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Appendix B 

Control of an isothermal chemical 
reactor 
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Figure B.1: Isothermal chemical reactor with variable height 

In this appendix, the min-max GPCco suggested in Chapter 4 is tested on the 

isothermal chemical reactor displayed in Fig.B.l. An overview of chemical reactors can 

be found in (Luyben, 1990). 

In this reactor, a chemical A reacts producing sorne chemical B and the ternperature 

inside the tank is assumed constant, hence the narne isothermal. A (volurnetric) ftow Fa 

enters the tank with an initial concentration e Aa of the product A, and an output fiow 

F is obtained, composed by a mixture of the chemicals A and B. The concentrations of 

1 



11 Control of an isothermal chemical reactor 

A and B, CA and CB respectively, are assumed uniform within the reactor. The height 

and the volurne of liquid in the tank are variable and reach the steady-state value when 

the input and the output flows become identical, i. e. F = Fo. The control objective is 

to achieve a specified setpoint of the concentration C B by rnanipulating the input flow 

Fo, satisfying the input and output constraints Fo ?: O and CB S Cil. 

The transformation of A into B is determined by the reaction rate k, which can be 

computed frorn the Arrhenius equation: 

where ko is a constant, EA is the activation energy, T" is the absolute ternperature in the 

tank and R is the perfect-gas constant. The output flow of the tank F is proportional 

to the square root of the pressure drop in both sides of the pipeline, which reduces to 

the formula 

F={ 
for sorne constant KF. 

o if h < ho, 
KFVh - ho if h ?: ho, 

The height h dynamics can be easily obtained from the input and output flows. Let 

V = Ah denote the volurne of liquid in the tank, where A is the are a of the base and 

h is the fluid height, then it follows that 

Finally, the mass balance equations can be obtained, from the mass conservation 

principIe, as 

dAdA . 
dt = FOGAO - FCA - AhkCA1 

dAdB dt = -FCB + AhkGA1 

(B.l) 
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where MA and MB denote the masses of A and B respectively and AhkGA is the 

quantity of A which reacts giving the substance B. Now, using the relation MA = VGA , 

the derivative of MA can be written as 

dMA = dVGA = C dV V dCA = C A dh V dGA = G (F. _ F) V dCA 
dt dt A dt + dt A dt + dt A o + dt' 

and, combining this expression with eqn.B.l, it follows that 

dCA 
AhTt = FOGAO - FCA - AhkGA - (Fo - F)GAl 

= FoGAO - FoGA - AhkGA' 

Likewise, the mass balance of B yields the equation 

In summary, the dynamics of the system depicted in Fig.B.1 are provided by the 

following differential and algebraic equations: 

dGA 
AhTt = FOGAO - FOGA - AhkCA, 

k = koe-EAIRT" 

dCB 
AhTt = -FoCB + AhkCAl 

dh 
A dt = Fo - F, 

F _ { O if h < ho, 
- J(pVh - hO if h > ho. 

The following parameters have been used for this example: J(p = 19.9360, ko = 6700 

h-1, EA = 25000 kJ/kmole, 11 = 300 K, R = 8.414 kJ/kmoleK, GAO = 8 kmole/m3 

and ha = 10 m. The non-linear dynamics of such a reactor are determined by the 

products of the different state variables in the differential equations. In addition, note 

that the output flow is gíven by the non-linear law F = J(p(h - ho)i. 

Now, a linearised model about the steady-state point CA = 4 kmole/m3, CB = 4 

kmole/m3, Ji :: 15 m anrl Fo = 44.5782 m3/h is obtained. Such a morlel, discretised 



IV Control of an isothermal chemical reactor 

with a sampling time of Ts :;:;::: 1 h and adding aZOR at the input, becomes the transfer 

function 

-1 q-l B(q-l) -O.0173q-l O.0149q-2 
G(q )= A(q-l) :;:;:::1-1.1922q-l+0.3534q-2 1 

which is used by the MPC controllers oí this example. 
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(a) T = T2 (b)T=Ts 

Figure B.2: Input/Output responses for the T-based QGPCf (solid), and output 
constraint (dotted) for T:;:;::: T2 and T:;:;::: Ts 
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Figure B.3: Input/Output responses for the T-básed QGPCf (solid), and output 
constraint (dotted) for T :;:;::: T4 

In the next few experiments, the setpoint of CB is changed from 4 to 4.5 kmole/m3 

at time t :;:;::: 5 h (samples), subject to the constraints Fa ;?: O and CB :s; 4.6 kmole/m3 
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for all t. Note that the output constraint is placed quite near the setpoint, what makes 

it difficult to fulfil the specifications. In addition a disturbance affects the temperature 

T¡ (and consequently the reaction dynamics k) at time t = 70 h (samples). This 

disturbance is determined by T¡ = 300 + 8(1 - e70
-

t
), i.e. at time t = 71 h the 

temperature is a bit greater than 305 K whereas at time t = 75 h it reaches the 

steady-state value Ti = 308 K. 

Both the T-based and the min-max QGPCf have been tested with the tuning 

settings [Nu , p] = {5, 1]. For the T -based controller 1 four classical choices of the T 

polynomial, namely TI = 1, T2 = 1 - 0.9q-1, T3 = A and T4 = A(l - 0.9q-I), have 

been used, whereas the min-max controller has been implemented with the tuning 

settings Mo = 10, f-L = 0.9, 0-(5) = -0.15 and 0+(5) = 0.15. 
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(a) Input/Output responses for the min­
max QGPCf' (solid) and output con­
straint (dotted) 
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(b) Global uncertainty (solid) and uncer­
tainty bounds (dotted) 

Figure B.4: Closed-Ioop behaviour for the min-max QGPC~ 

, .. 

The results obtained with the T-based controllers are shown in Fig.B.2 and B.3. 

The optimisation problem with T = TI becomes unfeasible shortly after the setpoint 

change, leading to a permanent oscillation (instability) with many constraint violations 

and thus it is not included in the figure. It is worth pointing out that all these choices 



VI Control of an isothermal chemical reactor 

of the polynomial T produce constraint violations although the internal predictions 

always meet the input/output constraints. These violations occur both after the setpoint 

change and the disturbance in 71. 

Fig.B.4(a) shows that the min-max controller reaches the setpoint and satisfies 

the constraint specifications even after the disturban ce in 71. It can be observed in 

Fig.B.4(b) that when the disturbance affects the process the measurements of (}(t) 

make it possible to modify the uncertainty bands. Despite the oscillations, the uncer­

tainty signal is kept between the bounds, leading to constraint satisfaction. The final 

convergence of the lower and upper bands to the steady-state value of (}(t) leads to 

offset-free setpoint tracking. 



Appendix e 

Control of a non-isothermal 
continuous stirred-tank reactor 

The min-max and the T-based QGPCr have been tried on a non-isothermal eSTR. 

This process is similar to the one presented by Zheng (1999), but the dynamics of the 

temperature of the coolant in the jacket have been considered. Similarly as for the 

reactor presented in Appendix B, a chemical product A reacts producing B, but now 

this reaction is exothermic and gives rise to heat energy which makes the temperature 71 

within the tank increase. In order to keep the temperature within the reactor constant 

(and safe), the tank is covered by a jacket in which a coolant absorbs the heat produced 

by the reaction. This kind of reactor is designed in such a way that the volume of liquid 

in the tank Ví and in the jacket v;. are kept constant. The control airn is to change the 

tank's temperature 71 manipulating the coolant flow Fr satisfying input (Fr ~ O) and 

output (71 S T/) constraint specifications. 

The equatíons describing this process are given below: 

dCA VTt = FCAO - FCA - VkCA , 

k = koe-EA/RT¡, 

d7i 
V pC di = F pC(71o -71) - U A(7i - Tr) + b..HVkC Al 

v;. Pr Cr d~r = FrPrCr(Tro - Tr) + UA(1l- Tr), 

VII 
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Figure C.1: Input/Output responses for the T~based QGPCr' (solid), and output 
constraint (dotted) 

where F = 1 m3/min, V = 1 m3, ko = 1010 min-l, EA/R = 8330.1 K, p = 106 g/m3, 

C :::: 1 cal/gK, 710 = 323 K, U A = 5.34· 106 cal/K, !lH = 1.3· 108 cal/kmole, Vr = 1 

m3
, Pr = 106 g/m3 , Cr = 1 cal/gK and Tro = 293 K. A linearised model about the 

operating point 71 = 394 K, CA = 0.264 kmole/m3, Tr = 365.0333 K and Fr = 2.1474 

m3/min has been obtained which, discretised with a sampling time of Ts = 0.15 min 

and inc1uding a ZOH at the input, becomes 

G -1 _ q-l B(q-l) _ -3.9222q-l - 2.3365q-2 + 1.1538q-3 
(q ) - A(q-l) - 1-1.9467q-l + 1.2875q-2 - 0.2481q-3· 
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(a) InputjOutput responses for the min­
max QGPCr (salid) and output con­
straint (dotted) 
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(b) Global uncertainty (solid) and unccr­
tainty bounds (dotted) 

Figure C.2; Closed-Ioop behaviour of the rnin-rnax QGPCr 

IX 

In the following experirnents, the setpoint is changed from Ti == 394 to 460 K, and 

the constraints Fr ;::: O and 11 $ 462 K are specified. For nominal performance, the 

tuning knobs [N,!) p] == {5, 10] are chosen. The T-based QGPCr has been tuned with 

four classical choices of T, again T¡ == 1, T2 == 1-0.9q-l, T3 == A and T4 = A(1-0.9q-l), 

have been used, whereas the min-max controHer has been implemented with the tuning 

settings Me == 10, ¡t == 0.9, 9-(5) = -7 and 9+(5) = 7. 

Fig.C.l shows that aH the T-based controllers, except that which uses T == TI, 

break the output constraint. Note that for T = T}, the controller is even unable to 

lead the output to the setpoint and the input signal shows a permanent high-frequency 

oscillation. AH the other choices of T produce input saturation at Fr = O, and the 

output constraint is never respected, although it is only violated by somewhat more 

than 1 K with T = T2• 

On the other hand, the min-max QGPCr is able to satisfy the input/output con­

straint specifications, as shown in Fig.C.2(a), and the output finally reaches the set­

point when the uncertainty bands converge to the measurements of the signal 9(t) in 
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Fig.C.2(b). Th(~ whole simuiation (lOO sampling instnnts) takes 46,7080 seconds, i.e. 

0.4671 seconds per sampUug instant, induding the simulation oí tite systcm, for a 133 

MHz emnputür. 


