Appendix A

by Assumption 1, we have $s_{ij_0}(t) = 0$. Thus $s_{ij_0}(t) = 0$ for all $j_0 \in P$. Since

$$w_i(t+1) = w_i(t) = m_1(t)$$

and

$$w_i(t+1) = w_i(t) + \sum_{j \in P} r_{ji}(t)$$

we have $r_{j_0i}(t) = 0$, and this prove (3) for k=1. Therefore, (1),(2) and (3) are proved for k=1.

In continuation, the induction step on k is outlined. Suppose now that l>1 and that there exists $t_1 < t_2 < t_3 < ... < t_{l-1}$ positive integers such that for all k, $(1 \le k < l)$, (1), (2) and (3) hold.

Let $i \in P \setminus \bigcup_{k=1}^{l-1} P_k(t_k)$. We shall see that $w_i(t+1) \ge m_1(t)$,

for all $t \ge t_{1-1} + B$.

Let $t \ge t_{1-1} + B$. If $s_{ij}(t) = 0$ for all $j \in P$, then

$$w_i(t+1) = w_i(t) + \sum_{j \in P} r_{ji}(t) \ge w_i(t) \ge m_l(t)$$
.

If $s_{ij_0}(t) > 0$ for some $j_0 \in P$, then, as above,

$$w_i(t+1) \ge w_{ij_0}(t) + s_{ij_0}(t) = w_{j_0}(\tau_{ij_0}(t)) + s_{ij_0}(t)$$

* Note that: $P \setminus P_1(t) = \overline{P_1(t)}$

Since $r_{ij_0}(t') > 0$ for some t' > t, we have

$$j_0 \notin \bigcup_{k=1}^{l-1} P_k(t_k) = \bigcup_{k=1}^{l-1} P_k(t^{"}), \quad \forall t^{"} \ge t_{l-1}.$$

Since $\tau_{ij_0}(t) > t - B \ge t_{l-1}$,

$$w_{j_0}(\tau_{ij_0}(t)) > m_{l-1}(t)$$
, so $w_{j_0}(\tau_{ij_0}(t)) \ge m_l(t)$.

Thus $w_i(t+1) \ge w_{j_0}(\tau_{ij_0}(t)) + s_{ij_0}(t) > m_l(t)$.

Hence $(m_l(t))_{t \ge t_{l-1}+B}$ is a non-decreasing sequence of integers $\le L$. Thus there exists an integer $t_l > t_{l-1}$ such that

$$m_l(t) = m_l(t_l) \quad \forall t \ge t_l$$

So (1) follows for k=1.

In order to prove (2), we shall see that

$$P_{I}(t_{I}) \supseteq P_{I}(t_{I}+1) \supseteq P_{I}(t_{I}+2) \supseteq \dots \qquad (^{\star\star})$$

Let $t \ge t_l$ and let $i \in P \setminus P_l(t)$. If $i \in P_k(t)$ for some k = 1, ..., l-1, then $i \in P_k(t+1)$, so $i \in P \setminus P_l(t+1)$. Suppose that let $i \in P \setminus \bigcup_{k=1}^{l} P_k(t)$. If $s_{ij}(t) = 0$ for all $j \in P$, then

$$w_i(t+1) \ge w_i(t) > m_i(t) = m_i(t+1)$$
.

If $s_{ij_0}(t) > 0$ for some $j_0 \in P^{\prime}$, then, as above,

$$w_i(t+1) > m_i(t) = m_i(t+1)$$
.

Thus $i \in P \setminus P_l(t+1)$ and this proves (**). Since $P_l(t_l)$ is a finite set, there exists $t_l \ge t_l$ such that

$$P_l(t) = P_l(t_l) \quad \forall t \ge t_l \; .$$

So (2) is true for k=1.

In order to prove (3), let $t \ge t_l$, let $i \in P_l(t_l)$ and let $j_0 \in P$. If $j_0 \in \bigcup_{k=1}^{l-1} P_k(t_k)$ then $s_{ij_0}(t) = 0$, because $r_{j_0i}(\tau) = 0$ for all $\tau \ge t_{l-1}$. If $j_0 \in P \setminus \bigcup_{k=1}^{l-1} P_k(t_k)$ then

$$w_i(t) > m_i(t) \le w_{ii_0}(t) ,$$

by Assumption 1, we have $s_{ij_0}(t) = 0$. Since $w_i(t+1) = w_i(t) = m_i(t)$ and

$$w_i(t+1) = w_i(t) + \sum_{j \in P} r_{ji}(t)$$

we have $r_{j_0 i}(t) = 0$, and this proves (3) for k=l. This concludes the induction step and the proof of the theorem.

We have proved the convergence of the proposed realistic IDLB model, however, no consideration concerning the final balance degree has been provided. *Corollary A.1* gives an upper bound for the maximum load difference throughout the whole system when the stable load distribution is achieved. For that purpose, a new assumption is included in the LB model described this section: the maximum load difference in any *t*-domain in the system at the end of the load-balancing process is restricted to being one load unit. Consequently, the final maximum load difference among the system is upper bounded by the diameter of the underlying topology (d).

٠

Corollary A.1. Assume Assumption 1,2 and 3. Let $t \in T_i$. Assume that $\exists j \in D(i,t)$ such that $w_i(t) - w_{ij}(t) > 1$ then $\exists j' \in D(i,t)$ with $w_i(t) - w_{ij'}(t) > 1$ and $s_{ij'}(t) \ge 1$. If \bar{t} is as in Theorem A.1, then

$$|w_i(t) - w_j(t)| \le d, \quad \forall i, j \in P, \forall t \ge \overline{t} + B,$$

where d is the diameter of G.

Proof. Note that $\{j \in P \mid \{i, j\} \in E\} \subseteq D(i,t)$ for all $t \ge 2B$. By (b2) and (c2), we have

$$|w_i(t) - w_j(t)| \le 1, \quad \forall \{i, j\} \in E, \forall t \ge \overline{t} + B.$$

Hence

$$|w_i(t) - w_j(t)| \le d, \quad \forall i, j \in P, \forall t \ge \overline{t} + B. \blacksquare$$

A new distributed diffusion algorithm for dynamic load-balancing in parallel systems

Appendix B

Comparative study of nearestneighbour load-balancing algorithms: *complementary tables*

				Нур	ercube (dif	_max)			
	Number		likely di	istribution	S	p	athological	distributio	ns
	of Proc.	25%	50%	75%	100%	25%	50%	75%	n-1
D	8	0.3	0.5	0.6	0.2	0	1	0	2
Α	16	1	1	1	1	1	1	1	1
S	32	1.5	1.5	1.6	1.65	2	1.5	1.5	2
U	64	1.75	2	2.2	2	2	2	2	3
D	128	1.95	2.15	2.45	2.6	2.5	2	2	3
	8	8.65	8.65	8.9	8.85	3	3	3	6
S	16	22	23.4	24,45	25.1	11.5	22.5	19	20
I	32	20.65	31.9	36.7	35.85	50.5	39.5	35	50
D	64	14	24.45	31.3	38.3	55.5	37.5	38.5	66
	128	8.45	11.45	24.5	29.1	28.5	30	25	46
	8	2.3	2.4	2.5	2.1	2	2.5	2.5	3
G	16	2.5	2.6	2.81	2.71	3	2.5	3	3.5
D	32	3.1	3.2	3.12	3.4	3.5	3	. 3.5	3.5
E	64	3.7	3.75	3.7	3.84	3.5	4	4	4
	128	3.9	4.05	4.1	4.3	4	4	4	4
	8	1.2	0.4	1	0.6	1	0	0	0
A	16	1.4	1.2	1.1	1.4	1.5	2.	1.5	1
N	32	2	1.6	2.1	2.1	1.5	2.5	2.5	2
	64	2.8	3	3.5	3.7	2.5	2.5	2.5	3
	128	3.5	3.7	4	3.9	4	3.5	.4	5

Table B.1 Maximum load difference for DASUD, SID, GDE and AN considering likely and pathological initial load distributions for hypercubes attending to the architecture size and initial distribution patterns.

		<u></u>	·····	=T	orus (dif_m	ax)		<u></u>	
	Number	5	likely di	stribution	S	pa	athological	distributio	ns
	of Proc.	25%	50%	75%	100%	25%	50%	75%	n-1
D	9	0.9	0.8	0.9	0.8	1	1	1	1
A	16	1	1	1	1	1	· 1	1.5	1.5
S	36	1	1	· 1	1 .	1	1	1	1
υ	64	2	2	2	2	2	2	2	2
D	121	2.8	3.1	3.15	3.15	4	3	4	4
	9	6.75	7.8	9.1	8.75	7	7.5	5.5	4
S	16	21.7	23.5	24.55	26.3	11.5	20.5	18	20
1	36	20.05	32.05	41.95	43.9	62.5	36	48	73
D	64	14	26.5	34.5	43.85	55.5	52.5	49	67
	121	8.95	16.3	23.55	31.25	28	41	43.5	60
	9	1.5	1.6	2	2	2	2	2	2
G	16	1.7	2.3	3.1	3	2	2	2.5	2.5
D	36	2.45	2.5	3.5	3.25	3	3.5	3.5	3
E	64	3.75	3.8	4.7	4.5	4.5	4	4	4
	121	4.7	4.9	4.9	5	4.5	4.5	4.5	4.5
	9	1	1.1	1.1	1.1	1	1	1	1
A	16	1.2	1.2	1.7	1.5	1	1	1	1
N	36	2.4	2.5	2.4	2.2	2	1.5	1.5	3
	64	2.8	3.2	3.1	3.1	3	3.5	3	2
	121	3.9	4.1	4.4	4.6	4	4	4.5	4

 Table B.2 Maximum load difference for DASUD. SID. GDE and AN considering likely and pathological initial load distributions for torus attending to the architecture size and initial distribution patterns

				Hypero	ube (<i>dif_m</i>	ax)			
	Shape		likely di	stributions	3	pa	athological	distributio	ons
		25%	50%	75%	100%	25%	50%	75%	n-1
D	SM	1.68	1.76	1.84	1.62	1.6	2	1.8	2.2
DAS	Chain	0.94	1.12	1.34	1.36	1.4	1	0.8	
٥	SM	20.6	30.44	36.82	40.84	35.2	39.6	40.8	37.6
SI	Chain	8.9	12.04	13.52	35.1	26.4	13.4	9.4	the same of the second s
ш	SM	3.27	3.31	3.4	3.42	3.8	3.6	3.5	3.7
GD	Chain	2.9	3.02	3.17	3.2	3.3	3.15	3.3	
7	SM	2.24	2.12	2.08	2.24	3.34	2.64	2.86	2.88
A	Chain	2.12	1.84	2.46	2.24	2.32	2.88	2.9	an a

 Table B.3 Maximum load difference for DASUD, SID, GDE and AN considering likely and pathological initial load distributions for hypercubes attending to the initial distribution patterns and shapes

)	······································				
	Shape		likely di	stributions	3	pa	athological	distributio	ns
		25%	50%	75%	100%	25%	50%	75%	n-1
an	SM	1.58	1.64	1.58	1.58	1.8	1.6	1.8	1.8
DAS	Chain	1.5	1.52	1.64	1.6	1.8	1.6	1.8	
٥	SM	19.8	30.96	39.86	45.7	37.8	38.8	47.2	44.8
S	Chain	8.84	11.78	13.68	15.94	28	24.2	19.2	and a second second
ЭE	SM	3.3	3.41	3.3	3.4	3.55	3.42	3.5	3.4
GL	Chain	3.1	3.11	3.22	3.27	3.47	3.2	3.24	and the second states
7	SM	2.32	2.44	2.46	2.47	2.8	2.4	2.2	2.5
A	Chain	2.16	2.36	2.6	2.58	2.4	3	2.4	

 Table B.4 Maximum load difference for DASUD, SID, GDE and AN considering likely and pathological initial load distributions for torus attending to the initial distribution patterns and shapes

		<u></u>	Н	ypercube	(standard	deviation ·	· σ)		
	Number		likely di	stribution	5	pa	athological	distributio	ns
	of Proc.	25%	50%	75%	100%	25%	50%	75%	n-1
D	8	0.05	0.025	0	0.05	0	0	0	0
Α	16	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
S	32	0	0	0	0	0	0	0	0
U	64	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
D	128	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	8	2.45	2.57	2.69	2.6	1.05	0.86	1.06	1.73
S	16	5.46	5.8	5.85	5.99	3.1	5.91	4.79	4.8
1	32	5.08	6.44	7.15	6.89	9.99	8.22	6.65	8.93
D	64	3.73	6.17	7.49	6.16	10.55	7.38	7.98	11.14
	128	2.22	4.57	6.33	7.59	6.94	6.92	7.85	11.7
	8	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.6
G	16	0.6	0.6	0.6	0.7	0.74	0.7	0.7	0.7
D	32	0.65	0.6	0.6	0.82	0.81	0.8	0.8	0.83
E	64	0.85	0.75	0.8	0.82	0.92	0.8	0.8	0.92
	128	1.3	1.1	1.1	1.1	1.3	1.2	1.2	1.35
	8	0.02	0.02	0.015	0.02	0.0	0.0	0.0	0.0
A	16	0.2	0.22	0.2	0.25	0.2	0.2	0.22	0.22
N	32	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	64	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	128	0.25	0.3	0.3	0.3	0.3	0.3	0.3	0.3

 Table B.5 Standard deviation for DASUD, SID, GDE and AN considering likely and pathological initial load distributions for hypercubes attending to the architecture size and initial distribution patterns.

	<u> </u>			Torus (s	tandard de	viation - σ)		
	Number		likely di	stribution	s	pa	athological	distributio	ns
	of Proc.	25%	50%	75%	100%	25%	50%	75%	n-1
D	9	0.35	0.34	0.35	0.33	0.47	0.47	0.47	0.47
Α	16	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
S	36	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
U	64	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
D	121	0.69	0.715	0.72	0.73	0.765	0.74	0.73	0.76
	9	2.12	2.32	2.75	2.71	2.46	2.33	2.17	1.33
s	16	5.39	5.66	5.89	6.18	3.1	5.47	4.47	4.72
1	36	5.31	7.14	8.22	8.64	12.69	9.23	10.01	13.26
D	64	4.1	7.76	9.52	11.4	14.44	13.84	12.63	16.77
	121	2.57	4.62	6.67	8.9	9.46	13.3	13.16	18.38
	9	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.6
G	16	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.75
D	36	0.75	0.77	0.7	0.75	0.77	0.8	0.8	0.8
E	64	0.85	0.82	0.8	0.83	0.97	0.97	0.97	0.97
	121	1.3	1.27	1.3	1.31	1.3	1.3	1.3	1.32
	9	0.15	0.16	0.16	0.16	0.18	0.18	0.18	0.2
A	16	0.2	0.22	0.2	0.2	0.2	0.2	0.22	0.22
N	36	0.01	0.01	0.01 -	0.01	0.01	0.01	0.01	0.01
	64	0.02	0.02	0.02	0.02	0.01	0.01	0.02	0.01
	121	0.34	0.3	0.4	0.3	0.45	0.45	0.45	0.4

.

.

.

 Table B.6 Standard deviation for DASUD. SID. GDE and AN considering likely and pathological initial load distributions for torus attending to the architecture size and initial distribution patterns

	Hypercube (standard deviation - σ)											
	Shape		likely di	stributions	;	pe	athological (distributio	ns			
		25%	50%	75%	100%	25%	50%	75%	n-1			
<u>n</u>	SM	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2			
DAS	Chain	0.22	0.21	0.2	0.22	0.2	0.2	0.2				
	SM	5.29	7.19	8.42	8.84	7.32	8.24	9.03	7.66			
เง	Chain	2.31	3.03	3.38	3.57	5.33	3.47	2.3				
Щ	SM	0.8	0.7	0.75	0.81	0.87	0.8	0.83	0.88			
GC	Chain	0.74	0.7	0.75	0.8	0.86	0.8	0.81				
~	SM	0.1	0.15	0.11	0.15	0.1	0.15	0.1	0.1			
A	Chain	0.1	0.1	0.08	0.1	0.1	0.1	0.1				

 Table B.7 Standard deviation for DASUD, SID, GDE and AN considering likely and pathological initial load distributions for hypercubes attending to the initial distribution patterns and shapes

												
			Тс	orus (stand	dard deviat	ion - σ)						
	Shape		likely di	stributions	\$	pŧ	athological	distributio	ns			
		25%	50%	75%	100%	25%	50%	75%	n-1			
g	SM	0.31	0.31	0.31	0.31	0.34	0.34	0.35	0.35			
DAS	Chain	0.3	0.31	0.31	0.31	0.35	0.34	0.33				
	SM	5.42	7.87	9.65	10.89	9.63	10.69	11.78	10.89			
S	Chain	2.37	3.12	3.62	4.24	7.23	6.95	5.19				
щ	SM	0.8	0.8	0.84	0.85	0.87	0.86	0.87	0.88			
ច	Chain	0.82	0.8	0.83	0.85	0.86	0.86	0.86				
z	SM	0.14	0.14	0.14	0.14	0.18	0.18	0.18	0.17			
₹	Chain	0.14	0.14	0.14	0.14	0.16	0.16	0.16				

 Table B.8 Standard deviation for DASUD, SID, GDE and AN considering likely and pathological initial load distributions for torus attending to the initial distribution patterns and shapes

.

				Hyperc	ube (<i>load u</i>	nits – u's)		,	
	Number		likely di	stribution	S .	pa	athological	distributio	ns
	of Proc.	25%	50%	75%	100%	25%	50%	75%	n-1
D	8	41.80	150.95	198.1	337.5	268	423	519	1128
Α	16	45.8	89.3	138.2	175.25	150	239.5	477.5	883
S	32	35.4	61.35	93.3	124.75	79.5	110.5	268	718
U	64	24.05	46.75	63.4	82.9	43.5	74	143.5	608
D	128	15.65	32.35	47.6	59.95	31	46	91	536
	8	74.2	142.85	194	332.9	265.5	421	517	1125
s	16	36.55	78.35	127.35	164.6	144	220	470	874
1	32	23.1	48.35	80.4	111.85	60.5	95	257	706
D	64	9.65	27.2	44.1	61.05	21	52.5	119	579
	128	3.55	12.85	22.45	31.9	7.5	16	59	485
	8	79.8	189.7	234.7	441.3	540.2	723.1	834.7	1659
G	16	70.2	120.7	170.3	221.7	275.1	381.2	509.1	1167
D	32	452	84.2	112.7	122.5	198.1	268.7	395.4	1017
Е	64	10.8	28.5	56.7	67.2	230.1	471.8`	562.1	1360
	128	19.5	33.2	49.3	67.4	72.1	101.7	173.1	908
	8	137.2	282.95	354.35	585.1	723	954.5	932.5	1860
Α	16	86	169.15	268.85	345.9	336.5	596.5	761.5	1474
N	32	54.15	102.8	154.55	211.3	211	307	459	1177
	64	27.25	60.1	86.95	112.25	110.5	192.5	273.5	995
	128	18.9	31.2	49.2	66.1	68.5	97.5	161	801

Table B.9 Load units (u) for DASUD, SID, GDE and AN considering likely and pathological initial load distributions for hypercubes attending to the architecture size and initial distribution patterns.

		-i		Torus	s (load unit	s — u's)			
	Number		likely di	stributions	5	pa	athological	distributio	ns
	of Proc.	25%	50%	75%	100%	25%	50%	75%	n-1
D	9	69.9	141.7	193.85	251.1	181.5	212	365.5	836
Α	16	46.95	89.8	137.2	175.6	149	238	477	881
S	36	33.35	73.15	108.6	137.15	115	172	329.5	1067
υ	64	21.5	46.05	67.9	94.2	87	130	231.5	1169
D	121	15.95	28.7	41.05	54.95	• 61.5	93.5	158.5	1253
	9	33.85	137.8	189.65	246.5	179	208	360.5	832 .
S	16	36.55	78.85	127.95	164.45	144	221	471	876
1	36	21.9	59.9	92.75	123.35	88.5	156.5	306	1045
D	64	7.75	23.15	42.65	66.25	42	92	197	1132
	121	3	6.8	11	17.85	15.5	36.5	115.5	1175
	9	321.5	438.7	594.5	793.4	528.3	971.4	2130.6	4113.7
G	16	271.7	370.2	460	656.8	489.1	824.7	1875.1	3867.3
D	36	99.3	166.4	298.2	399.9	379.1	834.7	1578.3	2670.2
E	64	98.6	165.3	206.5	. <mark>269.9</mark>	287.6	687.9	1356.9	2447.6
	121	53.8	97.2	126.8	179.7	144.7	435.9	894.2	1689.3
	9	163.55	291.6	416.7	592.85	703	1104	1212	1434
Α	16	37.05	77.4	120.75	154.6	159	241	425.5	764
N	36	24.9	58.65	88.2	115.65	119	164.5	245	841
	64	30.85	70.75	106.8	156.4	157	250.5	434.5	1770
	121	12.35	23	35.3	50.75	. 58.5	89.5	154.5	955

 Table B.10 Load units (u) for DASUD. SID. GDE and AN considering likely and pathological initial load

 distributions for torus attending to the architecture size and initial distribution patterns

			Hyperc	ube (load	units- u's -	by shap	es)	<u> </u>	
	Shape		likely di	stributions	S	pa	athological	distributio	ns
		25%	50%	75%	100%	25%	50%	75%	n-1
DD	SM	40.32	71.26	97.6	144.18	107.4	163	324.4	781.4
DAS	Chain	36.92	80.24	118.74	167.1	126.6	197.4	279	
	SM	26.58	52.12	77.5	123.56	87.6	142.6	297.8	753.8
SI	Chain	32.24	71.72	109.82	157.38	111.8	179.2	271	
Ш	SM	51.1	99.8	93.8	197.3	280.3	428.9	584.9	1222.2
GD	Chain	39.1	82.7	71.2	170.5	245.9	349.7	304.7	
7	SM	76.42	155.5	217.38	319.52	289.4	487.8	782.8	1261.4
Ā	Chain	53.9	102.98	143.46	208.84	290.4	363.8	252.2	

 Table B.11 Load units (u) for DASUD, SID, GDE and AN considering likely and pathological initial load
 distributions for hypercubes attending to the initial distribution patterns and shapes

	<u> </u>		Toru	is (load un	nits- u's - b	y shapesj)	<u></u>	
	Shape		likely di	stributions	\$	pe	athological	distributio	ns
		25%	50%	75%	100%	25%	50%	75%	n-1
ß	SM	36.27	74.76	105.42	137.42	121.6	175.4	343.6	1041.2
DAS	Chain	38.8	77	114.04	142.12	116	162.8	281.2	
	SM	22.7	55.08	82.42	117.74	92.2	145.2	293.6	1012
N	Chain	31.52	67.52	107.34	129.62	95.4	140.4	263.2	
ш	SM	192.6	281.3	367.4	487.9	397	786.8	1789.1	2957.6
GC	Chain	145.3	213.7	307.1	431.9	334.6	714.9	1344.9	
-	SM	58.76	115.02	121.22	179.52	253.8	375	540.8	1152.8
Ā	Chain	48.72	. 82.29	137.52	196.76	224.8	365.4	447.8	

 Table B.12 Load units (u) for DASUD, SID, GDE and AN considering likely and pathological initial load

 distributions for torus attending to the initial distribution patterns and shapes

Hypercube (steps)										
	Number		likely di	stributions	3	pathological distributions				
	of Proc.	25%	50%	75%	100%	25%	50%	75%	n-1	
D	8	17.65	17.45	18.65	19.35	15.5	15.5	13	21	
Α	16	24.95	27.95	29	30.45	21.5	34.5	26	32	
S	32	25.6	29.5	31.65	32.55	39.5	35	32	42	
υ	64	22.4	32.55	37.9	39.75	⁻ 41.5	36	40.5	53	
D	128	16.9	26.55	34.65	40.2	31.5	38.5	45	61	
	8	8.15	8.3	8.75	9.65	9	8.5	· 7	11	
S	16	7.55	9.75	11	11.45	. 8	14	11	13	
1	32	6.45	8.7	10.55	10.75	12.5	10.5	11.5	15	
D	64	. 3	7.55	9.3	9.75	8	10.5	10	12	
	128	1.6	3.25	5.55	7.35	3.5	6	8	9	
	8	17.78	18.43	19.02	19.78	20.5	22,35	23	24.5	
G	16	26.48	26.67	27.95	28.85	30	35	37.5	38.5	
D	32	36.9	37.8	38.25	39.11	53.5	56	59.5	61.5	
Ε	64	46.23	46.86	47.97	48.78	57.5	59	60.5	63	
	128	43.2	43.9	46.34	46.11	61	62.5	65.5	70	
· · · · ·	8	29	31.2	31	34.8	28	36	44	40	
Α	16	31.8	35	37.8	39.8	40	36	42	56	
N	32	31	36	37.6 ·	40.2	40	44	38	48	
	64	29.2	34.2	37	41	42	44	38	60	
	128	26.8	31.6	34.6	37.4	44	38	48	54	

Table B.13 Simulations steps (steps) for DASUD, SID, GDE and AN considering likely and pathological initial load distributions for hypercubes attending to the architecture size and initial distribution patterns.

Torus (steps)											
	Number		likely di	stribution	S	p	pathological distributions				
	of Proc.	25%	50%	75%	100%	25%	50%	75%	n-1		
D	9	13.55	17.3	18.15	18.7	18	18	20.5	22		
Α	16	25.25	27.95	28.6	30.4	20	32	26	33		
S	36	24.6	33.75	37.9	41.25	51	47.5	49.5	66		
U	64	20.85	35.55	43.95	53.75	54	69	63	96		
D	121	18.55	28.45	36.65	46.7	51	73	83.5	125		
	9	6.8	8.55	8.7	9.15	9	9	8.5	12		
s	16	7.55	10.05	11.5	11.45	8	14	11.5	14		
I	36	7.8	15.25	17.5	20.5	22	24	22	31		
D	64	2.55	9.15	15.4	22.7	12.5	31	29.5	62		
	121	1.55	2.45	3.15	6.75	6.5	17.5	40.5	74		
	9	49.7	50.2	51.4	52.7	60.5	61.5	62	61		
Ġ	16	48.45	49.7	51.62	53.21	61.5	62.5	65	66		
D	36	45.7	46.91	48.4	52.41	63.5	65.5	67	69		
E	64	46.5	48.73	50.67	52.5	68.5	71	72.5	73		
	121	48.46	50.67	52,42	53.9	76.5	79.5	81	83		
	9	49.6	51.6	55.2	57.2	60	72	60	64		
A	16	7.65	8.6	9.55	9.75	10	10	10	11		
N	36	8.7	10.75	11.5	11.65	12	14.5	13	16		
	64	35.8	45	49.6	55.8	60	62	64	92		
	121	10.4	13	15.05	17	18.5	21	22.5	29		

 Table B.14 Simulations steps (steps) for DASUD. SID. GDE and AN considering likely and pathological initial load distributions for torus attending to the architecture size and initial distribution patterns

Hypercube (steps - by shapes)											
	Shape		likely di	stributions	pe	pathological distributions					
		25%	50%	75%	100%	25%	50%	75%	n-1		
an	SM	12.5	17.26	19.62	21.8	17.4	20.8	24	24.2		
DAS	Chain	6.62	9.68	10.9	11.76	14	13.6	10			
	SM	6.04	8.48	10.52	11.84	9.8	12	12.4	12		
S	Chain	4.66	6.54	7.54	7.74	6.6	7.8	6.6			
ш	SM	37.93	38.37	39.35	46.92	48.85	51.38	41.06	51.5		
Ъ	Chain	30.27	31.1	32.47	43.28'	40.17	42.64	35.86			
7	SM	30.8	35.28	38.24	41.92	39.2	41.6	47.2	51.2		
Ā	Chain	28.32	31.92	32.96	35.36	38.4	37.6	28.8			

 Table B.15 Steps for DASUD, SID, GDE and AN considering likely and pathological initial load

 distributions for hypercubes attending to the initial distribution patterns and shapes

Torus (steps - by shapes)											
	Shape		likely di	stributions	S .	pathological distributions					
		25%	50%	75%	100%	25%	50%	75%	n-1		
D D	SM	26.22	37.32	43.86	51	43	56	65.2	68		
DAS	Chain	18.78	19.68	22.18	25.32	34.6	39.6	31.2			
٥	SM	6.24	11.88	15.58	19.68	12.8	23.6	35	38.6		
SI	Chain	4.26	6.3	6.92	8.54	10.4	14.6	9.8			
ЭЕ	SM	51.21	51.76	53.05	54.85	67.85	69.31	70.73	70.4		
G	Chain	44.25	46.78	48.79	51.09	64.38	66.3	68.3			
z	SM	23.9	27.32	30.48	32.5	34	35.8	37.2	42.4		
A	Chain	20.96	24.2	25.88	28.06	30.2	36	30.6			

 Table B.16 Load units (u) for DASUD, SID, GDE and AN considering likely and pathological initial load

 distributions for torus attending to the initial distribution patterns and shap

A new distributed diffusion algorithm for dynamic load-balancing in parallel systems

Appendix C

Scalability of DASUD: complementary figures

Figure C.1 Influence of the problem size in the global dif_max as the load-balancing process goes on for a 3-dimensional hypercube for likely (a) and pathological (b) initial load distributions.

Figure C.2 Influence of the problem size in the global dif_max as the load-balancing process goes on for a 7-dimensional hypercube for (a) likley and pathological (b) initial load distributions.

Figure C.3 Influence of the problem size in the global dif_max as the load-balancing process goes on for a 3x3 torus for likely (a) and pathological (b) initial load distributions.

Figure C.4 Influence of the problem size in the global dif_max as the load-balancing process goes on for a 11x1 torus for likely (a) and pathological (b) initial load distributions.

(a)

Figure C.5 Influence of the problem size in the global standard deviation as the load-balancing process goes on for a 3-dimensional hypercube for likely (a) and pathological (b) initial load distributions.

(a)

Figure C.6 Influence of the problem size in the global standard deviation as the load-balancing process goes on for a 7-dimensional hypercube for likely (a) and pathological (b) initial load distributions.

Appendix C

(a)

Figure C.7 Influence of the problem size in the global standard deviation as the load-balancing process goes on for a 3x3 torus for likely (a) and pathological (b) initial load distributions.

Figure C.8 Influence of the problem size in the global standard deviation as the load-balancing process goes on for a 11x11 torus for pathological initial load distributions.

A new distributed diffusion algorithm for dynamic load-balancing in parallel systems

Appendix D

Enlarging the domain (d_s -DASUD): complementary figures and tables

Figure D.1 Global load standard deviation versus time for a 3-dimensional hypercube varying ds from 1 to 3 for likely initial load distributions.

Figure D.2 Global load standard deviation versus time for a 3-dimensional hypercube varying ds from 1 to 3 for pathological initial load distributions.

Figure D.4 Global load standard deviation versus time for a 4-dimensional hypercube varying ds from 1 to 4 for likely initial load distributions.

Figure D.5 Global load standard deviation versus time for a 4-dimensional hypercube varying ds from 1 to 4 for pathological initial load distributions.

Figure D.6 Global load standard deviation versus time for a 5-dimensional hypercube varying ds from 1 to 5 for pathological initial load distributions.

Figure D.7 Global load standard deviation versus time for a 6-dimensional hypercube varying ds from 1 to 6 for likely initial load distributions.

Figure D.8 Global load standard deviation versus time for a 6-dimensional hypercube varying ds from 1 to 6 for pathological initial load distributions.

Figure D.9 Global load standard deviation versus time for a 7-dimensional hypercube varying ds from 1 to 7 for likely initial load distributions.

Figure D.10 Global load standard deviation versus time for a 7-dimensional hypercube varying ds from 1 to 7 for pathological initial load distributions.

Figure D.11 Global load standard deviation versus time for a 3x3 torus varying ds from 1 to 2 for likely initial load distributions.

Figure D.12 Global load standard deviation versus time for a 3x3 torus varying ds from 1 to 2 for pathological initial load distributions.

Figure D.13 Global load standard deviation versus time for a 4x4 torus varying ds from 1 to 4 for likely initial load distributions.

Figure D.14 Global load standard deviation versus time for a 4x4 torus varying ds from 1 to 4 for pathological initial load distributions.

Figure D.15 Global load standard deviation versus time for a 6x6 torus varying ds from 1 to 6 for pathological initial load distributions.

Figure D.16 Global load standard deviation versus time for a 8x8 torus varying ds from 1 to 8 for likely initial load distributions.

Figure D.17 Global load standard deviation versus time for a 8x8 torus varying ds from 1 to 8 for pathological initial load distributions.

Figure D.18 Global load standard deviation versus time for a 11x11 torus varying ds from 1 to 10 for likely initial load distributions.

Figure D.19 Global load standard deviation versus time for a 11x11 torus varying ds from 1 to 10 for pathological initial load distributions.

Figure D.20 Global maximum load difference versus load-balancing steps for a 3-dimensional hypercube for likely (a) and pathological (b) initial load distribution for all possible domain scopes.

Figure D.21 Global maximum load difference versus load-balancing steps for a 4-dimensional hypercube for likely (a) and pathological (b) initial load distribution for all possible domain scopes.

Figure D.22 Global maximum load difference versus load-balancing steps for a 5-dimensional hypercube for likely pathological initial load distribution for all possible domain scopes.

Figure D.23 Global maximum load difference versus load-balancing steps for a 6-dimensional hypercube for likely (a) and pathological (b) initial load distribution for all possible domain scopes.

Figure D.24 Global maximum load difference versus load-balancing steps for a 7-dimensional hypercube for likely (a) and pathological (b) initial load distribution for all possible domain scopes.

Figure D.25 Global maximum load difference versus load-balancing steps for a 3x3 torus for likely (a) and pathological (b) initial load distribution for all possible domain scopes.

Figure D.26 Global maximum load difference versus load-balancing steps for a 4x4 torus for likely (a) and pathological (b) initial load distribution for all possible domain scopes.

Figure D.27 Global maximum load difference versus load-balancing steps for a 6x6 torus for pathological initial load distribution for all possible domain scopes.

Figure D.28 Global maximum load difference versus load-balancing steps for a 8x8 torus for likely (a) and pathological (b) initial load distribution for all possible domain scopes.

Hypercube		Pathological distributions									
si	tep	0		4		7					
d	ds	stdev	stdev	%	t_off	stdev	%	t_off			
2	1	558,30	31,82	94.3	19711,69	6,92	98.7	4806,29			
5	2	603,99	0,93	99,8	1009,13	0,35	99.9	393!59			
	3	558,30	1,07	99.8	1075,80	0,40	99.9	444,81			
	1	673,35	71,16	89,43	61328,18	21,83	96.75	21607,44			
4	2	673,35	12,02	98,2	21585,52	5,29	99.2	10476,32			
	3	673,35	3,71	99.44	7304,62	3,17	99.5	6950,46			
	4	673,35	3,20	99.5	6334,13	2.9 7)	995	6438;94			
	1	832,23	104,82	87.4	117309,30	39,96	95.1	51336,61			
	2	832,23	42,15	94.9	133227,72	15,87	98.1	55470,01			
5.	3	832,23	6,92	99.16	26240,12	5,87	99.2	24723,12			
	4	832,23	6,21	99.25	25025,83	5,4%	99.3	24714,06			
	5	832,23	6,80	99.18	27282,62	6,64	99.2	30067,25			
	1	1054,37	157,18	85.09	242681,99	67,72	93.57	119867,79			
	2	1054,37	68,05	93.5	390768,62	31,05	97.05	192731,23			
6	3	1054,37	13,16	98.75	94681,99	8,52	99 .1	67979,50			
	4	1054,37	11,15	93.9	87244 57	10,91	98.9	96445,76			
	5	1054,37	11,77	98.8	94333,90	11,57	98.9	105509,14			
	6	1054,37	14,33	98.6	113508,29	14,26	98.64	128854,43			
	1	1366,76	188,58	86.29	440453,11	75,78	94.4	199579,13			
	2	1366,76	92,47	93.23	1009296,2	48,01	96.4	555034,01			
7	3	1366,76	28,20	97.9	390630,63	16.73	98.8	240758,66			
	4	1366,76	23,96	98.2	366006,73	23,20	98.3	401729,34			
	5	1366,76	16,93	938	255869,65	15,75	98.8	290876,91			
	6	1366,76	35,08	97.43	566494,64	34,96	97.4	654147,92			
	7	1366,76	36,23	97.3	582411,02	36,19	97.3	674370,43			

Table D.1 Standard deviation, unbalance reduction percentage and trade-off between balance degreeand time for hypercube topologies and for all possible ds at different load-balancing steps forpathological initial load distributions

Torus		Pathological distributions								
step		0.		4		7				
nxn	ds	stdev	stdev	%	t_off	stdev	%	t_off		
22	1	472,63	18,25	96.1	8454,31	4,90	98.9	2643,55		
3X3	2	472,63	1,22	9917	751,06	0186	99!8	618,02		
	1	673,35	71,19	89.42	61356,88	22,02	96.7	21791,54		
4x4	2	673,35	12,02	98.2	14403,57	5,27	99.2	7168,65		
	3	673,35	3,71	99.4	5659,23	3,11	99.5	5379,76		
	4	673,35	3120	9915	5595;36	291	9915	5757,87		
	1	768,79	172,30	77.5	223968,46	114,79	85.06	175384,77		
	2	768,79	71,84	90.6	143341,99	31,26	95.9	71076,96		
6x6	3	768,79	14,77	98.1	38272,02	8,06	98.9	24275,51		
	4	768,79	7,41	99.03	22071198	6,39	99.1	22623,16		
	5	768,79	8,34	98.9	26672,36	7,12	99.07	27619,37		
	6	768,79	4,09	99146	13140,15	3,88	99.4	15129,09		
	1	1054,37	277,27	73.7	612801,36	213,72	79.73	544451,70		
	2	1054,37	152,70	85.51	533387,97	96,20	90.8	372905,83		
8x8	3	1054,37	62,39	94.08	287047,03	30,34	97.1	160189,13		
	4	1054,37	23,53	[,] 97.7	129665,01	14,62	98.61	94582,26		
	5	1054,37	11,21	98.9	72062,08	9,37	99.1	72118 55		
	6	1054,37	10,477	99	74145,66	10,05	99.04	87118,93		
	-7	1054,37	11,73	98.88	87002,29	11,53	98.9	105536,68		
	8	1054,37	14,33	98.6	105671,57	14,26	98.6	130574,54		
	1	1410,67	405,38	71.26	1566743,1	336,40	76.1	1468932,65		
	2	1410,67	263,82	81.29	1650700,6	198,90	85.9	1357862,45		
	3 .	1410,67	157,94	88.8	1273130,6	103,84	92.6	939250,97		
11x11	4	1410,67	90,06	92.61	872161,75	51,31	96.3	573573,45		
	5	1410,67	47,06	96.6	546777,20	29,11	97.9	400616,91		
	6	1410,67	27,13	98.07	368469,49	20,31	98.5	337224.70		
	7	1410,67	19,63	98.6	300654;06	18.38	98.7	351409,98		
	8	1410,67	19,11	98.6	317752,10	18,91	98.65	399305,73		
	9	1410,67	25,03	98.2	421880,90	24,91	98.2	529532,55		
	10	1410,67	24,62	98.25	444597,19	24,51	98.2	578157,20		

Table D.2 Standard deviation, unbalance reduction percentage and trade-off between balance degree and time for torus topologies and for all possible d_s at different load-balancing steps for pathological initial load distributions

