
A Dynamic Adaptive Framework for
improving Case-Based Reasoning System

Performance

Fernando Orduña Cabrera

Computer Science Department

Universitat Politècnica de Catalunya · BarcelonaTech

Ph.D. Programme in Artificial Intelligence

Ph.D. Thesis presented for obtaining the degree of Doctor

Advisor: Dr. Miquel Sànchez-Marrè

2015

 2

3

Preface

This thesis document is the document which presents the student Fer-
nando Orduña Cabrera for obtaining the degree of doctor by the Uni-
versitat Politècnica de Catalunya · BarcelonaTech, in the Doctoral Pro-
gramme of Artificial Intelligence.

 4

5

Acknowledgments

First, I want to thank my supervisor for the support needed to realize
this project, the large amount of overtime that he addressed to me.
Thanks for your patience and support, and by the enthusiasm and dedi-
cation. I also want to thank CONACYT for the support with grant
number 205684, also wish to thank the "Faculty Development Program,
PRODEP" for their support to the thesis writing scholarship "DSA /
103.5 / 15/6635". And all those who were directly and indirectly in-
volved in this project. Thanks.

 6

7

Abstract
An optimal performance of a Case-Based Reasoning (CBR) sys-

tem means, the CBR system must be efficient both in time and in size,
and must be optimally competent. Efficiency in time requires that CBR
tasks must be carried out in a fast way: retrieval time, adaptation/reuse
time, evaluation/revise time and learning/retain time should be as low
as possible. From these tasks, usually the retrieval task is taking longer
than the other ones. Therefore, the efficiency in time is closely related
to an efficient and optimal retrieval process over the Case Base/Case
Library of the CBR system. Efficiency in size means that the Case Li-
brary (CL) size should be minimal. Thus, a minimum number of cases
must be stored in the CL. Therefore, the efficiency in size is closely
related to optimal case learning policies, optimal meta-case learning
policies, optimal case forgetting policies, etc. On the other hand, the
optimal competence of a CBR system means that the number of prob-
lems that the CBR system can satisfactorily solve must be maximum.

To improve or optimize all three dimensions in a CBR system at the
same time is a difficult challenge because they are interrelated, and it
becomes even more difficult when the CBR system is applied to a dy-
namic domain or continuous domain (data stream). In this thesis work,
a dynamic adaptive framework is proposed to improve the CBR system
performance coping especially with reducing the retrieval time, increas-
ing the CBR system competence, and maintaining and adapting the CL
to be efficient in size, especially in continuous domains.

One of the main contributions of the work is the proposal of a Dynamic
Adaptive Case Library (DACL) framework. A DACL is composed of a
set of dynamically built case libraries to cope with the heterogeneity
and complexity of real domains. It learns cases and organizes them into
dynamic cluster structures. The DACL is able to adapt itself to a dy-
namic environment, where new clusters, meta-cases or prototype of
cases, and associated indexing structures (discriminant trees, k-d trees,
etc.) can be formed, updated, or even removed. DACL offers a possible
solution to the management of the large amount of data generated in an
unsupervised continuous domain (data stream). In addition, we propose
the use of a Multiple Case Library (MCL), which is a static version of a
DACL, with the same structure but being defined statically to be used

 8

in supervised domains. The core of the retrieval process in both MCL
and DACL is the matching of the current/query case against a set of
prototype cases called meta-cases, to select the case library to search in.
In a MCL, the number of meta-cases and its corresponding case librar-
ies is fixed a priori according to the different class labels, rather than
dynamically like in a DACL. The structure of a DACL/MCL is orga-
nized hierarchically at different levels: the meta-case, the prototype of a
concrete cluster of cases and the indexing hierarchical structures (dis-
criminant trees, k-d trees, etc.) that represent the way that all the cases
in a given cluster are organized.

The framework proposed is flexible enough to allow the implementa-
tion of many different retrieval techniques, because of the facilities that
the Multiple Case Library (MCL) and the Dynamic Adaptive Case Li-
brary (DACL) offers for indexing.

The thesis work proposes some techniques for improving the indexa-
tion and the retrieval task. The most important indexing method is the
NIAR k-d tree algorithm, which improves the retrieval time and compe-
tence, compared against the baseline approach (a flat CL) and against
the well-known techniques based on using standard k-d tree strategies.
In addition, a partial matching exploration technique is proposed. NIAR
k-d tree algorithm performs quite similar to the standard k-d tree select-
ing by discrimination the attributes through cycling the list of major
attributes, but differs of standard k-d tree approach in the technique of
selecting the split value. The Partial Matching Exploration (PME)
technique explores a hierarchical case library with a tree indexing-
structure aiming at not losing the most similar cases to a query case.
This technique allows not only exploring the best matching path, but
also several alternative partial matching paths to be explored. Both
techniques: NIAR k-d tree indexing structure and Partial Matching Ex-
ploration (PME) technique have been evaluated. The results show an
improvement in competence and time of retrieving of similar cases.
Through the experimentation tests done, with a set of well-known
benchmark supervised databases, it has been shown that the use of a
Multiple Case Library (MCL) embedding a NIAR k-d tree, and using
the additional strategy of PME to explore the indexing structure pro-
vides a very good approach both to improve the time efficiency and the
competence in CBR systems.

9

The dynamic building of prototypes in DACL has been tested in an un-
supervised domain (environmental domain) where the air pollution is
evaluated. Here, the prototypes are incrementally generated and man-
aged by the DACL. The core task of building prototypes in a DACL is
the implementation of a stochastic method for the learning of new cases
and management of prototypes. Therefore, it allows creating and man-
aging a DACL. The stochastic method works with two main moments,
the first moment guides the learning of new cases and decides where to
store the cases. The second moment evaluates the prototypes selecting
or building a new prototype. The proposed method for building proto-
types has been conducted using the database acquired in an air pollu-
tion environmental domain. The experimental results shown, that using
DACL in the environmental domain performs well and helps the ex-
perts to identify critical moments where the pollution is dangerous for
people.
Finally, the whole dynamic framework, integrating all the main pro-
posed approaches of the research work, has been tested in simulated
unsupervised domains. Several databases from the UCI Machine Learn-
ing repository were tested in an incremental way, as data streams are
processed in real life.

The conclusions outlined that from the experimental results, it can be
stated that the dynamic adaptive framework proposed (DACL/MCL),
jointly with the contributed indexing strategies and exploration tech-
niques, and with the proposed stochastic case learning policies, and
meta-case learning policies, improves the performance of standard
CBR systems both in supervised domains (MCL) and in unsupervised
continuous domains (DACL).

 10

11

Contents

Preface .. 3
Acknowledgments .. 5
Abstract .. 7
1 Introduction ... 19

1.1 Motivation ... 20
1.2 Issues of the work ... 23
1.3 Contributions .. 24
1.4 Thesis Organization .. 25

2 State of the Art ... 27
2.1 Case-Based Reasoning .. 27
2.1.1 Knowledge Organization .. 33
2.1.1.1 Case Representation ... 33
2.1.1.2 Case base Organization .. 38
2.1.1.2.1 Flat Memory ... 38
2.1.1.2.2 Hierarchical Organization .. 40
2.1.1.2.3 k-d Trees ... 41
2.1.2 The hyperball strategy with BWB and BOB tests................................. 46
2.2 Case Base Maintenance .. 50
2.2.1 Concepts about efficiency and competence .. 52
2.2.1.1 Efficiency ... 53
2.2.1.2 Competence .. 53
2.2.1.3 The Foundations of Competence .. 53
2.2.2 Maintenance Data Collection .. 56
2.2.3 Maintenance Execution ... 58
2.2.4 Categorizing Policies for CBM ... 59
2.2.5 Synthetic Analysis of CBM contributions .. 60
2.3 Introspective Reasoning .. 64
2.4 Stochastic Learning ... 66

 12

2.5 Continuous Domains ... 71
3 The proposed Dynamic Adaptive Framework ... 75

3.1 Dynamic Adaptive Case Library ... 78
3.1.1 The Case ... 79
3.1.2 The Meta-case ... 80
3.2 Multiple Case Library (MCL) ... 85

4 Improving the retrieval task ... 89
4.1 AvKd-Tree .. 89
4.2 NIAR k-d Tree .. 92
4.3 Partial Matching Exploration (PME) Technique 96

5 Improving the maintenance and learning of the Case Library 103
5.1 The Stochastic Learning Strategy ... 103
5.2 The Stochastic Learning Policy .. 107
5.3 Another Meta-case Learning Strategy .. 108
5.3.1 Building real meta-cases ... 109
5.4 Introspective tasks for optimal maintenance of the DACL 111
5.4.1 Introspective maintenance of the NIAR k-d tree 111
5.4.2 Introspective task to improve the learning of new cases 113

6 Experimental Evaluation and Results .. 115
6.1 Avkd-tree evaluation in exact-case search .. 118
6.2 NIAR k-d tree evaluation in exact-case search 123
6.3 Testing the Multi Case Library approach for similar-case search in

supervised domains ... 127
6.3.1 Experimental Settings ... 128
6.3.2 Experimental Results .. 129
6.3.3 Discussion of the results ... 133
6.3.3.1 Non-MCL strategies ... 133
6.3.3.2 MCL Strategies ... 135
6.4 Testing the Dynamic Adaptive Case Library (DACL) approach and

Stochastic Learning policies in unsupervised domains ... 138
6.4.1 The Domain and Experimentation Description 140
6.4.2 Discussion of Results .. 142
6.5 Testing incrementally the whole DACL Framework 147

13

6.5.1 Experimental Settings ... 147
6.5.2 Experimental Results .. 149
6.5.2.1 Evaluating the Accuracy in Iris and Balance databases 150
6.5.2.2 Analyzing the Iris database ... 151
6.5.2.3 Analyzing the Balance Database .. 152
6.5.3 Discussion of Results .. 154

7 Conclusions and Future Work ... 155
7.1 Conclusions ... 155
7.2 Future Work .. 157

Appendix A .. 159
References .. 161

 14

15

List of Figures

Fig. 1. CBR Cycle .. 29
Fig. 2. Conversational CBR Problem Solution Generic Process............................ 36
Fig. 3. A graph representation .. 37
Fig. 4. An example of a 2-d tree and its corresponding two-dimensional search

space ... 43
Fig. 5. BOB and BWB test basic ideas, from (Wess et al., 1993) 47
Fig. 6. BOB Tests and Minimal Virtual Bounds, extracted from (Wess et al., 1993).

 .. 48
Fig. 7. BWB tests and Maximal Virtual Bounds, extracted from (Wess et al.,

1993). .. 49
Fig. 8. Case Base Maintenance from Leake’s and Wilson Framework (Leake &

Wilson, 1998, 1999) and (Wilson & Leake, 2001) ... 51
Fig. 9. Environment of DACL/MCL.. 76
Fig. 10. DACL/MCL Methods ... 77
Fig. 11. DACL-CBR .. 77
Fig. 12. The Three-level Dynamic Adaptive Case Library structure. 78
Fig. 13. Learning new cases through the DACL framework 81
Fig. 14. Splitting step in the generation of a NIAR k-d tree 96
Fig. 15. Partial-matching exploration ... 97
Fig. 16. Mc/𝜌𝜌 virtual threshold representation ... 107
Fig. 17. Experimentation flowchart ... 117
Fig. 18. Comparison of retrieval time in the approaches 120
Fig. 19. Comparison of retrieval time .. 125
Fig. 20. Comparison of averaged success (%) across all databases for the class

label prediction in all the strategies .. 132
Fig. 21. Comparison of averaged CPU retrieval time (µs) across all databases for

the class label prediction in all the strategies minus S0 (baseline Flat Case Library)
 .. 133

Fig. 22. Increase of accuracy ... 134
Fig. 23. Reduction of accuracy .. 134
Fig. 24. Increase of accuracy in NIAR ... 137
Fig. 25. Iris meta-cases for sequential and random (1, 2, 7, 8, 20) arrival 151
Fig. 26. Iris meta-cases for sequential and random (3, 4, 5, 6, 9) arrival 152
Fig. 27. Balance meta-cases for sequential and random (1-5) arrival 152
Fig. 28. Balance meta-cases for sequential and random (6, 7, 8) arrival 153
Fig. 29. Balance meta-cases for sequential and random (9, 10) arrival 153

 16

17

List of Tables

Table 1. Contributions to CBM field part 1 ... 61
Table 2. Contributions to CBM field part 2. .. 62
Table 3. Contributions to CBM field part 3. .. 63
Table 4. Description of databases used in the experimentation. #Inst is to the total

number of instances in the database, #Cont means the total number of
continuous/numerical attributes in the database, #CatOrd mens the total number of
categorical ordered attributes, #CatNOrd means the total number of categorical non
ordered attributes and #Classes refers to the total number of different class labels in
the database. .. 118

Table 5. Average CPU Time for case retrieval .. 119
Table 6. Depth of trees generated using in approaches 121
Table 7. Distribution of expanded nodes by level in the approaches and compared

with the most compact possible binary tree, for the Car database 122
Table 8. Average CPU Time for case retrieval .. 124
Table 9. Depth of trees generated using both approaches 125
Table 10. Distribution of expanded nodes by level in both approaches and

compared with the most compact possible binary tree, for the Abalone database 126
Table 11. Average CPU Time (in µs) for case retrieval and average Success (in %)

in class label prediction for all the strategies, and for all the tested databases.......... 130
Table 12. Average CPU Time (in µs) for case retrieval and average Success (in %)

in class label prediction for all the strategies, and for all the tested databases
(continued from table 11). .. 131

Table 13. Average CPU Time (in µs) for case retrieval and average Success (in %)
in class label prediction for all the strategies, and for all the tested databases
(continued from table 12). .. 131

Table 14. Statistics of tables 11, 12 and 13. .. 132
Table 15. Time performance. .. 135
Table 16. Increase of the accuracy. ... 136
Table 17. Accuracy of MCL .. 138
Table 18. Number of Prototypes and the γ policy evaluation values. For each γ

policy value there is the number of cases of each prototype. 143
Table 19. Distance measures between the Mc’s obtained for γ=0.1 145
Table 20. Results of the different formulas assessment 145
Table 21. Standard Deviation of Prototypes .. 146
Table 22. List of tested databases along with experimentation details 149
Table 23. Mean precision values for Iris and Balance databases 150

 18

19

1 Introduction
Since the introduction of Case-Based Reasoning (CBR) principles

by Schank in (Schank 1974; Schank 1982) in late 70s, CBR has been consoli-
dating as a reliable reasoning paradigm in the Artificial Intelligence
field (Richter & Weber, 2013; López, 2013; López de Mántaras, 2005; Aamodt & Plaza,
2004; Kolodner, 1993). Several research works (Orduña and Sànchez-Marrè, 2008a,
2008b) have been proposing techniques/methods to use CBR as a solu-
tion for learning of experiences, and as a method to make an interpreta-
tion of the expert knowledge, translating the knowledge to CBR sys-
tems.

In the CBR literature (see for instance (Fornells et al. 2008)), for methodo-
logical purposes it is distinguished between Data-Intensive CBR sys-
tems (DI-CBR) and Knowledge-Intensive CBR systems (KI-CBR). DI-
CBR systems share characteristic features like extensive use of learning
from examples, spare use of domain knowledge and simpler case and
solution representations. They are different from the main features
shared by KI-CBR systems, like intensive use of domain knowledge,
complex case and solution structures and current developments being
now based on ontologies and description logics. Our approach falls
within the Data-Intensive CBR systems (DI-CBR) class, because in
continuous/dynamical domains usually the huge amount of data is
slightly more important than the domain knowledge. In our approach,
both the case problem description and the case solution are implement-
ed with a list of attribute-value pairs.

In this thesis work, a dynamic adaptive framework is proposed to im-
prove the CBR system performance coping especially with reducing the
retrieval time, increasing the CBR system competence, and maintaining
and adapting the case library to be efficient in size, especially in con-
tinuous domains. The framework proposed works for reasoning and
learning both in supervised domains and unsupervised domains. The
proposal is entitled as a Dynamic Adaptive Case Library Framework
(DACL).

A DACL is composed of a set of dynamically built case libraries. It
learns cases and organizes them into dynamic cluster and tree-indexing
structures. The DACL is able to adapt itself to a dynamic environment.

 20

The proposal offers a solution to the management of the large amount
of data incrementally generated in unsupervised domains. In addition, it
is proposed the use of a Multi-Case Library (MCL) for supervised do-
mains.

Both DACL and MCL aim to retrieve cases by matching the cur-
rent/query case against a set of prototype cases called meta-cases. The
structure of DACL/MCL is organized hierarchically at different levels:
the meta-case and the use of hierarchical indexing structures. Both
structures improve the proposed framework. One improvement is
showing flexibility enough to allow the implementation of many differ-
ent retrieval techniques. One of the main techniques proposed is a NIAR
k-d tree algorithm, which improves the retrieval time and competence.
Another technique is the Partial Matching Exploration (PME) tech-
nique. Those techniques have been evaluated. The results show an im-
provement in competence and time of retrieving of similar cases. Both
techniques combined provide a very good approach to improve the time
efficiency and competence in CBR systems.

Other contribution included in the framework is the dynamic building
of prototypes in DACL. These prototypes are incrementally generated
and managed by DACL. The technique aims to implement a stochastic
method for the learning of new cases and management of prototypes.
Others techniques are included in the proposal; those techniques im-
plement methods for building representative prototypes. All the tech-
niques proposed have been tested and the results indicates an improve-
ment of the performance of the standard CBR system both in super-
vised domains with MCL and in unsupervised continuous domains with
DACL.

1.1 Motivation

Case-Based Reasoning (CBR) systems solve new problems by re-
trieving and adapting the solutions to previously solved problems that
have been stored in a case library (Richter &Weber, 2013; López 2013; López de
Mántaras et. al., 2005, Aamodt and Plaza, 1994, Kolodner, 1993). Systems until now
have been used in different fields as it is mentioned in (Orduña and Sànchez-
Marrè, 2008b). CBR systems are a good tool for the experts interested in
management of knowledge in an automatic way. The work of Orduña
and Sànchez-Marrè in (Orduña and Sànchez-Marrè, 2008b) refers to several

21

fields where CBR systems have been used successfully, but there are
domains where CBR systems need to be more efficient. Continuous
domains are domains where is necessary to continuously work to im-
prove the CBR systems. Continuous domains are complex because they
generate large amount of information in a short time period.

Case Based Maintenance (CBM) is a Case-Based Reasoning subarea
where the community of CBR has been working with the aim of finding
better methods that improve the performance of the CBR cycle. In the
last years, several research works have proposed different methods to
handle the information in a CBR system. Some of these contributions
are detailed in (Jalali, 2014; Salamó, 2011; Orduña and Sànchez-Marrè, 2008c; Perner,
2006; Iglezakis et al., 2004; Portinale and Torasso, 2001; Smyth and Mckenna, 2001; Leake
and Wilson, 2000; Yang and Wu, 2000).

The performance of a CBR system is usually measured along two di-
mensions: efficiency and competence. Efficiency of a CBR system
means that the CBR system requires the minimal resources needed to
solve any case in the domain of application. The resources are twofold:
the time required for solving a case, and the size of the case library
needed to solve a case. Therefore, efficiency is related both to the case
solving time and to the size of the case library. The competence of a
CBR system refers to the range of problems that can be satisfactorily
solved, for instance see (Salamó & López-Sánchez, 2011). All these perfor-
mance dimensions are interrelated. For instance, if the case library size
is getting smaller by decreasing the number of cases learnt, then the
time efficiency could be decreased but the competence of the CBR sys-
tem could be reduced. On the contrary, if the case library size is larger
by increasing the number of learnt cases, then the time efficiency could
be worsened, but the competence of the CBR system could be in-
creased.

The retrieval is one of the important steps in Case-Based Reasoning
systems. Several algorithms have been proposed for the indexing of
cases, since the original indexing approach of k-d trees appeared in the
literature. Main approaches propose to use a pre-computed binary
search tree to get an average logarithmic time effort in searching. The
basic idea of the proposal is to implement a Dynamic Adaptive Case
Library for Continuous domains strengthen its structure by the imple-

 22

mentation on its second level of indexing algorithms based on the prin-
ciple of binary search trees for efficient retrieval according to a given
similarity measure sim. Even more, a proposed NIAR k-d tree algo-
rithm is based on the computation of the average value of the corre-
sponding attribute among the sub-tree cases. An evaluation of algo-
rithms such as the k-d trees and NIAR k-d trees has been done in (Orduña
and Sànchez-Marrè, 2013); to make a comparative of efficiency and perfor-
mance evaluation.

In some research works, an effort to give an approximation to reduce
the complexity of learning in continuous domains is observed (Salamó &
López-Sánchez, 2011; Segata, 2010). One of them is the research work (Sànchez-
Marrè et. al., 2000), where their proposal consists in a Meta-reasoning by
means of a set of meta-cases approach. This research differs from our
research proposal given that in their proposal a static structure is pre-
sented, consisting in a given number of meta-cases. In their proposal
(Orduña and Sànchez-Marrè, 2009), (Orduña and Sànchez-Marrè, 2014a), (Orduña and
Sànchez-Marrè, 2014b) the structure is dynamic and the library is able to deal
with a variable number of meta-cases, clusters and discriminant trees.
In his research presents one rule to know whether a case is similar to
one of the given meta-cases. This rule is considered in (Orduña and Sànchez-
Marrè, 2009). The Meta-case is the top level of the indexing method pro-
posed where its attributes are used in the learning process. In that pro-
posal, the values of its attributes were considered as previously estab-
lished by experts.

The DACL proposed in (Orduña and Sànchez-Marrè, 2009) is illustrated in fig-
ure 13. DACL learns cases and organizes them into the dynamic cluster
structures. The library is able to adapt itself to a dynamic environment,
where new clusters, meta-cases, and associated indexing structures
(discriminant trees, k-d trees, etc.) can be formed, updated, or even re-
moved (Orduña and Sànchez-Marrè, 2015a). DACL offers a possible solution to
the management of the large amount of data generated in a continuous
domain. With the stochastic learning process of new cases and meta-
cases introduced in (Orduña and Sànchez-Marrè, 2013) is feasible to improve
the retrieval time and size of the case library. Even more, a fusion of all
proposed techniques with DACL proposed in (Orduña and Sànchez-Marrè,
2009) is feasible to improve CBR system performance, especially when
facing unsupervised continuous domains with large case bases.

23

1.2 Issues of the work

In this thesis work, we aim at improving the general CBR system per-
formance, by jointly coping with the time efficiency, size efficiency
and competence dimensions, especially when coping with unsupervised
continuous domains.
We aim at improving the case library structure with some new pro-
posals for dynamically structuring the case library in such a way that
the performance of the system increases. These new structures should
be able to handle a data stream of cases within the unsupervised do-
mains.
In addition, the work has the aim to find indexing strategies, which im-
prove the performance of CBR systems. The aim is to search for varia-
tions in the building of k-d trees, to make them more balanced struc-
tures and faster accessing methods.
Moreover, the research work will aim at proposing new exploration
techniques of k-d trees, and in general of hierarchical structures, differ-
ent from usual ones (like hyberball techniques, etc.) so that the retrieval
time could be reduced, even though the accuracy of the system could be
slightly worsened.
Another issue is to propose new case learning strategies based on reli-
able facts like, for instance, the relevance concept.
A very important aspect related to unsupervised continuous domains is
the incrementality problem. General CBR systems assume that the set
of cases available for building the case library is fixed. Then they build
the memory indexing structures, like for instance, a k-d tree, etc. How-
ever, when a CBR system is facing an unsupervised continuous do-
main, the system should build and update the case library structure/s in
an incremental way.
The proposal of some new introspective tasks and strategies are also
another sub goal of our work, in order to update and maintain the CBR
system in optimal conditions.

In our thesis proposal, the structure of the Dynamic Adaptive Case Li-
brary (DACL) can be built-up in an incremental way, and some intro-
spective reasoning tasks can be scheduled to regularly update the index-
ing structures (NIAR k-d trees, etc.).

 24

1.3 Contributions

The main contribution of this thesis is a general Dynamic Adap-
tive Framework for improving Case-Based Reasoning System Perfor-
mance. This framework is general enough for coping with supervised
domains, where DACL is named as Multi-Case Library (MCL), be-
cause here the structure is not dynamic, and for coping with unsuper-
vised, usually continuous, domains, where a stream of cases are needed
to be processed and solved.

The global contribution of this research framework can be split in the
following research contributions:

1. The DACL: a Dynamic Adaptive Case Library technique to be able
to store a big amount of cases and to manage them for unsupervised
domains, and especially, for continuous domains. The cases will be
stored according to different policies/methods. The cases will be
stored in the best-matching sub-library. This will be accomplished by
means of the use of prototypes of the cases indexed through dynamic
tree structures. The prototype will be called Meta-case. The Meta-
cases will have associated indexing schemes (discriminant trees, k-d
trees, etc.). The DACL structure was introduced in (Orduña and Sànchez-
Marrè, 2009) (see section 3.1).

2. The MCL: a Multi Case Library will be a similar structure of DACL,
but in that situation, the building of the structure will follow a special
procedure for static supervised domains. The main use of Meta-cases
is the same than in a DACL (see section 3.2)

3. New proposed variants of a k-d tree structure to improve the efficien-
cy of the CBR system performance. Both AvKd-tree (Average k-d
tree) and NIAR k-d tree (Nearest Instance to the Average Root) algo-
rithms will be proposed to improve the competence in retrieval time
and quality of retrieval in CBR. AvKd-Tree and NIAR k-d tree will
differ of standard k-d tree in the technique of selecting the split value
for each attribute at the internal nodes. The idea of the algorithms
was introduced in (Orduña and Sànchez-Marrè, 2013) (see sections 4.1 and 4.
4.2).

25

4. The proposal of a new exploration technique for traversing a k-d tree,

and obtaining the most similar cases of the k-d tree exploring alterna-
tive paths to the main path. This technique will be named as Partial
Matching Exploration technique (PME) (see section 4.3)

5. The proposal of a SMcLM Stochastic Meta-case Learning Method,
which will consider two relevant moments to guide the learning of
the new case (Nc): building a new Meta-case (Mc) or storing it in the
existing Meta-cases. The aim of this policy will be to learn those cas-
es that accomplish the two moments of the stochastic process. This
method has been implemented in the study of the air pollution do-
main (Orduña and Sànchez-Marrè, 2015a), where the results obtained shows
the efficiency of the method. This method is a second method of
building representative prototypes, because a first DACL method
was described in (Orduña and Sànchez-Marrè, 2009) (see sections 5.1 and
5.2)

6. Other techniques for selecting the Meta-cases and building repre-
sentative prototypes (see section 5.3).

7. The proposal and inclusion of some introspective tasks for global
maintenance of the DACL (see section 5.4).

1.4 Thesis Organization

This thesis document is organized as follows:

Chapter 2: Describes and details the topics strongly related and in-
herent to the DACL Framework: Case-Based Reasoning, Case repre-
sentation and Case Library organization, Case Base Maintenance and
related concepts, Introspective reasoning, stochastic learning and Con-
tinuous domains.

Chapter 3: In this chapter, the DACL is detailed. The three-layer
structure of a DACL is described: the Meta-cases, the cluster of cases
and the corresponding sub-library for each meta-case. Two basic algo-

 26

rithms for building Meta-cases are introduced. The DACL version for
supervised domains is also detailed: the Multiple Case Library (MCL).

Chapter 4: The proposed algorithms and techniques for indexing in
DACL/MCL are explained. The AvKd-tree algorithm, the NIAR k-d
tree and the Partial Matching Exploration (PME) technique are detailed.

Chapter 5: The improving of CBR cycle by the use of the stochastic
learning strategy is explained. The two moments of the method and the
policy of the method are detailed. Other strategies for building Meta-
cases are introduced. In addition, some introspective tasks for an opti-
mal maintenance of the DACL are explained. Two kinds of tasks are
described. Ones related to a synchronous triggering task for maintain-
ing the structure of the case library, and others asynchronous tasks for
the maintenance of the indexing structures.

Chapter 6: The experimental evaluation strategy for DACL/MCL is
set. The indexing techniques Avkd-tree and NIAR k-d tree in exact-
case search are evaluated and some results are given. Next, an experi-
mental setting for a MCL in supervised domains is set-up, combining
the indexing structures proposed (NIAR k-d tree) and the Partial Match-
ing Exploration (PME) technique against usual techniques. Afterwards,
some experimental results are given. Next, the experimentation descrip-
tion for the stochastic learning method in an unsupervised continuous
domain is set-up. Then, the results obtained are discussed. Finally, the
whole Dynamic Framework, combining all the proposed approaches, is
tested for simulated unsupervised domains in an incremental way.

Chapter 7: In this chapter a summary about the research work of the
thesis and the main contributions of the work are outlined. In addition,
some future research lines are detailed.

27

2 State of the Art
The following chapter introduces and analyzes some related concepts

to the work of the thesis. Some definitions of the related concepts of Case-
Based Reasoning (CBR), and some contributions to CBR are included. The
CBR cycle is explained and some research works are considering for explana-
tion. CBR cycle has four main phases, and the organization of knowledge
plays a very important role for retrieving and for knowledge generation. Be-
cause of it, the case structure and organization are considered. For fast retriev-
ing, it is important to store the knowledge in an efficient method; to do so,
different methodologies used in CBR knowledge organization are introduced.
The maintenance in CBR aims to improve the performance of CBR systems in
several ways. For instance, through the improving of retrieving and storing
cases tasks, by the use of policies. Here, for our aim some maintenance topics
are introduced. The reasoning in CBR systems is the main task, and several
methods for reasoning are handled in CBR; in our proposal, the introspective
reasoning is applied and in this chapter, some details are introduced. The re-
trieval of cases is improved by the use of hierarchical structures, which is the
case of using binary trees, such as the k-dimensional trees, here detailed.
Some improvements to k-dimensional trees have been introduced in the litera-
ture. Especially, the proposal of using hyperball strategies for quality im-
provement in a tree retrieval. The improvement of quality it is related to
methods used to learn new cases and with the case library organization; for
this reason, in this proposal, a stochastic method is introduced and some de-
tails about stochastic learning are given in this chapter. Finally, the aspects of
continuous domains, which are addressed by our proposal, are outlined.

2.1 Case-Based Reasoning

CBR is a cognitive paradigm based on Schank’s Dynamic
Memory theory (Schank, 1982), whose main conclusion is that remember-
ing is the base of learning and understanding. The use of experience
was proposed in order to understand a new situation. Because of that, it
is necessary to have an appropriate indexation scheme for the previous
experiences and a “mechanism” to recovery those experiences.

Janet Kolodner in (Sasikumar, 1998) define Case Based Reasoning (CBR)
as: “Case Based reasoning can mean adapting old solutions to meet
new demands, using old cases to explain new situations, using old cas-
es to critique new solutions, or reasoning from precedents for interpret
a new situation (much as lawyers do) or create an equitable solution to

 28

a new problem (much as labor mediators do)”. For other definition see
(Richter and Weber, 2013, López, 2013; López de Mántaras et al., 2005; Aamodt and Plaza,
1994).

CBR is an extremely useful technique when the underlying models to
the solution of a problem are not clear or they are not well understood.
CBR is an especially appropriate alternative when the number of rules
needed to capture by expert’s knowledge is unmanageable, or when the
domain theory is too weak or incomplete. In cases where an expert is
not available, or it is too expensive or their knowledge cannot be articu-
lated verbally, but it is possible to find a set of cases that are representa-
tive examples of the domain, then CBR is a very appropriate solution to
solve new problems (Bonissone and López de Mántaras, 1998).

CBR systems solve new problems by retrieving and adapting the solu-
tions from previously solved problems that have been stored in a case
library. The performance of a case-based reasoning can be measured
according to efficiency and competence. Case-Based Reasoning until
now has been used in several applications, even though in continuous
domains. CBR has been used to solve mostly the learning of experienc-
es. In the dynamic environments field there are very few applications of
CBR. Some of these efforts of using CBR can be found in some fields
such as the Robotic field, where the goal is to endow a navigation robot
with the experience to reduce its navigation time. Some examples of
this are: (Urdiales et al., 2006; Supic and Ribaric, 2005; Kruusmaa, 2003; Fox, 2000; Ram
and Santamaria, 1997; Ram et al., 1997). Some CBR applications for continuous
domains are in the industry field, where CBR is applied to improve the
expert supervision. For instance, see (Melendez et al., 2001). In the research
work (Sànchez-Marrè et al., 1999) they propose to learn only the relevant cas-
es generated in a continuous domain to avoid the growing of the case
library, and a CBR framework for temporal domains is proposed
(Sànchez-Marrè et al., 2005).

The CBR formalization is summarized in the basic CBR system reason-
ing cycle, proposed by Aamodt and Plaza in (Aamodt and Plaza, 1994) and
López de Mántaras in (López de Mántaras et al., 2005) which is depicted in
figure 1.

29

Fig. 1. CBR Cycle

The following processes describe a complete CBR system. Some
definitions and descriptions are taken from (Núñez-Rocha, 2004a):

Retrieve the most similar case or cases (Case Retrieval). The retrieval
process consists in finding the best match to the new problem among all
previous cases. The identification task is based on a comparison be-
tween the relevant attributes describing the problem. In this first step of
the cycle, there are very sensitive elements making more or less
efficient the performing of the task:

• Attribute relevance
• Case base structure
• Similarity evaluation

This is one of the important processes in a CBR system. If you are able
to retrieve the most similar case to the new problem, then the proposed
solution will have more chances of being successful.

The factors that will determine the possibility to retrieve the best case
are:

 30

─ Case representation formalism (attribute-value vectors, graphs,
free text, etc.)

─ Case base organization (flat or hierarchical memory)
─ Similarity measure
─ Attribute types
─ Missing values
─ Attribute relevance
─ Discretization

These factors influence the retrieval phase in a different way. The case
representation formalism wills define the way that retrieval is made.
For example, if cases are represented as graphs, finding the similarity
between two cases implies a comparison among graphs. If free text is
used, the comparison will be based on natural language text, which
could be very difficult. Usually, the text are represented by the relevant
terms that there are in the case description (keywords).

The case base organization has a direct influence in strategy of search-
ing the similar enough cases. It is necessary to make an evaluation
about the convenience of having a specific representation, taking into
account the advantages and disadvantages of each organization scheme.
Some elements to evaluate are: case base size, case representation for-
malism, case sets to look for (specific groups or case prototypes), re-
trieval speed and accuracy needed. The type of the attributes involved
in case definition affects what type of similarity measures can be used
to evaluate the similarity between cases.

The efficiency of the retrieval is directly related to the quality of the
data. If a case base has a great quantity of missing values, surely the
retrieval will be less efficient than when all attribute values are known.
Some strategies for dealing with missing values are:

• Eliminate cases with unknown values
• Not to take into account attributes with missing values
• Substitute missing values with heuristic values
• If in the evaluation of two attributes there are just one missing val-

ue, then dissimilarity between those values could be 1, else if both
values are missing then the dissimilarity could be 0.

31

It is very common to find domains where the case description contains
one or several attributes irrelevant to retrieval or only representative
when they take certain values. Under these circumstances, it is neces-
sary to establish attribute relevance so that the most relevant have a
bigger influence on the retrieval process than the irrelevant ones. In
other domains, it is preferable to establish the relevance according to
the class values (supervised domains), or to give different weights to
each case, or to different attribute values.

Reuse the solution and knowledge in that case to solve the current
problem (Case Reuse) from the principle "similar problems have simi-
lar solutions", it is possible to have the solution of a problem if we find
one that is similar enough to the new case in the case base. There are
two aspects to take into account:

─ The differences between the new case and the most similar one,
and

─ The part of the solution of the recovered case that can be reused in
the new case.

A trivial use of reuse, but effective in some applications like a classifi-
cation task, is to copy the solution (null adaptation) of the most similar
case as an answer to the new case. In other applications, it will be nec-
essary to carry out an adaptation process that consists of changing the
solution to the previous case according to the differences that the values
of the attributes show between the new and previous cases. The tech-
niques used in the adaptation process can be enclosed according to the
approaches proposed by Kolodner in (Kolodner, 1993) as: Null Adaptation,
Structural Adaptation and Derivational Adaptation. Where Null adap-
tation can be a strategy adopted in CBR systems with very simple ac-
tions in the solution (like accept / reject, failure diagnosis). In these sys-
tems, the previous solution is directly applied without changes to the
new case. When an adaptation process is directly applied to a previous
solution, we have a structural adaptation method. These methods can be
divided into the next main techniques: substitution methods, transfor-
mation methods and special-purposes heuristic adaptation. The substi-
tution methods provide a solution for the new case with components or
appropriate values computed from the solution recovered in the retriev-
al step. Most of substitution techniques are based on parameter adjust-
ment or parameterized solutions, where the differences between the

 32

values of the new case and the most similar one are used to appropriate-
ly guide the modification of the parameters in the solution. The trans-
formation methods use either some common sense transformation rules,
such as deleting a component, adding a component or adjusting values
of a component, as in the JULIA system (Shinn, 1988), or some model-
guided repair transformation techniques based on a causal model(s).
The special-purpose adaptation techniques or critic-based adaptation
methods are based on some specific rules of repairing, called critics
(Sacerdoti, 1997), such as those used in PERSUADER (Sycara, 1987). Other
systems such as CHEFF (Hammond, 1989) and JULIA (Shinn, 1988) use some
domain specific adaptation heuristic and some structure modification
heuristic. Finally Derivational adaptation methods do not operate on
the original solutions, but on the method used to derive that solution.
The goal is rerunning the same methods applied to derive the previous
solution, to re-compute the solution for the new case. This methodology
was implemented in the ARIES system, and was named as derivational
replay (Carbonell, 1986).

Revise the proposed solution (Case Revision). This step gives to CBR
systems a way to evaluate its decisions in the real world, allowing
feedback that enables the learning from success or failure. The experts
decide if the proposed solution is the most appropriate, generally evalu-
ate the solution applied to the real world. If there is not an expert avail-
able, then a simulation of the application of this solution can be per-
formed, or a direct experimentation in the real world. The results will
determine the quality of the solution and it will be observed.

Retain the parts of this experience likely to be useful for future problem
solving (Case Retention). The information given to the system about
the quality of the proposed solution in the revision step is an important
part in the learning process of the CBR system. Learning in a CBR en-
vironment could be in two different methods such us the learning by
observation and learning by experience. Learning by observation is
done when the system starts with a representative set of initial cases.
These cases result from the direct observation of the domain or when an
expert provides the knowledge. This kind of learning can also be given
in the course of the use of the system, when new cases are observed,
and are considered as representative or essential situations to describe
the real environment of the problem. The expert can also add new cas-

33

es, if it is possible to describe them even when they have not been ob-
served, and if they are not already in the case base. And the Learning
by experience: is done after each cycle of the CBR system. After the
revision step, it is determined if the solution was successful or not. In
the first case, the CBR system memorizes the success, with the system
being given the opportunity of storing the new case together with its
solution in the case base, and marking it as a correct answer. If the an-
swer was not appropriate, the system must be able to prevent itself from
making the same mistake in the future, learning from failure. If the
evaluation process concludes that the proposed solution is not the ap-
propriate one, it is important to know what caused the error. It could be
due to a bad adaptation of the proposed solution from the most similar
case to the new one, or it is possible that within the case base there is
not a very similar case. Even so, the system will recover this. Although
it seems to be similar enough, it exist a difference. In this case, it is im-
portant to inform to the expert if there exists one, and try to generate a
representative case of the current situation and to provide an appropri-
ate solution. Another circumstance directly related to the purpose of
this work can happen if exists a case in the case base, being more simi-
lar to the one recovered. If this is the situation, the similarity measure,
the attribute weights, the normalization process, the discretization pro-
cess, and the way to handle missing values must be revised.

2.1.1 Knowledge Organization

Cases in a CBR system must be represented and organized in
such a way that the case representation methodology allows the com-
parison between cases, and the overall case organization permits the
case retrieved in an optimal way.

2.1.1.1 Case Representation

A case is a piece of knowledge about a context, which repre-
sents an experience that teaches a fundamental lesson to the reasoner in
view to get its goal (Kolodner, 1993). A case should represent a specific
knowledge linked to a context, to store a different experience. It should
be useful to the reasoner, and it is necessary to be able to compare it
with other cases to determine its similarity.

 34

A CBR system is highly dependent on the elected formalism to repre-
sent the cases in its case base. Since the core of the system consists of
finding a similar previous case to the current one, the methodology
used to make the search in the case base will depend on the structure
used to represent each case and its solution.

The first task when building a CBR application is to decide how the
cases will be represented. This decision will have a direct impact on the
strategies to continue in the following design phases of the application
such as case base organization, similarity evaluation, recovery of the
most similar case to the current one, solution adaptation and system
learning.

The most common case representation formalisms are the following:

• Attribute-Value Vectors is one of the most common case repre-
sentations and organization mechanisms. For their simplicity
and easy handling, the attribute-value vectors are a broadly used
formalism. This formalism assumes that each case (𝐶𝐶𝑖𝑖) is de-
fined by a set of 𝑚𝑚 attributes that can be continuous or discrete;
𝐶𝐶𝑐𝑐𝑖𝑖 is an optional class label for the case 𝐶𝐶𝑖𝑖 in a supervised do-
main.

𝐶𝐶𝑖𝑖 = �𝐶𝐶1𝑖𝑖 ,𝐶𝐶2𝑖𝑖 ,⋯ ,𝐶𝐶𝑚𝑚𝑖𝑖 ;𝐶𝐶𝑐𝑐𝑖𝑖�

As an example, consider an automobile buyer who consults a
CBR system to find out their best option. The corresponding vec-
tors to the attribute description and value vectors are:

Attributes:
< Type, brand, cylinders, power, fuel, color, price, year, seats >
Cases:
< sport, BMW, 8, 275, gasoline, blue, 35000, 2000, 4 >
< sport, AstonM, 12, 450, gasoline, red, 120000, 2002, 2 >
< sport, Maserati, 12, 380, gasoline, green, 80000,2002,2 >
< tourism, Citroen, 4, 95, diesel, red, 20000, 2002, 5 >
< tourism, Renault, 4,65, gasoline, white, 12000, 2002, 5 >
< tourism, Renault, 6, 85, gasoline, white, 17000,2002,5 >
< tourism, Renault, 4, 60,gasoline,white,8000,2000,5 >

35

• Free Text. In some applications such as judicial cases (Weber-Lee
et al., 1998), text categorization, electronic trade, answers to fre-
quent questions systems (FAQ’s) (Lenz and Burkhard, 1997) and
medical and technicians reports, attribute- value vectors are not
an appropriate option. In these domains, free text using natural
language is a good way of representing cases. The case is de-
scribed by means of sentences trying to include words that are
good enough for the case discrimination and representing the
problem domain in a faith-full way. In the automobiles context a
formalism to case representation could be:

”A red sports car with 300 horse power and 12 cylinders, with a
price less than 250000 and must be BMW”

The system operation is exposed in (Lenz and Burkhard, 1997). The
case base consists of a set of texts containing possible answers
to the questions made by the user. The described system takes
the user’s question expressed in natural language, and retrieves
the text that better matches as an answer to the formulated ques-
tion. The retrieval is carried out evaluating the similarity be-
tween the question and the cases in the case base, recovering
those that are more similar. For each case, a set of Information
Entities (IE) produced by the key words in the text are identi-
fied.

• Conversational CBR. In recent years, due to Internet expansion,

many web-based consultation applications have emerged. In
them, the user introduces a brief text ex- plaining his problem.
With this text, the system finds the most similar case in its case
base. Then, the system presents a set of questions associated to
the recovered case. The user can answer to these questions in a
quick and direct way. These systems are known as CCBR (Con-
versational CBR). The system should automatically infer the de-
tails that describe the problem starting from the text introduced
by the user.

During the conversation, the system evaluates and shows the
most similar cases and their solutions, progressively until find-
ing the most appropriate solution according to the user’s opin-

 36

ion. In these systems (Aha et al., 1999), a case x is represented as
follows:

1. Problem 𝑋𝑋𝑝𝑝 = 𝑋𝑋𝑑𝑑 + 𝑋𝑋𝑞𝑞𝑞𝑞 encodes the problem solved by 𝑋𝑋𝑠𝑠.
Where:
description 𝑋𝑋𝑑𝑑 is a portion of free text that partially describes
X’s problem. Specification 𝑋𝑋𝑞𝑞𝑞𝑞 is a set of <question, answer>
pairs.

2. Solution 𝑋𝑋𝑠𝑠 = 𝑋𝑋𝑎𝑎1,𝑋𝑋𝑎𝑎2 ⋯ ,𝑋𝑋𝑎𝑎𝑎𝑎 is a sequence of actions 𝑋𝑋𝑎𝑎𝑎𝑎
for responding to 𝑋𝑋𝑝𝑝.

Actions can be free text, hyperlinks or other objects. A case’s
problem description and specification serve as its index. Ques-
tions in case specification can be internally disjunctive (i.e. have
multiple answers). Cases are “positive” examples: applying 𝑋𝑋𝑠𝑠
to 𝑋𝑋𝑝𝑝 is assumed to be successful. 𝑋𝑋 serves as a prototype for
solving queries whose problem specification is similar to X’s.
In figure 2, the generic process of problem resolution in a
CCBR system is presented.

Fig. 2. Conversational CBR Problem Solution Generic Process

37

• Graphs. In previous sections, it was shown how the case repre-
sentation formalism in a CBR system is linked to the domain.
Some domains exist where the objects representing the problem
are highly related to each other. This relationship cannot be effi-
ciently represented in any of the previously described models.
In those domains, graphs could be used as a case representation
formalism.

Fig. 3. A graph representation

A graph is defined as a structure 𝐺𝐺 = < 𝑉𝑉𝑉𝑉,𝐴𝐴𝐴𝐴 > where 𝑉𝑉𝑉𝑉 is
a finite set of vertices and 𝐴𝐴𝐴𝐴 ⊆ 𝑉𝑉𝑉𝑉 ∗ 𝑉𝑉𝑉𝑉 is a set of edges. In
general, vertices are used to represent the objects of the domain,
and edges express the relationships and restrictions among
them, as was used in the planning of timetabling of a school
course (Burke et al., 2001). In some domains, edges can represent
binary predicates as in CHIRON and CAPER (Sanders and Hendler,
1997). An example of this kind of representation is shown in the
figure 3.

 38

By means of this formalism, one could represent elements of the
domain that are unlikely to appear in another representation:
hard and soft constraints that are indicated by solid or dotted
edges respectively. In the notation 𝑋𝑋:𝑌𝑌, 𝑋𝑋 is the label and y rep-
resents the value of the attribute; Physics, Lab and MathA are
labelled by 1, indicating that they are multiple courses. Values
2, 3, 2 give the times they should be held per week respectively.
Other courses labelled 0 (ordinary courses) should be held just
once a week. The courses adjacent to edges labelled 7 cannot be
held simultaneously. Database should be consecutive to Lab if
possible (the edge between them is labelled 5), and MathA
should not be consecutive to MathB if possible (the edge be-
tween them is labelled 6). The direct edge between ComputerA
and ComputerB is labelled 4, denoting that ComputerA should
be held before ComputerB. One of the main disadvantages of
using this formalism is that when recovery is done, it is evident
that this is an isomorphism graph problem (a graph representing
a current case compared with graphs representing previous cas-
es), and it is broadly well known that this is a NP-complete
problem.

2.1.1.2 Case base Organization

Several methods to organize the Case base can be implemented;
the aim of the organization of the cases is that the implementation of
method improves the search and retrieving of cases. Hierarchical and
flat organizations are main used formalisms, but any other combination
of structures is possible.

2.1.1.2.1 Flat Memory

This is the most intuitive organization scheme, since involves
storing all the available cases sequentially, in a simple list, array, or
file. In a flat memory, the new case is matched against each case in the
memory, and the best matches are returned. An algorithm to guide this
search is presented in algorithm 1.

This algorithm is very simple, and it is the similarity evaluation heuris-
tic which carries out all the work. The main advantage is that, the entire

39

library is used to search, and the accuracy will only depend on how
good the similarity measure is computed. There are some disadvantages
that should be evaluated. The main one is that this scheme tends to be
time-consuming in the retrieval step. As the case library gets large, so
does the time needed for retrieval. A scheme like this works well in
applications where the case base is not very large. However, it is neces-
sary to closely watch over the case base growth, incorporating mainte-
nance schemas, evaluating the relevance of incorporating a new case
avoiding redundancy, but being flexible enough to accept a new case
that represents a new domain situation that was not present among the
existent cases in the case base.

Algorithm 1: linear search in a flat memory

Input: Set of cases of the Case Library (S), 1
 The New Case (Nc) 2
Output: Index of nearest case (r) 3
Begin linear search(S, Nc) 4
Let N = the number of cases of the Case Library; 5
Let BestDissimilarity = the best dissimilarity value be-6
tween Nc and all the cases until the current case 7
Let CurrentDissimilarity = the dissimilarity value be-8
tween Nc and the current case (Ci) 9
Let d() = the distance computation function among two 10
cases 11
N = |S| 12
BestDissimilarity = + ∞ 13
i = 1 14
while i ≤ N do 15
 CurrentDissimilarity = d(Ci,Nc) 16
 if CurrentDissimilarity < BestDissimilarity then 17
 r = i 18
 BestDissimilarity = CurrentDissimilarity 19
 endif 20
 i = i + 1 21
enwhile 22
return r 23
end linear search 24

 40

2.1.1.2.2 Hierarchical Organization

Through time, a CBR system increases its data by means of the
inherent learning in the learning phase. Thus, the number of cases in the
case base will increase. In this situation, a flat structure and sequential
search is impractical. As the case base grows, there is a need to organ-
ize cases hierarchically so that only a small subset needs to be consid-
ered during retrieval. This subset, however, must be likely to have the
best-matching or most useful cases in its organization (Kolodner, 1993).
Next some alternatives are presented to solve the hierarchical organiza-
tion problem.

Shared Feature Networks. The main idea is as follows; if you can clus-
ter together cases that are similar to one another and figure out which
cluster best matches the new situation, then only items in that cluster
need to be considered in finding a best-matching case. Hierarchies are
formed when clusters are broken into sub-clusters and so on (Kolodner,
1993). Shared-feature networks provide a means of clustering cases so
that cases that share many features are clustered together. Each internal
node of a shared-feature network holds features shared by the cases
below it. Leaf nodes hold cases themselves. The retrieval process in a
shared-feature network performs a sort of breadth first search. The new
case is matched against the contents of each node at the highest level in
the graph. The best-matching node is chosen. If this is a case, the case
is returned. Otherwise, if it is an internal node, the same thing is repeat-
ed among its descendants. This continues until a case is returned. View
the Kolodner approach in (Kolodner, 1993).

Discrimination Networks. In a discrimination network, each internal
node is a question that subdivides the set of cases stored underneath it.
Each child node represents a different answer to the question posed by
its parent, and each child organizes the cases that have its answer. A
main difference with shared-feature networks is that discrimination
networks put more emphasis on the discrimination than on clustering,
exactly the opposite happens in shared-feature networks. To perform
better in the recovery, it is important to include the most relevant ques-
tions in high levels of the hierarchy, leaving the less important ques-
tions for the low levels. A discrimination network algorithm is present-
ed by Kolodner in (Kolodner, 1993).

41

2.1.1.2.3 k-d Trees

The retrieving of similar cases is one of the key steps in the
case-based reasoning paradigm (Richter & Weber, 2013; Kolodner et al., 1985).
The case base must be analyzed to detect a set of potentially useful cas-
es for adaptation purposes. Commonly, there is the distinction between
surface and structural similarity (Holyoak and Koh, 1986). Structural similari-
ty computation is normally very expensive, because it means to consid-
er all available knowledge of the domain. On the contrary, the retrieval
step should manage the similarity computation of all cases in the case
base as fast as possible. Thus, this task can only rely on the comparison
of syntactical features, i.e., surface similarity (Gentner and Forbus, 1991). In
addition, in the case-based reasoning literature there can be distin-
guished two different approaches to similarity assessment (Althoff and
Wess, 1992); the representational approach (Kolodner, 1980) and the computa-
tional approach (Aha, 1991). The former is based on using a structured
memory of cases, and the latter is based on the computation of an ex-
plicit similarity measure sim. This work is based on the computational
approach.

When facing a relatively small case base, the similarity computation of
all cases could be done in a sequential process, comparing each case in
the case base against the current problem (see algorithm 1). This strate-
gy is reasonable for small case bases, as the computational time effort
is linear (O(n), being n the number of cases) but it is not feasible for
larger case bases. Several strategies have been proposed to improve the
retrieval step for large case bases. Some approaches use massively par-
allel computer hardware to speed up the similarity assessment process.
Others are based in the pre-computation of efficient indexation schemes
which improve the efficiency of the retrieval step. We will propose a
new strategy following these later approaches, but we will propose in
chapter 5, some incremental indexing methods to tackle the data stream
problem.

Also, some indexation schemes were designed to find the m most simi-
lar cases (m nearest neighbors, or m-NN) such as (Wess et al. 1993; Friedmann
et al. 1977), while others focused on the one most similar case (nearest
neighbor or 1-NN) (Arya et al. 1993; Bentley 1975). In our work, we took the
second option, and the aim of the retrieval process is the most similar
case. However, having in mind that the value m normally is low, be-

 42

cause only the most similar cases are needed, and depending on the
minimum number of cases in the leaves of the indexing tree (bucket
size), the 1-NN indexing strategies can also provide the m-NN without
exploring other subspaces of the indexing tree.

In case-based reasoning applications, sometimes the cases can be repre-
sented in a structured way by a set of independent features. In other
times more sophisticated case representations are needed when there
are attribute dependent cases, and normally they also cover a subspace
rather than a point in the problem-solution space. The former are named
as point cases, and the later as generalized cases. Most of the indexing
approaches in the case-based reasoning community have dealt with
point cases (Wess et al., 1993; Arya et al., 1993; Friedman et al., 1977; Bentley, 1975),
but also some people has focused on the attribute dependent general-
ized cases (Bergmann and Tartakovski, 2009). In this thesis, the point case rep-
resentation will be addressed.

Cases can be considered as points within a multidimensional search
space, where each attribute is one dimension that can be explored with
an associative search. The idea of our approach is to structure the
search space according to the observed statistical distribution of the
values of the attributes, and using this computation in advance to im-
prove the case retrieval process according to a given similarity measure
sim (Stottler et al., 1989). Our approach is based on the earlier concept of a
multidimensional (k dimensions) binary search tree, i.e. a k-d tree
(Broder 1990; Friedman et al. 1977; Bentley 1975). The rationale behind our ap-
proach is to try to get the sub-trees of each internal node as balanced as
possible, in order to reduce the number of tree levels, and consequently,
increase the retrieval speed. A k-d tree is very similar to a discrimina-
tion tree/network (Kolodner 1993; Charniak and McDermott 1985). Major differ-
ences rely on how to decide which attribute must be the discriminator at
each internal node of the tree. In discrimination trees, there are some
heuristic approaches to derive which are the most discriminant attrib-
utes. For instance, an expert based discrimination list or some other
automatic procedures such as using unsupervised feature weighting
techniques (Núñez and Sànchez-Marrè 2004b).

43

One of the most satisfactory proposals for indexing a case base was
based on the database query approach applying a k-d tree proposed by
(Friedman et al. 1977; Bentley, 1975).

The basic idea behind a standard k-d tree is to partition a k-dimensional
attribute space into some simpler subspaces and to search for the near-
est neighbors in the corresponding subspaces. These subspaces are k-
dimensional cubes. A k-d tree is a binary search tree very similar to a
decision tree. The internal nodes are labeled with attribute names and
the edges with partition values. The leave nodes are labeled with a dis-
joint subset of the cases (bucket of cases). Every node of a k-d tree rep-
resents a subset of the case base. The root node represents the whole
case base. Each internal node partitions is the represented by a set of
cases into two disjoint subsets. The left sub-tree contains the subset of
cases with a value for the discriminator attribute of the node less or
equal than the partition value. The right sub-tree contains the subset of
cases with a value for the discriminator attribute of the node greater
than the partition value. See figure 4 where a 2-d tree and its corre-
sponding two-dimensional search space is depicted.

Fig. 4. An example of a 2-d tree and its corresponding two-dimensional search space

The construction of the k-d tree is recursive. Beginning with a root
node, the represented set of cases is partitioned according to a chosen
discriminator attribute and a chosen partition value. This recursive pro-

 44

cedure ends when a certain termination criterion is met, such as the
number of cases in a subset is less or equal than the bucket size.

The retrieval task in a k-d tree is a recursive traversal search of the tree,
starting from the root node and following the corresponding sub-tree
until a leaf is reached. At each internal node, it descends the tree fol-
lowing the branch whose constraint on the discriminator attribute of the
node (≤ or >) is matched by the attribute value in the query case. When
a leaf is reached, the similarity measure sim between the query case and
the cases in the bucket is computed (see algorithm 2).

Algorithm 2: binary search in a k-d Tree

Input: The root node of the k-d Tree (Node), 1
 The New Case (Nc) 2
Output: The most similar case (C+sim) 3
Begin binarySearch (Node, Nc) 4
Let BucketCases = the cases stored in a bucket of length 5
k in a leaf node 6
Let DissimilarityList = the list of the dissimilarity 7
values computed between the NC and the BucketCases of the 8
corresponding leaf node 9
Let CaseList = the list of the BucketCases of the corre-10
sponding leaf node 11
Let d() = the distance computation function among two 12
cases 13
Let IndexAttributte = a function which gives the index 14
value corresponding to the attribute stored in that node 15
Let PartitionValueAttributte = a function which gives the 16
partition value corresponding to the attribute stored in 17
that node 18
Let Cases = a function which gives the cases stored in 19
that node 20
Let NumCases = a function which gives the number of cases 21
stored in that node 22
if leaf?(Node) then 23
 BucketCases = Cases(Node) 24
 numC=NumCases(node) 25
 DissimilarityList = ∅ 26
 for i = 1 to numC do 27
 DissimilarityList = add(DissimilarityList, d(Ci,Nc)) 28
 CaseList = add(CaseList, Ci) 29
 endfor 30

45

 order(DissimilarityList, CaseList) 31
 //order the two list in increasing order 32
 return(first(CaseList)) 33
else //it is an internal node 34
 m = IndexAttribute(Node) 35
 if Ncm ≤ PartitionValueAttribute(Node) then 36
 binarySearch(leftTree(Node, Nc)) 37
 else 38
 binarySearch(rightTree(Node, Nc)) 39
 endif 40
endif 41
end binarySearch 42

The average computational time for retrieving the most similar case is
𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙2𝑛𝑛), being n the number of cases, if the tree is optimally orga-
nized, such as in discrimination trees optimally built. For the worst
case, the retrieval cost is 𝑂𝑂(𝑛𝑛). Thus, on average, really improves the
case retrieval of a sequential linear procedure for computing the simi-
larity value for each one of the cases in the case base.

The different approaches based on the use of k-d trees differ in how the
discriminator attribute is determined, and how the partition value is
selected at each internal node of the tree. The original k-d tree formula-
tion (Bentley, 1975) proposed to choose the discriminator attribute cycling
over the list of the attributes, and selecting the partition value at ran-
dom. The standard k-d tree approach (Friedman et al., 1977) suggests select-
ing the attribute with the highest spread (range) in values, and the me-
dian of the attribute value distribution.

The application of k-d trees for similarity-based retrieval in case-based
reasoning was first proposed by Wess in (Wess et al. 1993). In that work,
authors explored four approaches for selecting the attributes: using the
category-utility of CobWeb (Fisher, 1987), using the entropy measure pro-
posed by (Quinlan, 1983), selecting the attribute maximizing the dispersion
(interquartile distance) with respect to the similarity measure sim, and
selecting the attribute which maximizes the average similarity within
partitions and buckets. This last strategy was the best one according to
the experimentation undertaken by authors.

 46

In addition, in the work by Bergmann and Tartakovski in (Bergmann and
Tartakovski, 2009) which was addressing the generalized cases retrieval,
they proposed to select the discriminator attribute as the one maximiz-
ing the dispersion of projections of cases, and also taking into account
the length and intersection of projected case intervals.

All contributions previously cited above have shown that the standard
k-d tree approach is feasible to be improved, and until now, standard k-
d tree approach has been improved in different ways as described in the
mentioned research works. In our research work, we formulate other
proposals to improve the standard k-d tree approach. The results ob-
tained shown that AvKdTree, and especially, the NIAR k-d tree is an
efficient case retrieval method. And the proposed indexing technique is
a fast indexing strategy and the generated trees are well-balanced ac-
cording to the results obtained.

2.1.2 The hyperball strategy with BWB and BOB tests

Usually, there are no identical cases (exact-case search) in the
case library and the retrieval procedure must look for the most similar
ones. One of the most used exploration technique for similar-case
search (not losing the most similar case) is the technique proposed in
(Friedman et al., 1977), where the authors proposed a technique to address
the search for the m most similar cases in a k-d tree. The tree is used as
a binary search tree leading to a bucket where b specific cases are
stored. It is necessary to compute the similarity of each case stored in
the bucket using the predefined similarity measure sim. If the m most
similar cases are searched for, a queue containing these most similar
cases can be built up. Using this queue, the authors propose to draw a
hyperball around the given problem including the m most similar cases
found in the current bucket. Every case being at least as similar as the
examined ones must be within this constructed k-dimensional hyper-
ball. By using this hyperball, it is possible to decide which buckets are
needed to be examined next. The authors propose two test procedures
for the implementation of this idea: Ball-Within-Bounds (BWB) and
Bounds-Overlap-Ball (BOB) (see figure 5). These procedures check
whether it would be reasonable to explore certain areas of the search
space or not. These tests can be carried out without retrieving the re-
spective cases. The geometric bounds of the considered subspaces are

47

used to compute a similarity interval whose upper bound answers the
question about to explore or not. For finding the 𝑚𝑚 most similar cases
for a given query case, a recursive tree search is applied. The input
needed is the query case 𝑋𝑋𝑞𝑞, the number 𝑚𝑚 of most similar cases, the k-
d tree represented by its root node, and the similarity measure 𝑠𝑠𝑠𝑠𝑠𝑠.
During the search process a priority queue 𝑃𝑃𝑃𝑃𝑃𝑃 is continuously updat-
ed. It includes the 𝑚𝑚 most similar cases. 𝑃𝑃𝑃𝑃𝑃𝑃[𝑛𝑛] denotes the 𝑛𝑛𝑛𝑛ℎ most
similar case information, and 𝑃𝑃𝑃𝑃𝑃𝑃[𝑛𝑛] stores its actual similarity value.
If the recursive search procedure examines a leaf node, the similarity of
all included cases is computed and, if necessary, the 𝑃𝑃𝑃𝑃𝑃𝑃 is updated. If
the examined node is an inner node, then the traversing procedure is
recursively called for that son node which should include the query
case. If this call terminates, it is tested whether it is also necessary to
examine the other son node by using the 𝐵𝐵𝐵𝐵𝐵𝐵 test.

Fig. 5. BOB and BWB test basic ideas, from (Wess et al., 1993)

The BOB test is true if the cases of the actual tree node have to be ex-
plored. The inner nodes are correct generalizations of all the cases they
represent in the sense that they include the geometric (upper and lower)
bounds, for every indexing attribute, which correspond to the respective
subspace.

𝐵𝐵𝐵𝐵𝐵𝐵 ⇔ 𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚,𝑋𝑋𝑞𝑞� ≥ 𝑃𝑃𝑃𝑃𝑃𝑃[𝑚𝑚] = 𝑆𝑆𝑆𝑆𝑆𝑆�𝑃𝑃𝑃𝑃𝑃𝑃[𝑚𝑚],𝑋𝑋𝑞𝑞�

These geometric bounds are used to compute a similarity interval
whose upper bound answers the question about to explore or not. The
closest point 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 within the actual node’s subspace is computed as the
projection onto the actual node’s geometric bounds (see figure 5). 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

 48

is on the actual node’s bounding box on the edge facing the query case
𝑋𝑋𝑞𝑞. If there is no overlapping in any of the k dimensions between the
node’s bounding box and the k-dimensional ball around 𝑋𝑋𝑞𝑞, then 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
is a corner of the bounding box. If 𝑋𝑋𝑞𝑞 is within the bounding box then
𝑋𝑋𝑞𝑞 = 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 (see figure 6). Before the recursive search procedure ends,
the BWB test is applied. This test is true if the k-dimensional ball round
𝑋𝑋𝑞𝑞 is completely within the bounding box the actual tree node (Fig. 6).

𝐵𝐵𝐵𝐵𝐵𝐵 ⇔ 𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋1
𝑗𝑗,𝑋𝑋𝑞𝑞� < 𝑃𝑃𝑃𝑃𝑃𝑃[𝑚𝑚] ∧ 𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋2

𝑗𝑗 ,𝑋𝑋𝑞𝑞� < 𝑃𝑃𝑃𝑃𝑃𝑃[𝑚𝑚] ∀𝑗𝑗 = 1,⋯ , 𝑘𝑘

In this case, no overlapping with other bounding boxes is possible.
Thus, the search is finished, and the 𝑚𝑚 most similar cases for the cur-
rent query case according the similarity measure 𝑠𝑠𝑠𝑠𝑠𝑠 are found.

Wess et al. (Wess et al., 1993) also proposed an improvement of the hyper-
ball with BOB and BWB bounds by using information about the known
cases. The basic idea is to describe the subspaces that really include
cases more precisely. Therefore, all occurring maximal and minimal
values for each attribute are stored. These ideas led them to define the
concept of Minimal Virtual Bounds (see figure 6).

Fig. 6. BOB Tests and Minimal Virtual Bounds, extracted from (Wess et al., 1993).

In the right part of the figure 6, the intuitive idea of how much from the
description space need not to be considered during search by looking at
the white areas is depicted. A BOB test using minimal virtual bounds
recognizes that the bucket II does not include any better cases.

49

The Minimal Virtual Bounds of a tree node for the dimension 𝑘𝑘 are de-
fined as follows:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚[𝑘𝑘].𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖[𝑘𝑘])
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚[𝑘𝑘]. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖[𝑘𝑘])

{𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖[𝑘𝑘]} Denotes the set of all values of attribute 𝑘𝑘 for the cases
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 that it is being represented by the tree node.

While minimal virtual bounds lead to an improvement of the 𝐵𝐵𝐵𝐵𝐵𝐵
tests, an analogous idea, of Maximal Virtual Bounds, can be used to
improve the 𝐵𝐵𝐵𝐵𝐵𝐵 tests. For the latter, it is reasonable to describe the
searched subspace as precise as possible such that the 𝑘𝑘-dimensional
hyperball around the query case has the maximal chance to be com-
pletely within that ball. Therefore, the Maximal Virtual Bounds were
introduced, as described in figure 8.

Fig. 7. BWB tests and Maximal Virtual Bounds, extracted from (Wess et al., 1993).

Within such maximal virtual bounds it is guaranteed that no more simi-
lar cases can be found within those borders. The computation of the
maximal virtual bounds requires more effort because it is not based on
the analysis of the cases, but on the analysis of all neighboring sub-
spaces. The virtual bounds can be computed during tree generation.
Within the maximal virtual bounds, it is guaranteed that only cases of
the respective subspace itself belong to it. There are no more similar
cases outside these boundaries. Thus, the search process is finished.

 50

2.2 Case Base Maintenance

Case Base Maintenance (CBM) is defined by David Leake such
as the process of refining a CBR system’s case base to improve the sys-
tem’s performance:

“Case base maintenance implements policies for revising the organiza-
tion or contents (representation, domain content, accounting infor-
mation, or implementation) of the case base in order to facilitate future
reasoning for a particular set of performance objectives”.

Maintenance in CBR can mean a number of different things: out-of-
date, redundant, or inconsistent cases may be deleted; groups of cases
may be merged to eliminate redundancy and improve reasoning power;
cases may be re-described to repair inconsistencies. Thus case-base
maintenance may involve revising indexing information, links between
cases, or other organizational structures and their implementations.
Maintaining Case-Base contents may affect a single case or multiple
cases. It may revise:

• The case representations used
• Either domain information in the case-base or accounting "infor-

mation"
• How case representations are implemented
• The case-base at the implementation level, representation level, or

the knowledge level

The Leake and Wilson framework of CBM shown in (Leake and Wilson,
1998; Wilson and Leake, 2001) is used in this section to describe the concepts
and to understand the state of the art in Case Base maintenance (see
figure 8). Those research works presents a first attempt at identifying
the dimensions of the Case Base maintenance. They show that charac-
terizations along such dimensions can suggest avenues for future Case
Base maintenance research and presents initial steps exploring one of
those avenues: identifying patterns of problems that require generalized
revisions and addressing them with lazy updating.

51

Fig. 8. Case Base Maintenance from Leake’s and Wilson Framework
(Leake & Wilson, 1998, 1999) and (Wilson & Leake, 2001)

As CBR systems are deployed in real-world situations, the issue of case
maintenance becomes more and more critical. Uncontrolled Case Base
growth can cause serious performance problems as retrieval efficiency
degrades and incorrect or inconsistent cases become increasingly diffi-
cult to detect.

 52

Case Base Maintenance has become an active CBR research area, pro-
ducing results with important ramifications for both the theory and
practice of CBR, some research works are the proposals; (Perner, 2006;
Iglezakis et al., 2004; Portinale and Torasso, 2001; Smyth and Mckenna, 2001; Leake and
Wilson, 2000; Yang and Wu, 2000). Much significant work in this area focuses
on developing methods for reducing the size of the Case Base while
maintaining Case Base competence (Barry and Paul, 2001; Smyth and Mckenna,
2001, 1999; Wilson and Leake, 2001; Leake and Wilson, 1998; Smyth, 1998; Smyth and Cun-
ningham, 1996; Smyth and Keane, 1995). The goal of achieving compact compe-
tent Case Bases addresses important performance objectives for CBR
systems. As an added benefit, compact Case Bases decrease communi-
cations costs when Case Bases are used as vehicles for knowledge shar-
ing or are transferred in distributed CBR systems. However, Case Base
compactness is only an opinion to a proxy for performance in a CBR
system, rather than an end in itself.

Experience with the growing number of large-scale CBR systems has
led to increasing recognition of the importance of Case Base mainte-
nance. Many researchers have addressed pieces of the Case Base
maintenance problem, considering such issues as maintaining con-
sistency and controlling Case Base growth.

CBM methods aim to improve Competence and Efficiency of the CBR
systems. Where Performance objectives provide criteria for evaluating
the internal behavior and task performance of a particular CBR system
for a given initial case-base and sequence of problems solved. The per-
formance objectives may be quantitative or qualitative.

2.2.1 Concepts about efficiency and competence

Performance objectives may change over time to reflect varying exter-
nal circumstances, which may necessitate changing (maintaining)
maintenance policies as well. Performance models which combine
competence and efficiency can be used to guide the deletion of redun-
dant cases from a case-base in order to optimize system performance.

Effective maintenance Case Base reasoning depends on the ability to
measure and manage case competence as well as case efficiency.

53

Maintenance policies are described in terms of how they gather data
relevant to maintenance, how they decide when to trigger maintenance,
whether they react to problems or proactively forestall them, the types
of maintenance operations available and how selected maintenance op-
erations are executed.

2.2.1.1 Efficiency

Efficiency means that a CBR system is the most efficient one, it if re-
quires the minimal resources needed to solve any case in the domain.
The resources are twofold: the time required solving a case, and the
size of the Case Base needed to solve a case. Thus, efficiency has to do
both with case solving time and the size of the case base.

Utility problem: The utility problem highlights the link between
knowledge base (Case Base) size and the retrieval time needed to select
an item of knowledge to use in a particular problem solving situation.
Addition of more knowledge results in potentially severe efficiency
degradation. Utility metric is used to take into account the cost of main-
taining.

2.2.1.2 Competence

Competence means the range of problems that can be satisfactorily
solved. During future problem solving, as cases are learned and deleted
from the Case Base, the case categories must be updated by re-
computing the coverage and reachability of affected cases to adjust the
categories accordingly.

Competence-Directed Maintenance Individual knowledge items only
contribute to problem solving efficiency. An underlying first principles
problem solver is always used to encode basic problem solving compe-
tence. Cases contribute to both competence and efficiency.

2.2.1.3 The Foundations of Competence

The following definitions were formulated in the research works (Barry
and Paul, 2001; Smyth and McKenna, 2001; Smyth, 1998; Smyth and Cunningham, 1996;

 54

Smyth and Keane, 1995), and are used to give a characterization and over-
view of the CBM framework. The local competence contributions of
individual cases can be characterized by two sets. The coverage set of a
case is the set of all target problems that this case can be used to solve.
It is not the responsibility of the competence model to explicitly define
the ”solves” predicate other than to assume that it exists for any target
CBR system. The reachability set of a target problem is the set of all
cases that can be used to solve it. It is not possible to enumerate all
possible future target problems (𝑇𝑇), but by using the case base (𝐶𝐶) it-
self as a representative of the target-problem space, we can efficiently
estimate these sets, as shown in the definitions of coverage and reacha-
bility.

Coverage of a case: the set of target problems that a given case can
successfully solve.

Cases with large coverage sets seem likely to be making large compe-
tence contributions. In contrast, cases that are members of large reacha-
bility sets seem likely to be less important, as many other cases exist
which can solve similar problems. The ability to measure coverage and
reachability is the key to under- standing competence in CBR. Of
course it should be clear that the coverage and reachability sets depend
on the characteristics of particular retrieval and adaptation methods.

Definition 1: Case Coverage

Given a Case Base: 𝐶𝐶 = {𝑐𝑐1 . . . 𝑐𝑐𝑛𝑛}, and a case 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶, i ∈ {1, …, n}

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖) = {𝑐𝑐’ ∈ 𝐶𝐶 ∶ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑖𝑖, 𝑐𝑐’)}

Reachability of a target problem: the set of cases that can be used to
solve a given target problem.

Definition 2: Case Reachability

Given a Case Base: 𝐶𝐶 = {𝑐𝑐1 . . . 𝑐𝑐𝑛𝑛}, and a case 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶, i ∈ {1, …, n}

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑐𝑐𝑖𝑖) = {𝑐𝑐’ ∈ 𝐶𝐶 ∶ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐’, 𝑐𝑐𝑖𝑖)}

55

Competence Groups. Coverage and Reachability sets provide a meas-
ure of local competence only. In order to estimate the true competence
contributions of cases, it is necessary to model the interactions between
related cases, specifically in terms of how their coverage and reachabil-
ity sets overlap.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐𝑖𝑖) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖) ∪ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑐𝑐𝑖𝑖)

For 𝑐𝑐1, 𝑐𝑐2 ∈ 𝐶𝐶,

𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑐𝑐1, 𝑐𝑐2)⇔ [𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐1) ∩ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑐𝑐2)] ≠ ∅

𝐹𝐹𝐹𝐹𝐹𝐹 𝐺𝐺 = {𝑐𝑐1 . . . 𝑐𝑐𝑛𝑛} ⊆ 𝐶𝐶,

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺) ⇔ ∀𝑐𝑐𝑖𝑖 ∈ 𝐺𝐺,∃𝑐𝑐𝑗𝑗 ∈ 𝐺𝐺 − 𝑐𝑐𝑖𝑖 ∶

 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑗𝑗)
 ∧

∀𝑐𝑐𝑘𝑘 ∈ 𝐶𝐶 − 𝐺𝐺,∄𝑐𝑐𝑙𝑙 ∈ 𝐺𝐺 ∶ 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑐𝑐𝑘𝑘 , 𝑐𝑐𝑙𝑙)

First, the related set of a case to be the union of its coverage and reach-
ability sets. When the related sets of two cases overlap, we say that they
exhibit shared coverage, and cases can be grouped together into so-
called competence groups that are maximal sets of cases exhibiting
shared coverage. In fact, every case base can be organized into a
unique set of competence groups which, by definition, do not interact
from a competence viewpoint i.e., while each case within a given com-
petence group must share coverage with at least one other case in that
group, no case from one group can share coverage with any case from
another group.

The importance of the competence group concept is that each group
makes a unique contribution to competence. Thus, competence groups
allow us to partition the case space into non-interacting groups of cases.
Each group can be treated independently of all other groups in the case
base from a competence viewpoint, and this means that the competence
of a case base as a whole can be computed as the sum of the compe-
tence contributions of each competence group.

 56

While each competence group makes a unique contribution to overall
competence, not every case in a group makes the same (or even a posi-
tive) contribution. The final stage of the model involves identifying the
so-called footprint cases and measuring their relative competence con-
tributions. By definition, footprint cases are those cases, which make a
positive competence contribution to competence, and the set of foot-
print cases of a group covers the entire group. In contrast, non-footprint
cases make redundant competence contributions because they are fully
covered by nearby footprint cases.

We will revisit the concept of footprint cases in a later section, where
we will provide algorithms for identifying the footprint of a group. The
relative competence contribution of an individual case is estimated by
the relative coverage (RC) measure, which estimates the competence
contribution of an individual case c as a function of the size of the
case’s coverage set (see next Equation).

RC weights the contribution of each covered case by the degree to
which these cases are themselves covered. It is based on the idea that if
a case c’ is covered by n other cases, then each of the n cases will re-
ceive a contribution of 1/𝑛𝑛 from c’ to their relative coverage measures.

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐) = ∑ 1
|𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑐𝑐′)|𝑐𝑐′∈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐)

2.2.2 Maintenance Data Collection

Maintenance Data Collection gathers, synthesizes, and distills
the data about the case base and about system processing. This infor-
mation will be used to determine whether maintenance operation
should be performed or not. It gathers information about:

• Individual cases: it might record the number of times a case has
been successfully used or the number of times it has failed.

• The case base: the case base as a whole could involve, for exam-
ple, monitoring the size of the case base.

• Processing: it might involve noting clusters in input problems or
input problems that the system is unable to solve successfully.

57

There are three approaches to collecting and analyzing data to decide
when CBM is needed: None, Synchronic, or Diachronic. The simplest
is to do no collection at all:

• A policy with no data collection makes maintenance decisions
independently of the present or past state of the case base. As
such, this type of policy is referred to as nonintrospective. For
example, a CBR system that updates its case base by uncondi-
tionally adding a case each time it adapts a prior case would
need no data collection. This is the approach of most CBR sys-
tems. Similarly, a system may drive maintenance according to
external information sources. This is valuable for proactive
maintenance, for example, to add cases to a help-desk case base
in anticipation of future queries.

• Synchronic (Policies that consider snapshot information). More

sophisticated reasoning is enabled by considering a snapshot of
the current case base in part or as a whole. Examination of this
information can determine, for example, whether a case is worth
adding to a case base because it increases the competence of the
CBR system or whether a solution can be discarded without af-
fecting competence (Smyth and Keane 1995). As another example see
Reinartz et al. contributions in (Reinartz et al,. 2000) where they pro-
pose a set of measures that can be computed to assess the over-
all quality of a case base in order to trigger maintenance.

• Diachronic (Policies that consider changes in the case base

over time). The most informative approach is to collect data
over time, over a sequence of snapshots, in order to identify
trends in how Case Base contents and usage are changing. For
example, a policy that gathered information about trends in re-
trieval times to identify the onset of utility problems would be
diachronic. Because synchronic and diachronic collection exam-
ines the internal state of the case base, both are referred to as in-
trospective.

Regarding the time when the data collection is needed it Timing could
be: periodic, conditional, or ad hoc. A maintenance policy must specify
when data collection is performed. Periodic timing happens at an estab-

 58

lish frequency with respect to the CBR cycle is termed continuous.
Conditional data collection is performed in response to a well-defined
but non-periodic condition. Ad hoc timing happens under well-defined
conditions determined externally to the CBR system.

Integration of the data collection could be: on-line or off-line. Data
collection may operate on-line, during the course of an active reasoning
episode, or offline, during a pause in reasoning, such as waiting for user
input or when idle between reasoning episodes. The choice between on-
line and offline processing may affect the resources that can be devoted
to the analysis process, making it important for determining whether a
policy is appropriate for time-constrained processing.

2.2.3 Maintenance Execution

Execution is characterized by the timing of maintenance opera-
tions and their integration with other system processing. Execution tim-
ing is described using data collection (periodic, conditional, or ad hoc).
Execution integration is described as on-line or off-line depending on
whether maintenance operations are performed during or between rea-
soning episodes.

Triggering: The results of data analysis serve as or determining

whether CBM is necessary. Both the timing and integration dimensions
dis- cussed previously apply to this step as well. Maintenance trigger-
ing evaluates whether to perform maintenance, selects maintenance
actions to use, and may set parameters to guide their future execution
(e.g., determining when they will be performed). Triggering can be
done periodically, conditionally, or on an ad hoc basis and on-line or
off-line.

Conditional triggering can be subdivided into three classes depending

on the conditions that determine whether maintenance is triggered:

• Space-based (e.g., filling a limited amount of case storage),
• Time-based (e.g., retrieval time exceeding a threshold), or
• Result-based (e.g., the system failing to solve a given problem or

the wrong case being retrieved).

59

Triggering integration could be on-line or off-line. Most of the mainte-
nance triggering tasks will be undertaken during the CBR cycle (on-
line). However, another times it could be triggered off-line.

Operation types: Different maintenance policies revise different

types of in-formation (the target type) at different levels (the revision
level).
• Target type: Revision operations can focus on four types of tar-

gets
• Revision level: Revision operations can make revisions with ram-

ifications at three levels:
o affecting only the implementation level (i.e., changing an

indexing structure from a list to a D-tree when the case
base exceeds a certain size or changing case representa-
tions from lists to vectors),

o affecting the representation level (i.e., reconciling incon-
sistent feature names or case formats in cases that come
from different sources), or

o affecting the knowledge level as well (i.e., correcting an
erroneous feature value, generalizing case values, or add-
ing or deleting cases).

Scope of Maintenance (broad or narrow): A given operation may be
applied locally to few items in the case base, or more globally. Opera-
tions that affect a single case or a small subset of the case base have
narrow scope, and operations that affect a large subset or the entirety of
the case base have broad scope. This dimension is especially useful
when characterizing resource-bounded processing.

2.2.4 Categorizing Policies for CBM

The several kinds of policies that can be undertaken in CBM
could be dived in the following groups:

• Policies targeting domain content: may be organized in policies
aiming to adding and deleting cases, and policies at revising in-
ternal case content.

 60

• Standard case learning and manual maintenance: always add-

ing each new case to the case base.

• Additional policies aimed at case retention: based on coverage
and reachability, and integrating offline or online, beneficial or
detrimental.

• Policies aimed at interval case content: are aiming at internal

case content.

• Policies targeting indices: A number of classification systems
using IBL and related techniques 𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛 include policies for
eliminating noisy and redundant instances from a set of training
examples (cases).

• Policies targeting maintenance policies include the capability

for meta-maintenance of the maintenance strategies themselves.

2.2.5 Synthetic Analysis of CBM contributions

After an analysis of the related contributions in the literature in
Case Base Maintenance, summary tables 1, 2 and 3 with the works and
the main aspects of the contributions has been elaborated.

61

Table 1. Contributions to CBM field part 1

 62

Table 2. Contributions to CBM field part 2.

63

Table 3. Contributions to CBM field part 3.

 64

2.3 Introspective Reasoning

The tenets of metacognition are monitoring, modeling, evaluat-
ing and controlling of the cognition (Anderson and Oates, 2007). Metacogni-
tion means to have the knowledge and how to use this knowledge to
improve performance and reduce as low as possible deficiencies. The
main challenge of meta-reasoning is to find answers to most predictable
future needs. Introspective reasoning is an invaluable part in meta-
reasoning. John McCarty in (McCarthy, 1979) defines introspection as a
machine with beliefs of its internal state. Leake and Wilson in (Leake and
Wilson, 2008) defines that an introspective strategy must be characterized
by properties defining the When, What and How the learning step is
done. Research on meta-reasoning and introspective reasoning has been
reviewed and analyzed especially in fields such as physiology, social
science and especially in artificial intelligence. In this later, some scien-
tific contributions define this process to be successfully implemented in
computer science, such intelligence algorithms. Cox in (Cox, 2005) does
an extensive review of those topics where discuses cognition about Me-
ta-cognition and establish a relationship between psychology and com-
puter science fields. Anderson in (Anderson and Oates, 2007) extends the def-
inition of metacognition in computer science illustrating terms such as
learning, meta-learning and meta-cognition. Afterwards Cox in his
Manifesto (Cox and Raja, 2008) explains in detailed fundamental terms such
as Ground Level, Object Level and Meta-level. Thus, Meta-reasoning
has been extensively studied and characterized such as been demon-
strated in literature.

The meta-reasoning has been implemented effectively in the Case-
Based Reasoning (CBR) (Arcos et al, 2008; Leake, 2001; Fox and Leake, 2001; Leake
et al, 1995; Fox and Leake, 1994). In (Leake et al, 1995) the objective is to improve
the adaptation step by introspective reasoning considering the require-
ments and built a library with adapted cases. The introspective reason-
ing process implements memory search as form of planning and use
operators such as sensors to detect internal states. Their results show a
successful adaptation of knowledge. In Arcos et al, 2008 the perfor-
mance of the CBR cycle through an internal reasoning process that
guides the use of its cases is considerable improved. Arcos et al. im-
plements the method such as an introspective reasoner monitor, pursu-
ing the goal to determinate the causes of failures, and then adjusts re-
trieval and reuse strategies to improve solution quality.

65

Fox and Leake in (Fox and Leake, 2001; 1994) have proposed some improve-
ments to the CBR scenario, where meta-reasoning is embedded in the
cycle. In (Fox and Leake, 1994) proposed to refine the indexing criteria by
the implementation of an introspective reasoning framework with the
aim of refining reasoning processes, this frame-work is extended and
detailed in (Fox and Leake, 2001). Sànchez-Marrè in (Sànchez-Marrè et al., 2000)
introduced the idea of retrieval cases in hierarchical case libraries,
where a radius is defined by the implementation of a metric measure,
where if the distance from the library to the case exceeds the threshold,
then the case will not store there. Our proposal shares a similitude to
this, but exists some differences between them. In our case the proposal
aims to build the required prototypes and make a decision of where go-
ing to store the new cases. The core of our proposal is the implementa-
tion of a stochastic method working with two moments. That will be
detailed in the thesis.

The meta-learning and meta-reasoning have been widely studied; even
more, those topics are one of the goals to achieve by the Artificial Intel-
ligence community. In CBR community interesting and efficient meth-
ods have been proposed in this sense. Several proposals that have been
published have had the aim of implementing meta-reasoning. Some
proposals use introspective reasoning as our method to detect some ex-
pected behavior or to evaluate the behavior to guarantee the good per-
formance of the CBR system. Our proposal uses an introspective rea-
soning strategy to evaluate the performance of a set of algorithms in
learning phase. This done autonomously by the system, the introspec-
tive reasoning strategy involves the implementation of a set of rules to
evaluate whether the algorithms gives the best performance to the sys-
tem. With the strategy implemented we answer the questions formulat-
ed in Leake and Wilson, 2008 that consist in ¿When? ¿What? And
¿How the system learns? ¿When? When there exists a strategy that
improves the performance. ¿What? The new algorithm. And finally
¿How the system learns? the system learns by the implementation of
the new indexing strategy proposed. This is done when the reasoning
gathers sufficient information and its results improve the other algo-
rithms, when an algorithm over perform others, then it is considered as
the best candidate to be used. All these answers and our proposal are

 66

defined according to introspective reasoning as reflected in (Cox and Raja,
2008; Anderson and Oates, 2007; Cox, 2005).

2.4 Stochastic Learning

The Stochastic method has been widely used in several applica-
tions where learning is required. Here data plays the main role in the
learning.

One field in artificial intelligence where stochastic learning has been
used is in the clustering field. Contribution in this field proposes im-
proved methods to get better results in finding clusters. For instance see
(Swee et al., 2011), where authors examine a practical stochastic clustering
method that has the ability to find clusters in datasets without requiring
users to specify the centroids or the number of clusters. Other applica-
tion is in the field of robotics and learning, with the proposal of (Zhang et
al., 2013). They propose an efficient Stochastic Clustering Auctions for
centralized auctioning and homogeneous robot teams. For others con-
tributions see (Rebagliati et al., 2013), (Wang et al., 2012). For the application in
Trees see (Akbari and Reza, 2011). There are many other contributions in the
application of stochastic methods. One of the main contribution in the
CBR field is the proposal of (Finestrali and Muñoz-Avila, 2013) where they
studied the problem of explaining events in stochastic environments.
They claimed that a system using stochastic explanations reacts faster
to abrupt changes in the environment than a system using deterministic
explanations. They demonstrated this claim in a CBR system, while
playing a real-time strategy game. In chapter 5 some differences be-
tween our proposal and their proposal will be discussed.

Chuan in (Tan et al., 2010), implements a stochastic method where building
and classification of clusters are the issue. This is done without human
interaction. Then, they use the time variable to evaluate the probability
of belonging to some cluster. In our method, we use a time variable to
indicate the time when the acquired data was taken. Both methods learn
cases and store it, but we differ from Chuan in the method of learning
the cases. In our case, we talk about representative prototypes. The
learning of cases in our proposal is conditioned to accomplish with the
maximal acceptable dissimilarity or dispersion.

67

The following is a revision of the stochastic method according with
Taylor and Karlin in (Taylor and Karlin, 1998). The word "stochastic" derives
from the Greek and means "random" or "chance". The antonym is
"sure," deterministic," or "certain". A deterministic model predicts a
single outcome form a given set of circumstances. A stochastic model
predicts a set of possible outcomes weighted by their likelihoods, or
possibilities.

A coin flipped into the air will surely return to earth somewhere.
Whether it lands heads or tails is random. For a "fair" coin, we consider
these alternatives equally likely and assign to each the probability 1/2.
However, phenomena are not in themselves inherently stochastic or
deterministic. Rather is the choice of the observer to model a phenome-
non as stochastic or deterministic. The choice depends on the observer's
purpose. Most often, the proper choice is quite clear, but controversial
situations do arise. If once fallen the coin is quickly covered by a book,
so that the outcome "heads" or "tails" remains unknown, two partici-
pants may still usefully employ probability concepts to evaluate what is
a fair bet between them. That is, they may usefully view the coin as
random, even though most people would consider the outcome now to
be fixed or deterministic. As a less mundane example of the converse
situation, changes in the level of a large population are often usefully
modeled deterministically, in spite of the general agreement among
observers that many chance events contribute to their fluctuations.

Scientific modeling has three components: (i) a natural phenomenon
under study, (ii) a logical system for deducing implications about the
phenomenon, and (iii) a connection linking the elements of the natural
system under study to the logical system used to model it. If we think
of these three components in terms of the great-circle air route problem,
the natural system is the earth with airports at Los Angeles and New
York; the logical system is the mathematical subject of spherical geom-
etry; and the two are connected by viewing the airports in the physical
system as points in the logical system. The modern approach to sto-
chastic modeling is in a similar spirit. Nature does not dictate a unique
definition of "probability," in the same way that there is no nature-
imposed definition of "point" in geometry. "Probability" and "point" are
terms in pure mathematics, defined only through the properties invested
in them by their respective sets of axioms.

 68

In many real life situations, observations are made over a period and
they are influenced by random effects, not just at a single instant but
throughout the entire interval of time or sequence of times (Athanasios,
1984).

In a “rough” sense, a random process is a phenomenon that varies to
some degree unpredictably as time goes on. If we observed an entire
time-sequence of the process on several different occasions, under pre-
sumably “identical” conditions, the resulting observation sequences, in
general, would be different.

A random variable (RV) is a rule that assigns a real number to every
outcome of a random experiment, while a random process is a rule that
assigns a time function to every outcome of a random experiment.

A random experiment may lead not only to a single random variable,
but to an entire sequence of random variables.

 {𝑋𝑋𝑖𝑖: 𝑖𝑖 = 1, 2, 3 ⋯ } = {𝑋𝑋1,𝑋𝑋2,𝑋𝑋3 ⋯ }

Consider the random experiment of tossing a dice at 𝑡𝑡 = 0 and observ-
ing the number on the top face. The sample space of this experiment
consists of the outcomes {1, 2, 3,⋯ , 6}. For each outcome of the experi-
ment, let us arbitrarily assign a function of time 𝑡𝑡 {0 ≤ 𝑡𝑡 < ∞} in the
following manner; considering the list of last outcomes, where its func-
tion time is as follows:

𝑋𝑋1(𝑡𝑡) = −2,
𝑋𝑋2(𝑡𝑡) = −4,
𝑋𝑋3(𝑡𝑡) = 2,
𝑋𝑋4(𝑡𝑡) = 4,

𝑋𝑋5(𝑡𝑡) = −𝑡𝑡/2,
𝑋𝑋6(𝑡𝑡) = 𝑡𝑡/2

The set of functions {𝑋𝑋1(𝑡𝑡),𝑋𝑋2(𝑡𝑡),⋯ ,𝑋𝑋6(𝑡𝑡)} represents a random pro-
cess. A random process is a collection of RVs {𝑋𝑋(𝑠𝑠, 𝑡𝑡)} that are func-

69

tions of real variable, namely time t where 𝑠𝑠 ∈ 𝑆𝑆 (sample space) and
𝑡𝑡 ∈ 𝑇𝑇 (parameter set of index set).

The set of possible values of any individual member of the random pro-
cess is called state space. Any individual member itself is called a sam-
ple function or a realization of the process.

Classification of random processes

Depending on the continuous or discrete nature of the state space 𝑆𝑆 and
parameter set 𝑇𝑇, a random process can be classified into four types:

1. If both 𝑇𝑇 and S are discrete, the random process is called a dis-
crete random process. For example, if 𝑋𝑋𝑛𝑛 represents the out-
come of the nth toss of a fair dice, then {𝑋𝑋𝑛𝑛,𝑛𝑛 ≥ 1} is a discrete
random sequence, since 𝑇𝑇 = {1, 2, 3,⋯ } and 𝑆𝑆 = {1, 2, 3, 4, 5, 6}.

2. If 𝑇𝑇 is discrete and S is continuous, the random process is called
a continuous random sequence.
For example, if 𝑋𝑋𝑛𝑛 represents the temperature at the end of the
𝑛𝑛𝑛𝑛ℎ hour of a day, then {𝑋𝑋𝑛𝑛, 1 ≤ 𝑛𝑛 ≤ 24} is a continuous ran-
dom sequence, since temperature can take any value in an inter-
val and hence continuous.

3. If 𝑇𝑇 is continuous and 𝑆𝑆 is discrete, the random process is called
a discrete random process.
For example, if 𝑋𝑋(𝑡𝑡) represents the number of telephone calls
received in the interval (0, 𝑡𝑡) then {𝑋𝑋(𝑡𝑡)} is discrete random pro-
cess, since 𝑆𝑆 = {0,1,2,3,⋯ }.

4. If both 𝑇𝑇 and 𝑆𝑆 are continuous, the random process is called a
continuous random process. For example, if 𝑋𝑋(𝑡𝑡) represents the
maximum temperature at a place in the interval (0, 𝑡𝑡), {𝑋𝑋(𝑡𝑡)} is a
continuous random process. In the names given above, the word
‘discrete’ or ‘continuous’ is used to refer to the nature of 𝑇𝑇.

Specifying a random process.

Let 𝑋𝑋1,𝑋𝑋2,⋯𝑋𝑋𝑘𝑘 be the 𝑘𝑘 random variables obtained by sampling the
random process 𝑋𝑋(𝑡𝑡, 𝜁𝜁) at times 𝑡𝑡1, 𝑡𝑡2,⋯𝑡𝑡𝑘𝑘:

 70

𝑋𝑋1 = 𝑋𝑋(𝑡𝑡1, 𝜁𝜁),𝑋𝑋2 = 𝑋𝑋(𝑡𝑡2, 𝜁𝜁),⋯ ,𝑋𝑋𝑘𝑘 = 𝑋𝑋(𝑡𝑡𝑘𝑘2, 𝜁𝜁).

The joint behavior of the random process at these 𝑘𝑘 time instants is
specified by the joint cumulative distribution for the vector random var-
iable (𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑘𝑘).

A stochastic process is specified by the collection of the 𝑘𝑘𝑘𝑘ℎ-order joint
cumulative distribution functions:

𝐹𝐹𝑋𝑋1⋯𝑋𝑋𝑘𝑘(𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝑘𝑘) = 𝑃𝑃[𝑋𝑋1 ≤ 𝑥𝑥1,𝑋𝑋2 ≤ 𝑥𝑥2,⋯ ,𝑋𝑋𝑘𝑘 ≤ 𝑥𝑥𝑘𝑘]

For any 𝑘𝑘 and any choice at sampling instants 𝑡𝑡1,⋯ , 𝑡𝑡𝑘𝑘.

If the stochastic process is discrete-valued, then a collection of proba-
bility mass functions can be used to specify the stochastic process:

𝑃𝑃𝑋𝑋1⋯𝑋𝑋𝑘𝑘(𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑘𝑘) = 𝑃𝑃[𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2,⋯ ,𝑋𝑋𝑘𝑘 = 𝑥𝑥𝑘𝑘]

The Mean 𝑚𝑚𝑋𝑋(𝑡𝑡) of a random process 𝑋𝑋(𝑡𝑡) is

𝑚𝑚𝑋𝑋(𝑡𝑡) = 𝐸𝐸 [𝑋𝑋(𝑡𝑡) = � 𝑥𝑥𝑓𝑓𝑥𝑥(𝑡𝑡)𝑥𝑥 𝑑𝑑𝑑𝑑.
∞

−∞

In general, 𝑚𝑚𝑋𝑋(𝑡𝑡) is a function of time. Suppose we write 𝑚𝑚𝑋𝑋(𝑡𝑡) + 𝑌𝑌(𝑡𝑡)
then 𝑌𝑌(𝑡𝑡) has zero mean. Trends in the behavior of 𝑚𝑚𝑋𝑋(𝑡𝑡) are reflected
in the variation of the 𝑚𝑚𝑋𝑋(𝑡𝑡) with time.

The Autocorrelation 𝑅𝑅𝑥𝑥(𝑡𝑡1, 𝑡𝑡2) of a random process 𝑋𝑋(𝑡𝑡) are reflected
in the variation of 𝑚𝑚𝑋𝑋(𝑡𝑡) with time. The autocorrelation 𝑅𝑅𝑥𝑥(𝑡𝑡1, 𝑡𝑡2) of a
random process 𝑋𝑋(𝑡𝑡) is the joint moment of 𝑋𝑋(𝑡𝑡1) and 𝑋𝑋(𝑡𝑡2)

𝑅𝑅𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = 𝐸𝐸 [𝑋𝑋(𝑡𝑡1)𝑋𝑋(𝑡𝑡2)] = � � 𝑥𝑥𝑥𝑥𝑓𝑓𝑥𝑥(𝑡𝑡1),𝑥𝑥(𝑡𝑡2)𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑.
∞

−∞

∞

−∞

Note that 𝑓𝑓𝑥𝑥(𝑡𝑡1),𝑥𝑥(𝑡𝑡2) is the second order pdf or 𝑋𝑋(𝑡𝑡) and 𝑅𝑅𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) is a
function of 𝑡𝑡1 and 𝑡𝑡2.

71

The Autocovariance 𝐶𝐶𝑥𝑥(𝑡𝑡1, 𝑡𝑡2) of a random proces 𝑋𝑋(𝑡𝑡)s is defined as
the covariance of 𝑋𝑋(𝑡𝑡1) and 𝑋𝑋(𝑡𝑡2):

𝐶𝐶𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = 𝐸𝐸[{𝑋𝑋(𝑡𝑡1) −𝑚𝑚𝑋𝑋(𝑡𝑡1)}{𝑋𝑋(𝑡𝑡2) −𝑚𝑚𝑋𝑋(𝑡𝑡2)}]

= 𝑅𝑅𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) −𝑚𝑚𝑋𝑋(𝑡𝑡1)𝑚𝑚𝑋𝑋(𝑡𝑡2)

In particular, when 𝑡𝑡1 = 𝑡𝑡2 = 𝑡𝑡 we have

𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋(𝑡𝑡)] = 𝐸𝐸[(𝑋𝑋(𝑡𝑡) − 𝑚𝑚𝑋𝑋(𝑡𝑡))2] = 𝐶𝐶𝑋𝑋(𝑡𝑡, 𝑡𝑡).

Correlation coefficient of 𝑋𝑋(𝑡𝑡) is defined as

𝜌𝜌𝜌𝜌(𝑡𝑡1, 𝑡𝑡2) =
𝐶𝐶𝑋𝑋(𝑡𝑡1, 𝑡𝑡2)

�𝐶𝐶𝑋𝑋(𝑡𝑡1, 𝑡𝑡1)�𝐶𝐶𝑋𝑋(𝑡𝑡2, 𝑡𝑡2)
; |𝜌𝜌𝑥𝑥(𝑡𝑡1, 𝑡𝑡2)| ≤ 1

The mean, autocorrelation and autocovariance functions provide only
partial description of a random process.

2.5 Continuous Domains

In recent years, advances in hardware technology have facilitated
new ways of continuously collecting data. In many applications such as
network monitoring, the volume of such data is so large that it may be
impossible to store the data on disk. Furthermore, even when the data
can be stored, the volume of the incoming data may be so large that it
may be impossible to process any particular record more than once.
Therefore, many data mining and database operations such as classifi-
cation, clustering, frequent pattern mining and indexing become signif-
icantly more challenging in this context (Aggarwal, 2007). The monitoring
of many events in real time produces much information. In recent years
data stream field has grown rapidly. This field provides of techniques to
deal with large information, but the lead of big amount of data there are
some challenges to consider such as the following:

• With increasing volume of the data, it is no longer possible to

process the data efficiently by using multiple passes. Rather,
one can process a data item at most once. This leads to con-
straints on the implementation of the underlying algorithms.

 72

Therefore, stream mining algorithms typically need to be de-
signed so that the algorithms work with one pass of the data.

• In most cases, there is an inherent temporal component to the
stream mining process. This is because the data may evolve
over time. This behaviour of data streams is referred to as
temporal locality. Therefore, a straight-forward adaptation of
one-pass mining algorithms may not be carefully designed
with a clear focus on the evolution of the underlying data.

Continuous problem domains require different underlying representa-
tions and place additional constraints on the problem solving process
(Ram and Santamaría, 1997). Ram and Santamaria define three characteris-
tics where the problem domain is continuous, and those are: First, they
require continuous representations, For example, a robotic navigation
task requires representations of continuous perceptual and motor con-
trol information. Second, they require continuous performance. For
example, driving a car requires continuous action. Often, problem-
solving performance is incremental of necessity because of limited
knowledge available to the reasoning system and (or) because of the
unpredictability of the environment; the system can at best execute the
“best” short term actions available to it and then re-evaluate its pro-
gress. A robot, for example, may not know where obstacles lie until it
actually encounters them. Third, these problem domains require contin-
uous adaptation and learning. As the problems encountered become
more varied and difficult, it becomes necessary to use fine-grained, de-
tailed knowledge in an incremental manner to act, and to rely on con-
tinuous feedback from the environment to adapt actions and learn from
experiences.

Reasoning about continuous domains is not an easy task. Moreover,
this is a domain where CBR can rapidly extend its benefits because data
is systematically collected for its analysis. A CBR system that continu-
ously interacts with an environment must be able to create autonomous-
ly new situation cases (new concepts or clusters) based on its percep-
tion of the local environment in order to select the appropriate steps to
achieve the current mission goal (Harris and Slobodan, 2005), but a general
framework is still missing. Some systems that use case-based methods
in continuous environment are described in (Urdiales et al., 2006, Kruusmaa,
2003, Ram et al., 1997).

73

There are two other central problems derived from the continuous na-
ture of some domains. First of all, the size of the case library could
grow very fast as the CBR system is learning new cases without an ex-
tensive improvement in the competence of the system, as pointed out in
(Miyashita and Sycara, 1995). Two natural human cognitive tasks appear as
the solution to these problems: forgetting (Keane and Smyth, 1995) and sus-
tained relevant learning (Sànchez-Marrè et al., 1999). On the other hand,
learning many cases could provoke an overhead in the case library or-
ganization. As new cases are stored in the case library, it will be neces-
sary to update the case library organization (Meléndez, 2001).

 74

75

3 The proposed Dynamic Adaptive Framework
When CBR systems are deployed in continuous domains (i.e.,

domains where cases are generated from a continuous data stream),
the case maintenance becomes critical. An uncontrolled growth of the
case library can cause some serious problems of performance, where
the retrieval efficiency and the quality of the retrieval is affected. When
the case base has large amount of data, some inconsistent cases could
be stored. This condition affects directly in the performance of the li-
brary. Sànchez-Marrè et al. in (Sànchez-Marrè et al., 1999) proposed to learn
only the relevant cases to get a stable library. The learning of relevant
cases could be an interesting task for learning in continuous domain. To
get a stable library in a continuous domain Orduña and Sànchez-Marrè
in (Orduña and Sànchez-Marrè, 2009) proposes a dynamic library able to adapt
itself to the continuous changes in the domain. This research work pro-
poses a framework called “DACL/MCL Framework for improving
Case-Based Reasoning performance”, see (Orduña and Sànchez-Marrè, 2015b;
Orduña and Sànchez-Marrè, 2009), as a reasonable solution to learn experiences
and control the growing of the library.

The proposed framework aims to improve the retrieve and retain phas-
es of the CBR cycle. Our proposal is summarized in figures 9, 10 and
11. In figure 9, the CBR cycle is depicted. Considering this figure ver-
sus figure 1 in chapter 2, the only difference is in the representation of
the case library. While the figure 1 depicts “case library” the figure 9
depicts “DACL/MCL”. That means that our proposal works different in
the knowledge organization, and have special methods for case retrieval
and case learning. Figure 10 makes emphasis in the Stochastic Learning
Meta-case Method “SLMcM” proposed in (Orduña and Sànchez-Marrè, 2015a).
The proposal of SLMcM, improves the CBR cycle with methods to
build prototypes of the library. The same figure depicts the use of NIAR
k-d tree algorithm, introduced in (Orduña and Sànchez-Marrè, 2013). NIAR k-d
tree is an algorithm proposed for indexing the cases in the case base.
With this technique, the learned cases are saved in a hierarchical struc-
ture that improves the case retrieval quality. The algorithm has been
tested in the supervised and unsupervised domains. The results are de-
tailed in chapter 6. The algorithm has been tested both in an exact-case
retrieval process (typical from database field, where k-d trees were
originated) and in a similar-case retrieval process (typical from case-

 76

based reasoning field). The results show a good performance in retriev-
al time and a good competence in the retrieval step. Finally, the figure
11 depicts a complete CBR cycle including the methods proposed. In
addition, a new exploration technique, the Partial Matching Explora-
tion technique (PME), has been proposed for facing the similar-case
search, and coping with the problem of losing cases in hierarchical in-
dexing structures. This exploration technique has been tested, and the
results have shown a very good performance.

Both proposals (NIAR k-d tree and PME) jointly with the Stochastic
Learning Meta-case Method (SLMcM) have been integrated within the
DACL/MCL framework.

In this chapter, the details of DACL/MCL are given and the details of
the different levels of DACL/MCL are explained. The representation of
what is a case is detailed, referred as usual in the literature in CBR
field. With the definition of a case then the definition of the prototypes
of cases is proposed. Finally, the explanation of what constitute the
DACL/MCL is provided.

Fig. 9. Environment of DACL/MCL

77

Fig. 10. DACL/MCL Methods

Fig. 11. DACL-CBR

 78

3.1 Dynamic Adaptive Case Library

The continuous domains require software that works efficiently.
In a continuous domain is difficult to store all the information generat-
ed. In these domains, the amount of data generated could be different in
similar situations. Therefore, there are changes produced by the dynam-
ic of the system within the environment. The continuous domain has a
dynamic relationship with the dynamic environments. For this reason, it
is required to provide them with a dynamic competence model, with the
goal of being adapted as much as possible in relation with the changing
environment.

Fig. 12. The Three-level Dynamic Adaptive Case Library structure.

The architecture proposed presents a Dynamic Adaptive Case Library
(see figure 12), with the aim of giving a possible solution to the man-
agement of the large amount of data generated in a continuous domain.
The library will be split in several sub-libraries. Each sub-library is or-
ganized hierarchically at three levels:

• The Meta-case: The Meta-case is the prototype of a concrete

cluster of cases.
• The clusters: The set of cases belonging to the same cluster,

and that are being represented by the meta-case.
• Indexing structures: They implement the way that all the

cases are organized in the sub-library. In our proposal, the

79

cases are organized in a hierarchical indexing structures (k-d
trees, discriminant trees, etc.), but could be organized with
other indexing approaches.

3.1.1 The Case

Most of applications involving CBR approaches in continuous
systems define a case as a process state in a time instant (Ram and Santama-
ria, 1997), or like an average of values in a predefined period of time (Poch
et al. 1999), that is not always possible and major information is obtained
from sequences of data and state transition (Meléndez et al., 2001). In (Melen-
dez et al., 2001) it is proposed to build a case according to the previous def-
inition, with the idea of adding historic signals as temporal series of
acquired signals.

Continuous domains present some added difficulties to the building
process of a CBR system (Joh, 1997). The first difficulties are presented in
the definition of case. The most popular questions raised in the litera-
ture about the characteristics of a case, are: which elements of the do-
main constitute a case? How should continuous cases be represented?,
When do cases start and end (in the temporal sense)?, When are two
experiences different enough to warrant consideration as independent
cases?, what is the scope of a single case?.

We can argue that a case is a snapshot of a situation. This concept
could guide the extraction of a case from discrete domains, where the
boundaries of a situation (case) are clear. In continuous domains, how-
ever, this is not obvious and creates some problems such as cited above.
Most of the continuous domains are systems where planning and execu-
tion or monitoring and control are interleaved (Portinale and Montani, 2005),
(Sànchez-Marrè et al., 2005), (Martín and Plaza, 2004), (Veloso, et al., 1996). They com-
monly have a dynamic associated with the process where time has to be
considered (Portinale and Montani, 2005), (Sànchez-Marrè et al., 2005). The main
approach to identify a case is to establish some regular sampling points
to obtain the discrete values for the relevant attributes better character-
izing the process.

Considering the literature cited above, in this work, a case has the struc-
ture depicted in following case structure, using the concepts of cover-

 80

age and reachability formulated by Keane and Smyth (Keane and Smyth,
1995):

Case#_X: The identifier assigned to the new case.
List of Attributes (att1 ... attm): The list of the attributes witch charac-
terize both the problem description and the corresponding solution.
Problem: A situation detected by the system it is described by a list of
attribute-value pairs.
Solution: It is the solution for the problem. The solution is a list of at-
tribute-value pairs showing the solution to the problem.
Distance to Meta-case: It is the distance of the case to its Meta-case
model.

Taking the Case as an object, it could incorporates some others values
that help to have a better representation of the current new case (𝑁𝑁𝑁𝑁).

3.1.2 The Meta-case

The idea of using a Meta-case as a representative case of several
similar cases was introduced by Sànchez-Marrè in (Sànchez-Marrè et al.,
2000). The aim is to show a formal proposal of how to a Meta-case (𝑀𝑀𝑀𝑀)
can be built. For our goal, a Meta-case is the prototype of a set of relat-
ed cases. The centroid value is generated taking into account the whole
cases stored in the indexing structure. With the following formu-
la: 𝑀𝑀𝑀𝑀𝑗𝑗𝑖𝑖 = 1

𝑛𝑛𝑖𝑖
∑ 𝐶𝐶𝑗𝑗𝑘𝑘 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 j = 1, … , m𝑛𝑛𝑖𝑖
𝑘𝑘=1 . The average distance (centroid)

of the set of cases in that cluster is computed. A case (𝐶𝐶𝑖𝑖) and a Meta-
case (𝑀𝑀𝑀𝑀) are described by m attribute values. That is the first proposal
that was introduced in (Orduña and Sànchez-Marrè, 2009). Our proposal of con-
structing Meta-cases (Orduña and Sànchez-Marrè et. al., 2015a) is where the sto-
chastic methods is introduced and prove it. DACL have as representa-
tive case a 𝑀𝑀𝑀𝑀, this 𝑀𝑀𝑀𝑀 works like a clustering filter where the decision
to learn a new incoming case (𝑀𝑀𝑀𝑀) is made, this decision concerns to a
method to evaluate the 𝑀𝑀𝑀𝑀′𝑠𝑠 and find the most appropriate 𝑀𝑀𝑀𝑀 where to
learn the 𝑁𝑁𝑁𝑁.

81

Fig. 13. Learning new cases through the DACL framework

The figure 13 depicts the general way of learning a new case, first the
case arrives, and next the method finds the most representative Mc.
Once the Mc has been identified, the DACL proceed to store the Nc in
the corresponding indexing structure (k-d tree, discrimination tree, etc.).
Here follows the formalization of this process:

𝐶𝐶𝑖𝑖 = �𝐶𝐶1𝑖𝑖 ,𝐶𝐶2𝑖𝑖 ,⋯ ,𝐶𝐶𝑚𝑚𝑖𝑖 �

𝑀𝑀𝑀𝑀𝑖𝑖 = �𝑀𝑀𝑀𝑀1𝑖𝑖 ,𝑀𝑀𝑀𝑀2𝑖𝑖 ,⋯ ,𝑀𝑀𝑀𝑀𝑚𝑚𝑖𝑖 �

Where 𝑛𝑛𝑖𝑖 = #𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑀𝑀𝑀𝑀𝑖𝑖)

𝑀𝑀𝑀𝑀𝑗𝑗𝑖𝑖 = 1
𝑛𝑛𝑖𝑖
∑ 𝐶𝐶𝑗𝑗𝑘𝑘 j = 1, … ,𝑚𝑚𝑛𝑛𝑖𝑖
𝑘𝑘=1 (1a)

 82

If 𝑗𝑗 is a qualitative attribute, and

𝑀𝑀𝑀𝑀𝑗𝑗𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝐶𝐶𝑗𝑗𝑘𝑘� 𝑘𝑘 = 1, … ,𝑛𝑛𝑖𝑖 𝑗𝑗 = 1, … ,𝑚𝑚 (1b)

If 𝑗𝑗 is a quantitative attribute

The Meta-case structure improves the performance of the retrieval time
according to the proposals of Orduña and Sànchez-Marrè in (Orduña and
Sànchez-Marrè et. al., 2015a; Orduña and Sànchez-Marrè, 2009). The Meta-case is re-
lated to the clustering and learning processes. A Meta-case structure is
considered as follows:

Meta-case-id: It is the identification of the Meta-case.
Meta-case centroid: It is computed, for each component, as the average
value or mode value of corresponding values of all cases existing in the
corresponding cluster. This average or mode is generated by using the
formulas 1a or 1b.
IndStr link: The link to the root of the Indexing structure.
McBrother: The link to the nearest Meta-case brother.

Considering the Mc as an object, it could incorporate some other values
to help having a better representative prototype.

A CBR system executes the following 4 phases to learn a new experi-
ence; retrieve, reuse, revise and retain. In the DACL approach, the re-
trieve and retain phases need to be addressed and reformulated. Re-
trieving similar cases regarding to a new case is a process that needs to
be done accurately. A new algorithm (DACL Retrieval algorithm) to
retrieve the most similar case or cases in the DACL is shown.

83

Algorithm 3: DACL retrieval algorithm

Input: The Case (C) 1
Output: the retrieved set of cases (Retrieved) 2
Begin Discriminant_tree(Node Nc) 3
Let C = the arriving case; 4
Let Mc = a Meta-case; 5
Let dMC = the most similar Meta-case; 6
Let i = total number of Meta-cases; 7
Let K = total number of attributes of the C; 8
Let a = an attribute of C where a= {1… K}; 9
Let CL = the cluster that's represents a Meta-case where 10
CL={1…i} 11
Let ListMc = a {list to store temporally the distances 12
estimated}; 13
Let N = The root of the tree; 14
Let Node C = the representation of the C; 15
Let atta = an specific attribute of C, where a = {1… K}; 16
Let Dadnode = a {node that's represents a discriminant 17
section} 18
Estimate the distance between the C and the entire Meta-19
case using the formula 2; 20
dMC = Min(ListMc) 21
Similar = Method_search(C, N) 22
Begin Method_search(Node C, Node DadNode) 23
Path = Compare dMC.attx with C.attx 24
if(Path.leaf == Relevance) 25
 If Path.leaf == DadNode then 26
 Method_search(C, Path.leaf) 27
 Else 28
 If Path.leaf == CaseNode then 29
 If CaseNode.ListCases == true then 30
 while ListCases != null 31
 Apply the formula 3. 32
 Endwhile 33
 Retrieved = Max(ListSimil) 34
 Else 35
 Retrieved = Path.leaf 36
 Endif 37
 Endif 38
 Endif 39
Endif 40
Return Retrieved 41
End Method_search42

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[𝑐𝑐𝑐𝑐] = ∑ � 1
𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘

𝐶𝐶𝐶𝐶𝑖𝑖
𝐶𝐶𝐶𝐶=1 �∑ �𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎�

𝑎𝑎𝑘𝑘
𝑎𝑎𝑎𝑎𝑎𝑎=1 �� (2)

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[𝑖𝑖] = ∑ �1 − �
∑ 𝑒𝑒𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑�𝐶𝐶𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎�
𝑛𝑛
𝑎𝑎𝑎𝑎𝑎𝑎=1

∑ 𝑒𝑒𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛
𝑎𝑎𝑎𝑎𝑎𝑎=1

��𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶!=𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 (3)

Where:

𝑑𝑑�𝐶𝐶𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎� =
�𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(𝐶𝐶𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎)− 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎)�

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎) − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎) (4)

Retain task aims to maintain (Basic retaining/learning algorithm) a
competent Case Library with a high coverage. The Retain process de-
cides whether the new case needs to be stored in the case library, by
updating an existing sub-library, building a new sub-library or simply
ignoring the case. The process to make a decision is guided by the
learning algorithm.

The algorithm basic retaining/learning algorithm works as follows: it
receives a solved new case (Nc) and then computes the distance to all
the Meta-cases, with the aim to find the closest Meta-cases. Once the
best Meta-case is found, it proceeds to compare whether the distance
found falls within the α threshold (previously defined by the experts or
tuned by trial and error experimentation). Then, it proceeds to store the
new case into the current library. Otherwise, if the distance is higher
than the α threshold value, a new sub-library must be created contain-
ing the new solved case. The last consideration in the algorithm is when
the distance of the solved case falls within the ratio of two or more me-
ta-cases. If so, the competence of the most similar Meta-case (MsMc)
and the second most similar Meta-case (2MsMc) is computed taking
into account the solved case. Moreover, the solved case is stored into
the sub-library that better improves its competence with the case.

Algorithm 4: basic retaining/learning algorithm (VirtualMcSel-1)

Input: the new case solved (Nc) 1
 The DACL 2
Output: The updated DACL 3
Begin VirtualMcSel-1 4
Let MsMc = the most similar Meta-case; 5
Let 2MsMc = the second most similar; 6
The distance is computed between the new case and the 7
whole set of Mc 8
if d(Nc, MsMc) < α and (d(Nc, 2MsMc) < α then 9
 /* α is the threshold value, predefined by the experts 10
 or tuned by trial and error experimentation */ 11
 Evaluate the competence of the MsMc and 2MsMc; 12
 Select the sub-library that get a better competence 13
 with the new case; 14
 The selected Meta-case is updated with the new case; 15
elseif d(Nc, MsMc) < α then 16
 Update the corresponding sub-library with the new case 17
elseif d(Nc, MsMc) > α then 18
 Build a new sub-library, and store the new case 19
endif 20
end VirtualMcSel-1 21

3.2 Multiple Case Library (MCL)

In our research, we propose to use a static version of a DACL: a
Multiple Case Library (MCL) with the same structure but being defined
statically at the building stage of the Multiple Case Library. MCL ap-
proach is intended for supervised domains. Main rationale for a MCL is
the same than for a DACL: the main problem in hierarchical Case Li-
braries retrieval task is that sometimes is impossible to reach most simi-
lar cases due to an exploration in a wrong area of the hierarchy. This
problem could be because the hierarchy of nodes does not correspond
to the relevance of the attributes, as for example a bad –unique– dis-
crimination ordering of the attributes. Our proposal to overcome this
problem is to split the case library in a set of different smaller case li-
braries. These smaller case libraries can provide a faster search because
they have a smaller number of tree levels, and in addition, they can
provide more accurate similar-case search because each Case Library
corresponds to a different prototype (Meta-case) of cases in the whole
domain.

 86

The retrieval process in a MCL starts matching the current/query case
against a set of prototype cases, called meta-cases, to select one (or
more) case libraries to search in. This approach tries to build several
hierarchical structures for suiting different kind of cases, making the
CBR system more flexible, accurate and reliable.

In a MCL, the number of meta-cases and its corresponding Case Librar-
ies has been fixed a priori, rather than dynamically like in a DACL
structure. One common situation is when the domain or database is su-
pervised, and there is a class label for each case. Then, all the cases
sharing the same class label form the corresponding cluster, and its pro-
totype is the Meta-case. In other unsupervised situations, a previous
clustering process or a general dynamic incremental process can give,
as a result, the set of Meta-cases to be used for splitting all the cases in
the corresponding set of case libraries. For each Meta-case (cluster of
cases), a hierarchical structure (k-d tree) is constructed to discriminate
among all the cases belonging to the same cluster.

Each sub-library is organized hierarchically with the same layers than a
DACL:

• The Meta-case: The Meta-case is the prototype of a concrete cluster
of cases.

• The clusters: The set of cases belonging to the same cluster, and that
are being represented by the Meta-case

• The indexing structures (discriminant trees, k-d trees, etc.): Repre-
sents the way that all the cases in a given cluster are organized in the
corresponding sub-library.

In the top level of a MCL could exist several Meta-cases, where each
one describes a subtype of cases in the general domain (class type)
stored in MCL. In next level, the hierarchical structures/trees are em-
ployed as an indexing strategy which aim is to improve both the time
retrieval and the accuracy of retrieved case/s. MCL is a very flexible
structure because in the second level, any hierarchical strategy could be
used. Furthermore, a MCL has the flexibility to mix different strategies.
For instance: the second level of any Meta-case, i.e., the hierar-
chical/tree level, could have a special method implemented within: a
standard k-d tree, a NIAR k-d tree, a binary tree, etc., where this meth-
od improves the retrieval especially in this kind of cases (subdomain).

87

This characteristic endows MCLs to deal with an introspective reason-
ing method and allows the selection of the best indexing technique for
each meta-case. The implementation of possible different methods at
indexing levels avoids the implementation of the same retrieval algo-
rithm for all data in the whole MCL, always aiming to improve the per-
formance and quality of the system.

This third level of a MCL is where several approaches will be tested in
chapter 6: standard k-d trees, NIAR k-d trees, the same approaches with
a Partial Matching Exploration strategy (PME) and the same ap-
proaches with the hyperball with bounds strategy.

Therefore, an experimental testing will be undertaken to show whether
the use and combination of the new approaches proposed against previ-
ous well-known used techniques improves the efficiency and compe-
tence of CBR systems.

 88

89

4 Improving the retrieval task
Case retrieval is one important step in the case-based reasoning

cycle, especially related to the time efficiency of a CBR system. Sever-
al algorithms have been proposed for the hierarchical indexing of cases,
since the original indexing approach of k-d trees appeared in the litera-
ture. Main approaches propose to use a pre-computed binary search tree
to get an average logarithmic time effort in searching. The basic ideas
of the proposal are indexing algorithms based on the principle of binary
search trees for efficient case retrieval according to a given similarity
measure sim. In next sections, the AvKd-Tree, the NIAR k-d tree and
the Partial Matching Exploration (PME) technique will be proposed
and explained.

4.1 AvKd-Tree

An algorithm called AvKd-Tree is introduced. AvKd-Tree is a
proposal with better performance in retrieving time than a standard k-d
tree, but no better than a NIAR k-d tree. AvKd-Tree spends least retriev-
al time than standard k-d tree in databases with large amount of data.
However, in databases with a considerable amount of data the behavior
is similar to a standard k-d tree. In the next section, the algorithm will
be explained.

The rationale behind AvKd-Tree approach is to try to get the sub-trees
of each internal node as much balanced as possible, in order to reduce
the number of tree levels, and consequently increase the retrieval speed.
The approach is to deal the incremental problem in the building of k-d
trees, especially when facing continuous domains, where a lot of new
cases are generated and must be stored progressively in the case base.
The indexing strategies should be analyzed and modified to show rea-
sonable time in the updating of the case base indexation.

The use of k-d trees, NIAR, AvKd-Tree embedded in DACL gives facil-
ities to build an indexing structure framework with the aim to select the
best algorithm for indexing cases that belongs to its representative Me-
ta-case. The selection of the best method is according of the framework
proposed. Its behavior is learned following a set of evaluation rules

 90

with the aim to achieve the major efficiency and to gain the best possi-
ble performance.

This approach proposal works quite similar to the standard k-d tree and
NIAR k-d tree, selecting the discrimination attributes cycling along the
list of attributes, but differs of standard k-d tree approach in the tech-
nique of selecting the split value for each attribute at the internal nodes.
The proposed partition value is the average value of the attribute val-
ues from the instances in the corresponding node. The technique pro-
posed is explained as follows:

1. Compute the average value 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑙𝑙of the corresponding attribute 𝑖𝑖 among
the instances in the current node 𝑙𝑙.

Let be {𝐶𝐶𝑗𝑗}𝑗𝑗=1,𝑛𝑛 the case base composed of 𝑛𝑛 cases. Each case 𝐶𝐶𝑗𝑗 could
be described with the set of 𝑚𝑚 attributes:

𝐶𝐶𝑖𝑖 = �𝐶𝐶1𝑖𝑖 ,𝐶𝐶2𝑖𝑖 ,⋯ ,𝐶𝐶𝑚𝑚𝑖𝑖 �

Let be 𝐼𝐼𝑙𝑙 the set of instances represented by the Node(𝑙𝑙):

 𝐼𝐼𝑙𝑙 = �𝐶𝐶𝑗𝑗�𝐶𝐶𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑙𝑙)� 𝑙𝑙 = 1, … , n

The computation of the average value of attribute 𝑖𝑖 among the in-
stances at node 𝑙𝑙, 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑙𝑙 is defined by the formula:

 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑙𝑙 =
1

#𝐼𝐼𝑙𝑙
�∑ 𝐶𝐶𝑖𝑖

𝑗𝑗#𝐼𝐼𝑙𝑙
𝑗𝑗=1 �

Then, finally, the partition value is: 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑙𝑙
2. Once found the partition value, all the node 𝑙𝑙 instances with lower or

equal values than the partition value will be the instances of the left
sub-tree, constituting the new node (2 ∗ 𝑙𝑙). On the other hand, all the
node 𝑙𝑙 instances with higher values than the partition value will be
the instances of the right sub-tree, constituting the new node (2 ∗ 𝑙𝑙 +
1).

3. Recursively continue generating the tree for the left son node, and for
the right son node, until the number of instances of a node is lower or
equal than the bucket size (𝑚𝑚 cases)

91

The procedure for generating the AvKd-tree is detailed in the Avkd-tree
algorithm, following detailed.

Algorithm 5: AvKd-Tree

Input: case base CB, discriminator attribute i, 1
 total number of attributes m, bucket size d 2
Output: AvKd-tree root node 3
begin AvKd-tree(CB, i, m, d) 4
 let n, sum, ni, atti, partitionValue, 5
 lowerPart, upperPart 6
 n = count(CB); {number of cases of CB} 7
 if n > d then //cases do not fit in one bucket 8
 sum = 0; 9
 for j= 1 to n do 10
 sum = sum + consult(CB,j,i) //value i of case j 11
 endfor; 12
 atti= sum / n; //Average value of attribute i 13
 maxsim = - infinity; 14
 partitionValue = consult(CB, atti ,i); 15
 lowerSon = ∅; upperSon = ∅; 16
 for j= 1 to n do 17
 if consult(CB,j,i) <= partitionValue then 18
 lowerPart = lowerPart + case(CB,j) 19
 else 20
 upperPart = upperPart + case(CB,j) 21
 endif 22
 endfor 23
 ni = i mod m + 1; //next indexing attribute 24
 return (makeNode(i,partitionValue, 25
 AvKd-tree (lowerPart,ni,m,d), 26
 AvKd-tree (upperPart,ni,m,d))) 27
 else 28
 return (makeLeaf(CB,n.d))//make a bucket of n cases 29
 endif 30
end AvKd-tree31

The procedure count(CB) computes the number of cases in CB. The
procedure consult(CB,j,i) provides the value of the attribute i
in the case j of the CB. The procedure case(CB,j) returns the case
j of CB. The procedure makeNode(i,partitionValue, low-
erSon,upperSon)) returns an internal node including the discrim-
ination attribute i, the splitting value partitionValue, and two

 92

pointers to the nodes of the subtrees lowerSon and upperSon. The
procedure makeLeaf(CB,n.m) returns a leaf node with a bucket
filled with the cases in CB.

The algorithm shown above is a recursively procedure that builds the
AvKd-Tree tree proposed.

The average computational time for generating a AvKd-Tree is
𝑂𝑂(𝑛𝑛 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙2𝑛𝑛), being 𝑛𝑛 the number of cases, and 𝑂𝑂(𝑛𝑛2) for the worst
case, improving the effort for generating the k-d tree of some of the
standard k-d trees; its cost does not depend on the number of attributes
𝑘𝑘.

4.2 NIAR k-d Tree

The proposed NIAR k-d tree algorithm has two main steps
based on the computation of the average value of the corresponding
attribute among the sub-tree cases, and selecting for that attribute, the
value of the Nearest Instance/case to the Average as the Root (partition
value). Several experimental results with some databases have shown
that the retrieval step in NIAR k-d tree is faster than in the standard k-d
tree approach. The time efficiency, the depth and breadth in both trees
are analyzed. The results obtained depict a significant difference of lev-
els in the trees. The presented approach is implemented within the
DACL framework for case-based reasoning.

As explained in the previous sections, the different approaches based
on the standard k-d tree approach as an associative retrieval procedure
differ both in the selection criteria for the discriminating attributes and
in the selection of the partition value. All proposed strategies try to im-
prove the retrieval time for query cases through the generation of well-
balanced binary trees. A balanced tree is a very compact tree where the
number of cases represented by each sub-tree is nearly the same than in
the other sub-tree. This guarantees a stable retrieval time independently
of the distribution of the query cases.

Our proposal works quite similar to the standard k-d tree, selecting the
discrimination attributes cycling along the list of attributes, but differs
of standard k-d tree approach in the technique of selecting the split val-

93

ue for each attribute at the internal nodes. The proposed partition value
is the attribute value more similar to the average value of the attribute
values from the instances in the corresponding node. The technique
proposed is explained below.

The name NIAR means that the attribute value of the Nearest Instance
to the Average will be the Root node partition value. This value is the
new partition value. To find this split value, the process proposed is as
follows:

1. Compute the average value 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑙𝑙of the corresponding attribute 𝑖𝑖
among the instances in the current node 𝑙𝑙.

Let be {𝐶𝐶𝑗𝑗}𝑗𝑗=1,𝑛𝑛 the case base composed of 𝑛𝑛 cases. Each case 𝐶𝐶𝑗𝑗 could
be described with the set of 𝑚𝑚 attributes:

𝐶𝐶𝑖𝑖 = �𝐶𝐶1𝑖𝑖 ,𝐶𝐶2𝑖𝑖 ,⋯ ,𝐶𝐶𝑚𝑚𝑖𝑖 �

 Let be 𝐼𝐼𝑙𝑙 the set of instances represented by the Node(𝑙𝑙):

 𝐼𝐼𝑙𝑙 = �𝐶𝐶𝑗𝑗�𝐶𝐶𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑙𝑙)� 𝑙𝑙 = 1, … , n (5)

The computation of the average value of attribute 𝑖𝑖 among the in-
stances at node 𝑙𝑙, 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑙𝑙 is defined by the formula:

 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑙𝑙 = 1
#𝐼𝐼𝑙𝑙
�∑ 𝐶𝐶𝑖𝑖

𝑗𝑗#𝐼𝐼𝑙𝑙
𝑗𝑗=1 � (6)

2. Find the Nearest Instance attribute value to the Average value
(𝐶𝐶𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) of the attribute values from the instances (𝐼𝐼𝑙𝑙) in the corre-
sponding node 𝑙𝑙, which will be the Root partition value.

Once computed the mean of the corresponding attribute, the next step is
to find the nearest instance to the mean value obtained. The average
value computed very probably does not really exist in the list of in-
stances. It is not a true split value. This average value cannot be taken
as the final split value because is a virtual value so far, and thus, the
partition value would be virtual and would increase the number of lev-
els of the tree. To reduce the number of levels in the tree, the Nearest
Instance to the Average value of the Attribute must be located within
all the instances (𝐼𝐼𝑙𝑙) of the corresponding node 𝑙𝑙:

 94

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗=1,#𝐼𝐼𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖�𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑙𝑙,𝐶𝐶𝑖𝑖

𝑗𝑗� (7)

𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 is the similarity measure on the dimension of the attribute i.

Then, finally the partition value is: 𝐶𝐶𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

 3. Once found the partition value, all the node l instances with lower
or equal values than the partition value will be the instances of the left
sub-tree, constituting the new node (2 ∗ 𝑙𝑙), and, all the node l instanc-
es with higher values than the partition value will be the instances of
the right sub-tree, constituting the new node (2 ∗ 𝑙𝑙 + 1),

4. Recursively, continue generating the tree for the left son node, and
for the right son node, until the number of instances of a node is low-
er or equal than the bucket size (𝑚𝑚 cases)

The procedure for generating the NIAR k-d tree is detailed in the algo-
rithm NIAR k-d tree following detailed:

Algorithm 6: NIAR k-d tree

Input: case base CB, discriminator attribute i, 1
 total number of attributes m, bucket size d 2
Output: NIAR k-d tree root node 3
 4
begin GenNIARtree(CB, i, m, d) 5
Let n, sum, ni, atti, NIARoot, partitionValue, 6
 lowerPart, upperPart 7
 n = count(CB); //number of cases of CB 8
 if n > d then //cases do not fit in one bucket 9
 sum = 0; 10
 for j= 1 to n do 11
 sum = sum + consult(CB,j,i) {value i of case j} 12
 endfor; 13
 atti= sum / n; //Average value of attribute i 14
 maxsim = - infinity; 15
 for j= 1 to n do 16
 if simi(Atti, consult(CB,j,i)) > maxsim then 17
 maxsim = simi(Atti, consult(CB,j,i)); 18
 NIARoot = j; 19
 endif 20
 endfor 21
 partitionValue = consult(CB,NIARoot,i); 22
 lowerSon = ∅; upperSon = ∅; 23

95

 for j = 1 to n do 24
 if consult(CB,j,i) <= partitionValue then 25
 lowerPart := lowerPart + case(CB,j) 26
 else 27
 upperPart := upperPart + case(CB,j) 28
 endif 29
 endfor 30
 ni = i mod m + 1; {next indexing attribute} 31
 return (makeNode(i,partitionValue, 32
 GenNIARtree(lowerPart,ni,m,d), 33
 GenNIARtree(upperPart,ni,m,d))) 34
 else 35
 return (makeLeaf(CB,n.d))//make a bucket of n cases 36
 endif 37
end GenNIARtree38

The procedure count(CB) computes the number of cases in CB. The
procedure consult(CB,j,i) provides the value of the attribute i
in the case j of the CB. The procedure simi(Atti, con-
sult(CB,j,i)) computes the similarity measure between Atti
(the average of the attribute i) and the value of the attribute i in the
case j. The procedure case(CB,j) returns the case j of CB. The
procedure makeNode(i,partitionValue,lowerSon, up-
perSon)) returns an internal node including the discrimination at-
tribute i, the splitting value partitionValue, and two pointers to
the nodes of the sub-trees lowerSon and upperSon. The procedure
makeLeaf(CB,n.m) returns a leaf node with a bucket filled with the
cases in CB.

The algorithm shown above is a recursive procedure that builds the
NIAR k-d tree proposed. Figure 14 depicts the splitting step of the tree
based on the partition value obtained.

 96

Fig. 14. Splitting step in the generation of a NIAR k-d tree

The average computational time for generating a NIAR k-d tree is
𝑂𝑂(𝑛𝑛 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙2𝑛𝑛), being 𝑛𝑛 the number of cases, and 𝑂𝑂(𝑛𝑛2) for the worst
case, improving the effort for generating the k-d tree of some of the
standard k-d trees.

4.3 Partial Matching Exploration (PME) Technique

In this section, a partial matching exploration technique (PME)
for a tree indexing structure is proposed (figure 15). It is a technique to
explore a hierarchical case library, with a tree indexing structure aiming
to not to lose the most similar cases to a query case. The basic idea un-
derlying the process is to prevent from the fact that some potentially
good (similar) cases could not be reached in the retrieval process. Such
an unsuccessful search in the case library will lead to a bad retrieving
strategy. Among the causes originating these failures there is a wrong
choice at a high node in case library as an effect of the discretization
process of the node attribute values or, if the hierarchy of nodes does
not correspond to the importance of the attributes, as for example a bad
discrimination order of the attributes, etc.

The partial matching exploration technique means that not only the best
matching path will be traversed, but also several alternative partial
matching paths will be explored. The exploration task searches the case
library with two exploration techniques: best matching exploration and
partial matching exploration. The best matching exploration means that

97

only the best1 child (best matching node) will be explored. It is the
common search of the case library following the main path through the
hierarchical case library. The partial matching exploration means that
the two best children (best and second-best matching nodes) of the cur-
rent node will be explored.

At root node of the tree, the partial matching exploration is used. That
means the two best children of the root node will be explored. The best
child is explored again with partial matching exploration, and the sec-
ond-best child is explored with best matching exploration, if possible.
Summarizing, the nodes on the best matching path (main path) are al-
ways searched with partial matching exploration, and the nodes on the
alternative matching paths are searched with best matching exploration.
Being 𝑘𝑘 the maximum number of attributes used in the tree, then at
most 𝑘𝑘 paths from the root are explored, and at most 𝑘𝑘2 nodes are ex-
plored. So, the searching time 𝑇𝑇(𝑘𝑘), is upper bounded by a function of
the number of attributes used in the tree, usually smaller than the num-
ber of cases (𝑛𝑛) stored in the Case Library, and does not depend on it,
which is usually bigger as the system grows: 𝑇𝑇(𝑛𝑛,𝑘𝑘) ∈ 𝑂𝑂(𝑘𝑘2).

Fig. 15. Partial-matching exploration

1The most similar value to the query case value for the attribute of the corresponding node.

 98

Thus, the cases retrieved are all the cases stored in the Case Library
differing at most in one attribute's value from the query case (see figure
15). Therefore, this partial matching technique allows recognizing par-
tial matching cases as possible similar cases to the query case.

Below, the Partial Matching Exploration algorithm is described. The
algorithm has a main class called PME. This class has two methods
named last and second.

Algorithm 7: Partial Matching Exploration (PME)

Input: root of the tree 1
 Case node 2
Output: the most similar cases collectes through the ex-3
ploration of the tree 4
Begin PME(case_node, root) 5
if(case_node != root){ 6
 different = true; 7
 break; 8
} 9
if(case_node[root.Attdisc] <= root.Dato[root.Attdisc]){ 10
 if(!different){ 11
 root.left = true; 12
 root.MainPath = true; 13
 nearest[dist_count] = root.ID; 14
 Distance[dist_count] = this.Euclidean(case_node, 15
root.Dato); 16
 dist_count++; 17
 } 18
 else{ 19
 if (root.left != null){ 20
 root.left = true; 21
 root.MainPath = true; 22
 nearest[dist_count] = root.ID; 23
 Distance[dist_count] = this.Euclidean(case_node, 24
root.Dato); 25
 dist_count++; 26
 PME(case_node, root.left); 27
 } 28
 else{ 29
 root.MainPath = true; 30
 main = root; 31
 nearest[dist_count] = root.ID; 32

99

 Distance[dist_count] = this.Euclidean(case_node, 33
root.Dato); 34
 dist_count++; 35
 second(nearest, dist_count, root, case_node); 36
 } 37
 } 38
} 39
else{ 40
 if (root.right != null){ 41
 root.Mainright = true; 42
 root.MainPath = true; 43
 nearest[dist_count] = root.ID; 44
 Distance[dist_count] = this.Euclidean(case_node, 45
root.Dato); 46
 dist_count++; 47
 PME(case_node, root.right); 48
 } 49
 else{ 50
 root.MainPath = true; 51
 main = root; 52
 nearest[dist_count] = root.ID; 53
 Distance[dist_count] = this.Euclidean(case_node, 54
root.Dato); 55
 dist_count++; 56
 second(nearest, dist_count, root, case_node); 57
 } 58
} 59
endPM 60
 61
Method: second 62
Begin second(nearest,ser,root,case_node){ 63
if (root.dad != null){ 64
root = root.dad; 65
 if (root.Mainright == true) { 66
 if (root.left != null) { 67
 nearest[ser] = last(root.left, case_node); 68
 Distances[ser] = this.Euclidean(case_node, 69
root.Dato); ser++; 70
 second(nearest, ser, root,case_node); 71
 } 72
 else 73
 second(nearest, ser, root, case_node); 74
 } 75
 else{ 76
 if (root.right != null) { 77

 100

 nearest[ser] = last(root.right, case_node); 78
 Distances[ser] = this.Euclidean(case_node, 79
root.Dato); ser++; 80
 second(nearest, ser, root, case_node); 81
 } 82
 else 83
 second(nearest, ser, root, case_node); 84
 }}} 85
Method: last 86
Begin last(root, case_node) { 87
if (case_node[root.Attdisc] <= root.Dato[root.Attdisc]) { 88
 if (root.left != null) { 89
 last(root.left, case_node); 90
 } 91
 else 92
 Aux = root; 93
} 94
else{ 95
 if (root.right != null) { 96
 last(root.right, case_node); 97
 } 98
 else 99
 if(root.left != null) 100
 last(root.left, case_node); 101
 else 102
 Aux = root; 103
} 104
return Aux.ID; 105
}106

The PME algorithm requires the 𝑁𝑁𝑁𝑁 (case_node) and the root node of
the tree to start its process. The first task (lines 2-5) checks if the 𝑁𝑁𝑁𝑁
matches with the root node. If the node does not match, then checks the
relevance of the attributes between root and case_node. If the value of
attribute in case_node is lower than root (line6),then checks if it has a
left son (line 16) and if it has one, then the nearest node going to be
root (line 19). Then the Euclidean distance is computed (line 20) and
stored in the node. Then PME algorithm is called sending the
case_node and the left son (line 23). Else root its labeled as main path
and the euclidean distances between case_node and root is estimated
(lines 26-31), then the second best match is going to be search calling
the method second (line 32).

101

If the value of attribute in case_node is higher than root (line6) then the
right side is checked searching for a right son. And the same dynamic is
computed (lines 36-54).

The method called second requires beginning the nearest case, the
case_node and the root node. The first question is whether the root has
any son, on right side (line 62). If it has a son, then the last method is
called with the aim of finding the nearest case (line 64), the Euclidean
distance is computed, after this task second method is called with new
values (line 67). Then, once computed the procedure in the right side
then it is the left sides turn, following a similar criteria (lines 72-81).

The task of the method last has the main task of finding the last node in
the path. To start it job it requires the root node and the case_node. The
criterion to find the last node is to compare the values of the attributes
in the case_node and the root node (line 84). Then the recursive search
in left and right sides begins (lines 86, 93, 97). The computing is suc-
cessful when the last node is returned.

 102

5 Improving the maintenance and learning of
the Case Library

The improving of the CBR cycle it is one of the challenges for
case base maintenance policies, especially in domains with large
amount of cases, and even more, if data are changing. In this chapter,
some maintenance policies and methods aiming to improve the mainte-
nance and learning of the CBR cycle are introduced. The first method
introduced is related to the improvement of the learning of the DACL
proposing a stochastic method to build the representative prototypes
(Mc) in a dynamic environment. The proposed method considers two
moments for the learning of prototypes. The moments will be detailed.
For the supervised domains with DACL, the proposal is to use Multiple
Case Library (DACL/MCL). The chapter introduces one additional pol-
icy for building the representative prototype.

5.1 The Stochastic Learning Strategy

In previous chapter 3, the details of the DACL framework have
been introduced and a method to build Meta-cases has been proposed.
The method has the characteristic of building a Meta-case following the
strategy of computing a centroid as a Meta-case. This second method of
computing a Meta-case considers a Stochastic Method. It has two core
moments used in the learning algorithm.

One of the open problems in clustering field is to select the number of
clusters; this is relevant in a DACL too. When there are several sub-
libraries in the DACL and a dispersion of the cases is generated, then
the quality is coming down. On the contrary way, when there exists a
few number of sub-libraries and these are compact, the quality its better
and the retrieval time is faster. With the following learning policy,
DACL is able to learn and classify continuous data precisely, according
to the expert’s evaluation, as we will explain in the evaluation chapter
6.

The proposed method has the ability to learn Meta-cases (𝑀𝑀𝑀𝑀) as is
depicted in figure 12. In this work, a Mc is described as follows:

 104

The 𝑀𝑀𝑀𝑀’𝑠𝑠 are designed as the top level of the DACL strategy; this has
two aims. The first is when a New Case (𝑁𝑁𝑁𝑁) is being considered by the
DACL. It has to learn it and store it in the best optimal way or decide
not to store it; and second, when the best case has to be retrieved, this
strategy should improve time and quality of the process avoiding an
exploration in a wrong sub-library.

A 𝑀𝑀𝑀𝑀 is a prototype of the entire cases belonging to the sub-library.
The Mc in DACL helps to find the most optimal sub-library where the
cases have to be learnt. The Mc is a generalization of the cases stored in
the sub-library. The 𝑀𝑀𝑀𝑀 is built following the next Mc building process:

1) A case 𝐶𝐶𝑖𝑖 is defined as 𝐶𝐶𝑖𝑖 = �𝐶𝐶1
𝑖𝑖 ,𝐶𝐶2

𝑖𝑖 ,⋯ ,𝐶𝐶𝑚𝑚𝑖𝑖 �
where𝐶𝐶𝑗𝑗=1,…𝑚𝑚

𝑖𝑖 , are the attribute values describing the
case 𝐶𝐶𝑖𝑖 and where 𝑖𝑖 is the current case of the total
of 𝑛𝑛 cases belonging to the corresponding Mc.

2) A 𝑀𝑀𝑐𝑐𝑙𝑙 is defined as 𝑀𝑀𝑀𝑀𝑙𝑙 = < 𝑀𝑀𝑀𝑀1𝑙𝑙 … 𝑀𝑀𝑀𝑀𝑚𝑚𝑙𝑙 > where
𝑀𝑀𝑀𝑀𝑗𝑗=1,…,𝑚𝑚

𝑙𝑙 , are the computed attribute values of the
Meta-case as the average prototype values for con-
tinuous/numerical attributes or the most frequent
values (mode) of discrete categorical values, ac-
cording to the following formulas:

If 𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗 is numerical: 𝑀𝑀𝑀𝑀𝑗𝑗𝑙𝑙 = 1

𝑛𝑛𝑙𝑙
∑ 𝐶𝐶𝑗𝑗𝑘𝑘 𝑛𝑛𝑙𝑙
𝑘𝑘=1 and #𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑀𝑀𝑀𝑀𝑙𝑙) = 𝑛𝑛𝑙𝑙

If 𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗 is categorical: 𝑀𝑀𝑀𝑀𝑗𝑗𝑙𝑙 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶𝑗𝑗𝑘𝑘) 𝑘𝑘 = 1, . . . ,𝑛𝑛𝑙𝑙

The proposed strategy modifies the total number of attributes of the
case, where a case 𝐶𝐶𝑗𝑗 is defined by its attributes < 𝐶𝐶1

𝑗𝑗 … 𝐶𝐶𝑚𝑚
𝑗𝑗 >. The

strategy adds a new attribute 𝐶𝐶𝑡𝑡𝑡𝑡
𝑗𝑗 , and then, a case 𝐶𝐶𝑗𝑗 is described as

< 𝐶𝐶𝑡𝑡𝑡𝑡
𝑗𝑗 ,𝐶𝐶1

𝑗𝑗 …𝐶𝐶𝑚𝑚
𝑗𝑗 >. This new attribute is a time stamp ordering identifier

(ts). The new attribute is initialized at 𝑡𝑡𝑡𝑡 = 1 and increases one by one.
The increase occurs when a new case is stored in the sub-library.

This 𝐶𝐶𝑡𝑡𝑡𝑡

𝑗𝑗 value is considered like an attribute in the algorithm. The at-
tribute is used in both first and second moment of the stochastic method
proposed. It is named as 𝜏𝜏. 𝜏𝜏 plays the role of time, an ordered attribute,

105

like in the statically normal stochastic method. The value of 𝜏𝜏 helps to
increase the differences of cases adding an increase value between
them. The value is taken into account when first moment is computed
(see formula 9). The method can be summarized as follows: when a
new case arrives, and the algorithm is working to find the Mc most sim-
ilar to the case, the 𝜏𝜏 value gives a direct difference and make that Mc’s
be filtered more effectively, because a low 𝜏𝜏 value indicates “most sim-
ilar” while a higher 𝜏𝜏 value indicates a higher separation of the cases.

Other relevant use of the 𝜏𝜏 value is when the prototype is built; this is
depicted in step 2 of the Mc building process, previously introduced.
Here, the value of the first attribute of the Mc is 1. When the Mc is up-
dated, the second value is 1.5. At the third step the value is 2, and con-
tinues increasing following a constant increase of 0.5 for update itera-
tion. These values are generated computing the step 2 in formula of Mc
building process.

The learning of new cases and the building of its representative proto-
type it is one of the aims to achieve in a DACL. To get a successful
learning of cases and a good quality of learning Mc’s is introduced a
Stochastic Learning 𝑀𝑀𝑀𝑀’𝑠𝑠 Method “SLMcM”.

SLMcM considers two relevant moments to guide the learning. The
first moment is described as:

 𝜌𝜌 = min
𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷�𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀𝑗𝑗� (8)

Formula 8 is computed to find the most similar 𝑀𝑀𝑀𝑀 in DACL to the
new case 𝑁𝑁𝑁𝑁. 𝐷𝐷 is the distance function that evaluates the dissimilarity
value. And 𝜌𝜌 will represent the most similar prototype selected. The
similarity of a new case will be assessed against all 𝑀𝑀𝑀𝑀’𝑠𝑠 by means of
the same dissimilarity measure used in the normal assessment of simi-
larity between two cases. In this case, the proposed measure is the Eu-
clidean distance when all attributes are numerical, but other heteroge-
neous measures can be used when both numerical and categorical at-
tributes exist.

The method for finding the most similar 𝑀𝑀𝑀𝑀 can be summarized in fol-
lowing Search similar Mc algorithm.

 106

The Search similar Mc algorithm requires the 𝑁𝑁𝑁𝑁 to start its process.
If does not exist a 𝑀𝑀𝑀𝑀 in the library then the 𝑁𝑁𝑁𝑁 is going to be the new
𝑀𝑀𝑀𝑀 (line 4). But if there are some 𝑀𝑀𝑀𝑀 in the library, then a cycle for
searching the similar enough 𝑀𝑀𝑀𝑀 begins (lines 5-11).

Algorithm 8: Search similar Mc

1 Input: Nc (new case)
2 Output: ρ (most similar Mc)
3 begin search similar Mc
4 Dmin = + ∞
5 currentMc <- firstMc
6 while currentMc != null do
7 if(D(Nc,currentMc) < Dmin) then
8 𝜌𝜌 = currentMc;
9 Dmin = D(Nc,currentMc)
10 endif
11 currentMc = nextMc
12 endwhile
13 return 𝜌𝜌
14 end search similar Mc

𝜌𝜌 value is the 𝑀𝑀𝑀𝑀 most similar to the Nc. This Mc is the prototype
which will store the new case 𝑁𝑁𝑁𝑁 in.
For the retrieval process, the same approach is implemented. When the
retrieving of similar cases is executed, the first task is to find where to
search. This can be done by finding the most similar 𝑀𝑀𝑀𝑀. Next task is
the retrieving of similar cases. This has to be done following the index-
ing strategy of the sub-library. In our case, we have implemented the
NIAR k-d tree jointly with a partial matching exploration technique
(Orduña and Sànchez-Marrè, 2015b), as previously explained.

The second moment is when the following condition comes true:

 𝜎𝜎(𝑁𝑁𝑁𝑁) ≤ 𝜎𝜎(𝜌𝜌) ∗ (1 + 𝛾𝛾),where 0 ≤ 𝛾𝛾 ≤ 1 (9)

𝛾𝛾 is described as a virtual threshold added to the computed Mc thresh-
old by 𝜎𝜎(𝜌𝜌). The computation of 𝜎𝜎(𝑁𝑁𝑁𝑁) and 𝜎𝜎(𝜌𝜌) it is done consider-
ing all the attributes of 𝑁𝑁𝑁𝑁 and 𝑀𝑀𝑀𝑀 respectively. 𝜎𝜎(𝑁𝑁𝑁𝑁/𝜌𝜌) It is comput-
ed by the summation notation of standard deviation formula.

107

Fig. 16. Mc/𝜌𝜌 virtual threshold representation

Figure 16 represents a virtual size (normal line section) and resize (dot
line section) of the 𝑀𝑀𝑀𝑀 threshold; it has built in formula 9, when 𝜎𝜎(𝜌𝜌) ∗
(1 + 𝛾𝛾) it is estimated. This threshold is considered to decide whether a
case is going to be stored or not in current 𝑀𝑀𝑀𝑀. The value 1 + 𝛾𝛾 indi-
cates the percentage of the dispersion of 𝜌𝜌 that will be considered as a
relaxation of the 𝑀𝑀𝑀𝑀 value. The value of γ can be less than 1, but, its
optimal value has to be found. The implementation of the relaxation
process considers endowing the 𝑀𝑀𝑀𝑀 with a higher range of learning.
The implementations of some evaluation tests have concluded that if
the relaxation process is not implemented, the learning rate is reduced.

5.2 The Stochastic Learning Policy

In the previous section, it has been introduced the details of the
two core-DACL moments used in the learning policy algorithm. The
aim of this policy is to learn those cases that accomplish the two mo-
ments of the policy, previously detailed in last section. The data are
stored in the sub-library that is most similar to the incoming case, ac-
cording to the first moment in formula 8. If the case does not accom-
plish with the second moment (formula 9), a new sub-library is build.
This policy is executed by the following algorithm.

Algorithm 9: NewMc building

input: the new case (Nc) 1
begin NewMc policy 2
Let indValue //tested 𝛾𝛾 value 3
//Find most similar to the incoming case according formu-4
la 1 5

 108

𝜌𝜌 = min
𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷(𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀𝑗𝑗) 6

/* 𝜌𝜌 represents the sub-library where the Nc is stored and 7
Mc is the prototype of it*/ 8
Let desvMc = 𝜎𝜎(𝜌𝜌.𝑀𝑀𝑀𝑀) 9
Let desvNc = 𝜎𝜎(𝑁𝑁𝑁𝑁) 10
if (desvNc <= desvMc * (1 + indValue)) then 11
 StoreCases(Nc, 𝜌𝜌.Mc) 12
 Update(𝜌𝜌.Mc) 13
 return //the process ends when the case is learned 14
else 15
 BuildMc(Nc) /* a new Mc is created, the new Mc takes 16
 the values of the Nc*/ 17
endif 18
return 19
end NewMc building 20

At the beginning of the algorithm is defined the relaxation value for the
prototypes (line 2). According to an experimental procedure that it has
been implemented, the optimal value of 𝛾𝛾 = 0.1. Others values were
tested but this threshold gave the best results (detailed in experimental
evaluation section). Once found the nearest prototype (line 6), then the
dispersion of the selected prototype is computed (line 9), those taking
into account its variables. In line 10 the dispersion of the new case is
computed. Using those dispersions the estimation of building or not a
new prototype is computed in line 11. Whether the case is going to be
stored in the selected prototype then it is done in line 12. In the step
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝜌𝜌.𝑀𝑀𝑀𝑀) line 13, the value of the prototype is updated. This is
done considering the values of the 𝑁𝑁𝑁𝑁 saved in its structure (line 22).
The update is done implementing the 𝑀𝑀𝑀𝑀 building process, previously
explained. When an arriving case does not accomplish the second mo-
ment, then a new prototype is created (line 16). This new prototype
considers the values of the 𝑁𝑁𝑁𝑁 as 𝜌𝜌.𝑀𝑀𝑀𝑀 = 𝑁𝑁𝑁𝑁 and store the case in its
structure.

5.3 Another Meta-case Learning Strategy

In this section, one additional strategy for the building of meta-
cases will be presented.

109

5.3.1 Building real meta-cases

This criteria uses the same procedures than the standard build-
ing of meta-cases described previously, but with the difference that this
time, the prototypes of each cluster (virtual meta-cases) are replaced for
real cases. This means that the prototype of a cluster of classes is no
more a virtual case, but a case existing within the set of cases of the
cluster. The procedure for computing the real 𝑀𝑀𝑀𝑀 is is described by the
computing real 𝑀𝑀𝑀𝑀 algorithm.

Algorithm 10: computing real Mc

Input: the cases stored in the MCL 1
Let VMc = the usual Virtual Meta-case 2
Let RMc = the Real Meta-case 3
VMcs[n] = Compute the usual set of n virtual MCs; 4
foreach VMc in VMcs do 5
 DistCase2VMc[m] = compute the m dissimilarity values 6
between the corresponding VMc and all the m cases repre-7
sented by the VMc. 8
 Take the RMc as the most similar case to the VMc 9
endforeach 10
return RMc 11
end12

The dissimilarity between the cases and their corresponding Virtual 𝑀𝑀𝑀𝑀
can be computed using the Euclidean distance, when all attributes are
numeric, and using a heterogeneous dissimilarity measure (Gower dis-
similarity measure (Gower, 1971), L’Eixample distance (Sànchez-Marrè et al.,
1998), etc.) when there are both numeric and categorical attributes.

With this strategy, the following algorithm is used to learn a real 𝑀𝑀𝑀𝑀

Algorithm 11: learning real Mc

Require: the new case solved 1
Let MsRMc = the Real Meta-case most similar to the case; 2
Let 2MsRMc = the second most similar Real Meta-case to 3
the case; 4
The distance is computed between the new case and the 5
whole set of Real Meta-cases 6
if d(NC, MsRMc) < α and d(NC, 2MsRMc) ≥ α then 7

 110

/* α is the threshold value, predefined by the experts or 8
computed by trial and error*/ 9
 Update the corresponding sub-library with the new case 10
elseif d(NC, MsRMc) > α then 11
 Build a new sub-library 12
elseif d(NC, MsRMc) < α and d(NC, 2MsRMc) < α then 13
 Evaluate the competence of the MsRMc and 2MsRMc; 14
 Select the sub-library that get a better competence 15
 with the new case; 16
 The corresponding cluster and Virtual Meta-case is up17
 dated with the new case; 18
endif 19
End20

111

5.4 Introspective tasks for optimal maintenance of the DACL

Continuous domains are domains where cases are generated
from a continuous data stream. In these domains, many cases are con-
tinuously solved and learned by a CBR system. This means that many
cases could be stored in the case library. Thus, the efficiency of the
CBR system both in size and in time could be deeply worsened. The
proposed Dynamic Adaptive Case Library (DACL) framework is able
to adapt itself to dynamic environments by means of a set of dynamic
clusters of cases and indexing structures (k-d trees, discriminant trees)
associated to each cluster. The prototype of a cluster is the Meta-case.
The aim of DACL is to get an optimal and competent case library that
works efficiently in a continuous domain.

Another important aspect related to unsupervised continuous domains
is the incrementality problem. General CBR systems assume that the
set of cases available for building the case library is fixed. Then, they
build the memory indexing structures, like for instance, a k-d tree, etc.
However, when a CBR system is facing an unsupervised continuous
domain, the system should build and update the case library structure/s
in an incremental way.

In previous chapters, we have been proposing several techniques for
indexing the cases (k-d trees), for exploring the indexing structure and
not missing the most similar cases (partial matching exploration), sto-
chastic techniques for the learning of new solved cases and meta-cases.
Anyway, a dynamic structure must be able to be constructed in an in-
cremental way.

In our DACL proposal, the structure of the DACL can be built-up in an
incremental way, and some introspective reasoning tasks can be sched-
uled to regularly update the indexing structures (NIAR k-d trees, etc.).
In this chapter, some introspective tasks will be proposed to get incre-
mental indexing structures of our DACL proposal, and to improve the
learning of new cases and meta-cases.

5.4.1 Introspective maintenance of the NIAR k-d tree

The indexing structure used in the DACL, i.e, a NIAR k-d tree,
can be populated with an initial set of cases at the beginning of the use
of a CBR system. This way, several meta-cases, as representatives of

 112

each cluster of cases will be created. In addition, the cases will be
stored in their corresponding tree node, according to the splitting crite-
ria of the indexing structure. Regarding the NIAR k-d tree, the splitting
value at each node is the nearest value of the cases to the average value
of the attribute. Therefore, at the beginning all the average values for all
the attributes are computed and the nearest value present in the corre-
sponding cases for those attributes are selected as the splitting values at
each node.

The problem is that when the system is continuously learning new cas-
es, it can happen that the splitting value of a node, which should be the
nearest value to the average value of the attribute, is not anymore the
nearest value. This will be caused by the fact that the average value of
the attributes is changing continuously. This situation could provoke
that the indexing k-d tree could start to be not well balanced in all its
subtrees, worsening the retrieval time. This will be a hard problem if
the new values of the attribute, which are arriving at the DACL, are
very disturbing.

For our proposal, we will consider that a value of an attribute

𝑥𝑥𝑛𝑛+1 is a disturbance value ⇔ |𝐴𝐴𝐴𝐴(𝑥𝑥𝑛𝑛)− 𝑥𝑥𝑛𝑛+1| ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑛𝑛)

That means the values with high dispersion will be those that are far
from the mean value of the attribute. Av() is the mean value and stdev()
is the standard deviation of the distribution of values.

Fortunately, the DACL framework can easily and incrementally com-
pute the new average values for all the attributes, according to the fol-
lowing formula:

𝐴𝐴𝐴𝐴(𝑥𝑥𝑛𝑛+1) =
𝑛𝑛 𝐴𝐴𝐴𝐴(𝑥𝑥𝑛𝑛) + 𝑥𝑥𝑛𝑛+1

𝑛𝑛 + 1

Where Av(xk) is the average mean value of the attribute x according to
its first k values (x1, ..., xk).

Also the standard deviation can be computed in an incremental way
through this formula due to Welford (Welford, 1962):

113

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑛𝑛+1) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑛𝑛) + (𝑥𝑥𝑛𝑛+1 − 𝐴𝐴𝐴𝐴(𝑥𝑥𝑛𝑛)) ∗ (𝑥𝑥𝑛𝑛+1 − 𝐴𝐴𝐴𝐴(𝑥𝑥𝑛𝑛+1))

Our proposal is that the DACL system will trigger a maintenance task
to rebuild a concrete indexing NIAR k-d tree, at asynchronous time pe-
riods, when the following condition would be satisfied, since the last
time the task was fired:

#Disturbance values ≥ δ * N

where δ is a specified percentage, we propose as initial trial that δ= 0.2
and N is the size of the corresponding sub-library.

This criterion mean that when the number of disturbance values is
higher than a specified percentage (for instance the 20%) of the number
of cases of the sub-library, the task of rebuilding the indexing NIAR k-
d tree corresponding to the sub-library will be started. A new NIAR k-d
tree will be generated with the possible new splitting values at each
node of the tree.

5.4.2 Introspective task to improve the learning of new cases

As it was detailed in section 5.3.1, there is the possibility to
work with real Meta-cases instead of the virtual Meta-cases. The differ-
ence relies in the fact that now the prototypes of each cluster (virtual
meta-cases) are replaced for real cases. This means that the prototype
of a cluster of classes is a case existing within the set of cases of the
cluster. Concretely, the real Meta-case will be the nearest real case to
the virtual meta-case.

The idea is that the real meta-cases perhaps could be a good solution
for impasse situations. Impasse situations happen when a new case
which must be stored in the DACL is equally similar to more than one
virtual meta-case (prototype). Even though a case could be at the same
distance to several virtual Meta-cases, perhaps the distance to the corre-
sponding real Meta-cases will not be than same, and the impasse situa-
tion could be solved using the following algorithm.

 114

Algorithm 12: retaining/learning algorithm avoiding impasses with real 𝑀𝑀𝑀𝑀

Input: the new case solved (Nc) 1
Let MsMC = the virtual Meta-case most similar to the 2
case; 3
Let 2MsMC = the second most similar virtual Meta-case to 4
the case; 5
begin 6
The distance is computed between the new case and the 7
whole set of virtual Meta-cases using the formula 1; 8
if d(NC, MsMC) < α and d(NC, 2MsMC) ≥ α then 9
 /* α is the threshold value, predefined by the 10
 experts*/ 11
 Update the corresponding sub-library with the new case 12
elseif d(NC, MsMC) > α then 13
 Build a new sub-library 14
elseif d(NC, MsMC) < α and d(NC, 2MsMC) < α then 15
 Use the real Meta-cases instead of the virtual Meta- 16
 cases; 17
 Select the sub-library with the minimum distance 18
 between the case and the corresponding real 19
 Meta-cases; 20
 The corresponding cluster, the virtual Meta-case, the 21
 real Meta-case are updated with the new case; 22
endif 23
end retaining/learning algorithm avoiding impasses with 24
 real Mc25

115

6 Experimental Evaluation and Results
In the previous chapters, the methods proposed in the thesis

have been detailed. In this chapter, the evaluation of the methods is ex-
plained, and the results are discussed. The evaluation of DACL/MCL
and the policies to improve the CBR reasoning cycle are deeply de-
tailed. In first place, the evaluation of several indexing strategies in su-
pervised domains is detailed. In this evaluation, the algorithms NIAR k-
d tree and AvKd-tree are compared versus the standard k-d tree for ex-
act-case search such depicted in figure 18, in order to get a feedback
from the database field scenario, where k-d trees approach was origi-
nated. In the evaluation of proposed strategies, it is considered the
evaluation of the quality in the retrieval process and the retrieving time.
In this scenario, the depth of tree is evaluated too such depicted in fig-
ure 18.

After this, the evaluation of a MCL in supervised domains, but using a
similar-case search as a guiding searching experimentation, it is de-
tailed and 12 strategies including a flat case library and both standard k-
d tree and NIAR k-d tree methods for indexing cases are described. In
addition, the Partial Matching Exploration (PME) technique is evaluat-
ed against the commonly used technique based on the hyperball with
bounds technique. To evaluate the case retrieval step, the algorithms for
retrieving such as NIAR k-d tree, standard k-d tree, hyperball with
bounds and partial matching are analyzed in detail, see figure 17. Then,
the promising results are discussed.

Next, the Dynamic Adaptive Case library (DACL) is analyzed (see fig-
ure 17). An environmental domain has been selected to test the evalua-
tion. To achieve the objective of building representative prototypes in
DACL, a stochastic strategy/method has been proposed. In this section,
the building of representative meta-cases with the proposed stochastic
method is evaluated. Finally, a discussion of the results is presented.

The final step in the evaluation scheme has been the testing of the
whole Dynamic Adaptive Case Library framework, where the DACL,
the NIAR k-d trees, the PME technique have been used to cope with
some simulated unsupervised domains in an incremental way. There-
fore, this way, the hierarchical structures (NIAR k-d trees) are incre-

 116

mentally constructed and all the cases in the databases used are pro-
cessed in a step by step mode.

The figure 17 graphically summarizes the experimentation process.
showing the different strategies used to evaluate the different proposals
in different domains (supervised and unsupervised). In the figure, the
indexing methods implemented are detailed, theexploration ntechnique
used, the kind o serach pursued, etc.

For the evaluation of the dynamic proposal, the following figure 17
shows sections that are combined when a set of tests is performed. The
first section shows the option of not use or to use the structure MCL.
Other part indicates the algorithm that could be used as an option for
indexing the data and storing in the MCL or NonMCL. Those indexing
strategies are evaluated considering the time used in retrieval the in-
formation and the quality in retrieval. The four retrieval algorithms are
indicated in the figure 17, but the 12 combinations of index method vs
retrieval method used to evaluate the proposal are detailed in the sec-
tions of this chapter.
In the figure 17, the unsupervised domains section, shows the evalua-
tions done with the environmental data base and the strategies that have
been used, here the DACL + Stochastic learning method was imple-
mented successfully. The second part is under construction, the strate-
gies that going to be used are DACL + NIAR + PME and the others 12
policies used in the supervised domains. In this occasion the 10 data
bases form UCI used in the supervised evaluation going to be used, but
in unsupervised point of view that means that the data going to be han-
dled as an unsupervised data arriving as a data stream.

Domain Search Library Type Indexing
Method

Exploration
Strategy

Fig. 17. Experimentation flowchart

6.1 Avkd-tree evaluation in exact-case search

For the experimental evaluation, ten databases from UCI Machine
Learning repository (Frank and Asuncion, 2010) were selected. The databases
selected are depicted in table 4. All the databases have numerical at-
tributes or categorical ordered attributes, which can be transformed to a
numerical ordered attribute. In one database (AB) one attribute which
was categorical Not ordered was transformed to a numerical one, to test
some future usage in the k-d trees and AvKd-Tree. In table 4 there is
the description of all databases used in the experimental evaluation.

Table 4. Description of databases used in the experimentation. #Inst is to the total number of
instances in the database, #Cont means the total number of continuous/numerical attributes in
the database, #CatOrd mens the total number of categorical ordered attributes, #CatNOrd
means the total number of categorical non ordered attributes and #Classes refers to the total
number of different class labels in the database.

Database #Inst #Cont #Cat
Ord

#Cat
NOrd

#Classes

Abalone 4177 7 0 1 29
Car Eval. 1728 0 6 0 4
Ecoli 336 7 0 0 8
Glass 214 9 0 0 7
Ionosphere 351 34 0 0 2
Pima 768 8 0 0 2
Iris 150 3 0 0 3
Waveform 5000 3 0 0 3
Letter 20000 16 0 0 26
Balance 625 21 0 0 3

We have conducted a test to evaluate the performance of algorithms.
The aim of the test was to assess both the retrieval CPU time effort and
the depth of the k-d Tree and AvKd-Tree (the distribution of cases at the
tree levels). The testing was done for an exact-case search.

In the experimentation for each scenario, the same cases are tested (test
set) in all trees, and the retrieval time is computed. The experimental
validation was done randomly sampling the test set with a number of
cases equal to the 15% of data in each database.

119

Each experimental validation in one database was conducted in the fol-
lowing way:

• The cases to be retrieved were randomly sampled from the database.
• Case retrieval for each query test case was executed for all tree ap-

proaches and the retrieval time was computed.
• The mean time of all query cases retrieval in test set was computed

for each k-d tree approach.
• Searching for accurate results, a multiple validation process was un-

dertaken. Each experiment was repeated twelve times in both trees.
Once computed the 12 runs for each database with both approaches,
the maximal and minimal time consumed were excluded to get more
stable results. Thus, finally only 10 runs were considered.

• With the ten time mean values obtained before, a final time average
over all runs was calculated and this value was the best estimation of
a general case retrieval time consumed by the CPU.

The whole experimentation was repeated for each one of the databases.
The experiments were done in a computer with an Intel Core i7 proces-
sor, and 10 GB of RAM.

Table 5. Average CPU Time for case retrieval

Database k-d
Tree

Avk-d
Tree

Glass 16.08 17.43
Ecoli 19.42 19.77
Ionosphere 6.62 7.31
Pima 17.84 23.12
Car 44.47 37.1
Abalone 17.25 16.36
Iris 14.72 9.25
Balance 7.45 5.41
Waveform 15.37 16.01
Letter 13.05 10.12
Mean 17.227 16.18

The table 5 depicts the average CPU processing time for a case retrieval
using the two new approaches compared with the standard k-d tree ap-

 120

proach, and for all the databases tested. The time computed is ex-
pressed in nanoseconds (ns).

In figure 18 there is a chart with the respective retrieval time in the ap-
proaches for all databases.

Fig. 18. Comparison of retrieval time in the approaches

The results shown in table 5 and figure 19 depict a difference in time
consuming when a search is implemented. It seems that the proposed
AvKd-Tree strategy is more efficient in retrieving information than
standard k-d tree in some occasion, but it is clear that Avk-d tree strate-
gy is generally more efficient than Kd-Tree strategy. The comparison
between AvKd-Tree strategy and standard k-d tree approach gave as a
result that AvKd-Tree strategy is on average 1% better. The data sets
Abalone, Letter, Waveform and Car databases are the databases show a
higher reduction in the depth of the tree (32, 21 ad 21 levels reduction)
despite that they are the largest databases (4177, 20000, 5000 and 1728
respectively).

The second dimension that was used to evaluate the AvKd-Tree strategy
and k-d tree proposal was the evaluation of the tree depth and the dis-
tribution of cases at the different levels of the trees. The table 6 shows

0
5

10
15
20
25
30
35
40
45
50

k-d Tree

AvKd-Tree

121

significant differences in the number of tree levels in the trees, for all
the databases. Table 6 shows the depth level of the AvKd-Tree strategy
and the standard k-d tree approach. In all databases, AvKd-Tree strategy
build the trees with a significant reduction of levels, and the standard k-
d tree builds the trees with more levels causing a more expensive time
in the retrieval.

Abalone, Pima and Iris databases are the databases showing a higher
reduction in the depth of the tree (46, 37 and 28 levels were reduced to
14, 16 and 13 levels respectively) despite some are the largest databases.
Not surprisingly, most of these databases are the ones were the time re-
trieval reduction was higher. This fact means that the reduction in time
retrieval is directly correlated with the decrease in the number of levels
in the trees.

Table 6. Depth of trees generated using in approaches

Data Base k-d Tree AvKd-Tree
Abalone 28 15
Car 14 13
Ecoli 21 14
Glass 26 16
Ionosphere 19 62
Pima 46 17
Iris 37 12
Balance 15 11

Thus, it is very interesting to try to find out to which factor is due the
reduction of levels. A reasonable answer is that the trees would be more
balanced, i.e. the number of nodes in the tree will be more uniformly
distributed along the different levels of the tree. In order to check this
hypothesis a third dimension was investigated: the nodes expanded at
each level. This means that the tree should be expanded uniformly in
breadth, and not to generate extra levels in the tree increasing the depth
of the tree.

 122

Table 7. Distribution of expanded nodes by level in the approaches and compared with the
most compact possible binary tree, for the Car database

Level Most compact
tree

k-d
tree

AvKd-Tree

0 1 1 1
1 2 2 2
2 4 4 4
3 8 8 8
4 16 13 16
5 32 17 32
6 64 20 64
7 128 23 128
8 256 26 256
9 512 33 512
10 1024 33 704
11 2048 41 960
12 4096 56 1152
13 8192 61 0
14 16384 63 0
15 32768 74 0
16 65536 69 0
17 131072 88 0

The table 7 details a comparative by levels indicating the number of
expanded nodes at each level, for the Car database. The results show in
the first nine levels, the AvKd-Tree has expanded the maximum nodes
as the most compact tree would do. On the contrary, the k-d tree has a
different situation: starting at level 4 and going on, it has not expanded
all the nodes that would be desirable. For example, at level 4 it has 3
nodes not been expanded. This behavior continues until 37th level
where the last 1 node is expanded. This table outlines the fact that the
AvKd-Tree provides in Iris data base a more structured and breadth-
balanced tree than a standard k-d tree. Its behavior corresponds to the
implemented strategy where a virtual root node is built each time when
the 𝐴𝐴𝑡𝑡𝑡𝑡𝑙𝑙

𝑖𝑖 value is computed and selected to be the new root. Our AvKd-

123

Tree proposal is better in several evaluations, but not in all evaluations
than standard k-d tree.

6.2 NIAR k-d tree evaluation in exact-case search

All k-d trees can only cope with numerical or categorical ordered at-
tributes, where an order relation exists. This means that the splitting
process, separating two sets according to the order relation of all cas-
es/instances is possible. K-d trees are not initially suitable for unordered
categorical attributes.

Experiments on ten databases from UCI Machine Learning repository
(Frank and Asuncion, 2010) were conducted. The databases selected are de-
tailed in table 4, in the table there is the description of all databases
used in the experimental evaluation.

It was aimed in this experimental setting, to assess both the retrieval
CPU time effort, the depth of the generated trees, and the distribution of
cases at the tree levels, as we did in the experimentation with AvKd-
Tree for exact-case search. We compared the standard k-d tree ap-
proach using the median value as the partition value at each internal
node against the NIAR k-d tree approach. Each experimental test re-
trieved the same cases in both trees, and computed the retrieval time in
both approaches. The experimental validation was done by taking ran-
dom samples from the test set with a number of cases equal to the 15%
of data in each database.

Each experimental validation was conducted in the following way:

1. The cases to be retrieved were randomly selected from the database.
2. Case retrieval for each query test case was executed for both tree

approaches and the retrieval time was computed.
3. The mean time of all query cases retrieval in test set was computed

for each k-d tree approach.
4. Searching for accurate results, a multiple validation process was

performed. Each experiment was repeated twelve times in both
trees. Once computed the 12 runs for each database with both ap-
proaches, the maximal and minimal time consumed were excluded
to get more stable results. Thus, finally only 10 runs were consid-
ered.

 124

5. With the ten time mean values obtained before, a final time average
over all runs was calculated and this value was the best estimation of
a general case retrieval time consumed by the CPU.

The table 8 depicts the average CPU processing time for a case retrieval
using the two approaches, and for all the databases tested. The time
computed is expressed in nanoseconds (ns). The time reduction per-
centage is between the two methods is presented for comparative pur-
poses.

Table 8. Average CPU Time for case retrieval

Database k-d
Tree

Avk-d
Tree

NIAR
k-d

Tree
Glass 16.08 17.43 11.02
Ecoli 19.42 19.77 9.85
Ionosphere 6.62 7.31 6.18
Pima 17.84 23.12 5.49
Car 44.47 37.1 9.85
Abalone 17.25 16.36 15.98
Iris 14.72 9.25 13.04
Balance 7.45 5.41 5.09
Waveform 15.37 16.01 19.26
Letter 13.05 10.12 27.64
Mean 17.227 16.18 10.263

The result showed in table 8 and figure 19 shows a difference in time
consuming when a search is implemented. It seems that the proposed
NIAR k-d tree strategy is more efficient in retrieving information. The
comparison between NIAR k-d tree algorithm and standard k-d tree
approach gives a result that NIAR k-d tree is on average 22% faster in
the retrieval process than the standard approach according to the exper-
imental results obtained.

125

Fig. 19. Comparison of retrieval time

As in the previous section, the second dimension used to assess the per-
formance of the NIAR k-d tree proposal was the evaluation of the tree
depth and the distribution of nodes at the different levels of the tree. The
table 9 shows significant differences in the number of tree levels in both
trees, for all the databases. It is shown that the NIAR k-d tree approach
builds trees with a significant reduction of levels, and the standard k-d
tree builds trees with more levels that cause a more expensive time in
the retrieval.

Table 9. Depth of trees generated using both approaches

Data Base k-d Tree NIAR k-d Tree
Waveform 26 13
Glass 14 11
Pima 21 11
Ecoli 26 13
Ionosphere 16 13
Abalone 46 14
Car 37 16
Letter 62 41

Abalone, Letter, Waveform and Car databases are the databases show a
higher reduction in the depth of the tree (32, 21 ad 21 levels reduction)

0
5

10
15
20
25
30
35
40
45
50

k-d Tree

Avkd-tree

NIAR k-d Tree

 126

despite that they are the largest databases (4177, 20000, 5000 and 1728
respectively). The other large database is Waveform with a reduction of
13 levels. Not surprisingly, these four databases are the ones were the
time retrieval reduction was higher. This fact corroborates the previous
findings in the Avkd-tree experimentation, in the sense that the reduc-
tion in time retrieval is directly correlated with the decrease in the num-
ber of levels in the trees.
Thus, again we hypothesized that the factor causing the reduction of
levels was the same. The number of nodes in the tree is more uniformly
distributed along the different levels of the tree. In order to check this
hypothesis the same third dimension than with Avkd-tree was analyzed:
the expanded nodes at each level. This means that the tree should be
expanded uniformly in breadth not to generate extra levels in the tree
increasing the depth of the tree.

Table 10. Distribution of expanded nodes by level in both approaches and compared with the
most compact possible binary tree, for the Abalone database

Level Most compact
tree k-d tree NIAR k-d tree

0 1 1 1
1 2 2 2
2 4 4 4
3 8 8 8
4 16 15 16
5 32 22 32
6 64 38 64
7 128 53 128
8 256 71 256
9 512 92 502
10 1024 124 940
11 2048 149 1271
12 4096 163 829
13 8192 197 122
14 16384 216 2

To illustrate this fact, in table 10 for the database Abalone is detailed
the number of nodes expanded at each level for both approaches in
comparison with the complete (maximum) number of nodes that will
generate the most compact possible tree. The results show why the

127

NIAR k-d tree has a better performance than the standard k-d tree in
this exact-case search scenario.
In the first eight levels, the NIAR k-d tree has expanded the maximum
nodes, as would do the most compact tree. On the contrary, the k-d tree
has a different situation: starting at level 4 and going on, it has not ex-
panded all the nodes that would be desirable. For example, at level 4,
only 1 node has been missed, but at level 8, 185 nodes have not been
expanded. In the 14th level of NIAR k-d tree, which is the last level for
this approach, the last 2 nodes have been expanded while in the k-d tree
216 nodes have been expanded. This table outlines the fact that the
NIAR k-d tree provides a more structured and breadth-balanced tree
than a standard k-d tree.

The Wilcoxon Signed-Range Test (Wilcoxon, 1945) was used to determi-
nate differences in the time retrieval from the two approaches NIAR kd
tree and the standard kd-tree (data from table 8). The Wilcoxon signed-
rank test is a non-parametric statistical hypothesis test used when com-
paring two related samples, matched samples, to assess whether their
population mean ranks differ (i.e. it is a paired difference test). It can be
used as an alternative to the paired Student's t-test when the population
cannot be assumed to be normally distributed. We used it, in order not
to assume any restrictive hypothesis on the sample like normality.

The p value reported by the statistical test was 0.0078, which is less than
the critical value tabulated for a sample of 8 individuals (4 at 95%, 2 at
98%). Thus, at a 95% of confidence or even at a 98% of confidence, the
difference between the paired samples is significant. This means that the
NIAR k-d tree approach provides faster case retrieval time than the
standard k-d approach in exact-case search.

6.3 Testing the Multi Case Library approach for similar-case
search in supervised domains

The new approaches proposed (a Multiple Case Library (MCL),
the partial matching exploring strategy), and the previously proposed
NIAR k-d tree (Orduña and Sànchez-Marrè, 2013) will be combined to be tested
against other commonly used approaches in similar-case retrieval.

 128

In the previous section, it was shown that the NIAR k-d tree was a
promising technique for improving the time efficiency, but it should be
tested for similar-case retrieval, which is the usual search done in CBR
systems, different from common exact-case search in databases. In ad-
dition, it should be tested regarding to competence of the CBR system
and the new proposed partial matching exploration technique should be
tested too.

The commonly used approaches in the literature are the use of just one
case library, the standard k-d tree approach (Broder 1990; Friedman et al. 1977;
Bentley, 1975), the hyperball with bounds exploring strategy (Friedman et al.,
1977) improved with the virtual bounds technique (Wess et al., 1993). See
section 2.1.2.

Through the experimentation tests, it will be showed that the use of a
Multiple Case Library (MCL) embedding a NIAR k-d tree, and using
the additional strategy of partial matching to explore the indexing struc-
ture (the tree) provides a very good approach both to improve the time
efficiency and the competence accuracy for case retrieval task in CBR
systems.

6.3.1 Experimental Settings

Eight databases from UCI Machine Learning repository (Frank
and Asuncion, 2010) were selected in order to test the different combination
of approaches and strategies. All databases have numerical attributes or
ordered categorical attributes, which can be transformed to an ordered
numerical attribute, because all k-d trees can only cope with numerical
or categorical ordered attributes, where an order relation exists. In table
4, Abalone database has one categorical attribute, which was not or-
dered. It was transformed into a numerical one aiming to be possible to
use the standard k-d tree and NIAR k-d tree approaches to compute the
partition value (median value, nearest value to mean value). The com-
plete properties of each database are compiled in table 4.

The experimental setting was done under the following characteristics:

• The above eight databases were tested

129

• As a baseline, the Flat Case Library was considered which gives
the upper bound of the accuracy.

• Twelve different strategies (plus the baseline strategy) were con-
sidered combined the different possibilities for the structure of the
Case Library (Non MCL/MCL), The Case Library Indexing structure
(Standard k-d Tree/NIAR k-d tree) and the additional exploring strat-
egies (none/Partial Matching/Hyperball with bounds):

o S0: Flat Case Library
o S1: Standard k-d tree
o S2: Standard k-d tree + Partial matching exploration
o S3: Standard k-d tree + Hyperball with bounds exploration
o S4: NIAR k-d tree
o S5: NIAR k-d tree + Partial matching exploration
o S6: NIAR k-d tree + Hyperball with bounds exploration
o S7: MCL + Standard k-d tree
o S8: MCL + Standard k-d tree + Partial matching exploration
o S9: MCL + Standard k-d tree + Hyperball with bounds explora-

tion
o S10: MCL + NIAR k-d tree
o S11: MCL + NIAR k-d tree + Partial matching exploration
o S12: MCL + NIAR k-d tree + Hyperball with bounds explora-

tion

• For each database and for each strategy, a 10-fold cross valida-
tion was performed, taking sequentially (10 runs), each fold as a test
set and the other nine folds as the training set.

• The average time retrieval of one case (in µs) and the average

success on label classification of the cases (in percentage), as an es-
timation of the competence accuracy, was computed for each data-
base and for each strategy, as an average quantity among the 10 runs
of the cross validation.

6.3.2 Experimental Results

The tables 11, 12, 13 and 14 show both the average CPU pro-
cessing time, and the average percentage of success in predicting the

 130

correct class label of the cases, for a case retrieval using the different
strategies for all the databases tested. In addition, two new columns
labelled as “Average” show the average values across all the databases
to give an estimation of each strategy (see table 14). Finally, the last
two columns added give the “Average Reduction of each strategy re-
garding the baseline strategy” (S0, Flat Case Library) across all the da-
tabases (see table 14).

Table 11. Average CPU Time (in µs) for case retrieval and average Success (in %) in class
label prediction for all the strategies, and for all the tested databases.

131

Table 12. Average CPU Time (in µs) for case retrieval and average Success (in %) in class
label prediction for all the strategies, and for all the tested databases (continued from table 11).

Table 13. Average CPU Time (in µs) for case retrieval and average Success (in %) in class
label prediction for all the strategies, and for all the tested databases (continued from table 12).

 132

Table 14. Statistics of tables 11, 12 and 13.

Fig. 20. Comparison of averaged success (%) across all databases for the class label prediction
in all the strategies

133

Figure 21 shows the average CPU retrieval time for one case across all
the databases depicted in tables 11, 12 and 13, for each strategy minus
the baseline Flat Case Library, in a graphic. The baseline is not depict-
ed in order not to distortion the graphic, because its value is much high-
er than the other ones, and then, the differences among the other strate-
gies could not be appreciated.

Fig. 21. Comparison of averaged CPU retrieval time (µs) across all databases for the class label
prediction in all the strategies minus S0 (baseline Flat Case Library)

6.3.3 Discussion of the results

6.3.3.1 Non-MCL strategies

Regarding the strategies which use only one case library (non-
MCL strategies, i.e., S1 to S6), the use of an additional exploration
technique (partial matching or hyperball with bounds) leads to an in-
crease between 8-14% in the accuracy regarding not using them, as it is
shown in figure 22. Therefore, they seem useful for increasing the ac-
curacy.

 134

Fig. 22. Increase of accuracy

The NIAR k-d tree approach without any additional exploration strate-
gy (S1) compared with the standard k-d tree without any additional
strategy (S4) is slightly better in accuracy on average, but slightly
worse in time. Anyway, these differences are not significant.

Fig. 23. Reduction of accuracy

Comparing the same additional exploration technique with a standard
k-d tree (S2 or S3) and with a NIAR k-d tree (S5 or S6) there is a 5%
approx., reduction in accuracy (see figure 23). This means that for a

Iris Glass Balance Pima Ionosphere Abalone Car Ecoli

Kd-tree 65,03 43,4 35,3 47,83 64,2 32,23 60,97 55,2

NIAR 71,47 43,6 35 50,57 62,97 32,17 61,33 55,3

0
10
20
30
40
50
60
70
80

Increase of accuracy

Iris Glass Balanc
e Pima Ionosp

here
Abalon

e Car Ecoli

Kd-tree 79,7 50,8 46,2 51,9 63,8 30,7 56,1 62,1
NIAR 81 45,7 48,2 53,4 65,6 30,3 51 23,1

0
20
40
60
80

100

Reduction in accuracy

135

single Case Library approach, it seems to be a better option to use the
standard k-d tree than a NIAR k-d tree.

Regarding the time performance, all these non-MCL strategies (S1 to
S6) make an important reduction in time (more than 97%) regarding
the baseline strategy (S0), which is a linear sequential search over the
Case Library, see following table 15.

Table 15. Time performance.

51.84 470.84

Average
S0,S6

%Succ Time

76.83 17759.6

Average Reduction
regarding baseline

S6

%Succ Time

24.99 97.34882

Anyway, what can be observed is that the partial matching exploration
strategies (S2, S5) have significative better results in time than the cor-
responding hyperball with bounds strategies (S3, S6), independently if
they use a standard k-d tree or a NIAR k-d tree. That means the partial
matching exploration technique is a very good option to reduce the
time retrieval.

Therefore, among all strategies using only one Case Library (S1 to S6),
and taking into account both the accuracy and time features, probably
the best strategy would be the standard k-d tree with partial matching
exploration (S2, with an average of 55.16% of accuracy and with an
average of 188 µs for case retrieval). In addition, the NIAR k-d tree
with partial matching exploration could be also a good option (S5, with
an average of 49.79% of accuracy and with an average of 27 µs for case
retrieval).

6.3.3.2 MCL Strategies

Regarding the strategies which use a Multiple Case Library
(MCL strategies, i.e., S7 to S12), the use of an additional exploration

 136

technique (partial matching or hyperball with bounds), as in the non-
MCL strategies, leads to an increase between 9-17% in the accuracy
regarding not using them as it is depicted in table 16. Therefore, it can
be confirmed that these techniques increases the accuracy.

Table 16. Increase of the accuracy.

Moreover, all MCL strategies (S7 to S12) improve the accuracy of its
corresponding non-MCL strategies (S1 to S6) by 8-19%.

The k-d tree approach without any additional exploration technique
(S7) compared with the standard NIAR k-d tree without any additional
exploration technique (S10) is slightly worse (2%) in accuracy on aver-
age, and slightly worse in time.

Comparing the same additional exploration technique with a standard
k-d tree (S8 or S9) and with a NIAR k-d tree (S11 or S12) there is a
different behavior. With the partial matching exploration, there is a 4%
approx. increase in accuracy using the NIAR k-d tree. On the contrary,
with the hyperball with bounds technique, there is a 4% approx. reduc-
tion in accuracy using the NIAR k-d tree. This means that for a Multiple
Case Library approach, it seems to be a better option to use the NIAR
k-d tree with partial matching exploration. This strategy reaches a
68.41% of accuracy see following figure 25, the best among all alterna-
tives to the baseline, just only 8.4% lower than the 76.8% of accuracy
of the baseline strategy (S0), which is the maximum possible accuracy.

Average
S7,S11

%Succ Time

76.83 17759.6

57.44 1.12

68.41 57.76

Average Reduction
regarding baseline

S7,S11

%Succ Time

19.39 99.99369

8.42 99.67477

137

Fig. 24. Increase of accuracy in NIAR

Regarding the time performance with the MCL strategies, the same
situation as with the non-MCL strategies can be observed. All MCL
strategies (S7 to S12) make an important reduction in time (more than
97%) regarding the baseline strategy (S0). Notwithstanding, the time
employed is lower in strategies using an additional exploration tech-
nique (S8, S9, S11, S12) than its corresponding non MCL strategies
(S2, S3, S5, S6). S7 and S10 have slightly higher time retrieval, but it is
almost the same value.

Again, it can be observed that the partial matching exploration tech-
niques (S8, S11) have significate better results in time than the corre-
sponding hyperball with bounds techniques (S9, S12), independently if
they use a standard k-d tree or a NIAR k-d tree. Thus, it confirms that
the partial matching exploration technique is a very good option to re-
duce the time retrieval.

Therefore, among all strategies using a Multiple Case Library (S7 to
S12, depicted in table 17), and taking into account both the accuracy
and time features, probably the best strategy is clearly the NIAR k-d
tree with partial matching exploration technique (S11, with an average
of 68.41% of accuracy and with an average of 57 µs for case retrieval).

Iris Glass Balan
ce Pima Ionos

phere
Abalo

ne Car Ecoli

MCL-Kd-tree 82,3 39,6 66,8 60,5 67,9 46,7 70,4 77,7
MCL-NIAR 91,8 45,7 74,9 63,1 72,8 48,2 71,3 79,5

0
20
40
60
80

100

increase in accuracy using the NIAR
k-d tree.

 138

Table 17. Accuracy of MCL

Average S0

%Succ Time

76.83 17759.6

Average Reduction
regarding baseline

S7-S12

%Succ Time

19.39 99.99369

12.84 99.4724

12.7 97.97749

21.1 99.97168

8.42 99.67477

16.62 94.45951

6.4 Testing the Dynamic Adaptive Case Library (DACL)
approach and Stochastic Learning policies in unsupervised
domains

Intra-cluster validity measures are usual techniques proposed to
evaluate the quality of obtained clusters in a clustering process, but oth-
er techniques can be used. These measures are structural validation
measures about the intra-cluster compactness and inter-cluster separa-
tion dimensions. In our work, to evaluate the quality of the clusters,
associated to each sub-library, obtained through the stochastic method
introduced in section 5.2, we combine some methods in two strategies
called Policy One (pol1), Policy Two (pol2). The policies are summa-
rized as follows:

Policy One: the policy has the aim to measure the distance between
Mc’s. The distance measure depicts the prototype distributions in
DACL. If the prototypes are too close, the building of a new prototype
might be considered to avoid an overlapping of prototypes. Neverthe-

139

less, in the stochastic proposal the learning of a new case is obliged to
comply with the two moments of the method described previously. This
will ensure that the prototypes do not overlap. The metric used to eval-
uate this dissimilarity is the Euclidean Distance if all attributes are nu-
merical or some heterogeneous similarity measures (Gower similarity
coefficient (Gower, 1971), L’Eixample distance (Sànchez-Marrè et al., 1998), etc.)
to assess both the numerical and the categorical attribute dissimilarities.

Policy Two: the policy is structured in four steps. The aim is to estimate
the compactness of the clusters associated to the sub-libraries and com-
pare the similarity with the prototype. To achieve that, the following
formulas are computed.

 𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 = 1
𝑚𝑚
�∑ 𝑑𝑑�𝑀𝑀𝑀𝑀𝑗𝑗 ,𝐶𝐶𝑖𝑖�𝑚𝑚

𝑖𝑖=1 � (10)

 𝑀𝑀𝑀𝑀𝑗𝑗 = �∑ �𝑀𝑀𝑀𝑀𝑘𝑘
𝑗𝑗�
2𝑛𝑛

𝑘𝑘=1 (11)

 𝑆𝑆𝑆𝑆𝑗𝑗 = ∑ 𝑑𝑑�𝑀𝑀𝑀𝑀𝑗𝑗 ,𝐶𝐶𝑖𝑖�𝑚𝑚
𝑖𝑖=1 (12)

 𝑀𝑀𝑀𝑀𝑗𝑗 = 𝑀𝑀𝑀𝑀 𝑗𝑗 𝑆𝑆𝑆𝑆𝑗𝑗� (13)

Where n = # attributes describing the cases and metacases, and m =
#cases(Mcl)

Formula 11 computes an average of distances of all cases of the sub-
library and its prototype (𝐷𝐷𝐷𝐷𝐷𝐷). 𝐷𝐷𝐷𝐷𝐷𝐷 depicts how compact is the sub-
library. For a better quality of a DACL, the sub-libraries must be as
compact as possible indicating that cases in the sub-library are similar
enough to the prototype. In a DACL, a compact sub-library improves
the learning rate.

Formula 12 computes the magnitude of the prototype. With the magni-
tude, the relation between the attributes of the Mc is evaluated. A high-
er value indicates that the pollution is higher, according to the environ-
mental experts. With low values in attributes, better environmental
conditions are met.

Formula 13 express the accumulation of the distances between the total
of cases in the sub-library and the prototype. Where 𝑗𝑗 indicates the cur-

 140

rent Mc, and 𝑖𝑖 the current case. This measure it is an indicator of how
compact is the sub-library.

In formula 14, this measure and the magnitude in formula 12 are used
to estimate the similarity of the prototype with the cases that its repre-
sents. When the value of formula 14 is low, the prototype and Mc have
more in common. This particularity indicates that the attributes of the
Mc are closely similar to the attributes of the cases in the sub-library.
Therefore it is a desired a low value.

6.4.1 The Domain and Experimentation Description

The strategy here proposed implements the use of the data ob-
tained in the monitoring of environmental conditions in the city of
Obregón, Sonora State, Mexico for a period of one year. Obregón is
one of the municipalities of the northwestern state of Sonora, Mexico.
Its capital is Ciudad Obregón. The municipality has an area of 3,312.05
km² and with a population of 784,342 inhabitants according to the Na-
tional Institute of Statistics and Geography (INEGI) by its name in
Spanish (INEGI, 2010).

The environmental condition aims to evaluate the air quality in the city,
according to the international norms of the World Health Organization
(WHO). The conditions considered are: PB(mB), Temperature, Rela-
tive Humidity, RS(w/m2), PM@10(ug/m3), PM2@5(ug/m3), Ozone
(PPB), SO2 (PPB), NO(PPB), NO2(PPB), NOX(PPB), CO(PPM). The
evaluations were done each minute, following international norms.

The aim of the set of tests is to evaluate the learning task of new proto-
types for a dynamic adaptive case library (DACL). The Stochastic
Method proposed was thought especially to guide the learning of the
environmental conditions and storing the conditions as cases in a sub-
library according to the proposed policies. The main motivation is to
collaborate with environmental experts, providing a method that helps
them to evaluate the behavior of the air conditions, according to the
norms of WHO. Nowadays, the experts evaluate the information using
others tools, but in this process they need to take care of handling the
information, especially when they elaborate reports and evaluate infor-
mation to build conclusions. This task is complicated by the large

141

amount of information generated in this domain. With proposed DACL
policies, this process is dynamic, adaptive and automatic.

In one day, different environmental conditions could happen. This, ac-
tually depends on nature, but the human activities have a direct influ-
ence in the air quality. The people activities in the city are the industry,
manufacturing, and the major activity, which is the agriculture. One
fact that affects the air quality is the burning of sheaf at the end of sea-
sons. The burning of sheaf has a direct influence on the seasonal behav-
ior, where a concentration of pollutants is observed when the burning is
done. Wheat cultivation is one of the main agricultural activities in the
region of Cajeme. In the winter, the low levels of atmospheric pressure
limit the dispersion of atmospheric pollutants. Other activity considered
normal is the traffic at peak hours. These two activities are considered
as the main cause of the air pollution in the city. For one year, the envi-
ronmental conditions were monitored, and a database was created.

The analysis of a big amount of data is complicated to be done by the
experts, which usually consider the use of spreadsheets. Therefore, the
use of special analysis tools is required. For instance, the acquired in-
formation in one day is of 1440 information units (cases), considering
the 12 attributes plus the time stamp attribute. These cases could be
very different, because in one day different environmental conditions
could happen. The natural conditions are modified by the human activi-
ties, and patterns of environmental behaviors could be found. One in-
stance of this is the peak hours when people is going to pick up the
children from school, or going to lunch at middle day, and finally,
when day ends and people goes to house to rest. The last description of
the human behavior could be found in the analysis of data. In addition,
when a burning of sheaf happens, it could be found, too. To get conclu-
sions of human activities related with air quality, the experts should
split the information considering the time of each activity, and make
inferences of the human affectation in air quality. The split of infor-
mation with spreadsheets is easily done, considering time of activities,
but when the split is done considering environmental conditions, the
task is complex. The complication here was to find a method for creat-
ing and organizing the stored cases in sub-libraries. This way, the envi-
ronmental conditions were detected. According to the experts, the ex-

 142

pected result of the method is that should be easy to found the relation
of human behavior and air quality.

The stochastic method proposed is the tool developed to answer the
requirement of the experts.

6.4.2 Discussion of Results

The implementation of the proposed method has been carried
out using the database acquired in the year of evaluation.

The Nc arrives to the DACL. Then, following the stochastic steps that
have to be accomplished, according to previous detailed algorithm, the
Nc is processed. When the new case arrives (Nc), the first task is to
evaluate the first moment of the proposal, which consists in finding the
most similar prototype. When this prototype is found, the second mo-
ment consists of checking the learning value. In this step, the learning
rate is evaluated and the experimentation is done with the experimental
values. Finally, the decision is made.

Previously it has been introduced the core of the proposal; the stochas-
tic method. At the beginning of the algorithm is defined the relaxation
value for the prototypes. Here is proposed that γ = 0.1, because is the
best value found in the experimentation. Several values were used in
the evaluation: 0.1, 0.2, 0.3, 0.4 and 0.5. According to environmental
experts these values were considered fine for evaluation. These values
are tested as the variable indValue in the following condition:

if (desvMc ≤ desvMc*(1+indValue)).

This condition is part of the second moment of the stochastic method.
The table 18 depicts the results of the prototypes has been created using
them.

143

Table 18. Number of Prototypes and the γ policy evaluation values. For each γ policy value
there is the number of cases of each prototype.

#Prototypes
0.1 0.2 0.3 0.4 0.5

1 472 695 883 1077 1320
2 305 594 556 362 119
3 295 150
4 354
5 13

γ: Policy Evaluation Values

Table 18 shows the results of the implementation of the stochastic
method. These results are from one day of acquiring of data. The be-
havior of more days of analysis takes the behavior of adding data to the
current prototypes. The comments of the environmental experts about
the results obtained in the evaluation were the following. The best pro-
posal is the one built with γ=0.1 because it has more prototypes. The
second could be when γ=0.2. However, when γ is evaluated with others
values the results are out of expected bounds.

The five prototypes generated with γ=0.1 are highly representative of
the environmental conditions taking into account the human activities.
The first prototype built has 472 cases, where the first case is acquired
at minute 00:01 and the last case learned is acquired about the minute
07:08. Between these minutes, usually the human activity is reduced to
be sleeping, and the movement of cars is low. Usually, the traffic in-
crease when the people decide to go schools. Normally, the children
school starts at 07:30 hrs. Therefore, a peak hour is considered between
07:00 am and before of 13:00, because the pick-up from the school of
the little children starts at 12:30 hrs. According to the table, the second
prototype represents this human behavior. Third prototype considers
the thirst human activity that starts around 13:00 hours ending about at
18:00 hrs. At this period, the people usually are at work. After this, be-
tween the time of 18:00 and 23:00, the people travel to home or maybe
going to other places. Then the activity of the day ends for some peo-
ple. Finally, the fifth prototype represents when the environmental con-
dition represents the accumulative values of the day. Then the nature
has a break and helps us cleaning the environment. This is done during
the first hours of the new day.

 144

When γ=0.2 the algorithm generates three prototypes. In this situation,
the prototypes represent the behavior of the environment in three phas-
es. First is between 0-12 hours; this behavior covers the human activi-
ties of the first and second period, according the prototype when the
γ=0.1. Between the 12-22 hours covers the behavior when people takes
a break to lunch and goes to pick up children to school, and finally
when people ends the working day. In the 22-24 hours, the people trav-
el to home or maybe going to other places. Having in consideration this
arguing, the second γ policy evaluation value could be acceptable, but
is more interesting and realistic the first one according the argumenta-
tion of the environmental experts.

Anyway, when γ experiments the other values of 0.3, 0.4 and 0.5, the
obtained results are out of a reasonable behavior. One explanation of
this fact is that the evaluation threshold is extended too much, and the
relaxation learning policy is higher, mixing different prototypes in only
one mixed prototype, which does not represent a clear different envi-
ronmental situation, but a merge of several conditions. While in first
evaluation of γ=0.1, the relaxation is more demanding, and only cases
that accomplish the stochastic moments are learned.

A normal behavior of nature could be described as follows. At the end
of the day, when the human activity is reduced and considering all the
night and the first minutes (00:01) of the new day, the nature have a
break, and at this time, the nature activity is more effective. Then, the
improving of the air quality is higher. When the human activity begins,
the air quality starts to going down. At late hours, the concentration of
contamination increases and is reduced until the human activity is re-
duced. Therefore, the cycle ends and begins again.

Once the prototypes have been built, the following task is to evaluate
the first policy. The policy aims to measure the separation between
Mc’s. The following table shows the results in the evaluation of the
prototypes when γ=0.1. The prototypes evaluated have been selected
having in mind the evaluation of γ, and the comments of the environ-
mental experts.

145

Table 19. Distance measures between the Mc’s obtained for γ=0.1
Mc 1 Mc 2 Mc 3 Mc 4

Mc 1 0 30.967 30.666 53.225
Mc 2 30.967 0 21.120 26.185
Mc 3 30.666 21.120 0 37.394
Mc 4 53.225 26.185 37.394 0

The normalization of the data between 0 and 1 is an usual procedure in
data mining. However, in this special case, data are computed and rep-
resented on its natural values, with the aim of following the Interna-
tional and Mexican norms, as it is depicted in table 19.

Table 19 shows the distance evaluation between prototypes. The table
shows blocks of different colors. For the evaluation, we concentrate in
the cases situated in the white blocks. According to the results depicted
in table, all prototypes are separated for a good distance between them.
This is an indication that the prototypes are well structured, and the use
of the stochastic steps works fine. The prototypes never overlap.

The second evaluation is the implementation of the second policy. This
is done through the implementation of the formulas 11, 12, 13 and 14
for the prototypes. Previously, it has been introduced the aim and
meaning of the formulas, which is to evaluate the quality of the learn-
ing (or the building of new prototypes), starting with an empty case-
base. The table 20 depicts the results of the implementation of each
formula for the prototypes.

Table 20. Results of the different formulas assessment

Mc '1 Mc '2 Mc '3 Mc '4 Mc '5
Formula 11 41,93658 24,88025 21,41534 61,14482 11,46441
Formula 12 840,1143 1320,691 1802,095 2336,38 2860,231
Formula 13 19794,06 7588,476 6317,526 21645,27 149,0373
Formula 14 23,56115 5,745838 3,505657 9,264447 0,052107

Formula 11 computes an average while formula 13 computes the sum
of distances between the cases and the prototype. These two formulas
help to view the compactness of the sub-library. Especially in formula
13, it is possible to assess how far the cases to its prototype are. Here, a

 146

reduced value is desired, because it will be an indicator of a good com-
pact sub-library (hard sub-library). A high value indicates that the cases
are far from its prototype. Then, the class/cluster is not too compact.
Thus, it is soft. Taking into account results, the prototypes one and four
are the prototypes that could be soft, because both have the higher val-
ues, and where prototype 1 has more than Mc 4. Prototype 4 has the
higher separation of its cases. These prototypes represents the first and
last hours of the day, where the human activity it is reduced. Prototypes
two and three are the harder prototypes, and are the prototypes which
represents when the human activity is high. The harder prototypes are
the cases more nearest to its prototype.

The evaluation of the magnitude of each prototype is computed, and the
results are depicted in table 20 as results of formula 12. According to
the experts, in the morning the air quality is good, but with the human
activity, the air quality is going worst. This behavior is expected in da-
ta. In the evaluation of the prototype, could be seen how the values for
each prototype increases. The increase of magnitude shows us that the
pollution has been increased.

Finally, in formula 14, a similarity of the prototype and the evaluation
of distances are computed. This similarity gives an idea of how repre-
sentative is the prototype of all the cases that are stored/summarized on
it. To have a full evaluation of the results the following table 21 shows
the evaluation of the dispersion of the data in the prototypes.

Table 21. Standard Deviation of Prototypes
Mc'1 93.83733
Mc'2 34.00873
Mc'3 29.97352
Mc'4 107.1802
Mc'5 158.8435

Table 20 in formula 11, 13 and 14 shows a pattern as result of the iple-
mentation of the stochastic method. Table 21 shows the standard devia-
tion evaluation, which depicts the hard prototypes and soft prototypes.
In hard prototypes, the cases tend to be very close to the Mc, which is
the situation of Mc’2 and Mc’3. Others prototypes are spread out over a
large range of values. This behavior is depicted in both tables.

147

Table 20 and 21 complements the evaluation of the prototypes, but es-
pecially in the evaluation of prototype 5 the result is low, the magnitude
is high, and the distance is low, but the number of cases is reduced. In
this case, is essential the evaluation of the dispersion results that is the
higher value and magnitude is higher too. It is positively surprising that
the pattern of air quality in the city matches with the citizen daily be-
havior.

6.5 Testing incrementally the whole DACL Framework

An exhaustive experimentation combining all the main contribu-
tions of this thesis work: Dynamic Adaptive Case Library (DACL), In-
cremental NIAR k-d Tree building, PME technique, Stochastic Learn-
ing and Relevant Case learning policies, have been carried out. This
experiments provided the confirmation that the proposed DACL
framework is especially suitable to cope with incremental data streams.

It is not easy to cope with an unsupervised database, where in an
incremental way, a lot of cases are being generated, and must be pro-
cessed by the CBR system. This way, the system has not so much cases
in its Case Library like in a non-incremental processing scenario. This
means that it is pretty more difficult to achieve good accuracy percent-
ages, because at the beginning of the processing, normally the precision
will be lower than when working in a non-incremental scenario.

Fortunately, the experimentation done has outlined that the
DACL approach is able to satisfactorily cope with unsupervised and
incremental scenario. As showed later the DACL approach has been
able to detect and construct the same number of meta-cases (prototypes)

6.5.1 Experimental Settings

The same 10 databases (Abalone, Balance, Car evaluation,
Ecoli, Glass, Ionosphere, Iris, Letter, Pima and Waveform), from the
UCI repository, used in section 6.3 were also used here. In table 4 there
is the description of main features of all these databases.

The experimental setting was done under the following characteristics:

• The above ten databases were tested

 148

• As a baseline, the Flat Case Library was considered which gives

the upper bound of the accuracy.

• Twelve different strategies were tested. These combinations are
the result of the crossing of 3 Meta-case Selection strategies (Vir-
tualMcSelection, RealMcSelection and VirtualRmaxMcSelection) ,
two incremental maintenance strategies for the NIAR k-d Tree
(IncMaintTree and IncMaintPercTree) and 2 strategies for the Learn-
ing of cases (AllCaseLearning and RelCaseLearning):

o S1: VirtualMcSelection + IncMaintTree + AllCaseLearning
o S2: VirtualMcSelection + IncMaintTree + RelCaseLearning
o S3: VirtualMcSelection + IncMaintPercTree + AllCaseLearning
o S4: VirtualMcSelection + IncMaintPercTree + RelCaseLearning
o S5: RealMcSelection + IncMaintTree + AllCaseLearning
o S6: RealMcSelection + IncMaintTree + RelCaseLearning
o S7: RealMcSelection + IncMaintPercTree + AllCaseLearning
o S8: RealMcSelection + IncMaintPercTree + RelCaseLearning
o S9: VirtualRmaxMcSelection + IncMaintTree + AllCaseLearning
o S10: VirtualRmaxMcSelection + IncMaintTree + RelCaseLearning
o S11: VirtualRmaxMcSelection + IncMaintPercTree + AllCaseLearning
o S12: VirtualRmaxMcSelection + IncMaintPercTree + RelCaseLearning

• For each database and for each strategy, 10 execution runs were

done sampling randomly the cases to get different ordering of the
cases. In addition, one more run was done with the original ordering
of each database.

• For each execution and for each database several statistics were

computed: the average accuracy (in percentage); the incremental evo-
lution of the accuracy (accumulated percentage), the average time re-
trieval (time in µs), the evolution of the incremental time retrieval
(accumulated time in µs); The detection of meta-cases-prototypes;
the incremental evolution of the number of cases of the whole Case
Library; the incremental evolution of the number of cases of each
discovered Meta-case/prototype.

149

6.5.2 Experimental Results

Regarding the discovering of Meta-cases and protoypes, all the

databases have been processed and the different meta-cases (proto-
types) were found to correspond accurately with the real hidden class
labels. In the table 22, the list of the used databases is shown along with
some experimentation details, like the number of classes and instances
of each database and the number of meta-cases built (discovered when
using different values of the β parameter (ranging from 0.74 to 5.9).

Table 22. List of tested databases with details on the discovered Meta-cases

DB #Classes #Inst β=4.55 β=0.9 β=3.45 β=0.425 β=5.8 β=5.9 β=5 β=0.74

Pima 2 768
Mc1=753
Mc2=15

Ionosphere 2 351
Mc1=37
Mc2=314

Iris 3 150
Mc1=50
Mc2=68
Mc3=32

Waveform 3 5000

Mc1=1411
Mc2=686

Mc3=1675
Mc4=1228

Balance 3 625
Mc1=298
Mc2=304
Mc3=23

Car 4 1728

Mc1=616
Mc2=598
Mc3=285
Mc4=229

Glass 7 214

Mc1=152
Mc2=17
Mc3=1
Mc4=2
Mc5=11
Mc6=30

Ecoli 8 336

Mc1=144
Mc2=10

Mc3=102
Mc4=1
Mc5=21
Mc6=46
Mc7=2
Mc8=10

Abalone 29 4177

Mc1=132
Mc2=38
Mc3=4
Mc4=63

Mc5=173
Mc6=16
Mc7=9
Mc8=26

Mc9=31
Mc10=100
Mc11=101
Mc12=33
Mc13=73
Mc14=85
Mc15=8
Mc16=78

Mc17=72
Mc18=24
Mc19=72

Mc20=228
Mc21=64
Mc22=42
Mc23=43
Mc24=20

Mc25=91
Mc26=82
Mc27=55
Mc28=1

Mc29=139
Mc30=151

Mc31=1
Mc32=136

1
Mc33=761

β=1.1
Number of Metacases built in the dynamic learning of prototypes (DACL)

 150

In the following two sections more details about the perfor-

mance of the proposed methodology when tested on the Iris and Bal-
ance database correspondingly, can be found. These databases were
selected in order not put all resulting tables for all databases. Anyway,
the results on all databases were very equivalent.

6.5.2.1 Evaluating the Accuracy in Iris and Balance databases

After running 10 different tests on each database the average preci-

sions values found are reported in the following table (table 23).
It is important to mention that the algorithm’s learning process up-

dates its learning base each time a new meta-case appears, which has as
a result that the initial precision value is lower and grows as more meta-
cases are identified.

Table 23. Mean precision values for Iris and Balance databases

#CL #MCs #NCL Precision β

iris

#CL1=50

3 3 87% 0.425
#CL2=68

#CL3=32

Balance #CL1=298 3 3 68% 5.9

#CL2=304

#CL3=23

151

6.5.2.2 Analyzing the Iris database

In figures 25 and 26, the results of the experiments run on the Iris da-
tabase are presented graphically, with the setting of β = 0.425. These
figures show the evolution of the detection of the Meta-Cases, for sev-
eral random executions.

Fig. 25. Iris meta-cases for sequential and random (1, 2, 7, 8, 20) arrival

 152

Fig. 26. Iris meta-cases for sequential and random (3, 4, 5, 6, 9) arrival

6.5.2.3 Analyzing the Balance Database

In figure 27, 28 and 29, the results of the experiments run on the Bal-
ance database are presented graphically, with the setting of β = 0.61.
These figures show the evolution of the detection of the Meta-Cases,
for several random executions.

Fig. 27. Balance meta-cases for sequential and random (1-5) arrival

153

Fig. 28. Balance meta-cases for sequential and random (6, 7, 8) arrival

Fig. 29. Balance meta-cases for sequential and random (9, 10) arrival

 154

6.5.3 Discussion of Results

The results in the 10 databases tested showed a good time performance
and accuracy average on several execution runs, even though the case
library was incrementally populated, they achieved good accuracy val-
ues, just a little bit worse than compared with the non-incremental pro-
cessing of the cases, as it was tested in section 6.3. From the experi-
mentation done we can conclude that the DACL framework is a prom-
ising approach to cope incrementally with data streams.

 This approach has been able to discover the Meta-cases (proto-
types) in a very good way, and the number of protoytpes is equal to the
existing number of the “hidden” class labels in the databases.

Moreover, the average final precision is just a little bit worse than the
average precision obtained with the same DACL approach, but just us-
ing the usual non-incremental way. In such non-incremental scenarios,
the Case Library is seeded up with some training set of cases, and test-
ed with a testing set, and of course, it should have better accuracy re-
sults, because at the beginning, this configuration has many more cases
in the Case Library than the corresponding incremental configuration.

From the experimentation carried out, it seems that we can conclude
that the DACL approach is a promising proposal for facing unsuper-
vised domains (data streams), and in general, it improves the CBR sys-
tem performance.

155

7 Conclusions and Future Work

7.1 Conclusions

An efficient and competent CBR system for a continuous do-
main requires techniques that continuously improve its efficiency and
competence. The big amount of data generated in this kind of systems
needs to be carefully managed to avoid an information overload. The
proposal of the DACL Framework and the proposed indexing schemes
(AvKd Tree, NIAR k-d tree) and exploration technique (Partial Match-
ing Exploration) provides a solution to keep efficient and competent a
continuous domain.

DACL Framework is focused on the retrieval and retain CBR steps.
DACL Framework stores the information in sub-libraries. The sub-
library concept is built by the prototype of cases (meta-case), which is
the representation of all the cases stored in the corresponding sub-
library (cluster), and a hierarchical indexing strategies (discriminant
tree, k-d tree, etc.) to organize the information and to improve the re-
trieval. For supervised domains, DACL framework has been evaluated
using databases from UCI Machine Learning Repository. The result
shows that DACL, with proposed indexation and exploration technique,
improves the computational effort spent and the competence of the
CBR system.

The aim of the DACL framework is to dynamically adapt itself to the
changes of the domain, maintaining the efficiency, both in time and
size, and the competence of the system as good as possible. Until now,
the evaluation of retain and retrieve steps, from a computational time
efficiency point of view, have been done. The results are promising.

The use of a hierarchical indexation scheme substantially reduces the
number of cases for which similarity computation must be done. The
seminal work in the indexation of data to improve search processes was
formulated for database queries applying a k-d tree (Bentley 1975, Friedman
et al. 1977).

Several contributions reviewed in previous chapters have shown that
the standard k-d tree approach was improved in different ways. In our

 156

research work, another proposal to improve the standard k-d tree ap-
proach was formulated in (Orduña and Sànchez-Marrè, 2013): the NIAR k-d tree
approach. In this thesis has been proposed both the use of a partial
matching exploration technique and a Multiple Case Library (MCL)
structure to improve both the time and the accuracy in the case retrieval
task through a hierarchical structure (k-d tree) or through a set of sever-
al hierarchical structures.

These proposed approaches have been combined and compared against
well-known approaches in the literature like the standard k-d trees,
NIAR k-d trees, the hyperball with bounds exploration techniques, etc.
Twelve strategies have been defined and tested (as detailed in chapters
5 and 6).

All strategies have been subjected to an experimental evaluation aiming
to find the faster and more accurate retrieving strategy. The time effi-
ciency and the success in the assignment of the right class labels in the
databases, as a measure of the competence of the system, were ana-
lyzed.

From the experimental testing, it can be drawn the use of a Multiple
Case Library using NIAR k-d trees in its second layer structure, and
using the partial matching exploration technique is the best strategy
among the twelve tested. This strategy reaches on average a 68.41 % of
accuracy, only an 8.4% less accuracy than the baseline strategy (linear
search in a flat case library). Regarding the retrieval time, this strategy
on average spends 57 µs, while the baseline strategy spends 17759 µs
for one case retrieval (311 times faster).

This approach is faster than other retrieving strategies, because the
computational time of the partial matching exploration technique de-
pends on the number of indexing attributes (k) and not on the number
of cases (n) as other approaches do, which can be very large depending
on the size of the databases. In addition, the use of a Multiple Case Li-
brary implies that the indexing tree structures used are smaller, as they
contain much less cases than when using only one case library. In addi-
tion, the accuracy of the retrieval process is also improved because the
different case libraries of the MCL let to model in a better way (more
accurate) the different prototype of cases (meta-cases) which can be

157

found in a domain/database. Not all the cases in the same do-
main/database are similar enough to be characterized and indexed in the
same way. With a set of case libraries, the different kind of cases can be
modelled in a different and suitable way.

In a complementary research work, we have been testing the Dynamic
and Adaptive version of a MCL, a DACL framework (as explained in
chapter 3), with several stochastic policies to learn dynamically the dif-
ferent meta-cases to manage the continuous domains (data streams)
(Orduña et al., 2015a). A stochastic learning method has been introduced.
The aim of the proposal is to learn the new cases and store it in the
structure of the similar enough prototype. If current prototypes do not
accomplish with the requirements of the method to learn the new case,
then a new prototype have to be computed. This is done considering the
new case such as the new prototype. The data have been acquired from
different environmental sensors. Thirteen attributes has been used to
evaluate the air quality of Cd. Obregon Sonora during a period of one
year. In the opinion of the environmental experts and according with
the results, the method here depicted can be considered trustworthy for
organize the cases of the air pollution. The stochastic field here boarded
follows the requirement of the statically stochastic methods. Especially
in first and second moment, those are the core of this proposal. With
this Stochastic method DACL Framework is able to learn new cases
and build new prototypes. The learning of new cases is executed ac-
cording to the most similar prototype. And finally, the building of new
prototypes is done according to the proposed method.

All the Dynamic Adaptive case Library framework has been tested with
simulated unsupervised domains where the cases were incrementally
processed, and all the DACL structures were incrementally created and
updated.

7.2 Future Work

During the research work of this thesis of the Meta-cases other
ideas and research lines arose. Some of them are:

• The proposal of new policies for building Meta-cases.

 158

• The implementation of entropy methods in building the prototypes.

• Building a CBR system, where the system gain capabilities

through deeper introspective reasoning tasks and Meta-Cognition.
With this capabilities the CBR system could implement any strate-
gy learned, even the capability of evaluate different strategies and
decide the best one for each sub-library. This should be triggered
in the learning of new cases or Meta-cases.

• In a future work, discrimination trees will be used at the second

layer of a MCL to test whether they can be more accurate. The
idea is to decide the discriminating order of the attributes using un-
supervised feature weighting techniques (Núñez & Sànchez-Marrè,
2004). As higher weights are obtained, a higher position in the dis-
crimination list used for the creation of the discrimination tree is
obtained by the attribute.

• Other future research line is to test different similarity measures,

especially taking into account the relevance of the different fea-
tures with the assignment of weights. In the current experimenta-
tion, the Euclidean measure with equal weights has been used, but
as showed in previous studies (Núñez et al., 2004), other similarity
measures could help to improve the competence accuracy of the
CBR system, due to a better similarity assessment between the
query case and the cases in the Case Library.

There is too much work to do in this field, and our work is just only a
small piece for the improvement of Case-Based Reasoning system per-
formance.

159

Appendix A

Related Publications

• Journals

 Orduña Cabrera, Fernando, Sànchez-Marrè Miquel, Ramírez

Treviño Alberto and Villa Ibarra Martin (2015b). A Stochastic Learn-
ing Approach for Building Prototypes in Air Quality Evaluation Using
a Dynamic Adaptive Case Library. Submitted to Journal of Engineering
Applications of Artificial Intelligence, Elsevier Science, September
2015.
 Orduña Cabrera, Fernando and Sànchez-Marrè Miquel (2015a).

Embedding k-d Trees and Exploration Techniques within a Multiple
Case Library to Improve Case Retrieval. Submitted to Journal of
Knowledge-Based Systems, Elsevier Science, August 2015. In revision
process.

• Conferences / Book Chapters

 Orduña Cabrera, F. and M. Sànchez-Marrè (2013). Using NIAR

k-d Trees to Improve the Case-Based Reasoning Retrieval Step. 12th
Mexican International Conference on Artificial Intelligence (MICAI
2013). Proceedings Part II. Springer Verlag, Lecture Notes in Comput-
er Science LNAI, vol. 8266. Advances in Soft Computing and Its Ap-
plications, pp. 314-325, 2013. ISBN 978-3-642-45110-2. DOI
10.1007/978-3-642-45111-9_28.
 Orduña Cabrera, F. and Sànchez-Marrè, M. (2009). Dynamic

Adaptive Case Library for Continuous Domains. In Proc. of 12th Inter-
national Conference of the Catalan Association of Artificial Intelli-
gence (CCIA'2009). Frontiers in Artificial Intelligence and Applica-
tions Series, Vol. 202, pp. 157-166, 2009. ISBN 978-1-50750-061-2.

• Technical Reports

 Orduña Cabrera, F. and Sànchez-Marrè M (2008c). Case base

maintenance: Terms and directions. Technical Report LSI-08-21-R,
Universitat Politècnica de Catalunya · BarcelonaTech.

 160

Other Publications

• Conferences / Book Chapters

 Orduña Cabrera, F., M. Sànchez-Marrè, M., J.M. García Go-

rrostieta and S. González López (2008d). Ergonomic Advice through
Case-Based Reasoning to Avoid Dangerous Positions Adopted Using
the Computer. Artificial Intelligence Research and Development. In
Proc. of 11th International Conference of the Catalan Association of
Artificial Intelligence (CCIA'2008). Frontiers in Artificial Intelligence
and Applications Series, Vol. 184, pp. 186-194, 2008. ISBN 978-1-
58603-925-7
 F. Orduña Cabrera and M. Sànchez-Marrè (2007). Related Top-

ics for an Embodied Procedural Reasoning Architecture. In Proc. of 1st
International Conference on Industrial, Mechatronics and Manufactur-
ing Engineering (CIMM 2007), pp. 145-150. Instituto de Ingeniería y
Tecnología, Chihuahua. Ciudad Juárez, Chhiuahua, México. 3-5 de
Octubre de 2007.

• Technical Reports

 Orduña Cabrera, F. and Sànchez-Marrè M (2008b). Bioinfor-

matics: a promising field for case-based reasoning. Technical Report
LSI-08-20-R, Universitat Politècnica de Catalunya · BarcelonaTech.
 Orduña Cabrera, F. and Sànchez-Marrè M (2008a). An ap-

proach for an architecture to embodied procedural reasoning. Technical
Report LSI-08-1-R, Universitat Politècnica de Catalunya · Barcelona-
Tech.

161

References
1. Aamodt A. and E. Plaza (1994). Case-based reasoning: fundamental is-

sues, methodological variations and system approaches. AI Communica-
tions 7(1):39-59.

2. Aha, D. W. (1991). Case-Based Learning Algorithms. In Ray Bareiss, edi-
tor. Proceedings: Case-Based Reasoning Workshop. Morgan Kaufman
Publishers.

3. Akbari Javad Torkestani and Mohammad Reza Meybodi (2011). Learning
automata-based algorithms for solving stochastic minimum spanning tree
problem. journal Applied Soft Computing. volume 11, number 6, pages
4064-4077.

4. Althoff, K-D. and Wess, S. (1992) Case-Based Reasoning and Expert
System Development. In Franz Schmalhofer, Gerhard Strube and Thomas
Wetter, editors. Contemporary Knowledge Engineering and Cognition.
Springer-Verlag, Berlin.

5. Anderson L. Michael and Oates Tim (2007), A Review of recent Reseach
in Meta-reasoning and Meta-learning. AI Magazine, AAAI, Volume 28,
Number 1.

6. Arcos Josep Lluís, Oguz Mulayim and David Lake, (2008) Using Intro-
spective Reasoning to Improve CBR System Performance. Workshop
AAAI 2008, Meta-reasoning: Thinking about thinking, Chicago Illinois.

7. Arya, Sunil and David M. Mount (1993). Algorithms for Fast Vector
Quantization. Proc. of DCC '93: Data Compression Conference, pp. 381--
390, IEEE Press.

8. Arshadi, N. & Jurisica, I. (2004). Advances in Case-Based Reasoning,
chap. Maintaining Case-Based Reasoning Systems: A Machine Learning
Approach, 17–31. springerlink.

9. Arshadi, N. & Jurisica, I. (2005). Data mining for case-based reasoning in
high-dimensional biological domains. IEEE Trans. on Knowl. and Data
Eng., 17, 1127–1137.

10. Athanasios Papoulis (1984). Probability, Random Variables, and Stochas-
tic Processes, Second Edition. McGraw-Hill.

11. Aggarwal, C.C. (2007). Data Stream: Models and Algorithms. Springer,
edited by Aggarwal C. Cahru.

12. Bentley, Jon Louis (1975). Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18(9): 509-517.

13. Bergmann, R., and Tartakovski, A, (2009) Improving KD-Tree Based Re-
trieval for Attribute Dependent Generalized Cases. In Proceedings of the
Twenty-Second International FLAIRS Conference, Association for the
Advancement of Artificial Intelligence. Pp. 319-324.

 162

14. Bonissone, P. & de M`antaras, R.L. (1998). ”Case-Based Reasoning”. In:
Handbook of Fuzzy Computation. Institute of Physics Publishing, Bristol
and Philadelphia (E. H. Ruspini, P. P. Bonissone, Wiltold Pedrycz. eds).

15. Broder, A.J. (1990) Strategies for Efficient incremental Nearest Neighbor
Search. Pattern Recognition, 23:171-178.

16. Burke, E.K., MacCarthy, B.L., Petrovic, S. & Qu, R. (2001). Casebased
reasoning in course timetabling: An attribute graph approach. In ICCBR,
90–104.

17. Carbonell, J. (1986). Machine Learning: An Artificial Intelligence Ap-
proach, chap. Derivational analogy: A theory of reconstructive problem
solving and ex¬pertise acquisition. Morgan Kaufman Publishers, Michal-
ski, R. and Carbonell,

18. Chaimontree, Santhana and Atkinson, Katie and Coenen, Frans (2010).
Clustering in a Multi-Agent Data Mining Environment.Agents and Data
Mining Interaction, Lecture Notes in Computer Science, volume 5980,
pages 103-114.

19. Charniak, E., McDermott, D. Introduction to Artificial Intelligence. Ad-
dision-Wesley, 1985.

20. Cox T. Michael (December 2005), Metacognition in Computation: A se-
lected research review. Artificial Intelligence, Volume 169, Issue 2, Pages
104–14.

21. Cox T. Michael and Raja Anita (2008), Meta-reasoning: A Manifesto,
Workshop AAAI:2008, Meta-reasoning: Thinking about thinking, Chica-
go Illinois.

22. Doyle Dónal, Pádraig Cunningham, Derek Bridge, Yusof Rahman,
(2004). “Explanation oriented retrieval”, ECCBR 2004, LNAI 3155, pp.
157–168.

23. Ferguson Alex, Derek Bridge (2000), “Partial orders and indifference re-
lations: being purposefully vague in case-based retrieval”, EWCBR 2000,
LNAI 1898, pp. 74–85.

24. Finestrali, Giulio and Muñoz-Avila, Héctor (2013). Case-Based Learning
of Applicability Conditions for Stochastic Explanations. Case-Based Rea-
soning Research and Development, volume 7969, pages 89-103.

25. Fisher, D (1987). Cobweb: Knowledge Acquisition via Conceptual Clus-
tering. Machine Learning, 2:139-172.

26. Fornells A., E. Armengol and E. Golobardes (2008). Retrieval Based on
Self-explicative Memories. Proc. of European Conference on Case-Based
Reasoning (ECCBR 2008), pp. 210-224. Springer-Verlag.

27. Fox Susan and David Leake (1994), Using Introspective Reasoning to
Guide Index Refinement in Case-Based Reasoning. Proceedings of the
Sextennth Annual Conference of the Cognitive Science Society.

163

28. Fox Susan and David Leake (2001), Introspective reasoning for index re-
finement in case-based reasoning, Journal of Experimental and Theorical
Artificial Intelligence, pp 63-88, Vol. 13.

29. Frank, A. and Asuncion, A. (2010). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science.

30. Friedman, Jerome H. and Bentley, Jon Louis and Finkel, Raphael Ari,
(1977). "An Algorithm for Finding Best Matches in Logarithmic Expected
Time," ACM Trans. Math. Software, 3:209--226, September.

31. Gentner, D. and Forbus, K. D. (1991). MAC/FAC: a Model of Similarity-
Based Retrieval. In Proceedings of the 13th Annual Conference of the
Cognitive Science Society, pp.: 504-509.

32. Gower, J. (1971). A General coefficient of similarity and some of its pro-
perties. Biometrics, 27:857–887.

33. Hammond, K.J. (1989). Case-based planning: viewing planning as a
memory task. Academic Press Professional, Inc., San Diego, CA, USA.

34. Haris S. and R. Slobodan (2005). Autonomous Creation of New Situation
Cases in Structured Continuous Domains. Springer-Verlag, pp. 537—551.

35. Holyoak, K.J. and Koh K. (1986). Analogical Problem Solving: Effects of
Surface and Structural Similarity in Analogical Transfer. In Midwestern
Psychological Association, editor, Proceedings of the Conference of the
Midwestern Psychological Association.

36. Iglezakis, I., Reinartz, T. & Roth-Berghofer, T.R. (2004). Advances in
Case-Based Reasoning, chap. Maintenance Memories: Beyond Concepts
and Techniques for Case Base Maintenance, 227–241. springerlink.

37. Joh D.(1997). CBR in a Changing Environment. Proc. of the 2nd Int. Con-
ference on Case-Based Reasoning (ICCBR’97). Springer-Verlag, pp. 53—
62.

38. Keane M. T. and B. Smyth (1995). Remembering to Forget: A Compe-
tence-Preserving Case Deletion Policy for Case-based Reasoning systems.
Procc. of IJCAI 1995, Morgan Kaufmann, 377-382.

39. Kolodner, J.L (1993). Case-Based Reasoning, Morgan Kaufmann.
40. Kolodner, J.L. (1980) Retrieval and Organizational Strategies in Concep-

tual Memory. Ph.D. Thesis, Yale University.
41. Kolodner, J.L., Simnpson, R.L. and Sycara, K. (1985). AProcess Model of

Case-Based Reasoning in Problem Solving. In IJCAI, editor, Procc. of
IJCAI 1985, pp. 284-290. Morgan Kaufmann Publishers, Los Angeles,
California, USA.

42. Kruusmaa M. (2003). Global Navigation in Dynamic Environments Using
Case-Based Reasoning. Autonomous Robots 14, pp. 71--91.

43. Leake B. David, Kinley Andrew and Wilson David (1995), Learning to
improve Case Adaption by Introspective Reasoning and CBR, In Proceed-

 164

ings of the First International Conference on Case-Based Reasoning, pp
229-240, Springer-Verlag.

44. Leake David and Wilson Mark (2008), Extending Introspective Learning
from Self-Models, Workshop AAAI: 2008, Meta-reasoning: Thinking
about thinking, pp. 143-146, Chicago Illinois.

45. Leake, D.B. & Wilson, D.C. (1998). Categorizing case-base maintenance:
Di-mensions and directions. In Advances in Case-Based Reason-
ing:Proceedings of the Fourth European Workshop on Case-Based Rea-
soning, 196–207, Springer-Verlag.

46. Leake, D.B. & Wilson, D.C. (2000). Remembering why to remember:
Performance-guided case-base maintenance. In In Proceedings of the Fifth
Eu-ropean Workshop on Case-Based Reasoning, 161–172, Springer Ver-
lag.

47. Lenz, M. & Burkhard, H. (1997). Cbr for document retrieval. Second In-
ternational Conference on Case-Based Reasoning, Case-Based Reasoning
Research and Development ICCBR-97 , 1266/1997.

48. López, B. (2013). Case-Based Reasoning: a Concise Introduction. Morgan
& Claypool, 2013.

49. López de Mántaras, D. McSherry, D. Bridge, D. Leake, B. Smyth, S.
Craw, B. Faltings, M. L. Maher, and M. T. Cox, K. Forbus, M. Keane, A.
Aamodt and I. Watson. Retrieval, (2005). reuse, revision and retention in
case-based reasoning. The Knowledge Engineering Review 20(3), 215-
244.

50. López-Rubio Ezequiel (year 2011). Stochastic approximation learning for
mixtures of multivariate elliptical distributions, journal Neurocomputing,
volume 74, number 17, pages 2972-2984.

51. Martín F. J. and E. Plaza (2004). Ceaseless Case-based Reasoning. In
Procc. of 7th European Conference on Case-Based Reasoning
(ECCBR’2004), pages 287-301, LNAI-3155, Madrid, Spain. September.

52. Mccarthy John (1979). Ascribing mental qualities to machines, In Philo-
sophical Perspectives in Artificial Intelligence, Humanities Press, pp. 161-
195.

53. Meléndez J, J. Colomer and J. Ll. de la Rosa (2001). Expert Supervision
Based on Cases. Proc. of 8th IEEE International Conference on Emerging
Technologies and Factory Automation, Vol. 1, pp. 431—440.

54. Miyashita K. and K. Sycara (1995). Improving system performance in
case-based iterative optimization through knowledge filtering. Procc. of
IJCAI 1995, Morgan Kaufmann, pp. 371—376.

55. Munoz-Avila, H. (2001). Case-base maintenance by integrating case-
index revision and case-retention policies in a derivational replay frame-
work. Computational Intelligence, Blackwell Publishers, Inc., 17, 280–
294.

165

56. N. Segata, E. Blanzieri, S. Delany, P. Cunningham, Noise reduction for
instance- based learning with a local maximal margin approach, Journal of
Intelligent Information Systems (2010), doi:10.1007/s10844-009-0101-z.

57. Ni, Z.W., Liu, Y., Li, F.G. & Yang, S.L. (2005). Case base maintenance
based on outlier data mining. Proceedings of the Second International
Conference on Machine Learning and Cybernetics, 5, 2861– 2864.

58. Núñez -Rocha, H.F. (2004a). Feature Weighting in Plain Case-Based Rea-
soning. Ph.D. thesis, Technical University of Catalonia, Software De-
partment.

59. Núñez, H. and Sànchez-Marrè, M (2004b). Instance-based Learning
Techniques of Unsupervised Feature Weighting do not perform so badly!.
In Proceedings of 16th European Conference on Artificial Intelligence
(ECAI'2004), pp. 102-106. IOS Press, València, Spain.

60. Orduña Cabrera, Fernando and Sànchez-Marrè Miquel (2015a). Embed-
ding k-d Trees and Exploration Techniques within a Multiple Case Li-
brary to Improve Case Retrieval. Submitted to Journal of Knowledge-
Based Systems, Elsevier Science, August 2015.

61. Orduña Cabrera, Fernando, Sànchez-Marrè Miquel, Ramírez Treviño Al-
berto and Villa Ibarra Martin (2015b). A Stochastic Learning Approach
for Building Prototypes in Air Quality Evaluation Using a Dynamic Adap-
tive Case Library. Submitted to Journal of Advanced Engineering Infor-
matics, Elsevier Science, September 2015.

62. Orduña Cabrera, F. and M. Sànchez-Marrè, (2013). Using NIAR k-d
Trees to Improve the Case-Based Reasoning Retrieval Step. Proc. of 12th
Mexican International Conference on Artificial Intelligence (MICAI
2013). Lecture Notes in Computer Science LNAI, vol. 8266, pp. 314-325.

63. Orduña Cabrera, F. and M. Sànchez-Marrè, M (2009). Dynamic Adaptive
Case Library for Continuous Domains. In Proc. of 12th International Con-
ference of the Catalan Association of Artificial Intelligence (CCIA'2009).
Frontiers in Artificial Intelligence and Applications Series, Vol. 202, pp.
157-166.

64. Orduña Cabrera, F., Sànchez-Marrè M. (2008a). An approach for an ar-
chitecture to embodied procedural reasoning. Research Report LSI-08-1-
R. Universitat Politècnica de Catalunya.

65. Orduña Cabrera, F., Sànchez-Marrè M. (2008b). Bioinformatics: a prom-
ising field for case-based reasoning. Research Report LSI-08-20-R. Uni-
versitat Politècnica de Catalunya.

66. Orduña Cabrera, F., Sànchez-Marrè M. (2008c). Case base maintenance:
Terms and directions. Research Report LSI-08-20-R. Universitat Politèc-
nica de Catalunya.

67. Perner, P. (2006). Case-base maintenance by conceptual clustering of
graphs. In Engineering Applications of Artificial Intelligence, 381–393.

 166

68. Poch M., I. R. Roda, M. Sànchez-Marrè, J. Comas, U. Cortés and J. La-
fuente (1999). A Multi-paradigm Decision Support System to improve
Wastewater. Treatment Plant Operation. AAAI Workshop on Environ-
mental Decision Support System and Artificial Intelligence, Technical
Report WS-99-07, AAAI Press, pp. 68--73.

69. Portinale L. and S. Montani. (2005) Case-Based Representation and Re-
trieval with Time Dependent Features. Proc. of 6th International Confer-
ence on Case-Based Reasoning (ICCBR05), LNAI- 3620, Springer, pp.
353-367.

70. Portinale, L. & Torasso, P. (2001). Case-base maintenance in a multimod-
al reasoning system. Computational Intelligence, Blackwell Publishers,
Inc., 17, 263–279.

71. Quinlan, J.R (1983). Learning efficient Classification procedures and
Their Application to Chess Endgames. In R. Michalski, J. Carbonell and
T. Mitchell, editors. Machine Learning. Tioga Press.

72. Ram A. and J. C. Santamaría (1997). Continuous Case-Based Reasoning.
Artificial Intelligence 90, pp. 86-93.

73. Ram A., R. C.Arkin, K. Moorman and R. J. Clark (1997). Case-based re-
active navigation: a method for on-line selection andadaptation of reactive
robotic control parameters. Systems, Man, and Cybernetics Part B 3, pp.
376--394.

74. Rebagliati, Nicola and Rota Bulò, Samuel and Pelillo, Marcello (2013).
Correlation Clustering with Stochastic Labellings. Similarity-Based Pat-
tern Recognition. volume 7953, pages 120-133, year 2013.

75. Reinartz, T. & Iglezakis, I. (2000). On quality measures for case base
maintenance. In In Proceedings of the 5th European Workshop on Case-
Based Reasoning, 247–259, SpringerVerlag.

76. Reza Akbari, Koorush Ziarati: A rank based particle swarm optimization
algorithm with dynamic adaptation. J. Computational Applied Mathemat-
ics 235(8): 2694-2714 (2011)

77. Richter, M.M. and Weber R.O. (2013). Case-Based Reasoning: a text-
book. Springer-Verlag, 2013.

78. Rong Pan, Qian Yang, Lei Li, (2004). “Case retrieval using nonlinear fea-
ture-space transformation”, ECCBR 2004, LNAI 3155, pp. 361–374.

79. Salamó, M. & Golobardes, E. (2003). Hybrid deletion policies for case
base maintenance. American Association for Artificial Intelligence.

80. Salamó, M. & Golobardes, E. (2004). Dynamic case base maintenance for
a case-based reasoning system. In Advances in Artificial Intelligence, IB-
ERAMIA, 93–103, American Association for Artificial Intelligence.

81. Salamó, M., M. López-Sánchez: Adaptive case-based reasoning using re-
tention and forgetting strategies. Knowledge Based Systems. 24(2):230-
247. 2011.

167

82. Sacerdoti, E. (1997). A structure for plans and behavior. In Proc. of
Workshop on Case-Based Reasoning (DARPA).

83. Sanders, K. & Hendler, J. (1997). The case for graph-structured represen-
tations. Procc. Of the 2th International Conference on Case-Based Rea-
soning, 245–254.

84. Sànchez-Marrè M., U. Cortés, M. Martínez, J. Comas and I. Rodríguez-
Roda (2005). An Approach for Temporal Case-Based Reasoning: Epi-
sode-Based Reasoning. Proc. of 6th International Conference on Case-
Based Reasoning (ICCBR’2005). LNAI-3620, pp. 465-476.

85. Sànchez-Marrè M, U. Cortés, I. Rodríguez-Roda and M. Poch (2000) Us-
ing Meta-cases to Improve Accuracy in Hierarchical Case Retrieval.
Computación y Sistemas (4), pp. 53.

86. Sànchez-Marrè M., U. Cortés, I. Rodríguez-Roda, and M. Poch (1999).
Sustainable case learning for continuous domains. Environmental Model-
ling and Software 14(5):349-357, 1999.

87. Sànchez-Marrè, M., Roda, I. R., and Comas, Q. (1998). L’Eixample dis-
tance: a new similarity measure for case retrieval. 1st Catalan Conference
on Artificial Intelligence (CCIA’98). ACIA Bulletin 14-15:246-253.

88. Sànchez, Miquel, Cortés, Ulises, Béjar, Javier, De Gràcia, Joan, Lafuente,
Javier and Poch, M. (1997). Concept Formation in WWTP by Means of
Classification Techniques: A Compared Study. Applied Intelligence.

89. Sasikumar, M. (1998). Case based reasoning, by janet kolodner and mor-
gan kaufmann,. User Modeling and User-Adapted Interaction, 8, 157–160.

90. Schank, R. (1982). Dynamic memory: a theory of learning in computers
and people. Cambridge University Press.

91. Shinn, H. (1988). Abstractional analogy: a model of analogical reasoning.
In Proc. of Workshop on case-based reasoning (DARPA).

92. Someren Van, M., Surma, J. & Torasso, P. (1997). A utility-based ap-
proach to learning in a mixed case-base and model-based reasoning archi-
tecture. In ICCBR ’97: Proceedings of the Second International Confer-
ence on Case-Based Reasoning Research and Development, 477–488,
Springer-Verlag, London, UK.

93. Smyth, B. & Keane, M.T. (1995). Remembering to forget: A competence
preserving case deletion policy for case-based reasoning systems. Proc. of
14th Int. Joint Conference on Artificial Intelligence (IJCAI 95), pp. 377–
382, Morgan Kaufmann.

94. Smyth, B. & Mckenna, E. (2001). Competence models and the mainte-
nance problem. Computational Intelligence, Blackwell Publishers, Inc.,
17, 235–249.

95. Stottler, R.H., A. L. Henke and King, J.A (1989). Rapid retrieval Algo-
rithms for Case-Based Reasoning. In Proceedings of the 11th International
Conference on Artificial Intelligence IJCAI-89, pp. 233-237. Detroit,
Michigan, USA.

 168

96. Swee Chuan Tan, Kai Ming Ting, and Shyh Wei Teng. A Comparative
Study of a Practical Stochastic Clustering Method with Traditional Meth-
ods. AI 2010, LNAI 6464, pp. 112–121, 2010.

97. Sycara, K. (1987). Finding creative solutions in adversarial impasses. In
Pro-ceedings of the Ninth Annual Conference of the Cognitive Science
Society.

98. Tan, Swee Chuan and Ting, KaiMing and Teng, ShyhWei (2011). A
Comparative Study of a Practical Stochastic Clustering Method with Tra-
ditional Methods. AI 2010: Advances in Artificial Intelligence, volume
6464, pages 112-121.

99. Taylor Howard M. and Samuel Karlin. An introduction to Stochastic
Modeling. 1998.

100. Todd K. Leen and Robert Friel and David Nielsen (2012). Approximating
distributions in stochastic learning. Journal Neural Networks. Vol. 32,
number 0, pages 219 - 228.

101. Urdiales C., E.J. Pérez, J. Vázquez-Salceda, M. Sànchez-Marrè and F.
Sandoval (2006). A Purely Reactive Navigation Scheme for Dynamic En-
vironments using Case-Based Reasoning. Autonomous Robots 21, pp. 65-
78.

102. Veloso M., H. Muñoz-Avila and R. Bergmann (1996). Case-based plan-
ning: selected methods and systems. AI Communications 9(3)128-137.

103. V. Jalali, D. Leake:Adaptation-Guided Case Base Maintenance. AAAI
2014: 1875-1881.

104. Wang, Fei and Li, Ping and König, ArndChristian and Wan, Muting
(2012). Improving clustering by learning a bi-stochastic data similarity
matrix. Journal of Knowledge and Information Systems. volume 32, num-
ber 2, pages 351-382.

105. B. P. Welford (1962). Method for Calculating Corrected Sums of Squares
and Products. Technometrics, Vol. 4, No. 3 (Aug., 1962), pp. 419-420.

106. Wess, S., Althoff, K-D. and Derwand, (1993). Using k-d Trees to Improve
the Retrieval Step in Case-Based Reasoning, editors, Stefan Wess, Klaus-
Dieter Althoff, and M. M. Richter, Proccedings of European Workshop on
Case-Based Reasoning, EWCBR-93, pp. 167--181,Springer-Verlag.

107. Wilcoxon, Frank (1945). Individual comparisons by ranking methods. Bi-
ometrics Bulletin 1(6): 80–83.

108. Wilson, D.C. & Leake, D.B. (2001). Maintaining case-based reasoners:
Dimensions and directions. Computational Intelligence, Blackwell Pub-
lishers, Inc., 17, 196–213.

109. Xi-Ren Cao (2009). Stochastic learning and optimization—A sensitivity-
based approach, journal Annual Reviews in Control, volume 33, number
1, pages 11-24.

169

110. Yang, L.Z., Ha, M.H. & Wang;, X.Z. (2003). Diversity-based case base
maintenance. Proceedings of the Second International Conference on Ma-
chine Learning and Cybernetics, 3, 1591–1596.

111. Yang, Q. & Wu, J. (2000). Keep it simple: A case-base maintenance poli-
cy based on clustering and information theory. In In Proc. of the Canadian
AI Conference, 102–114.

112. Yang, Q. & Zhu, J. (2001). A case-addition policy for case-base mainte-
nance. Computational Intelligence, Blackwell Publishers, Inc., 17, 250–
262.

113. Yang, Q. & Wu, J. (2000). Keep it simple: A case-base maintenance poli-
cy based on clustering and information theory. In In Proc. of the Canadian
AI Conference, 102–114.

114. Zhang, Kai and Collins, Emmanuel G., Jr. and Barbu, Adrian (2013). An
Efficient Stochastic Clustering Auction for Heterogeneous Robotic Col-
laborative Teams. Journal of Intelligent and Robotic Systems, volume 72,
number 3-4, pages 541-558.

115. Zhu, J. & Yang, Q. (1999). Remembering to add: Competencepreserving
case addition policies for case base maintenance. In In Proceedings of the
International Joint Conference in Artificial Intelligence (IJCAI , 234–241,
Morgan Kaufmann.

	Preface
	Acknowledgments
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Issues of the work
	1.3 Contributions
	1.4 Thesis Organization

	2 State of the Art
	2.1 Case-Based Reasoning
	2.1.1 Knowledge Organization
	2.1.1.1 Case Representation
	2.1.1.2 Case base Organization
	2.1.1.2.1 Flat Memory
	2.1.1.2.2 Hierarchical Organization
	2.1.1.2.3 k-d Trees
	2.1.2 The hyperball strategy with BWB and BOB tests
	2.2 Case Base Maintenance
	2.2.1 Concepts about efficiency and competence
	2.2.1.1 Efficiency
	2.2.1.2 Competence
	2.2.1.3 The Foundations of Competence
	2.2.2 Maintenance Data Collection
	2.2.3 Maintenance Execution
	2.2.4 Categorizing Policies for CBM
	2.2.5 Synthetic Analysis of CBM contributions
	2.3 Introspective Reasoning
	2.4 Stochastic Learning
	2.5 Continuous Domains

	3 The proposed Dynamic Adaptive Framework
	3.1 Dynamic Adaptive Case Library
	3.1.1 The Case
	3.1.2 The Meta-case
	3.2 Multiple Case Library (MCL)

	4 Improving the retrieval task
	4.1 AvKd-Tree
	4.2 NIAR k-d Tree
	4.3 Partial Matching Exploration (PME) Technique

	5 Improving the maintenance and learning of the Case Library
	5.1 The Stochastic Learning Strategy
	5.2 The Stochastic Learning Policy
	5.3 Another Meta-case Learning Strategy
	5.3.1 Building real meta-cases
	5.4 Introspective tasks for optimal maintenance of the DACL
	5.4.1 Introspective maintenance of the NIAR k-d tree
	5.4.2 Introspective task to improve the learning of new cases

	6 Experimental Evaluation and Results
	6.1 Avkd-tree evaluation in exact-case search
	6.2 NIAR k-d tree evaluation in exact-case search
	6.3 Testing the Multi Case Library approach for similar-case search in supervised domains
	6.3.1 Experimental Settings
	6.3.2 Experimental Results
	6.3.3 Discussion of the results
	6.3.3.1 Non-MCL strategies
	6.3.3.2 MCL Strategies
	6.4 Testing the Dynamic Adaptive Case Library (DACL) approach and Stochastic Learning policies in unsupervised domains
	6.4.1 The Domain and Experimentation Description
	6.4.2 Discussion of Results
	6.5 Testing incrementally the whole DACL Framework
	6.5.1 Experimental Settings
	6.5.2 Experimental Results
	6.5.2.1 Evaluating the Accuracy in Iris and Balance databases
	6.5.2.2 Analyzing the Iris database
	6.5.2.3 Analyzing the Balance Database
	6.5.3 Discussion of Results

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Appendix A
	References

