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Appendix B

Control of an isothermal chemical
reactor

hy

F

Figure B.1: Isothermal chemical reactor with variable height

In this appendix, the min-max GPC® suggested in Chapter 4 is tested on the

isothermal chemical reactor displayed in Fig.B.1. An overview of chemical reactors can

be found in (Luyben, 1990).

In this reactor, a chemical A reacts producing some chemical B and the temperature
inside the tank is assumed constant, hence the name isothermal. A (volumetric) flow F,
enters the tank with an initial concentration Cyq of the product A, and an output flow

F is obtained, composed by a mixture of the chemicals A and B. The concentrations of

I



1I Control of an isothermal chemical reactor

A and B, Cy4 and Cp respectively, are assumed uniform within the reactor. The height
and the volume of liquid in the tank are variable and reach the steady-state value when
the input and the output flows become identical, i.e. F' = Fy. The control objective is
to achieve a specified setpoint of the concentration Cp by manipulating the input flow

Fy, satisfying the input and output constraints Fy > 0 and Cp < C.

The transformation of A into B is determined by the reaction rate k, which can be

computed from the Arrhenius equation:

k = koe"—EA/R’I},

where kq is a constant, F 4 is the activation energy, T} is the absolute temperature in the
tank and R is the perfect-gas constant. The output flow of the tank F' is proportional
to the square root of the pressure drop in both sides of the pipeline, which reduces to -

the formula

F= 0 if h < hy,
=\ Kevi—Fg ifh> h,

for some constant Kr.

The height h dynamics can be easily obtained from the input and output flows. Let
V = Ah denote the volume of liquid in the tank, where A is the area of the base and

h is the fluid height, then it follows that

v dh
— =AZ =F-F

Finally, the mass balance equations can be obtained, from the mass conservation
principle, as 4

%% = FyCo — FCy — AhkCa,

dMp
dt

(B.1)

=—-FCpg+ AhkCA,
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where M4 and Mp denote the masses of A and B respectively and AhkC4 is the
quantity of A which reacts giving the substance B. Now, using the relation My = VCy4,

the derivative of M4 can be written as

dMy _dVC, _ dV . _dCa . dh  _dCa _ dC
G =@ g Vg = CaAg +Vgm =GB - F) + V-2,

and, combining this expression with eqn.B.1, it follows that

Ah%ﬁ = FyCao — FCp — AhkCa ~ (Fy — F)Cl,

= FyCuo — FoCy — ARKC,.

Likewise, the mass balance of B yields the equation

Ah% = —FyCp + AhkCy.

In summary, the dynamics of the system depicted in Fig.B.1 are provided by the

following differential and algebraic equations:

Ah«‘%‘- = FyCpo — FoCs — ARKCy,
k= koe™BA/RTL
Ahi%- = —FyCp + ARKkCy,
dh
Az =F-F,
pof0 if h < ho,
“\ KpvE =T ifh> hy.

The following parameters have been used for this example: Kr = 19.9360, ko = 6700
h-1, B4 = 25000 kJ/kmole, T} = 300 K, R = 8.414 kJ/kmoleK, C4o = 8 kmole/m?
and hg = 10 m. The non-linear dynamics of such a reactor are determined by the
products of the different state variables in the differential equations. In addition, note

that the output flow is given by the non-linear law F = Kg(h — hg)‘f?.

Now, a linearised model about the steady-state point C4 = 4 kmole/m?®, Cp = 4

kmole/m?3, & = 15 m and F; = 44.5782 m?/h is obtained. Such a model, discretised
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with a sampling time of T; = 1 h and adding a ZOH at the input, becomes the transfer

function

Glg™) =

¢ 'B{g™") _ —0.0173¢"! +0.0149¢2

A(g™)

1—1.1922¢71 + 0.3534¢~%’

which is used by the MPC controllers of this example.
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Figure B.2: Input/Output responses for the T-based QGPC{® (solid), and output
constraint (dotted) for T =Ty and T =T}
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Figure B.3: Input/Output responses for the T-based QGPCS® (solid), and output
constraint (dotted) for T = T}

In the next few experimenté, the setpoint of Cp is changed from 4 to 4.5 kmole/m3

at time ¢ = 5 h (samples), subject to the constraints F; > 0 and Cp < 4.6 kmole/m®



Vv

for all ¢. Note that the output constraint is placed quite near the setpoint, what makes
it difficult to fulfil the specifications. In addition a disturbance affects the temperature
T, (and consequently the reaction dynamics k) at time ¢ = 70 h (samples). This
disturbance is determined by T} = 300 + 8(1 — €™!), i.e. at time ¢t = 71 h the
temperature is a bit greater than 305 K whereas at time ¢ = 75 h it reaches the

steady-state value T; = 308 K.

Both the T-based and the min-max QGPC{° have been tested with the tuning
settings [Ny, p] = [6,1]. For the T-based controller, four classical choices of the T
polynomial, namely T} = 1, T = 1 — 0.9¢”, T3 = A and Ty = A(1 — 0.9¢7!), have
been used, whereas the min-max controller has been implemented with the tuning

settings My = 10, £ = 0.9, 6~ (5) = —0.15 and 6+ (5) = 0.15.
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Figure B.4: Closed-loop behaviour for the min-max QGPC{®

The results obtained with the T-based controllers are shown in Fig.B.2 and B.3.
The optimisation problem with T = Ty becomes unfeasible shortly after the setpoint
change, leading to a permanent oscillation (instability) with many constraint violations

and thus it is not included in the figure. It is worth pointing out that all these choices
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of the polynomial T produce constraint violations although the internal predictions
always meet the input/output constraints. These violations occur both after the setpoint

change and the disturbance in T7;.

Fig.B.4(a) shows that the min-max controller reaches the setpoint and satisfies
the constraint specifications even after the disturbance in 7;. It can be observed in
Fig.B.4(b) that when the disturbance affects the process the measurements of 6(t)
make it possible to modify the uncertainty bands. Despite the oscillations, the uncer-
tainty signal is kept between the bounds, leading to constraint satisfaction. The final
convergence of the lower and upper bands to the steady-state value of (¢) leads to

offset-free setpoint tracking.



Appendix C

Control of a non-isothermal
continuous stirred-tank reactor

The min-max and the T-based QGPC{® have been tried on a non-isothermal CSTR.
This process is similar to the one presented by Zheng (1999), but the dynamics of the
temperature of the coolant in the jacket have been considered. Similarly as for the
reactor presented in Appendix B, a chemical product A reacts producing B, but now
this reaction is exothermic and gives rise to heat energy which makes the temperature T}
within the tank increase. In order to keep the temperature within the reactor constant
(and safe), the tank is covered by a jacket in which a coolant absorbs the heat produced
by the reaction. This kind of reactor is designed in such a way that the volume of liquid
in the tank V; and in the jacket V, are kept constant. The control aim is to change the
tank’s temperature T; manipulating the coolant flow F, satisfying input (F, > 0) and

output (7; < T}") constraint specifications.

The equations describing this process are given below:

V%C,% = FCA() - FCA b VkCA,
k= ]CQGWEA/RTI,
dT;
VpC—r = FpC(To ~ To) = UA(Ty = Tr) + AHVKC,,
dT,
V;prcrg = Fp.Co(To - T,) + UA(T, — T1),

Vil
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Figure C.1: Input/Output responses for the T-based QGPC{® (solid), and output
constraint (dotted)

where F' =1 m®/min, V = 1 m®, ky = 10'® min~!, E4/R = 8330.1 K, p = 10° g/m3,
C =1cal/gK, Tip = 323 K, UA = 5.34- 10° cal/K, AH = 1.3 - 10® cal/kmole, V, = 1
m?, p, = 10 g/m®, C, = 1 cal/gK and Ty, = 293 K. A linearised model about the
operating point 7} = 394 K, C4 = 0.264 kmole/m?, T, = 365.0333 K and F, = 2.1474
m®/min has been obtained which, discretised with a sampling time of T, = 0.15 min
and including a ZOH at the input, becomes

Glg™) = ¢ 'B(q7") _ _—3.9222¢7" — 2.3365¢7% 4 1.1538¢3 ‘
Alg™") — 1-1.9467¢-! +1.2875¢~2 — 0.2481¢~3
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Figure C.2: Closed-loop behaviour of the min-max QGPC{®

In the following experiments, the setpoint is changed from T; = 394 to 460 K, and
the constraints . > 0 and T; < 462 K are specified. For nominal performance, the
tuning knobs [Ny, p] = [5, 10] are chosen. The T-based QGPC{® has been tuned with
four classical choices of T, again Ty = 1, T, = 1-0.9¢7!, Ts = Aand Ty = A(1-0.9¢71),
have been used, whereas the min-max controller has been implemented with the tuning

settings Mp = 10, = 0.9, 67(5) = ~7 and 6*(5) = 7.

Fig.C.1 shows that all the T-based controllers, except that which uses T' = Tj,
break the output constraint. Note that for T = T}, the controller is even unable to
lead the output to the setpoint and the input signal shows a permanent high-frequency
oscillation. All the other choices of T produce input saturation at F, = 0, and the

output constraint is never respected, although it is only violated by somewhat more

than 1 K with T' = T5.

On the other hand, the min-max QGPCY° is able to satisfy the input/output con-
straint specifications, as shown in Fig.C.2(a), and the output finally reaches the set-

point when the uncertainty bands converge to the measurements of the signal 8(t) in
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Fig.C.2(b). The whole simulation (100 sampling instants) takes 46.7080 seconds, i.e.
0.4671 seconds per sampling instant, including the simulation of the system, for a 133

MHz computer,



