FBP1 
286 FLCN HEMGN 
287 FLCN KIAA1529 
288 FLCN NANS 
289 FLCN TMEFF1 
290 KRAS CDK8 
291 KRAS FANCC 
292 KRAS FRAT2 
293 KRAS HEMGN 
294 KRAS IGFBP3 

295 KRAS PPP2CB 
296 KRAS STX17 
297 KRAS ZNF189 
298 MAP2K4 ALDOB 
299 MAP2K4 CYLC2 
300 MAP2K4 FBP2 
301 MAP2K4 STX17 
302 MCC ALDOB 
303 MCC ANP32B 
304 MCC BAAT 
305 MCC C9orf156 
306 MCC C9orf30 
307 MCC C9orf97 
308 MCC CDC14B 
309 MCC CDK8 
310 MCC CYLC2 
311 MCC FRAT2 
312 MCC HEMGN 
313 MCC HSD17B3 
314 MCC KIAA1529 
315 MCC NANS 
316 MCC SEC61B 
317 MCC SFRP4 
318 MCC TGFB1 
319 MCC ZNF189 
320 MLH1 ALDOB 
321 MLH1 BAAT 
322 MLH1 C9orf156 
323 MLH1 CTSL2 
324 MLH1 CYLC2 
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325 MLH1 FRAT2 
326 MLH1 KIAA1529 
327 MLH1 LEF1 
328 MLH1 PPP2CB 
329 MLH1 SMAD1 
330 MLH1 STX17 
331 MLH1 TDRD7 
332 MLH1 XPA 
333 MLH3 AKT1 
334 MLH3 ALDOB 
335 MLH3 ANP32B 
336 MLH3 BAAT 
337 MLH3 C9orf3 
338 MLH3 C9orf30 
339 MLH3 C9orf97 
340 MLH3 CDC14B 
341 MLH3 CDK8 
342 MLH3 CTSL2 
343 MLH3 CYLC2 
344 MLH3 DVL1 
345 MLH3 FANCC 
346 MLH3 FBP1 
347 MLH3 FBP2 
348 MLH3 FRAT2 
349 MLH3 GALNT12 
350 MLH3 HEMGN 
351 MLH3 HRAS 
352 MLH3 HSD17B3 
353 MLH3 IGFBP3 
354 MLH3 KIAA1529 

355 MLH3 LEF1 
356 MLH3 MAP2K1 
357 MLH3 NANS 
358 MLH3 PPP2CB 
359 MLH3 PPP3R2 
360 MLH3 RASA1 
361 MLH3 SEC61B 
362 MLH3 SFRP2 
363 MLH3 SMAD1 
364 MLH3 STX17 
365 MLH3 TBC1D2 
366 MLH3 TDRD7 
367 MLH3 TGFB1 
368 MLH3 TMEFF1 
369 MLH3 TMOD1 
370 MLH3 XPA 
371 MLH3 ZNF510 
372 MSH2 AKT1 
373 MSH2 CDC14B 
374 MSH2 DVL1 
375 MSH2 FBP1 
376 MSH2 FBP2 
377 MSH2 GALNT12 
378 MSH2 HRAS 
379 MSH2 KIAA1529 
380 MSH2 LEF1 
381 MSH2 PPP3R2 
382 MSH2 SMAD1 
383 MSH2 STX17 
384 MSH2 TDRD7 

385 MSH2 ZNF510 
386 MSH6 HRAS 
387 MSH6 MAP2K1 
388 MSH6 NANS 
389 MUTYH BAAT 
390 MUTYH C9orf30 
391 MUTYH C9orf97 
392 MUTYH CYLC2 
393 MUTYH FANCC 
394 MUTYH HRAS 
395 MUTYH SEC61B 
396 MUTYH SMAD1 
397 MUTYH TDRD7 
398 MUTYH XPA 
399 NRAS AKT1 
400 NRAS ALDOB 
401 NRAS C9orf156 
402 NRAS C9orf3 
403 NRAS CORO2A 
404 NRAS CYLC2 
405 NRAS FANCC 
406 NRAS FBP2 
407 NRAS FRAT2 
408 NRAS HEMGN 
409 NRAS KIAA1529 
410 NRAS LEF1 
411 NRAS MAPK3 
412 NRAS PPP2CB 
413 NRAS RASA1 
414 NRAS SFRP4 

415 NRAS SMAD1 
416 NRAS STX17 
417 NRAS TDRD7 
418 NRAS XPA 
419 ODC1 BAAT 
420 ODC1 C9orf97 
421 ODC1 HEMGN 
422 ODC1 MAP2K1 
423 ODC1 NANS 
424 ODC1 STX17 
425 ODC1 TDRD7 
426 ODC1 TMOD1 
427 ODC1 ZNF510 
428 PDGFRL BAAT 
429 PDGFRL CTSL2 
430 PDGFRL FANCC 
431 PDGFRL FBP2 
432 PDGFRL HRAS 
433 PDGFRL KIAA1529 
434 PDGFRL MAP2K1 
435 PDGFRL MAPK3 
436 PDGFRL NANS 
437 PDGFRL PPP2CB 
438 PDGFRL PPP3R2 
439 PDGFRL SFRP4 
440 PDGFRL SMAD1 
441 PDGFRL TBC1D2 
442 PDGFRL TGFB1 
443 PDGFRL XPA 
444 PDGFRL ZNF510 
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445 PIK3CA FANCC 
446 PIK3CA FBP2 
447 PIK3CA GALNT12 
448 PIK3CA HRAS 
449 PIK3CA MAP2K1 
450 PIK3CA SFRP4 
451 PIK3CA TMOD1 
452 PMS2 AKT1 
453 PMS2 ANP32B 
454 PMS2 C9orf156 
455 PMS2 FANCC 
456 PMS2 GALNT12 
457 PMS2 KIAA1529 
458 PMS2 PPP2CB 
459 PMS2 RASA1 
460 PMS2 SFRP4 
461 PMS2 XPA 
462 PMS2 ZNF189 
463 PTEN ANP32B 
464 PTEN C9orf156 
465 PTEN KIAA1529 
466 PTEN TMEFF1 
467 PTPN12 ANP32B 
468 PTPN12 FANCC 
469 PTPN12 FRAT2 
470 PTPN12 KIAA1529 
471 PTPN12 PPP3R2 
472 PTPN12 SFRP4 
473 PTPN12 SHC1 
474 PTPN12 SMAD1 

475 PTPN12 STX17 
476 PTPN12 ZNF510 
477 PTPRJ ANP32B 
478 PTPRJ BAAT 
479 PTPRJ C9orf156 
480 PTPRJ C9orf97 
481 PTPRJ FANCC 
482 PTPRJ FBP1 
483 PTPRJ HEMGN 
484 PTPRJ HRAS 
485 PTPRJ MAP2K1 
486 PTPRJ NANS 
487 PTPRJ PPP2CB 
488 PTPRJ PPP3R2 
489 PTPRJ RASA1 
490 PTPRJ SFRP4 
491 PTPRJ TMEFF1 
492 PTPRJ ZNF510 
493 RAD54B BAAT 
494 RAD54B C9orf156 
495 RAD54B IGFBP3 
496 RAD54B SFRP2 
497 RB1 BAAT 
498 RB1 C9orf156 
499 RB1 CORO2A 
500 RB1 CTSL2 
501 RB1 DVL1 
502 RB1 FANCC 
503 RB1 FBP1 
504 RB1 FBP2 

505 RB1 GALNT12 
506 RB1 KIAA1529 
507 RB1 LEF1 
508 RB1 MAPK3 
509 RB1 RASA1 
510 RB1 SHC1 
511 RB1 STX17 
512 RB1 XPA 
513 SMAD2 AKT1 
514 SMAD2 C9orf156 
515 SMAD2 CORO2A 
516 SMAD2 CYLC2 
517 SMAD2 FBP2 
518 SMAD2 HSD17B3 
519 SMAD2 MAP2K1 
520 SMAD2 RASA1 
521 SMAD2 XPA 
522 SMAD2 ZNF510 
523 SMAD4 ALDOB 
524 SMAD4 BAAT 
525 SMAD4 C9orf3 
526 SMAD4 C9orf30 
527 SMAD4 C9orf97 
528 SMAD4 CDC14B 
529 SMAD4 FANCC 
530 SMAD4 FBP2 
531 SMAD4 HEMGN 
532 SMAD4 HRAS 
533 SMAD4 KIAA1529 
534 SMAD4 PPP2CB 

535 SMAD4 PPP3R2 
536 SMAD4 SFRP2 
537 SMAD4 SFRP4 
538 SMAD4 SHC1 
539 SMAD4 SMAD1 
540 SMAD4 STX17 
541 SMAD4 ZNF189 
542 SMAD4 ZNF510 
543 SRC ALDOB 
544 SRC BAAT 
545 SRC C9orf156 
546 SRC CTSL2 
547 SRC FANCC 
548 SRC FBP2 
549 SRC GALNT12 
550 SRC HEMGN 
551 SRC KIAA1529 
552 SRC MAP2K1 
553 SRC MAPK3 
554 SRC NANS 
555 SRC PPP2CB 
556 SRC STX17 
557 SRC XPA 
558 SRC ZNF189 
559 STK11 AKT1 
560 STK11 ALDOB 
561 STK11 ANP32B 
562 STK11 C9orf156 
563 STK11 CDC14B 
564 STK11 CYLC2 
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565 STK11 FBP1 
566 STK11 FBP2 
567 STK11 HRAS 
568 STK11 IGFBP3 
569 STK11 KIAA1529 
570 STK11 LEF1 
571 STK11 MAP2K1 
572 STK11 MAPK3 
573 STK11 NANS 
574 STK11 PPP2CB 
575 STK11 RASA1 
576 STK11 STX17 
577 STK11 TDRD7 
578 STK11 XPA 
579 STK11 ZNF189 
580 STK11 ZNF510 
581 TGFBR2 C9orf156 
582 TGFBR2 FANCC 
583 TGFBR2 MAP2K1 
584 TGFBR2 PPP2CB 
585 TGFBR2 ZNF510 
586 TLR2 AKT1 
587 TLR2 ANP32B 
588 TLR2 FBP1 
589 TLR2 HEMGN 
590 TLR2 MAP2K1 
591 TLR2 NANS 
592 TLR2 SMAD1 
593 TLR2 STX17 
594 TLR2 TGFB1 

595 TLR2 TMOD1 

LOW CONFIDENCE 

 Bait Prey 

596 APC FRAT2 
597 APC HEMGN 
598 APC HSD17B3 
599 APC MAPK3 
600 APC XPA 
601 AURKA ALDOB 
602 AURKA C9orf30 
603 AURKA CDC14B 
604 AURKA FBP1 
605 AURKA FRAT2 
606 AURKA HRAS 
607 AURKA HSD17B3 
608 AURKA KIAA1529 
609 AURKA SMAD1 
610 AURKA TDRD7 
611 AURKA TMEFF1 
612 AURKA TMOD1 
613 AXIN2 AKT1 
614 AXIN2 ALDOB 
615 AXIN2 BAAT 
616 AXIN2 C9orf156 
617 AXIN2 C9orf97 
618 AXIN2 CDC14B 
619 AXIN2 CYLC2 

620 AXIN2 FRAT2 
621 AXIN2 PPP3R2 
622 BAX CDC14B 
623 BAX DVL1 
624 BAX HEMGN 
625 BAX PPP2CB 
626 BAX TMOD1 
627 BAX XPA 
628 BCL10 C9orf30 
629 BCL10 C9orf97 
630 BCL10 CDK8 
631 BCL10 CORO2A 
632 BCL10 FANCC 
633 BCL10 HRAS 
634 BCL10 HSD17B3 
635 BCL10 MAP2K1 
636 BCL10 MAPK3 
637 BCL10 SEC61B 
638 BCL10 SFRP4 
639 BCL10 TMEFF1 
640 BCL10 TMOD1 
641 BMPR1A ANP32B 
642 BMPR1A BAAT 
643 BMPR1A C9orf97 
644 BMPR1A CDC14B 
645 BMPR1A HEMGN 
646 BMPR1A KIAA1529 
647 BMPR1A LEF1 
648 BMPR1A MAPK3 
649 BMPR1A PPP2CB 

650 BMPR1A PPP3R2 
651 BMPR1A SHC1 
652 BMPR1A STX17 
653 BMPR1A TBC1D2 
654 BMPR1A TDRD7 
655 BMPR1A TMEFF1 
656 BMPR1A ZNF510 
657 BRAF BAAT 
658 BRAF C9orf3 
659 BRAF LEF1 
660 CCND1 ALDOB 
661 CCND1 ANP32B 
662 CCND1 BAAT 
663 CCND1 CORO2A 
664 CCND1 CTSL2 
665 CCND1 CYLC2 
666 CCND1 DVL1 
667 CCND1 FRAT2 
668 CCND1 HEMGN 
669 CCND1 HRAS 
670 CCND1 HSD17B3 
671 CCND1 KIAA1529 
672 CCND1 LEF1 
673 CCND1 PPP2CB 
674 CCND1 SEC61B 
675 CCND1 SFRP2 
676 CCND1 SFRP4 
677 CCND1 TGFB1 
678 CCND1 TMEFF1 
679 CCND1 TMOD1 
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680 CCND1 ZNF189 
681 CDH1 ANP32B 
682 CDH1 CDC14B 
683 CDH1 FANCC 
684 CDH1 FBP1 
685 CDH1 IGFBP3 
686 CDH1 RASA1 
687 CDH1 TGFB1 
688 CDH1 ZNF189 
689 CDKN2A FBP2 
690 CDKN2A PPP3R2 
691 CDKN2A SHC1 
692 CDKN2A SMAD1 
693 CDKN2A STX17 
694 CDKN2A ZNF510 
695 CTNNA1 C9orf156 
696 CTNNA1 CDC14B 
697 CTNNA1 CYLC2 
698 CTNNA1 GALNT12 
699 CTNNA1 HEMGN 
700 CTNNA1 TMEFF1 
701 CTNNA1 XPA 
702 DCC CDK8 
703 DCC DVL1 
704 DCC FANCC 
705 DCC FBP2 
706 DCC HSD17B3 
707 DCC IGFBP3 
708 DCC KIAA1529 
709 DCC MAP2K1 

710 DCC PPP2CB 
711 DCC PPP3R2 
712 DCC SEC61B 
713 DCC ZNF510 
714 DLC1 AKT1 
715 DLC1 ANP32B 
716 DLC1 CDK8 
717 DLC1 CYLC2 
718 DLC1 DVL1 
719 DLC1 FBP1 
720 DLC1 HRAS 
721 DLC1 LEF1 
722 DLC1 NANS 
723 DLC1 SEC61B 
724 DLC1 SHC1 
725 DLC1 TBC1D2 
726 EGFR ALDOB 
727 EGFR BAAT 
728 EGFR CDK8 
729 EGFR CORO2A 
730 EGFR CTSL2 
731 EGFR FBP2 
732 EGFR GALNT12 
733 EGFR HSD17B3 
734 EGFR MAP2K1 
735 EGFR RASA1 
736 EGFR SFRP2 
737 EGFR SFRP4 
738 EGFR SMAD1 
739 EGFR TBC1D2 

740 EGFR TDRD7 
741 ERBB2 AKT1 
742 ERBB2 ANP32B 
743 ERBB2 FANCC 
744 ERBB2 HRAS 
745 ERBB2 NANS 
746 ERBB2 SEC61B 
747 ERBB2 STX17 
748 ERBB2 TDRD7 
749 ERBB2 TMOD1 
750 ERBB2 ZNF510 
751 FBXW7 FANCC 
752 FBXW7 BAAT 
753 FBXW7 C9orf156 
754 FBXW7 C9orf30 
755 FBXW7 C9orf97 
756 FBXW7 CDC14B 
757 FBXW7 CDK8 
758 FBXW7 CTSL2 
759 FBXW7 FRAT2 
760 FBXW7 HSD17B3 
761 FBXW7 KIAA1529 
762 FBXW7 LEF1 
763 FBXW7 RASA1 
764 FBXW7 SFRP4 
765 FBXW7 TBC1D2 
766 FBXW7 TDRD7 
767 FBXW7 TMEFF1 
768 FBXW7 ZNF189 
769 FLCN AKT1 

770 FLCN ANP32B 
771 FLCN C9orf156 
772 FLCN C9orf3 
773 FLCN C9orf30 
774 FLCN CYLC2 
775 FLCN GALNT12 
776 FLCN HRAS 
777 FLCN HSD17B3 
778 FLCN MAP2K1 
779 FLCN RASA1 
780 FLCN SFRP2 
781 FLCN SHC1 
782 FLCN TGFB1 
783 FLCN TMOD1 
784 FLCN ZNF189 
785 FLCN ZNF510 
786 KRAS AKT1 
787 KRAS ALDOB 
788 KRAS ANP32B 
789 KRAS BAAT 
790 KRAS C9orf156 
791 KRAS C9orf97 
792 KRAS CORO2A 
793 KRAS CTSL2 
794 KRAS CYLC2 
795 KRAS FBP1 
796 KRAS FBP2 
797 KRAS GALNT12 
798 KRAS LEF1 
799 KRAS MAPK3 



 

213 

800 KRAS SEC61B 
801 KRAS SHC1 
802 KRAS SMAD1 
803 KRAS TBC1D2 
804 KRAS TGFB1 
805 KRAS TMOD1 
806 KRAS XPA 
807 MAP2K4 BAAT 
808 MAP2K4 C9orf97 
809 MAP2K4 FANCC 
810 MAP2K4 KIAA1529 
811 MAP2K4 PPP3R2 
812 MAP2K4 SMAD1 
813 MAP2K4 TDRD7 
814 MAP2K4 ZNF510 
815 MCC C9orf3 
816 MCC GALNT12 
817 MCC LEF1 
818 MCC SFRP2 
819 MCC STX17 
820 MLH1 FANCC 
821 MLH1 FBP1 
822 MLH1 FBP2 
823 MLH1 NANS 
824 MLH1 SFRP2 
825 MLH1 TMOD1 
826 MLH3 CORO2A 
827 MLH3 SFRP4 
828 MLH3 ZNF189 
829 MSH2 BAAT 

830 MSH2 C9orf30 
831 MSH2 CTSL2 
832 MSH2 CYLC2 
833 MSH2 FANCC 
834 MSH2 FRAT2 
835 MSH2 RASA1 
836 MSH2 SEC61B 
837 MSH2 SFRP4 
838 MSH2 TMEFF1 
839 MSH2 XPA 
840 MSH6 ANP32B 
841 MSH6 BAAT 
842 MSH6 FBP1 
843 MSH6 FBP2 
844 MSH6 SMAD1 
845 MSH6 STX17 
846 MSH6 TBC1D2 
847 MSH6 TGFB1 
848 MSH6 ZNF510 
849 MUTYH CDC14B 
850 MUTYH DVL1 
851 MUTYH HEMGN 
852 MUTYH IGFBP3 
853 MUTYH MAP2K1 
854 MUTYH PPP3R2 
855 MUTYH SFRP4 
856 MUTYH TMEFF1 
857 MUTYH TMOD1 
858 MUTYH ZNF510 
859 NRAS ANP32B 

860 NRAS BAAT 
861 NRAS IGFBP3 
862 NRAS NANS 
863 NRAS SEC61B 
864 NRAS TGFB1 
865 NRAS TMOD1 
866 NRAS ZNF510 
867 ODC1 AKT1 
868 ODC1 ALDOB 
869 ODC1 ANP32B 
870 ODC1 C9orf30 
871 ODC1 CDK8 
872 ODC1 FRAT2 
873 ODC1 GALNT12 
874 ODC1 SFRP4 
875 PDGFRL ANP32B 
876 PDGFRL C9orf156 
877 PDGFRL C9orf3 
878 PDGFRL C9orf30 
879 PDGFRL C9orf97 
880 PDGFRL CDC14B 
881 PDGFRL CDK8 
882 PDGFRL CORO2A 
883 PDGFRL CYLC2 
884 PDGFRL DVL1 
885 PDGFRL FBP1 
886 PDGFRL GALNT12 
887 PDGFRL HEMGN 
888 PDGFRL HSD17B3 
889 PDGFRL RASA1 

890 PDGFRL SEC61B 
891 PDGFRL SHC1 
892 PDGFRL STX17 
893 PDGFRL TDRD7 
894 PDGFRL TMEFF1 
895 PDGFRL TMOD1 
896 PIK3CA ANP32B 
897 PIK3CA CDC14B 
898 PIK3CA HSD17B3 
899 PIK3CA KIAA1529 
900 PIK3CA LEF1 
901 PIK3CA MAPK3 
902 PIK3CA SFRP2 
903 PIK3CA SMAD1 
904 PIK3CA STX17 
905 PIK3CA TBC1D2 
906 PIK3CA TMEFF1 
907 PIK3CA XPA 
908 PIK3CA ZNF510 
909 PMS2 BAAT 
910 PMS2 CYLC2 
911 PMS2 FBP1 
912 PMS2 HEMGN 
913 PMS2 HSD17B3 
914 PMS2 IGFBP3 
915 PMS2 MAPK3 
916 PMS2 NANS 
917 PMS2 SEC61B 
918 PMS2 TMOD1 
919 PTEN CDK8 
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920 PTEN CYLC2 
921 PTEN FBP1 
922 PTEN FRAT2 
923 PTEN HEMGN 
924 PTEN HSD17B3 
925 PTEN MAPK3 
926 PTEN PPP3R2 
927 PTEN RASA1 
928 PTEN XPA 
929 PTPN12 BAAT 
930 PTPN12 C9orf156 
931 PTPN12 C9orf3 
932 PTPN12 C9orf97 
933 PTPN12 CDC14B 
934 PTPN12 CYLC2 
935 PTPN12 FBP1 
936 PTPN12 FBP2 
937 PTPN12 GALNT12 
938 PTPN12 HEMGN 
939 PTPN12 PPP2CB 
940 PTPN12 RASA1 
941 PTPN12 SFRP2 
942 PTPN12 TDRD7 
943 PTPN12 TMOD1 
944 PTPN12 ZNF189 
945 PTPRJ DVL1 
946 PTPRJ HSD17B3 
947 PTPRJ KIAA1529 
948 PTPRJ SEC61B 
949 PTPRJ SFRP2 

950 PTPRJ STX17 
951 PTPRJ ZNF189 
952 RAD54B CORO2A 
953 RAD54B DVL1 
954 RAD54B FANCC 
955 RAD54B FBP2 
956 RAD54B FRAT2 
957 RAD54B GALNT12 
958 RAD54B HEMGN 
959 RAD54B PPP2CB 
960 RAD54B PPP3R2 
961 RAD54B STX17 
962 RB1 AKT1 
963 RB1 ALDOB 
964 RB1 C9orf97 
965 RB1 CDK8 
966 RB1 CYLC2 
967 RB1 FRAT2 
968 RB1 HEMGN 
969 RB1 HRAS 
970 RB1 HSD17B3 
971 RB1 PPP3R2 
972 RB1 SFRP4 
973 RB1 SMAD1 
974 RB1 TDRD7 
975 RB1 ZNF189 
976 RB1 ZNF510 
977 SMAD2 FANCC 
978 SMAD2 TGFB1 
979 SMAD4 ANP32B 

980 SMAD4 C9orf156 
981 SMAD4 DVL1 
982 SMAD4 FBP1 
983 SMAD4 GALNT12 
984 SMAD4 HSD17B3 
985 SMAD4 IGFBP3 
986 SMAD4 LEF1 
987 SMAD4 MAP2K1 
988 SMAD4 SEC61B 
989 SMAD4 TDRD7 
990 SMAD4 TMEFF1 
991 SMAD4 TMOD1 
992 SMAD4 XPA 
993 SRC CYLC2 
994 SRC HRAS 
995 SRC SFRP4 
996 SRC SMAD1 
997 SRC ZNF510 
998 STK11 BAAT 
999 STK11 C9orf97 

1000 STK11 CDK8 
1001 STK11 FANCC 
1002 STK11 GALNT12 
1003 STK11 HEMGN 
1004 STK11 HSD17B3 
1005 STK11 SMAD1 
1006 TGFBR2 ANP32B 
1007 TGFBR2 BAAT 
1008 TGFBR2 C9orf97 
1009 TGFBR2 CTSL2 

1010 TGFBR2 DVL1 
1011 TGFBR2 FBP1 
1012 TGFBR2 FBP2 
1013 TGFBR2 NANS 
1014 TGFBR2 RASA1 
1015 TGFBR2 SFRP2 
1016 TGFBR2 SFRP4 
1017 TGFBR2 TMOD1 
1018 TGFBR2 XPA 
1019 TLR2 BAAT 
1020 TLR2 C9orf3 
1021 TLR2 CORO2A 
1022 TLR2 CYLC2 
1023 TLR2 FBP2 
1024 TLR2 HSD17B3 
1025 TLR2 LEF1 
1026 TLR2 PPP2CB 
1027 TLR2 SFRP2 
1028 TLR2 SFRP4 
1029 TLR2 TBC1D2 
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Appendix 9. List of interactions associated to CRC detected by yeast 

two-hybrid library screens 

Interacting pairs are reported as gene symbols taken from HGNC (http://www.genenames.org). 

 
Bait 

symbol 
Prey 

symbol 
Prey gene name 

Blast link 
(Gene ID) 

Prey Uniprot 

1 AXIN2 KCNK12 potassium channel, subfamily K, member 12 56660 Q9HB15 

2 AXIN2 PRDX1 peroxiredoxin 1 5052 Q06830 

3 AXIN2 RANGAP1 Ran GTPase activating protein 1 5905 P46060 

4 C9orf30 GNAS GNAS complex locus 2778 P63092 

5 C9orf30 PFN2 profilin 2 5217 P35080 

6 C9orf30 TMEM129 transmembrane protein 129 92305 A0AVI4 

7 C9orf30 VSTM2A V-set and transmembrane domain containing 2A 222008 B5MC94 

8 DLC1 ACOT7 acyl-CoA thioesterase 7 11332 O00154 

9 DLC1 PFKM phosphofructokinase, muscle 5213 P08237 

10 DLC1 PKM2 pyruvate kinase, muscle 5315 P14618 

11 DLC1 RANGAP1 Ran GTPase activating protein 1 5905 P46060 

12 DLC1 TMEM129 transmembrane protein 129 92305 A0AVI4 

13 DLC1 USP4 ubiquitin specific peptidase 4 (proto-oncogene) 7375 Q08AK7/Q13107 

14 PDGFRL ASPH aspartate beta-hydroxylase 444 Q9H291 

15 PDGFRL MAPK12 mitogen-activated protein kinase 12 6300 P53778 

16 PDGFRL MBP myelin basic protein 4155 P02686 

http://www.genenames.org/
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17 PDGFRL PFKM phosphofructokinase, muscle 5213 P08237 

18 PDGFRL RANGAP1 Ran GTPase activating protein 1 5905 P46060 

19 PDGFRL SPARCL1 SPARC-like 1 (hevin 8404 Q14515 

20 PDGFRL TMEM129 transmembrane protein 129 92305 A0AVI4 

21 SFRP2 DBNDD2 dysbindin (dystrobrevin binding protein 1) domain containing 2 55861 Q9BQY9 

22 SFRP2 EEF1G eukaryotic translation elongation factor 1 gamma 1937 P26641 /Q53YD7 

23 SFRP2 PFKM phosphofructokinase, muscle 5213 P08237 

24 SFRP4 AP2M1 adaptor-related protein complex 2, mu 1 subunit 1173 Q96CW1 

25 SFRP4 CKMT1B creatine kinase, mitochondrial 1B 1159 P12532 

26 SFRP4 NARF nuclear prelamin A recognition factor 26502 B3KPX2 

27 SFRP4 PFKM phosphofructokinase, muscle 5213 P08237 
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Appendix 10. DCI20-80 of drug-drug and 

target-drug combinations  
Drug Combination 01 - Cabozantinib with Erlotinib 

 

Drug Combination 02 - Cabozantinib with Raloxifene 

 

Drug Combination 03 - Olaparib with Tanespimycin 
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Drug Combination 04 - Olaparib with Dinaciclib 

 

Drug Combination 05 - Olaparib with Palbociclib 

 

Drug Combination 06 - Cabozantinib with Palbociclib 
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Drug Combination 07 - Paclitaxel with Tanespimycin 

 

Drug Combination 08 - Paclitaxel with Midostaurin 

 

Drug Combination 09 - Cabozantinib with Trastuzumab 
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Drug Combination 10 - NVP-AEW541 with Raloxifene 

 
 

TARGET DRUG COMBINATIONS 

Target Drug Combination 01 - PTPN6 with Olaparib 
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Target Drug Combination 02 - PTPN6 with Palbociclib 

 

Target Drug Combination 03 - MAP3K7 with Olaparib 

 

Target Drug Combination 04 - MAP3K7 with Tanespimycin 
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Target Drug Combination 05 - MAP2K2 with Motesanib 

 

Target Drug Combination 06 - PIK3CB with Motesanib 

 

Target Drug Combination 07 - PIK3CB with Palbociclib 
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Target Drug Combination 08 - PIK3CB with Tanespimycin 

 

Target Drug Combination 09 - MAPK7 with Paclitaxel 

 

Target Drug Combination 10 - IL1R1 with Paclitaxel 
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Target Drug Combination 11 - PPP2R5A with Olaparib 

 

Target Drug Combination 12 - PTPN6 with Cediranib 

 

Target Drug Combination 13 - RAP1A with Palbociclib 
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