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Abstract

This dissertation formalizes the construction of multi-view 2-D shape models
from 3-D data, by means of several extensions of the well-known Procrustes
Analysis (PA) algorithm. The proposed extensions allow modeling rigid and
non-rigid transformations in an efficient manner, and they are successfully
tested on faces and human bodies datasets.

In human perception applications one can set physical restrictions, such
as defining faces and human skeletons as sets of anatomical landmarks or
articulated bodies. However, looking at people carries difficult tasks. The
high variation of facial expressions and human postures from different view-
points makes problems like face tracking or human pose estimation extremely
challenging. The common approach to handle large viewpoint variations is
training the models with several labeled images from different viewpoints.
However, this approach has several important drawbacks: (1) it is not clear
the extent to which the dataset must be enhanced with images from dif-
ferent viewpoints in order to build unbiased 2-D models; (2) extending the
training set without this evaluation would unnecessarily increase memory
and computation requirements to train the models; and (3) obtaining new
labeled images from different viewpoints can be a difficult task because of the
expensive labeling cost; finally, (4) a non-uniform coverage of the different
viewpoints of a person leads to biased 2-D models. In this dissertation we
propose successive extensions of PA to address these issues.

First of all, we propose Projected Procrustes Analysis (PPA) as a formal-
ization for building multi-view 2-D rigid models by rotating 3-D datasets.
PPA rotates and projects every 3-D training shape and builds a multi-view
2-D model from this enhanced training set. We also introduce common
parametrizations of rotations, as well as mechanisms to uniformly sample
the rotation space to build unbiased 2-D models. We show that uniformly
distributed rotations generate unbiased models, while non-uniform rotations
lead to models representing some viewpoints better than others.

Although PPA has been successful in building multi-view 2-D models,
it requieres an enhanced dataset that increases the computational require-
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ments in space and time. To address these PA and PPA drawbacks and to
build unbiased 2-D models in an efficient manner, we propose Continuous
Procrustes Analysis (CPA). CPA extends PA and PPA within a functional
analysis framework and constructs multi-view 2-D rigid models in an efficient
way through integrating all possible rotations in a given domain. We show
that CPA models are inherently unbiased because of their integral formula-
tion. However, CPA is not able to capture non-rigid deformations from the
dataset.

Next, in order to efficiently compute multi-view 2-D deformable models
from 3-D data, we propose Subspace Procrustes Analysis (SPA). By adding a
subspace in the PA formulation, SPA is able to model non-rigid deformations,
as well as rigid 3-D transformations of the training set. We developed a
discrete (DSPA) and continuous (CSPA) formulation to provide a better
understanding of the problem, where DSPA samples and CSPA integrates
the 3-D rotation space.

Finally, we illustrate the benefits of our multi-view 2-D deformable mod-
els in the task of human pose estimation. We first reformulate the problem
as a feature selection by subspace matching, and we propose an efficient ap-
proach for this task. Our proposed method is much more efficient than the
state-of-the-art feature selection by subspace matching approaches, and it is
able to handle larger number of outliers. Next, we show that our multi-view
2-D deformable models, combined with the subspace matching method, out-
perform state-of-the-art methods of human pose estimation. Our approach
is more accurate in the joint positions and limb lengths because we use un-
biased 2-D models trained on 3-D Motion Capture datasets. Our models are
not biased to any particular point of view and they can successfully recon-
struct different non-rigid deformations and viewpoints. Moreover, they are
efficient in learning, as well as in test time.
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Chapter 1

Introduction

Perceiving human beings and their activities has been a fascinating and chal-
lenging endeavor ever since Eadweard Muybridge took the first pictures of
human movements in 1884 [67]. Nowadays the difficulties are different, but
looking at people is still a hot topic in artificial intelligence [64, 25]. Not
only is it a major challenge in computer vision [60, 75], but it also has im-
portant implications in our daily lives as well as future possibilities. Digital
cameras, for example, can now find the faces of the subjects and help us take
the perfect shot. Computer vision advances can also bring sensing tools to
assistive robots helping patients in rehabilitation tasks. Nowadays, wearable
sensors provide assistance to elderly by detecting falls at home, and newer
sensors can help doctors adjust medication dosage in patients suffering from
Parkinson’s disease. Although recent, these are examples of technological
innovations that are becoming real necessities in the daily lives of our com-
munities. Even more, with each day passing, we are demanding the technol-
ogy to be faster, more accurate, and to make our lives easier. We are asking
for technology that can make personalized recommendations based on our
location, physical state or emotional condition— all with a unifying concept:
We are asking machines for a better human perception.

Human perception in computer vision is mostly focused on bodies [82,
63, 34] and faces [111, 61, 12], with a huge variety of subproblems such as
human pose estimation [6, 91, 107, 78, 42|, hand pose recovery [24, 8, 69],
activity segmentation [100, 5, 87, 11] and recognition [83, 100, 50, 41, 40],
face tracking [103, 104], head pose estimation [66, 113, 26], and face landmark
localization [113, 112, 86], just to mention a few. Many of them use shape
models to represent configurations of face landmarks [61, 86, 113, 112] or
body joints [6, 91, 107, 78, 42] in the image. This dissertation is focused on
building multi-view 2-D models to this end, having been successfully tested
on faces and bodies datasets.
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Looking at people allows us to set physical restrictions, i.e. defining
faces and human skeletons as sets of anatomical landmarks or articulated
bodies. On the other hand, the high variation of facial expressions and hu-
man postures, as well as the extremely different appearances that faces and
body poses can present from different viewpoints, make visual human per-
ception very challenging. The common approach to handle large viewpoint
variations is to train the models with several labeled images from different
viewpoints [37, 99, 113, 107, 78, 79, 42]. However, this approach has some
drawbacks: (1) it is not clear the extent to which the dataset must be en-
hanced with images from different viewpoints in order to build unbiased 2-D
models; (2) extending the training set without this evaluation would unnec-
essarily increase memory and computation requirements to train models; (3)
obtaining new labeled images from different viewpoints can be a difficult task
because of the expensive labeling cost; and finally, (4) a non-uniform cover-
age of the different viewpoints of a person leads to biased 2-D models (i.e.,
some poses are better represented than others).

In this dissertation we propose to solve these drawbacks by changing the
paradigm, learning 2-D multi-view models from 3-D datasets instead of train-
ing them on 2-D images. Recently, several 3-D datasets have been publicly
and commercially released, providing 3-D objects of architecture, engineer-
ing, automation [4], animals and humans [2], among others. Moreover, the
popularization of 3-D cameras and printers, as well as collaborative projects
to build datasets of 3-D models [2, 3] confirm that 3-D data is becoming a
more accessible resource with each day passing. It is likely that in the near
future, public datasets will go beyond rigid objects and provide 3-D mo-
tion datasets, as research datasets already do for people performing different
actions [16].

We propose using available 3-D datasets to build unbiased 2-D shape
models, avoiding the previous drawbacks: (1) We formulate the problem of
2-D model building from 3-D data; (2) we avoid the need of 2-D labeled
images; and (3) we provide novel formulations that guarantee the uniform
coverage of the rotation space, as well as experimental validation for different
datasets of faces and human bodies. Moreover, (4) we propose extremely
efficient approaches; and (5) we illustrate the benefits of our unbiased 2-D
models in the task of human pose estimation.

The question that arises at this point is why we are building multi-view
2-D models from 3-D data. In other words, why are we projecting 3-D data
in training time, instead of learning 3-D models and projecting them onto
the image plane during the test? The answer is that 2-D models have the
same representation power than 3-D models, with 2-D models being faster
in real-time fitting [61]. When thinking in new algorithms, it is important
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to take into account that a full 90% of all the data in the world has been
generated over the last two years. Going a little bit further, every minute,
YouTube users upload 100 hours of video, and Instagram users share 48, 600
new photos. In this context, we need efficient algorithms to handle large
amount of data in training as well as in test phases.

In this dissertation we provide novel algorithms for the efficient construc-
tion of 2-D multi-view models from 3-D datasets, by means of several exten-
sions of the well known Procrustes Analysis [23, 36, 35] algorithm. These
extensions are focused on the construction of unbiased 2-D models, able to
generalize among different viewpoints of objects and their rigid and non-rigid
transformations (e.g. facial expressions and human postures). In experimen-
tal sections we show that the unbiased 2-D models trained with our proposed
methods outperform state-of-the-art Procrustes Analysis approaches, in hu-
man bodies and faces datasets. First of all, we formalize the problem of
building 2-D rigid models from 3-D data, and we detail how to sample the
rotation space to build unbiased 2-D models. We call Projected Procrustes
Analysis (PPA) to this approach. Next, we focus on efficiency and propose
an extension of PPA based on Functional Data Analysis (FDA), Continuous
Procrustes Analysis (CPA), which enable us to build multi-view rigid mod-
els by integrating all possible viewpoints. Then, we take a step further and
build statistical 2-D models with Subspace Procrustes Analysis (SPA). SPA
models are able to generalize among rigid and non-rigid transformations of
objects, across different viewpoints. We provide two SPA formulations, dis-
crete (DSPA) and continuous (CSPA), by extending PPA and CPA, respec-
tively. Finally, we illustrate the performance of our unbiased 2-D models in
the problem of human pose estimation, by means of a novel feature selection
method by subspace matching. These successive extensions of PA also de-
termine the structure of the thesis. One chapter is dedicated to each one of
these extensions and application. Note that for a better contextualization,
state of the art concerning different contributions in this thesis is introduced
in each chapter.

1.1 Scope of the Thesis

The main contributions of this Ph.D. thesis are the formalization of build-
ing unbiased 2-D models from 3-D data, and the successive extensions of
Procrustes Analysis in order to efficiently model rigid and non-rigid trans-
formations of faces and human bodies. We can list the contributions of this
dissertation as:

e Study and formulation of multi-view 2-D rigid models from 3-D data
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with Projected Procrustes Analysis, as well as the requirements to build
unbiased models by uniformly sampling the rotation space.

e Continuous extension of PPA by means of Functional Data Analysis,
CPA, which efficiently learns 2-D rigid models able to generalize to
different viewpoints.

e Addition of a subspace in the PA formulation, SPA, able to build 2-D
deformable models encoding rigid and non-rigid transformations of 3-D
datasets, in an efficient manner.

e Application of our unbiased 2-D models to human pose estimation by
means of an efficient algorithm of feature selection by subspace match-
ing.

1.2 Thesis Overview

This thesis contains 6 chapters, the remaining of which are organized as
follows:

Chapter 2. Procrustes Analysis (PA) is defined and the first PA exten-
sion, Projected Procrustes Analysis (PPA), is proposed as a formalization to
build 2-D rigid models from rotating and projecting 3-D datasets. Different
rotation parametrizations are presented, as well as mechanisms to uniformly
sample the rotation space and build unbiased 2-D models.

Chapter 3. Functional Data Analysis (FDA) is introduced as well as the
mathematical background to integrate into the rotation space in a uniform
manner. Continuous Procrustes Analysis (CPA) is presented as an efficient
extension of PPA to build unbiased 2-D rigid models from 3-D data.

Chapter 4. Statistical models are introduced as an approach to model non-
rigid deformations with a subspace. Subspace Procrustes Analysis (SPA) is
presented as a way to efficiently build 2-D models able to generalize to rigid
and non-rigid transformations of objects, across different viewpoints.

Chapter 5. Human pose estimation task is defined and reformulated as
a feature selection problem by subspace matching, and a novel method is
proposed to this end. Finally, the performance of multi-view 2-D models is
illustrated in the task of human pose estimation.
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Chapter 6. Concludes the dissertation with a summary of the main con-
tributions and a discussion about the future directions the research might
have.

1.3 Resulted Publications

This document compiles and supplements the following papers previously
published or submitted in international conferences and journals:

Journal Publications

e L. Igual, X. Perez-Sala, S. Escalera, C. Angulo, F. Dela Torre, Contin-
uous alternative to generalized procrustes analysis, in: Pattern Recog-
nition, vol. 47, issue 2, pp. 659-671, 2014.

e X. Perez-Sala, S. Escalera, C. Angulo, A Survey on Model Based Ap-
proaches for Human Pose Recovery, in: Sensors, vol. 14, issue 3, pp.
4189-4210, 2014.

e A. Hernandez-Vela, M. Bautista, X. Perez-Sala, V. Ponce, S. Escalera,
X. Baro, O. Pujol, C. Angulo, Probability-based Dynamic Time Warp-
ing and Bag-of-Visual-and-Depth-Words for Human Gesture Recogni-
tion in RGB-D, in: Pattern Recognition Letters, vol. 50, issue Decem-
ber, pp. 112-121, 2013.

e X. Perez-Sala, F. Dela Torre, L. Igual, S. Escalera, C. Angulo, Subspace
Procrustes Analysis, in: preparation to submit to International Journal
of Computer Vision.

International Conferences and Workshops

e X. Perez-Sala, F. Dela Torre, L. Igual, S. Escalera, C. Angulo, Sub-
space Procrustes Analysis, in: European Conference on Computer Vi-
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1.4 Notation

In this section we briefly introduce the notation we will use along this dis-
sertation, with an special emphasis to the vec-transpose operator.

Bold capital letters denote a matrix A, bold lower-case letters a column
vector a. a; represents the i'® column of the matrix A. a;; denotes the
scalar in the i row and j** column of the matrix A. All non-bold letters
represent scalars. I, € R™™ is an identity matrix. ||alls = /), |a;|? and

|Allr = />, ai; denote the 2-norm for a vector and the Frobenius norm
of a matrix, respectively. A ® B is the Kronecker product of matrices and
AP is the vec-transpose operator.
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Vec-transpose Operator. Vec-transpose A®) is a linear operator that
generalizes vectorization and transposition operators [58, 62]. It reshapes
matrix A € R™*" by vectorizing each i** block of p rows, and rearranging it
as the i’ column of the reshaped matrix, such that A®) € R :

- -2 - -

ailz a2 ais 11 Aa31 asi
Q21 Q22 A23 Q21 Q41 Ag1
a31 azz ass _|Qi2 asz2 G52
- 9
Q41 Q42 Q43 Q22 Q42 Q62
51 as2  As3 a13 a3z as3
| G61 Q62 Q63 | Q23 Q43 Q63
11 aq
r 713 Q21 As1
11 aiz2 a3
a31 Qg1
Q21 Q22 (23
Q12  A42
a31 Q32 Aa33 . a
= 22 52
Qg1 Q42 A43
a32 A2
51 Ads2 (53
@13 Aa43
g1 Ade2 Ag3
- - Q23 As3
|33 0g3 |

Note that A = vec(A), A = AT and (A®)®) = A. Then, the well
known expression:

(B" ® A)vec(C) = vec(ACB),
generalizes [62] to:
(BA)PC)P = (CT®1,)BA = (BPC)PA.

A wuseful rule for pulling a matrix out of nested Kronecker products, which
leads to:

(CT®I,)B=(BYC)®.
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Chapter 2

Procrustes Analysis Revisited

In this chapter, we first define Procrustes Analysis (PA), as well as its state
of the art. Then, we introduce our first PA extension, Projected Procrustes
Analysis (PPA), as a formalization to build 2-D rigid models by rotating and
projecting 3-D datasets. Next, different parametrizations of rotations are
presented, as well as mechanisms to uniformly sample the rotation space and
build unbiased 2-D models. Finally, we show the benefits of our approach in
datasets of faces and bodies.

2.1 Procrustes Analysis

Procrustes Analysis (PA) [23, 36, 35] is an statistical method used to study
the distribution of a set of shapes. Given two shapes and their landmark
correspondences, PA “superimposes” both shapes by optimally translating,
rotating and scaling one shape towards the other. When more than two
shapes are registered, the problem is typically known as Generalized Pro-
crustes Analysis (GPA). GPA simultaneously finds the best registration be-
tween each shape and the mean or reference shape, meanwhile the reference
shape is being computed. Although we are aligning multiple shapes in this
thesis, for simplicity on naming our multiple extensions we will shortly re-
fer to this problem as PA in the remaining of this dissertation. PA has
been typically used in computer vision as a first step to build 2-D models
of shape or appearance of objects. These 2-D models have been applied to
solve problems such as object recognition [98, 49], facial feature detection and
tracking [96, 17], and image segmentation [72, 65]. In particular, Point Distri-
bution Models (PDMs) and Active Shape Model (ASMs) [18] are among the
most popular techniques to learn 2-D object models. PDMs and ASMs build
the shape models from a 2-D training set of image landmarks. In PDMs and

9
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Figure 2.1: Tllustration of PA alignment, following (a) reference-space model,
and (b) data-space model. Note that A; = T; .

ASMs, first PA is used to remove rigid transformations and, then Principal
Component Analysis (PCA) is applied to construct a subspace that models
the variation of the normalized shapes [18].

Given a set D = {D; € R¥‘} of n centered shapes composed by ¢ land-
marks, PA [23, 36, 35, 44, 10] computes the d-dimensional reference shape
M € R™* and the set T = {T; € R¥?} of n transformations (e.g., affine, Eu-
clidean) that minimize the reference-space cost [44, 35, 10] (see Fig. 2.1 (a)):

Ep(M,T) =) _||T;D; — M]|7. (2.1)
i=1
Note that in the case of two-dimensional shapes (d = 2), D; = zl 52 o zz] :
1 Y2 o Ye

Alternatively, PA can be optimized using the data-space model [10] (see
Fig. 2.1 (b)):

Ep(M, A) =) [|D; — AM]|J3, (2.2)

i=1

where A; = T;' € R¥ is the inverse transformation of T;, and the set
A= {A; € R4} defines n rigid transformations for the reference shape M.

The error function in Eq. (2.1) for the reference-space model minimizes
the difference between the reference shape and the registered shape data. In
the data-space model, the error function in Eq. (2.2) compares the observed
shape points with the transformed reference shape, i.e., shape points pre-
dicted by the model and based on the notion of average shape [110]. This



2.2. PROJECTED PROCRUSTES ANALYSIS 11

difference between the two models leads to different properties. Since the
reference-space cost (Fr, Eq. (2.1)) is a sum of squares and it is convex in
the optimization parameters, it can be optimized globally with Alternated
Least Squares (ALS) methods. On the other hand, the data-space cost (Ep,
Eq. (2.2)) is a bilinear problem and non-convex. If there is no missing data,
the data-space model can be solved using the Singular Value Decomposition
(SVD) [10]. However, for large datasets it is more efficient (in both space and
time) to minimize Eq. (2.2) with ALS methods. A major advantage of the
data-space model is that it is gauge invariant (i.e., the cost does not depend
on the coordinate frame in which the reference shape and the transforma-
tions are expressed). Benefits of both models are combined in [10]. Recently,
Pizarro et al. [80] have proposed a convex approach for PA based on the
reference-space model. In their case, the cost function is expressed with
a quaternion parametrization which allows conversion to a Sum of Squares
Program (SOSP). Finally, the equivalent semi-definite program of a SOSP
relaxation is solved using convex optimization.

However, previous work on PA suffers from several limitations when build-
ing 2-D models from 2-D shapes or images: (1) the 2-D training samples do
not necessarily cover a uniform sampling of all 3-D rigid transformations of
an object and this can result in a biased model (i.e., some poses are better
represented than others); (2) a non-uniform sampling of the rotation space
can lead to an unnecessary increase memory and computation requirements
to train the models; (3) the models learned using only 2-D landmarks cannot
model missing landmarks with large pose changes. Moreover, PA methods
can lead to local minima problems if there are missing components in the
training data; finally, (4) PA is computationally expensive, it scales linearly
with the number of samples and landmarks and quadratically with the di-
mension of the data. On the other hand, having access to 3-D models of
objects, we can overcome PA issues and build 2-D models by rotating and
projecting 3-D datasets.

2.2 Projected Procrustes Analysis

Due to advances in 3-D capture systems, nowadays it is common to have
access to 3-D shape models for a variety of objects. Given a set D = {D; €
R3*} of n centered 3-D shapes, we can compute a set P = {P; € R**3}
of r projections, one for each of the shapes (after removing translation) and
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minimize the Projected Procrustes Analysis, PPA:

Eppa(M, A) = > " ||P;D; — AyM|5., (2:3)

i=1 j=1

where A = {A;; € R?*?} defines the set of n transformations for the reference
shape M € R?*‘. P; = PR(w;) is an orthographic projection onto the X-Y

plane:
1 00
b= (O 1 0) ’

of a 3-D rotation R(w;) in a given domain €2, defined by the rotation angles
w; = {¢;,0;,¢;} € R3. Note that, while data and reference shapes are d-
dimensional in Eq. (2.1) and Eq. (2.2), data D; and reference M shapes in
Eq. (2.3) are fixed to be 3-D and 2-D, respectively. Hence, A;; is a 2-D
transformation mapping M to the j* 2-D projection of the i*" 3-D shape.
Alternate Least Squares (ALS) is a common method to optimize Eq. (2.2)
and (2.3). When A;; is an affine transformation, ALS alternates between
minimizing over M and A;; by using the following expressions:

Ay =PDM (MM)" Vi j, (2.4)
n r -1 n r

M = (ZZAZ-AM> (Z (Z A?ij> Di> . (2.5)
i=1 j=1 i=1 \j=1

Note that PPA and its extensions deal with missing data naturally. Since
they use the whole 3-D shape of objects, the enhanced 2-D dataset resulting
of projecting the data from different viewpoints can be constructed without
occluded landmarks. It is important to notice that building 2-D models from
3-D samples is a problem that has been relatively unexplored in computer
vision [31].

PPA formalizes how to build multi-view 2-D models by projecting 3-D
data samples after applying 3-D rotations to them. However, PPA does not
guarantees unbiased 2-D models by itself, since it depends on how rotations
R(w;) are chosen. Uniformly distributed rotations will generate unbiased
models, while non-uniform rotations will lead to models representing some
viewpoints better than others. Different parametrizations are detailed in the
following section, as well as the methodologies to generate uniform rotations
with them.
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2.3 Uniform Distribution of Rotations

The Special Orthogonal group in 3-D, SO(3), forms a group whose action is
the composition of rotations. Each rotation is a linear transformation that
preserves the length and spatial orientation of vectors.

How to generate uniform distributions over SO(3) is a widely studied
topic because of its known benefits in heterogeneous applications: com-
puter graphics [7, 51], computer vision [77], reconstruction of biological com-
plexes [81], and path planning [53, 109, 108], among others. Methods gener-
ating uniform rotations in SO(3) are divided into random and deterministic
approaches. Random approaches determine sets of rotations generated with-
out a pattern design, and deterministic methods result in rotation sequences
defined by a certain generative function. On the one hand, rotation distri-
butions from deterministic uniform methods lead to resolution completeness.
However, since the number of sample rotations must be known in advance,
uniformity measures are not optimal for all samples of the sequence. On
the other hand, if resolution completeness is not required, random uniform
methods are the simplest way to obtain uniform distributions independently
of the size of the samples set.

2.3.1 Parametrization of Rotations

There are several parameterizations for 3-D rotations around the origin, with
Euler angles and quaternions being the most common ones.

Euler angles. Euler angles encode orientations in the three dimensional
Euclidean space R? through the composition of three rotations (¢,6,), each
one around a single axis of a basis. The final rotation is obtained multiplying
three rotation matrices, R(w) = R, (¢)R,(0)R.(¢):

1 0 0
R.(¢) = O cos(¢) —sin(¢)
Sln( cos(¢)
cos(0) sm(9)
R,0) = o
— sin(0) 0 cos( 9
cos(¢) —sin(¢h) 0
R.(¢) = [ sin(¢)) cos(yp) 0],
0 0 1
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where Euler angles are uniformly distributed () in the domains ¢,1 =

U(—m, ] and 0 = Z/{[—g, g] As we show in the first column of Fig. 2.2 (a),

random uniform sampling of Euler angles do not produce a uniform distribu-
tion of rotations. In addition they suffer from singularities like the Gimbal
lock problem.

Gimbal Lock takes place on rotations in a 3-D space when two of the three
axes are parallel. One degree of freedom is lost and, therefore, only rotations
in 2-D space can be performed. An easy example to understand this issue
appears when using the Z-Y-Z convention, i.e., first, a rotation on the Z-axis
by ¢ angle, followed by a turn on the rotated Y-axis of 6 angle and, finally,
a rotation by v angle on the new Z-axis. If § = 0, it produces a rotation
by 01 = ¢ + v angle, only on Z-axis. In this case, the system loses a degree
of freedom and it is “locked” rotating in a degenerate 2-D space. Of course,
the same situation occurs when 6 = 7, with a final rotation of ds = ¢ — ¢
angle around Z-axis. It is a clear example of singularity on Euler angles,
where different rotations in the Euler representation are mapped onto a single
rotation in SO(3). In the previous example, the final rotation described by
0 = 0 and 6; = ¢ + ¢ could be achieved by any different combination of ¢
and ).

Quaternions. In order to solve Euler angles issues, quaternions are gen-
erally used as a valid alternative. Quaternions, q = [a, bi, ¢j, dk|, were con-
ceived by Hamilton [38] by extending complex numbers. Each unit quater-
nion, ||q|| = 1, represents a 4-D point in the unit 3-sphere, S3, being a
rotation in SO(3). For any unit quaternion, q = [cos(a/2),sin(«/2)d], and
for any vector v € R3, the action of the triple product, v/ = qvq* = R,v,

1—2(c*+d*)  2(bc—ad) 2(bd + ac)
R,=| 2(bc+ad) 1-20*+d*) 2(cd—ab) |,
2(bd — ac) 2(cd +ab) 120+ %)

may be geometrically interpreted as a rotation of the vector v through an
angle «, being u the axis of rotation. However, not all quaternion parame-
terizations perform uniform rotations.

The chosen method to show this fact is the random sampling of the four
quaternion components following uniform distributions q = [a, b, ¢, d], where
a,b,c,d € U(—1,+1), and normalizing the resulting random quaternion as
q = q/||q||- As we show in the first column of Fig. 2.2 (b), this parameteri-
zation leads to non-uniform rotations.
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Figure 2.2: (left) Qualitative results and (right) distributions of z, y, z shape
components onto the unit 2-sphere, rotating 3-D shapes around the origin
using (a) Euler angles; (b) Random sampling of the 4 quaternion components;
(¢) Euler trick [53]; (d) Gaussian distribution of quaternion components [29];
and (e) Subgroup algorithm [89].

2.3.2 Random Uniform Distributions on SO(3)

Random uniform methods are those approaches that produce rotations equally

distributed on SO(3).

In this section we introduce three random uniform
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methods: Fuler angles trick, Gaussian distribution of quaternion compo-
nents, and Subgroup algorithm. To illustrate their distributions we followed
the criteria proposed by Shoemake [89]: the three coordinates z,y,z of a
vector uniformly distributed on a sphere are also uniformly distributed be-
tween their limits. In the first column of Fig. 2.2 we reported qualitative
results of non-uniform (rows (a), (b)) and uniform (rows (c), (d), (e)) dis-
tributions. 3-D shapes composed by two centered vectors are rotated on the
unit 2-sphere, and the line connecting both vectors is showed onto the sphere
surface. The remaining columns of Fig. 2.2 show quantitative results of uni-
formity. From second to forth row, distributions of the three coordinates
x,y, z of the shape are presented. Observe that coordinates of non-uniform
methods present non-uniform distributions. However, they result in uniform
distributions when rotations are performed with widely known uniform ro-
tation approaches.

Euler angles trick. It is widely known that uniformly sampled Euler
angles produce non-uniform rotations. However, it is possible to compen-
sate such non-uniformity depending on the Euler angles convention. Uni-
formly randomized orientations using X-Y-Z convention, for example, can
be achieved with ¢,¢ = U(—m, 7], 2 = U(—1,+1), and § = sin"'(2); or
when the Z-Y-7Z convention is used, uniformly distributed orientations can
be achieved with ¢,v¢ = U(—7, 7], 2 = U(—1,+1), and § = cos™'(z). Nev-
ertheless, these specific distributions rely on the convention used and there
exist, at least, 24 conventions for Euler angles. On the other hand, a simple
algorithm is presented by Kuffner [53] which generates uniform random dis-
tributions of rotations for any convention of Euler angles (Algorithm 1), as
we show in the first column of Fig. 2.2 (c).

Gaussian distribution of quaternion components. In order to gener-
ate uniformly distributed unit random quaternions, spherical symmetry of
the multidimensional Gaussian density function is exploited in [29]. For each
pair of quaternion components, a zero-mean Gaussian distribution with a
common variance is generated from a pair of random values. This operation
is performed by generating 4 random variables, X; € U(0,1),i = 1,...,4,
and drifting them to a pair of Gaussian distributions using the Box-Muller
method [14]:

r = —210g<X1),Oél = 27TX2,T2 = —210g<X3),052 = 27TX4.

Hence, q = [a, b, ¢, d] is defined as:
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Algorithm 1: Fuler trick algorithm [53], which generates random uni-
form distributions of rotations for any convention of Euler angles.

Input: 4 random numbers: X, Xo, X3, Xy € U(0,1)
Output: 3 uniform random Euler angles: ¢, ), 0
¢ =21rX| —m;
0 = arccos(1 — 2X5) + 7/2;
if X3 <1/2 then
if 6 <7 then
‘ 0=0-+m;
else
‘ 0=0—m;
end

end
Y =21rX3 —m;
return ¢, v, 0

a = /1 cos(o),
b= /risin(),
c = /s cos(ay),
d = \/rysin(ay),

such as the normalized quaternion q = q/||q|| produces uniform rotations,
as we show in the first column of Fig. 2.2 (d).

Subgroup algorithm. The most widely known method to generate uni-
form random rotations using quaternions is the one presented by Shoe-
make [89], where random unit quaternions are generated (see the first column
of Fig. 2.2 (e)) from three random variables through the subgroup algorithm.

Since all the 3-D rotations in this space compose a group, a subgroup
q = [w,0,0,s] is formed by planar rotations « around the Z-axis, being
w = cos(a/2) and s = sin(a/2). Consequently, cosets' of this subgroup,
q = |a, b, c, 0], are rotations pointing Z-axis in different directions. Following
the subgroup algorithm [22], a uniformly distributed element of the com-
plete group can be achieved by the multiplication of a uniformly distributed

TRecall that a coset is either the left or right coset of some subgroup H in a group
G. If g € G, then the left coset of H in G with respect to g consists of all the products
obtained by multiplying g by each of the elements of the subgroup H, gH = {gh : h € H}.
Similarly, the right coset of H in G with respect to g consists of Hg = {hg : h € H}.
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Figure 2.3: (top) Samples of skeletons from a person walking sequence ex-
tracted from the CMU MoCap dataset [1]. (bottom) Samples of faces with
different expressions from the FaceWarehouse dataset [16].

element from the subgroup with a uniformly distributed coset:
U([w, 0,0, s])U([a, b, c,0]) = U(Jwa,wb + sc, —sb + we, sa).

Given three independent random variables X; € U(0,1),: = 1,...,3,
we can compute q = [cos(aw)rs, sin(aq)ry, cos(aq)ry, sin(as)rs] random unit
quaternions where,

a1 = 27TX2,062 = 27TX3,7’1 = \/Zl — Xl),rg = \/EXI)

2.4 Experiments

This section illustrates the benefits of PPA to build multi-view 2-D shape
models of faces and human bodies, in terms of their generalization to different
viewpoints within a given domain. We also show the benefits of building 2-D
models by means of a uniform distribution of rotations instead of a non-
uniform coverage of the rotation space. First, we compare the performance
of PPA, trained with uniformly and non-uniformly rotated training sets, to
build a 2-D shape model of faces from the FaceWarehouse [16] dataset. Next,
we learn Motion Capture (MoCap) human bodies using the Carnegie Mellon
University (CMU) MoCap dataset [1], again comparing performance between
uniform and non uniform rotations. See Fig. 2.3 for examples of face and
body samples from both datasets.

We rotated the 3-D face and body samples in yaw, pitch and roll an-
gles, within the ranges of ¢,v € [—m, 7] and 0 € [-7/2,7/2]. Two PPA
models were trained rotating and projecting the same 3-D data for each ex-
periment: PPA-U rotated the 3-D shapes in a uniform way by means of
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Figure 2.4: Comparison of PPA-U and PPA-NU (a) reconstruction errors,
and (b) mean shapes, on FaceWarehouse dataset.

the subgroup algorithm, and PPA-NU rotated the 3-D samples following the
common parametrization of Euler angles, that does not cover uniformly the
rotation space. We report results for 300 uniform rotations for testing, while
increasing the number of rotations in training.

2.4.1 Learning 2-D Face Models

The aim of this experiment is to build a generic 2-D face model that can
reconstruct a large range of 3-D rotations. For training and testing, we used
the FaceWarehouse dataset that is composed of 150 subjects, each one with
20 different facial expressions (see Fig. 2.3). For all the subjects, dense point
meshes are available, as well as RGB data generated from RGB-D scans.
The original model has 11510 points, and we sub-sampled the mesh to 162
landmarks. We report the Mean Squared Error (MSE) relative to the intra-
eye size for 100 realizations, and we plot the MSE and the half of the standard
deviation.

For training we randomly selected 20 subjects, with three expressions
per subject. For testing we randomly selected 10 different subjects with the
same three expressions as training. We report results varying the number of
training rotations between 1 ~ 20.

Fig. 2.4 compares PPA-U and PPA-NU. Fig. 2.4 (a) shows the mean
reconstruction error. From the figure, one can observe that test errors for
both PPA-U and PPA-NU decrease with the number of rotations in the
training set, and they converge when the addition of more rotated faces do not
provide supplementary information. PPA-U model trained with uniformly
distributed rotations, generalizes slightly better to different viewpoints with
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Figure 2.5: Comparison of PPA-U and PPA-NU (a) reconstruction errors,
and (b) mean shapes, on CMU MoCap dataset.

small number of rotations. Note that 5 rotations means to enhance the
training set by 5 times. Fig. 2.4 (b) shows the mean face computed with
both methods from a training set of 20 rotations.

2.4.2 Learning 2-D Human Body Models

The aim of this experiment is to build a generic 2-D skeleton model from 3-D
Mottion Capture (MoCap), able to reconstruct large range of 3-D rigid trans-
formations (i.e. viewpoints). For training and testing, we used the Carnegie
Mellon University MoCap dataset that is composed of 2605 sequences per-
formed by 109 subjects. The sequences cover a wide variety of daily human
activities and sports. Skeletons with 31 joints are provided (see Fig. 2.3), as
well as RGB video recordings for several sequences. We trained our models
using the set of 14 landmarks as is common across several databases for hu-
man pose estimation. We report the MSE relative to the torso size for 100
realizations, and we plot the MSE and the half of the standard deviation.
For training we randomly selected 3 sequences with 30 frames per se-
quence from the set of 11 running sequences of the user number 9. For
testing we randomly selected 2 sequences with 30 frames from the same set.
We report results varying the number of training rotations between 1 ~ 100.
Fig. 2.5 compares PPA-U and PPA-NU. Fig. 2.5 (a) shows the mean
reconstruction error. From the figure, one can observe that errors in the
test for both PPA-U and PPA-NU decrease with the number of rotations in
the training. As expected, PPA-U model, trained with uniformly distributed
rotations, generalizes better to different viewpoints, and PPA-NU converges
to PPA-U error with a sufficient number of additional rotations. Note that
the error achieved by PPA-U with 30 rotations is not achieved by PPA-
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NU even with 100 rotations in the training set. Therefore, in this case,
methods trained with a non-uniform sampling of the rotation space will need,
at least, 70 times more space and computational time than methods trained
with uniform rotations. Fig. 2.5 (b) shows the mean skeleton computed
with both methods with a training set of 100 rotations. Observe that PPA-
NU did not converge yet to the PPA-U after enhancing the dataset with
100 rotations. Also note that Fig. 2.5 (a) before convergence illustrates the
reconstructed error for biased datasets to some specific viewpoints. PPA
provides mechanisms to overcome PA limitations and build unbiased 2-D
models.

2.5 Conclusions

Procrustes Analysis (PA) has been extensively used to align shapes and build
rigid models despite suffering from significant issues. PA scales linearly with
the number of samples and landmarks and quadratically with the dimen-
sion of the data, which can be computationally expensive when enhancing a
dataset with different viewpoints of objects. In addition, 2-D training sam-
ples do not necessarily cover a uniform sampling of all 3-D rigid transforma-
tions of the training objects. This can result, not only in biased models, but
also in an unnecessary increase of memory and computation requirements.
Finally, the models learned using only 2-D landmarks cannot model missing
landmarks with large pose changes, as well they can lead to local minima
problems if there are missing components in the training data.

To address these issues, in this chapter we proposed Projected Procrustes
Analysis. PPA formalizes the learning of multi-view 2-D rigid models by
means of rotating and projecting 3-D data samples. When the rotation
space is uniformly sampled, PPA builds unbiased 2-D models in terms of
generalization to different viewpoints. In this chapter we also presented the
most common parametrizations of rotations (i.e. Euler angles and quater-
nions) and different methodologies to produce random uniform rotations with
them.

In the experimental section we showed that unbiased 2-D models are able
to generalize better to different viewpoints with smaller number of rotations.
We compared PPA with a training of uniform rotations (PPA-U) against
the same method with a non-uniform sampling of the rotation space (PPA-
NU), increasing the number of rotations in the training set. PPA-U needed
less rotations for convergence than PPA-NU for both faces and skeletons
datasets. Although large deformations of the CMU MoCap dataset make
more evident the improvements of the uniform sampling in skeletons than



22 CHAPTER 2. PROCRUSTES ANALYSIS REVISITED

in faces experiments, we encourage the use of uniform sampling of rotation
space in any dataset.

Therefore, we provide an intuitive PA extension to build unbiased 2-D
rigid models able to generalize to different viewpoints. As a PA extension,
PPA preserves all advantages of PA. However, due to PA limitations, PPA
computation is still costly in memory and time. It requires to enhance the
dataset with several rotations for each training shape. Note that we will
overcome this issue in following chapters. PPA provides the basis of formula-
tion and the understanding of the problem needed to develop the extensions
presented in the remaining of this dissertation.



Chapter 3

Continuous Procrustes Analysis

Procrustes Analysis has been widely employed despite suffering from several
limitations: (1) the 2-D training samples do not necessarily cover a uniform
sampling of all 3-D rigid transformations of an object and this can result in
a biased model (i.e., some poses are better represented than others); (2) it is
computationally expensive to learn a shape model by sampling all possible
3-D rigid transformations of an object (see Fig. 3.1 (a)); (3) the models
that are learned using only 2-D landmarks cannot model missing landmarks
with large pose changes. Moreover, PA methods can lead to local minima
problems if there are missing components in the training data; (4) finally, PA
is computationally expensive, it scales linearly with the number of samples
and landmarks and quadratically with the dimension of the data.

Projected Procrustes Analysis deals with most of these issues by building
a multi-view 2-D model from 3-D samples. PPA enhances the training set
with uniformly distributed viewpoints (i.e. rotations) of the 3-D training
data. However, the number of training samples increases by r (number of
rotations) times. Even small values of r will lead to a substantial increase of
the number of shapes, and the complexity of PPA in space and time.

In order to deal with these drawbacks, in this chapter we propose Con-
tinuous Procrustes Analysis (CPA), by formulating PPA within a functional
analysis framework (see Fig. 3.1 (b)). In this chapter we first introduce our
approach in the context of Functional Data Analysis (FDA) and provide the
basic mathematical background. Next, we detail the CPA formulation and
optimization. Finally, we compare CPA against PPA and the state-of-the-art
of PA in human samples datasets of faces and human bodies.

23
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PPA mean shape model

CPA mean shape model

(a) (b)

Figure 3.1: Illustration of 2-D model building by means of projecting 3-D
data from (a) discrete (PPA); and (b) continuous (CPA) approaches.

3.1 Functional Data Analysis

Our work is related to previous work on FDA [84]. FDA is a branch of
statistics that analyzes data samples consisting of functions or surfaces, where
each function is viewed as one sample element. The functions contained in
the sample are typically considered to be independent and smooth. FDA
methods are usually extensions of classical multivariate methods such as
PCA [84], Linear Discriminant Analysis (LDA) [45] or ANalysis Of VAriance
(ANOVA) [32].

In the context of human samples modeling, there are only a few works
in computer vision that make use of FDA [70, 27, 71, 55]. Ormeneit et
al. [71] proposed an automatic method for segmentation and modeling of
cyclic motion sequences. They represented the body pose as a time series
of joint angles, and applied a functional PCA based on a Singular Value
Decomposition (SVD) operating in the Fourier domain. An advantage of
this method is that it automatically deals with noise and missing data. They
learned 3-D models of humans walking from Motion Capture data, that later
used in a Bayesian tracking framework. Closer to our approach, Levin and
Shashua [55] applied a continuous formulation of the PCA to model faces
under different illuminations. Instead of modeling the raw sample data with
the standard PCA, their method integrates over the convex hull of the data,
and achieves unbiased estimates of the principal components of the images.
Following these ideas, we parametrize any rotation of a 3-D object (e.g. faces,
bodies) as a combination of three rotation matrices, and then we integrate on
the rotation domain, in order to overcome the principal limitation of PPA:
the need of explicitly rotate the 3-D data.
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Fig. 3.1 (a) illustrates the PPA process of building 2-D models from a
set of viewpoints of 3-D objects under different configurations. Continuous
Procrustes Analysis (CPA) generalizes PPA by using an integral formulation
(see Fig. 3.1 (b)) that avoids the need to generate 2-D projections from 3-
D objects, and uniformly covers the space of 3-D transformations. In the
continuous approach, rotation matrices are not parameters but functions of
the rotation angles. Instead of averaging the 2-D projections of the 3-D
objects, CPA integrates among the rotation angles, being extremely efficient
in space and time. Before introducing the CPA formulation and optimization,
we will review mathematical background on calculus and integrations on the
rotation space.

3.2 Mathematical Background

This section describes the basic mathematical background for the CPA un-
derstanding. We review basic statements from the calculus of variations and
integral calculus, as well as details regarding to the integration into the Spe-
cial Orthogonal group in 3-D, SO(3), and measures defined on it.

3.2.1 Calculus

Let f: R™ — R be a smooth scalar function. If x* € R" is a solution of the
problem:

f(x*) = min f(x), (3.1)

x€eR”?

then the following equation is satisfied:
Vxf(x*) =0, (3.2)

where Vy is the gradient operator of the function f(x) with respect to x.

Now let 2 C R” be an open and bounded subset, let F' : R? — R be
a mapping, and we want to find a solution, v* : © — R? to the following
functional problem:

/Q F(v*(x)) dx = min { /ﬂ F(v(x)) dx} , (3.3)

v

where the minimum is taken among all the functions v : © — R¢ belonging
to LP(;RY) = {v : @ — R? : v is measurable and [ |v(2)[Pd2 < oo}.
Then, it can be shown that the function v* € LP(£2;R?) satisfies:

V.F(v*(x)) =0, Vx € Q\T, (3.4)
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with [p1dx = 0. i.e., I'is a null set. The interested reader is referred to [30]
and [19] for a more detailed review of the calculus of variations.

In order to manipulate multiple integrals, Fubini’s Theorem determines
conditions under which it is possible to compute a multiple integral using
iterated integrals [92]. Let €, C R? and Q, C R? be complete measure
spaces. Let f(z,y) € L(Q, x ,;RY), ie.

‘éMmUWWW%w<W (3.5)

with f(z,y) measurable, then:

o sebten = [ (i e ae= [ (f, stamac) an

The integral with respect to a product of two measures can be calculated as
iterated integrals with respect to those two measures.

3.2.2 Integration Over the SO(3) Group

The Special Orthogonal group in 3-D, SO(3), forms a group whose action is
the composition of rotations. Each rotation is a linear transformation that
preserves the length and spatial orientation of vectors.

Although different parametrizations of rotations exist, not all of them
lead to uniform distribution of rotations (see Section 2.3). In te continuous
domain, uniformity depends on finding a proper measure for SO(3), since
integration of functions on a particular space involves the definition of a
specific measure on that space [92]. Hence, Euler angles parametrization of
3-D rotations can be adopted in the CPA formulation when defining a proper
Haar measure, while it is unclear how to do it for quaternions.

The Haar measure is defined such that it assigns an “invariant volume”
to subsets of locally compact topological groups and subsequently defines an
integral for functions on those groups [68]. We may associate to any Haar
measure 4 on a group a bounded linear functional F' € L(RP;R):

ﬂﬂ:Lﬂmww»

As an example, the Haar measure on the group of rotations SO(3) [68]
(Section 7 of Chapter 1) leads to:

fu@) = [ dv [ a0 [ do L sin(@) (0.0 (36)
SO(3) 0 0 0 8
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Using the Haar measure, we obtain an invariant integral for functions
on the rotation group. Thus, the problem of discrete non-uniform distribu-
tion using Euler angles discussed in Chapter 2 is avoided with CPA in the
definition of the integral.

3.3 Continuous Procrustes Analysis

A major limitation of PPA is the difficulty to generate uniform distributions
in the Special Orthogonal group SO(3) [53]. Due to the topology of SO(3),
in the discrete domain different angles should be sampled following different
distributions, which becomes difficult when the rotation matrices must be
confined in a specific region € of SO(3), restricted by rotation angles w =
{#,0,v}. Moreover, the computational complexity of PPA increases linearly
with the number of rotations (r) and 3-D objects (n), and the number of
samples needed will increase with r because several view-point projections
are necessary to cover the rotation domain. In this section, we formulate
Continuous Procrustes Analysis (CPA). CPA extends PPA by adopting a
continuous formulation that incorporates the information of all rigid 3-D
transformations.

We formulate the problem of CPA as an energy functional minimization,
involving 3-D landmarks of objects and continuous 3-D rotations. We com-
pute the reference shape following the data-space model (Fig. 2.1 (b)) because
it is gauge invariant and its derivation is simpler than using the reference-
space model. Our main assumption is that the best reference shape is the
one that can approximate all possible 3-D shape configurations of a given set
of shapes. We interpret this in the following way: we consider a set of 3-D
shapes, we perform a predefined set of rotations, and we project them onto
the 2-D space. Then, we estimate the reference shape by aligning it with
each shape configuration using an estimated affine transformation.

Given a set D = {D; € R***} of n centered 3-D shapes, we integrate along
all possible rotations R(w) in a given domain Q = {w = (¢,0,¢) € R3},
projected to the X-Y plane, P(w) = PR(w), by an orthographic projection
P. CPA finds the mean shape M € R?*¢ that best reconstructs the different
projections P(w) of the 3-D data sample D;, up to an affinity transformation
A(w); € R**?2, CPA minimizes the functional:

Pees(M.Aw)) =Y [ [P@D; - Aw)Mlido. (1)

where €2 is the set of 3-D rotation domains, w are the Euler angles, and
the Haar measure dw = g sin(0)d¢dfdip ensures uniformity in SO(3) [68].
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Note that for Euler angles w = {¢, 0,1}, the Haar measure can be computed
for every domain €2. For instance, for a complete sphere this measure cor-
responds to dw = 8% sin(3)dadfdy. Therefore, CPA finds the optimal 2-D
reference shape of a 3-D dataset, rotated and projected in a given domain
2, by integrating over all possible rotations in that domain. Notice that
building models by integrating on the rotation space has been a relatively
unexplored problem in computer vision [43].

The main difference between Eq. (2.3) and Eq. (3.7) is that the entries in
P(w) € R**3 and A(w); € R?*? are not scalars anymore, but functions of the
integration angles w = {¢, 0,1 }. In both cases 2-D shape projections depend
directly on the 3-D structure of the object D; and the 3-D transformation
parameters, but Eq. (3.7) is a continuous formulation, and discrete sums are
extended by integrals.

After some linear algebra and functional analysis (see Appendix A for
derivation and optimization details), it is possible to find an equivalent ex-
pression to the discrete approach (Eq. (2.3)), where A(w); and M have the
following expressions:

A(w); = P(w) DM (MM™)™' Vi (3.8)

M- (Z A A<w>?A<w>idw) h (Z (f Awirpe) Di) |

(3.9)

It is important to notice that the 2-D projections are not explicitly computed
in the continuous formulation. The solution of M is found using fixed-point
iteration in Eq. (3.7):

M = (ZM*(MM*)" 117, (3.10)

where X = [ P(w)"P(w)dw € R*>*® averages the rotation covariances
and' Z = (MM”)"'M (}_"" (D] ® DY) Vec(X))(Z). Note that the definite
integral X is not data dependent, and it can be computed off-line. Therefore,
CPA builds multi-view 2-D rigid models by means of integrating among all
possible rotations in a given domain, in an efficient manner. CPA models are
unbiased (i.e. different viewpoints are equally represented) because we use
the Haar measure in the definition of the integral.

1See Section 1.4 for an explanation of the vec-transpose operator.
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3.4 Experiments

This section illustrates the benefits of PPA and CPA, and compares them
with state-of-the-art PA methods to build 2-D shape models of faces and
human bodies. First, we compare the performance of PA and and our exten-
sions to build a 2-D shape model of faces from FaceWarehouse [16] dataset
(Experiment 1). Next, we compare our discrete and continuous approaches in
a large scale experiment (Experiment 2). Afterwards, we learn Motion Cap-
ture (MoCap) skeletons using the Carnegie Mellon University (CMU) MoCap
dataset [1], and we compare them with the state-of-the-art (Experiment 3)
and in a large scale experiment (Experiment 4).

3.4.1 Learning 2-D Face Models

The aim of Experiments 1 and 2 is to build a generic 2-D face model that can
reconstruct non-rigid facial deformations under a large range of 3-D rotations.
For training and testing, we used the FaceWarehouse dataset (detailed in
Section 2.4.1). We sub-sampled the original mesh to 49 and 162 landmarks,
depending on the experiment. We rotated the 3-D faces in the yaw and pitch
angles, within the ranges of ¢, 0 € [—7/2,7/2]. The rotations were uniformly
selected and we report results for 300 rotations for testing, while varying the
number of rotations in training. We report the Mean Squared Error (MSE)
relative to the intra-eye size for 100 realizations, and we plot the MSE and
the half of the standard deviation.

Experiment 1: Comparison with State-of-the-Art PA Methods on
Faces

This section compares PPA and CPA methods with the state-of-the-art Strat-
ified Generalized Procrustes Analysis (SGPA)? [10]. For training we ran-
domly selected 20 subjects, three expressions per subject and 49 landmarks
(this is due to the memory limitations of SGPA). For testing we randomly
selected 10 different subjects with the same three expressions as training. We
report results varying the number of training rotations between 1 ~ 100.
There exist several versions of SGPA. We selected the “Affine-factorization”

with the data-space model to make a fair comparison with our method. Re-
call that under our assumption of non-missing data “Affine-All” and “Affine-
factorization” achieve the global optimum, being “Affine-factorization” faster.

2The code was downloaded from author’s website (http://isit.u-clermont1.fr/ab).
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Figure 3.2: Comparisons of (a) CPA, PPA, and SGPA (Experiment 1) ; and
(a) CPA and PPA (Experiment 2) as a function of the number of training
viewpoint projections, on the FaceWarehouse dataset.

Fig. 3.2 (a) compares the mean reconstruction error in test for PPA, CPA,
and SGPA. From the figure, one can observe that error in test for PPA and
SGPA decreases with the number of rotations in training, and it converges
to CPA, which provides a bound on the lower error. However, observe that
CPA achieves the same performance, but it is much more efficient.

Note that we used 60 3-D faces (20 subjects and 3 expressions) within
rotating angles ¢,0 € [—n/2,7/2], and PPA and SGPA needed about 20
rotations to achieve similar results to CPA. In this case, discrete methods
need 20 times more space than the continuous one. Execution times for each
iteration with 20 rotations, on a 2.2GHz computer with 8Gb of RAM, were
1.11 sec. (PPA), 0.05 sec. (CPA) and 1.90 sec. sec. (SGPA).

Experiment 2: Comparison between CPA and PPA

This experiment compares PPA and CPA in a large-scale problem as a func-
tion of the number of rotations between 1 ~ 100. For training we randomly
selected 120 subjects, five expressions per subject and 162 landmarks. For
testing we randomly selected 30 different subjects with the same five expres-
sions as training.

Fig. 3.2 (b) shows the mean reconstruction error in test comparing PPA
and CPA. As expected, PPA converges to CPA as the number of training
rotations increases. Observe that CPA achieves the same performance, but
it is much more efficient. In this experiment, with 6000 3-D training faces
(120 subjects and 5 expressions) and rotation domain: ¢,0 € [—m/2,7/2]
discrete method required, again, around 20 2-D viewpoint projections to
achieve similar results to CPA. Thus, the discrete model PPA needs 20 times
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Figure 3.3: Comparisons of (a) CPA, PPA, and SGPA (Experiment 3); and
(b) CPA and PPA (Experiment 3) on the CMU MoCap dataset, as a function
of the number of training viewpoint projections.

more storage space than CPA. Execution times for each iteration with 20
rotations, on a 2.2GHz computer with 8Gb of RAM, were 12.10 sec. (PPA)
and 2.50 sec. (CPA).

3.4.2 Learning 2-D Human Body Models

The aim of Experiments 3 and 4 is to build a generic 2-D skeleton model
from 3-D Motion Capture (MoCap). For training and testing, we used the
Carnegie Mellon University MoCap dataset (detailed in Section 2.4.2). We
trained our models using the set of 14 landmarks as is common across several
databases for human pose estimation, and we rotated the shapes in the same
way as the Experiments 1 and 2. We report the MSE relative to the torso
size for 100 realizations, and we plot the MSE and the half of the standard
deviation.

Experiment 3: Comparison with State-of-the-Art PA Methods

This section compares PPA and CPA methods with the state-of-the-art
SGPA [10]. For training we randomly selected 3 sequences with 30 frames
per sequence from the set of 11 running sequences of the user number 9. For
testing we randomly selected 2 sequences with 30 frames from the same set.
We report results varying the number of considered viewpoints in training
between 1 ~ 100 rotations.

Fig. 3.3 (a) compares the mean reconstruction error for PPA, CPA, and
SGPA. From the figure, one can observe that error in test for PPA and SGPA
decreases with the number of rotations in training, and it converges to CPA,
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which provides a bound on the lower error. Observe, that we used 90 3-D
bodies (3 sequences with 30 frames) within rotating angles ¢, € [—7/2,7/2],
and PPA and SGPA needed about 30 rotations to achieve similar results to
CPA. Therefore, in this case, discrete methods need 30 times more space
than the continuous one. Execution times with 30 rotations, on a 2.2GHz
computer with 8Gb of RAM, were 1.42 sec. (PPA), 0.02 sec. (CPA) and
3.30 sec. (SGPA).

Experiment 4: Comparison between PPA and CPA

This experiment compares PPA and CPA in a large-scale problem as a func-
tion of the number of rotations. For training we randomly selected 20 se-
quences with 30 frames per sequence. For testing we randomly selected 5
sequences with 30 frames. We report results varying the number of view-
points in training between 1 ~ 100 rotations.

Fig. 3.3 (b) shows the mean reconstruction error comparing PPA and
CPA. As expected, PPA converges to CPA as the number of training rota-
tions increases. However, observe that CPA achieves the same performance,
but it is much more efficient. In this experiment, with 6000 3-D training bod-
ies (20 sequences with 30 frames) and rotation domain: ¢,0 € [—7/2,7/2]
discrete method required, again, around 30 2-D viewpoint projections to
achieve similar results to CPA. Thus, the discrete model PPA needs 30 times
more storage space than CPA. The execution times with 30 rotations, on a
2.2GHz computer with 8Gb of RAM, were 15.76 sec. (PPA) and 0.04 sec.
(CPA).

3.5 Conclusions

In Chapter 2 we proposed PPA to deal with PA limitations to build 2-D
models, such as: (1) the 2-D training samples do not necessarily cover a
uniform sampling of all 3-D rigid transformations of an object, which can
result in a biased model (i.e., some poses are better represented than oth-
ers); (2) it is computationally expensive to learn a shape model by sampling
all possible 3-D rigid transformations of an object; (3) the models learned
using only 2-D landmarks cannot model missing landmarks with large pose
changes. Moreover, PA methods can lead to local minima problems if there
are missing components in the training data; finally, (4) PA is computation-
ally expensive, it scales linearly with the number of samples and landmarks
and quadratically with the dimension of the data. PPA solved most of PA
drawbacks by building multi-view 2-D models from 3-D samples, after en-
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hancing the training set with uniformly distributed viewpoints (i.e. rotations)
of the 3-D training data. Although successful, this process incremented the
computational requirements of PPA in space and time.

To address PA and PPA drawbacks in an efficient manner, in this chapter
we proposed CPA. CPA extends PA and PPA within a functional analysis
framework and builds multi-view 2-D rigid models in an efficient way, by
means of integrating among all possible rotations in a given domain. CPA
models are unbiased because we use the Haar measure in the definition of
the integral.

In experimental section we compared CPA models against the state-of-
the-art PA methods and our previous discrete multi-view approach (PPA).
We compared all methods in faces and bodies datasets, raising the number of
rotations in the training set. As the number of projections increased, discrete
methods converged to CPA, which provided a lower bound for the error in
all experiments. Moreover, CPA was much more efficient in space and time.

Therefore, CPA extends PA and PPA by integrating among all rotations
in a given domain. It provides and efficient approach to build unbiased 2-
D rigid models, able to generalize to different viewpoints, but being much
more efficient in space and time. CPA generates unbiased models because it
uniformly covers the space of projections. Experiments comparing 2-D CPA
models of faces and bodies show improvements w.r.t. state-of-the-art PA
methods. However, note that CPA is not able to capture non-rigid deforma-
tions in the dataset. We will overcome this limitation in the next chapter by
extending the formulation to model non-rigid variations.
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Chapter 4

Subspace Procrustes Analysis

In previous chapters we extended Procrustes Analysis (PA) to build multi-
view 2-D rigid models from 3-D data samples. We modeled 3-D datasets
across viewpoints with a 2-D mean shape and an affine transformation in a
discrete (see Projected PA in Chapter 2) and in a continuous way (see Con-
tinuous PA in Chapter 3). In this chapter, we add a subspace that is able to
model non-rigid deformations of the samples, as well as rigid 3-D transfor-
mations that the affine transformation cannot model by itself. We call this
novel method Subspace Procrustes Analysis (SPA). We propose a discrete
and continuous formulation in order to provide a better understanding of the
problem, and experimentally show that they converge to the same solution
when the number of sampled rotations (r) increases. As we will describe
later, adding a continuous subspace to the CPA formulation is not a trivial
task. For instance, modeling a subspace following the standard methodology
based on CPA would still require to generate r rotations for each 3-D sam-
ple. Hence, the CPA efficiency is limited to rigid models while the method
presented in this chapter is not.

We first introduce statistical models as an approach to learn non-rigid
deformations by means of a subspace, and review the most relevant state-of-
the-art. Then we propose Discrete Subspace Procrustes Analysis (DSPA) to
learn unbiased 2-D models from 3-D deformable objects. Next, we extend
the discrete approach using Functional Data Analysis (FDA) into the efficient
Continuous Subspace Procrustes Analysis (CSPA). Finally we evaluate both
models, comparing them to the state-of-the-art of PA.

35
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4.1 Statistical Models

In computer vision, Procrustes Analysis (PA) has been extensively used to
align shapes (e.g., [80, 17]) and appearance (e.g., [95, 54]) as a pre-processing
step to build 2-D models of shape variation. Usually, shape models are
learned from a discrete set of 2-D landmarks through a two-step process [35].
Firstly, the rigid transformations are removed by aligning the training set
w.r.t. the mean using PA; next, the remaining deformations are modeled
using Principal Component Analysis (PCA) [74, 21]. In this process, PCA
learns the non-rigid deformations of the data by keeping the subspace with
the largest variance in the training set. Then, the subspace can be used to
analyze if new shapes are plausible examples, or to generate new samples
similar to the training ones. These models are called statistical models [17]
and have been applied to solve problems such as object recognition [98, 49],
facial feature detection and tracking [96, 17], and image segmentation [72, 65].
In particular, Point Distribution Models (PDMs) and Active Shape Models
(ASMs) [17, 18] are among the most popular techniques to learn 2-D objects
models. PDMs and ASMs build the shape models from a 2-D training set of
image landmarks.

Statistical models have also been applied to learn appearance models in-
variant to geometric transformations. When applied to shapes, the geometric
transformation computed by PA (e.g., T; or A;) can be directly applied to
the image coordinates. However, to align appearance features the geometric
transformations have to be composed with the image coordinates, and the
process is a bit more complicated. This is the main difference when applying
PA to align appearance and shape. Frey and Jojic [33] proposed a method
for learning a factor analysis model that is invariant to geometric transfor-
mations. The computational cost of this method grows polynomially with
the number of possible spatial transformations and it can be computationally
intensive when working with high-dimensional motion models. To improve
upon that, De la Torre and Black [95] proposed parameterized component
analysis: a method that learns a subspace of appearance invariant to affine
transformations and extend it to non-linear appearance models [96]. Miller
et al. proposed the congealing method [54], which uses an entropy measure
to align images with respect to the distribution of the data. Cox et al. [9]
extended [54] through a least-squares optimization. Kookinos and Yuille [52]
proposed a probabilistic framework and extended previous approaches to
deal with articulated objects using a Markov Random Field (MRF) on top
of AAMs.

To address standard PA issues but extending the solution to the con-
struction of multi-view statistical models, this chapter proposes a discrete
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Figure 4.1: Illustration of Continuous Subspace Procrustes Analysis (CSPA),
which builds an (b) unbiased 2-D model of human joints’ variation by (a)
integrating over all possible viewpoints of a 3-D motion capture data. This
2-D body shape model is used to (¢) reconstruct 2-D shapes from different
viewpoints. Our CSPA model generalizes across poses and camera views
because it is learned from 3-D data.

and a continuous formulation of Subspace Procrustes Analysis (SPA). SPA
is able to efficiently compute the non-rigid subspace of possible 2-D pro-
jections given several 3-D samples of a deformable object. Note that our
proposed work is the inverse problem of Non-Rigid Structure From Motion
(NRSFM) [101, 97, 15]. The goal of NRSFM is to recover 3-D shape models
from 2-D tracked landmarks, while SPA builds unbiased 2-D models from
3-D data. As we show in the experimental section, the learned 2-D model
has the same representational power as a 3-D model but leads to faster fit-
ting algorithms [61]. SPA uniformly samples the space of possible 3-D rigid
transformations, and it is extremely efficient in space and time. The main
idea of SPA is to combine functional data analysis (see Section 3.1) with
subspace estimation techniques.

Fig. 4.1 illustrates the approach proposed in this chapter. In Fig. 4.1 (a),
we represent many samples of 3-D Motion Capture (MoCap) data of humans
performing several activities. SPA aligns all 3-D samples projections, com-
putes a 2-D subspace (Fig. 4.1 (b)) that can represent all possible projections
of the 3-D MoCap samples under different camera views. Hence, SPA pro-
vides a simple, efficient and effective method to learn a 2-D subspace that
accounts for non-rigid and 3-D geometric deformation of 3-D objects. These
2-D subspace models can be used for detection (i.e., constrain body parts,
see Fig. 4.1 (¢)), because the subspace models all 3-D rigid projections and
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non-rigid deformations. As we will show in the experimental validation, the
models learned by SPA are able to generalize better than existing PA ap-
proaches across view-points (because they are built using 3-D models) and
preserve expressive non-rigid deformations. Moreover, computing SPA is ex-
tremely efficient in space and time.

4.2 Discrete Subspace Procrustes Analysis

Given a set D = {D; € R**‘} of n centered 3-D shapes, with d; = vec(D;) €
R3! we can compute a set P = {P; € R**3} of r projections, one for each of
the shapes. Then, Discrete Subspace PA (DSPA) extends PA by considering
a subspace B € R?*>** and a set of weights ¢;; € R**! which model the
non-rigid deformations that the mean M € R2?*‘ and the transformation
A;; € R*? are not able to reconstruct. DSPA finds M, B and the sets
A={A;;} and C = {c¢;;} by minimizing the following function:

Epsea(M, A,B,C) = > Y ||P,D, — AyM — (¢, @ L)B®| . = (4.1)
i=1 j=1
D NI @ Pyd; — (I © Ayj)p — Beyjll;, (4.2)

i=1 j=1

where P; = PR(w;) is an orthographic projection onto the X-Y plane of
a 3-D rotation R(w;) in a given domain €, defined by the rotation angles
wi = {¢;,0;,%;} € R} p = vec(M) € R¥**! is the vectorized version of
the reference shape, c;; is the k-dimensional weights vector of the subspace
for each 2-D shape projection, and B® € R?**¢ is the reshaped subspace.
Observe that the difference with Eq. (2.3) is that we have added a subspace.
This subspace will compensate for the non-rigid components of the 3-D object
and the rigid component (3-D rotation and projection to the image plane)
that the affine transformation cannot model (see Fig. 4.2 (a), where the first
three bases of the subspace capture rigid and non-rigid deformations). Recall
that a 3-D rigid object under orthographic projection can be recovered with
a three-dimensional subspace [94] (if the mean is removed), but PA cannot
recover it because it is only rank two. Also, observe that the coefficients
vector c¢;; depends on two indexes, ¢ for the object and j for the geometric
projection. Dependency of c¢;; on the geometric projection is a key point.
If 57 index is not considered, the subspace would not be able to capture
the variations in pose and its usefulness for our purposes would be unclear.

1See Section 1.4 for an explanation of the vec-transpose operator.
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Figure 4.2: Tllustration of the reference shape (u) and the first three bases
(b1, bg, bs) of the 2-D subspace models from (a) DSPA, and (b) CSPA; as
well as a conventional (¢) 3-D model (PA + PCA). We sampled each basis 4
times between the standard limits [18] to show their deformation behavior.
All models were trained on FaceWarehouse [16] dataset, with 10 3-D faces
from expressions number 0 and 1 (neutral and open mouth, respectively).
Pitch an yaw integration limits were set to ¢,0 € [—7/2,7/2] for (b), and
100 projections were generated for each 3-D shape within the same interval
to train (a). Note that g and b; in (¢) are 3-D. They are projected frontally
for a better comparison.

Although Eq. (4.1) and the NRSFM problem follow similar formulation [15],
the assumptions are different and variables have opposite meanings. For
instance, the NRSFM assumptions about rigid transformations do not apply
here, since A;; are affine transformations in our case.

Given an initialization of B = 0, the function error Epgpa(M,.A, B, C)
associated to the DSPA algorithm is minimized by finding the transforma-
tions A}, and reference shape M* that minimize Eq. (2.3), using the same
Alternate Least Squares (ALS) framework as in PA. Then, we substitute Aj;
and M* in Eq. (4.2), resulting in the expression:

n IS8 . 2
EDSPA(B;C) - Z Z HD” — (CZ; ® I2>B(2) P — (43)
i=1 j=1
n ' ~ 2 . 2
Sy ‘ d; — Bey| = HD _BC| | (4.4)
—~ = 2 F

where ]Sij = P]Dz—A:}M* c R2><Z’ aij = VeC<]5ij) S R%Xl, ]5 = [al c. amn] c
R2>7" and C € R¥™". Finally, we can find the global optima of Eq. (4.4)
by Singular Value Decomposition (SVD): B = U and C = SV, where
D = USV”.
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4.3 Continuous Subspace Procrustes Analy-
sis

As it was discussed in the Chapter 3, the discrete formulation is not efficient
in space nor time, and might suffer from not uniform sampling of the rotation
space. CSPA generalizes DSPA by re-writting it in a continuous formulation.
CSPA minimizes the following functional:

ECSPA (M, A(w)i, B, c(w);) =

/ [P(@)D, ~ AWM — (c(w) @ LB .dw=  (45)

Z /Q (L © P(w))d; — (I ® A(w)i)u — Be(w)ill;dw,  (4.6)

where dw = # sin(0)d¢pdfdy. The main difference between Eq. (4.6) and
Eq. (4.2) is that the entries in c(w); € R**!, P(w) € R?3 and A(w); € R?*?
are not scalars anymore, but functions of integration angles w = {¢,0,v}.

Given an initialization of B = 0, and similarly to the DSPA model,
CSPA is minimized by finding the optimal reference shape M* that minimizes
Eq. (3.7). We used the same fixed-point framework as CPA. Given the value
of M* and the expression of A(w)! from Eq. (3.8), we substitute them in
Eq. (4.6) resulting in:

Ecspa(B, c(w Z/ P (w (W) @ LB dw = (4.7)

Z /Q (1 ® P(w))d; — Be(w)||> dw,  (4.8)

where D; = D;(I, — (IM*T(M*M*T)~1M*)) and d; = vec(D;). We can find
the global optima of Eq. (4.8) by solving the eigenvalue problem, B = BA,
where A are the eigenvalues corresponding to columns of B.

After some algebra (see Appendix B) we show that the covariance matrix
Y= (TLeY)vec(P i, > i d;;d7;))®9, where the definite integral Y =
JoP(w) ® (I, ® P(w))dw € R*** can be computed off-line, leading to an
efficient optimization in space and time. Though the number of elements in
matrix Y increases quadratically with the number of landmarks ¢, note that
the integration time is constant since Y has a sparse structure with only 36
different non-zero values (recall that P(w) € R**3).

Although A(w); and c(w); are not explicitly computed during training,
this is not a limitation compared to DSPA. During testing time, training
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values of ¢(w); are not needed. Only the deformation limits in each principal
direction of B are required. These limits depend on eigenvalues [18], which
are computed with CSPA. The three principal bases between these limits are
illustrated in Fig. 4.2. We show how the first 2 bases of CSPA (Fig. 4.2 (b))
and DSPA (Fig. 4.2 (a)) learn viewpoint changes, as well as the common
expression for all the subjects in the training set (mouth opening) is learned
as the third basis. Note that the 3-D model (Fig. 4.2 (c)) learns the common
facial expression in the first basis (because 3-D shapes are not rotated to
train the 3-D model), and its following bases model inter-person differences.
These distinctive person characteristics are also learned by SPA models in
their following bases.

4.4 Experiments

This section illustrates the benefits of DSPA and CSPA, and compares them
with state-of-the-art PA methods to build 2-D shape models of faces and hu-
man body joints’ variation. First, we compare the performance of PA+PCA
and SPA to build a 2-D shape model of faces from the FaceWarehouse [16]
dataset (Experiment 1). Next, we compare our discrete and continuous ap-
proaches in a large scale experiment (Experiment 2). Afterwards, we learn
Motion Capture (MoCap) joint’s variation of bodies using the Carnegie Mel-
lon University (CMU) MoCap dataset [1], and we compare them with the
state-of-the-art (Experiment 3) and in a large scale experiment (Experiment
4). Finally, we show the benefits of our continuous 2-D model (CSPA) over
3-D models (Experiment 5) in the same datasets.

4.4.1 Learning 2-D Face Models

The aim of Experiments 1 and 2 is to build a generic 2-D face model that can
reconstruct non-rigid facial deformation under a large range of 3-D rotations.
For training and testing, we used the FaceWarehouse dataset (detailed in
Section 2.4.1). We sub-sampled the original mesh to 49 and 162 landmarks,
depending on the experiment. We rotated the 3-D faces in the yaw and pitch
angles, within the ranges of ¢,0 € [—m/2,7/2]. Rotations were uniformly
selected and we report results for 300 rotations for testing, while increasing
the number of viewpoints in training. We report the Mean Squared Error
(MSE) relative to the intra-eye size for 100 realizations, and we plot the MSE
and the half of the standard deviation.
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Figure 4.3: Comparisons of (a) CSPA, DSPA, and SGPA-PCA (Experiment
1) ; and (a) CSPA and DSPA (Experiment 2) as a function of the number of
training viewpoint projections, using a subspace of 25 bases for all models.

Experiment 1: Comparison with State-of-the-Art PA Methods on
Faces

This section compares DSPA and CSPA methods with the state-of-the-art
Stratified Generalized Procrustes Analysis (SGPA)? [10]. For training we ran-
domly selected 20 subjects, three expressions per subject and 49 landmarks
(this is due to the memory limitations of SGPA). For testing we randomly
selected 10 different subjects with the same three expressions as training. We
report results varying the number of training rotations between 1 ~ 100.

Similarly to the experimental section in Chapter 3, among the different
SGPA versions, we selected the “Affine-factorization” with the data-space
model to make a fair comparison with our method. Recall that under our as-
sumption of non-missing data “Affine-All” and “Affine-factorization” achieve
the global optimum, being “Affine-factorization” faster.

Fig. 4.3 (a) compares the mean reconstruction error for DSPA, CSPA,
and SGPA followed by PCA (we will refer to this method SGPA-PCA).
From the figure, one can observe that error in the test for DSPA and SGPA-
PCA decreases with the number of rotations in training, and it converges
to CSPA, which provides a bound on the lower error. Observe, that we
used 60 3-D faces (20 subjects and 3 expressions) within rotating angles
¢,0 € [-n/2,7/2], and DSPA and SGPA-PCA needed about 20 rotations
to achieve similar results to CSPA. In this case, discrete methods need 20
times more space than the continuous one. Execution times for each iteration
with 20 rotations, on a 2.2GHz computer with 8Gb of RAM, were 1.25 sec.

2The code was downloaded from author’s website (http://isit.u-clermont1.fr/ ab).
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Figure 4.4: Experiment 2 results with 1 (top) and 20 (bottom) rotations.
CSPA (solid red lines) and DSPA (dashed blue lines) face reconstructions
over ground truth (solid black lines).

(DSPA), 0.38 sec. (CSPA) and 2.36 sec. (SGPA-PCA).

Experiment 2: Comparison between CSPA and DSPA

This experiment compares DSPA and CSPA in a large-scale problem as a
function of the number of rotations between 1 ~ 100. For training we ran-
domly selected 120 subjects, five expressions per subject and 162 landmarks.
For testing we randomly selected 30 different subjects with the same five
expressions as training.

Fig. 4.3 (b) shows the mean reconstruction error in test comparing DSPA
and CSPA. As expected, DSPA converges to CSPA as the number of train-
ing rotations increases. However, observe that CSPA achieves the same
performance, but it is much more efficient. In this experiment, with 6000
3-D training faces (120 subjects and 5 expressions) and rotation domain:
¢,0 € [—m/2,m/2] discrete method required, again, around 20 2-D viewpoint
projections to achieve similar results to CSPA. Thus, discrete model DSPA
needs 20 times more storage space than CSPA. Execution times for each it-
eration with 20 rotations, on a 2.2GHz computer with 8Gb of RAM, were
13.05 sec. (DSPA) and 3.17 sec. (CSPA).

Qualitative results from CSPA and DSPA models trained with different
number of rotations are shown in Fig. 4.4. Note that training DSPA model
with 1 rotation (fop) results in not properly reconstructed faces. However,
training it with 20 rotations (bottom) leads to reconstructions almost as ac-
curate as made by CSPA.
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Figure 4.5: Comparisons of (a) CSPA, DSPA, and SGPA-PCA using a sub-
space of 9 bases (Experiment 3); and (b) CSPA and DSPA using a subspace
of 12 bases (Experiment 3) as a function of the number of training viewpoint
projections.

4.4.2 Learning 2-D Human Joints’ Variation Models

The aim of Experiments 3 and 4 is to build a generic 2-D skeleton model
from 3-D Motion Capture (MoCap). For training and testing, we used the
Carnegie Mellon University MoCap dataset (detailed in Section 2.4.2). Skele-
tons with 31 joints are provided, as well as RGB video recordings for several
sequences. We trained our models using the set of 14 landmarks as is com-
mon across several databases for human pose estimation, and we rotated the
shapes in the same way as the experiments 1 and 2. We report the MSE
relative to the torso size for 100 realizations, and we plot the MSE and the
half of the standard deviation.

Experiment 3: Comparison with State-of-the-Art PA Methods

This section compares DSPA and CSPA methods with the state-of-the-art
Stratified SGPA [10]. For training we randomly selected 3 sequences with 30
frames per sequence from the set of 11 running sequences of the user number
9. For testing we randomly selected 2 sequences with 30 frames from the
same set. We report results varying the number of considered viewpoints in
training between 1 ~ 100 rotations.

Fig. 4.5 (a) compares the mean reconstruction error for DSPA, CSPA, and
SGPA followed by PCA (we will refer to this method SGPA-PCA). From the
figure, one can observe that the mean error in test for DSPA and SGPA-PCA
decreases with the number of rotations in training, and it converges to CSPA.
CSPA provides a bound on the lower error. Observe, that we used 90 3-D
bodies (3 sequences with 30 frames) within rotating angles ¢, 0 € [—7/2, 7 /2],
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Figure 4.6: Experiment 2 results with 1 (top), and 30 (bottom) rotations.
Examples show skeleton reconstructions from continuous (CSPA in solid red
lines) and discrete (SPA in dashed blue lines) models over ground truth (solid
black lines).

and DSPA and SGPA-PCA needed about 30 rotations to achieve similar
results to CSPA. Therefore, in this case, discrete methods need 30 times
more space than the continuous one. Execution times with 30 rotations, on
a 2.2GHz computer with 8Gb of RAM, were 1.44 sec. (DSPA), 0.03 sec.
(CSPA) and 3.54 sec. (SGPA-PCA).

Experiment 4: Comparison between CSPA and DSPA

This experiment compares DSPA and CSPA in a large-scale problem as a
function of the number of rotations. For training we randomly selected 20
sequences with 30 frames per sequence. For testing we randomly selected 5
sequences with 30 frames. We report results varying the number of view-
points in training between 1 ~ 100 rotations.

Fig. 4.5 (b) shows the mean reconstruction error in test comparing DSPA
and CSPA. As expected, DSPA converges to CSPA as the number of training
rotations increases. However, observe that CSPA achieves the same perfor-
mance, but it is much more efficient. In this experiment, with 6000 3-D train-
ing bodies (20 sequences with 30 frames) and domain: ¢,0 € [—7/2, 7 /2] dis-
crete method required, again, around 30 2-D viewpoint projections to achieve
similar results to CSPA. Thus, the discrete model DSPA needs 30 times more
storage space than CSPA. Execution times with 30 rotations, on a 2.2GHz
computer with 8Gb of RAM, were 15.89 sec. (DSPA) and 0.05 sec. (CSPA).

Qualitative results from CSPA and DSPA models trained with different
number of rotations are shown in Fig. 4.6. Note that training DSPA model
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with 1 rotation (top) results in poor reconstruction. However, training it with
30 rotations (bottom) leads to reconstructions almost as accurate as made by

CSPA.

4.4.3 Experiment 5: 2-D vs 3-D Models

In previous experiments we have shown that 2-D models learned from 3-
D data overcome typical 2-D models learned directly from 2-D data. This
is because the use of 3-D data allows us to build unbiased models, able to
generalize among different viewpoints. The question that strikes at this point
is: why to project the 3-D data in training time, building 2-D models? Why
do not learn 3-D models and project them to the image plane during test
time? From the comparison between 2-D and 3-D face models performed
in [61], one concludes that both models have the same representation power,
with 2-D models being faster in real-time fitting.

This section compares unbiased 2-D to 3-D models of faces and skeletons,
in order to check that the same conclusions apply to faces and body Mo-
Cap data. In this comparison the 2-D model will be the CSPA model from
Eq. (4.5). On the other hand, we will train the standard 3-D model opti-
mizing Eq. (2.2) with the number of dimensions d = 3 and A € R3*3 being
a rotation matrix, followed by a PCA. For the 2-D fitting of the 3-D model,
we will use the standard algorithm from [39, 105, where the deformation
parameters csp € R¥p*1 of the 3-D model Msp + (Bspesp)®), as well as the
rotation and scaling of the projection matrix P € R?*3, are estimated until
convergence in a 2-step iterative algorithm?®. For a fair comparison between
models, the intrinsic camera matrix in P is fixed to be a scaled orthographic
projection.

We compared 2-D and 3-D methods on FaceWarehouse and CMU MoCap
datasets for faces and body joints’ modeling, respectively. For both datasets,
we performed the comparison in different angle domains (¢, 6 € [—m /4, 7 /4]
and ¢,0 € [—7/2,7/2]) for training and test, and we report results varying
the number of subspace bases for both 2-D and 3-D models. For training the
models on the FaceWarehouse dataset we randomly selected 120 subjects, 20
expressions per subject and 162 landmarks. For testing we randomly selected
30 different subjects with the same 20 expressions (all expressions of the
dataset). For training the models on the CMU MoCap dataset we randomly
selected 80 sequences with 30 frames per sequence and 14 landmarks. For
testing we randomly selected 20 different sequences with 30 frames. Recall

3The code was downloaded from author’s website and adapted to our own code
(http://www.research.rutgers.edu/ feiyang/web2/face_morphing.htm).
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Figure 4.7: Experiment 5 results on (top) FaceWarehouse and (bottom) CMU
MoCap datasets within [—n/4,7/4] and [—7/2,7/2] angle domains. Com-
parisons between 2-D and 3-D models as a function of the number of subspace
bases, in terms of (a) mean reconstruction error and (b) mean fitting time
(extremely similar mean times for both experiments).

that all models in this experiment are trained with 3-D data. For testing, we
rotated and projected 30 times each test shape.

Fig. 4.7 (a) shows the mean reconstruction error for 100 realizations, as
well as the half of the standard deviation, incrementing the number of bases
of the subspace models. We show the MSE for both experiments performed
within [—n/4,7/4] and [—7/2,7/2] angle domains. Fig. 4.7 (b) reports the
mean fitting time. Since experiments in both angle domains have similar
test times, we only provide the time for one of them ([—7/2,7/2]) to avoid
redundancy.

Fig. 4.7 (top) reports the comparison on FaceWarehouse dataset. For
narrow angle domains ([—m/4,7/4]), both 3-D and 2-D face models have
similar performance, but 2-D models being faster (see Fig. 4.7 (b)). However,
2-D models are more stable (lower deviation width) than 3-D models in the
experiment with a wider test domain ([—m/2,7/2]). The fitting algorithm
between the 3-D model and the 2-D test shape fails to estimate the projection
matrix under extreme viewpoints, leading to a poor convergence. Note that
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Figure 4.8: Qualitative results from Experiment 5, rotating the test shapes
in yaw on FaceWarehouse (top) and CMU MoCap (bottom) datasets. 2-D
model (solid red lines) and 3-D model (dashed blue lines) reconstructions over
ground truth (solid black lines). For both models, the number of bases was
k =14 on CMU MoCap dataset, and k = 25 on FaceWarehouse dataset.

the 3-D subspace will absorb the poorly estimated projection matrices, with
a sufficient number of bases.

The same effect occurs with models of body joints’ variation in Fig. 4.7 (bot-
tom), however, 2-D models outperform 3-D for any number of bases on CMU
MoCap dataset. Although the performance deteriorates on both datasets un-
der large rotations, this is more evident on CMU MoCap dataset due to the
high variability non-rigid deformations of the human body (see Fig. 4.8).

Note that in those situations where 2-D models obtain similar reconstruc-
tion error than 3-D models, increasing the number of bases of the 2-D model
would lead to more accurate reconstructions than 3-D models, still preserving
faster fittings in test.

4.5 Discussion: How to Build a 2-D Model
from a 3-D Model

We argued that unbiased 2-D and 3-D models have the same reconstruction
power, being 2-D models faster, as well as we detailed how to build multi-
view 2-D models from 3-D data. However, we might be interested in building
an unbiased 2-D model even though we do not have access to the 3-D train-
ing data (e.g. 3-D NRSFM model built from 2-D data). In this section we
discuss how to build a 2-D model directly from a 3-D model, integrating over
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all possible viewpoints but also along the deformation parameters. Clearly,
building a model from a previous learned model will lead to a loose of in-
formation, but benefits in some applications (e.g. real-time fitting, enlarged
pose variation models) can outweigh the information loss.

A method to downgrade a 3-D model to its homologous in 2-D was pre-
sented in [61]. They generated a 2-D dataset by a systematic sampling of the
deformation and rotation parameters of the 3-D model. Then, they built a
2-D model from this enhanced 2-D dataset in a conventional manner. How-
ever, a uniform sampling of the rotation angles does not lead to a uniform
sampling of the rotation space SO(3). In addition, it is not clear how much
sub-sampling is needed in the deformation parameters in order to generate
a synthetic dataset with similar variance to the original training data. Just
to give some example values, imagine that our model has only £ = 10 bases,
and we need r = 20 rotations to cover the domain of viewpoints that we are
modeling. If we sample 4 times each axis of variance, we will need over 2-107
2-D samples to train the 2-D model. Note that handle this dataset would be
a large scale problem, even though we did not take extreme values for the
example.

As a proof of concept, we discuss here how to build a 2-D model directly
from a 3-D model, ensuring a uniform coverage of the rotation space, without
the need of generating a huge synthetic 2-D dataset. Given a 3-D model
composed by a mean Msp € R3*!, the ksp bases Bsp € R3**s0 and their
corresponding eigenvalues Asp € R¥0*! we build a 2-D model (M € R?*¢,
B € R?**) by integrating along the axis of variance Bsp within a domain Y,
depending on the eigenvalues A3p, as we will discuss afterwards. Moreover,
similarly to CSPA, we rotate and project the 3-D model to the image plane
using P(w) € R**3, Note that we ensure uniformity in SO(3) by means of
the Haar measure dw = g sin(#)d¢dfdy defined in the integral [68].

Given the 3-D model and the rotation domain €2, we find its homologous

2-D model by minimizing the following error*:

Esp3p(M, A(w )Z,B,c(w)) =
/ / HP M3D + (esp()T @ 13>ng3} — A(w,v)M — (c(w,v)T ©1,)B® H; dwdv
(4.9)

where P(w) is an orthographic projection of a 3-D rotation R(w) in the given
domain €2, defined by the rotation angles w = {¢, 6,1 }. The main difference
between Eq. (4.5) and Eq. (4.9) is that instead of learning a 2-D model from
3-D shapes, our input now is a 3-D model. Hence, entries in the affinity

4See Section 1.4 for an explanation of the vec-transpose operator.
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transformation A (w,v) € R?*? and the subspace weights c(w,v) € R¥*!
csp(v) € R¥p*1 are not only functions of the integration angles w, but also
functions of the deformation parameters v = {vy,..., Vg, }-

In addition, 2-D modeling from a 3-D model would be efficient, since the
diagonal matrix W = [y cs3p(v)”csp(v)dv encoding the deformations does
not require the explicit computation of the definite integral. This statement
comes from solving:

Ecpaca(B,¢;) = /‘I‘ 121 + Bici(v)] — Baca(v) |3 dv, (4.10)

where, assuming zero mean p, = vec(M;), we find that ¥, = B;WBT.
Since ¥; = B;A;Bf, and ¥, = X,, we find that the optimal value for
the matrix encoding the deformations is the diagonal matrix containing the
eigenvalues of the 3-D model W = diag(Asp).

Similarly to CPA model (see Section 2) we find M by minimizing Eq. (4.9)
using fixed point minimization (i.e. Eq. 3.10), where:

Z = (MM")™'M (M3, XMszp + B (N @ I;) vec(X))®k0)Byp) . (4.11)

Matrix N = (c3p(v) ® I3 ® c3p(v)) is a sparse matrix, with the nonzero
elements being the eigenvalues in W, and X = [ P(w)"P(w)dw € R?>*?
averages the rotation covariances.

Similarly to CSPA model (see Section 4), substituting the optimal M* and
the expression A (w,v) in Eq. (4.9), allows us to find the optimal B by solving
the eigenvalue problem, 3B = BA, where A are the eigenvalues correspond-
ing to columns of B, and the covariance matrix ¥ = ((I, ® Y) vec [L])(%), be-
ingY = [P(w)® 1 @P(w))dw € R*** and L = psppi, +BspWBI, €
RMX%.

As we illustrate in Fig. 4.2 and Fig. 4.9, our 2-D model Fig. 4.9 (a)
built directly from a 3-D model Fig. 4.9 (b) have the same behavior that
those models learned from the original 3-D data, Fig. 4.2 (a-b), rotated and
projected to 2-D.

4.6 Conclusions

In previous chapters we formalized the construction of multi-view 2-D rigid
models from 3-D data, in a discrete (see Projected PA in Chapter 2) and
a continuous (see Continuous PA in Chapter 3) way. PPA and CPA build
unbiased rigid models by extending the standard PA, CPA being much more
efficient in space and time. Although CPA overcomes PA limitations, CPA
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Figure 4.9: Tllustration of the reference shape (p) and the first three bases
(b1, by, bs) of the 2-D subspace model (a) directly build from 3-D model
(b). We sampled each basis 4 times between the standard limits [18] to show
their deformation behavior. All models were trained on FaceWarehouse [16]
dataset, with 10 3-D faces from expressions number 0 and 1 (neutral and
open mouth, respectively). Pitch an yaw integration limits were set to ¢, 6 €
[—7/2,7/2] to train (a). Note that g and b; in (b) are 3-D. They are
projected frontally for a better comparison.

efficiency is limited to rigid models. For instance, modeling a subspace follow-
ing the standard methodology based on CPA would still require to enhance
the training set with several 2-D projections of each 3-D sample, to model
non-rigid deformations of the training set.

To address standard PA issues but extending the solution to the construc-
tion of multi-view statistical models, in this chapter we proposed Subspace
Procrustes Analysis (SPA). SPA is able to efficiently compute a 2-D subspace
of rigid and non-rigid deformations of 3-D objects. We proposed two models,
one discrete (DSPA) that samples the 3-D rotation space, and one continuous
(CSPA) that integrates over SO(3).

In the experimental section we compared SPA models against the state-of-
the-art PA methods on faces and bodies datasets, while raising the number
of rotations in the training set. As the number of projections increased,
DPSA converged to CSPA. CSPA has two advantages over traditional PA,
PPA: (1) it generates unbiased deformable models because it uniformly cov-
ers the space of projections, and (2) it is much more efficient in space and
time. Experiments comparing 2-D SPA models of faces and bodies show
improvements w.r.t. state-of-the-art PA methods.

Moreover, we also compared the performance of our multi-view 2-D mod-
els trained on 3-D datasets against standard 3-D models, projected in fitting
time to the 2-D test. We showed that our 2-D models are as expressive as 3-D
models, but SPA models being faster in test time. Finally, we also discussed
the possibility of building 2-D models directly from 3-D models, by integrat-
ing along the deformation domain. We found this application interesting for
those problems where 3-D data are not available, and we will study in-depth
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this possibility in future research.

Therefore, SPA extends PA by building multi-view deformable models
from 3-D datasets. DSPA and CSPA provide efficient approaches to build
unbiased 2-D models, able to generalize to different viewpoints, but CSPA
building models more efficiently in space and time. In addition, our unbiased
2-D models are also efficient in test fitting, as we showed on faces and bodies
datasets. Finally, in the next chapter we will illustrate the performance of
our multi-view 2-D models in the task of human pose estimation.



Chapter 5

Human Pose Estimation

Human pose estimation from still images refers to recover the configuration
of body parts [6, 91, 107, 78], usually, after finding those image cues that
represent body parts or joints. The high variation of human postures from
different viewpoints makes this problem really challenging. The common ap-
proach to handle large viewpoint variations is to train the models with several
labeled images from different viewpoints [28, 6, 73, 107, 78, 79, 42]. However
this approach has some drawbacks: (1) it is not clear the extent to which the
dataset must be enhanced with images from different viewpoints in order to
build unbiased 2-D models; (2) extend the training set without this evalua-
tion would unnecessary increase memory and computation requirements to
train the models; (3) obtaining new labeled images from different viewpoints
could be a difficult task because the expensive labeling cost; and finally, (4)
a non uniform coverage of the different viewpoints of a person leads to biased
2-D models.

In this dissertation we have proposed to solve these drawbacks by chang-
ing the paradigm, learning 2-D multi-view models from 3-D datasets instead
of learning them from 2-D images. In previous chapters we extended Pro-
crustes Analysis (PA) to build multi-view 2-D models by rotating and pro-
jecting 3-D data samples. By means of Continuous Subspace PA (see Chap-
ter 4) we modeled rigid and non-rigid deformations of 3-D motion capture
sequences, in an efficient manner. Finally, in this chapter we illustrate the
benefits of using multi-view 2-D models in the task of human pose estimation.

We first introduce the human pose estimation problem and review the
most relevant state-of-the-art. Next, we reformulate the problem as a feature
selection by subspace matching, and introduce our approach for this task.
Finally we evaluate our multi-view 2-D deformable models (see Chapter 4) in
combination with the feature selection method in the problem of human pose
estimation, compared to the state-of-the-art on the Leeds Sports dataset [48].

93
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5.1 Human Pose Estimation

In order to recover the human pose from images, state-of-the-art approaches [73,
107, 78, 79] use discriminative detectors (e.g. HOG [20] filters) to estimate
the likelihood of image pixels to belong to each body part. Then, body con-
figurations are usually modeled as pairwise constraints between body parts,
with generative [28, 6, 78, 79] or discriminative [73, 107, 42] models, also
trained from labeled images. These constraints are usually modeled as edges
of a graph, whose nodes are the body joints or limbs. Configurations range
from loopy graph models [85, 47, 93, 90] to trees [28, 6, 107]. In order
to handle human body variations and viewpoints, part relations tend to
be loosely modeled (e.g. Gaussian distribution), and efficiency of the tree
structure leads to take into account only consecutive body parts (e.g. con-
nection between left hand to left forearm). Although trees allow efficient
and exact inference on graphical models, they suffer from “double-counting”
phenomena (left limbs are confused with their right parts of the body). This
problem is usually addressed by augmenting the graph with additional sym-
metry constraints, as appearance [85] or connections between symmetrical
parts [47, 93]. Although efficient and optimal inference algorithms exist [93],
loopy graphs are usually slow to optimize [47, 93] and the final solution is
not exact. An alternative approach to handle “double-counting” phenom-
ena is the combination of small HOG filters [107] with higher part detectors
(e.g. poselets [13]) modeling groups of non adjacent body parts [78, 79, 42].
However, these methods still rely on loosely constrained kinematic models,
allowing non-anthropomorphic detections.

Although successful, state-of-the-art 2-D models typically require a large
amount of training data across views to achieve view-invariance. In pre-
liminary results [76], we showed that unbiased 2-D models learned from 3-D
data outperform those trained from 2-D data, also on human pose estimation
datasets. In contrast, we propose a method that takes advantage of state-
of-the-art body part detectors, but adding correlation among body parts by
modeling 3-D body poses and viewpoints. Our approach is similar in spirit
to [91], since they fit a 3-D statistical model to body part detections in the
image. However, they rely on a first 2-D pose estimation from [106]. In [90]
they overcame this limitation; nevertheless, they set additional strong con-
straints such as the use of a calibrated camera and a coarse initialization to
speed up the process.

In order to reconstruct body configurations from different viewpoints, in
this chapter we reformulate the human pose estimation problem as a subspace
matching [86, 59] between image pixels and 2-D deformable models trained
on 3-D MoCap data. As we show in the experimental section, our method
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outperforms state-of-the-art approaches on Leeds Sports dataset [48] (LSP)
because it is able to handle large viewpoint variations. In addition, our
method is robust to large amounts of outliers, and we efficiently solved the
subspace matching problem with linear programming.

5.2 Subspace Matching

This section describes the proposed subspace matching algorithm to estimate
the human pose in images, given the unbiased 2-D model computed in Chap-
ter 4. Human pose estimation refers to finding the body configuration in
images, usually after estimating the likelihood of image pixels to belong to
each body part [73, 107, 78, 79]. When body configurations are described
by means of a subspace model, we can represent human pose estimation as
a subspace matching problem [86, 59], between a 2-D deformable model of
joints’ variation and a pool of features or pixel candidates for each body joint,
resulting of running state-of-the-art body part detectors.

The goal of feature selection by subspace matching is to determine the
subset of ¢ landmarks from n; candidate image features or landmarks that
minimize the distance to a subspace model. It was first introduced by Roig
et al. [86] to establish correspondences between a sparse set of d-dimensional
image features Q € R™™ and a previously learned model of frontal faces.
Given the candidate features and a model composed of a reference shape
M € R¥* and k bases B € R¥***_ the problem consisted on finding the
optimal correspondence S € {0, 1}**"s and the subspace coefficients ¢ € RF*!
which minimize the following error:

rgucn |[vec(QST) — p — Bc||§ , (5.1)
s.t. S]-nf = ].g,

where g = vec(M) € R¥**! is the vectorization of the mean. The lin-
ear constraint enforces to select only one candidate for each landmark. To
reduce the number of parameters, ¢ is replaced by its optimal value ¢ =
(BTB)'B7 (vec(QST) — u) and the solution for S € {0,1}*"s is found by
means of Quadratic Programming (QP). Although novel, this formulation
presents three main drawbacks: (1) QP is computationally expensive and
the solution is found by combining the error of two QP problems, one for the
shape (location of the pixels in the image, d = 2), and another one for the ap-
pearance (SIFT description [57] of the image at those locations, d = 128); (2)
only frontal and centered objects (faces) are modeled; and (3) deformation
parameters ¢ are not restricted to be plausible values [18].
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Feature selection has also been studied in the topic of graph matching.
In [56], they introduced a matching method based on a locally affine-invariant
geometric constraint and Linear Programming (LP) techniques. This work
was extended in [112], making the method more robust to non-rigid facial
poses contained in the training set, and additional constraints were consid-
ered to reduce the search space.

In this chapter, we build on [86], but solving the above mentioned draw-
backs: (1) we reformulate the joint shape and appearance minimization as a
single LP problem [56] instead of two QP problems, making feasible to handle
the large number of candidate features of human pose estimation problems
(ny > 2-10%; (2) we add an affinity transformation A € R?*? to model
non-frontal objects, and a translation t € R**! to compensate for not being
centered; and (3) we introduce constraints on the subspace parameters to
guide the optimization to plausible values of deformation.

Moreover, we borrow landmark-candidate association formulation and
constraints (see Fig. 5.1) from graph matching literature [112]. From now
on, Q = [Q',..., Q"] € R**" denotes the set of 2-D candidate image pix-
els, where Q' € R?*™ is the subset of candidates of the t'* landmark and
ny = Zle = n,. Each subset of candidates results from applying the state-
of-the-art body part detector [107] for the corresponding joint. Hence, each of
the ny candidates is known to be associated with one of the ¢ landmarks and
have an assignation cost, depending on the detector response. The landmark-
candidate relation is encoded in the binary matrix G € {0,1}**"/, where
gi; = 1 if the i** candidate belongs to the ¢t** landmark. In the same way, the
assignation cost hy; of choosing the i*" candidate as the ¢ landmark is com-
puted from a detector score by an efficient two-pass dynamic programming
inference [73] and encoded in the matrix H € R>" (see Fig. 5.1).

Given the candidate features, association constraints and cost (Q, G, H),
and the shape model (mean M € R** B € R?**)  the problem consists
on finding the optimal correspondence S, the affinity transformation A, the
translation t and the deformation weights c¢ that minimize the following error:

Sn&in ntr(HST) + Hvec(QST) - (L ®A)p—Be— (1, ® t)’

[ EEathd]

L 62

st. Sl =1, with S e {01}

st =0, when g;; =0,
—3\/>\j§Cj§3\/>\j, j:1...k),

where the first term in the objective function measures the assignation cost,
and the second one the self reconstruction error. 7 is a parameter to trade
off between the two terms. In the experiments, we always set the value to
17 = 100 and we found the final result was not sensitive to small changes in
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Figure 5.1: Illustration of the candidate features matrix Q, as the concate-
nation of the detector responses for each body joint. More specifically, Q
concatenates those pixel locations Q! with high detection score after apply-
ing each ' joint’s filter. Association matrix G is illustrated by a sparse
matrix, only having ones in those positions of each t* row that correspond
with Q! candidates. Similarly, H provides an association cost for each pos-
sible selection. S shows an example of feature selection matrix, satisfying G
restrictions and H cost.

this weight. Note that, instead of using [, norm, the reconstruction error
is defined in /; norm because of its efficiency and robustness. Similarly to
Eq. (5.1), the first constraint enforces S to select only one candidate for each
landmark. However, the second constraint only allows S to select candidates
for the t** landmark from the corresponding set of candidates Q' defined
in G. Finally, the third constraint imposes the subspace parameters to be
plausible deformation values, where A € R¥*! is a column vector containing
the first k eigenvalues of the covariance matrix, of the training data.

Optimizing Eq. (5.2) is, however, NP-hard because of the integer con-
straints on S. Asin [56, 112], we approximate the problem with a continuous
constraint, S € [0, 1], and reformulate the objective function in order to
avoid the non-smoothness of I; and apply LP:

. T T
g mn ntr(HS") + 15,(u+v), (5.3)
st. vec(QST) — (I @ A)p—Be— (1, @t) =u—v,u>0g,v >0y (54)
S e [0, 1]

st =0, when g;; =0,
—3\/)\j§0j§3 )\j, j=1...k,

where the two auxiliary variables u,v € R? replace [; norm with a smooth
term, and the linear constraint defined in Eq. (5.4). Finally, we gradually
discretize S, after solving the LP, by taking successive refinements based
on trust-region shrinking [46]. Note that several elements in S will be zero
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during the optimization process (illustrated in gray in Fig. 5.1). we simplify
the optimization task by removing those elements (i.e. [t,i] € {[t,]|g: = 0}),
reducing the number of variables and the LP cost from O(¢ny) to O(ny).

5.3 Experiments

This section compares our unbiased 2-D models and the subspace match-
ing method against state-of-the-art algorithms, in the problem of human
pose estimation. We performed synthetic experiments on the CMU MoCap
dataset (detailed in Section 2.4.2), and real experiments on the Leeds Sports
(LSP) [48] dataset. For all experiments in this section we used the contin-
uous version of our 2-D models, CSPA (see Section 4.3), trained with a set
of 14 body joints, as is common across several databases for human pose
estimation.

CMU MoCap dataset

The aim of this experiment is to show the performance of our feature selection
method by subspace matching in the problem of human pose estimation, as
a function of the number of outliers in the image. This synthetic experiment
compares our method against two baselines on the CMU MoCap dataset: a
greedy approach not restricting the feature selection by a shape model, and
a method restricting the shape as [86]. Since this model is composed by a
mean and a PCA of the data, we refer to this model as PCA. Recall that we
introduced an affinity transformation to the feature selection formulation,
which allows us to use a CSPA model in our approach. We refer to our
method as CSPA. Also note that we are using our own implementation of [86]
optimized in [y norm, since it was infeasible to perform this experiment with
the original implementation in adequate computational time (we add 100
times more features candidates and double of the number of landmarks in
our experiment).

For training we randomly selected 3 sequences, each one with 30 frames,
from the set of 11 running sequences of the user number 9. For testing we
randomly selected 2 sequences with 30 frames from the same set, and we
rotated 30 times each 3-D shape in the yaw and pitch angles, within the
ranges of ¢,0 € [—m/2, /2], as the training domain. For each projected 2-D
skeleton we synthetically added 1 ~ 15000 random outliers in the frame of
the image, uniformly distributed per each joint. See Fig. 5.2 (a) for examples
of random feature candidates.

We built the candidates matrix Q = [Q!, ..., Q] € R¥*"s by concatenat-
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Figure 5.2: Results on CMU MoCap dataset. (a) CSPA model (solid red
lines), PCA model (dashed blue lines), and Greedy (green solid lines) recon-
structions over ground truth (solid black lines) and 5000 outliers (grey dots);
and (b) MSE for each method as a function of the number of outliers.

ing the pixel locations Qf € R?*™ of the candidates features of each t* land-
mark. The association cost of each candidate in matrix H is the Euclidean
distance between the candidate feature and the ground truth landmark lo-
cation plus a random noise. We report the MSE relative to the torso size,
varying the number of candidates for three methods.

Fig. 5.2 (b) shows the mean reconstruction error and the standard devia-
tion for the 100 realizations. As expected, methods restricting the search with
a shape model have better performance than the greedy approach. Moreover,
observe that our approach using the CSPA model outperforms the one using
just a PCA model. This is due to the addition to the affinity transformation,
as well as the limits on the deformation parameters in the feature selection
formulation. Fig. 5.2 (a) shows two examples of the user number 9 of CMU
MoCap dataset from two different viewpoints. Qualitative results also show
that our method achieves a better fitting by means of a selection method
robust to outliers. The execution times with 15000 outliers, on a 2.2GHz
computer with 8Gb of RAM, were 0.72 sec. (PCA) and 0.68 sec. (CSPA)

per image.

Leeds Sport Dataset

In this experiment, we tested the performance of our unbiased 2-D models,
in combination to the proposed subspace matching method, to detect hu-
mans on Leeds Sports (LSP) dataset. LSP contains 2000 images of people
performing different sports, some of them including extreme viewpoints. We
performed the comparison in the test set of 1000 images. We trained our
2-D CSPA model in the CMU MoCap dataset [1] using 1000 frames. From
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Table 5.1: Comparison of human pose estimation approaches on LSP dataset.
Errors in pixels are provided for each body joint (left and right joints are
averaged), as well as the mean estimated error for the 14 joints.

Method || Head Neck| ShoulderElbow Wrist| Hip Knee Ankle|| Mean

YR [107] || 21.75 18.97| 20.54  31.27 49.03 | 22.78 27.24 38.42 29.95
Greedy || 22.48 18.41] 20.73  32.81 48.58 | 23.41 27.36 40.04 30.48
CSPA 21.58 18.48 | 19.83 29.39 43.69| 21.97 26.28 37.02 | 28.32

the 2605 sequences of the motion capture data, we randomly selected 1000
and the frame in the middle of sequence is selected as representative frame.
Using this training data, we built the 2-D CSPA model using the following
ranges for the pitch, roll and yaw angles: ¢, 0,1 € [—3/4m,3/4x]. We built
the candidates matrix Q = [Q!,..., Q‘] € R®*™ by concatenating the pixel
locations Qf € R?*19%0 of the 1000 candidates pixels with higher response of
each t" joint, where the association cost of each candidate in matrix H is
obtained from the detector score [107]. We normalized the response of all the
pixel candidates from each landmark. We will refer to this model as CSPA.
To evaluate the performance, we compared our approach with the state-
of-the-art pose estimation method proposed by Yang and Ramanan' [107].
The error for each method is computed as the pixel distance between the
estimated and ground-truth part locations.

Table 5.1 compares the error for each body joint of our method against
that in [107], and a greedy approach. Our method improves the accuracy of
all estimated joints compared to the baselines, and only the Neck estimation
of the greedy approach is better. In order to find the global fitting of joints,
CSPA method placed Neck landmarks according to the training shapes, even
though it was selecting Neck landmarks with higher cost. Part of this error
is due to different anatomical labeling between LSP dataset and the training
set of our CSPA model, CMU MoCap dataset. Qualitative results in Fig. 5.3
show that our approach has similar results to the state-of-the-art, but being
more accurate in the estimation of the limb lengths.

The execution time per image of our feature selection method, on a
2.2GHz computer with 8Gb of RAM, was 6.84 sec. The most computa-
tionally intensive part of the method is calculating the response for each
image using [107], which is shared with all compared methods.

'The code was downloaded from author’s website and adapted to our own code
(http://www.ics.uci.edu/ dramanan/).
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Figure 5.3: Qualitative results on LSP dataset. Left image from each pair
of images shows the result from YR [107], and the right image shows our
full approach using the CSPA model. Note how the CSPA leads to a more
precise fitting of the body joints and more accurate limb lengths from different
viewpoints.

5.4 Conclusions

In this dissertation we proposed to learn multi-view 2-D models from 3-D Mo-
Cap datasets, instead of learning them from 2-D images. In previous chapters
we extended Procrustes Analysis (PA) to build multi-view 2-D models by ro-
tating and projecting 3-D data samples. By means of CSPA (see Chapter 4)
we modeled rigid and non-rigid deformations of 3-D MoCap sequences, in an
efficient manner. Finally, in this chapter we illustrated the benefits of using
multi-view 2-D models in the task of human pose estimation.

We first reformulated the human pose estimation problem as a feature
selection by subspace matching, and introduced an efficient feature selection
method to this end. Our proposed approach is much more efficient than
the state-of-the-art of feature selection by subspace matching and is able to
handle larger number of outliers. In experimental section, we showed the
benefits of our method in a synthetic experiment on CMU MoCap dataset.

Finally, we evaluated our multi-view 2-D deformable models in the task
of human pose estimation. CSPA models trained with motion capture data,
combined with our subspace matching method, outperformed human pose
estimation state-of-the-art approaches on the LSP dataset. Our method
provides similar results to the state-of-the-art, but being more accurate in
the joint positions and limb lengths. This is because our unbiased 2-D models



62 CHAPTER 5. HUMAN POSE ESTIMATION

can successfully reconstruct different viewpoints, and the proposed feature
matching method is able to handle large amounts of outliers.

Therefore, in this dissertation we provided the formalization and the tools
for building multi-view 2-D shape models from 3-D data and we successfully
illustrated their usability in the task of human pose estimation.



Chapter 6

Summary and Conclusions

The main contributions of this thesis are briefly summarized in this chapter,
followed by an outline of future research direction.

6.1 Summary and Contributions

Human perception allows us to set physical restrictions, such as define faces
and human skeletons as sets of anatomical landmarks or articulated bod-
ies. However, the high variation of facial expressions and human postures
from different viewpoints makes problems like human pose estimation or fa-
cial landmark localization extremely challenging. The common approach to
handle large viewpoint variations is to train the models with several labeled
images from different viewpoints [37, 99, 113, 107, 78, 79, 42]. However this
approach has some drawbacks: (1) it is not clear the extent to which the
dataset must be enhanced with images from different viewpoints in order to
build unbiased 2-D models; (2) extending the training set without this evalu-
ation would unnecessarily increase memory and computation requirements to
train the models; (3) obtaining new labeled images from different viewpoints
can be a difficult task because of the expensive labeling cost; and finally,
(4) a non-uniform coverage of the different viewpoints of a person leads to
biased 2-D models. In this dissertation we proposed successive extensions of
the well-known Procrustes Analysis (PA) algorithm to address these issues.

First of all, we proposed Projected Procrustes Analysis (PPA) in Chap-
ter 2 as a formalization for building multi-view 2-D rigid models by rotating
3-D datasets. PPA rotates and projects every 3-D training shape and builds
a multi-view 2-D model from this enhanced training set. However, PPA does
not guarante unbiased 2-D models by itself, since it depends on how rotations
are chosen. Uniformly distributed rotations will generate unbiased models,
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while non-uniform rotations will lead to models not able to reconstruct prop-
erly particular viewpoints. Therefore, different rotation parametrizations are
presented as well as mechanisms to uniformly sample the rotation space and
build unbiased 2-D models. In experimental section we showed that unbiased
2-D models are able to generalize better to different viewpoints with smaller
number of rotations in both faces and bodies datasets. Although large defor-
mations of the CMU MoCap dataset make more evident the improvements
of the uniform sampling in skeletons than in faces experiments, we encourage
the use of uniform sampling of the rotation space in any dataset. In addition,
PPA provides the basis of formulation and the understanding of the problem
needed to develop the extensions presented in the following chapters.

Although successful in building multi-view 2-D models, the enhanced
dataset required by PPA increased the computational requirements in space
and time. To address this PA and PPA drawbacks and build unbiased 2-D
models in an efficient manner, we proposed Continuous Procrustes Analysis
(CPA) in Chapter 3. CPA extends PA and PPA within a functional analysis
framework and builds multi-view 2-D rigid models in an efficient way, by
means of integrating among all possible rotations in a given domain. CPA
models are unbiased because we use the Haar measure in the definition of
the integral. In experimental section we compared CPA models against the
state-of-the-art PA methods and PPA. We compared all methods in faces
and bodies datasets, increasing the number of rotations in the training set.
As the number of projections increased, discrete methods converged to CPA,
which provided a lower bound for the error in all experiments. Moreover,
CPA was much more efficient in space and time.

After formalizing the construction of multi-view 2-D rigid models from
3-D data in a discrete (PPA) and a continuous (CPA) way, we showed the
benefits in efficiency of the continuous approach. However, CPA efficiency
was limited to rigid models, and building standard statistical models based
on CPA would still require generating an enhanced dataset with rotations
and projections of the 3-D samples in the training set. In Chapter 4 we
went an step further and proposed Subspace Procrustes Analysis (SPA) to
efficiently compute multi-view 2-D deformable models. We added a subspace
in the PA formulation that is able to model non-rigid deformations, as well
as rigid 3-D transformations of the training set. We introduced a discrete
(DSPA) and continuous (CSPA) formulation in order to provide a better
understanding of the problem, where DSPA samples the 3-D rotation space,
and CSPA integrates over SO(3). Experiments comparing 2-D SPA models of
faces’ and joints’ variations showed improvements w.r.t. state-of-the-art PA
methods. Moreover, as the number of rotations in the training set increased
DPSA converged to CSPA, but CSPA was much more efficient in space and
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time.

Note that in this dissertation we proposed multi-view 2-D models trained
on 3-D data sets, which is a relatively unexplored problem in computer vision.
We rotated and projected 3-D training samples instead of learning a 3-D
model and projecting it onto 2-D, in test time. We also reported experiments
in faces and skeletons datasets, comparing multi-view 2-D models against
standard 3-D models, projected onto a 2-D test set. We showed that our
multi-view 2-D models were as expressive as 3-D models, but SPA models
being faster in test time. Therefore, in this dissertation we proposed several
extensions of PA to learn multi-view 2-D models, being efficient in test time.

Finally, in Chapter 5 we illustrated the benefits of our multi-view 2-D de-
formable models in the task of human pose estimation. We first reformulated
the problem as a feature selection by subspace matching and we proposed an
efficient approach for this task. Our proposed method is much more efficient
than the state-of-the-art feature selection by subspace matching approaches
and it is able to handle larger number of outliers. In experimental section,
our multi-view 2-D deformable models, combined with the subspace match-
ing method, outperformed the state of the art of human pose estimation on
the LSP dataset. Our method provided similar results to the current state
of the art, but being more accurate in the joint positions and limb lengths.
This is because our unbiased 2-D models can successfully reconstruct differ-
ent viewpoints, and the proposed feature matching method is able to handle
large amounts of outliers.

In this dissertation we proposed successive extensions of PA to build
multi-view 2-D models for human perception, and solve the main challenges
of modeling 3-D deformable objects (e.g. faces, bodies) from different view-
points. In sum, our models are not biased to any particular viewpoint, and
they are efficient in learning, as well as in test time.

6.2 Future Directions

This thesis creates some clear directions for future lines of research. In this
dissertation we detailed our contributions to build unbiased models in
terms of their generalization to different viewpoints, and we extended PA to
build not only unbiased rigid models, but also deformable models. However,
in the standard method PA aligns the data with respect to the mean and
independently computes the PCA subspace. Although successful and widely
extended, independently optimize the mean, geometric transformations and
the subspace can result in loss of optimality [102]. Our future research will
focus on solving the simultaneous alignment of the 2-D projections of 3-D
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samples, while computing the 2-D subspace that can represent all possible
projections of the 3-D samples under different camera views.

During this dissertation we argued that PA extensions presented in this
thesis deal with missing data naturally. Since they use the whole 3-D shape
of objects, the enhanced 2-D dataset resulting of projecting the data from
different viewpoints can be constructed without occluded landmarks. Our
future work will further the research in this direction by taking advantage of
the 3-D structure, and we will model the behavior of occluded landmarks in
test time. We will model the likelihood of landmarks to be occluded,
depending of the rotation angles. The use of this information in the test
phase would lead to a faster test time fitting, even with occluded face or
body parts.

Our future research will include an in-depth study about the relation
between rigid transformations in the training set and the subspace being
spanned by the first bases of the model. We will also examine how small
changes in the deformation parameters are mapped as small rigid and non-
rigid deformations in the reconstructed shapes. This study will be extremely
useful in extending our feature selection by subspace matching method
to video, and how to restrict the optimization of the subspace parameters
in the temporal domain.

During this research we found it useful to build multi-view 2-D mod-
els directly from 3-D models. Since unbiased 2-D and 3-D models have
the same reconstruction power and the 2-D models are faster, this method-
ology would allow faster real-time applications for such domains where only
3-D models are available but not 3-D data (e.g. NRSFM model built from
2-D data). We outline the usefulness of this methodology in Section 4.5,
and we provide the formulation and preliminary results as a proof of con-
cept. Our future research will include an in-depth study and evaluation of
this preliminary work, as well as a comparison against our multi-view 2-D
models presented in this dissertation.



Appendix A

CPA Formulation

In this Appendix, we detail the derivation and optimization steps of the CPA
method introduced in (Eq. (3.7)):

Eora(M.A@)) =Y [ FOM A@))dw =Y~ [ [P@)D; - Alw) M} do.
i=1 i=1

In order to minimize the CPA functional:

M,A(wg?,iAI.l.,A(w)n Ecea(M, A{w):), (A-1)
we propose an algorithm based on the closed-form solution of two opti-
mization subproblems. Unlike standard PA, in the present formulation,
A(w); :  — R?*? are functions and not parameters. Moreover, it is worth
noticing that the dependence of Ecpa on the functions A(w); is non-linear.
This makes the minimization of Ecps, Eq. (A.1), a non-linear variational
problem. Although the existence of a solution (M*, A(w)},..., A(w)) to
the problem in Eq. (A.1) is guaranteed from a theoretical point of view,
it is not straightforward to find its explicit expression (see Section 3.2.1).
For this reason, we propose the following minimization algorithm to find

a stationary point. First, we set an initial value M = M and we op-
timize over the functions A(w),...,A(w),, obtaining a close solution for
[A(w)i,...,A(w)*]. In the next step, we minimize over M the functional

M — Ecpa(M,A(w)i, ..., A(w)!), and we iterate until convergence. This

two step algorithm is detailed below:

Step 1: Optimizing Ecpa over the functions A (w);, i.e.:
min. ECGPA(M*,A(UJ)Z'), (A2)

A(w)
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can be solved using the following equation: V z(w), F(M*, A(w);) = 0, where
VAw), is the gradient operator with respect to the unknown parameters of
the matrix A(w);. First, let us rewrite F(M, A(w);) with the following
equivalent expression:

F(M, A;) = tr [(P(w)D;)" (P(w)D;)]
+tr [(A(w):M)T(A(w);M)] = 2tr [(P(w)D;)" A(w);M] .

Then:
Vaw),FM, A(w);) = 2A(w);MM" — 2P(w)D;M" =
Finally, the solution of these equations is:
A(w); = P(w) DM T (MM )~ v, (A.3)
Step 2: To optimize Ecpa over M, i.e.:
n&}[n Ecpa(M, A(w)]), (A.4)

the necessary conditions are: VyEcpa(M, A(w);) = 0. First, let us rewrite
Ecpa(M, A(w);) with the following equivalent expression:

Ecpa(M, A(w);) = tr !Z D + </ )TP(w)dw> D;
tr [MT (2} /QA(w)fA(w)idw> ] —2tr ZDT (/ )TA(w); dw> M] .

Then:

+

VMECPA(M, A(w)l) =

2 <§ /Q A(w)iTA(w)idw> M — 2; (/Q A(w)?P(w)dw) D; =0.

Finally, the solution of these equations is (Eq. (3.10) in the main text):

M=K 'Z (A.5)
where:
K = - [ A(w)TA(w)fdw (A.6)
A
Z = Z < 0 A(w);TP(w)dw> D;. (A7)
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Note that we can replace the expression of A(w)! (Eq. (A.3)) in M and,
given an initial value M = M°, we can iterate on Eq. (A.5) until convergence.
As we show on the remaining of this appendix, fixed point optimization leads
to an efficient formulation, since it allows to compute the definite integral
off-line.

Fixed point minimization: Replacing the expression of the optimal A (w)?
from Eq. (A.3) in both Eq. (A.6) and Eq. (A.7), we find":

Z(/ (P(w)D; M7 (MMT) 1) p(w)dw> D, —

n (0
Y (D] @ D) vec(X)) ,
i=1

K = Z/ w)D;M” (MM?) )" (P (w)D;MT (MM”) 1) dew =

Ty—1 - T T ) T Ty—1 _
(MMT)"'M | Y D] (/QP(w) P(w)dw> D, | MT(MMT)

i=1

X

n
(MMT) M (Z DiTXDi) M7 (MM = zMT (MMT) !
=1

where X = [ P(w)"P(w)dw € R**3 averages the rotation covariances.
In order to compute the value of these integrals we only need to solve the
definite integral for X. Since X is not data dependent, we can compute
the definite integral off-line for any given interval, leading to an extremely
efficient optimization. For instance, considering, Q = {(¢,0,v) € R3;|¢| <

1See Section 1.4 for an explanation of the vec-transpose operator.
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w/2,10] < 7w/2,|¢| < w/2}, we obtain:

71'2 7T3
g—l—ﬁ 0 , 0
g/ Xdw = 0 I+ 0
Q -7 w2 3m3
0 =< T g T35

Avoiding singularities: Finally, note that the special orthogonal group
of rotations in 3-D space, SO(3), is smooth except for a polar coordinate
singularity along an angle of zero [88]. In order to avoid Euler singularities,
we use Fubini’s Theorem. We divide the domains containing zero into dis-
connected intervals, and we compute the joint integral as iterated integrals.
For instance, in order to compute the integral in the domain defined above,

w/2 w/2 w/2
/de:/ / Xdw,
Q —7n/2J—7/2J—7/2

we compute the integrals:

le.:

0 w/2
Jt = Xm+/ Xdo
0

—7/2

0 w/2
J2::/ hgnwyﬂd9+l/ hsin(0)J'do,
0

—7/2

where h is the Haar measure for the Euler angle interval. And finally:

0 w/2
/Xm:/ ﬁw+/ J2dy)
Q —7/2 0



Appendix B
CSPA Formulation

In this Appendix, we detail the steps from Eq. (4.5) to Eq. (4.8), as well as
the definition of the covariance matrix, introduced in Section 4.

Given the value of M* and the optimal expression of A (w); from Eq. (3.8),
we substitute them in Eq. (4.5) resulting in:

Eosea (B, c(w Z/ [P, - PlwDH - (cw)! & 1B | dw.
(B.1)

where H = M*T(M*M*T)~IM* and D; € R**‘. Then,
2
Ecspa(B, c(w Z/ HP D,(I, — H) — (c(w)f@@lg)B(?)HFdw (B.2)

leads us to Eq. (4.7) and Eq. (4.8), where D; = D;(I, — H) and d; = vec(D;).
From Eq. (4.8), solving V¢w), Ecspa (B, c(w);) = 0 we find:

c(w); = (BTB)'BT (I, ® P(w))d;. (B.3)
The substitution of c(w)! in Eq. (4.8) results in:

Ecspa(B) = Z /Q H(Ig ® P(w))ElZ — B(BTB)_IBT(Ig ® P(""))alHZ dw =

(B.4)

Z [, I BB7B) ) e pna s - B.5)

Z /Q tr (I-B®B'B)'BY) (I, P(w)d; (I, ® P(w))ai)ﬂ dw= (B.6)
=1

tr [(I-B(B'B)'B”) x], (B.7)
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where:

> = /QIK®P <Z )14®P(w))wa. (B.8)

We can find the global optima of Eq. (B.7) by solving the eigenvalue problem,
¥B = BA, where X is the covariance matrix and A are the eigenvalues
corresponding to columns of B. However, the definite integral in X is data
dependent. To be able to compute the integral off-line, we need to rearrange
the elements in 3. Using vectorization and vec-transpose operator!:

¥ = (vec[X])?) = (B.9)

(26)
<vec [/Q I ®P(w (de ) IK®P(w))wa]> = (B.10)

n (26)
Zaia?D , (B.11)
=1

<</Q(I‘ 2Pw)ele P(w))dw) vec

which finally leads to:

Y= ((I[ & Y) vec [Z EIW&Z

=1

(20)
) , (B.12)

where the definite integral Y = [ P(w) ® (I; ® P(w))dw € R**% can be
computed off-line.

'See Section 1.4 for the vec-transpose operator.
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