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This chapter presents a new method to characterize pore size distributions (PSDs) in 
UF, NF and MF (meso- and macroporous) asymmetric membranes from flux measurement by 
applying moment theory, which is validated with experimental data obtained in our laboratory. 
The method is extended to characterize large defects (meso- and macroporous) in composite 
zeolite NaA membranes from VPV measurements, which might be responsible for the 
reduction of selectivity towards dehydration. The method allows the determination of a mean 
pore size and an intercrystalline porosity, which reveals as a valuable tool for directing 
synthesis strategies in the preparation of zeolite membranes. 

 
 
VI.1. CHARACTERIZATION    OF   PSDs   IN   NF,   UF   AND   MF   MEMBRANES:  
          MOMENT THEORY 
 

Commercial UF, NF and MF porous membranes supplied by manufacturers usually 
consist of an active top layer deposited or grown onto a much thicker porous support (e.g., 
composite zeolite NaA membranes, see chapter IV). This porous top layer can be visualized as 
an array of parallel and cylindrical pores of size d [m]. In a first approach, any possible 
contribution of the bulk support is omitted. Irrespective of its actual functional dependence on 
the pore size, a PSD can be defined in terms of a continuous number pore size density 
function, ε (d), which is defined in such a way that the fraction of porosity lying in the range 
d and δd is ε (d) δd. It should be stressed that the density function ε (d) has been chosen not 
normalized to 1, so that it might account for the total porosity of the membrane layer. 
Furthermore, the cumulative PSD, E (d*), is defined as the fraction of porosity found for pore 
sizes ranging from 0 to d* (Eq. VI.1) 
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The statistical moments 〈d i〉 of a PSD characterized by a density function ε (d) can be 
generated by Eq. VI.2 
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In a subsequent step, a number of mean pore sizes, id  [m], can be defined from the statistical 
moments 〈d i〉 and 〈d i-1〉, which allow the determination of the function ε (d) by Eq. VI.3 
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It should be highlighted that the knowledge of a higher number of mean pore sizes, id , 
allows a more accurate description of the function ε (d), which in its turn implies the 
knowledge of a higher number of its statistical moments. Our interest focuses on the 
possibility of relating these moments to some physical properties or permeation fluxes, which 
constitute the subject of discussion of section VI.1.1.  
 
 

VI.1.1. Statistical moments of a PSD 
 
VI.1.1.1. 0th moment 
 

The 0th moment of the distribution ε (d), 〈d 0〉 [-], can be directly obtained from Eq. 
VI.2 on the basis of its relationship with the total porosity of the membrane, εT [-] , by Eq. 
VI.4 
 

T00
00 d)d(d)d(dd ε=δε=δε= ∫∫

∞∞   [-] (Eq. VI.4) 

 
 

VI.1.1.2. 1st and 2nd moments 
 
In addition to the 0th moment, the 1st and 2nd moments of ε (d), 〈d 1〉 [m] and 〈d 2〉 [m2], 

can be calculated, respectively, from pure Knudsen diffusion and pure pressure-driven viscous 
or Poiseuille fluxes, on the basis of their different functional dependence on the PSD of a 
membrane, since the mass transfer mechanisms involved are also different. The relative 
contribution of each mechanism to the overall mass transfer across a membrane depends on 
the mean-free path of the permeating molecules, λ [m], which is defined as the mean distance 
that a molecule runs between two consecutive collisions (see section I.2.2). For ideal gases, it 
can be calculated by Eq. VI.5 (or Eq. I.1) 
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where dm [m] is the kinetic diameter of the molecules, NA [-] is the Avogadro Number and Pm 
[Pa] is the mean pressure between the feed and permeate sides of the membrane. The pure 
Knudsen diffusion flux takes place preferentially through a membrane pore when its size is 
much lower than λ, being the frequency of collisions with the pore wall higher than with other 
molecules. On the other hand, the viscous flux is predominant for pore sizes higher than λ and 
involves a laminar profile inside the pores generated by friction of the permeating molecules 
with the pore walls. For practical applications, pure Knudsen and pure viscous fluxes take 
place preferentially, respectively, when the conditions Pm d ≤0.01 Pa m and Pm d ≥0.1 Pa m 
are fulfilled (Levenspiel, 1999). 
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For the special case that the density function ε (d) of the PSD of a membrane can be 
described by a narrow unimodal or δ-Dirac function, all the mean pore sizes tend to a fix 
value,d  (i.e. dd = , ε (d) = εT; dd ≠ , ε (d) = 0). For this particular situation, pure Knudsen 
and viscous fluxes, Kn

GN  and V
GN  for single-gas permeance across the z-direction of the 

membrane can be accounted for, respectively, by Eqs. VI.6 and VI.7, in a similar manner as 
was pointed out in section III.2.1.1 for the determination of viscous or laminar contributions in 
as-synthesized zeolite NaA membranes 
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where τ, ℓ and ∆P are, respectively, the tortuosity [-], the membrane thickness [m] and the 
transmembrane pressure [Pa]. The extension of Eqs. VI.6 and VI.7 to the general case that a 
the density function ε (d) differs from a δ-Dirac function, the 1st and 2nd moments of ε (d) can 
be calculated, respectively, by Eqs, VI.8 and VI.9 
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where Q Kn

G
 = N Kn

G /∆P and Q V
G  = N V

G /∆P, both in [mol m-2 s-1 Pa-1], correspond, 
respectively, to the pure Knudsen and pure viscous gas permeances. Note that the Knudsen 
gas permeance is independent of pressure. From Eqs. VI.8 and VI.9, pure Knudsen and 
viscous gas permeances can be rewritten in the general form: 
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In the most general situation that Knudsen and viscous gas fluxes occur simultaneously, the 
overall mass transfer across a membrane is described by the sum of Eqs. VI.9 and VI.10: 
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For the special case that a pure liquid (e.g., water) permeates across the membrane, only 
pressure-driven flux can be attained. For such a situation, Eq. VI.9 transforms into Eq. VI.13 
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where N V
L  is the flux of the pure liquid [mol m-2 s-1] and Q V

L
 = N V

L /∆P is the pure viscous 
liquid permeance or permeability [mol m-2 s-1 Pa-1]. 
  
 

VI.1.1.3. -kth moments (k = 0 → ∞) 
 

Additional statistical moments of the density function ε (d) can be obtained from the 
hindered diffusion of a large solute in a liquid solution through a membrane of comparable 
mean pore size in the absence of viscous flux (i.e. ∆P = 0), which is actually responsible for 
the sieving ability of a membrane. However, compared to pure Knudsen and viscous fluxes, 
the relationship between solute diffusive fluxes and the statistical moments is more subtle. 

 
The hindered diffusion of a large solute through a pore is commonly ascribed to a 

hindered diffusion coefficient which is dependent on the ratio dm / d. The hindered diffusion 
coefficient is commonly modeled by means of the Renkin equation (Pappenheimer et al., 
1951), which was originally formulated on the basis of the diffusion of an uncharged spherical 
solute through a cylindrical pore. For NF applications, the Renkin equation is often 
approximated to a ν-exponent power law, where ν commonly takes the number 4 (Eq. VI.14): 
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where D∞ [m2 s-1] is the diffusivity of a solute in an environment without any interaction with 
the pore walls (i.e. dm / d → 0). In fact, the explicit dependence of the hindered diffusivity of a 
solute on the pore size allows it to act as a moment generating function, as was previously 
proposed by Baltus (1997b). Hence, the diffusive flux of a solute along the z-direction of a 
membrane, D

mN  [mol m-2 s-1], with a PSD described by ε (d) can be modeled by Eq. VI.15 
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(Eq. VI.15) 
 

where ∆C [mol m-3] is the solute concentration difference across the membrane. Eq. VI.15 can 
be rewritten as a function of the statistical moments of ε (d) by developing Eq. VI.14 in a Mc 
Laurin series around the point dm / d = 0, which adopts the general form 
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where, in its turn, the combinatorial numbers can be calculated by Eq. VI.17 
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The substitution of Eq. VI.16 into Eq. VI.15 leads to the explicit dependence of the solute flux 
through a membrane on the moments of ε (d): 
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(Eq. VI.18) 
 

As can be seen, the solute flux depends on the -kth moments of ε (d) and on a k-power 
function of dm. The weight of the kth term depends on the relative value of its corresponding 
term k

md  〈d -k〉. It should be emphasized that the 0th term of Eq. VI.17 refers to the total 
porosity of the membrane (i.e. dm

0 〈d -0〉 = 〈d 0〉 = εT [-]), which is dominant for a solute with 
dm / d → 0. Moreover, Eq. VI.18 also reveals that the term dm

1 〈d -1〉  actually governs the 
hindering effect of the pore wall. In fact, the terms related to higher k values play a more 
relevant role for higher dm / d ratios. For instance, for the diffusion of a solute with dm / d <0.1 
and ν = 4, (1 – dm / d)4 ≈ 1 – 4 (dm / d)1 with a  truncation error lower than 10%. Thus, Eq. 
VI.18 approaches Eq. VI.19 in the calculation of D

mN : 
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On the other hand, the diffusion of a non-hindered solute (dm / d → 0) allows the 
approximation of Eq. VI.18 to Eq. VI.20 through the use of Eq. VI.4 to relate the 0th moment 
of ε (d) with the total porosity of the membrane 
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Eq. VI.20 allows the direct determination of the term εT / τ ℓ  [m-1], which provides 
relevant structural information concerning the thickness of a membrane layer without the need 
of  breaking it for microscopy analysis (e.g., SEM, FESEM, TEM or AFM, see Table I.4). 
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Moreover, Eq. VI.20 transforms into Eq. VI.21 through the definition of the permeance of the 
non-hindered solute, CNQ D

m
D
m ∆=  [m s-1], in a similar manner as was pointed out by 

Masselin et al. (2000) 
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VI.1.1.4. Structural parameters 
 

As was above aforementioned, Eqs. VI.8, VI.9, VI.13 and VI.21 include relevant 
information concerning the form of the ε(d) function of the PSD of a membrane. In fact, for 
practical purposes, the following set of relevant structural parameters, R [m(1-i)], can be 
experimentally determined (Eqs. VI.22-VI.24), which indicate the resistance offered by the 
membrane for each mass transfer mechanism  
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It should be noted that resistance RM,2 that involves pressure-driven viscous flux can be either 
experimentally determined by a single-gas permeance experiment for Pm d >0.1 Pa m or by a 
pure liquid permeability experiment. 
 
 
VI.1.2. A special case: unimodal log-normal PSDs 
 

If the log-normal PSD in its simplest version (unimodal) is accepted as an 
approximation to the real PSD of a porous membrane (Aimar et al., 1990; Cooper and 
Derveer, 1979; Michaels, 1980), the flux pattern of the membrane can be easily derived from 
the earlier considerations. The density function for the log-normal PSD can be described by 
the bi-parametric Eq. VI.25 
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where the parameter β measures the breath of the distribution and α is the median value of the 
distribution. It should be noted that Eq. VI.25 has been chosen not normalized to allow the 
area drawn by this function with the d-axis to account for the total porosity, εT, of the 
membrane. Figure VI.1 plots normalized log-normal PSDs for a given median value of α = 50 
nm and for β values in the range 0.5 – 1.5 nm. As would be expected, wider distributions are 
obtained for higher β parameters with peaks that tend to lower diameters. 

 

Figure VI.1: Evolution of the normalized log-normal PSD (εT = 1) with β parameter for α = 50 nm. 
 
 

The relevant parameters of a log-normal PSD, α and β, can be calculated by knowing 
only two diameters of the distribution, 1d  and 2d , which imply the knowledge of only 
three moments of the PSD subjected to experimental determination from three independent 
permeances: (1) pure Knudsen diffusion permeance of a single gas (e.g., N2), pure pressure-
driven viscous flux either of a gas or a liquid, and permeance of a target electrolyte (e.g., HCl) 
by non-hindered diffusion. In this way, using the resistances defined in Eqs. VI.22-VI.24 and a 
pressure-driven viscous flux experiment carried out for a single gas, diameters 1d  and 2d  can 
be calculated, respectively, by Eqs. VI.26 and VI.27 
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For the special case of very narrow PSDs (β → 0, ε (d) → δ-Dirac function), Eq. VI.28 must 
hold 
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It should be noted that, if pressure-driven viscous flux experiment is carried out for a pure 
liquid, Eqs. VI.27 and VI.28 transform, respectively, into Eqs. VI.29 and VI.30 
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VI.1.3. Characterization of PSDs in porous asymmetric membranes 
 
VI.1.3.1. Contribution of the support 

 
The contribution of the support has been omitted in our preliminary considerations in 

section VI.1.2. Nevertheless, for asymmetric membranes with meso- or macroporous active 
layers (such of UF and NF membranes), the permeation behavior can be strongly influenced 
by the porous nature of the support. Therefore, prior to the determination of the mean 
diameters for the further determination of log-normal PSDs of the active layers, the 
contribution of the support must be removed from the overall permeance for each permeation 
experiment. The overall permeance that includes the contribution of both the top layer and the 
support can be expressed by Eqs. VI.31 
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where the subscript i refers to the gas (i = G), liquid (i = L) and non-hindered diffusion of an 
electrolyte (i = m), while the subscripts M and S refer, respectively, to the permeances related 
to the active layer and to the support. Under the assumption that the support can be 
characterized by a narrow unimodal PSD that approaches a δ-Dirac function, which seems 
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reasonable for commercial membranes, the latter permeances can be computed by the set of 
Eqs. VI.32-VI.34 
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where εS, τS and ℓS are, respectively, the porosity [-], tortuosity [-] and thickness of the 
support [m], and D± is the diffusivity of the electrolyte [m2 s-1]. It should be noted that, for a 
single-gas permeance experiment, although the active top layer behaves according to a pure 
Knudsen diffusion mechanism, the support can show contribution of the viscous mechanism 
(see Eq. VI.32) on the grounds of the higher mean pore size of the latter. 
 

Furthermore, it should be also highlighted that the contribution of the support to the 
overall mass transfer through a composite membrane is strongly dependent on the moment of 
the PSD of the active layer that governs the permeation mechanism. Table VI.1 shows some 
preliminary calculations performed for a model asymmetric membrane with δ-Dirac PSDs in 
both the active layer and support and with relevant parameters similar to those that can be 
found in commercial UF, NF and MF ceramic membranes (active layer: εM / τM = 0.05 [-], ℓM 

=50 µm, Md  = 20 nm; support: εS / τS = 0.16 [-], ℓS =2 mm, Sd  = 2 µm). As can be seen, the 
lower the moment of the PSD that governs the permeation process, the higher the contribution 
of the support to the overall mass transfer. In this way, the non-hindered electrolyte diffusion 
through an asymmetric membrane tends to be more influenced by the support (contribution up 
to 99%) than the permeation of a pure liquid governed by a pressure-driven viscous 
mechanism, where the active layer governs the permeation behavior.  

 
In view of these observations and to the dependence of the diffusive flux with the 

moments of the PSD according to Eq. VI.18, both the hindered and non-hindered diffusive 
permeation of a species through a porous asymmetric membrane tends to be governed by the 
support. Accordingly, in practice, the diffusion of a species across an asymmetric membrane 
does not provide relevant structural information concerning the active layer. Nevertheless, it 
constitutes a good tool for the characterization of the support in terms of the ratio τS ℓS/εS or 
resistance RS,0. 
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Table VI.1: Contribution of the support to the overall mass transfer for single-gas permeance, pure 
liquid permeability and non-hindered electrolyte diffusion experiments for a δ-Dirac PSD in the active 
layer. Input data for the active layer: εM / τM = 0.05 [-], ℓS = 50 µm, Md  = 20 nm. Input data for the 
support: εS / τS = 0.16 [-], ℓS = 2.5 mm, Sd  = 2 µm. 

Experiment i [-] Active layer Support 
i,Si,M

i,S

RR
R

+
 [%] 

Pure liquid permeability 2 2
MM

MM
2,M

d
R

ε

τ
=

l
2
SS

SS
2,S d

R
ε

τ
=

l

 
0.4% 

Single-gas permeance (N2) 1 
MM

MM
1,M

d
R

ε

τ
=

l  

SS

SS
1,S

d
R

ε

τ
=

l

 
28.1% 

Non-hindered electrolyte  
diffusion 0 

M

MM
2,MR

ε
τ

=
l

S

SS
0,SR

ε
τ

=
l

 
97.5% 

 
 

VI.1.3.2. Determination of experimental overall permeances 
 

This section deals with the determination of single-gas, pure liquid and electrolyte non-
hindered diffusion permeances through NF and MF asymmetric membranes. The former two 
permeances allow the determination of diameter 2d  of the PSD of the active layer, 2,Md  in 
the reminder of this chapter, while the latter allows the determination of the ratio τS ℓS/εS of 
the support. The details concerning the experimental setup and procedures used for the 
experimental determination of all three permeances can be found in section III.2.2. Table VI.2 
summarizes the results obtained for these permeances for a set of commercial inner-side 
tubular TiO2 (rutile) NF and MF membranes. The calculations involved in the determination 
of these three permeances from experimental data constitute the subject of discussion in the 
forthcoming sections (VI.3.2.1 – VI.3.2.3). 
 
 
VI.1.3.2.1. Single-gas permeance experiments 
 

The relationship between the permeate pressure and time is given by a mass balance 
equation in the permeate volume (Eq. VI.36) 

 
( ) ( )[ ]tPPSQ
t

tP
RT
V

dt
dn

21in
T
G

222 −=
δ

δ
=   [mol s-1], (Eq. VI.36) 

 

where Sin is the geometrical area of the inner surface of the membrane tube [m2], P1 is the 
feed pressure [kPa], which was kept at a constant value for each experiment, and P2 is the 
permeate pressure [kPa]. Eq. VI.36 can be solved analytically using the initial condition (Eq. 
VI.37) 

 



 
Results and discussion 

 

 211

Table VI.2: Commercial inner-side tubular asymmetric TiO2 membranes used in this study 

Membrane * 
MWCO 

 [kD] 
No. of 

internal holes Sin  [cm2] 
QT

G  x106  (1) 
[mol m-2 s-1 Pa-1]

QT
L  x1011 (2) 

[m3  m-2 s-1 Pa-1] 
QT

HCl  x107 
 
(3) 

[m s-1] 

1 1 3 95.2 4.34 ± 0.13 2.96 ± 0.02 2.61 ± 0.48 

2 1 3 95.2 - - 2.15 ± 0.84 

3 8 3 95.2 6.60 ± 0.07 20.2 ± 0.1 2.04 ± 0.10 

4 50 3 95.2 6.60 ± 0.08 58.1 ± 0.07 1.98 ± 0.09 

5 150 3 95.2 6.75 ± 0.09 106 ± 3 2.05 ± 0.06 

6 0.14 µm 3 95.2 - 417 - 

7 0.20 µm 3 95.2 - 528 - 

8 0.45 µm 3 95.2 8.11 ± 0.30 722 ± 2 2.65 ± 0.04 

9 0.80 µm 3 95.2 - 764 - 

10 0.80 µm 1 51.5 9.41 817 ± 5 4.07 ± 0.09 

Temperature:  (1) 301 – 303 K 
                                      (2) 288 – 298 K 
                                     (3) 298 – 299 K 

 
 
t = 0   →  P2 = P2 (0) (Eq. VI.37) 

 
Furthermore, the overall gas permeance that includes the contribution of both the top layer and 
the support is given by Eq. VI.38 
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, (Eq. VI.38) 

 

where S
2P  is the pressure at the active layer / support surface [kPa]. This pressure can be 

calculated by Eq. VI.39 
 

( ) ( ) ( )
1,M2,GS

2
21,M2,GS21,M11,S1,MS

2
1,S1,M1,S1,MS

2 RQd2
PRQdPRPRRd4RRRR

P
++++++−

=  

 

(Eq. VI.39) 
 

where RG,M and RG,S are defined, respectively, by Eqs. VI.23 and VI.35, while QG,1 and QG,2 
are defined, respectively, by Eqs. VI.40 and VI.41 
 

RTM
8

3
1Q 1,G
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=  (Eq. VI.40) 
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 (Eq. VI.41) 

 

Introducing Eqs. VI.39-VI.41, VI.23 and VI.35 into Eq. VI.38, for permeate pressures P2 < 
0.60 P1, Eq. VI.42 is obtained for the overall single-gas permeance, Q T

G  

 

( ) ( )
1d

RQd2
PRRd4RRRR

QR

QQ

S
1,M2,GS

11,S1,MS
2

1,S1,M1,S1,M
2,G1,M

1,GT
G

+
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ ++++−
+

=

 
 

(Eq. VI.42) 
 
which is independent of P2. RM,1 can be calculated by isolating it from Eq. VI.42 
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=  (Eq. VI.43) 

 

Finally, it should be noted that, on the grounds of its independence of P2, the overall 
single-gas permeance can be experimentally determined by integrating Eq. VI.36 for the initial 
condition Eq. VI.37 
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−  (Eq. VI.44) 

 

As an example, Figure VI.2 plots Ln[(P1 – P2)/(P1 – P2 (0))] vs. time for an experiment 
performed with N2 for UF membrane 1 (1 kD) according to Table VI.2. 
 
 
VI.1.3.2.2. Pure liquid permeability experiment 
 

The permeability of liquid water for a given membrane can be calculated as the quotient 
of the water flux, Nw [L m-2 h-1], by the applied transmembrane pressure, ∆P [bar] (Eq. VI.45) 

 

P
NQ wT

L ∆
=   [m3 m-2 s-1 Pa-1] (Eq. VI.45) 

 

Furthermore, to elucidate the contribution of the support, some preliminary water 
permeability tests were performed on a set of asymmetric MF membranes (see Table VI.2). 
Assuming that the PSD of the active layer is very narrow, the resistance RS,2 of the support can 
be   calculated   from  the   intercept   of   the  linear   representation   of  the  inverse  of  water  
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Figure VI.2: Plot of Ln[(P1 – P2)/(P1 – P2 (0))] vs. time for the single-gas permeance of N2 through 
membrane 1 (1 kD). The straight line refers to the linear fitting.  
 
 

permeability with the inverse of the square mean pore size of the active layer (Eq. VI.46), 
while the resistance RM,0 of the active layer can be calculated from the slope of this 
representation  
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According to the linear fitting plotted in Figure VI.3, the values of the resistances RM,0 

= 6.94 x 10-5 m and RS,2 = 4.03 x 109 m-1 can be estimated for both the active layers and the 
support. Since all the membranes 1-9 were provided by the same manufacturer and the active 
layers were grown on the same kind of support, the resistance RS,2 related to the support is 
expected to describe the permeation behavior of the support for all the membranes 1-9. 
Therefore, this value was used to characterize the support for all the membranes 1-9 listed in 
Table VI.2. However, the resistance RM,0 related to the active layer is in principle only 
applicable to membranes 6-9, since the characteristics of the active layers deposited onto the 
supports are strongly dependent on their mean pore size and can differ from those of UF and 
MF membranes 1-5. 
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Figure VI.3: Plot of 1/QT

L vs. 2
Md/1  for water permeability experiments for commercial TiO2 

asymmetric MF membranes 6-9 (see Table VI.2). The straight line refers to the linear fitting. 
 
 

VI.1.3.2.3. Non-hindered electrolyte diffusion experiments 
 

The relationship between the concentration of a target ion in the permeate volume and 
time is given by a mass balance equation in the permeate volume (Eq. VI.47) and application 
of the Fick’s first law 

 
( ) ( ) ( )[ ]tCtCSQ

t
tCV

dt
dn

21in
D

T,m
2

2
2 −=

δ
δ

=   [mol s-1], (Eq. VI.47) 

 

where Sin is the geometrical area of the inner surface of the membrane [m2] in contact with the 
feed solution and C1(t) and C2(t) is the concentration of the electrolyte in the feed and 
permeate volumes, respectively. Eq. VI.47 can be integrated using the following initial 
condition (Eq. VI.48) 

 
t = 0   →  C1(t) = C1 (0), C2(t) = C2 (0) (Eq. VI.48) 
 

and a mass balance equation of the electrolyte (Eq. VI.49) 
 

( ) ( ) ( ) ( )tCVtCV0CV0CV 22112211 +=+ , (Eq. VI.49) 
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thus giving Eq. VI.50 
 

( ) ( ) ( )

( ) ( )
t

V
1

V
1SQ

0C0C

tC
V
V10C

V
V0C

Ln
21

in
D

T,m
21

2
1

2
2

1

2
1

⎟
⎠
⎞

⎜
⎝
⎛ +−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

⎟
⎠
⎞

⎜
⎝
⎛ +−+  (Eq. VI.50) 

 

which can be simplified to Eq. VI.51 if V1 >> V2 
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For practical purposes, Eq. VI.50 can be rewritten to Eq. VI.52 through the definition of 
parameter Ψ = {[C1(0) + (V2/V1) C2(0) – (1+V2/V1) C2(0)]/[C1(0) – C2(0)]} 
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As an example, Figure VI.4 plots the representation of Ln(Ψ) vs. time for an experiment 
performed with N2 for UF membrane 1 (1 kD) according to Table VI.2. 

Figure VI.4: Plot of Ln(Ψ) vs. time for the diffusion of H+ (HCl) through membrane 1 (1 
kD), keeping both the feed and permeate solutions at I = 500 mM. The time lag (θ) for this 
experiment was 720 s. 
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Moreover, the thickness of the support, ℓS, can be also experimentally determined from 
the resistance RS,0 of the support and the time lag, θ [s], that is, the delay observed in the 
reception of the signal in the permeate volume. For plane sheet geometries, Eq. VI.53 is 
proposed (Crank, 2004) 

 

±±
=

ε
τ

=θ
D6

R
D6

S0,S

S

2
SS ll  [s]      →    

0,S
S R

D6 θ
= ±

l     [m]                            (Eq. VI.53) 

 
The thickness of the support allows to calculate the RS,0 ratio of the support by Eq. VI.54 
 

( )holesof.No
R 0,S

S

S

S l
=

τ
ε  (Eq. VI.54) 

 

On the other hand, the knowledge of resistance RS,0 and RS,2 of the support, the latter 
determined from Eq. VI.46, allows the determination of the mean pore size of the support, Sd  
[m], through the use of Eq. VI.54, which in its turn allows the calculation of the resistance RS,1 
of the support  

 

2,S

0,S
S

R
R

d =   [m]   →   S2,S1,S dRR =  [-] (Eq. VI.55) 

   

Great care was taken in all the experiments to avoid any effect of the ζ-potential on the 
pore walls both in the active layers and supports in the electrolyte diffusion. To this end, 
several experiments were performed at the same conditions, but changing the ionic strength, I 
[mM], at both the permeate and retentate volumes of the experimental set-up (see Figure 
III.16). Figure VI.5 plots the trend observed for the fitted values of RS,0 with the ionic strength 
for membrane 2 (1 kD). As can be seen, the fitted values of RS,0 tend to decrease with the ionic 
strength until a stable value ∼2.40 x 10-2 m beyond 500 mM. In light of this trend, all the non-
hindered electrolyte diffusion experiments were carried out at I = 500 mM. Furthermore, to 
assess that the results did not depend on the permeating electrolyte, some additional 
experiments were done with membrane 2 for the diffusion of LiOH and KOH instead of HCl, 
keeping the ionic strength at 500 mM, respectively, with LiCl and KCl, which revealed no 
dependence of the permeation behavior on the diffusing species. 

 
 

VI.1.3.3. Membrane characterization in terms of mean diameter 2,Md  and εS/τS 
 

Figure VI.6 shows the schematic representation of the procedure used for the 
determination of mean diameters 2,Md  of the active layers and εS / τS ratios of the supports for 
the set of commercial asymmetric membranes listed in Table VI.2. In general terms, the 
calculation  strategy consists  of two  steps: (1) Determination of the resistances RS,0, RS,1  and  
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Figure VI.5: Evolution of fitted values of RS,0 with the ionic strength (KCl) for HCl non-
hindered diffusion through membrane 2 (1 kD). The dashed line refers to the trend observed. 
 

 

Figure VI.6: Schematic representation of the procedure used for the determination of mean diameters 
dM,2 and εS / τS ratios for the characterization of the NF and MF asymmetric membranes listed in Table 
VI.2. 
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RS,2 related to the support, and (2) determination of the resistances RM,1 and RM,2 related to 
the active top layer. Subsequently, εS / τS ratios can be directly calculated using Eq. VI.54, 
while mean diameters 2,Md can be calculated using Eq. VI.26. The results obtained for some 
of the membranes listed in Table VI.2 are summarized in Table VI.3. As can be seen, as 
would be expected, the membranes with higher MWCO or mean pore sizes show higher 
computed 2,Md  mean diameters. Moreover, Figure VI.7 shows a linear trend in double 
logarithmic axes between the MWCO and 2,Md  mean diameters for the former membranes. 
 
 

Table VI.3: Commercial tubular asymmetric TiO2 membranes used in this study 

Membrane * 
MWCO 

 [kD] 
RM,2 

(1)  
x10-8 [m-1] 

RM,1 
(2)  

x10-3 [-] 
RS,0

 (3,4)   
x10-2 [m1] 2,Md  [nm] SS τε  [-] 

1 1 11772 ± 65 7.07 ± 0.97 1.91 ± 0.10 6.0 ± 0.8 0.16 ± 0.09 

3 8 1519 ± 7 1.83 ± 0.11 2.52 ± 0.13 12.0 ± 0.8 0.12 ± 0.01 

4 50 492 ± 6 1.82 ± 0.11 2.59 ± 0.12 37.0 ± 2.3 0.12 ± 0.01 

5 150 311 ± 1 1.65 ± 0.13 2.50 ± 0.05 52.4 ± 3.3 0.12 ± 0.03 

8 0.45 µm 4.72 ± 0.10 0.21 ± 0.01 2.10 ± 0.07 454 ± 27 (5) 0.15 ± 0.02 

10 0.80 µm 3.40 ± 0.21 1.33 ± 0.01 1.27 ± 0.01 875 ± 42 0.16 ± 0.01 

* Support: RS,2 = 4.03 x 109 m-1 for membranes 1-5 ( Sd  = 2.3 µm for  membranes 1-9) 
                 RS,2 = 3.13 x 109 m-1 for membranes 6 ( Sd  = 2.0 µm for membrane 10) 

(1) Determined from pure water permeability experiments 
(2) Determined from N2 permeance experiments 
(3) Determined from the non-hindered diffusion of HCl (I = 500 mM). DHCl = 5.14 x 10-9 m2 s-1 (Weast, 1998) 
(4) Time lag: θ = 650-780 s for membranes 1-8 and 480-600 s for membrane 10 
(5) RM,0 = 6.94 x 10-5 m calculated from Figure VI.3 (Eq. VI.46) →  computed d M,1 = 324 ± 20 nm  

 
 

It should be emphasized that diameters 1,Md might be also calculated if the resistance 
RM,0 is known. Unfortunately, as was aforementioned in sections VI.1.1.3.2.2 and VI.1.3.2.3, 
no significant data could be obtained for this resistance from water permeability and non-
hindered electrolyte diffusion experiments. However, for membrane 8 (theoretical mean pore 
size = 0.45 µm), this resistance could be estimated from the intercept of Eq. VI.46 (see Figure 
VI.3), which was used in the present study to provide a rough estimation of the ε (d) of the 
PSD of this membrane (see Figure VI.8). 
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Figure VI.7: Evolution of computed 2,Md  diameters with the MWCO for membranes 1, 3, 4 
and 5 (see Table VI.3). The straight line refers to the trend observed. 
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Figure VI.8: Normalized log-normal density function ε (d) computed from mean diameters d M,1 = 
324 ± 20 nm and dM,2 = 454 ± 27 nm calculated from experimental permeation data for membrane 
8 (theoretical mean pore size = 450 nm) (see Table VI.3) 
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VI.2. CHARACTERIZATION OF INTERCRYSTALLINE LARGE DEFECTS IN 
ZEOLITE NaA MEMBRANES FROM VPV MEASUREMENTS 

 
The general concepts put forward in section VI.1 for the determination of PSDs in 

porous asymmetric membranes are reconsidered in this section for the characterization of large 
defects (either meso- and macropores, fissures or cracks) in composite zeolite NaA 
membranes from VPV data. As was discussed in section IV.5, although a zeolite NaA 
membrane shows good selectivity towards the dehydration of ethanol/water mixtures, the 
presence of a certain number of large pores in the zeolite layers cannot be ruled out.  

 
In general terms, a zeolite NaA membrane is visualized as a system where a liquid 

mixture is put in contact with a zeolite thin layer grown onto a much thicker porous support. If 
both the feed (retentate) and the permeate volumes are considered to be well-mixed, mass 
transfer must be wholly ascribed to the membrane (zeolite layer + support). Furthermore, 
according to Nomura et al. (2001), on the grounds of its polycrystalline nature, the zeolite 
layer is viewed as an assembly of zeolite grains (see Figure VI.9) that might include two kinds 
of pores: (1) intracrystalline or zeolite pores, and (2) intercrystalline or non-zeolite pores. 
The former consist of subnanometric pores (mean pore size <1 nm) defined by the zeolitic 
crystalline lattice, while the latter might include grain boundaries in the borderline between 
adjacent zeolite single crystals, low intergrown regions, and large meso-and macropores or 
cracks in the zeolite layer due to, for instance, an inefficient synthesis process or due to 
thermal stress during the operation of the membrane. Intra- and intercrystalline pores might 
involve different pathways for mass transfer due to their different nature. Among 
intercrystalline pores, grain boundaries are usually regarded as a special kind of micropores, 
because they have pore sizes <1 nm. Both intracrystalline and grain boundaries are responsible 
for the high selectivities that zeolite membranes show towards the separation of different 
species on the basis of adsorption and surface diffusion differences. 

 
Nevertheless, if a number of intercrystalline large pores or low intergrown regions are 

present in the zeolite layer (i.e. the membrane is not defect-free), the membrane will lose 
partially its separation ability depending on the number of large pores and on their 
characteristics, because they are not able to distinguish between molecules of different sizes or 
physicochemical properties (in the remainder of this work, the term “intercrystalline porosity” 
will be used to account for the porosity related to large pores in a zeolite layer).  

 
Most of the studies reported in the literature concern the characterization of  

intercrystalline porosity by gas permeance measurements in MFI type membranes (e.g., 
Sanchez et al., 2001; and Hanebuth et al., 2005). This section is intended to show that relevant 
data concerning large pores can be also obtained from VPV experiments. An application is 
illustrated for several zeolite NaA membranes prepared in our laboratory. 
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Figure VI.9: Schematic representation of the intracrystalline and intercrystalline pathways for mass 
transfer in the zeolite layer. 
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VI.2.1. Modeling  
 

In analogy with the ideas put forward in section VI.1, large pores in a zeolite NaA layer 
are regarded as cylindrical and straight (τ = 1) capillaries. In the VPV process through large 
pores, the molecules in the liquid feed might be transferred to the vapor permeate side of the 
membrane by three main mechanisms: Knudsen diffusion, pressure-driven viscous flux and 
surface diffusion. For practical purposes, assuming that the PSD of large defects can be 
defined by a narrow unimodal  function, namely, all the pores are identical, the former two 
mechanisms, Knudsen diffusion and pressure-driven viscous flux, can be described, 
respectively, by Eqs. VI.6 and VI.7. Moreover, surface diffusion implies the diffusion of 
adsorbed molecules on the pore wall by skating across the surface to reach the other side. 
Because this latter mechanism is hard to confirm directly, it is usually inferred by comparing 
the flux observed with that expected from measurements with helium, which is believed never 
to undergo surface transport. 

 
An important point in the present description is to describe how the liquid feed 

evaporates before reaching the vapor permeate. Figure VI.10 illustrates the process. Because 
the mean pore size of the support used in the synthesis of zeolite NaA membranes is regarded 
to be much higher than that of defects in the zeolite layer (see Table III.1), the evaporation of 
the liquid is assumed to take place at position C within the latter at a certain distance, zL [m], 
comprised between the liquid feed and the zeolite layer – support surface (S) (see Figure 
VI.10) in the similar manner as that proposed by Abeles et al. (1991) for modeling capillary 
condensation. Moreover, the pressure at which the liquid evaporates, C

vP  [kPa], differs from 
the saturation vapor pressure in the bulk, oP [kPa], due to capillary forces according to the 
Kelvin equation (Eq. VI.56) 
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, (Eq. VI.56) 

 

where σ is the surface tension [N m-1], ρL is the liquid density [kg m-3], Cd  is the mean pore 
size of the capillary [m], and θ the contact angle between the liquid and the pore wall [º]. If the 
liquid wets the pore, θ < 90º and C

vP  < Po, the equilibrium vapor pressure in the pore is 
reduced below the saturation pressure. It should be noted that Eq. VI.56 is only valid for a 
pure species and for Cd >2 nm. For multicomponent systems, modified versions of the Kelvin 
equation can be found in the literature (Shapiro and Stenby, 1997). 
 

Furthermore, at interfacial equilibrium, a meniscus might be formed at position C due 
to capillary forces, which implies that the total pressure of the liquid and vapor at this position, 

C
vP  and C

LP , respectively, differ according to the Young-Laplace equation (Eq. VI.57) 
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In fact, the vapor side of the meniscus is regarded to lie under a non-equilibrium situation due 
to the sweeping action of vacuum, which might imply that the meniscus at position C tends to 
be flat (see Figure VI.10). For this particular situation, C

vP  → Po and C
LP  → C

vP . Moreover, 
in case of a multicomponent mixture, the Raoult Law can be applied at position C to relate  the  

 

 
Figure VI.10: Pressure gradient in the thickness of a composite zeolite NaA membrane (zeolite layer + 
support). The pore partially fills with a liquid (θ = 90º) as shown by the shaded blue region that 
evaporates at position C. The zeolite layer and support thickness are not scaled. 
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compositions of each species i at the liquid and vapor sides, xi
C and yi

C, respectively [-] (Eq. 
VI.58) 
 

 o
i,v

C
i

C
v

C
i

C
i,v PaPyP ==   [kPa], (Eq. VI.58) 

 

where ai
C = γi

C
 (xi

C,T) xi
C is the activity of species i at the liquid side at position C [-]. The 

activity coefficients, γi
C [-], can be calculated by the UNIFAC method. A next point in the 

present description involves the quantification of the overall mass transfer through the 
membrane, which includes the contributions of the partially liquid-filled volume in the 
capillaries (zone I), vapor volume in the capillaries (zone II) and the contribution of the 
macroporous support (zone III). 
 
 

VI.2.1.1. Zone I: Liquid-filled volume in the capillary 
  

The flux in the liquid-filled volume of the capillary, N V
I  [mol m-2 s-1], can be modeled 

as a pressure-driven viscous flux of the liquid for a liquid phase (Eq. VI.59) 
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where µL is the viscosity of the liquid [kg m-1 s-1], respectively, M  is the mean molar weight 
of the liquid feed in zone I [kg mol-1], εinter is the intercrystalline porosity [-], and zL is the 
length of the capillary filled with liquid [m] (see Figure VI.10). The quantity in square 
brackets in Eq. VI.59 can be regarded as a “viscous diffusivity”, DL [m2 s-1], although it is due 
solely to convective flow, which is defined by Eq. VI.60 
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It should be noted that the application of bulk density to a liquid condensed in a 
capillary is well supported by Morishige et al. (1998) and Tzevelekos et al. (1998). However, 
while the liquid viscosity in the pores is believed to be higher than the bulk viscosity due to 
the interaction between the monolayer adsorbed on the pore walls (Debye and Cleland, 1959), 
the correlation is significant only for small pores (2-3 nm) and is less than a factor of 2 
according to Abeles et al. (1991). Moreover, the pressure difference in zone I, ∆P [kPa], for 
the special case of θ=90º at position C (flat interface) is given by Eq. VI.61 
 

C
vo

C
Lo PPPPP −=−=∆  (Eq. VI.61) 

 

Moreover, because the viscous flux is non-selective ( i
C
i xx → ), where xi is the molar 

fraction of species i at the liquid side of the membrane [-], the total pressure at position C, C
vP , 
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can be approached to the vapor saturation pressure, Pv
o, at the temperature at which the 

experiments are carried out. 
 
 

VI.2.1.2. Zone II: Vapor-filled volume in the capillary 
 
The flux in the vapor filled portion of the capillaries, N Kn

II   [mol m-2 s-1], can be 
assumed to take place by Knudsen diffusion if the condition C

i,vP Cd  ≤0.01 Pa m for each 
species i is fulfilled. For a multicomponent system, because Knudsen diffusion is a selective 
process, the total flux is modeled by Eq. VI.62 
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   (Eq. VI.62) 

 

where ℓZA is the thickness of the zeolite layer [m] and C
i,vP  and S

i,vP  correspond, respectively, 
to the partial pressure of the species i at the liquid-vapor interface (C) and at the zeolite layer – 
support surface [kPa]. The Knudsen diffusivity, DKn,i [m2 s-1], of each species i zone II is 
accounted for by Eq. VI.63 (see Eq. VI.6) 
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VI.2.1.3. Zone III: Contribution of the macroporous support 
 

Because the permeate is kept under vacuum in the VPV experiments, mass transfer 
across the macropores of the support in zone III is also assumed to be by Knudsen diffusion as 
in zone II (the relation C

vP Sd <0.01 Pa m is fulfilled for Sd <2 mm and PS
v <10 kPa) 

according to Eq. VI.64 
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(Eq. VI.64) 
 
where εS, τS, ℓS and Sd  are, respectively, the porosity [-], tortuosity [-], thickness [m] and 
mean pore size of the support [m]. 
 
 

VI.2.1.4. Equation for overall mass transfer 
 

At steady state, the equalities N V
I  = N Kn

II  = N Kn
III  must hold. Given the equality N V

I  = 
N Kn

II , the unknown zL can be determined by combining Eqs. VI.59 and VI.62 
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Therefore, 
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The total flux measured in a VPV experiment includes the overall contribution of 
surface diffusion of adsorbed molecules, NS [mol m-2 s-1], which in its turn includes the 
contribution of (1) surface diffusion of molecules that skate across the surface of the 
capillaries to reach the other side and (2) surface diffusion across zeolite pores and grain 
boundaries. Although both contributions cannot be in principle distinguished, the latter is 
expected to govern the surface diffusion because of the higher number of zeolite pores and 
grain boundaries than defects in a zeolite layer. Therefore, the overall mass transfer in a VPV 
experiment is described by Eq. VI.68 
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The set of Eqs. VI.68 and VI.64 for the contribution of the macroporous support allow 
the characterization of large defects in a zeolite layer. For the particular case that the support 
does not exert any significant contribution to the overall mass transfer, that is S

iv,P  → Pv,i, Eq. 
VI.68 turns into Eq. VI.69 
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Eq. VI.70 allows the determination of mean pore sizes and intercrystalline porosities by 
representing NT vs. Po, namely, the presence of large defects in a zeolite layers should in 
principle involve a change in the total flux measured in a VPV experiment. Furthermore, 
according to Eq. VI.69, this dependence would be linear with a slope, λ [mol m-2 s-1 Pa-2], and 
intercept, ϕ [mol m-2 s-1 Pa-1], described, respectively, by Eqs. VI.70 and VI.71 
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(Eq. VI.71) 
 
From Eqs. VI.70 and VI.71, the mean size and the intercrystalline porosity can be determined 
by Eqs. VI.72 and VI.73 
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Finally, the likelihood that a defect is present in the layer can be calculated as the first moment 
of the PSD of the defects, <dC

1> [nm], according to Eq. VI.74 
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VI.2.2. Characterization of intercrystalline porosity in zeolite NaA membranes by VPV 
 

The general ideas pointed out in section VI.2.1 are used in this section for the 
characterization of intercrystalline porosity in for some inner-side tubular zeolite NaA 
membranes synthesized in this work (see chapter IV). The main characteristics of the 
membranes used in the present study are summarized in Table VI.4. Zeolite NaA membranes 
with different VPV performance towards the separation of ethanol/water mixtures were 
selected in order to assess differences in intercrystaline porosities in the zeolite NaA layers. 
 

For each membrane, a set of steady-state VPV experiments for the separation of an 
ethanol/water liquid mixture (8.05-9.16 wt.% water) at 323 K were carried out for the liquid 
feed pressure range 1-8 bar. The evolution of the total flux, NT [kg m-2 h-1], and the 
water/ethanol selectivity [-] with the feed pressure for the membranes listed in Table VI.4 is 
plotted in Figures VI.11 and VI.12. As can be seen in Figure VI.11, the total flux obtained in 
the VPV experiments  tends  to  increase  linearly  with  the  feed  pressure for all the 
membranes  tested  except  for the  latter, ZA6,  which  showed  no  dependence  on  the   feed  
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Table VI.4: Zeolite NaA membranes used in the present study. PV conditions: Xw= 8.05-9.16 
wt.% (xw = 0.18-0.20); T=323 K; Po =1-3 bar (100-300 kPa); Pv =1-3 mbar (100-300 Pa) 

Membrane Code 
(see Table IV.3) 

YW (perm.)  
[-]  

αW/E 
 [-] 

NT 
[kg m-2 h-1] 

ZA1 ZA-INN-02 0.1360 2 2.44 

ZA2 ZA-INN-CF -09 0.6642 20 0.51 

ZA3 ZA-INN-CF -05 0.9421 185 0.58 

ZA4 ZA-INN-CF-03 0.9811 294 0.36 

ZA5 ZA-INN-SC-18 0.9900 1084 0.47 

ZA6 ZA-INN-C-05 0.9984 8538 0.83 

 
 

pressure. The reproducibility of the experiments was excellent, since standard deviations 
lower than 5% and 10%, respectively, were obtained for both the total flux and the 
water/ethanol selectivity. The linear trends observed for the total flux with the feed pressure 
for most of the membranes reported in Table VI.4 sustain the idea that Eq. VI.69 is suitable 
for the characterization of the intercrystalline porosity of the tested membranes. It should be 
highlighted that the contribution of the support to the overall mass transfer computed from the 
total fluxes was lower than 1% for all the membranes for the range of experimental conditions 
tested, which also sustains the application of the set of Eqs. VI.72 and VI.73 to determine 
intercrystalline data. Moreover, Figure VI.12 reflects a decrease in the water/ethanol 
selectivity with the feed pressure, which might involve a higher role of large defects compared 
to surface diffusion in zeolite pores that might partially compensate the ability of the latter to 
discriminate water from ethanol. The contribution of surface diffusion through zeolite pores to 
the overall mass transfer at each feed pressure can be determined by assuming that ethanol is 
not transferred through zeolite pores, that is, all the ethanol present at the permeate of the 
membrane in a VPV experiment is ascribed to mass transfer through large pores.  

 
Moreover, mass transfer through large pores is assumed to be non-selective despite the 

slightly selective Knudsen diffusion contributions in zones II and III and vaporization at 
position C (see Figure VI.10). The surface diffusion flux, essentially related to water surface 
diffusion through zeolite pores, can be thus approached to Eq. VI.75 
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Figure VI.11: Total flux vs. feed pressure in the VPV of ethanol/water mixtures for the zeolite NaA 
membranes listed in Table VI.4. 
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Figure VI.12: Water/ethanol selectivity vs. feed pressure in the VPV of ethanol/water mixtures for 
the zeolite NaA membranes listed in Table VI.4. 
 

 
where Xi and Yi are the weight fractions [-] of species i at the feed and permeate sides of the 
membrane, respectively, and yi

C is the molar fraction of species i at position C (see Figure 
VI.10). Figure VI.13 shows the evolution of the surface diffusion flux determined by Eq. 
VI.75 with the feed pressure in the VPV experiments for the membranes listed in Table VI.4. 
 

From the trends observed in Figures VI.12-VI.13, the mean pore size and 
intercrystalline porosity can be determined by using Eqs. VI.72 and VI.73. Tables VI.5-VI.7 
summarize  relevant  physical  data,  and  the  data  corresponding  to  intercrystalline  porosity 
obtained from the present model. As can be seen in Table VI.7, the mean pore sizes computed 
for all the membranes are in the range 3.5-17.6 nm, which lie in the mesopore range (2-50 
nm), while the intercrystalline porosity shows higher values for the membranes with lower 
water/ethanol selectivities. Figure VI.14 shows the evolution of the likelihood of defects with 
the water/ethanol selectivity in a double-log plot. As can be seen, the selectivity tends to be 
strongly reduced with the likelihood of defects. For practical purposes, the empirical equation 
VI.76 allows to estimate the likelihood of defects given the water/ethanol selectivity of an as-
synthesized inner-side tubular zeolite NaA membranes with the experimental protocols 
described in chapter IV 
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[ ] [ ]( )[ ]076.0nmdLn94.0Exp 1
CE/w −〉〈−=−α , (Eq. VI.76) 

 
where αw/E is the water/ethanol selectivity [-]. 

 

 
Figure VI.13: Evolution of the surface diffusion flux with the feed pressure in the VPV of 
ethanol/water mixtures for the zeolite NaA membranes listed in Table VI.2. 
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Parameter * Range 

M  x103 [kg mol-1] 40.53 – 41.03 

ρL [kg m-3] 768.2 – 771.6 

V  x103 [mol m -3] 1.85 – 1.90 

µL  x104 [kg m-1 s-1] 7.04 – 7.11 

Po [kPa] 27.5 
  

   * Data for a water/ethanol mixture at 323 K (from 
Weast, 1971) 
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Table VI.6: Data used in the computations. VPV conditions as in Table VI.5 

 ZA1 ZA2 ZA3 ZA4 ZA5 ZA6 

λ (EXP) x103  
[kg m-2 h-1 bar-1] (1) 803.2 ± 28.7 13.7 ± 3.6 18.3 ± 1.0 7.9 ± 1.2 8.1 ± 3.0 3.22 ± 1.5 

λ (EXP) x109 
[mol m-2 s-1 Pa-1] 

53.8 11.6 1.22 0.522 0.345 0.0594 

ϕ (EXP) x102  
[kg m-2 h-1] (1) 

144.4 ± 13.5 58.0 ± 7.3 58.7 ± 0.9 34.0 ± 4.8 47.8 ± 1.4 78.3 ± 5.4 

ϕ (EXP) x104  
[mol m-2 s-1] 

81.1 6.51 1.06 79.5 0.439 0.0936 

SN   
[kg m-2 h-1] (2) 

0.24 ± 0.03 0.38 ± 
0.02 

0.59 ± 
0.01 0.35 ± 0.02 0.49 ± 

0.03 
0.79 ± 
0.04 

ZAl  [µm] (3) 50 30 35 30 35 7 

DL  x1011 [m-2 s-1] 723 932 9.85 4.26 2.78 0.479 

1 From Figure VI.6 (Confidence interval for probability level of 95%) 
2 From Figure VI.8 
3 From SEM analysis 
 

 
Table VI.7: Results for the calculations with the proposed model for input data in Table VI.6 

Variable ZA1 ZA2 ZA3 ZA4 ZA5 ZA6 

Cd  [nm] 1 9.7 ± 4.0 17.6 ± 13.9 15.1 ± 8.0 9.7 ± 3.0  15.9 ± 7.1 3.5 ± 1.6 

εinter x104 [-] 1 346 ± 73 9.8 ± 6.3 1.9 ± 0.8 2.0 ± 1.0 0.76 ± 0.2 0.14 ± 0.07 

< 1
Cd > x104 [nm] 3356 ± 71 188 ± 11 29.3 ± 1.3 19.7 ± 9.5 12.2 ± 2.7 0.49 ± 0.31 

DKn,W x1010 [m2 s-1] 687 41.4 6.03 4.04 2.28 0.478 

DKn,E x1010 [m2 s-1] 430 25.9 3.77 2.53 1.42 0.299 

C
w,vP  [kPa]2  5.04 5.27 4.93 5.00 5.43 4.45 

C
E,vP  [kPa]2 22.4 22.2 22.6 22.5 22.1 23.0 

zL [-]2 0.29 0.47 0.39 0.29 0.32 0.29 
V
IN  x104  

[mol m-2 s-1]2 
136 18.2 2.30 1.33 0.788 0.0154 

Kn
IIN  x104  

[mol m-2 s-1]2 
136 18.2 2.30 1.33 0.788 0.0154 

1 Confidence interval for probability level of 95% 
2 Computed at Po=1.0 bar 
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Figure VI.14: Evolution of the water ethanol selectivity with the likelihood of defects in the VPV 
of ethanol/water mixtures for the zeolite NaA membranes listed in Table VI.4. 
 

 
VI.3. DISCUSSION AND FINAL REMARKS 
 

In section VI.1, a mathematical model has been presented and experimentally validated 
to predict pore size distributions (PSDs) in meso- and macroporous asymmetric membranes 
for MF, UF and NF applications by using moment theory. The input data supplied to the 
model consist of three independent permeation experiments: (1) single gas diffusion 
permeance at low pressure, (2) pure liquid permeability, and (3) non-hindered diffusion of a 
species (e.g. an electrolyte). The latter experiment only provides data related to the support 
because of the higher contribution to the overall mass transfer for these experiments. Due to 
these strong limitations, for UF and NF membranes, only the mean diameter 2,Md  and the 
porosity of the support, εS / τS, can be experimentally determined. The great advantage of the 
method relies on the possibility to characterize membranes in terms of their permeation 
behavior instead of the traditional characterization by molecular weight cutoff values 
(MWCO). Moreover, the method allows to overcome the shortcomings related to low sample 
representativity of microscopic techniques (e.g., SEM, TEM, FESEM and AFM) and also 
allows to distinguish between dead-end pores and active pores to permeation, which cannot be 
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usually distinguished by techniques such as permporometry and mercury porosimetry. On the 
other hand, compared to the latter two techniques, the method does not involve the use of the 
Kelvin equation, which shows a strong limitation for pores <5-10 nm. Therefore, pores in this 
range and even lower, in the nearby of the micropore range (2-10 nm) can be also in principle 
subjected to characterization by the present method. 
 

The present method has been extended in section VI.2 to characterize large defects in 
zeolite NaA layers in the meso- and macroporous range from a collection of VPV experiments 
performed for the separation of ethanol/water mixtures at feed (retentate) pressures in the 
range 1-8 bar. Structural information concerning large pores in zeolite NaA layers can be 
obtained from the intercept and slope of the curve that describes the evolution of the total flux 
permeated through a zeolite NaA membrane with the liquid feed pressure. In light of the 
results presented in this section, the zeolite NaA membranes synthesized in our laboratory lose 
partially their separation ability to dehydrate ethanol/water liquid mixtures for intercrystalline 
porosities >10-3 [-]. Moreover, although a zeolite membrane shows good PV performance 
towards the dehydration of organic mixtures, the presence of a small number of meso- and 
macroporous defects in the zeolite layer cannot be ruled out, which might cause a reduction of 
the selectivity of the membranes. 


