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ABSTRACT 

G-protein coupled receptors (GPCRs) are the largest membrane protein superfamily encoded by 

the human genome and represent the largest class of drug targets for a wide range of pathological 

conditions. Two GPCRs members, the visual pigment rhodopsin associated with the retinal 

degenerative disease retinitis pigmentosa (RP), and the muscarinic acetylcholine (ACh) 3 

receptor (M3R) associated with Alzheimer’s disease (AD), are studied in this thesis. 

Rhodopsin is the prototypical visual photoreceptor mediating scotopic vision and distributed 

throughout the retina. Upon illumination, the bound chromophore 11-cis-retinal isomerizes to 

all-trans-retinal and triggers the visual signaling cascade. Mutations found in rhodopsin, such as 

G90V and N55K, are responsible for the retinal degenerative disease RP. To counteract the low 

structural stability of these mutants, and to provide a deeper understanding of the molecular 

mechanisms leading to visual dysfunction, artificial membranes in the form of DMPC/DHPC 

bicelles and DDHA-PC liposomes were prepared. DMPC/DHPC bicelles and DDHA-PC 

liposomes provided a native-like bilayer environment, which preserved rhodopsin wild type and 

mutants structure and increased their thermal stability to varying degrees compared to the usual 

dodecyl maltoside (DM) detergent. Furthermore, chromophore regeneration of G90V and N55K 

mutants in DMPC/DHPC bicelles condition was enhanced compared to DM condition. Moreover, 

the kinetics for the active state metarhodopsin II (Meta II) decay indicated that retinal release 

rates of G90V and N55K mutants became faster in the presence of DMPC/DHPC bicelles and 

DDHA-PC liposomes compared to DM condition. The addition of hydroxylamine upon Meta II 

complete decay of WT and G90V in bicelles increased fluorescence intensity, suggesting that 

retinal can be retained inside the binding pocket. DMPC/DHPC bicelles and DDHA-PC 

liposomes provided stable conditions so that G90V opsin, obtained after Meta II completely 

decay, was able to regenerate upon the addition of exogenous retinal. On the other hand, N55K 

was not able to regenerate, indicating that the molecular mechanisms associated to this mutant 

has important differences which may be associated with their specific clinical phenotypes. 

The interactions between rhodopsin and arrestin, and between M3R and tau protein are studied in 

their association with the degenerative diseases, RP and AD respectively. Active rhodopsin 

bound R175E mutant arrestin and slowed down the retinal release from the binding pocket. 
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Arrestin binding assays on mutants associated to RP would help uncover mechanisms related to 

visual cascade termination, not studied so far. M3R plays a role in muscarinic ACh signal 

transmission and on ion channels function especially in the central nervous system (CNS). In the 

M3R-tau interaction studies, M3R WT and mutants N132G and D518N did change the location 

of tau from the cytoplasm to the membrane when they were coexpressed in HEK293T cells. 

M3R mutants D518K and K523Q were affected when coexpressed with tau and trafficked from 

the membrane to the cytoplasm. These shifts in location likely result from the interaction 

between tau and M3R WT and mutants. This finding provides new clues about the specific tau 

binding/recognition sites on M3R and the possible involvement of such interaction in the 

pathophysiology of AD.  

Overall, the artificial membranes DMPC/DHPC bicelles and DDHA-PC liposomes systems 

provide a better bilayer environment to stabilize rhodopsin WT and mutants than DM detergent 

environment thus reverting their intrinsic thermal sensitivity. The different behavior of G90V and 

N55K in artificial membranes could be associated with their specific clinical phenotypes. On the 

other side, the results obtained on the interaction between GPCRs and other proteins provide a 

foundation for further studies associated with GPCRs mutants and degenerative diseases. 
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RESUMEN 

Los receptores acoplados a proteína G (GPCRs) representan la mayor superfamilia de proteínas 

de membrana codificada por el genoma humano y también la mayor clase de dianas terapéuticas 

para diversas enfermedades. En esta tesis se estudian dos miembros de los GPCRs; el pigmento 

visual rodopsina, asociado con la enfermedad degenerativa de la retina retinitis pigmentosa (RP) 

y el receptor de acetilcolina (ACh) muscarínico 3 (M3R) asociado con la enfermedad de 

Alzheimer (AD). 

La rodopsina es el fotorreceptor visual prototípico responsable de la visión escotópica y se 

encuentra distribuido por toda la retina. Después de la iluminación, el cromóforo 11-cis-retinal se 

isomeriza a todo-trans-retinal y desencadena serie de reacciones intracelulares llegando al nervio 

óptico y permitiendo la unión. Mutaciones en rodopsina, tales como G90V y N55K son 

causantes de RP. Para entender más profundamente los mecanismos moleculares causantes de 

esta disfunción visual debido a estas mutaciones, se han preparado membranas artificiales tales 

como bicelas de DMPC/DHPC y liposomas de DDHA-PC. Estos sistemas lipídicos ofrecen un 

entorno bicapa más nativo, comparado con el que proporciona el detergente dodecil maltosido 

(DM), usado más tradicionalmente, lo que preserva la estructura de la rodopsina nativa y de los 

mutantes y aumenta su estabilidad térmica. La regeneración cromóforo para de G90V y N55K en 

bicelas de DMPC/DHPC es más elevada en comparación con el valor obtenido en DM. La 

cinética de decaimiento de la conformación activa metarodopsina II (Meta II) indica que la 

velocidad de liberación del retinal de los mutantes G90V y N55K es más alta en presencia de las 

bicelas de DMPC/DHPC, y de los liposomas de DDHA-PC, en comparación con las velocidades 

obtenidas en DM. La adición del reactivo hidroxilamina después del decaimiento completo de 

Meta II de WT y del mutante G90V en las bicelas provoca un incremento de la intensidad de 

fluorescencia, indicando que parte de Meta II aún mantiene el retinal en su sitio de unión. Las 

bicelas de DMPC/DHPC y los liposomas de DDHA-PC también estabilizan la opsina del 

mutante G90V, obtenida después del decaimiento de Meta II, pudiendo ser regenerada a 

rodopsina después de añadir retinal exógeno. Por lo contrario, el mutante N55K no regenera, lo 

que indica que los mutantes actúan con diferentes mecanismos, pudiéndose correlacionar este 

diferente comportamiento con los fenotipos clínicos específicos de cada mutante. 
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Las interacciones entre la rodopsina y arrestina, y entre M3R y tau, han estudiado para entender 

el mecanismo funcional de las enfermedades degenerativas de RP y AD respectivamente. La 

unión de rodopsina activa con el mutante de arrestina R175E, ralentiza la liberación de retinal 

desde el sitio de unión. Estudios futuros de esta interacción con mutantes asociados a RP 

ayudarán a explorar los mecanismos de terminación de señal visual, y su conexión con las 

degeneraciones retinanas aspecto no muy estudiado hasta el momento. M3R desempeña 

funciones sobre la transmisión de la señal del muscarínico ACh y los canales ionicos, 

especialmente en el sistema nervioso central (SNC). Por otro lado, la interacción de M3R WT y 

los mutantes N132G y D518N, produce un cambio en la localización de tau desde el citoplasma 

a la membrana cuando se coexpresan en células HEK293T. Además, los mutantes M3R D518K y 

K523Q también son afectados cuando se coexpresan pasando de la membrana al citoplasma. 

Estos cambios en las localizaciones celulares tanto de tau como del receptor sugieren 

interacciones específicas entre ellos. Estos resultados proporcionan claves importantes sobre los 

sitios de unión de tau y M3R, así como la posible implicación de este complejo en la AD. 

En general, las membranas artificiales de DMPC/DHPC y DDHA-PC, proporcionan un mejor 

entorno para estabilizar la rodopsina WT y los mutantes asociados a RP. Las diferentes 

propiedades obtenidas de los mutantes G90V y N55K en estas membranas artificiales pueden 

estar asociadas a sus distintos fenotipos clínicos específicos. Por otra parte, los resultados  

obtenidos en el estudio de las interacciones entre los GPCR y otras proteínas proporcionan una 

base adicional a los estudios asociados a enfermedades degenerativas. 
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Abbreviations, acronyms and symbols 

ABCR ATP binding cassette transporter 

Abs Absorbance 

ACh Acetylcholine 

AD Alzheimer’s disease 

Amax Absorption maximum 

AP2 β2-adaptin 

APS Ammonium persulfate 

ATP Adenosine-5’-triphosphate 

BN PAGE Blue native PAGE 

BSA Bovine serum albumin 

BTP Bis-tris-propane 

CHAPS 3-(3-Cholamidopropyl 
dimethylammonio)-1-propanesulfonate hydrate 

CMC Critical micelle concentration 

CNS Central nervous system 

DAG Diacylglycerol 

DAPI 4’,6-diamidino-2-phenylindole  

DDHA-PC 1,2-didocosa-hexaenoyl-sn-glycero-3-phosphocholine 

DHA Docosahexaenoic acid 

DHPC 1,2-dihexanoyl-sn-glycero-3-phosphocholine 

DM n-dodecyl-β-D-maltoside 

DMEM Dulbecco’s modified eagle’s medium 

DMPA 1,2-dimyristoyl-sn-glycero-3-phosphate 

DMPC 1,2-dimyristoyl-sn-glycero-3-phosphocholine 

DMPG 1,2-dimyristoyl-sn-glycero-3-phospho-1’-rac-glycerol 

DMPS 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine 

DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine 

DOPE 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

DNA Deoxyribonucleic acid 
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Dyn Dynamin 

EB Ethidium bromide 

EC Extracellular 

FBS Fetal bovine serum 

FITC Fluorescein isothiocyanate 

FRET Fluorescence resonance energy transfer 

Gα G protein alpha subunit 

Gβ G protein beta subunit 

GDP Guanidine-5’-diphosphate 

Gγ G protein gamma subunit 

GPCRs G-protein coupled receptors 

Gt G protein transducin 

GTP Guanidine 5’-triphosphate 

GTPγS35 Guanidine 5’-O-(3-thio)-triphosphate 

GnTI N-acetylglucosaminyltransferase 

H1-H7 α-helix 1 to helix 7 

HDL High density lipoprotein 

HRP Horseradish peroxidase 

IC Intracellular 

IP3 Inositol 1,4,5-trisphosphate 

IPTG Isopropyl-β-D-1-thiogalactopyranoside 

λmax Wavelength maximum 

LRAT Lecithin-retinol acyltransferase 

mAChRs Muscarinic acetylcholine receptors 

MAP Microtubule associated protein 

MAPT Microtubule associated protein tau 

M1R Muscarinic acetylcholine 1 receptor 

M3R Muscarinic acetylcholine 3 receptor 

Meta II Metarhodopsin II 

nAChRs Nicotinic acetylcholine receptors 
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NADPH Nicotinamide adenine dinucleotide phosphate 

NMR Nuclear magnetic resonance 

PAGE Polyacrylamide gel electroporesis 

PBS Phosphate buffered saline 

PC Phosphatidylcholine 

PE Phosphatidylethanolamine 

PEI Polyethyleneimine 

PI Phosphatidylinositol 

PIP2 Phosphatidylinositol 4,5-bisphosphate 

PKC Protein kinase C 

PLC Phospholipase C 

PMSF Phenylmethanesulfonyl fluoride 

PS Phosphatidylserine 

PNS Peripheral nervous systems 

RDH5 11-cis retinol dehydrogenase 5 

RDH8/12 All-trans retinol dehydrogenase 8/12 

Rho Rhodopsin purified from ROS 

ROS Rod outer segment 

RP Retinitis pigmentosa 

RPE Retinal pigment epithelium 

RPE65 Retinal pigment epithelium-specific 65 kDa protein 

RT Room temperature 

Sector RP Sector retinitis pigmentosa 

SB Schiff base 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

T1/2 Half-life time 

TAE Tris acetate-EDTA 

TBS Tris buffered saline 

TTBS Tween tris buffered saline 

TEMED N,N,N',N'-tetramethylethane-1,2-diamine 



 
VIII 

 
 

TM-EC Transmembrane extracellular 

TM-IC Transmembrane intracellular 

TRITC Tetramethylrhodamine 

UV-Vis Ultraviolet-visible 

WB Western Blot 

WT Wild type 
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Amino Acids 

A Ala alanine 

C Cys cysteine 

D Asp aspartic acid 

E Glu glutamic acid 

F Phe phenylalanine 

G Gly glycine 

H His histidine 

I Ile isoleucine 

K Lys lysine 

L Leu leucine 

M Met methionine 

N Asn asparagine 

P Pro proline 

Q Gln glutamine 

R Arg arginine 

S Ser serine 

T Thr threonine 

V Val valine 

W Trp tryptophan 

Y Tyr tyrosine 
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1.1 The G-protein coupled receptors (GPCRs) superfamily 

1.1.1 GPCRs  

GPCRs represent the largest membrane protein superfamily encoded by the human genome. 

GPCRs can sense external stimuli and elicit specific responses within the cell by activating 

numerous signaling pathways that regulate virtually all physiological processes and a wide range 

of pathological conditions 1–3. GPCRs can be differentiated from other protein families according 

to their structural characters, and particularly to their landmark structural signature consisting of 

seven transmembrane helical sequence stretches of about 25 to 35 consecutive hydrophobic 

amino acid residues. The crystal structure has proven that the seven α-helices span the plasma 

membrane in a counter-clockwise manner, forming a receptor, or a recognition and connection 

unit, enabling an extracellular (EC) ligand to exert a specific effect into the cell. The other 

requirement (from which they get their name) is the ability of interacting with heterotrimeric 

G-proteins that have GTPase activity as a main functional feature 4.  

Analysis of gene sequences revealed that there are over 800 GPCRs in the human genome 5 

responsible for communication at the cellular level, upon activation by a variety of EC signals 

including light, odorants 6, pheromones, hormones, neurotransmitters, and larger entities ranging 

from peptides to large proteins 4,7,8. Therefore, GPCRs are involved in numerous physiological 

processes such as sensory perception, immune defense, cell communication, chemotaxis, and 

neurotransmission. Indeed, GPCRs are the largest class (~30%) of pharmacological targets of 

approved drugs for diverse diseases 9–13. 

Based upon sequence homology and the functional similarity, human GPCRs have been grouped 

into five families/classes (A-F) which share little sequence homology and some functional 

similarity among each other. The five families of GPCRs are as follows 1,4,14: 

 Class A (rhodopsin-like family): The rhodopsin-like family is the largest family of GPCRs 

and contains ~670 full length human receptor proteins including receptors for odorants and 

small ligands. The family can be further divided into four groups - α, β, γ, δ - in which the 

largest cluster of members, the olfactory receptors, is found in the δ-group. The 

rhodopsin-like family of GPCRs is highly heterogeneous when both primary structure and 

ligand preference are considered. Nuclear magnetic resonance (NMR) and X-ray 
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crystallography revealed a common fold formed by an N-terminal α-helix and two β-sheets 

stabilized by a conserved disulphide bridge in the EC space. Ligands interact with these EC 

domains to induce receptor activation. Within the seven transmembrane regions, most class 

A receptors do share specific sequence motifs 2,4,14. 

 Class B (secretin-like family): The secretin-like family recruits about 60 members and is 

characterized not only by the lack of the structural signature present in class A but also by 

the presence of a large N-terminal ectodomain. The ligands include high molecular weight 

hormones such as glucagon, secretin, calcitonin, growth hormone-releasing hormone, 

corticotropin-releasing factor, VIP-PACAP and the black widow spider toxin, α-latrotoxin. 

The secretin receptors share between 21 and 67% sequence identity and most of the 

variation is in the N-terminal regions. Most of the secretin family receptors contain 

conserved cysteine residues in the first and second EC loops. Also, almost all of these 

receptors contain conserved cysteine residues that form a network of three cysteine bridges 

in the N-terminal region 2,4,14,15. 

 Class C (glutamate family): The glutamate family consists of two dozen GPCRs such as 

the metabotropic glutamate receptors and the Ca2+-sensing receptors. This family also 

includes GABA-B receptors, sweet and umami taste receptors, olfactory receptors and a 

group of putative pheromone receptors coupled to the G protein Go (termed VRs and 

Go-VN). These receptors possess large ectodomains responsible for ligand binding and most 

glutamate members bind their respective ligand within the N-terminal region 2,4,14.  

 Class D (the adhesion family): The adhesion family, formed by 33 members, presents a 

proteolytic domain which gets activated on ligand binding. This family is also referred to as 

the LNB7TM family, where LN stands for long N terminal and the rest contributes to the 

sequence similarity between transmembrane regions of class B receptors. The diverse N 

terminal of class D may contain several domains that also exist in other proteins, such as 

cadherin, lectin, laminin, olfactomedin, immunoglobulin and thrombospondin domains. 

These domains have an important role in the specificity of receptor ligand binding 

interactions 2,14. 
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Figure 1.1 Phylogenetic tree representation of the human GPCR superfamily. 

There are more than 800 human GPCRs, which can be classified into five major families: Rhodopsin (class A); 

Secretin (class B); Glutamate (class C); Adhesion (class D) and Frizzled/taste receptor 2 (class F). These families 

can be further divided into subfamilies on the basis of sequence similarity. GPCRs are named here according to 

their gene name as used by the UniProt database. Family members with reported structures are highlighted within 

the tree. CHRM3, M3R (PDB code: 4DAJ) and rhodopsin (PDB code: 1F88 and 1JFP) (labeled with a black circle) 
1 have been studied in this thesis. 

 Class F (frizzled/taste2 family): The group consists of frizzled receptors and the 

smoothened receptor. The relationship to the GPCRs was further strengthened when 

sequence comparisons with secretin revealed resemblance in the EC regions and the 

presence of the well conserved cysteines in the first and second EC loops 2,4,14. 

Each family covers several subfamilies of GPCRs. The rhodopsin-like family (class A) has the 
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largest number of receptors composing nearly 90% of all GPCRs 4,5,10,11,16 and the proteins 

studied in this thesis, rhodopsin and muscarinic acetylcholine (ACh) receptor M3 (M3R), belong 

to class A.  

Nearly 800 human GPCRs were used to construct the GPCRs phylogenetic tree by sequence 

similarity within the seven-transmembrane region. Figure 1.1 shows the main human GPCR 

subfamilies and the proteins highlighted in blue and red have had their crystal structures reported 
1,17. 

 

Figure 1.2 GPCRs are highly dynamic signaling machines. 

Numerous distinct receptor conformations can be stabilized differently by a diverse of ligand types that bind to 

several binding sites: orthosteric (light green circle) or allosteric (blue ellipsoid), which results in highly complex 

signaling networks 18. 

The GPCRs rearranges the conformation by binding the ligand and activates G-protein 

independent signaling pathways 19,20. G protein is composed of α-, β-, and γ-subunits. The 

activated GPCRs with ligand-bound catalyzes the exchange of guanidine-5’-diphosphate (GDP) 

for guanidine 5’-triphosphate (GTP) on the α-subunit (Gα) of the G protein thereby dissociating 

Gα from the dimeric β- and γ-subunits (Gβγ) and stimulating a distinct signaling pathway. 

Furthermore, GPCRs also triggers mechanisms for signal switch-off such as binding to arrestin 

protein or other GPCR-interacting proteins and hence they can be described as integrative and 

highly dynamic signaling units (Figure 1.2) 13,18,19,21. 
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The X-ray structure of bovine rhodopsin was solved in 2000 22, being the first crystal structure of 

a GPCR reported. The rhodopsin structure was used as a template for the GPCRs superfamily for 

years 4,11,23–25. It took seven more years for other GPCRs crystal structure to be published. β2 and 

β1 adrenergic receptors were obtained by employing new receptor stabilization and 

crystallization techniques, which accelerated solving the three-dimensional structures of other 

receptors 26. Until 2014, structures of 20 different class A, two class B, one class C and one 

frizzled GPCR, spanning large sections of the phylogenetic tree (Figure 1.1), have been 

published 1,26.  

 
Figure 1.3 General architecture and modularity of GPCRs. 

Major domains and structural features of GPCRs are shown on the dopamine D3 receptor crystal structure (PDB ID 

3PBL) as an example. The EC region includes three EC loops and the N-terminus. The EC module (EC and TM-EC 

regions) is responsible for binding different ligands and it has much higher structural diversity. By contrast, the IC 

module (IC and IC-TM regions), involved in binding downstream effectors including G proteins and arrestins, is 

more conserved between GPCRs, but undergoes larger conformation changes upon receptor activation. The C 

terminus in most GPCRs is formed by a short helix 8 which parallels to the lipid bilayer, and some receptors have 

palmitoylation sites anchoring helix 8 to the membrane 17. 

GPCRs comprise a bundle of seven transmembrane α-helices (H1-H7) which are connected by 

three intracellular (IC) and three EC polypeptide loops. The EC part, responsible for ligand 

binding, also includes the N-terminus, which can range from relatively short and often 

unstructured sequences in rhodopsin-like and bitter taste receptors to large globular EC domains 

in other GPCR classes 2. The IC part, including the C-terminus, interacts with G proteins, 
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arrestins and other accessory proteins and downstream effectors. Transmembrane helices H1-H7 

are characterized as the highly conserved and hydrophobic components harboring several 

functionally important motifs. Upon comparison of all the crystal structures of GPCRs, EC and 

transmembrane-EC (TM-EC) domains are considered as the basic module of ligand binding. 

These domains show higher diversity between GPCR families and conformational changes upon 

activation. Contrarily, IC and transmembrane-IC (TM-IC), as the downstream signaling module, 

depict lower diversity between GPCR families and larger conformational changes (Figure 1.3) 
17,27–29.  

Class A GPCRs exhibit the largest functional diversity among all GPCR classes because of the 

diversity ligands binding. The Class A are also characterized by conserved sequence motifs 

implying that share activation mechanisms. In this thesis, rhodopsin and M3R from class A 

GPCRs have been studied. 

1.1.2 The photoreceptor rhodopsin  

The visual photoreceptor rhodopsin is a prototypical member of class A GPCRs responsible for 

scotopic (or dim-light) vision. As a model of GPCRs, rhodopsin has been extensively studied 

since the first report of its crystal structure by X-ray crystallography 4,11,23–25. The proteins 

involved in visual phototransduction are located mainly in the photoreceptor outer segments of 

the rod and cone photoreceptor cells. Rhodopsin is located in the rod outer segment (ROS) 

membranes of the rod cells of the retina, embedded in the lipid bilayer of disk membrane 

surrounded by ~65-70 phospholipids per protein molecule. Each mammalian ROS consists of a 

stack of 1000-2000 distinct disks surrounded by a plasma membrane. The disk is formed from 

evaginations of the plasma membrane and moves up the length of the rod cell as the disks age. 

Rhodopsin represents more than 90% of proteins in the disk, occupying approximately one third 

of its area 30.  Figure 1.4A shows the main morphological and structural organization of the 

retinal rod photoreceptor 31–33. Rhodopsin monomer was considered as the functional unit, while 

more experiments indicated that rhodopsin and opsin can form dimers and higher oligomers 

organized in the disk membranes by atomic force microscopy 34 and fluorescence resonance 

energy transfer (FRET) 35. As all of GPCRs, rhodopsin includes: a. N-terminal domain is located 

at the EC side at the intradiscal side of the disk membrane, b. seven transmembrane helices are 
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located in the membrane and H8 is lying adjacent and parallel to the membrane, c. a cytoplasmic 

C-terminal domain. Cys110 and Cys187 form the highly conserved disulfide bond which limit 

the conformational flexibility of the molecule (Figure 1.4B) 22,36,37. 

 
Figure 1.4 Schematic organization of the retinal rod photoreceptor cell and secondary structure of 

rhodopsin. 

A. Rod photoreceptor cell showing major cellular elements and their distributed along the cell 33. B. Secondary 

structure diagram of rhodopsin. The seven transmembrane helices are embedded in the membrane and the H8 is 

lying adjacent and parallel to the membrane. N-terminus is toward the EC side, and cytoplasmic domain is toward 

the cytosolic side. N2 and N15 are sites of glycosylation. Cys110 and Cys187 form the essential and conserved 

disulfide bond 22,36,37. Black circles correspond to highly conserved amino acid residues in rhodopsin. 

Rhodopsin consists of the opsin apoprotein and the 11-cis-retinal ligand which is covalently 

bound through a protonated Schiff base (SB) linkage to K296 at the seventh transmembrane 

helix of the photoreceptor 38–40. Upon photon absorption, the 11-cis-retinal chromophore 

isomerizes to all-trans-retinal and triggers the formation of the active photointermediate 

metarhodopsin II (Meta II) 39,41 in which the retinal SB is still intact but deprotonated. During the 

activation process, the wavelength maximum (λmax) of the visible band in the absorbance (Abs) 

spectrum of rhodopsin shifts from 500 nm to 380 nm. Figure 1.5 shows the structures of inactive 

state rhodopsin and the Meta II activated state 42–44. The activated Meta II conformation can 

recruit and bind IC G proteins to continue the visual signaling cascade. 



 
10 

 
 

 
Figure 1.5 Structures of inactive rhodopsin, active Meta II and Meta II in complex with a Gt fragment. 

The cartoon models of rhodopsin (PDB code 1U19), Meta II (PDB code 1LN6) and Meta II together with a 

C-terminal peptide derived from transducin Gα subunit (PDB code 3PQR). The inactive rhodopsin (left) consists 

of the apoprotein opsin in its resting conformation with the inverse agonist 11-cis-retinal (red spheres) covalently 

bound to K296 (black spheres) via a protonated SB. In Meta II (middle), the agonist all-trans-retinal (blue 

spheres) is covalently linked to K296. Meta II with Gα fragment (right) is identified and the Gα fragment is 

shown in purple 43. 

Dissociation of the proton from the SB breaks a major constraint in the protein and enables 

further activating steps, including an outward tilt of TM6 and stimulating a signaling cascade 

beginning with binding and activating hundreds of molecules of the trimeric G protein transducin 

(Gt). This eventually leads to rod photoreceptor cell hyperpolarisation, and synaptic signaling to 

adjacent rod bipolar cells 37,43,45.  

The visual cycle is a transcellular process by which retinal pigment epithelium (RPE) cells 

maintain the supply of chromophores for the regeneration of visual opsin pigments in 

photoreceptors. After the activation phase, Meta II decays and the signal is terminated by 

phosphorylation kinase and subsequent arrestin binding to the phosphorylated receptor. The SB 

between opsin and all-trans-retinal is hydrolysed to release free all-trans-retinal chromophore 

from the protein. The adenosine-5’-triphosphate (ATP) binding cassette transporter (ABCR) 

carries all-trans-retinal from the intradiscal to the cytosolic area of the disc membrane. The 

all-trans-retinol dehydrogenase 8/12 (RDH8/12) catalyzes the reduction of all-trans-retinal to 

all-trans-retinol by reduced nicotinamide adenine dinucleotide phosphate (NADPH). 
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All-trans-retinol leaves the photoreceptor cell, traverses the interphotoreceptor matrix and enters 

the RPE where it is esterified by lecithin-retinol acyltransferase (LRAT). The all-trans-retinyl 

ester is converted to 11-cis-retinol and free fatty acid by an isomerohydrolase of retinal pigment 

epithelium-specific protein 65 kDa (RPE65). 11-cis-retinol can be esterified by LRAT and stored 

or oxidized to 11-cis-retinal by 11-cis-retinol dehydrogenase 5 (RDH5). Other sources of 

11-cis-retinol are the blood and the photoreceptor outer segments phagocytosed by the RPE. 

11-cis-retinal diffuses into the photoreceptor cell where it associates with opsin to regenerate the 

visual pigment (Figure 1.6) 46–49.   

 
Figure 1.6 The visual cycle in the vertebrate retina. 

In the ROS disks, light converts the 11-cis-retinal chromophore of rhodopsin to all-trans-retinal. All-trans-retinal is 

released from rhodopsin and undergoes an elaborate multistep enzymatic process (called the visual cycle) to 

regenerate 11-cis-retinal for subsequent opsin regeneration in a next cycle. All-trans-retinal is first reduced to 

all-trans-retinol by RDH8/12. In the RPE, all-trans-retinol is esterified by LRAT to all-trans-retinyl esters. RPE65 

mediates the conversion of all-trans retinyl esters to 11-cis-retinol, which is oxidized to 11-cis-retinal by RDH5. 

11-cis-retinal returns to the ROS where it binds to opsin to regenerate the rhodopsin photopigment. 

1.1.3 M3R receptor 

ACh is a known neurotransmitter in both the peripheral (PNS) and central (CNS) nervous 

systems, and neurons containing ACh as a neurotransmitter are called cholinergic neurons. ACh 

transduces signals through muscarinic and nicotinic ACh receptors, both of which influence 

synaptic plasticity and cognition. Muscarinic ACh receptors (mAChRs) and nicotinic 
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acetylcholine receptors (nAChRs) belong to class A GPCRs 50. mAChRs are found in plasma 

membranes of certain neurons, among other cell types, and are classified in five different 

subtypes (from M1R to M5R) 51,52. Based on the IC α subunit type of the G protein they bind to, 

mAChRs are divided into two main types. The first group includes M1R, M3R and M5R 

interacting with Gq type proteins 53, and the second group consists of M2R and M4R which 

interact with Gi/o proteins 54. mAChRs activation affects the function of many ion channels, 

through a variety of IC signaling cascades, resulting in changed conductances of mainly 

potassium and calcium channels 50. 

The binding of ACh to the M3R induces a conformational change, which triggers association 

with and activation of the heterotrimeric Gq proteins by exchanging GTP for GDP on the Gα 

subunit. Then, the released Gα subunit activates phospholipase C (PLC) which hydrolyzes 

phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and 

diacylglycerol (DAG), IP3 binds to IP3 receptors on the endoplasmic reticulum, releasing Ca2+ 

from IC stores whereas DAG activates protein kinase C (PKC) (Figure 1.7) 55–57. 

M3R is broadly expressed in the brain, smooth muscles of the blood vessels and lungs 58. M3R is 

involved in modulation of neurotransmitter release, temperature homeostasis, and food intake in 

the CNS, as well as in the induction of smooth muscle contraction, gland secretion and indirect 

relaxation of vascular smooth muscle in the PNS 38. In 2012, the X-ray structure of the M3R was 

reported 59.  

M3R consists of seven transmembrane helices architecture as other GPCRs, with N-terminus on 

the EC side of plasma membrane and C-terminal tail located on the cytoplasmic side. All the 

helices are connected by either IC or EC loops. Cys141 and Cys221 are responsible for the 

disulfide bond between the second EC loop and the TM3 helix (Figure 1.8) 60,61. 
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Figure 1.7 Schematic cartoon of early steps in the signaling pathway of channel modulation. 

A. Agonist ligands bind to the Gq coupled muscarinic receptor and activate the G protein. The G protein turns on 

the enzyme PLC. B. Active PLC cleaves membrane PIP2, the ion channel is inhibited as it loses PIP2, and several 

second messengers are generated 56. 

 
Figure 1.8 Secondary structure of M3R. 

Seven transmembrane helices are located in the membrane, N-terminus is located on the EC side of the membrane 

and the C-terminus is located on the cytoplasmic side. In blue the N-methylglycosilation of the N-terminus, in 

yellow the cysteine bridge between C141-C221, in red, purple and green the residues of the binding pocket. IC loop 



 
14 

 
 

3 in red represents the third IC region that has been removed 60,61. 

1.2 Degenerative diseases associated with GPCRs 

Considered the largest and the most diverse group, GPCRs are responsible for the proper 

conduction of many physiological processes, such as vision, IC communication, neuronal 

transmission, hormonal signaling and also involved in many pathological processes 2,5. GPCRs 

are involved in a wide spectrum of hereditary and somatic disorders and diseases such as CNS 

disorders, inflammatory diseases, cancer, metabolic imbalance, cardiac disease, monogenic 

diseases and more 62. The mutations or variations in the genes coding for GPCRs may lead to 

misfolding, altered expression and activity. When mutations change the process of ligand binding 

and signal transduction, they frequently lead to disease 5,63. 

In the thesis, two GPCRs associated degenerative diseases are studied. One is the retinitis 

pigmentosa (RP) which is associated to rhodopsin and mutations. Another is the Alzheimer’s 

disease (AD) associated with the M3R and tau protein. 

1.2.1 RP 

Inherited retinal degenerations and malfunctions are clinically and genetically heterogeneous. 

Many diseases in this group cause visual loss because of the premature death of the rod and cone 

photoreceptor cells 64. Mutations in rhodopsin are one of the main reasons of RP, which is a 

genetically heterogeneous disorder involving rod photoreceptor cell progressive death and 

eventually leading to blindness 5,38,65,66. Epidemiological studies have revealed that RP is 

heterogeneous both genetically and clinically 67. More than 150 different mutations in rhodopsin 

are associated to RP. Approximately 30% of autosomal dominant RP is caused by mutations in 

rhodopsin 65,68. Rhodopsin mutants associated with RP could contribute to protein misfolding, 

increased protease sensitivity, retinal binding impairment and thermal instability 66,69–72, finally 

alter the cellular fate and induce cell death 66,73. The worldwide prevalence of RP is about one in 

4000 38,72.  

In most of RP cases, the retina degenerates with the rod and cone cell death. Thus, the typical RP 

can lead to a rod-cone dystrophy, in which loss of rod function exceeds the reduction in cone 

sensitivity 74. In the progression of RP symptoms, night blindness generally precedes tunnel 

vision by years or even decades. At early stage, night blindness is the main symptom and mild 
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night blindness is often ignored by the patients. There may be peripheral visual field defects in 

dim light which could not exist or be minimal in day light. In the mid stage, night blindness is 

obvious, with difficulties to drive and walk during the night. Fundus examination reveals the 

presence of bone spicule shapes composed of pigment deposits in the mid periphery, along with 

atrophy of the retina. In the third stage, peripheral vision loss restricts the movements of the 

patients. The disease progression remains slow and eventually leads to completely blindness 74. 

However, in many cases of RP, the dominant gain of misfolded rhodopsin induces degeneration, 

and some mutants of one allele only lead to visual impairment. 

RP can be divided into two groups: non-syndromic RP and syndromic RP 74,75. Non-syndromic 

RP is restricted to the eyes, without other systemic manifestations, while syndromic RP is 

associated with non-ocular disease, the latter representing 20-30% of total cases. On the basis of 

its inheritance pattern and prevalence, RP can be divided into three main groups: autosomal 

dominant (30–40%), autosomal recessive (50–60%) and X linked (5–15%). Patients with no 

other affected relatives are typically autosomal recessive, although a few might represent new 

dominant mutations, instances of uniparental isodisomy or, for males, X-linked mutations, or 

even non-Mendelian inheritance patterns 75. 

Sector retinitis pigmentosa (sector RP) is an atypical variant of RP. In sector RP, only isolated 

areas of the fundus show pigmentary changes. It is characterized by regionalized areas of bone 

spicule pigmentation usually found in the inferior quadrants of the retina, abnormal 

electro-retinograms, visual-field defects, and slow to no progressive retinal degeneration 76. 

Despite of the fact that diverse technical approaches are being investigated for the treatment of 

RP, there is no standardized and efficient treatment for the disease. Currently, gene therapy 

represents the most promising therapeutic option for many inherited and acquired retinal diseases 
77. Gene-silencing therapy was used to silence the mutant allele of rhodopsin mutants, but 

maintaining the expression of the wild type (WT) allele 77. More advanced lines of research in 

RP therapy include: the use of neurotrophic factors, gene therapy, cell-based therapy, 

optogenetics approaches, retinal transplants and electronic prosthesis. 

Mutations associated with RP are spread all over the opsin gene throughout the three domains of 

the receptor: intradiscal, TM and cytoplasmic. The analysis of such mutations associated with RP 
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provides information about the molecular mechanism of this pathological process. The structural 

and functional studies on rhodopsin mutants give insights into common structural motifs of 

GPCRs and common activation mechanisms 78. TM1 and TM2 play an important role in the 

stability and function of rhodopsin. RP mutations on rhodopsin show different structure and 

function characters. Some rhodopsin mutants, like G90V and N55K, present thermal sensitivity. 

This low stability could affect the rhodopsin cycle of intermediates, altering the normal 

rhodopsin turnover and prompting receptor malfunction and aggregation 70,79. 

1.2.2 AD 

AD is diagnosed by the progressive loss of cognitive function and behavioral deficits and is 

characterized by the presence of senile plaques, neurofibrillary tangles, cholinergic neuron loss 

and the decrease of ACh neurotransmitter level in the brain (Figure 1.9) 80,81.  

 
Figure 1.9 Healthy and AD neurons. 

Healthy Neuron (left), neurofibrillary tangles, amyloid plaques in AD (right) (Referred from 

http://www.ahaf.org/alzheimers). 

Senile plaques consist of small β-amyloid peptides which are deposited in the brain and cause 

the primary stage of AD 82,83. Neurofibrillary tangles affecting neuron degeneration are formed 

by the accumulation of microtubules and hyperphosphorylated tau protein which is a 

microtubule binding protein that stabilizes the microtubule and facilitates fast axonal transport. 

The tangles also affect neuron degeneration in AD 82,83. Another AD character is the 

neurotransmitter cholinergic ACh hypofunction linked with β-amyloid and tau pathologies 84–87. 
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Muscarinic acetylcholine receptors (mAChRs), as the major receptor group for ACh in the 

neurotransmission, have also been implicated in the pathophysiology of AD. Some studies 

indicate that the interaction between mAChRs and tau protein could be part of an underlying 

molecular mechanism causing AD. 

By the different characterizations, there are mainly three hypotheses in AD: cholinergic 

hypothesis of memory dysfunction, the muscarinic receptor regulation of amyloid metabolism 

and the tau hypothesis. This thesis tries to find some clues between mAChRs associated with 

amyloid metabolism and tau protein. In AD, abnormal phosphorylation/hyperphosphorylation 

decreases tau affinity for microtubules resulting in the trafficking of tau proteins from the 

microtubules to the IC neuronal space. This makes the microtubules unstable and initiates their 

collapse. The hyperphosphorylated free tau proteins move down the axon from where they 

dissociate from the microtubules and self-aggregate in the neuron cell body forming 

neurofibrillary tangles 88; these tangles usually impair axonal transport causing the dysfunction 

of the synapse and leading to neuronal death (Figure 1.10).  

Recently, AD has been associated with the interaction between EC tau and M1R/M3R that could 

play a role in the loss of cholinergic neurons 89. During neuron death, IC tau released to the EC 

area could interact with surface receptors such as M3R of the neuronal cells and cause calcium 

increase due to calcium permeable channels. M3R has been involved in the interaction with EC 

tau that are responsible for raising IC calcium 90. In this thesis, tau will be overexpressed in cell 

culture and its interaction with specific M3R mutants will be studied.  
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Figure 1.10 Proteins associated with AD. 

There are four main players (cyan circles) in AD. Proteins such as β-amyloid, hyperphosphorylated tau and 

mAChRs are the responsible for AD phenotype. Tau in the cell becomes hyperphosphorylated and is one of the 

proposed causes of AD. In this thesis the interaction between overexpressed tau and M3R WT or M3R mutants will 

be investigated. 

1.3 Rhodopsin conformational stability 

As the largest and most diverse group of membrane proteins in mammals, GPCRs respond to a 

variety of endogenous and exogenous ligands to regulate physiological processes. GPCRs also 

interact with membranes lipids which modulate the G protein binding process. GPCRs 

conformational stability and functional efficiency depend on many factors, such as structural 

features, salts 91–93, detergents 70,94,95, lipids 96–103 and ligands 104. In a membrane environment 

GPCRs naturally function mainly constitute of proteins, lipids and cholesterol. To study the 

structure and function relationships of GPCRs, the protein has been dissociated and extracted 

from the membrane and dissolved into detergent, or alternatively studied in native membrane 
91,105,106. 

1.3.1 Detergents 

Detergents are compounds with amphipathic properties with the occurrence of a polar head 

group and hydrophobic tail in the same molecule 107. They are the most commonly used strategy 

for extracting, purifying and dissolving membrane proteins. In order to achieve optimum 
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solubilization of membrane proteins, nonionic and zwitterionic detergents are particularly 

popular to solubilize membrane proteins keeping their function. 3-(3-Cholamidopropyl 

dimethylammonio)-1-propanesulfonate hydrate (CHAPS) and n-dodecyl-β-D-maltoside (DM) 

are the main members of this class of detergents (Figure 1.11). 

CHAPS is a mild, non-denatured, and zwitterionic detergent (Figure 1.11A). CHAPS has low 

absorbance at 280 nm and lacks of circular dichroic signature in the far-UV region, thereby 

making it an ideal detergent for studies of membrane proteins using optical spectroscopy. For 

this reason, CHAPS is widely used in solubilizing membrane proteins including GPCRs 106,108. 

DM is also widespread used in solubilization and purification of diverse functionally active 

membrane proteins. As a mild, non-ionic detergent with a low critical micelle concentration 

(CMC), DM forms by an intermediate length of the hydrophobic moiety and a bulky hydrophilic 

sugar headgroup that has been found to be effective in solubilizing GPCRs (Figure 1.11B). The 

CMC of DM in water is 0.17 mM (0.009%, w/v). Above the CMC, DM micelles form ablate 

ellipsoids where the polar axis is shorter than the equatorial axes that are essential to form crystal 

contacts 106,109. For several GPCRs, DM micelles offer the advantage of preventing membrane 

protein aggregation. However, this limits the structural studies since DM masks the proteins to a 

large extent in protein detergent complexes. 

 
Figure 1.11 Chemical structures of detergents commonly used for solubilization of GPCRs. 

A. CHAPS and B. DM. 

1.3.2 ROS disk membrane lipid composition 

Cell plasma membranes are composed of lipids and proteins. Lipids make the membrane nearly 
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impermeable to most water-soluble solutes, and proteins serve as transporters and signaling 

devices. The membrane lipids are arranged with polar or charged head groups oriented towards 

the aqueous environment and acyl chains interacting within the hydrophobic membrane core 98. 

The membrane proteins activity is influenced at the lipid-protein interface surrounded by a lipid 

matrix. Cholesterol, cardiolipin, and phospholipids such as phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI) affect the 

protein function by changing the properties of the lipid-protein interface, membrane fusion, and 

the freedom of movement of phospholipid acyl chains and proteins 98. 

In the ROS, the phospholipids composition of the stacked disks is shown in Table 1.1. 

Phospholipids are formed by different fatty acids, mainly 16:0, 18:0, and 22:6 with different 

head groups (PC, PE and PS). The average of disk membrane phospholipid composition is 

approximately of 44% PC, 41% PE, 13% PS, and 2% PI 98,110.  

Cholesterol is a representative lipid in higher eukaryotic cellular membranes and is crucial in 

membrane organization, dynamics, function, and sorting 111. By far cholesterol is the major sterol 

in the retina. In plasma membrane and in the newly synthesized disk, cholesterol presents the 

highest level with almost 40%. Cholesterol is rapidly lost when disks are apically displaced 

retaining only 5% in the membrane 98,111,112. 

Docosahexaenoic acid (DHA, 22:6n-3) is the major and conserved fatty acid in the retina, 

accounting for over 50% of the phospholipid hydrocarbon chains in the disk membranes and 43% 

of ROS which is much higher than in plasma membrane 98. DHA promotes the formation of 

Meta II from Meta I. The 16:0 fatty acyl chain in PC dramatically decreases whereas the 22:6 

(DHA) fatty acyl chain increases with disk age. The increase in unsaturated lipids in the disk is 

apically displaced further causing the depletion of cholesterol during spatial displacement. 
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Table 1.1 Phospholipid composition of ROS.  

The fatty acid composition in the different polar heads forming PC, PE, and PS. Fatty acids making up less than 0.3% in any 

fraction are omitted. Values are averages with standard deviation from five preparations 98. 

  Outer segments Phosphatidyl 

choline (PC) 

Phosphatidyl 

ethanolamine (PE) 

Phosphatidyl 

serine (PS) 

Phospholipid composition  30.6 ± 1.5 44.1 ± 1.6 15.2 ± 0.9 

Fatty Acids 16:0 19.9 ± 0.3 30.6 ± 2.2 12.6 ± 0.3 4.1 ± 0.4 

18:0 22.1 ± 0.6 19.4 ± 1.0 25.0 ± 0.4 21.0 ± 1.1 

18:1 ω9 3.3 ± 0.1 4.5 ± 0.5 4.2 ± 0.1 1.5 ± 0.4 

18:2 ω6 < 0.1 0.9 ± 0.1 0.9 ± 0.1 < 0.1 

20:4 ω6 4.8 ± 0.1 2.7 ± 0.1 2.4 ± 0.1 4.3 ± 0.5 

22:4 ω6 1.6 ± 0.1 0.4 ± 0.1 0.8 ± 0.1 3.0 ± 0.2 

22:5 ω6 2.3 ± 0.1 0.9 ± 0.1 1.5 ± 0.1 1.6 ± 0.3 

22:5 ω3 1.9 ± 0.2 1.4 ± 0.1 1.4 ± 0.1 3.3 ± 0.2 

22:6 ω3 43.0 ± 0.4 35.9 ± 2.2 50.2 ± 0.8 48.1 ± 0.8 

24:4 1.2 ± 0.1 < 0.1 < 0.1 3.9 ± 0.4 

24:5 1.2 ± 0.1 < 0.1 < 0.1 9.3 ± 0.7 

1.3.3 Artificial membranes 

Even though detergents can form micelles to solubilize GPCRs, they often show poor 

conformational stability, low activity and even denatured character 97,98,113. In the native 

membranes, the lipids such as cholesterol and DHA interact with membrane proteins and help 

maintaining protein structure and function. Lipid bilayer environment is essential and affects the 

physical and chemical properties of GPCRs. Understanding the molecular mechanism of GPCRs 

in a native-like environment will have a large impact on both basic knowledge of cell signaling 

and pharmacological research 100,102,110,114–116. Different lipids and membrane-mimic phases are 

used for GPCRs, especially for rhodopsin reconstitution. Currently, the classes of mimetic 
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membrane systems mainly include micelles, bicelles, liposomes, nanodiscs (or nanocarriers) 117, 

planar lipid membranes and lipid cubic phases 118. 

1.3.3.1 Micelles 

Detergent monomers in aqueous solutions self-associate to form a basic phase called micelles. At 

a broad threshold of monomer concentration called the CMC, self-association occurs and 

micelles form (Figure 1.12A). A variety of detergents is available for studies of GPCRs, and 

obviously the choice must fall on a detergent that is gentle enough to avoid immediate 

denaturation of the protein such as DM. Mixed micelles are also formed by a mixture of 

detergents or a mixture of detergent and lipid to stabilize the protein. Compared with the native 

membrane, many detergents irreversibly denature membrane proteins and provide interferences 

and background problems with the protein in spectroscopic measurements 119. Once added into 

the native membrane-protein complex, the detergents start to perturb the membrane and separate 

the proteins from the membrane. With increasing concentration of detergent, the protein can be 

embedded in the detergent micelles 106.  
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Figure 1.12 Schematic models for rhodopsin in micelles, bicelles, liposomes and nanodiscs. 

A. Schematic model for DM micelles containing rhodopsin. B. Rhodopsin in bicelles. C. Rhodopsin in liposomes. 

D. Rhodopsin in nanodiscs. 

Figure 1.13 shows the standard process of GPCRs solubilization by detergents. The presence of 

the detergents and lipids may interfere with normal ligand and/or G protein binding. Furthermore, 

the detergents increase the risk of destabilizing or denaturing GPCRs. Considering all the 

drawbacks of detergents, the artificial membrane, in principle, is a more desirable model system 

for characterization studies 118,119. 
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Figure 1.13 Schematic representation of different stages for the solubilization of biological membranes 

by detergents. 

A. GPCRs are embedded in biological membranes. B. Detergent at low concentrations is added to interact with 

the membrane and cause membrane perturbation. C. The membrane bilayer is further perturbed because of the 

increasing detergent concentration. D. Addition of detergent concentrations above CMC, the complexes of 

detergent, lipid, and receptors are formed. Finally the four possible complexes are lipid-detergent mixed 

micelles, lipid-receptor-detergent complex, receptor-detergent complex and detergent micelles 106. 

1.3.3.2 Bicelles 

Bicelles morphology is hallmarked by a disk-like bilayer composed of long chain phospholipids 

that are capped by either short chain phospholipids or detergents 120,121. Bicelles offer distinct 

advantage over other artificial membrane models since they can be easily prepared obtaining 

high yields. Additionally, bicelles do not interfere with the majority of biophysical measurements 

and increase the stability of purified GPCRs compared to solubilization in detergents. The 

structure of bicelles is highly dependent on lipid composition, temperature, pH and hydration, 

and the biochemical properties can be influenced by phospholipid specific differences in chain 

lengths, saturation, and head groups. Figure 1.12B shows the models for rhodopsin in bicelles 
121.  
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1.3.3.3 Liposomes 

A liposome is a spherical vesicle having at least one lipid bilayer. The liposomes have been 

widely used for many applications, from membrane models to drug delivery systems 122. 

Liposomes normally are composed of phospholipid, especially PC to form the lipid bilayer 

structure. Normally the liposomes provide a better physiologically relevant milieu to stabilize the 

protein 97,118. 1,2-didocosa-hexaenoyl-sn-glycero-3-phosphocholine (DDHA-PC) is an 

unsaturated phospholipid and constitutes membrane-like bilayers to carry rhodopsin. Liposomes 

provide a stable bilayer that strengthens protein-protein interactions 97,102,118 (Figure 1.12C). The 

study of rhodopsin mutants in DDHA-PC liposomes may help to understand the structural and 

functional mechanisms of RP and retinal degeneration.  

1.3.3.4 Nanodiscs 

Nanodiscs are small patches of membrane bilayer whose edge is stabilized by high density 

lipoprotein (HDL) or nanoscale apolipoprotein bound bilayers. These have been shown to 

incorporate 1 to 2 rhodopsin molecules and have excellent stability properties (Figure 1.12D) 
117,118. Nanodiscs structure is compact and decrease the number of freely diffusing lipids or 

detergent molecules. All these features permit high protein concentration per volume, enabling 

bulk spectroscopic measurements. One drawback of nanodiscs is the strict limit on the diameter 

of the particles 113,117,118. 

1.3.3.5 Planar lipid membranes 

Planar lipid membranes can be subdivided into two broad classes. The first, a lipid bilayer 

covering a small aperture between two aqueous phases, is referred to as a black membrane; the 

second class consists of solid support planar lipid membranes. The planar lipid membrane 

represents a trade-off between stability and versatility. The interaction with EC loops or domains 

of GPCRs with the solid support may interfere with the mobility or even the activity 118. 

1.3.3.6 Lipid cubic phases 

Lipid cubic phases are sponge-like, multilamellar, continuous lipidic phases perforated by 

aqueous channels supplying an ordered hydrophobic matrix that permits free diffusion of protein 

and encourages GPCR crystallization in three dimensions. The lipid cubic phases have been 
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limited to preparing crystals in GPCRs research. The system represents an intriguing possibility 

both as a possible vehicle for reconstituted GPCRs and as a replacement for detergents in the 

difficult process of GPCR purification 118. 

1.4 Two artificial membrane systems 

1.4.1 DMPC/DHPC bicelles 

Phospholipids constituting ROS are the best options to form the artificial membranes. To 

stabilize rhodopsin and its mutants, the head groups, such as PC, PE, PS and PI and the fatty acid 

chains with different lengths and saturations have an impact on the biochemical properties of the 

artificial membrane. 16:0, 18:0, and 22:6 (DHA) are the main fatty acid chains in the rod disk. 

Other phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA), 1,2-dimyristoyl 

-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phospho-1’-rac-glycerol 

(DMPG), 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS), 1,2-dioleoyl-sn-glycero-3- 

phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine  (DOPE) 
35,121,123–126 are also used for artificial membranes. The use of phospholipids with single or 

mixture of lipids at different ratios increases the diversity of the membranes.  

For bicelles composition, short-chained phospholipids such as 1,2-dihexanoyl-sn-glycero-3- 

phosphocholine (DHPC(6:0)) or detergents like CHAPS are used to cap the long chain 

phospholipids. Phospholipid bicelles have been shown to improve the stability of rhodopsin 
35,120,121. In order to improve the stability of G90V and N55K rhodopsin we have introduced 

these mutants in bicelles. To do that, saturated 1% (w/v) long chain DMPC (14:0) and 1% (w/v) 

DHPC detergent are mixed, and upon temperature exchange process bicelles are formed. 

1.4.2 DDHA-PC liposomes 

DDHA-PC consists of two DHA chains and one PC head group which accounts for 44% in disk 

membrane. DHA appears to optimize the retinal integrity and visual function 97,127–129. 

DDHA-PC is used to form liposomes which constitute a membrane-like bilayer suitable for the 

study of rhodopsin and its mutants 97,102,118. The comparison of the structural and functional 

features of rhodopsin mutants, inserted into DDHA-PC liposomes and in DM detergent, would 

be attractive to understand the molecular mechanisms of RP disease. NMR studies have proved 
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that DHA can interconvert between conformations more rapidly, and prefers to be in the 

hydrophobic core of bilayers near the lipids/water interface. DHA is also capable of engaging in 

partially specific interactions with rhodopsin. Bilayers rich in DHA may alter protein function 

both by a change of general membrane properties and by specific interactions with particular 

regions of the protein. Rhodopsin adjusts its structure far more nimbly to the lipid environment 

than generally assumed. It is not just the lipid matrix that deforms in response to the needs of the 

protein, but the protein may adjust structurally to the lipid matrix as well 130,131. Figure 1.14 

shows the crystal structure of rhodopsin (1U19) where the packing score for each residue in 

rhodopsin against DHA, stearic acid, and cholesterol in bilayers were computed. The result 

showed the overlapping groups between H6 and H7 are largely nonspecific for DHA, stearic acid, 

and cholesterol. Except this, DHA (blue) interaction with 51 residues is significantly higher than 

that for stearic acid (red) with 16 residues and cholesterol (purple) with 5 residues. 

 
Figure 1.14 Binding sites of stearic acid, DHA and cholesterol in rhodopsin. 

Rhodopsin interacts preferentially with DHA (22:6) (blue), stearic acid (18:0) (red) or cholesterol (purple). The 

preferential interaction sites were identified by means of molecular dynamics simulations 130,131.  

1.5 GPCR Interaction with other proteins and ligands 

1.5.1 Signaling through GPCRs 

Heterotrimeric G proteins constitute important components of cell signaling cascades. GPCRs 

senses many EC signals and transduce them to the G protein for the downstream signals to play 

important roles in various signaling pathways. Upon activation by the ligand, the GPCRs 

undergo a conformational change and activate the G protein by promoting a GDP/GTP exchange 

in the Gα subunit. Gβγ dimer dissociates from the Gα subunit and both units interact with 
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different specific effectors and initiate unique signaling responses. Once the GTP in the binding 

pocket of Gα-GTP is hydrolyzed to GDP, Gα returns to its inactive Gα-GDP state which will 

re-associate with Gβγ to form the inactive heterotrimeric complex (Figure 1.15) 5,14,132. 

 

Figure 1.15 Model for signal transduction by activation/inactivation of the heterotrimeric G protein 

through GPCR activation. 

The subunits of heterotrimeric G protein (Gα and Gβγ) in their inactivated states are associated with each other. In 

the inactivated state, GDP is bound to Gα (Gα-GDP). During signal transduction, first the GPCR is activated, 

changing its conformation due to the binding of agonist/ligand to the EC region. This activated GPCR further 

activates the G protein by dissociating the Gα from Gβγ. In the active state, GTP is bound to Gα (Gα-GTP). Now 

free Gα and Gβγ have their own effectors (E1 and E2, respectively) to further transmit the signals and initiate 

unique IC signaling responses. Signal transduction is terminated when Gα-GTPase activity hydrolyzes the bound 

GTP to GDP and Pi and the G protein complex is reformed by Gα binding to Gβγ 14. 

1.5.2 A model GPCR system: rhodopsin-arrestin interaction 

As a model of GPCRs, understanding rhodopsin signaling and its dynamic protein-protein 

interactions is very important. Upon photon absorption, the photoactivated conformation of 

rhodopsin, Meta II, binds to and activates the Gt, which exchanges the GDP/GTP nucleotide and 
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then interacts with other downstream effectors. Meta II decays to free opsin by releasing the 

retinal chromophore from the binding pocket. Signaling is terminated by a process that begins 

with phosphorylation of Meta II by rhodopsin kinase and binding of arrestin, which stops 

signaling by physically occluding the G protein binding site 133. Visual arrestin belongs to the 

arrestin superfamily, which includes rod and cone arrestins. This visual arrestin, a ~48 kDa 

soluble protein, is an important model system to understand not only the visual response but also 

the broad reaching mechanism for controlling cellular signal transduction cascades mediated by 

GPCRs 134. The loop V-VI of arrestin is an important element that moves while arrestin binds to 

activated receptor. This movement is essential for high affinity binding 134,135. Figure 1.16 shows 

the crystal structure of human rhodopsin in complex with visual arrestin 136. 

 
Figure 1.16 Crystal structure of human rhodopsin in complex with visual arrestin. 

The interaction regions on rhodopsin and arrestin (PDB 4ZWJ) are highlighted in green. 

Figure 1.17 shows the signal pathway of rhodopsin with arrestin. The rhodopsin is activated by 

the light to form Meta I/II state and desensitized by the arrestin. This arrestin binds components 

of the clathrin endocytic machinery including clathrin, β2-adaptin (AP2) and dynamin (Dyn) to 

form the endosomal vesicle carrying the Meta II-arrestin complex dissociates from arrestin upon 

internalization and receptors recycle to the plasma membrane 137. 
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Figure 1.17 Role of arrestin in the desensitization, sequestration and IC trafficking of rhodopsin. 

A. Rhodopsin is activated and desensitized by arrestin. Meta I/II-arrestin complex play an important role as adapter 

proteins, binding to components of the clathrin endocytic machinery such as clathrin and AP2. B. Receptor 

sequestration reflects the Dyn dependent endocytosis of rhodopsin via clathrin coated pits. C. Rhodopsin 

dissociates from arrestin for final degradation or slow recycling to the membrane 137,138. 

In the visual pathway, arrestin not only attenuates rhodopsin signaling, but also protects the cell 

from excessive retinal levels under bright light conditions. Besides, arrestin is known to bind to 

phosphorylated Meta II, in which the photolyzed chromophore all-trans-retinal is still attached 

by a deprotonated SB. In contrast, arrestin does not bind to phosphorylated opsin, only 

all-trans-retinal added exogenously can stimulate arrestin to bind this phosphorylated opsin 139.  

1.5.3 Tau protein interaction with M3R 

Tau is a structural microtubule associated protein (MAP) which is located in the axons of 

neurons of the CNS. MAP tau (MAPT) contains three major domains: an amino terminal 

projection domain, a C-terminal domain of microtubule binding repeats and a short tail sequence 
140. In the human CNS, six tau isoforms are found by alternative mRNA splicing 140 from the tau 

gene encoded on chromosome 17q21. These Tau isoforms differ in their domain composition and 

overall length ranging from residue 352 to 441 amino acids 141. Tau is a highly soluble, natively 

unfolded, and intrinsically disordered protein, with only a low content of transient secondary 

structure. Tau, as other MAPs, stabilizes microtubule polymers, suppresses microtubule 



 
31 

 
 

dynamics and probably because of these effects is able to promote cytoplasmic extensions or 

neuritogenesis (Figure 1.18) 142–144. 

 

Figure 1.18 Proposed mechanisms of tau dispersion in cells. 

Free diffusing tau molecules in the cytosol (1) in rapid equilibrium with tau bound to microtubules; (2) tau is free to 

diffuse along the microtubule lattice; (3) motor-dependent tau transport by kinesin molecules; (4) or piggybacking 

on short microtubule fragments translocated by kinesin family members or cytoplasmic dynein; (5) transport of tau 

mRNA by kinesin-2 followed by local translation in the axon; (6) light gray arrows indicate the directions of motor 

protein movement while solid black arrows denote the directions of tau protein or mRNA motion by diffusion or as 

cargo of kinesin motor proteins 143. 

As explained in section 1.2, tau protein and M3R are both involved in AD 145,146. Currently, the 

tau hypothesis of AD presumably involves abnormal hyperphosphorylation of tau as a result of 

an imbalance in the kinase and phosphatase activities. In AD brains, the total tau level is about 

eight-fold higher than in controls and the increased tau protein is in an abnormally 

hyperphosphorylated form 86. The reason of this is not well understood. As a MAP protein, tau 

molecules contribute to maintaining the cell shape and serve as tracks for axonal transport. In 

neural cells of AD patients, the phosphorylation of tau takes place in some sites causing a 

decrease of the protein electrophoretic mobility 147. Tau can undergo two types of modifications, 

phosphorylation and aggregation, which can regulate its interaction with cytoplasmic, nuclear, or 

membrane components resulting in cell toxicity 148. The phosphorylation of the N-terminal 
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region could affect its interaction with the plasma membrane. The phosphorylation in the 

microtubule binding domain, and its adjacent regions, will impair the interaction of tau with 

microtubules, as well as prevent tau-tau self-assembly. Phosphorylation at the C-terminal region 

affects the interaction of tau with other proteins, like muscarinic receptors 144,148.  

Tau hyperphosphorylation can induce tau aggregation which is toxic for the cell (Figure 1.19) 89. 

IC tau could be toxic due to its hyperphosphorylation level or due to its aggregation. The tau 

protein released as a result of neuronal death is toxic to neighboring cells, an effect that is 

thought to be mediated through the activation of muscarinic M1R or M3R receptors that 

increases IC calcium in neuronal cells upon tau binding 89.  

 

Figure 1.19 Proposed tau axis hypothesis of AD: progressively increasing levels of dendritic tau make 

neurons vulnerable to β-amyloid. 

A. The onset of AD is characterized by the initiation of β-amyloid formation in the brain. But low levels of dendritic 

tau are associated with a limited vulnerability of neurons to synaptic β-amyloid toxicity. B. With disease 

progression, tau becomes increasingly phosphorylated and tau accumulates in the somatodendritic compartment of 

neurons, progressively increasing dendritic tau levels. C. In fully manifested AD, high levels of tau are in the 

dendritic compartment and increased β-amyloid toxicity exacerbates tau phosphorylation and its somatodendritic 

accumulation 140. 

Indeed, exogenously applied non-phosphorylated tau can also interact with muscarinic receptors 

on the surface of cultured neuronal cells, promoting an increase in IC calcium that can alter cell 

signaling pathways 90. In this thesis, four M3R mutants at the EC domain of the receptor, N132G, 

D518N, D518K and K523Q, were coexpressed with tau in cultured cells to analyze their 

potential interactions.  
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M3R residues N132, D518 and K523 are all located at the EC loops of the receptor and they are 

predicted to play a role in the binding and regulation of allosteric modulators. The mutants 

N132G and D518K were chosen because the substituted residues were those corresponding to 

the M1R subtype. As the amino acids D518 and K523 are charged, the uncharged mutants 

D518N and K523Q, were also contacted in order to analyze any possible charge effect 149.  
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2. OBJECTIVES 
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The main aim of the thesis is to investigate the intramolecular and intermolecular aspects of two 

GPCRs, the visual receptor rhodopsin and the muscarinic receptor. Intramolecular aspects 

include protein folding and stability, while intermolecular aspects are related to the interaction of 

these receptors with associated proteins. For this purpose, the stability and folding properties of 

WT rhodopsin and N55K and G90V mutants and the interaction between rhodopsin and arrestin, 

as well as M3R interaction with tau protein are studied. 

Rhodopsin and two RP associated mutants will be spectroscopically and functionally 

characterized and their behavior in detergent micelles and in mimic membranes compared. DM 

micelles, DMPC/DHPC bicelles and DDHA-PC liposomes will be used to stabilize purified 

bovine rhodopsin and recombinant rhodopsin WT and the G90V and N55K mutants. The thermal 

stability and retinal binding behavior of rhodopsin and its mutants, and their Gt activation 

capacity will be analyzed.  

 
Figure 2.1 Study proposed in this thesis. 

The visual protein rhodopsin and mutants and the M3R and mutants (in the central circle) are the GPCR studied in 

this thesis. The outermost circle represent the intramolecular and/or intermolecular studies on rhodopsin and 

muscarinic receptors performed during this thesis.  

We also aim at investigating the mechanisms of GPCRs interaction with other proteins 

associated to their signaling pathways. The work will focus on two such interactions, rhodopsin 

binding to arrestin in the signal termination of the phototransduction cycle, and M3R interaction 
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with tau protein and its potential role in AD. Figure 2.1 schematically summarizes the proposed 

topics of study of this thesis. 

In line with the main goals outlined, the specific objectives of this thesis are: 

1. To establish the optimal DMPC/DHPC bicelles and DDHA-PC liposomes system conditions 

for WT and mutant rhodopsins stabilization. 

2. To compare the biochemical and biophysical properties of WT rhodopsin and N55K, G90V 

mutants in DM micelles, DMPC/DHPC bicelles and DDHA-PC liposomes systems.  

3. To purify R175E arrestin mutant and to characterize its binding to photoactived rhodopsin 

by means of fluorescence spectroscopy and electrophoresis. 

4. To express M3R and its mutants, and to coexpress them with tau protein to determine the 

features of the interaction between M3R mutants and tau protein by means of electrophoretic 

and immunocytochemical techniques. 
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3. MATERIALS AND METHODOLOGY 
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This section describes the materials and the procedure used in this thesis. The molecular biology 

and biophysical techniques are described in detail to understand the specific features of GPCRs, 

especially rhodopsin and M3R. 

3.1 Materials Reagents 

3.1.1 Reagents 

Bovine retinas was obtained from J.A. Lawson (Lincoln, NE). The chromophores 11-cis-retinal, 

and 9-cis-retinal, were provided by Dr. R. Crouch (National Eye Institute, National Institutes of 

Health (USA)) and Sigma-Aldrich, respectively. Lipids for liposomes and bicelles formation, 

DMPC (14:0), DHPC (6:0) and DDHA-PC (22:6n-3) were purchased from Avanti Polar Lipids 

Inc (Alabaster, AL, USA). DM was from Anatrace (Maumee, OH, USA). Chloroforrn was 

purchased from Sigma-Aldrich (Sant Louis, MO), methanol was from Panreac (Barcelona, Spain) 

and the polystyrene beads (Bio-beads SM-2) were provided by Bio-Rad Laboratories, Inc. 

(Hercules, CA). 

Purified monoclonal antibody for rhodopsin, rho-1D4, was obtained from Cell Essentials 

(Boston, MA, USA). The 1D4 9-mer peptide corresponding to the last 9 amino acids of Rho 

(TETSQVAPA) was synthesized by Serveis Cientificotècnics (Universitat de Barcelona, 

Barcelona, Spain). CNBr-activated Sepharose 4B, hydroxylamine, protease inhibitor cocktail and 

phenylmethanesulfonyl fluoride (PMSF), bis-tris-propane (BTP), isopropyl β-D- 

thiogalactopyranoside (IPTG) were from Sigma-Aldrich (St. Louis, MO, USA). 

Polyethyleneimine 25 kDa (PEI) was purchased from Polysciences (Warrington, PA, USA). 

Other reagents were purchased from Sigma, Fisher or Panreac. 

3.1.2 Cloning vectors and cell lines 

WT, G90V and N55K opsin mutations were cloned into the pMT4 vector. M3R and mutants 

M3R-N132G, M3R-D518N, M3R-D518K and M3R-K523Q cloned in pEF5/FRT/V5-DEST 

vectors were obtained as previously described (Laura Iarriccio’s thesis reference). Arrestin 

R175E in pG58 vector was provided by Dr. Eva Ramon. Human MAPT/tau transcript variant 4 

natural ORF cloned in pCMV3 (HG10058-UT) (Tau-pCMV3) was bought from Sino Biological 

Inc. Tau gene was also subcloned into pET-17b plasmid. These five vectors containing the 
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corresponding genes of study are depicted in the following schemes (Figure 3.1). 

 
Figure 3.1 The five plasmid vectors used in this thesis. 

A. pMT4 plasmid with opsin and the mutants G90V, N55K which can be expressed in eukaryote cells; B. pG58 

plasmid with R175E arrestin for expression in E.coli and IPTG induction; C. pEF5/FRT/V5-DEST plasmid with 

M3R and the mutants M3R-N132G, M3R-D518N, M3R-D518K and M3R-K523Q which were expressed in 

eukaryote cells; D. pET-17b with the inserted tau gene for expression in BL21 cells by IPTG induction; E. pCMV3 

plasmid with inserted tau gene for eukaryotic cell expression. 

3.2 Equipment 

Cell culture equipment: type II class cell culture cabinet (NuAire), CO2 incubators for 

cell culture (NuAire), and liquid nitrogen containers (Air Liquide), 4ºC centrifuge biofuge 

(Heraeus (Primo R)), low temperature fridge (Mo-Bio, AE390), optical inverted microscope 

(Olympus (CK 30)). 

Deoxyribonucleic acid (DNA) and protein expression purification devices: ultracentrifuge 

Beckman Coulter (Optima LE-80K), centrifuge (Alresa), refrigerated centrifuge (Kubota (6500)), 

DNA agarose gel electrophoresis, sodium dodecyl sulfate polyacrylamide gel electrophoresis 
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(SDS-PAGE), Western Blot (WB) system (BioRad), UV Transilluminator 2000 and Molecular 

Imager ChemiDoc documentation system (BioRad) and transparency viewer (IEWLight 5000), 

bacterial incubator (Sanyo MIR-262 model). 

Radioactive facilities: hood for chemical material (CaptairChem), liquid scintillation counter 

(TRI CARB Packard). 

Spectrophotometry: Ultraviolet-visible (UV-Vis) spectophotometer (Cary (100Bio)), spectro- 

-fluorimeter (PTI, QM-1), and high intensity illuminator (Fiber-Lite MI-150). 

Microscopy: fluorescence microscope (Nikon/Eclipse Ti-S), long-life mercury light source 

(Nikon intensilight). 

General lab devices: microprocessor pH meter 213 (Hanna), cold room (Isark by Coldkit), 

sonicator 2070 (Bandelin), analytical balance (Mettler Toledo / NewClassic MS), autoclave 

(Darlab), ice machine (Bar-line), ICW-3000 water purification system (Merck Millipore), vortex 

(Heidolph), polymerase chain reaction (PCR) apparatus (BioRad (MJ Mini)), 

microtube centrifuge (Biocen), microtube centrifuge (Eppendorf 5424), microtubes incubator 

(Biosan/S-100), shaking incubator (Infors AG), refrigerated incubator (Sanyo MIR-254), -20ºC 

freezer (Zanussy, tropic system), -80ºC freeze (REVCO, ULT13863V35). 

3.3 DNA purification and protein expression methodologies 

3.3.1 Competent cells preparation and transformation 

Transformation is the process by which a foreign plasmid is introduced into a bacterial cell. 

Competent cells were prepared with specific treatments to modify the membrane permeability 

allowing DNA entrance into the cells. Here, DH5α and BL21 strains were used to prepare the 

competent cells or ultra-competent cells. Compared the competent cells, the ultra-competent 

cells showed more efficient activity that especially were used for ligated DNA, or low yield PCR 

products transformations. After transformation, the DNA plasmid could be replicated as the 

bacteria grew in large cell culture volumes. DH5α strain normally is used for the plasmid 

amplification and the BL21 strain is used for the protein expression. The competent and 

ultra-competent cells preparation and the transformation processes are described in this section.  

3.3.1.1 Competent cells preparation 
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One colony was incubated in 50 ml of LB at 37ºC and shook at 200 rpm overnight. Then, 1 ml of 

the overnight culture was transferred to 100 ml fresh LB medium and incubated at 37ºC, and 200 

rpm, until A600 nm reached 0.6 which typically took between 3 h and 4 h. After the culture growth 

was stopped by incubating on ice for 25 min, the cells were spun down for 20 min at 4000 rpm 

and 4ºC. The pellet was re-suspended with 40 ml CaCl2 and incubated 30 min on ice. The cells 

were centrifuged 20 min at 4000 rpm and 4ºC, the pellet was re-suspended with 2 ml CaCl2 

containing 20% glycerol, and aliquoted in 50 µl samples and stored at -80ºC. Finally 100 ng 

DNA was used to check the transformation efficiency of the cells. 

Buffers: 

 100 mM CaCl2 solution, autoclaved and kept at 4ºC until use. 

 100 mM CaCl2 containing 20% of glycerol solution, autoclaved and kept at 4ºC until 

use. 

3.3.1.2 Ultra-competent cells preparation 

DH5α cells were cultured on LB agar plates at 37ºC overnight and 12 large colonies were picked 

up and cultured in 250 ml SOB in a 1 L flask at 19ºC with vigorous shaking to reach A600 nm = 

0.5 which normally took from 2 to 3 days. Then the flask was placed on ice for 10 min to stop 

culture growth and cells were spun down at 4000 rpm for 20 min at 4ºC, and 80 ml ice-cold TB 

was used to resuspend the pellets. After incubation on ice for 10 min cells were centrifuged at 

4000 rpm for 20 min at 4ºC. Then the pellet was gently re-suspend in 5 ml ice-cold TB 

containing 350 µl DMSO and stored at -20ºC overnight before use. Finally, the sample was 

divided into 100 µl aliquots and used directly for transformation or stored at -80ºC.  

Buffers: 

 SOB solution: 0.5% yeast extract, 2% tryptone, 10 mM NaCl, 2.5 mM KCl, 10 mM 

MgCl2, 10 mM MgSO4 dissolved in milliQ water. It was autoclaved to sterilize and kept 

at 4ºC.  

 TB solution: 10 mM PIPES, 15 mM CaCl2 and 250 mM KCl. Then dissolved in milliQ 

water and adjust pH to 6.7 with KOH or HCl and then add 55 mM MnCl2, dissolved in 

milliQ water. It was sterilized by filtration with 0.45 µm filter and kept at 4ºC. 
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3.3.1.3 DNA transformation 

DH5α competent cells were chosen for large amounts of plasmid purification, while BL21 

competent cells were chosen for the prokaryotic expression of proteins, for example tau-pET17b 

expression. When the competent cells were prepared, all the processes were performed near the 

flame to avoid any contamination and on ice to keep the cell function. The transformation 

process was as follows: 

The competent cells were taken out from -80ºC and thawed on ice for 10 min. 1µl of plasmid 

DNA (50-100 ng) was added into the competent cells tube and mixed by gently rolling the tube 

for several times on ice. The mixture was incubated on ice for 30 min. Then, heat shock was 

carried out by heating the competent cells at 42ºC for 60 s and then the cells were kept on ice for 

3 min to cool down. 1 ml 2YT medium was added to incubate cells at 37ºC, 250 rpm for 45 min 

to help cell recovery. Finally, 100 µl of cells was plated on LB solid medium dish with 

appropriate antibiotics (ampicillin or kanamycin) and incubated at 37ºC overnight to allow 

colonies growth. 

The chemically-obtained competent E.coli (DH5α and BL21) cells were suitably used for 

transformation and protein expression.  

Media: 

 2YT medium: 1.6 g Tryptone, 1.0 g Yeast Extract, 0.5 g NaCl, adjust pH to 7.2 in 100 

ml ddH2O and autoclaved.  

 LB medium: 1.0 g Tryptone, 0.5 g Yeast Extract, 0.05 g NaCl, pH 7.2 in 100 ml ddH2O 

and autoclaved.  

3.3.2 DNA maxi preparation and quantitation 

After transformation of the derived plasmid, the cells were grown in larger volumes to increase 

DNA amount. DNA was extracted by using the maxi-preparation Kit and quantitated by UV-Vis 

spectroscopy. DNA agarose gel electrophoresis was also used to determine DNA purity.  

3.3.2.1 DNA maxi preparation  

To satisfy the large scale requirement for transfection, DNA Maxiprep purification was 
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performed by the Hi-pure plasmid maxiprep kit (Invitrogen). In this kit, a modified alkaline lysis 

method was used. 

One colony was cultured in 500 ml of LB medium with the corresponding antibiotics (ampicillin 

or kanamycin) for overnight incubation at 250 rpm and 37ºC. The cells were harvested by 

spinning down the sample at 4000 rpm for 20 min, and the medium was removed. 20 ml 

resuspension buffer (R3) with RNase A (20 mg/ml) suspended the pellet. Then, 20 ml of lysis 

buffer (L7) was added to break the cells, and mixed by inverting the capped tube five times and 

incubated at room temperature (RT) for 5 min. 20 ml of precipitation buffer (N3) was mixed with 

the sample immediately by inverting the tube until the formation of white clumps. A funnel with 

gauze was used to separate the flocculate from the liquid. Meanwhile, the Hi pure filter maxi 

column was equilibrated with 30 ml of equilibration buffer (EQ1), and the liquid flowed through 

from the gauze was loaded onto the column and drained by gravity flow. 60 ml of wash buffer 

(W8) was used to wash the column and drained by gravity flow. Now, the DNA bound on the 

column was eluted with 15 ml of elution buffer (E4). 10.5 ml of isopropanol was added into the 

eluted DNA and subject to centrifugation for 45 min at 18000 g and 4ºC. DNA was precipitated 

and re-suspended with 10 ml of 70% ethanol and centrifuged at 18000 g for 10 min again. The 

supernatant was carefully removed and the pellet was air-dried for 10 min. 1 ml ddH2O was 

added to dissolve the DNA. 

The DNA concentration and purity was determined by UV-Vis spectroscopy by measuring the 

absorbance at 260 nm. The Lambert-Beer law was used to calculate the concentration of the 

purified DNA. The equation is: 

A= ε·c·l 

where A is the absorbance of 260 nm; ε is the molar extinction coefficient with units in ml 

⋅µg-1 ⋅cm-1 (εDNA= 0.02); l is the path length of the cuvette (1 cm) and c is the concentration of the 

chromophoric compound in solution, expressed in µg⋅ml-1. 

Buffers: 

 Resuspension buffer (R3): 50 mM Tris-HCl, 10 mM EDTA, pH 8.0. 

 Lysis buffer (L7): 0.2 M NaOH, and 1% (w/v) SDS. 
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 Precipitation buffer (N3): 3.1 M potassium acetate, pH 5.5. 

 Equilibration buffer (EQ1): 0.1 M sodium acetate pH 5.0, 0.6 M NaCl, and 0.15% (v/v) 

TritonX-100. 

 Wash buffer (W8): 0.1 M sodium acetate pH 5.0 and 825 mM NaCl. 

 Elution buffer (E4): 100 mM Tris-HCl, pH 8.5 and 1.25 M NaCl. 

3.3.2.2 DNA agarose gel electrophoresis 

Gel electrophoresis is the standard laboratory procedure for separating DNA by size to determine 

purification efficiency. Electrophoresis uses an electrical field to move the negatively charged 

DNA towards a positive electrode through an agarose gel matrix. 1% (w/v) agarose gel with Tris 

acetate-EDTA (TAE) buffer was prepared. 1g agarose powder was dissolved in 100 ml TAE 

buffer and microwaved until agarose was completely melted. The agarose solution was cooled 

down nearly to 55ºC - 65ºC which normally took 10 min. The agarose solution was poured down 

into a gel tray with a comb to form the wells and after complete gel solidification, the DNA 

samples were loaded together with 6x DNA loading buffer, and run in TAE buffer at 70 V for 80 

min by an electrophoresis system (Bio-Rad). The gel was stained by the Ethidium bromide (EB) 

buffer for 30 min and an image system (Bio-Rad) was used to visualize the DNA fragments. 

Buffers: 

 TAE buffer (10x): 48.4 g Tris Base, 7.44 g EDTA dissolved in 800 ml ddH2O, 11.42 ml 

CH3COOH was added and homogenized. Add more ddH2O to 1 L. 

 EB buffer: 2 µl EB dissolved in 100 ml 1x TAE buffer. 

3.3.3 Eukaryotic cell culture techniques 

HEK293T cells and COS-1 cells, as mammalian cell lines, were used to express WT rhodopsin 

and its mutants, M3R and its mutants, and tau-pCMV3 protein. HEK293S-GNTI- cells were also 

used to express the protein but mainly for WB analysis. 

3.3.3.1 Mammalian cells thawing 

Before cell thawing, the culture medium should be warmed at 37ºC. The cell vial was quickly 
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taken out from liquid nitrogen and completely defrosted at 37ºC. The cells were rapidly 

transferred to a 15 ml tube containing 7 ml of warmed medium and spun down at 900 rpm for 5 

min. The cell pellet was seeded onto a 10 ml cell culture dish containing 15 ml of medium and 

cultured at 37ºC in an incubator with 5% CO2 for the subsequent experiments. Depending on the 

different types of cells, different medium were chosen (see section 3.3.3.2). 

3.3.3.2 Cell culture 

HEK293T cells were routinely cultured in complete Dulbecco's Modified Eagle's Medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine and 100 

units/ml penicillin/streptomycin at 37ºC in an atmosphere of 5% CO2. After cells reached 70% - 

80% of confluence, the cells could be used for generation, transfection, cryopreservation or 

immunofluorescence. When the cells were used for maintenance, the medium was removed from 

the 15 cm cell culture dishes and were gently washed with 7 ml phosphate buffered saline (PBS). 

Then, 9 ml of fresh medium was added and the cells were detached by repeated pipetting. 3 ml 

of medium containing cells was transferred to a new 10 ml cell culture dish containing 15 ml of 

warmed medium, and then the cells were incubated at 37ºC in a 5% CO2 humidified incubator. 

COS-1 cells were cultured in DMEM medium supplemented with 10% FBS, 2 mM L-glutamine 

and 100 units/ml penicillin/streptomycin at 37ºC and in an atmosphere of 5% CO2. After 70% - 

80% confluence, cells were carefully washed with 7 ml PBS after removing the old medium and 

5 ml 1% trypsin EDTA solution was added to detach the cells for 1 min at 37ºC. Trypsin was 

decanted and 9 ml of complete medium was added to inactivate trypsin. The cells were separated 

by repeated pipetting and 3 ml of medium with cells was transferred into a new 10 ml cell 

culture dish with 15 ml of warmed medium and incubated at 37ºC in a 5% CO2 humidified 

incubator. 

HEK293S-GNTI- cells were cultured in DMEM+Ham F12 (1:1) mixture medium supplemented 

with 10% FBS, 2 mM L-glutamine and 100 units/ml penicillin/streptomycin at 37ºC and in an 

atmosphere of 5% CO2. There is not N-acetylglucosaminyltransferase (GnTI) activity in 

HEK293S-GnTI- cells and the protein expression lacks complex N-glycans which is appropriate 

for recombinant protein detection especially by electrophoresis. The maintenance protocol is the 

same as HEK293T cells. 
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3.3.3.3 Mammalian cells storage 

The mammalian cells were incubated to nearly 60% - 70% confluence, which means that the 

cells were on the logarithmic phase. Once thawed they still can keep their active condition. The 

cells were harvested by either trypsin or pipetting in 5 ml corresponding medium and spun down 

at 900 rpm at 25ºC for 5 min, the cell pellet was re-suspended with the freezing medium. The 

freezing medium was composed of 20% FBS, 10% DMSO and 70% corresponding to the cell 

medium. The freezing medium should be filtered before use. Then, all the cells in freezing 

medium were aliquot into sterile cryovials and kept at 4ºC for 2 h. The vials were transferred to a 

-20ºC freezer until frozen (4 - 6 h), and then at -80ºC to help sequential freezing while 

maintaining cell viability. Finally the frozen cells were stored in liquid nitrogen. 

3.3.3.4 DNA transfection and cotransfection 

Mammalian cells were cultured at 37ºC in a 5% CO2 incubator to reach 70% - 90% confluence 

in 15 cm cell culture dish. DNA and PEI mixture were prepared separately. DNA mixture 

contains 30 µg DNA and 2.5 ml Opti-MEM and the PEI mixture, 100 µl PEI (for stock 1mg/ml, 

pH 6.0) and 2.5 ml Opti-MEM. After 5 min incubation, DNA and PEI solutions were mixed and 

incubated for 20 min at RT. The cells were incubated with 15 ml cultured medium and 5 ml 

DNA-PEI mixture. When co-transfection was carried out such as M3R and tau vectors, 30 µg 

DNA was composed of 15 µg M3R vector and 15 µg tau vector. Cells were incubated for 48 h 

(Figure 3.2). The transfected proteins were overexpressed in the cell lines and subsequently 

purified in section 3.4 for further characterization. 

When the mammalian cells were cultured in a 6-well plate containing sterile coverslips to carry 

out the immunofluorescence experiments, different DNA and PEI volumes were used. 100 µl 

cells were cultured in each well and incubated for 24 h at 37°C with 5% CO2 to reach 60% - 70% 

confluence. After changing the medium, 3 µg DNA mixed with 400 µl Opti-MEM and 15 µl PEI 

(1 mg/ml, pH 6.0) mixed with 400 µl Opti-MEM were prepared separately. After 5 min 

incubation, DNA and PEI buffer were mixed and incubated for 20 min and added to each well. 

The transfected cells, in the 6-well plate, were cultured for 24 h and used for 

immunofluorescence analysis. 
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Figure 3.2 Cell transfection process. 

The desired DNA (30 µg) and PEI (100 µl) were dissolved in Opti-MEM medium separately for 5 min incubation. 

Then DNA and PEI were mixed for 20 min to transfect the cells. After 48 h incubation, the protein will be expressed 

in cells. 

3.4 Protein Purification Methodology 

3.4.1 Coupling of 1D4 antibody to sepharose beads 

Modified sepharose (Cyanogen bromide-activated-Sepharose 4B) beads coupled with rho-1D4 

antibody were needed for rhodopsin purification from mammalian cells and ROS.  

1.51 g sepharose powder was dissolved into a final volume of 6 ml of 1 mM HCl (pH 2~3) for 

15 min till all the white clumps were completely dissolved. Then the beads were washed using a 

filter funnel with G3 porosity (Duran) for 30 min by using 300 ml 1 mM HCl (pH 2~3) in 

several aliquots to remove any additives. Beads were washed with 3 volumes (18 ml) of coupling 

buffer (pH 8.3) in aliquots to increase the pH of beads and to allow antibody coupling. 7.5 ml of 

5.3 mg/ml 1D4 antibody was mixed with sepharose beads by using a spatula and incubated 

overnight at 4°C. According sepharose manufacture instructions, 5~10 mg of antibody per 1 ml 

medium is recommended. Here, 7.5 mg protein per 1 ml medium was used. 

The unbound rho-1D4 antibody was washed away by using 2 volumes (12 ml) of coupling buffer. 

Then, washed rho-1D4 beads were transferred into a 50 ml tube containing 6 ml of 1 mM 

Tris-HCl pH 8.0 and agitated for 2 h on RT to block any remaining active group. Filter funnel 

porosity G3 was used to remove the 6 ml Tris-HCl (pH 8.0) and the beads were washed 

sequentially with alternative cycles of 5 volumes (30 ml each) of 0.1 M NaAc pH 4.0 with 0.5 M 

NaCl, and 0.1 M Tris-HCl pH 8.0 with 0.5 M NaCl, for 4 times. Finally the beads were 
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transferred to a falcon tube containing 6 ml of beads storage buffer at 4°C. These beads were 

used for rhodopsin purification from either ROS or mammalian cells expression.  

Buffers: 

 1 mM HCl (pH 2~3): 41.6 µl of 12 M/37% HCl dissolved in 500 ml ddH2O, adjust pH 

2~3. 

 Coupling buffer: 0.1 M NaHCO3 pH 8.3 containing 0.5 M NaCl. 

 Beads storage buffer: 2 mM Na2PO4 (pH 6.0) with 0.004% (w/v) NaN3. 

3.4.2 Purification of WT rhodopsin, and G90V and N55K mutants from mammalian cells 

WT rhodopsin, and the G90V and N55K mutant genes constructed in the pMT4 plasmid vector 
150 were transiently transfected in 10 plates of COS-1 cells, or HEK293S-GNTI- cells, by 

chemical transfection with PEI reagent. After 48 h, cells were harvested and regenerated with 10 

µM 11-cis-retinal in solvent buffer for overnight incubation. 1% (w/v) DM with PMSF and 

protease inhibitors was added for 1 h and gently nutated to solubilize the cells, followed by 

ultracentrifugation for 35 min at 35000 rpm (using rotor 50 Ti). The supernatant was used for the 

immunoaffinity chromatography purification by sepharose coupled to the rho-1D4 antibody. 

After 3 h incubation, the sepharose-bound WT and mutants were spun down and washed with 

washing buffer containing 0.05% (w/v) DM for 5 times at 4000 rpm, 5 min at 4°C. Then WT and 

mutant rhodopsin were eluted with elution buffer containing peptide (Figure 3.3) 94. The protein 

was either immediately characterized or stored at -80°C for a few days. 
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Figure 3.3 Rhodopsin purification process. 

Rhodopsin apoprotein or the mutants were overexpressed in eukaryotic cells and regenerated with 11-cis-retinal to 

obtain rhodopsin WT and mutants. DM detergent was added to solubilize the protein which was eluted with the 

rho-1D4 9-mer peptide and analyzed by means of UV-Vis spectroscopy. 

Buffers: 

 Solvent buffer (DDHA-PC liposomes study (3.5.2)): 137 mM NaCl, 2.7 mM KCl, 1.5 

mM KH2PO4, and 8 mM Na2HPO4, pH 7.4.  

 Solvent buffer (DMPC/DHPC bicelles study (3.5.2)): solvent buffer was also named as 

Bicelles buffer A: 10 mM BTP, 140 mM NaCl, 2 mM MgCl2, 2 mM CaCl2, pH 6.0. 

 Washing buffer: solvent buffer with 0.05% (w/v) DM.  

 Elution buffer: washing buffer with 100 µM 1D4 9-mer peptide. 

3.4.3 Rhodopsin purification from retinal ROS 

ROS membranes were purified from bovine retinas, under dim red light, using a sucrose gradient 

method 151,152. The membranes were suspended in 70 mM potassium phosphate, 1mM MgCl2, 

0.1mM EDTA, pH 6.9, then centrifuged and the pellets were re-suspended in 5 mM Tris-HCl 

(pH 7.5) containing 0.5 mM MgCl2. Two alternating washes with these buffers were carried out 

to remove any further contaminating proteins. Finally, ROS membranes were split into several 

aliquots and stored in the dark at -80°C for the further use. The ROS membranes were used for 
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rhodopsin purification. ROS membranes were solubilized in solvent buffer with 1% (w/v) DM in 

the dark for 1 h at 4°C. The pigments were purified by immunoaffinity chromatography on 

1D4-Sepharose 4B in the same buffer. The protein sample was incubated with the 

1D4-Sepharose beads for 3 h and the purified protein was eluted in the corresponding solvent 

buffer containing 100 µM 1D4 9-mer peptide. All the procedures were performed in the dark at 

4°C. 

3.4.4 Isolation of the Gt from bovine retinas 

Gt is naturally expressed in vertebrate retinal rods and cones, with different α, β and γ subunits in 

rod and cone photoreceptors. Light causes conformational changes in rhodopsin, leading to the 

binding and activation of Gt. So, Gt was purified to study the different ability of WT rhodopsin 

and its mutants to bind and activate Gt.  

Fifty bovine retinas were thawed and exposed to light at 4°C for overnight to allow Gt binding to 

photoactivated rhodopsin. Retinas, re-suspended in 150 ml of 47% (w/w) sucrose in Tris buffer 

A, were homogenized with a 50 ml syringe. Then the solution was centrifuged at 42000 g for 20 

min. The supernatant containing the orange ROS membranes were collected, diluted with 200 ml 

of Tris buffer A and homogenized again with a 50 ml syringe. Finally, the homogenate was 

centrifuged at 30000 g, at 4ºC for 20 min. The pellet was re-suspended in 50 ml Tris buffer A 

with the help of a 21 gauge needle for three times. Sucrose density gradient was used to separate 

the ROS membranes from cell debris and remaining retinal tissues. To do that, 9 ml of 30% and 

25% sucrose were used as two gradients from bottom to top respectively in the centrifuge tubes. 

Finally, the membrane suspension was added on the top of the sucrose gradient. The gradient 

sample was centrifuged at 42000 g for 30 min at 4°C. The orange band located between 30% and 

25% sucrose was collected using a 21-gauge needle and diluted with 160 ml of Tris buffer A, 

followed by centrifugation at 42000 g for 20 min to remove the sucrose. The pellet was 

resuspended in 100 ml of Tris buffer C and centrifuged at 42000 g for 20 min. The pellet was 

resuspended again in 100 ml of Tris buffer D and spun down at 42000 g for 20 min. This step 

was repeated twice. The pellet was resuspended with 50 ml Tris buffer D containing 0.04 mM 

GTP and incubated for 30 min at 4°C. The sample was centrifuged at 45000 rpm (using the Ti50 

rotor) for 45 min at 4°C and the supernatant was filtered (0.45 µm) and concentrated with an 
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Ultra-15 centrifugal filter (Amicon) with a 10 kDa cut off to a final volume of nearly 10 ml. The 

concentrated sample was transferred into a dialysis tube and dialyzed against 900 ml of Tris 

buffer E which should be changed twice. The protein was collected and purity was determined 

by means of SDS-PAGE with Coomassie blue staining 

Buffers: 

 Tris buffer A: 20 mM Tris, pH 7.4, 1 mM CaCl2, 2 mM DTT. 

 Tris buffer C: 10 mM Tris, pH 7.4, 100 mM NaCl, 5 mM MgCl2, 2 mM DTT. 

 Tris buffer D: 10 mM Tris, pH 7.4, 0.1 mM EDTA, 2 mM DTT. 

 Tris buffer E: 20 mM Tris, pH 7.5, 100 mM NaCl, 50% glycerol, 5 mM DTT and 5 mM 

MgCl2. 

 47% sucrose: 117.5 g sucrose in 250 ml Tris buffer A. 

 30% sucrose: 75 g sucrose in 250 ml Tris buffer A. 

 25% sucrose: 62.5 g sucrose in 250 ml Tris buffer A. 

0.1 mM PMSF was added in all the buffers before use. 

3.4.5 Expression and preparation of M3R WT and mutants 

M3R as WT and mutants M3R-N132G, M3R-D518N, M3R-D518K, and M3R-K523Q genes 

constructed in pEF5/FRT/V5-DEST vectors were transfected into HEK293S-GNTI- cells by 

means of the PEI reagent. After 48 h, cells were harvested using solvent buffer and centrifuged at 

4000 rpm for 20 min. The cell pellet was resuspended with 100 µl PBS pH 7.4 containing 1% 

DM and shook for 1 h. After 40 min centrifugation at 6000 rpm, the protein in the supernatant 

was detected by measuring the absorbance at 280 nm. The total protein samples adjusted to A280 

nm = 0.8 were subject to SDS-PAGE. The cells cotransfected with tau-pCMV3 and M3R mutants 

were prepared following the same protocol.  

3.5 Lipid bilayer preparation  

To understand the detailed structure of the rhodopsin and its mutants associated with RP, 

rhodopsin WT and mutants were inserted into mimic membrane models: DMPC/DHPC bicelles 
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and DDHA-PC liposomes. Here, the mild neutral detergent (DM) was used to purify rhodopsin 

and three lipids, DMPC, DHPC and DDHA-PC, were prepared in different bilayer for protein 

insertion. Figure 3.4 shows the molecular structures of the lipids used. 

 

Figure 3.4 Molecular structures of the lipids. 

Three kinds of lipids (DMPC, DHPC, DDHA-PC) were used in this thesis. DMPC/DHPC was used for the bicelles 

and DDHAPC was used for liposomes preparation. 

3.5.1 DMPC/DHPC bicelles preparations 

A 10% (w/v) DMPC sample was prepared by dissolving the powder in bicelles buffer A and 

gently vortexing, followed by incubating the solution at 42°C for 5 min and then cooling to RT. 

10% (w/v) DHPC was also prepared in bicelles buffer A. Final 2% (w/v) DMPC/DHPC (1:1) 

mixtures were mixed briefly, heated to 42°C for 10 min, and then stirred at RT for 1 h until the 

mixtures were clear. The bicelles were mixed with rhodopsin dissolved in DM and agitated for 1 

h. Rhodopsin was transferred from DM to the bicelles. The residual DM in the sample was 

neglected because of its presumed very low concentration. All bicelles were used within 36 h 

from preparation 35.  

Buffers: 

 Bicelles buffer A: 10 mM BTP, 140 mM NaCl, 2 mM MgCl2, 2 mM CaCl2, pH 6.0. 
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 Buffer A containing 0.05% (w/v) DM was used as a DM-buffer A control buffer. 

 Buffer A containing 2% (w/v) DMPC/DHPC bicelles was prepared as the description 

above.  

The bicelles buffer A was used in all the experiments associated with DMPC/DHPC bicelles. 

 

Figure 3.5 Protein insertion into DMPC/DHPC bicelles. 

DMPC and DHPC were used to prepare the DMPC/DHPC bicelles by using different temperature changes. Once 

DMPC/DHPC bicelles were formed, concentrated rhodopsin dissolved in DM was added. After the incubation, 

rhodopsin was transferred to the DMPC/DHPC bicelles. 

3.5.2 DDHA-PC liposomes preparation and protein insertion 

DDHA-PC powder was dissolved in chloroform: methanol (2:1, v/v) and the solution was 

evaporated to dryness under a stream of nitrogen. The lipid film was hydrated with PBS pH 7.4 

to form the liposomes. The liposomes were mixed with 0.5% DM and the solubilized protein 

subject to gentle agitation for 3 h at 4°C. Bio-beads SM-2 were added in order to extract the 

extra DM 153,154. Finally, the proteoliposomes system included 0.375 mM DDHA-PC liposomes 

and 0.5 µM WT rhodopsin or mutants (representing a 750:1 ratio) (Figure 3.6). 

Buffers: 
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 During the DDHA-PC liposomes preparation process, the solvent buffer (see section 

3.4.2) was used and all the experiments involving DDHA-PC liposomes. 

 DM detergent buffer: solvent buffer containing 0.05% (w/v) DM.  

 DDHA-PC liposomes buffer: solvent buffer containing 0.375 mM DDHA-PC liposomes 

with 0.5 µM WT rhodopsin or mutants, which would be 750:1, as per the above 

description. 

 
Figure 3.6 Protein insertion into DDHA-PC liposomes. 

DDHA-PC powder was dissolved in PBS pH 7.4 to form the DDHA-PC liposomes and mixed with rhodopsin in 

DM detergent. Biobeads were added to the system for three times to remove the DM detergent, embedding the final 

protein in the DDHA-PC liposomes. 

3.6 Protein detection 

3.6.1 Protein characterization by UV-Vis spectroscopy 

UV-Vis spectra measurements were carried out with a Cary 100 Bio spectrophotometer (Varian, 

Australia), equipped with water-jacketed cuvette holders connected to a circulating water bath. 

Temperature was controlled by a Peltier accessory connected to the spectrophotometer. All 

spectra were recorded in the 250 nm - 650 nm range with a bandwidth of 2 nm, a response time 

of 0.1 s, and a scan speed of 300 nm/min. The spectral ratio is defined as absorbance at 280 nm 
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divided by absorbance at the visible λmax value to measure the pigment yield and stability. The 

protein concentration was determined by measuring the absorbance at λmax. Lambert-Beer law 

was used to calculate the concentration of the purified protein. The formula is: 

A = ε·c·l 

A is absorbance of λmax; ε is the molar absorptivity with units of M-1cm-1; l is the path length of the 

cuvette (1 cm); c is the concentration of the chromophore in solution, expressed in M.  

For mutants, each ε value was calculated with the equation: ε = (A/ARho) · (A440Rho/A440) εRho, 

where A is the absorbance at the λmax value, A440 is the absorbance at 440 nm after acid 

denaturation, and the εRho is the molar extinction coefficient of Rho (εRho= 42.7×103 M-1cm-1) 70. 

In this thesis, WT rhodopsin and mutants were characterized by their UV-Vis spectra. UV-Vis 

spectroscopy was also used for the photobleaching, thermal bleaching and chromophore 

regeneration experiments. 

3.6.1.1 Photobleaching and acidification of purified WT, and G90V and N55K mutants 

WT rhodopsin and mutant samples, purified from COS-1 cells and dissolved in the appropriate 

buffers, were monitored in the dark state and then photobleached with a 150-watt power source 

equipped with an optic fiber guide with a 495 nm cut-off filter for 30 s to ensure complete 

photoconversion to 380 nm absorbing species. For some mutants in specific conditions, a second 

illumination was also performed to facilitate complete photoconversion. Acidification was 

carried out immediately after photobleaching, by adding 2 N H2SO4 to a final pH of 1.9, and an 

absorption spectrum was recorded 1 min after acidification. 

3.6.1.2 Thermal stability of WT, and G90V and N55K mutants 

The thermal stability of rhodopsin and its mutants was followed by means of UV-Vis 

spectrophotometry. Pigment thermal bleaching rates were obtained, in the dark, by monitoring 

the decrease of absorbance at λmax of the visible spectral band as a function of time at either 

55°C, 48°C or 37°C. Spectra were recorded every min. Data points were obtained by using the 

equation: ∆A = (A-Af) / (A0-Af), where A is the absorbance recorded at λmax, Af is the absorbance 

at the final time, and A0 is the absorbance at time 0. The half-life time (t1/2) for the process was 

determined by fitting the experimental data to a single exponential decay curves using Sigma 
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Plot version 11.0 (Systat Software, Chicago, IL, USA). 

3.6.1.3 Chromophore regeneration of WT, and G90V and N55K mutants 

Two main buffers were used for chromophore regeneration depending on the different lipids used. 

For the chromophore regeneration in bicelles, we used the bicelles buffer A containing DM or 

DMPC/DHPC bicelles, pH adjusted to 6.0; for the chromophore regeneration in DDHA-PC 

liposomes, the solvent buffer containing DM or DDHA-PC liposomes (pH adjusted to 6.0) was 

used. 

2.5 fold molar excess of 9-cis-retinal or 11-cis-retinal was added to the purified samples, in the 

dark, followed by illumination with a 150-watt power source equipped with an optic fiber guide 

using a > 495 nm cut-off filter to avoid photobleaching of the free retinal. The samples were 

illuminated for 30 s at 20°C and spectra were recorded every min until no further increase in 

Aλmax was detected.  

3.6.2 Pigment characterization by fluorescence spectroscopy 

All fluorescence assays were performed by using a Photon Technologies QM-1 steady-state 

fluorescence spectrophotometer. Sample temperature was controlled with a cuvette holder Peltier 

accessory TLC 50 (Quantum Northwest, Liberty Lake, WA, USA) connected to a hybrid liquid 

coolant system Reserator XT (Zalman, Garden Grove, CA, USA). The changes on Trp 

fluorescence were monitored over time. All fluorescence scans were carried out by exciting the 

samples for 2 s at 295 nm and a bandwidth slit of 0.5 nm and blocking the excitation beam for 28 

s with a beam shutter to avoid photobleaching of the sample. Trp emission was monitored at 330 

nm with a bandwidth slit of 10 nm. 

3.6.2.1 Meta II decay stability of WT and mutants 

The Meta II active conformation decay process was followed in real time by fluorescence 

spectroscopy 155. 0.5 µM rhodopsin, or mutants, was stabilized for 10 min at 20°C in the 

fluorimeter, followed by illumination for 30 s with a > 495 nm cut-off filter. The increase in Trp 

fluorescence, due to retinal release from the Meta II conformation, was monitored and after the 

fluorescence reaching a plateau, 50 mM of hydroxylamine hydrochloride (adjusted to pH 7) was 

added to confirm complete retinal release. The t1⁄2 values for the retinal release curves were 
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determined by fitting the experimental data to a single-exponential curve using Sigma Plot 

version 11.0 (Systat Software, Inc., Chicago, IL, USA). 

3.6.2.2 Chromophore uptake of opsin upon retinal release 

The retinal entry process was monitored, in real time, by means of fluorescence spectroscopy. 

After Meta II complete decay, 2.5 fold 9-cis-retinal, or 11-cis-retinal, over pigment concentration 

was added into the cuvette, and changes in fluorescence intensity were recorded. The volume of 

the concentrated retinal stock added to the protein sample was less than 1% of the total sample 

volume to avoid any ethanol effect on the sample spectral behavior. 

Fluorescence spectroscopy was also used for the Gt activation assay (3.5.4), and 

rhodopsin-arrestin interaction experiments (3.5.8). 

3.6.3 Gt activation assays for WT rhodopsin and mutants in DM and liposomes 

In the thesis, two methods to monitor the Gt activation were performed; the radio-nucleotide 

filter binding assay and a fluorescence spectroscopic method. 

3.6.3.1 Radionucleotide filter binding assay for Gt activation  

The ability of WT rhodopsin, and mutants, to activate Gt was determined by means of a 

radionucleotide filter binding assay by measuring the uptake of guanidine 

5’-O-(3-thio)-triphosphate (GTPγS35) by Gt purified from bovine retinas. The assays were 

performed by mixing 10 nM rhodopsin purified from ROS (Rho) with 500 nM Gt in 25 mM Tris, 

pH 7.5, 100 mM NaCl, 5 mM MgAc, 5% glycerol, 2.5 mM DTT, and 3 µM GTPγS35 (0.156 

Ci/mmol) at RT. To determine the Gt activity, a final concentration of 0.012% DM or 2.5 µM 

DDHA-PC liposomes was needed. The reactions were initiated by the addition of rhodopsin in 

the dark and all the samples were filtered after different incubation times, either in the dark or 

after illumination, to determine the amount of bound GTPγS35. The bound GTPγS35 was 

measured by means of a Tri Carb 2100TR liquid scintillation counter (Perkin-Elmer, The 

Netherlands). 

The activity measured as cpm which is coverted to pmol using the formula: 

Concentration =
𝑑𝑑𝑑𝑑𝑑𝑑

2.22 ∙ 1012 ∙ 𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑜𝑜 𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑙𝑙𝑑𝑑
 



 
61 

 
 

Here, 

dpm = 𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒

 ; counter efficiency = 55%; 1 Ci = 2.22∙ 1012 dpm; radioactivity of 

the ligand = 1250 Ci/mMol. 

3.6.3.2 Gt activation by fluorescence spectroscopy 

Fluorescence spectroscopy was also used to detect Gt activation of WT and G90V, N55K 

mutants. The rate of GTPγS uptake by Gα was followed by monitoring the increase in intrinsic 

fluorescence of a Trp which is conserved in all G proteins 156. Excitation (λ = 285 nm) and 

emission (λ = 338 nm) wavelength were determined by scanning a protein sample. Spectra 

excitation and emission band were set at 1 nm with a signal integration of 5 s. For the assay, 25 

nM Rho was mixed with 1 mM of Gt in 25 mM Tris pH 7.5, 100 mM NaCl, 5 mM MgAc, 2.5 

mM DTT and 0.012% DM in a 200 µl cuvette and was maintained in the instrument for a few 

minutes to achieve a stable baseline. Then, 5 µM GTPγS was added for 5 min to measure the 

interaction of rhodopsin and Gt in the dark. The sample was illuminated for 1 min at 25°C. The 

increase in fluorescence was recorded until it reached a plateau. 

3.6.4 SDS-PAGE and Blue-Native PAGE (BN PAGE) 

3.6.4.1 SDS-PAGE and Coomassie blue staining 

SDS-PAGE is used to separate proteins from a mixture according to their size. SDS-PAGE 

system was composed of a separating gel (bottom) and a stacking gel (upper) which were 

prepared using the reagents listed in Table 3.1. Separating gel was added to the glass slot and of 

isopropanol was used to flat and seal up the surface. Once the separating gel was solidified, 

isopropanol was removed and the stacking gel was prepared. A comb was inserted to form the 

lanes. Proteins were prepared and mixed with 4x protein loading buffer and loaded onto the gel. 

The gel was run in the 1x TGS buffer for 2.5 h at 100V. After electrophoresis, the gel was stained 

with Coomassie brilliant blue buffer for 3 h and destained with Coomassie destain buffer until 

the protein bands were visible. 

Buffers: 
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 4x protein loading buffer: 0.0625 M Tris, 2% SDS, 10% Glycerol, 0.4 M DTT, 0.1% 

Blue Bromophenol dissolved in ddH2O. 

 1x TGS buffer: 3 g Tris, 14.4 g Glycine, 1 g SDS pH 8.3, up to 1 L with ddH2O. 

 Coomassie brilliant blue buffer: 10% (v/v) MetOH, 10% (v/v) AcOH and 0.025% (w/v)  

Coomassie-G 

 Coomassie destain buffer: 400 ml Methanol, 100 ml Glacial Acetic Acid dissolved in 1 

L ddH2O. 
Table 3.1 SDS-PAGE preparation.  

SDS-PAGE was composed of separating gel and stacking gel. APS: ammonium persulfate; TEMED: N,N,N',N'-tetramethy- 

-lethane-1,2-diamine; TEMED is used with APS to catalyze acrylamide polymerization. 

 Separating gel Stacking gel 

Components (stock) Final concentration 10 ml  Final concentration 5 ml 

Acr/Bis (37.5%) 12% 3.2 ml 5% 0.67 ml 

Tris-HCl (1.5 M pH 8.8) 0.75 M 5 ml ---- ---- 

Tris-HCl (0.5 M pH 6.8) ---- ---- 0.125 M 1.25 ml 

SDS (10%) 0.1% 0.1 ml 0.1% 0.05 ml 

APS 0.1% 0.1 ml 0.1% 0.05 ml 

TEMED 0.5% 0.05 ml 0.5% 0.025 ml 

ddH2O  1.55 ml  2.955 ml 

3.6.4.2 Blue Native PAGE (BN-PAGE) 

For the BN-PAGE, the gel was composed of separating gel and stacking gel as described in Table 

3.2. The protein was expressed in HEK293S-GNTI- cells which lack N-linked glycans to avoid 

smeary bands of proteins on the gel. Samples were loaded into the gel and run 4 h at 4°C and 

100V. The BN loading buffer used glycerol prevents protein denaturation and the BN running 

buffer containing Coomassie blue G stains the protein directly 69. The gel was destained to reveal 

the protein bands after electrophoresis.  
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Buffers: 

 Loading buffer: 5% glycerol and 0.01% Ponceau Red. 

 Running buffer: the gel running buffer is 50 mM Tricine, 15 mM Bis-Tris and 0.02% 

Coomassie blue G with pH 7.0. 
Table 3.2 BN gel preparation of separating gel and stacking gel.  

BN gel was composed of stacking gel (upper) and separating gel (bottom). The gels were usually polymerized between two glass 

plates in a gel caster with a comb inserted in the stacking gel to create the sample wells. After the gel is polymerized, the comb 

can be removed and the gel is ready for electrophoresis. 

 Separating gel (13%) Stacking gel (4.2%) 

30% Acrylamide/Bis Solution (37.5:1) 3.5 ml (13%) 0.7 ml (4.2%) 

1 M Bis-Tris (pH 7.0) 0.4 ml (50 mM) 0.25 ml (15 mM) 

ddH2O 4.0 ml 4.0 ml 

APS (10%) 0.1 ml (1.2%) 0.05 ml (1%) 

TEMED 0.05 ml (0.6%) 0.05 ml (0.6%) 

3.6.5 WB 

The WB is a widely used analytical technique to detect specific proteins in a sample of tissue 

homogenate or extract. Protein samples (nearly 100 ng) were prepared with loading buffer and 

subject to SDS-PAGE. Gel electrophoresis was carried out at 100V for 2.5 h to separate the 

denatured protein by polypeptide size. Then, the protein samples were transferred onto a 

nitrocellulose membrane (Bio-Rad). The membrane was blocked by 5% (w/v) milk dissolved in 

tris buffered saline (TBS) for 1 h to avoid any nonspecific binding of antibodies on the surface of 

the membrane. Then, the membrane was incubated for 1 h with a primary antibody which could 

specifically bind to the proteins and subsequently with a secondary antibody which binds the 

primary antibody (Table 3.3). The membrane was washed with tween tris buffered saline (TTBS) 

buffer for 3 times before each antibody incubation and every wash lasted for 10 min to remove 

the unbound antibody. Considering the protein samples, we used different primary antibodies, 

shown in detail in Table 3.3. All antibodies were dissolved in TBS buffer, stored at 4°C and used 

for several times. 
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Horseradish peroxidase (HRP) conjugated to the secondary antibody is an enzyme frequently 

used as an indicator in WB. A substrate named Super-Signal West Pico Chemiluminescent 

Substrate (Thermo Fisher Scientific) reacts with HRP and produces a signal which is detected on 

the Medical X-ray film (AGFA) in an electrophoresis systems autoradiography cassette. 

Buffers: 

 TBS buffer: 8.7 g NaCl, 1.21 g Tris, 0.4 ml HCl in 1L ddH2O, pH 8.0. 

 TTBS buffer: 1 ml Tween 20 dissolved in 1L TBS solution. 
Table 3.3 WB samples and antibody classification.   

There are mainly three different protein samples that have been used. These include rhodopsin and mutants, M3R and mutants 

and Tau protein. All the protein samples were incubated with their antibodies correspondingly and finally detected using the 

Super-Signal West Pico Chemiluminescent Substrate (Thermo Fisher Scientific). 

Samples rhodopsin and mutants M3R and mutants Tau protein 

Source and expression COS-1, HEK293S-GNTI- 

cells 

COS-1, HEK293S-GNTI- 

cells 

BL21, COS-1, HEK293S- 

GNTI- cells 

Primary antibody Rho-1D4 mouse IgG mAChR M3R rabbit 

polyclonal IgG 

Tau-5 mouse monoclonal 

IgG 

Primary antibody dilution 1:10000 1:1000 1:5000 

Secondary antibody Goat anti-mouse IgG-HRP Goat anti-rabbit IgG-HRP Goat anti-mouse IgG-HRP 

Secondary antibody 

dilution 

1:5000 1:5000 1:5000 

3.6.6 Arrestin R175E purification by means of Bio-Scale mini profinity cartridges 

Arrestin R175E pG58 vector was transformed into E.coli BL21-RP competent cells (as described 

in section 3.3.1.3) to obtain a colony to start a mini-culture of 10 ml LB medium containing 

ampicillin (100 µg/ml) for an overnight culture until A600 nm = 4.0. This medium was diluted in 

1L LB medium with ampicillin and incubated at 37°C and 230 rpm until A600 nm reached nearly 

0.8, which took 3 - 5 h. 1 ml culture was kept as a control sample and 100 µM of IPTG was 

added into the remaining culture to induce protein expression. The culture was incubated 

overnight (between 16 and 20 h) at 37°C and 230 rpm. 
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The cells were harvested by centrifugation and re-suspended with 40 ml arrestin buffer and lysed 

by sonication (HD 2070, sonopulse) for 3 min/time, 7 cycles on ice. Then, the solution was 

ultracentrifuged at 35000 rpm for 35 min at 4°C. The supernatant was collected and filtered 

through a 0.45 µm filter. A 1 ml column Bio-Scale mini profinity cartridge was used to purify 

arrestin. Upon equilibration of the column by using 10 volumes of arrestin buffer, the filtered 

sample was loaded by means of a syringe at a flow rate of 3 ml/min. Finally the cartridge was 

washed with 40 ml arrestin buffer. The total time for the binding and washing steps ranges 

between 30 min to 40 min, a period in which cleavage of arrestin from the prodomain/profinity 

eXactTM fusion tag by immobilized S189 subtilisin BPN’ is negligible. Arrestin was released and 

eluted from the column bound prodomain/profinity eXactTM fusion tag by initially injecting 3 ml 

arrestin elution buffer followed by a 20-30 min incubation at RT, and then an addition of 2 ml 

arrestin elution buffer again. Samples of unbound protein, washes and elutions were loaded onto 

an SDS-PAGE gel and Coomassie blue staining was used to observe the protein bands (see 

section 3.6.4.1). 

Buffers: 

 Arrestin buffer: 10 mM MOPS pH 7.2 containing 50 mM NaCl and 0.1 mM PMSF and 

protease inhibitor (filtered before use). 

 Arrestin elution buffer: Arrestin buffer containing 0.1 M NaF   

3.6.7 Arrestin R175E interaction with rhodopsin 

In this thesis, two experiments were carried out to determine arrestin binding to rhodopsin. One 

is the pulling down assay which is used to detect the interaction between arrestin and rhodopsin 

in membranes. Another is the Meta II decay measurement by fluorescence detection to show 

arrestin inhibition of retinal release from Meta II. 

3.6.7.1 Arrestin R175E binding to light-activated rhodopsin 

In the dark state, 1.55 µM purified arrestin was mixed with 1.1 µM Rho in ROS membrane in 

800 µl arrestin buffer, and separated into two samples (400 µl/each). One sample named “dark 

state” was kept in the dark at RT. Another sample called “light state” was illuminated (> 495 nm) 

for 5 min at RT under a light of 150 W. These samples were pelleted by centrifugation in the dark 
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at 6000 rpm for 30 min at 4°C. The supernatant was removed, and washed with 500 µl of arrestin 

buffer. These washing steps were repeated six times. Finally the pellets from dark state and light 

state were solubilized in 20 µl of arrestin buffer and subject to SDS-PAGE (described in section 

3.6.4.1). 

3.6.7.2 Meta II decay measurement by fluorescence spectroscopy 

Purified rhodopsin and arrestin R175E were mixed in arrestin buffer at different ratios, 1:0, 1:2 

and 1:4 respectively, and the fluorescence intensity was measured until stabilization. Then, the 

sample was illuminated for 30 s and the fluorescence increase was measured as described in 

section 3.6.2.1.  

3.6.8 M3R and mutants membrane protein preparation 

M3R WT and M3R mutants named M3R-N132G, M3R-D518N, M3R-D518K and M3R-K523Q 

were separately transfected or cotransfected with tau protein into HEK293S-GNTI- cells and 

HEK293T cells. Here, HEK293S-GNTI- cells was used for further detection by WB, and 

HEK293T cells were used to detect the protein trafficking by immunocytochemistry. After 48 h 

incubation, samples were harvested and re-suspended with 200 µl PBS for each sample. 1 µl 

sample was dissolved in 100 µl PBS to detect the amount of cells under A540 nm by 

spectrophotometry. Absorbance of the samples was adjusted to the same value diluting with PBS. 

10 µl 10% DM was added to each sample which was agitated for 1 h at 4°C and then centrifuged 

at 6000 rpm for 30 min. The supernatants including proteins were collected and detected by WB.  

3.6.9 Immunocytochemistry detection 

To detect the interaction between M3R and mutants and tau protein in cells, immunofluorescence 

was used by checking different fluorescence signals. The cells were cultured in 6 well plates, 

transfected by PEI reagent and incubated for 24 h. The medium was removed and cells were 

rinsed twice with PBS. 1 ml 3.7% formaldehyde fixative was added into each well and incubated 

at 37°C for 20 min to fix the cells onto the coverslips. Cells were gently washed with TBS 3 

times, 5 min per time. To avoid unspecific binding, cells expressing M3R and the mutants were 

blocked directly with 5% milk in TBS for 30 min at RT. Cells expressing IC tau protein were 

incubated with the permeation buffer, to increase membrane permeability, before blocking. 
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Briefly, each well was washed three times with the permeation buffer, for 4 min each, with 

agitation. After permeation, cells were washed with TBS 3 times, 5 min per time, and blocked 

with 5% milk in TBS for 30 min at RT and agitation. 

Cells were incubated for 1h with the corresponding primary antibody. TTBS was used to wash 

the cells three times for 5 min each. Then the secondary antibody conjugated to fluorescein was 

used for 1 h, followed by three times washing with TTBS for 5 min. Two types of protein 

samples have been used in the immunofluorescence experiments and the corresponding 

antibodies are listed in Table 3.4. Antibodies were dissolved in TBS buffer. In co-transfection 

experiments, primary and secondary antibodies were used for 1 h separately. In our experiments, 

tetramethylrhodamine (TRITC) and fluorescein isothiocyanate (FITC) fluorescent dyes were 

used for conjugation to the different secondary antibodies for cellular imaging. 
Table 3.4 Immunocytochemistry samples and antibody classification.  

M3R WT, M3R mutants and tau protein were detected by immunofluorescence. All the samples were incubated with their 

corresponding antibodies. 

Samples M3R and mutants Tau protein 

Source and expression COS-1, HEK293T cells COS-1, HEK293T cells 

Primary antibody mAChR M3R rabbit polyclonal IgG Tau-5 mouse monoclonal IgG 

Primary antibody dilution 1:1000 1:5000 

Secondary antibody TRITC anti-rabbit IgG FITC anti-mouse IgG 

Secondary antibody dilution 1:200 1:200 

Absorption spectrum 550 nm 490 nm - 495 nm 

Emission spectrum 620 nm 525 nm - 530 nm 

Color on immunofluorescence Orange fluorescence Yellow-green fluorescence 

After the incubation with antibodies finished, the coverslips were taken out and mounted on a 

glass slide with a mounting medium for fluorescence with 4’, 6-diamidino-2-phenylindole 

(DAPI) stain (Vector Laboratories, Inc), which stains the nucleus to blue. A fluorescence 

microscope was used to detect the fluorescence signals. 
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3.6.10 Lowry protein assay 

The Lowry protein assay is a biochemical assay for determining the total concentration of 

protein in a solution. It is used to detect the protein concentration. Different concentrations of 

bovine serum albumin (BSA) were prepared to construct a standard calibration line (Table 3.5). 

The protein sample (20 µl) and buffer (blank) (20 µl) were also prepared at the same time. 
Table 3.5 Standard BSA samples preparation.  
Six different concentrations of BSA samples diluted in water were used as a standard. 

 BSA1 BSA2 BSA3 BSA4 BSA5 BSA6 

Final CBSA 0.9 µg/µl 0.8 µg/µl 0.7 µg/µl 0.6 µg/µl 0.5 µg/µl 0 

0.1% BSA (1 µg/µl) 18 µl 16 µl 14 µl 12 µl 10 µl 0 µl 

H2O 2 µl 4 µl 6 µl 8 µl 10 µl 20 µl 

9.8 ml Lowry solution A and 0.2 ml Lowry solution B were mixed together and 0.9 ml of this 

mixture was added to 20 µl of each sample (BSA 1-6, protein sample and blank) and mixed 

thoroughly. After 15 min incubation at RT, 0.1 ml 1.0 N Folin and Ciocalteu’s phenol reagent 

was added to each sample, subject to vortex and incubated for 5 min at RT. Measurement of A 660 

nm was used to determine protein concentration from the BSA standard concentration line. 

Buffers: 

 Lowry solution A (10 ml): 0.1 M NaOH (40 mg) and 0.2 g Na2CO3 dissolved in 10 ml 

ddH2O 

 Lowry solution B (10 ml): 0.1 g potassium sodium tartrate tetrahydrate and 50 mg 

CuSO4 dissolved in 10 ml ddH2O. CuSO4 was dissolved first to avoid any aggregation. 
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4. RESULTS AND DISCUSSION 
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4.1 Increased conformational stability of rhodopsin mutants associated with 

RP in phospholipid bicelles 
  



 
72 

 
 

 
  



 
73 

 
 

Rhodopsin WT and two RP mutants, G90V and N55K, were studied for spectroscopic and 

functional characterization under artificial membrane DMPC/DHPC bicelles condition. G90V 

showed very low thermal stability in the dark state 70,157. On the other side, N55K, associated 

with sector RP, also showed structural instability in the dark and thermal sensitivity 79. Herein, 

9-cis-retinal was used as an exogenous retinal analog 69,79,158, in the regeneration of rhodopsin 

and subsequent mutants purification. Considerable efforts have been done to increase the 

stability of rhodopsin mutants in the past, such using salts, detergents and phospholipids 91,94,97. 

All the characterized parameters of the rhodopsin WT and G90V, N55K mutants can be 

compared in DMPC/DHPC bicelles and DM detergent and can be responsible for inherited 

retinal disorders.   

4.1.1 Stability of Rho in DMPC/DHPC bicelles 

DMPC/DHPC bicelles have been used to increase the thermal stability of purified rhodopsin 

obtained from ROS membranes 33,35,94. In this case, ROS rhodopsin, solubilized in DM (RhoDM), 

was used to confirm the effectiveness of DMPC/DHPC bicelles in maintaining protein stability.  

 
Figure 4.1 DMPC/DHPC stabilization of rhodopsin from ROS. 

Thermal stability, in the dark, of RhoDM (•) or Rhobicelles (o) at 55°C was characterized as explained in section 3.5.1. 

Spectra were recorded and normalized absorption maximum (Amax) were plotted over time per min (see section 

3.6.1.2). At the end of the thermal decay, 50 mM hydroxylamine (pH 7.0) was added to confirm complete decay. 

Curves were fit to an exponential decay function.  

The decay of the visible band (500 nm) was followed for RhoDM and rhodopsin in bicelles 

(Rhobicelles) at 55ºC (Figure 4.1) and the t1/2 for the processes were determined. t1/2 for Rhobicelles, 
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at 55ºC (41.2 ± 2.5 min) was about 9 fold larger than t1/2 for RhoDM (4.7 ± 0.4 min) indicating 

that DMPC/DHPC bicelles remarkably increased the thermal stability of rhodopsin in 

comparison to the detergent-solubilized samples, in agreement with previous reports 35,70. 

4.1.2 UV-Vis spectral characterization of purified WT, G90V, and N55K mutants 

WT and G90V, N55K mutants were purified from transfected COS-1 cells and their UV-Vis 

spectral properties were compared in either DM buffer (Figure 4.2) or bicelles buffer (Figure 4.3). 

A summary of the spectral features of the DM buffer samples, including λmax value of the visible 

chromophoric band, molar extinction coefficient (ε) and spectral ratio (A280/Aλmax) is shown in 

Table 4.1. The band with a maximum at λ280 nm is related to the total protein and includes the 

regenerated protein, misfolded protein and opsin species that may have lost the chromophore 

during the purification process 159. The UV-Vis characterization of WT, N55K and G90V 

(regenerated with 9-cis-retinal) in DM detergent and in DMPC/DHPC bicelles was performed 

(Figure 4.2 and 4.3). The 9-cis isomer was used because it has been shown to improve 

chromophore regeneration of rhodopsin mutants 21. The visible bands of the WT and the mutants 

appear blue-shifted, with regard to the 11-cis-retinal containing samples 158, due to the specific 

differential interaction of 9-cis-retinal with the amino acids in the binding pocket. The WT, 

G90V and N55K mutants showed visible absorbance bands at 486 nm, 480 nm and 480 nm 

respectively.  
Table 4.1 Spectroscopic properties of WT and RP mutants with 9-cis-retinal purified in DM buffer. 
aMean values of the visible λmax of WT and RP mutants G90V, N55K in DM buffer. bEach ε value was calculated with the 

equation: ε = (A / ARho)(A440 Rho  / A440) εRho, where A is the absorbance at the λmax value, A440 is the absorbance at 440 nm after 

acid denaturation, and the εRho is the molar extinction of rhodopsin (43.2×103 M-1cm-1) 70. cThe A280  / Amax ratio reflects the 

extent of chromophore regeneration. All values were determined as averages from 3 independent experiments. 

Opsin aλmax (nm) bε x 103 (M-1cm-1) cA280 / A λmax 

WT 486 ± 3 43.2 ± 0.1 2.4 ± 0.1 

G90V 480 ± 3 34.1 ± 0.5 3.0 ± 0.3 

N55K 480 ± 2 35.5 ± 0.3 5.1 ± 1.6 
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Figure 4.2 UV-Vis characterization of WT, N55K and G90V (regenerated with 9-cis-retinal) in DM buffer. 

WT and G90V and N55K mutants were immunopurified in 0.05% DM buffer. The spectra were obtained at 20ºC. 

Illumination was carried out for 30 s with a 150 W power source equipped with an optic fiber guide using a > 495 

nm cut-off filter. (—) Dark state. (····) photobleached state; inset, difference spectrum (dark-light). 
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Figure 4.3 UV-Vis characterization of WT, N55K and G90V in bicelles. 

WT, G90V, and N55K were purified and inserted into DMPC/DHPC bicelles. The spectra were measured at 20ºC. 

Illumination was carried out with a 150 W power source equipped with an optic fiber guide using a > 495 nm cut-off 

filter. (—) Dark state; (····) photobleached state after 30 s illumnation; (---) photobleached state after 60 s 

illumination. Inset, difference spectrum (dark-light). Notably, N55Kbicelles showed only 20% photobleaching (a), 

and illumination for a further 30 s caused further decay of the visible band (b). 
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In DM buffer (Figure 4.2, Table 4.1), G90V and N55K mutants showed a higher A280/Aλmax ratio 

than WT, especially N55K, which showed a 2-fold larger ratio than WT. The high A280/Aλmax 

ratio implies lower chromophore regeneration. Besides, N55K showed much lower purification 

yield which is nearly 30% of G90V and only 15% of WT during the purification process which 

likely indicates some misfolding effect due to the mutation 79. 

Upon illumination, G90VDM and N55KDM mutants showed incomplete conversion of the visible 

band to the 380 nm absorbing species with ~25% remaining absorbance at this wavelength 

indicating partial trapping of a photointermediate with a protonated SB linkage (Figure 4.2) 70,79. 

WT and G90V showed similar behavior upon illumination in DM buffer and in bicelles buffer 

(Figure 4.2 and 4.3). While N55Kbicelles showed an altered photobleaching pattern and double 

illumination time which was required to shift most of the visible band to 380 nm compared with 

N55KDM (Figure 4.3).  

During the purification, the WT and mutants were purified by the process as described in section 

3.4.2 by which the proteins were dissolved in DM detergent, or inserted into DMPC/DHPC 

bicelles as described in section 3.5.1. Compared with WTDM, the ratio A280/Aλmax of G90VDM 

and N55KDM is 3.0 and 5.1 respectively which approximately is 1.2 and 3.2 fold. This could be 

interpreted as N55KDM mutant showing lower chromophore stability during the purification 

process than the other proteins (Figure 4.2) 79. Upon illumination, G90VDM and N55KDM also 

showed abnormal photobleaching behavior, with incomplete conversion of the visible band 

(Figure 4.2) which is a behavior also seen for other rhodopsin mutants 70,79. 

The DM detergent forms micelles to stabilize the protein (see section 1.3.1) 70,106 whereas the 

DMPC/DHPC bicelles provide a lipid bilayer mimic membrane for protein stabilization (see 

section 1.4.1) 35,121. The schematic models for these arrangements were shown in Figure 1.9. 

Upon purification of WT and mutant rhodopsins in bicelles environment, misfolding cannot be 

determined by the ratio A280/Aλmax due to the high background detected on the spectrum (Figure 

4.3). However, the illumination shift at the visible band can be clearly characterized for both WT 

and the mutants (Figure 4.3). In bicelles environment, WTbicelles showed nearly complete 

illumination and the peak shifted from 486 nm to 380 nm. G90Vbicelles depicted G90VDM-like 

character, with incomplete but similar photobleaching conversion from 480 nm to 380 nm as in 
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DM conditions. N55Kbicelles showed an altered illumination pattern. Upon two illumination times, 

the N55Kbicelles mutant only showed 1/5 photoconversion at the first time (Figure 4.3 N55K line 

a) and about 1/2 illumination at the second time (Figure 4.3 N55K line b). The visible band of 

N55Kbicelles appears to be more stable than N55KDM, indicating that bicelles stabilized its dark 

state (Figure 4.3). 

4.1.3 WB of WT and G90V and N55K mutants in DM and in bicelles  

Purified proteins were electrophoretically characterized by means of WB analysis (Figure 4.4).  

 
Figure 4.4 WB of WT and G90V, N55K in either DM detergent or bicelles conditions. 

WT, G90V and N55K mutants were purified from COS-1 cells either in DM buffer or bicelles buffer respectively 

(as explained in section 3.6.5). The same amount of protein was loaded onto a SDS-PAGE gel, subject to 

electrophoresis and subsequently transferred to a nitrocellulose membrane for detection. Below the main opsin 

band (green rectangle), G90V and N55K mutants also showed bands, associated to truncated forms of the protein, 

or to non-glycosylated species.  

WTbicelles showed more dimer bands and high-mobility species than WTDM which can be 

tentatively assigned to oligomeric species of rhodopsin although the contribution of protein 

aggregation cannot be ruled out. G90V showed a prominent characteristic 27 kDa lower band 

that has been attributed to a truncated form of rhodopsin 50,51. This band was detected both in 
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DM and in bicelles. In the case of N55K mutant, N55Kbicelles showed a less intense 27 kDa and 

an apparent increase in the high molecular mass species band when compared to the N55KDM 

pattern.  

Therefore, the electrophoretic analysis of the purified mutant proteins revealed differences in the 

intensities of bands that would correspond to dimeric (or higher-order oligomeric) conformations 

that appeared to be favored in bicelles. This behavior suggests that the mutants may have increased 

susceptibility to protein truncation, associated to a decreased conformational stability during 

protein purification, and/or linked to the molecular phenotype underlying the pathological nature 

of the mutations.  

4.1.4 Characterization of WT, G90V and N55K in DM and in DMPC/DHPC bicelles by 

means of thermal stability, chromophore regeneration and Meta II decay assays 

4.1.4.1 Thermal stability of WT, G90V and N55K in DM and DMPC/DHPC bicelles 

WT, G90V and N55K were eluted in either DM buffer or bicelles buffer and their thermal 

stability was determined at 37ºC (Figure 4.5). WT in DM and bicelles showed high thermal 

stability which decreased only less than 10% in 2.5 h. G90Vbicelles and N55Kbicelles showed 

enhanced thermal stability when compared to the DM-solubilized samples. Thermal decay 

process involves protein conformational changes, retinal isomerization and eventually hydrolysis 

of SB and chromophore release 34,94,160. The t1/2 of G90Vbicelles and N55Kbicelles suffered a 3 and 4 

fold increase respectively when compared to those of the detergent-solubilized samples (Figure 

4.5 and Table 4.2A). 
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Figure 4.5 Thermal stability of WT, G90V and N55K in both DM and bicelles conditions. 

The panel shows the thermal decay process of WT and G90V and N55K mutants in buffer A containing DM 

detergent (•) and in the bicelles buffer (o) described in section 3.5.1. The experiments were run at 37°C and 

normalized absorbance values at the Amax, in the visible region, were plotted over time. The spectra were 

recorded every minute. At the end of the thermal decay, 50 mM hydroxylamine (pH 7.0) was added to confirm 

the complete decay. Curves were fit to an exponential decay function.  
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4.1.4.2 Chromophore regeneration of WT and G90V and N55K mutants in DM and DMPC/DHPC 

bicelles 

The effect of DMPC/DHPC bicelles on pigment regeneration after photobleaching was analyzed 

for the purified proteins. The maximal extent of regeneration and the regeneration rate were the 

main factors analyzed (Figure 4.6). 

 

Figure 4.6 Chromophore regeneration of WT and opsin mutant pigments in bicelles. 

The chromophore regeneration rates for bleached WT, G90V and N55K mutant were measured in buffer A 

containing (•) DM detergent and (o) bicelles buffer. 9-cis-retinal was added to the samples, and regeneration rates 

were determined by measuring the absorbance increase at the visible Amax after pigment illumination with a cut-off 

filter of λ > 495 nm. The experiments were run at RT and normalized absorbance values at the Amax, of the visible 

band, were plotted over time. The spectra were recorded every minute. 

The rate of regeneration was clearly faster in the bicelles system. The 9-cis-retinal regeneration 



 
82 

 
 

extent was similar both for WTDM and WTbicelles. G90Vbicelles showed 20% more chromophore 

regeneration than G90VDM. In contrast, N55K exhibited a special behavior. Upon the 

illumination with 30 s, N55KDM and N55Kliposomes only caused 30-40% photoconversion of the 

visible absorbance band. After 9-cis-retinal addition, N55K did not show apparent chromophore 

regeneration but a decrease on Amax suggesting a consistently retinal release possibly due to an 

impaired retinal entrance. Even though, DMPC/DHPC bicelles still helped N55K kept 5% more 

chromophore in the binding pocket than in DM detergent (Figure 4.6 and Table 4.2B). 

4.1.4.3 Meta II decay of WT, and G90V and N55K mutants, in DM and DMPC/DHPC bicelles  

 
Figure 4.7 Meta II decay for WT and G90V, N55K mutants. 

WT, G90V and N55K were purified in either DM buffer (panel A) or in bicelles buffer (panel B). The samples were 

illuminated for 30 s (λ > 495 nm) after the dark-state fluorescence intensity was stabilized. After Meta II decay and 

once the fluorescence intensity reached plateau, 50 mM hydroxylamine, pH 7.0, was added to confirm complete 

retinal release.  

Meta II stability was studied by fluorescence spectroscopy, which measures retinal release upon 

sample illumination 155. Overall, the retinal release process was faster in bicelles than in DM 
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samples. Under both conditions, t1/2 values for retinal release followed the order G90V >> WT > 

N55K, being G90V the slowest (Figure 4.7 and Table 4.2C). This behavior could be tentatively 

associated with the clinical phenotypes caused by these mutations.  

In all cases, bicelles have shorten t1/2 of the retinal release process for WT (25.4%), G90V 

(39.8%), and N55K (7.9%) compared with the same process in DM buffer (Figure 4.7 and Table 

4.2C). Hydroxylamine was added in order to confirm complete retinal release. No changes were 

detected for WT and G90V and N55K mutants in DM buffer (Figure 4.7A), but in bicelles 

environment both WT and G90V mutant showed a slight additional increase of Trp fluorescence 

emission which suggested additional retinal release from the binding pocket (Figure 4.7B). On 

the other hand, after hydroxylamine addition, N55K did not show increase on fluorescence 

intensity either in DM or in bicelles. This result was in contrast to that obtained in a previous 

study in which hydroxylamine did cause the fluorescence signal increase of N55K dissolved in 

PBS (pH 7.4) and containing 0.05% DM, pointing out to a strong effect of buffer in the 

spectrofluorimetric measurements 79. In addition, different fluorescence intensities can be 

observed between DM (Figure 4.7A) and bicelles (Figure 4.7B) because of potential contribution 

from the DMPC/DHPC bicelles to the fluorescence signal. 

Overall, the data from thermal stability, chromophore regeneration and Meta II decay 

experiments is summarized in Table 4.2 and further analyzed in Figure 4.8 to determine the 

conformational properties of WT, G90V and N55K in both DM and DMPC/DHPC bicelles. 

The thermal stability for the mutants at 37ºC was clearly improved in the bicelles system. WT in 

DM and in DMPC/DHPC bicelles was stable for hours at 37ºC. On the other hand, a 3-fold of 

G90Vbicelles and a 4-fold of N55Kbicelles increase in the thermal stability were determined compared 

with G90VDM and N55KDM respectively, meaning that bicelles provide conformational stability, 

and a better environment to protect the SB linkage from hydrolysis (Figure 4.5, 4.8A and Table 

4.2A) 160.  
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Table 4.2 WT and RP mutants thermal stability (A), chromophore regeneration (B) and Meta II decay (C) in DM and 

bicelles.  
At1/2 of WT and G90V and N55K mutants in thermal bleaching experiments, as explained in section 3.6.1.2. Thermal decay 

experiments were run at 37°C. At the end of the thermal decay, 50 mM hydroxylamine (pH 7.0) was added to confirm complete 

decay. Curves were fit to an exponential decay function. BRegeneration percentage of WT and G90V and N55K mutants. Retinal 

was added before illumination and spectra were recorded every min after illuminating the samples for 30 s using a > 495 nm 

cut-off filter. These experiments were run at 20ºC. CRetinal release t1/2 of WT, G90V and N55K mutants. Samples were stabilized 

for 10 min in the dark and subsequently illuminated for 30 s using a > 495 nm cut-off filter. Fluorescence increase was measured 

until the signal reached a plateau. 50 mM hydroxylamine pH 7.0 was added to confirm complete retinal release. The t1/2 of the 

retinal release was determined from the exponential curves. 

` Buffer WT G90V N55K  

AThermal bleaching   DM > 180 min 22.5 ± 3.1 min 30.1 ± 1.7 min 

bicelles > 180 min 64.1 ± 3.7 min 123.5 ± 2.6 min 

BRegeneration DM 91.8 ± 3.2% 70.8 ± 3.3% 11.7 ± 1.9% 

bicelles 88.9 ± 3.2% 96.2 ± 2.3% 16.9 ± 2.1% 

CMeta II decay DM 19.3 ± 0.5 min 34.9 ± 1.0 min 10.1 ± 1.5min 

bicelles 14.4 ± 1.7 min 21.0 ± 2.6 min 9.3 ± 2.1 min 

Chromophore regeneration is an important index of structural preservation for rhodopsin mutants 

(Figure 4.6, 4.8B and Table 4.2B). WT in DM and in DMPC/DHPC bicelles presented similar 

regeneration of 90% indicating that WT was stable and not significantly affected by the DM or 

DMPC/DHPC environment. G90Vbicelles showed 96% regeneration with 9-cis-retinal which is 

20% more increase than compared to G90VDM with 70% regeneration, suggesting that lipids play 

a role in the regeneration process by helping stabilize its optimal ligand-binding conformation 

(Figure 4.6, 4.8B and Table 4.2B). In contrast, N55K mutant did not show any chromophore 

regeneration. The retinal release trend of N55K, in DM and in DMPC/DHPC bicelles, indicated 

that N55K had a low ability to bind 9-cis-retinal. It is likely that the N55K mutation impaired 

retinal release by interfering in the retinal release pathway 161. In spite of this, DMPC/DHPC 

bicelles helped N55K in keeping 5% more retinal than in DM detergent (Figure 4.2B). 

  



 
85 

 
 

 

Figure 4.8 Characterization of WT and RP mutant phenotypes by means of thermal stability, chromophore 

regeneration and Meta II decay assays. 

WT, G90V and N55K were purified in DM buffer (black bar) and bicelles buffer (gray bar). A. t1/2 of WT, G90V 

and N55K mutants from thermal bleaching experiments at 37°C; B. Chromophore regeneration percentage of WT, 

G90V and N55K mutants; C. t1/2 of WT, G90V and N55K mutants from the Meta II decay experiments. The 

numerical values for the measured times are displayed in Table 4.2. The mean and error bars of three independent 

measurements are represented. 
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In the Meta II decay experiment (Figure 4.7), the fluorescence of WT and the mutants was 

allowed to stabilize in the dark, and increased upon illumination. After the fluorescence signal 

reaching a plateau, hydroxylamine was added to confirm complete retinal release. In DM 

detergent, there was no fluorescence change upon hydroxylamine addition (Figure 4.7A). On the 

other hand, after active Meta II decay, subsequent hydroxylamine addition, in bicelles, resulted 

in an additional fluorescence increase for WTbicelles and G90Vbicelles. The decreased t1/2 of Meta II 

decay in bicelles meaning Meta II state could stay longer time. The hydroxylamine results 

indicated that after Meta II decay there is still some retinal in WTbicelles and G90Vbicelles (Figure 

4.7B) 31. On the contrary, N55Kbicelles did not show any intensity change upon hydroxylamine 

addition. Figure 4.8 showed the decrease of t1/2 of Meta II in WT bicelles and G90V bicelles, 

N55K did not depict obvious differences between DM and bicelles. 

4.1.5 Opsin conformational stability after retinal release 

WT and G90V and N55K mutants, in DM buffer or bicelles buffer, were analyzed by fluorescence 

spectroscopy in order to follow the potential ability of 9-cis-retinal to enter the opsin pocket after 

complete Meta II decay. Thus, 2.5 fold exogenous 9-cis-retinal was added, after complete retinal 

release (plateau in the fluorescence curve), in order to test whether this ligand could enter the 

binding pocket. Upon retinal addition, WTDM showed only a minor reduction of Trp fluorescence 

suggesting that the retinal significantly could not enter the binding pocket. A clear decrease in 

fluorescence was detected in the case of WTbicelles, indicating that the exogenous chromophore 

could enter the binding pocket thus quenching Trp fluorescence. This result indicated that bicelles 

help to maintain a stable opsin structure for a long time, after the complete retinal release process, 

thus favoring retinal binding to the protein (Figure 4.9). The structurally unstable mutants G90V 

and N55K showed a clear distinct behavior. Exogenous addition of 9-cis-retinal resulted in an 

important decrease of the fluorescence signal for G90VDM and a further decrease for G90Vbicelle s 

suggesting that lipids play a role in the regeneration process by stabilizing its optimal 

ligand-binding conformation (Figure 4.9). Compared with WT, G90V appears to have a more 

open binding pocket that could bind more retinal both in DM and bicelles. However, addition of 

9-cis-retinal did not cause any changes of N55KDM or N55Kbicelles after complete Meta II decay, 

suggesting that the binding pocket of N55K opsin presented an impaired entrance 76. This unique 

N55K behavior may provide new clues that would guide us into deciphering the molecular 
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mechanism of sector RP. We have previously associated this mechanism to a different response 

behavior upon light exposure to this mutant 30. 

  
Figure 4.9 Chromophore 9-cis-retinal entry in photoactivated opsin. 

After fluorescence signal reached a plateau, in the Meta II decay experiment, WT, N55K and G90V pigments 

purified either in DM buffer (panel A) or bicelles buffer (panel B), retinal was added (2.5 fold of exogenous 

retinal to the concentration of pigment) to detect retinal entry into the binding pocket (as described in section 

3.6.2.2). WTbicelles and G90Vbicelles showed more fluorescence decrease compared to the DM samples, whereas 

N55Kbicelles did not show any change upon retinal addition in any condition. 

Similar results were obtained when the experiments were carried out by using 11-cis-retinal 

(Figure 4.10). Upon addition of 11-cis-retinal (Figure 4.10B), WTbicelles and G90Vbicelles could 

bind more retinal than with 9-cis-retinal addition (Figure 4.9B). In contrast, N55K opsin in 

bicelles remained stable both upon 9-cis-retinal and 11-cis-retinal exposure. The Y axis data, 

between A and B in Figure 4.9 and 4.10, is different possible due to bicelles contribution in the 

background. 
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Figure 4.10 Photoactivated visual opsin reconstitution with 11-cis-retinal. 

After the fluorescence signal reached a plateau, 11-cis-retinal was added (2.5 fold of exogenous retinal to the 

concentration of pigment) and mixed well to determine retinal entrance into the binding pocket. Compared with 

DM, WTbicelles and G90Vbicelles showed a higher decrease in fluorescence. N55Kbicelles did not show any change 

upon 11-cis-retinal addition. 

In order to analyze accurately the different accessibility of retinal to G90V in DM and bicelles 

environment, the post-bleached regenerated sample was illuminated again and only the sample in 

bicelles showed a slight increase in fluorescence which was not apparent in the DM sample. This 

effect is probably due to hydroxylamine addition that confirmed the entrance of retinal in the 

binding pocket of photobleached opsin (Figure 4.11).  
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Figure 4.11 Accessibility retinal to the binding site in G90V opsin. 

G90V either in buffer A containing DM or in bicelles was illuminated for 30 s using a λ > 495 nm cut-off filter, and 

the increase in fluorescence intensity was monitored to detect 9-cis-retinal release. Once the fluorescence was 

stable, meaning that Meta II decay was complete, exogenous 9-cis-retinal was added to test retinal binding to 

photobleached opsin. Subsequent second illumination and hydroxylamine addition were done as indicated. 

4.1.6 Structural analysis of the rhodopsin mutants 

Both mutations, N55K and G90V, are facing inside the protein and are involved in helix-helix 

interations. Thus, residues at 55 and 90 are not facing the lipid or involved in 

monomer-monomer interactions (Figure 4.12). Furthermore, the residues do not appear to 

significantly alter their orientation (or interactions) in the activated state of the receptor 12. 
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Figure 4.12 Structural model of rhodopsin showing the sites of mutations. 

Lys at position 55 (red) and Val at position 90 (yellow) are shown together with other relevant molecules, like 

retinal (green), Asp83 (blue) and water (magenta). Although the two mutations are located at the transmembrane 

domain of the protein, Lys55 is closer to the cytoplasmic domain where the G-protein activating function of the 

receptor takes place, whereas Val90 is closer to the retinal binding site and the intradiscal domain, a region of the 

protein that governs its folding and stability. Rhodopsin dark-state crystal structure (PDB id 3C9L) was used and 

the image was created using PyMol (Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.5).  

In the case of N55K, this mutation is located at transmembrane H1 in a region closer to the 

cytoplasmic side of the protein where the G-protein activation process takes place. Three highly 

conserved residues, throughout the GPCRs superfamily, towards the cytoplasmic side of the 

receptor, N55 (98%), D83 (92%) and N302 (77%), define a region with intimate contact between 

H1, H2 and H7, which involves also various highly conserved water molecules. In the N55K 

substitution, the Lys side-chain would interfere with these contacts and could form a salt bridge 

with D83 (Figure 4.12). The G90V mutation affects an amino acid, at transmembrane H2, which 

is located towards the intradiscal domain of the protein that plays a structural role in the folding 

of the receptor and in the retinal binding process. The reported G90V mutant behavior suggests 

an important role for a functional water molecule present in the vicinity of E113 and the SB in 
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the dark-state crystal structure of rhodopsin 21. This water molecule binds to both the carbonyl 

backbone and one of the carboxyl oxygens of E113. The lack of a side-chain at G90 gives an 

empty volume that is filled with such a water molecule, whereas the hydrophobic chain in G90V 

would either not allow the water molecule to be accommodated or result in a smaller affinity. 

The lack of the water molecule would alter the Meta I to Meta II transition energy landscape and 

would also decrease dark-state stability 21.  
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4.2 DHA liposomes effects on the conformational stability of rhodopsin G90V 

and N55K mutants 
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To stabilize rhodopsin mutants associated with RP disease, G90V and N55K, and to study the 

molecular mechanism in more native conditions, DDHA-PC liposomes were used to mimic the 

bilayer environment. Here, G90V and N55K mutants, with thermal instability and fast decay 

defect, were purified from COS-1 cells by immunoaffinity chromatography with 11-cis-retinal in 

DM detergent and reconstituted into DDHA-PC liposomes system. A series of techniques were 

used to detect the conformational stability and the DDHA-PC liposomes function for rhodopsin 

WT and mutants. 

4.2.1 UV-Vis spectrophotometry of immunopurified WT and mutants in DDHA-PC 

liposomes  

The UV-Vis spectral properties of WT and G90V and N55K mutants in detergent have been well 

characterized previously (Figure 4.13) 70,79. The proteins were removed from DM detergent to 

DDHA-PC liposomes (Figure 4.14). The measured spectra showed two main characteristic bands 

for all opsins: the λ280 nm value of the opsin apoprotein band and the λmax value of the visible 

chromophoric band 159. The λmax value of the visible chromophoric band of WT, G90V and 

N55K mutant is 499 ± 1 nm, 489 ± 1 nm and 495 ± 2 nm respectively, and it does not change 

under DM detergent and DDHA-PC liposomes environment. In DM detergent (Figure 4.13), the 

ratio A28 0/Amax of rhodopsin WT is around 1.9, while the ratio of G90V and N55K were 3.5 and 

6.3 respectively which is much higher than WT. The high A280/Amax ratio is related to the 

misfolding, aggregation and regeneration problem of mutants. With the presence of DDHA-PC 

liposomes, the ratio A280/Amax of WT and mutants increased largely compared with the proteins 

in DM detergent. The higher A280/Amax ratio in liposomes is mainly caused by the liposomes 

background absorption rather than by an increase on protein misfolding or aggregation (Figure 

4.14).  
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Figure 4.13 UV-Vis characterization of purified WT and N55K and G90V regenerated with 11-cis-retinal in 

DM buffer. 

WT, G90V and N55K mutants were expressed in HEK293T cells and were immunopurified in PBS buffer with 

0.05% DM. Spectra were recorded at 20ºC. Illumination was carried out for 30 s with a 150 W power source 

equipped with an optic fiber guide using a λ > 495 nm cut-off filter. (—) Dark state. (····) photobleached state; inset, 

difference spectrum (dark-light). 
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Figure 4.14 UV-Vis characterization of purified WT, N55K and G90V regenerated with 11-cis-retinal in 

DDHA-PC liposomes. 

WT and G90V and N55K mutants were purified and reconstituted into DDHA-PC liposomes. Spectra were 

recorded at 20ºC. Illumination was carried out for 30 s with a 150 W power source equipped with an optic fiber 

guide using a λ > 495 nm cut-off filter. (—) Dark state. (····) photobleached state; inset, difference spectrum 

(dark-light). 
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UV-Vis spectroscopy was used to characterize rhodopsin photobleaching. After 30 s illumination, 

photoactived WT and the mutants showed the typical shift of the visible absorbance band to 380 

nm (Figure 4.13). WT rhodopsin displayed complete conversion of the visible band to the 380 

nm absorbing species. G90V and N55K showed incomplete conversion 70 suggesting formation 

of a photointermediate with a protonated SB linkage in the liposomes system 79. This spectral 

characterization of WT, G90V, N55K in DDHA-PC liposomes, in the dark and after, is shown in 

Figure 4.14.  

4.2.2 Rhodopsin electrophoretic behavior in DDHA-PC liposomes  

Rhodopsin oligomerization status can be studied by a number of different biochemical and 

biophysical techniques 10,11. Monomeric rhodopsin has the ability to activate the Gt 22,113,162. 

Rhodopsin was shown to be arranged as dimers in disc membranes by infrared-laser 

atomic-force microscopy 163,164 and these dimeric structures were proposed to affect the ligand 

binding pharmacology, signal transduction and cellular trafficking 11. Other oligomeric states, 

like tetramers, were detected and presumed to play important functional roles 165.  

BN-PAGE was conducted to compare the oligomeric status of rhodopsin in DM detergent and in 

DDHA-PC liposomes. WTDM clearly displayed the predominant presence of monomer and dimer 

bands. On the contrary, rhodopsin appears to exist in monomeric, dimeric and tetrameric forms in 

DDHA-PC liposomes. Liposomes increased the presence of high molecular weight bands 

compatible with tetramers (Figure 4.15). The appearance of tetrameric WT rhodopsin in liposomes 

may contribute to the increase thermal stability detected in liposomes. 
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Figure 4.15 BN-PAGE of WT in PBS with DM and DDHA-PC liposomes. 

BN-PAGE was performed to detect the oligomerization state of WT in DM and in DDHA-PC liposomes. Lane 1, 

standard protein ladder; lane 2, BSA used as an internal marker; lane 3, WT in DDHA-PC liposomes; Lane 4, WT 

in DM. WT was expressed in HEK293S-GNTI- cells and purified in DM and DDHA-PC liposomes. Monomer 

(40 kDa) and dimer bands (80 kDa) presented similar band intensity in WTDM and WTliposomes. However 

WTliposomes sample showed a more intense band corresponding to the tetramer state (160 kDa) (green box) than 

WTDM. 

4.2.3 DDHA-PC liposomes increase WT, G90V and N55K thermal stability 

G90V and N55K mutants in PBS containing DM or DDHA-PC liposomes were prepared, and 

thermal stability was studied at 48ºC 70. The thermal decay process is associated with the protein 

irreversible denaturation, breakage of the protonated SB and retinal chromophore isomerization 
160,166.  

We have previously reported that DDHA-PC liposomes improve the thermal stability of rhodopsin 

dissolved in PBS with DM at 48ºC and 55ºC 97. Here, at 48ºC, G90Vliposomes (2.8 ± 0.2 min) 

increased the t1/2 of thermal stability 4 times more than t1/2 of G90VDM (0.7 ± 0.1 min), 

indicating that the mutant structure was protected by the DDHA-PC liposomes bilayer 160. 

N55Kliposomes only showed a slight increase in stability (Figure 4.16). These results confirm that 

DDHA-PC liposomes improve the thermal stability of WT and the G90V mutant (Figure 4.16). 

The comparison between the G90V and N55K results indicate that the mutants show different 
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molecular phenotypes that could be linked to their different clinical phenotypes.   
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Figure 4.16 Thermal stability of WT, G90V and N55K mutants in PBS containing DM (•) or liposomes (o) 

at 48°C. 

WT and G90V and N55K mutants were purified from COS-1 cells and dissolved in PBS containing DM (•) or 

liposomes (o), and the thermal stability was determined by UV-Vis spectra (as described on section 3.6.1). All the 

data were recorded at 48°C in the dark. Curves were fit to an exponential decay function. 

4.2.4 Retinal release kinetics and opsins conformational stability 

WTDM or WTliposomes fluorescence spectra in the dark were measured until the fluorescence 
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intensity stabilized. Upon illumination, the fluorescence signal started to increase, due to the 

retinal release process (related to the decay of Meta II process). After the complete Meta II decay, 

exogenous 11-cis-retinal was added to test whether it could enter the binding pocket. The t1/2 of 

retinal release for WT and G90V and N55K mutants dissolved in PBS containing DM or 

DDHA-PC liposomes were determined (Figure 4.17 and Table 4.3). 
Table 4.3 t1/2 for the retinal release and the uptake for WT, G90V and N55K mutants dissolved in PBS buffer containing 

DM or DDHA-PC liposomes.  

The t1/2 of retinal release and uptake were determined from the fluorescence curves. The t1/2 of retinal release clearly decreased 

in DDHA-PC liposomes in all cases. 

 Buffer WT G90V N55K 

t1/2 of retinal release (min) DM 14.3±0.9 23.4±0.3 9.5±0.1 

Liposomes 4.4±0.4 15.3±0.3 4.7±0.3 

t1/2 of retinal uptake (min) DM none 1.1±0.1 none 

Liposomes 2.4±0.3 16.3±0.3 none 

The retinal release process in DDHA-PC liposomes, after illumination, is faster than in DM 

detergent. The retinal release t1/2 of WT decreased from 14.3 min in DM to 4.4 min in liposomes 

becoming 10 min shorter. G90V also decreased t1/2 of retinal release from 23.4 min for G90VDM 

to 15.3 min for G90Vliposomes. The t1/2 of N55K retinal release decreased from 9.5 min in DM to 

4.7 min in liposomes.  

After completely decay of Meta II and additional retinal addition, Trp fluorescence of WTDM 

remained unaffected, indicating that the retinal did not reenter the binding pocket. On the other 

hand, a decrease in the fluorescence signal for WTliposomes was detected, meaning that the 

chromophore was partially able to enter to the protein thus quenching the Trp fluorescence. 

Interestingly, both G90VDM and G90Vliposomes showed a decrease in Trp fluorescence signal after 

exogenous retinal addition, but a larger decrease was observed in the case of G90Vliposomes 

indicating that G90Vliposomes may have more retinal entrance capacity. N55K displayed a 

completely different behavior. Exogenously retinal addition did not cause any decrease in the 

fluorescence signal either for N55KDM or for N55Kliposomes (Figure 4.17). Compared with the WT 

structure, G90V may have a more open binding pocket conformation which favor retinal 
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entrance particularly in liposomes. 

 
Figure 4.17 Meta II decay and chromophore uptake kinetics for WT and G90V and N55K mutant in PBS 

containing (A) DM or (B) DDHA-PC liposomes. 

Purified WT and mutants were allowed to stabilize at 20°C in the dark and subsequently illuminated for 30 s. The 

exogenous 11-cis-retinal was added after the fluorescence signal had reached a plateau. All fluorescence spectra 

were measured by exciting the samples for 2 s at 295 nm and a bandwidth slit of 0.5 nm. 

4.2.5 Gt purification by sucrose density gradient 

Gt was purified by a sucrose density gradient and concentrated by dialysis (see section 3.4.4). 

SDS-PAGE was carried out to check the Gt protein yield and purity 167. In Figure 4.18, Gt 

samples of 10 µl (lane 1) and 20 µl (lane 2) were loaded onto the SDS-PAGE. Lane 4 

corresponded to the total protein at the beginning of the purification process and lane 5 was the 

solution used for dialysis. To determine the Gt concentration, lanes 6 to 9 contain different 

amounts of BSA: 1 µg, 2 µg, 3 µg and 5 µg. From lane 1 and lane 2, the concentration of Gt was 

estimated as 12.8 µM. This concentration was used for the Gt activation assay. 
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Figure 4.18 Gt purification and concentration determination by SDS-PAGE. 

After Gt purification, Gt sample was loaded onto an SDS-PAGE gel to check its purity and to determine its 

concentration. Lanes 1, 10 µl of purified Gt sample; lane 2, 20 µl of purified Gt sample; lane 3, protein ladder; lane 

4, total protein in ROS of retina; lane 5, dialysis wash; lane 6, 1 µg of BSA; lane 7, 2 µg of BSA; lane 8, 3 µg of 

BSA; lane 9, 5 µg of BSA. 

4.2.6 Gt activation assays for WT, and G90V and N55K mutants 

Gt activation was determined by calculating the amount of GTPγS35 bound upon WT, G90V and 

N55K mutants photoactivation by means of a radioactive binding assay 70,79. Rhodopsin activity 

was measured in the dark and illumination state. In DM detergent environment the amount of 

GTPγS35 bound to Gt for WT and G90V and N55K was low in the dark and increased after 

illumination. On the other hand, WT and G90V and N55K in DDHA-PC liposomes showed 

comparatively low Gt activation upon illumination (Figure 4.19).  

Rhodopsin reconstituted into liposomes can adopt different orientations, outside-out and 

inside-out, in the proteoliposomes. Considering the possible existance of monomer, dimer and 

tetramer states of rhodopsin, different permutations are possible with different orientations. The 

low Gt activation in liposomes of WT and mutants can be a consequence of a non-productive 

orientation of the receptor in the proteoliposomes (Figure 4.19). 
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Figure 4.19 Gt activation by WT and G90V and N55K mutants in DM and DDHA-PC liposomes. 

In order to test the WT and G90V and N55K mutants functional activity in PBS containing DM detergent (•) and in 

DDHA-PC liposomes (o), WT and G90V and N55K mutants were purified and eluted in DM detergent and then 

reconstituted into DDHA-PC liposomes separately (as described in section 3.6.3). Then the activity of rhodopsin in 

the dark and after illumination was measured by means of a radioactive filter-binding assay. The assay was carried 

out in the dark by mixing 10 nM rhodopsin and 500 nM Gt in 25 mM Tris, pH 7.5, 100 mM NaCl, 5 mM 

magnesium acetate, 5% glycerol, 2.5 mM DTT and 5 μM [35S]GTPγS. The reaction was started by the addition of 

WT or G90V, N55K mutants to the reaction mixture at RT. At different incubation time points, the samples were 

filtered to wash off the unbound free [35S]GTPγS. The assay was done in the dark (0 min, 4 min, 8 min) and after 

illumination (12 min, 16 min, 20 min, 24 min and 28 min) to determine the amount of bound [35S]GTPγS by Gt. 

4.2.7 Gt activation by fluorescence spectroscopy 

Fluorescence spectroscopy was also used to detect Gt activation by photoactivated rhodopsin. 

The rate of GTPγS uptake by Gα can be followed by monitoring the increase in intrinsic 
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fluorescence of a Trp, which is conserved in all G proteins 156. Initially, excitation and emission 

wavelengths were determined by emission and excitation scans (Figure 4.20). The excitation 

wavelength was found at λ = 285 nm and the emission wavelength at λ = 338 nm.  

 
Figure 4.20 Excitation and emission spectra were monitored to determine the optimal excitation and 

emission wavelengths. 

The sample was prepared with WT and Gt (as explained in section 3.6.3.2). Excitation and emission scans were 

carried out to determine the excitation and emission wavelengths with maximum intensity. Finally excitation was 

determined at λ = 285 nm and the emission wavelength at λ = 338 nm. 

Gt activation was carried out as explained in detail in section 3.6.3.2. Fluorescence spectroscopy 

can directly monitor the interaction between rhodopsin and Gt. In the dark state, rhodopsin cannot 

activate Gt. Upon illumination, rhodopsin activated Meta II conformation can bind and activate 

the Gt protein. The change in Trp fluorescence reflects a conformational change in the α-subunit 

and the exchange between GDP inside the pocket and the exogenous GTPγS. In WTDM, a 

fluorescence intensity increase was observed due to activation of Gt. However, in WTliposomes, no 

increase of fluorescence was observed (Figure 4.21) in agreement with the radioactive assay 

results indicating that DDHA-PC liposomes impede somehow the interaction between rhodopsin 

and Gt.  

Two different methods such as fluorescence spectroscopy and radioactivity filter assay, showed 

similar results on WTliposomes confirming that liposomes formation may interfere on Gt activation 

possibly due to the different orientation of WT in liposomes 102. 
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Figure 4.21 Gt activation of WT in DM and DDHA-PC liposomes followed by fluorescence spectroscopy. 

Gt activation of WT in (A) DM detergent and in (B) DDHA-PC liposomes. After the fluorescence intensity 

stabilization, GTPγS was added until fluorescence signal stabilization. Then, 1 min illumination was carried out at 

25°C. Increase of fluorescence was monitored until a plateau was reached. WTDM showed an increase of Trp 

fluorescence intensity whereas no change could be detected in the case of WTliposomes.  

4.2.8 Rhodopsin structural consequences of the chemical structure of DHA 

The effects observed can be associated with the chemical nature of the DHA lipid. Different from 

saturated and monounsaturated hydrocarbon chains, the neutral polyunsaturated DHA has a 

unique chemical structure with six cis-locked double bounds. The number of freedom degrees of 

DHA chains is substantially lower which could be indicative of rigidity. Polyunsaturated chains 

in crystals form highly ordered, elongated structures with angle-iron or helical arrangement of 

double bonds. The experimental results clearly indicated that the low order in bilayers with high 

DHA content is a direct consequence of high conformational flexibility and of rapid structural 

conversions of DHA chains themselves without significant energetic penalty 131. NMR data 

proved that the photointermediate Meta III had stronger contact with DHA compared with dark 

rhodopsin, Meta I and Meta II states. DHA enrichment may alter protein function both by a 

change of general membrane properties as well as by specific interactions with particular regions 

of the protein 131. DHA interacts with rhodopsin and tends to weaken the interhelical packing. 

N55K, mutation in an amino acid located in helix 1, and G90V located in helix 2, are structurally 

located near residues 48, 50, 92, 95, 96 which are tightly packed with DHA 130. DHA increased 

the thermal stability of WT and G90V but not N55K mutant. In the Meta II decay experiment. 

DHA speeded up the retinal release and allowed more retinal uptake by G90Vliposomes. On the 

other hand, N55K mutant did not uptake retinal upon Meta II decay. DDHA-PC decreased the Gt 
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activation of WT and mutants which could be mainly attributed to the receptor orientation in 

liposomes 102. Therefore, DDHA-PC lipids could be used in combination with other lipids and/or 

preparative protocols in order to achieve artificial membranes that could circumvent the 

orientation problem 121,124,168. 
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4.3 GPCRs interactions with other proteins 

 

 
  



 
110 

 
 

 
  



 
111 

 
 

In this section, the interaction between GPCRs and other proteins was studied to understand 

GPCRs structural mechanism. For this purpose, two GPCRs, rhodopsin and M3R were used. 

 In the visual system, activated rhodopsin recruits Gt and cellular signal transduction starts. 

Among the signals, the activation of rhodopsin kinase that phosphorylates rhodopsin 

increases the affinity towards visual arrestin 137. As a GPCR transducer, arrestin binds 

rhodopsin blocking its interaction with Gt leading to desensitization. The binding of arrestin 

to rhodopsin also initiates other cellular signaling pathways that are G-protein independent. 

Mutant arrestin R175E was expressed and purified from BL21-RP cells. The pull-down 

assay and Meta II decay experiments were carried out to study the rhodopsin-arrestin 

interaction.  

 In the mAChRs family, the M3R mutants could be associated with AD through its 

interaction with tau protein. Previous studies also show the EC tau protein interacts with 

M3R. The M3R WT and mutants protein and tau protein were co-expressed in mammalian 

cells and their interaction was detected by both WB and immunofluorescence in order to 

pinpoint the potential M3R-tau interacting sites. 

4.3.1 Arrestin R175E mutant purification 

 

Figure 4.22 SDS-PAGE of arrestin R175E purification. 

Lane 1, protein marker; lane 2, total BL21-RP cells induced by IPTG; lane 3, cell debris of IPTG induced cells after 

sonication; lane 4, soluble protein of IPTG induced cells after sonication; lane 5, column wash; lane 6, elution 1 

(E1); lane 7, elution 2 (E2); lane 8, elution 3 (E3); lane 9, total un-induced cells; lane 10, cell debris of un-induced 

cells. Purified arrestin can be seen in E1 and E2 (green box). 

As described in section 3.6.6, arrestin R175E was overexpressed in E.coli BL21-RP cells by 
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ITPG induction 133. Then, R175E mutant arrestin was purified by affinity chromatography using 

Bio-scale mini profinity cartridges and detected by SDS-PAGE and Coomassie blue staining. 

Figure 4.22 (green box) showed the purified R175E arrestin by means of SDS-PAGE. 

In order to determine purified arrestin concentration, BSA dilutions were prepared for a Lowry 

protein assay (explained in section 3.6.10) to obtain a protein standard line (Figure 4.23) and the 

following equation;  

Abs = 3.3 ·ρ 

Where Abs corresponds to the absorbance at 600 nm on the UV-Vis scanned and ρ is the protein 

concentration (in µg/µl).  

 

Figure 4.23 BSA standard line. 

Different BSA concentrations were used to determine an equation to calculate arrestin. 

Abs600 nm of purified arrestin was measured to be 0.027 Abs and consequently the final 

concentration determined from the formula was 0.09 µg/µl. Finally, the molar concentration of 

arrestin was calculated by the formula: 

𝐂𝐂 =
𝒏𝒏
𝑽𝑽

=
𝒎𝒎

𝑴𝑴 ∙ 𝑽𝑽
=
𝝆𝝆
𝑴𝑴

 



 
113 

 
 

Where C is the molar concentration of arrestin; ρ is the protein concentration (0.09 µg/µl); and 

M is the molar mass of arrestin (48000 g/mol). Finally the arrestin concentration was determined 

to be 1.9 µM. 

4.3.2 Pulling down assay between arrestin R175E and rhodopsin in ROS 

Pull down assay is an established centrifugation process to exam the light dependent binding to 

nonphosphorylated rhodopsin in ROS membranes (explained in section 3.6.7.1). As shown in 

Figure 4.24, arrestin R175E remained in the supernatant after incubation with ROS membranes 

in the dark (lane 2); arrestin R175E was pulled down by the ROS membrane upon illumination 

after centrifugation (lane 3). In previous studies 133, different stoichiometry of rhodopsin and 

arrestin were used. The structural models suggested activated rhodopsin interact with arrestin in 

a 2:1 stoichiometry; while 1 activated rhodopsin: 1 arrestin was also suggested by the functional 

assay. Docking modes were discussed with arrestin binding to both monomeric and dimeric 

rhodopsin 169. The photoactivation density is also associated with the activated rhodopsin-arrestin 

binding ratio, with 1:1 at low photoactivation density and 2:1 binding at high photoactivation 

density linearly 170,171. Different from the previous results, Figure 4.24 showed that lower arrestin 

(green box) was pulled down by ROS. This decreased bound rate were associated with many 

factors such as purification, arrestin activity and buffer 133.  

Studies on the interaction of rhodopsin with arrestin could provide keen insights into the 

rhodopsin conformational changes and the signaling pathways started upon arrestin binding. 

Arrestin is composed of two β-strand domains, N and C domains with similar sizes, and is able 

to interact with photoactivated rhodopsin 172. Arrestin first binds to specific phosphorylated 

serine and threonine residues located at the C-terminus of light activated rhodopsin, and the 

cytoplasmic loops, major sites of G protein interaction, to quench further signaling 133,173. The 

interaction between RP mutatns and arrestin will be deeply studied for the molecular 

mechanisms. 

 



 
114 

 
 

 
Figure 4.24 Arrestin R175E pull down assay with ROS membrane by SDS-PAGE. 

Lane 1, Protein ladder. Lane 2, ROS and arrestin R175E in the dark. Lane 3, ROS and arrestin R175E after 

illumination. Lane 4, Arrestin R175E; Lane 5, ROS. 

4.3.3 Influence of arrestin binding on rhodopsin Meta II decay 

Fluorescence spectroscopy was used to detect the interaction between arrestin R175E and 

rhodopsin and its mutants as indicated in section 3.6.7.2. Figure 4.25A shows the retinal release 

from rhodopsin at different rhodopsin/arrestin R175E ratios. Rhodopsin and arrestin R175E were 

mixed with different stoichiometries, as 1:0 (pink), 1:2 (light blue) and 1:4 (light green) of 

rhodopsin: arrestin. After illumination, the fluorescence caused by retinal release increased till to 

the plateau on which state opsin was separated from 11-cis-retinal. The pink curve shows the 

completely chromophore release from rhodopsin and was used as a control of the total retinal 

release. The amount of retinal release in the presence of 2 fold concentration of arrestin R175E 

to rhodopsin (light blue) resulted in a decrease of 37% compared with the control (pink). At a 1:4 

ratio (light green), the decrease observed was 56%. The reduction of retinal release is represented 

in Figure 4.25B. Increase in the arrestin R175E/rhodopsin ratio resulted in increased Meta II 

interaction with the arrestin R175E and forming Meta II/arrestin R175E complex that decreased 

the retinal release which paralleled with the opsin product. It can be concluded that R175E 

stabilized the Meta II state. Previous work has proved that arrestin could also bind to Meta III, a 

post Meta II photodecay product, and reverted back to Meta II like species. It was suggested that 

arrestin would regulate the level of free retinal in the rod cell controling the formation of 
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damaging oxidative retinal adducts under light conditions 139. 

 
Figure 4.25 Arrestin R175E stabilized the Meta II state and inhibited retinal release. 

A, the effect of arrestin on retinal release was investigated by fluorescence spectroscopy. Purified rhodopsin was 

mixed with arrestin R175E with different stoichiometries 1:0 (pink), 1:2 (light blue) and 1:4 (light green). The 

samples were photobleached and the fluorescence increased to plateau. B, the retinal release decreased because of 

the increased ratio of arrestin R175E/rhodopsin. With the increased ratio of arrestin R175E/rhodopsin, more Meta II 

was combined with arrestin R175E.  

The crystal structure of rhodopsin-arrestin complex shows a 1:1 stoichiometry. The binding 

activity is lower than that published but is in accordance with the pull down assay result (section 

4.3.2). 

Rhodopsin signaling involves interacting with Gt, rhodopsin kinase, arrestin and other proteins. 

Structural and modeling studies have proved that the competition on the binding surfaces is a 

major regulatory mechanism for signal processing 174,175. Some indirect evidence suggested that 

the rhodopsin/arrestin complex may be a pathogenic mechanism for certain types of RP in 

human patients. One rhodopsin mutant K296E, associated with ADRP, forms a stable complex 

with arrestin that is toxic to mouse rod photoreceptors 176. The complex of rhodopsin mutant 

G90D and visual arrestin could offset the effect of abnormal rhodopsin signaling without light 

and retinal isomerization. The subsequent docking of polyphenol antioxidant cyanidin 

3-rutinoside with G90V rhodopsin initiates its activation and regeneration to trigger normal 

visual transduction cascade to cure night blindness 177. The interaction between arrestin R175E 

and rhodopsin mutants such as G90V, N55K could be studied to further dissect the details of the 

molecular mechanisms underlying RP. Figure 4.26 showed rhodopsin interaction with the 
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cytoplasmic partners, Gt, arrestin R75E and rhodopsin kinase. Different from the arrestin WT, 

arrestin R175E has been shown to bind non-phosphorylated activated rhodopsin. As such, this 

R175E arrestin bypasses the need to bind the phosphorylated rhodopsin 139,174,178,179. 

 
Figure 4.26 Rhodopsin interaction with cytoplasmic Gt, arrestin/arrestin R175E and rhodopsin kinase. 

The figure illustrates the relative activation and desensitization pathways of vision. Gt and arrestin are the 

rhodopsin partners in the signal transmission. Arrestin R175E is used to interact with light activated rhodopsin. 

4.3.4 M3R and the mutants expression and purification 

M3R WT and M3R mutants (M3R-N132G, M3R-D518N, M3R-D518K and M3R-K523Q) were 

first cloned by Dr Laura Iarriccio 149. DNA agarose gel was run as previously described in 

section 3.3.2.2 to check the plasmids state being stored after several years. Figure 4.27 shows a 

gel containing the five plasmid vectors. 



 
117 

 
 

1 2 5 6  3 4

250
500
750

1000
1500
2000
3000
4000

12000

 
Figure 4.27 M3R WT and mutants DNA agarose gel electrophoresis. 

Plasmids containing M3R WT and mutants were analyzed by means of agarose gel electrophoresis. Lane 1, DNA 

ladder. Lane 2, M3R-N132G. Lane 3, M3R-D518N. Lane 4, M3R-D518K. Lane 5, M3R-K523Q. Lane 6, 

M3R-WT plasmid. 

 
Figure 4.28 WB of M3R WT and mutants coexpressed with or without tau. 

The different M3R WT and mutants and tau were transfected into HEK293S-GNTI- cells. Lane 1, blank without 

plasmid transfection; lane 2, tau transfection; lane 3, M3R WT transfection; lane 4, M3R WT and tau 

cotransfection; lane 5, M3R-N132G transfection; lane 6, M3R-D518G transfection; lane 7, M3R-D518K 

transfection; lane 8, M3R-K523Q transfection; lane 9, M3R-N132G and tau cotransfection; lane 10, M3R-D518G 

and tau cotransfection; lane 11, M3R-D518K and tau cotransfection; lane 12, M3R-K523Q and tau cotransfection. 

When M3R mutants were expressed, two bands of M3R mutants proteins were shown. When M3R mutants and tau 

were coexpressed in cells, the M3R mutants only showed one main band with higher intensity. 

M3R and M3R mutants were coexpressed with tau protein in mammalian cell HEK293S-GNTI-. 

The cells were collected as described in section 3.6.8 and the proteins were detected by WB 

using M3R ant tau antibodies (Figure 4.28). 
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Tau protein exists in mammalian cells as a microtubule associated protein. Tau is not only a 

microtubule associated protein but also appears to play a key role in dementia. It has focused on 

the role of tau proteins in microtubule dynamics and its dysfunctions 180,181. Figure 4.28 clearly 

showed that tau overexpression changed the conformational status of EC M3R mutants 

expressed in HEK293S-GNTI- cells. In the absence of tau cotransfection, the four M3R mutants 

displayed different expression levels with two main bands in their electrophoretic pattern. Upon 

tau coexpression, however, each M3R mutant showed only a single main band.   

4.3.5 Detection of M3R and mutants expression by immunofluorescence 

Twelve samples (sample A to L) of M3R WT and mutants were transfected alone or 

cotransfected with tau as described in Table 4.4. The double immunofluorescence analysis using 

antibodies against tau and M3R were performed as described (in section 3.6.9) to colocalize both 

tau and M3R WT and mutants in the cells (Figure 4.29).  
Table 4.4 Combination of M3R WT and mutant samples transfected alone or cotransfected with tau that used in the 

immunofluorescence assay. 

 A B C D E F G H I J K L 

tau -- tau -- tau -- tau -- Tau -- tau -- tau 

M3R -- -- WT WT N132G N132G D518N D518N D518K D518K K523Q K523Q 

There is not endogenous M3R expression in HEK293T cells but tau protein, as a soluble 

endogenous protein, is expressed in all living cells to stabilize microtubule polymers, suppresses 

microtubule dynamics and promote cytoplasmic extension or neuritogenesis 144,181. Figure 4.29A 

shows the sample blank without any transfection. Tau was overexpressed in a soluble form in the 

cells cytoplasm and showed high FITC fluorescence (Figure 4.29B). Figure 4.29C shows the 

result of only M3R WT transfection where M3R WT was overexpressed and located correctly to 

the cell membrane. Cotransfection of M3R WT with tau cause mislocation of tau from the 

soluble in the cytoplasm to the cell membrane while M3R kept its location on the membrane. 

The changes location of tau may be associated to hyperphosphorylation (Figure 4.29D) 147,148. 

Tau hyperphosphorylation can not only cause tau mislocalization but also trigger β-amyloid 

aggregation associated with AD 182. M3R mutants N132G and D518N showed a similar behavior: 

when the two M3R mutants were coexpressed with tau, N132G and D518N were located in the 
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membrane (Figure 4.29E, G), whereas tau mainly changed the location from the cytoplasm to-  

 
Figure 4.29 Immunofluorescence of M3R and mutants coexpressed with/without tau in HEK293T cells. 

M3R WT and mutants and tau were transfected into HEK293S-GNTI- cells. Samples from A to L were detected by 

immunofluorescence. Tau was detected by the FITC fluorescence; M3R and mutants were detected by the TRITC 

fluorescence. M3R WT, N132G and D518N caused tau mislocalization from cytoplasm to the membrane. While 

M3R D518K and K523Q mislocalized from membrane to the cytoplasm because of the tau coexpression. 

-the membrane (Figure 4.29F, H). Different from M3R WT, N132G and D518N, the M3R 

mutants D518K and K523Q changed their locations from the membrane (Figure 4.29I, K) to the 

cytoplasm (Figure 4.29J, L) and tau overexpression did not change their location (still in the 

cytoplasm). 

Overall, M3R WT, N132G and D518N mutants changed the location of tau, from the cytoplasm 

to membrane, suggesting that M3R WT, N132G and D518N mutants increase M3R affinity to 
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tau (Table 4.5). 
Table 4.5 The locations of tau and M3R WT and mutants transfections. 

Blue color showed the protein on the membrane. The pink showed the protein in the cytoplasm. Because of the cotransfection of 

M3R WT and mutants with tau, the locations of protein changed. M3R WT and N132G and D518N caused the tau location from 

cytoplasm to the membrane. While M3R D518K and K523Q located from membrane to the cytoplasm. 

Sample Protein M3R transfection without tau M3R cotransfection with tau 

M3R WT 

WT Membrane Membrane 

Tau Cytoplasm Membrane 

M3R N132G 

N132G Membrane Membrane 

Tau Cytoplasm Membrane 

M3R D518N 

D518N Membrane Membrane 

Tau Cytoplasm Membrane 

M3R D518K 

D518K Membrane Cytoplasm 

Tau Cytoplasm Cytoplasm 

M3R K523Q 

K523Q Membrane Cytoplasm 

Tau Cytoplasm Cytoplasm 

The tau mislocalization also occurred by the decreased affinity between tau and microtubules 

which associated with the phosphorylation/ hyper-phosphorylation and resulted the movement of 

tau proteins from microtubule to the membrane space 180,183,184. Compared with the location of 

M3R WT under tau presence, M3R D518K and K523Q mutants changed the location from 

membrane to the cytosol by the overexpression of tau (Table 4.5). The overexpressed tau could 

be hyperphosphorylated and toxic for newborn neurons 144,185 and result the secretion of tau via 

membrane vesicles in cells 186. The EC tau interacts with the cell membrane receptors such as 

M1R and M3R receptors and cause toxic to the cells that increase the risk of AD 144. The tau 

phosphorylation and tau mislocalization have been proved as an intermediate signaling 

molecules between β-amyloid initiation and eventual synaptic dysfunction early in AD 

pathogenesis 140,187,188. 
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4.3.6 Physiological analysis of the M3R mutants and AD 

M3R-N132G is located in EC2 while M3R-D518G, M3R-D518K and M3R-K523Q are located 

in EC6 (Figure 4.30). EC tau could bind with M3R and promote IC calcium changes  which 

was present in tauopathies such as AD 90. These mutants may interact with tau and this 

interaction may alter the M3R mutants expression, at least in the HEK293T cells used in these 

experiments.   

In neurons, the increased phosphorylation of tau destabilized tau-microtubule interactions, 

leading to microtubule instability, transport defects along microtubules, and ultimately neuronal 

death 189. The tau and microtubule binding plays essential roles in polarity axon and dentrite 

formation of neuronal cells 190. 

The axon terminal contains synapses, specialized structures where neurotransmitter chemicals 

are released to communicate with target neurons. The results in HE293T cells showed that tau 

can not only interact with microtubules but also with M3R WT and the four mutants. The 

mutants D518K and K523Q appear to interact with tau by a different mechanism that the other 

two mutants and result in different cell location. Different tau-M3R mutant complex 

arrangements could be envisaged and this could cause the different protein localization. Tau is 

co-transported with microtubule fragments from cell bodies into axons and the M3R-tau 

complexes could interfere in this process altering the normal function of neurons. 
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Figure 4.30 Structural model of M3R with the sites of mutations. 

The N132, D518 and K523 residues (pink) are shown in the figure. These three sites are all located in the EC 

loops where the G-protein binding and activation of the receptor take place. M3R crystal structure (PDB ID 

4U14) was used and the image was created using PyMol (Schrodinger, LLC. PyMOL Molecular Graphics 

System, Version 1.5).  
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5. GENERAL DISCUSSION 
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Signal transduction is a fundamental biological process to maintain cellular homeostasis and 

relevant cellular activity in all organisms. GPCRs, representing the largest and most diverse 

membrane proteins family, serve as the communication interface between the external and 

internal environments. By responding to a wide spectrum of EC signals such as photons, ions, 

small organic molecules and entire proteins, GPCRs undergo conformational changes which 

cause the activation of complex cytosolic signaling networks and result in a variety of cellular 

responses 5,25. Thus, GPCRs are responsible for the proper operation of many physiological 

processes such as vision, intercellular communication, neuronal transmission, hormonal 

signaling, and they are involved in many pathological processes. Mutations in GPCRs, which 

represent about 4% of the human genome, are associated with a broad spectrum of diseases of 

diverse etiology. Such mutations can alter the process of ligand binding and significantly affect 

signaling transduction pathways 5. This can lead to two degenerative diseases such as RP and AD. 

Determining the structure-function relationships of GPCRs mutants and understanding the 

molecular mechanisms of RP and AD can be of fundamental importance in treating these 

conditions and promoting human health.  

Rhodopsin, a receptor of Class A GPCRs, is responsible for the vision process. Among the ~700 

identified members of Class A, more than twenty receptors have been crystalized and the 

structures have been solved at atomic resolution 97. Rhodopsin mutations lead to visual disorders 

associated with impaired vision including the retinal degenerative disease RP. The RP condition 

refers to a group of heterogeneous inherited disorders associated with degeneration and loss of 

photoreceptor retinal cells 5. Here, two artificial membrane systems, DMPC/DHPC bicelles and 

DDHA-PC liposomes, were used in an attempt to stabilize rhodopsin mutants and to unravel the 

molecular mechanism of RP associated with structural instability. G90V (causing RP) and N55K 

(causing sectorial RP) were chosen as model mutations to investigate their molecular properties 

in artificial membranes compared to the DM detergent system, which is commonly used. The 

advances to underlying the stability and function properties of rhodopsin mutants could provide 

novel mechanistic insights that can open novel therapeutic strategies for the treatment of 

congenital retinal disorders. 

Purified WT rhodopsin, and the G90V and N55K mutants, regenerated with 9-cis-retinal were 

purified in both DM detergent 70,79 and DMPC/DHPC bicelles environment. The UV-Vis spectra 



 
126 

 
 

of WT, G90V and N55K in DM detergent was in agreement with previous studies 70,79,94. The 

most interesting result was that N55Kbicelles required double illumination time for complete 

photoconversion (Figures 4.2 and 4.3). This result showed that the light sensitivity of N55K is 

altered especially in the DMPC/DHPC bicelles environment. WB results demonstrated that 

DMPC/DHPC bicelles decreased the N55K truncated protein band intensity and increased the 

tetramer band which also was observed for the G90V mutant but not for the WT (Figure 4.4). 

The increase of tetrameric formation or other oligomerization states caused by bicelles could 

affect the conformational stability. 

DMPC/DHPC bicelles increased the thermal stability of WT rhodopsin, and the G90V and N55K 

mutants to various degrees (Figure 4.5) indicating that bicelles can provide conformational 

stability by protecting the SB and preventing protein aggregation at 37ºC 34,94,160. WT in DM and 

bicelles showed similar 9-cis-retinal regeneration, at nearly 90%, even though the t1/2 of the 

regeneration process was slightly slowed down in bicelles. The trend of G90V retinal 

regeneration was in agreement with WT whereas N55K showed a completely different trend. 

G90Vbicelles showed 96% retinal regeneration which was 20% higher than in the case of G90VDM. 

On the contrary, N55K did not show regeneration but displayed a retinal release at the visible 

band under the exogenous retinal. In spite of this abnormal behavior for N55K mutant, bicelles 

appeared to slow down the absorbance band decrease suggesting that the protein was stabilized 

in some way. The novel retinal regeneration behavior of N55K in bicelles may be associated with 

the clinical phenotype of sectorial RP 79,191. Compared with the t1/2 of retinal release in the Meta 

II decay process, the bicelles not only decrased the t1/2 of retinal regeneration of WT, G90V and 

N55K, but also speeded up the retinal release during the Meta II decay process (Figure 4.6 and 

4.7). Hydroxylamine addition, after Meta II decay, was used to confirm complete retinal release. 

No changes were detected for WT and G90V in DM after hydroxylamine addition, whereas a 

novel behavior could be observed in bicelles, WT and G90V showed additional increase of Trp 

fluorescence emission indicating that after Meta II decay some retinal was still present in the 

binding pocket of WTbicelles and G90Vbicelles (Figure 4.7) 31. On the other hand, N55K did not 

show increase in fluorescence intensity either in DM or in bicelles environment. This result was 

in contrast with the previous study in which N55K was dissolved in PBS (pH 7.4) containing 

0.05% DM 79. This previous study showed that hydroxylamine did cause an increase in the 
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fluorescence signal of N55K highlighting the importance of buffer conditions on the 

fluorescence spectroscopic behavior. In addition, different fluorescence intensity was observed 

between DM and bicelles likely due to the background fluorescence contribution of the 

DMPC/DHPC bicelles (Figure 4.7).  

After Meta II decay, 9-cis-retinal was added to test the retinal entrance to the opsin binding 

pocket. Bicelles could help stabilizing WT and G90V opsins obtained by Meta II complete decay 

(Figure 4.9 and 4.10). The results indicated that the exogenously added retinal chromophore 

could enter the binding pocket thus quenching Trp fluorescence, and that bicelles preserved the 

opsin stability allowing retinal binding after illumination 70. N55K opsin did not show any 

change either in DM or in bicelles suggesting that the accessibility to the binding pocket of 

N55K opsin had been impaired due to the mutation 76 which is in agreement with the 

regeneration result (Figure 4.9 and 4.10). This unique N55K behavior may provide new clues 

that would guide us in deciphering the molecular mechanism of sector RP. Compared to the 

occluded structure of N55K, the G90V mutant appears to have a more open structure with a 

more accessible binding pocket that could explain its retinal binding capacity both in DM and in 

bicelles. 

In DDHA-PC liposomes environment, the purified WT rhodopsin, and the G90V and N55K  

mutants, regenerated with 11-cis-retinal, were studied the properties compared with those in DM 

detergent 70,79. Interestingly, the UV-Vis spectral behavior of WT, G90V and N55K in DDHA-PC 

liposomes (Figure 4.14) were similar to that in DMPC/DHPC bicelles which can be correlated 

with the bilayer conformation 118,121. WTliposomes also showed presumed tetrameric state character 

which was also observed in WTbicelles. Thermal stability at 48ºC in DDHA-PC liposomes 

increased for both WT and G90V thus prolonging the t1/2 of the thermal decay curves (Figure 

4.16) 70. Therefore, both bilayer systems of DMPC/DHPC bicelles and DDHA-PC liposomes can 

protect the molecular structure of WT and G90V regenerated with 9-cis-retinal as well as with 

11-cis-retinal. At 48ºC, DDHA-PC liposomes did not increase the thermal stability of N55K 

compared to DM control. At a later stage of the N55K thermal decay process, N55Kliposomes 

appeared to provide higher stability suggesting that DDHA-PC liposomes efficiently protected 

the N55K opsin structure. The temperature used for the thermal stability studies, 37ºC, was 

chosen because rhodopsin mutants showed thermal sensitive character which prevents their study 
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at higher temperatures. 

WT, G90V and N55K revealed faster retinal release kinetics, from Meta II decay assays, in 

DDHA-PC liposomes than in DM detergent (Figure 4.17). This performance in liposomes was 

consistent with the behavior of WT rhodopsin and the mutants in DMPC/DHPC bicelles. Both 

states of DMPC/DHPC bicelles and DDHAPC liposomes accelerated retinal release in 

experiments. This performance may be associated with the specific interactions between DHA 

and rhodopsin 130,131. Accordingly, the DDHA-PC liposomes helped WT and G90V opsins, 

produced upon Meta II decay, bind more retinal by stabilizing opsin and preserving its correctly 

folded (ligand-binding) conformation. Gt activation was carried out in order to detect the 

functionality of WT rhodopsin, G90V and N55K mutants (Figure 4.19 and 4.21). DDHA-PC 

liposomes decreased the Gt activation capacity of rhodopsin WT, and particularly the mutants 

confirming that liposomes formation may interfere with Gt activation possibly due to the 

non-productive orientation of rhodopsin reconstituted in liposomes 102. Considering this 

drawback in liposomes formation, DDHA-PC lipids can be used to form other artificial 

membranes types such as bicelles to circumvent the orientation problem 35,121,168. 

The interaction between rhodopsin and visual arrestin R175E was studied by a pulling down 

assay (Figure 4.24) and by Meta II decay assay (Figure 4.25) showing that arrestin R175E could 

bind with activated rhodopsin (Meta II) and inhibit retinal release. The rhodopsin-arrestin 

interaction probably regulates the level of free retinal in the rod cell and control formation of 

damaging oxidative retinal adducts under light conditions 139. It would be interesting to 

investigate other specific features of the complex formed between rhodopsin mutants and 

arrestin R175E for a deeper knowledge of the RP molecular mechanisms 176,177. 

In AD, the accumulation of neurofibrillary tangles and cholinergic deficiency are the two 

prominent features 80,84. The interaction between tau protein composing neurofibrillary tangles 

and the M3R WT has been previously described. The study of mutations at the EC domain of the 

M3R receptor can provide novel clues on the role of the M3R-tau interaction in the molecular 

mechanism causing AD. This study may help in understanding how the interaction between 

neurofibrillary tangles associated with tau and mAChRs may contribute to the pathophysiology 

and cognitive impairment in AD 80,83,192. 
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The WB analysis of M3R WT and M3R mutants coexpressed with tau (Figure 4.28) indicated 

that the M3R mutants displayed different expression yields and molecular bands indicating that 

the overexpressed tau affected the expression of M3R and mutants. Immunofluorescence 

analysis was carried out to obtain more clues on the interaction between tau and M3R mutants 

(Figure 4.29), particularly on the trafficking alterations and cell localization of the two 

interacting proteins. The coexpression of tau and M3R WT and mutants caused the mislocation 

of tau and/or M3R (WT and mutants). The tau mislocalization may be associated to the 

phosphorylated/ hyperphosphorylated states by disturbing the homeostasis among microtubule 

and tau. This may correspond to a signaling intermediate complex that would trigger β-amyloid 

initation and the eventual synaptic dysfunction found early in AD pathogenesis 140,180,182–184,188. 

The M3R mutants mislocalization indicated that the membrane protein trafficking was affected, 

directly or indirectly, by tau overexpression in agreement with the known interaction of M3R 

with EC tau 144,185,186. In this thesis, the specific sites N132, D518 and K523 at the EC site of 

M3R had important effects on the tau-M3R interaction suggesting that they may be involved in 

the physical interacting site.  
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6. CONCLUSIONS 
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The structural and folding properties of WT rhodopsin, and RP mutants, were analyzed in 

artificial DMPC/DHPC bicelles and DDHA-PC liposomes separately, using biochemical and 

biophysical approaches.  

Properties of WT, and G90V and N55K mutants, regenerated with 9-cis-retinal in 

DMPC/DHPC bicelles 

 DMPC/DHPC bicelles provide an artificial membrane environment for rhodopsin and G90V 

and N55K mutants being more stable than the DM environment. 

 DMPC/DHPC bicelles increase the stability of the sector RP N55K mutant by showing an 

obvious light desensitization effect compared with the behavior in DM detergent. The light 

desensitization character of N55K in DMPC/DHPC bicelles may be associated with the 

peculiar sector RP phenotype. 

 In DM environment, G90V and N55K mutants show increased opsin truncation which can 

be associated with conformational instability. In contrast, electrophoretic analysis reveals 

that DMPC/DHPC bicelles would decrease the amount of truncated opsin. 

 DMPC/DHPC bicelles stabilize the folded opsin conformation and provide higher thermal 

stability for WT, G90V and N55K in the dark state at 37ºC. This means the bicelles provide 

conformational stability and protect the SB linkage from hydrolysis. 

 In chromophore regeneration experiments, G90V shows a more stable structure in bicelles 

that allows enhanced retinal entry into the binding pocket. On the other hand, N55K does 

not have the capability of retinal regeneration under the same experimental conditions. 

 In the Meta II decay experiment, the retinal release processes of WT rhodopsin, and G90V 

and N55K mutants, in DMPC/DHPC bicelles and DDHA-PC liposomes, are faster than in 

DM detergent. Hydroxylamine addition, after Meta II complete decay, to WT and G90V in 

bicelles could increase fluorescence intensity, suggesting that some retinal was still in the 

binding pocket after Meta II decay.  
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 The WTbicelles and G90Vbicelles opsins produced after Meta II decay could bind more 

9-cis-retinal and 11-cis-retinal than in DM detergent. This is likely due to the stabilization 

effect of the lipid bicelles on the opsin conformation. Contrarily, neither N55KDM nor 

N55Kbicelles could bind 9-cis-retinal or 11-cis-retinal after complete Meta II decay, 

suggesting that the binding pocket of N55K opsin suffered a conformational change 

impairing retinal entrance (possibly retaining isomerized retinal within the binding pocket). 

Characterization of WT rhodopsin, and the G90V and N55K mutants, regenerated with 

11-cis-retinal, in DDHA-PC liposomes 

 DDHA-PC liposomes are a stable and effective lipid system to preserve WT and mutants 

structural features. Rhodopsin in DDHA-PC liposomes apparently shows higher oligomeric 

conformational states than in DM detergent. 

 DDHA-PC liposomes increase WT, G90V thermal stability, at 48ºC, by delaying protein 

denaturation and protecting the protonated SB. N55Kliposomes does not show an increase in 

t1/2 compared to N55KDM. However, at later stage N55Kliposomes appears to be more stable 

than N55KDM. 

 DDHA-PC liposomes could accelerate the retinal release from the binding pocket of WT, 

G90V and N55K mutants (upon Meta II state) compared with the samples in DM detergent. 

 WT opsin, obtained from the Meta II decay, could bind the exogenously retinal in DDHA-PC 

liposomes. Both G90VDM and G90Vliposomes showed a decrease in the Trp fluorescence 

signal after exogenous retinal was added. A deeper decrease signal is detected in 

G90Vliposomes indicating higher retinal binding capacity in the liposomes condition. On the 

contrary, N55K Meta II decay opsin could not incorporate the added retinal neither in DM 

nor in DDHA-PC liposomes. 

 WT, G90V and N55K in DDHA-PC liposomes show low Gt activation possibly due to 

different protein orientations in liposomes. 

Mechanism of GPCRs interaction with other proteins 
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 Arrestin R175E not only binds and stabilizes the Meta II state of rhodopsin, but also slows 

down the retinal release from the binding pocket of rhodopsin. The interaction between 

arrestin R175E and rhodopsin mutants associated with RP can be the objective of future 

studies. 

 Tau protein and M3R WT and mutants are coexpressed in HEK293T cells. M3R WT and 

mutants N132G and D518N change the locations of tau from the cytoplasm to the membrane. 

M3R mutants D518K and K523Q are mislocalized to the cytoplasm (and not to the 

membrane) upon coexpression with tau protein. The location changes observed could be 

explained by the specific interactions between tau and M3R mutants. The mutation sites may 

contribute to the binding/recognition of tau on M3R and play a role in the pathophysiology 

of AD. 

 

 
 

 

  



 
136 

 
 

 

  



 
137 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. REFERENCES 

  



 
138 

 
 

 

  



 
139 

 
 

(1) Stevens, R. C., Cherezov, V., Katritch, V., Abagyan, R., Kuhn, P., Rosen, H., and Wuthrich, 

K. (2013) The GPCR Network: a large-scale collaboration to determine human GPCR structure 

and function. Nat. Rev. Drug Discov. 12, 25–34. 

(2) Lagerstrom, M. C., and Schioth, H. B. (2008) Structural diversity of G protein-coupled 

receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339–357. 

(3) Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., 

Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., 

Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J. P., 

Miranda, C., Morris, W., Naylor, J., Raymond, C., Rosetti, M., Santos, R., Sheridan, A., Sougnez, 

C., Stange-Thomann, Y., Stojanovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J., 

Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C., Carter, N., Coulson, A., Deadman, R., 

Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French, L., Grafham, D., Gregory, S., 

Hubbard, T., Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L., 

Mercer, S., Milne, S., Mullikin, J. C., Mungall, A., Plumb, R., Ross, M., Shownkeen, R., Sims, 

S., Waterston, R. H., Wilson, R. K., Hillier, L. W., McPherson, J. D., Marra, M. A., Mardis, E. 

R., Fulton, L. A., Chinwalla, A. T., Pepin, K. H., Gish, W. R., Chissoe, S. L., Wendl, M. C., 

Delehaunty, K. D., Miner, T. L., Delehaunty, A., Kramer, J. B., Cook, L. L., Fulton, R. S., 

Johnson, D. L., Minx, P. J., Clifton, S. W., Hawkins, T., Branscomb, E., Predki, P., Richardson, 

P., Wenning, S., Slezak, T., Doggett, N., Cheng, J. F., Olsen, A., Lucas, S., Elkin, C., 

Uberbacher, E., Frazier, M., Gibbs, R. A., Muzny, D. M., Scherer, S. E., Bouck, J. B., Sodergren, 

E. J., Worley, K. C., Rives, C. M., Gorrell, J. H., Metzker, M. L., Naylor, S. L., Kucherlapati, R. 

S., Nelson, D. L., Weinstock, G. M., Sakaki, Y., Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., 

Itoh, T., Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T., Weissenbach, J., Heilig, R., Saurin, 

W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E., Robert, C., Wincker, P., Smith, D. R., 

Doucette-Stamm, L., Rubenfield, M., Weinstock, K., Lee, H. M., Dubois, J., Rosenthal, A., 

Platzer, M., Nyakatura, G., Taudien, S., Rump, A., Yang, H., Yu, J., Wang, J., Huang, G., Gu, J., 

Hood, L., Rowen, L., Madan, A., Qin, S., Davis, R. W., Federspiel, N. A., Abola, A. P., Proctor, 

M. J., Myers, R. M., Schmutz, J., Dickson, M., Grimwood, J., Cox, D. R., Olson, M. V, Kaul, R., 

Raymond, C., Shimizu, N., Kawasaki, K., Minoshima, S., Evans, G. A., Athanasiou, M., Schultz, 

R., Roe, B. A., Chen, F., Pan, H., Ramser, J., Lehrach, H., Reinhardt, R., McCombie, W. R., de 



 
140 

 
 

la Bastide, M., Dedhia, N., Blocker, H., Hornischer, K., Nordsiek, G., Agarwala, R., Aravind, L., 

Bailey, J. A., Bateman, A., Batzoglou, S., Birney, E., Bork, P., Brown, D. G., Burge, C. B., 

Cerutti, L., Chen, H. C., Church, D., Clamp, M., Copley, R. R., Doerks, T., Eddy, S. R., Eichler, 

E. E., Furey, T. S., Galagan, J., Gilbert, J. G., Harmon, C., Hayashizaki, Y., Haussler, D., 

Hermjakob, H., Hokamp, K., Jang, W., Johnson, L. S., Jones, T. A., Kasif, S., Kaspryzk, A., 

Kennedy, S., Kent, W. J., Kitts, P., Koonin, E. V, Korf, I., Kulp, D., Lancet, D., Lowe, T. M., 

McLysaght, A., Mikkelsen, T., Moran, J. V, Mulder, N., Pollara, V. J., Ponting, C. P., Schuler, 

G., Schultz, J., Slater, G., Smit, A. F., Stupka, E., Szustakowki, J., Thierry-Mieg, D., 

Thierry-Mieg, J., Wagner, L., Wallis, J., Wheeler, R., Williams, A., Wolf, Y. I., Wolfe, K. H., 

Yang, S. P., Yeh, R. F., Collins, F., Guyer, M. S., Peterson, J., Felsenfeld, A., Wetterstrand, K. 

A., Patrinos, A., Morgan, M. J., de Jong, P., Catanese, J. J., Osoegawa, K., Shizuya, H., Choi, S., 

Chen, Y. J., and Szustakowki, J. (2001) Initial sequencing and analysis of the human genome. 

Nature 409, 860–921. 

(4) Fredriksson, R., Lagerstrom, M. C., Lundin, L.-G., and Schioth, H. B. (2003) The 

G-protein-coupled receptors in the human genome form five main families. Phylogenetic 

analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272. 

(5) Zalewska, M., Siara, M., and Sajewicz, W. (2014) G protein-coupled receptors: abnormalities 

in signal transmission, disease states and pharmacotherapy. Acta Pol. Pharm. 71, 229–243. 

(6) Di Pizio, A., and Niv, M. Y. (2014) Computational Studies of Smell and Taste Receptors. Isr. 

J. Chem. 54, 1205–1218. 

(7) Sarramegna, V., Talmont, F., Demange, P., and Milon, A. (2003) Heterologous expression of 

G-protein-coupled receptors: comparison of expression  systems from the standpoint of 

large-scale production and purification. Cell. Mol. Life Sci. 60, 1529–1546. 

(8) Katritch, V., Cherezov, V., and Stevens, R. C. (2013) Structure-function of the G 

protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53, 531–556. 

(9) Insel, P. A., Wilderman, A., Zambon, A. C., Snead, A. N., Murray, F., Aroonsakool, N., 

McDonald, D. S., Zhou, S., McCann, T., Zhang, L., Sriram, K., Chinn, A. M., Michkov, A. V, 

Lynch, R. M., Overland, A. C., and Corriden, R. (2015) G Protein-Coupled Receptor (GPCR) 

Expression in Native Cells: “Novel” endoGPCRs as Physiologic Regulators and Therapeutic 

Targets. Mol. Pharmacol. 88, 181–187. 



 
141 

 
 

(10) Reggio, P. H. (2006) Computational methods in drug design: modeling G protein-coupled 

receptor monomers, dimers, and oligomers. AAPS J. 8, E322–36. 

(11) Hiller, C., Kuhhorn, J., and Gmeiner, P. (2013) Class A G-protein-coupled receptor (GPCR) 

dimers and bivalent ligands. J. Med. Chem. 56, 6542–6559. 

(12) Grigoriadis, D. E., Hoare, S. R. J., Lechner, S. M., Slee, D. H., and Williams, J. A. (2009) 

Drugability of extracellular targets: discovery of small molecule drugs targeting allosteric, 

functional, and subunit-selective sites on GPCRs and ion channels. Neuropsychopharmacology 

34, 106–125. 

(13) Trzaskowski, B., Latek, D., Yuan, S., Ghoshdastider, U., Debinski, A., and Filipek, S. (2012) 

Action of molecular switches in GPCRs--theoretical and experimental studies. Curr. Med. Chem. 

19, 1090–1109. 

(14) Tuteja, N. (2009) Signaling through G protein coupled receptors. Plant Signal. Behav. 4, 

942–947. 

(15) Harmar, A. J. (2001) Family-B G-protein-coupled receptors. Genome Biol. 2, 

REVIEWS3013. 

(16) Gao, Q.-B., and Wang, Z.-Z. (2006) Classification of G-protein coupled receptors at four 

levels. Protein Eng. Des. Sel. 19, 511–516. 

(17) Katritch, V., Cherezov, V., and Stevens, R. C. (2012) Diversity and modularity of G 

protein-coupled receptor structures. Trends Pharmacol. Sci. 33, 17–27. 

(18) Bermudez, M., and Wolber, G. (2015) Structure versus function-The impact of 

computational methods on the discovery of specific GPCR-ligands. Bioorg. Med. Chem. 23, 

3907–3912. 

(19) Miyano, K., Sudo, Y., Yokoyama, A., Hisaoka-Nakashima, K., Morioka, N., Takebayashi, 

M., Nakata, Y., Higami, Y., and Uezono, Y. (2014) History of the G protein-coupled receptor 

(GPCR) assays from traditional to a state-of-the-art biosensor assay. J. Pharmacol. Sci. 126, 

302–309. 

(20) Chen, L., Jin, L., and Zhou, N. (2012) An update of novel screening methods for GPCR in 

drug discovery. Expert Opin. Drug Discov. 7, 791–806. 

(21) Ferre, S. (2015) The GPCR heterotetramer: challenging classical pharmacology. Trends 



 
142 

 
 

Pharmacol. Sci. 36, 145–152. 

(22)  (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Palczewski K,*(1) 

kumasaka T, hori T, behnke CA, motoshima H, fox BA, trong IL, teller DC, okada T, stenkamp 

RE, yamamoto M, miyano M. Science 2000;289:739-745. Am. J. Ophthalmol. 130, 865. 

(23) Tesmer, J. J. G. (2010) The quest to understand heterotrimeric G protein signaling. Nat 

Struct Mol Biol 17, 650–652. 

(24) Rosenbaum, D. M., Rasmussen, S. G. F., and Kobilka, B. K. (2009) The structure and 

function of G-protein-coupled receptors. Nature 459, 356–363. 

(25) Venkatakrishnan,  a J., Deupi, X., Lebon, G., Tate, C. G., Schertler, G. F., and Babu, M. M. 

(2013) Molecular signatures of G-protein-coupled receptors. Nature 494, 185–94. 

(26) Tautermann, C. S. (2014) GPCR structures in drug design, emerging opportunities with new 

structures. Bioorg. Med. Chem. Lett. 24, 4073–4079. 

(27) Zocher, M., Bippes, C. A., Zhang, C., and Muller, D. J. (2013) Single-molecule force 

spectroscopy of G-protein-coupled receptors. Chem. Soc. Rev. 42, 7801–7815. 

(28) Heifetz, A., Schertler, G. F. X., Seifert, R., Tate, C. G., Sexton, P. M., Gurevich, V. V, 

Fourmy, D., Cherezov, V., Marshall, F. H., Storer, R. I., Moraes, I., Tikhonova, I. G., 

Tautermann, C. S., Hunt, P., Ceska, T., Hodgson, S., Bodkin, M. J., Singh, S., Law, R. J., and 

Biggin, P. C. (2015) GPCR structure, function, drug discovery and crystallography: report from 

Academia-Industry International Conference (UK Royal Society) Chicheley Hall, 1-2 September 

2014. Naunyn. Schmiedebergs. Arch. Pharmacol. 388, 883–903. 

(29) Krumm, B. E., and Grisshammer, R. (2015) Peptide ligand recognition by G 

protein-coupled receptors. Front. Pharmacol. 6, 48. 

(30) Buzhynskyy, N., Salesse, C., and Scheuring, S. (2011) Rhodopsin is spatially 

heterogeneously distributed in rod outer segment disk membranes. J. Mol. Recognit. 24, 

483–489. 

(31) Wang, Y., Botelho, A. V., Martinez, G. V, and Brown, M. F. (2002) Electrostatic properties 

of membrane lipids coupled to metarhodopsin II formation in visual transduction. J. Am. Chem. 

Soc. 124, 7690–7701. 

(32) Huber, T., Rajamoorthi, K., Kurze, V. F., Beyer, K., and Brown, M. F. (2002) Structure of 



 
143 

 
 

docosahexaenoic acid-containing phospholipid bilayers as studied by  (2)H NMR and 

molecular dynamics simulations. J. Am. Chem. Soc. 124, 298–309. 

(33) Jastrzebska, B., Debinski, A., Filipek, S., and Palczewski, K. (2011) Role of membrane 

integrity on G protein-coupled receptors: Rhodopsin stability and function. Prog. Lipid Res. 50, 

267–77. 

(34) Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D. A., Engel, A., and Palczewski, K. (2003) 

Atomic-force microscopy: Rhodopsin dimers in native disc membranes. Nature 421, 127–128. 

(35) McKibbin, C., Farmer, N. A., Jeans, C., Reeves, P. J., Khorana, H. G., Wallace, B. A., 

Edwards, P. C., Villa, C., and Booth, P. J. (2007) Opsin stability and folding: modulation by 

phospholipid bicelles. J. Mol. Biol. 374, 1319–1332. 

(36) Menon, S. T., Han, M., and Sakmar, T. P. (2001) Rhodopsin: structural basis of molecular 

physiology. Physiol. Rev. 81, 1659–1688. 

(37) Morris, M. B., Dastmalchi, S., and Church, W. B. (2009) Rhodopsin: structure, signal 

transduction and oligomerisation. Int. J. Biochem. Cell Biol. 41, 721–724. 

(38) Hernandez-Rodriguez, E. W., Sanchez-Garcia, E., Crespo-Otero, R., Montero-Alejo, A. L., 

Montero, L. A., and Thiel, W. (2012) Understanding rhodopsin mutations linked to the retinitis 

pigmentosa disease: a QM/MM and DFT/MRCI study. J. Phys. Chem. B 116, 1060–1076. 

(39) Lamb, T. D., and Pugh, E. N. (2006) Phototransduction, dark adaptation, and rhodopsin 

regeneration the proctor lecture. Invest. Ophthalmol. Vis. Sci. 47, 5137–52. 

(40) Hofmann, K. P., Scheerer, P., Hildebrand, P. W., Choe, H.-W., Park, J. H., Heck, M., and 

Ernst, O. P. (2009) A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem. 

Sci. 34, 540–52. 

(41) Yau, K.-W., and Hardie, R. C. (2009) Phototransduction motifs and variations. Cell 139, 

246–264. 

(42) Palczewski, K. (2012) Chemistry and biology of vision. J. Biol. Chem. 287, 1612–1619. 

(43) Choe, H.-W., Kim, Y. J., Park, J. H., Morizumi, T., Pai, E. F., Krauss, N., Hofmann, K. P., 

Scheerer, P., and Ernst, O. P. (2011) Crystal structure of metarhodopsin II. Nature 471, 651–655. 

(44) Scheerer, P., Park, J. H., Hildebrand, P. W., Kim, Y. J., Krauss, N., Choe, H.-W., Hofmann, 

K. P., and Ernst, O. P. (2008) Crystal structure of opsin in its G-protein-interacting conformation. 



 
144 

 
 

Nature 455, 497–502. 

(45) Palczewski, K. (2006) G protein-coupled receptor rhodopsin. Annu. Rev. Biochem. 75, 

743–767. 

(46) Perusek, L., and Maeda, T. (2013) Vitamin A derivatives as treatment options for retinal 

degenerative diseases. Nutrients 5, 2646–2666. 

(47) Saari, J. C. (2000, February) Biochemistry of visual pigment regeneration: the Friedenwald 

lecture. Invest. Ophthalmol. Vis. Sci. UNITED STATES. 

(48) Boya, P., and Codogno, P. (2013, September) Cell biology: Recycling in sight. Nature. 

England. 

(49) Hatori, M., and Panda, S. (2010) The emerging roles of melanopsin in behavioral adaptation 

to light. Trends Mol. Med. 16, 435–446. 

(50) Bloem, B., Poorthuis, R. B., and Mansvelder, H. D. (2014) Cholinergic modulation of the 

medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal 

activity. Front. Neural Circuits 8, 17. 

(51) Eglen, R. M. (2006) Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic 

function. Auton. Autacoid Pharmacol. 26, 219–233. 

(52) Haga, T. (2013) Molecular properties of muscarinic acetylcholine receptors. Proc. Jpn. 

Acad. Ser. B. Phys. Biol. Sci. 89, 226–256. 

(53) Bubser, M., Byun, N., Wood, M. R., and Jones, C. K. (2012) Muscarinic receptor 

pharmacology and circuitry for the modulation of cognition. Handb. Exp. Pharmacol. 121–166. 

(54) Brown, D. A. (2010) Muscarinic acetylcholine receptors (mAChRs) in the nervous system: 

some functions and mechanisms. J. Mol. Neurosci. 41, 340–346. 

(55) Pera, T., and Penn, R. B. (2014) Crosstalk between beta-2-adrenoceptor and muscarinic 

acetylcholine receptors in the airway. Curr. Opin. Pharmacol. 16, 72–81. 

(56) Hille, B., Dickson, E., Kruse, M., and Falkenburger, B. (2014) Dynamic metabolic control 

of an ion channel. Prog. Mol. Biol. Transl. Sci. 123, 219–247. 

(57) Minami, K., and Uezono, Y. (2013) The recent progress in research on effects of anesthetics 

and analgesics on G protein-coupled receptors. J. Anesth. 27, 284–292. 

(58) Popova, J. S., and Rasenick, M. M. (2004) Clathrin-mediated endocytosis of m3 muscarinic 



 
145 

 
 

receptors. Roles for Gbetagamma and tubulin. J. Biol. Chem. 279, 30410–30418. 

(59) Kruse, A. C., Hu, J., Pan, A. C., Arlow, D. H., Rosenbaum, D. M., Rosemond, E., Green, H. 

F., Liu, T., Chae, P. S., Dror, R. O., Shaw, D. E., Weis, W. I., Wess, J., and Kobilka, B. K. (2012) 

Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552–556. 

(60) Li, J. H., Hamdan, F. F., Kim, S.-K., Jacobson, K. A., Zhang, X., Han, S.-J., and Wess, J. 

(2008) Ligand-specific changes in M3 muscarinic acetylcholine receptor structure detected by a 

disulfide scanning strategy. Biochemistry 47, 2776–2788. 

(61) Martinez-Archundia, M., Cordomi, A., Garriga, P., and Perez, J. J. (2012) Molecular 

modeling of the M3 acetylcholine muscarinic receptor and its binding site. J. Biomed. Biotechnol. 

2012, 789741. 

(62) Insel, P. A., Tang, C.-M., Hahntow, I., and Michel, M. C. (2007) Impact of GPCRs in 

clinical medicine: monogenic diseases, genetic variants and drug targets. Biochim. Biophys. Acta 

1768, 994–1005. 

(63) Ulloa-Aguirre, A., Zarinan, T., Dias, J. A., and Conn, P. M. (2014) Mutations in G 

protein-coupled receptors that impact receptor trafficking and reproductive function. Mol. Cell. 

Endocrinol. 382, 411–423. 

(64) Rivolta, C., Sharon, D., DeAngelis, M. M., and Dryja, T. P. (2002) Retinitis pigmentosa and 

allied diseases: numerous diseases, genes, and inheritance patterns. Hum. Mol. Genet. 11, 

1219–1227. 

(65) Daiger, S. P., Sullivan, L. S., and Bowne, S. J. (2013) Genes and mutations causing retinitis 

pigmentosa. Clin. Genet. 84, 132–141. 

(66) Krebs, M. P., Holden, D. C., Joshi, P., Clark, C. L. 3rd, Lee, A. H., and Kaushal, S. (2010) 

Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological 

rescue. J. Mol. Biol. 395, 1063–1078. 

(67) Concepcion, F., and Chen, J. (2010) Q344ter mutation causes mislocalization of rhodopsin 

molecules that are catalytically active: a mouse model of Q344ter-induced retinal degeneration. 

PLoS One 5, e10904. 

(68) Berger, W., Kloeckener-Gruissem, B., and Neidhardt, J. (2010) The molecular basis of 

human retinal and vitreoretinal diseases. Prog. Retin. Eye Res. 29, 335–375. 



 
146 

 
 

(69) Srinivasan, S., Ramon, E., Cordomí, A., and Garriga, P. (2014) Binding specificity of retinal 

analogs to photoactivated visual pigments suggest mechanism for fine-tuning GPCR-ligand 

interactions. Chem. Biol. 21, 369–78. 

(70) Toledo, D., Ramon, E., Aguilà, M., Cordomí, A., Pérez, J. J., Mendes, H. F., Cheetham, M. 

E., and Garriga, P. (2011) Molecular mechanisms of disease for mutations at Gly-90 in 

rhodopsin. J. Biol. Chem. 286, 39993–40001. 

(71) Andres, A., Garriga, P., and Manyosa, J. (2003) Altered functionality in rhodopsin point 

mutants associated with retinitis pigmentosa. Biochem. Biophys. Res. Commun. 303, 294–301. 

(72) Rayapudi, S., Schwartz, S. G., Wang, X., and Chavis, P. (2013) Vitamin A and fish oils for 

retinitis pigmentosa. Cochrane database Syst. Rev. 12, CD008428. 

(73) Saliba, R. S., Munro, P. M. G., Luthert, P. J., and Cheetham, M. E. (2002) The cellular fate 

of mutant rhodopsin: quality control, degradation and aggresome formation. J. Cell Sci. 115, 

2907–2918. 

(74) Hartong, D. T., Berson, E. L., and Dryja, T. P. (2006) Retinitis pigmentosa. Lancet 368, 

1795–1809. 

(75) Anasagasti, A., Irigoyen, C., Barandika, O., Lopez de Munain, A., and Ruiz-Ederra, J. 

(2012) Current mutation discovery approaches in Retinitis Pigmentosa. Vision Res. 75, 117–129. 

(76) Van Woerkom, C., and Ferrucci, S. (2005) Sector retinitis pigmentosa. Optometry 76, 

309–317. 

(77) Petrs-Silva, H., and Linden, R. (2014) Advances in gene therapy technologies to treat 

retinitis pigmentosa. Clin. Ophthalmol. 8, 127–136. 

(78) Bosch-Presegue, L., Ramon, E., Toledo, D., Cordomi, A., and Garriga, P. (2011) Alterations 

in the photoactivation pathway of rhodopsin mutants associated with retinitis pigmentosa. FEBS 

J. 278, 1493–1505. 

(79) Ramon, E., Cordomi, A., Aguila, M., Srinivasan, S., Dong, X., Moore, A. T., Webster, A. 

R., Cheetham, M. E., and Garriga, P. (2014) Differential light-induced responses in sectorial 

inherited retinal degeneration. J. Biol. Chem. 289, 35918–35928. 

(80) Selkoe, D. J. (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81, 

741–766. 



 
147 

 
 

(81) Jiang, S., Li, Y., Zhang, C., Zhao, Y., Bu, G., Xu, H., and Zhang, Y.-W. (2014) M1 

muscarinic acetylcholine receptor in Alzheimer’s disease. Neurosci. Bull. 30, 295–307. 

(82) Pakaski, M., and Kalman, J. (2008) Interactions between the amyloid and cholinergic 

mechanisms in Alzheimer’s disease. Neurochem. Int. 53, 103–111. 

(83) Tanzi, R. E., and Bertram, L. (2005) Twenty years of the Alzheimer’s disease amyloid 

hypothesis: a genetic perspective. Cell 120, 545–555. 

(84) Chen, G.-J., Xiong, Z., and Yan, Z. (2013) Aβ impairs nicotinic regulation of inhibitory 

synaptic transmission and interneuron excitability in prefrontal cortex. Mol. Neurodegener. 8, 3. 

(85) Fisher, A. (2012) Cholinergic modulation of amyloid precursor protein processing with 

emphasis on M1 muscarinic receptor: perspectives and challenges in treatment of Alzheimer’s 

disease. J. Neurochem. 120 Suppl 1, 22–33. 

(86) Jakob-Roetne, R., and Jacobsen, H. (2009) Alzheimer’s disease: from pathology to 

therapeutic approaches. Angew. Chem. Int. Ed. Engl. 48, 3030–3059. 

(87) Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A., and Hof, P. R. (2000) Tau protein 

isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev. 

33, 95–130. 

(88) Avila, J., Lucas, J. J., Perez, M., and Hernandez, F. (2004) Role of tau protein in both 

physiological and pathological conditions. Physiol. Rev. 84, 361–384. 

(89) Simon, D., Hernandez, F., and Avila, J. (2013) The involvement of cholinergic neurons in 

the spreading of tau pathology. Front. Neurol. 4, 74. 

(90) Gomez-Ramos, A., Diaz-Hernandez, M., Rubio, A., Miras-Portugal, M. T., and Avila, J. 

(2008) Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic 

receptors in neuronal cells. Mol. Cell. Neurosci. 37, 673–681. 

(91) Reyes-Alcaraz, A., Martinez-Archundia, M., Ramon, E., and Garriga, P. (2011) Salt effects 

on the conformational stability of the visual G-protein-coupled receptor rhodopsin. Biophys. J. 

101, 2798–2806. 

(92) Vogel, R., Fan, G. B., Sheves, M., and Siebert, F. (2001) Salt dependence of the formation 

and stability of the signaling state in G protein-coupled receptors: evidence for the involvement 

of the Hofmeister effect. Biochemistry 40, 483–493. 



 
148 

 
 

(93) Park, P. S.-H., Sapra, K. T., Kolinski, M., Filipek, S., Palczewski, K., and Muller, D. J. 

(2007) Stabilizing effect of Zn2+ in native bovine rhodopsin. J. Biol. Chem. 282, 11377–11385. 

(94) Ramon, E., Marron, J., del Valle, L., Bosch, L., Andrés, A., Manyosa, J., and Garriga, P. 

(2003) Effect of dodecyl maltoside detergent on rhodopsin stability and function. Vision Res. 43, 

3055–3061. 

(95) Bubis, J. (1998) Effect of detergents and lipids on transducin photoactivation by rhodopsin. 

Biol. Res. 31, 59–71. 

(96) Sengupta, D., and Chattopadhyay, A. (2015) Molecular dynamics simulations of 

GPCR-cholesterol interaction: An emerging paradigm. Biochim. Biophys. Acta 1848, 

1775–1782. 

(97) Sanchez-Martin, M. J., Ramon, E., Torrent-Burgues, J., and Garriga, P. (2013) Improved 

conformational stability of the visual G protein-coupled receptor rhodopsin by specific 

interaction with docosahexaenoic acid phospholipid. Chembiochem 14, 639–644. 

(98) Boesze-Battaglia, K., and Schimmel, R. J. (1997) Cell membrane lipid composition and 

distribution: implications for cell function and lessons learned from photoreceptors and platelets. 

J. Exp. Biol. 200, 2927–2936. 

(99) Gibson, N. J., and Brown, M. F. (1991) Membrane lipid influences on the energetics of the 

metarhodopsin I and metarhodopsin II conformational states of rhodopsin probed by flash 

photolysis. Photochem. Photobiol. 54, 985–992. 

(100) Cho, H. S., Dominick, J. L., and Spence, M. M. (2010) Lipid domains in bicelles 

containing unsaturated lipids and cholesterol. J. Phys. Chem. B 114, 9238–9245. 

(101) Ujwal, R., and Abramson, J. (2012) High-throughput crystallization of membrane proteins 

using the lipidic bicelle method. J. Vis. Exp. e3383. 

(102) Niu, L., Kim, J.-M., and Khorana, H. G. (2002) Structure and function in rhodopsin: 

asymmetric reconstitution of rhodopsin in liposomes. Proc. Natl. Acad. Sci. U. S. A. 99, 

13409–13412. 

(103) Lambert, O., Levy, D., Ranck, J. L., Leblanc, G., and Rigaud, J. L. (1998) A new “gel-like” 

phase in dodecyl maltoside-lipid mixtures: implications in solubilization and reconstitution 

studies. Biophys. J. 74, 918–930. 



 
149 

 
 

(104) Kim, T. H., Chung, K. Y., Manglik, A., Hansen, A. L., Dror, R. O., Mildorf, T. J., Shaw, D. 

E., Kobilka, B. K., and Prosser, R. S. (2013) The role of ligands on the equilibria between 

functional states of a G protein-coupled receptor. J. Am. Chem. Soc. 135, 9465–9474. 

(105) Kubicek, J., Block, H., Maertens, B., Spriestersbach, A., and Labahn, J. (2014) Expression 

and purification of membrane proteins. Methods Enzymol. 541, 117–140. 

(106) Chattopadhyay, A., Rao, B. D., and Jafurulla, M. (2015) Solubilization of G 

protein-coupled receptors: a convenient strategy to explore lipid-receptor interaction. Methods 

Enzymol. 557, 117–134. 

(107) Sarramegn, V., Muller, I., Milon, A., and Talmont, F. (2006) Recombinant G 

protein-coupled receptors from expression to renaturation: a challenge towards structure. Cell. 

Mol. Life Sci. 63, 1149–1164. 

(108) Vukoti, K., Kimura, T., Macke, L., Gawrisch, K., and Yeliseev, A. (2012) Stabilization of 

functional recombinant cannabinoid receptor CB(2) in detergent micelles and lipid bilayers. 

PLoS One 7, e46290. 

(109) Thompson, A. A., Liu, J. J., Chun, E., Wacker, D., Wu, H., Cherezov, V., and Stevens, R. 

C. (2011) GPCR stabilization using the bicelle-like architecture of mixed sterol-detergent  

micelles. Methods 55, 310–317. 

(110) Albert, A. D., Young, J. E., and Paw, Z. (1998) Phospholipid fatty acyl spatial distribution 

in bovine rod outer segment disk membranes. Biochim. Biophys. Acta 1368, 52–60. 

(111) Paila, Y. D., and Chattopadhyay, A. (2010) Membrane cholesterol in the function and 

organization of G-protein coupled receptors. Subcell. Biochem. 51, 439–466. 

(112) Albert, A. D., and Boesze-Battaglia, K. (2005) The role of cholesterol in rod outer segment 

membranes. Prog. Lipid Res. 44, 99–124. 

(113) Tsukamoto, H., Szundi, I., Lewis, J. W., Farrens, D. L., and Kliger, D. S. (2011) 

Rhodopsin in nanodiscs has native membrane-like photointermediates. Biochemistry 50, 

5086–5091. 

(114) Marsh, D. (2008) Protein modulation of lipids, and vice-versa, in membranes. Biochim. 

Biophys. Acta 1778, 1545–1575. 

(115) Soubias, O., Niu, S.-L., Mitchell, D. C., and Gawrisch, K. (2008) Lipid-rhodopsin 



 
150 

 
 

hydrophobic mismatch alters rhodopsin helical content. J. Am. Chem. Soc. 130, 12465–12471. 

(116) Mansoor, S. E., Palczewski, K., and Farrens, D. L. (2006) Rhodopsin self-associates in 

asolectin liposomes. Proc. Natl. Acad. Sci. U. S. A. 103, 3060–3065. 

(117) Torchilin, V. P. (2006) Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 58, 

1532–1555. 

(118) Serebryany, E., Zhu, G. A., and Yan, E. C. Y. (2012) Artificial membrane-like 

environments for in vitro studies of purified G-protein  coupled receptors. Biochim. Biophys. 

Acta 1818, 225–233. 

(119) Garavito, R. M., and Ferguson-Miller, S. (2001) Detergents as tools in membrane 

biochemistry. J. Biol. Chem. 276, 32403–32406. 

(120) Sanders, C. R., and Prosser, R. S. (1998) Bicelles: a model membrane system for all 

seasons? Structure 6, 1227–34. 

(121) Kaya, A. I., Thaker, T. M., Preininger, A. M., Iverson, T. M., and Hamm, H. E. (2011) 

Coupling efficiency of rhodopsin and transducin in bicelles. Biochemistry 50, 3193–3203. 

(122) Temprana, C. F., Duarte, E. L., Femia, A. L., Alonso, S. del V, and Lamy, M. T. (2012) 

Structural effect of cationic amphiphiles in diacetylenic photopolymerizable membranes. Chem. 

Phys. Lipids 165, 589–600. 

(123) Ujwal, R., and Bowie, J. U. (2011) Crystallizing membrane proteins using lipidic bicelles. 

Methods 55, 337–341. 

(124) McKibbin, C., Farmer, N. a, Jeans, C., Reeves, P. J., Khorana, H. G., Wallace, B. a, 

Edwards, P. C., Villa, C., and Booth, P. J. (2007) Opsin stability and folding: modulation by 

phospholipid bicelles. J. Mol. Biol. 374, 1319–32. 

(125) Botelho, A. V., Gibson, N. J., Thurmond, R. L., Wang, Y., and Brown, M. F. (2002) 

Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids. Biochemistry 

41, 6354–6368. 

(126) Botelho, A. V., Gibson, N. J., Thurmond, R. L., Wang, Y., and Brown, M. F. (2002) 

Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids. Biochemistry 

41, 6354–6368. 

(127) Mitchell, D. C., Niu, S.-L., and Litman, B. J. (2003) Enhancement of G protein-coupled 



 
151 

 
 

signaling by DHA phospholipids. Lipids 38, 437–443. 

(128) Oates, J., and Watts, A. (2011) Uncovering the intimate relationship between lipids, 

cholesterol and GPCR activation. Curr. Opin. Struct. Biol. 21, 802–807. 

(129) Gawrisch, K., and Soubias, O. (2008) Structure and dynamics of polyunsaturated 

hydrocarbon chains in lipid bilayers-significance for GPCR function. Chem. Phys. Lipids 153, 

64–75. 

(130) Grossfield, A., Feller, S. E., and Pitman, M. C. (2006) A role for direct interactions in the 

modulation of rhodopsin by omega 3 polyunsaturated lipids. Natl. Acad. Sci. 103, 4888–4893. 

(131) Gawrisch, K., Soubias, O., and Mihailescu, M. (2008) Insights from biophysical studies on 

the role of polyunsaturated fatty acids for  function of G-protein coupled membrane receptors. 

Prostaglandins. Leukot. Essent. Fatty Acids 79, 131–134. 

(132) Zhang, P., Kofron, C. M., and Mende, U. (2015) Heterotrimeric G protein-mediated 

signaling and its non-canonical regulation in the heart. Life Sci. 129, 35–41. 

(133) Huang, L., Mao, X., Abdulaev, N. G., Ngo, T., Liu, W., and Ridge, K. D. (2012) One-step 

purification of a functional, constitutively activated form of visual arrestin. Protein Expr. Purif. 

82, 55–60. 

(134) Sommer, M. E., Farrens, D. L., McDowell, J. H., Weber, L. A., and Smith, W. C. (2007) 

Dynamics of arrestin-rhodopsin interactions: loop movement is involved in arrestin activation 

and receptor binding. J. Biol. Chem. 282, 25560–25568. 

(135) Hirsch, J. A., Schubert, C., Gurevich, V. V, and Sigler, P. B. (1999) The 2.8 A crystal 

structure of visual arrestin: a model for arrestin’s regulation. Cell 97, 257–269. 

(136) Moller, D., and Gmeiner, P. (2015) Arrestin-Bound Rhodopsin: A Molecular Structure and 

its Impact on the Development of Biased GPCR Ligands. Angew. Chem. Int. Ed. Engl. 54, 

13166–13168. 

(137) Luttrell, L. M., and Lefkowitz, R. J. (2002) The role of beta-arrestins in the termination 

and transduction of G-protein-coupled receptor signals. J. Cell Sci. 115, 455–465. 

(138) Kirchberg, K., Kim, T.-Y., Moller, M., Skegro, D., Dasara Raju, G., Granzin, J., Buldt, G., 

Schlesinger, R., and Alexiev, U. (2011) Conformational dynamics of helix 8 in the GPCR 

rhodopsin controls arrestin activation in the desensitization process. Proc. Natl. Acad. Sci. U. S. 



 
152 

 
 

A. 108, 18690–18695. 

(139) Sommer, M. E., Smith, W. C., and Farrens, D. L. (2005) Dynamics of arrestin-rhodopsin 

interactions: arrestin and retinal release are directly linked events. J. Biol. Chem. 280, 

6861–6871. 

(140) Ittner, L. M., and Gotz, J. (2011) Amyloid-beta and tau--a toxic pas de deux in 

Alzheimer’s disease. Nat. Rev. Neurosci. 12, 65–72. 

(141) Andreadis, A. (2005) Tau gene alternative splicing: expression patterns, regulation and 

modulation of  function in normal brain and neurodegenerative diseases. Biochim. Biophys. 

Acta 1739, 91–103. 

(142) Johnson, G. V. W., and Stoothoff, W. H. (2004) Tau phosphorylation in neuronal cell 

function and dysfunction. J. Cell Sci. 117, 5721–5729. 

(143) Scholz, T., and Mandelkow, E. (2014) Transport and diffusion of Tau protein in neurons. 

Cell. Mol. Life Sci. 71, 3139–3150. 

(144) Avila, J., de Barreda, E. G., Fuster-Matanzo, A., Simon, D., Llorens-Martin, M., Engel, T., 

Lucas, J. J., Diaz-Hernandez, M., and Hernandez, F. (2012) Looking for novel functions of tau. 

Biochem. Soc. Trans. 40, 653–655. 

(145) Garcia, M. L., and Cleveland, D. W. (2001) Going new places using an old MAP: tau, 

microtubules and human neurodegenerative  disease. Curr. Opin. Cell Biol. 13, 41–48. 

(146) Mandelkow, E.-M., and Mandelkow, E. (2012) Biochemistry and cell biology of tau 

protein in neurofibrillary degeneration. Cold Spring Harb. Perspect. Med. 2, a006247. 

(147) Medina, M., Montejo de Garcini, E., and Avila, J. (1995) The role of tau phosphorylation 

in transfected COS-1 cells. Mol. Cell. Biochem. 148, 79–88. 

(148) Avila, J. (2009) The tau code. Front. Aging Neurosci. 1, 1. 

(149) Silva, L. I. (2008) Allosteric interactions at the M 3 muscarinic acetylcholine receptor. 

(150) Oprian, D. D., Molday, R. S., Kaufman, R. J., and Khorana, H. G. (1987) Expression of a 

synthetic bovine rhodopsin gene in monkey kidney cells. Proc. Natl. Acad. Sci. U. S. A. 84, 

8874–8878. 

(151) Blankenship, E., and Lodowski, D. T. (2015) Rhodopsin purification from dark-adapted 

bovine retina. Methods Mol. Biol. 1271, 21–38. 



 
153 

 
 

(152) Fukada, Y., Matsuda, T., Kokame, K., Takao, T., Shimonishi, Y., Akino, T., and 

Yoshizawa, T. (1994) Effects of carboxyl methylation of photoreceptor G protein γ-subunit in 

visual transduction. J. Biol. Chem. 269, 5163–5170. 

(153) Merino, S., Domenech, O., Vinas, M., Montero, M. T., and Hernandez-Borrell, J. (2005) 

Effects of lactose permease on the phospholipid environment in which it is reconstituted: a 

fluorescence and atomic force microscopy study. Langmuir 21, 4642–4647. 

(154) Rigaud, J. L., Levy, D., Mosser, G., and Lambert, O. (1998) Detergent removal by 

non-polar polystyrene beads: Applications to membrane protein reconstitution and 

two-dimensional crystallization. Eur. Biophys. J. 27, 305–319. 

(155) Farrens, D. L., and Khorana, H. G. (1995) Structure and function in rhodopsin. 

Measurement of the rate of metarhodopsin II  decay by fluorescence spectroscopy. J. Biol. 

Chem. 270, 5073–5076. 

(156) Faurobert, E., Otto-Bruc, A., Chardin, P., and Chabre, M. (1993) Tryptophan W207 in 

transducin T alpha is the fluorescence sensor of the G protein activation switch and is involved 

in the effector binding. EMBO J. 12, 4191–4198. 

(157) Neidhardt, J., Barthelmes, D., Farahmand, F., Fleischhauer, J. C., and Berger, W. (2006) 

Different amino acid substitutions at the same position in rhodopsin lead to distinct phenotypes. 

Invest. Ophthalmol. Vis. Sci. 47, 1630–1635. 

(158) Sekharan, S., and Morokuma, K. (2011) Why 11-cis-retinal? Why not 7-cis-, 9-cis-, or 

13-cis-retinal in the eye? J. Am. Chem. Soc. 133, 19052–19055. 

(159) Reeves, P. J., Hwa, J., and Khorana, H. G. (1999) Structure and function in rhodopsin: 

kinetic studies of retinal binding to purified opsin mutants in defined phospholipid-detergent 

mixtures serve as probes of the retinal binding pocket. Proc. Natl. Acad. Sci. U. S. A. 96, 

1927–1931. 

(160) Liu, J., Liu, M. Y., Nguyen, J. B., Bhagat, A., Mooney, V., and Yan, E. C. Y. (2009) 

Thermal decay of rhodopsin: role of hydrogen bonds in thermal isomerization of 11-cis retinal in 

the binding site and hydrolysis of protonated Schiff base. J. Am. Chem. Soc. 131, 8750–8751. 

(161) Lamb, T. D., and Pugh, E. N. J. (2004) Dark adaptation and the retinoid cycle of vision. 

Prog. Retin. Eye Res. 23, 307–380. 



 
154 

 
 

(162) Ernst, O. P., Gramse, V., Kolbe, M., Hofmann, K. P., and Heck, M. (2007) Monomeric G 

protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion 

limit. Proc. Natl. Acad. Sci. U. S. A. 104, 10859–10864. 

(163) Duft, D., Achtzehn, T., and Müller, R. (2003) Rhodopsin dimers in native disc membranes 

421, 127–128. 

(164) Smith, A. W. (2015) Detection of rhodopsin dimerization in situ by PIE-FCCS, a 

time-resolved fluorescence spectroscopy. Methods Mol. Biol. 1271, 205–219. 

(165) Shukolyukov, S. A. (2010) Proof of oligomeric state of frog rhodopsin: visualization of 

dimer and oligomers on gels after BN- and HRCN-PAGE using antibodies to rhodopsin and by 

retinylopsin fluorescence. Biochemistry. (Mosc). 75, 1045–1051. 

(166) Landin, J. S., Katragadda, M., and Albert, A. D. (2001) Thermal destabilization of 

rhodopsin and opsin by proteolytic cleavage in bovine  rod outer segment disk membranes. 

Biochemistry 40, 11176–11183. 

(167) Dhanasekaran, N., Wessling-Resnick, M., Kelleher, D. J., Johnson, G. L., and Ruoho, A. E. 

(1988) Mapping of the carboxyl terminus within the tertiary structure of transducin’s alpha 

subunit using the heterobifunctional cross-linking reagent, 

125I-N-(3-iodo-4-azidophenylpropionamido-S-(2-thiopyridyl) cysteine. J. Biol. Chem. 263, 

17942–17950. 

(168) Corley, S. C., Sprangers, P., and Albert, A. D. (2011) The bilayer enhances rhodopsin 

kinetic stability in bovine rod outer segment disk membranes. Biophys. J. 100, 2946–2954. 

(169) Sinha, A., Jones Brunette, A. M., Fay, J. F., Schafer, C. T., and Farrens, D. L. (2014) 

Rhodopsin TM6 can interact with two separate and distinct sites on arrestin: evidence for 

structural plasticity and multiple docking modes in arrestin-rhodopsin binding. Biochemistry 53, 

3294–3307. 

(170) Sommer, M. E., Hofmann, K. P., and Heck, M. (2011) Arrestin-rhodopsin binding 

stoichiometry in isolated rod outer segment membranes  depends on the percentage of activated 

receptors. J. Biol. Chem. 286, 7359–7369. 

(171) Hanson, S. M., Cleghorn, W. M., Francis, D. J., Vishnivetskiy, S. A., Raman, D., Song, X., 

Nair, K. S., Slepak, V. Z., Klug, C. S., and Gurevich, V. V. (2007) Arrestin mobilizes signaling 



 
155 

 
 

proteins to the cytoskeleton and redirects their activity. J. Mol. Biol. 368, 375–387. 

(172) Kang, Y., Gao, X., Zhou, X. E., He, Y., Melcher, K., and Xu, H. E. (2015) A structural 

snapshot of the rhodopsin-arrestin complex. FEBS J. 

(173) Raman, D., Osawa, S., Gurevich, V. V, and Weiss, E. R. (2003) The interaction with the 

cytoplasmic loops of rhodopsin plays a crucial role in arrestin activation and binding. J. 

Neurochem. 84, 1040–1050. 

(174) Yanamala, N., Gardner, E., Riciutti, A., and Klein-Seetharaman, J. (2012) The cytoplasmic 

rhodopsin-protein interface: potential for drug discovery. Curr. Drug Targets 13, 3–14. 

(175) Sommer, M. E., Smith, W. C., and Farrens, D. L. (2006) Dynamics of arrestin-rhodopsin 

interactions: acidic phospholipids enable binding  of arrestin to purified rhodopsin in detergent. 

J. Biol. Chem. 281, 9407–9417. 

(176) Sommer, M. E., Hofmann, K. P., and Heck, M. (2012) Distinct loops in arrestin 

differentially regulate ligand binding within the GPCR opsin. Nat. Commun. 3, 995. 

(177) Kanwal, S., Nishat, S., and Khan, M. I. (2012) Docking of human rhodopsin mutant 

(Gly90-->Asp) with beta-arrestin and cyanidin 3-rutinoside to cure night blindness. 

Bioinformation 8, 128–133. 

(178) Gray-Keller, M. P., Detwiler, P. B., Benovic, J. L., and Gurevich, V. V. (1997) Arrestin 

with a single amino acid substitution quenches light-activated rhodopsin in a 

phosphorylation-independent fashion. Biochemistry 36, 7058–7063. 

(179) Sommer, M. E., and Farrens, D. L. (2006) Arrestin can act as a regulator of rhodopsin 

photochemistry. Vision Res. 46, 4532–4546. 

(180) Buee, L., Troquier, L., Burnouf, S., Belarbi, K., Van der Jeugd, A., Ahmed, T., 

Fernandez-Gomez, F., Caillierez, R., Grosjean, M.-E., Begard, S., Barbot, B., Demeyer, D., 

Obriot, H., Brion, I., Buee-Scherrer, V., Maurage, C.-A., Balschun, D., D’hooge, R., Hamdane, 

M., Blum, D., and Sergeant, N. (2010) From tau phosphorylation to tau aggregation: what about 

neuronal death? Biochem. Soc. Trans. 38, 967–972. 

(181) Lee, G., and Rook, S. L. (1992) Expression of tau protein in non-neuronal cells: 

microtubule binding and stabilization. J. Cell Sci. 102 ( Pt 2), 227–237. 

(182) Miller, E. C., Teravskis, P. J., Dummer, B. W., Zhao, X., Huganir, R. L., and Liao, D. 



 
156 

 
 

(2014) Tau phosphorylation and tau mislocalization mediate soluble A b oligomer-induced 

AMPA glutamate receptor signaling deficits 39, 1214–1224. 

(183) Gomez-Ramos, A., Diaz-Hernandez, M., Rubio, A., Diaz-Hernandez, J. I., Miras-Portugal, 

M. T., and Avila, J. (2009) Characteristics and consequences of muscarinic receptor activation 

by tau protein. Eur. Neuropsychopharmacol. 19, 708–717. 

(184) West, S., and Bhugra, P. (2015) Emerging drug targets for Abeta and tau in Alzheimer’s 

disease: a systematic review. Br. J. Clin. Pharmacol. 80, 221–234. 

(185) Delobel, P., Mailliot, C., Hamdane, M., Sambo, A.-V., Begard, S., Violleau, A., 

Delacourte, A., and Buee, L. (2003) Stable-tau overexpression in human neuroblastoma cells: an 

open door for explaining neuronal death in tauopathies. Ann. N. Y. Acad. Sci. 1010, 623–634. 

(186) Simon, D., Garcia-Garcia, E., Royo, F., Falcon-Perez, J. M., and Avila, J. (2012) 

Proteostasis of tau. Tau overexpression results in its secretion via membrane vesicles. FEBS Lett. 

586, 47–54. 

(187) Miller, E. C., Teravskis, P. J., Dummer, B. W., Zhao, X., Huganir, R. L., and Liao, D. 

(2014) Tau phosphorylation and tau mislocalization mediate soluble Abeta oligomer-induced 

AMPA glutamate receptor signaling deficits. Eur. J. Neurosci. 39, 1214–1224. 

(188) Zempel, H., Thies, E., Mandelkow, E., and Mandelkow, E.-M. (2010) Abeta oligomers 

cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau 

phosphorylation, and destruction of microtubules and spines. J. Neurosci. 30, 11938–11950. 

(189) Naini, S. M. A., and Soussi-Yanicostas, N. (2015) Tau Hyperphosphorylation and 

Oxidative Stress, a Critical Vicious Circle in Neurodegenerative Tauopathies? Oxid. Med. Cell. 

Longev. 2015, 151979. 

(190) Musch, A. (2004) Microtubule organization and function in epithelial cells. Traffic 5, 1–9. 

(191) Moore, A. T., Fitzke, F. W., Kemp, C. M., Arden, G. B., Keen, T. J., Inglehearn, C. F., 

Bhattacharya, S. S., and Bird, A. C. (1992) Abnormal dark adaptation kinetics in autosomal 

dominant sector retinitis pigmentosa due to rod opsin mutation. Br. J. Ophthalmol. 76, 465–469. 

(192) Mudher, A., and Lovestone, S. (2002) Alzheimer’s disease-do tauists and baptists finally 

shake hands? Trends Neurosci. 25, 22–26. 

  



 
157 

 
 

 

 

 

 

 

 

 

 

 

 

 

8. ACKNOWLEDGEMENTS  



 
158 

 
 

 
  



 
159 

 
 

First and foremost I would like to express my special appreciation and thanks to my supervisor 

Professor Dr. Pere Garriga Solé. He helped me to start my PhD programme in Spain which 

already became the most important and priceless trip in my life. By the time to time 

communication and discussion, I was deeply admired and infected by his enormous knowledge 

and meticulous scientific attitude. With the guidance and encouragement in three years, I can 

keep my science interest and continue the study. I am also thankful for the Spanish research 

atmosphere he created, which made me feel free during the study. 

I would give my sincerely thanks to my thesis co-director Dr. Eva Ramon. I appreciate all her 

contributions of time, guidance, discussions and encouragements for my project. Her dedication 

towards science shocked me and motivated me in my life from the spirit. I am thankful for the 

excellent example she has provided as a successful woman bioscientist and researcher. 

I also thank to professor Dr. Roser Masgrau (UAB) and Dr. Jesus Avila (CSIC-UAM) and all the 

other professors who gave me the kindly help on materials, techniques and equipment on my 

work.  

The members of the GBMI group have contributed immensely to my personal and professional 

time at UPC. This group has been a source of friendship as well as collaboration. I am especially 

grateful for my labmates: Dr Mª Jesus Sanchez, who was my first working partner and gave me 

unselfish help for my DDHA-PC liposomes work, Dr. Margarita Morillo, who kindly assisted me 

on my work Dr. Merce Tena, who is beautiful, humorous and with her natural ebullience. She 

showed me totally unique Catalonia character. Dr. Sundaramoorthy Srinivasan, my India friend, 

who always helped me solving all the computer problems, fixing most of the equipment and 

downloading all the paid articles. PhD student Maria Guadalupe Herrera, my best friend, 

spending with me most of the time in parties, dinners and discussions related to the experiments. 

I also thank her for her pushing (also Eva) on my thesis writing with strict and honest heart. PhD 

student Miguel Antonio Fernandez, who is always taking care of the lab and giving me a lot of 

help on the experiments and articles. MSc Diana Rivera Rodriguez, she helped me to see the 

problems and questions with an open mind and optimism. I would honorary acknowledge them. 

We worked together most of the time with fun and happiness.  

I wish to thank Professor Tzanko Tzanov and his former and current lab members; Dr. Carlos 



 
160 

 
 

Díaz, Dr. Tony Francesko, Dr. Margarida Fernandes, Petya Petkova, Kristina Ivanova, Ivaylo 

Stefanov and Dr. Javier Hoyo, who are always around sharing the equipment, reagents and cell 

culture room with us. Petya and Kristina, my best friends, are always full of enthusiasm for the 

life and work. 

I have appreciated my friends Hongyang Xu, Jianqing Zhu, Weiyi Zhang, Yehua He who always 

encouraged me, comforted my complain and motivate me to be a better person. 

Besides, I would thank my parents and my brother Xiaoguang Dong for their love and 

encouragement. They always support me at any time in all my pursuits.  

在此，我万分感激父母董立义、赵桂芳和弟弟董晓光一直以来对我的鼓励与支持。这份坚

实的感情更是增添了我追求梦想的勇气与信心。山高水长，唯愿亲情永存。 

I gratefully acknowledge the Chinese Scholarship Council (CSC), the funding sources that made 

my PhD work possible.  

Even mountains and seas cannot distance people with common aspirations. PhD period is the 

most memorable part of my life. I will miss GAIA, miss everyone, and miss Spain. Thank you. 

 

Xiaoyun Dong 

Universitat Politècnica de Catalunya 

March 2016 

 
 

 

  



 
161 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX 

  



 
162 

 
 

 
  



 
163 

 
 

Buffers List 

3.3.1.1 Competent cells preparation 

 100 mM CaCl2 solution, autoclaved and kept at 4ºC until use. 

 100 mM CaCl2 containing 20% of glycerol solution, autoclaved and kept at 4ºC until use. 

3.3.1.2 Ultra-competent cells preparation 

 SOB solution: 0.5% yeast extract, 2% tryptone, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 

10 mM MgSO4 dissolved in milliQ water. It was autoclaved to sterilize and kept at 4ºC.  

 TB solution: 10 mM PIPES, 15 mM CaCl2 and 250 mM KCl. Then dissolved in milliQ 

water and adjust pH to 6.7 with KOH or HCl and then add 55 mM MnCl2, dissolved in 

milliQ water. It was sterilized by filtration with 0.45 µm filter and kept at 4ºC. 

3.3.1.3 DNA transformation 

 2YT medium: 1.6 g Tryptone, 1.0 g Yeast Extract, 0.5 g NaCl, adjust pH to 7.2 in 100 ml 

ddH2O and autoclaved.  

 LB medium: 1.0 g Tryptone, 0.5 g Yeast Extract, 0.05 g NaCl, pH 7.2 in 100 ml ddH2O and 

autoclaved.  

3.3.2.1 DNA Maxi-prep purification 

 Resuspension buffer (R3): 50 mM Tris-HCl, 10 mM EDTA, pH 8.0. 

 Lysis buffer (L7): 0.2 M NaOH, and 1% (w/v) SDS. 

 Precipitation buffer (N3): 3.1 M potassium acetate, pH 5.5. 

 Equilibration buffer (EQ1): 0.1 M sodium acetate with pH 5.0, 0.6 M NaCl, and 0.15% (v/v) 

TritonX-100. 

 Wash buffer (W8): 0.1 M sodium acetate with pH 5.0 and 825 mM NaCl. 

 Elution buffer (E4): 100 mM Tris-HCl, pH 8.5 and 1.25 M NaCl 

3.3.2.2 DNA agarose gel electrophoresis 
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 TAE buffer (10x): 48.4 g Tris Base, 7.44 g EDTA dissolved in 800 ml ddH2O, 11.42 ml 

CH3COOH was added and homogenized. Add more ddH2O to 1 L. 

 EB buffer: 2 µl EB dissolved in 100 ml 1x TAE buffer. 

3.4.1 Coupling 1D4 antibody to sepharose beads 

 1 mM HCl (pH 2~3): 41.6 µl of 12 M/37% HCl dissolved in 500 ml ddH2O, adjust pH 2~3. 

 Coupling buffer: 0.1 M NaHCO3 pH 8.3 containing 0.5 M NaCl. 

 Beads storage buffer: 2 mM Na2PO4 (pH 6.0) with 0.004% (w/v) NaN3. 

3.4.2 Purification of Rho WT and G90V, N55K mutants from mammalian cells 

 Solvent buffer (DDHA-PC liposomes study (3.5.2)): 137 mM NaCl, 2.7 mM KCl, 1.5 mM 

KH2PO4, and 8 mM Na2HPO4, pH 7.4.  

 Solvent buffer (DMPC/DHPC bicelles study (3.5.2)): solvent buffer was also named as 

Bicelles buffer A: 10 mM BTP, 140 mM NaCl, 2 mM MgCl2, 2 mM CaCl2, pH 6.0. 

 Washing buffer: solvent buffer with 0.05% (w/v) DM.  

 Elution buffer: washing buffer with 100 µM 1D4 9-mer peptide. 

3.4.4 Extraction of G protein transducin (Gt) from bovine retina 

 Tris buffer A: 20 mM Tris, pH 7.4, 1 mM CaCl2, 2 mM DTT. 

 Tris buffer C: 10 mM Tris, pH 7.4, 100 mM NaCl, 5 mM MgCl2, 2 mM DTT. 

 Tris buffer D: 10 mM Tris, pH 7.4, 0.1 mM EDTA, 2 mM DTT. 

 Tris buffer E: 20 mM Tris, pH 7.5, 100 mM NaCl, 50% glycerol, 5 mM DTT and 5 mM 

MgCl2. 

 47% sucrose: 117.5 g sucrose in 250 ml Tris buffer A. 

 30% sucrose: 75 g sucrose in 250 ml Tris buffer A. 

 25% sucrose: 62.5 g sucrose in 250 ml Tris buffer A. 

0.1 mM PMSF was added in all the buffers before used. 
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3.5.1 DMPC/DHPC bicelles preparations 

 Bicelles buffer A: 10 mM BTP, 140 mM NaCl, 2 mM MgCl2, 2 mM CaCl2, pH 6.0. 

 Buffer A containing 0.05% (w/v) DM was used as a DM-buffer A control buffer. 

 Buffer A containing 2% (w/v) DMPC/DHPC bicelles was prepared as the description above.  

The bicelles buffer A was used in all the experiments associated with DMPC/DHPC bicelles. 

3.5.2 DDHA-PC liposomes preparation and protein insertion 

 During the DDHA-PC liposomes preparation process, the solvent buffer (see section 3.4.2) 

was used and all the experiments involving DDHA-PC liposomes. 

 DM detergent buffer: solvent buffer containing 0.05% (w/v) DM.  

 DDHA-PC liposomes buffer: solvent buffer containing 0.375 mM DDHA-PC liposomes 

with 0.5 µM WT rhodopsin or mutants, which would be 750:1, as per the above description. 

3.6.4.1 SDS-PAGE and Coomassie blue staining 

 4x protein loading buffer: 0.0625 M Tris, 2% SDS, 10% Glycerol, 0.4 M DTT, 0.1% Blue 

Bromophenol dissolved in ddH2O. 

 1x TGS buffer: 3 g Tris, 14.4 g Glycine, 1 g SDS pH 8.3, up to 1 L with ddH2O. 

 Coomassie brilliant blue buffer: 10% (v/v) MetOH, 10% (v/v) AcOH and 0.025% (w/v) 

Coomassie-G. 

 Coomassie destain buffer: 400 ml Methanol, 100 ml Glacial Acetic Acid dissolved in 1 L 

ddH2O. 

3.6.4.2 Blue Native PAGE (BN-PAGE) 

 Loading buffer: 5% glycerol and 0.01% Ponceau Red. 

 Running buffer: the gel running buffer is 50 mM Tricine, 15 mM Bis-Tris and 0.02% 

Coomassie blue G with pH 7.0. 

3.6.5 WB 
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 TBS buffer: 8.7 g NaCl, 1.21 g Tris, 0.4 ml HCl in 1L ddH2O, pH 8.0. 

 TTBS buffer: 1 ml Tween 20 dissolved in 1L TBS solution. 

3.6.6 Arrestin R175E purification by Bio-scale mini profinity cartridges 

 Arrestin buffer: 10 mM MOPS pH 7.2 containing 50 mM NaCl and 0.1 mM PMSF and 

protease inhibitor (filtered before use).  

 Arrestin elution buffer: Arrestin buffer containing 0.1 M NaF. 

3.6.10 Lowry protein assay 

 Lowry solution A (10 ml): 0.1 M NaOH (40 mg) and 0.2 g Na2CO3 dissolved in 10 ml 

ddH2O 

 Lowry solution B (10 ml): 0.1 g potassium sodium tartrate tetrahydrate and 50 mg CuSO4 

dissolved in 10 ml ddH2O. CuSO4 was dissolved first to avoid any aggregation. 
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MAPT(Tau) gene sequence 

Human MAPT / Tau transcript variant 4 natural ORF mammalian expression plasmid 

(HG10058-UT) 
Red font is gene. ggtacc is KpnI. tctaga is XbaI. Black letters on blue is stop codon 
 

gacggatcgggagatctcccgatcccctatggtgcactctcagtacaatctgctctgatgccgcatagttaagc

cagtatctgctccctgcttgtgtgttggaggtcgctgagtagtgcgcgagcaaaatttaagctacaacaaggca

aggcttgaccgacaattgcatgaagaatctgcttagggttaggcgttttgcgctgcttcgcgagtacatttata

ttggctcatgtccaatatgaccgccatgttgacattgattattgactagttattaatagtaatcaattacgggg

tcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcc

caacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgac

gtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtccgccc

cctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttacgggactttcctac

ttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacaccaatgggcgtg

gatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcaccaa

aatcaacgggactttccaaaatgtcgtaataaccccgccccgttgacgcaaatgggcggtaggcgtgtacggtg

ggaggtctatataagcagagctcgtttagtgaaccgtcagatcctcactctcttccgcatcgctgtctgcgagg

gccagctgttgggctcgcggttgaggacaaactcttcgcggtctttccagtactcttggatcggaaacccgtcg

gcctccgaacggtactccgccaccgagggacctgagcgagtccgcatcgaccggatcggaaaacctctcgagaa

aggcgtctaaccagtcacagtcgcaaggtaggctgagcaccgtggcgggcggcagcgggtggcggtcggggttg

tttctggcggaggtgctgctgatgatgtaattaaagtaggcggtcttgagacggcggatggtcgaggtgaggtg

tgggtttagtgaaccgtcagatcctcactctcttccgcatcgctgtctgcgagggccagctgtcaggcttgaga

tccagctgttggggtgagtactccctctcaaaagcgggcattacttctgcgctaagattgtcagtttccaaaaa

cgaggaggatttgatattcacctggcccgatctggccatacacttgagtgacaatgacatccactttgcctttc

tctccacaggtgtccactcccaggtccaagtttaaactttaatacgactcactataggggccgccaccaagctt

ggtacc 
ATGGCTGAGCCCCGCCAGGAGTTCGAAGTGATGGAAGATCACGCTGGGACGTACGGGTTGGGGGACAGGAAAGA

TCAGGGGGGCTACACCATGCACCAAGACCAAGAGGGTGACACGGACGCTGGCCTGAAAGCTGAAGAAGCAGGCA

TTGGAGACACCCCCAGCCTGGAAGACGAAGCTGCTGGTCACGTGACCCAAGCTCGCATGGTCAGTAAAAGCAAA

GACGGGACTGGAAGCGATGACAAAAAAGCCAAGGGGGCTGATGGTAAAACGAAGATCGCCACACCGCGGGGAGC

AGCCCCTCCAGGCCAGAAGGGCCAGGCCAACGCCACCAGGATTCCAGCAAAAACCCCGCCCGCTCCAAAGACAC

CACCCAGCTCTGGTGAACCTCCAAAATCAGGGGATCGCAGCGGCTACAGCAGCCCCGGCTCCCCAGGCACTCCC

GGCAGCCGCTCCCGCACCCCGTCCCTTCCAACCCCACCCACCCGGGAGCCCAAGAAGGTGGCAGTGGTCCGTAC

TCCACCCAAGTCGCCGTCTTCCGCCAAGAGCCGCCTGCAGACAGCCCCCGTGCCCATGCCAGACCTGAAGAATG

TCAAGTCCAAGATCGGCTCCACTGAGAACCTGAAGCACCAGCCGGGAGGCGGGAAGGTGCAAATAGTCTACAAA

CCAGTTGACCTGAGCAAGGTGACCTCCAAGTGTGGCTCATTAGGCAACATCCATCATAAACCAGGAGGTGGCCA

GGTGGAAGTAAAATCTGAGAAGCTTGACTTCAAGGACAGAGTCCAGTCGAAGATTGGGTCCCTGGACAATATCA

CCCACGTCCCTGGCGGAGGAAATAAAAAGATTGAAACCCACAAGCTGACCTTCCGCGAGAACGCCAAAGCCAAG

ACAGACCACGGGGCGGAGATCGTGTACAAGTCGCCAGTGGTGTCTGGGGACACGTCTCCACGGCATCTCAGCAA

TGTCTCCTCCACCGGCAGCATCGACATGGTAGACTCGCCCCAGCTCGCCACGCTAGCTGACGAGGTGTCTGCCT

CCCTGGCCAAGCAGGGTTTGTAAactcgagtctagagcggccgccgaattcgggcccgtttaaacccgctgatc
agcctcgactgtgccttctagttgccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaag

gtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctatt

ctggggggtggggtggggcaggacagcaagggggaggattgggaagacaatagcaggcatgctggggatgcggt
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gggctctatggcttctgaggcggaaagaaccagctggggctctagggggtatccccacgcgccctgtagcggcg

cattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcct

ttcgctttcttcccttcctttctcgccacgttcgcaggctttccccgtcaagctctaaatcgggggctcccttt

agggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggc

catcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaa

actggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattg

gttaaaaaatgagctgatttaacaaaaatttaacgcgaattaattctgtggaatgtgtgtcagttagggtgtgg

aaagtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtggaa

agtccccaggctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccatagtcccgccc

ctaactccgcccatcccgcccctaactccgcccagttccgcccattctccgccccatggctgactaattttttt

tatttatgcagaggccgaggccgcctctgcctctgagctattccagaagtagtgaggaggcttttttggaggcc

taggcttttgcaaaaagctctcgggagcttgtatatccattttcggatctgatcagcacgtgatgaaaaagcct

gaactcaccgcgacgtctgtcgagaagtttctgatcgaaaagttcgacagcgtctccgacctgatgcagctctc

ggagggcgaagaatctcgtgctttcagcttcgatgtaggagggcgtggatatgtcctgcgggtaaatagctgcg

ccgatggtttctacaaagatcgttatgtttatcggcactttgcatcggccgcgctcccgattccggaagtgctt

gacattggggaattcagcgagagcctgacctattgcatctcccgccgtgcacagggtgtcacgttgcaagacct

gcctgaaaccgaactgcccgctgttctgcagccggtcgcggaggccatggatgcgatcgctgcggccgatctta

gccagacgagcgggttcggcccattcggaccgcaaggaatcggtcaatacactacatggcgtgatttcatatgc

gcgattgctgatccccatgtgtatcactggcaaactgtgatggacgacaccgtcagtgcgtccgtcgcgcaggc

tctcgatgagctgatgctttgggccgaggactgccccgaagtccggcacctcgtgcacgcggatttcggctcca

acaatgtcctgacggacaatggccgcataacagcggtcattgactggagcgaggcgatgttcggggattcccaa

tacgaggtcgccaacatcttcttctggaggccgtggttggcttgtatggagcagcagacgcgctacttcgagcg

gaggcatccggagcttgcaggatcgccgcggctccgggcgtatatgctccgcattggtcttgaccaactctatc

agagcttggttgacggcaatttcgatgatgcagcttgggcgcagggtcgatgcgacgcaatcgtccgatccgga

gccgggactgtcgggcgtacacaaatcgcccgcagaagcgcggccgtctggaccgatggctgtgtagaagtact

cgccgatagtggaaaccgacgccccagcactcgtccgagggcaaaggaatagcacgtgctacgagatttcgatt

ccaccgccgccttctatgaaaggttgggcttcggaatcgttttccgggacgctggctggatgatcctccagcgc

ggggatctcatgctggagttcttcgcccaccccaacttgtttattgcagcttataatggttacaaataaagcaa

tagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatg

tatcttatcatgtctgtataccgtcgacctctagctagagcttggcgtaatcatggtcatagctgtttcctgtg

tgaaattgttatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgccta

atgagtgagctaactcacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagc

tgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcctcgctcact

gactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccac

agaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccg

cgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtgg

cgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgac

cctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgta

ggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgc

tgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccac

tggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggct

acactagaagaacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctct

tgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaa

aggatctcaagaagatcctttgatcttttctacggggtctgagcgcggaacccctatttgtttatttttctaaa

tacattcaaatatgtatccgctcatgaattaattcttagaaaaactcatcgagcatcaaatgaaactgcaattt
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attcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggagaaaactcaccgaggc

agttccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaat

ttcccctcgtcaaaaataaggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaa

aagtttatgcatttctttccagacttgttcaacaggccagccattacgctcgtcatcaaaatcactcgcatcaa

ccaaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcgatcgctgttaaaaggacaattacaa

acaggaatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatattc

ttctaatacctggaatgctgttttcccagggatcgcagtggtgagtaaccatgcatcatcaggagtacggataa

aatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctgaccatctcatctgtaacatcattg

gcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgc

acctgattgcccgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcg

gcctagagcaagacgtttcccgttgaatatggctcataacaccccttgtattactgtttatgtaagcagacagt

tttattgttcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaatccgcg

cacatttccccgaaaagtgccacctgacgtc 
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