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Chapter 1

Introduction

In the early XXI century a connectivist approach to Machine Learning (ML) gained

scientific attention, where data is interpreted as a set of highly interconnected elements

composing a network. While Data Mining (DM) and ML had traditionally focused

on intra-entity patterns for knowledge discovery (i.e., instances and their attributes),

this new trend focused on inter-entity patters for that same purpose (i.e., entity-entity

relations). The change of perspective from individuals to communities, revealed a set

of problems closely related with the concept of network that had not been successfully

solved so far. For example, discovering communities of interconnected entities, finding

new relations among entities, or determining the role and relevance of entities within a

community. These are all problems fitting this new learning paradigm.

The community-based approach to learning has been adopted by numerous branches

of science and has received equally numerous names. Graph-based data mining (Holder

and Cook, 2009; Washio and Motoda, 2003), Statistical Relational Learning (Getoor

and Taskar, 2007; Nickel et al., 2011), Link Mining (Getoor and Diehl, 2005; Lü and

Zhou, 2011), Network or Link Analysis (Guimerà and Sales-Pardo, 2009; Mantrach

et al., 2010), Network Science (Lichtenwalter et al., 2010) or Structural Mining (Cook

et al., 2001) are all names used to define knowledge discovery tools based on the same

basic precept: exploiting structural properties of high-dimensional, inter-connected

data sets to learn from the relational patterns of its entities. For the sake of simplicity

from now on we refer to these methods using the general term graph mining.

Not by chance, the popularization of graph mining came hand-in-hand with the

explosion of the Internet. As the web graph, social networks and other large digitalized
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1. INTRODUCTION

data sets became available, ML and DM researchers realized there was a lack of tools

specifically designed for exploiting information represented as a network of intercon-

nected entities. Many different problems and algorithms have been proposed since then

(as we will review in §2), and what is more important, many different applications have

been found, making of graph mining a hot topic nowadays. Life sciences (Airoldi et al.,

2006; Guimera and Amaral, 2005; Von-Mering et al., 2002), sociology and social net-

works (Adamic and Adar, 2003; Murata and Moriyasu, 2008; Watanabe and Suzumura,

2013), collaboration analysis (Aggarwal et al., 2013; Lü and Zhou, 2011; Tylenda et al.,

2009), business and product recommendation (Burke, 2002; Huang et al., 2005), and

even law enforcement and anti-terrorism (Al Hasan et al., 2006; Clauset et al., 2008;

Krebs, 2002) are examples of domains to which graph mining has been recently applied.

A frequent feature of graph-based data sets is their large size. In traditional

attribute-based data representations each specific instance may include a large amount

of information by itself through the definition of features. This allows attribute-based

DM and ML methods to achieve successful learning even when data sets are composed

by a relatively small number of instances. Topology-based mining on the other hand

typically focuses on the existence of relations among entities, and rarely exploits many

(if any) internal attributes of either the entities or their relations. Hence, graph mining

algorithms tend to require graphs with many vertices and edges to achieve learning,

as only networks with complex topologies can express complex domains. The coming

of the digitalization age has helped in that regard, making available huge amounts of

information in what is popularly known as the Big Data. However, given their pref-

erence for large data sets, graph mining algorithms are particularly affected by the

computational problems and limitations arising from processing huge amounts of data.

In graph mining, knowledge emerges from the combination and interaction of mul-

tiple entities. Nevertheless, the patterns discovered by graph mining methods are in

most cases local to some degree (i.e., they refer to a subset of the whole graph topol-

ogy). Discovered knowledge referring to the whole graph is either too abstract or too

imprecise as to be useful, and is rarely sought. Instead, graph mining leans towards the

distributed analysis of sub-parts of the graph, to discover partially local models. When

dealing with huge data sets 1, this scaled approach becomes a key advantage as it allows

graph mining tasks to be efficiently parallelized. In an analogous decentralizing process,

1Today huge is a fuzzy concept ranging from several gigabytes to petabytes of data
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1.1 Scope of this Thesis

High Performance Computing (HPC) is partly focused on parallelization through task

distribution on multiple autonomous computing units (e.g., current supercomputers).

This synergy between graph mining and HPC on how problems are tackled benefits

both sides, as graph mining can aim at processing large scale graphs through HPC, and

HPC finds in graph mining a field of application for its infrastructure and tools. In that

regard, given the vast and rich knowledge sources available from graph mining, and the

potential benefits graph mining can produce, we expect high performance graph mining

to become a hot topic in the near future.

1.1 Scope of this Thesis

In this thesis we focus on a graph mining task known as Link Prediction (LP) when

applied to directed graphs. The goal of LP is to discover new edges among the vertices

of a graph given their previous relations (i.e., the graph topology). We have studied

the current state-of-the-art of graph mining and of LP in particular, to identify the

current limitations of the field. We have found that LP is close to become a powerful

tool applicable to a wide variety of domains, if only two main issues can be tackled.

Those issues are precision and scalability.

Let us first consider precision. Since graphs built from real world data are typically

sparse (in our current experience graphs rarely have more than ten edges per vertex

on average), LP in a directed graph can be understood as a classification problem in

a highly imbalanced domain. On one hand we have a small positive class of edges,

containing those edges which do or should exist in the graph, normally linear in size

with respect to the number of vertices (e.g., ten times the number of vertices). On the

other hand we have a huge negative class of edges, containing those edges which could

exist but do not and should not, quadratic with respect to the number of vertices. The

difference in size between both classes (i.e., the class imbalance) grows linearly with

the number of vertices, such that for graphs with 1 million vertices it is common to

have 100,000 edges in the negative class for each edge found in the positive class. The

problem of LP then becomes that of telling apart actual edges of the small class from

non-existing edges of the large class. Keeping a good precision in this type of needle in

a haystack problem turns out to be very difficult, as the smallest rate of false positive

acceptance will amount to a huge absolute number of wrongfully predicted edges (i.e.,
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false positives). As a result, the precision of LP algorithms quickly decreases as the

size of the graphs being computed grows. This condition has restrained the broad

applicability of LP so far, particularly on large scale graphs. In this thesis we will

discuss various techniques for increasing precision in LP, such as the design of algorithms

matching the inherent properties of graphs, and focusing on high confident predictions

at the cost of a smaller recall.

The other main issue key for the future application of LP is scalability. Data-

intensive tasks (one where most of the computational time is spent fetching data from

memory instead of processing it) such as the one of performing LP on a large graph

is a challenging topic in computation. This type of task becomes particularly complex

when storing and accessing large amounts of data. As we will discuss in this thesis,

LP may be an exemplifying case of those problems, and much can be learnt from its

exploration. We will discuss how to represent data, structure code and handle memory

in order to make the mining of large graphs feasible. We approach the HPC field

by discussing the implementation of LP algorithms in various parallel programming

models, and by testing them on a HPC environment such as the MareNostrum1 and

TSUBAME2 supercomputers.

While exploring these two topics, precision and scalability, we will also overview

applicability. By testing different data sets we intend to exemplify the utility of LP

in general and of our proposed approach in particular. We also hope to illustrate the

potential applications of LP by applying it to a variety of domains.

1.2 Main Goals

At this point we can outline the main goals of this thesis. With this work we intend to

1. study the limitations of current solutions for LP on large directed graphs, from

both the perspective of predictive performance and of computational scalability.

1MareNostrum supercomputer, managed by the Barcelona Supercomputing Center.

http://www.bsc.es
2TSUBAME supercomputer, managed by the Tokyo Institute of Technology.

http://www.gsic.titech.ac.jp/en/tsubame
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1.3 Research Questions

2. propose, implement and evaluate novel LP methodologies specifically designed

for mining directed graphs, by using properties often found on the topology of

large directed networks.

3. explore the usability of LP, particularly when applied to large directed graphs.

Identify potential domains of application and the challenges those represent.

4. contribute to the integration of graph mining and HPC, by applying state-of-the-

art HPC models, tools and infrastructure to the LP problem.

1.3 Research Questions

To avoid getting lost in this document, one must be aware that this thesis revolves

around the concept of hierarchy. The original motivating research question of this work

was, what is the role of hierarchies in the topology of large graphs? This rather abstract

question spawned others as we considered how to formally measure the importance

of hierarchies, like, can hierarchies be used to predict relations within a graph? Are

hierarchies implicitly represented within natural, informal graphs? While trying to

solve those, other operational questions arose, questions we needed to tackle in order

to solve the previous ones. Questions such as, is it feasible nowadays to massively run

graph mining algorithms on large graphs? Are HPC infrastructure and tools ready to

deal with the challenges of the emerging graph mining problems?

Partially or fully answering all these questions is eventually the scientific purpose of

this thesis. Nevertheless, as we will see in the remaining of the document, solving these

questions brings forth more questions. Some of those we will try to solve as well, many

others will remain as future challenges for the scientific community and ourselves.

1.4 Plan of this Thesis

We start this thesis with a study of the current state-of-the-art of LP in §2, describing

the various approaches available and focusing on those most relevant for the scope of this

thesis. This will serve to fix the vocabulary and the limits of discussion. In §3 we discuss

the problem of LP in detail, analyzing the different interpretations and difficulties

the problem poses. After that we argue about the relation between hierarchies, large

directed graphs and LP, and introduce our proposed LP score in §4. This includes a
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novel algorithm for LP, two modifications for it, as well as a hierarchical version of the

current best algorithms of LP according to the bibliography. Chapter §5 is entirely

dedicated to discuss how LP scores are evaluated. We present a study of the most

frequently used methods of performance evaluation, as well as our own proposal which

targets applicability. We describe the data sets we have used for testing in Chapter §6,

list their properties and explain how we built a directed graph from them. This Chapter

pays special attention to the family of webgraphs, as these will be one of the main

targets in our evaluation. Then we test several LP scores on all graphs presented, in

§7. Tests include an evaluation of the current best algorithms of LP, of their hierarchical

version previously presented, and of all the variants of our novel algorithm proposal.

Predictive performance for hyperlink prediction (i.e., LP in webgraphs) is studied here

as well. In §8 we look at the problem of LP on large graphs from the perspective of

computation, tackling topics such as optimization and parallelization. In this Chapter

we discuss the emerging parallel programming models for graphs, and present two

different implementations we have developed for the same LP problem. We discuss

some possible lines of future research in §10, outline our main conclusions in §9 and

end with a detailed summary of this thesis in §11. Appendix §A contains tables and

figures with additional results of the tests performed in §7.
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Chapter 2

Background

Certainly not by coincidence, graph mining became a popular research field by the

time the Internet grew and gathered world-wide attention. Previous contributions to

the field exist, but it was not until the early XXI century that a wide community of

ML and DM researchers collaboratively explored how to extract knowledge through

the structural properties of high-relational data (Adamic and Adar, 2003; Getoor and

Diehl, 2005; Inokuchi et al., 2000; Kleinberg, 1999; Newman, 2001; Taskar et al., 2003;

Washio and Motoda, 2003). Behind this new approach to ML was the idea that relations

among entities could be used to understand data, a kind of understanding that could

not be achieved through traditional attribute-based proposals. The availability of large,

topology based data sets like the web graph provided support to that idea as it showed,

first the lack of ML tools natively appropriate to deal with that kind of knowledge,

and second the existence of important problems to be solved through those tools. As a

result the interest on exploiting relations among entities for learning purposes has been

continuously growing.

In graph mining one assumes information is represented through relations. That

makes graph mining coherent with the core principles of relational data. Currently pop-

ular solutions on how to structure and represent relational data however remain focused

on internal attributes, differing from the graph mining focus on external relations. In

that regard, alternatives following the same direction that graph mining are emerging in

other fields. Data storage systems, for example, have witnessed the appearance of graph

databases, challenging traditional solutions; where relational databases (composed by

tables and data items) are idoneous for representing lists of entities and their proper-
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ties, graph databases (containing index-free adjacency) are the natural representation

of topology-centric data. Hence, graph databases outperform relational databases in

those operations where structure is centric, like traversing the graph (Vicknair et al.,

2010).

One of the earliest and more detailed summaries of topology-based algorithms for

ML was presented in (Getoor and Diehl, 2005). In this paper authors identify eight

different tasks within the research field they called Link Mining, splitting those tasks in

three categories depending on which part of structural data they focus: Object-related

tasks, link-related tasks, and graph-related tasks. This work proved to be prescient, as

most of the described problems have received growing attention since then. Next we

outline the ones we consider to be more relevant nowadays.

• Link-based object ranking (LBR), is the task of calculating an ordering of en-

tities within a network. LBR algorithms produce a relevance score for each entity

based on the patterns of its relations. Vertices are then compared and ordered

according to this score to produce a global rank of entities. The importance of

LBR lies mostly in its direct applicability to real world problems, as it has become

a key component in the design of web search engines. The most relevant LBR

algorithms are HITS (Kleinberg, 1999) and PageRank (Page et al., 1999).

• Group detection, also referred to as community detection, is a clustering task

in which sets of entities are identified based on their structural properties. This

can be used to split a network into closely related groups, or to find the commu-

nity neighbours of a given vertex. Several multidisciplinary solutions have been

proposed for this problem (Fortunato, 2010), being stochastic block modeling

(Karrer and Newman, 2011) the most followed approach nowadays.

• Subgraph discovery, also known as frequent subgraph mining ; is a discovery

task seeking recurrent patterns of relations within a relational set. Most proposals

are based on the Apriori algorithm (Agrawal et al., 1994), such as AGM (Inokuchi

et al., 2000), an algorithm that finds subgraphs satisfying a minimum support

based on the concept of subset induction. Subgraph discovery algorithms can be

used for graph classification, sorting graphs based on which frequent subgraphs

they contain, and more specifically to find biological modules (Hu et al., 2005).
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2.1 Link Prediction

• Link prediction; is a learning task in charge of finding new relations within

a relational data set. The rest of this chapter will be dedicated to analyze the

current state-of-the-art of LP in detail, as it will be a main topic of this thesis.

2.1 Link Prediction

According to (Lü and Zhou, 2011) link prediction (LP) algorithms can be classified in

three different families: similarity-based algorithms, maximum likelihood algorithms

and probabilistic models. This last family however is also named statistical relational

models in the bibliography (Getoor and Taskar, 2007), term used to include other

statistical but non-probabilistic solutions, like tensor factorization.

Statistical relational models typically build a joint probability distribution repre-

senting the graph, based on all the edges found in it. Given this distribution, and

through the application of different types of inference, these algorithms can estimate

the likelihood with which edges not found in the graph may actually exist (Getoor and

Taskar, 2007). Algorithms within this field are frequently based on Markov Networks

(for directed graphs) or Bayesian Networks (for undirected graphs). The sub-type of

statistical relational models that do not build a probabilistic model and instead are

based on purely statistical properties are those based on tensor factorization (which is

sometimes also used in combination with probabilistic models (Sutskever et al., 2009)).

Tensor factorization solutions are particularly relevant due to their capability of being

directly applied to heterogeneous networks (i.e., networks composed by more than one

type of relation) (Franz et al., 2009; Nickel et al., 2011).

Maximum likelihood algorithms of LP assume a given structure within the graph

(e.g., a hierarchy, a set of communities, etc.) and build a model according to it. Then,

based on this model, one can calculate the likelihood of edges not found in the original

graph through maximum likelihood algorithms. The most prominent contribution of

these algorithms is their capacity to provide insight into the composition of the graph

(i.e., how is its topology defined and why), information that can be used for other

purposes beyond LP. An example of this kind of algorithms is the Hierarchical Random

Graph, see (Clauset et al., 2008), which builds a dendrogram model representing a

hierarchical abstraction of the graph. A set of connection probabilities is inferred from

the consensus dendogram that most accurately represents the graph hierarchically.
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Based on those one can then estimate which edges are most likely to exist in the

original graph according to its hierarchical structure.

The third and last family of LP methods are similarity-based algorithms. These

algorithms compute a similarity score between each pair of vertices in the graph based

on their relations. Then, by comparing the similarity scores of all edges one obtains

the likelihood with which an edge between a given pair of vertices exists. In similarity-

based algorithms each score is independent from the rest, allowing them to be calculated

separately and in parallel. Details on how are scores calculated will be provided in the

following section (§2.1.1).

Similarity-based algorithms are the simplest of LP algorithms in computational

terms. They require no overall model and can evaluate edges individually and inde-

pendently without supervision. This simplicity may represent a handicap in certain

data sets, e.g., providing lower precisions (Clauset et al., 2008), but it becomes a key

advantage when considering scalability. As discussed in §1, the graphs targeted by LP

are continuously growing in size, increasing at the same time the computational cost of

processing them. Eventually, when graphs reach tens of millions of vertices, building a

model for the whole graph simply becomes unfeasible due to the limitation of resources.

In this context, where maximum likelihood algorithms and statistical relational models

cannot be even tested, similarity-based algorithms gain relevance. Not only are those

the only algorithms applicable to large scale graphs, but also their performance remains

remarkable even though the LP problem becomes more complicated as graphs grow (see

§3.6).

Outside the previously described and well delimited categories of LP algorithms,

there are other, more heterogeneous solutions that cannot be categorized accordingly,

but which are relevant contributions to the field. Given the complexity of the LP prob-

lem (discussed in detail in §3) it is frequent when one tries to solve a particular problem

to reach particular solutions. Such is the approach proposed in (Adafre and de Rijke,

2005), an algorithm combining clustering, natural language processing and information

retrieval with the goal of finding missing edges among Wikipedia pages. Another in-

teresting example of heterogeneous solution is the work presented in (Aggarwal et al.,

2013), where the LP process is decomposed in two steps: a first macro-processing

step obtains clusters in the graph given structural properties, while a second micro-

processing step tries to find new edges on those clusters based on attribute properties.
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2.1 Link Prediction

This work is particularly designed for heterogeneous networks (i.e., networks composed

by more than one type of vertex and/or relation) that grow over time.

2.1.1 Similarity-based Link Prediction

Similarity-based LP algorithms seek properties shared by a given pair of vertices in order

to evaluate their similarity independently. Finding the number and length of existing

paths from one vertex to the other is nowadays the most popular approach, as a path

between two vertices represents a type of commonness. Similarity-based algorithms

are categorized in three types based on the maximum path length they explore. Local

similarity-based algorithms of LP consider only the direct relations of the pair of vertices

to evaluate their similarity. Global similarity-based algorithms consider paths without

length constrain (i.e., all the reachable vertices). And as a trade-off between both,

quasi-local similarity-based algorithms consider paths with a variable number of steps.

The application of global similarity-based algorithms to large graphs is unfeasible

(Lü and Zhou, 2011) due to their computational cost (see §3.5). Regardless, quasi-local

and local scores have been shown to achieve similar (Liben-Nowell and Kleinberg, 2007)

or even better results (Liu and Lü, 2010; Lü et al., 2009) than global scores in certain

domains. As a result global similarity-based LP algorithms are rarely a choice today.

Quasi-local indices try to be a compromise between global an local scores, between

efficacy and efficiency, by executing a variable number of steps. Or what is the same,

by exploring a sub-graph of variable radius size centered on the edge being evaluated.

Quasi-local indices intend to achieve higher precisions by taking into account a larger

portion of the graph, while keeping a practical computational cost. The most popular

quasi-local indices are based on the random walk model (Lichtenwalter et al., 2010; Liu

and Lü, 2010) and on the number of paths between the pair of vertices (Lü et al., 2009).

However, in essence all quasi-local indices originate from local scores: when the number

of steps is set to one, quasi-local indices are equal to some local score. For example, the

quasi-local index local path index (LPI)1 reduces to the local score common neighbours

(Zhou et al., 2009), while quasi-local indices superposed random walk and local random

walk reduce to the local score resource allocation (Liu and Lü, 2010).

1Local path index is named LP by its authors. In here we refer to it as LPI to distinguish it from

the abbreviation of Link Prediction (LP)
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Quasi-local indices often include variables to be fit, such as how is the weight of

graph evidence reduced based on its increasing separation from the original vertex. This

particular variable follows the topological idea that as we travel further from our source

vertex, information found becomes less relevant for it. An algorithm which implements

this decaying factor is LPI (Lü et al., 2009), a quasi-local index originally fixed on

two steps (i.e., exploring only the neighbours and the neighbours of those neighbours),

which includes a free parameter ε to reduce the importance of evidence found at step

two w.r.t. evidence found at step one. As shown in (Lü et al., 2009) the optimal value

for ε is around 0.01, which suggests the idea that in large graphs the importance of

evidence quickly decays with distance.

A more frequent variable of quasi-local indices that must be fit is the optimal

number of steps to be performed (i.e., the maximum depth of graph explored). Even

though not all quasi-local indices include it (some have fixed, predefined depths like the

previously mentioned LPI algorithm), all quasi-local indices can potentially include it.

This kind of LP algorithms must therefore find a way to estimate the optimal number of

steps before running on large scale. A straightforward, but computationally expensive

solution to be applied on large graphs, is to estimate the optimal value through sampling

(Liu and Lü, 2010). A promising and cheaper alternative is to estimate the optimal

value of variables from the graph topology; results indicate that the optimal value

of variables defining the behavior of quasi-local indices may be correlated with graph

features such as the clustering coefficient or the average topological distance (Lü et al.,

2009). Independently of the methodology used to determine the number of steps to

be performed, it must be kept in mind that every further step taken by quasi-local

algorithms increases the cost of the algorithm exponentially (see §3.5). Thus, for real

applications in large domains these algorithms may only be capable of performing a

very small number of additional steps, if any, regardless of what the optimum may

be. This fact eventually constrains the application of quasi-local indices to large scale

graphs (Liu and Lü, 2010; Lü and Zhou, 2011), and motivates the use of local scores

since, as previously said, quasi-local indices reduce to local scores when the number of

steps is one. Another limitation of quasi-local indices are domains with a low average

distance among vertices, such as protein-protein interactions where the average distance

is 2 (Cao et al., 2013). In these domains only local scores are relevant.
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2.1.2 Local similarity-based algorithms

To determine if an edge between to given vertices shall exist, local similarity-based

algorithms of LP only take into account those vertices directly connected with the pair

of vertices composing the evaluated edge. The first detailed analysis and evaluation

of these algorithms was presented in (Liben-Nowell and Kleinberg, 2007), where five

local scores were compared among themselves and against four global scores on five

different scientific co-authorship graphs in the field of physics. Although no method

clearly outperformed the rest in all datasets, three methods consistently achieved the

best results; local algorithms Adamic/Adar (AA) and Common Neighbours (CN), and

global algorithm Katz (Katz, 1953). In (Murata and Moriyasu, 2008) a similar test

was conducted for graphs obtained from social networks, and the same results were

obtained with AA and CN achieving the best results among local algorithms.

A new local algorithm called Resource Allocation (RA) was proposed and compared

with other local similarity-based algorithms in (Zhou et al., 2009). Testing on six

different datasets showed once again that AA and CN provide the best results among

local algorithms, but it also showed how RA was capable of improving them both. Next

we describe these top three local similarity-based algorithms (CN, AA and RA) since

these are the ones that have been proven to provide the best results so far. For this

same reason these three algorithms will be used as base-line to evaluate the performance

of our algorithm proposed in §4.1, when applied to the set of graphs described in §6.

The Common Neighbours (CN) algorithm (Newman, 2001) computes the similarity

sx,y between two vertices x and y as the size of the intersection of their neighbours.

Formally, let Γ(x) be the set of neighbours of x

Definition 1

sCN
x,y = |Γ(x) ∩ Γ(y)|

The Adamic/Adar (AA) algorithm (Adamic and Adar, 2003) follows the same idea

than the CN, but it also considers the rareness of edges. To do so, shared neighbours

are weighted by their own degree and the score becomes

Definition 2

sAA
x,y =

∑
z∈Γ(x)∩Γ(y)

1

log(|Γ(z)|)
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The Resource Allocation (RA) algorithm (Zhou et al., 2009) is motivated by the

resource allocation process of networks. In the algorithm’s simpler implementation,

each vertex is interpreted as a transmitter of a single resource unit, having this resource

unit evenly distributed among its neighbours. In this case, the similarity between

vertices x and y becomes the amount of resource obtained by y from x

Definition 3

sRA
x,y =

∑
z∈Γ(x)∩Γ(y)

1

|Γ(z)|

2.1.3 Present and future of similarity scores

Research is currently focusing on quasi-local scores, as these seem to be the most

promising kind of similarity-based LP algorithms. Global algorithms, in addition to

their computational complexity issues, have not proven to be particularly effective

(Liben-Nowell and Kleinberg, 2007; Liu and Lü, 2010; Lü et al., 2009). This disap-

pointing lack of performance by global scores is probably caused by issues related with

the inherent noise found in the data set; by considering the whole graph to evaluate

the likelihood of a single edge, all irrelevant or nearly irrelevant parts of the graph will

eventually block out the contributions of the small relevant parts, therefore affecting

precision. On the other side of the spectrum, local scores employ a very limited amount

of graph data: that which is directly related with the edge being evaluated. Precise

and complex predictions seem hard to achieve with so scarce information.

It is our impression that quasi-local indices will eventually become the most relevant

family of similarity-based LP algorithms. These scores are capable of considering a

limited but variable in size part of the graph, balancing the trade-off between exactness

and computational feasibility. Furthermore, these scores can include in-graph distance

as a variable to weight the impact of data, extending the semantics that can be captured.

However, before quasi-local indices can become fully functional for large scale graphs

one must find a way of making them computationally feasible, reducing their cost and

parallelizing them efficiently. As we will see in §3.5 this is not an easy task due to

the computational cost added by each further step performed by quasi-local scores.

Nevertheless one can expect a lot of research effort to be made in that area in the near

future. Before that happens though, we believe local scores should remain at the focus

of research. As said before, quasi-local indices eventually represent fine-drawn versions
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of local scores, expanding their reach and refining their predictions. Thus, defining

more precise local scores which can be later transformed into quasi-local should be a

priority of the LP field. In that regard, in §4.1 we propose a local score of LP, and

evaluate it against other local scores in §7.1.3. All while keeping in mind its future

potential transformation into a quasi-local index, which we already explore in §4.1.2.
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Chapter 3

The Problem of Directed Link

Prediction

The problem of LP can be outlined as finding new relations within a relational data

set. Beyond this apparent simplicity LP includes features which may change the way

the problem is interpreted. In here we discuss some of these features with the goal of

properly defining the problem we try to solve, and also to defend the decisions we have

made in proposing a solution.

One of the most shared views of the LP problem is that of a binary classification

problem, motivated by decades of interpreting problems through the perspective of

classic ML and DM tools. Indeed, LP can be reduced to a problem of determining which

edges belong to a positive class (those that do exist) and which belong to a negative

class (those that do not exist). However, in the context of huge, high-dimensional data

sets this type of interpretation may be an oversimplification. We discuss that point in

§3.1.

An early decision one must make when working on LP refers to the type of graph

that will be mined. Graphs can be directed, weighted, acyclic, labeled etc., and each

of those features has a strong impact on how LP is performed. Most LP research has

been applied to the simplest type of graph: i.e., an undirected, unweighted and un-

labeled graph. In this thesis we focus on directed, unweighted and unlabeled graphs

instead. We include directions because these are very frequent in graphs, and direction-

ality provides semantics which can be used for improving predictions (see §3.2). We do

not include weights because these serve mostly as a refining tool rather than providing
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3. THE PROBLEM OF DIRECTED LINK PREDICTION

radically new information about the graph topology (see §3.3). Nevertheless we discuss

the integration of weights into our approach in the future work chapter (see §10.4). We

do not consider labels because these are an ad hoc property of graphs which requires

one to focus on a particular domains, thus crippling the universal applicability of LP

algorithms. Furthermore, the most appropriate solution for labeled graphs are hetero-

geneous solutions like the ones presented at the end of §2.1.1. Finally, even though it

is frequent in the LP bibliography, we do not consider time grounded graphs (where

edges are assumed to have an associated time of addition) for the lack of a purpose, as

discussed in §3.4.

In the last two sections of this chapter we explore the complexity of the LP problem.

First, in §3.5 we study the computational complexity of LP scores. Since one of the

topics of this thesis is scalability we need to understand what is the complexity of LP

algorithms, and based on which properties the complexity increases. By doing so we

will be able to predict how can the performance of LP algorithms be improved without

hampering its applicability. Then, in the last section §3.6, we discuss the presence of

class imbalance in LP and how it may affect the performance of the predictions.

3.1 Link Prediction as a Binary Classification Problem

In essence, LP can be understood as a binary classification problem. Given a directed

graph G = (N,E), and all the possible edges in the graph (of size |N ∗ (N − 1)|), the

problem LP is that of distinguishing between edges that exist, e ∈ E, and edges that

do not exist, e /∈ E.

The application of classic classification algorithms to this problem, such as decision

trees, neural networks or support vector machines, seems inadequate for various rea-

sons. To start with, the number of features available for each instance (which in this

case would be each possible edge) is limited to topological features, a rather small and

redundant source of information. Also, most classification algorithms (e.g., the three

previously mentioned) assume that the data sample is independent and identically dis-

tributed, whereas in a graph that is clearly not the case as vertices and edges directly

define the topological features of one another. Finally, the computational cost of calcu-

lating the features of all possible instances (|N ∗ (N − 1)|), training an algorithm with
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3.1 Link Prediction as a Binary Classification Problem

them and then performing classification on every edge not found in the graph seems

unfeasible.

Regardless of all these issues, (Lichtenwalter et al., 2010) proposes, implements

and successfully tests an assemble of classification algorithms (C4.5, J48, Näıve Bayes)

on a graph composed by over 5 million vertices. These authors identify a set of 12

topological features on directed weighted graphs, including the CN score (see §2.1.2

for its formal definition). To make the approach feasible, training for each edge is not

performed considering the whole graph. Instead only those vertices found at a variable

distance between 2 and 4 hops of the a given edge are considered to define its features.

As a result, these authors perform a quasi-local training and obtain a quasi-local model

of the data. Results indicate that their proposed algorithm (HPLP) improves those

of similarity-based scores on both a directed and an undirected weighted graph. For

doing so HPLP includes one similarity score (CN) as feature, implements an ensemble

of classifiers through bagging and random forests, and performs undersampling for

correcting the class imbalance. From these results we acknowledge that one can achieve

good results in LP with traditional classification algorithms, by combining techniques

obtained after decades of research. We consider however that the novel, relational

approach of similarity-based LP scores is more coherent with the nature of graphs, and

that it will demonstrate its supremacy on graph related tasks after some research effort

has been put on it.

Even though LP can and has been reduced to a binary classification problem, it

is our perception that this approach results in a dangerous oversimplification. Classi-

fication has but one purpose: to distinguish between classes with the highest possible

precision and recall. LP on the other hand, has among its goals (or should have, from

our perspective) to understand the behavior of connectivity, and to produce high cer-

tainty predictions. In large scale graphs the existence or absence of a particular edge

is a rather uncertain and irrelevant issue, particularly when there are billions of possi-

ble edges and thousands of exceptions (i.e., outliers). Hence, LP needs not to classify

most edges correctly in order to be successful. In our interpretation LP needs only to

correctly classify a significant set of edges1 edges with high certainty to become useful.

Instead of building two clearly delimited classes of edges, LP ought to focus on building

1What represents a set of significant size with regards to edges predicted depends only on the

domain of application. We elaborate on that in §5.3.
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3. THE PROBLEM OF DIRECTED LINK PREDICTION

one high-certainty class of edges for which its existence is well founded, and most im-

portantly, understood. Therefore, LP algorithms ought to focus on building accurate

scores which can approximate the edge likelihood and represent their semantics.

3.2 Directed and Undirected Link Prediction

The vast majority of contributions to the LP field focus on undirected graphs, with only

a few works addressing the directed LP problem (Lichtenwalter et al., 2010; Mantrach

et al., 2010; Zhang et al., 2013). And yet, most of the graphs used in LP and most of

those that would be interesting to use, are or could be represented as directed graphs

(e.g., web graph, social networks, protein interactions, gene expressions, product rec-

ommendation, etc.). The motivation to focus on undirected graphs lies is the apparent

simplicity of the problem; by considering directed graphs we must add edge direction-

ality to the list of LP issues to solve (Lü and Zhou, 2011). The tendency towards

undirected graphs is such that even methodologies clearly based on directed models

(e.g., hierarchies) are developed to work on undirected graphs (Clauset et al., 2008).

Our perception however is that LP on directed graphs instead of being a more complex

problem is a simpler one, thanks to the added semantics provided by directionality.

By considering the direction of edges one can further characterize the nature of edges,

and thus adapt the predictive methodologies to achieve higher precisions. We further

discuss this issue when motivating our proposed directed LP score in §4.1, and present

our conclusions in that regard in §9.1.

3.3 Weighted Link Prediction

As happens with edge directionality, the consideration of edge weights in LP is often

over-viewed. One of the problems one finds when trying to incorporate weights into

LP algorithms is the wide variety of interpretations weights allow. Weights may be

natural numbers (e.g., representing a frequency (Lichtenwalter et al., 2010; Murata

and Moriyasu, 2007)) or they may be rational numbers within a range (e.g., expressing

a probability). Following the work of (Murata and Moriyasu, 2007), (Lü and Zhou,

2010) explored the impact of weights on LP by testing the top three local scores (CN,

AA and RA) on three weighted graphs against a weighted version of themselves. To the
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3.4 Time Grounded Link Prediction

authors’ surprise, the weighted scores performed better only in one of the three tested

graphs. Authors discuss the importance of edges with small weights, in accordance

with weak ties theory, as an explanation for this behavior.

Our motivation to work with unweighted graphs is one of simplicity. We acknowl-

edge the importance of weights in graphs, and even the necessity of using weights to

represent complex domains. However, when the source of information is the graph

topology, weights can not provide radically new information, as they do not change the

pattern of relations within the graph. By adding weights to edges one can only refine

the interpretation of those edges, but not expand them. Acknowledging the future

importance of weights for LP, and particularly its impact on our approach, in §10.4 we

discuss some preliminary thoughts on how to integrate them.

3.4 Time Grounded Link Prediction

Since many of the graphs used in LP are constantly growing (e.g., social networks,

citation networks, web graph), researchers have often considered the problem of LP as

one of predicting edges through time (Aggarwal et al., 2013; Lichtenwalter et al., 2010;

Lü and Zhou, 2011). From this perspective the problem is that of finding which edges

will exist at time t1 given the edges at time t0, where t0 represents the edges in the

original graph. This perception of an evolving graph with a temporal grounding may be

accurate and relevant to define some of the domains used (e.g., co-authorship networks),

but for others it may be clearly inadequate (e.g., metabolic networks, protein-protein

interactions).

For those domains where time is a meaningful variable, taking time into account may

be extremely valuable by providing rich information in the LP setting where information

is scarce. For example, in the case of scientific co-authorship graphs, it seems clear

that the least time it has past since two authors collaborated on authoring a paper,

the more likely these two authors are to collaborate soon again. Unfortunately, the

temporal properties that rule one graph may not be directly applicable to other time-

based graphs (e.g., the interest of users on products for recommendation may not

evolve through time like scientific collaborations do), which would force one to produce

a specific temporal analysis for each data set. This problem, together with the reduced

number of time annotated graphs have limited the proposal of LP methods which
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3. THE PROBLEM OF DIRECTED LINK PREDICTION

consider edge temporality as a key feature, as even those authors that acknowledge

time as a basic feature of LP do not fully integrate it in their methods (Aggarwal et al.,

2013; Lichtenwalter et al., 2010; Lü and Zhou, 2011). Nevertheless, we consider this to

be an interesting approach that will eventually gain some deserved attention.

3.5 Computational Complexity of Similarity-based Link

Prediction

One of the focal issues of this thesis is the scalability of LP scores, a mandatory concept

if one intends to process large graphs. To properly understand how do the various LP

scores scale one must perform an analysis of their computational complexity, both in

terms of space and cost. In this section we tackle both, starting with an analysis of the

space complexity and ending with an analysis of the computational cost.

There are various ways of representing a graph, and each of them has its own space

and access complexity. The most frequently used representations are adjacency lists

and adjacency matrix. Adjacency lists store, for each vertex of the graph, a list of the

vertices directly connected with it (i.e., its neighbours). Adjacency matrix on the other

hand store all possible edges in the graph, annotating those that do exist. See Figure

3.1 for a graphical representation of both representations. The adjacency matrix is

more efficient than the adjacency list in access operations: while the adjacency matrix

allows for direct access (e.g., get[x][y]), the adjacency list needs to perform a search

process (e.g., list[x].search(y)). From the perspective of spatial cost it is the other

way around, as the adjacency list is more efficient than the adjacency matrix: while

the adjacency matrix cost is O(N2) for a graph with N vertices, the adjacency list

has a cost of only O(E) for a graph with E edges. Clearly, the choice between both

representations depends on the type of problem one is trying to solve. In our case, a

space complexity of O(N2) for graphs with millions of vertices is unfeasible due to the

limitation of resources (i.e., RAM memory). We therefore settle for the space efficient

solution, and use the adjacency list representation.

Before evaluating the computational cost let us first summarize the problem. LP

evaluation, as defined in §5.1 through ROC and PR curves, requires one to calculate

the score of all possible edges in the graph. This process can be significantly optimized

in the context of local scores, as the score of many edges can be directly evaluated
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3.5 Computational Complexity of Similarity-based Link Prediction

Figure 3.1: Adjacency matrix representation of a graph (right, top), and adjacency list

representation (right, bottom).

as zero. Since local scores require of common neighbours between a pair of vertices

to evaluate their edge, one needs only to evaluate those pairs of vertices which are at

maximum distance of two hops, as the rest of edges in the graph will certainly have

a null similarity (i.e., no common neighbours). In this context we next evaluate the

computational cost of the worst case scenario O(x) (when all edges must be evaluated)

and the computational cost of a more realistic scenario o(x) (when only a portion of

all edges must be evaluated).

The time complexity of accessing all edges in a directed graph ofN vertices isO(N2),

as in a directed graph there are N ∗ (N − 1) possible edges. The cost of calculating a

single local similarity score is O(N) in the worse case, as only those vertices directly

related with the edge under evaluation must be accessed (with a maximum of 2(N − 1)

vertices per edge evaluated). The time complexity of calculating all possible edges in

the worse case of local similarity-based algorithms is therefore O(N3). This complexity

can be reduced if one dismisses edges as previously considered. The previous complexity

analysis (O(N3)) is accurate for the worse case scenario, when the graph is complete.

When the graph has on average k neighbours per vertex, the full time complexity of
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3. THE PROBLEM OF DIRECTED LINK PREDICTION

local scores is reduced to o(N ∗ k2).

Quasi-local similarity-based scores have an increased cost w.r.t. local scores, as

these scores explore a deeper section of the graph. If the exact depth of exploration

(i.e., the number of steps performed by quasi-local scores) is known beforehand, one can

reduce the computational cost in an analogous fashion as with local scores: Evaluate

only the edges between vertices found at a distance equal to the number of steps of the

score, and dismiss the rest. Formally, the cost of computing the quasi-local similarity

score of single edge in a graph with N vertices is O(N s) in the worse case, where s is

the number of steps taken, s ≥ 2 as s = 1 makes quasi-local algorithms analogous to

local algorithms. The time complexity of calculating all possible edges in the worse

case of quasi-local similarity-based algorithms is therefore O(N s+2) where s ≥ 2. This

complexity can be reduced if one knows the number of steps s before hand. In this

case, when the graph has on average k neighbours per vertex, the full time complexity

of quasi-local scores performing s steps is reduced to o(N ∗ ks+2)

Finally, global similarity-based algorithms cannot benefit from any cost reducing

measure, as these scores need to fully traverse the graph. The cost of these algorithms

is therefore always of the form O(Nx) where x depends on the particularities of each

global score. If one has resources enough as to store the graph in adjacency matrix form

(which is currently unfeasible for large graphs) the cost may be significantly contained.

The global score Katz index (Katz, 1953) for example can be calculated through the

matrix inversion operator (Lü et al., 2009), making its full computational cost O(N3)

for graphs stored in adjacency matrix form. Nevertheless, even in this optimum scenario

O(N3)� o(N ∗ k2).

3.6 Class Imbalance in Link Prediction

As discussed in §3.1, LP can be reduced to a classification problem. To do so one needs

only to categorize edges of the graph in two classes depending on whether they exist in

the graph (the positive class) or not (the negative class). Unfortunately, graphs used

for LP are typically sparse, which results in a large imbalance: the negative class is

very large in comparison to the positive class. As it is well known, class imbalance can

be a (severely) complicating factor in classification problems (Chawla et al., 2002; Liu

et al., 2009; Wasikowski and Chen, 2010; Weiss, 2004).
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Data Number Edges positive:negative

source of vertices per vertex class ratio

Wordnet 89,178 7.83 1:11,382

Cyc 116,835 2.95 1:39,496

IMDb 2,930,634 2.56 1:1,140,835

webND 325,729 4.59 1:70,867

webSB 685,230 11.09 1:61,775

webGL 875,713 5.82 1:150,217

hudong 1,984,484 7.49 1:264,848

baidu 2,141,300 8.31 1:257,667

DBpedia 17,170,894 9.70 1:2,151,672

Table 3.1: Average number of edges per vertex and class imbalance of the graphs used

for evaluation

Let us start by analyzing the class imbalance found in LP on large graphs from

a formal point of view. All the graphs we use have a number of edges per vertex

constant with respect to the number of vertices: regardless of how many vertices we

add to the graph, the average number of edges per vertex does not vary significantly.

Having a number of edges per vertex constant with respect to the number of vertices

implies that the positive class (i.e., the number of edges in the graph) grows linearly

with the number of vertices (N ∗ k). At the same time, the negative class (i.e., the

number of possible edges in the graph) grows quadratically with the number of vertices

(N ∗ (N − 1)). Consequently, class imbalance in LP grows linearly with the number of

vertices. The graphs we present in §6 and use in §7 ratify this analysis (see Table 3.1):

regardless of the number of vertices in the graph, all graphs have on average less than

10 edges per vertex, while class imbalance grows (more or less) linearly.

The magnitude of the class imbalance found in LP is such that similar examples are

rarely found in the bibliography. Consider for example a directed graph with N vertices

and N ∗10 edges. The negative class of such a graph would be composed by N ∗(N−1)

edges 1, minus those which do exist (N ∗10). For these estimates, a graph composed by

100,000 vertices has 1 million edges in its positive class, and 9,999 million edges in its

negative class. Hence, in this scenario we would have a 1:10,000 positive:negative ratio

1For undirected graphs the number of edges is half of that, but it still grows quadratically.
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3. THE PROBLEM OF DIRECTED LINK PREDICTION

of imbalance. As discussed before, the problem aggravates as graphs grow in number

of vertices, making this our best case scenario, as shown by Table 3.1.

In (Japkowicz and Stephen, 2002) the impact of class imbalance on the performance

of classifiers was explored, and authors concluded that this impact is largely reduced

when all classes are of reasonable size. Apriori this should be good news for LP on large

graphs, as its classes seem to be of reasonable size; the smallest class we have is our tests

is composed by 34,559 edges (10% of edges of the Cyc data set, see Table 6.1), a large

class from the perspective of classification. Unfortunately, even though according to

(Japkowicz and Stephen, 2002) having large small class should neutralize the effect of

class imbalance, that is not the case in LP (Lichtenwalter et al., 2010). The reason for

this is twofold. On one hand the imbalance found in LP on large graphs is several orders

of magnitude larger than any imbalance tested in (Japkowicz and Stephen, 2002). Thus

its impact may remain significant. On the other hand, as discussed in §3.1 LP is not a

typical classification problem, and given the small amount of information provided by

each edge, a class composed 30,000 elements could still be considered to be small.

Informally, class imbalances of 1:10,000 or larger (1:2,151,672 in our worst case)

make of the LP problem one of a needle in a haystack. This situation translates as

a tendency towards false positive classification mistakes, as incorrectly accepting as

positive elements from the negative class is almost inevitable. The size of the negative

class (typically composed by billions of edges) does not help either. With so may

negative edges it is very likely that there are thousands of non-existing edges with

identical properties. Hence, a false positive classification mistake in most cases entails

thousands of actual misclassifications. As a result, the great challenge of LP is precision,

as we will see in our tests (see §7). In that regard we discuss how LP performance

can be fairly evaluated in a setting of large class imbalance in §5.1, and propose an

evaluation methodology focusing on precision in §5.3. We also present a brief study on

the correlation between LP performance and class imbalance in §9.5.
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Chapter 4

Hierarchies and Directed Graphs

So far we have presented the current solutions for LP as well as the challenges one must

face when tackling this problem. In this context we introduce the main contribution

of this thesis: a new score of LP for directed graphs. Nevertheless, the design of

this score was not the result of a premeditated analysis of LP. In fact, the outline

of our proposed score was previous to the consideration of its application to the LP

problem. Our original thoughts were on the importance of hierarchical information for

knowledge representation, according to the following idea: what generalizes you and

what specializes you defines most of what you are. As a simple example of that idea

consider how much you know about cats just by knowing about felines and about a cat

you own. The LP score here presented is but a practical application of this idea.

Our motivating hypothesis was that semantics of an entity could be informally ap-

proximated by combining the semantics of its generalizations and specializations. To

test the validity of such hypothesis we required a domain in which knowledge was im-

plemented through directed relations (asymmetric relations are needed by hierarchies),

and where there were lots of relations (a requirement of informal, abstract learning).

If we could correctly predict new relations in such a domain by applying hierarchical

assumptions, we could argue on the validity of our hypothesis.

The practical aspects of our considerations eventually drove us towards the LP

problem on large, directed graphs, which nowadays happens to be a hot topic of re-

search. The LP problem perfectly fits our hypothesis requirements; it contains lots

of relational, directed knowledge (edges within a graph), and some of its knowledge

discovery algorithms are based on a measure of semantic similarity obtained from the
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exploration of nearby entities (similarity-based scores). Hence, we develop a LP score

based on the assumption that an entity (in this context, a vertex) is partly defined by

its generalizations (in this context, the vertices it points to) and its specializations (in

this context, the vertices that point to it). The limitations of these assumptions are

discussed in §9.3.

4.1 The INF score

To introduce our proposed LP score we must first define two different sets of edges

found in any directed graph. Given a directed graph G = (N,E), and a given vertex

x ∈ N , we name the vertices that x points to (x→) as the ancestors of x (A(x)), and

the vertices that point to x (→ x) as the descendants of x (D(x)). Formally

Definition 4

∀x, y ∈ N : y ∈ A(x)↔ x→ y ∈ E

∀x, y ∈ N : y ∈ D(x)↔ y → x ∈ E

Given these two sets we assume directionality defines a weak hierarchy, weak in the

sense that inheritance is not directly transitive. Instead inheritance is assumed to be

weighted (e.g., the result of an average), such that, to determine if a given vertex x

must be related to a given vertex y, we take a look at how many of x generalizations

(A(x)) are related with y. Formally

Definition 5 Given a directed graph G = (N,E), and a pair of vertices x, y ∈ N , the

likelihood of the relation x→ y given A(x) is:

|AY (x)|
|A(x)|

where AY (x) is a subset of A(x), containing the ancestors of x having the relation

→ y:

∀ax ∈ A(x) : ax ∈ AY (x)↔ ax → y ∈ E

The previous definition states how information is propagated top-down. That is how

the generalizations of a vertex define its relations. We define the analogous process with

information propagating in the opposite direction, bottom-up. In this case we define
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how the relations of a vertex are obtained as a weighted average of the relations of its

descendants.

Definition 6 Given a directed graph G = (N,E), and a pair of vertices x, y ∈ N , the

likelihood of the relation x→ y given D(x) is:

|DY (x)|
|D(x)|

where DY (x) is a subset of D(x), containing the descendants of x having the relation

→ y:

∀dx ∈ D(x) : dx ∈ DY (x)↔ dx → y ∈ E

The combination of Definitions 5 and 6 can be understood as a formalization of

our initial hypothesis: what generalizes and what specializes you defines most of what

you are. Which in the context of directed graphs has become: the likelihood of relation

(x → y) is estimated from the existence of relation (→ y) in the A(x) and D(x) sets.

Still, this is a rather obvious statement from the point of view of LP, as the union of the

A(x) and D(x) sets contains all neighbors of x. To go further on our assumptions let us

consider Definitions 5 and 6 separately, and their resemblance to inferential reasoning.

Definition 5 follows a top-down reasoning approach, similar to that of weighted

deductive inference: if my four grandparents are mortal, I will probably be mortal too.

In this case new information (me→ mortal) regarding a vertex (me) is obtained from

the ancestors of the vertex (me→ grandparent), and weighted based on the amount

of times the relation is satisfied (grandparent→ mortal, four out of four). Hence, the

more of ones grandparents are dead (|A(me) ∩D(mortal)|), the more certain one can

be about his/her own mortality. See Figure 4.1 for a graphical representation of the

process. We define a LP similarity score between two vertices based on this idea, called

the deductive metric (DED for short)

Definition 7

sDED
x→y =

|A(x) ∩D(y)|
|A(x)|

Definition 6 follows a bottom-up reasoning approach, in this case similar to that

of a weighted inductive inference: if most publications from an author are meticu-

lous, the author will most likely be a meticulous person. In this case new information
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Figure 4.1: On the left: graphic representation of the top-down deductive process for

estimating edge likelihood according to DED. On the right: graphic representation of

the bottom-up inductive process for estimating edge likelihood according to IND.

(author → meticulous) regarding a vertex (author) is obtained from the descendants

of the vertex (publication→ author), and weighted based on the amount of times the

relation is satisfied (publication→ meticulous). Hence, the more frequently our pub-

lications are meticulous (|D(author) ∩ D(meticulous)|), the more certain we can be

about that property applying to ourselves. See Figure 4.1 for a graphical represen-

tation of the process. We define a LP similarity score based on this idea called the

inductive metric (IND for short)

Definition 8

sIND
x→y =

|D(x) ∩D(y)|
|D(x)|

Since we consider both generalizations and specializations key for defining an entity,

we combine both DED and IND into a single score. By doing so we are aggregating

the evidence provided by both the ancestors and the descendants of a vertex in order

to determine the likelihood with which edges originating from that vertex exist. The

result is a hierarchical affinity measure for each possible pair of vertices in the graph,

and the basic LP score for directed graphs that we propose. We call this score the

inference score (INF for short).

Definition 9

sINF
x→y = sDED

x→y + sIND
x→y
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INF is a local score of LP (introduced in §2.1.2) according to Definitions 4, 7, 8

and 9. Since sets A(x) and D(x) are defined as local in Definition 4, i.e., only those

elements directly connected with x may belong to A(x) or D(x), INF considers only

information local to the vertices x and y to determine the likelihood of edge x→ y.

This feature guarantees that the computational cost of INF will be that of local scores

(see §3.5).

4.1.1 Modifying INF

INF consideration of directed edges, and at a higher level, of hierarchies, makes it more

expressive than other local scores such as RA, AA and CN. This added complexity al-

lows us to introduce modifications on INF, adapting the score to properties frequently

found on hierarchical domains. In this section we describe two modifications we im-

plemented on the INF score. These tuned versions of INF are evaluated in §7.1.4. By

understanding, first the motivation behind these modifications, and second their pre-

dictive performance, we can learn about the particularities of the mined domains. This

will allow us to increase the algorithm precision and its chances of applicability, as we

will see in §7.2.

The first modification we propose is based on how the DED and IND scores are

combined in INF. According to Definition 9, the evidence provided by DED and IND is

considered equally (INF = DED + IND). In preliminary tests of this thesis we noticed

that the DED score typically achieves higher precisions than IND. This is coherent for

graphs including edge transitivity, as DED computes a sort of weighted inheritance. On

the other hand, the IND bottom-up inductive process is more volatile as specializations

are typically less reliable than generalizations. Nevertheless, the combination of DED

and IND outperforms DED alone, as it is capable of detecting a wider variety of patterns

for LP (some edges will have a DED score of zero, but a high IND score). We therefore

decided to define a version of INF where the DED score is given twice the weight of

the IND score, but where IND is still taken into account. We name it INF 2D

Definition 10

sINF 2D
x→y = sDED

x→y ∗ 2 + sIND
x→y

The second modification we propose has the goal of prioritizing those predictions

having a larger set of evidence in their favor. According to Definition 7 and 8, the
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likelihood of an edge is obtained from the proportion of satisfying evidence (how many

of all my generalizations/specializations have that edge). However, a proportion may

not be the best measure of significance in certain domains. In informal domains (e.g.,

the ones presented in §6.2) the absolute amount of evidence can be a decisive factor

of reliability. Consider for example a vertex x having only one generalization and one

specialization. If both point to vertex y, the INF score evaluates edge x→ y as 2

(DED = 1, IND = 1). However, for a vertex z which has 100 generalizations and 100

specializations, where 99 of each of them point to vertex y, the INF score evaluates

edge z → y as 1.98 (DED = 0.99, IND = 0.99). In many domains edge z → y seems

more reliable than edge x→ y because of the absolute amount of evidence (198 vs 2),

even though it has less proportional evidence (99% vs 100%). To include the notion of

absolute evidence we defined a modification of INF in which the amount of satisfying

ancestors and descendants, not only their proportion, is taken into account. Formally,

we redefine DED and IND

Definition 11

sDED LOG
x→y =

|A(x) ∩D(y)|
|A(x)|

∗ log(|A(x)|)

Definition 12

sIND LOG
x→y =

|D(x) ∩D(y)|
|D(x)|

∗ log(|D(x)|)

Which results in the following definition of the INF LOG score

Definition 13

sINF LOG
x→y = sDED LOG

x→y + sIND LOG
x→y

Both modifications address different issues, and can be combined. The score resul-

tant of this integration, INF LOG 2D, is defined next, and will be tested as well in

§7.

Definition 14

sINF LOG 2D
x→y = sDED LOG

x→y ∗ 2 + sIND LOG
x→y
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4.1 The INF score

4.1.2 Quasi-Local INF

In §2.1.1 we introduced quasi-local indices, those considering a variable section of the

graph (by increasing the maximum path length explored) for estimating edges. In that

same section we saw how quasi-local indices reduce to local scores when that maximum

path length is 1. Then, in §2.1.3 we presented the reasons why we foresee these indices

will gain relevance in the near future. In this section we address a necessary question

at this point: how to turn INF, which was defined as a local score, into a quasi-local

score.

The approach we follow is similar to that found in the bibliography. Instead of

considering the neighbours shared at distance 1 by vertices x and y in order to determine

the likelihood of x→ y, we increase that distance. As frequently done in quasi-local

scores (Lü et al., 2009), we apply a decaying factor to the information provided at a

longer distance, so that importance decreases as path length increases (i.e., my friends

define me more accurately than the friends of my friends). For computational reasons

we limit the quasi-local version of INF to two-step paths, but notice this can be easily

extended to any length. To provide a formalization of the quasi-local INF we start by

defining the set D2(x) as those vertices descendants of the descendants of x which are

not direct descendants of x, and A2(x) as those vertices ancestors of the ancestors of x

which are not direct ancestors of x

Definition 15

∀x, y ∈ N : y ∈ A2(x)↔ y ∈
⋃

∀z∈A(x)

A(z) ∧ y /∈ A(x)

∀x, y ∈ N : y ∈ D2(x)↔ y ∈
⋃

∀z∈D(x)

D(z) ∧ y /∈ D(x)

We next define the two-steps, quasi-local version of deductive and inductive scores.

Here we combine the evidence provided at step 1 (local, right part of the addition) and

at step 2 (quasi-local, left part of the addition)

Definition 16

sDED2

x→y =
|A2(x) ∩D2(y)|
|A2(x)| ∗ α

+ sDED
x→y

sIND2

x→y =
|D2(x) ∩D2(y)|
|D2(x)| ∗ α

+ sIND
x→y
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The parameter α is the decaying factor, based on which the relevance of evidence

found at step 2 is decreased with respect to the evidence found at step 1. In our

evaluations (see §7.1.5) we have set α = 2. Finally, we define the two-step quasi-local

version of INF, the INF QL score

Definition 17

sINF QL
x→y = sDED2

x→y + sIND2

x→y

We briefly discuss the performance of sINF QL
x→y in §7.1.5, and consider future work

in this regard in §10.3.

4.2 Hierarchical Undirected Scores

The most reliable local similarity-based scores currently available in the bibliography,

presented in §2.1.2, were designed for undirected link prediction. For directed graphs, as

the ones presented in §6, these algorithms cannot characterize separately symmetrical

pairs of edges. In other words, given two vertices x and y these scores evaluate equally

edges x → y and y → x. To improve the performance of these algorithms in certain

contexts, some authors have considered the possibility of extending them, for example

by adding weights obtained from the re-occurrence of edges (Murata and Moriyasu,

2008). In a similar fashion, in this section we propose an adapted version of local

undirected similarity-based algorithms for directed graphs.

To turn undirected scores of LP into directed scores we focus on one of the most

easily observable properties of a hierarchy: the specificity level of an element. By an-

alyzing the position of a given element within a hierarchy (e.g., how many abstract

elements it has above it, how many specific elements below it) one can estimate its

degree of specificity within the context of the hierarchy. As hierarchies are typically

tree-shaped1, specific elements low in the hierarchy are more likely to be the origin of

edges, while abstract elements high in the hierarchy are more likely to be the desti-

nation of edges. This property of hierarchies can be supported both statistically and

argumentatively. In detail, we compute the specificity level of a vertex in a graph as

1In this context tree-shaped does not refer to the mathematical definition of tree structure. It refers

to the general shape of having a wide bottom and a thin top, which for example may still include cycles.

34



4.2 Hierarchical Undirected Scores

the number of distinct vertices from which it can be reached, regardless of the path

distance. A sort of recursive descendants set size.

Our proposed hierarchical version of the top three undirected link prediction algo-

rithms CN, AA and RA is rather strict in that it only considers relations going from

a given vertex to those which are more abstract than itself. When that is the case it

computes the similarity of an edge normally, as CN, AA and RA do. Otherwise, when

the edge goes from a more general vertex to a more specific one, our hierarchical version

of CN, AA and RA evaluates the similarity as 0 (i.e., dismisses the edge). Formally,

the Hierarchical Common Neighbours (HCN) score is

Definition 18

sHCN
x→y =

sCN
x,y if x is more or equally specific than y

0 if x is more abstract than y

We introduce the Hierarchical Adamic/Adar (HAA) score in a similar manner

Definition 19

sHAA
x→y =

sAA
x,y if x is more or equally specific than y

0 if x is more abstract than y

And finally, the Hierarchical Resource Allocation (HRA) score

Definition 20

sHRA
x→y =

sRA
x,y if x is more or equally specific than y

0 if x is more abstract than y

To evaluate the impact of including the concept of specificity level into LP scores,

we compare HCN, HAA and HRA against the original CN, AA and RA in §7.1.1, and

against our own proposed score INF in §7.1.3. From these results we can argue about

the importance of hierarchical properties for predicting edges on directed graphs (see

§9.4).
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4.3 Abductive Score of LP

Two algorithms inspired by inferential reasoning processes are combined in the defini-

tion of the INF score. One resembling a deductive process where knowledge is prop-

agated top-down (DED), and one resembling an inductive process, where knowledge

is propagated bottom-up (IND). For supporting a given edge prediction, this dual ap-

proach uses higher-level data and lower-level data separately but collaboratively. Con-

sider the analogous process of deciding whether a specific cat will be friendly to us, by

reviewing both how friendly animals with claws are (deductively, top-down) and how

friendly previous cats we have met were (inductively, bottom-up).

A third inferential reasoning process is often identified besides deduction and in-

duction: abductive reasoning. Abduction can be defined as the process of deriving

explanations which justify previously known facts (Larrosa and Cortés, 1995). For ex-

ample, to explain why cats are found in houses, and knowing that animals found in

houses are in most cases pets, one could abduce that cats are most likely pets. In Figure

4.2, where a graphic graph-based representation of abductive reasoning is shown, this

example would be mapped as A : animals in houses, B : pets and C : cats.

Figure 4.2: Graphic representation of the side-to-side abductive process for estimating

edge likelihood.

The analogous LP score ABD, short for abduction, can be seen in Definition 21

Definition 21

sABD
x→y =

|A(x) ∩A(y)|
|A(x)|
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4.4 Chapter Summary

The possibility of including a score based on the idea of abductive reasoning into

INF, alongside DED and IND, was contemplated and tested. Results showed that the

ABD score was capable of positively evaluating edges not found by either DED or IND.

As a result, an INF score including the ABD achieves higher recalls. Unfortunately, the

ABD score also has significantly lower precision that DED and IND, thus decreasing

the overall precision of the INF score if included. The explanation we find for this is the

volatility of abductive reasoning: abductive reasoning must rely on a lot of evidence in

order to be made with certainty, making it much more vulnerable to the inconsistencies

and sparsity found in most graphs.

Since in this thesis we focus on increasing the precision of link predictions (e.g.,

paying special attention to high certainty predictions, see §5.3), we decided to leave

ABD outside the definition of INF. Nevertheless, we consider ABD to represent a

different and relevant type of LP score, and we intend to find a way to successfully

integrate it into INF in the near future.

4.4 Chapter Summary

In this chapter we have defined a novel local similarity-based score of LP based on

hierarchical inference, called INF. The purpose of INF is to exploit the properties

of hierarchies for relational learning, both from a top-down deductive and a bottom-

up inductive perspective. INF assumes that edge directionality includes a sense of

abstraction/specialization, not necessarily in a formal manner. INF can therefore be

applied to any directed graph. The added expressiveness of INF in comparison with

other local scores allowed us to define two modifications in it, one increasing the weight

of deductive evidence over inductive evidence (2D), and one considering the absolute

amount of evidence in combination with the local proportion of evidence (LOG). INF

was also transformed into a quasi-local index, empowering the future development of

a whole new family of quasi-local algorithms of LP. Finally, details on a third type

of hierarchical inference based on abductive reasoning were presented, as well as a

formalization so that the derived sub-score ABD can be integrated into future LP

scores.
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Chapter 5

Evaluating Link Prediction

After introducing the current best local scores of LP and our own proposed score,

we want to compare and evaluate them. In this chapter we discuss how to do so,

identifying some of the problems one finds when trying to faithfully evaluate LP scores.

We start by discussing class imbalance, an almost inherent feature of LP (see §3.6) which

significantly affects how scores are evaluated. In §5.1 we present the solutions found in

the past for this problem, and how do these relate with LP. Then in §5.2 the state-of-

the-art in LP evaluation is discussed. In §5.3 we introduce another contribution of this

thesis, an evaluation methodology designed to focus on the potential usability of the

LP results. Moving away from imbalance and evaluation scores, in §5.4 we discuss how

do we obtain the test sets needed to perform an empirical analysis on the performance

of scores, and what impact may that approach have on the overall results. Finally, in

§5.5 we discuss the benefits and alternatives of current LP performance analysis.

5.1 Evaluation under Class Imbalance

As we saw in §3.6 the LP problem must face a particularly large class imbalance.

Class imbalance is key in classification problems as it implies difficulties at predicting

the small class. A small class that is in most cases the main target of the predictive

process. Consequently there is a large and growing state-of-the-art on how to deal with

class imbalance, typically by trying to build a model well trained for the small class.

A frequent approach of supervised or semi-supervised learning methods to overcome

class imbalance is to equilibrate the training set through over-sampling (adding new
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5. EVALUATING LINK PREDICTION

entities to the small class), under-sampling (removing entities from the large class) or

feature selection (Chawla et al., 2002; Liu et al., 2009; Wasikowski and Chen, 2010;

Weiss, 2004). Regardless, local similarity-based scores of LP are unsupervised and

cannot benefit from these solutions: adding or removing edges from the data set would

equal to perform classification outside the algorithm, and there are no features to be

removed beyond the existence of edges among vertices. In that regard we focus on

those aspects of class imbalance that are relevant for unsupervised methods: deciding

which metrics to use when evaluating and comparing the performance of classifiers for

data sets with a large class imbalance.

The most frequently used metrics to evaluate the performance of classifiers are based

on accuracy. However, these metrics are biased towards the classification of instances

within the large classes (e.g., it is relatively easy to determine which edges do not

exist for certain), making them inappropriate for imbalanced data sets (He and Garcia,

2009; Liu et al., 2009; Weiss, 2004). Using them for LP would be almost analogous to

measuring the capability of algorithms at predicting which edges should not be added

to the graph, which is not the goal of LP.

For data sets with large class imbalance, the most frequently used evaluation metric

is the Receiver Operating Characteristic (ROC) curve and the derived Area Under the

Curve (AUC) measure (Fawcett, 2004). The ROC curve sets the True Positive Rate

(TPR, number of positive edges predicted as positive given the total number of positive

edges) against the False Positive Rate (FPR, number of negative edges predicted as

positive given the total number of negative edges), making this metric unbiased towards

entities of any class regardless of their size. The AUC measures the area below the curve

in order to compare the overall predictive performance of two different curves.

ROC curves are unbiased in imbalanced contexts, but their consideration of miss-

classifications can result in mistakenly optimistic interpretations (Davis and Goadrich,

2006; Yang et al., 2014). When the negative class is very large, showing mistakes as

relative to the negative class size (FPR) can hide their actual relevance, and make it

complicated to assess the overall performance quality. For someone who intends to

find an actual application to classifiers tested in a hugely imbalanced data set (such

as us), most of the ROC curve is irrelevant as it represents completely unacceptable

performance. For example, one may consider that a classifier achieving a TPR of 0.95

(finding 95% of all positive edges) and a FPR of 0.01 (incorrectly accepting 1% of all
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5.1 Evaluation under Class Imbalance

negative edges) in the ROC curve demonstrates an excellent performance. However, for

a data set with a positive:negative rate of 1:100 those results imply that the classifier

accepts more negative edges than positive edges (i.e., it has a precision smaller than

0.5). For domains with a 1:11,000 or worse positive:negative ratio, like the ones we

work with (see §3.6), the limitations of the ROC curve become even more striking. In

those even a FPR of 0.0001 implies a very poor precision/performance regardless of the

TPR achieved.

An alternative evaluation measure to ROC curves are precision-recall (PR) curves.

This metric is also resistant to class imbalances as it focuses only on the performance

achieved for the positive class (typically the small one), and does not show the number

of correct classifications for the negative class. In fact, the ROC and PR curves are

strongly related; a curve dominates another (it is above another) in the ROC space if

and only if it also dominates it in PR space (Davis and Goadrich, 2006). The main

difference between ROC and PR curves is on how errors are represented. While ROC

curves show miss-classifications as relative to the total number of negative cases, PR

curves show miss-classifications as relative to the total number of predictions done. In

detail, PR curves plot precision on the y axis and recall on the x axis, making it more

sensitive to mistakes and focused on high precision predictions.

As an illustration on the differences between ROC and PR consider how these two

curves represent a random classifier, which always performs poorly in an imbalanced

data set. The ROC curve always represents the random classifier as a straight line

between points (0, 0) and (1, 1), regardless of class imbalance, with all better than

random classifiers represented as lines above that diagonal. PR curves on the other

hand represent random classifiers in imbalanced data sets a flat line on the x axis, as

their precision in imbalanced settings is always close to zero. We therefore agree with

recent research (Yang et al., 2014), and consider the PR curve to be a more appropriate

evaluation methodology for LP. It will be the one used in our tests §7. Nevertheless, we

have also included the ROC curves of all tests performed in Appendix §A for illustrative

purposes.
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5.2 Precision-Recall Curves in Link Prediction

Most research on LP use ROC curves(Clauset et al., 2008; Fire et al., 2011; Lü et al.,

2009; Lü and Zhou, 2011; Murata and Moriyasu, 2008) or PR curves (Aggarwal et al.,

2013; Nickel et al., 2011) for evaluation. This is motivated, as previously discussed,

by the huge class imbalance found in LP tasks and the resistance of these evaluation

methods to this setting. For the reasons discussed in §5.1 though, we find PR curves

to be more appropriate. For a given data set, the PR curve shows the performance of

a classifier at various thresholds: at the left part of the curve are the high-certainty

predictions where precision is higher, while at the right part of the curve are the low-

certainty predictions where recall grows at the expense of a lower precision. Through

the PR curve one can directly see which classifier performs better at each different

predictive threshold. The derived AUC metric of the PR curve on the other hand

determines which classifier performs better overall, when all thresholds are considered

at the same time with the same importance. In that regard, when evaluating LP scores

in a data set, the AUC of the PR curve is a good indicator of which score performs the

best overall.

In practice, we find the PR-AUC score to be sub-optimal for evaluating the appli-

cability of results. Given the imbalance of the graphs used (see §3.6), in most cases a

large part of the PR curve will represent low precisions, as high precisions can only be

achieved for a small set of high confidence predictions. In fact, as recall grows and the

acceptance threshold decreases, precision can quickly reach levels unacceptable from a

practical point of view. At this point one must consider which results are worth taking

into account when evaluating the performance of a classifier. If we intend to achieve

an applicable methodology we should focus on its performance where it matters, when

a reasonable number of mistakes are being done. At extremely low precisions (e.g.,

0.01%) results are likely to be useless, and therefore should not be taken into account

(at least not with equal weight) into the evaluation. For this reason in §5.3 we propose

a AUC measure focusing on applicability.

5.3 Constrained AUC

Is a prediction where, of 1,000 edges predicted 1 is right and 999 wrong, useful? The

answer to that question ultimately depends on what is to be done with those predictions,
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but in general such an imprecise prediction will hardly be exploitable: there are just too

many mistakes. One of the goals of this thesis is to get LP as close as possible to broad

applicability. For that purpose we consider the necessity of evaluating performance

in the context of usability, so that we can determine which LP score produces the

most usable results. The classic AUC measure considers equally the performance of

a classifier at any threshold, therefore evaluating which classifier performs the best

overall. However, we consider that the performance of LP scores at low thresholds,

where millions of mistakes are done, is irrelevant for assessment purposes.

We propose to evaluate LP scores based only on the predictions these produce while

keeping an acceptable ratio of mistakes. In order to be fair with the particularities of

each domain, we define this acceptable ratio of mistakes based on the number of edges

originally found in the graph. The more edges there are in a graph, the more predictions

we expect to obtain, therefore extending the limit of mistakes considered as acceptable;

we assume that one will rarely want to predict more new edges than edges already found

in the graph. Indeed, generating a larger amount of knowledge than one currently has

is rarely sought in AI, due to the unreliability of such an approach. Formally, the

proposed Constrained AUC score (CAUC) is obtained by calculating the AUC of the

PR sub-curve where the number of non-existing edges mistakenly accepted by the score

is equal or lower than the total number of edges in the graph.

The CAUC considers only the part of the PR curve where the score is incorrectly

accepting less edges than the number of edges in the graph, dismissing the rest of the

area under the curve. CAUC therefore calculates a portion of the AUC starting from

the left of the curve, ending when too many mistakes are done. Nevertheless, if a LP

score is precise enough the CAUC can be equal to the AUC. Notice that, unlike the

AUC, the CAUC can be 0, if the top E edges evaluated by a score in a graph with E

edges are incorrect predictions.

As said before, the goal of this performance measure is to focus on the relevant parts

of the PR curve. By accepting only mistakes up to the number of edges in the graph

one puts a limit to what one considers are potentially useful predictions. Thus, scores

which perform better at low precisions are penalized by this score, whereas they are

not by the AUC. Furthermore, by making the threshold dependent on graph properties

(i.e., on the number of edges in it) the CAUC score adapts to domain specific properties

such as sparsity and graph size. This is a interesting novel feature not found in the AUC

43



5. EVALUATING LINK PREDICTION

Figure 5.1: PR curve of RA on two different graphs (Cyc and IMDb). Grey area shows

the CAUC.

measure, as a contextual evaluation allows the cross-domain comparison of results. As

an example consider Figure 5.1, where the PR curves of the RA score are shown for two

different graphs. The vertical cut on each curve represents the location of the CAUC

threshold for each particular data set and score, limiting the CAUC to the area at the

left of the threshold (colored in grey), whereas the AUC considers the whole curve.

5.4 Building Test Sets

To evaluate a predictor empirically we require a test set. In the case of LP the edges

proposed by a predictor are compared against those of the test set. Each predicted

edge within the test set is considered as a correct prediction, and each predicted edge

not found in the test set is considered a mistake. The resultant precision and recalls

obtained build the previously discussed PR curve.

The main problem with tests sets is how to obtain them. The best test set one can

use is one which represents a natural extension of the graph being tested. Such will be

the approach taken with the DBpedia graph, introduced in §6.2.1, in which the original

graph is composed by the pagelinks among wikipages of 2012, and the test set by the

pagelinks added one year later, in 2013. Unfortunately, this setting where we have two
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clearly incremental parts of the graph is rare, and we will not be able to apply it to

the rest of the graph tested. Instead, as will happen in most cases, we must settle for

the more drastic approach of randomly removing a number of edges from the graph in

order to use them as test set.

For all graphs introduced in §6 we will remove a random 10% of all edges. We

will then try to predict this 10% test set using as a source the graph composed by

the remaining 90% of the graph. The problem with this approach is that the topology

of the graph may be significantly affected by the removal of a random 10% of edges,

therefore hindering the performance of the evaluated scores. Hence, one can expect the

actual performance of LP scores to be slightly better than the one achieved here when

applied to an integral graph. Regardless of its limitations, this methodology remains

the most reliable one (Yang et al., 2014).

5.5 Representativity of Test Sets

The use of PR or ROC curves to evaluate LP implies the assumption that the sets

of edges being used for test (the prediction of which is evaluated by the curves) are

a significant representation of all the edges missing in the graph. Or in other words,

that all edges not found in neither the graph nor in the test set, are wrong. In certain

cases, where the graph topology is stable, this may be an accurate assessment. For

example, the Wordnet graph (introduced in §6.1.1) can be considered as almost perfect,

as WordNet relations have been identified, discussed and implemented by linguists for

years. In other cases though the test cases are an imperfect measure of which edges

are missing from the graph. Consider for example the DBpedia graph, introduced in

§6.2.1, in which the pagelinks among Wikipedia articles from 2012 are used as training

and the new pagelinks added on 2013 are used as test. This graph is clearly incomplete,

even if we consider the links of 2012 plus those of 2013. The Wikipedia grows every

day and the fact that a link is not implemented so far does not mean it is wrong. As a

result, one must take into account that some of the edges predicted, not found in the

test set and labeled as mistakes, will in fact be correct predictions corresponding to

edges not yet added to the graph.

Since these limitations in the evaluation of LP scores through test sets affect all

scores, it can be argued that the PR curve remains a valid methodology for comparing
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the relative performance of two or more scores. The shortcoming of test set represen-

tativity comes when evaluating the actual true precision of a score in the context of

applicability. Unfortunately, there is no solution so far to that problem beyond an im-

possible hand-made validation. An approximate solution in that direction is to perform

a sampling process of all edges predicted, manually evaluating the sampled edges as

correct or incorrect predictions, and then extrapolating the performance obtained on

the sample to the rest of the graph. There are several important aspects to keep in

mind with this solution. First of all, for the extrapolation to be faithful, the sampling

needs to be large, which equals to many hours of manual labeling. And second, since

the performance of LP scores decrease as the similarity of edges decreases (i.e., high

certainty prediction are much more accurate than low certainty ones), the sampling

would have to be done at several thresholds so that extrapolations are representative

of the whole curve. Sampling is therefore relevant for accurately estimating the pre-

dictive performance of a given score on a specific domain. Since we lack the necessary

manpower and we do not target one specific domain, we will not perform sampling in

our evaluation.
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Chapter 6

Graph Domains

LP scores are learning tools completely agnostic from the nature of data being pro-

cessed: these only requires entities and relations composing a graph to perform learn-

ing, regardless of the semantics of those entities and relations. Thanks to this high level

of abstraction, LP can be applied more or less successfully to virtually any domain,

as one can always find a way to transform knowledge representations into a relational

set (i.e., a graph). In here we introduce the data sets we use in §7 for comparing the

performance of different LP scores. We first introduce two graphs which are explicitly

hierarchical in §6.1, and then several non hierarchical graphs in §6.2. Our goal is to

show both the relevance of hierarchical features in graphs (regardless if those graphs

are hierarchical or not) and the potential applicability of LP in general to a variety of

domains. The basic properties of the graphs used can be seen in Table 6.1.

6.1 Explicitly Hierarchical Graphs

Hierarchies are frequently found in relational sets through properties such as inheritance

and transitivity. When these properties are implemented, they may be responsible for

the existence of most relations within the data set. In this section we introduce two data

sets which explicitly implement hierarchical features: one obtained from the WordNet

lexical database and one from the OpenCyc ontology.
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Data set source Number of vertices Number of edges

(Input + Test)

WordNet 89,178 698,588

Cyc 116,835 345,599

IMDb 2,930,634 7,528,349

webND 325,729 1,497,134

webSB 685,230 7,600,595

webGL 875,713 5,105,039

hudong 1,984,484 14,869,484

baidu 2,141,300 17,794,839

DBpedia 17,170,894 137,028,000

Table 6.1: Size of graphs used for evaluation

6.1.1 WordNet

WordNet (Miller, 1995) is a lexical database originally designed for the English lan-

guage, now available for several languages. It contains words with associated lexical

information, such as the word type (i.e., noun, verb, adjective, etc.). Words in Word-

Net are grouped according to their semantics and compose synsets, groups of synonym

words. Accordingly, words with more than one meaning belong to more than one

synset. Synsets are related one to another through semantic relations such as hyper-

nym/hyponym, meronym/holonym, etc.. The English WordNet knowledge base can be

downloaded from the project’s web page1, and has been used for various tasks of nat-

ural language processing, such as word sense disambiguation (Banerjee and Pedersen,

2002) and machine translation (Knight and Luk, 1994).

To build a graph from WordNet we focus on the hyponym/hypernym relations of

synsets. The hyponym/hypernym relation associates concepts based on the inclusion

of semantics: A is a hyponym of B (i.e., B is a hypernym of A) if the semantics of

A are within the semantics of B. For example, cat is a hyponym of feline, and arti-

fact is a hypernym of pencil. Hence, this relation defines a type of hierarchy based

on semantic specialization: the more specific the semantics of a word, the lower it will

be found in this hierarchy, and the more hypernyms and less hyponyms it will have.

Based on this is-a relation we build a graph by considering each synset as a vertex,

1wordnet.princeton.edu
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and each hyponym/hypernym relation as a directed edge (from hyponym to hypernym).

The resultant graph is composed by 89,178 vertices and 698,588 edges. WordNet hy-

ponym/hypernym relations are transitive, and we implement such transitivity in the

graph. This means that every synset is directly connected with all its hyponyms and

hypernyms. Since WordNet has been formally defined by linguists it does not contain

cycles, making the graph we build a directed tree. This will be the only tested graph

satisfying this property.

6.1.2 Cyc

The Cyc project was started in 1984, by D. Lenat, with the goal of enabling AI appli-

cations with human-like common sense reasoning (Lenat, 1995). In its almost thirty

years of existence the Cyc project has developed a large knowledge base containing

those facts that define common sense according to its creators. The project uses a

declarative language based on first-order logic (FOL) called CycL to formally represent

knowledge. Opencyc is a reduced version of Cyc containing most of the same concepts,

taxonomic relationships, well-formedness information about predicates and natural lan-

guage strings associated with each term. In 2012 a version of OpenCyc was released

which included the entire Cyc ontology in OWL, implementing RDF vocabulary. It

can be downloaded from the project’s web page1.

We build a semi-formal hierarchy from the OWL ontology of OpenCyc by extracting

the rdfs:Class elements. These will become the vertices of our graph. To implement

the edges of the graph we use the RDF relations rdf:type and rdfs:subClassOf,

as these define a type of hierarchy. The Cyc knowledge base includes transitivity for

the relation rdfs:subClassOf, but not for rdf:type (RDF Working Group, 2014).

Since edges labels are not used in the LP process, edges predicted in this graph will

be of a merged rdf:type and rdfs:subClassOf kind, among rdfs:Class elements.

Significantly, these two types of relations, rdf:type and rdfs:subClassOf, account

for over the 80% of all relations among rdfs:Class entities in the OpenCyc ontology.

The resultant graph is directed and unlabeled (we delete the labels of edges), composed

by 116,835 vertices and 345,599 edges. This graph is also explicitly hierarchical, first

because it is partly transitive, and second because of the specialization/generalization

semantics included in both types of relation implemented.

1www.cyc.com
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6.2 Non-hierarchical Graphs

As discussed in §4 one of our hypothesis is that hierarchical semantics are found at some

level in most general knowledge representations which include directionality. Even if no

explicit hierarchical properties are defined (e.g., inheritance, transitivity) in a graph,

the essence of edge directionality typically includes features which can be exploited in

the context of hierarchies (e.g., causality). To evaluate that hypothesis we test our

proposed score, which assumes generalization/specialization relations, on some graphs

which are not explicitly hierarchical. If a hierarchy is found at some implicit level in

them is something that we will discuss in §9.4.

6.2.1 Webgraphs

The World Wide Web naturally represents a large, directed webgraph: a graph com-

posed by web pages connected through hyperlinks. When considering LP for the

WWW, the first application that comes into mind is to find new hyperlinks among

web pages. Through similarity-based methods, this process implements a proximity

or similarity analysis among web pages, from which one can easily identify multiple

fields of application. For example, one could use hyperlink prediction for increasing the

connectivity, navigability and visibility of web sites, or in a more subtle approach, for

improving the quality of search engine recommendations given similarity-based analy-

sis. Regardless of the particular application, the capability of computing larger graphs

becomes a key factor when trying to generalize them to the large variety of webgraphs

available today.

The task of predicting hyperlinks among web pages using similarity-based algo-

rithms has received little attention so far. In contrast, other similar problems like the

one of predicting relations in social network graphs have been thoroughly studied using

a wide variety of methodologies (Adamic and Adar, 2003; Liben-Nowell and Kleinberg,

2007; Lichtenwalter et al., 2010; Murata and Moriyasu, 2007; Song et al., 2009). We

find in the bibliography that webgraphs have in fact been occasionally used to evalu-

ate LP scores in combination with other domains, but never as an independent case

of study. Furthermore, when webgraphs have been used for LP, only relatively small

graphs have been computed (a few thousand vertices), typically due to the complexity

of the models being used (Lü et al., 2009; Tong et al., 2007).
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To evaluate the web hyperlink prediction problem we use six large webgraphs ob-

tained from different sources. Three of them are the webgraph of the University of

Notre Dame domain in 1999 (webND) (Albert et al., 1999), the webgraph of Standford

and Stanford-Berkley in 2002 (webSB) (Khalil and Liu, 2004) and a webgraph provided

by Google for its 2002 programming contest (webGL). The other three evaluated we-

bgraphs originate from online encyclopedias. They still represent web pages and the

hyperlinks among them, but they have in particular that those web pages correspond

to encyclopedic articles. The three webgraphs were obtained from the Chinese ency-

clopedias Baidu and Hudong (Kunegis, 2013) and the English version of Wikipedia

(Lehmann et al., 2014). The size of each webgraph used is shown in Table 6.1.

6.2.1.1 Hierarchies in the WWW

One of the main contributions of this work is the novel application of a hierarchical

score (defined in §4.1) for the problem of LP. By applying INF to webgraphs we are

implicitly assuming that the WWW topology contains or is partly defined by hierar-

chical properties. The relation between the WWW and hierarchies has in fact been

discussed, empirically evaluated and exploited in the past, as we review in this section.

What is novel in our contribution is its application to the specific case of hyperlink

prediction, something that has never been done before. As we will see, for this use case

we consider hierarchies at a much smaller scale than usual, thus enabling hierarchical

properties not so far exploited in the context of the WWW.

Various aspects of the WWW have been shown to include hierarchical properties

in the past. The autonomous systems topology of routing units (Pastor-Satorras et al.,

2001), and the WWW requests and traffic (Crovella and Bestavros, 1997) were among

the first WWW aspects shown to be hierarchically structured. The webgraph defined

by web pages and hyperlinks was first found to compose a self-similar structure defined

by a set of nested entities, indicating a “natural hierarchical characterization of the

structure of the web“ (Dill et al., 2002). This idea was extended and formalized in

(Ravasz and Barabási, 2003), where authors showed how some key properties found in

webgraphs and other real networks, such as being scale-free and having a high degree of

clustering, could be satisfied through a hierarchical organization. A challenge at which

previous models had failed. In their work, Ravasz and Barbási propose a hierarchical
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network model fitting such networks, to be composed by small, dense groups, recursively

combining to compose ever larger and less dense groups, in a fractal-like structure.

The importance of hierarchies to model the structural properties of real networks

was finally exploited through its application to generative models: models built to pro-

duce artificial, large scale networks mimicking the topological structure and properties

of real networks. The work of Leskovec et al.(Leskovec et al., 2005) is of particular

interest, as authors define various generative models satisfying certain complex prop-

erties never properly captured before (e.g., densification, shrinking diameters and a

heavy-tailed out-degree). The most complex model proposed by Leskovec et al., called

the forest fire model (FFM), builds a network by iteratively adding one new vertex x to

a graph. In this model, one first randomly provides an entry point to x in the form of

a vertex x will point to (i.e., its ambassador) through a first, random out-going edge.

In a second step, a random number of out-going edges are added to x, to be chosen

among the out-going and in-going edges of the ambassador (the former with a higher

probability of being selected than the latter). This process in then repeated recursively

for each new vertex that gets connected with x, with the restriction that each ambas-

sador is considered only once. The FFM and INF share some relevant features, which

we further discuss in §9.4.

6.2.2 IMDb

IMDb is one of the largest and most popular online databases of audiovisual entertain-

ment information. It contains lots of related data about movies, TV shows, actors,

directors, movie genres, user ratings etc.. For building a graph with this information

we first crawled the website and obtained all the available titles (movies or TV shows),

directors, genres (e.g., Western, Comedy) and tags (e.g., female-protagonist, miami-

florida, car-chase). As a result we obtained a list of 2,930,634 vertices. Their types and

frequency can be seen in Table 6.2. For those, we extract the following relations found

in IMDb:

• Movie references Movie (520,768 occurrences)

• Movie directed by Director (1,839,296 occurrences)

• Movie belongs to Genre (1,289,500 occurrences)
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• Movie defined by Tag (3,878,785 occurrences)

Directionality of edges is defined as shown in the previous list (e.g., Movie→ Director).

Interpreting this graph as a hierarchy means movies are some type of specialization of

the movies they reference, of the directors that directed them, of the genre they belong

to and of the tags that define them. The result is a directed graph with 2,930,634

vertices and 7,528,349 edges. We randomly split those edges 90%-10% into two sets,

using the 90% of edges as initial graph, and using the remaining 10% as test set.

Vertex type Number of vertices

Title 2,476,797

Director 321,485

Genre 31

Tag 132,321

Table 6.2: Type and frequency of IMDb vertices
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Chapter 7

Empirical Study

In this chapter we compare the performance of the methods presented in §2 and §4 when

applied to the nine graphs introduced in §6. To use the evaluation methods discussed in

§5 we require a set of edges known to be correct but missing from the graph. This will

be the test set, the target of the predictors. As discussed in §5.4, for eight of our graphs

we randomly remove a 10% of the original edges from the graph to build the test set.

Thus, for all graphs but the DBpedia we evaluate (N ∗(N−1))−(E∗0.9) edges1, where

N is the number of vertices and E the number of edges. The actual number of edges

being evaluated for each graph are shown in Table 7.1. The evaluation on the DBpedia

webgraph on the other hand could be incrementally performed through time thanks to

its periodic data dumps. In detail, our tests consider all articles and hyperlinks added

to the Wikipedia by June 2012 as train graph, and all new hyperlinks added by June

2013 as our test graph. Thus, for the DBpedia webgraph we are evaluating the scores

ability at predicting hyperlinks that will be added from one year to another. Further

details are shown in Table 7.1.

The main benefit of using the family of LP methods inhere proposed is scalability. A

necessary feature considering that the total number of edges to be evaluated. Due to the

scalability of our approach we are capable of calculating the score of all possible edges

to define the PR curve, avoiding approximate and potentially harmful methodologies

such as test sampling. Test sampling reduces the computational complexity of the

evaluation process by computing only a subset of all possible edges. Unfortunately

1Not perfectly accurate as vertices becoming disconnected in the train graph after removing the

test edges were not computed nor considered for score evaluation. See Table 7.1 for the exact amount.
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Graph #edges to be found #edges evaluated

WordNet 69,858 7,951 million

Cyc 34,559 13,649 million

IMDb 752,834 8,588,605 million

webND 133,279 95,939 million

webSB 756,937 466,034 million

webGL 494,982 741,978 million

hudong 1,446,760 3,786,991 million

baidu 1,701,330 4,370,982 million

DBpedia 2,865,540 6,009,812 million

Table 7.1: Total edges evaluated by graph.

there is no methodology for choosing that subset which guarantees results will not be

biased (Yang et al., 2014). Only by evaluating all possible edges we can guarantee a

faithful analysis of the actual predictive performance of the computed scores.

Even though our methods are the most scalable ones, the number of edges to be

evaluated sets some computational boundaries. In our executions we define a running

time limit of 48 hours. We could completely evaluate all the graphs here used within

that limit, with the only exception of the DBpedia. The size of this particular graph

(which has around 3 · 1014 possible edges) forced us to simplify the problem in order to

compute it within the limit (computational times are shown in Table ??). Instead of

doing a typical test sampling we decided to focus on the prediction of edges originating

from the 350,000 vertices with higher out-degree (350, 000 · (N−1)−E∗ edges)1. These

are the richer edges in terms of information, and thus the most expensive ones to

compute. As we will discuss in §7.2, this problem reduction method still results in a

slightly biased comparison.

As seen in §2.1.1 the complexity of similarity-based link prediction algorithms de-

pends on the diameter of the graph these algorithms explore. Global algorithms are

very costly and cannot compute large scale graphs. And quasi-local indices, besides

being more expensive than local algorithms, typically need the sampling of parameters

such as optimal diameter and decay which increases their cost. In our evaluation we

1Where E∗ corresponds to the edges in the training graph originating from the 350,000 vertices

with higher out-degree.
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focus on local similarity-based link prediction algorithms, since we consider INFerence

to be our most significant contribution. However, we still want to test some quasi-local

(INF QL, INF 2D QL, INF LOG QL, INF LOG 2D QL) and global (HRA, HCN and

HAA) scores in order to better understand the overall behavior of INF and to validate

our hypothesis regarding the importance of hierarchies.

We start by evaluating all thirteen scores (seven local, three quasi-local and three

global) on three non-webgraphs, WordNet, Cyc and IMDb, in §7.1, showing the PR-

CAUC achieved by each score on each graph. Then we focus on the particular problem

of hyperlink prediction (i.e., LP on webgraphs) through local scores in §7.2, evaluating

seven local scores on six webgraphs using the PR-AUC measure. Additional PR-AUC,

PR-CAUC measures and PR and ROC curves for all graphs are shown in Appendix §A
for reference. Finally in §7.3 we discuss the edges predicted with higher accuracy, in

hopes that this informal study will illustrate the type of predictions obtained, and the

impact of the results shown here. All tests here presented were executed on a single node

of the MareNostrum supercomputer, based on Intel SandyBridge processors, iDataPlex

compute racks and an Infiniband interconnection. Further details are found in §8.4.

7.1 General Evaluation

We start the evaluation by comparing the performance of the top three undirected scores

of LP (CN, AA and RA), defined in §2.1.2. Then we compare the global hierarchical

versions of those scores (HCN, HAA and HRA), proposed in §4.2. Afterwards, we

evaluate the unmodified INF score against the best undirected score and the best

hierarchical version of an undirected score according to our tests. Then we study the

performance of the various modifications on the INF score (INF 2D, INF LOG and

INF LOG 2D), as proposed in §4.1.1. Finally, we evaluate the quasi-local version of

the INF score, defined in §4.1.2.

7.1.1 Undirected Scores

There is a consensus in the bibliography on which scores of LP obtain the best predictive

results (see §2.1.2). In accordance with this consensus, in this section we compare the

top three scores, formally described in Definitions 1, 2 and 3, on the WordNet, Cyc and

IMDb graphs. The PR-CAUC values achieved by CN, AA and RA for this problems
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Figure 7.1: PR curve of RA, AA and CN scores on the WordNet graph.

can be seen in Table 7.2. The exact PR and ROC curves, as well as the PR-AUC score

for all graphs, can be seen in Appendix §A.

Results indicate that RA outperforms AA and CN by a large margin in all three

graphs. Regardless of the graph being hierarchical, non-hierarchical, large, small, dense

or sparse, RA seems to be the most appropriate LP score. The performance of undi-

rected scores among graphs seems to be strongly correlated with the size and sparsity

of the graph being tested (shown in Table 3.1). Results are for all scores better in

WordNet, the graph with the smallest number of vertices (89,178), and the smallest

class imbalance (1:11,382). As the number of vertices and the imbalance increases

(WordNet→Cyc→IMDb), results get worse. These results indicate the possibility of

estimating the performance of predictors on a given graph given its properties.

Score WordNet Cyc IMDb

PR-CAUC PR-CAUC PR-CAUC

RA 0.0383679 0.00584383 0.0011261

AA 0.0156469 0.0048808 0.0008811

CN 0.0048877 0.0013585 0.0006182

Table 7.2: PR-CAUC score of RA, AA and CN on all graphs.
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Figure 7.2: PR curve of RA, AA and CN scores on the OpenCyc graph.

In Figure 7.1 we show the PR curve for the WordNet graph, where undirected scores

achieve the best results. Notice how the best precision obtained is around 9%. RA

obtains approximately the same maximum precision than AA and CN. The difference

between their performance is at the range of low thresholds, where RA is capable of

maintaining a high precision (between 9% and 4%) as recall increases, while precision

decreases more rapidly for the other scores.

Similar results are obtained for the OpenCyc graph, where RA obtains better CAUC

than AA (by 19%) and CN (by 330%) by keeping a higher precision as recall grows (see

Figure 7.2.) Notice however that CN is the best score for high precision predictions,

as it reaches a maximum precision of 5.5% when recall is around 1%. RA on the other

hand only reaches a maximum precision of 4.3% at 5% recall.

7.1.2 Hierarchical Undirected Scores

In this section we compare the hierarchical version of the three scores previously tested

(HRA, HAA and HCN), as defined in §4.2. The PR-CAUC obtained by these scores

on three of the proposed graphs can be seen in Table 7.3. In consistence with the

results obtained for the undirected version of these scores, HRA outperforms HAA and
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Figure 7.3: PR curve of HRA, HAA and HCN scores on the WordNet graph.

HCN by a large margin in all graphs. The PR curve of HRA, HAA and HCN for the

WordNet graph can be seen in Figure 7.3.

Once again all scores achieve similar results at high certainty predictions, and HRA

outperforms the others by keeping a higher precision as recall increases. In fact, the

curves shown in Figures 7.1 and 7.3 are quite similar in shape. Not in scale though;

directed algorithms HRA, HAA and HCN outperform their original undirected ver-

sion by one order of magnitude in CAUC. Where undirected scores reached maximum

precisions around 9% on WordNet, the hierarchical version of these scores achieve pre-

cisions up to 65%, a huge improvement. This increase in performance is also found

in the other graphs, as shown by Tables 7.2 and 7.3 and Figures 7.3, A.13 and A.16.

HRA, HAA and HCN combined outperform RA, AA and CN combined on the three

Score WordNet Cyc IMDb

PR-CAUC PR-CAUC PR-CAUC

HRA 0.208804 0.0178101 0.00249108

HAA 0.0789657 0.0143919 0.00205791

HCN 0.0234393 0.0034154 0.00149409

Table 7.3: PR-CAUC score of HRA, HAA and HCN on all graphs.
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Figure 7.4: PR curve of INF, HRA and RA scores on the IMDb graph.

graphs by a 479%. We discuss the consequences of these results in §9.4, but for now

let us remark how our proposed hierarchical versions represent a very effective way of

converting undirected scores of LP to directed scores, at least for the graphs tested,

achieving a significant performance improvement while doing so.

7.1.3 INF Score Evaluation

In this section we compare the performance of the INF score, proposed in §4.1, with

that of the best undirected and hierarchical undirected scores according to the previous

tests (i.e., RA and HRA). In Table 7.4 the PR-CAUC scores of INF, HRA and RA are

shown for the three graphs. Overall, INF is capable of significantly outperforming both

HRA and RA, achieving for example 9 times higher CAUC than HRA and 20 times

higher than RA in the IMDb graph. In the particular comparison between INF and

RA, INF outperforms RA by one order of magnitude in all graphs: INF obtains better

results on all graphs tested, regardless of the graph being explicitly hierarchical or not.

This indicates that INF is a competitive score for various types of directed graph, along

various domains. As a more detailed example, the PR curves of INF, HRA and RA in

the IMDb graph are shown in Figure 7.4.
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Score WordNet Cyc IMDb

PR-CAUC PR-CAUC PR-CAUC

INF 0.715 0.0685397 0.0227005

HRA 0.208804 0.0178101 0.0024910

RA 0.038367 0.0058438 0.0011261

Table 7.4: PR-CAUC score of INF, HRA, and RA on the three non webgraphs.

Even though INF obtains the best results on all three graphs, its performance on

the WordNet graph is particularly good. INF does not make a single prediction mistake

on WordNet until reaching a recall of 15.1% (see Figure §A.19), thus keeping a precision

of 100% up to that point. As a result, of the total 69,858 edges to be predicted, 10,548

edges are correctly identified without incorrectly accepting any of the 7,951 million non-

existing edges. We expected the best results to be achieved on WordNet, as it composes

the most strictly hierarchical and dense of the graph tested. Additionally, the DED

score can be understood as a weighted transitivity measure, and WordNet is strongly

defined through transitivity. Nevertheless, the quality of the results is remarkable when

considering the complexity of the task.

7.1.4 Modified INF Scores

After comparing the basic version of INF against the best candidates of LP in the

previous section, next we focus on the modifications of INF as defined in §4.1.1. We

test the 2D modification (which doubles the weight of DED in INF in comparison

with IND, Definition 10), the LOG modification (which besides the proportion of edges

supporting the inference it also considers their absolute number, Definition 13) and

finally, the combination of both, INF LOG 2D. The results on all three graphs can be

seen in Table 7.5.

These results are more variable, as each modification performs very differently de-

pending on the graph. We interpret this as an opportunity for score adaptation. The

2D modification works well on WordNet as INF 2D reaches a remarkable 0.837 PR-

CAUC in it, a 17.16% higher than INF, and also in IMDb in combination with the LOG

modification. On the other hand, on Cyc the 2D modification does not improve perfor-

mance, indicating that Cyc is in fact the most taxonomically structured graph where

generalization and specialization are equally reliable. For the remaining graphs, also
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Score WordNet Cyc IMDb

PR-CAUC PR-CAUC PR-CAUC

INF 0.715 0.0685397 0.0227005

INF 2D 0.837709 0.0669549 0.0152854

INF LOG 0.730075 0.0145715 0.0256254

INF LOG 2D 0.839372 0.0144879 0.0320782

Table 7.5: PR-CAUC score of INF, INF 2D, INF LOG, INF LOG 2D on all graphs.

the webgraphs shown in §7.2, the 2D results indicate that knowledge obtained from

generalizations (i.e., top-down) is on average more reliable than that obtained from

specializations (i.e., bottom-up). These results are nothing new for transitive graphs,

but is a novel and interesting property of informal graphs like IMDb and webgraphs.

The LOG modification of the INF score considers the amount of evidence as an im-

portant predictive factor, prioritizing those predictions that have more edges supporting

them. This implies counterproductive results on graphs where a single edge is formally

as much evidence as a set of them. Cyc is an example of that since its structure is

ontologically defined: INF LOG achieves a 78.7% lower PR-CAUC than INF on it. In

WordNet, the structure is less formally constrained which allows INF LOG to achieve

a small improvement in the PR-CAUC of 2% when compared to INF. On informal

graphs however, the LOG modification provides a significant improvement. On IMDb

for example INF LOG has a 12.8% higher PR-CAUC than INF. An effect that takes

place as well on webgraphs. The results obtained by the various modifications seem

therefore to be strongly linked with the nature of the graph. A less strict score (one

with modifications) being appropriate for less strict graphs. A more detailed analysis

of that will be possible after testing INF, INF 2D, INF LOG and INF LOG 2D on the

webgraphs, in §7.2.

7.1.5 Quasi-local INF Scores

The last PR-CAUC evaluation we perform is on the quasi-local INF scores. In this

section we test, for each modified version of INF, the performance of its quasi-local

version. Table 7.6 shows the performance results. Surprisingly, the only graph in

which a quasi-local scores achieves better results than its local version is WordNet.

On the other graphs the local version works better. Regardless, we consider the tests
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Score WordNet Cyc IMDb

PR-CAUC PR-CAUC PR-CAUC

INF QL 0.720866 0.0452247 0.005800

INF 2D QL 0.842386 0.0409292 0.010527

INF LOG QL 0.726982 0.0071217 0.016685

INF LOG 2D QL 0.836465 0.0077724 0.025504

Table 7.6: PR-CAUC score of INF QL, INF 2D QL, INF LOG QL, INF LOG 2D QL

on three graphs.

performed on quasi-local scores to be inconclusive, as further discussed in §10.3, since

the computationally expensive sampling process of the number of steps to be performed,

and of the decaying parameter α, was not implemented.

Let us summarize the results obtained in this section in table 7.7, by showing the

top three scores, out of 14 scores tested, by PR-CAUC achieved on each graph.

Rank WordNet Cyc IMDb

#1 INF 2D QL INF INF LOG 2D

#2 INF LOG 2D INF 2D INF LOG

#3 INF 2D INF QL INF LOG 2D QL

Table 7.7: Top 3 scores in PR-CAUC for each graph tested

7.2 Hyperlink Prediction Evaluation

In this section we consider the problem of predicting links among webgraphs. We com-

pare the top three undirected scores of LP (CN, AA and RA) with all the local versions

on the INF score (INF, INF 2D, INF LOG and INF LOG 2D), using six different we-

bgraphs. The PR curves can be seen in Figure 7.5 (a larger version of these curves

can be found in Appendix A.6). Evaluation is done using the PR-AUC. The resultant

PR-AUC obtained by each of those curves are shown in Table 7.8. Other evaluation

metrics (PR-CAUC and ROC-AUC) can be found in Appendix A.6.

First and foremost, INF LOG 2D obtains the best PR-AUC values on all webgraphs

by a large margin. The only score that gets close to INF LOG 2D in performance is

INF LOG, particularly on the webND and baidu webgraphs. In these, INF LOG 2D
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Figure 7.5: PR curves for all webgraphs, 1:AA, 2:CN, 3:RA, 4:INF, 5:INF LOG,

6:INF 2D, 7:INF LOG 2D. Recall in x axis, recall in y axis. Hudong, Baidu and DB-

pedia curves are zoomed in for clarity.

improves the PR-AUC of INF LOG by only a 5%. When compared to the state-of-the-

art local similarity-based algorithms (CN, AA and RA), INF LOG 2D represents an

improvement in predictive quality of several orders of magnitude (see Table 7.9). These

results indicate that the INF score with both proposed modifications (2D and LOG) is

the best local similarity-based algorithms found so far for predicting hyperlinks.

To further discuss the results obtained, let us classify similarity-based algorithms

in two types: proportional and accumulative. Proportional scores, such as INF, weight

the evidence of edges according to their local context, providing a normalized similarity

for each edge. In INF for example, all possible edges share a maximum possible score

of 2, when DED=1 and IND=1 (see Definitions 7, 8 and 9), regardless of the degree of
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the related vertices. Proportional scores are therefore unbiased towards edges among

high-degree vertices. Accumulative scores on the other hand only measure the abso-

lute amount of evidence, ignoring the local context (e.g., number of shared neighbors,

regardless of the vertex degree). In these scores, edges are evaluated and ranked from

a graph-wide perspective, which clearly benefits edges among high-degree vertices.

Previous results discussed in §2.1.2 have shown that in general, accumulative scores

perform better than proportional scores: the top three scores found in the bibliography

are accumulative (i.e., CN, AA and RA). This can be explained by the importance

of the preferential attachment process (i.e., the rich get richer), which accumulative

scores implicitly satisfy, and proportional scores avoid. But the generally poor results

of proportional scores is also caused by the volatility of predictions among low-degree

vertices, which proportional scores may overestimate. To further validate that point

we tested one well-known proportional score on the six webgraphs inhere presented,

the Jaccard’s coefficient score (Liben-Nowell and Kleinberg, 2007), and got coherent

results. Jaccard’s performance was incomparably worse on all webgraphs; when plotted

together with the other scores, Jaccard’s PR curves were a flat line on the x axis.

Proportional scores are theoretically and empirically in disadvantage with accu-

mulative scores. However, INF (a proportional score) outperforms CN, AA and RA

(the top three accumulative scores) on two of the six webgraphs, while still achieving

competitive results on the other four (see Table 7.9). Apparently, INF works around

the overestimation of edges among low-degree vertices (an unfortunately frequent type

of vertex on real networks such as webgraphs) by fitting edges into a more complex

model than just plain neighborhood intersection size. We therefore consider the results

AA CN RA INF LOG 2D LOG 2D

webND 0.31679 0.31855 0.21178 0.09966 0.50096 0.09395 0.52640

webSB 0.02218 0.01669 0.05491 0.10530 0.33605 0.09847 0.45156

webGL 0.08961 0.06227 0.10035 0.12826 0.41954 0.12485 0.49210

hudong 0.00555 0.00743 0.00223 0.00402 0.02953 0.00268 0.03424

baidu 0.00285 0.00176 0.00308 0.00065 0.00504 0.00060 0.00528

DBpedia 0.00056 0.00038 0.00016 0.00049 0.00066 0.00055 0.00071

Table 7.8: AUC obtained by each tested score on the PR curves shown in Figure 7.5.
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AA CN RA

webND +66% +65% +148%

webSB +1935% +2605% +722%

webGL +449% +690% +390%

hudong +516% +360% +1435%

baidu +85% +200% +71%

DBpedia +26% +186% +443%

Table 7.9: Percentage of PR-AUC improvement achieved by INF LOG 2D over the

current top three local similarity-based algorithms for each webgraph.

achieved by INF as evidence of two facts. First, that the hierarchical assumptions of

INF are key for hyperlink prediction. And second, that proportional scores can be

competitive if properly adapted.

To further elaborate on the relation between these two classes of similarity-based

scores, let us consider the results obtained by the LOG modification. While INF was

a proportional score, INF LOG is in fact a hybrid score: it first normalizes evidence

given the local context (proportionally) and then weights that proportion with the

absolute size it was based on (accumulatively, see Definitions 11 and 12). The hybrid

score INF LOG outperforms all purely proportional or accumulative scores on the six

webgraphs tested by a large margin (see Table 7.8). This indicates that hybrid scores

are the most competitive approach for the hyperlink prediction problem.

It is worth noticing that, even though INF LOG 2D achieves the best overall AUC

in the DBpedia webgraph (see Table 7.8), CN and AA outperform INF LOG 2D at very

high precisions on the DBpedia webgraph, something not happening for any other tested

graph. This anomaly is likely to be the result of an imperfect evaluation on the DBpedia

webgraph: due to time constrains, algorithms computed only the edges originating from

the 350,000 vertices with higher degree. This approach, even though coherent with the

goal of maximizing the graph data being processed (we focus on rich vertices), penalizes

proportional and hybrid scores in front of accumulative scores. Accumulative scores

obtain their high certainty predictions around high-degree vertices. Thus, within the

evaluation performed on DBpedia, limited on the highest degree vertices, accumulative

scores like CN and AA will be able to find most reliable predictions. Proportional and

hybrid scores on the other hand do not necessarily find their high certainty predictions

67



7. EMPIRICAL STUDY

around high degree vertices, although hybrid scores lean towards them. As a result

some of the high confidence predictions of proportional and hybrid scores will not be

evaluated in this test setting. These results suggest that accumulative scores may be

more useful for contexts with limited computational resources, as one can easily obtain

their high certainty predictions by computing only a few, highly connected vertices.

Hybrid and proportional scores on the other hand can produce more reliable solutions,

but require of a more exhaustive exploration of the graph.

7.3 Predicting Top-links

The tests performed in §7.1 are the standard objective evaluation of LP scores. These

tests show which scores achieve the best predictive results under equal conditions. From

a practical point of view though, the production of the whole PR curve is rarely useful as

low precision predictions can hardly be applied. In practice, the most straight-forward

application of link prediction in the short-term is as a support tool, discovering and

proposing new high-certainty edges. For this purpose it is not necessary to calculate

the likelihood of all edges, as the PR and ROC curve do. Instead one needs only to

find and return a set of relations in the graph highly likely to exist. In Tables 7.10, 7.11

and 7.12 samples of the most likely edges obtained for various graphs are shown. For

each of those high-certainty predictions it is also shown whether or not they belong to

the test set, and therefore, if these predictions are considered to be mistakes or correct

guesses in our evaluation.

When high precisions cannot be achieved in LP, the process of integrating the top-

edges proposed into the actual graphs requires of supervision. For informal graphs

managed by communities like DBpedia that would not be much of a problem, as edges

could be suggested to each Wikipedia as they supervise an article. The same would

apply for example to social networks, where edges could be shown to users as recom-

mendations. Or to webgraphs, where each webmaster could decide whether or not to

add a set of proposed edges for its managed web pages.

In formally defined graphs like WordNet and Cyc, the integration of the top-edges

predicted may need to be performed exclusively by experts. In this type of graphs,

we find a different purpose for the top-edges predicted by focusing on the apparently

68



7.3 Predicting Top-links

Relation found Edges in test set

embrace.v.02 → hold.v.02 Yes

observation.n.04 → abstraction.n.06 Yes

research.v.02 → analyze.v.01 Yes

bet.v.02 → compete.v.01 Yes

climb.v.01 → travel.v.01 Yes

flatten.v.01 → change.v.01 Yes

hierarchy.n.01 → abstraction.n.06 Yes

escape.v.01 → leave.v.01 Yes

organize.v.02 → control.v.01 Yes

Table 7.10: Sample of top edges predicted by the INF score on the WordNet graph.

Relation found Edge in test set

moss → type of organism No

tank cannon → type of weapon No

political instability → event No

province → non-overlapping geopolitical entity No

breezy location → weather attribute No

dancing by humans → intelligent agent activity Yes

cuisine → edible thing No

propelling an object → movement No

Table 7.11: Sample of top edges predicted by the INF score on the Cyc graph.
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wrong ones. Determining which edges are definitely wrong takes less time than de-

termining which edges are definitely right. And since INF predictions are based on

hierarchies, the detection of certainly wrong top-edges typically implies inconsistencies

in the graph hierarchy (e.g., missing or wrong edges). People in charge of building or

maintaining these data sets could benefit from such information and use it to improve

the quality of the knowledge base. As an example of this application consider the

following scenario we encountered when reviewing the results: in the WordNet graph,

the edge chordate.n.01→ vertebrate.n.01 is predicted with high reliability by the INF

score. This edge is apparently wrong, as vertebrates are a subtype of chordates. The

edge vertebrate.n.01 → chordate.n.01 is in fact found in the original graph. We in-

vestigated on the reasons of this prediction, and realized that even though chordate

is a generalization of vertebrate, the vertebrate synset has more specializations than

chordate (|D(vertebrate)| = 3844, |D(chordate)| = 3087), and in fact there are only

12 specializations of chordate which are not vertebrates. This clearly shows a bald

spot in WordNet regarding chordate animals that are not vertebrate, and explains the

wrong prediction. Fixing the balance in that part of the hierarchy by adding new

non-vertebrate chordates in WordNet would also fix the prediction of INF, as the cer-

tainty of the wrong edge would decrease. This shows the relations between INF and

hierarchical knowledge, and how it can be used to build hierarchically coherent graphs.
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Relation found Edge in test set

Stamen → Flowering Plant No

Predation → Animal No

Doctor (Doctor Who) → United Kingdom No

Battle of Iwo Jima → World War II No

Districts of Turkey → Eastern European Time No

2010 United States Census→United States Yes

Poverty threshold → Population density No

FM broadcasting → Hertz No

Batting average → Home run No

Census-designated place → List of sovereign states No

NBC → United States Yes

DC Comics → Comic book No

Cold War → United States Yes

German Empire → Germany No

Trumpet → Jazz No

Table 7.12: Sample of top edges predicted by the INF score on the DBpedia graph.
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Chapter 8

Computing Link Prediction

This thesis focuses on the computation of large scale graphs. Processing graphs which

are large and continuously growing is in fact the main motivation for using local

similarity-based scores, the most scalable of link prediction methods. However, even

with the most computationally cheap of LP algorithms, processing large graphs even-

tually demands of HPC tools and resources. For specific commercial applications, and

depending on the exhaustivity required, HPC may not be necessary: one can quickly

find ten high-certainty edges to be added to a network. However, if one intends to thor-

oughly compute lots of edges within a graph, for either formal or commercial purposes,

HPC becomes a complete necessity. The use of HPC tools and infrastructure in this

thesis is further motivated by issues found in graph related tasks. Issues that reduce

the computational efficiency of any graph processing algorithm. Theses issues can be

summarized in two topics: data processing problems and parallelism requirements.

Graph data is high-dimensional as vertices are related many to many. Current com-

puters on the other hand, physically store data in one-dimensional memories, assuming

sequentially and exploiting features like data locality. When working with graph data

one quickly realizes that neither memories, nor basic data structures (e.g., arrays) are

designed for efficiently processing high-dimensional data. Which frequently results in

data access operations defining bottlenecks within graph algorithms. On top of that,

networks originating from real world data, like the ones we work with, are very large

and very sparse (see Table 3.1), properties that further complicate the efficient han-

dling of graphs. Focusing on this issue, we explore two optimizations based on how
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data is stored (in §8.1) and how precisely is data computed (in §8.2), with the goal of

increasing the efficiency of our LP algorithms.

Besides data related issues, the other main topic to consider is parallelism. LP

algorithms must compute a huge amount of edges; in this thesis within the order of

billions (see Table 7.1). Computing them linearly, one by one, is clearly impractical,

which makes High Performance Computing (HPC) parallelism necessary for the feasi-

bility of our work. In §8.3 we review some of the parallel models available today for

graph processing, and present the implementation of our LP algorithms on two of those

models. Then, in §8.4 we describe the HPC infrastructure we have used in this thesis.

8.1 Data Ordering and Locality

Memory latency is the time it takes memory access operations to obtain data requested

from a given storage location. Cache memory latency is short due to the physical

embedding of the cache inside the CPU. RAM memory (or main memory) on the other

hand is located farther away from the CPU, making its latency much higher. Thus, the

number of computational cycles needed by memory access operations strongly depends

on which memory is being accessed. When a memory access operation requests a set of

data, and this data is not found on cache memory, the operation must wait for the data

to be fetched from main memory and copied to cache memory. These situations, known

as a memory misses, entail a loss of computational efficiency, as several cycles are spent

waiting for the data to arrive. LP in large graphs is a data-intensive task, as it requires

continuous accesses to graph data while its arithmetic operations remain relatively

simple (see Definitions in §2.1.2 and §4.1). When a data-intensive task is executed on

a large data, set memory misses tend to increase, to the point that they may define the

computational cost of the whole task. Moreover when data is high-dimensionally related

(i.e., graph-like). For these reasons, when developing graph processing algorithms data

structures and data access operations must be implemented with special care.

To decrease cache misses it is important to store and access graph data sequentially

in memory. By doing so, when data is fetched from main memory one can be sure than

only useful data will be copied into the cache. Our goal is to store the entire graph in a

consecutive portion of memory, using containers that allow us to decide not only where

is data physically located, but also in what order. Then, to maximize data locality we
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design the graph processing algorithm to consume the graph data in the same order

used for its storage. For example, for our OpenMP implementation further discussed in

§8.3.1.3, our approach was to store the graph vertices as adjacency lists, sorting vertices

based on their degree (total number of edges) and sorting adjacency lists by vertex id.

Hence, the most connected vertex is stored in the first memory location, as a list of

all the vertices related with it, followed by the second most connected vertex and its

neighbors, and so on. We designed our LP algorithm to access vertex data following the

same order, from largest degree vertex to smallest. In our tests this approach achieved

better performance than using the inverse ordering (from small degree to large) and

than a random ordering.

Regardless of how the graph is stored in memory, misses will happen. One simply

cannot store all near-by vertices near-by in memory, since graphs represent a high-

dimensional space and memory is indexed as an unidimensional space. However, since

the data regarding high degree vertices will be the one accessed more often (at least for

the LP problem), by keeping high degree vertices together one can use possible cache

misses to bring data into memory which will be used later with a higher probability.

8.2 Precision Reduction

Local algorithms of LP compute the likelihood with which an edge exists by operat-

ing on the neighborhood of the two vertices defining the edge. Similarity scores use

mathematical operations such as division and logarithm that can produce similarity

values within the real numbers, with an infinite sequence of digits. The number of dis-

tinct similarity values found in a graph thus grows as the number of possible maximum

neighbours grows, and it reaches millions for graphs as large as the ones used here.

In this context we argue that calculating edge similarities with the largest possible

precision is not necessary or useful, moreover when these similarities define individual

points later on aggregated into a higher order curve (PR or ROC, see §5). A reduc-

tion of precision in the calculus of similarity scores can thus save both time and space;

double-precision floating-point operations require more memory (providing precisions

from 15 to 17 decimal digits) and are harder to calculate (requiring more computing

time) than for example single-precision floating-point operations.
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Figure 8.1: ROC curve for the IMDb data zoomed in. The curve on top is calculated

with 2 digits precision. The curve at the bottom with 3 digits precision.

Overall, PR and ROC curves are hardly affected by a reduction in the precision,

due to the larger scale of the curve in comparison with individual scores. The effect of

reducing the precision of score computation on the resultant curves is on the resolution

of the curves: the number of points composing the curves is reduced through a process

of aggregation, as points which are very close to one another when calculated with high

precision become the same one when calculated with a lower precision. This loss can

be understood as a process of approximation, as the general curve remains the same.

An example on how a loss of precision may not significantly affect an PR or ROC

curve consider the charts shown in Figure §8.1. Both ROC curves shown are obtained

from the IMDb data set using the same LP score, but the one on top corresponds to

a precision of 2 decimals while the one at the bottom corresponds to a precision of 3
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decimals. The 2 decimals curve is defined by 3,134 points, while the 3 decimals curve is

defined by 16,522 points. Notice that, even though we have applied a large zoom to the

curves (notice the axis scale), these are virtually indistinguishable. The benefits of this

approximate approach is even clearer for larger graphs, where the number of points of

the curves (i.e., the number of distinct similarities found) can easily reach millions, and

where a reduction of calculus precision can significantly reduce computational cost.

8.3 Parallelization

Local similarity-based algorithms represent the most scalable approach to LP (see the

complexity analysis in §3.5). However, even local algorithms cannot linearly compute

graphs (i.e., if computation is performed by a single computing unit, one edge at a time)

with millions of vertices within an acceptable time. HPC provides both infrastructure

(e.g., supercomputers) and tools (e.g., programming models) for parallel computation.

And we integrate both in our research, which grants us insight into the potential capa-

bilities of large scale graph mining, as we discuss in §10.1.

One of the most important contributions of HPC for the large scale computation of

graphs are parallel programming models. These models have a huge impact not only

on computational performance but on algorithm design as well. Due to the particu-

larities of graph processing, the HPC community has recently proposed and released

several graph specific parallel programming models. At the same time, the traditional

programming models have also evolved, becoming more efficient and user friendly for

non-HPC developers. We explore the available possibilities for parallel graph process-

ing first by implementing the LP problem using both OpenMP(ARB, 2013) and OmpSs

(Duran et al., 2011) programming models in §8.3.1. We describe the software design

and optimization process used in this setting, seeking an efficient solution. Then in

§8.3.2 we review the emerging graph specific models, and implement the same problem

using one of them. We discuss and compare both solutions in §8.3.3.

8.3.1 OpenMP and OmpSs models

The most common parallel programming models are based on the creation of threads

spanning over one or more instructions of a program (i.e., fork-join). These threads

are responsible of executing subparts of the whole program, and may depend on one
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another at some point of their execution (e.g., through data dependencies). The main

challenge in the implementation of a graph processing algorithm using this model lies

in the high-dimensionality of graphs. High-dimensionality implies multiple relations

within the data, which easily translates into lots of dependencies, and a consequent

loss of efficiency. In §8.3.1.1 we describe how we design our algorithm in this scenario

to minimize dependencies, and show samples of it. In §8.3.1.2 we introduce two different

memory settings of parallel computation: shared memory and distributed memory. We

start by detailing our implementation in a shared memory setting in §8.3.1.3 using

OpenMP. We then extend this implementation to a distributed context in §8.3.1.4,

thanks OmpSs.

8.3.1.1 Link Prediction as an Embarrassing Parallel Problem

One of the main concerns when implementing an algorithm for a parallel environment is

the existence of data dependencies. Dependencies determine execution order constrains

among portions of code and imply synchronization points, as one portion of code must

wait for another portion to be executed first. Through the existence of dependencies,

threads see their work flow halted as they wait for other threads. In essence, depen-

dencies define bottlenecks in the parallel execution of code, and reduce the efficiency

of computational resources usage.

A related concept within the field of parallel computing is that of embarrassingly

parallel problems (Foster, 1995). This notion applies to algorithms that can be paral-

lelized without the definition of significant dependencies. These are therefore problems

which can achieve a huge efficiency through parallelization, as there will be almost

no idle resources in their computation. Embarrassingly parallel problems are capable

of decreasing computational time almost linearly with the number of computing units

available, as the various threads must not endure waiting times. Clearly, embarrass-

ingly parallel problems are the most appropriate ones to parallelize. As we will see

next, LP can be defined as an embarrassingly parallel problem, a feature we exploit in

the work presented here.

As said in §2, one of the key features of similarity based LP algorithms is that the

score of each edge can be calculated independently from the rest. This particularity

gains a huge relevance now as it allow us to define LP as an embarrassingly parallel

problem. Fully testing a LP algorithm on a graph equals to calculate the similarity of
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all possible ordered pairs of vertices (i.e., of each possible directed edge). Since each

similarity can be calculated independently, we can evaluate them all simultaneously

without dependencies. Considering the huge number of edges to test (at times in the

order of billions), the code parallelization design defines the efficiency of the algorithm,

and eventually, the size of the graph it can process.

Our algorithmic design is divided into two fully parallel sections. On the first one we

calculate the similarity of each possible edge in parallel, storing the results obtained for

the edges originating on each vertex in a different structure. Or what is the same, for

every vertex n in the graph we define a distinct data structure storing the similarities

of edges of the form n → X. An overview of this code can be seen in Listing 8.1. On

the second section of the code, for the purpose of building the similarity evaluation

metrics discussed in §5, we need to combine the results obtained. The purpose of

the second section is to calculate the total number of correctly identified edges (true

positives) and the total number of incorrectly identified edges (false positives) at every

distinct threshold found (i.e., for every distinct edge similarity value). To do so we

must consider the scores achieved on all edges at the same time, checking both the

computed similarity of the edge and whether or not it was a correct prediction (i.e., if

it was found in the test set). However, due to the parallelization of the first section of

the code, the results obtained for every vertex are stored separately. Thus, the number

true positive and false positives achieved at every distinct threshold are distributed

in a series of arrays. To fix that, between the first section and the second section of

the code we perform a reduction process. This allows us to simplify and speed up the

computation of the second section, and to define it without dependencies. For every

distinct threshold obtained, this reduction will be in charge of calculating the total

number of true positives and false positives found on all vertices.

79



8. COMPUTING LINK PREDICTION

Listing 8.1: Code skeleton for similarity evaluation of all edges in a graph

1 // St ruc ture to independent ly s t o r e the r e s u l t s o f each ve r t e x

2 vector <vector<class<f loat , int , int> > > g r a p h r e s u l t s ;

3 for each ( ver tex n1 in graph ){
4 // St ruc ture to s t o r e the t rue p o s i t i v e s (1 s t i n t ) and f a l s e p o s i t i v e s (2nd in t )

5 // found fo r n1 at every d i s t i n c t s im i l a r i t y ( f l o a t )

6 vector<class<f loat , int , int> > n 1 r e s u l t s ;

7 for each ( ver tex n2 in graph , n2!=n1 ){
8 i f ( n1−>n2 e x i s t s in graph ) continue ;

9 bool n 1 n 2 p o s i t i v e=fa l se ;

10 i f ( n1−>n2 e x i s t s in t e s t edges ) n 1 n 2 p o s i t i v e=true ;

11 f loat s im n1 n2 = c a l c u l a t e s i m i l a r i t y ( n1 , n2 ) ;

12 i f ( n 1 n 2 p o s i t i v e ) n 1 r e s u l t s [ s im n1 n2 , t rue pos++, f a l s e p o s ] ;

13 else n 1 r e s u l t s [ s im n1 n2 , t rue pos , f a l s e p o s ++];

14 }
15 g r a p h r e s u l t s . push back ( n 1 r e s u l t s ) ;

16 }

The second part of the code calculates the graph-wide performance of LP algorithms

at different thresholds. For each threshold there is a precision and a recall, from which

we obtain the final PR curves. Thanks to the reduction process performed between

the first and the second part, by the beginning of the second part the total number

of true positive and false positives found at each different similarity value is known.

With these two values, and knowing the size of the graph, we can calculate the points

composing the metrics discussed in §5 through an aggregation process. This task is

also embarrassingly parallel, as the performance at each threshold can be calculated

independently from the rest of thresholds. It is important to parallelize this task, as

the number of distinct similarity values in large graphs can be also large (up to millions

of values). An overview of this second section of code can be seen in Listing 8.2.

Listing 8.2: Code skeleton for full graph performance evaluation

1 // St ruc ture to s t o r e the r e s u l t s ob ta ined at a l l t h r e s ho l d s

2 vector <pair <int , int> > f u l l r e s u l t s ;

3 for each ( s i m i l a r i t y va lue sim1 in graph ){
4 int t r u e p o s i t i v e s s i m 1 = 0 ;

5 i t n f a l s e p o s i t i v e s s i m 1 = 0 ;

6 for each ( s i m i l a r i t y va lue sim2 in graph ){
7 i f ( sim2>=sim1 ){
8 t r u e p o s i t i v e s s i m 1 += t r u e p o s i t i v e s s i m 2 ;

9 f a l s e p o s i t i v e s s i m 1 += f a l s e p o s i t i v e s s i m 2 ;

10 }
11 }
12 f u l l r e s u l t s . push back ( sim1 , t r u e p o s i t i v e s s i m 1 , f a l s e p o s i t i v e s s i m 1 ) ;

13 }

80



8.3 Parallelization

Figure 8.2: On the left, structure the a shared memory architecture. On the right,

structure of a distributed memory architecture.

8.3.1.2 Shared vs Distributed memory

One of the most important distinctions in parallel computing is whether the available

memory space is shared (i.e., centralized), or distributed. On the shared memory

paradigm there is a single memory location which contains all data, and which is

directly accessible to all computing units of the machine. An example of that would be

a computer with local memory and several processors working in parallel consuming

data from the same memory. The alternative, distributed memory, splits memory

physically and therefore data among different separate locations, typically each hosting

a distinct set of computing units. These distributed components are accessible from

one another through a network (i.e., a computing unit can access data not available on

its local memory), but often at a higher latency. An example of that would be a set

of computers connected through a network, each hosting a part of the whole data set,

which communicate the missing parts among themselves at the request of their local

processes. See Figure 8.2 for a graphical representation of both paradigms.

In most architectures shared memory designs are simpler and more efficient. Data

is centralized on a single location and can it be accessed directly and equally from

all computing units. However, when working with very large graphs it may be the

case that data simply does not fit into a single memory storage (i.e., insufficient RAM

memory). In these cases we will be forced to split data among different locations, as

we will see in §8.3.1.4.
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8.3.1.3 OpenMP parallelization

The code used for most of the tests presented in this thesis was parallelized using the

OpenMP shared memory model API (ARB, 2013). This API provides a set of compiler

directives that extend the C/C++ and FORTRAN base languages. OpenMP directives

define how code is to be parallelized and how data is to be shared. We chose OpenMP

because it is portable, scalable, flexible and the de-facto standard.

We split our code in two parts as described in §8.3.1.1. Within the first section

of code, the parallelization was done on the most external loop (line 4 of Listing 8.1),

effectively distributing its iterations among different threads. This approach guarantees

that all similarities n → X of a given vertex n (i.e., a full iteration of the outermost

loop) are calculated by a single thread, thus avoiding any dependencies. This was

implemented using the OpenMP parallel directive, which creates a team of threads,

and the for directive, which splits the iterations of a loop among the threads of a team.

See an example of this directive in Listing 8.3.

Between the first and second sections of the code we implemented a reduction with

OpenMP. This was done using a similar directive as the one seen in Listing 8.3, with

the only addition of information on which variables where to be reduced. Finally, the

second section of the code was also parallelized using the same directives used for the

first section. In this case the parallelization was also performed on the most external

loop (line 4 of Listing 8.2). This approach guarantees that each possible threshold (i.e.,

each point within the PR and ROC curves) was calculated by a unique thread, thus

avoiding any dependencies.

Listing 8.3: OpenMP directives used to parallelize the first section of code

1 #pragma omp p a r a l l e l for schedu le ( dynamic , 1 00 )

Of the different ways of splitting iterations among a team of threads, we found that

the most efficient for our problem was a dynamic scheduling. In OpenMP a dynamic

schedule splits iterations in chunks of pre-determined size (100 in the example of Listing

8.3), and assigns one chunk per thread as these request it. In this setting each thread

will compute 100 consecutive vertices (i.e., 100 iterations of the outermost loop) before

asking for more. It is important to define chunk sizes according to the problem size

in order to minimize imbalances. If the chunk size is too large, at the end of the
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computation one or more threads will remain idle for a long time while the rest of

threads finish their last chunks. If chunks are too small the constant scheduling of

threads, as these finish chunks and requesting for more, may slow down the whole

process. In the case of LP, the larger and denser the graph, the smaller the chunks

must be, as iterations in a large graph will be more time consuming, thus increasing

the possibilities of imbalance. For our code we found chunks between 100 and 2000

iterations to provide the best results.

Given the previous parallel design and use of OpenMP directives, we identified a

single bottleneck in each of the two sections of code. That is when results are stored

(i.e., pushed back) into the global vectors. These instructions (line 23 of Listing 8.1,

and line 15 of Listing 8.2) can only be executed by one thread at a time, as the structure

being filled is the same. This data access is protected in OpenMP through a critical

directive (show in Listing 8.4) guaranteeing that only on thread will execute that line

at the same time.

Listing 8.4: OpenMP directive used to protect sequential parts of the code

1 #pragma omp c r i t i c a l ( vector push )

8.3.1.4 OmpSs parallelization

Storing graphs entirely in a unique memory space, i.e., in shared memory, simplifies

data access and memory management. Unfortunately, capacity of memories is limited

which means that eventually a unique memory space will not be sufficient to store a large

enough graph. The solution typically used in the HPC field is to distribute memory,

providing several autonomous memory spaces where different parts of the data are

stored. Obviously, this approach entails a much more complex memory management,

as data must be physically split among locations, and data communications must be

implemented so that threads within a memory space can access data found on other

memory spaces when necessary.

Regardless of the difficulties added by distributed memory models, it is obvious to

us that it eventually becomes a necessity. We realized that much when working with

the DBpedia graph, composed by 17 ·106 vertices. In our tests we saw how some of the

structures required by certain LP algorithms could not fit into a unique memory space

with 24GB of RAM, even though we spent a significant amount of time optimizing
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the memory requirements of our algorithms. For example, the structures needed to

calculate the specificity level of every vertex in the graph (i.e., the number of vertices

from which each vertex can be reached), needed by our hierarchical version of the

undirected scores (see §2.1.1), could not fit into memory. Neither did the set of 2-step

neighbours of every vertex in the graph, needed by the 2-step quasi-local scores (see

§4.1.2). Since it was not possible to pre-calculate and store these structures into memory

during the graph reading process, we tried to calculate them live on request from more

simple structures which could fit into memory (i.e., adjacency lists). Unfortunately, the

constant accesses to main memory (i.e., RAM) required by this operations made the

executions unbearably slow. Global and quasi-local scores therefore require distributed

memory settings for graphs composed by tens of millions of vertices.

Local scores can compute graphs like DBpedia in a shared memory environment.

Eventually though, we will be interested in working with larger graphs for which a dis-

tributed memory is needed even by local methods. Consider for example the webgraph

defined by Internet with 3.5 billion web pages, or a brain connectome graph composed

by billions of neurons. For this kind of data sets the only feasible solution nowadays is

distributed memory. And not only because of space requirement, but also because of

the time complexity. Hundreds of cores computing in parallel will be needed to mine

those graphs, and the number of computing cores accessing a single shared memory

space is rarely over a few dozens.

With the goal of running LP methods on a distributed memory environment, we

parallelized our code using the OmpSs programming model (Duran et al., 2011). OmpSs

is developed by the Barcelona Supercomputing Center (BSC) and supports OpenMP

like directives. It has been adapted to work on clusters with distributed memory (Bueno

et al., 2011) with a significant reduction on the programmers effort. Thanks to that, to

switch our code from OpenMP to OmpSs we only had to change the OpenMP directive

parallelizing the loop (see Listing 8.3) with one defining tasks instead (see Listing 8.5).

Additional parameters were added to this directive to specify which data had to be

copied to and from a given location when executing a given iteration of the loop.

Listing 8.5: OmpSs directive used to define tasks

1 #pragma omp task
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Even though in this approach graph data has to be communicated among computing

entities (as each entities only has direct access to portion of the whole graph), our

results show no relevant overhead added by this communication. This is so because in

our LP algorithmic design it is easy to predict which edge will be evaluated next, and

therefore which graph data will be needed next by each thread (i.e., which vertices and

neighbours must be brought to memory). Thanks to this foreseeability, data can then

sent before it is needed, thus avoiding idle threads and the consequent communication

overhead. From a computational point of view this means that LP may scale almost

linearly on distributed memory contexts. A feature with a huge impact that we discuss

as future work in §10.2. Finally let us mention that, even though the OmpSs code has

been implemented and is being tested, no relevant results have been obtained for it yet.

A study in that regard is also a priority line of future work, as discussed in §10.2

8.3.2 Pregel Model Implementation

The inadequacy of traditional computing paradigms for processing graphs becomes

more obvious as the popularity and size of graph data sets grows. Aware of that, the

HPC community has made an effort to define computing models specific for graphs, with

the goal of producing efficient frameworks for the computation of large scale networks.

The resultant parallel graph models consider computation in a rather unique way,

typically either from a vertex or edge perspective. Vertex centric models (Gonzalez

et al., 2012; Low et al., 2010; Malewicz et al., 2010) define computation from the

point of view of vertices, as code is to be executed from within each of the vertices

of the graph. In these models a vertex typically has access to the data of its nearby

vertices, and can also send messages to other vertices. Edge centric models (Roy et al.,

2013) are less popular, and can be analogously described by using edges as the basic

computing element instead of vertices. As a final example of this family of parallel graph

computing models let us mention a recently proposed path centric model (Yuan et al.,

2014), that achieves remarkable performance when implementing algorithms following

the directionality of graphs (it therefore requires the graph to be directed).

To try this new and promising approach to large scale graph processing we imple-

mented our algorithms using the ScaleGraph API (Dayarathna et al., 2012), which is

based on the Pregel model (Malewicz et al., 2010). Pregel was one of the first par-

allel graph models to be proposed. It is a vertex-centric approach following the Bulk
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Synchronous Parallel (BSP) paradigm. Pregel is based on supersteps, iterations of par-

allel computation for every vertex of the graph, separated by global synchronization

points (hence BSP). At those synchronization points is where communication takes

place. During a superstep each vertex receives the messages sent to it on the previous

superstep, modifies its internal state according to those, and finally sends messages to

other vertices that will be received on the next superstep. Since within a superstep the

computation of each vertex is done in parallel without dependencies, the Pregel model

obtains good parallel speedup and scalability on algorithms that define well balanced

supersteps. Based on the Pregel model, ScaleGraph provides an open-source API in

the X10 programming language. ScaleGraph was conceived to process massive graphs,

it is documented and under active development, which makes it idoneous for our use.

Using the Pregel model entails a completely different algorithmic design. While in

the OpenMP/OmpSs model the algorithm was designed as two nested loops evaluating

all pairs of vertices and parallelized through the distribution of the loop iterations, in

the Pregel model, code is designed from the point of view of each individual vertex and

parallelized through the distribution of vertices. To reduce dependencies we implement

our algorithm such that each vertex must evaluate the edges that have itself as an

origin. Since we implement local similarity-based algorithms, the only edges that will

have a similarity degree different than zero will be those located at exactly two steps

of distance from the source vertex (and thus having at least one shared neighbor). As

a result, vertex x will be responsible of evaluating edges of the form x→ Y , for the set

of vertices Y located two steps away from x. If every vertex calculates the similarity of

its designated edges all relevant edges will be computed once and only once.

The previous design could be executed in parallel without dependencies, since each

vertex independently calculates a disjoint set of edges. That is if every vertex has

access to the information it needs. For a vertex x to compute all edges of the form

x→ y, x needs to know all the paths of length two originating in itself. By doing so x

can know which are the target vertices (those vertices at distance two), and which are

all the paths that lead to those targets (those vertices at distance one between x and

y). However according to the Pregel model one vertex does not know which vertices

are two steps away from itself, as it is only aware of its direct neighbors. To make

the necessary information available to every vertex in the graph we must use messages
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Figure 8.3: Example of two step neighborhood around one source vertex (S). T1, T2

and T3 are potential target vertices to evaluate.

between vertices. These messages are in charge of allowing each vertex to know its two

steps neighborhood.

In our Pregel design, in a first superstep vertices send the information of their

neighbors to all their neighbors. By doing so, at a second superstep each vertex will

receive the information necessary to know its full two steps neighborhood. See Figure

8.3 as an example of that neighborhood, where source vertex S is shown together with

all the paths of length 2 originating in S. According to the graph of Figure 8.3 T1, T2

and T3 are the only possible target vertices of S, which means that the only edges to

be computed by S will be S → T1 having only one path, S → T2 having three paths,

and S → T3 having two paths.

A simplified overview of the ScaleGraph code to be executed on each vertex is shown

in Listing 8.6. In this design messages are sent in the first superstep, while all paths to

all targets are calculated in the second superstep. Once every path (named first step

in the example of Listing 8.6) that lead to a given target (named second step in the

example) are known, we can calculate the similarity score of the edge pointing to the

target. For example, in the case of the CN algorithm the score is simply the number

of different paths that lead to a given target. In the case of INF more information is

needed, for example the directionality of paths or the degree of vertices (see Definitions

of §4.1 for more details).
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Listing 8.6: Code skeleton of the ScaleGraph implementation

1 // F i r s t supers tep , send l i s t o f a l l ne ighbors to a l l ne ighbors

2 i f ( super s t ep == 0){
3 sendToAllNeighbors ( l i s t O f A l l N e i g h b o r s ) ;

4 }
5 //Second supers tep , process r ec i e v ed l i s t s o f ne ighbors

6 i f ( super s t ep == 1){
7 //For each message from neighbor

8 for each ( messageRecieved in Messages ){
9 f i r s t s t e p = messageRecieved . sender ;

10 //For each ve r t e x at two s t e p s d i s t ance

11 for each ( s e cond s t ep in messageRecieved . ne ighbors ){
12 // I f edge a l ready e x i s t s , s k i p . Otherwise s t o r e new path

13 i f ( s e l f . OutNeighbors conta in s s econd s t ep ) continue ;

14 paths . add ( f i r s t s t e p , s e cond s t ep )

15 }
16 }
17 }

Using a dedicated API such as ScaleGraph has several benefits. To start with,

ScaleGraph builds and handles all graph representation structures, allowing the de-

veloper to forget about data handling operations. At the same time ScaleGraph is

designed for both a shared memory and a distributed memory setting. This is par-

ticularly interesting for the programmer, as increasing the number of computational

or memory resources becomes completely transparent. If the algorithm is executed in

a distributed memory context, ScaleGraph automatically splits the graph among the

various computing units. Similarly, ScaleGraph handles all required communication,

such as messages sent among vertices that may or may not be within the same physical

location.

8.3.3 Graph Programming Models from an AI Perspective

In §8.3.1 and §8.3.2 we described two different implementations of the same problem,

that of evaluating the local similarity of all edges missing from a graph. The primary

difference between both implementations was the parallel programming model being

used. For the first implementation we used the well known OpenMP model, while for

the second we used the more innovative Pregel model through its ScaleGraph imple-

mentation. The differences between both models lead us to define different algorithmic

designs for the same problem.

A formal performance evaluation of graph programming models would be interesting
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(Guo et al., 2014). Regardless, a proper evaluation requires implementing a wide variety

of models (we only implement two), using the same algorithmic design in them (we use

two different designs, as we discuss next) and using the same infrastructure for their

computation (we use different hardware, as discussed in §8.4). Instead of evaluating

graph programming models we introduce an equally interesting and useful discussion:

the evaluation of graph processing models from the perspective of the AI developer. The

goal of this evaluation is to reduce the large gap found between HPC researchers and

the graph mining community. By testing and comparing graph programming models

from a developer perspective on a relevant and realistic problem we can on one hand

encourage and advice AI researchers on how to use these powerful tools, while at the

same time provide feedback to HPC scientists on how to increase the popularity and

utility of their work.

The algorithm design shown used with the OpenMP model loops over all pairs

of vertices (thus N2 where N is the total number of vertices), and for each pair it

calculates the intersection of their neighbors. The resultant algorithmic complexity is

O(N2 ∗ k) where k is the average vertex degree. The other algorithm design, used with

the Pregel model, runs for every vertex in the graph (thus N) visiting its neighbors

and the neighbors of its neighbors (thus k2 where k is the average vertex degree). The

resultant algorithmic complexity of the second design is therefore O(N ∗ k2). Notice

that the difference in complexity between both designs is quite large, as N � k.

The motivation of the first design, with a complexity of O(N2 ∗k), was to maximize

locality, a key feature as discussed in §8.1. In this design graph data is stored in a

predefined order: first vertex n1 and its neighbors, then vertex n2 and its neighbors

etc. The same order is used to consume the data. Since in the OpenMP and OmpSs

models the programmer may have total control over which data structures are used and

how are these stored, by using this design we were able to maximize the efficiency of

memory related operations. Indeed, our OpenMP implementation achieved a number of

instructions per cycle (IPC) between 1.6 and 2.2 for all graphs tested. Achieving a high

IPC in such a data-intensive task being particularly significant in terms of performance.

For our ScaleGraph implementation we took into account that the same library

efficiently handles how graph data is represented and stored. Maximizing locality in

this case was therefore not the goal, which lead us to focus on reducing computational

complexity. The proposed design is relatively cheap, with a complexity of O(N ∗ k2).
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However, the cost of the memory access operations (i.e., the number of memory misses)

will be much larger as we are unable to store near-by vertices that will be visited

consecutively.

Our experience suggests that algorithmic design should depend on the program-

ming model being used, and that one should not be closed to changes of perspective.

The particularities of large scale graph mining are so unique (e.g., graph traverse) and

relevant (e.g., high-dimensional data structures) that traditional solutions and conven-

tions may not apply to them. To the point where the same problem may have different

optimal designs depending on the underlying model being used. This is on one hand a

handicap, as it means one may not know which model is better until testing the appro-

priate design on it. But on the other is an important advantage, as it allows developers

to explore the same problem from different perspectives seeking the optimal solution.

All in all it is key to understand these models before using them, as an inappropriate

design can make the best of programming models seem useless.

Another important lesson learnt is on the programmability of HPC models. From

an AI programmer point of view learning current parallel models (at least of the ones

tested in this thesis) is rather easy, and one can achieve efficient implementations in

relatively short time. Similarly, shifting from a shared memory to a distributed memory

context is largely simplified by these models nowadays; using either a shared or a

distributed memory setting is transparent while using ScaleGraph, and the effort needed

to transform an OpenMP code to an OmpSs code is minimal. As a result we expect

both the HPC and graph mining community to benefit from these advances.

8.3.4 Computing Times

As discussed in §8.3.3, the two implementations described in §8.3.1 and §8.3.2 have

different complexities and run on different hardware. Producing a consistent compar-

ison between them is thus impossible at this point of our research. Let us however

mention that both implementations achieved similar computational times. In order to

provide a general idea of the computational time spent in our tests, see in Table 8.1

the computation times of both the OpenMP and the ScaleGraph implementation. The

DBpedia graph could not be computed on a single TSUBAME node due to memory

restrictions.
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Web Graph MareNostrum time TSUBAME time

WordNet 63 seconds 736 seconds

Cyc 67 seconds 84 minutes

webND 513 seconds 250 seconds

webSB 60 minutes 5.3 hours

webGL 85 minutes 12.7 minutes

IMDb 6.3 hours 25 hours

hudong 8.6 hours 5.4 hours

baidu 20.7 hours 8.6 hours

DBpedia 48 hours —–

Table 8.1: Time spent on each graph used in one MareNostrum node for the OpenMP

implementation, and in one TSUBAME node for the ScaleGraph implementation. Time

includes reading the graph from a file, building internal data structures, calculating the

scores of edges, computing the overall PR and ROC curves and writing the results.

The numbers of Table 8.1 show the computation times of both implementations

following different functions. While the OpenMP code time grows based on the size

of the graph (i.e., in the number of vertices), the ScaleGraph code seems to follow

a different rule, as smaller graphs are computed slower than bigger graphs (e.g., Cyc

and webSB, IMDb and hudong). We analyzed the properties of these graphs and

found that the time for the OpenMP code seems indeed to be closely related with the

number of edge missing from the graph. Since this code visits every missing edge, its

computational time can be approximated through the number of missing edges. See

Figure 8.4 for a chart showing this relation and a linear regression.

The ScaleGraph code does not compute all missing edges, as it focuses only on

those that have a score bigger than zero. The size of this set of edges (the once

having a score bigger than zero) is closely related to the number of actual edges in the

graph; the more links a graph has the more different paths we will find. However we

hypothesize that there is yet another graph property key to understand ScaleGraph

computing times. Since ScaleGraph has a lower data locality (it does not store or

explore the graph data in order), its performance may be affected more strongly by

the existence of superhubs, vertices with an abnormally high number of relations. Also,

the time spent by the ScaleGraph code building the two-steps neighborhood around

those superhubs (as designed in §8.3.2) may add a significant overhead. We support
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Figure 8.4: Computation time of each graph in the OpenMP implementation (x axis),

and number of edges missing on each graph (y axis). Linear regression on both variables.

Figure 8.5: Computation time of each graph in the ScaleGraph implementation (x

axis), and number of edges on each graph multiplied by the relevance of superhubs (y

axis). Linear regression on both variables.

this hypothesis with Figure 8.5. In this figure we plot computation times against the

number of edges in the graph times the importance of superhubs. We compute the

importance of superhubs as the percentage of total edges in the graph related with the

1% of vertices with higher degree. The linear regression shown in Figure 8.5 seems to

approximate the computational time rather well.

Our final remark on these results is on the impact of the models being used. De-
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pending on the properties of each graph, one parallel programming model, and one

algorithmic design may be more efficient. This further reinforces our notion that a

thorough analysis of the specific graph problem and the available programming models

is necessary prior to development.

8.4 Computational Resources

In this thesis we used two different computational contexts. For running the OpenM-

P/OmpSs implementation we used the MareNostrum supercomputer, provided by BSC.

MareNostrum is based on Intel SandyBridge processors, iDataPlex Compute Racks, a

Linux Operating System and an Infiniband interconnection. One MareNostrum node

is composed by two Intel SandyBridge-EP E5-2670/1600 20M 8-core at 2.6 GHz, and

a limit of 28.1 GB of RAM. This translates into 16 parallel threads. For running

the ScaleGraph implementation we used the TSUBAME supercomputer, provided by

Tokyo Institute of Technology through the JST CREST project. TSUBAME is based

on Intel Xeon processors and NVIDIA Tesla, Infiniband interconnection and both Linux

SUSE and Windows HPC Server. TSUBAME nodes are composed by two Intel Xeon

X5760 6-core at 2.93 GHz, and a limit of 26 GB of RAM. This translates into 12 parallel

threads.
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Chapter 9

Conclusions

During the development of this thesis we encountered a wide variety of problems,

and had to employ an equally varied set of solutions to tackle them. In this chapter

we summarize the conclusions we have reached during this stimulating process. The

conclusions regarding the two main goals defined in §1.1 are shown first in §9.1 and §9.2.

After that we present other lessons learnt and contributions done in various aspects of

the LP problem. Before that however, let us summarize our answers to the research

questions made in §1.3.

• What is the role of hierarchies in the topology of large graphs? We found hierar-

chies in several different domains, in some of them explicitly (ontologies, lexical

relations) and in some implicitly (webgraphs, movie relations). The universality

of hierarchies for defining knowledge makes hierarchical properties available, with

more or less significance, in a wide variety of domains. This motivates a case by

case analysis of each domain prior to computation.

• Can hierarchies be used to predict relations within a graph? Indeed they can.

Results show that assuming and exploiting hierarchical properties can provide

a huge boost in predictive performance. INF, and particularly INF LOG 2D,

achieved remarkable predictive results, improving the current state-of-the-art by

one or more orders of magnitude.

• Are hierarchies implicitly represented within natural, informal graphs? In some,

they are. Hierarchies are so abstract and generic than many biologic (e.g., neurons

connectivity), sociological (e.g., social network relations) and technological (e.g.,
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webgraphs) domains include them. We should be aware however, that not all

graphs are hierarchical.

• Is it feasible nowadays to massively run graph mining algorithms on large graphs?

Yes it is, even though they are computationally challenging. The particularities

of graph mining makes it rather appropriate for HPC integration.

• Are HPC infrastructure and tools ready to deal with the challenges of the emerg-

ing graph mining problems? The HPC community is making a huge effort on its

own in providing solutions for large scale graph mining. In this thesis we bene-

fited from this effort. However to further improve this collaboration, the graph

mining community should properly specify its needs in an HPC context (e.g.,

type of algorithms, type of data sets, time constrains, etc.). Only then the HPC

community will be able to provide more adequate solutions.

9.1 Improving Precision

As discussed in §1.2, one of the main goals of this thesis was to find ways to increase

the precision of LP similarity-based scores. Our general approach to increase score

precision is to exploit inherent properties of the graph. With this objective in mind we

proposed the INF score that assumes the existence of a hierarchical structure within

the topology of the graph, and uses this structure for the benefit of its predictions. In

§7 we show how INF is capable of obtaining much higher precisions than other scores

which do not make the same structural assumptions INF does. Furthermore, we saw

how the assumption of a hierarchy is satisfied in a wide variety of domains, even in

domains not purposely hierarchical, which extends the applicability of INF.

To further increase precision we propose two modifications to the INF score, 2D and

LOG, and evaluated their performance in §7.1.4 and §7.2. The results of these modi-

fications illustrates the importance of understanding the nature of the graph topology

for predicting edges: by choosing the adequate score with the adequate modifications

one can obtain a huge leap in precision. By analyzing the nature and results of each

modification we defined similarity-based LP scores in three categories: proportional, ac-

cumulative and hybrid scores. Furthermore, in all our tests on informal graphs (IMDb
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and six different webgraphs), the hybrid scores (INF LOG, INF LOG 2D) always out-

performed the proportional (INF, INF 2D) and accumulative (CN, RA, AA) scores.

A different approach to obtaining higher precision predictions is to focus on high-

similarity edges. This implies a significant reduction in predictive recall, which is

typically acceptable for real world applications. Formal evaluation methodologies how-

ever explore predictions up to a complete recall, which often implies a dramatic drop

in precision due to the high underlying imbalance of large scale graphs. To reduce

the weight of useless predictions we proposed a predictor evaluation methodology, the

CAUC (see §5.3), which is biased towards predictors achieving high precisions. Finally,

when evaluating link predictors using formal methods like CAUC we must also take

into account that in most cases the test sets do not represent a large part of the edges

missing from the graph (see §5.5). Hence, the precisions these formal methods calculate

for predictors will be frequently underestimated.

9.1.1 Hyperlink Prediction

While trying to increase the precision of LP, we considered the particular problem

of hyperlink prediction, i.e., predicting links among web pages. Our results on this

particular domain show the importance of hierarchical properties for the definition of

hyperlinks. In our tests the INF LOG 2D hierarchical score outperformed all non-

hierarchical scores by a large margin on six different webgraphs (see §7.2). Even INF, a

simpler hierarchical score which should a priori be handicapped by its lack of focus on

high-degree vertices, achieved competitive results and outperformed all non-hierarchical

scores on two of those webgraphs. These results align with the previous work discussed

in §6.2.1.1, and provides further evidence on the importance of hierarchies for the

topology of webgraphs.

The leap in precision quality obtained by INF LOG 2D (see Figure 7.5) shows for

the first time that even within graphs with millions of vertices, one can predict thou-

sands of edges (those with higher score) with an almost perfect precision (i.e., with very

few false positives) and in a scalable manner. According to our results, hyperlink pre-

diction becomes a feasible problem by exploiting hierarchies. This immediately enables

multiple interesting cases of application, including but not limited to: increase and im-

prove the connectivity of web pages, optimize the navigability of web sites, tune search
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engines results through web connectivity analysis, and refine product recommendation

through item page linkage. All cases are of immediate application.

9.2 Improving Scalability

Besides improving precision, the other main objective we identified in §1 was scalabil-

ity. Since some of the most interesting graphs to process are large scale graphs (see

§10.1), LP needs to integrate with state-of-the-art HPC techniques and to become as

computationally efficient as possible. Our contribution to LP scalability was presented

in §8. Some of the techniques we found useful for increasing scalability were based on

how data is represented, stored and processed (see §8.1). This is a topic of particu-

lar importance due to the data-intensive profile of the LP task. We also significantly

improved scalability by reducing the precision of arithmetic operations. In large scale

problems, like LP on large graphs, one can be permissive in certain aspects without

significantly affecting the results (see §8.2).

However, what eventually defines the feasibility of LP on large graphs is its paral-

lelization. We developed a parallel implementation using two different programming

models. For the first, based on OpenMP and OmpSs, we focus on defining the LP prob-

lem as an embarrassingly parallel one, thus optimizing the benefits of parallelization.

We also exploited data locality (through data storage and sorting) to maximize the

efficiency of memory access operations. The second model used was Pregel, through its

ScaleGraph implementation. The algorithmic design for this model was radically dif-

ferent, due to the graph oriented nature of Pregel. The code could be parallelized with

the definition of a single synchronization point, where all graph traverse operations are

done. Both implementations are available for both a shared and a distributed memory

context. In OpenMP through OmpSs, and in ScaleGraph through its native support.

9.3 Overall Test Results

From the tests performed and shown in §7 we conclude that RA is the most reliable local

LP score of those so far presented in the bibliography, as it achieves the best PR-AUC

results on six of the nine graphs tested. If one looks at the ROC-AUC measure instead,

AA outperforms RA in some graphs (e.g., WordNet, Cyc and IMDb). Regardless, as
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discussed in §5.1 PR curves are a more faithful representation of predictive performance

than ROC curves, particularly in the context of applicability. The conclusion that RA

outperforms AA and CN is coherent with previous analysis (see §2.1.2).

Our tests also show that INF is a very competitive score, as it outperforms CN, RA

and AA on five of the nine graphs tested. The good results of INF on the hierarchical

graphs can be easily explained, as INF seeks the same hierarchical principles. More

interesting is the fact that INF largely outperforms CN, RA and AA on large, informal,

apparently non-hierarchical and potentially bi-directed graphs like the webgraph or

IMDb. By including the two proposed modifications, the INF LOG 2D becomes the

best score on all graphs tested. These results suggest that INF and its derived scores

are appropriate for a wide variety of domains.

To also elaborate on the weaknesses of our approach, we expect the performance of

INF to be significantly worse on graphs with more chaotic structures, without a hint

of hierarchy in their topology. INF may be inadequate for example to predict road

links, as the road system does not include hierarchical properties. Regardless, domains

may have to be analyzed one by one in order to decide if INF should be applied or

not. In the case of social networks for example, we expect INF to perform very well

on a Twitter graph data, as followed/follower relations are rather hierarchical. Other

social networks, such as Facebook friendships, may not be so suitable as they include

a weaker sense of hierarchy. The application range limitation of INF may also apply

to smaller and sparser graphs that the ones used here, where a general hierarchical

topology is not properly captured. Nevertheless, given how universal hierarchies are

at defining knowledge, we expect to find lots of domains appropriate for INF. Finally,

even though INF requires graphs to be directed, methodologies for transforming an

undirected graph into a hierarchically directed one exist (Clauset et al., 2007).

9.4 Hierarchical Knowledge for LP

One of the goals of this thesis was to evaluate the importance of hierarchies in defining

and predicting the topology of large, directed graphs. For that purpose we compared

the results of the undirected scores RA, AA and CN with those of a hierarchical versions

of those same scores, HRA, HAA and HCN proposed in §4.2. HRA, HAA and HCN

scores are identical to RA, AA and CN in all cases but when edges are anti-hierarchical
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(i.e., edges going from abstract vertices to more specific vertices). Hence we understand

the differences in performance between these two sets of scores as a direct indicator of

how importance the concept of node specificity, and thus hierarchies, is for LP.

Hierarchical scores HRA, HAA and HCN achieve an average improvement in PR-

CAUC over RA, AA and CN of 409% on WordNet, and of 183% on Cyc. This could

be expected due to the explicitly hierarchical structure of these graphs. More relevant

is the difference in performance achieved on the IMDb graph: an average improvement

of 131%. This graph composed by movie-related relations is not hierarchical by design,

but its topology seems to be based on a hierarchy nonetheless. To understand that

behavior consider how the most referenced movies (e.g., Metropolis, The Godfather,

etc.) become more influential with every added reference, and are therefore more likely

to be referenced in the future. This hierarchical behavior is not limited to a particular

domain, and can be exported to others such as social networks, biological data or

webgraphs.

In the case of webgraphs, the importance of hierarchies has already been studied

(see §6.2.1.1). Our results clearly support that claim (see §7.2). Hierarchical knowledge

has been used for example by the forest fire model (FFM) proposed by Leskovec et al.,

briefly described in §6.2.1.1. The methodology through which the FFM adds vertices

and edges to the graph contains no explicit hierarchy, and yet it generates data which is

hierarchically structured. To explain that we realized the link adding process of FFM

for the out-going edges of y is in fact a particular case of the DED sub-score (see Figure

4.1), while the link adding process for the in-going edges of y is a particular case of

an abductive score (ABD) (defined in §4.3). As discussed before, ABD was not used

because preliminary tests showed it to be unstable, adding a lot of noise and bias to

DED and IND. Remarkably, the FFM seems to acknowledge the same higher reliability

we identified on DED, as out-going edges of y are chosen with a higher probability than

the in-going ones. All these unpremeditated similarities shows that both INF and FFM

are based on close hierarchical principles.

Regardless of the similarities between FFM and INF, the scope and the scale of both

algorithms is completely different. This dissimilar scale results in important differences

on their applicability. INF considers in-edges of vertex x to determine its out-edges

(i.e., IND score), while the FFM does not. INF calculates a similarity score for each

edge by looking at all the available evidence, which allows it to rank edges based on their
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likelihood. The FFM on the other hand randomly accepts and rejects edges as it does

not seek faithfulness at a vertex-level; it seeks topological coherency at a graph level.

Finally, the FFM explores edges far away from the ambassador vertex though various

iterations, thanks to its computational simplicity. INF cannot do that in acceptable

time due to the higher computational cost of calculating similarities, and performs only

a one step exploration (i.e., its a local score). Regardless, a a quasi-local version of

INF was already defined in §4.1.2.

To sum up, while the FFM and INF share a set of precepts, each model uses those

for a different purpose: the FFM uses them to define a large, coherent topology model

at graph scale, while INF uses them to define a high confidence and exhaustive edge

likelihood score applicable at vertex level. In that regard, the good results achieved

by both methods on their respective fields of application seems to partly support the

assumptions of the other.

9.5 Impact of Imbalance

Local scores of LP use local graph features to evaluate the existence of new edges.

Local features such as the degree of vertices, the number of shared neighbors, and

even local hierarchical structures (as used by INF). If one wants to estimate the overall

performance of a local score on a given graph without computing every single local

feature, one can consider global features instead (e.g., average degree, class imbalance)

as these combine and generalize local features. Since global features are unique for the

whole graph computing them is typically faster, and can still be used to estimate the

predictive quality to be obtained by local scores with rough accuracy.

Estimating the performance of predictors through global structural properties is

possible as long as those global properties are coherent with the design of the predictors.

For example, a global graph hierarchical measure would be most appropriate to estimate

the performance of the family of hierarchical scores INF. Hence, each predictor may

be better estimated using a different global measure. Nevertheless, one can still use a

single generic graph measure to estimate the performance of all predictors at the cost

of estimation accuracy. Of the generic graph measures relevant for all LP scores we

find that the most appropriate one is class imbalance. In other words, the larger the

difference between the number of non-existing and existing edges, the lower predictive
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Graph class imbalance ratio Max PR-AUC obtained

Wordnet 1:11,382 0.8393

Cyc 1:39,496 0.0735

webSB 1:61,775 0.4515

webND 1:70,867 0.5264

webGL 1:150,217 0.4921

baidu 1:257,667 0.0052

hudong 1:264,848 0.0342

IMDb 1:1,140,835 0.0326

DBpedia 1:2,151,672 0.0012

Table 9.1: For all graphs, positive:negative ratio and best predictive rate of all tested

local similarity-based scores (CN, AA, RA, INF, INF 2D, INF LOG and INF LOG 2D).

quality we can expect for any LP score. The relation between class imbalance and

maximum predictive performance for all graphs tested here can be seen in Table 9.1.

Class imbalance increases as the maximum PR-AUC decreases, although variations

exist. This is coherent with what was discussed in §3.1, as a larger class imbalance makes

the classification problem harder, implying worse results. We plotted both variables in

Figure 9.1 (see blue squares), and also produced a regression to it, a power law function

being the best apparent fit. According to this function, one could argue that predicting

edges on graphs having a degree of imbalance larger than a given threshold is useless,

as the maximum predictive score trends to zero. We rebate this argument from two

different perspectives.

First of all, as discussed in §7.3, the standard evaluation methodologies based on

the PR or ROC curves may not be appropriate to estimate the applicability or utility

of the LP scores. For example, one may have a bad PR-AUC score and yet produce

a set of correct high-certainty predictions large enough as to be of use. Thus, class

imbalance may be strongly correlated with the maximum overall predictive results, but

not necessarily with the applicability of some of those results.

Secondly, the definition of more precise predictors may significantly modify the

trend function, and by extension the estimated performance of LP scores. As an ex-

ample of this last situation consider Figure §9.1, where the data points resultant of

considering only the results achieved by the previous state-of-the-art (i.e., CN, RA and
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Figure 9.1: Chart of second and last column of Table 9.1 (blue squares). The same

chart as orange rhomboids when considering only results of CN, RA and AA. Power

law regression for both cases.

AA, not considering the results of INF scores) are also shown as orange rhomboids.

The improvement in the trend function provided by our contribution INF is clearly

visible, effectively increasing the size of graph that can be fully explored with accept-

able results. It is therefore coherent to expect that extremely imbalanced graphs where

current predictors perform poorly may be solvable in the near future through new and

more precise scores.

9.6 Similarity-based, Maximum Likelihood and Hybrid

Scores

The INF score proposed inhere has certain unique particularities. For example, even

though INF independently computes a score for every pair of vertices, and is therefore a

similarity-based score by definition, it assumes and exploits a model (a hierarchy), like

maximum likelihood algorithms do. By using the properties of this underlying model

INF can achieve better predictions in domains where those properties are satisfied, as
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its understanding of the domain topology is increased. However, since INF does not

compute the model (it takes it for granted), INF does not suffer the computational

problems derived from building a model for the whole graph; maximum likelihood

algorithms typically scale poorly because of the cost of building a graph model. In this

regard we consider that having the predictive advantage of including a model, while

avoiding the limitations derived from of building it, is one of the most relevant features

of INF. We believe this methodology can be exported to other domains, where different

models are inherently represented (e.g., communities) and can therefore be implicitly

exploited.

Another particularity of INF is that, while most similarity-based scores are accu-

mulative, INF is proportional. Proportional scores evaluate the likelihood of an edge in

proportion to the local evidence available, that is, they normalize the score according

to the local context. Accumulative scores on the other hand do not normalize the score,

and thus rate edge evidence from a graph wide perspective. This difference has serious

implications because, as discussed in §7.2, proportional scores do not prioritize high-

degree vertices (which are often more reliable due to the rich get richer principle), and

do not neglect low-degree vertices (which are often less reliable due to arbitrariness),

like accumulative scores do. INF was defined as a proportional score because its origi-

nal purpose was to define a measure of hierarchical affinity between two vertices based

on principles of inferential reasoning, affinity represented as a numeric value between

0 and 2. Thus, properties only found in proportional scores, like having a maximum

hierarchical self-affinity, were desirable: an edge connecting a vertex with itself always

has maximum INF score sDED
x→x = 1 and sIND

x→x = 1 (also sABD
x→x = 1). This property can

be explained by the fact that an element perfectly generalizes and specializes itself.

Proportional scores like INF are, for the reasons previously explained, severely

penalized when applied to large, sparse, informal graphs obtained from real world

networks. Nevertheless we consider both perspectives (accumulative and proportional)

to be relevant for the LP problem. Hence, we decided to combine both. We did so

through the LOG modification transforming INF into a hybrid score (INF LOG and

INF LOG 2D), thus taking into account both the vertex context and the graph context.

Remarkably these two hybrid scores obtained the best results on every informal graph

tested (six webgraphs and IMDb). Although this is clearly insufficient to argue that

hybrid scores are superior to the others, it is significant enough as to encourage further
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Figure 9.2: PR curve of RA, AA and CN scores on the IMDb graph.

research on this type of LP score, for example by building new hybrid scores from the

accumulative scores CN, AA or RA.

9.7 CAUC vs AUC

In §5.3 we proposed a modified evaluation methodology for predictive performance,

PR-CAUC, based on the more conservative PR-AUC with the goal of focusing on

applicability. To evaluate the effect of our proposal consider the PR curve of local

scores RA, AA and CN on the IMDb graph, shown in Figure 9.2. RA outperforms CN

in both PR-CAUC and PR-AUC, but the PR curve indicates that CN is better for high

certainty predictions. Indeed, while CN achieves precisions of 3.5% RA reaches only

precisions around 2.4%. By considering the whole area under the curve of Figure 9.2,

RA outperforms CN in PR-AUC by 231%. On the other hand, by focusing on the high

certainty predictions RA outperforms CN in PR-CAUC by 182%. Even though the RA

beats CN according to both evaluation methodologies, the difference of 49% between

the CAUC and the AUC measures shows the potential impact of our proposal.

Another relevant feature of the CAUC measure is that it adapts to the graph under

evaluation. CAUC defines the threshold stating which predictions are relevant and
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which are not according to each graph size. Simply put, CAUC does not take into

account predictions made after more mistakes are done than actual edges in the graph.

As a result, more predictions will be demanded for graphs with more edges. AUC on

the other hand evaluates the predictions done on a graph with N vertices and 1000

edges and the predictions done on a graph with N vertices and 100,000 edges under the

same conditions, as if these two problems were equally difficult. A clearly unrealistic

assumption that may lead to the underestimation or overestimation of results.
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Chapter 10

Future Work

The work presented in this thesis focuses on the application of LP to directed graphs,

a problem not thoroughly tackled in the bibliography so far. The questions arisen from

this work open up many possible lines of future work, not only in directed LP but in

graph mining in general. In this chapter we discuss several of those future lines of work,

as identified throughout the development of this thesis. We expect that some of them

will gain attention from the scientific community in the coming years.

10.1 Application to Large Graph Domains

In this thesis we tested graphs obtained from different domains: an ontological tax-

onomy (Cyc), a lexical taxonomy (Wordnet), movie related connections (IMDb) and

several webgraphs. Even though the domains were chosen to represent a variety of

fields, we acknowledge the necessity to keep exploring more and more domains of ap-

plication. Thus, one of the planned lines of future work is to test LP on other domains,

particularly in those which offer useful applications (e.g., commercial product recom-

mendation, support to biomedical research, etc.). Beyond applicability we also intend

to focus on domains providing large amounts of data, so that large scale graphs can be

built. In this section we discuss two fields we intend to prioritize, as they provide both

applicability and large amounts of data: social networks and biological graphs.

Social networks are large scale graphs which keep getting larger. The graph obtained

from follower relations in Twitter (follower → followed), considering each user as a

vertex, evolved from 41.9 million vertices and 1,470 million edges on July 2009, to 465.7
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million vertices and 28,700 million edges on September 2012 (Watanabe and Suzumura,

2013). Like Twitter, there are many other social networks from which large directed

social graphs of interactions could be extracted. In that regard, the application of LP

to these graphs would be straightforward by producing follower/friendship/colleague

recommendations.

Large scale graphs obtained from biological domains is another field of application

we consider. Protein-protein interactions (Cao et al., 2013; Von-Mering et al., 2002) for

example define directed graphs, and play an important role in pharmacological drug

design. As protein-protein interactions are expensive to validate through experimenta-

tion in laboratories, scientists in the field would benefit from a support tool proposing

them pairs of proteins particularly likely to be related (i.e., top-link prediction).

Another large scale biological graph can be obtained from connectome data col-

lection (i.e., a map showing a neural wiring diagram). This currently hot topic is

already producing very detailed graphs of neurons (Helmstaedter et al., 2013) of small

subparts of the brain. Due to the existence of seemingly bidirectional relations (electri-

cal synapses) and to the limitations of current exploratory technology (Bullmore and

Bassett, 2011), most connectome graphs are undirected so far. However, connectome

directionality has been acknowledged as an important feature, and is one of the target

of current technological innovation in connectomics. From our point of view, the possi-

bility of computing a graph representing a significant portion of the brain is inspiring.

The brain is the most complex and relevant graph we can currently aspire to work with,

and the benefits of understanding and predicting brain connectivity seem endless.

10.1.1 Exploiting Hyperlink Prediction

In §7.2 we tackled the problem of predicting hyperlinks among webpages, achieving

remarkable results. Once we have recognized the capability of our proposal at modeling

relations among webpages, we intend to bring this knowledge to real world applications.

The scalability and parallelization aspects of this thesis are key for that purpose, as the

web graph can reach even larger sizes than social networks; a web graph built from a

crawl performed in 2012 (Meusel et al., 2014) contained 3,830 million pages as vertices

and 3,530 million links among those. The possible lines of application we consider

within the field of the WWW are the following:
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• Web search engines. Current search engines are composed by a wide variety of

interacting metrics, which together produce a complete ranking of web relevance.

INF and its derived scores provide a measure of hierarchical similarity between

webpages, which may enrich this ranking from a different perspective. For ex-

ample, if the top five ranked webpages are all found to be hierarchically similar

to the same webpage, this webpage could be assumed to be more relevant than

initially anticipated.

• Web connectivity. Hierarchical properties spontaneously emerge in the WWW

at a global level (§6.2.1.1), but at a local level things are rather chaotic. Each

webmaster must find appropriate webpages to link to, in a domain with billions

of possible targets. As humans cannot be aware of every single webpage online, a

hyperlink recommender could be used to find relevant web pages to a website given

its previous pattern of relations. This tool could improve both the connectivity

and coherency of the WWW, as well as enrich the contents of directory webs.

• Bottom-up taxonomy building. Taxonomies are frequently used in online shops

and encyclopedias (among others) to organize their content. These taxonomies

are often externally defined by experts, who then must fit the data (e.g., web-

pages) to it. According to the results of this thesis it seems feasible to build a

system producing an automatic taxonomy of web pages based on their interre-

lations. Such a taxonomy would have the benefit of being based on the data,

making it necessarily relevant for the domain in question. This taxonomy could

be used to optimize the commercial organization of an online shop, for example

by considering user navigation paths as source for the LP algorithms.

10.2 Graph Mining with HPC

As discussed in §8.3.1.4, the mining of large scale graphs requires of a set capabilities

currently available only in HPC environments. The size of the data to be processed

requires huge amounts of memory, and the number of independent computations to

be performed requires lots of computational units. Thus, one of the most important

future lines of work of this thesis will be to strengthen the interaction between the

fields of graph mining and HPC. This view is already shared by many HPC researches,
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as demonstrates the introduction of a benchmark to rank supercomputers based on

how they process large scale graphs (Graph5001). In this benchmark supercomputers

are ranked based on the number of traversed edges per second achieved in a breadth

first search, when processing graphs up to 68,000 million vertices (Ueno and Suzumura,

2012). The development of graph-specific parallel programming models (discussed in

§8.3.2) also demonstrates the growing interest of the HPC community in graph pro-

cessing. To strengthen the collaboration between HPC and graph mining we intend

to explore other parallel programming models, like the promising path centric model

proposed in (Yuan et al., 2014). Evaluating which models works better for which algo-

rithm is an area of great interest, as it will potentially allow us to compute large graphs

like the ones proposed in §10.1 in the short term. Further optimizing and extending

our OmpSs implementation (see §8.3.1.4) is also a priority.

Beyond the acknowledged necessity of integration between graph mining and HPC,

there is as well a natural harmony between both fields. As shown in §8.3, the LP

problem ca be parallelized in a very efficient manner, defining an inconsequential few

dependencies. This efficient parallelization was done on two different programming

models, which indicates that the problem itself is parallel efficient. An important

future work to consider is to explore the parallelization of other graph mining tasks

and algorithms, as it appears to us that the local and distributed nature of graph mining

algorithms (which independently consider subparts of the graph for its computation)

will fit the parallel computation paradigms in most cases. This includes challenges such

as community detection, frequent sub-graph discovery and node discovery.

10.3 Optimizing INF Parameters and Quasi-local INF

The main goals of the tests performed in this thesis (see §7) were the evaluation of

the INF score, the comparison of its performance with other state-of-the-art LP scores,

and the analysis on the applicability of hierarchical assumptions to informal, directed

graphs. Both the code and the tests were designed for that purpose. As a result,

conclusive results on the evaluation of quasi-local scores were not reached. Even though

a quasi-local version of the INF score was defined in §4.1.2. At the same time, a detailed

study of INF parameters was not completed.

1http://www.graph500.org/
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The modifications proposed for INF (see §4.1.1) either increase the importance of

a part of INF (2D: DED twice over IND) or weight the amount of evidence obtained

(LOG: through a logarithm). However these two parameters were not sampled for

optimal value, and may seem to be rather ad-hoc. Indeed, we choose the simplest

of parameters (multiplying by two, and a logarithm base two) because our general

purpose was to show how prioritizing a certain type of hierarchical inference and adding

weighted measures could improve performance. We did not intend to find the optimal

value of these parameters for all graphs tested, also because results indicate the optimal

value depends on the domain, thus requiring a case by case sampling process not fully

relevant for our hypothesis. Nevertheless, doing such a study and finding the range of

parameters more frequently optimal is a necessary future work we will be doing when

applying the INF algorithm to real cases.

As discussed in §2.1.3, and according to the current state-of-the-art, quasi-local

scores are the most promising approach to similarity LP. Nevertheless, quasi-local scores

originate from local scores, which remarks the importance of the work done in this the-

sis. To thoroughly evaluate the performance of quasi-local scores one needs too sample

the number of steps performed, as well as the optimal value of other parameters such

as the decaying factor (discussed in §2.1.1). For large scale graphs though, this work

is particularly challenging, as the cost of quasi-local scores may increase exponentially

with the number of steps taken (see §3.5). Thus, tests and code should be specifi-

cally designed for maximizing the efficiency of quasi-local computation, for example by

sacrificing evaluation faithfulness though a sampling process (see §5.5). We intend to

make of this line of work a priority in the near future, as quasi-local scores are the

most likely ones to be applied to real problems. Their integration with distributed

computing systems (as proposed in §10.2) will be an issue to be considered.

10.4 Weights

In §3.3 we discussed the possibility of using weighted graphs in LP, and why, for the

sake of simplicity, we discarded it. We nevertheless consider weights to be a key feature

for prediction refinement, and intend to integrate them with INF in the future. A first

step towards this integration would be to add weights to all the possible edges in the

graph (not only the currently existing ones) as provided by Definitions 7, 8 and 21.
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Either as three different values or as a weighted average. The resultant weighted graph

would capture, for each edge, its hierarchical support.

A LP process performed on that weighted graph could use the pre-calculated weights

to balance the evidence provided by each vertex based on its hierarchical affinity. Hence,

to determine if vertex y is the ancestor of vertex x one could consider not only how

many and in which proportion are the ancestors and descendants of x descendants of y,

but also to which degree. A first formulation of a weighted DED score in that manner

could be

Definition 22

sWDED
x→y =

∑
∀z∈A(x)∩D(y)

sWDED
x→z ṡWDED

z→y

|A(x)|

This formulation defines the WDED score recursively, making it dependent on the

whole graph topology. Notice, however, how the impact that other weights have on a

given edge decreases as the distance from that edge increases. Thus, even though the

WDED score is a global score by definition, its computational cost would be similar to

a quasi-local score where the decaying factor eventually makes further steps irrelevant.

This line of research drives us towards the definition of a purely hierarchical graph,

where all relations of the graph are weighted according to a hierarchical topology. We

further discuss this concept in §10.5

10.5 Purely Hierarchical Graph

Our proposed LP score (see §4) assumes that the semantics of a vertex are defined both

by the semantics of its ancestors and its descendants. Results indicate that this idea

is partly satisfied in the graphs tested. However, it is clear that none of the graphs

used were designed with this intention. The simplicity and yet expressive power of

hierarchies motivates a very interesting future line work in which a purely hierarchical

knowledge base is built according to specialization and generalization principles.

In that regard we consider the integration of our methodology with a deep learn-

ing system to build a transversal reasoning engine. Deep learning systems produce

high level, symbolic abstractions from given a set of low level, sub-symbolic inputs.

An example consider DeSTIN (Arel et al., 2009), a deep learning system capable of
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discovering new shapes (symbolic abstractions) from an input of pixels (sub-symbolic

data). The symbolic output of a system such as DeSTIN could be used as input of a

LP system, which in turn can perform learning at a symbolic level based on contextual

relations (e.g., temporal or spatial co-occurrences). The resultant engine would then

be able to produce abstractions from low level inputs, and to learn about the relations

of those self-produced abstractions. Such an engine would probably need to include a

node discovery process (see §10.6) to further populate the symbolic hierarchy.

10.6 Node Discovery

Through the analysis of the LP problem we have identified a closely related task of

graph mining: the Node Discovery (ND) problem of finding new vertices within a

graph. Predicting edges among entities though LP is an important learning task as it

discovers previously unknown relations. However, the capability to find new edges is

limited to the immutable number of vertices available in the graph. For extending the

graph not only in edges, but in vertices we need to address the ND problem.

In that regard we consider the principles behind the design of the INF score to be

applicable to ND. Informally, the idea is to find sets of vertices in the graph which share

hierarchical properties (as represented through their edges) which have no generaliza-

tion implementing that pattern. A ND algorithm could add new vertices to the graph

to represent those patterns, thus completing the hierarchy defined by the topology and

increasing the coherency of the graph. As an example consider the reasoning process

done by a person who sees a road for the first time in her life. All cars, motorcycles,

trucks etc. are different, but they share a set of properties. These relations (e.g., noisy,

fast, has wheels, materials, size etc.) will eventually trigger the formation of a new

concept within the mind of that person: motor vehicles.
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Chapter 11

Summary

Let us end this thesis proposal with a summary of the work presented. The first chapter

§1 starts by introducing an approach to ML were data is understood as a network

of connected entities. This new strategy uses and seeks inter-entity information for

knowledge discovery, in contrast with traditional intra-entity approaches where the

basic concepts are instances and their features. The importance of this connectivist

ML (which we refer to as graph mining) to solve problems naturally expressed through

patterns of relations is argued, particularly in the current context where large, topology-

based data sets have been made available. The chapter ends by introducing the Link

Prediction (LP) problem, one which favors its consideration from a perspective of data

interconnectivity. The potential benefits of using LP are outlined, as well as its current

computational and performance limitations. The main goals of this thesis proposal are

also defined.

Chapter §2 discusses early contributions to graph mining, and introduces problems

frequently tackled through this paradigm. After that the chapter focuses on the specific

state-of-the-art of LP. It first presents three different approaches to the problem of

discovering new links within a relational set, and argues about the importance of the

most computationally scalable one: similarity-based algorithms. It further categorizes

similarity-based algorithms in three types of LP scores based on the depth of their graph

exploration. For the most scalable type, local similarity-based algorithms, the chapter

identifies and formally describes the three most competitive proposals according to the

bibliography.
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11. SUMMARY

Chapter §3 is dedicated to the analysis of the LP problem. LP can be reduced

to a classic binary classification problem, and the benefits and dangers of doing so

are described at the beginning this chapter. Then a list of graph properties such as

directionality, weights and time are discussed in the context of LP. Follows a formal

time and space complexity analysis of the similarity-based scores of LP as support for

posterior decisions. The chapter ends with an study of the class imbalance typically

found in LP problems.

In chapter §4 a novel similarity-based score of LP is introduced. For that purpose

the chapter first elaborates on the importance of hierarchies for representing knowledge

through directed graphs. Several modifications to the proposed score are also defined,

including one which makes the score consider a variable size of the graph for its predic-

tions. Using the same assumptions which motivated the design of our proposed score,

this chapter introduces a modified version of the most competitive undirected scores of

LP, identified previously, to adapt them to directed graphs.

The evaluation methodologies of LP scores are analyzed in §5. It starts by discussing

the problem of evaluating domains with a huge class imbalance, identifying the most

appropriate methodologies in that context. A modification of the most appropriate

evaluation methodology according to the bibliography is presented, with the goal of

focusing on relevant predictions. Follows a discussion of other issues related with the

faithful estimation of the precision of predictors.

Chapter §6 describes the graphs used for score evaluation, as well as how the data

was transformed into a directed graph. Reasons on why these particular domains were

chosen are given, making a special case of webgraphs and their well known relation

with hierarchies. The most basic properties of each resultant graph are shown.

All tests performed in this thesis proposal are presented in §7. The three most

competitive LP scores currently available are first tested among themselves, and then

against a proposed version of those same scores for directed graphs. Our proposed

score and its modifications are tested against the scores obtaining the best results

in the previous tests. The case of LP in webgraphs is considered separately, testing

all computationally feasible algorithms on six different webgraphs. The chapter ends

with a discussion on the limitations of this formal analysis, on how other less formal

approaches could result in interesting applications, and by showing examples of predic-

tions obtained.

116



11.1 Published Contributions in the Context of this Document

Chapter §8 includes the computational aspects of the work done. The chapter

starts with a discussion on the importance of memory management for determining

the computational cost of LP algorithms. A proposal on how to reduce this cost

through precision reduction is presented afterwards, and argued in the context of LP

for large graphs. Follows a section focused on the parallelization of code, which includes

two different implementations on one graph-specific programming model and on one

generic programming model. The chapter ends with a specification of the computational

resources used for the tests done.

The conclusions of this thesis proposal are presented in §9. First the main issues

stated in the introduction are tackled, and then several other relevant findings are

outlined. Some of those refer to the results obtained by our proposed score and its

modifications, while others address the LP problem in general.

Finally, chapter §10 contains several future lines of work.

11.1 Published Contributions in the Context of this Doc-

ument

• Dario Garcia-Gasulla and Ulises Cortés, Hierarchical inference on semantic graphs

applied to Cyc, Proceedings of the 16th International Conference of the Catalan

Association of Artificial Intelligence, 2013.

This paper presents preliminary results of the INF score on the Cyc ontology,

and argues about the variety and potential impact of the predictions achieved.

Its results and conclusions were precursory to the work here presented, and are

not shown in this thesis proposal.

• Dario Garcia-Gasulla and Ulises Cortés, Link Prediction in Very Large Directed

Graphs: Exploiting Hierarchical Properties in Parallel, 3rd Workshop on Knowl-

edge Discovery and Data Mining Meets Linked Open Data - 11th Extended Se-

mantic Web Conference, 2014.

This paper shows results on WordNet, Cyc, as well as a first test on the DBpedia

graph. It also introduces some ideas regarding the optimization of code. Thus, it

covers a portion (approximately a 20%) of §7 and of §8.
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11. SUMMARY

• Dario Garcia-Gasulla and Ulises Cortés, Hierarchical Link Prediction, submitted

to Data Mining and Knowledge Discovery journal, 2014.

This journal paper was submitted on January, 2014, and is currently under eval-

uation. As such, many of its contents have been extended in this thesis proposal.

It contains a related work section which covers half of the one presented in §2.

It also introduces for the first time the proposed hierarchical undirected scores

defined in §4.2 and its comparison against the original undirected scores.

• Dario Garcia-Gasulla , La febre i el poder de les dades, ACIA Nodes num. 55 ,

2014.

This informational article written in Catalan discusses past trends in computer

science research, and how current graph mining research such as Link Prediction

represents a coherent evolution of those.
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Appendix A

Appendix I

In §7 two sets of tests were shown. The first one evaluated RA, AA, CN, HRA, HAA,

HCN, INF, INF 2D, INF LOG, INF LOG 2D, INF QL, INF 2D QL, INF LOG QL

and INF LOG 2D QL on three different graphs (WordNet, Cyc and IMDb) using the

PR-CAUC measure. The second one evalated RA, AA, CN, INF, INF 2D, INF LOG

and INF LOG 2D on six different webgraphs using the PR-AUC measure. In this

appendix we complete those tests by showing as well the complementary PR-AUC, PR-

CAUC and ROC-AUC measures for both tests. These results are added for possible

reference and evaluation. Figures with the actual PR and ROC curves can also be

found in this appendix, including a zoomed-in version when considered necessary.

A.1 ROC/PR curves, ROC/PR-AUC: Undirected Scores

Score WordNet Cyc IMDb

PR-AUC PR-AUC PR-AUC

RA 0.048763 0.00764913 0.0015387

AA 0.022618 0.00608318 0.0009651

CN 0.006414 0.00145343 0.0006652

Table A.1: PR-AUC score of RA, AA and CN on three graphs.
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A. APPENDIX I

Score WordNet Cyc IMDb

ROC-AUC ROC-AUC ROC-AUC

RA 0.97189 0.70480 0.564618

AA 0.98538 0.79012 0.567304

CN 0.96740 0.77651 0.566015

Table A.2: ROC-AUC score of RA, AA and CN on three graphs.

A.1.1 Undirected Scores on WordNet

Figure A.1: PR curve of RA, AA and CN scores on the WordNet graph.
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A.1 ROC/PR curves, ROC/PR-AUC: Undirected Scores

Figure A.2: ROC curve of RA, AA and CN scores on the WordNet graph.

Figure A.3: ROC curve of RA, AA and CN scores on the WordNet graph, zoomed in.
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A.1.2 Undirected Scores on Cyc

Figure A.4: PR curve of RA, AA and CN scores on the Cyc graph.

Figure A.5: ROC curve of RA, AA and CN scores on the Cyc graph.
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A.1 ROC/PR curves, ROC/PR-AUC: Undirected Scores

Figure A.6: ROC curve of RA, AA and CN scores on the Cyc graph, zoomed in.

A.1.3 Undirected Scores on IMDb

Figure A.7: PR curve of RA, AA and CN scores on the IMDb graph.
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A. APPENDIX I

Figure A.8: ROC curve of RA, AA and CN scores on the IMDb graph.

Figure A.9: ROC curve of RA, AA and CN scores on the IMDb graph, zoomed in.
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A.2 ROC/PR curves, ROC/PR-AUC: Hierarchical Undirected Scores

A.2 ROC/PR curves, ROC/PR-AUC: Hierarchical Undi-

rected Scores

Score WordNet Cyc IMDb

PR-AUC PR-AUC PR-AUC

HRA 0.215312 0.0195774 0.00305526

HAA 0.085892 0.0156353 0.00215395

HCN 0.025417 0.0035343 0.00154233

Table A.3: PR-AUC score of HRA, HAA and HCN on three graphs.

Score WordNet Cyc IMDb

ROC-AUC ROC-AUC ROC-AUC

HRA 0.971901 0.701416 0.563886

HAA 0.987109 0.789144 0.567013

HCN 0.972509 0.779297 0.565826

Table A.4: ROC-AUC score of HRA, HAA and HCN on three graphs.

A.2.1 Hierarchical Undirected Scores on WordNet

Figure A.10: PR curve of HRA, HAA and HCN scores on the WordNet graph.
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Figure A.11: ROC curve of HRA, HAA and HCN scores on the WordNet graph.

Figure A.12: ROC curve of HRA, HAA and HCN scores on the WordNet graph, zoomed

in.
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A.2 ROC/PR curves, ROC/PR-AUC: Hierarchical Undirected Scores

A.2.2 Hierarchical Undirected Scores on Cyc

Figure A.13: PR curve of HRA, HAA and HCN scores on the Cyc graph.

Figure A.14: ROC curve of HRA, HAA and HCN scores on the Cyc graph.
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Figure A.15: ROC curve of HRA, HAA and HCN scores on the Cyc graph, zoomed in.

A.2.3 Hierarchical Undirected Scores on IMDb

Figure A.16: PR curve of HRA, HAA and HCN scores on the IMDb graph.
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A.2 ROC/PR curves, ROC/PR-AUC: Hierarchical Undirected Scores

Figure A.17: ROC curve of HRA, HAA and HCN scores on the IMDb graph.

Figure A.18: ROC curve of HRA, HAA and HCN scores on the IMDb graph, zoomed

in.
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A.3 ROC/PR curves, ROC/PR-AUC: INF evaluation

Score WordNet Cyc IMDb

PR-AUC PR-AUC PR-AUC

INF 0.715 0.0735172 0.0233511

HRA 0.215312 0.0195774 0.0030552

RA 0.048763 0.0076491 0.0015387

Table A.5: PR-AUC score of INF, HRA, and RA on three graphs.

Score WordNet Cyc IMDb

ROC-AUC ROC-AUC ROC-AUC

INF 0.935562 0.672769 0.571541

HRA 0.971901 0.701416 0.563886

RA 0.971892 0.704801 0.564618

Table A.6: ROC-AUC score of INF, HRA, and RA on three graphs.

A.3.1 INF Evaluation on WordNet

Figure A.19: PR curve of INF, HRA and RA scores on the WordNet graph.
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A.3 ROC/PR curves, ROC/PR-AUC: INF evaluation

Figure A.20: ROC curve of INF, HRA and RA scores on the WordNet graph.

Figure A.21: ROC curve of INF, HRA and RA scores on the WordNet graph, zoomed

in.
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A.3.2 INF Evaluation on Cyc

Figure A.22: PR curve of INF, HRA and RA scores on the Cyc graph.

Figure A.23: ROC curve of INF, HRA and RA scores on the Cyc graph.

132



A.3 ROC/PR curves, ROC/PR-AUC: INF evaluation

Figure A.24: ROC curve of INF, HRA and RA scores on the Cyc graph, zoomed in.

A.3.3 INF Evaluation on IMDb

Figure A.25: PR curve of INF, HRA and RA scores on the IMDb graph.
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Figure A.26: ROC curve of INF, HRA and RA scores on the IMDb graph.

Figure A.27: ROC curve of INF, HRA and RA scores on the IMDb graph, zoomed in.
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A.4 ROC/PR curves, ROC/PR-AUC: Tunned INFs

A.4 ROC/PR curves, ROC/PR-AUC: Tunned INFs

Score WordNet Cyc IMDb

PR-AUC PR-AUC PR-AUC

INF 0.715 0.0735172 0.023351

INF 2D 0.837709 0.0721955 0.016052

INF LOG 0.730075 0.0188687 0.026152

INF LOG 2D 0.839372 0.0189289 0.0326476

Table A.7: PR-AUC score of INF, INF 2D, INF LOG, INF LOG 2D on three graphs.

Score WordNet Cyc IMDb

ROC-AUC ROC-AUC ROC-AUC

INF 0.935562 0.672769 0.571541

INF 2D 0.935563 0.672769 0.574928

INF LOG 0.928184 0.628524 0.57275

INF LOG 2D 0.928184 0.628524 0.572756

Table A.8: ROC-AUC score of INF, INF 2D, INF LOG, INF LOG 2D on three graphs.
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A.4.1 Tunned INFs on WordNet

Figure A.28: PR curve of INF, INF 2D, INF LOG, INF LOG 2D scores on the Word-

Net graph.

Figure A.29: ROC curve of INF, INF 2D, INF LOG, INF LOG 2D scores on the Word-

Net graph.
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A.4 ROC/PR curves, ROC/PR-AUC: Tunned INFs

Figure A.30: ROC curve of INF, INF 2D, INF LOG, INF LOG 2D scores on the Word-

Net graph, zoomed in.

A.4.2 Tunned INFs on Cyc

Figure A.31: PR curve of INF, INF 2D, INF LOG, INF LOG 2D scores on the Cyc

graph.
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Figure A.32: ROC curve of INF, INF 2D, INF LOG, INF LOG 2D scores on the Cyc

graph.

Figure A.33: ROC curve of INF, INF 2D, INF LOG, INF LOG 2D scores on the Cyc

graph, zoomed in.
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A.4 ROC/PR curves, ROC/PR-AUC: Tunned INFs

A.4.3 Tunned INFs on IMDb

Figure A.34: PR curve of INF, INF 2D, INF LOG, INF LOG 2D scores on the IMDb

graph.

Figure A.35: PR curve of INF, INF 2D, INF LOG, INF LOG 2D scores on the IMDb

graph, zoomed in.
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Figure A.36: ROC curve of INF, INF 2D, INF LOG, INF LOG 2D scores on the IMDb

graph.

Figure A.37: ROC curve of INF, INF 2D, INF LOG, INF LOG 2D scores on the IMDb

graph, zoomed in.
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A.5 ROC/PR curves, ROC/PR-AUC: Quasi-local INFs

A.5 ROC/PR curves, ROC/PR-AUC: Quasi-local INFs

Score WordNet Cyc IMDb

PR-AUC PR-AUC PR-AUC

INF QL 0.720866 0.0473856 0.0060537

INF 2D QL 0.842386 0.0432759 0.0107751

INF LOG QL 0.726982 0.0091870 0.0168905

INF LOG 2D QL 0.836465 0.0099114 0.0257291

Table A.9: PR-AUC score of INF QL, INF 2D QL, INF LOG QL, INF LOG 2D QL

on all graphs.

Score WordNet Cyc IMDb

ROC-AUC ROC-AUC ROC-AUC

INF QL 0.935562 0.707766 0.605394

INF 2D QL 0.935563 0.707764 0.608768

INF LOG QL 0.928184 0.651159 0.606042

INF LOG 2D QL 0.928184 0.651157 0.608571

Table A.10: ROC-AUC score of INF QL, INF 2D QL, INF LOG QL, INF LOG 2D QL

on all graphs.
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A.5.1 Quasi-local INFs on WordNet

Figure A.38: PR curve of INF QL, INF 2D QL, INF LOG QL, INF LOG 2D QL

scores on the WordNet graph.

Figure A.39: ROC curve of INF QL, INF 2D QL, INF LOG QL, INF LOG 2D QL

scores on the WordNet graph.
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A.5 ROC/PR curves, ROC/PR-AUC: Quasi-local INFs

Figure A.40: ROC curve of INF QL, INF 2D QL, INF LOG QL, INF LOG 2D QL

scores on the WordNet graph, zoomed in.

A.5.2 Quasi-local INFs on Cyc

Figure A.41: PR curve of INF QL, INF 2D QL, INF LOG QL, INF LOG 2D QL

scores on the Cyc graph.
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Figure A.42: ROC curve of INF QL, INF 2D QL, INF LOG QL, INF LOG 2D QL

scores on the Cyc graph.

Figure A.43: ROC curve of INF QL, INF 2D QL, INF LOG QL, INF LOG 2D QL

scores on the Cyc graph, zoomed in.

144



A.5 ROC/PR curves, ROC/PR-AUC: Quasi-local INFs

A.5.3 Quasi-local INFs on IMDb

Figure A.44: PR curve of INF QL, INF 2D QL, INF LOG QL, INF LOG 2D QL

scores on the IMDb graph.

Figure A.45: ROC curve of INF QL, INF 2D QL, INF LOG QL, INF LOG 2D QL

scores on the IMDb graph.
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Figure A.46: ROC curve of INF QL, INF 2D QL, INF LOG QL, INF LOG 2D QL

scores on the IMDb graph, zoomed in.

A.6 ROC/PR curves, ROC/PR-AUC: Webgraphs

AA CN RA INF LOG 2D LOG 2D

webND 0.312951 0.315807 0.207824 0.099200 0.498572 0.092195 0.524134

webSB 0.018812 0.015056 0.046012 0.094924 0.331292 0.093863 0.447642

webGL 0.081692 0.056055 0.092157 0.121209 0.414556 0.117714 0.487771

hudong 0.005033 0.007216 0.001579 0.003210 0.028695 0.001967 0.033565

baidu 0.001546 0.001088 0.001633 0.000052 0.003902 0.000007 0.004271

DBpedia 0.000355 0.000262 0.001249 0.000310 0.000477 0.000381 0.000524

Table A.11: PR-CAUC obtained by each tested score on six different webgraphs.
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A.6 ROC/PR curves, ROC/PR-AUC: Webgraphs

AA CN RA INF LOG 2D LOG 2D

webND 0.917274 0.917125 0.90837 0.88486 0.879633 0.885086 0.879639

webSB 0.973477 0.971452 0.92143 0.90377 0.900262 0.903772 0.900262

webGL 0.956008 0.955955 0.94873 0.91474 0.902688 0.914741 0.902688

hudong 0.723551 0.723109 0.67071 0.67069 0.668171 0.670758 0.668171

baidu 0.844153 0.843299 0.80086 0.78843 0.785428 0.788497 0.785428

DBpedia 0.003683 0.005029 0.00275 0.00403 0.004403 0.004187 0.004421

Table A.12: ROC-AUC obtained by each tested score on six different webgraphs.

Figure A.47: PR curve of RA, AA, CN, INF, INF 2D, INF LOG and INF LOG 2D on

the webND webgraph.
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Figure A.48: PR curve of RA, AA, CN, INF, INF 2D, INF LOG and INF LOG 2D on

the webSB webgraph.

Figure A.49: PR curve of RA, AA, CN, INF, INF 2D, INF LOG and INF LOG 2D on

the webGL webgraph.
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A.6 ROC/PR curves, ROC/PR-AUC: Webgraphs

Figure A.50: PR curve of RA, AA, CN, INF, INF 2D, INF LOG and INF LOG 2D on

the baidu webgraph.

Figure A.51: PR curve of RA, AA, CN, INF, INF 2D, INF LOG and INF LOG 2D on

the hudong webgraph.
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Figure A.52: PR curve of RA, AA, CN, INF, INF 2D, INF LOG and INF LOG 2D on

the DBpedia webgraph.
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Napagao and Ignasi Gómez-Sebastià, Applying COAALAS to SPiDer, 16th Interna-

tional Conference of the Catalan Assotiation of Artificial Intelligence, 2013.

Jonathan Moreno, Dario Garcia-Gasulla, and Ulises Cortés, SPiDer: Integrating smart

medical dispensing with multiple purpose elder assistance systems, 14th Conference

on Artificial Intelligence in Medicine - VIII Workshop on Agents Applied in Health

Care (A2HC), 2013.
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