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APPENDIX A 
 

DETERMINATION OF MOLAR ADSORPTION LOADINGS FROM 
EXPERIMENTAL BREAKTHROUGH CURVES 

 
 

The procedure to determine the total amount of a generic species i (water or ethanol) 
retained per kg of zeolite A from a normalized adsorption breakthrough curve is explained in 
detail below. The calculation process is illustrated for a experiment carried out at 1.48 kPa 
water vapor pressure, 393 K and ∼3 hours of experiment (see Figure A.1). In general terms, 
the procedure consists of the calculation of the difference between the amount of species i 
(pure water in the example) that is fed to the reactor and the amount that is not retained during 
the experimental time, both of which can be evaluated, respectively, from normalized blank 
and adsorption breakthrough curves, as follows: 

 
1. Calculation of the amount of species i that is not retained in the bed during the 

experimental time. As the ordinate of the adsorption breakthrough curve corresponds to 
the ratio between the signals of species i at the outlet and inlet of the reactor measured 
by the mass spectrometer, ( o

ii PP  [-]), the amount of species i that is not retained 
during a given time t (∼3 hours in the example) is given by Eq. A.1 
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where Aads,i [s-1] corresponds to the area drawn by the normalized adsorption 
breakthrough curve until time t, φv [NmL min-1] is the total volumetric flow of the 
feeding stream, PT is the total pressure [kPa], mZA [mg] is the weight of zeolite A 
loaded to the bed, and ∆mZA [mg] is the decrease in weight of the zeolite sample due 
to outgassing (16-18% mZA). 
 

2. Calculation of the amount of species i fed to the reactor during the period t. This value 
can be obtained in an analogous way but considering the blank experimental 
breakthrough curve obtained at the same conditions: 
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where Abl,i [s-1] corresponds to the area drawn by the normalized blank breakthrough 
curve until time t. 
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3. Calculation of the molar loading of species i, that is, the amount retained per kg of 
zeolite A. 
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 (Eq. A.3) 

 

Figure A.1. Blank and adsorption normalized breakthrough curves obtained at 1460 Pa 
H2O, 393 K during ∼3 hours.  

 
 

Substituting Eqs. A.1-A.2 in Eq. A.3 and rearranging yields Eq. A.4: 
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For the experiment shown in Figure A.1, the equilibrium molar loading of water, qw (t → ∞) 
was: 
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APPENDIX B 
 

PROGRAM TO SIMULATE A ZEOLITE MEMBRANE REACTOR 
 
 

The aim of the program is to simulate a tubular PV zeolite NaA membrane reactor to 
carry out the liquid-phase etherification reaction of 1-pentanol to DNPE catalyzed by a 
sulfonated resin. Before the simulation, the set of equations to model the PV membrane reactor 
(Eqs. V.3 and V.4 and boundary conditions) have been modified by substituting the axial 
coordinate z [m] by the corresponding dimensionless variable η defined as: 

 

bL
z

=η   [-] (Eq. B1) 

 

The resulting equation for the microscopic mass balance is given by Eqs. B2 and B3 
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where R
iw and P

iw  are molar flows of species i, respectively, at the retentate and permeate 
sides of the membrane tubes. The set of Eqs. B2 and B3 have been numerically solved through 
the finite element method as it is explained below. The position coordinates have been 
discretized by approximating the derivatives 
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where k: axial position index (k = 1,…,m) and ∆η = 1/m. Eqs. B2 and B3 can be thus 
rewritten as  Eqs. B6 and B7, respectively 
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where the molar fractions for axial position k at the retentate and permeate sides of the 
membranes can be calculated, respectively, by Eqs. B8 and B9 
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It should be noted that the sign of ri
k is (-) for reactants (1-pentanol) and (+) for products 

(water, DNPE, pentenes and other ethers). Finally, the related boundary conditions and the 
pressure drop through the bed (lumen of the tubes), ∆Pk [kPa], can be calculated as follows 
 

η = 0 (k=0)  →  o,R
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i ==  (Eq. B.10) 

 

( ) η∆−=−=∆ kPPPPP mokok  (Eq. B.11) 
 

Equations B6-B10 are solved to calculate each k point. The molar fractions profiles are 
calculated slab-wise, that is, the value of axial position k is varied from 1 to m. At each 
position k, the composition of each species i is calculated iteratively according to the scheme 
shown in Figure B.1. 
 

 
Figure B.1: Schematic representation of the procedure to simulate each finite position k of the PV 
zeolite membrane reactor. For the simulation of a fixed-bed reactor, Ni=0. 
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APPENDIX C 
 

DETERMINATION OF ACTIVITY COEFFICIENTS OF A MIXTURE OF 
ADSORBED SPECIES 

 
 

Like for vapor-liquid equilibrium (VLE), ideal solution behavior is seldom, because of 
the interactions between the adsorbed molecules and the adsorbed molecules with the  
solidsurface. To predict non-ideal mixture adsorption equilibria following the set of Eqs. 
VII.24, adsorbate activity coefficients, γi

 (Φ) [-], have to be taken into account. As usual, the 
activity coefficient of the species i must approach unity for xi → 1 the infinite dilution value, 
γi

∞ (Φ), as the composition of this species approaches zero for xi → 0. 
 
The behavior for a mixture can be predicted if the coefficient γi

∞ (Φ) is known. In fact, 
according to Sakuth et al. (1998), the coefficient γi

∞ (Φ) can be experimentally determined 
from unary adsorption isotherm data only. Such a procedure involves two simplifications: 

 
1. The adsorbate mole fractions of species 1 and 2 at x1 → 0 and x2 → 0 can be 

calculated, respectively, by using Eqs. C.1 and C.2 
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where the desired loadings of species 2 and 1 at the limitations x1 → 0 and x2 → 0 are 
realized in the case of the adsorption isotherm for the pure species. 
 

2. The values of q1 (at x1 → 0) and q2 (at x2 → 0) can be approximated, respectively, by 
the Henry coefficient, Hei [mol kg-1 kPa-1], of the pure species: 

 
( )

Ti

i

0iP
i

P
qlimHe ⎥⎦

⎤
⎢⎣
⎡ Φ

=
→

      (Eq. C.3) 

 

Taking into account both simplifications, the dilution activity coefficients of species 1 
and 2, ( )Φγ∞

1  and ( )Φγ∞
2 , can be obtained, respectively, by Eqs. C.4 
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For the special case that the unary adsorption of each species can be described by the 
single-site Langmuir isotherm, Eqs. C.4 are transformed into Eqs. C.5 

 

( )
( ) ( )PK1LnPK1

PK

11

1
1

++
=Φγ∞   and  ( )

( ) ( )PK1LnPK1
PK

22

2
2

++
=Φγ∞  (Eqs. C.5) 

 

As can be seen, the dilution activity coefficients of species 1 and 2 depend on the pressure of 
the gas or vapor phase and on the corresponding adsorption constant, but do not depend on 
saturation loadings. 
 

On the other hand, using suitable gE -models for the activity coefficient, the binary 
interaction parameters of the model can be calculated. In this work, the two-parameter Van 
Laar model (Reid et al., 1987), widely used to predict the non-ideal behavior of binary 
mixtures, is chosen for simplicity. According to this model, the activity coefficients of species 
1 and 2 can be estimated by Eqs. C.6 
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where parameters A12 and A21 can be estimated from dilution activity coefficients by Eqs. C.7 
 

( )[ ]Φγ= ∞
112 RTLnA   and  ( )[ ]Φγ= ∞

221 RTLnA , (Eq. C.7) 
 
It should be stressed that the calculated activity coefficients of both species in the 

adsorbate with the Van Laar model are different from the values that can be obtained in the 
calculation of the VLE because of the effect of the surface potential of the solid surface, which 
is reflected in the values of the dilution activity coefficients. Moreover, these coefficients are 
always ≤1, which imply negative deviations from the Raoult’s Law. 

 
Figures C.1 and C.2 show the simulation trends of the activity coefficients in the 

adsorbate of species 1 (K1 = 7.50 kPa) and 2 (K2 = 0.75 kPa), that is K1 : K2 = 10 : 1, in a 
binary mixture with the composition of the former at a given vapor pressure and with the 
vapor pressure for a given composition, respectively. As can be seen in Figure VII.7, the 
activity coefficient of each species tends to increase with its molar composition from its 
dilution value to 1. Furthermore, Figure C.2 shows a decrease of the activity coefficients of 
both species with the vapor pressure, since the dilution activity coefficients of both species 
decrease with pressure by Eqs. C.5. 
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Figure C.1: Simulated trends of the activity coefficients of species 1 (squares) and 2 (cycles) in 
the adsorbate with the molar composition of species 1. Input data: K1 = 7.50 kPa-1, K2 = 0.75 kPa-

1, T = 333 K, P = 10 kPa, ( )Φγ∞
1  = 0.4107, ( )Φγ∞

2  = 0.2272. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure C.2: Simulated trends of the activity coefficients of species 1 (squares) and 2 (cycles) in 
the adsorbate with the vapor pressure. Input data: K1 = 7.50 kPa-1, K2 = 0.75 kPa-1, T = 333 K, x1 
= 0.30. 
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APPENDIX D 
 

FITTINGS OF N2 ADSORPTION ISOTHERMS AT 77K TO THE TPI  
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APPENDIX E 
 

ESTIMATION OF EXTERNAL MASS TRANSFER COEFFICIENTS (kG) 
 
 
E.1. Estimation of molecular diffusivities of water vapor (Dw-m) 

 
The estimation of the molecular diffusivities of a dilute species i in a multicomponent 

gas mixture, Di-m [m2 s-1], can be reduced to the estimation of binary diffusivities, Dij, where j 
corresponds to the other species present in the mixture. For the special case of water vapor in 
the adsorption kinetics experiments described in chapter VIII, because its partial pressures are 
very low compared to that of the carrier gas (N2) (0.1-3 kPa << ∼101.3 kPa), the molecular 
diffusivity of water in the gas mixture can be approached by Eq. E.1 (Reid et al.1987):   

 

2Nimi DD −− ≈  (Eq. E.1) 
 

The binary diffusivities, Dij, can be estimated by the Chapman- Enskog equation. For an ideal 
gas, this equation is reduced Eq. E.2 (Levine, 1991): 
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T00266.0
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= ,  (Eq. E.2) 

 

where σij is the characteristic Lennard-Jones length [Å], ΩD is the diffusion collision integral 
[-], and T and P are the temperature [K] and pressure [atm], respectively. Equation (E.2) is 
suitable for dilute gases at low pressures consisting of non-polar spherical molecules with 
molecular weight that do not differ significantly. However, because water is a polar molecule, 
Eq. E.2 is in principle inappropriate to estimate its molecular diffusivity. Brokaw suggested an 
alternative method, where Eq. E.2 is still used, but with a re-estimation of both where ΩD and 
σij. Firstly, ΩD is estimated from a modification of the Neufield equation, which is given by 
Eq. E.3 
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A δ
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where A,…,H are constant parameters with values A=1.06036, B=0.15610 C=0.19300, 
D=0.47635, E=1.03587, F=1.52996, G=1.76474 and H=3.89411, and T* is the so-called 
characteristic temperature given by Eq. E.4 
 

ij

B TkT* 
ε

= , (Eq. E.4) 
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where εij is the characteristic Lennard-Jones energy and kB is the Boltzmann’s constant. The 
parameters εij, δij, and σij can be estimated, respectively, from the geometric mean of the pure 
parameter values εi, δi, and σi, respectively, defined by Eqs. E.5-E.7 
 

bb

2
D

3

i TV
10·94.1 µ

=δ ,   
ib

2
i

B

i T)3.11(18.1
k

δ+=
ε ,  

3/1

2
i

b
i 3.11

V585.1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

δ+
=σ    (Eqs. E.5-E.7) 

 

where µD, bV  and Tb are, respectively, the dipole moment, liquid molar volume at boiling 
point [cm3 mol-1] and normal boiling point [K] of the pure species i. All these data are shown 
in the Table E.1. Furthermore, Table E.2 shows the calculated values for the Dw-N2 binary 
diffusivity for the temperature range 305-423 K.  
 

 
Table E.1: Parameters of the pure species used to 
estimate Dw-N2 by the Brokaw’s method 

Parameter N2 H2O 

µD [D]* 0.0 1.8 

Vb [cm3 mol-1]** 31.2 18.9 

Tb [K]* 77.35 373.15 

* Reid et al. (1996)    
** Perry (1973) 

 
 

Table E.2: Dw-N2 diffusivities estimated 
by the Brokaw’s method 

T [K] Dw-N2  x105  [m2  s-1]  

305 2.14 
363 3.01 
423 4.04 

 
 
E.2. Determination of the EMT coefficients (kG) 

 
Different empirical correlations are available in the literature for fixed-bed reactors that 

can be used for the determination of kG coefficients. These correlations are presented in terms 
of the dimensionless numbers of Sherwood ( ShN ), Schmidt ( ScN ), Rep or Re  and the “j” 
factor of Colburn (jD [-]), which are defined, respectively, as follows:  
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D

NRe
Nj =    (Eqs. E.8-E.11) 
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For the special case of low Rep values (<0.01) and high bed porosities (>0.60), the Nelson and 
Galloway method is proposed (Doraiswamy and Sharma, 1984) to estimate kg coefficients 
from Eqs. E.8-E.11 
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where 
( )
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1
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⎥
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⎤

⎢
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⎣
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=ξ   with α ≈ 0.6 

 

It should be noted that Eq. E.12 tends to Eqs. E.13 and E.14 for the following special cases: 
 

1. εb → 1: A relationship similar to that presented for a single sphere by Frossling (1938) 
and Ranz (1952) (see Doraiswamy and Sharma, 1984) is obtained (Eq. E.13) 

 
( ) 3/12/1
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 (Eq. E.13) 

 

2. Rep → 0: The limiting value of the Sherwood number at Rep → 0 is described by Eq. 
E.14 
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 (Eq. E.14) 

 

Table E.3 shows the estimated values of kg coefficients at the temperature range 305- 423 K. 
 
 
Table E.3: EMT coefficients for water vapor, kG, estimated by the three empirical correlations. 

T [K] NSc  [-] Rep  [-] Re [-] ξ [-] NSh [-] kG [cm s-1] 

305 0.63 1.15E-02 2.87E-02 9.83E-03 7.58E-04 0.78 
363 0.53 1.15E-02 2.87E-02 9.30E-03 6.78E-04 0.98 
423 0.46 1.15E-02 2.87E-02 8.87E-03 6.16E-04 1.20 
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PROGRAM FOR THE DETERMINATION OF MS  SURFACE DIFFUSIVITIES 

FROM UNARY ADSORPTION KINETICS 
 
 
The aim of the program is to find the surface diffusivity of water and ethanol on zeolite A 
powder for both weak and strong confinements (see chapter VIII.1) from unary adsorption 
kinetic data obtained both in the microbalance and from breakthrough curve analysis in the 
differential packed bed equipped with mass spectroscopy  analysis. The program also allows 
the statistical analysis of the fittings. 

 
 

F.1. Determination of MS surface diffusivities at zero coverage  
 
F.1.1. Profile of fractional loading in a spherical particle 
 
Microscopic mass balance in spherical coordinates (Eq. F.1 or VIII.1) 
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θ
∂
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θ∂

r
Ðr

rr
1

t
2

2
, (Eq. F.1) 

 

where θ is the fractional loading or surface coverage at each position of the particle (0 ≤ θ ≤ 1) 
[-], R is the radius of the particle [m], r is the distance from the center of the particle (0 ≤ r ≤ 
R), Đ is the surface diffusivity of the species that is transferred from the outside to the inside 
of the particle [m2 s-1], and t is the elapsed time [s]. Eq. F.1 is solved with the set of boundary 
and initial conditions (Eqs. F.2-F.4 or VIII.2-VIII.4) and through discretization using the 
Crank-Nicholson method. 
 
 
Boundary conditions: 
 

1)  ∀t,  r = 0   →  0
t 0r

=
∂
θ∂

=

 (Eq. F.2) 

 

2)  ∀t,  r = R   →  
eqθ=θ  (Eq. F.3) 

 
 
Initial conditions: 
 
3)  t = 0,  r ≠ R   →  0=θ  (Eq. F.4) 

     t = 0,  r = R   →  
eqθ=θ  
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        F.1.2. Discretization: Crank-Nicholson method 
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F.1.3. Mean fractional loading of a particle of radius R (θ ) 
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F.1.4. Mean fractional loading of a bed of particles of radius Ri ( θ ) 
 

( )

( )

( )

( )

( )

( )∫
∫

∫
∫

∫
∫

∞+

∞−

+∞

∞−
∞+

∞−

+∞

∞−
∞+

∞−

+∞

∞−

δν

δθν
=

δπν

δπθν
=

δν

δθν
=θ

RRR

RRR

RR4R

RR4R

VR

VR

2

2

2

2
 (Eq. F.6) 

 

where Ri is the radius of a particle of radius i [m], νi and iθ  are, respectively, the relative 
frequency [-] and the mean loading [-] of the particle of radius Ri according to Figure VII.2 
and θ  is the loading [-] of the bed of particles. 
 
 
F.1.5. Optimization of parameter ĐS(0)  
 
Parameter ĐS(0) is optimized for each model diffusivity (see Eqs. VIII.7 and VIII.8) by 
minimizing the sum of squares of mean fractional loading of the bed by comparing 
experimental with predicted fractional loading data. The fractional loading is calculated slab-
wise, that is, the value of axial position j is varied from 1 to m for each time i according to the 
scheme shown in Figure F.1. Moreover, Figure F.2 shows a scheme of the program used for 
carrying out the fittings of experimental data to the model. 
 
 
F.2. Estimation of confidence intervals for fitted parameters for non-linear models 
(Himmelblau, 1970). 

 
The individual confidence interval for each parameter iδ  of a nonlinear model for a 

significance level α  can be estimated by the following equation: 
 

5.0
iiY2/1ii CStd iα−±=δ ;   (Eq. F.7) 

 
where id is the estimated value of the parameter iδ , t  is the Student-t used in the t-test, 2

Yi
S  is 

the estimated variance of iY , which is the sample average of observed Y ´s at ix  points, and 
iiC  is the value of the diagonal of the matrix C, given by: 

 
( ) 1T XXC −

×=  (Eq. F.8) 
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Figure F.1: Schematic representation of the procedure to fit ĐS(0) parameters for both water and ethanol 
adsorption on zeolite NaA powder. 
 
 
where X  is an ( )mn ×  matrix defined as: 
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with    i: experimental point index  i: 1,..., n 
           j: fitting parameter index  j: 1,..., m 
 

where ( )ii xη  is the nonlinear model evaluated at the ix  point. The application of this 
method to determine the confidence intervals of the m=1 parameter of the model fitted to the 
adsorption kinetics of water and ethanol at 1-3 h leads to a (n x 1) matrix, where n is the 
number of experimental points of each curve. The function ( )ii xη  corresponds to the fitted 
adsorption kinetic curve. An estimation of the partial derivates to obtain [ ]ijX  has been 
performed by varying ±1% each id  parameter while the rest are constant. These variations 
have been found satisfactory as the same results were obtained for variations  in  the  range  of  
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Figure E.2 Screen of the program used to optimize surface diffusivities. (1) Input file for 
experimental kinetic adsorption data, (2) Input file for particle size distribution, (3) Output file 
for fractional loading profile within the particle, (4) Surface diffusivity model, (5) Initial value 
for surface diffusivity at zero fractional loading, (6) Number of radial and time finite elements, 
(7) Number of finite elements of the packed bed, (8) Optimized surface diffusivity at zero 
fractional loading, (9) Previous plot of experimental data, (10) Fitting. 

 
 

± 0.1-5% of each parameter id . The value of t1-α/2 was taken as 1.96, for an infinite number of 
degrees of freedom with a 95% confidence interval. The variance 

iYS  was estimated by the 
following expression: 
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where  S2

r and  S2
e are, respectively, the residual and error mean squares, which are defined 

by the following equations: 
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where j,iY  is the jth observation of Y at ix , 
∧

iY is the estimated value at ix , pi is the number 
of replicate measurements (in case that no replicate values are available, pi takes the value 1) 
and n is the number of data points. 
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APPENDIX G 
 

PROGRAM FOR THE DETERMINATION OF ALPHA COEFFICIENTS IN 
EQS. VIII.66 AND VIII.67 

 
 

The aim of the program is find the alpha coefficients in Eqs. VIII.66 and VIII.67 that 
allow the determination of surface diffusivities of water and ethanol from steady-state PV data 
obtained in zeolite NaA membranes. 

 
 

Partial pressure profile of species i across a zeolite NaA layer 
 
Microscopic mass balance for species i in Cartesian coordinates: 
 

( ) i
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i P
qfq

qP
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δη
δ , (Eq. G.1) 

 

where Pi is the partial pressure [kPa], ZAz l=η is the dimensionless position within the 
zeolite NaA layer thickness [-], qi is the molar loading [mol kg-1], f(qT) the function of the 
total loading related to surface diffusivity, and αi the alpha-parameter to be optimized. Eq. G.1 
can be numerically solved as it is explained below. The coordinates have been discretized by 
approximating the derivative in Eq. G.1 to finite differences as it is explained below 
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where k: position index (k = 1,…,m) and ∆η = 1/m. Eq. G.1 can be thus rewritten as  Eq. G.3 
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Eq. G.3 is solved to calculate the k point for a set of initial values of the alpha-parameters. The 
partial pressures are calculated slab-wise, that is, the value of axial position k is varied from 1 
to m. At each position k, the composition of each species i is calculated iteratively according 
to the scheme shown in Figure G.1. The set of alpha parameters are optimized by the least-
square method using the Levenberg-Marquardt algorithm. Finally, Figure G.2 shows a scheme 
of the program used for carrying out the fittings of experimental data to the model. 
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Figure G.1: Schematic representation of the procedure to determine alpha parameters that characterize 
the PV of both water and ethanol through a zeolite NaA membrane. 
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Figure G.2 Screen of the program used to optimize surface diffusivities from 
VPV data in zeolite NaA membranes using the PRAST approach. (1) Parameters 
of the Van Laar model [-], (2) Adsorption constants [mmHg-1], (3) Molar 
saturation loadings [mol kg-1], (4) Input data for partial pressures in the 
feed/membrane surface, (5) Input data for partial pressures in the 
membrane/permeate surface, (6) Number of finite elements in the thickness of the  
zeolite NaA layer, (7) Initial values for dimensionless surface fluxes, (8) Surface 
diffusivity model, (9) Optimized dimensionless surface fluxes. 
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